Sample records for biofuels industry development

  1. Partnering with Industry to Develop Advanced Biofuels

    Broader source: Energy.gov [DOE]

    Breakout Session IA—Conversion Technologies I: Industrial Perspectives on Pathways to Advanced Biofuels Partnering with Industry to Develop Advanced Biofuels David C. Carroll, President and Chief Executive Officer, Gas Technology Institute

  2. Chapter 18: Understanding the Developing Cellulosic Biofuels Industry through Dynamic Modeling

    SciTech Connect (OSTI)

    Newes, E.; Inman, D.; Bush, B.

    2011-01-01T23:59:59.000Z

    The purpose of this chapter is to discuss a system dynamics model called the Biomass Scenario Model (BSM), which is being developed by the U.S. Department of Energy as a tool to better understand the interaction of complex policies and their potential effects on the burgeoning cellulosic biofuels industry in the United States. The model has also recently been expanded to include advanced conversion technologies and biofuels (i.e., conversion pathways that yield biomass-based gasoline, diesel, jet fuel, and butanol), but we focus on cellulosic ethanol conversion pathways here. The BSM uses a system dynamics modeling approach (Bush et al., 2008) built on the STELLA software platform.

  3. Georgia Biofuel Directory A directory of Georgia industries that use biofuels.

    E-Print Network [OSTI]

    Georgia Biofuel Directory · A directory of Georgia industries that use biofuels. · Completed in May _________________________________________________________________ 3 Biofuels_____________________________________________________________________ 4 Biofuel Use in Georgia that Burn Self-Generated Biofuels as of May 2003__ 4 Chart 1.0 Biofuel Use from Contacted

  4. Developing genome-enabled sustainable lignocellulosic biofuels technologies

    E-Print Network [OSTI]

    Developing genome-enabled sustainable lignocellulosic biofuels technologies Timothy Donohue a technically advanced biofuels industry that is economically & environmentally sustainable." [GLBRC Roadmap sugars, lignin content, etc.) Cellulosic Biofuels "Opportunities & Challenges" 5 #12;Variable Composition

  5. Potential Land Use Implications of a Global Biofuels Industry

    E-Print Network [OSTI]

    Gurgel, Angelo C.

    In this paper we investigate the potential production and implications of a global biofuels industry. We

  6. Partnering with Industry to Advance Biofuels, NREL's Integrated Biorefinery Research Facility (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-10-01T23:59:59.000Z

    Fact sheet describing NREL's Integrated Biorefinery Research Facility and its availability to biofuels' industry partners who want to operate, test, and develop biorefining technology and equipment.

  7. Sustainability for the Global Biofuels Industry: Minimizing Risks...

    Broader source: Energy.gov (indexed) [DOE]

    Webinar transcript. sustainabilityglobalbiofuelswebinar.doc More Documents & Publications Sustainability for the Global Biofuels Industry Minimizing Risks and Maximizing...

  8. Sustainability for the Global Biofuels Industry Minimizing Risks...

    Broader source: Energy.gov (indexed) [DOE]

    nationalpresentation.pdf More Documents & Publications Sustainability for the Global Biofuels Industry: Minimizing Risks and Maximizing Opportunities Webinar Transcript...

  9. Sustainability for the Global Biofuels Industry: Minimizing Risks...

    Office of Environmental Management (EM)

    Opportunities Sustainability for the Global Biofuels Industry: Minimizing Risks and Maximizing Opportunities Introduction slides for the webinar describing bioenergy and...

  10. Hawai'i Bioenergy Master Plan Green Jobs, Biofuels Development, and

    E-Print Network [OSTI]

    Hawai'i Bioenergy Master Plan Green Jobs, Biofuels Development, and Hawaii's Labor Market associated with biofuels in Hawai'i. In particular, it discusses how a potential biofuels industry might policy makers and leaders consider how best to support biofuels. One major labor market question

  11. New Studies Portray Unbalanced Perspective on Biofuels DOE Committed to Environmentally Sound Biofuels Development

    E-Print Network [OSTI]

    Minnesota, University of

    New Studies Portray Unbalanced Perspective on Biofuels DOE Committed to Environmentally Sound Biofuels Development DOE Response based on contributions from Office of Biomass Program; Argonne National, Hill, Tilman, Polasky and Hawthorne study ("Land Clearing and the Biofuel Carbon Debt") claims

  12. the impact of industrial biofuels on people and global hunger Meals per gallon

    E-Print Network [OSTI]

    the impact of industrial biofuels on people and global hunger Meals per gallon #12;Contents Executive summary 2 Chapter 1: Introduction 6 Chapter 2: Industrial biofuels ­ the context 8 What's driving the EU industrial biofuel boom? 9 Chapter 3: What's wrong with industrial biofuels? 12 Industrial

  13. Partnering with Industry to Advance Biofuels and Bioproducts (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-12-01T23:59:59.000Z

    Fact sheet describing NREL's Integrated Biorefinery Research Facility, a biochemical pilot plant and partnership facility containing equipment and lab space for pretreatement, enzymatic hydrolysis, fermentation, compositional analysis, and downstream processing. For more than 30 years, the U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) has been at the leading edge of research and technology advancements to develop renewable fuels and bioproducts. NREL works to develop cost-competitive alternatives to conventional transportation fuels and value-added biobased chemicals that can be used to manufacture clothing, plastics, lubricants, and other products. NREL is developing technologies and processes to produce a range of sustainable, energy-dense advanced biofuels that are compatible with our existing transportation fuel infrastructure. As part of that effort, NREL's National Bioenergy Center has entered into more than 90 collaborations in the past five years with companies ranging in size from start-ups to those that appear on Fortune magazine's Fortune 100 list. The new Integrated Biorefinery Research Facility (IBRF) showcases NREL's commitment to collaboration and to meeting the nation's biofuels and bioproducts development and deployment goals. Designed to speed the growth of the biofuels and bioproducts industries, the IBRF is a unique $33.5 million pilot facility capable of supporting a variety of projects. The IBRF is available to industry partners who work with NREL through cooperative research and development, technical, and analytical service agreements. With 27,000 ft2 of high bay space, the IBRF provides industry partners with the opportunity to operate, test, and develop their own biorefining technology and equipment.

  14. Air China will conduct China's first biofuel test flight (photo: Boeing announces major initiatives to develop, commercialize and fly sustainable jet biofuels in China

    E-Print Network [OSTI]

    Air China will conduct China's first biofuel test flight (photo: Boeing) Boeing announces major initiatives to develop, commercialize and fly sustainable jet biofuels in China Fri 28 May 2010 ­ Boeing a sustainable aviation biofuels industry in the country. The US aircraft manufacturer says the strategic

  15. Renewable Energy Laboratory Development for Biofuels Advanced Combustion Studies

    SciTech Connect (OSTI)

    Valentin Soloiu

    2012-03-31T23:59:59.000Z

    The research advanced fundamental science and applied engineering for increasing the efficiency of internal combustion engines and meeting emissions regulations with biofuels. The project developed a laboratory with new experiments and allowed investigation of new fuels and their combustion and emissions. This project supports a sustainable domestic biofuels and automotive industry creating economic opportunities across the nation, reducing the dependence on foreign oil, and enhancing U.S. energy security. The one year period of research developed fundamental knowledge and applied technology in advanced combustion, emissions and biofuels formulation to increase vehicle's efficiency. Biofuelsâ?? combustion was investigated in a Compression Ignition Direct Injection (DI) to develop idling strategies with biofuels and an Indirect Diesel Injection (IDI) intended for auxiliary power unit.

  16. Biofuels and Barbecue Chips: Small Business Develops Process...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biofuels and Barbecue Chips: Small Business Develops Process to Create Versatile Chemicals Biofuels and Barbecue Chips: Small Business Develops Process to Create Versatile...

  17. Transformation of Sorbitol to Biofuels by Heterogeneous Catalysis: Chemical and Industrial

    E-Print Network [OSTI]

    Boyer, Edmond

    Transformation of Sorbitol to Biofuels by Heterogeneous Catalysis: Chemical and Industrial ainsi que des exemples d'applications industrielles. Abstract -- Transformation of Sorbitol to Biofuels and biodiesel production led to first generation biofuels. Nowadays, research is focused on lignocellulosic

  18. The Biofuels Revolution: Understanding the Social, Cultural and Economic Impacts of Biofuels Development on Rural Communities

    SciTech Connect (OSTI)

    Dr. Theresa L. Selfa; Dr. Richard Goe; Dr. Laszlo Kulcsar; Dr. Gerad Middendorf; Dr. Carmen Bain

    2013-02-11T23:59:59.000Z

    The aim of this research was an in-depth analysis of the impacts of biofuels industry and ethanol plants on six rural communities in the Midwestern states of Kansas and Iowa. The goal was to provide a better understanding of the social, cultural, and economic implications of biofuels development, and to contribute to more informed policy development regarding bioenergy.Specific project objectives were: 1. To understand how the growth of biofuel production has affected and will affect Midwestern farmers and rural communities in terms of economic, demographic, and socio-cultural impacts; 2. To determine how state agencies, groundwater management districts, local governments and policy makers evaluate or manage bioenergy development in relation to competing demands for economic growth, diminishing water resources, and social considerations; 3. To determine the factors that influence the water management practices of agricultural producers in Kansas and Iowa (e.g. geographic setting, water management institutions, competing water-use demands as well as producersâ?? attitudes, beliefs, and values) and how these influences relate to bioenergy feedstock production and biofuel processing; 4. To determine the relative importance of social-cultural, environmental and/or economic factors in the promotion of biofuels development and expansion in rural communities; The research objectives were met through the completion of six detailed case studies of rural communities that are current or planned locations for ethanol biorefineries. Of the six case studies, two will be conducted on rural communities in Iowa and four will be conducted on rural communities in Kansas. A â??multi-methodâ?ť or â??mixed methodâ?ť research methodology was employed for each case study.

  19. Biofuels: Helping to Move the Industry to the Next Level | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Biofuels: Helping to Move the Industry to the Next Level Biofuels: Helping to Move the Industry to the Next Level November 16, 2010 - 6:25pm Addthis Jonathan Silver Jonathan Silver...

  20. The Joint BioEnergy Institute (JBEI): Developing New Biofuels by Overcoming Biomass Recalcitrance

    E-Print Network [OSTI]

    Scheller, Henrik Vibe; Singh, Seema; Blanch, Harvey; Keasling, Jay D.

    2010-01-01T23:59:59.000Z

    JD (2009) Producing biofuels using polyketide synthases.JBEI): Developing New Biofuels by Overcoming Biomassthe next-generation of biofuels— liquid fuels derived from

  1. Biofuels in the ASEAN Low Emission Development Strategies (LEDS) Forum

    E-Print Network [OSTI]

    9/20/2012 1 Biofuels in the ASEAN Low Emission Development Strategies (LEDS) Forum Bangkok, Thailand 19-21 September 2012 Biofuel Policy Group Asian Institute of Technology Outline of the Presentation 1. Objectives of this Presentation 2. Background 3. Status of Biofuel Development in ASEAN 4

  2. Looking Ahead - Biofuels, H2, & Vehicles: 21st Industry Growth Forum

    SciTech Connect (OSTI)

    Gardner, D.

    2008-10-28T23:59:59.000Z

    This presentation on the future of biofuels, hydrogen, and hybrid vehicles was presented at NREL's 21st Industry Growth Forum in Denver, Colorado, on October 28, 2008.

  3. australian biofuel industry: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    terms of subsidies for biofuel production such that the supply-side responses by fossil fuel producers may more than offset the substitution to biofuels. Analytical results are...

  4. BESC, Mascoma develop revolutionary microbe for biofuel production...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ron Walli Communications 865.576.0226 BESC, Mascoma develop revolutionary microbe for biofuel production A yeast engineered by Mascoma and BESC could hold the key to accelerating...

  5. Biofuels

    ScienceCinema (OSTI)

    Kalluri, Udaya

    2014-05-23T23:59:59.000Z

    Udaya Kalluri is part of a multidisciplinary scientific team working to unlock plants in order to create more potent biofuels without harsh processing.

  6. Biofuels

    SciTech Connect (OSTI)

    Kalluri, Udaya

    2014-05-02T23:59:59.000Z

    Udaya Kalluri is part of a multidisciplinary scientific team working to unlock plants in order to create more potent biofuels without harsh processing.

  7. Algal Biofuels

    Broader source: Energy.gov [DOE]

    The Bioenergy Technologies Office's (BETO's) Algae Program is carrying out a long-term applied research and development (R&D) strategy to increase the yields and lower the costs of algal biofuels by working with partners to develop new technologies, to integrate technologies at commercially-relevant scales, and conduct crosscutting analyses to understand the potential and challenges of an algal biofuel industry that is capable of annually producing billions of gallons of renewable diesel, gasoline, and jet fuels. These activities are integrated with BETO's longstanding approach to accelerate the commercialization of lignocellulosic biofuels.

  8. AN OVERVIEW OF BIOFUELS PROCESS DEVELOPMENT IN SOUTH CAROLINA

    SciTech Connect (OSTI)

    Sherman, S.; French, T.

    2010-02-03T23:59:59.000Z

    The South Carolina Bio-Energy Research Collaborative is working together on the development and demonstration of technology options for the production of bio-fuels using renewable non-food crops and biomass resources that are available or could be made available in abundance in the southeastern United States. This collaboration consists of Arborgen LLC, Clemson University, Savannah River National Laboratory, and South Carolina State University, with support from Dyadic, Fagen Engineering, Renewed World Energies, and Spinx. Thus far, most work has centered on development of a fermentation-based process to convert switchgrass into ethanol, with the concomitant generation of a purified lignin stream. The process is not feed-specific, and the work scope has recently expanded to include sweet sorghum and wood. In parallel, the Collaborative is also working on developing an economical path to produce oils and fuels from algae. The Collaborative envisions an integrated bio-fuels process that can accept multiple feedstocks, shares common equipment, and that produces multiple product streams. The Collaborative is not the only group working on bio-energy in South Carolina, and other companies are involved in producing biomass derived energy products at an industrial scale.

  9. Myanmar-Status and Potential for the Development of Biofuels...

    Open Energy Info (EERE)

    Myanmar-Status and Potential for the Development of Biofuels and Rural Renewable Energy Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Myanmar-Status and Potential for...

  10. United Nations Conference on Trade and Development Biofuel production technologies

    E-Print Network [OSTI]

    ................................................................................................... 5 3 Second-generation biofuels............................................................................................... 9 3.1 Second-generation biochemical biofuels................................................................. 10 3.2 Second-generation thermochemical biofuels

  11. An assessment of biofuel use and burning of agricultural waste in the developing world

    E-Print Network [OSTI]

    Jacob, Daniel J.

    in Asia, and 21% and 13% in Africa and Latin America, respectively. Agricultural waste supplies about 33% of total biofuel use, providing 39%, 29%, and 13% of biofuel use in Asia, Latin America, and Africa, and 41 and industry. The emission of 0.9 Pg C (as CO2) from burning of biofuels and field residues together is small

  12. Comparative and Functional Genomics of Rhodococcus opacus PD630 for Biofuels Development

    E-Print Network [OSTI]

    Sinskey, Anthony J.

    Comparative and Functional Genomics of Rhodococcus opacus PD630 for Biofuels Development Jason W and Functional Genomics of Rhodococcus opacus PD630 for Biofuels Development. PLoS Genet 7(9): e1002219. doi:10

  13. Developing nanotechnology for biofuel and plant science applications

    SciTech Connect (OSTI)

    Valenstein, Justin

    2012-06-20T23:59:59.000Z

    This dissertation presents the research on the development of mesoporous silica based nanotechnology for applications in biofuels and plant science. Mesoporous silica nanoparticles (MSNs) have been the subject of great interest in the last two decades due to their unique properties of high surface area, tunable pore size and particle morphology. The robust nature of the silica framework is easily functionalized to make the MSNs a promising option for selective separations. Also, the independent channels that form the pores of MSN have been exploited in the use of particles as platforms for molecular delivery. Pore size and organic functionality are varied to identify the ideal adsorbent material for free fatty acids (FFAs). The resulting material is able to sequester FFAs with a high degree of selectivity from a simulated solution and microalgal oil. The recyclability and industrial implications are also explored. A continuation of the previous material, further tuning of MSN pore size was investigated. Particles with a smaller diameter selectively sequester polyunsaturated free fatty acids (PUFAs) over monounsaturated FFAs and saturated FFAs. The experimental results were verified with molecular modeling. Mesoporous silica nanoparticle materials with a pore diameter of 10 nm (MSN-10) were decorated with small gold nanoparticles. The resulting materials were shown to deliver proteins and DNA into plant cells using the biolistic method.

  14. Turning Bacteria into Biofuel: Development of an Integrated Microbial Electrocatalytic (MEC) System for Liquid Biofuel Production from CO2

    SciTech Connect (OSTI)

    None

    2010-08-01T23:59:59.000Z

    Electrofuels Project: LBNL is improving the natural ability of a common soil bacteria called Ralstonia eutropha to use hydrogen and carbon dioxide for biofuel production. First, LBNL is genetically modifying the bacteria to produce biofuel at higher concentrations. Then, LBNL is using renewable electricity obtained from solar, wind, or wave power to produce high amounts of hydrogen in the presence of the bacteria—increasing the organism’s access to its energy source and improving the efficiency of the biofuel-creation process. Finally, LBNL is tethering electrocatalysts to the bacteria’s surface which will further accelerate the rate at which the organism creates biofuel. LBNL is also developing a chemical method to transform the biofuel that the bacteria produce into ready-to-use jet fuel.

  15. Lifecycle Analyses of Biofuels

    E-Print Network [OSTI]

    Delucchi, Mark

    2006-01-01T23:59:59.000Z

    Energy Agency, Biofuels for Transport, Organization forJohnson, Potential for Biofuels for Transport in DevelopingMitigation Through Biofuels in the Transport Sector, Status

  16. Energy Policy 36 (2008) 15381544 Promoting biofuels: Implications for developing countries

    E-Print Network [OSTI]

    2008-01-01T23:59:59.000Z

    Energy Policy 36 (2008) 1538­1544 Promoting biofuels: Implications for developing countries Jo¨ rg 2008 Abstract Interest in biofuels is growing worldwide as concerns about the security of energy supply, however, production costs of biofuels are typically much higher than those of fossil fuels. As a result

  17. Characterization of Extremophilic Bacteria for Potential in the Biofuel and Bioprocess Industries

    E-Print Network [OSTI]

    Haynes, Abria R

    2014-04-18T23:59:59.000Z

    , and Puerto Rico were used to inoculate fermentations in an effort to optimize the microbial communities for a biofuel process developed at Texas A&M (MixAlco™). A diverse bacterial isolate library (N= 1,866 isolates) was constructed by employing a variety...

  18. "In terms of the long-term outlook for biomass and biofuels, the largest proportion of Business Insights industry survey respondents

    E-Print Network [OSTI]

    "In terms of the long-term outlook for biomass and biofuels, the largest proportion of Business Insights industry survey respondents (47%) thought that biofuels would account for 5-10% of total global fuel production by 2017. A further 25% of respondents thought that biofuels would account for 2

  19. New frontiers in oilseed biotechnology: meeting the growing global demand for vegetable oils for food, feed, biofuel, and industrial uses.

    SciTech Connect (OSTI)

    Lu, C; Napier, JA; Clemente, TE; Cahoon, EB

    2011-01-01T23:59:59.000Z

    Vegetable oils have historically been a valued commodity for food use and to a lesser extent for non-edible applications such as detergents and lubricants. The increasing reliance on biodiesel as a transportation fuel has contributed to rising demand and higher prices for vegetable oils. Biotechnology offers a number of solutions to meet the growing need for affordable vegetable oils and vegetable oils with improved fatty acid compositions for food and industrial uses. New insights into oilseed metabolism and its transcriptional control are enabling biotechnological enhancement of oil content and quality. Alternative crop platforms and emerging technologies for metabolic engineering also hold promise for meeting global demand for vegetable oils and for enhancing nutritional, industrial, and biofuel properties of vegetable oils. Here, we highlight recent advances in our understanding of oilseed metabolism and in the development of new oilseed platforms and metabolic engineering technologies.

  20. Advanced Biofuels Industry Roundtable - List of Participants | Department

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T, Inc.'s Reply Comments AT&T, SENSIAdvanced Application Development Programof

  1. Sustainability standards for biofuels : analyses of the current standards and recommendations of the future direction

    E-Print Network [OSTI]

    Lee, Leebong

    2014-01-01T23:59:59.000Z

    Past decades have seen development and expansion of biofuels industry around the world thanks to the environmental and economic contribution that biofuels have promised. As more and more people became concerned about the ...

  2. PNNL Aviation Biofuels

    SciTech Connect (OSTI)

    Plaza, John; Holladay, John; Hallen, Rich

    2014-10-23T23:59:59.000Z

    Commercial airplanes really don’t have the option to move away from liquid fuels. Because of this, biofuels present an opportunity to create new clean energy jobs by developing technologies that deliver stable, long term fuel options. The Department of Energy’s Pacific Northwest National Laboratory is working with industrial partners on processes to convert biomass to aviation fuels.

  3. Assignment for Monday, 2/11 Monday's class will introduce you to the business dimension of the biofuels development. Here

    E-Print Network [OSTI]

    Iglesia, Enrique

    of the biofuels development. Here is what you need to do to prepare for the in class exercises on Monday: First: · Meet with your group to pick a biofuel to focus on for this exercise. This may or may or may not become make progress toward choosing your group's biofuel). · Read the Soleki et als reading very carefully

  4. Industrial Development Fund (North Carolina)

    Broader source: Energy.gov [DOE]

    The Industrial Development Fund provides financing grants and loans through designated municipalities and counties to assist in infrastructure improvements for targeted industrial projects. The...

  5. Life of Sugar: Developing Lifecycle Methods to Evaluate the Energy and Environmental Impacts of Sugarcane Biofuels

    E-Print Network [OSTI]

    Gopal, Anand Raja

    2011-01-01T23:59:59.000Z

    much superior bridge to second-generation biofuels than corncommercialization of second generation biofuels. In addition

  6. Biofuels: A Solution for Climate Change

    SciTech Connect (OSTI)

    Woodward, S.

    1999-10-04T23:59:59.000Z

    Our lives are linked to weather and climate, and to energy use. Since the late 1970s, the U.S. Department of Energy (DOE) has invested in research and technology related to global climate change. DOE's Office Fuels Development (OFD) manages the National Biofuels Program and is the lead technical advisor on the development of biofuels technologies in the United States. Together with industry and other stakeholders, the program seeks to establish a major biofuels industry. Its goals are to develop and commercialize technologies for producing sustainable, domestic, environmentally beneficial, and economically viable fuels from dedicated biomass feedstocks.

  7. Biofuels: Review of Policies and Impacts

    E-Print Network [OSTI]

    Janda, Karel; Kristoufek, Ladislav; Zilberman, David

    2011-01-01T23:59:59.000Z

    of ?rst and second generation biofuels: A comprehensive re-of the second generation biofuels and a successful develop-R. Timilsina. Second generation biofuels: Economics and

  8. Water gunks up biofuels production | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    gunks up biofuels production Water gunks up biofuels production Released: August 21, 2014 Findings provide scientific principles to speed up biofuel development Green gold -...

  9. Development of Cellulosic Biofuels (LBNL Summer Lecture Series)

    ScienceCinema (OSTI)

    Somerville, Chris [Director, Energy Biosciences Institute

    2011-04-28T23:59:59.000Z

    Summer Lecture Series 2007: Chris Somerville, Director of the Energy Biosciences Institute and an award-winning plant biochemist with Berkeley Lab's Physical Biosciences Division, is a leading authority on the structure and function of plant cell walls. He discusses an overview of some of the technical challenges associated with the production of cellulosic biofuels, which will require an improved understanding of a diverse range of topics in fields such as agronomy, chemical engineering, microbiology, structural biology, genomics, environmental sciences, and socioeconomics.

  10. Life of Sugar: Developing Lifecycle Methods to Evaluate the Energy and Environmental Impacts of Sugarcane Biofuels

    E-Print Network [OSTI]

    Gopal, Anand Raja

    2011-01-01T23:59:59.000Z

    Criteria for Sustainable Biofuel Production. RSB, pages 1–and Tyner, W. (2008b). Impact of Biofuel Production on WorldClifford, P. (2009). Assessing Biofuel Crop Invasiveness: A

  11. National Advanced Biofuels Consortium (NABC), Biofuels for Advancing America (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-06-01T23:59:59.000Z

    Introduction to the National Advanced Biofuels Consortium, a collaboration between 17 national laboratory, university, and industry partners that is conducting cutting-edge research to develop infrastructure-compatible, sustainable, biomass-based hydrocarbon fuels.

  12. Industry Supply Chain Development (Ohio)

    Broader source: Energy.gov [DOE]

    Supply Chain Development programs are focused on targeted industries that have significant growth opportunities for Ohio's existing manufacturing sector from emerging energy resources and...

  13. ITP Industrial Materials: Development and Commercialization of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Industrial Materials: Development and Commercialization of Alternative Carbon Fiber Precursors and Conversion Technologies ITP Industrial Materials: Development and...

  14. Local Option- Industrial Facilities and Development Bonds

    Broader source: Energy.gov [DOE]

    Under the Utah Industrial Facilities and Development Act, counties, municipalities, and state universities in Utah may issue Industrial Revenue Bonds (IRBs) or Industrial Development Bonds (IDBs)...

  15. Complexity and Systems Biology of Microbial Biofuels

    E-Print Network [OSTI]

    Rand, David

    Complexity and Systems Biology of Microbial Biofuels 20-24 June 2011 (All and issues Theme: Biofuel systems and issues (Chair: Nigel Burroughs) 13 (Bielefeld) Biofuels from algae- challenges for industrial levels

  16. Advanced and Cellulosic Biofuels and Biorefineries: State of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Cellulosic Biofuels and Biorefineries: State of the Industry, Policy and Politics Advanced and Cellulosic Biofuels and Biorefineries: State of the Industry, Policy and Politics...

  17. Chromatin landscaping in algae reveals novel regulation pathway for biofuels production

    E-Print Network [OSTI]

    Ngan, Chew Yee

    2014-01-01T23:59:59.000Z

    regulation pathway for biofuels production Chew Yee Ngan ,regulation pathway for biofuels production Chew Yee Ngan,for the development of biofuels. Biofuels are produced from

  18. Competitive developments in the electric supply industry

    SciTech Connect (OSTI)

    Bruder, G.F.; Lively, M.

    1996-12-31T23:59:59.000Z

    Competition in the electric supply industry is outlined. The following topics are discussed: six impending major developments in the electric industry; recent and projected developments in the industry; where is the industry headed?; and what the future holds.

  19. Life of Sugar: Developing Lifecycle Methods to Evaluate the Energy and Environmental Impacts of Sugarcane Biofuels

    E-Print Network [OSTI]

    Gopal, Anand Raja

    2011-01-01T23:59:59.000Z

    75 My View on the use of Biofuels in Low Carbon FuelCLCAs of Byproduct-based Biofuels . . . . . . . 49 5 FullLCA GHG Emissions of Biofuels using various Co-product

  20. DOE Announces Additional Steps in Developing Sustainable Biofuels Industry

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy, OAPM | DepartmentI Office of ENERGYAgreesof Energy DOE|

  1. DOE Announces Additional Steps in Developing Sustainable Biofuels Industry

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613PortsmouthBartlesvilleAbout » Contact UsDepartmentConsumers | Department of| Department

  2. Goal Practice & Experience: Status Quo and Future for Industrial Scale Biomass Energy Development in China

    Broader source: Energy.gov [DOE]

    Breakout Session 3D—Fostering Technology Adoption III: International Market Opportunities in Bioenergy Goal Practice & Experience : Status Quo and Future for Industrial Scale Biomass Energy Development in China Huiyong Zhuang, Research Professor, National Energy Research Center of Liquid Biofuel, National Bio Energy Co., Ltd.

  3. Life of Sugar: Developing Lifecycle Methods to Evaluate the Energy and Environmental Impacts of Sugarcane Biofuels

    E-Print Network [OSTI]

    Gopal, Anand Raja

    2011-01-01T23:59:59.000Z

    petroleum in the transport sector are biofuels from varioustransport fuel stakeholders as real and significant [Parliament, 2009, O’Hare et al. , 2010, Biofuels,

  4. Optimization and Simulation for Designing the Supply Chain of the Cellulosic Biofuel Industry

    E-Print Network [OSTI]

    An, Heungjo

    2012-02-14T23:59:59.000Z

    on the perspective gained from the review, fertile avenues for future research will be recommended. 1.3.2 Research objective 2 The flow of biofuels in the downstream and of several kinds of biomass feedstocks in the upstream can be described as multi...

  5. An assessment of biofuel use and burning of agricultural waste in the developing world Rosemarie Yevich

    E-Print Network [OSTI]

    Jacob, Daniel J.

    and Latin America, respectively. Agricultural waste supplies about 33% of total biofuel use, providing 39%, 29%, and 13% of biofuel use in Asia, Latin America, and Africa, and 41% and 51% of the biofuel use.9Pg C (as CO2) from burning of biofuels and field residues together is small, but non-negligible when

  6. Biofuels development in Maine: Using trees to oil the wheels of sustainability -Maine news, sports, obituaries, weather -Bangor Daily News http://bangordailynews.com/2013/03/12/opinion/biofuels-development-in-maine-using-trees-to-oil-the-wheels-of-sustain

    E-Print Network [OSTI]

    Thomas, Andrew

    Biofuels development in Maine: Using trees to oil the wheels of sustainability - Maine news, sports, obituaries, weather - Bangor Daily News http://bangordailynews.com/2013/03/12/opinion/biofuels-development-in-maine-using-trees-to-oil-the-wheels-of-sustainability/print/[3/13/2013 1:54:43 PM] Biofuels development

  7. Industrial Dojo Program Fosters Industrial Internet Development...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) GE Launches Cloud Foundry 'Industrial Dojo,' Contributes to Open Source to Foster Continued...

  8. Biofuels in Oregon and Washington

    E-Print Network [OSTI]

    PNNL-17351 Biofuels in Oregon and Washington A Business Case Analysis of Opportunities and Challenges Prepared by Pacific Northwest National Laboratory #12;#12;Biofuels in Oregon and Washington, particularly in light of the recent growth experienced by the biofuels industry in the Midwest. Policymakers

  9. biofuels | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    biofuels biofuels Leads No leads are available at this time. New generation NMR bioreactor coupled with high-resolution NMR spectroscopy leads to novel discoveries in Moorella...

  10. Introduction slide 2 Biofuels and Algae Markets, Systems,

    E-Print Network [OSTI]

    Introduction slide 2 Biofuels and Algae Markets, Systems, Players and Commercialization Outlook http://www.emerging-markets.com Consultant, Global Biofuels Business Development Author, Biodiesel 2020: A Global Market Survey (2008) Algae 2020: Biofuels Commercialization Outlook (2009) Columnist, Biofuels

  11. Development of a microbial process for the conversion of carbon dioxide and electricity to higher alcohols as biofuels

    E-Print Network [OSTI]

    Li, Han

    2013-01-01T23:59:59.000Z

    Li H, Cann AF, Liao JC: Biofuels: biomolecular engineeringthe predominant portion of biofuels produced currently, itof biodiesel and ethanol biofuels. Proc Natl Acad Sci U S A

  12. Integration and Optimization of Trigeneration Systems with Solar Energy, Biofuels, Process Heat and Fossil Fuels 

    E-Print Network [OSTI]

    Tora, Eman

    2012-02-14T23:59:59.000Z

    at developing a systematic approach to integrate solar energy into industrial processes to drive thermal energy transfer systems producing power, cool, and heat. Solar energy is needed to be integrated with other different energy sources (biofuels, fossil fuels...

  13. Integration and Optimization of Trigeneration Systems with Solar Energy, Biofuels, Process Heat and Fossil Fuels

    E-Print Network [OSTI]

    Tora, Eman

    2012-02-14T23:59:59.000Z

    at developing a systematic approach to integrate solar energy into industrial processes to drive thermal energy transfer systems producing power, cool, and heat. Solar energy is needed to be integrated with other different energy sources (biofuels, fossil fuels...

  14. Development of Agave as a dedicated biomass source: production of biofuels from whole plants

    SciTech Connect (OSTI)

    Mielenz, Jonathan R [ORNL; Mielenz, Jonathan R [White Cliff Biosystems, Rockwood, Tennessee; Rodriguez Jr, Miguel [ORNL; Thompson, Olivia A [ORNL; Yang, Xiaohan [ORNL; Yin, Hengfu [ORNL

    2015-01-01T23:59:59.000Z

    Background: Agave species can grow well in semi-arid marginal agricultural lands around the world. Selected Agave species are used largely for alcoholic beverage production in Mexico. There are expanding research efforts to use the plentiful residues (bagasse) for ethanol production as the beverage manufacturing process only uses the juice from the central core of mature plants. Here we investigate the potential of over a dozen Agave species, including three from cold semi-arid regions of the United States, to produce biofuels using the whole plant. Results: Ethanol was readily produced by Saccharomyces cerevisiae from hydrolysate of ten whole Agaves with the use of a proper blend of biomass degrading enzymes that overcomes toxicity of most of the species tested. Unlike yeast fermentations, Clostridium beijerinckii produced butanol plus acetone from nine species tested. Butyric acid, a precursor of butanol, was also present due to incomplete conversion during the screening process. Since Agave contains high levels of free and poly-fructose which are readily destroyed by acidic pretreatment, a two step process was used developed to depolymerized poly-fructose while maintaining its fermentability. The hydrolysate from before and after dilute acid processing was used in C. beijerinckii acetone and butanol fermentations with selected Agave species. Conclusions: Results have shown Agave s potential to be a source of fermentable sugars beyond the existing beverage species to now include species previously unfermentable by yeast, including cold tolerant lines. This development may stimulate development of Agave as a dedicated feedstock for biofuels in semi-arid regions throughout the globe.

