National Library of Energy BETA

Sample records for biofuels diesel fuel

  1. New Generation Biofuels Holdings Inc formerly H2Diesel | Open...

    Open Energy Info (EERE)

    Generation Biofuels Holdings Inc formerly H2Diesel Jump to: navigation, search Name: New Generation Biofuels Holdings Inc. (formerly H2Diesel) Place: Lake Mary, Florida Zip: 32746...

  2. Reformulated diesel fuel

    DOE Patents [OSTI]

    McAdams, Hiramie T [Carrollton, IL; Crawford, Robert W [Tucson, AZ; Hadder, Gerald R [Oak Ridge, TN; McNutt, Barry D [Arlington, VA

    2006-03-28

    Reformulated diesel fuels for automotive diesel engines which meet the requirements of ASTM 975-02 and provide significantly reduced emissions of nitrogen oxides (NO.sub.x) and particulate matter (PM) relative to commercially available diesel fuels.

  3. Low emissions diesel fuel

    DOE Patents [OSTI]

    Compere, A.L.; Griffith, W.L.; Dorsey, G.F.; West, B.H.

    1998-05-05

    A method and matter of composition for controlling NO{sub x} emissions from existing diesel engines. The method is achieved by adding a small amount of material to the diesel fuel to decrease the amount of NO{sub x} produced during combustion. Specifically, small amounts, less than about 1%, of urea or a triazine compound (methylol melamines) are added to diesel fuel. Because urea and triazine compounds are generally insoluble in diesel fuel, microemulsion technology is used to suspend or dissolve the urea or triazine compound in the diesel fuel. A typical fuel formulation includes 5% t-butyl alcohol, 4.5% water, 0.5% urea or triazine compound, 9% oleic acid, and 1% ethanolamine. The subject invention provides improved emissions in heavy diesel engines without the need for major modifications.

  4. Low emissions diesel fuel

    DOE Patents [OSTI]

    Compere, Alicia L.; Griffith, William L.; Dorsey, George F.; West, Brian H.

    1998-01-01

    A method and matter of composition for controlling NO.sub.x emissions from existing diesel engines. The method is achieved by adding a small amount of material to the diesel fuel to decrease the amount of NO.sub.x produced during combustion. Specifically, small amounts, less than about 1%, of urea or a triazine compound (methylol melamines) are added to diesel fuel. Because urea and triazine compounds are generally insoluble in diesel fuel, microemulsion technology is used to suspend or dissolve the urea or triazine compound in the diesel fuel. A typical fuel formulation includes 5% t-butyl alcohol, 4.5% water, 0.5% urea or triazine compound, 9% oleic acid, and 1% ethanolamine. The subject invention provides improved emissions in heavy diesel engines without the need for major modifications.

  5. Gasoline and Diesel Fuel Update

    Gasoline and Diesel Fuel Update (EIA)

    On-Highway Diesel Fuel Prices & Coefficients of Variation Report

  6. DIESEL FUEL LUBRICATION

    SciTech Connect (OSTI)

    Qu, Jun

    2012-01-01

    The diesel fuel injector and pump systems contain many sliding interfaces that rely for lubrication upon the fuels. The combination of the poor fuel lubricity and extremely tight geometric clearance between the plunger and bore makes the diesel fuel injector vulnerable to scuffing damage that severely limits the engine life. In order to meet the upcoming stricter diesel emission regulations and higher engine efficiency requirements, further fuel refinements that will result in even lower fuel lubricity due to the removal of essential lubricating compounds, more stringent operation conditions, and tighter geometric clearances are needed. These are expected to increase the scuffing and wear vulnerability of the diesel fuel injection and pump systems. In this chapter, two approaches are discussed to address this issue: (1) increasing fuel lubricity by introducing effective lubricity additives or alternative fuels, such as biodiesel, and (2) improving the fuel injector scuffing-resistance by using advanced materials and/or surface engineering processes. The developing status of the fuel modification approach is reviewed to cover topics including fuel lubricity origins, lubricity improvers, alternative fuels, and standard fuel lubricity tests. The discussion of the materials approach is focused on the methodology development for detection of the onset of scuffing and evaluation of the material scuffing characteristics.

  7. Tarryn Miller: Fueling biofuel's promise

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tarryn Miller: Fueling biofuel's promise Tarryn Miller: Fueling biofuel's promise Student intern driven to develop cyanobacteria as viable carbon-neutral energy source. August 27, 2013 Tarryn Miller: Fueling biofuel's promise Student intern driven to develop cyanobacteria as viable carbon-neutral energy source. "Utilizing scientific discoveries for the good of human kind and flora and fauna here on earth has the utmost importance in my mind. If I can help create a sustainable energy source,

  8. The Biofuel Project: Creating Bio-diesel

    K-12 Energy Lesson Plans and Activities Web site (EERE)

    This activity introduces students to alternative fuels and gives them an opportunity to produce their own biodiesel fuel. The text of the exercise gives students a brief background in the environmental benefits of using biodiesel as a diesel substitute. The lab portion of this exercise demonstrates the basic chemistry involved in making biodiesel from vegetable oils and waste oils.

  9. BioFuels Atlas Presentation

    Office of Energy Efficiency and Renewable Energy (EERE)

    Kristi Moriarity's presentation on NREL's BioFuels Atlas from the May 12, 2011, Clean Cities and Biomass Program State webinar.

  10. Patriot BioFuels | Open Energy Information

    Open Energy Info (EERE)

    BioFuels Jump to: navigation, search Name: Patriot BioFuels Place: Little Rock, Arkansas Zip: 72201 Product: Arkansas-based biodiesel company with production facilities at...

  11. SG BioFuels | Open Energy Information

    Open Energy Info (EERE)

    SG BioFuels Jump to: navigation, search Name: SG BioFuels Place: Encinitas, California Zip: 92024 Product: California-based biofuel producer operating across the United States....

  12. Diesel engine fuel systems

    SciTech Connect (OSTI)

    1994-12-31

    The film shows the basic structure of diesel systems, including the parts and operation of injectors and fuel pumps. It discusses Bosch, General Motors, and Excello Equipment. This title has been declared obsolete for use within the sponsoring agency, but may have content value for educational use.

  13. Diesel engine fuel systems

    SciTech Connect (OSTI)

    Not Available

    1994-01-01

    The film shows the basic structure of diesel systems, including the parts and operation of injectors and fuel pumps. It discusses Bosch, General Motors, and Excello Equipment. This title has been declared obsolete for use within the sponsoring agency, but may have content value for educational use.

  14. Biofuels Fuels Technology Pathway Options for Advanced Drop-in Biofuels Production

    SciTech Connect (OSTI)

    Kevin L Kenney

    2011-09-01

    Advanced drop-in hydrocarbon biofuels require biofuel alternatives for refinery products other than gasoline. Candidate biofuels must have performance characteristics equivalent to conventional petroleum-based fuels. The technology pathways for biofuel alternatives also must be plausible, sustainable (e.g., positive energy balance, environmentally benign, etc.), and demonstrate a reasonable pathway to economic viability and end-user affordability. Viable biofuels technology pathways must address feedstock production and environmental issues through to the fuel or chemical end products. Potential end products include compatible replacement fuel products (e.g., gasoline, diesel, and JP8 and JP5 jet fuel) and other petroleum products or chemicals typically produced from a barrel of crude. Considering the complexity and technology diversity of a complete biofuels supply chain, no single entity or technology provider is capable of addressing in depth all aspects of any given pathway; however, all the necessary expert entities exist. As such, we propose the assembly of a team capable of conducting an in-depth technology pathway options analysis (including sustainability indicators and complete LCA) to identify and define the domestic biofuel pathways for a Green Fleet. This team is not only capable of conducting in-depth analyses on technology pathways, but collectively they are able to trouble shoot and/or engineer solutions that would give industrial technology providers the highest potential for success. Such a team would provide the greatest possible down-side protection for high-risk advanced drop-in biofuels procurement(s).

  15. Gasoline and Diesel Fuel Update

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    These data are made available through EIA's hotline (202-586-6966), EIA's web page, and through EIA's email notification, regular and wireless. Previous Diesel Fuel Price Data ...

  16. Gem BioFuels | Open Energy Information

    Open Energy Info (EERE)

    BioFuels Jump to: navigation, search Name: Gem BioFuels Place: Douglas, Isle of Man, United Kingdom Zip: IM1 4LB Product: Ilse of Man-based biodiesel feedstock developer with...

  17. Argonaut BioFuels | Open Energy Information

    Open Energy Info (EERE)

    Argonaut BioFuels Jump to: navigation, search Name: Argonaut BioFuels Place: Virginia Product: Manufacturer of wood pellets that has a plant in Virginia, US. References: Argonaut...

  18. Aurora BioFuels Inc | Open Energy Information

    Open Energy Info (EERE)

    BioFuels Inc Jump to: navigation, search Name: Aurora BioFuels Inc. Place: Alameda, California Zip: 94502 Sector: Biofuels, Renewable Energy Product: California-based renewable...

  19. Alternative Fuels Data Center: Diesel Vehicle Availability

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Diesel Vehicle Availability to someone by E-mail Share Alternative Fuels Data Center: Diesel Vehicle Availability on Facebook Tweet about Alternative Fuels Data Center: Diesel Vehicle Availability on Twitter Bookmark Alternative Fuels Data Center: Diesel Vehicle Availability on Google Bookmark Alternative Fuels Data Center: Diesel Vehicle Availability on Delicious Rank Alternative Fuels Data Center: Diesel Vehicle Availability on Digg Find More places to share Alternative Fuels Data Center:

  20. Diesel fuel from biomass

    SciTech Connect (OSTI)

    Kuester, J.L.

    1984-01-01

    A project to convert various biomass materials to diesel type transportation fuel compatible with current engine designs and the existing distribution system is described. A continuous thermochemical indirect liquefaction approach is used. The system consists of a circulating solid fluidized bed gasification system to produce a synthesis gas containing olefins, hydrogen and carbon monoxide followed by a catalytic liquefaction step to convert the synthesis gas to liquid hydrocarbon fuel. The major emphasis on the project at the present time is to maximize product yield. A level of 60 gals of diesel type fuel per ton of feedstock (dry, ash free basis) is expected. Numerous materials have been processed through the conversion system without any significant change in product quality (essentially C/sub 7/-C/sub 17/ paraffinic hydrocarbons with cetane indicies of 50+). Other tasks in progress include factor studies, process simplification, process control and scale-up to a 10 ton/day Engineering Test Facility. 18 references, 4 figures, 9 tables.

  1. Reformulated diesel fuel and method

    DOE Patents [OSTI]

    McAdams, Hiramie T [Carrollton, IL; Crawford, Robert W [Tucson, AZ; Hadder, Gerald R [Oak Ridge, TN; McNutt, Barry D [Arlington, VA

    2006-08-22

    A method for mathematically identifying at least one diesel fuel suitable for combustion in an automotive diesel engine with significantly reduced emissions and producible from known petroleum blendstocks using known refining processes, including the use of cetane additives (ignition improvers) and oxygenated compounds.

  2. Gasoline and Diesel Fuel Update

    Gasoline and Diesel Fuel Update (EIA)

    ... to the states covered by each primary publication cell. The distribution of allocations was proportional to the annual state total volume of retail on-highway diesel fuel sales. ...

  3. Gasoline and Diesel Fuel Update

    Gasoline and Diesel Fuel Update (EIA)

    As of December 1, 2010, any on-highway diesel fuel sold is ULSD. The prices reported in ... The price estimates each week are obtained using simple averages at the sampling cell ...

  4. Gasoline and Diesel Fuel Update

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    for the previous year of weekly diesel fuel survey prices for each of the sampling cells. The sample size was determined for each cell by the formula: n' (et)2 n, where t was ...

  5. Dieselgreen Fuels | Open Energy Information

    Open Energy Info (EERE)

    Dieselgreen Fuels Jump to: navigation, search Logo: DieselGreen Fuels Name: DieselGreen Fuels Place: Austin, Texas Region: Texas Area Sector: Biofuels Product: Grease collection...

  6. Gasoline and Diesel Fuel Update

    Gasoline and Diesel Fuel Update (EIA)

    Sampling Methodology The respondents reporting to the weekly diesel price survey represent a stratified probability proportional to size (PPS) sample selected from a frame list of retail outlets. The outlet sampling frame was constructed using commercially available lists from several sources in order to provide comprehensive coverage of truck stops and service stations that sell on-highway diesel fuel in the United States. The frame includes about 62,000 service stations and 4,000 truck stops.

  7. BioFuel Energy Corp | Open Energy Information

    Open Energy Info (EERE)

    Energy Corp Jump to: navigation, search Name: BioFuel Energy Corp Place: Denver, Colorado Zip: 80202 Product: Develops, owns and operates ethanol facilities. References: BioFuel...

  8. BioFuels Energy LLC | Open Energy Information

    Open Energy Info (EERE)

    BioFuels Energy LLC Jump to: navigation, search Name: BioFuels Energy, LLC Place: Encinitas, California Zip: 92024 Sector: Renewable Energy Product: Encinitas-based renewable...

  9. Seattle Biodiesel aka Seattle BioFuels | Open Energy Information

    Open Energy Info (EERE)

    Seattle Biodiesel aka Seattle BioFuels Jump to: navigation, search Name: Seattle Biodiesel (aka Seattle BioFuels) Place: Seattle, Washington Sector: Renewable Energy Product:...

  10. Elastomer Compatibility Testing of Renewable Diesel Fuels

    SciTech Connect (OSTI)

    Frame, E.; McCormick, R. L.

    2005-11-01

    In this study, the integrity and performance of six elastomers were tested with ethanol-diesel and biodiesel fuel blends.

  11. Diesel Fuel Price Pass-through

    Gasoline and Diesel Fuel Update (EIA)

    1000 Independence Avenue, SW Washington, DC 20585 Home | Petroleum | Gasoline | Diesel | Propane | Natural Gas | Electricity | Coal | Nuclear Renewables | Alternative Fuels |...

  12. BioFuels Atlas (Presentation)

    SciTech Connect (OSTI)

    Moriarty, K.

    2011-02-01

    Presentation for biennial merit review of Biofuels Atlas, a first-pass visualization tool that allows users to explore the potential of biomass-to-biofuels conversions at various locations and scales.

  13. Alternative Fuels Data Center: California Ramps Up Biofuels Infrastructure

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    California Ramps Up Biofuels Infrastructure to someone by E-mail Share Alternative Fuels Data Center: California Ramps Up Biofuels Infrastructure on Facebook Tweet about Alternative Fuels Data Center: California Ramps Up Biofuels Infrastructure on Twitter Bookmark Alternative Fuels Data Center: California Ramps Up Biofuels Infrastructure on Google Bookmark Alternative Fuels Data Center: California Ramps Up Biofuels Infrastructure on Delicious Rank Alternative Fuels Data Center: California Ramps

  14. BioFuel Oasis | Open Energy Information

    Open Energy Info (EERE)

    Zip: 94710 Product: A worker-owned cooperative to sell commercial biodiesel that meets ASTM standards. References: BioFuel Oasis1 This article is a stub. You can help OpenEI by...

  15. Fuels and Lubricants to Support Advanced Diesel Engine Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    New Diesel Feedstocks and Future Fuels Future Engine Fluids Technologies: Durable, Fuel-Efficient, and Emissions-Friendly New Feedstocks and Replacement Fuel Diesel Engine ...