  15. Socio-economic dynamics of biofuel

    E-Print Network [OSTI]

    i Socio-economic dynamics of biofuel development in Asia Pacific Christina Schott Jakarta, 2009 #12;ii Socio-economic dynamics of biofuel development in Asia Pacific Socio-economic dynamics of biofuel of many biofuels has turned out to be far from sustainable. The carbon balance often proves to be negative

  16. Enhanced Carbon Concentration in Camelina: Development of a Dedicated, High-value Biofuels Crop

    SciTech Connect (OSTI)

    None

    2012-01-01T23:59:59.000Z

    PETRO Project: UMass is developing an enhanced, biofuels-producing variant of Camelina, a drought-resistant, cold-tolerant oilseed crop that can be grown in many places other plants cannot. The team is working to incorporate several genetic traits into Camelina that increases its natural ability to produce oils and add the production of energy-dense terpene molecules that can be easily converted into liquid fuels. UMass is also experimenting with translating a component common in algae to Camelina that should allow the plants to absorb higher levels of carbon dioxide (CO2), which aids in enhancing photosynthesis and fuel conversion. The process will first be demonstrated in tobacco before being applied in Camelina.

  17. Biofuels in the U.S. Transportation Sector (released in AEO2007)

    Reports and Publications (EIA)

    2007-01-01T23:59:59.000Z

    Sustained high world oil prices and the passage of the Energy Policy Act 2005 (EPACT) have encouraged the use of agriculture-based ethanol and biodiesel in the transportation sector; however, both the continued growth of the biofuels industry and the long-term market potential for biofuels depend on the resolution of critical issues that influence the supply of and demand for biofuels. For each of the major biofuelscorn-based ethanol, cellulosic ethanol, and biodieselresolution of technical, economic, and regulatory issues remains critical to further development of biofuels in the United States.

  18. Local Option- Industrial Facilities and Development Bonds (Utah)

    Broader source: Energy.gov [DOE]

    Under the Utah Industrial Facilities and Development Act, counties, municipalities, and state universities in Utah may issue Industrial Revenue Bonds (IRBs) or Industrial Development Bonds (IDBs)...

  19. Sandia's Biofuels Program

    ScienceCinema (OSTI)

    Simmons, Blake; Singh, Seema; Lane, Todd; Reichardt, Tom; Davis, Ryan

    2014-07-24T23:59:59.000Z

    Sandia's biofuels program is focused on developing next-generation, renewable fuel solutions derived from biomass. In this video, various Sandia researchers discuss the program and the tools they employ to tackle the technical challenges they face.

  20. Sandia's Biofuels Program

    SciTech Connect (OSTI)

    Simmons, Blake; Singh, Seema; Lane, Todd; Reichardt, Tom; Davis, Ryan

    2014-07-22T23:59:59.000Z

    Sandia's biofuels program is focused on developing next-generation, renewable fuel solutions derived from biomass. In this video, various Sandia researchers discuss the program and the tools they employ to tackle the technical challenges they face.

  1. EMSL - biofuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    biofuels en New generation NMR bioreactor coupled with high-resolution NMR spectroscopy leads to novel discoveries in Moorella http:www.emsl.pnl.govemslwebpublications...

  2. Industry Cluster Development Grant winners

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn Other News link to facebook linkProtection »SafetyIndustry

  3. Industry Cluster Development Grant winners

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    support small farmers in developing products and bringing them to market. Siete del Norte to help fund the development of the Northern New Mexico Food Hub and to reopen the...

  4. California: Advanced 'Drop-In' Biofuels Power the Navy's Green...

    Office of Environmental Management (EM)

    Developing Cheaper Algae Biofuels, Brings Jobs to Pennsylvania Fueling the Navy's Great Green Fleet with Advanced Biofuels Cellana, Inc.'s Kona Demonstration Facility is working...

  5. Foreign Fishery Developments The Polish Fishing Industry

    E-Print Network [OSTI]

    . There is also a shortage of pro- cessing equipment such as ice factories and cold storage facilities.Foreign Fishery Developments The Polish Fishing Industry Polish fishennen caught about 700

  6. Development Requirements for Advanced Industrial Heat Pumps 

    E-Print Network [OSTI]

    Chappell, R. N.; Priebe, S. J.; Bliem, C. J.; Mills, J. I.

    1985-01-01T23:59:59.000Z

    DOE is attempting to advance the use of heat pumps to save energy in industrial processes. The approach has emphasized developing better heat pump technology and transferring that technology to the private sector. DOE requires that heat pump...

  7. Development Requirements for Advanced Industrial Heat Pumps

    E-Print Network [OSTI]

    Chappell, R. N.; Priebe, S. J.; Bliem, C. J.; Mills, J. I.

    DOE is attempting to advance the use of heat pumps to save energy in industrial processes. The approach has emphasized developing better heat pump technology and transferring that technology to the private sector. DOE requires that heat pump...

  8. Alternative and Renewable fuels and Vehicle Technology Program Subject Area: Biofuels production Facilities

    E-Print Network [OSTI]

    Alternative and Renewable fuels and Vehicle Technology Program Subject Area: Biofuels production: Commercial Facilities · Applicant's Legal Name: Yokayo Biofuels, Inc. · Name of project: A Catalyst for Success · Project Description: Yokayo Biofuels, an industry veteran with over 10 years experience

  9. Biofuel breakdown | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biofuel breakdown Biofuel breakdown SCF1 frees plant sugars in lignin for sustainable biofuels Lignin, the tough woody polymer in the walls of plant, binds and protects cellulose...

  10. Sandia National Laboratories: Biofuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biofuels "Bionic" Liquids from Lignin: Joint BioEnergy Institute Results Pave the Way for Closed-Loop Biofuel Refineries On December 11, 2014, in Biofuels, Biomass, Capabilities,...

  11. Lifecycle Analyses of Biofuels

    E-Print Network [OSTI]

    Delucchi, Mark

    2006-01-01T23:59:59.000Z

    08 Lifecycle Analyses of Biofuels Draft Report (May be citedLIFECYCLE ANALYSES OF BIOFUELS Draft manuscript (may belifecycle analysis (LCA) of biofuels for transportation has

  12. Spatial Modeling of Geographic Patterns in Biodiversity and Biofuel Production

    E-Print Network [OSTI]

    Spatial Modeling of Geographic Patterns in Biodiversity and Biofuel Production How can the US of biodiversity. The future of the biofuel industry will depend on public investment and trust that industry for increasing biofuel production have already come under fire because of real and perceived threats

  13. Purpose-designed Crop Plants for Biofuels BIOENERGY PROGRAM

    E-Print Network [OSTI]

    Purpose-designed Crop Plants for Biofuels BIOENERGY PROGRAM The Texas AgriLife Research Center for the biofuels industry. This program recognizes that the ideal combination of traits required for an economically and energetically sustainable biofuels industry does not yet exist in a single plant spe- cies

  14. Energy Department Develops Tool with Industry to Help Utilities...

    Energy Savers [EERE]

    Energy Department Develops Tool with Industry to Help Utilities Strengthen Their Cybersecurity Capabilities Energy Department Develops Tool with Industry to Help Utilities...

  15. Monroe County Industrial Development Corp., New York

    E-Print Network [OSTI]

    Portman, Douglas

    Monroe County Industrial Development Corp., New York University Of Rochester; Joint Criteria: Good Operating Performance Related Criteria And Research August 11, 2011 www Of Rochester; Joint Criteria; Private Coll/Univ - General Obligation Credit Profile US$124.00 mil rev bnds

  16. World Biofuels Study

    SciTech Connect (OSTI)

    Alfstad,T.

    2008-10-01T23:59:59.000Z

    This report forms part of a project entitled 'World Biofuels Study'. The objective is to study world biofuel markets and to examine the possible contribution that biofuel imports could make to help meet the Renewable Fuel Standard (RFS) of the Energy Independence and Security Act of 2007 (EISA). The study was sponsored by the Biomass Program of the Assistant Secretary for Energy Efficiency and Renewable Energy (EERE), U.S. Department of Energy. It is a collaborative effort among the Office of Policy and International Affairs (PI), Department of Energy and Oak Ridge National Laboratory (ORNL), National Renewable Energy Laboratory (NREL) and Brookhaven National Laboratory (BNL). The project consisted of three main components: (1) Assessment of the resource potential for biofuel feedstocks such as sugarcane, grains, soybean, palm oil and lignocellulosic crops and development of supply curves (ORNL). (2) Assessment of the cost and performance of biofuel production technologies (NREL). (3) Scenario-based analysis of world biofuel markets using the ETP global energy model with data developed in the first parts of the study (BNL). This report covers the modeling and analysis part of the project conducted by BNL in cooperation with PI. The Energy Technology Perspectives (ETP) energy system model was used as the analytical tool for this study. ETP is a 15 region global model designed using the MARKAL framework. MARKAL-based models are partial equilibrium models that incorporate a description of the physical energy system and provide a bottom-up approach to study the entire energy system. ETP was updated for this study with biomass resource data and biofuel production technology cost and performance data developed by ORNL and NREL under Tasks 1 and 2 of this project. Many countries around the world are embarking on ambitious biofuel policies through renewable fuel standards and economic incentives. As a result, the global biofuel demand is expected to grow very rapidly over the next two decades, provided policymakers stay the course with their policy goals. This project relied on a scenario-based analysis to study global biofuel markets. Scenarios were designed to evaluate the impact of different policy proposals and market conditions. World biofuel supply for selected scenarios is shown in Figure 1. The reference case total biofuel production increases from 12 billion gallons of ethanol equivalent in 2005 to 54 billion gallons in 2020 and 83 billion gallons in 2030. The scenarios analyzed show volumes ranging from 46 to 64 billion gallons in 2020, and from about 72 to about 100 billion gallons in 2030. The highest production worldwide occurs in the scenario with high feedstock availability combined with high oil prices and more rapid improvements in cellulosic biofuel conversion technologies. The lowest global production is found in the scenario with low feedstock availability, low oil prices and slower technology progress.

  17. Quality, Performance, and Emission Impacts of Biofuels and Biofuel...

    Broader source: Energy.gov (indexed) [DOE]

    Quality, Performance, and Emission Impacts of Biofuels and Biofuel Blends Quality, Performance, and Emission Impacts of Biofuels and Biofuel Blends 2010 DOE Vehicle Technologies...

  18. Quality, Performance, and Emission Impacts of Biofuels and Biofuel...

    Broader source: Energy.gov (indexed) [DOE]

    Quality, Performance, and Emission Impacts of Biofuels and Biofuel Blends Quality, Performance, and Emission Impacts of Biofuels and Biofuel Blends 2011 DOE Hydrogen and Fuel Cells...

  19. Agriculture - Sustainable biofuels Redux

    SciTech Connect (OSTI)

    Robertson, G. Phillip [W.K. Kellogg Biological Station and Great Lakes Bioenergy Research; Dale, Virginia H [ORNL; Doering, Otto C. [Purdue University; Hamburg, Steven P [Brown University; Melillo, Jerry M [ORNL; Wander, Michele M [University of Illinois, Urbana-Champaign; Parton, William [Colorado State University, Fort Collins

    2008-10-01T23:59:59.000Z

    Last May's passage of the 2008 Farm Bill raises the stakes for biofuel sustainability: A substantial subsidy for the production of cellulosic ethanol starts the United States again down a path with uncertain environmental consequences. This time, however, the subsidy is for both the refiners ($1.01 per gallon) and the growers ($45 per ton of biomass), which will rapidly accelerate adoption and place hard-to-manage pressures on efforts to design and implement sustainable production practices - as will a 2007 legislative mandate for 16 billion gallons of cellulosic ethanol per year by 2022. Similar directives elsewhere, e.g., the European Union's mandate that 10% of all transport fuel in Europe be from renewable sources by 2020, make this a global issue. The European Union's current reconsideration of this target places even more emphasis on cellulosic feedstocks (1). The need for knowledge- and science-based policy is urgent. Biofuel sustainability has environmental, economic, and social facets that all interconnect. Tradeoffs among them vary widely by types of fuels and where they are grown and, thus, need to be explicitly considered by using a framework that allows the outcomes of alternative systems to be consistently evaluated and compared. A cellulosic biofuels industry could have many positive social and environmental attributes, but it could also suffer from many of the sustainability issues that hobble grain-based biofuels, if not implemented the right way.

  20. III. Commercial viability of second generation biofuel technology27

    E-Print Network [OSTI]

    29 III. Commercial viability of second generation biofuel technology27 The previous chapters focused on first generation biofuels. In this chapter we focus on second generation biofuels, specifically biofuels derived from cellulosic or lignocellulosic conversion. Advocates for the development of cellulosic

  1. Sandia National Laboratories: Advanced Biofuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Biofuels Biofuels Blend Right In: Researchers Show Ionic Liquids Effective for Pretreating Mixed Blends of Biofuel Feedstocks On February 26, 2013, in Biofuels, Biomass,...

  2. Advanced Energy Industries, Inc. SEGIS developments.

    SciTech Connect (OSTI)

    Scharf, Mesa P. (Advanced Energy Industries, Inc., Bend, OR); Bower, Ward Isaac; Mills-Price, Michael A. (Advanced Energy Industries, Inc., Bend, OR); Sena-Henderson, Lisa; David, Carolyn; Akhil, Abbas Ali; Kuszmaul, Scott S.; Gonzalez, Sigifredo

    2012-03-01T23:59:59.000Z

    The Solar Energy Grid Integration Systems (SEGIS) initiative is a three-year, three-stage project that includes conceptual design and market analysis (Stage 1), prototype development/testing (Stage 2), and commercialization (Stage 3). Projects focus on system development of solar technologies, expansion of intelligent renewable energy applications, and connecting large-scale photovoltaic (PV) installations into the electric grid. As documented in this report, Advanced Energy Industries, Inc. (AE), its partners, and Sandia National Laboratories (SNL) successfully collaborated to complete the final stage of the SEGIS initiative, which has guided new technology development and development of methodologies for unification of PV and smart-grid technologies. The combined team met all deliverables throughout the three-year program and commercialized a broad set of the developed technologies.

  3. Extractive Industries and Sustainable Development EXECUTIVE TRAINING PROGRAM

    E-Print Network [OSTI]

    Industries and Sustainable Development EXECUTIVE TRAINING PROGRAM Vale Columbia Center UNIVERSITY Center on Globalization and Sustainable Development EARTH INSTITUTE | COLUMBIA UNIVERSITY #12; Extractive Industries and Sustainable Development Executive Training

  4. Supply Chain Sustainability Analysis of Three Biofuel Pathways

    SciTech Connect (OSTI)

    Jacob J. Jacobson; Erin Searcy; Kara Cafferty; Jennifer B. Dunn; Michael Johnson; Zhichao Wang; Michael Wang; Mary Biddy; Abhijit Dutta; Daniel Inman; Eric Tan; Sue Jones; Lesley Snowden-Swan

    2013-11-01T23:59:59.000Z

    The Department of Energy’s (DOE) Bioenergy Technologies Office (BETO) collaborates with industrial, agricultural, and non-profit partners to develop and deploy biofuels and other biologically-derived products. As part of this effort, BETO and its national laboratory teams conduct in-depth techno-economic assessments (TEA) of technologies to produce biofuels as part state of technology (SOT) analyses. An SOT assesses progress within and across relevant technology areas based on actual experimental results relative to technical targets and cost goals from design cases and includes technical, economic, and environmental criteria as available. Overall assessments of biofuel pathways begin with feedstock production and the logistics of transporting the feedstock from the farm or plantation to the conversion facility or biorefinery. The conversion process itself is modeled in detail as part of the SOT analysis. The teams then develop an estimate of the biofuel minimum selling price (MSP) and assess the cost competitiveness of the biofuel with conventional fuels such as gasoline.

  5. Algal Biofuels; Algal Biofuels R&D at NREL (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2010-09-01T23:59:59.000Z

    An overview of NREL's algal biofuels projects, including U.S. Department of Energy-funded work, projects with U.S. and international partners, and Laboratory Directed Research and Development projects.

  6. Estimates of US biofuels consumption, 1990

    SciTech Connect (OSTI)

    Not Available

    1991-10-01T23:59:59.000Z

    This report is the sixth in the series of publications developed by the Energy Information Administration to quantify the amount of biofuel-derived primary energy used by the US economy. It provides preliminary estimates of 1990 US biofuels energy consumption by sector and by biofuels energy resource type. The objective of this report is to provide updated annual estimates of biofuels energy consumption for use by congress, federal and state agencies, and other groups involved in activities related to the use of biofuels. 5 figs., 10 tabs.

  7. Development and application of the EPIC model for carbon cycle, greenhouse-gas mitigation, and biofuel studies

    SciTech Connect (OSTI)

    Izaurralde, Roberto C.; Mcgill, William B.; Williams, J.R.

    2012-06-01T23:59:59.000Z

    This chapter provides a comprehensive review of the EPIC model in relation to carbon cycle, greenhouse-gas mitigation, and biofuel applications. From its original capabilities and purpose (i.e., quantify the impacts or erosion on soil productivity), the EPIC model has evolved into a comprehensive terrestrial ecosystem model for simulating with more or less process-level detail many ecosystem processes such as weather, hydrology, plant growth and development, carbon cycle (including erosion), nutrient cycling, greenhouse-gas emissions, and the most complete set of manipulations that can be implemented on a parcel of land (e.g. tillage, harvest, fertilization, irrigation, drainage, liming, burning, pesticide application). The chapter also provides details and examples of the latest efforts in model development such as the coupled carbon-nitrogen model, a microbial denitrification model with feedback to the carbon decomposition model, updates on calculation of ecosystem carbon balances, and carbon emissions from fossil fuels. The chapter has included examples of applications of the EPIC model in soil carbon sequestration, net ecosystem carbon balance, and biofuel studies. Finally, the chapter provides the reader with an update on upcoming improvements in EPIC such as the additions of modules for simulating biochar amendments, sorption of soluble C in subsoil horizons, nitrification including the release of N2O, and the formation and consumption of methane in soils. Completion of these model development activities will render an EPIC model with one of the most complete representation of biogeochemical processes and capable of simulating the dynamic feedback of soils to climate and management in terms not only of transient processes (e.g., soil water content, heterotrophic respiration, N2O emissions) but also of fundamental soil properties (e.g. soil depth, soil organic matter, soil bulk density, water limits).

  8. Biofuels' Time of Transition Achieving high performance in a world

    E-Print Network [OSTI]

    Kammen, Daniel M.

    Biofuels' Time of Transition Achieving high performance in a world of increasing fuel diversity #12;2 Table of contents #12;3 Introduction Up close: Highlights of Accenture's first biofuels study An evolving biofuels industry 1 Consumer influence Guest commentary on land-use change In focus: The food

  9. Biofuel Economics

    SciTech Connect (OSTI)

    Klein-Marcuschamer, Daniel; Holmes, Brad; Simmons, Blake; Blanch, Harvey

    2011-07-15T23:59:59.000Z

    As concerns regarding increasing energy prices, global warming and renewable resources continue to grow, so has scientific discovery into agricultural biomass conversion. Plant Biomass Conversion addresses both the development of plant biomass and conversion technology, in addition to issues surrounding biomass conversion, such as the affect on water resources and soil sustainability. This book also offers a brief overview of the current status of the industry and examples of production plants being used in current biomass conversion efforts.

  10. Biofuels Overview CLIMATETECHBOOK

    E-Print Network [OSTI]

    Page | 1 May 2009 Biofuels Overview CLIMATETECHBOOK What are Biofuels? A biofuel is defined as any dependence on petroleum-based fuels, biofuels are gaining increasing attention as one possible solution. Biofuels offer a way to produce transportation fuels from renewable sources or waste materials and to help

  11. Biofuels | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biofuels The biofuel supply chain affects quantity and quality of water in a variety of ways. The biofuel supply chain affects quantity and quality of water in a variety of ways....

  12. Lifecycle Analyses of Biofuels

    E-Print Network [OSTI]

    Delucchi, Mark

    2006-01-01T23:59:59.000Z

    Balances for a Range of Biofuel Options, Project Number8. F UELCYCLE EMISSIONS FOR BIOFUEL VEHICLES IN DIFFERENTch. and LEM % ch. For a few biofuel lifecycles there can be

  13. Biofuels and Transportation

    E-Print Network [OSTI]

    Minnesota, University of

    Biofuels and Transportation Impacts and Uncertainties Some Observations of a Reformed Ethanol and Logistics Symposium 3 Topics · Why Biofuels · Ethanol Economics · Ethanol Transportation Equipment Biofuels? · National Security · Reduce Imports of oil · Peak Oil · Replace Fossil Resources

  14. Algae Biofuels Collaborative Project: Cooperative Research and Development Final Report, CRADA Number CRD-10-371

    SciTech Connect (OSTI)

    French, R. J.

    2012-04-01T23:59:59.000Z

    The goal of this project is to advance biofuels research on algal feedstocks and NREL's role in the project is to explore novel liquid extraction methods, gasification and pyrolysis as means to produce fuels from algae. To that end several different extraction methods were evaluated and numerous gasification and pyrolysis conditions were explored. It was found that mild hydrothermal treatment is a promising means to improve the extraction and conversion of lipids from algae over those produced by standard extraction methods. The algae were essentially found to gasify completely at a fairly low temperature of 750 degrees C in the presence of oxygen. Pyrolysis from 300-550 degrees C showed sequential release of phytene hydrocarbons, glycerides, and aromatics as temperature was increased. It appears that this has potential to release the glycerides from the non-fatty acid groups present in the polar lipids to produce a cleaner lipid. Further research is needed to quantify the pyrolysis and gasification yields, analyze the liquids produced and to test strategies for removing organic-nitrogen byproducts produced because of the high protein content of the feed. Possible strategies include use of high-lipid/low-protein algae or the use of catalytic pyrolysis.

  15. Biofuel impacts on water.

    SciTech Connect (OSTI)

    Tidwell, Vincent Carroll; Malczynski, Leonard A.; Sun, Amy Cha-Tien

    2011-01-01T23:59:59.000Z

    Sandia National Laboratories and General Motors Global Energy Systems team conducted a joint biofuels systems analysis project from March to November 2008. The purpose of this study was to assess the feasibility, implications, limitations, and enablers of large-scale production of biofuels. 90 billion gallons of ethanol (the energy equivalent of approximately 60 billion gallons of gasoline) per year by 2030 was chosen as the book-end target to understand an aggressive deployment. Since previous studies have addressed the potential of biomass but not the supply chain rollout needed to achieve large production targets, the focus of this study was on a comprehensive systems understanding the evolution of the full supply chain and key interdependencies over time. The supply chain components examined in this study included agricultural land use changes, production of biomass feedstocks, storage and transportation of these feedstocks, construction of conversion plants, conversion of feedstocks to ethanol at these plants, transportation of ethanol and blending with gasoline, and distribution to retail outlets. To support this analysis, we developed a 'Seed to Station' system dynamics model (Biofuels Deployment Model - BDM) to explore the feasibility of meeting specified ethanol production targets. The focus of this report is water and its linkage to broad scale biofuel deployment.

  16. Sandia National Laboratories: Biofuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    EnergyBiomassBiofuels Biofuels Sandia researchers are turning cellulosic biomass into jet fuel. Global demand for energy has risen dramatically in recent years, yet the world...

  17. Strategic Perspectives on Biofuels

    Broader source: Energy.gov [DOE]

    Plenary V: Biofuels and Sustainability: Acknowledging Challenges and Confronting MisconceptionsQuantitative Analysis of Biofuel Sustainability, Including Land Use Change GHG EmissionsLee R. Lynd,...

  18. Lipid Biofuels | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lipid Biofuels Lipid Biofuels Released: March 30, 2015 Enhancing microbial lipid production By revealing a novel molecular pathway involved in microbial lipid accumulation in the...

  19. Biofuels Information Center

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biofuels Information Center BETO 2015 Peer Review Kristi Moriarty March 24, 2015 2 Goal Statement * The purpose of the Biofuels Information Center (BIC) task is to increase...

  20. Dynamic studies of catalysts for biofuel synthesis in an Environmental Transmission Electron Microscope

    E-Print Network [OSTI]

    Dunin-Borkowski, Rafal E.

    Dynamic studies of catalysts for biofuel synthesis in an Environmental Transmission Electron@cen.dtu.dk Keywords: Biofuel, catalysis, environmental TEM The development of transportation fuels from sustainable

  1. Development of Oxidative Lime Pretreatment and Shock Treatment to Produce Highly Digestible Lignocellulose for Biofuel and Ruminant Feed Applications 

    E-Print Network [OSTI]

    Falls, Matthew David

    2011-10-21T23:59:59.000Z

    highly controversial food vs. fuel debate. Because of its high abundance and relatively low cost, lignocellulosic biomass is a promising alternative feedstock for biofuel production; however, structural features of lignocellulose limit accessibility...

  2. Development of alternate parts for the aerospace industry

    E-Print Network [OSTI]

    Tapley, James Paul

    2010-01-01T23:59:59.000Z

    This thesis explores the topic of the development of alternate parts for the aerospace industry, drawing on industry examples to demonstrate methods and approaches and the benefits to firms engaged in these activities. I ...

  3. Integrating Bioprocesses into Industrial Complexes for Sustainable Development

    E-Print Network [OSTI]

    Pike, Ralph W.

    Integrating Bioprocesses into Industrial Complexes for Sustainable Development Debalina Sengupta1 77710 #12;Introduc)on · Sustainable Development · Overview · Biomass conversion designs "Sustainable development is development that meets the needs of the present without

  4. Sandia National Laboratories: Biofuels Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SystemsRenewable EnergyBiomassBiofuelsBiofuels Publications Biofuels Publications Undergirded by the powerful capabilities, state-of-the-art facilities, and brilliant minds that...

  5. Biofuel Basics | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Addthis Text Version Photo of a woman in goggles handling a machine filled with biofuels. Biofuels are liquid or gaseous fuels produced from biomass. Most biofuels are used...

  6. Global Assessments and Guidelines for Sustainable Liquid Biofuel

    E-Print Network [OSTI]

    Global Assessments and Guidelines for Sustainable Liquid Biofuel Production in Developing Countries Biofuel Production in Developing Countries FINAL REPORT A GEF Targeted Research Project Organized by Bernd for Sustainable Liquid Biofuels. A GEF Targeted Research Project. Heidelberg/Paris/Utrecht/Darmstadt, 29 February

  7. Single Glucose Biofuel Cells Implanted in Rats Power Electronic Devices

    E-Print Network [OSTI]

    Boyer, Edmond

    Single Glucose Biofuel Cells Implanted in Rats Power Electronic Devices A. Zebda1,2 , S. Cosnier1 the first implanted glucose biofuel cell (GBFC) that is capable of generating sufficient power from a mammal further developments. Following recent developments in nano- and biotechnology, state-of-the-art biofuel

  8. FUNGIBLE AND COMPATIBLE BIOFUELS: LITERATURE SEARCH, SUMMARY, AND RECOMMENDATIONS

    SciTech Connect (OSTI)

    Bunting, Bruce G [ORNL; Bunce, Michael [ORNL; Barone, Teresa L [ORNL; Storey, John Morse [ORNL

    2011-04-01T23:59:59.000Z

    The purpose of the study described in this report is to summarize the various barriers to more widespread distribution of bio-fuels through our common carrier fuel distribution system, which includes pipelines, barges and rail, fuel tankage, and distribution terminals. Addressing these barriers is necessary to allow the more widespread utilization and distribution of bio-fuels, in support of a renewable fuels standard and possible future low-carbon fuel standards. These barriers can be classified into several categories, including operating practice, regulatory, technical, and acceptability barriers. Possible solutions to these issues are discussed; including compatibility evaluation, changes to bio-fuels, regulatory changes, and changes in the distribution system or distribution practices. No actual experimental research has been conducted in the writing of this report, but results are used to develop recommendations for future research and additional study as appropriate. This project addresses recognized barriers to the wider use of bio-fuels in the areas of development of codes and standards, industrial and consumer awareness, and materials compatibility issues.

  9. Society for Industrial and Applied Mathematics

    E-Print Network [OSTI]

    Aslan, Beyza Caliskan

    Society for Industrial and Applied Mathematics Science and Industry Advance with Mathematics and computational science have become essential tools in the development of advances in science and technology with ethanol a viable solution to the world's dependence on fossil fuels? Can biofuel production be optimized

  10. Multiphase Flow Modeling of Biofuel Production Processes

    SciTech Connect (OSTI)

    D. Gaston; D. P. Guillen; J. Tester

    2011-06-01T23:59:59.000Z

    As part of the Idaho National Laboratory's (INL's) Secure Energy Initiative, the INL is performing research in areas that are vital to ensuring clean, secure energy supplies for the future. The INL Hybrid Energy Systems Testing (HYTEST) Laboratory is being established to develop and test hybrid energy systems with the principal objective to safeguard U.S. Energy Security by reducing dependence on foreign petroleum. HYTEST involves producing liquid fuels in a Hybrid Energy System (HES) by integrating carbon-based (i.e., bio-mass, oil-shale, etc.) with non-carbon based energy sources (i.e., wind energy, hydro, geothermal, nuclear, etc.). Advances in process development, control and modeling are the unifying vision for HES. This paper describes new modeling tools and methodologies to simulate advanced energy processes. Needs are emerging that require advanced computational modeling of multiphase reacting systems in the energy arena, driven by the 2007 Energy Independence and Security Act, which requires production of 36 billion gal/yr of biofuels by 2022, with 21 billion gal of this as advanced biofuels. Advanced biofuels derived from microalgal biomass have the potential to help achieve the 21 billion gal mandate, as well as reduce greenhouse gas emissions. Production of biofuels from microalgae is receiving considerable interest due to their potentially high oil yields (around 600 gal/acre). Microalgae have a high lipid content (up to 50%) and grow 10 to 100 times faster than terrestrial plants. The use of environmentally friendly alternatives to solvents and reagents commonly employed in reaction and phase separation processes is being explored. This is accomplished through the use of hydrothermal technologies, which are chemical and physical transformations in high-temperature (200-600 C), high-pressure (5-40 MPa) liquid or supercritical water. Figure 1 shows a simplified diagram of the production of biofuels from algae. Hydrothermal processing has significant advantages over other biomass processing methods with respect to separations. These 'green' alternatives employ a hybrid medium that, when operated supercritically, offers the prospect of tunable physicochemical properties. Solubility can be rapidly altered and phases partitioned selectively to precipitate or dissolve certain components by altering temperature or pressure in the near-critical region. The ability to tune the solvation properties of water in the highly compressible near-critical region facilitates partitioning of products or by-products into separate phases to separate and purify products. Since most challenges related to lipid extraction are associated with the industrial scale-up of integrated extraction systems, the new modeling capability offers the prospect of addressing previously untenable scaling issues.

  11. Industrial Energy Efficiency Programs: Development and Trends

    E-Print Network [OSTI]

    Chittum, A.; Kaufman, N.; Elliot, N.

    2010-01-01T23:59:59.000Z

    As more states establish Energy Efficiency Resource Standards (EERS), goals for energy efficiency savings are increasing across the country. Increasingly, states are relying on their industrial energy efficiency programs to find and help implement...

  12. Developing a solar energy industry in Egypt

    E-Print Network [OSTI]

    AbdelMessih, Sherife (Sherife Mohsen)

    2009-01-01T23:59:59.000Z

    This paper assesses Egypt's current energy infrastructure and its problems, the available solar energy resource, and the technologies required to harness this resource. After this assessment, an industry based on high ...

  13. Industrial Energy Efficiency Programs: Development and Trends 

    E-Print Network [OSTI]

    Chittum, A.; Kaufman, N.; Elliot, N.

    2010-01-01T23:59:59.000Z

    As more states establish Energy Efficiency Resource Standards (EERS), goals for energy efficiency savings are increasing across the country. Increasingly, states are relying on their industrial energy efficiency programs ...

  14. CONNECTICUT BIOFUELS TECHNOLOGY PROJECT

    SciTech Connect (OSTI)

    BARTONE, ERIK

    2010-09-28T23:59:59.000Z

    DBS Energy Inc. (“DBS”) intends on using the Connecticut Biofuels Technology Project for the purpose of developing a small-scale electric generating systems that are located on a distributed basis and utilize biodiesel as its principle fuel source. This project will include research and analysis on the quality and applied use of biodiesel for use in electricity production, 2) develop dispatch center for testing and analysis of the reliability of dispatching remote generators operating on a blend of biodiesel and traditional fossil fuels, and 3) analysis and engineering research on fuel storage options for biodiesel of fuels for electric generation.