  16. Biodiesel and Other Renewable Diesel Fuels

    SciTech Connect (OSTI)

    Not Available

    2006-11-01

    Present federal tax incentives apply to certain types of biomass-derived diesel fuels, which in energy policy and tax laws are described either as renewable diesel or biodiesel. To understand the distinctions between these diesel types it is necessary to understand the technologies used to produce them and the properties of the resulting products. This fact sheet contains definitions of renewable and biodiesel and discusses the processes used to convert biomass to diesel fuel and the properties of biodiesel and renewable diesel fuels.

  17. BioFuels and BioEnergy - SRSCRO

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    BioFuels and BioEnergy Bioenergy is renewable energy derived from biological sources, to be used for heat, electricity, or vehicle fuel. Biofuels are a wide range of fuels which ...

  18. Tomorrow BioFuels LLC | Open Energy Information

    Open Energy Info (EERE)

    Tomorrow BioFuels LLC Jump to: navigation, search Name: Tomorrow BioFuels LLC Place: Cranston, Rhode Island Zip: 2921 Product: Rhode Island-based algae-to-fuel technology...

  19. Volatility of Gasoline and Diesel Fuel Blends for Supercritical Fuel

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Injection | Department of Energy Gasoline and Diesel Fuel Blends for Supercritical Fuel Injection Volatility of Gasoline and Diesel Fuel Blends for Supercritical Fuel Injection Supercritical dieseline could be used in diesel engines having efficient fuel systems and combustion chamber designs that decrease fuel consumption and mitigate emissions. p-02_anitescu.pdf (339.45 KB) More Documents & Publications Preparation, Injection and Combustion of Supercritical Fluids Evaluation of

  20. Fuel Formulation Effects on Diesel Fuel Injection, Combustion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Impacts on Soot Nanostructure and Reactivity Effect of Alternative Fuels on Soot Properties and Regeneration of Diesel Particulate Filters Biodiesel Research Update

  1. A Comparison of Combustion and Emissions of Diesel Fuels and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A Comparison of Combustion and Emissions of Diesel Fuels and Oxygenated Fuels in a Modern DI Diesel Engine A Comparison of Combustion and Emissions of Diesel Fuels and Oxygenated ...

  2. Fuel Formulation Effects on Diesel Fuel Injection, Combustion, Emissions

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Emission Control | Department of Energy Formulation Effects on Diesel Fuel Injection, Combustion, Emissions and Emission Control Fuel Formulation Effects on Diesel Fuel Injection, Combustion, Emissions and Emission Control 2003 DEER Conference Presentation: The Pennsylvania State University 2003_deer_boehman.pdf (989.32 KB) More Documents & Publications Fuel Impacts on Soot Nanostructure and Reactivity Effect of Alternative Fuels on Soot Properties and Regeneration of Diesel

  3. Pyrochem Catalysts for Diesel Fuel Reforming

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pyrochem Catalysts for Diesel Fuel Reforming Success Story Converting heavy hydrocarbons, such as diesel and coal-based fuels, into hydrogen-rich synthesis gas is a necessary step for fuel cells and other applications. The high sulfur and aromatic content of these fuels poses a major technical challenge since these components can deactivate reforming catalysts. Taking on this challenge, NETL researchers invented a novel fuel-reforming catalyst that overcomes limitations of current catalysts by

  4. Gasoline and Diesel Fuel Update - Energy Information Administration

    Gasoline and Diesel Fuel Update (EIA)

    petroleum reports Gasoline and Diesel Fuel Update Gasoline Release Date: August 8, 2016 | Next Release Date: August 15, 2016 Diesel Fuel Release Date: August 8, 2016 | Next ...

  5. Emission Performance of Modern Diesel Engines Fueled with Biodiesel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Performance of Modern Diesel Engines Fueled with Biodiesel Emission Performance of Modern Diesel Engines Fueled with Biodiesel This study presents full quantification of ...

  6. A Multicomponent Blend as a Diesel Fuel Surrogate for Compression...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Multicomponent Blend as a Diesel Fuel Surrogate for Compression Ignition Engine Applications Title A Multicomponent Blend as a Diesel Fuel Surrogate for Compression Ignition...

  7. Celsys BioFuels Inc | Open Energy Information

    Open Energy Info (EERE)

    Celsys BioFuels Inc Jump to: navigation, search Name: Celsys BioFuels Inc. Place: Indiana Product: Celsys was formed in 2006 to commercialise cellulosic ethanol technology that was...

  8. Houston BioFuels Consultants | Open Energy Information

    Open Energy Info (EERE)

    BioFuels Consultants Jump to: navigation, search Name: Houston BioFuels Consultants Place: Kingwood, Texas Zip: 77345 Product: A Houston-based consultancy run by oil industry...

  9. PrairieFire BioFuels Cooperative | Open Energy Information

    Open Energy Info (EERE)

    PrairieFire BioFuels Cooperative Jump to: navigation, search Name: PrairieFire BioFuels Cooperative Place: Madison, Wisconsin Zip: 53704 Product: A member-owned cooperative which...

  10. Harvest BioFuels LLC | Open Energy Information

    Open Energy Info (EERE)

    BioFuels LLC Jump to: navigation, search Name: Harvest BioFuels LLC Place: Addison, Texas Zip: TX 75001 Product: Setting up corn-based ethanol plants. Coordinates: 38.477365,...

  11. Pyrochem Catalysts for Diesel Fuel Reforming - Energy Innovation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vehicles and Fuels Vehicles and Fuels Hydrogen and Fuel Cell Hydrogen and Fuel Cell Return to Search Pyrochem Catalysts for Diesel Fuel Reforming National Energy Technology...

  12. Biofuels combustion*

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Westbrook, Charles K.

    2013-01-04

    This review describes major features of current research in renewable fuels derived from plants and from fatty acids. Recent and ongoing fundamental studies of biofuel molecular structure, oxidation reactions, and biofuel chemical properties are reviewed, in addition to combustion applications of biofuels in the major types of engines in which biofuels are used. Biofuels and their combustion are compared with combustion features of conventional petroleum-based fuels. Two main classes of biofuels are described, those consisting of small, primarily alcohol, fuels (particularly ethanol, n-butanol, and iso-pentanol) that are used primarily to replace or supplement gasoline and those derived from fatty acidsmore » and used primarily to replace or supplement conventional diesel fuels. As a result, research efforts on so-called second- and third-generation biofuels are discussed briefly.« less

  13. Biofuels combustion*

    SciTech Connect (OSTI)

    Westbrook, Charles K.

    2013-01-04

    This review describes major features of current research in renewable fuels derived from plants and from fatty acids. Recent and ongoing fundamental studies of biofuel molecular structure, oxidation reactions, and biofuel chemical properties are reviewed, in addition to combustion applications of biofuels in the major types of engines in which biofuels are used. Biofuels and their combustion are compared with combustion features of conventional petroleum-based fuels. Two main classes of biofuels are described, those consisting of small, primarily alcohol, fuels (particularly ethanol, n-butanol, and iso-pentanol) that are used primarily to replace or supplement gasoline and those derived from fatty acids and used primarily to replace or supplement conventional diesel fuels. As a result, research efforts on so-called second- and third-generation biofuels are discussed briefly.

  14. Gasoline and Diesel Fuel Update

    Gasoline and Diesel Fuel Update (EIA)

    Diesel Fuel Pump Components History WHAT WE PAY FOR IN A GALLON OF DIESEL FUEL Mon-yr Retail Price (Dollars per gallon) Refining (percentage) Distribution & Marketing (percentage) Taxes (percentage) Crude Oil (percentage) May-02 1.305 5.1 11.3 36.9 46.6 Jun-02 1.286 6.6 11.2 37.5 44.7 Jul-02 1.299 5.3 12.1 37.1 45.5 Aug-02 1.328 8.6 7.8 36.3 47.4 Sep-02 1.411 12.0 7.5 34.2 46.3 Oct-02 1.462 11.4 10.9 33 44.8 Nov-02 1.420 12.0 12.8 33.9 41.2 Dec-02 1.429 12.7 9.3 33.7 44.3 Jan-03 1.488 10.7

  15. Diesel Fuel: Use, Manufacturing, Supply and Distribution | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (OFCVT). deer07williams.pdf (235.17 KB) More Documents & Publications Marathon Sees Diesel Fuel in Future Diesel vs Gasoline Production Fueling U.S. Light Duty Diesel Vehicles

  16. Straight Vegetable Oil as a Diesel Fuel? (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-05-01

    Discusses the use of straight vegetable oil as a diesel fuel and the use of biodiesel as a transportation fuel.

  17. Biofuels Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Education & Workforce Development » Resources » Biomass Basics » Biofuels Basics Biofuels Basics Biofuels such as ethanol and biodiesel can make a big difference in improving our environment, helping our economy, and reducing our dependence on foreign oil. This page discusses biofuels research supported by the Bioenergy Technologies Office. Biofuels for Transportation Ethanol Biodiesel Renewable Diesel Biofuels for Transportation Most vehicles on the road today are fueled by gasoline and

  18. Fuel and Fuel Additive Registration Testing of Ethanol-Diesel Blend for O2Diesel, Inc.

    SciTech Connect (OSTI)

    Fanick, E. R.

    2004-02-01

    O2 Diesel Inc. (formerly AAE Technologies Inc.) tested a heavy duty engine with O2Diesel (diesel fuel with 7.7% ethanol and additives) for regulated emissions and speciation of vapor-phase and semi-volatile hydrocarbon compounds. This testing was performed in support of EPA requirements for registering designated fuels and fuel additives as stipulated by sections 211(b) and 211(e) of the Clean Air Act.

  19. Alternative Fuels Data Center: Diesel Vehicles Using Biodiesel

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Biodiesel Printable Version Share this resource Send a link to Alternative Fuels Data Center: Diesel Vehicles Using Biodiesel to someone by E-mail Share Alternative Fuels Data Center: Diesel Vehicles Using Biodiesel on Facebook Tweet about Alternative Fuels Data Center: Diesel Vehicles Using Biodiesel on Twitter Bookmark Alternative Fuels Data Center: Diesel Vehicles Using Biodiesel on Google Bookmark Alternative Fuels Data Center: Diesel Vehicles Using Biodiesel on Delicious Rank Alternative

  20. Application of Synthetic Diesel Fuels | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Synthetic Diesel Fuels Application of Synthetic Diesel Fuels 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters 2005_deer_schaberg.pdf (462.75 KB) More Documents & Publications Effect of GTL Diesel Fuels on Emissions and Engine Performance The Potential of GTL Diesel to Meet Future Exhaust Emission Limits Performance Characteristics of Coal-to-Liquids (CTL) Diesel in a 50-State Emissions Compliant Passenger Car

  1. Fuel Additivies for Improved Performance of Diesel Aftertreatment...

    Broader source: Energy.gov (indexed) [DOE]

    2 DEER Conference Presentation: Ethyl 2002deerhuman.pdf (167.51 KB) More Documents & Publications Impact of Fuel-Borne Catalysts on Diesel Aftertreatment Diesel Particulate ...

  2. Fuel Efficiency and Emissions Optimization of Heavy-Duty Diesel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Emissions Optimization of Heavy-Duty Diesel Engines using Model-Based Transient Calibration Fuel Efficiency and Emissions Optimization of Heavy-Duty Diesel Engines using ...

  3. U.S. diesel fuel price decrease

    U.S. Energy Information Administration (EIA) Indexed Site

    diesel fuel prices decrease The U.S. average retail price for on-highway diesel fuel fell to $2.41 a gallon on Monday. That's down 2-tenths of a penny from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Diesel prices were highest in the West Coast states at 2.66 a gallon, up 6-tenths of a penny from a week ago. Prices were lowest in the Gulf Coast states at 2.26 a gallon, down half a penny

  4. U.S. diesel fuel price decrease

    U.S. Energy Information Administration (EIA) Indexed Site

    diesel fuel price decrease The U.S. average retail price for on-highway diesel fuel fell to $3.66 a gallon on Monday. That's down 1.6 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Diesel prices were highest in the Midwest states at 3.79 a gallon, down 2-tenths of a penny from a week ago. Prices were lowest in the Lower Atlantic region at 3.47 a gallon, down 2.8 cents. This is Amerine Woodyard

  5. U.S. diesel fuel price decreases

    U.S. Energy Information Administration (EIA) Indexed Site

    diesel fuel price decreases The U.S. average retail price for on-highway diesel fuel fell to $2.42 a gallon on Monday. That's down 3-tenths of a penny from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Diesel prices were highest in the West Coast states at 2.71 a gallon, down 4-tenths of a penny from a week ago. Prices were lowest in the Gulf Coast states at 2.28 a gallon, down 3-tenths of a penny

  6. U.S. diesel fuel prices decrease

    U.S. Energy Information Administration (EIA) Indexed Site

    diesel fuel prices decrease The U.S. average retail price for on-highway diesel fuel fell to $2.43 a gallon on Monday. That's down half a penny from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Diesel prices were highest in the West Coast states at 2.71 a gallon, down half a penny from a week ago. Prices were lowest in the Gulf Coast states at 2.30 a gallon, down 1.1 cents. This is Amerine Woodyard

  7. U.S. diesel fuel prices decrease

    U.S. Energy Information Administration (EIA) Indexed Site

    diesel fuel prices decrease The U.S. average retail price for on-highway diesel fuel fell to $2.52 a gallon on Monday. That's down 1.7 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Diesel prices were highest in the West Coast states at 2.73 a gallon, down 1.3 cents from a week ago. Prices were lowest in the Gulf Coast states at 2.36 a gallon, down 2.3

  8. U.S. diesel fuel prices decrease

    U.S. Energy Information Administration (EIA) Indexed Site

    diesel fuel prices decrease The U.S. average retail price for on-highway diesel fuel fell to $2.53 a gallon on Monday. That's down 2 ½ cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Diesel prices were highest in the West Coast states at 2.70 a gallon, down 2.6 cents from a week ago. Prices were lowest in the Gulf Coast states at 2.33 a gallon, down 1.4 cents. This is Amerine Woodyard

  9. Fuel Additivies for Improved Performance of Diesel Aftertreatment Systems |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Additivies for Improved Performance of Diesel Aftertreatment Systems Fuel Additivies for Improved Performance of Diesel Aftertreatment Systems 2002 DEER Conference Presentation: Ethyl 2002_deer_human.pdf (167.51 KB) More Documents & Publications Impact of Fuel-Borne Catalysts on Diesel Aftertreatment Diesel Particulate Filter: A Success for Faurecia Exhaust Systems Combination of Diesel fuel system architectures and Ceria-based fuel-borne catalysts for improvement

  10. Fuels and Lubricants to Support Advanced Diesel Engine Technology |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy and Lubricants to Support Advanced Diesel Engine Technology Fuels and Lubricants to Support Advanced Diesel Engine Technology 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters 2005_deer_baranescu.pdf (87.57 KB) More Documents & Publications New Diesel Feedstocks and Future Fuels Future Engine Fluids Technologies: Durable, Fuel-Efficient, and Emissions-Friendly New Feedstocks and Replacement Fuel Diesel Engine Challenges

  11. Alternative Fuels Data Center: Hydrogenation-Derived Renewable Diesel

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Emerging Fuels Printable Version Share this resource Send a link to Alternative Fuels Data Center: Hydrogenation-Derived Renewable Diesel to someone by E-mail Share Alternative Fuels Data Center: Hydrogenation-Derived Renewable Diesel on Facebook Tweet about Alternative Fuels Data Center: Hydrogenation-Derived Renewable Diesel on Twitter Bookmark Alternative Fuels Data Center: Hydrogenation-Derived Renewable Diesel on Google Bookmark Alternative Fuels Data Center: Hydrogenation-Derived Renewable

  12. The Effect of Diesel Fuel Properties on Emissions-Restrained...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Effect of Diesel Fuel Properties on Emissions-Restrained Fuel Economy at Mid-Load Conditions Statistical models developed from designed esperiments (varying fuel properties and ...

  13. 2016 Bioenergizeme Infographic Challenge: Biofuels vs Fossil Fuels |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Biofuels vs Fossil Fuels 2016 Bioenergizeme Infographic Challenge: Biofuels vs Fossil Fuels 2016 Bioenergizeme Infographic Challenge: Biofuels vs Fossil Fuels This infographic was created by students from General Douglas MacArthur High School in Levittown, NY, as part of the U.S. Department of Energy-BioenergizeME Infographic Challenge. The BioenergizeME Infographic Challenge encourages young people to improve their foundational understanding of bioenergy, which is a

  14. Food Security and Nutrition NONE 09 BIOMASS FUELS; BIOFUELS;...

    Office of Scientific and Technical Information (OSTI)

    Level Panel of Experts on Food Security and Nutrition NONE 09 BIOMASS FUELS; BIOFUELS; PRODUCTION; AGRICULTURE; ENERGY POLICY; SOCIO-ECONOMIC FACTORS; SUSTAINABLE DEVELOPMENT;...

  15. Property:RenewableFuelStandard/RenewableBiofuel | Open Energy...

    Open Energy Info (EERE)

    Property Edit with form History Facebook icon Twitter icon Property:RenewableFuelStandardRenewableBiofuel Jump to: navigation, search This is a property of type Number. Pages...

  16. Property:RenewableFuelStandard/AdvancedBiofuel | Open Energy...

    Open Energy Info (EERE)

    Property Edit with form History Facebook icon Twitter icon Property:RenewableFuelStandardAdvancedBiofuel Jump to: navigation, search This is a property of type Number. Pages...

  17. Property:RenewableFuelStandard/UndifferentiatedAdvancedBiofuel...

    Open Energy Info (EERE)

    Property Edit with form History Facebook icon Twitter icon Property:RenewableFuelStandardUndifferentiatedAdvancedBiofuel Jump to: navigation, search This is a property of type...

  18. Dual-fueling turbocharged diesels with ethanol

    SciTech Connect (OSTI)

    Cruz, J.M.; Rotz, C.A.; Watson, D.H.

    1982-09-01

    Spray addition and carburetion methods were tested for dual-fueling a turbocharged, 65 kW diesel tractor. Approximately 30 percent of the fuel energy for the tractor was supplied by spraying ethanol into the intake air and about 46 percent by carburetion with little affect on the engine thermal efficiency. Further substitution of diesel fuel with ethanol was limited by knock. As the amount of ethanol fed into the engine was increased, ignition apparently changed from the steady burning process which normally occurs in a diesel engine to a rapid explosion which caused knock. The best fuel for the spray approach was a 50 percent ethanol/water solution and with the carburetor it was an 80 percent ethanol/water solution.

  19. Dual-fueling turbocharged diesels with ethanol

    SciTech Connect (OSTI)

    Cruz, J.M.; Rotz, C.A.; Watson, D.H.

    1982-09-01

    Spray addition and carburetion methods were tested for dual-fueling a turbocharged, 65 kW diesel tractor. Approximately 30 percent of the fuel energy for the tractor was supplied by spraying ethanol into the intake air and about 46 percent by carburetion with little affect on the engine thermal efficiency. Further substitution of diesel fuel with ethanol was limited by knock. As the amount of ethanol fed into the engine was increased, ignition apparently changed from the steady burning process which normally occurs in a diesel engine to a rapid explosion which caused knock. The best fuel for the spray approach was a 50 percent ethanol/water solution and with the carburetor it was an 80 percent ethanol/water solution. (Refs. 6).

  20. U.S. diesel fuel prices decrease

    U.S. Energy Information Administration (EIA) Indexed Site

    diesel fuel prices decrease The U.S. average retail price for on-highway diesel fell to $2.48 a gallon on Monday. That's down 2 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Diesel prices were highest in the West Coast states at 2.70 a gallon, down 2.1 cents from a week ago. Prices were lowest in the Gulf Coast states at 2.30 a gallon, down 1.3 cents. This is Amerine Woodyard

  1. Gasoline and Diesel Fuel Update

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    the underlying costs and profits (or losses) of producing and delivering the product to customers. The price of diesel at the pump reflects the costs and profits of the ...

  2. DOE Awarded Patent for Reformulated Diesel Fuel | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Awarded Patent for Reformulated Diesel Fuel DOE Awarded Patent for Reformulated Diesel Fuel May 19, 2006 - 10:46am Addthis Available free of Licensing Fees, Cleaner for the Environment WASHINGTON, DC - The U.S. Department of Energy today announced that it has developed, patented, and made commercially available reformulated diesel fuels which when used can reduce nitrogen oxides up to 10% and particulate matter up to 22% compared to those currently available. The diesel fuel formulations covered

  3. Isoprenoid based alternative diesel fuel

    DOE Patents [OSTI]

    Lee, Taek Soon; Peralta-Yahya, Pamela; Keasling, Jay D.

    2015-08-18

    Fuel compositions are provided comprising a hydrogenation product of a monocyclic sesquiterpene (e.g., hydrogenated bisabolene) and a fuel additive. Methods of making and using the fuel compositions are also disclosed. ##STR00001##

  4. Emissions from Trucks using Fischer-Tropsch Diesel Fuel

    SciTech Connect (OSTI)

    Paul Norton; Keith Vertin; Brent Bailey; Nigel N. Clark; Donald W. Lyons; Stephen Goguen; James Eberhardt

    1998-10-19

    The Fischer-Tropsch (F-T) catalytic conversion process can be used to synthesize diesel fuels from a variety of feedstocks, including coal, natural gas and biomass. Synthetic diesel fuels can have very low sulfur and aromatic content, and excellent autoignition characteristics. Moreover, Fischer-Tropsch diesel fuels may also be economically competitive with California B- diesel fuel if produced in large volumes. overview of Fischer-Tropsch diesel fuel production and engine emissions testing is presented. Previous engine laboratory tests indicate that F-T diesel is a promising alternative fuel because it can be used in unmodified diesel engines, and substantial exhaust emissions reductions can be realized. The authors have performed preliminary tests to assess the real-world performance of F-T diesel fuels in heavy-duty trucks. Seven White-GMC Class 8 trucks equipped with Caterpillar 10.3 liter engines were tested using F-T diesel fuel. Vehicle emissions tests were performed using West Virginia University's unique transportable chassis dynamometer. The trucks were found to perform adequately on neat F-T diesel fuel. Compared to a California diesel fuel baseline, neat F-T diesel fuel emitted about 12% lower oxides of nitrogen (NOx) and 24% lower particulate matter over a five-mile driving cycle.

  5. Biofuel Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biofuel Basics Biofuel Basics July 30, 2013 - 11:38am Addthis Text Version Photo of a woman in goggles handling a machine filled with biofuels. Most vehicles on the road today run on gasoline and diesel fuels, which are produced from oil-a non-renewable resource, meaning supplies are limited. Renewable resources, in contrast, are constantly replenished and are unlikely to run out. Biomass is one type of renewable resource that can be converted into liquid fuels (biofuels) for transportation.

  6. IMPACT OF DME-DIESEL FUEL BLEND PROPERTIES ON DIESEL FUEL INJECTION SYSTEMS

    SciTech Connect (OSTI)

    Elana M. Chapman; Andre L. Boehman; Kimberly Wain; Wallis Lloyd; Joseph M. Perez; Donald Stiver; Joseph Conway

    2002-07-01

    The objectives of this research program are to develop information on lubricity and viscosity improvers and their impact on the wear mechanisms in fuel injectors operating on blends of dimethyl ether (DME) and diesel fuel. This project complements another ongoing project titled ''Development of a Dimethyl Ether (DME)-Fueled Shuttle Bus Demonstration Project''. The objectives of that research and demonstration program are to convert a campus shuttle bus to operation on dimethyl ether, a potential ultra-clean alternative diesel fuel. To accomplish this objective, this project includes laboratory evaluation of a fuel conversion strategy, as well as, field demonstration of the DME-fueled shuttle bus. Since DME is a fuel with no lubricity (i.e., it does not possess the lubricating quality of diesel fuel), conventional fuel delivery and fuel injection systems are not compatible with dimethyl ether. Therefore, to operate a diesel engine on DME one must develop a fuel-tolerant injection system, or find a way to provide the necessary lubricity to the DME. In the shuttle bus project, they have chosen the latter strategy in order to achieve the objective with minimal need to modify the engine. The strategy is to blend DME with diesel fuel, to obtain the necessary lubricity to protect the fuel injection system and to achieve low emissions. In this project, they have sought to develop methods for extending the permissible DME content in the DME-diesel blends without experiencing rapid injector failure due to wear. To date, the activities have covered two areas: development of a high-pressure lubricity test apparatus for studies of lubricity and viscosity improvers and development of an injector durability stand for evaluation of wear rates in fuel injectors. This report provides summaries of the progress toward completion of both experimental systems and a summary of the plan for completion of the project objectives.

  7. Diesel Health Impacts & Recent Comparisons to Other Fuels | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Health Impacts & Recent Comparisons to Other Fuels Diesel Health Impacts & Recent Comparisons to Other Fuels 2002 DEER Conference Presentation: Natural Resources Defense Council ...

  8. Biofuels Issues and Trends

    Gasoline and Diesel Fuel Update (EIA)

    Office of the Chief Economist Office of Energy Policy and New Uses Tony Radich Agricultural Economist tradich@oce.usda.gov EIA State Heating Oil and Propane Program Workshop Washington, DC July 13, 2016 Biofuel in diesel and heating oil Office of the Chief Economist Office of Energy Policy and New Uses Agenda *What is distillate fuel and which biofuels are compatible? *Federal, state, and local policies on biofuels in distillate fuel *Economics of biodiesel production, including the effects of

  9. Coal-fueled diesel locomotive test

    SciTech Connect (OSTI)

    Hsu, B.D.; McDowell, R.E.; Confer, G.L.; Basic, S.L.

    1993-01-01

    The biggest challenges to the development of a commercially-acceptable coal-fueled diesel-electric locomotive are integrating all systems into a working unit that can be operated in railroad service. This involves mainly the following three systems: (1) the multi-cylinder coal-fueled diesel engine, (2) the locomotive and engine controls, and (3) the CWS fuel supply system. Consequently, a workable 12-cylinder coal-fueled diesel engine was considered necessary at this stage to evolve the required locomotive support systems, in addition to gaining valuable multi-cylinder engine operating experience. The CWS fuel used during this project was obtained from Otisca, Inc. (Syracuse, NY). It was prepared from micronized and deashed Kentucky Blue Gem coal to 49.0% coal loading by weight, with less than 1% ash and 5 micron mean diameter particle size. Its higher heating value was analyzed at approximately 34630 kJ/k. Anti-agglomerating additive Triton X-114 was added to the CWS at GE Transportation Systems at 2% of coal weight. The nature of the Otisca CWS fuel makes it inherently more difficult to store, pump, and inject than diesel fuel, since concepts which govern Newtonian or normally viscous liquids do not apply entirely to CWS. Otisca CWS tends to be unstable and to settle in tanks and lines after a period of time, making it necessary to provide a means of agitation during storage. To avoid long term settling problems and to minimize losses, piping velocities were designed to be in the 60-90 m/min range.

  10. PCR+ In Diesel Fuels and Emissions Research

    SciTech Connect (OSTI)

    McAdams, H.T.

    2002-04-15

    In past work for the U.S. Department of Energy (DOE) and Oak Ridge National Laboratory (ORNL), PCR+ was developed as an alternative methodology for building statistical models. PCR+ is an extension of Principal Components Regression (PCR), in which the eigenvectors resulting from Principal Components Analysis (PCA) are used as predictor variables in regression analysis. The work was motivated by the observation that most heavy-duty diesel (HDD) engine research was conducted with test fuels that had been ''concocted'' in the laboratory to vary selected fuel properties in isolation from each other. This approach departs markedly from the real world, where the reformulation of diesel fuels for almost any purpose leads to changes in a number of interrelated properties. In this work, we present new information regarding the problems encountered in the conventional approach to model-building and how the PCR+ method can be used to improve research on the relationship between fuel characteristics and engine emissions. We also discuss how PCR+ can be applied to a variety of other research problems related to diesel fuels.

  11. Diesel fueled ship propulsion fuel cell demonstration project

    SciTech Connect (OSTI)

    Kumm, W.H.

    1996-12-31

    The paper describes the work underway to adapt a former US Navy diesel electric drive ship as a 2.4 Megawatt fuel cell powered, US Coast Guard operated, demonstrator. The Project will design the new configuration, and then remove the four 600 kW diesel electric generators and auxiliaries. It will design, build and install fourteen or more nominal 180 kW diesel fueled molten carbonate internal reforming direct fuel cells (DFCs). The USCG cutter VINDICATOR has been chosen. The adaptation will be carried out at the USCG shipyard at Curtis Bay, MD. A multi-agency (state and federal) cooperative project is now underway. The USCG prime contractor, AEL, is performing the work under a Phase III Small Business Innovation Research (SBIR) award. This follows their successful completion of Phases I and II under contract to the US Naval Sea Systems (NAVSEA) from 1989 through 1993 which successfully demonstrated the feasibility of diesel fueled DFCs. The demonstrated marine propulsion of a USCG cutter will lead to commercial, naval ship and submarine applications as well as on-land applications such as diesel fueled locomotives.

  12. IMPACT OF DME-DIESEL FUEL BLEND PROPERTIES ON DIESEL FUEL INJECTION SYSTEMS

    SciTech Connect (OSTI)

    Elana M. Chapman; Andre Boehman; Kimberly Wain; Wallis Lloyd; Joseph M. Perez; Donald Stiver; Joseph Conway

    2004-04-01

    The objectives of this research program are to develop information on lubricity and viscosity improvers and their impact on the wear mechanisms in fuel injectors operating on blends of dimethyl ether (DME) and diesel fuel. Since DME is a fuel with no lubricity (i.e., it does not possess the lubricating quality of diesel fuel), conventional fuel delivery and fuel injection systems are not compatible with dimethyl ether. Therefore, to operate a diesel engine on DME one must develop a fuel-tolerant injection system, or find a way to provide the necessary lubricity to the DME. In the shuttle bus project, we have chosen the latter strategy in order to achieve the objective with minimal need to modify the engine. Our strategy is to blend DME with diesel fuel, to obtain the necessary lubricity to protect the fuel injection system and to achieve low emissions. In this project, we have sought to develop methods for extending the permissible DME content in the DME-diesel blends without experiencing rapid injector failure due to wear. Our activities have covered three areas: examination of the impact of lubricity additives on the viscosity of DME, development of a high-pressure lubricity test apparatus for studies of lubricity and viscosity improvers and development of an injector durability stand for evaluation of wear rates in fuel injectors. The first two of these areas have resulted in valuable information about the limitations of lubricity and viscosity additives that are presently available in terms of their impact on the viscosity of DME and on wear rates on injector hardware. The third area, that of development of an injector durability test stand, has not resulted in a functioning experiment. Some information is provided in this report to identify the remaining tasks that need to be performed to make the injector stand operational. The key observations from the work are that when blended at 25 wt.% in either diesel fuel or Biodiesel fuel, DME requires more than 5 wt

  13. World Biofuels Production Potential Understanding the Challenges to Meeting the U.S. Renewable Fuel Standard

    SciTech Connect (OSTI)

    Sastri, B.; Lee, A.