  15. USDA Biofuels Strategic Production Report June 23, 2010

    E-Print Network [OSTI]

    USDA Biofuels Strategic Production Report June 23, 2010 1 A USDA Regional Roadmap to Meeting the Biofuels Goals of the Renewable Fuels Standard by 2022 I. INTRODUCTION The U.S. Department of Agriculture. The strategy targets barriers to the development of a successful biofuels market that will achieve, or surpass

  16. Agricultural Bio-Fueled Generation of Electricity and Development of Durable and Efficent NOx Reduction

    SciTech Connect (OSTI)

    Boyd, Rodney

    2007-08-08T23:59:59.000Z

    The objective of this project was to define the scope and cost of a technology research and development program that will demonstrate the feasibility of using an off-the-shelf, unmodified, large bore diesel powered generator in a grid-connected application, utilizing various blends of BioDiesel as fuel. Furthermore, the objective of project was to develop an emissions control device that uses a catalytic process and BioDiesel (without the presence of Ammonia or Urea)to reduce NOx and other pollutants present in a reciprocating engine exhaust stream with the goal of redefining the highest emission reduction efficiencies possible for a diesel reciprocating generator. Process: Caterpillar Power Generation adapted an off-the-shelf Diesel Generator to run on BioDiesel and various Petroleum Diesel/BioDiesel blends. EmeraChem developed and installed an exhaust gas cleanup system to reduce NOx, SOx, volatile organics, and particulates. The system design and function was optimized for emissions reduction with results in the 90-95% range;

  17. Biofuels: 1995 project summaries

    SciTech Connect (OSTI)

    NONE

    1996-01-01T23:59:59.000Z

    Domestic transportation fuels are derived primarily from petroleum and account for about two-thirds of the petroleum consumption in the United States. In 1994, more than 40% of our petroleum was imported. That percentage is likely to increase, as the Middle East has about 75% of the world`s oil reserves, but the United States has only about 5%. Because we rely so heavily on oil (and because we currently have no suitable substitutes for petroleum-based transportation fuels), we are strategically and economically vulnerable to disruptions in the fuel supply. Additionally, we must consider the effects of petroleum use on the environment. The Biofuels Systems Division (BSD) is part of the U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EE). The day-to-day research activities, which address these issues, are managed by the National Renewable Energy Laboratory in Golden, Colorado, and Oak Ridge National Laboratory in Oak Ridge, Tennessee. BSD focuses its research on biofuels-liquid and gaseous fuels made from renewable domestic crops-and aggressively pursues new methods for domestically producing, recovering, and converting the feedstocks to produce the fuels economically. The biomass resources include forage grasses, oil seeds, short-rotation woody crops, agricultural and forestry residues, algae, and certain industrial and municipal waste streams. The resulting fuels include ethanol, methanol, biodiesel, and ethers.

  18. Technology Roadmap Biofuels for Transport

    E-Print Network [OSTI]

    2035 2040 2045 2050 Technology Roadmap Biofuels for Transport #12;INTERNATIONAL ENERGY AGENCY Agency (IEA), at the request of the G8, is developing a series of roadmaps for some of the most important roadmap develops a growth path for the covered technologies from today to 2050, and identifies technology

  19. Development of an Integrated Biofuel and Chemical Refinery Presentation for BETO 2015 Project Peer Review

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No53197E T A * S HBatteries1000: Development of aan Integrated

  20. 2013 Survey of Non-Starch Ethanol and Renewable Hydrocarbon Biofuels Producers

    SciTech Connect (OSTI)

    Schwab, A.; Geiger, J.; Lewis, J.

    2015-01-01T23:59:59.000Z

    In order to understand the status of the industry for non-starch ethanol and renewable hydrocarbon biofuels as of the end of calendar year 2013, the National Renewable Energy Laboratory (NREL) conducted the first of what is anticipated to be an annual survey of U.S. non-starch ethanol and renewable hydrocarbon biofuels producers. This report presents the results of this initial survey and describes the survey methodology. Subsequent surveys will report on the progress over time of the development of these facilities and companies.

  1. of Biofuels Sustainable Feedstocks

    E-Print Network [OSTI]

    The Next Generation of Biofuels Sustainable Feedstocks Cost-Competitive Options #12;Photos courtesy the evolutionary code for an entirely new generation of biofuels capable of transforming the American automobile biofuels at a cost competitive with that of gasoline. Equally important, they are using crops

  2. Biofuels: Project summaries

    SciTech Connect (OSTI)

    Not Available

    1994-07-01T23:59:59.000Z

    The US DOE, through the Biofuels Systems Division (BSD) is addressing the issues surrounding US vulnerability to petroleum supply. The BSD goal is to develop technologies that are competitive with fossil fuels, in both cost and environmental performance, by the end of the decade. This document contains summaries of ongoing research sponsored by the DOE BSD. A summary sheet is presented for each project funded or in existence during FY 1993. Each summary sheet contains and account of project funding, objectives, accomplishments and current status, and significant publications.

  3. Industrial Plant Objectives and Cogeneration System Development

    E-Print Network [OSTI]

    Kovacik, J. M.

    1983-01-01T23:59:59.000Z

    cogen eration facility. APPLICATION CONSIDERATIONS FOR COGENERATION CYCLES Cogeneration is the term popularly used to describe energy supply systems where turbines gene rate power (kW or hpj while providing thermal energy for use in process areas... HEAT 15% 48% BOILER CONOENSER ASSOC. LOSSES LOSSES FIG. 2 - FUEL UTILIZATION EFFECTIVENESS The three types of topping cogeneration cycles usually encountered in industrial practice are steam turbine, gas turbine, and combined cycles...

  4. Planting Food or Fuel: Developing an Interdisciplinary Approach to Understanding the Role of Culture in Farmers’ Decisions to Grow Second-Generation Biofuel Feedstock Crops

    E-Print Network [OSTI]

    White, Stacey Swearingen; Brown, J. Christopher; Gibson-Carpenter, Jane W.; Hanley, Eric; Earnhart, Dietrich H.

    2009-12-01T23:59:59.000Z

    Recent interest in biofuels as an alternative energy source has spurred considerable changes in agricultural practice worldwide. These changes will be more pronounced as second-generation biofuels, such as switch grass, gain prominence; this article...

  5. Biofuels from Microalgae and Seaweeds

    SciTech Connect (OSTI)

    Huesemann, Michael H.; Roesijadi, Guritno; Benemann, John; Metting, F. Blaine

    2010-03-01T23:59:59.000Z

    8.1 Introduction: Seaweeds and microalgae have a long history of cultivation as sources of commercial products (McHugh 2003; Pulz and Gross 2004). They also have been the subject of extensive investigations related to their potential as fuel source since the 1970s (Chynoweth 2002). As energy costs rise, these photosynthetic organisms are again a focus of interest as potential sources of biofuels, particularly liquid transportation fuels. There have been many recent private sector investments to develop biofuels from microalgae, in part building on a U.S. Department of Energy (DOE) program from 1976 to 1996 which focused on microalgal oil production (Sheehan et al. 1998). Seaweed cultivation has received relatively little attention as a biofuel source in the US, but was the subject of a major research effort by the DOE from 1978 to 1983 (Bird and Benson 1987), and is now the focus of significant interest in Japan, Europe and Korea...

  6. Biofuels and certification. A workshop at the Harvard Kennedy School of Government. Summary report

    SciTech Connect (OSTI)

    Devereaux, Charan; Lee, Henry

    2009-06-01T23:59:59.000Z

    Liquid biofuels can provide a substitute for fossil fuels in the transportation sector. Many countries have mandated the use of biofuels, by creating targets for their use. If not implemented with care, however, actions that increase biofuel production can put upward pressure on food prices, increase greenhouse gas (GHG) emissions, and exacerbate degradation of land, forest, and water sources. A strong global biofuels industry will not emerge unless these environmental and social concerns are addressed. Interested parties around the world are actively debating the design and implementation of policies to meet the biofuel goals, particularly those established in the United States and Europe. In general, policy options for managing the potential risks and benefits of biofuel development should specify not only clear standards governing biofuel content and production processes, but also certification processes for verifying whether particular biofuels meet those standards, and specific metrics or indicators on which to base the certification. Historically, many standards in the energy and environment fields have ultimately been set or supported by governments. Many of the certification processes have been voluntary, carried out by independent third parties. The biofuels case is a young one, however, with questions of goals, standards, certification, and metrics still in interdependent flux. The workshop focused its discussions on certification issues, but found the discussions naturally reaching into ongoing debates regarding possible goals, standards, and metrics. Many countries are proposing that for a biofuel to qualify as contributing to government-mandated targets or goals, it must be certified to meet certain standards. These standards could be limited to the amount of GHG emitted in the production process or could include a number of other environmental sustainability concerns ranging from deforestation and biodiversity to water resources. While the threat to both forests and food supplies from increased biofuel production is real, it is not clear that setting broad sustainability standards and then requiring sellers to certify that all of those standards have been met is the best way to address these interconnected problems. In particular, if too many standards and related certification requirements are put in place too soon, this could constrain the development of a global biofuels market. In contrast, certification targeted at a specific and limited set of problems and designed with the flexibility to adjust to changes in policies and programs can enhance the public's acceptance of the biofuel option while protecting key social and environmental goals. A second set of questions revolves around the locus of responsibility for certifying whether biofuel production meets sustainability targets. Should the biofuel processing firms, third parties, or governments be responsible for certifying the production of biofuels? This question also elicited significant discussion. While it could be easier to have individual country governments assume the certification of production responsibility, some governments may not have the capacity to implement an effective certification process. Production facilities that comply with international standards should not be kept out of the market because of their government's inability to manage the process. The possible contribution to effective certification of third party organizations or public-private partnerships should not be underestimated.

  7. Biofuels in Africa May Help Achieve Global Goals, Experts Say | Worldwatch Institute Login | Register | Shopping Cart

    E-Print Network [OSTI]

    Biofuels in Africa May Help Achieve Global Goals, Experts Say | Worldwatch Institute Login Contact Us Sign Up for e-mail updates Home » Online Features » e2 - Eye on Earth Biofuels in Africa May for developing biofuels from sugar cane and other crops. Photo by Steve McNicholas Africa can use the biofuels

  8. Biofuels Fuels Technology Pathway Options for Advanced Drop-in Biofuels Production

    SciTech Connect (OSTI)

    Kevin L Kenney

    2011-09-01T23:59:59.000Z

    Advanced drop-in hydrocarbon biofuels require biofuel alternatives for refinery products other than gasoline. Candidate biofuels must have performance characteristics equivalent to conventional petroleum-based fuels. The technology pathways for biofuel alternatives also must be plausible, sustainable (e.g., positive energy balance, environmentally benign, etc.), and demonstrate a reasonable pathway to economic viability and end-user affordability. Viable biofuels technology pathways must address feedstock production and environmental issues through to the fuel or chemical end products. Potential end products include compatible replacement fuel products (e.g., gasoline, diesel, and JP8 and JP5 jet fuel) and other petroleum products or chemicals typically produced from a barrel of crude. Considering the complexity and technology diversity of a complete biofuels supply chain, no single entity or technology provider is capable of addressing in depth all aspects of any given pathway; however, all the necessary expert entities exist. As such, we propose the assembly of a team capable of conducting an in-depth technology pathway options analysis (including sustainability indicators and complete LCA) to identify and define the domestic biofuel pathways for a Green Fleet. This team is not only capable of conducting in-depth analyses on technology pathways, but collectively they are able to trouble shoot and/or engineer solutions that would give industrial technology providers the highest potential for success. Such a team would provide the greatest possible down-side protection for high-risk advanced drop-in biofuels procurement(s).

  9. Global product development in semiconductor industry : Intel -- Tick-Tock product development cadence

    E-Print Network [OSTI]

    Park, Cheolmin, S.M. Massachusetts Institute of Technology

    2008-01-01T23:59:59.000Z

    This thesis investigates on changes in semiconductor industry's product development methodology by following Intel's product development from year 2000. Intel was challenged by customer's preference change, competitors new ...

  10. Hydrothermal industrialization: direct heat development. Final report

    SciTech Connect (OSTI)

    Not Available

    1982-05-01T23:59:59.000Z

    A description of hydrothermal resources suitable for direct applications, their associated temperatures, geographic distribution and developable capacity are given. An overview of the hydrothermal direct-heat development infrastructure is presented. Development activity is highlighted by examining known and planned geothermal direct-use applications. Underlying assumptions and results for three studies conducted to determine direct-use market penetration of geothermal energy are discussed.

  11. Biofuels and Regulatory Co-Production Critical Stakeholder Perceptions of Carbon

    E-Print Network [OSTI]

    Watson, Andrew

    Biofuels and Regulatory Co-Production Critical Stakeholder Perceptions of Carbon and Sustainability are the responsibility of the author(s) alone and not the Tyndall Centre. #12; BIOFUELS AND REGULATORY and, to a lesser extent, industry, stakeholder views on biofuels as of late

  12. Presentation 2.2: Biofuels -A Strategic Option for the Global Forest Sector? Michael Obersteiner

    E-Print Network [OSTI]

    Presentation 2.2: Biofuels - A Strategic Option for the Global Forest Sector? Michael Obersteiner Generation Biofuels. We will close with a SWOT analysis of the forest sector vis-ŕ-vis the oil industry the emerging big player on the biofuels market. 117 #12;#12;Michael Obersteiner & Sten Nilsson International

  13. BIOFUELS FOR TRANSPORT IN THE 21st WHY FIRE SAFETY IS A REAL ISSUE

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    BIOFUELS FOR TRANSPORT IN THE 21st CENTURY: WHY FIRE SAFETY IS A REAL ISSUE Guy Marlair1 , Patricia's), with thé new century venue we are assisting of a booming industry regarding biofuels of biofuels for transport. This contribution is a fîrst output from a National research program named

  14. D o s s i e r Second and Third Generation Biofuels: Towards Sustainbility and Competitiveness

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    D o s s i e r Second and Third Generation Biofuels: Towards Sustainbility and Competitiveness Evolution Technologies can Provide Bespoke Industrial Enzymes: Application to Biofuels L. Fourage1 , J: Application to Biofuels -- Enzymatic hydrolysis of lignocellulose is one of the major bottlenecks

  15. BiofuelsReportFinal

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the modern petroleum industry. A similarly expansive and sustained effort must also be applied to develop hydrocarbon biorefineries. Advances in nanoscience over the last several...

  16. Future of Liquid Biofuels for APEC Economies

    SciTech Connect (OSTI)

    Milbrandt, A.; Overend, R. P.

    2008-05-01T23:59:59.000Z

    This project was initiated by APEC Energy Working Group (EWG) to maximize the energy sector's contribution to the region's economic and social well-being through activities in five areas of strategic importance including liquid biofuels production and development.

  17. Analysis of advanced biofuels.

    SciTech Connect (OSTI)

    Dec, John E.; Taatjes, Craig A.; Welz, Oliver; Yang, Yi

    2010-09-01T23:59:59.000Z

    Long chain alcohols possess major advantages over ethanol as bio-components for gasoline, including higher energy content, better engine compatibility, and less water solubility. Rapid developments in biofuel technology have made it possible to produce C{sub 4}-C{sub 5} alcohols efficiently. These higher alcohols could significantly expand the biofuel content and potentially replace ethanol in future gasoline mixtures. This study characterizes some fundamental properties of a C{sub 5} alcohol, isopentanol, as a fuel for homogeneous-charge compression-ignition (HCCI) engines. Wide ranges of engine speed, intake temperature, intake pressure, and equivalence ratio are investigated. The elementary autoignition reactions of isopentanol is investigated by analyzing product formation from laser-photolytic Cl-initiated isopentanol oxidation. Carbon-carbon bond-scission reactions in the low-temperature oxidation chemistry may provide an explanation for the intermediate-temperature heat release observed in the engine experiments. Overall, the results indicate that isopentanol has a good potential as a HCCI fuel, either in neat form or in blend with gasoline.

  18. Global Biofuel Use, 1850-2000.

    SciTech Connect (OSTI)

    Fernandes, S. D.; Trautmann, N. M.; Streets, D. G.; Roden, C. A.; Bond, T. C.; Decision and Information Sciences; Univ. of Illinois

    2007-05-30T23:59:59.000Z

    This paper presents annual, country-level estimates of biofuel use for the period 1850-2000. We estimate that global biofuel consumption rose from about 1000 Tg in 1850 to 2460 Tg in 2000, an increase of 140%. In the late 19th century, biofuel consumption in North America was very high, {approx}220-250 Tg/yr, because widespread land clearing supplied plentiful fuelwood. At that time biofuel use in Western Europe was lower, {approx}180-200 Tg/yr. As fossil fuels became available, biofuel use in the developed world fell. Compensating changes in other parts of the world, however, caused global consumption to remain remarkably stable between 1850 and 1950 at {approx}1200 {+-} 200 Tg/yr. It was only after World War II that biofuel use began to increase more rapidly in response to population growth in the developing world. Between 1950 and 2000, biofuel use in Africa, South Asia, and Southeast Asia grew by 170%, 160%, and 130%, respectively.

  19. Industrial Lighting Techniques and New Developments

    E-Print Network [OSTI]

    Colotti, M. A.

    The energy crisis of the early seventies has had a drastic influence on both the application and development of light sources. This situation has forced us to examine old methods and search for new answers for improved efficiency. We can no longer...

  20. Navigating Roadblocks on the Path to Advanced Biofuels Deployment

    Broader source: Energy.gov [DOE]

    Breakout Session 2: Frontiers and Horizons Session 2–C: Navigating Roadblocks on the Path to Advanced Biofuels Deployment Andrew Held, Senior Director of Feedstock Development, Virent, Inc.

  1. Algal Biofuels Research Laboratory (Fact Sheet), NREL (National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Algal Biofuels Research Laboratory Enabling fundamental understanding of algal biology and composition of algal biomass to help develop superior bioenergy strains NREL is a...

  2. The Science Behind Cheaper Biofuels | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    the metabolic processes in rapeseed plants to optimize production of plant oils for biofuels. Shown above are developing embryos extracted from a growing rapeseed plant. The...

  3. Argonne model analyzes water footprint of biofuels | Argonne...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    tool predicts the amount of water required to generate various types of cellulosic biofuels. Image courtesy May Wu; click to view larger. An Argonne-developed online analysis...

  4. Sandia National Laboratories: Biofuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    production targets established by the Renewable Fuels Standard (RFS-2) as part of the Energy Independence and Security Act (EISA) of 2007. Advanced biofuels derived from...

  5. PPG Industries Develops a Low-Cost Integrated OLED Substrate

    Broader source: Energy.gov [DOE]

    With the help of DOE funding, PPG Industries, Inc., has developed a low-cost OLED substrate, using inexpensive soda-lime "float" glass that the company manufactures at high volume for the architectural industry. Float glass is thin sheet glass and is much less expensive than the borosilicate or double-side-polished display glass that's currently being used as substrates by OLED device manufacturers.

  6. Development of Inexpensive Turbo Compressor/Expanders for Industrial Use

    E-Print Network [OSTI]

    Jacox, J. W.

    DEVELOPMENT OF INEXPENSIVE TURBO COMPRESSOR/EXPANDERS FOR INDUSTRIAL USE JOHN W. Senior Project Manager NUCON International, Columbus, ABSTRACT Use of Turbo Compressor/Expanders (TCEs) as industrial reversed Brayton Cycle Heat Pumps... offers many technical and energy saving advantages. until recently, such devices have been far too expensive in both capital cost and inefficiency mainly because the compressor and expander stages were built for forward Brayton Cycle operation...

  7. Development of Bulk Nanocrystalline Cemented Tungsten Carbide for Industrial Applicaitons

    SciTech Connect (OSTI)

    Z. Zak Fang, H. Y. Sohn

    2009-03-10T23:59:59.000Z

    This report contains detailed information of the research program entitled "Development of Bulk Nanocrystalline Cemented Tungsten Carbide Materials for Industrial Applications". The report include the processes that were developed for producing nanosized WC/Co composite powders, and an ultrahigh pressure rapid hot consolidation process for sintering of nanosized powders. The mechanical properties of consolidated materials using the nanosized powders are also reported.

  8. Transitioning to Biofuels: A System-of-Systems Perspective; Preprint

    SciTech Connect (OSTI)

    Riley, C.; Sandor, D.

    2008-06-01T23:59:59.000Z

    Using the existing fuel supply chain infrastructure as a framework, this paper discusses a vision for transitioning to a larger biofuels industry and the challenges associated with a massive market and infrastructure transformation.

  9. Sandia National Laboratories: lignocellulosic biofuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    lignocellulosic biofuels Sandia Video Featured by DOE Bioenergy Technologies Office On December 10, 2014, in Biofuels, Biomass, Capabilities, Energy, Facilities, JBEI, News, News &...

  10. Industrial hygiene concerns associated with oil shale development

    SciTech Connect (OSTI)

    Ettinger, H.J.

    1980-01-01T23:59:59.000Z

    Health protection concerns (including industrial hygiene, safety, and occupational medicine) must be evaluated to insure that development of the oil shale industry proceeds without significant risk to the health of the workers involved. These concerns need to be identified in the early stages of developing this industry. To provide a basis for discussing potential health protection concerns related to oil shale, it is necessary to briefly discuss the magnitude and characteristics of this resource; the alternate proposed technologies; and the unit operations which make up the operating system. This subject has been detailed in many publications, among them reports prepared for the Environmental Protection Agency. This discussion will be limited to providing sufficient background to put industrial hygiene and other health protection concerns in perspective, and will include a brief description of typical technologies under consideration. It will not provide a detailed description of these technologies, or attempt to cover all the alternate technologies which may be applied to the development of oil shale. However, a basis for considering potential health protection problems associated with development of this industry will be established.

  11. The Development of Methanol Industry and Methanol Fuel in China

    SciTech Connect (OSTI)

    Li, W.Y.; Li, Z.; Xie, K.C. [Taiyuan University of Technology, Taiyuan (China)

    2009-07-01T23:59:59.000Z

    In 2007, China firmly established itself as the driver of the global methanol industry. The country became the world's largest methanol producer and consumer. The development of the methanol industry and methanol fuel in China is reviewed in this article. China is rich in coal but is short on oil and natural gas; unfortunately, transportation development will need more and more oil to provide the fuel. Methanol is becoming a dominant alternative fuel. China is showing the rest of the world how cleaner transportation fuels can be made from coal.

  12. Yokayo Biofuels | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin: EnergyWyandanch, NewYanceyYokayo Biofuels Jump to: navigation,

  13. Rusni Biofuels | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to:Roscommon County,Vermont: EnergyEasementsRushville,Rusni Biofuels

  14. Agile Development and Dependency Management for Industrial Control Systems

    E-Print Network [OSTI]

    Copy, B

    2011-01-01T23:59:59.000Z

    The production and exploitation of industrial control systems differ substantially from traditional information systems; this is in part due to constraints on the availability and change lifecycle of production systems, as well as their reliance on proprietary protocols and software packages with little support for open development standards [1]. The application of agile software development methods therefore represents a challenge which requires the adoption of existing change and build management tools and approaches that can help bridging the gap and reap the benefits of managed development when dealing with industrial control systems. This paper will consider how agile development tools such as Apache Maven for build management, Hudson for continuous integration or Sonatype Nexus for the operation of "definite media libraries" were leveraged to manage the development lifecyle of the CERN UAB framework [2], as well as other crucial building blocks of the CERN accelerator infrastructure, such as the CERN Co...

  15. Biofuel Supply Chain Infrastructure Optimizing the Evolution of Cellulosic Biofuel

    E-Print Network [OSTI]

    Biofuel Supply Chain Infrastructure Optimizing the Evolution of Cellulosic Biofuel Center infrastructure. Cellulosic-based ad- vanced biofuel has a target of 21 billion gallons by 2022 and requires into a national economic model of biofuel sustainability. Cellulosic biomass relocates the demand

  16. UA researchers develop develop a device for moving industrial vehicles without drivers

    E-Print Network [OSTI]

    Escolano, Francisco

    in settings with extreme human conditions (cold storage, waste management , etc....) The device is availableUA researchers develop develop a device for moving industrial vehicles without drivers Researchers Localization And Mapping). This technology is applicable to any business or industrial environment where

  17. MN Center for Renewable Energy: Cellulosic Ethanol, Optimization of Bio-fuels in Internal Combustion Engines, & Course Development for Technicians in These Areas

    SciTech Connect (OSTI)

    John Frey

    2009-02-22T23:59:59.000Z

    This final report for Grant #DE-FG02-06ER64241, MN Center for Renewable Energy, will address the shared institutional work done by Minnesota State University, Mankato and Minnesota West Community and Technical College during the time period of July 1, 2006 to December 30, 2008. There was a no-cost extension request approved for the purpose of finalizing some of the work. The grant objectives broadly stated were to 1) develop educational curriculum to train technicians in wind and ethanol renewable energy, 2) determine the value of cattails as a biomass crop for production of cellulosic ethanol, and 3) research in Optimization of Bio-Fuels in Internal Combustion Engines. The funding for the MN Center for Renewable Energy was spent on specific projects related to the work of the Center.

  18. Department of Industrial Engineering Fall 2011 Terminal Development

    E-Print Network [OSTI]

    Demirel, Melik C.

    PENNSTATE Department of Industrial Engineering Fall 2011 Terminal Development Overview The group as a terminal used for "automated order and payment" in a restaurant or retail setting, replacing a quality finished product. Approach Researched similar terminal products, such as Sheetz ordering system

  19. Market development directory for solar industrial process heat systems

    SciTech Connect (OSTI)

    None

    1980-02-01T23:59:59.000Z

    The purpose of this directory is to provide a basis for market development activities through a location listing of key trade associations, trade periodicals, and key firms for three target groups. Potential industrial users and potential IPH system designers were identified as the prime targets for market development activities. The bulk of the directory is a listing of these two groups. The third group, solar IPH equipment manufacturers, was included to provide an information source for potential industrial users and potential IPH system designers. Trade associates and their publications are listed for selected four-digit Standard Industrial Code (SIC) industries. Since industries requiring relatively lower temperature process heat probably will comprise most of the near-term market for solar IPH systems, the 80 SIC's included in this chapter have process temperature requirements less than 350/sup 0/F. Some key statistics and a location list of the largest plants (according to number of employees) in each state are included for 15 of the 80 SIC's. Architectural/engineering and consulting firms are listed which are known to have solar experience. Professional associated and periodicals to which information on solar IPH sytstems may be directed also are included. Solar equipment manufacturers and their associations are listed. The listing is based on the SERI Solar Energy Information Data Base (SEIDB).

  20. Industry

    SciTech Connect (OSTI)

    Bernstein, Lenny; Roy, Joyashree; Delhotal, K. Casey; Harnisch, Jochen; Matsuhashi, Ryuji; Price, Lynn; Tanaka, Kanako; Worrell, Ernst; Yamba, Francis; Fengqi, Zhou; de la Rue du Can, Stephane; Gielen, Dolf; Joosen, Suzanne; Konar, Manaswita; Matysek, Anna; Miner, Reid; Okazaki, Teruo; Sanders, Johan; Sheinbaum Parado, Claudia

    2007-12-01T23:59:59.000Z

    This chapter addresses past, ongoing, and short (to 2010) and medium-term (to 2030) future actions that can be taken to mitigate GHG emissions from the manufacturing and process industries. Globally, and in most countries, CO{sub 2} accounts for more than 90% of CO{sub 2}-eq GHG emissions from the industrial sector (Price et al., 2006; US EPA, 2006b). These CO{sub 2} emissions arise from three sources: (1) the use of fossil fuels for energy, either directly by industry for heat and power generation or indirectly in the generation of purchased electricity and steam; (2) non-energy uses of fossil fuels in chemical processing and metal smelting; and (3) non-fossil fuel sources, for example cement and lime manufacture. Industrial processes also emit other GHGs, e.g.: (1) Nitrous oxide (N{sub 2}O) is emitted as a byproduct of adipic acid, nitric acid and caprolactam production; (2) HFC-23 is emitted as a byproduct of HCFC-22 production, a refrigerant, and also used in fluoroplastics manufacture; (3) Perfluorocarbons (PFCs) are emitted as byproducts of aluminium smelting and in semiconductor manufacture; (4) Sulphur hexafluoride (SF{sub 6}) is emitted in the manufacture, use and, decommissioning of gas insulated electrical switchgear, during the production of flat screen panels and semiconductors, from magnesium die casting and other industrial applications; (5) Methane (CH{sub 4}) is emitted as a byproduct of some chemical processes; and (6) CH{sub 4} and N{sub 2}O can be emitted by food industry waste streams. Many GHG emission mitigation options have been developed for the industrial sector. They fall into three categories: operating procedures, sector-wide technologies and process-specific technologies. A sampling of these options is discussed in Sections 7.2-7.4. The short- and medium-term potential for and cost of all classes of options are discussed in Section 7.5, barriers to the application of these options are addressed in Section 7.6 and the implication of industrial mitigation for sustainable development is discussed in Section 7.7. Section 7.8 discusses the sector's vulnerability to climate change and options for adaptation. A number of policies have been designed either to encourage voluntary GHG emission reductions from the industrial sector or to mandate such reductions. Section 7.9 describes these policies and the experience gained to date. Co-benefits of reducing GHG emissions from the industrial sector are discussed in Section 7.10. Development of new technology is key to the cost-effective control of industrial GHG emissions. Section 7.11 discusses research, development, deployment and diffusion in the industrial sector and Section 7.12, the long-term (post-2030) technologies for GHG emissions reduction from the industrial sector. Section 7.13 summarizes gaps in knowledge.

  1. The Future of Biofuels | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    The Future of Biofuels The Future of Biofuels Addthis Description Secretary Chu discusses why feedstock grasses such as miscanthus could be the future of biofuels. Speakers...

  2. ON THE INDIRECT EFFECT OF BIOFUEL

    E-Print Network [OSTI]

    Zilberman, D; Barrows, G; Hochman, G; Rajagopal, D

    2013-01-01T23:59:59.000Z

    and H. de Gorter. 2011. Biofuel Policies and Carbon Leakage.Environmental Impact of Biofuel Policies. Energy Policy.sions and Uncertainty for Biofuel Policies. Energy Policy.

  3. Cassava, a potential biofuel crop in China

    E-Print Network [OSTI]

    Jansson, C.

    2010-01-01T23:59:59.000Z

    Cassava, a potential biofuel crop in China Christer Janssoncassava; bioethanol; biofuel; metabolic engineering; Chinathe potentials of cassava in the biofuel sector and point to

  4. On mitigating emissions leakage under biofuel policies

    E-Print Network [OSTI]

    Rajagopal, D; Rajagopal, D

    2015-01-01T23:59:59.000Z

    that are applicable to biofuel policies and beyond. Thisso marginal land for biofuel crops is limited. EnergyIndirect emissions of biofuel policies Figure 1 provides a

  5. Enzymes with agriculture and biofuel applications | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Enzymes with agriculture and biofuel applications Enzymes with agriculture and biofuel applications Released: November 20, 2014 Enzyme insights may help agriculture, biofuels Plant...

  6. Bioproducts and Biofuels - Growing Together! | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bioproducts and Biofuels - Growing Together Bioproducts and Biofuels - Growing Together Breakout Session 2B-Integration of Supply Chains II: Bioproducts-Enabling Biofuels and...

  7. Biofuels Market Opportunities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biofuels Market Opportunities Biofuels Market Opportunities Breakout Session 2C-Fostering Technology Adoption II: Expanding the Pathway to Market Biofuels Market Opportunities John...

  8. Impacts of Land-use Changes on Biofuels ORNL History of Exploring Changes in Land Use in the United States

    E-Print Network [OSTI]

    Impacts of Land-use Changes on Biofuels ORNL History of Exploring Changes in Land Use in the United. Building from their work on environmental costs and benefits associated with biofuel production, ORNL positively impact the sustainability of the biofuels industry. Building understanding of land-use change from

  9. Environmental quality indexing of large industrial development alternatives using AHP

    SciTech Connect (OSTI)

    Solnes, Julius

    2003-05-01T23:59:59.000Z

    Two industrial development alternatives have been proposed for the East Coast of Iceland in order to strengthen its socio-economic basis. The favoured option is to build a large aluminium smelter, which requires massive hydropower development in the nearby highlands. Another viable option is the construction of a 6-million-ton oil refinery, following the planned exploitation of the Timan Pechora oil reserves in the Russian Arctic. A third 'fictitious' alternative could be general development of existing regional industry and new knowledge-based industries, development of ecotourism, establishment of national parks, accompanied by infrastructure improvement (roads, tunnels, communications, schools, etc.). The three alternatives will have different environmental consequences. The controversial hydropower plant for the smelter requires a large water reservoir as well as considerable land disturbance in this unique mountain territory, considered to be the largest uninhabited wilderness in Western Europe. The aluminium smelter and the oil refinery will give rise to substantial increase of the greenhouse gas (GHG) emissions of the country (about 20%). Then there is potential environmental risk associated with the refinery regarding oil spills at sea, which could have disastrous impact on the fisheries industry. However, the oil refinery does not require any hydropower development, which is a positive factor. Finally, the third alternative could be defined as a ''green'' solution whereby the detrimental environmental consequences of the two industrial solutions are mostly avoided. In order to compare the three alternatives in an orderly manner, the analytic hierarchy process methodology of Saaty was applied to calculate the environmental quality index of each alternative, which is defined as a weighted sum of selected environmental and socio-economic factors. These factors are evaluated on a comparison basis, applying the AHP methodology, and the weights in the quality index summation are estimated in the same manner. Six persons with different backgrounds were asked to fill in the comparison matrices in order to reduce bias in the evaluation. The final results show that the two industrial alternatives come out poorly, i.e. with low quality indices, whereas the third pseudo-alternative, i.e. general development, with a considerably higher quality index, is certainly worth a further study.