    2008-09-15

    . Within the mandate, amounts of advanced biofuels, including biomass-based diesel and cellulosic biofuels, are required beginning in 2009. Imported renewable fuels are also eligible for the RFS. Another key U.S. policy is the $1.01 per gal tax credit for producers of cellulosic biofuels enacted as part of the 2008 Farm Bill. This credit, along with the DOE's research, development and demonstration (RD&D) programs, are assumed to enable the rapid expansion of U.S. and global cellulosic biofuels production needed for the U.S. to approach the 2022 RFS goal. While the Environmental Protection Agency (EPA) has yet to issue RFS rules to determine which fuels would meet the greenhouse gas (GHG) reduction and land use restrictions specified in EISA, we assume that cellulosic ethanol, biomass-to-liquid fuels (BTL), sugar-derived ethanol, and fatty acid methyl ester biodiesel would all meet the EISA advanced biofuel requirements. We also assume that enough U.S. corn ethanol would meet EISA's biofuel requirements or otherwise be grandfathered under EISA to reach 15 B gal per year.

  14. Combination of Diesel fuel system architectures and Ceria-based fuel-borne

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    catalysts for improvement and simplification of the Diesel Particulate Filter System in serial applications | Department of Energy of Diesel fuel system architectures and Ceria-based fuel-borne catalysts for improvement and simplification of the Diesel Particulate Filter System in serial applications Combination of Diesel fuel system architectures and Ceria-based fuel-borne catalysts for improvement and simplification of the Diesel Particulate Filter System in serial applications 2003 DEER

  15. Straight Vegetable Oil as a Diesel Fuel?

    SciTech Connect (OSTI)

    2014-01-01

    Biodiesel, a renewable fuel produced from animal fats or vegetable oils, is popular among many vehicle owners and fleet managers seeking to reduce emissions and support U.S. energy security. Questions sometimes arise about the viability of fueling vehicles with straight vegetable oil (SVO), or waste oils from cooking and other processes, without intermediate processing. But SVO and waste oils differ from biodiesel (and conventional diesel) in some important ways and are generally not considered acceptable vehicle fuels for large-scale or long-term use.

  16. ?Aceite Vegetal Puro Como Combustible Diesel? (Straight Vegetable Oil as a Diesel Fuel? Spanish Version) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-06-01

    Discusses the use of straight vegetable oil as a diesel fuel and the use of biodiesel as a transportation fuel.

  17. How Exhaust Emissions Drive Diesel Engine Fuel Efficiency | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy How Exhaust Emissions Drive Diesel Engine Fuel Efficiency How Exhaust Emissions Drive Diesel Engine Fuel Efficiency 2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: Pacific Northwest Laboratory 2004_deer_muntean.pdf (922.09 KB) More Documents & Publications The State of the Science in Diesel Particulate Control APBF-DEC Heavy Duty NOx Adsorber/DPF Project: Heavy Duty Linehaul Platform Project Update Measurement and Characterization of Lean NOx Adsorber

  18. Adapting ethanol fuels to diesel engines

    SciTech Connect (OSTI)

    Not Available

    1981-08-01

    During the 2nd International Alcohol Symposium 1977, Daimler-Benz reported on the advantages and disadvantages of the various methods of using ethanol in originally diesel-operated commercial vehicles, and especially about the first results in the field of adapting the ethanol fuel to the requirements of conventional diesel engines. Investigations to this effect were continued by Daimler-Benz AG, Stuttgart, and Mercedes-Benz of Brasil in coordination with competent Brazilian government departments. The development effort is primarily adapted to Brazilian conditions, since ethanol fuel is intended as a long-term project in this country. This report is presented under headings - auto-ignition; durability tests; remedial measures; the injection systems; ethanol quality.

  19. E3 BioFuels | Open Energy Information

    Open Energy Info (EERE)

    E3 BioFuels Place: Shawnee, Kansas Zip: 66218 Product: Owns a 90.9m litres-a-year ethanol plant in Nebraska; an anaerobic digester generates all the biogas needed to operate...

  20. Utiization of alternate fuels in diesel engines

    SciTech Connect (OSTI)

    Lestz, S.S.

    1980-09-01

    Accomplishments during three years entitled The Utilization of Alternate Fuels in Diesel Engines are summarized. Experiments were designed and test equipment set-up for the purpose of evaluating the use of methanol as a fumigant for light-duty Diesel engine service. The major experimental results were obtained from a multicylinder automotive Diesel engine. However, fundamental studies employing a GC/micro-reactor and a constant volume combustion bomb were also started. The purpose of this work was to measure some of the chemical and physical properties of methanol and methanol-air mixtures. The laminar flame velocity for various mixtures has been measured in the combustion bomb and thermal degradation studies have begun in the GC/micro-reactor. An Oldsmobile 5.7 liter V/8 Diesel engine was fumigated with methanol in amounts up to 40% of the fuel energy. The primary objectives of the study were to determine the effect of methanol fumigation on fuel efficiency, smoke, nitric oxide emission, and the occurrence of severe knock. An assessment of the biological activity for samples of the raw exhaust particulate and its soluble organic extract was also made using boh the Ames Salmonella typhimurium test and the B. subtilis Comptest. Generally, methanol fumigation was found to decrease NO emission for all conditions, to have a slight effect on smoke opacity, and to have a beneficial effect on fuel efficiency at higher loads. Also at higher loads, the methanol was found to induce what was defined as knock limited operation. The biological activity of the raw particulate matter was fond to be less than that of its soluble organic extract. However, for both the fumigation of methanol did enhance the biological activity.

  1. IMPACT OF DME-DIESEL FUEL BLEND PROPERTIES ON DIESEL FUEL INJECTION SYSTEMS

    SciTech Connect (OSTI)

    Elana M. Chapman; Andre Boehman; Kimberly Wain; Wallis Lloyd; Joseph M. Perez; Donald Stiver; Joseph Conway

    2003-06-01

    The objectives of this research program are to develop information on lubricity and viscosity improvers and their impact on the wear mechanisms in fuel injectors operating on blends of dimethyl ether (DME) and diesel fuel. Since DME is a fuel with no lubricity (i.e., it does not possess the lubricating quality of diesel fuel), conventional fuel delivery and fuel injection systems are not compatible with dimethyl ether. Therefore, to operate a diesel engine on DME one must develop a fuel-tolerant injection system, or find a way to provide the necessary lubricity to the DME. In the shuttle bus project, we have chosen the latter strategy in order to achieve the objective with minimal need to modify the engine. Our strategy is to blend DME with diesel fuel, to obtain the necessary lubricity to protect the fuel injection system and to achieve low emissions. In this project, we have sought to develop methods for extending the permissible DME content in the DME-diesel blends without experiencing rapid injector failure due to wear. To date, our activities have covered three areas: examination of the impact of lubricity additives on the viscosity of DME, development of a high-pressure lubricity test apparatus for studies of lubricity and viscosity improvers and development of an injector durability stand for evaluation of wear rates in fuel injectors. This report provides summaries of the progress toward evaluation of the viscosity impacts of lubricity additives, completion of both experimental systems and a summary of the plan for completion of the project objectives.

  2. Vimmerstedt, L. J.; Bush, B. W. 09 BIOMASS FUELS BIOMASS; BIOFUEL...

    Office of Scientific and Technical Information (OSTI)

    Investment on the Growth of the Biofuels Industry Vimmerstedt, L. J.; Bush, B. W. 09 BIOMASS FUELS BIOMASS; BIOFUEL; DEMONSTRATION; DEPLOYMENT; LEARNING; POLICY; SYSTEM DYNAMICS;...

  3. Pathways for Algal Biofuels

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DEPARTMENT OF ENERGY BIOMASS PROGRAM Pathways for Algal Biofuels November 27, 2012 Daniel B. Fishman Lead Technology Development Manager 2 | Biomass Program eere.energy.gov Adds value to unproductive or marginal lands of a range of biofuel feedstocks suitable for diesel and aviation fuels Activities include R&D on algal feedstocks and issues related to the sustainable production of algae-derived biofuels. Algae Feedstocks Courtesy Sapphire Courtesy Sapphire Courtesy University of Arizona 3

  4. Impact of Fuel-Borne Catalysts on Diesel Aftertreatment | Department...

    Broader source: Energy.gov (indexed) [DOE]

    2003 DEER Conference Presentation: Ethyl Petroleum Additives 2003deerhuman.pdf (1.56 MB) More Documents & Publications Combination of Diesel fuel system architectures and ...

  5. Isoprenoid based alternative diesel fuel (Patent) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Patent: Isoprenoid based alternative diesel fuel Citation Details In-Document Search ... Visit OSTI to utilize additional information resources in energy science and technology. A ...

  6. BioDiesel Content On-board monitoring | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    BioDiesel Content On-board monitoring BioDiesel Content On-board monitoring onboard fuel monitoring of fuel and biofuel qualities using an optical sensor for engine ...

  7. Characterization of Dual-Fuel Reactivity Controlled Compression Ignition (RCCI) Using Hydrated Ethanol and Diesel Fuel

    Broader source: Energy.gov [DOE]

    This study uses numerical simulations to explore the use of wet ethanol as the low-reactivity fuel and diesel as the high-reactivity fuel for RCCI operation in a heavy-duty diesel engine.

  8. Progress report Idaho on-road test with vegetable oil as a diesel fuel

    SciTech Connect (OSTI)

    Reece, D.; Peterson, C.L.

    1993-12-31

    Biodiesel is among many biofuels being considered in the US for alternative fueled vehicles. The use of this fuel can reduce US dependence on imported oil and help improve air quality by reducing gaseous and particulate emissions. Researchers at the Department of Agricultural Engineering at the University of Idaho have pioneered rapeseed oil as a diesel fuel substitute. Although UI has conducted many laboratory and tractor tests using raw rapeseed oil and rape methyl ester (RME), these fuels have not been proven viable for on-road applications. A biodiesel demonstration project has been launched to show the use of biodiesel in on-road vehicles. Two diesel powered pickups are being tested on 20 percent biodiesel and 80 percent diesel. One is a Dodge 3/4-ton pickup powered by a Cummins 5.9 liter turbocharged and intercooled engine. This engine is direct injected and is being run on 20 percent RME and 80 percent diesel. The other pickup is a Ford, powered by a Navistar 7.3 liter, naturally aspirated engine. This engine has a precombustion chamber and is being operated on 20 percent raw rapeseed oil and 80 percent diesel. The engines themselves are unmodified, but modifications have been made to the vehicles for the convenience of the test. In order to give maximum vehicle range, fuel mixing is done on-board. Two tanks are provided, one for the diesel and one for the biodiesel. Electric fuel pumps supply fuel to a combining chamber for correct proportioning. The biodiesel fuel tanks are heated with a heat exchanger which utilizes engine coolant circulation.

  9. Complete Fuel Combustion for Diesel Engines Resulting in Greatly Reduced Emissions and Improved Fuel Efficiency

    Broader source: Energy.gov [DOE]

    An advanced engine design that is 15 percent more efficient than diesel, pollution free, and uses any fuel.

  10. Biofuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transportation Energy Co-Evolution of Biofuels Lignocellulosic Biomass Microalgae ... Twitter Google + Vimeo Newsletter Signup SlideShare Biofuels HomeBiofuels Permalink JBEI ...

  11. Biofuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transportation Energy Co-Evolution of Biofuels Lignocellulosic Biomass Microalgae ... Twitter Google + Vimeo Newsletter Signup SlideShare Biofuels HomeBiofuels National ...

  12. Fueling U.S. Light Duty Diesel Vehicles | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Ultra-Low Sulfur diesel Update & Future Light Duty Diesel BiodieselFuelManagementBestPracticesReport.pdf Future Fuels: Issues and Opportunities

  13. Nationwide Bio-Fuel Resource Mapping PRISM - EM

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nationwide Bio-Fuel Resource Mapping PRISM - EM  March 2015  Technology Area Review  Chris Daly and Michael Halbleib  Oregon State University 2 Estimating the Potential Distribution and Yield of Biomass Crops Resource Assessment Objective: Gain an understanding of the spatial distribution of current and potential biofuel/bio-energy feedstock resources across the country Envisioned outcome: A series of national geo- referenced grids (maps) that describe potential productivity patterns

  14. Fuel Cell Power Plants Biofuel Case Study - Tulare, CA

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    clean Fuel Cell Power Plants Biofuel Case Study - Tulare, CA DOE-NREL Workshop Golden, CO June 11-13, 2012 FuelCell Energy, the FuelCell Energy logo, Direct FuelCell and "DFC" are all registered trademarks (®) of FuelCell Energy, Inc. Integrated Fuel Cell Company 2 Manufacture Sell (direct & via partners) Install Services 1.4 MW plant at a municipal building 2.4 MW plant owned by an Independent power producer 600 kW plant at a food processor 11.2 MW plant - largest fuel cell park

  15. Fuel Processor Enabled NOx Adsorber Aftertreatment System for Diesel Engine

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Emissions Control | Department of Energy Processor Enabled NOx Adsorber Aftertreatment System for Diesel Engine Emissions Control Fuel Processor Enabled NOx Adsorber Aftertreatment System for Diesel Engine Emissions Control 2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: Catalytica Energy Systems 2004_deer_catalytica.pdf (331 KB) More Documents & Publications Transient Dynamometer Testing of a Single-Leg NOX Adsorber Combined with a Fuel Processor for Enhanced NOx

  16. National Bio-fuel Energy Laboratory

    SciTech Connect (OSTI)

    Jezierski, Kelly

    2010-12-27

    The National Biofuel Energy Laboratory or NBEL was a consortia consisting of non-profits, universities, industry, and OEMs. NextEnergy Center (NEC) in Detroit, Michigan was the prime with Wayne State University as the primary subcontractor. Other partners included: Art Van Furniture; Biodiesel Industries Inc. (BDI); Bosch; Clean Emission Fluids (CEF); Delphi; Oakland University; U.S. TARDEC (The Army); and later Cummins Bridgeway. The program was awarded to NextEnergy by U.S. DOE-NREL on July 1, 2005. The period of performance was about five (5) years, ending June 30, 2010. This program was executed in two phases: 1.Phase I focused on bench-scale R&D and performance-property-relationships. 2.Phase II expanded those efforts into further engine testing, emissions testing, and on-road fleet testing of biodiesel using additional types of feedstock (i.e., corn, and choice white grease based). NextEnergy a non-profit 501(c)(3) organization based in Detroit was originally awarded a $1.9 million grant from the U.S. Dept. of Energy for Phase I of the NBEL program. A few years later, NextEnergy and its partners received an additional $1.9MM in DOE funding to complete Phase II. The NBEL funding was completely exhausted by the program end date of June 30, 2010 and the cost share commitment of 20% minimum has been exceeded nearly two times over. As a result of the work performed by the NBEL consortia, the following successes were realized: 1.Over one hundred publications and presentations have been delivered by the NBEL consortia, including but not limited to: R&D efforts on algae-based biodiesel, novel heterogeneous catalysis, biodiesel properties from a vast array of feedstock blends, cold flow properties, engine testing results (several Society of Automotive Engineers [SAE] papers have been published on this research), emissions testing results, and market quality survey results. 2.One new spinoff company (NextCAT) was formed by two WSU Chemical Engineering professors and

  17. Table 46. Refiner No. 2 Distillate, Diesel Fuel, and Fuel Oil...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Petroleum Marketing Annual 1999 295 Table 46. Refiner No. 2 Distillate, Diesel Fuel, and Fuel Oil Volumes by PAD District and State (Thousand Gallons per Day) - Continued...