  10. The President's Biofuels Initiative

    Broader source: Energy.gov (indexed) [DOE]

    Biofuels Initiative Neil Rossmeissl Office of the Biomass Program Energy Efficiency and Renewable Energy Why Can't We Regulate Our Way There? 25 20 15 10 5 0 1970 1980 1990 2000...

  11. US energy industry financial developments, 1993 second quarter

    SciTech Connect (OSTI)

    Not Available

    1993-09-29T23:59:59.000Z

    US Energy Industry Financial Developments, 1993 Second Quarter provides information on the financial performance of energy companies during the most recent reporting period. The data are taken from public sources such as the Wall Street Journal, Energy Information Administration publications, corporate press releases, and other public sources. Based on information provided in 1993 second quarter financial disclosures, net income for 114 petroleum companies--including 19 majors--rose 33 percent between the second quarter of 1992 and the second quarter of 1993. Both upstream (oil and gas exploration, development and production) operations and downstream (petroleum refining, marketing, and transport) contributed to the improved financial Performance of petroleum companies consolidated operations. Rate-regulated industries also showed positive income growth between the second quarter of 1992 and the second quarter of 1993 due to higher natural gas prices and increased electricity consumption.

  12. Workforce Development: A Survey of Industry Needs and Training Approaches

    SciTech Connect (OSTI)

    Ventre, Jerry; Weissman, Jane

    2009-04-01T23:59:59.000Z

    This paper presents information and data collected during 2008 on PV workforce needs by the Interstate Renewable Energy Council for the U.S. Department of Energy. The data was collected from licensed contractors, PV practitioners, educators and expert instructors at training sessions, and at focus group and advisory committee meetings. Respondents were primarily from three states: Florida, New York and California. Other states were represented, but to a lesser extent. For data collection, a 12-item questionnaire was developed that addressed key workforce development issues from the perspectives of both the PV industry and training institutions. A total of 63 responses were collected, although not every respondent answered every question. Industry representatives slightly outnumbered the educators, although the difference in responses was not significant.

  13. Federal laboratory nondestructive testing research and development applicable to industry

    SciTech Connect (OSTI)

    Smith, S.A.; Moore, N.L.

    1987-02-01T23:59:59.000Z

    This document presents the results of a survey of nondestructive testing (NDT) and related sensor technology research and development (R and D) at selected federal laboratories. Objective was to identify and characterize NDT activities that could be applied to improving energy efficiency and overall productivity in US manufacturing. Numerous federally supported R and D programs were identified in areas such as acoustic emissions, eddy current, radiography, computer tomography and ultrasonics. A Preliminary Findings Report was sent to industry representatives, which generated considerable interest.

  14. Proceedings of the 2009 Industrial Engineering Research Conference Developing a Curriculum in Service Systems Engineering

    E-Print Network [OSTI]

    Onder, Nilufer

    Proceedings of the 2009 Industrial Engineering Research Conference Developing a Curriculum slowly to this change. Although some Industrial Engineering (IE) undergraduate programs have added community has responded slowly to this change. Although some Industrial Engineering undergraduate programs

  15. Chapter 19: Modeling Tools and Strategies for Developing Sustainable Feedstock Supplies 319 Modeling Tools and Strategies for Developing Sustainable Feedstock Supplies

    E-Print Network [OSTI]

    Dietze, Michael

    biofuel industry around biomass feedstock requires a comprehensive evaluation of agronomic, environmental

  16. Biofuel Feedstock Assessment For Selected Countries

    SciTech Connect (OSTI)

    Kline, Keith L [ORNL; Oladosu, Gbadebo A [ORNL; Wolfe, Amy K [ORNL; Perlack, Robert D [ORNL; Dale, Virginia H [ORNL

    2008-02-01T23:59:59.000Z

    Findings from biofuel feedstock production assessments and projections of future supply are presented and discussed. The report aims to improve capabilities to assess the degree to which imported biofuel could contribute to meeting future U.S. targets to reduce dependence on imported oil. The study scope was focused to meet time and resource requirements. A screening process identified Argentina, Brazil, Canada, China, Colombia, India, Mexico, and the Caribbean Basin Initiative (CBI) region for initial analysis, given their likely role in future feedstock supply relevant to U.S. markets. Supply curves for selected feedstocks in these countries are projected for 2012, 2017 and 2027. The supply functions, along with calculations to reflect estimated supplies available for export and/or biofuel production, were provided to DOE for use in a broader energy market allocation study. Potential cellulosic supplies from crop and forestry residues and perennials were also estimated for 2017 and 2027. The analysis identified capacity to potentially double or triple feedstock production by 2017 in some cases. A majority of supply growth is derived from increasing the area cultivated (especially sugarcane in Brazil). This is supplemented by improving yields and farming practices. Most future supplies of corn and wheat are projected to be allocated to food and feed. Larger shares of future supplies of sugarcane, soybean and palm oil production will be available for export or biofuel. National policies are catalyzing investments in biofuel industries to meet targets for fuel blending that generally fall in the 5-10% range. Social and environmental concerns associated with rapid expansion of feedstock production are considered. If the 2017 projected feedstock supply calculated as 'available' for export or biofuel were converted to fuel, it would represent the equivalent of about 38 billion gallons of gasoline. Sugarcane and bagasse dominate the available supply, representing 64% of the total. Among the nations studied, Brazil is the source of about two-thirds of available supplies, followed distantly by Argentina (12%), India and the CBI region.

  17. Biofuel Feedstock Assessment for Selected Countries

    SciTech Connect (OSTI)

    Kline, K.L.; Oladosu, G.A.; Wolfe, A.K.; Perlack, R.D.; Dale, V.H.

    2008-02-18T23:59:59.000Z

    Findings from biofuel feedstock production assessments and projections of future supply are presented and discussed. The report aims to improve capabilities to assess the degree to which imported biofuel could contribute to meeting future U.S. targets to reduce dependence on imported oil. The study scope was focused to meet time and resource requirements. A screening process identified Argentina, Brazil, Canada, China, Colombia, India, Mexico, and the Caribbean Basin Initiative (CBI) region for initial analysis, given their likely role in future feedstock supply relevant to U.S. markets. Supply curves for selected feedstocks in these countries are projected for 2012, 2017 and 2027. The supply functions, along with calculations to reflect estimated supplies available for export and/or biofuel production, were provided to DOE for use in a broader energy market allocation study. Potential cellulosic supplies from crop and forestry residues and perennials were also estimated for 2017 and 2027. The analysis identified capacity to potentially double or triple feedstock production by 2017 in some cases. A majority of supply growth is derived from increasing the area cultivated (especially sugarcane in Brazil). This is supplemented by improving yields and farming practices. Most future supplies of corn and wheat are projected to be allocated to food and feed. Larger shares of future supplies of sugarcane, soybean and palm oil production will be available for export or biofuel. National policies are catalyzing investments in biofuel industries to meet targets for fuel blending that generally fall in the 5-10% range. Social and environmental concerns associated with rapid expansion of feedstock production are considered. If the 2017 projected feedstock supply calculated as ‘available’ for export or biofuel were converted to fuel, it would represent the equivalent of about 38 billion gallons of gasoline. Sugarcane and bagasse dominate the available supply, representing 64% of the total. Among the nations studied, Brazil is the source of about two-thirds of available supplies, followed distantly by Argentina (12%), India and the CBI region.

  18. Quality, Performance, and Emission Impacts of Biofuels and Biofuel...

    Broader source: Energy.gov (indexed) [DOE]

    Impacts of Biofuels and Biofuel Blends Bob McCormick (PI) With Teresa Alleman, Jon Burton, Earl Christensen, Gina Chupka, Wendy Clark, Lisa Fouts, John Ireland, Mike Lammert, Jon...

  19. US energy industry financial developments, 1993 first quarter

    SciTech Connect (OSTI)

    Not Available

    1993-06-25T23:59:59.000Z

    Net income for 259 energy companies-- including, 20 major US petroleum companies-- rose 38 percent between the first quarter of 1992 and the first quarter of 1993. An increased level of economic activity, along with colder weather, helped lift the demand for natural gas. crude oil, coal, and electricity. The sharp rise in the domestic price of natural gas at the wellhead relative to the year-ago quarter was the most significant development in US energy during the first quarter. As a consequence of higher natural gas prices, the upstream segment of the petroleum industry reported large gains in income, while downstream income rose due to higher refined product demand. Increased economic activity and higher weather-related natural gas demand also led to improvements in income for the rate-regulated energy segment. However, declining domestic oil production continued to restrain upstream petroleum industry earnings growth, despite a moderate rise in crude oil prices.

  20. Developments to Supplant CAMAC with Industry Standard Technology at NSTX

    SciTech Connect (OSTI)

    Sichta, P.; Dong, J.; Marsala, R.; Oliaro, G.; Wertenbaker, J.

    2003-07-31T23:59:59.000Z

    NSTX, like other research programs, is facing an inevitable crisis due to end-of-life issues for its 20-year-old CAMAC instrumentation. In many cases replacement components are not available, effectively rendering a CAMAC module unusable after a failure. The proliferation of high-performance, reliable, low-cost commodity computing hardware and software based on industry standard technology can provide the basis for a new generation of instrumentation. At NSTX, there have been several advances towards developing a PCI-based model for data acquisition and control systems. New hardware developments include a High Performance Signal Conditioning board and an FPGA-based Multifunction Timing System. Extensible software interfaces have been developed to integrate these boards into the NSTX computing environment. This paper will illustrate these developments and how they could be used to benefit collaborative fusion research.

  1. GLOBAL BIOFUELS OUTLOOK MAELLE SOARES PINTO

    E-Print Network [OSTI]

    GLOBAL BIOFUELS OUTLOOK 2010-2020 MAELLE SOARES PINTO DIRECTOR BIOFUELS EUROPE & AFRICA WORLD BIOFUELS MARKETS, ROTTERDAM MARCH 23, 2011 #12;Presentation Overview · Global Outlook ­ Biofuels Mandates in 2010 ­ Total Biofuels Supply and Demand ­ Regional Supply and Demand Outlook to 2020 ­ Biofuels

  2. Biofuels: Microbially Generated Methane and

    E-Print Network [OSTI]

    Wood, Thomas K.

    Biofuels: Microbially Generated Methane and Hydrogen Michael J McAnulty, Pennsylvania State, Thomas K; and Ferry, James G (March 2013) Biofuels: Microbially Generated Methane and Hydrogen. In: e

  3. National Algal Biofuels Technology Roadmap

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Algal Biofuels Technology Roadmap MAY 2010 BIOMASS PROGRAM U.S. DOE 2010. National Algal Biofuels Technology Roadmap. U.S. Department of Energy, Office of Energy Efficiency and...

  4. BioFuels Atlas (Presentation)

    SciTech Connect (OSTI)

    Moriarty, K.

    2011-02-01T23:59:59.000Z

    Presentation for biennial merit review of Biofuels Atlas, a first-pass visualization tool that allows users to explore the potential of biomass-to-biofuels conversions at various locations and scales.

  5. Bioproducts and Biofuels – Growing Together!

    Broader source: Energy.gov [DOE]

    Breakout Session 2B—Integration of Supply Chains II: Bioproducts—Enabling Biofuels and Growing the Bioeconomy Bioproducts and Biofuels – Growing Together! Andrew Held, Senior Director, Deployment and Engineering, Virent, Inc.

  6. USDA, Departments of Energy and Navy Seek Input from Industry...

    Office of Environmental Management (EM)

    Departments of Energy and Navy Seek Input from Industry to Advance Biofuels for Military and Commercial Transportation USDA, Departments of Energy and Navy Seek Input from Industry...

  7. Load Management - An Industrial Perspective on This Developing Technology

    E-Print Network [OSTI]

    Delgado, R. M.

    1983-01-01T23:59:59.000Z

    of this conceot 1& the "Peak Sha e Service" experimental tariff recently approved [Y the Texas Public Utility Commission for Houston Lighting and Power. This tariff was based on t e concept developed under the direction of the author as described above. Some... this tariff, several industrial companies were asked for their input prior to submittal to the Ut lity Commission. Some of t e primary issues Included (1) adequate guaranteed annual payment to cover cost to put in place mechanism/equipment to be able...

  8. Alternative Transportation Technologies: Hydrogen, Biofuels,

    E-Print Network [OSTI]

    11 Alternative Transportation Technologies: Hydrogen, Biofuels, Advanced Efficiency, and Plug and projected improvements in gasoline internal combustion engine technology are introduced rapidly 3) BIOFUELS Large scale use of biofuels, including ethanol and biodiesel 4) PLUG-IN HYBRID SUCCESS PHEVs play

  9. National Algal Biofuels Technology Roadmap

    E-Print Network [OSTI]

    National Algal Biofuels Technology Roadmap MAY 2010 BIOMASS PROGRAM #12;#12;U.S. DOE 2010. National Algal Biofuels Technology Roadmap. U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Biomass Program. Visit http://biomass.energy.gov for more information National Algal Biofuels

  10. The Ecological Impact of Biofuels

    E-Print Network [OSTI]

    Kammen, Daniel M.

    The Ecological Impact of Biofuels Joseph E. Fargione,1 Richard J. Plevin,2 and Jason D. Hill3 1 land-use change Abstract The ecological impact of biofuels is mediated through their effects on land, air, and water. In 2008, about 33.3 million ha were used to produce food- based biofuels

  11. Biofuel and Bioenergy implementation scenarios

    E-Print Network [OSTI]

    Biofuel and Bioenergy implementation scenarios Final report of VIEWLS WP5, modelling studies #12;Biofuel and Bioenergy implementation scenarios Final report of VIEWLS WP5, modelling studies By André of this project are to provide structured and clear data on the availability and performance of biofuels

  12. Danielle Goldtooth Paper #6 -Biofuels

    E-Print Network [OSTI]

    Lega, Joceline

    Jon Kroc Danielle Goldtooth IS 195A Paper #6 - Biofuels Green Dreams In the modern era science has. Biofuels are increasingly becoming viable alternatives to gasoline, diesel, and other non-renewable fuels." There are still many issues that must be dealt with before the production of biofuels is energy-efficient enough

  13. Transportation Biofuels in the USA Preliminary Innovation Systems Analysis

    E-Print Network [OSTI]

    Eggert, Anthony

    2007-01-01T23:59:59.000Z

    a greater focus on specific biofuel production technologies.differences for certain biofuel feedstocks as well as policy24 Biofuel

  14. Transportation Biofuels in the US A Preliminary Innovation Systems Analysis

    E-Print Network [OSTI]

    Eggert, Anthony

    2007-01-01T23:59:59.000Z

    a greater focus on specific biofuel production technologies.differences for certain biofuel feedstocks as well as policy24 Biofuel

  15. Biofuel alternatives to ethanol: pumping the microbial well

    E-Print Network [OSTI]

    Fortman, J.L.

    2011-01-01T23:59:59.000Z

    Biofuel alternatives to ethanol: pumping the microbialtechnologies that enable biofuel production. Decades of workstrategy for producing biofuel. Although ethanol currently

  16. Biofuel Boundaries: Estimating the Medium-Term Supply Potential of Domestic Biofuels

    E-Print Network [OSTI]

    Jones, Andrew; O'Hare, Michael; Farrell, Alexander

    2007-01-01T23:59:59.000Z

    Biofuel Boundaries: Estimating the Medium-Term SupplyAugust 22, 2007 Biofuel Boundaries: Estimating the Medium-significant amount of liquid biofuel (equivalent to 30-100%

  17. Biofuel Production Initiative at Claflin University Final Report

    SciTech Connect (OSTI)

    Chowdhury, Kamal

    2011-07-20T23:59:59.000Z

    For US transportation fuel independence or reduced dependence on foreign oil, the Federal Government has mandated that the country produce 36 billion gallons (bg) of renewable transportation fuel per year for its transportation fuel supply by 2022. This can be achieved only if development of efficient technology for second generation biofuel from ligno-cellulosic sources is feasible. To be successful in this area, development of a widely available, renewable, cost-effective ligno-cellulosic biomass feedstock that can be easily and efficiently converted biochemically by bacteria or other fast-growing organisms is required. Moreover, if the biofuel type is butanol, then the existing infrastructure to deliver fuel to the customer can be used without additional costs and retrofits. The Claflin Biofuel Initiative project is focused on helping the US meet the above-mentioned targets. With support from this grant, Claflin University (CU) scientists have created over 50 new strains of microorganisms that are producing butanol from complex carbohydrates and cellulosic compounds. Laboratory analysis shows that a number of these strains are producing higher percentages of butanol than other methods currently in use. All of these recombinant bacterial strains are producing relatively high concentrations of acetone and numerous other byproducts as well. Therefore, we are carrying out intense mutations in the selected strains to reduce undesirable byproducts and increase the desired butanol production to further maximize the yield of butanol. We are testing the proof of concept of producing pre-industrial large scale biobutanol production by utilizing modifications of currently commercially available fermentation technology and instrumentation. We have already developed an initial process flow diagram (PFD) and selected a site for a biobutanol pilot scale facility in Orangeburg, SC. With the recent success in engineering new strains of various biofuel producing bacteria at CU, it will soon be possible to provide other technical information for the development of process flow diagrams (PFD’s) and piping and instrumentation diagrams (P&ID’s). This information can be used for the equipment layout and general arrangement drawings for the proposed process and eventual plant. An efficient bio-butanol pilot plant to convert ligno-cellulosic biomass feedstock from bagasse and wood chips will create significant number of green jobs for the Orangeburg, SC community that will be environmentally-friendly and generate much-needed income for farmers in the area.

  18. Impacts of Climate Change on Biofuels Production

    SciTech Connect (OSTI)

    Melillo, Jerry M. [Marine Biological Laboratory, Woods Hole, MA (United States)

    2014-04-30T23:59:59.000Z

    The overall goal of this research project was to improve and use our biogeochemistry model, TEM, to simulate the effects of climate change and other environmental changes on the production of biofuel feedstocks. We used the improved version of TEM that is coupled with the economic model, EPPA, a part of MIT’s Earth System Model, to explore how alternative uses of land, including land for biofuels production, can help society meet proposed climate targets. During the course of this project, we have made refinements to TEM that include development of a more mechanistic plant module, with improved ecohydrology and consideration of plant-water relations, and a more detailed treatment of soil nitrogen dynamics, especially processes that add or remove nitrogen from ecosystems. We have documented our changes to TEM and used the model to explore the effects on production in land ecosystems, including changes in biofuels production.

  19. Industry Analysis February 2013

    E-Print Network [OSTI]

    Abolmaesumi, Purang

    technology ­ Clean tech/ clean technology #12;7 Industry Studies · IbisWorld ­ U.S. and global industry-Industries · Biodiesel ­ Biofuel ­ Alternate fuels ­ Green fuels ­ Renewable fuels/energy ­ Green energy ­ Green Canada, Census, Industry Canada, the OECD, European Union, IMF, World Bank, UN . . . Never pay for stats

  20. Sequencing of Multiple Clostridial Genomes Related to Biomass Conversion and Biofuel Production

    SciTech Connect (OSTI)

    Hemme, Christopher [University of Oklahoma; Mouttaki, Housna [University of Oklahoma; Lee, Yong-Jin [University of Oklahoma, Norman; Goodwin, Lynne A. [Los Alamos National Laboratory (LANL); Lucas, Susan [U.S. Department of Energy, Joint Genome Institute; Copeland, A [U.S. Department of Energy, Joint Genome Institute; Lapidus, Alla L. [U.S. Department of Energy, Joint Genome Institute; Glavina Del Rio, Tijana [U.S. Department of Energy, Joint Genome Institute; Tice, Hope [U.S. Department of Energy, Joint Genome Institute; Saunders, Elizabeth H [Los Alamos National Laboratory (LANL); Detter, J. Chris [U.S. Department of Energy, Joint Genome Institute; Han, Cliff [Los Alamos National Laboratory (LANL); Pitluck, Sam [U.S. Department of Energy, Joint Genome Institute; Land, Miriam L [ORNL; Hauser, Loren John [ORNL; Kyrpides, Nikos C [U.S. Department of Energy, Joint Genome Institute; Mikhailova, Natalia [U.S. Department of Energy, Joint Genome Institute; He, Zhili [University of Oklahoma; Wu, Liyou [University of Oklahoma, Norman; Van Nostrand, Joy [University of Oklahoma, Norman; Henrissat, Bernard [Universite d'Aix-Marseille I & II; HE, Qiang [ORNL; Lawson, Paul A. [University of Oklahoma, Norman; Tanner, Ralph S. [University of Oklahoma, Norman; Lynd, Lee R [Thayer School of Engineering at Dartmouth; Wiegel, Juergen [University of Georgia, Athens, GA; Fields, Dr. Matthew Wayne [Montana State University; Arkin, Adam [Lawrence Berkeley National Laboratory (LBNL); Schadt, Christopher Warren [ORNL; Stevenson, Bradley S. [University of Oklahoma, Norman; McInerney, Michael J. [University of Oklahoma, Norman; Yang, Yunfeng [ORNL; Dong, Hailiang [Miami University, Oxford, OH; Xing, Defeng [State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology; Ren, Nanqi [State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology; Wang, Aijie [State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology; Ding, Shi-You [National Energy Renewable Laboratory; Himmel, Michael E [National Renewable Energy Laboratory (NREL); Taghavi, Safiyh [Brookhaven National Laboratory (BNL)/U.S. Department of Energy; Van Der Lelie, Daniel [Brookhaven National Laboratory (BNL); Rubin, Edward M. [U.S. Department of Energy, Joint Genome Institute; Zhou, Jizhong [University of Oklahoma

    2010-01-01T23:59:59.000Z

    Modern methods to develop microbe-based biomass conversion processes require a system-level understanding of the microbes involved. Clostridium species have long been recognized as ideal candidates for processes involving biomass conversion and production of various biofuels and other industrial products. To expand the knowledge base for clostridial species relevant to current biofuel production efforts, we have sequenced the genomes of 20 species spanning multiple genera. The majority of species sequenced fall within the class III cellulosome-encoding Clostridium and the class V saccharolytic Thermoanaerobacteraceae. Species were chosen based on representation in the experimental literature as model organisms, ability to degrade cellulosic biomass either by free enzymes or by cellulosomes, ability to rapidly ferment hexose and pentose sugars to ethanol, and ability to ferment synthesis gas to ethanol. The sequenced strains significantly increase the number of noncommensal/nonpathogenic clostridial species and provide a key foundation for future studies of biomass conversion, cellulosome composition, and clostridial systems biology.

  1. Industry

    E-Print Network [OSTI]

    Bernstein, Lenny

    2008-01-01T23:59:59.000Z

    SHIP - Solar heat for industrial processes. Internationalsolar power could be used to provide process heat for

  2. Near-zero emissions combustor system for syngas and biofuels

    SciTech Connect (OSTI)

    Yongho, Kim [Los Alamos National Laboratory; Rosocha, Louis [Los Alamos National Laboratory

    2010-01-01T23:59:59.000Z

    A multi-institutional plasma combustion team was awarded a research project from the DOE/NNSA GIPP (Global Initiative for Prolifereation Prevention) office. The Institute of High Current Electronics (Tomsk, Russia); Leonardo Technologies, Inc. (an American-based industrial partner), in conjunction with the Los Alamos National Laboratory are participating in the project to develop novel plasma assisted combustion technologies. The purpose of this project is to develop prototypes of marketable systems for more stable and cleaner combustion of syngas/biofuels and to demonstrate that this technology can be used for a variety of combustion applications - with a major focus on contemporary gas turbines. In this paper, an overview of the project, along with descriptions of the plasma-based combustors and associated power supplies will be presented. Worldwide, it is recognized that a variety of combustion fuels will be required to meet the needs for supplying gas-turbine engines (electricity generation, propulsion), internal combustion engines (propulsion, transportation), and burners (heat and electricity generation) in the 21st Century. Biofuels and biofuel blends have already been applied to these needs, but experience difficulties in modifications to combustion processes and combustor design and the need for flame stabilization techniques to address current and future environmental and energy-efficiency challenges. In addition, municipal solid waste (MSW) has shown promise as a feedstock for heat and/or electricity-generating plants. However, current combustion techniques that use such fuels have problems with achieving environmentally-acceptable air/exhaust emissions and can also benefit from increased combustion efficiency. This project involves a novel technology (a form of plasma-assisted combustion) that can address the above issues. Plasma-assisted combustion (PAC) is a growing field that is receiving worldwide attention at present. The project is focused on research necessary to develop a novel, high-efficiency, low-emissions (near-zero, or as low as reasonably achievable), advanced combustion technology for electricity and heat production from biofuels and fuels derived from MSW. For any type of combustion technology, including the advanced technology of this project, two problems of special interest must be addressed: developing and optimizing the combustion chambers and the systems for igniting and sustaining the fuel-burning process. For MSW in particular, there are new challenges over gaseous or liquid fuels because solid fuels must be ground into fine particulates ({approx} 10 {micro}m diameter), fed into the advanced combustor, and combusted under plasma-assisted conditions that are quite different than gaseous or liquid fuels. The principal idea of the combustion chamber design is to use so-called reverse vortex gas flow, which allows efficient cooling of the chamber wall and flame stabilization in the central area of the combustor (Tornado chamber). Considerable progress has been made in design ing an advanced, reverse vortex flow combustion chamber for biofuels, although it was not tested on biofuels and a system that could be fully commercialized has never been completed.

  3. Early career development in the sport industry: factors affecting employment

    E-Print Network [OSTI]

    Hutchinson, Michael Daniel

    2009-05-15T23:59:59.000Z

    The purpose of this study is to identify the processes and factors contributing to employment in the sport industry. In order to completely address the sport industry as a whole, sport management has been pragmatically divided into five sub...

  4. Industry

    E-Print Network [OSTI]

    Bernstein, Lenny

    2008-01-01T23:59:59.000Z

    oil, starch and corn refining, since these can be a source of fuel products. The sugar cane industry

  5. Coal and Gas Industries in Australia a. Overview of Australian coal and gas industries

    E-Print Network [OSTI]

    Subramanian, Venkat

    . Wastewater industry and research b. Site visit to Queensland Center for Advanced Technology · Biofuel a. Cellulose biomass resources and utilization b. Ethanol and biofuels c. Biodiesel from Pongemia oil seeds d. Biogas from landfills e. Site visit to Pinjarra Hills biofuel laboratory · Solar Energy a. UQ Solar Array

  6. Developing an energy efficiency service industry in Shanghai

    SciTech Connect (OSTI)

    Lin, Jiang; Goldman, Charles; Levine, Mark; Hopper, Nicole

    2004-02-10T23:59:59.000Z

    The rapid development of the Chinese economy over the past two decades has led to significant growth in China's energy consumption and greenhouse gas (GHG) emissions. Between 1980 and 2000, China's energy consumption more than doubled from 602 million to 1.3 billion tons of coal-equivalent (NBS, 2003). In 2000, China's GHG emissions were about 12% of the global total, ranked second behind only the US. According to the latest national development plan issued by the Chinese government, China's energy demand is likely to double again by 2020 (DRC, 2004), based on a quadrupling of its gross domestic product (GDP). The objectives of the national development plan imply that China needs to significantly raise the energy efficiency of its economy, i.e., cutting the energy intensity of its economy by half. Such goals are extremely ambitious, but not infeasible. China has achieved such reductions in the past, and its current overall level of energy efficiency remains far behind those observed in other developed economies. However, challenges remain whether China can put together an appropriate policy framework and the institutions needed to improve the energy efficiency of its economy under a more market-based economy today. Shanghai, located at the heart of the Yangtze River Delta, is the most dynamic economic and financial center in the booming Chinese economy. With 1% of Chinese population (13 million inhabitants), its GDP in 2000 stood at 455 billion RMB yuan (5% of the national total), with an annual growth rate of 12%--much higher than the national average. It is a major destination for foreign as well as Chinese domestic investment. In 2003, Shanghai absorbed 10% of actual foreign investment in all China (''Economist'', January 17-23, 2004). Construction in Shanghai continues at a breakneck pace, with an annual addition of approximately 200 million square foot of residential property and 100 million square foot of commercial and industrial space over the last 5 years. It is one reason that China consumed over 60% of the world's cement production in 2003 (NBS 2004). Energy consumption in Shanghai has been growing at 6-8% annually, with the growth of electricity demand at over 10% per year. Shanghai, with very limited local energy resources, relies heavily on imported coal, oil, natural gas, and electricity. While coal still constitutes over half of Shanghai's energy consumption, oil and natural gas use have been growing in importance. Shanghai is the major market for China's West to East (natural gas) Pipeline (WEP). With the input from WEP and off-shore pipelines, it is expected that natural gas consumption will grow from 250 million cubic meters in 2000 to 3000-3500 million cubic meters in 2005. In order to secure energy supply to power Shanghai's fast-growing economy, the Shanghai government has set three priorities in its energy strategy: (1) diversification of its energy structure, (2) improving its energy efficiency, and (3) developing renewable and other cleaner forms of energy. Efficiency improvements are likely to be most critical, particularly in the near future, in addressing Shanghai's energy security, especially the recent electricity shortage in Shanghai. Commercial buildings and industries consume the majority of Shanghai's, as well as China's, commercial energy. In the building sector, Shanghai has been very active implementing energy efficiency codes for commercial and residential buildings. Following a workshop on building codes implementation held at LBNL for senior Shanghai policy makers in 2001, the Shanghai government recently introduced an implementation guideline on residential building energy code compliance for the downtown area of Shanghai to commence in April, 2004, with other areas of the city to follow in 2005. A draft code for commercial buildings has been developed as well. In the industrial sector, the Shanghai government started an ambitious initiative in 2002 to induce private capital to invest in energy efficiency improvements via energy management/services companies (EMC/ESCOs). In partic

  7. Algal Biofuels R&D at NREL (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2012-09-01T23:59:59.000Z

    An overview of NREL's algal biofuels projects, including U.S. Department of Energy-funded work, projects with U.S. and international partners, and Laboratory Directed Research and Development projects.

  8. Lifecycle assessment of microalgae to biofuel: Comparison of thermochemical processing pathways

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bennion, Edward P.; Ginosar, Daniel M.; Moses, John; Agblevor, Foster; Quinn, Jason C.

    2015-01-01T23:59:59.000Z

    Microalgae are currently being investigated as a renewable transportation fuel feedstock based on various advantages that include high annual yields, utilization of poor quality land, does not compete with food, and can be integrated with various waste streams. This study focuses on directly assessing the impact of two different thermochemical conversion technologies on the microalgae to biofuel process through life cycle assessment. A system boundary of a “well to pump” (WTP) is defined and includes sub-process models of the growth, dewatering, thermochemical bio-oil recovery, bio-oil stabilization, conversion to renewable diesel, and transport to the pump. Models were validated with experimentalmore »and literature data and are representative of an industrial-scale microalgae to biofuel process. Two different thermochemical bio-oil conversion systems are modeled and compared on a systems level, hydrothermal liquefaction (HTL) and pyrolysis. The environmental impact of the two pathways were quantified on the metrics of net energy ratio (NER), defined here as energy consumed over energy produced, and greenhouse gas (GHG) emissions. Results for WTP biofuel production through the HTL pathway were determined to be 1.23 for the NER and GHG emissions of -11.4 g CO2 eq (MJ renewable diesel)-1. WTP biofuel production through the pyrolysis pathway results in a NER of 2.27 and GHG emissions of 210 g CO2 eq (MJ renewable diesel)-1. The large environmental impact associated with the pyrolysis pathway is attributed to feedstock drying requirements and combustion of co-products to improve system energetics. Discussion focuses on a detailed breakdown of the overall process energetics and GHGs, impact of modeling at laboratory- scale compared to industrial-scale, environmental impact sensitivity to engineering systems input parameters for future focused research and development and a comparison of results to literature.« less

  9. Lifecycle Assessment of Microalgae to Biofuel: Thermochemical Processing through Hydrothermal Liquefaction or Pyrolysis.

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bennion, Edward P.; Ginosar, Daniel M.; Moses, John; Agblevor, Foster; Quinn, Jason C.