  18. Gasoline and Diesel Fuel Update - Energy Information Administration

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    U.S. On-Highway Diesel Fuel Prices* (dollars per gallon)full history Change from 032116 ... collected on a gallon of fuel that are paid to the federal, state, or local government. ...

  19. Coal-fueled diesel technology development: Nozzle development for coal-fueled diesel engines

    SciTech Connect (OSTI)

    Johnson, R.N.; Lee, M.; White, R.A.

    1994-01-01

    Direct injection of a micronized coal water mixture fuel into the combustion chambers of a diesel engine requires atomizing an abrasive slurry fuel with accurately sized orifices. Five injector orifice materials were evaluated: diamond compacts, chemical vapor deposited diamond tubes, thermally stabilized diamond, tungsten carbide with cobalt binder, and tungsten carbide with nickel binder with brazed and mechanically mounted orifice inserts. Nozzle bodies were fabricated of Armco 17-4 precipitation hardening stainless steel and Stellite 6B in order to withstand cyclic injection pressures and elevated temperatures. Based on a total of approximately 200 cylinder hours of engine operation with coal water mixture fuel diamond compacts were chosen for the orifice material.

  20. DuPont's Journey to Build a Global Cellulosic BioFuel Business...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DuPont's Journey to Build a Global Cellulosic BioFuel Business Enterprise DuPont's Journey to Build a Global Cellulosic BioFuel Business Enterprise Plenary I: Progress in Advanced ...

  1. BioPower Atlas and BioFuels Atlas | Open Energy Information

    Open Energy Info (EERE)

    Atlas and BioFuels Atlas Jump to: navigation, search Tool Summary LAUNCH TOOL Name: BioPower Atlas and BioFuels Atlas AgencyCompany Organization: National Renewable Energy...

  2. U.S. diesel fuel price falls under $3

    U.S. Energy Information Administration (EIA) Indexed Site

    diesel fuel price falls under $3 The U.S. average retail price for on-highway diesel fuel fell 12 cents from a week ago to $2.93 a gallon on Monday. This marks the first time since September 2010 that diesel prices fell under $3 a gallon, based on the weekly price survey by the U.S. Energy Information Administration. Diesel prices were highest in the Central Atlantic region at 3.13 a gallon, down 10.8 cents from a week ago. Prices were lowest in the Gulf Coast region at 2.84 a gallon, down 12.1

  3. U.S. diesel fuel prices continue to decrease

    U.S. Energy Information Administration (EIA) Indexed Site

    diesel fuel prices falls under $2 The U.S. average retail price for on-highway diesel fuel fell 2.8 cents from a week ago to $1.98 a gallon on Monday. This marks the first time since 2005 that diesel prices have fallen under 2 dollars, based on the weekly price survey by the U.S. Energy Information Administration. Diesel prices were highest in the Central Atlantic region at 2.20 a gallon, down 2.7 cents from a week ago. Prices were lowest in the Gulf Coast states at 1.86 a gallon, down 3.8

  4. Dual fuel combustion in a turbocharged diesel engine

    SciTech Connect (OSTI)

    Few, P.C.; Newlyn, H.A.

    1987-01-01

    The modification of a turbocharged diesel engine to a dual-fuel engine using methane as the supplementary fuel has been carried out. The effect of the gaseous fuel in a turbo-charged diesel engine has been investigated by means of a heat release study and a computer program already developed at Leicester Polytechnic. It is used in order to examine the rate of heat released under any operational condition.

  5. Alternatives to conventional diesel fuel-some potential implications of California's TAC decision on diesel particulate.

    SciTech Connect (OSTI)

    Eberhardt, J. J.; Rote, D. M.; Saricks, C. L.; Stodolsky, F.

    1999-08-10

    Limitations on the use of petroleum-based diesel fuel in California could occur pursuant to the 1998 declaration by California's Air Resources Board (CARB) that the particulate matter component of diesel exhaust is a carcinogen, therefore a toxic air contaminant (TAC) subject to provisions of the state's Proposition 65. It is the declared intention of CARB not to ban or restrict diesel fuel, per se, at this time. Assuming no total ban, Argonne National Laboratory (ANL) explored two feasible ''mid-course'' strategies. (1) Increased penetration of natural gas and greater gasoline use in the transportation fuels market, to the extent that some compression-ignition (CI) applications revert to spark-ignition (SI) engines. (2) New specifications requiring diesel fuel reformulation based on exhaust products of individual diesel fuel constituents. Each of these alternatives results in some degree of (conventional) diesel displacement. In the first case, diesel fuel is assumed admissible for ignition assistance as a pilot fuel in natural gas (NG)-powered heavy-duty vehicles, and gasoline demand in California increases by 32.2 million liters per day overall, about 21 percent above projected 2010 baseline demand. Natural gas demand increases by 13.6 million diesel liter equivalents per day, about 7 percent above projected (total) consumption level. In the second case, compression-ignition engines utilize substitutes for petroleum-based diesel having similar ignition and performance properties. For each case we estimated localized air emission plus generalized greenhouse gas and energy changes. Economic implications of vehicle and engine replacement were not evaluated.

  6. Sandia National Laboratories: Research: Biofuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biofuels Overcoming challenges to make advanced "drop-in" biofuels a reality Sandia researchers are developing clean and renewable sources of energy to help minimize climate change and reduce U.S. dependence on foreign oil. To this end, we are creating thermochemical, chemical, and biochemical conversion technologies to efficiently generate renewable biofuels that can displace gasoline, diesel, and jet fuel with no loss of performance or engine efficiency. Sandia is focused on two

  7. Property:RenewableFuelStandard/BiomassBasedDiesel | Open Energy...

    Open Energy Info (EERE)

    Property Edit with form History Facebook icon Twitter icon Property:RenewableFuelStandardBiomassBasedDiesel Jump to: navigation, search This is a property of type Number. Pages...

  8. DOE Awarded Patent for Reformulated Diesel Fuel | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Awarded Patent for Reformulated Diesel Fuel May 19, 2006 - 10:46am Addthis Available free of Licensing Fees, Cleaner for the Environment WASHINGTON, DC - The U.S. Department of...

  9. Effect of carbon coating on scuffing performance in diesel fuels

    SciTech Connect (OSTI)

    Ajayi, O. O.; Alzoubi, M. F.; Erdemir, A.; Fenske, G. R.

    2000-06-29

    Low-sulfur and low-aromatic diesel fuels are being introduced in order to reduce various types of emissions in diesel engines to levels in compliance with current and impending US federal regulations. The low lubricity of these fuels, however, poses major reliability and durability problems for fuel injection components that depend on diesel fuel for their lubrication. In the present study, the authors evaluated the scuff resistance of surfaces in regular diesel fuel containing 500 ppm sulfur and in Fischer-Tropsch synthetic diesel fuel containing no sulfur or aromatics. Tests were conducted with the high frequency reciprocating test rig (HFRR) using 52100 steel balls and H-13 tool-steel flats with and without Argonne's special carbon coatings. Test results showed that the sulfur-containing fuels provide about 20% higher scuffing resistance than does fuel without sulfur. Use of the carbon coating on the flat increased scuffing resistance in both regular and synthetic fuels by about ten times, as measured by the contact severity index at scuffing. Scuffing failure in tests conducted with coated surfaces did not occur until the coating had been removed by the two distinct mechanisms of spalling and wear.

  10. Dual fuel control of a high speed turbocharged diesel engine

    SciTech Connect (OSTI)

    Few, P.C.; Sardari, P.

    1987-01-01

    The modification of a Ford 7600 turbocharged diesel engine to a dual fuel engine using methane as the supplementary fuel has been carried out. The paper describes the preliminary work of dual fuel control. Two systems are examined and their behaviour is presented.

  11. U.S. Diesel Fuel Price Continues to Increase

    U.S. Energy Information Administration (EIA) Indexed Site

    Diesel Fuel Price Continues to Increase The U.S. average retail price for on-highway diesel fuel rose to $2.87 a gallon on Monday. That's up 3 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Diesel prices were highest in the New England and Central Atlantic regions at 3.08 a gallon. Prices were lowest in the Rocky Mountain states at 2.77 a gallon, down 6-tenths of a penny from a week ago.

  12. U.S. diesel fuel price continues to decrease

    U.S. Energy Information Administration (EIA) Indexed Site

    diesel fuel price continues to decrease The U.S. average retail price for on-highway diesel fuel fell to $3.14 a gallon on Monday. That's down 7.6 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Diesel prices were highest in the Central Atlantic region at 3.30 a gallon, down 4.7 cents from a week ago. Prices were lowest in the Gulf Coast region at 3.05 a gallon, down 7.6 cents. This is Amerine Woodyard, with EIA, in Washington. For more

  13. U.S. diesel fuel price continues to decrease

    U.S. Energy Information Administration (EIA) Indexed Site

    diesel fuel price continues to decrease The U.S. average retail price for on-highway diesel fuel fell to $3.05 a gallon on Monday. That's down 8.4 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Diesel prices were highest in the Central Atlantic region at 3.24 a gallon, down 6.4 cents from a week ago. Prices were lowest in the Gulf Coast region at 2.96 a gallon, down 8.1 cents. This is Marlana Anderson, with EIA, in Washington. For more

  14. U.S. diesel fuel price continues to decrease

    U.S. Energy Information Administration (EIA) Indexed Site

    diesel fuel price continues to decrease The U.S. average retail price for on-highway diesel fuel fell to $2.41 a gallon on Monday. That's down 9-tenths of a penny from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Diesel prices were highest in the West Coast states at 2.71 a gallon, down a tenth of a penny from a week ago. Prices were lowest in the Gulf Coast states at 2.26 a gallon, down 2.1

  15. U.S. diesel fuel price continues to decrease

    U.S. Energy Information Administration (EIA) Indexed Site

    diesel fuel price continues to decrease The U.S. average retail price for on-highway diesel fuel fell to $2.40 a gallon on Monday. That's down 1.2 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Diesel prices were highest in the West Coast states at 2.69 a gallon, down 2.2 cents from a week ago. Prices were lowest in the Gulf Coast states at 2.26 a gallon, up a tenth of a penny. This is Amerine Woodyard, with EIA, in Washington. For more

  16. U.S. diesel fuel price continues to decrease

    U.S. Energy Information Administration (EIA) Indexed Site

    diesel fuel price continues to decrease The U.S. average retail price for on-highway diesel fuel fell to $2.38 a gallon on Monday. That's down 2.3 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Diesel prices were highest in the West Coast states at 2.66 a gallon, down 2.3 cents from a week ago. Prices were lowest in the Gulf Coast states at 2.24 a gallon, down 2 cents. This is Amerine Woodyard, with EIA, in Washington. For more information,

  17. U.S. diesel fuel price continues to decrease

    U.S. Energy Information Administration (EIA) Indexed Site

    diesel fuel price continues to decrease The U.S. average retail price for on-highway diesel fuel fell to $3.21 a gallon on Monday. That's down 6.8 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Diesel prices were highest in the New England region at 3.37 a gallon, down 6 cents from a week ago. Prices were lowest in the Gulf Coast region at 3.12 a gallon, down 5.4 cents. This is Amerine Woodyard, with EIA, in Washington. For more

  18. U.S. diesel fuel price continues to increase

    U.S. Energy Information Administration (EIA) Indexed Site

    diesel fuel price continues to increase The U.S. average retail price for on-highway diesel fuel rose to $2.90 a gallon on Monday. That's up 3 ½ cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Diesel prices were highest in the New England region at 3.17 a gallon, up 8.9 cents from a week ago. Prices were lowest in the Rocky Mountain states at 2.76 a gallon, down 8-tenths of a penny.

  19. U.S. diesel fuel price continues to increase

    U.S. Energy Information Administration (EIA) Indexed Site

    diesel fuel price continues to increase The U.S. average retail price for on-highway diesel fuel rose to $2.94 a gallon on Monday. That's up 3.6 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Diesel prices were highest at 3.29 a gallon in the New England region, up 11.8 cents from a week ago and in the Central Atlantic region, up 13.3 cents. Prices were lowest in the Rocky Mountain states at 2.78 a gallon, up 1.7 cents.

  20. U.S. diesel fuel price continues to increase

    U.S. Energy Information Administration (EIA) Indexed Site

    diesel fuel price continues to increase The U.S. average retail price for on-highway diesel fuel rose to $2.94 a gallon on Monday. That's up 8-tenths of a penny from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Diesel prices were highest at 3.33 a gallon in the New England and Central Atlantic regions. Prices were lowest at 2.80 a gallon in the Gulf Coast region and in the Rocky Mountain states.

  1. U.S. diesel fuel price remains stable

    U.S. Energy Information Administration (EIA) Indexed Site

    diesel fuel price remains stable The U.S. average retail price for on-highway diesel fuel remained unchanged from a week ago at $2.43 a gallon on Monday. That's based on the weekly price survey by the U.S. Energy Information Administration. Diesel prices were highest in the West Coast states at 2.71 a gallon, up 7-tenths of a penny from a week ago. Prices were lowest in the Gulf Coast states at 2.29 a gallon, down 1.1 cents. This is Amerine Woodyard

  2. U.S. diesel fuel prices continue to decrease

    U.S. Energy Information Administration (EIA) Indexed Site

    diesel fuel prices continue to decrease The U.S. average retail price for on-highway diesel fuel fell to $2.21 a gallon on Monday. That's down 2.4 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Diesel prices were highest in the West Coast states at 2.46 a gallon, down 3-tenths of a penny from a week ago. Prices were lowest in the Gulf Coast states at 2.11 a gallon, down 2.6 cents. This is Amerine Woodyard

  3. U.S. diesel fuel prices continue to decrease

    U.S. Energy Information Administration (EIA) Indexed Site

    diesel fuel prices continue to decrease The U.S. average retail price for on-highway diesel fuel fell to $2.18 a gallon on Monday. That's down 3.4 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Diesel prices were highest in the West Coast states at 2.43 a gallon, down 3.8 cents from a week ago. Prices were lowest in the Gulf Coast states at 2.08 a gallon, down 3.4 cents. This is Amerine Woodyard

  4. U.S. diesel fuel prices continue to decrease

    U.S. Energy Information Administration (EIA) Indexed Site

    9, 2016 U.S. diesel fuel prices continue to decrease The U.S. average retail price for on-highway diesel fuel fell to $2.11 a gallon on Monday. That's down 6 ½ cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Diesel prices were highest in the West Coast states at 2.36 a gallon, down 6.7 cents from a week ago. Prices were lowest in the Gulf Coast states at 2.01 a gallon, down 6.6 cents.

  5. U.S. diesel fuel prices continue to decrease

    U.S. Energy Information Administration (EIA) Indexed Site

    diesel fuel prices continue to decrease The U.S. average retail price for on-highway diesel fuel fell to $2.07 a gallon on Monday. That's down 4.1 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Diesel prices were highest in the West Coast states at 2.33 a gallon, down 3.4 cents from a week ago. Prices were lowest in the Gulf Coast states at 1.96 a gallon, down 5.7 cents. This is Marcela Rourk, with EIA, in Washington.

  6. U.S. diesel fuel prices continue to decrease

    U.S. Energy Information Administration (EIA) Indexed Site

    diesel fuel prices continue to decrease; fall to lowest level since March 2009 The U.S. average retail price for on-highway diesel fuel fell to $2.03 a gallon on Monday. That's down 4 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Diesel prices were highest in the West Coast states at 2.27 a gallon, down 5.2 cents from a week ago. Prices were lowest in the Gulf Coast states at 1.92 a gallon, down 4 cents. This is Amerine Woodyard

  7. U.S. diesel fuel prices continue to decrease

    U.S. Energy Information Administration (EIA) Indexed Site

    diesel fuel prices continue to decrease; fall to lowest level in nearly 11 years The U.S. average retail price for on-highway diesel fuel fell to its lowest level in nearly 11 years to $2.01 a gallon on Monday. That's down 2.3 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Diesel prices were highest in the West Coast states at 2.24 a gallon, down 3.7 cents from a week ago. Prices were lowest in the Gulf Coast states at 1.90 a gallon, down

  8. U.S. diesel fuel prices continue to decrease

    U.S. Energy Information Administration (EIA) Indexed Site

    diesel fuel price remains flat The U.S. average retail price for on-highway diesel fuel remained flat at $1.98 a gallon on Monday. That's up 3-tenths of a penny from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Diesel prices were highest in the Central Atlantic region and West Coast states at 2.18 a gallon, down 1.3 cents from a week ago in both regions. Prices were lowest in the Rocky Mountain states at 1.86 a gallon, down half a penny. This is

  9. U.S. diesel fuel prices continue to decrease

    U.S. Energy Information Administration (EIA) Indexed Site

    diesel fuel price increase The U.S. average retail price for on-highway diesel fuel rose to $1.99 a gallon on Monday. That's up 6-tenths of a penny from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Diesel prices were highest in the West Coast states at 2.19 a gallon, up a penny from a week ago. Prices were lowest in the Gulf Coast states at 1.87 a gallon, up a tenth of a penny. This is Amerine Woodyard

  10. U.S. diesel fuel prices continue to decrease

    U.S. Energy Information Administration (EIA) Indexed Site

    diesel fuel price increase The U.S. average retail price for on-highway diesel fuel rose to $2.02 a gallon on Monday. That's up 3.2 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Diesel prices were highest in the West Coast states at 2.22 a gallon, up 2.8 cents from a week ago. Prices were lowest in the Gulf Coast states at 1.91 a gallon, up 3.3 cents. This is Amerine Woodyard

  11. U.S. diesel fuel prices continue to decrease

    U.S. Energy Information Administration (EIA) Indexed Site

    diesel fuel price continues to increases The U.S. average retail price for on-highway diesel fuel rose to $2.10 a gallon on Monday. That's up 7.8 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Diesel prices were highest in the West Coast states at 2.29 a gallon, up 6.6 cents from a week ago. Prices were lowest in the Gulf Coast states at 1.99 a gallon, up 8.3 cents.. This is Amerine Woodyard

  12. U.S. diesel fuel prices continue to decrease

    U.S. Energy Information Administration (EIA) Indexed Site

    diesel fuel prices continue to decrease The U.S. average retail price for on-highway diesel fuel fell to $2.82 a gallon on Monday. That's down 4 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Diesel prices were highest in the Central Atlantic region at 3.18 a gallon, down 5.2 cents from a week ago. Prices were lowest in the Gulf Coast states at 2.68 a gallon, down 4 cents. This is Amerine Woodyard, with EIA, in Washington.

  13. U.S. diesel fuel prices continue to decrease

    U.S. Energy Information Administration (EIA) Indexed Site

    April 6, 2015 U.S. diesel fuel prices continue to decrease The U.S. average retail price for on-highway diesel fuel fell to $2.78 a gallon on Monday. That's down 4 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Diesel prices were highest in the Central Atlantic region at 3.12 a gallon, down 5.7 cents from a week ago. Prices were lowest in the Gulf Coast states at 2.64 a gallon, down 3.2

  14. U.S. diesel fuel prices continue to decrease

    U.S. Energy Information Administration (EIA) Indexed Site

    9, 2015 U.S. diesel fuel prices continue to decrease The U.S. average retail price for on-highway diesel fuel fell to $2.84 a gallon on Monday. That's down 1.6 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Diesel prices were highest in the Mid-Atlantic states at 3.09 a gallon, down 8-tenths of a penny from a week ago. Prices were lowest in the Midwest and Gulf Coast states at 2.73 a gallon. This is Amerine Woodyard

  15. U.S. diesel fuel prices continue to decrease

    U.S. Energy Information Administration (EIA) Indexed Site

    diesel fuel prices continue to decrease The U.S. average retail price for on-highway diesel fuel fell to $2.83 a gallon on Monday. That's down 1.1 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Diesel prices were highest in the Mid-Atlantic and West Coast states at 3.07 a gallon. Prices were lowest in the Gulf Coast states at 2.71 a gallon, down 1.8 cents from a week ago

  16. U.S. diesel fuel prices continue to decrease

    U.S. Energy Information Administration (EIA) Indexed Site

    diesel fuel prices continue to decrease The U.S. average retail price for on-highway diesel fuel fell to $2.81 a gallon on Monday. That's down 1.8 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Diesel prices were highest in the Mid-Atlantic and West Coast states at 3.04 a gallon. Prices were lowest in the Midwest states at 2.70 a gallon, down 2 cents from a week ago

  17. U.S. diesel fuel prices continue to decrease

    U.S. Energy Information Administration (EIA) Indexed Site

    diesel fuel prices continue to decrease The U.S. average retail price for on-highway diesel fuel fell to $2.78 a gallon on Monday. That's down 3.2 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Diesel prices were highest in the West Coast states at 3.00 a gallon down 3.3 cents from a week ago. Prices were lowest in the Gulf Coast states at 2.67 a gallon, down 3.4 cents from a week ago

  18. U.S. diesel fuel prices continue to decrease

    U.S. Energy Information Administration (EIA) Indexed Site

    7, 2015 U.S. diesel fuel prices continue to decrease The U.S. average retail price for on-highway diesel fuel fell to $2.72 a gallon on Monday. That's down 5.9 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Diesel prices were highest in the West Coast states at 2.96 a gallon, down 4.7 cents from a week ago. Prices were lowest in the Gulf Coast states at 2.61 a gallon, down 6.3

  19. U.S. diesel fuel prices continue to decrease

    U.S. Energy Information Administration (EIA) Indexed Site

    diesel fuel prices continue to decrease The U.S. average retail price for on-highway diesel fuel fell to $2.35 a gallon on Monday. That's down 3.1 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Diesel prices were highest in the West Coast states at 2.63 a gallon, down 3.3 cents from a week ago. Prices were lowest in the Gulf Coast states at 2.22 a gallon, down 1.8

  20. U.S. diesel fuel prices continue to decrease

    U.S. Energy Information Administration (EIA) Indexed Site

    diesel fuel prices continue to decrease The U.S. average retail price for on-highway diesel fuel fell to $2.67 a gallon on Monday. That's down 5 ½ cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Diesel prices were highest in the West Coast states at 2.91 a gallon, down 5.1 cents from a week ago. Prices were lowest in the Gulf Coast states at 2.54 a gallon, down 7 ½

  1. U.S. diesel fuel prices continue to decrease

    U.S. Energy Information Administration (EIA) Indexed Site

    diesel fuel prices continue to decrease The U.S. average retail price for on-highway diesel fuel fell to $2.32 a gallon on Monday. That's down 3.2 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Diesel prices were highest in the West Coast states at 2.60 a gallon, down 3 ½ cents from a week ago. Prices were lowest in the Gulf Coast states at 2.18 a gallon, down 4

  2. U.S. diesel fuel prices continue to decrease

    U.S. Energy Information Administration (EIA) Indexed Site

    diesel fuel prices continue to decrease The U.S. average retail price for on-highway diesel fuel fell to $2.62 a gallon on Monday. That's down 5.1 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Diesel prices were highest in the New England region and West Coast states at 2.85 a gallon. Prices were lowest in the Gulf Coast states at 2.49 a gallon, down 4.9 cents from a week ago

  3. U.S. diesel fuel prices continue to decrease

    U.S. Energy Information Administration (EIA) Indexed Site

    diesel fuel prices continue to decrease The U.S. average retail price for on-highway diesel fuel fell to $2.31 a gallon on Monday. That's down 6-tenths of a penny from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Diesel prices were highest in the West Coast states at 2.58 a gallon, down 1.2 cents from a week ago. Prices were lowest in the Gulf Coast states at 2.18 a gallon, down half

  4. U.S. diesel fuel prices continue to decrease

    U.S. Energy Information Administration (EIA) Indexed Site

    diesel fuel prices continue to decrease The U.S. average retail price for on-highway diesel fuel fell to $2.62 a gallon on Monday. That's down 2-tenths of a penny from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Diesel prices were highest in the West Coast states at 2.83 a gallon, down 1 ½ cents from a week ago. Prices were lowest in the Gulf Coast states at 2.48 a gallon, down 9-tenths of a penny.

  5. U.S. diesel fuel prices continue to decrease

    U.S. Energy Information Administration (EIA) Indexed Site

    diesel fuel prices continue to decrease The U.S. average retail price for on-highway diesel fuel fell to $2.56 a gallon on Monday. That's down 5.4 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Diesel prices were highest in the Central Atlantic states at 2.78 a gallon, down 3.9 cents from a week ago. Prices were lowest in the Gulf Coast states at 2.41 a gallon, down 6.4

  6. U.S. diesel fuel prices continue to decrease

    U.S. Energy Information Administration (EIA) Indexed Site

    diesel fuel prices continue to decrease The U.S. average retail price for on-highway diesel fuel fell to $2.49 a gallon on Monday. That's down 2.4 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Diesel prices were highest in the West Coast states at 2.71 a gallon, down 1.9 cents from a week ago. Prices were lowest in the Gulf Coast states at 2.34 a gallon, down 2.2 cents. This is Amerine Woodyard

  7. U.S. diesel fuel prices continue to decrease

    U.S. Energy Information Administration (EIA) Indexed Site

    diesel fuel prices continue to decrease The U.S. average retail price for on-highway diesel fuel fell to $3.78 a gallon on Monday. That's down 2.3 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Diesel prices were highest in the West Coast region at 3.99 a gallon, down 2.9 cents from a week ago. Prices were lowest in the Gulf Coast region at 3.70 a gallon, down a tenth of a penny. This is Marlana Anderson

  8. U.S. diesel fuel prices continue to decrease

    U.S. Energy Information Administration (EIA) Indexed Site

    diesel fuel prices continue to decrease The U.S. average retail price for on-highway diesel fuel fell to $2.48 a gallon on Monday. That's down 1.7 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Diesel prices were highest in the West Coast states at 2.69 a gallon, down 2.2 cents from a week ago. Prices were lowest in the Gulf Coast states at 2.32 a gallon, down 1.7 cents. This is Amerine Woodyard

  9. U.S. diesel fuel prices continue to decrease

    U.S. Energy Information Administration (EIA) Indexed Site

    20, 2014 U.S. diesel fuel prices continue to decrease The U.S. average retail price for on-highway diesel fuel fell to $3.66 a gallon on Monday. That's down 4.2 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Diesel prices were highest in the West Coast region at 3.84 a gallon, down 5.6 cents from a week ago. Prices were lowest in the Lower Atlantic and Gulf Coast regions at 3.59 a gallon, down 4.8 cents in both regions. This is Amerine

  10. U.S. diesel fuel prices continue to decrease

    U.S. Energy Information Administration (EIA) Indexed Site

    diesel fuel prices continue to decrease The U.S. average retail price for on-highway diesel fuel fell to $2.50 a gallon on Monday. That's down 3.3 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Diesel prices were highest in the West Coast states at 2.70 a gallon, down a tenth of a penny from a week ago. Prices were lowest in the Gulf Coast states at 2.30 a gallon, down 2.6 cents. This is Amerine Woodyard

  11. U.S. diesel fuel prices continue to decrease

    U.S. Energy Information Administration (EIA) Indexed Site

    7, 2014 U.S. diesel fuel prices continue to decrease The U.S. average retail price for on-highway diesel fuel fell to $3.64 a gallon on Monday. That's down 2.1 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Diesel prices were highest in the West Coast region at 3.80 a gallon, down 3.6 cents from a week ago. Prices were lowest in the Lower Atlantic and Gulf Coast regions at 3.56 a gallon, down 3 ½ cents and down 2.6 cents, respectively.

  12. U.S. diesel fuel prices continue to decrease

    U.S. Energy Information Administration (EIA) Indexed Site

    diesel fuel prices continue to decrease The U.S. average retail price for on-highway diesel fuel fell to $2.49 a gallon on Monday. That's down 1.3 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Diesel prices were highest in the West Coast states at 2.70 a gallon, down 6-tenths of a penny from a week ago. Prices were lowest in the Gulf Coast states at 2.29 a gallon, down 9-tenths of a penny. This is Amerine Woodyard

  13. U.S. diesel fuel prices continue to decrease

    U.S. Energy Information Administration (EIA) Indexed Site

    diesel fuel prices continue to decrease The U.S. average retail price for on-highway diesel fuel fell to $3.63 a gallon on Monday. That's down 3.3 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Diesel prices were highest in the Mid-west region at 3.74 a gallon, down 4.3 cents from a week ago. Prices were lowest in the Lower Atlantic states at 3.44 a gallon, down 2.8 cents.