    2015-04-01T23:59:59.000Z

    Microalgae are currently being investigated as a renewable transportation fuel feedstock based on various advantages that include high annual yields, utilization of poor quality land, does not compete with food, and can be integrated with various waste streams. This study focuses on directly assessing the impact of two different thermochemical conversion technologies on the microalgae to biofuel process through life cycle assessment. A system boundary of a “well to pump” (WTP) is defined and includes sub-process models of the growth, dewatering, thermochemical bio-oil recovery, bio-oil stabilization, conversion to renewable diesel, and transport to the pump. Models were validated with experimental and literature data and are representative of an industrial-scale microalgae to biofuel process. Two different thermochemical bio-oil conversion systems are modeled and compared on a systems level, hydrothermal liquefaction (HTL) and pyrolysis. The environmental impact of the two pathways were quantified on the metrics of net energy ratio (NER), defined here as energy consumed over energy produced, and greenhouse gas (GHG) emissions. Results for WTP biofuel production through the HTL pathway were determined to be 1.23 for the NER and GHG emissions of -11.4 g CO2 eq (MJ renewable diesel)-1. WTP biofuel production through the pyrolysis pathway results in a NER of 2.27 and GHG emissions of 210 g CO2 eq (MJ renewable diesel)-1. The large environmental impact associated with the pyrolysis pathway is attributed to feedstock drying requirements and combustion of co-products to improve system energetics. Discussion focuses on a detailed breakdown of the overall process energetics and GHGs, impact of modeling at laboratory- scale compared to industrial-scale, environmental impact sensitivity to engineering systems input parameters for future focused research and development and a comparison of results to literature.

  10. Lifecycle assessment of microalgae to biofuel: Comparison of thermochemical processing pathways

    SciTech Connect (OSTI)

    Bennion, Edward P.; Ginosar, Daniel M.; Moses, John; Agblevor, Foster; Quinn, Jason C.

    2015-01-01T23:59:59.000Z

    Microalgae are currently being investigated as a renewable transportation fuel feedstock based on various advantages that include high annual yields, utilization of poor quality land, does not compete with food, and can be integrated with various waste streams. This study focuses on directly assessing the impact of two different thermochemical conversion technologies on the microalgae to biofuel process through life cycle assessment. A system boundary of a “well to pump” (WTP) is defined and includes sub-process models of the growth, dewatering, thermochemical bio-oil recovery, bio-oil stabilization, conversion to renewable diesel, and transport to the pump. Models were validated with experimental and literature data and are representative of an industrial-scale microalgae to biofuel process. Two different thermochemical bio-oil conversion systems are modeled and compared on a systems level, hydrothermal liquefaction (HTL) and pyrolysis. The environmental impact of the two pathways were quantified on the metrics of net energy ratio (NER), defined here as energy consumed over energy produced, and greenhouse gas (GHG) emissions. Results for WTP biofuel production through the HTL pathway were determined to be 1.23 for the NER and GHG emissions of -11.4 g CO2 eq (MJ renewable diesel)-1. WTP biofuel production through the pyrolysis pathway results in a NER of 2.27 and GHG emissions of 210 g CO2 eq (MJ renewable diesel)-1. The large environmental impact associated with the pyrolysis pathway is attributed to feedstock drying requirements and combustion of co-products to improve system energetics. Discussion focuses on a detailed breakdown of the overall process energetics and GHGs, impact of modeling at laboratory- scale compared to industrial-scale, environmental impact sensitivity to engineering systems input parameters for future focused research and development and a comparison of results to literature.

  11. For a Worldwide Leading Industrial Automation Company, we are looking for : Embedded Software Development Engineer

    E-Print Network [OSTI]

    Segatti, Antonio

    For a Worldwide Leading Industrial Automation Company, we are looking for : Embedded Software that will developing complex solutions in the framework of the industrial automation and takes full responsibility

  12. Biofuel policy must evaluate environmental, food security and energy goals to maximize net benefits

    E-Print Network [OSTI]

    Sexton, Steven E; Rajagapol, Deepak; Hochman, Gal; Zilberman, David D; Roland-Holst, David

    2009-01-01T23:59:59.000Z

    10, 2008). Wiebe K. 2008. Biofuels: Implications for naturalcountries. Sustainable Biofuels and Human Securitydistribution implications of biofuels. Sustainable Biofuels

  13. Assessment of industry needs for oil shale research and development

    SciTech Connect (OSTI)

    Hackworth, J.H.

    1987-05-01T23:59:59.000Z

    Thirty-one industry people were contacted to provide input on oil shale in three subject areas. The first area of discussion dealt with industry's view of the shape of the future oil shale industry; the technology, the costs, the participants, the resources used, etc. It assessed the types and scale of the technologies that will form the industry, and how the US resource will be used. The second subject examined oil shale R D needs and priorities and potential new areas of research. The third area of discussion sought industry comments on what they felt should be the role of the DOE (and in a larger sense the US government) in fostering activities that will lead to a future commercial US oil shale shale industry.

  14. Using Biofuel Tracers to Study Alternative Combustion Regimes

    E-Print Network [OSTI]

    Mack, John Hunter; Flowers, Daniel L.; Buchholz, Bruce A.; Dibble, Robert W.

    2006-01-01T23:59:59.000Z

    Section B (NIMB) Using Biofuel Tracers to Study Alternativeinjection. We investigate biofuel HCCI combustion, and use

  15. Spectral optical properties of selected photosynthetic microalgae producing biofuels

    E-Print Network [OSTI]

    Lee, Euntaek; Heng, Ri-Liang; Pilon, Laurent

    2013-01-01T23:59:59.000Z

    Photosynthetic Microalgae Producing Biofuels Euntaek Lee,Photosyn- thetic Microalgae Producing Biofuels”, Journal of

  16. Federal/Industry Development of Energy-Conserving Technologies for the Chemical and Petroleum Refining Industries 

    E-Print Network [OSTI]

    Alston, T. G.; Humphrey, J. L.

    1981-01-01T23:59:59.000Z

    Argonne National Laboratory has started a program to identify future RD&D projects that (i) promise cost-effective savings of scarce fuels in the chemical and petroleum refining industries, (ii) are not likely to be pursued by industry alone...

  17. Regulation Retrieval Using Industry Specific Abstract Increasingly, taxonomies are being developed and used by industry practitioners

    E-Print Network [OSTI]

    Stanford University

    1 Regulation Retrieval Using Industry Specific Taxonomies Abstract Increasingly, taxonomies, it will be much desirable if industry practitioners are able to easily locate and browse regulations of interest. In practice, multiple sources of government regulations exist and they are often organized and classified

  18. Biofuels: Review of Policies and Impacts

    E-Print Network [OSTI]

    Janda, Karel; Kristoufek, Ladislav; Zilberman, David

    2011-01-01T23:59:59.000Z

    Linda Nostbakken. Will biofuel mandates raise food prices?impacts of alternative biofuel and energy policies. WorkingJust. The welfare economics of a biofuel tax credit and the

  19. Biofuels: Review of Policies and Impacts

    E-Print Network [OSTI]

    Janda, Karel; Kristoufek, Ladislav; Zilberman, David

    2011-01-01T23:59:59.000Z

    Gri?ths, and Jane E. Ihrig. Biofuels impact on crop and foodimplications of U.S. biofuels policies in an integrated par-Second generation biofuels: Economics and policies. Energy

  20. On mitigating emissions leakage under biofuel policies

    E-Print Network [OSTI]

    Rajagopal, D; Rajagopal, D

    2015-01-01T23:59:59.000Z

    Article Steven T. Berry. Biofuels policy and the empiricaluse change impacts of biofuels in the gtap-bio framework.Genomics of cellulosic biofuels. Nature, 454(7206):841–845,

  1. "The Promise and Challenge of Algae as Renewable Sources of Biofuels...

    Broader source: Energy.gov (indexed) [DOE]

    focused on the Office's approach to algal biofuels research and development and included presentations from four representatives of its recently funded consortia. This session also...

  2. Renewable Chemicals and Advanced Biofuels

    Broader source: Energy.gov [DOE]

    Afternoon Plenary Session: Current Trends in the Advanced Bioindustry Advanced Biofuels & Policy—Brett Lund, Executive Vice President, General Counsel and Secretary, Gevo Inc.

  3. Alternative Transportation Technologies: Hydrogen, Biofuels,...

    Broader source: Energy.gov (indexed) [DOE]

    Alternative Transportation Technologies: Hydrogen, Biofuels, Advanced Efficiency, and Plug-in Hybrid Electric Vehicles Results of two Reports from the National Research Council...

  4. Alternative Transportation Technologies: Hydrogen, Biofuels,...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transportation Technologies: Hydrogen, Biofuels, Advanced Efficiency, and Plug-in Hybrid Electric Vehicles Presented at the U.S. Department of Energy Light Duty Vehicle...

  5. BioFuels Atlas Presentation

    Broader source: Energy.gov [DOE]

    Kristi Moriarity's presentation on NREL's BioFuels Atlas from the May 12, 2011, Clean Cities and Biomass Program State webinar.

  6. Industry

    E-Print Network [OSTI]

    Bernstein, Lenny

    2008-01-01T23:59:59.000Z

    of its electricity requirements in the USA (US DOE, 2002)USA, where motor-driven systems account for 63% of industrial electricity

  7. USDA Biofuels R&D | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    USDA Biofuels R&D USDA Biofuels R&D USDA Biofuels R&D USDA Biofuels R&D More Documents & Publications Webinar: Biofuels for the Environment and Communities 2015 Peer Review...

  8. REFUEL: an EU road map for biofuels , E. Deurwaarder and S. Lensink, ECN policy Studies, the Netherlands

    E-Print Network [OSTI]

    REFUEL: an EU road map for biofuels M. Londo1 , E. Deurwaarder and S. Lensink, ECN policy Studies), Poland K. Könighofer, Joanneum Research, Austria Abstract A successful mid-term development of biofuels calls for a robust road map. REFUEL assesses inter alia least-cost biofuel chain options, their benefits

  9. August 7, 2008 We are pleased to announce the formation of the Southwestern Biofuels Association (SWBA), a

    E-Print Network [OSTI]

    Columbia University

    August 7, 2008 We are pleased to announce the formation of the Southwestern Biofuels Association (SWBA), a progressive trade association promoting the development of renewable biofuels in New, August 15th at noon at the New Mexico Capitol Rotunda in Santa Fe. While energy and biofuels

  10. Better Enzymes for Biofuels and Green Chemistry

    E-Print Network [OSTI]

    Better Enzymes for Biofuels and Green Chemistry: Solving the Cofactor Imbalance Problem Imbalances for the production of biofuels or other valuable chemicals. Though several research groups have re

  11. The President's Biofuels Initiative | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    The President's Biofuels Initiative The President's Biofuels Initiative Presentation by Neil Rossmeissl at the October 24, 2006 Bio-Derived Liquids to Hydrogen Distributed...

  12. Biofuels: Review of Policies and Impacts

    E-Print Network [OSTI]

    Janda, Karel; Kristoufek, Ladislav; Zilberman, David

    2011-01-01T23:59:59.000Z

    J. Huijbregts. Biofuels for road transport: A seed to wheelof 2% of biofuels to be used in the transport sector by 2005

  13. Sandia National Laboratories: commercializing algae biofuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    commercializing algae biofuels The National Algae Testbed Public-Private Partnership Kick-Off Meeting at Arizona State University On July 25, 2013, in Biofuels, Energy, News, News...

  14. Sandia National Laboratories: producing advanced biofuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    advanced biofuels Sandia Video Featured by DOE Bioenergy Technologies Office On December 10, 2014, in Biofuels, Biomass, Capabilities, Energy, Facilities, JBEI, News, News &...

  15. Algal Biofuels Strategy Workshop - Spring Event | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Algal Biofuels Strategy Workshop - Spring Event Algal Biofuels Strategy Workshop - Spring Event The U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy's...

  16. Webinar: Algal Biofuels Consortium Releases Groundbreaking Research...

    Energy Savers [EERE]

    Webinar: Algal Biofuels Consortium Releases Groundbreaking Research Results Webinar: Algal Biofuels Consortium Releases Groundbreaking Research Results Dr. Jose Olivares of Los...

  17. Engineering Biofuels from Photosynthetic Bacteria | Argonne National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Engineering Biofuels from Photosynthetic Bacteria Technology available for licensing: Using photosynthetic bacteria to produce biofuels. 30-70% of the fuel's waste can be used to...

  18. International Journal of Industrial Ergonomics Measuring consumer perceptions for the development of product

    E-Print Network [OSTI]

    Boyer, Edmond

    International Journal of Industrial Ergonomics Measuring consumer perceptions for the development in "International Journal of Industrial Ergonomics 33, 6 (2004) 507-525" DOI : 10.1016/j.ergon.2003.12.004 #12;2 International Journal of Industrial Ergonomics Abstract Product semantics, the "study of the symbolic qualities

  19. ECONOMIC DEVELOPMENT BENEFITS OF THE OIL AND GAS INDUSTRY IN NEWFOUNDLAND AND LABRADOR

    E-Print Network [OSTI]

    deYoung, Brad

    ECONOMIC DEVELOPMENT BENEFITS OF THE OIL AND GAS INDUSTRY IN NEWFOUNDLAND AND LABRADOR Conference Report - September 2007 & The Oil And Gas Development Partnership #12;ECONOMIC DEVELOPMENT BENEFITS OF THE OIL AND GAS INDUSTRY IN NEWFOUNDLAND AND LABRADOR May 16, 2007 St. John's Conference Report September

  20. DEVELOPMENT OF AN AUTOMATIC DESIGN AND OPTIMIZATION SYSTEM FOR INDUSTRIAL SILENCERS

    E-Print Network [OSTI]

    Wang, Gaofeng Gary

    life-cycle costs, is not fully supported. This work documents the development of an automatic design1 DEVELOPMENT OF AN AUTOMATIC DESIGN AND OPTIMIZATION SYSTEM FOR INDUSTRIAL SILENCERS Lee Ming Wong and optimization system for industrial silencers. The developed system greatly reduces the production costs

  1. Biofuels in Oregon and Washington: A Business Case Analysis of Opportunities and Challenges

    SciTech Connect (OSTI)

    Stiles, Dennis L.; Jones, Susan A.; Orth, Rick J.; Saffell, Bernard F.; Zhu, Yunhua

    2008-02-28T23:59:59.000Z

    The purpose of this report is to assemble the information needed to estimate the significance of the opportunity for producing biofuels in the region as well as the associated challenges. The report reviews the current state of the industry, the biomass resources that are available within current production practices, and the biofuels production technology that is available within the marketplace. The report also identifys the areas in which alternative approaches or strategies, or technologoical advances, might offer an opportunity to expand the Nortwest biofuels industry beyond its current state.

  2. Defining business strategy for development of travel and tourism industry

    E-Print Network [OSTI]

    Davari, Dordaneh

    2011-01-01T23:59:59.000Z

    Many studies conducted on Travel and Tourism industry consider tourism an economic phenomenon. Providing a customer-satisfaction-based analysis, this thesis deals with both economic and social aspects. Economic data on ...

  3. The Analysis and Development of Large Industrial Steam Systems

    E-Print Network [OSTI]

    Waterland, A. F.

    1980-01-01T23:59:59.000Z

    Chemicals, petroleum, pulp and paper, and many other industries depend heavily on extensive complex steam systems for thermal and mechanical energy delivery. Steam's versatility and desirable characteristics as both a heat transfer medium and a...

  4. Biofuel Industries Group LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass ConversionsSouth Carolina:EnergyPark,BioJetMadison,Bioflame Ltd

  5. Triangle biofuels Industries | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlin Baxin Hydropower StationTownTri-CountyTri-State Electric

  6. Industry

    E-Print Network [OSTI]

    Bernstein, Lenny

    2008-01-01T23:59:59.000Z

    iron and steel production. IEA Greenhouse Gas R&D Programme,tempera- ture range. IEA/Caddet, Sittard, The Netherlands.industry. Cheltenham, UK, IEA Greenhouse Gas R&D Programme,

  7. Industry

    E-Print Network [OSTI]

    Bernstein, Lenny

    2008-01-01T23:59:59.000Z

    process residual like bagasse are now available (Cornland etsugar in- dustry uses bagasse and the edible oils industrySection 7.4.7. ). The use of bagasse for energy is likely to

  8. Biofuels Information Center

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The FutureCommentsEnergyandapproximately 10 wt% moisture,Biofuels

  9. Sandia Energy - Biofuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection245C Unlimited ReleaseWelcome ton6AndyBenjamin KarlsonBiofuels Home

  10. Biofuels | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: EnergyAvignon,Belcher HomesLyons BiomassBiofuels) Jump to: navigation,

  11. Wind Energy Workforce Development: A Roadmap to a Sustainable Wind Industry (Poster)

    SciTech Connect (OSTI)

    Baring-Gould, I.; Kelly, M.

    2010-05-01T23:59:59.000Z

    As the United States moves toward a vision of greatly expanded wind energy use as outlined in the U.S. Department of Energy's 20% Wind Energy by 2030 report, the need for skilled workers at all levels in the industry is repeatedly identified as a critical issue. This presentation is an overview of the educational infrastructure and expected industry needs to support the continued development of a vibrant U.S. wind industry through a discussion of the activities identified that must be put in place to train workers. The paper will also provide a framework to address issues raised from each of the education and industry sectors, identifying a roadmap for developing an educational infrastructure to support wind technology. The presentation will also provide an understanding of the available resources, materials, and programs available across the industry. This presentation provides an overview of the educational infrastructure and expected industry needs to support the continued development of a vibrant U.S. wind industry as part of a collaborative effort to develop a wind workforce roadmap. This presentation will provide 1) A review of needed programs to train workers for the wind industry; 2) An overview of the importance education will play if the nation is to expand wind energy (both in development and deployment terms) and a review of ongoing activities with a focus on federal efforts; 3) A review of the materials and resources available across the industry and a framework to address issues raised from each of the education and industry sectors.

  12. Meeting the Demand for Biofuels: Impact on Land Use and Carbon Mitigation

    SciTech Connect (OSTI)

    Khanna, Madhu; Jain, Atul; Onal, Hayri; Scheffran, Jurgen; Chen, Xiaoguang; Erickson, Matt; Huang, Haixiao; Kang, Seungmo.

    2011-08-14T23:59:59.000Z

    The purpose of this research was to develop an integrated, interdisciplinary framework to investigate the implications of large scale production of biofuels for land use, crop production, farm income and greenhouse gases. In particular, we examine the mix of feedstocks that would be viable for biofuel production and the spatial allocation of land required for producing these feedstocks at various gasoline and carbon emission prices as well as biofuel subsidy levels. The implication of interactions between energy policy that seeks energy independence from foreign oil and climate policy that seeks to mitigate greenhouse gas emissions for the optimal mix of biofuels and land use will also be investigated. This project contributes to the ELSI research goals of sustainable biofuel production while balancing competing demands for land and developing policy approaches needed to support biofuel production in a cost-effective and environmentally friendly manner.

  13. Chemical resistance determination test scheme and rating system development for industrial glove evaluation

    E-Print Network [OSTI]

    Cornils, William Joseph

    1981-01-01T23:59:59.000Z

    CHEMICAL RESISTANCE DETERMINATION TEST SCHEME AND RATING SYSTEM DEVELOPMENT FOR INDUSTRIAL GLOVE EVALUATION A Thesis by WILLIAM JOSEPH CORNILS Submitted to the Graduate College of Texas A&M University in partial fulfillment... of the requirement for the degree of MASTER OF SCIENCE August 1981 Major Subject: Industrial Hygiene CHEMICAL RESISTANCE DETERMINATION TEST SCHEME AND RATING SYSTEM DEVELOPMENT FOR INDUSTRIAL GLOVE EVALUATION A Thesis by WILLIAM JOSEPH CORNILS Approved...

  14. Centre for Business History to study development of industrial gases industry

    E-Print Network [OSTI]

    Guo, Zaoyang

    be overestimated and the study - funded by German-based gas and engineering company, the Linde Group - aims to give. Wolfgang Reitzle, Chief Executive Officer of Linde AG said: "Over time, industrial gases have changed fellow, also funded by Linde AG, and co-ordinating the project board monitoring progress on the project

  15. Biofuel Science Research at the University of Maryland Biofuels promise energy alternatives that are renewable and

    E-Print Network [OSTI]

    Hill, Wendell T.

    Biofuel Science Research at the University of Maryland Biofuels promise energy alternatives of biofuels would absorb as much pollution as the fuels release during combustion, since plant stocks can-neutral energy to be realized, new sources of biofuels must be found. The current manufacture of biofuels from

  16. U.S. Biofuels Baseline and Impact of E-15 Expansion on Biofuel Markets

    E-Print Network [OSTI]

    Noble, James S.

    May 2012 U.S. Biofuels Baseline and Impact of E-15 Expansion on Biofuel Markets FAPRI-MU Report #02 for agricultural and biofuel markets.1 That baseline assumes current biofuel policy, including provisions credit expired, as scheduled, at the end of 2011. The additional tax credit for cellulosic biofuel

  17. A model for improving microbial biofuel production using a synthetic feedback loop

    SciTech Connect (OSTI)

    Dunlop, Mary; Keasling, Jay; Mukhopadhyay, Aindrila

    2011-07-14T23:59:59.000Z

    Cells use feedback to implement a diverse range of regulatory functions. Building synthetic feedback control systems may yield insight into the roles that feedback can play in regulation since it can be introduced independently of native regulation, and alternative control architectures can be compared. We propose a model for microbial biofuel production where a synthetic control system is used to increase cell viability and biofuel yields. Although microbes can be engineered to produce biofuels, the fuels are often toxic to cell growth, creating a negative feedback loop that limits biofuel production. These toxic effects may be mitigated by expressing efflux pumps that export biofuel from the cell. We developed a model for cell growth and biofuel production and used it to compare several genetic control strategies for their ability to improve biofuel yields. We show that controlling efflux pump expression directly with a biofuel-responsive promoter is a straight forward way of improving biofuel production. In addition, a feed forward loop controller is shown to be versatile at dealing with uncertainty in biofuel production rates.

  18. Development of On-Board Fluid Analysis for the Mining Industry - Final report

    SciTech Connect (OSTI)

    Pardini, Allan F.

    2005-08-16T23:59:59.000Z

    Pacific Northwest National Laboratory (PNNL: Operated by Battelle Memorial Institute for the Department of Energy) is working with the Department of Energy (DOE) to develop technology for the US mining industry. PNNL was awarded a three-year program to develop automated on-board/in-line or on-site oil analysis for the mining industry.

  19. The Impact of Manufacturing Offshore on Technology Development Paths in the Automotive and Optoelectronics Industries

    E-Print Network [OSTI]

    de Weck, Olivier L.

    Development Paths in the Automotive and Optoelectronics Industries by Erica R.H. Fuchs Submitted in particular at the automotive and optoelectronics industries. The dissertation uses an innovative combinationThe Impact of Manufacturing Offshore on Technology Development Paths in the Automotive

  20. Aviation Sustainable Biofuels: An Asian Airline Perspective

    E-Print Network [OSTI]

    Aviation Sustainable Biofuels: An Asian Airline Perspective Dr Mark Watson Head of Environmental Affairs, Cathay Pacific Airways Ltd, Hong Kong Aviation Biofuels Session World Biofuels Markets, Rotterdam 24 March 2011 #12;Aviation Biofuels in Asia: Current Status · Focus on "2nd generation" sustainable

  1. Roundtable on Sustainable Biofuels Certification Readiness Study

    E-Print Network [OSTI]

    Roundtable on Sustainable Biofuels Certification Readiness Study: Hawai`i Biofuel Projects Prepared 12.1 Deliverable (item 2) Bioenergy Analyses Prepared by Hawai`i Biofuel Foundation And NCSI Americas: Hawaii Biofuel Projects Prepared For Hawaii Natural Energy Institute School of Ocean Earth Sciences

  2. LIHD biofuels: toward a sustainable future

    E-Print Network [OSTI]

    Palmer, Michael W.

    LIHD biofuels: toward a sustainable future 115 Linda Wallace, Department of Botany and Microbiology of America www.frontiersinecology.org Will biofuels help to wean the US off of oil, or at least off simple. First, we need to understand what is meant by the term "biofuel". All biofuels are organic

  3. ABPDU - Advanced Biofuels Process Demonstration Unit

    SciTech Connect (OSTI)

    None

    2011-01-01T23:59:59.000Z

    Lawrence Berkeley National Lab opened its Advanced Biofuels Process Demonstration Unit on Aug. 18, 2011.

  4. Roundtable on Sustainable Biofuels Certification Readiness Study

    E-Print Network [OSTI]

    Roundtable on Sustainable Biofuels Certification Readiness Study: Hawai`i Biofuel Projects Prepared 12.1 Deliverable Bioenergy Analyses Prepared by Hawai`i Biofuel Foundation And NCSI Americas Inc agency thereof. #12;1 RSB Certification Readiness Study: Hawaii Biofuel Projects Prepared For Hawaii

  5. Nebraska shows potential to produce biofuel crops

    Broader source: Energy.gov [DOE]

    Researchers are searching for ways to change how American farmers and consumers think about biofuels.

  6. Societal and technical issues in the industrial development of Saudi Arabia and Egypt

    E-Print Network [OSTI]

    Kundukulam, Vibin A. (Vibin Anto)

    2011-01-01T23:59:59.000Z

    Sustained industrial development in developing nations has been an impetus for economic growth and technological advancements for the past several decades, in addition to being a major contributor to poverty reduction. ...

  7. Design and development of an automated pinning machine for the surface mount electronics industry

    E-Print Network [OSTI]

    Cook, Daniel J., M. Eng. (Daniel James). Massachusetts Institute of Technology

    2012-01-01T23:59:59.000Z

    This thesis describes the development of a concept for a pinning process and the associated machinery to handle odd-form pins specific to a company in the surface mount electronics industry. The developed pinning machine ...

  8. Technologies, markets and challenges for development of the Canadian Oil Sands industry

    E-Print Network [OSTI]

    Lacombe, Romain H.

    2007-01-01T23:59:59.000Z

    This paper provides an overview of the current status of development of the Canadian oil sands industry, and considers possible paths of further development. We outline the key technology alternatives, critical resource ...

  9. Industrial Technologies Program ORNL-developed cast nickel aluminide rolls

    E-Print Network [OSTI]

    strength and oxidation resistance. · · · · Metal Infusion Surface Treatment (MIST) (2006)--a process for infusing up to 51 elements into metal and alloy surfaces, MIST lengthens the life of metalworking technology and the deployment of industrial wireless technologies. #12;Nanomanufacturing Metal Infusion

  10. Sustainable Development and the Concrete Industry Christian Meyer

    E-Print Network [OSTI]

    Meyer, Christian

    is known to be a greenhouse gas that contributes to global warming, and the cement industry alone generates that the production of one ton of Portland cement causes the release of one ton of CO2 into the atmosphere. CO2

  11. International Trade of Biofuels (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2013-05-01T23:59:59.000Z

    In recent years, the production and trade of biofuels has increased to meet global demand for renewable fuels. Ethanol and biodiesel contribute much of this trade because they are the most established biofuels. Their growth has been aided through a variety of policies, especially in the European Union, Brazil, and the United States, but ethanol trade and production have faced more targeted policies and tariffs than biodiesel. This fact sheet contains a summary of the trade of biofuels among nations, including historical data on production, consumption, and trade.

  12. Algal Biofuels Strategy Spring Workshop | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Algal Biofuels Strategy Spring Workshop Algal Biofuels Strategy Spring Workshop Algal Biofuels Strategy Spring Workshop Agenda algaeworkshopagenda.pdf More Documents &...

  13. Biofuel alternatives to ethanol: pumping the microbial well

    E-Print Network [OSTI]

    Fortman, J. L.

    2010-01-01T23:59:59.000Z

    2007) Cellulosic ethanol: biofuel researchers prepare toBiofuel alternatives to ethanol: pumping the microbial welltechnologies that enable biofuel production. Decades of work

  14. Assessments of biofuel sustainability: air pollution and health impacts

    E-Print Network [OSTI]

    Tsao, Chi-Chung

    2012-01-01T23:59:59.000Z

    Land clearing and the biofuel carbon debt. Science 2008,of reactive nitrogen during biofuel ethanol production.of reactive nitrogen during biofuel ethanol production.

  15. Genetic and biotechnological approaches for biofuel crop improvement.

    E-Print Network [OSTI]

    Vega-Sánchez, Miguel E; Ronald, Pamela C

    2010-01-01T23:59:59.000Z

    Plant genetic engineering for biofuel production: towardsbiomass feedstocks for biofuel production. Genome Biol 2008,3:354-359. 25. Fairless D: Biofuel: the little shrub that

  16. Model estimates food-versus-biofuel trade-off

    E-Print Network [OSTI]

    Rajagapol, Deepak; Sexton, Steven; Hochman, Gal; Roland-Holst, David; Zilberman, David D

    2009-01-01T23:59:59.000Z

    D. 2007. Challenge of biofuel: Filling the tank withoutaddition to policies such as biofuel subsidies and mandates.Whereas biofuel subsidies and man- dates increase the

  17. The Economics of Trade, Biofuel, and the Environment

    E-Print Network [OSTI]

    Hochman, Gal; Sexton, Steven; Zilberman, David D.

    2010-01-01T23:59:59.000Z

    productivity (e.g. , second-generation biofuels), are showndependence on land. Second generation biofuels are much moreas well as second generation biofuels, may be needed to

  18. Engineering microbial biofuel tolerance and export using efflux pumps

    E-Print Network [OSTI]

    Dunlop, Mary

    2012-01-01T23:59:59.000Z

    yields for selected biofuels. (A) Plasmid levels for each ofas candidates for advanced biofuels are toxic to micro-seven representative biofuels. By using a competitive growth

  19. Model estimates food-versus-biofuel trade-off

    E-Print Network [OSTI]

    Rajagapol, Deepak; Sexton, Steven; Hochman, Gal; Roland-Holst, David; Zilberman, David D

    2009-01-01T23:59:59.000Z

    D. 2008. Income distribution implica- tions of biofuels.Sustainable Biofuels and Human Security Conference,of Food and Agriculture 2008: Biofuels: Prospects, risks and

  20. Assessments of biofuel sustainability: air pollution and health impacts

    E-Print Network [OSTI]

    Tsao, Chi-Chung

    2012-01-01T23:59:59.000Z

    of biodiesel and ethanol biofuels. Proc. Natl. Acad. Sci. U.Use of US croplands for biofuels increases greenhouse gasesovercome carbon savings from biofuels in Brazil. Proc. Natl.

  1. High biofuel production of Botryococcus braunii using optimized cultivation strategies

    E-Print Network [OSTI]

    Yu, Wei

    2014-01-01T23:59:59.000Z

    from feedstock crops. Microalgae biofuels and differentproduction of biofuels from microalgae. One strategy toin the current world, microalgae biofuels provide such an

  2. Creating Markets for Green Biofuels: Measuring and improving environmental performance

    E-Print Network [OSTI]

    Turner, Brian T.; Plevin, Richard J.; O'Hare, Michael; Farrell, Alexander E.

    2007-01-01T23:59:59.000Z

    2004). Growing Energy: How Biofuels Can Help End America'sCreating Markets For Green Biofuels Kalaitzandonakes, N. ,166. Lancaster, C. (2006). Biofuels assurance schemes and

  3. Spectral optical properties of selected photosynthetic microalgae producing biofuels

    E-Print Network [OSTI]

    Lee, Euntaek; Heng, Ri-Liang; Pilon, Laurent

    2013-01-01T23:59:59.000Z

    Microalgae Producing Biofuels Euntaek Lee, Ri-Liang Heng,Microalgae Producing Biofuels”, Journal of Quantitativeconverted into liquid biofuels [50–53]. On the other hand,

  4. Biofuel alternatives to ethanol: pumping the microbial well

    E-Print Network [OSTI]

    Fortman, J.L.

    2011-01-01T23:59:59.000Z

    Conversion of biomass to biofuels has been the subject ofdiesel transport fuels with biofuels by 2010 [4]. Owing tobelieved that future biofuels will, by necessity, originate

  5. Can feedstock production for biofuels be sustainable in California?

    E-Print Network [OSTI]

    Kaffka, Stephen R.

    2009-01-01T23:59:59.000Z

    tolife.org/biofuels. [US EPA] US Environmental Protection1–9. The path forward for biofuels and biomaterials. Scienceof individual assessment of biofuels. EMPA, Technology and

  6. Sandia Energy - Biofuels Blend Right In: Researchers Show Ionic...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biofuels Blend Right In: Researchers Show Ionic Liquids Effective for Pretreating Mixed Blends of Biofuel Feedstocks Home Renewable Energy Energy Transportation Energy Biofuels...

  7. Solar Photovoltaic Economic Development: Building and Growing a Local PV Industry, August 2011 (Book)

    SciTech Connect (OSTI)

    Not Available

    2011-08-01T23:59:59.000Z

    The U.S. photovoltaic (PV) industry is forecast to grow, and it represents an opportunity for economic development and job creation in communities throughout the United States. This report helps U.S. cities evaluate economic opportunities in the PV industry. It serves as a guide for local economic development offices in evaluating their community?s competitiveness in the solar PV industry, assessing the viability of solar PV development goals, and developing strategies for recruiting and retaining PV companies to their areas.

  8. Biofuel Boundaries: Estimating the Medium-Term Supply Potential of Domestic Biofuels

    E-Print Network [OSTI]

    Jones, Andrew; O'Hare, Michael; Farrell, Alexander

    2007-01-01T23:59:59.000Z

    O'Hare M, Kammen DM. 2006. Biofuels Can Contribute to EnergyN. 2004. Growing Energy: How Biofuels Can Help End America’sService Koplow D. 2006. Biofuels - At What Cost? Governement

  9. Sandia Energy - JBEI Research Receives Strong Industry Interest...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Receives Strong Industry Interest in DOE Technology Transfer Call Home Renewable Energy Energy Biofuels Facilities Partnership JBEI News News & Events Research &...

  10. US energy industry financial developments, 1994 first quarter

    SciTech Connect (OSTI)

    Not Available

    1994-06-23T23:59:59.000Z

    This report traces key financial trends in the US energy industry for the first quarter of 1994. Financial data (only available for publicly-traded US companies) are included in two broad groups -- fossil fuel production and rate-regulated electric utilities. All financial data are taken from public sources such as energy industry corporate reports and press releases, energy trade publications, and The Wall Street Journal`s, Earnings Digest. Return on equity is calculated from data available from Standard and Poor`s Compustat data service. Since several major petroleum companies disclose their income by lines of business and geographic area. These data are also presented in this report. Although the disaggregated income concept varies by company and is not strictly comparable to corporate income, relative movements in income by lines of business and geographic area are summarized as useful indicators of short-term changes in the underlying profitability of these operations.

  11. Facilitating Wind Development: The Importance of Electric Industry Structure

    SciTech Connect (OSTI)

    Kirby, B.; Milligan, M.

    2008-05-01T23:59:59.000Z

    This paper evaluates which wholesale elecricity market-structure characteristics best accommodate wind energy development.

  12. Biofuels Impact on DPF Durability

    Broader source: Energy.gov (indexed) [DOE]

    Biofuels Impact on DPF Durability Michael J. Lance, Todd J. Toops, Andrew A. Wereszczak, John M.E. Storey, Dane F. Wilson, Bruce G. Bunting, Samuel A. Lewis Sr., and Andrea...

  13. Biofuels Impact on DPF Durability

    Broader source: Energy.gov (indexed) [DOE]

    Biofuels Impact on DPF Durability Michael J. Lance, Bruce G. Bunting, Andrew A. Wereszczak, Todd J. Toops, and Matt Ferber Oak Ridge National Laboratory May 15 th , 2012 PM040 This...

  14. United Nations Industrial Development Organization (UNIDO) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown of Ladoga, IndianaTurtleCooperative Place: Beaver Dam,

  15. Combustion System Development for Medium-Sized Industrial Gas Turbines: Meeting Tight Emission Regulations while Using

    E-Print Network [OSTI]

    Ponce, V. Miguel

    Combustion System Development for Medium-Sized Industrial Gas Turbines: Meeting Tight Emission and the oil & gas industries. The combustion system used in Solar's products are discussed along- bility for the introduction of new combustion systems for gas turbine products to enhance fuel

  16. Computers & Industrial Engineering (In Press) Wu & Liu Development and Evaluation of an Ergonomic Software Package

    E-Print Network [OSTI]

    Wu, Changxu (Sean)

    Computers & Industrial Engineering (In Press) Wu & Liu 1 Development and Evaluation of an Ergonomic-MHP are also discussed on how to make it a comprehensive proactive ergonomic design and analysis tool. Keywords: Ergonomics, Software package, Queueing Network, Human performance, Mental workload #12;Computers & Industrial

  17. FUTURES OF AUTOMOBILE INDUSTRY AND CHALLENGES ON SUSTAINABLE DEVELOPMENT AND MOBILITY

    E-Print Network [OSTI]

    Boyer, Edmond

    FUTURES OF AUTOMOBILE INDUSTRY AND CHALLENGES ON SUSTAINABLE DEVELOPMENT AND MOBILITY BRANDĂ?O MONIZ for the next 10 to 20 years. But this exercise can not be focus only on the technical aspects of the automobile of the automobile industry, on the steps that should be taken and on the visions about technological needs

  18. Accelerating Commercialization of Algal Biofuels Through Partnerships (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01T23:59:59.000Z

    This brochure describes National Renewable Energy Laboratory's (NREL's) algal biofuels research capabilities and partnership opportunities. NREL is accelerating algal biofuels commercialization through: (1) Advances in applied biology; (2) Algal strain development; (3) Development of fuel conversion pathways; (4) Techno-economic analysis; and (5) Development of high-throughput lipid analysis methodologies. NREL scientists and engineers are addressing challenges across the algal biofuels value chain, including algal biology, cultivation, harvesting and extraction, and fuel conversion. Through partnerships, NREL can share knowledge and capabilities in the following areas: (1) Algal Biology - A fundamental understanding of algal biology is key to developing cost-effective algal biofuels processes. NREL scientists are experts in the isolation and characterization of microalgal species. They are identifying genes and pathways involved in biofuel production. In addition, they have developed a high-throughput, non-destructive technique for assessing lipid production in microalgae. (2) Cultivation - NREL researchers study algal growth capabilities and perform compositional analysis of algal biomass. Laboratory-scale photobioreactors and 1-m2 open raceway ponds in an on-site greenhouse allow for year-round cultivation of algae under a variety of conditions. A bioenergy-focused algal strain collection is being established at NREL, and our laboratory houses a cryopreservation system for long-term maintenance of algal cultures and preservation of intellectual property. (3) Harvesting and Extraction - NREL is investigating cost-effective harvesting and extraction methods suitable for a variety of species and conditions. Areas of expertise include cell wall analysis and deconstruction and identification and utilization of co-products. (4) Fuel Conversion - NREL's excellent capabilities and facilities for biochemical and thermochemical conversion of biomass to biofuels are being applied to algal biofuels processes. Analysts are also testing algal fuel properties to measure energy content and ensure compatibility with existing fueling infrastructure. (5) Cross-Cutting Analysis - NREL scientists and engineers are conducting rigorous techno-economic analyses of algal biofuels processes. In addition, they are performing a full life cycle assessment of the entire algae-to-biofuels process.

  19. From Biomass to Biofuels: NREL Leads the Way

    SciTech Connect (OSTI)

    Not Available

    2006-08-01T23:59:59.000Z

    This brochure covers how biofuels can help meet future needs for transportation fuels, how biofuels are produced, U.S. potential for biofuels, and NREL's approach to efficient affordable biofuels.

  20. Standardization of information systems development processes and banking industry adaptations

    E-Print Network [OSTI]

    Tanrikulu, Zuhal

    2011-01-01T23:59:59.000Z

    This paper examines the current system development processes of three major Turkish banks in terms of compliance to internationally accepted system development and software engineering standards to determine the common process problems of banks. After an in-depth investigation into system development and software engineering standards, related process-based standards were selected. Questions were then prepared covering the whole system development process by applying the classical Waterfall life cycle model. Each question is made up of guidance and suggestions from the international system development standards. To collect data, people from the information technology departments of three major banks in Turkey were interviewed. Results have been aggregated by examining the current process status of the three banks together. Problematic issues were identified using the international system development standards.

  1. Using System Dynamics to Model the Transition to Biofuels in the United States: Preprint

    SciTech Connect (OSTI)

    Bush, B.; Duffy, M.; Sandor, D.; Peterson, S.

    2008-06-01T23:59:59.000Z

    Transitioning to a biofuels industry that is expected to displace about 30% of current U.S. gasoline consumption requires a robust biomass-to-biofuels system-of-systems that operates in concert with the existing markets. This paper discusses employing a system dynamics approach to investigate potential market penetration scenarios for cellulosic ethanol and to help government decision makers focus on areas with greatest potential.

  2. Soot from the burning of fossil fuels and solid biofuels contributes far more to global

    E-Print Network [OSTI]

    biofuels, such as wood, manure, dung, and other solid biomass used for home heating and cooking in many, mostly in the developing world where biofuels are used for home heating and cooking. Jacobson's study locations. He also focused in detail on the effects of soot on heating clouds, snow and ice. enlarge 9

  3. A framework for developing, manufacturing, and sourcing trucks & equipment in a global fluid management industry

    E-Print Network [OSTI]

    Awwad, Ghassan Samir

    2009-01-01T23:59:59.000Z

    Selecting and executing the optimal strategy for developing new products is a non trivial task, especially for low volume, high complexity products in a highly volatile global industry such as Fluid Management. At Fluid ...

  4. An investigation of a professional development program using industry partnerships and student achievement

    E-Print Network [OSTI]

    Sullivan, Helen Grace

    2008-10-10T23:59:59.000Z

    This investigation examined the impact on student achievement of teachers who participated in a professional development program using industry partnerships. One treatment and one non-treatment school in a large urban school district served...

  5. An investigation of a professional development program using industry partnerships and student achievement 

    E-Print Network [OSTI]

    Sullivan, Helen Grace

    2008-10-10T23:59:59.000Z

    This investigation examined the impact on student achievement of teachers who participated in a professional development program using industry partnerships. One treatment and one non-treatment school in a large urban ...

  6. Development and Industrialization of InGaN/GaN LEDs on Patterned...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of InGaNGaN LEDs on Patterned Sapphire Substrates for Low Cost Emitter Architecture Development and Industrialization of InGaNGaN LEDs on Patterned Sapphire...

  7. Steam Challenge: Developing A New DOE Program to Help Industry be Steam Smart

    E-Print Network [OSTI]

    Jones, T.; Hart, F.

    Last year, the Alliance to Save Energy, the Department of Energy's Office of Industrial Technologies, and a cadre of private companies and associations formed an innovative "Steam Partnership" with the goal of developing a new, DOE technical...

  8. Importance of systems biology in engineering microbes for biofuel production

    E-Print Network [OSTI]

    Mukhopadhyay, Aindrila

    2011-01-01T23:59:59.000Z

    TS, Steen E, Keasling JD: Biofuel Alternatives to ethanol:in engineering microbes for biofuel production Aindrila

  9. Financing Advanced Biofuels, Biochemicals And Biopower In Integrated...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Financing Advanced Biofuels, Biochemicals And Biopower In Integrated Biorefineries Financing Advanced Biofuels, Biochemicals And Biopower In Integrated Biorefineries Afternoon...

  10. Methods for the economical production of biofuel from biomass

    DOE Patents [OSTI]

    Hawkins, Andrew C; Glassner, David A; Buelter, Thomas; Wade, James; Meinhold, Peter; Peters, Matthew W; Gruber, Patrick R; Evanko, William A; Aristidou, Aristos A; Landwehr, Marco

    2013-04-30T23:59:59.000Z

    Methods for producing a biofuel are provided. Also provided are biocatalysts that convert a feedstock to a biofuel.

  11. BETO Announces June Webinar: Algal Biofuels Consortium Releases...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    June Webinar: Algal Biofuels Consortium Releases Groundbreaking Research Results BETO Announces June Webinar: Algal Biofuels Consortium Releases Groundbreaking Research Results...

  12. Workshop on Conversion Technologies for Advanced Biofuels - Carbohydra...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications Conversion Technologies for Advanced Biofuels - Carbohydrates Production Innovative Topics for Advanced Biofuels Cross-cutting...

  13. Industry

    E-Print Network [OSTI]

    Bernstein, Lenny

    2008-01-01T23:59:59.000Z

    2002: Profiles in SMEs and SME Issues, 1990-2000. Asia-Energy management practices in SME- Case study of bakery incountries. Integrating SME development strategy into the

  14. Industry

    E-Print Network [OSTI]

    Bernstein, Lenny

    2008-01-01T23:59:59.000Z

    Europe Former Soviet Union Developing Asia Latin America Sub-Saharan Africa Middle East & North Africa World B2 Scenario Note: Biomass

  15. Reliability worth assessment in a developing country - commercial and industrial survey results

    SciTech Connect (OSTI)

    Pandey, M.; Billinton, R.

    1999-11-01T23:59:59.000Z

    This paper presents the results of an investigation conducted to determine the costs of electric service interruptions in the commercial and industrial sectors of a developing country. The investigation used in-person interviews of 800 businesses and 300 industries in Nepal. The results indicate the customer implications of service reliability, and show that electric service reliability worth can be assessed in a developing country.

  16. Developing Renewable Energy within the Water Industry Dr Gareth Harrison

    E-Print Network [OSTI]

    Harrison, Gareth

    utility. They include, unsurprisingly, hydropower. Hydropower It is possible to distinguish between two the opportunity for developing hydropower whose potential is given by the familiar equation gHQP = where P

  17. FINAL TECHNICAL REPORT FOR FORESTRY BIOFUEL STATEWIDE COLLABORATION CENTER (MICHIGAN)

    SciTech Connect (OSTI)

    LaCourt, Donna M.; Miller, Raymond O.; Shonnard, David R.

    2012-04-24T23:59:59.000Z

    A team composed of scientists from Michigan State University (MSU) and Michigan Technological University (MTU) assembled to better understand, document, and improve systems for using forest-based biomass feedstocks in the production of energy products within Michigan. Work was funded by a grant (DE-EE-0000280) from the U.S. Department of Energy (DOE) and was administered by the Michigan Economic Development Corporation (MEDC). The goal of the project was to improve the forest feedstock supply infrastructure to sustainably provide woody biomass for biofuel production in Michigan over the long-term. Work was divided into four broad areas with associated objectives: • TASK A: Develop a Forest-Based Biomass Assessment for Michigan – Define forest-based feedstock inventory, availability, and the potential of forest-based feedstock to support state and federal renewable energy goals while maintaining current uses. • TASK B: Improve Harvesting, Processing and Transportation Systems – Identify and develop cost, energy, and carbon efficient harvesting, processing and transportation systems. • TASK C: Improve Forest Feedstock Productivity and Sustainability – Identify and develop sustainable feedstock production systems through the establishment and monitoring of a statewide network of field trials in forests and energy plantations. • TASK D: Engage Stakeholders – Increase understanding of forest biomass production systems for biofuels by a broad range of stakeholders. The goal and objectives of this research and development project were fulfilled with key model deliverables including: 1) The Forest Biomass Inventory System (Sub-task A1) of feedstock inventory and availability and, 2) The Supply Chain Model (Sub-task B2). Both models are vital to Michigan’s forest biomass industry and support forecasting delivered cost, as well as carbon and energy balance. All of these elements are important to facilitate investor, operational and policy decisions. All other sub-tasks supported the development of these two tools either directly or by building out supporting information in the forest biomass supply chain. Outreach efforts have, and are continuing to get these user friendly models and information to decision makers to support biomass feedstock supply chain decisions across the areas of biomass inventory and availability, procurement, harvest, forwarding, transportation and processing. Outreach will continue on the project website at http://www.michiganforestbiofuels.org/ and http://www.michiganwoodbiofuels.org/

  18. Lifecycle Analyses of Biofuels

    E-Print Network [OSTI]

    Delucchi, Mark

    2006-01-01T23:59:59.000Z

    Andress, Comparison of Ethanol Fuel Cycles in the GHG ModelsD. Pimentel, “Ethanol Fuels: Energy Balance, Economics, andUsing Corn Stover for Fuel Ethanol,” Journal of Industrial

  19. Algae as a Feedstock for Biofuels: An Assessment of the State of Technology and Opportunities. Final Report

    SciTech Connect (OSTI)

    Sikes, K.; McGill, R. [Sentech, Inc. (United States); Van Walwijk, M. [Independent Consultant (France)

    2011-05-15T23:59:59.000Z

    The pursuit of a stable, economically-sound, and environmentally-friendly source of transportation fuel has led to extensive research and development (R&D) efforts focused on the conversion of various feedstocks into biofuels. Some feedstocks, such as sugar cane, corn and woody biomass, are targeted because their structures can be broken down into sugars and fermented into alcohols. Other feedstocks, such as vegetable oils, are appealing because they contain considerable amounts of lipids, which can be extracted and converted into biodiesel or other fuels. While significant R&D and commercial strides have been made with each of these feedstocks, technical and market barriers (e.g., cost, scalability, infrastructure requirements, and 'food vs. fuel' debates) currently limit the penetration of the resultant biofuels into the mainstream. Because of algae's ability to potentially address several of these barriers, its use as a feedstock for biofuels has led to much excitement and initiative within the energy industry. Algae are highly diverse, singleor multi-cellular organisms comprised of mostly lipids, protein, and carbohydrates, which may be used to produce a wide variety of biofuels. Algae offer many competitive advantages over other feedstocks, including: 1) Higher potential lipid content than terrestrial plants, sometimes exceeding 50% of the cell's dry biomass (U.S. DOE, May '10; Tornabene et al., 1983) 2) Rapid growth rates that are 20-30 times higher than terrestrial crops (McDill, 2009) and, in some cases, capable of doubling in size with 10 hours 3) Diverse number of species that can collectively thrive in a wide range of environments throughout the world, presenting an overall high overall tolerance for climate, sunlight, nutrient levels, etc. 4) Daily harvesting potential instead of seasonal harvest periods associated with terrestrial crops 5) Potential to redirect CO2 from industry operations to algal cultivation facilities to be used in an algal biofuel cycle before it is released into the atmosphere 6) Ability to be cultivated on land that that is unsuitable for agriculture, so it does not directly compete with farmland Given microalgae's high lipid content and rapid growth rates, maximum oil yields of 20,000--115,000 L/ha/yr (2,140-13,360 gal/ac/yr) have been estimated. xiv 7) Ability to thrive in seawater, wastewater, or other non-potable sources, so it does not directly compete with fresh water resources. In fact, wastewater can provide algae with some essential nutrients, such as nitrogen, so algae may contribute to cleaning up wastewater streams. 8) Non-toxic and biodegradable 9) Co-products that may present high value in other markets, including nutriceuticals and cosmetics Given microalgae's high lipid content and rapid growth rate, maximum oil yields of 20,000 -- 115,000 liters per hectare per year (L/ha/yr) (2,140 -- 13,360 gallons per acre per year) (Baldos, 2009; Wijffels, 2008) have been estimated, which is considerably higher than any other competing feedstock. Although algae species collectively present many strong advantages (although one specific species is unlikely to possess all of the advantages listed), a sustainable algal biofuel industry is at least one or two decades away from maturity, and no commercial scale operations currently exist. Several barriers must first be overcome before algal biofuels can compete with traditional petroleum-based fuels. Production chains with net energy output need to be identified, and continued R&D is needed to reduce the cost in all segments of the production spectrum (e.g., harvesting, dewatering, extracting of oil). Further research to identify strains with high production rates and/or oil yields may also improve competitiveness within the market. Initiatives to seamlessly integrate algal biofuels into the existing transportation infrastructure may increase their convenience level.

  20. Industry

    E-Print Network [OSTI]

    Bernstein, Lenny

    2008-01-01T23:59:59.000Z

    driven systems; high efficiency boilers and process heaters;aims to develop boilers with an efficiency of 94%. However,much lower. Efficiency measures exist for both boilers and

  1. IOL: Africa's big plans for biofuel Africa's big plans for biofuel

    E-Print Network [OSTI]

    IOL: Africa's big plans for biofuel Africa's big plans for biofuel By Clare Byrne Visitors to Madagascar, Senegal to South Africa, biofuels is the buzzword as African countries wake up to the possibility of using their vast spaces to grow crops that reduce their fossil fuel bill. Biofuels also carry

  2. Viability Studies of Biofuels Though biofuels (like ethanol) promise renewable "green" energy, these

    E-Print Network [OSTI]

    Hill, Wendell T.

    Viability Studies of Biofuels Though biofuels (like ethanol) promise renewable "green" energy cannot possibly meet U.S. energy demands, and current methods of biofuel production often consume as much energy as they produce. If biofuels are to be viable long-term energy solutions, we need new sources

  3. Biofuel Feedstock Inter-Island Transportation

    E-Print Network [OSTI]

    Biofuel Feedstock Inter-Island Transportation Prepared for the U.S. Department of Energy Office ........................................................................... 11 Options for liquid biofuel feedstock transport ............................................................................. agency thereof. #12;A Comparison of Hawaii's Inter-Island Maritime Transportation of Solid Versus Liquid

  4. A New Biofuels Technology Blooms in Iowa

    Broader source: Energy.gov [DOE]

    Cellulosic biofuels made from agricultural waste have caught the attention of many farmers and could be the next revolution in renewable biofuels production. This video shows how an innovative...

  5. Load Management - An Industrial Perspective on This Developing Technology 

    E-Print Network [OSTI]

    Delgado, R. M.

    1983-01-01T23:59:59.000Z

    Load Management is a rapidly developing technology which can have a significant impact on all electric users, especially large users. It is mandated by P.U.R.P.A. (Public Utility Regulatory Policy Act) and is akin to energy conservation but its...

  6. Facilitating wind development: the importance of electric industry structure

    SciTech Connect (OSTI)

    Kirby, Brendan; Milligan, Michael

    2008-04-15T23:59:59.000Z

    ISOs and RTOs, with their day-ahead and real-time markets, large geographies to aggregate diverse wind resources, large loads to aggregate with wind, large generation pools that tap conventional-generator flexibility, and regional transmission planning efforts, offer the best environments for wind generation to develop. (author)

  7. A New Biofuels Technology Blooms in Iowa

    ScienceCinema (OSTI)

    Mathisen, Todd; Bruch, Don;

    2013-05-29T23:59:59.000Z

    Cellulosic biofuels made from agricultural waste have caught the attention of many farmers and could be the next revolution in renewable biofuels production. This video shows how an innovative technology that converts waste products from the corn harvest into renewable biofuels will help the U.S. produce billions of gallons of cellulosic biofuels over the coming decade. It will also stimulate local economies and reduce U.S. dependence on foreign oil.

  8. On mitigating emissions leakage under biofuel policies

    E-Print Network [OSTI]

    Rajagopal, D; Rajagopal, D

    2015-01-01T23:59:59.000Z

    than 1:1 replacement of oil products with biofuel, which isshow how different oil products are affected differently

  9. Algal Biofuels Research Laboratory (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-08-01T23:59:59.000Z

    This fact sheet provides information about Algal Biofuels Research Laboratory capabilities and applications at NREL's National Bioenergy Center.

  10. A New Biofuels Technology Blooms in Iowa

    SciTech Connect (OSTI)

    Mathisen, Todd; Bruch, Don

    2010-01-01T23:59:59.000Z

    Cellulosic biofuels made from agricultural waste have caught the attention of many farmers and could be the next revolution in renewable biofuels production. This video shows how an innovative technology that converts waste products from the corn harvest into renewable biofuels will help the U.S. produce billions of gallons of cellulosic biofuels over the coming decade. It will also stimulate local economies and reduce U.S. dependence on foreign oil.

  11. Legislating Biofuels in the United States (Presentation)

    SciTech Connect (OSTI)

    Clark, W.

    2008-07-01T23:59:59.000Z

    Legislation supporting U.S. biofuels production can help to reduce petroleum consumption and increase the nation's energy security.

  12. Energy 101: Feedstocks for Biofuels and More

    Office of Energy Efficiency and Renewable Energy (EERE)

    See how organic materials are used to create biofuels, reducing dependence on foreign oil and creating jobs.

  13. Biofuel Enduse Datasets from the Bioenergy Knowledge Discovery Framework (KDF)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Bioenergy Knowledge Discovery Framework invites users to discover the power of bioenergy through an interface that provides extensive access to research data and literature, GIS mapping tools, and collaborative networks. The Bioenergy KDF supports efforts to develop a robust and sustainable bioenergy industry. The KDF facilitates informed decision making by providing a means to synthesize, analyze, and visualize vast amounts of information in a relevant and succinct manner. It harnesses Web 2.0 and social networking technologies to build a collective knowledge system that can better examine the economic and environmental impacts of development options for biomass feedstock production, biorefineries, and related infrastructure. [copied from https://www.bioenergykdf.net/content/about]

    Holdings include datasets, models, and maps. This is a very new resource, but the collections will grow due to both DOE contributions and individualsĆ data uploads. Currently the Biofuel Enduse collection includes 133 items. Most of these are categorized as literature, but 36 are listed as datasets and ten as models.

  14. Federal agencies active in chemical industry-related research and development

    SciTech Connect (OSTI)

    NONE

    1995-09-29T23:59:59.000Z

    The Energy Policy Act of 1992 calls for a program to further the commercialization of renewable energy and energy efficient technologies for the industrial sector.. The primary objective of the Office of Industrial Technologies Chemical Industry Team is to work in partnership with the US chemical industry to maximize economic, energy, and environmental benefits through research and development of innovative technologies. This document was developed to inventory organizations within the federal government on current chemical industry-related research and development. While an amount of funding or number of projects specifically relating to chemical industry research and development was not defined in all organizations, identified were about 60 distinct organizations representing 7 cabinet-level departments and 4 independent agencies, with research efforts exceeding $3.5 billion in fiscal year 1995. Effort were found to range from less than $500 thousand per year at the Departments of Agriculture and the Interior to over $100 million per year at the Departments of Commerce, Defense, Energy, and Health and Human Services and the National Aeronautics and Space Administration. The total number of projects in these programs exceeded 10,000. This document is complete to the extent that agencies volunteered information. Additions, corrections, and changes are encouraged and will be incorporated in future revisions.

  15. Biofuels and bio-products derived from

    E-Print Network [OSTI]

    Ginzel, Matthew

    NEED Biofuels and bio- products derived from lignocellulosic biomass (plant materials) are part improve the energy and carbon efficiencies of biofuels production from a barrel of biomass using chemical and thermal catalytic mechanisms. The Center for Direct Catalytic Conversion of Biomass to Biofuels IMPACT

  16. Biofuels and indirect land use change

    E-Print Network [OSTI]

    Biofuels and indirect land use change The case for mitigation October 2011 #12;About this study), Malaysian Palm Oil Board, National Farmers Union, Novozymes, Northeast Biofuels Collaborative, Patagonia Bio contributed views on a confidential basis. #12;1Biofuels and indirect land use change The case for mitigation

  17. Oil To Biofuels Case Study Objectives

    E-Print Network [OSTI]

    Auerbach, Scott M.

    Oil To Biofuels Case Study Objectives - Critically evaluate the nature of certain societal", and the consequences of various sources. - How could this diagram be modified through the use of biofuels? Research. - What are biomass and biofuels? How are they used, what are their benefits and negative consequences

  18. How sustainable are current transport biofuels?

    E-Print Network [OSTI]

    How sustainable are current transport biofuels? Jérémie Mercier 7th BIEE Academic Conference biofuels and what is expected from them? 2) Sustainability impacts of agrofuels and the UK certification Conference - Oxford 24th September 2008 1) What are current transport biofuels and what is expected from them

  19. Can biofuels justify current transport policies?

    E-Print Network [OSTI]

    Can biofuels justify current transport policies? Jérémie Mercier IARU Climate Congress - Copenhagen is growing 2) Today biofuels bring little or no greenhouse gas benefits 3) We need to change #12;IARU Climate;IARU Climate Congress, Copenhagen, 11th March 2009 - Jérémie Mercier 4 Biofuels consumption growing

  20. SEE ALSO SIDEBARS: RECOURCES SOLARRESOURCES BIOMASS & BIOFUELS

    E-Print Network [OSTI]

    Kammen, Daniel M.

    373 SEE ALSO SIDEBARS: RECOURCES · SOLARRESOURCES · BIOMASS & BIOFUELS Engineered and Artificial, and the production of liquid biofuels for transportation is growing rapidly. However, both traditional biomass energy and crop-based biofuels technologies have negative environmental and social impacts. The overall research

  1. School of Engineering and Science Algae Biofuels

    E-Print Network [OSTI]

    Fisher, Frank

    School of Engineering and Science Algae Biofuels BY: Alessandro Faldi, Ph.D. Section Head is algae- based biofuels, which we believe could be a meaningful part of the energy mix in the future. Algae biofuels have potential to be an economically viable, low-net carbon transportation fuel

  2. Liquid Biofuels Strategies and Policies in selected

    E-Print Network [OSTI]

    June 2011 Liquid Biofuels Strategies and Policies in selected African Countries A review of some of the challenges, activities and policy options for liquid biofuels Prepared for PISCES by Practical Action Biofuels Strategies and Policies in selected African Countries Although this research is funded by DFID

  3. Legislating Biofuels in the United States

    E-Print Network [OSTI]

    Legislating Biofuels in the United States Wendy Clark National Renewable Energy Laboratory Golden, Colorado, USA 2008 SAE Biofuels Specifications and Performance Symposium July 7-9, 2008, Paris NREL PR-540 Legislate Biofuels? · Plentiful U.S. biomass resources: energy crops, agricultural and forestry residues

  4. Measuring and moderating the water resource impact of biofuel production and trade

    E-Print Network [OSTI]

    Fingerman, Kevin Robert

    2012-01-01T23:59:59.000Z

    The  United  States'  Biofuel  Policies   and  Compliance  Water  Impacts  of  Biofuel  Extend  Beyond   Irrigation."  for  assessing  sustainable  biofuel  production."  

  5. Measuring and moderating the water resource impact of biofuel production and trade

    E-Print Network [OSTI]

    Fingerman, Kevin Robert

    2012-01-01T23:59:59.000Z

    L.  (2004).  Biofuels  for  transport:  an  international  renewable  electric  transport  and  biofuels  made  from  “and  transport  consumption  associated  with  biofuels  

  6. Supramolecular self-assembled chaos: polyphenolic lignin's barrier to cost-effective lignocellulosic biofuels

    E-Print Network [OSTI]

    Achyuthan, Komandoor

    2014-01-01T23:59:59.000Z

    thereby  cost-­? effective  biofuels  production.   PMID:  effective  lignocellulosic  biofuels.   Achyuthan  KE,  effective   lignocellulosic  biofuels.  Post-­?synthesis  

  7. Biofuels National Strategic Benefits Analysis

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The FutureCommentsEnergyandapproximately 10 wt% moisture,Biofuels Biofuels

  8. An Integrated Assessment of Location-Dependent Scaling for Microalgae Biofuel Production Facilities

    SciTech Connect (OSTI)

    Coleman, Andre M.; Abodeely, Jared; Skaggs, Richard; Moeglein, William AM; Newby, Deborah T.; Venteris, Erik R.; Wigmosta, Mark S.

    2014-07-01T23:59:59.000Z

    Successful development of a large-scale microalgae-based biofuels industry requires comprehensive analysis and understanding of the feedstock supply chain—from facility siting/design through processing/upgrading of the feedstock to a fuel product. The evolution from pilot-scale production facilities to energy-scale operations presents many multi-disciplinary challenges, including a sustainable supply of water and nutrients, operational and infrastructure logistics, and economic competitiveness with petroleum-based fuels. These challenges are addressed in part by applying the Integrated Assessment Framework (IAF)—an integrated multi-scale modeling, analysis, and data management suite—to address key issues in developing and operating an open-pond facility by analyzing how variability and uncertainty in space and time affect algal feedstock production rates, and determining the site-specific “optimum” facility scale to minimize capital and operational expenses. This approach explicitly and systematically assesses the interdependence of biofuel production potential, associated resource requirements, and production system design trade-offs. The IAF was applied to a set of sites previously identified as having the potential to cumulatively produce 5 billion-gallons/year in the southeastern U.S. and results indicate costs can be reduced by selecting the most effective processing technology pathway and scaling downstream processing capabilities to fit site-specific growing conditions, available resources, and algal strains.

  9. Advanced sensor development program for the pulp and paper industry

    SciTech Connect (OSTI)

    Allen, J.D.; Charagundla, S.R.; Macek, A.; Semerjian, H.G.; Whetstone, J.R.

    1990-10-01T23:59:59.000Z

    This report describes experimental and theoretical studies toward development of a remote sensing technique for non-intrusive temperature measurement based on optical spectroscopic analysis of recovery boiler. The overall objectives were (a) construction of a fiber-optic system for measurement of spectroscopic emission intensities at several wavelengths and (b) development of a computer program relating these intensities to temperatures of the emitting species. The emitting species for temperature measurements in flames can be either naturally occurring free radicals (OH, CH, C{sub 2}) or atoms which, in turn, can be either naturally occurring or seeded into flames. Sodium atoms, the obvious emitters in recovery boilers, are not promising as thermometric species because of their high concentration. At high concentrations, strong self-absorption results cause optical depths to be much smaller than the sampling depths desired for recovery boilers. An experimental program was, therefore, undertaken with the objective of identification and spectroscopic detection and measurement of other naturally occurring thermometric species. The program consisted of several laboratory studies and four field trips to different recovery boilers. 19 refs., 43 figs., 8 tabs.

  10. US energy industry financial developments, First quarter 1995

    SciTech Connect (OSTI)

    NONE

    1995-06-19T23:59:59.000Z

    This report traces key developments in US energy companies` financial performance for the first quarter of 1995. Financial data (only available for publicly-traded US companies) are included in two broad groups -- fossil fuel production and rate-regulated utilities. All financial data are taken from public sources such as corporate reports and press releases, energy trade publications, and The Wall Street Journal`s Earnings Digest. Return on equity is calculated from data available from Standard and Poor`s Compustat data service. Since several major petroleum companies disclose their income by lines of business and geographic area, these data are also presented in this report. Although the disaggregated income concept varies by company and is not strictly comparable to corporate income, relative movements in income by lines of business and geographic area are summarized as useful indicators of short-term changes in the underlying profitability of these operations.

  11. Using System Dynamics to Model the Transition to Biofuels in the United States

    SciTech Connect (OSTI)

    Bush, B.; Duffy, M.; Sandor, D.; Peterson, S.