  14. U.S. diesel fuel prices continue to decrease

    U.S. Energy Information Administration (EIA) Indexed Site

    diesel fuel prices continue to decrease The U.S. average retail price for on-highway diesel fuel fell to $3.61 a gallon on Monday. That's down 2.3 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Diesel prices were highest in the Rocky Mountain states at 3.73 a gallon, down 1.3 cents from a week ago. Prices were lowest in the Lower Atlantic states at 3.43 a gallon, down 1.2 cents

  15. U.S. diesel fuel prices continue to decrease

    U.S. Energy Information Administration (EIA) Indexed Site

    diesel fuel prices continue to decrease The U.S. average retail price for on-highway diesel fuel fell to $3.54 a gallon on Monday. That's down 7 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Diesel prices were highest in the Rocky Mountain states at 3.66 a gallon, down 7.2 cents from a week ago. Prices were lowest in the Lower Atlantic states at 3.39 a gallon, down 4.3 cents

  16. U.S. diesel fuel prices continue to decrease

    U.S. Energy Information Administration (EIA) Indexed Site

    diesel fuel prices continue to decrease The U.S. average retail price for on-highway diesel fuel fell to $2.34 a gallon on Monday. That's down 4.1 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Diesel prices were highest in the West Coast states at 2.55 a gallon, down 5.1 cents from a week ago. Prices were lowest in the Gulf Coast states at 2.21 a gallon, down 2 cents. This is Amerine Woodyard

  17. U.S. diesel fuel prices continue to decrease

    U.S. Energy Information Administration (EIA) Indexed Site

    diesel fuel prices continue to decrease The U.S. average retail price for on-highway diesel fuel fell to $2.28 a gallon on Monday. That's down 5.4 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Diesel prices were highest in the West Coast states at 2.51 a gallon, down 4.7 cents from a week ago. Prices were lowest in the Gulf Coast states at 2.18 a gallon, down 3.1 cents. This is Amerine Woodyard

  18. U.S. diesel fuel prices continue to decrease

    U.S. Energy Information Administration (EIA) Indexed Site

    diesel fuel prices continue to decrease The U.S. average retail price for on-highway diesel fuel fell to $2.24 a gallon on Monday. That's down 4.9 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Diesel prices were highest in the West Coast states at 2.47 a gallon, down 3.8 cents from a week ago. Prices were lowest in the Gulf Coast states at 2.14 a gallon, down 4.1 cents. This is Amerine Woodyard

  19. U.S. diesel fuel prices continue to decrease

    U.S. Energy Information Administration (EIA) Indexed Site

    diesel fuel prices continue to decrease The U.S. average retail price for on-highway diesel fuel fell to $3.84 a gallon on Monday. That's down 8-tenths of a penny from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Diesel prices were highest in the West Coast region at 4.02 a gallon, down a tenth of a penny from a week ago. Prices were lowest in the Gulf Coast region at 3.74 a gallon, down 1

  20. U.S. diesel fuel prices continue to decrease

    U.S. Energy Information Administration (EIA) Indexed Site

    diesel fuel prices continue to decrease The U.S. average retail price for on-highway diesel fuel fell to $3.82 a gallon on Monday. That's down 1.4 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Diesel prices were highest in the West Coast region at 4.01 a gallon, down half a penny from a week ago. Prices were lowest in the Gulf Coast region at 3.73 a gallon, down 7-tenths of a penny

  1. U.S. diesel fuel prices continue to decrease

    U.S. Energy Information Administration (EIA) Indexed Site

    2, 2014 U.S. diesel fuel prices continue to decrease The U.S. average retail price for on-highway diesel fuel fell to $3.81 a gallon on Monday. That's down 7-tenths of a penny from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Diesel prices were highest in the West Coast region at 4.03 a gallon, up 2 cents from a week ago. Prices were lowest in the Gulf Coast region at 3.72 a gallon, down 1.2 cents. This is Amerine Woodyard, with EIA, in Washington.

  2. U.S. diesel fuel prices continue to increase

    U.S. Energy Information Administration (EIA) Indexed Site

    diesel fuel prices continue to increase The U.S. average retail price for on-highway diesel fuel rose to $2.12 a gallon on Monday. That's up 2-tenths of a penny from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Diesel prices were highest in the West Coast states at 2.32 a gallon, up 4-tenths of a penny from a week ago. Prices were lowest in the Gulf Coast states at 2 dollars a gallon, up a penny. This is Amerine Woodyard

  3. U.S. diesel fuel prices continue to increase

    U.S. Energy Information Administration (EIA) Indexed Site

    diesel fuel prices continue to increase The U.S. average retail price for on-highway diesel fuel rose to $2.17 a gallon on Monday. That's up 3.7 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Diesel prices were highest in the West Coast states at 2.37 a gallon, up 3.9 cents from a week ago. Prices were lowest in the Gulf Coast states at 2.05 a gallon, up 5.4 cents. This is Amerine Woodyard

  4. U.S. diesel fuel prices continue to increase

    U.S. Energy Information Administration (EIA) Indexed Site

    diesel fuel prices continue to increase The U.S. average retail price for on-highway diesel fuel rose to $2.20 a gallon on Monday. That's up 3.3 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Diesel prices were highest in the West Coast states at 2.41 a gallon, up 3 ½ cents from a week ago. Prices were lowest in the Gulf Coast states at 2.07 a gallon, up 2.8 cents. This is Amerine Woodyard

  5. U.S. diesel fuel prices continue to increase

    U.S. Energy Information Administration (EIA) Indexed Site

    diesel fuel prices continue to increase The U.S. average retail price for on-highway diesel fuel rose to $2.85 a gallon on Monday. That's up 4.3 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Diesel prices were highest in the Central Atlantic region at 3.13 a gallon, up 2.3 cents from a week ago. Prices were lowest in the Midwest states at 2.72 a gallon, up 2.4 cents.

  6. U.S. diesel fuel prices continue to increase

    U.S. Energy Information Administration (EIA) Indexed Site

    diesel fuel prices continue to increase The U.S. average retail price for on-highway diesel fuel rose to $2.27 a gallon on Monday. That's up half a penny from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Diesel prices were highest in the West Coast states at 2.49 a gallon, up 1.2 cents from a week ago. Prices were lowest in the Gulf Coast states at 2.13 a gallon, down 6-tenths of a penny. This is Amerine Woodyard

  7. U.S. diesel fuel prices continue to increase

    U.S. Energy Information Administration (EIA) Indexed Site

    diesel fuel prices continue to increase The U.S. average retail price for on-highway diesel fuel rose to $2.88 a gallon on Monday. That's up 2.4 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Diesel prices were highest in the Central Atlantic region at 3.15 a gallon, up 1.8 cents from a week ago. Prices were lowest in the Midwest states at 2.75 a gallon, up 3.3 cents

  8. U.S. diesel fuel prices continue to increase

    U.S. Energy Information Administration (EIA) Indexed Site

    diesel fuel prices continue to increase The U.S. average retail price for on-highway diesel fuel rose to $2.30 a gallon on Monday. That's up 2.6 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Diesel prices were highest in the West Coast states at 2.53 a gallon, up 3.7 cents from a week ago. Prices were lowest in the Gulf Coast states at 2.16 a gallon, up 2.6 cents. This is Amerine Woodyard

  9. U.S. diesel fuel prices continue to increase

    U.S. Energy Information Administration (EIA) Indexed Site

    diesel fuel prices continue to increase The U.S. average retail price for on-highway diesel fuel rose to $2.90 a gallon on Monday. That's up 2.6 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Diesel prices were highest in the Central Atlantic region and West Coast states at 3.16 a gallon. Prices were lowest in the Midwest and Gulf Coast states at 2.79 a gallon.

  10. U.S. diesel fuel prices continue to increase

    U.S. Energy Information Administration (EIA) Indexed Site

    diesel fuel prices continue to increase The U.S. average retail price for on-highway diesel fuel rose to $2.36 a gallon on Monday. That's up 6 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Diesel prices were highest in the West Coast states at 2.60 a gallon, up 6.7 cents from a week ago. Prices were lowest in the Gulf Coast states at 2.23 a gallon, up 7.6 cents. This is Amerine Woodyard

  11. U.S. diesel fuel prices continue to increase

    U.S. Energy Information Administration (EIA) Indexed Site

    diesel fuel prices continue to increase The U.S. average retail price for on-highway diesel fuel rose to $2.91 a gallon on Memorial Day Monday. That's up a penny from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Diesel prices were highest in the West Coast states at 3.17 a gallon, up 1.2 cents from a week ago. Prices were lowest in the Midwest and Gulf Coast states at 2.80 a gallon

  12. U.S. diesel fuel prices continue to increase

    U.S. Energy Information Administration (EIA) Indexed Site

    diesel fuel prices continue to increase The U.S. average retail price for on-highway diesel fuel rose to $2.38 a gallon on Monday. That's up 2 ½ cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Diesel prices were highest in the West Coast states at 2.65 a gallon, up 5.3 cents from a week ago. Prices were lowest in the Gulf Coast states at 2.25 a gallon, up 2.1 cents. This is Amerine Woodyard

  13. U.S. diesel fuel prices continue to increase

    U.S. Energy Information Administration (EIA) Indexed Site

    diesel fuel prices continue to increase The U.S. average retail price for on-highway diesel fuel rose to $2.41 a gallon on Monday. That's up 2 ½ cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Diesel prices were highest in the West Coast states at 2.68 a gallon, up 3.1 cents from a week ago. Prices were lowest in the Gulf Coast states at 2.28 a gallon, up 2.4 cents. This is Amerine Woodyard

  14. U.S. diesel fuel prices continue to increase

    U.S. Energy Information Administration (EIA) Indexed Site

    diesel fuel prices continue to increase The U.S. average retail price for on-highway diesel fuel rose to $2.43 a gallon on Monday. That's up 2.4 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Diesel prices were highest in the West Coast states at 2.71 a gallon, up 3 cents from a week ago. Prices were lowest in the Gulf Coast states at 2.31 a gallon, up 2.9 cents. This is Amerine Woodyard

  15. U.S. diesel fuel prices continue to increase

    U.S. Energy Information Administration (EIA) Indexed Site

    diesel fuel prices continue to increase The U.S. average retail price for on-highway diesel fuel increased to $2.41 a gallon on Monday. That's up 3.9 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Diesel prices were highest in the West Coast states at 2.66 a gallon, up 3 and a half cents from a week ago. Prices were lowest in the Gulf Coast states at 2.27 a gallon, up 2

  16. U.S. diesel fuel prices continue to increase

    U.S. Energy Information Administration (EIA) Indexed Site

    diesel fuel prices continue to increase The U.S. average retail price for on-highway diesel fuel rose to $2.56 a gallon on Monday. That's up 6.4 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Diesel prices were highest in the West Coast states at 2.73 a gallon, up 3.6 cents from a week ago. Prices were lowest in the Gulf Coast states at 2.34 a gallon, up 1.6 cents. This is Amerine Woodyard

  17. U.S. diesel fuel prices continues to increase

    U.S. Energy Information Administration (EIA) Indexed Site

    diesel fuel prices continues to increase The U.S. average retail price for on-highway diesel fuel rose to $2.12 a gallon on Monday. That's up 2 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Diesel prices were highest in the West Coast states at 2.31 a gallon, up 2.6 cents from a week ago. Prices were lowest in the Gulf Coast states at 1.99 a gallon, up a tenth of a penny. This is Amerine Woodyard

  18. U.S. diesel fuel prices decrease from previous week

    U.S. Energy Information Administration (EIA) Indexed Site

    diesel fuel prices decrease from previous week The U.S. average retail price for on-highway diesel fuel fell to $2.88 a gallon on Monday. That's down 2.5 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Diesel prices were highest in the Mid-Atlantic and West Coast states at 3.12 a gallon. Prices were lowest in the Midwest states at 2.77 a gallon, down 3 cents from a week ago

  19. U.S. diesel fuel prices decrease from previous week

    U.S. Energy Information Administration (EIA) Indexed Site

    diesel fuel prices decrease from previous week The U.S. average retail price for on-highway diesel fuel fell to $2.87 a gallon on Monday. That's down 1.4 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Diesel prices were highest in the Mid-Atlantic states at 3.12 a gallon, down half a penny from a week ago. Prices were lowest in the Midwest states at 2.75 a gallon, down 2 cents from a week ago.

  20. U.S. diesel fuel prices remain stable

    U.S. Energy Information Administration (EIA) Indexed Site

    diesel fuel prices remain stable The U.S. average retail price for on-highway diesel fuel fell 6-tenths of a penny to $2.12 a gallon on Monday. That's based on the weekly price survey by the U.S. Energy Information Administration. Diesel prices were highest in the West Coast states at 2.32 a gallon, up 2-tenths of a penny from a week ago. Prices were lowest in the Gulf Coast states at 1.98 a gallon, down 1.8 cents. This is Amerine Woodyard

  1. U.S. diesel fuel prices remain stable

    U.S. Energy Information Administration (EIA) Indexed Site

    diesel fuel prices increase The U.S. average retail price for on-highway diesel fuel rose to $2.13 a gallon on Monday. That's up 1.3 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Diesel prices were highest in the West Coast states at 2.33 a gallon, up 1 ½ cents from a week ago. Prices were lowest in the Gulf Coast states at 1.99 a gallon, up 9-tenths of a penny. This is Amerine Woodyard

  2. U.S. diesel fuel prices stable from previous week

    U.S. Energy Information Administration (EIA) Indexed Site

    diesel fuel prices stable from previous week The U.S. average retail price for on-highway diesel fuel fell slightly to $2.91 a gallon on Monday. That's down half a penny from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Diesel prices were highest in the West Coast states at 3.16 a gallon, down 1.1 cents from a week ago. Prices were lowest in the Midwest and Gulf Coast states at 2.80 a gallon.

  3. Vehicle Technologies Office: Biofuels End-Use Research | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Alternative Fuels » Vehicle Technologies Office: Biofuels End-Use Research Vehicle Technologies Office: Biofuels End-Use Research Biofuels offer Americans viable domestic, environmentally sustainable alternatives to gasoline and diesel. Learn about the basics, benefits, and issues to consider related to biodiesel and ethanol on the Alternative Fuels Data Center. The Vehicle Technologies Office supports research to increase our knowledge of the effects of biofuels on engines and

  4. Alternative Fuels Data Center: Renewable Hydrocarbon Biofuels

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    ... Hydrogenated esters and fatty acids (HEFA) fuels derived from used cooking oil, animal ... or liquefaction of biomass to bio-oil with hydroprocessing Currently, ...

  5. A Comparison of Combustion and Emissions of Diesel Fuels and Oxygenated Fuels in a Modern DI Diesel Engine

    Broader source: Energy.gov [DOE]

    A single-cylinder engine was used to study how selected oxygenated fuels affect combustion and emissions in a modern diesel engine during conventional combustion and low-temperature combustion (LTC).

  6. DuPont’s Journey to Build a Global Cellulosic BioFuel Business Enterprise

    Office of Energy Efficiency and Renewable Energy (EERE)

    Plenary I: Progress in Advanced Biofuels DuPont’s Journey to Build a Global Cellulosic BioFuel Business Enterprise William Provine, Director–Science and Technology External Affairs, DuPont

  7. Energy 101: Biofuels | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biofuels Energy 101: Biofuels Addthis Description Biomass is an organic renewable energy source that includes materials such as agriculture and forest residues, energy crops, and algae. Scientists and engineers at the U.S. Department of Energy and its national laboratories are finding new, more efficient ways to convert biomass into biofuels that can take the place of conventional fuels like gasoline, diesel, and jet fuel. This video shows how biomass is broken down and refined into sustainable

  8. Overview of Aviation Fuel Markets for Biofuels Stakeholders

    SciTech Connect (OSTI)

    Davidson, C.; Newes, E.; Schwab, A.; Vimmerstedt, L.