    2008-01-01T23:59:59.000Z

    Today, the U.S. consumes almost 21 million barrels of crude oil per day; approximately 60% of the U.S. demand is supplied by imports. The transportation sector alone accounts for two-thirds of U.S. petroleum use. Biofuels, liquid fuels produced from domestically-grown biomass, have the potential to displace about 30% of current U.S. gasoline consumption. Transitioning to a biofuels industry on this scale will require the creation of a robust biomass-to-biofuels system-of-systems that operates in concert with the existing agriculture, forestry, energy, and transportation markets. The U.S. Department of Energy is employing a system dynamics approach to investigate potential market penetration scenarios for cellulosic ethanol, and to aid decision makers in focusing government actions on the areas with greatest potential to accelerate the deployment of biofuels and ultimately reduce the nationpsilas dependence on imported oil.

  12. National Bio-fuel Energy Laboratory

    SciTech Connect (OSTI)

    Jezierski, Kelly

    2010-12-27T23:59:59.000Z

    The National Biofuel Energy Laboratory or NBEL was a consortia consisting of non-profits, universities, industry, and OEM’s. NextEnergy Center (NEC) in Detroit, Michigan was the prime with Wayne State University as the primary subcontractor. Other partners included: Art Van Furniture; Biodiesel Industries Inc. (BDI); Bosch; Clean Emission Fluids (CEF); Delphi; Oakland University; U.S. TARDEC (The Army); and later Cummins Bridgeway. The program was awarded to NextEnergy by U.S. DOE-NREL on July 1, 2005. The period of performance was about five (5) years, ending June 30, 2010. This program was executed in two phases: 1.Phase I focused on bench-scale R&D and performance-property-relationships. 2.Phase II expanded those efforts into further engine testing, emissions testing, and on-road fleet testing of biodiesel using additional types of feedstock (i.e., corn, and choice white grease based). NextEnergy – a non-profit 501(c)(3) organization based in Detroit was originally awarded a $1.9 million grant from the U.S. Dept. of Energy for Phase I of the NBEL program. A few years later, NextEnergy and its partners received an additional $1.9MM in DOE funding to complete Phase II. The NBEL funding was completely exhausted by the program end date of June 30, 2010 and the cost share commitment of 20% minimum has been exceeded nearly two times over. As a result of the work performed by the NBEL consortia, the following successes were realized: 1.Over one hundred publications and presentations have been delivered by the NBEL consortia, including but not limited to: R&D efforts on algae-based biodiesel, novel heterogeneous catalysis, biodiesel properties from a vast array of feedstock blends, cold flow properties, engine testing results (several Society of Automotive Engineers [SAE] papers have been published on this research), emissions testing results, and market quality survey results. 2.One new spinoff company (NextCAT) was formed by two WSU Chemical Engineering professors and another co-founder, based on a novel heterogeneous catalyst that may be retrofitted into idled biodiesel manufacturing facilities to restart production at a greatly reduced cost. 3.Three patents have been filed by WSU and granted based on the NextCAT focus. 4.The next-generation advanced biodiesel dispensing unit (CEF F.A.S.T. unit version 2) was developed by Clean Emission Fluids (CEF). 5.NBEL aided in the preparing a sound technical basis for setting an ASTM B20 standard: ASTM Standard D7467-08 was passed in June of 2008 and officially published on October of 2008. 6.NBEL has helped to understand composition-property-performance relationships, from not only a laboratory and field testing scale, for biodiesel blends from a spectrum of feedstocks. 7.NBEL helped propel the development of biodiesel with improved performance, cetane numbers, cold flow properties, and oxidative stability. 8.Data for over 30,000 miles has been logged for the fleet testing that select members of the consortia participated in. There were five vehicles that participated in the fleet testing. Art Van provided two vehicles, one that remained idle for most of the time and one that was used often for commercial furniture deliveries, Oakland University provided one vehicle, NEC provided one vehicle, and The Night Move provided one vehicle. These vehicles were light to medium duty (2.0 to 6.6 L displacement), used B5 or B20 blends from multiple sources of feedstock (corn-, choice white grease-, and soybean-based blends) and sources (NextDiesel, BDI, or Wacker Oil), experienced a broad range in ambient temperatures (from -9 °F in Michigan winters to 93 °F in the summertime), and both city and highway driving conditions.

  13. Research and development separation technology: The DOE Industrial Energy Conservation Program

    SciTech Connect (OSTI)

    Not Available

    1987-07-01T23:59:59.000Z

    This brochure summarizes the Office of Industrial Programs' RandD efforts in the advancement of separation technology. The purpose of this brochure is to provide interested parties with information on federal industrial energy conservation activities in separation technology. The brochure is comprised of the following sections: Separation Technology, summarizes the current state of separation technology and its uses. Potential Energy Savings, discusses the potential for industrial energy conservation through the implementation of advanced separation processes. Office of Industrial Programs' RandD Efforts in Separation Technology Development, describes the separation RandD projects conducted by IP. RandD Data Base, lists contractor, principal investigator, and location of each separation-related RandD effort sponsored by IP.

  14. Industrial Advanced Turbine Systems: Development and Demonstration. Annual report, September 14, 1995--September 30, 1996

    SciTech Connect (OSTI)

    NONE

    1998-12-31T23:59:59.000Z

    The U.S. Department of Energy (DOE) has initiated a program for advanced turbine systems (ATS) that will serve industrial power generation markets. The objective of the cooperative agreements granted under the program is to join the DOE with industry in research and development that will lead to commercial offerings in the private sector. The ATS will provide ultra-high efficiency, environmental superiority, and cost competitiveness. The ATS will foster (1) early market penetration that enhances the global competitiveness of U.S. industry, (2) public health benefits resulting from reduced exhaust gas emissions of target pollutants, (3) reduced cost of power used in the energy-intensive industrial marketplace and (4) the retention and expansion of the skilled U.S. technology base required for the design, development and maintenance of state-of-the-art advanced turbine products. The Industrial ATS Development and Demonstration program is a multi-phased effort. Solar Turbines Incorporated (Solar) has participated in Phases 1 and 2 of the program. On September 14, 1995 Solar was awarded a Cooperative Agreement for Phases 3 and 4 of the program (DE-FC21-95MC31173) by the DOE`s Office of Energy Efficiency and Renewable Energy (EE). Technical administration of the Cooperative Agreement will be provided from EE`s Chicago Operations Office. Contract administration of the Cooperative Agreement will be provided from DOE`s Office of Fossil Energy, Morgantown Energy Technology Center (METC).

  15. Systems analysis and futuristic designs of advanced biofuel factory concepts.

    SciTech Connect (OSTI)

    Chianelli, Russ; Leathers, James; Thoma, Steven George; Celina, Mathias Christopher; Gupta, Vipin P.

    2007-10-01T23:59:59.000Z

    The U.S. is addicted to petroleum--a dependency that periodically shocks the economy, compromises national security, and adversely affects the environment. If liquid fuels remain the main energy source for U.S. transportation for the foreseeable future, the system solution is the production of new liquid fuels that can directly displace diesel and gasoline. This study focuses on advanced concepts for biofuel factory production, describing three design concepts: biopetroleum, biodiesel, and higher alcohols. A general schematic is illustrated for each concept with technical description and analysis for each factory design. Looking beyond current biofuel pursuits by industry, this study explores unconventional feedstocks (e.g., extremophiles), out-of-favor reaction processes (e.g., radiation-induced catalytic cracking), and production of new fuel sources traditionally deemed undesirable (e.g., fusel oils). These concepts lay the foundation and path for future basic science and applied engineering to displace petroleum as a transportation energy source for good.

  16. Tappable Pine Trees: Commercial Production of Terpene Biofuels in Pine

    SciTech Connect (OSTI)

    None

    2012-01-01T23:59:59.000Z

    PETRO Project: The University of Florida is working to increase the amount of turpentine in harvested pine from 4% to 20% of its dry weight. While enhanced feedstocks for biofuels have generally focused on fuel production from leafy plants and grasses, the University of Florida is experimenting with enhancing fuel production in a species of pine that is currently used in the paper pulping industry. Pine trees naturally produce around 3-5% terpene content in the wood—terpenes are the energy-dense fuel molecules that are the predominant components of turpentine. The team aims to increase the terpene storage potential and production capacity while improving the terpene composition to a point at which the trees could be tapped while alive, like sugar maples. Growth and production from these trees will take years, but this pioneering technology could have significant impact in making available an economical and domestic source of aviation and diesel biofuels.

  17. YOKAYO BIOFUELS, INC. GRANT FOR IMPROVEMENTS AND EXPANSION OF

    E-Print Network [OSTI]

    YOKAYO BIOFUELS, INC. GRANT FOR IMPROVEMENTS AND EXPANSION OF AN EXISTING FACILITY INITIAL STUDY-11-601) to expand an existing biofuels production facility (Yokayo Biofuels, Inc.) located at 350 Orr: THE PROPOSED PROJECT: Yokayo Biofuels, Inc. is an existing biofuels facility located at 350 Orr Springs Road

  18. Developing a Sustainable Forest Biomass Industry: Case of the US Northeast

    E-Print Network [OSTI]

    Schweik, Charles M.

    . Keywords: forest biomass, sustainable, renewable energy, supply, harvest, forest landowners, socialDeveloping a Sustainable Forest Biomass Industry: Case of the US Northeast D. Damery1 , J. Benjamin in renewable energy has produced a spate of new research into the feasibility of forest biomass as a feedstock

  19. Industrial Strategic Planning - A New Approach to Developing Energy Efficient Programs

    E-Print Network [OSTI]

    Delgado, R. M.; Mitchell, G. M.

    1983-01-01T23:59:59.000Z

    Today's energy environment is a precarious one. Industry is well aware of the situation. Some have developed plans to cope with it, others are taking a 'wait and see' posture. To help in decision making, strategic planning has begun to emerge...

  20. CHAPTER 6. BIBLIOGRAPHY AAPG 2005--American Association of Petroleum Geologists. Recent Uranium Industry Developments,

    E-Print Network [OSTI]

    Industry Developments, Exploration, Mining and Environmental Programs in the U.S. and Overseas. Uranium6-1 CHAPTER 6. BIBLIOGRAPHY AAPG 2005--American Association of Petroleum Geologists. Recent Uranium Committee, Energy Minerals Division. Tulsa, OK: March 25, 2005. http://emd.aapg.org/technical areas/uranium

  1. Development of a performance-based industrial energy efficiency indicator for cement manufacturing plants.

    SciTech Connect (OSTI)

    Boyd, G.; Decision and Information Sciences

    2006-07-21T23:59:59.000Z

    Organizations that implement strategic energy management programs have the potential to achieve sustained energy savings if the programs are carried out properly. A key opportunity for achieving energy savings that plant managers can take is to determine an appropriate level of energy performance by comparing the plant performance with that of similar plants in the same industry. Manufacturing plants can set energy efficiency targets by using performance-based indicators. The U.S. Environmental Protection Agency (EPA), through its ENERGY STAR{reg_sign} program, has been developing plant energy performance indicators (EPIs) to encourage a variety of U.S. industries to use energy more efficiently. This report describes work with the cement manufacturing industry to provide a plant-level indicator of energy efficiency for assembly plants that produce a variety of products, including Portland cement and other specialty cement products, in the United States. Consideration is given to the role that performance-based indicators play in motivating change; the steps needed to develop indicators, including interacting with an industry to secure adequate data for an indicator; and the actual application and use of an indicator when complete. How indicators are employed in the EPA's efforts to encourage industries to voluntarily improve their use of energy is discussed as well. The report describes the data and statistical methods used to construct the EPI for cement manufacturing plants. Individual equations are presented, as are the instructions for using them in an associated Excel spreadsheet.

  2. International LNG report/Developments proceed slowly in world LNG industry

    SciTech Connect (OSTI)

    Hale, D.

    1980-03-01T23:59:59.000Z

    A discussion of developments in the world LNG industry covers U.S. developments, including the Pipeline Safety Act of 1979, the National Fire Protection Association's 1979 edition of Standard 59A for the production, storage, and handling of LNG, and progress in the permitting of major LNG import projects changes in U.S. rules on LNG pricing; LNG accidents, including the grounding of the LNG carrier Vertical BarEl Paso Paul Kaise.

  3. Storm-water management for industrial activities. Developing pollution prevention plans and best management practices

    SciTech Connect (OSTI)

    Not Available

    1992-09-01T23:59:59.000Z

    The manual provides industrial facilities with comprehensive guidance on the development of storm water pollution prevention plans and identification of appropriate Best Management Practices (BMPs). It provides technical assistance and support to all facilities subject to pollution prevention requirements established under National Pollutant Discharge Elimination System (NPDES) permits for storm water point source discharges. EPA's storm water program significantly expands the scope and application of the existing NPDES permit system for municipal and industrial process wastewater discharges. It emphasizes pollution prevention and reflects a heavy reliance on BMPs to reduce pollutant loadings and improve water quality. The manual provides essential guidance in both of these areas.

  4. Tailoring next-generation biofuels and their combustion in next-generation engines.

    SciTech Connect (OSTI)

    Gladden, John Michael; Wu, Weihua; Taatjes, Craig A.; Scheer, Adam Michael; Turner, Kevin M.; Yu, Eizadora T.; O'Bryan, Greg; Powell, Amy Jo; Gao, Connie W. [Massachusetts Institute of Technology, Cambridge, MA] [Massachusetts Institute of Technology, Cambridge, MA

    2013-11-01T23:59:59.000Z

    Increasing energy costs, the dependence on foreign oil supplies, and environmental concerns have emphasized the need to produce sustainable renewable fuels and chemicals. The strategy for producing next-generation biofuels must include efficient processes for biomass conversion to liquid fuels and the fuels must be compatible with current and future engines. Unfortunately, biofuel development generally takes place without any consideration of combustion characteristics, and combustion scientists typically measure biofuels properties without any feedback to the production design. We seek to optimize the fuel/engine system by bringing combustion performance, specifically for advanced next-generation engines, into the development of novel biosynthetic fuel pathways. Here we report an innovative coupling of combustion chemistry, from fundamentals to engine measurements, to the optimization of fuel production using metabolic engineering. We have established the necessary connections among the fundamental chemistry, engine science, and synthetic biology for fuel production, building a powerful framework for co-development of engines and biofuels.

  5. Biofuels technology blooms in Iowa | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Biofuels technology blooms in Iowa Biofuels technology blooms in Iowa May 7, 2010 - 4:45pm Addthis Cellulosic biofuels made from agricultural waste have caught the attention of...

  6. Engineering microbial biofuel tolerance and export using efflux pumps

    E-Print Network [OSTI]

    Dunlop, Mary

    2012-01-01T23:59:59.000Z

    Biology 2011 3 Engineering biofuel tolerance using ef?uxPublishers Limited Engineering biofuel tolerance using ef?uxFigure 2 When grown with biofuel, strains with bene?cial

  7. Plant and microbial research seeks biofuel production from lignocellulose

    E-Print Network [OSTI]

    Bartley, Laura E; Ronald, Pamela C

    2009-01-01T23:59:59.000Z

    sugar yields for biofuel production. Nat Biotechnol 25(7):Plant and microbial research seeks biofuel production fromA key strategy for biofuel produc- tion is making use of the

  8. The effect of biofuel on the international oil market

    E-Print Network [OSTI]

    Hochman, Gal; Rajagopal, Deepak; Zilberman, David D.

    2010-01-01T23:59:59.000Z

    Paper 1099 The Effect of Biofuel on the International Oilby author(s). The e?ect of biofuel on the international oilto quantify the impact of biofuel on fuel markets, assuming

  9. The Economics of Trade, Biofuel, and the Environment

    E-Print Network [OSTI]

    Hochman, Gal; Sexton, Steven; Zilberman, David D.

    2010-01-01T23:59:59.000Z

    prices. The reason: demand for biofuel increases, and ?rst-The Economics of Trade, Biofuel, and the Environment GalThe Economics of Trade, Biofuel, and the Environment ? Gal

  10. High biofuel production of Botryococcus braunii using optimized cultivation strategies

    E-Print Network [OSTI]

    Yu, Wei

    2014-01-01T23:59:59.000Z

    W. N2O release from agro-biofuel production negates globalcultivation and biofuel production (www.lyxia.com).183 (2001) Amin S. Review on biofuel oil and gas production

  11. High biofuel production of Botryococcus braunii using optimized cultivation strategies

    E-Print Network [OSTI]

    Yu, Wei

    2014-01-01T23:59:59.000Z

    2009) 55. M. Tredici, Biofuels, 1: 143 (2010) 56. Q. Hu, A.Barbosa, M. H. M. Eppink, Biofuels Bioproducts Biorefining,and recent trends in biofuels. Prog. Energy Combust. Sci. ,

  12. The effect of biofuel on the international oil market

    E-Print Network [OSTI]

    Hochman, Gal; Rajagopal, Deepak; Zilberman, David D.

    2010-01-01T23:59:59.000Z

    that the introduction of biofuels reduces global fossil fuele?ects of introducing biofuels using the cartel-of-nationsthe e?ect of introducing biofuels under a competitive fuel

  13. NextSTEPS White Paper: Three Routes Forward for Biofuels

    E-Print Network [OSTI]

    California at Davis, University of

    NextSTEPS White Paper: Three Routes Forward for Biofuels: Incremental, Transitional, and Leapfrog NOT CITE #12;Three Routes Forward for Biofuels: Incremental, Transitional, and Leapfrog 2 Contents ......................................................................................................................................12 1.a. The Need for Low Carbon Biofuels

  14. Transportation Biofuels in the US A Preliminary Innovation Systems Analysis

    E-Print Network [OSTI]

    Eggert, Anthony

    2007-01-01T23:59:59.000Z

    12): p. Koplow, D. , Biofuels – At What Cost? : GovernmentResulting from the Biomass to Biofuels Workshop Sponsored byN. , Growing Energy: How biofuels can help end America's oil

  15. Engineering of bacterial methyl ketone synthesis for biofuels

    E-Print Network [OSTI]

    Goh, Ee-Been

    2012-01-01T23:59:59.000Z

    ketone synthesis for biofuels Ee-Been Goh†† 1,3 , Edward E.microbes for use as biofuels, such as fatty acid ethylother fatty acid-derived biofuels, such as fatty acid ethyl

  16. Energy and Greenhouse Impacts of Biofuels: A Framework for Analysis

    E-Print Network [OSTI]

    Kammen, Daniel M.; Farrell, Alexander E.; Plevin, Richard J.; Jones, Andrew D.; Nemet, Gregory F.; Delucchi, Mark A.

    2008-01-01T23:59:59.000Z

    Greenhouse Gas Impacts of Biofuels Wang, M. (2001) "Energy & Greenhouse Gas Impacts of Biofuels Fuels and MotorLifecycle Analysis of Biofuels." Report UCD-ITS-RR-06-08.

  17. Biofuel alternatives to ethanol: pumping the microbial well

    E-Print Network [OSTI]

    Fortman, J. L.

    2010-01-01T23:59:59.000Z

    of biodiesel and ethanol biofuels. Proc. Natl. Acad. Sci. U.S. (2006) Bonkers about biofuels. Nat. Biotechnol. 24, 755–Schubert, C. (2006) Can biofuels finally take center stage?

  18. Transportation Biofuels in the USA Preliminary Innovation Systems Analysis

    E-Print Network [OSTI]

    Eggert, Anthony

    2007-01-01T23:59:59.000Z

    12): p. Koplow, D. , Biofuels – At What Cost? : GovernmentResulting from the Biomass to Biofuels Workshop Sponsored byN. , Growing Energy: How biofuels can help end America's oil

  19. Cellulosic Biofuels: Expert Views on Prospects for Advancement: Supplementary Material

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    Cellulosic Biofuels: Expert Views on Prospects for Advancement: Supplementary Material Erin Baker Keywords: Biofuels; Technology R&D; Uncertainty; Environmental policy 2 #12;1 Introduction This paper contains supplementary material for "Cellulosic Biofuels: Expert Views on Prospects for Advancement

  20. Biofuels: Review of Policies and Impacts

    E-Print Network [OSTI]

    Janda, Karel; Kristoufek, Ladislav; Zilberman, David

    2011-01-01T23:59:59.000Z

    the international oil market. Applied Economic Perspectivesand Lucia Baldi. Vegetable oil market and biofuel policy: Anspillover from the crude oil market to the corn market.

  1. Watershed Modeling for Biofuels | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Watershed Modeling for Biofuels Argonne's watershed modeling research addresses water quality in tributary basins of the Mississippi River Basin Argonne's watershed modeling...

  2. Increasing Biofuel Deployment through Renewable Super Premium

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    by 2022 (EISA 2007) RENEWABLE FUEL STANDARD * BETO Office Goal: "Enable nation-wide production of biofuels compatible with today's transportation infrastructure, reduce...

  3. Cassava, a potential biofuel crop in China

    E-Print Network [OSTI]

    Jansson, C.

    2010-01-01T23:59:59.000Z

    18-673389 Keywords: cassava; bioethanol; biofuel; metabolicRecently, cassava-derived bioethanol production has beenbenefits compared to other bioethanol- producing crops in

  4. Biofuels: Review of Policies and Impacts

    E-Print Network [OSTI]

    Janda, Karel; Kristoufek, Ladislav; Zilberman, David

    2011-01-01T23:59:59.000Z

    modi?cations. The advances in the biofuel feedstock relevantbiofuel feedstocks will be in- ?uenced by policy concerns and by advances

  5. Conversion Technologies for Advanced Biofuels - Carbohydrates...

    Energy Savers [EERE]

    Upgrading Conversion Technologies for Advanced Biofuels - Carbohydrates Upgrading PNNL report-out presentation at the CTAB webinar on carbohydrates upgrading. ctabwebinarcarbohyd...

  6. Conversion Technologies for Advanced Biofuels - Carbohydrates...

    Office of Environmental Management (EM)

    Production Conversion Technologies for Advanced Biofuels - Carbohydrates Production Purdue University report-out presentation at the CTAB webinar on Carbohydrates Production....

  7. Global Biofuels Modeling and Land Use

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biofuels Modeling and Land Use DOE Bioenergy Technologies Office (BETO) 2015 Project Peer Review Strategic Analysis & Cross-cutting Sustainability March 25 2015 Gbadebo Oladosu...

  8. On mitigating emissions leakage under biofuel policies

    E-Print Network [OSTI]

    Rajagopal, D

    2015-01-01T23:59:59.000Z

    Current Sustainable and Renewable Energy Reports, 1(3):104–Current Sustainable and Renewable Energy Reports, 1(3):104–extreme. Biofuel (and renewable energy) policies are multi-

  9. A Prospective Target for Advanced Biofuel Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to bisabolane, an advanced biofuel with physico-chemical properties similar to D2 diesel. High titer microbial bisabolene production was achieved using Abies grandis...

  10. Development of a performance-based industrial energy efficiency indicator for corn refining plants.

    SciTech Connect (OSTI)

    Boyd, G. A.; Decision and Information Sciences; USEPA

    2006-07-31T23:59:59.000Z

    Organizations that implement strategic energy management programs have the potential to achieve sustained energy savings if the programs are carried out properly. A key opportunity for achieving energy savings that plant managers can take is to determine an appropriate level of energy performance by comparing their plant's performance with that of similar plants in the same industry. Manufacturing facilities can set energy efficiency targets by using performance-based indicators. The U.S. Environmental Protection Agency (EPA), through its ENERGY STAR{reg_sign} program, has been developing plant energy performance indicators (EPIs) to encourage a variety of U.S. industries to use energy more efficiently. This report describes work with the corn refining industry to provide a plant-level indicator of energy efficiency for facilities that produce a variety of products--including corn starch, corn oil, animal feed, corn sweeteners, and ethanol--for the paper, food, beverage, and other industries in the United States. Consideration is given to the role that performance-based indicators play in motivating change; the steps needed to develop indicators, including interacting with an industry to secure adequate data for an indicator; and the actual application and use of an indicator when complete. How indicators are employed in the EPA's efforts to encourage industries to voluntarily improve their use of energy is discussed as well. The report describes the data and statistical methods used to construct the EPI for corn refining plants. Individual equations are presented, as are the instructions for using them in an associated Excel spreadsheet.

  11. Industrial Engineering Industrial Advisory Board

    E-Print Network [OSTI]

    Gelfond, Michael

    Industrial Engineering Industrial Advisory Board (IAB) #12;PURPOSE: The Texas Tech University - Industrial Engineering Industrial Ad- visory Board (IAB) is an association of professionals with a com- mon goal - promoting and developing the Texas Tech Department of Industrial Engineering and its students

  12. Improved Method for Isolation of Microbial RNA from Biofuel Feedstock...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Method for Isolation of Microbial RNA from Biofuel Feedstock for Metatranscriptomics. Improved Method for Isolation of Microbial RNA from Biofuel Feedstock for Metatranscriptomics....

  13. Five Harvesting Technologies are Making Biofuels More Competitive...

    Energy Savers [EERE]

    Five Harvesting Technologies are Making Biofuels More Competitive in the Marketplace Five Harvesting Technologies are Making Biofuels More Competitive in the Marketplace March 17,...

  14. assessing biofuel crop: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    terms of subsidies for biofuel production such that the supply-side responses by fossil fuel producers may more than offset the substitution to biofuels. Analytical results are...

  15. analysis biofuels implications: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    terms of subsidies for biofuel production such that the supply-side responses by fossil fuel producers may more than offset the substitution to biofuels. Analytical results are...

  16. Thermochemical Conversion: Using Heat and Catalysis to Make Biofuels...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Conversion: Using Heat and Catalysis to Make Biofuels and Bioproducts Thermochemical Conversion: Using Heat and Catalysis to Make Biofuels and Bioproducts The Bioenergy...

  17. Microbial who-done-it for biofuels | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    who-done-it for biofuels Microbial who-done-it for biofuels New technique identifies populations within a microbial community responsible for biomass deconstruction The microbial...

  18. Biofuel alternatives to ethanol: pumping the microbial well

    E-Print Network [OSTI]

    Fortman, J.L.

    2011-01-01T23:59:59.000Z

    Biofuel alternatives to ethanol: pumping the microbialproducts, pharmaceuticals, ethanol fuel and more. Even so,producing biofuel. Although ethanol currently dominates the

  19. Biofuel alternatives to ethanol: pumping the microbial well

    E-Print Network [OSTI]

    Fortman, J.L.

    2011-01-01T23:59:59.000Z

    and diesel transport fuels with biofuels by 2010 [4]. Owingtransport systems, the improvement of the resistance of biofuelstransport to consumers. Although discussion of the properties for the biofuels

  20. Biofuel alternatives to ethanol: pumping the microbial well

    E-Print Network [OSTI]

    Fortman, J. L.

    2010-01-01T23:59:59.000Z

    and diesel transport fuels with biofuels by 2010 [4]. Owingtransport systems, the improvement of the resistance of biofuelstransport to consumers. Although discussion of the properties for the biofuels

  1. Sandia National Laboratories: and algae-based biofuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and algae-based biofuels Renewables, Other Energy Issues To Be Focus of Enhanced Sandia-SINTEF Collaboration On May 28, 2014, in Biofuels, CRF, Distribution Grid Integration,...

  2. Second-Generation Biofuels from Multi-Product Biorefineries Combine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Second-Generation Biofuels from Multi-Product Biorefineries Combine Economic Sustainability With Environmental Sustainability Second-Generation Biofuels from Multi-Product...

  3. Cellu-WHAT?-sic: Communicating the Biofuels Message to Local...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cellu-WHAT?-sic: Communicating the Biofuels Message to Local Stakeholders Cellu-WHAT?-sic: Communicating the Biofuels Message to Local Stakeholders Breakout Session 3D-Building...

  4. Bioproducts: Enabling Biofuels and Growing the Bioeconomy | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bioproducts: Enabling Biofuels and Growing the Bioeconomy Bioproducts: Enabling Biofuels and Growing the Bioeconomy Breakout Session 2B-Integration of Supply Chains II:...

  5. Brazil's Biofuels Scenario: What are the Main Drivers Which will...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Brazil's Biofuels Scenario: What are the Main Drivers Which will Shape Investments in the Long Term? Brazil's Biofuels Scenario: What are the Main Drivers Which will Shape...

  6. National Alliance for Advanced Biofuels and Bioproducts Synopsis...

    Office of Environmental Management (EM)

    National Alliance for Advanced Biofuels and Bioproducts Synopsis (NAABB) Final Report National Alliance for Advanced Biofuels and Bioproducts Synopsis (NAABB) Final Report In 2010,...

  7. Algal Biofuels Strategy: Report on Workshop Results and Recent...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biofuels Strategy: Report on Workshop Results and Recent Work Algal Biofuels Strategy: Report on Workshop Results and Recent Work Breakout Session 3B-Integration of Supply Chains...

  8. Five Harvesting Technologies are Making Biofuels More Competitive...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Harvesting Technologies are Making Biofuels More Competitive in the Marketplace Five Harvesting Technologies are Making Biofuels More Competitive in the Marketplace March 17, 2015...

  9. Biofuels for the future-Seth Snyder | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biofuels for the future-Seth Snyder Share Description Argonne researcher Seth Snyder talks about the innovations in biofuel technology. Topic Energy Energy sources Renewable energy...

  10. DOE Announces Webinars on Algal Biofuels Consortium Research...

    Office of Environmental Management (EM)

    Algal Biofuels Consortium Research Results, Solar Energy Maps, and More DOE Announces Webinars on Algal Biofuels Consortium Research Results, Solar Energy Maps, and More June 10,...

  11. California: Cutting-Edge Biofuels Research and Entrepreneurship...

    Office of Environmental Management (EM)

    Cutting-Edge Biofuels Research and Entrepreneurship Provide a Proving Ground California: Cutting-Edge Biofuels Research and Entrepreneurship Provide a Proving Ground April 18, 2013...

  12. Maine biofuels project saves livelihood of town | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    biofuels project saves livelihood of town Maine biofuels project saves livelihood of town January 7, 2010 - 2:21pm Addthis Eric Barendsen Energy Technology Program Specialist,...

  13. Nanotechnology and algae biofuels exhibits open July 26 at the...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanotechnology and algae biofuels exhibits open July 26 Nanotechnology and algae biofuels exhibits open July 26 at the Bradbury Science Museum The Bradbury Science Museum is...

  14. Government policy and corporate strategy in managing risk and uncertainty on technology deployment and development in the regulated market in the UK - a study of biofuels 

    E-Print Network [OSTI]

    Chew, Boon Cheong

    2012-06-26T23:59:59.000Z

    Technological change when a large social technology is under the processes of deployment and development are complex and uncertain. In this dynamic context, risks and uncertainties (R&U) incurred are unavoidable, which ...

  15. Development of laboratory and process sensors to monitor particle size distribution of industrial slurries

    SciTech Connect (OSTI)

    Pendse, H.P.

    1992-10-01T23:59:59.000Z

    In this paper we present a novel measurement technique for monitoring particle size distributions of industrial colloidal slurries based on ultrasonic spectroscopy and mathematical deconvolution. An on-line sensor prototype has been developed and tested extensively in laboratory and production settings using mineral pigment slurries. Evaluation to date shows that the sensor is capable of providing particle size distributions, without any assumptions regarding their functional form, over diameters ranging from 0.1 to 100 micrometers in slurries with particle concentrations of 10 to 50 volume percents. The newly developed on-line sensor allows one to obtain particle size distributions of commonly encountered inorganic pigment slurries under industrial processing conditions without dilution.

  16. China’s Shipbuilding Industry Development: A Boost for Naval Ship Production?

    E-Print Network [OSTI]

    Collins, Gabe

    2010-01-01T23:59:59.000Z

    Jiangsu-based Rongsheng Heavy Industries is us- ing blockShipbuilding Industry. Yantai Raffles Mitsubishi Heavy

  17. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Biomass and Biofuels Industry Development The Executive Task Force on Biomass and Biofuels Development must facilitate the development of a sustainable biomass and biofuels...

  18. Continuation of Research, Commercialization, and Workforce Development in the Polymer/Electronics Recycling Industry

    SciTech Connect (OSTI)

    Mel Croucher; Rakesh Gupta; Hota GangaRao; Darran Cairns; Jinzing Wang; Xiaodong Shi; Jason Linnell; Karen Facemyer; Doug Ritchie; Jeff Tucker

    2009-09-30T23:59:59.000Z

    The MARCEE Project was established to understand the problems associated with electronics recycling and to develop solutions that would allow an electronics recycling industry to emerge. While not all of the activities have been funded by MARCEE, but through private investment, they would not have occurred had the MARCEE Project not been undertaken. The problems tackled and the results obtained using MARCEE funds are discussed in detail in this report.

  19. The Governance of Clean Development Working Paper 011 December 2010

    E-Print Network [OSTI]

    Matthews, Adrian

    Development Working Paper Series The Sustainability of Biofuels: Limits of the Meta-Standard Approach Jolene of Biofuels: Limits of the Meta-Standard Approach Jolene Lin Abstract The promotion of biofuels as a clean criteria that biofuels must fulfill to be counted towards attainment of European Union or national

  20. Producing biofuels using polyketide synthases

    DOE Patents [OSTI]

    Katz, Leonard; Fortman, Jeffrey L; Keasling, Jay D

    2013-04-16T23:59:59.000Z

    The present invention provides for a non-naturally occurring polyketide synthase (PKS) capable of synthesizing a carboxylic acid or a lactone, and a composition such that a carboxylic acid or lactone is included. The carboxylic acid or lactone, or derivative thereof, is useful as a biofuel. The present invention also provides for a recombinant nucleic acid or vector that encodes such a PKS, and host cells which also have such a recombinant nucleic acid or vector. The present invention also provides for a method of producing such carboxylic acids or lactones using such a PKS.

  1. Acciona Biofuels | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapersWindey Wind6:00-06:00About OpenEIAcciona Biofuels Place:

  2. Shirke Biofuels | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with form HistoryRistma AGShandongShirke Biofuels Jump to: navigation, search

  3. Keystone Biofuels | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtelInteriasIowa:Washington: EnergyFacility |Keystone Biofuels Jump to:

  4. Piedmont Biofuels | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County, Nebraska: Energy ResourcesPicket Lake, Minnesota:Piedmont Biofuels Jump to:

  5. Biofuels Digest | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: EnergyAvignon,Belcher HomesLyons Biomass FacilityBioethanolBiofuels

  6. Biofuels and Renewable Energy Page

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMForms About Batteries Batteries An errorA Mostbio BioFuels Renewable

  7. Mead Biofuel | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLu an Group JumpNewMassachusettsMayo PowerMcLeodMead Biofuel Jump

  8. Mint Biofuels | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLu anMicrogreen Polymers Inc JumpFinancingMinnesotaMint Biofuels

  9. Border Biofuels | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass ConversionsSouthby 2022Illinois: Energy Resources JumpBoone,Biofuels Jump

  10. Infrastructure, human resources, international cooperation, research and development, environment and health, societal issues, industrial innovation, Infrastructure, human resources, international cooperation, research and development, environment and hea

    E-Print Network [OSTI]

    Zürich, Universität

    Infrastructure, human resources, international cooperation, research and development, environment and health, societal issues, industrial innovation, Infrastructure, human resources, international Infrastructure, human resources, international cooperation, research and development, environment and health

  11. Industrial advanced turbine systems: Development and demonstration. Quarterly report, July 1--September 30, 1997

    SciTech Connect (OSTI)

    NONE

    1997-12-31T23:59:59.000Z

    The US DOE has initiated a program for advanced turbine systems (ATS) that will serve industrial power generation markets. The ATS will foster (1) early market penetration that enhances the global competitiveness of US industry, (2) public health benefits resulting from reduced exhaust gas emissions of target pollutants, (3) reduced cost of power used in the energy-intensive industrial marketplace and (4) the retention and expansion of the skilled US technology base required for the design, development and maintenance of state-of-the-art advanced turbine products. The Industrial ATS Development and Demonstration program is a multi-phased effort. Solar Turbines Incorporated (Solar) has participated in Phases 1 and 2 of the program. On September 14, 1995 Solar was awarded a Cooperative Agreement for Phases 3 and 4 of the program. Phase 3 of the work is separated into two subphases: Phase 3A entails Component Design and Development; Phase 3B will involve Integrated Subsystem Testing. Phase 4 will cover Host Site Testing. Forecasts call for completion of the program within budget as originally estimated. Scheduled completion is forecasted to be approximately 3 years late to original plan. Significant efforts were spent this quarter to reforecast and control expenditures due to Solar`s and DOE`s current funding and resource constraints. Selective reductions and delays in program activities were identified and implemented. Although these actions will increase technical risk and the attainment of stretch goals, it is not anticipated that the schedule for initial test units or the attainment of basic program performance requirements will be impacted. As of the end of the reporting period work on the program is 22.80% complete based upon milestones completed. This measurement is considered quite conservative as numerous drawings on the Mercury 50 are near release. Variance information is provided in Section 4.0-Program Management.

  12. Development of advanced magnetic resonance sensor for industrial applications. Final report

    SciTech Connect (OSTI)

    De Los Santos, A.

    1997-06-01T23:59:59.000Z

    Southwest Research Institute (SwRI) and various subcontractors, in a cooperative agreement with the DOE, have developed and tested an advanced magnetic resonance (MR) sensor for several industrial applications and made various market surveys. The original goal of the program was to develop an advanced moisture sensor to allow more precise and rapid control of drying processes so that energy and/or product would not be wasted. Over the course of the program, it was shown that energy savings were achievable but in many processes the return in investment did not justify the cost of a magnetic resonance sensor. However, in many processes, particularly chemical, petrochemical, paper and others, the return in investment can be very high as to easily justify the cost of a magnetic resonance sensor. In these industries, substantial improvements in product yield, quality, and efficiency in production can cause substantial energy savings and reductions in product wastage with substantial environmental effects. The initial applications selected for this program included measurement of corn gluten at three different points and corn germ at one point in an American Maize corn processing plant. During the initial phases (I and II) of this program, SwRI developed a prototype advanced moisture sensor utilizing NMR technology capable of accurately and reliably measuring moisture in industrial applications and tested the sensor in the laboratory under conditions simulating on-line products in the corn wet milling industry. The objective of Phase III was to test the prototype sensor in the plant environment to determine robustness, reliability and long term stability. Meeting these objectives would permit extended field testing to improve the statistical database used to calibrate the sensor and subject the sensor to true variations in operating conditions encountered in the process rather than those which could only be simulated in the laboratory.

  13. Research and development of industrial drying concepts using a superheated steam atmosphere with exhaust recompression

    SciTech Connect (OSTI)

    Dibella, F.A.; Doyle, E.F.; Becker, F.E.; Lang, R.

    1991-01-01T23:59:59.000Z

    For the thermal drying processes where water is to be removed via evaporation from the feedstock, attempts have been made to reduce the consumption of energy using exhaust waste heat recovery techniques, improved dryer designs, or even the deployment of advanced mechanical dewatering techniques. Despite these efforts, it is obvious that a large amount of thermal energy is often still lost if the latent heat of evaporation from the evaporated water cannot be recovered and/or in some way be utilized as direct heat input into the dryer. Tecogen Inc. is conducting research and development on an industrial drying concept. The concept utilizes a superheated steam drying atmosphere with exhaust steam recompression to recover the latent heat in the exhaust that would otherwise be lost. This approach has the potential to 55% of the energy required by a conventional air dryer. Work on Phase I: Feasibility Investigation, has been completed and the results of this work are given in this Phase I Final Report. Two designs are described for steam drying systems, one directly heated and one indirectly heated. The work on Phase I of the program also concentrated on identifying the most significant industrial applications for this superheated steam drying concept. The work consisted of evaluating information gathered from a literature search, a survey of industrial dryer manufacturers product brochures, and material provided by a major industrial dryer manufacturer. Results from the six tasks in Phase I are given. The tasks were: industrial applicability study; exploration of system configurations; designing system elements; laboratory testing; energy savings analysis; and program management and reporting. Reports on the first 5 tasks have been processed separately for inclusion on the data base.

  14. World Biofuels Production Potential Understanding the Challenges to Meeting the U.S. Renewable Fuel Standard

    SciTech Connect (OSTI)

    Sastri, B.; Lee, A.

    2008-09-15T23:59:59.000Z

    This study by the U.S. Department of Energy (DOE) estimates the worldwide potential to produce biofuels including biofuels for export. It was undertaken to improve our understanding of the potential for imported biofuels to satisfy the requirements of Title II of the 2007 Energy Independence and Security Act (EISA) in the coming decades. Many other countries biofuels production and policies are expanding as rapidly as ours. Therefore, we modeled a detailed and up-to-date representation of the amount of biofuel feedstocks that are being and can be grown, current and future biofuels production capacity, and other factors relevant to the economic competitiveness of worldwide biofuels production, use, and trade. The Oak Ridge National Laboratory (ORNL) identified and prepared feedstock data for countries that were likely to be significant exporters of biofuels to the U.S. The National Renewable Energy Laboratory (NREL) calculated conversion costs by conducting material flow analyses and technology assessments on biofuels technologies. Brookhaven National Laboratory (BNL) integrated the country specific feedstock estimates and conversion costs into the global Energy Technology Perspectives (ETP) MARKAL (MARKet ALlocation) model. The model uses least-cost optimization to project the future state of the global energy system in five year increments. World biofuels production was assessed over the 2010 to 2030 timeframe using scenarios covering a range U.S. policies (tax credits, tariffs, and regulations), as well as oil prices, feedstock availability, and a global CO{sub 2} price. All scenarios include the full implementation of existing U.S. and selected other countries biofuels policies (Table 4). For the U.S., the most important policy is the EISA Title II Renewable Fuel Standard (RFS). It progressively increases the required volumes of renewable fuel used in motor vehicles (Appendix B). The RFS requires 36 billion (B) gallons (gal) per year of renewable fuels by 2022. Within the mandate, amounts of advanced biofuels, including biomass-based diesel and cellulosic biofuels, are required beginning in 2009. Imported renewable fuels are also eligible for the RFS. Another key U.S. policy is the $1.01 per gal tax credit for producers of cellulosic biofuels enacted as part of the 2008 Farm Bill. This credit, along with the DOE's research, development and demonstration (RD&D) programs, are assumed to enable the rapid expansion of U.S. and global cellulosic biofuels production needed for the U.S. to approach the 2022 RFS goal. While the Environmental Protection Agency (EPA) has yet to issue RFS rules to determine which fuels would meet the greenhouse gas (GHG) reduction and land use restrictions specified in EISA, we assume that cellulosic ethanol, biomass-to-liquid fuels (BTL), sugar-derived ethanol, and fatty acid methyl ester biodiesel would all meet the EISA advanced biofuel requirements. We also assume that enough U.S. corn ethanol would meet EISA's biofuel requirements or otherwise be grandfathered under EISA to reach 15 B gal per year.

  15. EPA and RFS2: Market Impacts of Biofuel Mandate

    E-Print Network [OSTI]

    Noble, James S.

    July 2012 EPA and RFS2: Market Impacts of Biofuel Mandate Waiver Options The EPA is required by law to implement biofuel use mandates and it has proposed to waive the cellulosic biofuels other than cellulosic biofuels. If other mandates are decreased, then that imperative to replace

  16. Creating Markets for Green Biofuels: Measuring and improving environmental performance

    E-Print Network [OSTI]

    Turner, Brian T.; Plevin, Richard J.; O'Hare, Michael; Farrell, Alexander E.

    2007-01-01T23:59:59.000Z

    biofuel production processes, the ability to measure environmental performance, and environmental goals all advance.

  17. RESEARCH ARTICLE A model for improving microbial biofuel production using

    E-Print Network [OSTI]

    Dunlop, Mary

    RESEARCH ARTICLE A model for improving microbial biofuel production using a synthetic feedback loop be compared. We propose a model for microbial biofuel production where a synthetic control system is used to increase cell viability and biofuel yields. Although microbes can be engineered to produce biofuels

  18. Biofuels, biodiversity, and people: Understanding the conflicts and finding opportunities

    E-Print Network [OSTI]

    Review Biofuels, biodiversity, and people: Understanding the conflicts and finding opportunities interests in biofuels. Biofuels are viewed by many policy makers as a key to reducing reliance on foreign concerns, and by reports questioning the rationale that biofuels substantially reduce carbon emissions. We

  19. Special Seminar Realizing the Full Potential of Algal Biofuels

    E-Print Network [OSTI]

    Garfunkel, Eric

    of Algal Biofuels Dr. Ronald R. Chance Senior Scientific Advisor, Physical Sciences Algenol Biofuels Fort: Although biofuels have great potential as lower-carbon-footprint, drop-in fuels for existing transportation, economic viability, and achievable reduction in carbon footprint. A cyanobacteria-based biofuels system

  20. Growing the renewable chemicals and advanced biofuels cluster in MN

    E-Print Network [OSTI]

    Levinson, David M.

    Growing the renewable chemicals and advanced biofuels cluster in MN #12;Renewable Chemical Value% Reduction 60% Reduction 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% Gasoline Corn Ethanol Advanced Biofuel Cellulosic Biofuel Corn Ethanol 20% GHG Reduction Compared to gasoline: Advanced Biofuel 50% GHG Reduction e

  1. Scrap biofuels targets and focus on improved public transport

    E-Print Network [OSTI]

    Scrap biofuels targets and focus on improved public transport Friends of the Earth's biofuels campaigner Kenneth Richter argues that biofuel targets are a distraction from tried-and-tested ways to biofuel crops such as rapeseed have changed as more research has been done into their impact

  2. US Biofuels Baseline and impact of extending the

    E-Print Network [OSTI]

    Noble, James S.

    June 2011 US Biofuels Baseline and impact of extending the $0.45 ethanol blenders baseline projections for agricultural and biofuel markets.1 That baseline assumed current biofuel policy for cellulosic biofuels was assumed to expire at the end of 2012. This report compares a slightly modified

  3. VIEWLS Final recommendations report Shift Gear to Biofuels

    E-Print Network [OSTI]

    VIEWLS Final recommendations report 1 Shift Gear to Biofuels Results and recommendations from the VIEWLS project November 2005 #12;Shift Gear to Biofuels Final report of the VIEWLS project 2 #12;Shift Gear to Biofuels Final report of the VIEWLS project 3 Preface Biofuels are fuels made from

  4. A case study of industrial building energy performance in a cold climate region in a developing country

    E-Print Network [OSTI]

    Chen, Qingyan "Yan"

    1 A case study of industrial building energy performance in a cold climate region in a developing to analyze industrial building energy performance. A lack of communication, cultural differences in design of methods to evaluate building energy use, air leakage, condensation, thermal insulation, and indoor air

  5. Europe report discloses biofuels' embarrassing secret

    SciTech Connect (OSTI)

    NONE

    2010-06-15T23:59:59.000Z

    According to a recently released European Union (EU) internal document, biofuels can produce up to four times more greenhouse gas emissions than the conventional diesel or gasoline they are intended to replace. Conventional gasoline and diesel emit around 85 kilograms of CO2-equivalent per gigajoule of energy. For biofuels to make any sense, they have to beat this by a margin, or else why bother given all the negative externalities associated with growing biofuels? The EU study suggests that the carbon footprint of typical European biofuels is in the range of 100--150 and North American soybeans score around 340 -- at least four times higher than conventional transportation fuels. By contrast, Latin American sugar cane and bioethanol from palm oil from Southeast Asia, is relatively better at 82 and 74 kilograms per gigajoule, respectively. But even in these cases, it is far from clear if biofuels are superior to conventional fuels due to the many externalities associated with biofuels, including clearing of virgin forests and loss of habitat and biodiversity. Moreover, biofuel production in many regions competes directly with food production, resulting in higher food costs.

  6. Isolation, Preliminary Characterization and Preliminary Assessment of Scale-Up Potential of Photosynthetic Microalgae for the Production of Both Biofuels and Bio-Active Molecules in the U.S. and Canada: Cooperative Research and Development Final Report, CRADA Number CRD-10-372

    SciTech Connect (OSTI)

    Pienkos, P.

    2012-09-01T23:59:59.000Z

    Combustion flue gases are a major contributor to carbon dioxide emissions into the Earth's atmosphere, a factor that has been linked to the possible global climate change. It is, therefore, critical to begin thinking seriously about ways to reduce this influx into the atmosphere. Using carbon dioxide from fossil fuel combustion as a feedstock for the growth, photosynthetic microorganisms can provide a large sink for carbon assimilation as well as a feedstock for the production of significant levels of biofuels. Combining microalgal farming with fossil fuel energy production has great potential to diminish carbon dioxide releases into the atmosphere, as well as contribute to the production of biofuels (e.g., biodiesel, renewable diesel and gasoline and jet fuel) as well as valuable co-products such as animal feeds and green chemicals. CO2 capture may be a regulatory requirement in future new coal or natural gas power plants and will almost certainly become an opportunity for commerce, the results of such studies may provide industries in the US and Canada with both regulatory relief and business opportunities as well as the ability to meet environmental and regulatory requirements, and to produce large volumes of fuels and co-products.

  7. As corn-based biofuels reach their practical limits, advanced algae-based biofuels are poised to supply

    E-Print Network [OSTI]

    Reisslein, Martin

    SEMTE abstract As corn-based biofuels reach their practical limits, advanced algae-based biofuels of Energy, General Electric, Algenol Biofuels, and Southern Company. Currently a post-doctoral fellow working for Algenol Biofuels, Dr. Lively is expanding his expertise in gas and liquid separations

  8. Global Economic Effects of USA Biofuel Policy and the Potential Contribution from Advanced Biofuels

    SciTech Connect (OSTI)

    Gbadebo Oladosu; Keith Kline; Paul Leiby; Rocio Uria-Martinez; Maggie Davis; Mark Downing; Laurence Eaton

    2012-01-01T23:59:59.000Z

    This study evaluates the global economic effects of the USA renewable fuel standards (RFS2), and the potential contribution from advanced biofuels. Our simulation results imply that these mandates lead to an increase of 0.21 percent in the global gross domestic product (GDP) in 2022, including an increase of 0.8 percent in the USA and 0.02 percent in the rest of the world (ROW); relative to our baseline, no-RFS scenario. The incremental contributions to GDP from advanced biofuels in 2022 are estimated at 0.41 percent and 0.04 percent in the USA and ROW, respectively. Although production costs of advanced biofuels are higher than for conventional biofuels in our model, their economic benefits result from reductions in oil use, and their smaller impacts on food markets compared with conventional biofuels. Thus, the USA advanced biofuels targets are expected to have positive economic benefits.

  9. EMSL Research and Capability Development Proposals Development...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Development of Live and LC-NMR Microbial Metabolomics Methods for Systems Biology Studies: A Test Case Relevant to Biofuels Production Project start date: Spring 2009 EMSL Lead...

  10. Opportunities for industry participation in DOE`s environmental management technology development program

    SciTech Connect (OSTI)

    Bedick, R.C. [USDOE Morgantown Energy Technology Center, WV (United States); Walker, J.S. [USDOE Assistant Secretary for Environmental Management, Washington, DC (United States). Office of Science and Technology

    1996-09-01T23:59:59.000Z

    METC has managed about 85 research, development, and demonstration projects on behalf of DOE-EM`s Office of Science and Technology that include those in each of the four major environmental remediation and waste management problem areas: subsurface contaminants (radionuclides, heavy metals, dense nonaqueous phase liquids); decontamination and decommissioning of facilities; high-level waste tank remediation; and mixed waste characterization/treament/disposal. All projects within the Industry Programs are phased or have optional tasks at specific go/no-go decision points, allowing DOE to make investment decisions at various points in the technology development cycle to ensure that we are meeting the technology development goals and the needs of the customer or end-user. This decision making process is formalized in a Technology Investment Decision Model. A brief summary is given of R&D requirements (technology needs) in each of the above-mentioned 4 problem areas.

  11. Traffic lights for crop-based biofuels

    E-Print Network [OSTI]

    Phalan, Ben

    Traffic lights for crop-based biofuels Ben Phalan Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK Email: btp22@cam.ac.uk Nobody likes to have limits put on their freedom. However, in all areas of life... of having to slow down is an acceptable price to pay if it reduces the number of pedestrians killed and injured. How is this relevant to biofuels? There are many different kinds of biofuels, including some with considerable potential to generate cleaner...

  12. Energy use and carbon dioxide emissions in energy-intensive industries in key developing countries

    E-Print Network [OSTI]

    Price, Lynn; Worrell, Ernst; Phylipsen, Dian

    1999-01-01T23:59:59.000Z

    Steel Industry in India,” Ironmaking and Steelmaking, 23(4):and Future Trends,” Ironmaking and Steelmaking World Energymanufacturing industries. Ironmaking. During the ironmaking

  13. Agave: a biofuel feedstock for arid and semi-arid environments

    SciTech Connect (OSTI)

    Gross, Stephen; Martin, Jeffrey; Simpson, June; Wang, Zhong; Visel, Axel

    2011-05-31T23:59:59.000Z

    Efficient production of plant-based, lignocellulosic biofuels relies upon continued improvement of existing biofuel feedstock species, as well as the introduction of newfeedstocks capable of growing on marginal lands to avoid conflicts with existing food production and minimize use of water and nitrogen resources. To this end, specieswithin the plant genus Agave have recently been proposed as new biofuel feedstocks. Many Agave species are adapted to hot and arid environments generally unsuitable forfood production, yet have biomass productivity rates comparable to other second-generation biofuel feedstocks such as switchgrass and Miscanthus. Agavesachieve remarkable heat tolerance and water use efficiency in part through a Crassulacean Acid Metabolism (CAM) mode of photosynthesis, but the genes andregulatory pathways enabling CAM and thermotolerance in agaves remain poorly understood. We seek to accelerate the development of agave as a new biofuelfeedstock through genomic approaches using massively-parallel sequencing technologies. First, we plan to sequence the transcriptome of A. tequilana to provide adatabase of protein-coding genes to the agave research community. Second, we will compare transcriptome-wide gene expression of agaves under different environmentalconditions in order to understand genetic pathways controlling CAM, water use efficiency, and thermotolerance. Finally, we aim to compare the transcriptome of A.tequilana with that of other Agave species to gain further insight into molecular mechanisms underlying traits desirable for biofuel feedstocks. These genomicapproaches will provide sequence and gene expression information critical to the breeding and domestication of Agave species suitable for biofuel production.

  14. Control and Optimization of Light Transfer in Photobioreactors Used for Biofuel Production

    E-Print Network [OSTI]

    Kandilian, Razmig

    2014-01-01T23:59:59.000Z

    History of biofuels in the UnitedCO 2 and producing biofuels and biomass. . . . . . .Reed, “National Algal Biofuels Technology Roadmap”, Tech.

  15. Drought-tolerant Biofuel Crops could be a Critical Hedge for Biorefineries

    E-Print Network [OSTI]

    Morrow, III, William R.

    2013-01-01T23:59:59.000Z

    Criteria for Sustainable Biofuel Production, Version 2.0.sustainability concepts in biofuel supply chain management:of switchgrass-for-biofuel systems. Biomass & Bioenergy,

  16. A model for improving microbial biofuel production using a synthetic feedback loop

    E-Print Network [OSTI]

    Dunlop, Mary

    2012-01-01T23:59:59.000Z

    for improving microbial biofuel production using a synthetica model for microbial biofuel production where a syntheticcell viability and biofuel yields. Although microbes can be

  17. Consolidated Bio-Processing of Cellulosic Biomass for Efficient Biofuel Production Using Yeast Consortium

    E-Print Network [OSTI]

    Goyal, Garima

    2011-01-01T23:59:59.000Z

    Biomass for Efficient Biofuel Production Using YeastBiomass for Efficient Biofuel Production Using YeastConsortium for efficient biofuel production: A New Candidate

  18. Structure and dynamics of the microbial communities underlying the carboxylate platform for biofuel production

    E-Print Network [OSTI]

    Hollister, E.B.

    2012-01-01T23:59:59.000Z

    carboxylate platform for biofuel production E.B. Hollisterbiomass conversion and biofuel production. Keywords: mixedbiomass conversion and biofuel production. Materials and

  19. Switchgrass is a promising, high-yielding crop for California biofuel

    E-Print Network [OSTI]

    2011-01-01T23:59:59.000Z

    both as forage and as a biofuel crop, switchgrass may bepanic grass grown as a biofuel in southern England. Bioresfor switchgrass for biofuel systems. Biomass Bioenergy 30:

  20. Comparative genomics of xylose-fermenting fungi for enhanced biofuel production

    E-Print Network [OSTI]

    Wohlbach, Dana J.

    2011-01-01T23:59:59.000Z

    fermenting fungi for enhanced biofuel production Dana J.fermenting fungi for enhanced biofuel production Dana J.fermenting fungi for enhanced biofuel production Dana J.

  1. Construction of a rice glycoside hydrolase phylogenomic database and identification of targets for biofuel research.

    E-Print Network [OSTI]

    Sharma, Rita; Cao, Peijian; Jung, Ki-Hong; Sharma, Manoj K; Ronald, Pamela C

    2013-01-01T23:59:59.000Z

    fication of targets for biofuel research. Front. Plant Sci.identification of targets for biofuel research Rita Sharmawall modification. Keywords: biofuel, cell wall, database,

  2. For switchgrass cultivated as biofuel in California, invasiveness limited by several steps

    E-Print Network [OSTI]

    DiTomaso, Joseph M; Barney, Jacob N; Mann, J Jeremiah; Kyser, Guy

    2013-01-01T23:59:59.000Z

    United States. In selecting biofuel crops, a balance must bethe degree of risk that a biofuel crop (including cultivarsthe risk potential of biofuel crops: qualitative and

  3. The in vitro characterization of heterologously expressed enzymes to inform in vivo biofuel production optimization

    E-Print Network [OSTI]

    Garcia, David Ernest

    2013-01-01T23:59:59.000Z

    enzymes to inform in vivo biofuel production optimization Byenzymes to inform in vivo biofuel production optimization byE & Keasling JD (2008) Biofuel alternatives to ethanol:

  4. Carbon Accounting and Economic Model Uncertainty of Emissions from Biofuels-Induced Land Use Change

    E-Print Network [OSTI]

    Plevin, Richard J; Beckman, Jayson; Golub, Alla A; Witcover, Julie; O'??Hare, Michael

    2015-01-01T23:59:59.000Z

    Impacts of United States Biofuel Policies: The Importance ofcoproduct substitution in the biofuel era. Agribusiness 27 (CGE: assessing the EU biofuel mandates with the MIRAGE-BioF

  5. Control and Optimization of Light Transfer in Photobioreactors Used for Biofuel Production

    E-Print Network [OSTI]

    Kandilian, Razmig

    2014-01-01T23:59:59.000Z

    sp. used for fixation and biofuel produc- tion”, Journal ofas feedstocks for biofuel production: per- spectives andPhotobioreactors Used for Biofuel Production A dissertation

  6. A model for improving microbial biofuel production using a synthetic feedback loop

    E-Print Network [OSTI]

    Dunlop, Mary J.; Keasling, Jay D.; Mukhopadhyay, Aindrila

    2010-01-01T23:59:59.000Z

    Steen E, Keasling JD (2008) Biofuel alternatives to ethanol:gene expression. Microbial biofuel production is one areaet al. 2008). Typical biofuel production processes start

  7. Manipulation of the Carbon Storage Regulator System for Metabolite Remodeling and Biofuel Production in Escherichia coli

    E-Print Network [OSTI]

    2012-01-01T23:59:59.000Z

    metabolite remodeling and biofuel production in Escherichiathrough engineered biofuel pathways. A) Overexpression ofPP, Keasling JD: Advanced biofuel production in microbes.

  8. Essays on the Economics of Climate Change, Biofuel and Food Prices

    E-Print Network [OSTI]

    Seguin, Charles

    2012-01-01T23:59:59.000Z

    investment into second generation biofuels, and the amountinvestment in second generation biofuels and GHG abatement.investment into second generation biofuels. Because of the

  9. Essays on the Economics of Climate Change, Biofuel and Food Prices

    E-Print Network [OSTI]

    Seguin, Charles

    2012-01-01T23:59:59.000Z

    1999. K. Collins. The role of biofuels and other factors inan underproduction of biofuels, but when it does, secondis the promotion of biofuels as alternatives to fossil

  10. Measuring and moderating the water resource impact of biofuel production and trade

    E-Print Network [OSTI]

    Fingerman, Kevin Robert

    2012-01-01T23:59:59.000Z

    Indirect  emissions  from  biofuels:  How   important?"  study  of  the  EU  biofuels  mandate.  Washington,  DC,  in  India  and   Sweden."  Biofuels,  Bioproducts  and  

  11. A model for improving microbial biofuel production using a synthetic feedback loop

    E-Print Network [OSTI]

    Dunlop, Mary J.; Keasling, Jay D.; Mukhopadhyay, Aindrila

    2010-01-01T23:59:59.000Z

    potential for great impact. Biofuels are a promising form ofbe engineered to produce biofuels, the fuels are often toxicKeywords Feedback control Á Biofuels Á Biological control

  12. Carbon Accounting and Economic Model Uncertainty of Emissions from Biofuels-Induced Land Use Change

    E-Print Network [OSTI]

    Plevin, Richard J; Beckman, Jayson; Golub, Alla A; Witcover, Julie; O'??Hare, Michael

    2015-01-01T23:59:59.000Z

    of U.S. Croplands for Biofuels Increases Greenhouse GasesLife-Cycle Assessment of Biofuels. Environmental Science &cellulosic ethanol. Biotechnol Biofuels 6 (1), 51. Elliott,

  13. Versatile microbial surface-display for environmental remediation and biofuels production

    E-Print Network [OSTI]

    Hawkes, Daniel S

    2008-01-01T23:59:59.000Z

    engineering microbes for biofuels production. Science 315,xenobiotics remediation and biofuels production. TargetP. putida JS444 E. coli Biofuels Production Cellobiose

  14. Metabolic engineering of microorganisms for biofuels production: from bugs to synthetic biology to fuels

    E-Print Network [OSTI]

    Kuk Lee, Sung

    2010-01-01T23:59:59.000Z

    of microbial hosts for biofuels production. Metab Eng 2008,delivers next-generation biofuels. Nat Biotechnol 27.furfural (HMF). Biotechnol Biofuels 2008, 1:12. 40. Trinh

  15. Modeling Poplar Growth as a Short Rotation Woody Crop for Biofuels

    E-Print Network [OSTI]

    Hart, Quinn James

    2014-01-01T23:59:59.000Z

    a Short Rotation Woody Crop for Biofuels Q. J. Hart 1,? , O.for cellulosic derived biofuels. The ability to accuratelycrops for bioenergy and biofuels applications. In vitro

  16. Algae as a Feedstock for Transportation Fuels. The Future of Biofuels?

    SciTech Connect (OSTI)

    McGill, Ralph [Sentech, Inc., Fuels, Engines, and Emissions Consulting, Knoxville, TN (United States)

    2008-05-15T23:59:59.000Z

    Events in world energy markets over the past several years have prompted many new technical developments as well as political support for alternative transportation fuels, especially those that are renewable. We have seen dramatic rises in the demand for and production of fuel ethanol from sugar cane and corn and biodiesel from vegetable oils. The quantities of these fuels being used continue to rise dramatically, and their use is helping to create a political climate for doing even more. But, the quantities are still far too small to stem the tide of rising crude prices worldwide. In fact, the use of some traditional crops (corn, sugar, soy, etc.) in making fuels instead of food is apparently beginning to impact the cost of food worldwide. Thus, there is considerable interest in developing alternative biofuel feedstocks for use in making fuels -- feedstocks that are not used in the food industries. Of course, we know that there is a lot of work in developing cellulosic-based ethanol that would be made from woody biomass. Process development is the critical path for this option, and the breakthrough in reducing the cost of the process has been elusive thus far. Making biodiesel from vegetable oils is a well-developed and inexpensive process, but to date there have been few reasonable alternatives for making biodiesel, although advanced processes such as gasification of biomass remain an option.

  17. Industrial advanced turbine systems: Development and demonstration. Quarterly report, October 1--December 31, 1997

    SciTech Connect (OSTI)

    NONE

    1998-06-01T23:59:59.000Z

    The US DOE has initiated a program for advanced turbine systems (ATS) that will serve industrial power generation markets. The ATS will provide ultra-high efficiency, environmental superiority, and cost competitiveness. The Industrial ATS Development and Demonstration program is a multi-phased effort. Solar Turbines Incorporated (Solar) has participated in Phases 1 and 2 of the program. On September 14, 1995 Solar was awarded a Cooperative Agreement for Phases 3 and 4 of the program. Phase 3 of the work is separated into two subphases: Phase 3A entails Component Design and Development; Phase 3B will involve Integrated Subsystem Testing. Phase 4 will cover Host Site Testing. Forecasts call for completion of the program within budget as originally estimated. Scheduled completion is forecasted to be approximately 3 years late to original plan. This delay has been intentionally planned in order to better match program tasks to the anticipated availability of DOE funds. To ensure the timely realization of DOE/Solar program goals, the development schedule for the smaller system (Mercury 50) and enabling technologies has been maintained, and commissioning of the field test unit is scheduled for May of 2000. As of the end of the reporting period work on the program is 24.7% complete (22.8% last quarter). Work on the Mercury 50 development and ATS technology development portions of the program (WBS 10000 et seq) is 41.6% complete. Although a great amount of work occurred in the quarter, a significant amount of this work entailed the revision and rerelease of several Mercury 50 drawings. Estimates of percent compete are based upon milestones completed. In order to maintain objectivity in assessing schedule progress, Solar uses a 0/100 percent complete assumption for milestones rather than subjectively estimating progress toward completion of milestones. Cost and schedule variation information is provided in Section 4.0 Program Management.

  18. Technical Feasibility Study on Biofuels Production from Pyrolysis of Nannochloropsis oculata and Algal Bio-oil Upgrading

    E-Print Network [OSTI]

    Maguyon, Monet

    2013-12-02T23:59:59.000Z

    ]. However, studies on suitability of various biomass feedstocks and development of efficient and carbon-neutral technologies for biomass-to- biofuel conversion may be required to meet this demand. Biomass for fuel production ranges from food and oil crops...

  19. NREL: Biomass Research - Microalgal Biofuels Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Microalgal Biofuels Projects A photo of a man in a white lab coat holding a glass flask that contains a small amount of clear green liquid. An NREL researcher analyzes algae...

  20. Overview of Governor's Biofuels Coalition and Updates

    Broader source: Energy.gov [DOE]

    At the August 7, 2008 quarterly joint Web conference of DOE's Biomass and Clean Cities programs, Stacey Simms (Colorado Governor's Energy Office) provided an update on Biofuels in Colorado.