    2014-07-01

    This report is for biofuels stakeholders interested the U.S. aviation fuel market. Jet fuel production represents about 10% of U.S. petroleum refinery production. Exxon Mobil, Chevron, and BP top producers, and Texas, Louisiana, and California are top producing states. Distribution of fuel primarily involves transport from the Gulf Coast to other regions. Fuel is transported via pipeline (60%), barges on inland waterways (30%), tanker truck (5%), and rail (5%). Airport fuel supply chain organization and fuel sourcing may involve oil companies, airlines, airline consortia, airport owners and operators, and airport service companies. Most fuel is used for domestic, commercial, civilian flights. Energy efficiency has substantially improved due to aircraft fleet upgrades and advanced flight logistic improvements. Jet fuel prices generally track prices of crude oil and other refined petroleum products, whose prices are more volatile than crude oil price. The single largest expense for airlines is jet fuel, so its prices and persistent price volatility impact industry finances. Airlines use various strategies to manage aviation fuel price uncertainty. The aviation industry has established goals to mitigate its greenhouse gas emissions, and initial estimates of biojet life cycle greenhouse gas emissions exist. Biojet fuels from Fischer-Tropsch and hydroprocessed esters and fatty acids processes have ASTM standards. The commercial aviation industry and the U.S. Department of Defense have used aviation biofuels. Additional research is needed to assess the environmental, economic, and financial potential of biojet to reduce greenhouse gas emissions and mitigate long-term upward price trends, fuel price volatility, or both.

  9. Requirements of diesel fuel quality: effects of poor-quality fuels

    SciTech Connect (OSTI)

    Fortnagel, M.; Gairiny, M.; Hardenberg, H.O.

    1982-05-01

    In recent years the properties of diesel fuels have changed distinctly, especially in the United States. Experience has shown that test methods and specifications used are no longer suitable for the adequate analysis and description of diesel fuels. This paper identifies a number of critical properties that should be analyzed in characterizing diesel fuel quality, uses examples from the United States to demonstrate the fuel-related problems (other than gaseous exhaust emissions) that result from a large diversity in diesel fuel properties, and discusses the available methods for dealing with these problems. The examples show the need to draw up improved methods for the better and more complete specification of good-quality diesel fuels, as well as the need to introduce these specifications on an international level.

  10. Table 46. Refiner No. 2 Distillate, Diesel Fuel, and Fuel Oil...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    839.2 135.0 1,251.9 See footnotes at end of table. 46. Refiner No. 2 Distillate, Diesel Fuel, and Fuel Oil Volumes by PAD District and State Energy Information Administration ...

  11. Nitrogen oxide removal using diesel fuel and a catalyst

    DOE Patents [OSTI]

    Vogtlin, George E.; Goerz, David A.; Hsiao, Mark; Merritt, Bernard T.; Penetrante, Bernie M.; Reynolds, John G.; Brusasco, Ray

    2000-01-01

    Hydrocarbons, such as diesel fuel, are added to internal combustion engine exhaust to reduce exhaust NO.sub.x in the presence of a amphoteric catalyst support material. Exhaust NO.sub.x reduction of at least 50% in the emissions is achieved with the addition of less than 5% fuel as a source of the hydrocarbons.

  12. Five Kilowatt Solid Oxide Fuel Cell/Diesel Reformer

    SciTech Connect (OSTI)

    Dennis Witmer; Thomas Johnson

    2008-12-31

    Reducing fossil fuel consumption both for energy security and for reduction in global greenhouse emissions has been a major goal of energy research in the US for many years. Fuel cells have been proposed as a technology that can address both these issues--as devices that convert the energy of a fuel directly into electrical energy, they offer low emissions and high efficiencies. These advantages are of particular interest to remote power users, where grid connected power is unavailable, and most electrical power comes from diesel electric generators. Diesel fuel is the fuel of choice because it can be easily transported and stored in quantities large enough to supply energy for small communities for extended periods of time. This projected aimed to demonstrate the operation of a solid oxide fuel cell on diesel fuel, and to measure the resulting efficiency. Results from this project have been somewhat encouraging, with a laboratory breadboard integration of a small scale diesel reformer and a Solid Oxide Fuel Cell demonstrated in the first 18 months of the project. This initial demonstration was conducted at INEEL in the spring of 2005 using a small scale diesel reformer provided by SOFCo and a fuel cell provided by Acumentrics. However, attempts to integrate and automate the available technology have not proved successful as yet. This is due both to the lack of movement on the fuel processing side as well as the rather poor stack lifetimes exhibited by the fuel cells. Commercial product is still unavailable, and precommercial devices are both extremely expensive and require extensive field support.

  13. Dual fueling of a Caterpillar 3406 diesel engine

    SciTech Connect (OSTI)

    Bell, S.R.; Midkiff, K.C.; Doughty, G.; Brett, C.E.

    1996-05-01

    A Caterpillar 3406 turbocharged diesel engine was converted to operate in a dual-fuel mode and was evaluated for performance and emission characteristics for both diesel and natural gas operation. Full load power was achieved with dual fueling without knock. Similar fuel efficiencies were obtained with dual fueling a high loads, but efficiencies were lower for low loads. Bosch smoke numbers were reduced by over 50% with dual fueling for all cases investigated. NO{sub x} emissions were found to be lower at low loads and at high speeds under high load. CO emissions were significantly increased for dual fueling while CO{sub 2} concentrations in the exhaust were reduced for dual fueling.

  14. U.S. diesel fuel prices continue to decrease

    U.S. Energy Information Administration (EIA) Indexed Site

    diesel fuel prices continue to decrease The U.S. average retail price for on-highway diesel fell to $2.45 a gallon on Monday. That's down 3.7 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Diesel prices were highest in the West Coast states at 2.65 a gallon, down 4.2 cents from a week ago. Prices were lowest in the Gulf Coast states at 2.28 a gallon, down 2.4 cents. This is Amerine Woodyard

  15. U.S. diesel fuel prices continue to decrease

    U.S. Energy Information Administration (EIA) Indexed Site

    0, 2015 U.S. diesel fuel prices continue to decrease The U.S. average retail price for on-highway diesel fell to $2.42 a gallon on Monday. That's down 2.4 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Diesel prices were highest in the West Coast states at 2.62 a gallon, down 2.9 cents from a week ago. Prices were lowest in the Gulf Coast states at 2.25 a gallon, down 2.6 cents.

  16. U.S. diesel fuel prices continue to decrease

    U.S. Energy Information Administration (EIA) Indexed Site

    diesel fuel prices continue to decrease The U.S. average retail price for on-highway diesel fell to $2.38 a gallon on Monday. That's down 4.2 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Diesel prices were highest in the West Coast states at 2.60 a gallon, down 2.1 cents from a week ago. Prices were lowest in the Gulf Coast states at 2.23 a gallon, down 2.2 cents. This is Amerine Woodyard

  17. Diesel fuel to dc power: Navy & Marine Corps Applications

    SciTech Connect (OSTI)

    Bloomfield, D.P.

    1996-12-31

    During the past year Analytic Power has tested fuel cell stacks and diesel fuel processors for US Navy and Marine Corps applications. The units are 10 kW demonstration power plants. The USN power plant was built to demonstrate the feasibility of diesel fueled PEM fuel cell power plants for 250 kW and 2.5 MW shipboard power systems. We designed and tested a ten cell, 1 kW USMC substack and fuel processor. The complete 10 kW prototype power plant, which has application to both power and hydrogen generation, is now under construction. The USN and USMC fuel cell stacks have been tested on both actual and simulated reformate. Analytic Power has accumulated operating experience with autothermal reforming based fuel processors operating on sulfur bearing diesel fuel, jet fuel, propane and natural gas. We have also completed the design and fabrication of an advanced regenerative ATR for the USMC. One of the significant problems with small fuel processors is heat loss which limits its ability to operate with the high steam to carbon ratios required for coke free high efficiency operation. The new USMC unit specifically addresses these heat transfer issues. The advances in the mill programs have been incorporated into Analytic Power`s commercial units which are now under test.

  18. Fuel Effects on Low Temperature Combustion in a Light-Duty Diesel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Low Temperature Combustion in a Light-Duty Diesel Engine Fuel Effects on Low Temperature Combustion in a Light-Duty Diesel Engine Six different fuels were investigated to study the ...

  19. Advanced Research in Diesel Fuel Sprays Using X-rays from the...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research in Diesel Fuel Sprays Using X-rays from the Advanced Photon Source Advanced Research in Diesel Fuel Sprays Using X-rays from the Advanced Photon Source 2003 DEER ...

  20. U.S. diesel fuel price continue to decrease; lowest level since...

    U.S. Energy Information Administration (EIA) Indexed Site

    diesel fuel price continue to decrease; lowest level since March 2010 The U.S. average retail price for on-highway diesel fuel fell to 2.87 a gallon on Monday. That's down 6.7 ...

  1. Fuel consumption of freight trains hauled by diesel electric locomotives

    SciTech Connect (OSTI)

    Radford, R.W.

    1983-05-01

    The cost of railway diesel fuel has become an increasingly high proportion of railway operating expenses. The paper analyzes the generation and utilization of rail horsepower in freight train operations. The effects on fuel consumption of variations in several parameters including train consist, car weight, gradient, average speed, meet strategy, throttle control, locomotive axle arrangement, and train marshalling are examined. Estimates are made of the value, in terms of fuel cost, of weight reduction of freight cars and of selective train marshalling.

  2. Diesel fuel burner for diesel emissions control system

    DOE Patents [OSTI]

    Webb, Cynthia C.; Mathis, Jeffrey A.

    2006-04-25

    A burner for use in the emissions system of a lean burn internal combustion engine. The burner has a special burner head that enhances atomization of the burner fuel. Its combustion chamber is designed to be submersed in the engine exhaust line so that engine exhaust flows over the outer surface of the combustion chamber, thereby providing efficient heat transfer.

  3. U.S. diesel fuel prices continue to increase

    U.S. Energy Information Administration (EIA) Indexed Site

    diesel fuel prices continue to increase The U.S. average retail price for on-highway diesel fuel rose to $2.27 a gallon on Monday. That's up 6.8 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Pump prices were highest in the West Coast states at 2.64 a gallon, up 3.9 cents from a week ago. Prices were lowest in the Gulf Coast states at 2 dollars a gallon, up 8.2 cents. This is Amerine Woodyard

  4. Recent Progress in the Development of Diesel Surrogate Fuels

    SciTech Connect (OSTI)

    Pitz, W J; Mueller, C J

    2009-12-09

    There has been much recent progress in the area of surrogate fuels for diesel. In the last few years, experiments and modeling have been performed on higher molecular weight components of relevance to diesel fuel such as n-hexadecane (n-cetane) and 2,2,4,4,6,8,8-heptamethylnonane (iso-cetane). Chemical kinetic models have been developed for all the n-alkanes up to 16 carbon atoms. Also, there has been much experimental and modeling work on lower molecular weight surrogate components such as n-decane and n-dodecane that are most relevant to jet fuel surrogates, but are also relevant to diesel surrogates where simulation of the full boiling point range is desired. For two-ring compounds, experimental work on decalin and tetralin recently has been published. For multi-component surrogate fuel mixtures, recent work on modeling of these mixtures and comparisons to real diesel fuel is reviewed. Detailed chemical kinetic models for surrogate fuels are very large in size. Significant progress also has been made in improving the mechanism reduction tools that are needed to make these large models practicable in multi-dimensional reacting flow simulations of diesel combustion. Nevertheless, major research gaps remain. In the case of iso-alkanes, there are experiments and modeling work on only one of relevance to diesel: iso-cetane. Also, the iso-alkanes in diesel are lightly branched and no detailed chemical kinetic models or experimental investigations are available for such compounds. More components are needed to fill out the iso-alkane boiling point range. For the aromatic class of compounds, there has been no new work for compounds in the boiling point range of diesel. Most of the new work has been on alkyl aromatics that are of the range C7 to C8, below the C10 to C20 range that is needed. For the chemical class of cycloalkanes, experiments and modeling on higher molecular weight components are warranted. Finally for multi-component surrogates needed to treat real

  5. Recent Progress in the Development of Diesel Surrogate Fuels

    SciTech Connect (OSTI)

    Pitz, W J

    2009-09-04

    There has been much recent progress in the area of surrogate fuels for diesel. In the last few years, experiments and modeling have been performed on higher molecular weight components of relevance to diesel fuel such as n-hexadecane (n-cetane) and 2,2,4,4,6,8,8-heptamethylnonane (iso-cetane). Chemical kinetic models have been developed for all the n-alkanes up to 16 carbon atoms. Also, there has been much experimental and modeling work on lower molecular weight surrogate components such as n-decane and do-decane which are most relevant to jet fuel surrogates, but are also relevant to diesel surrogates where simulation of the full boiling point range is desired. For the cycloalkanes, experimental work on decalin and tetralin recently has been published. For multi-component surrogate fuel mixtures, recent work on modeling of these mixtures and comparisons to real diesel fuel is reviewed. Detailed chemical kinetic models for surrogate fuels are very large in size. Significant progress also has been made in improving the mechanism reduction tools that are needed to make these large models practicable in multidimensional reacting flow simulations of diesel combustion. Nevertheless, major research gaps remain. In the case of iso-alkanes, there are experiments and modeling work on only one of relevance to diesel: iso-cetane. Also, the iso-alkanes in diesel are lightly branched and no detailed chemical kinetic models or experimental investigations are available for such compounds. More components are needed to fill out the iso-alkane boiling point range. For the aromatic class of compounds, there has been no new work for compounds in the boiling point range of diesel. Most of the new work has been on alkyl aromatics that are of the range C7 to C8, below the C10 to C20 range that is needed. For the chemical class of cycloalkanes, experiments and modeling on higher molecular weight components are warranted. Finally for multi-component surrogates needed to treat real diesel

  6. Energy Department Announces New Investment to Accelerate Next Generation Biofuels

    Broader source: Energy.gov [DOE]

    The Energy Department announced four research and development projects to bring next generation biofuels on line faster and drive down the cost of producing gasoline, diesel and jet fuels from biomass.

  7. Biofuels

    ScienceCinema (OSTI)

    Kalluri, Udaya

    2014-05-23

    Udaya Kalluri is part of a multidisciplinary scientific team working to unlock plants in order to create more potent biofuels without harsh processing.

  8. Biofuels

    SciTech Connect (OSTI)

    Kalluri, Udaya

    2014-05-02

    Udaya Kalluri is part of a multidisciplinary scientific team working to unlock plants in order to create more potent biofuels without harsh processing.

  9. Novel injector techniques for coal-fueled diesel engines

    SciTech Connect (OSTI)

    Badgley, P.R.

    1992-09-01

    This report, entitled Novel Injector Techniques for Coal-Fueled Diesel Engines,'' describes the progress and findings of a research program aimed at development of a dry coal powder fuel injector in conjunction with the Thermal Ignition Combustion System (TICS) concept to achieve autoignition of dry powdered coal in a single-cylinder high speed diesel engine. The basic program consisted of concept selection, analysis and design, bench testing and single cylinder engine testing. The coal injector concept which was selected was a one moving part dry-coal-powder injector utilizing air blast injection. Adiabatics has had previous experience running high speed diesel engines on both direct injected directed coal-water-slurry (CWS) fuel and also with dry coal powder aspirated into the intake air. The Thermal Ignition Combustion System successfully ignited these fuels at all speeds and loads without requiring auxiliary ignition energy such as pilot diesel fuel, heated intake air or glow or spark plugs. Based upon this prior experience, it was shown that the highest efficiency and fastest combustion was with the dry coal, but that the use of aspiration of coal resulted in excessive coal migration into the engine lubrication system. Based upon a desire of DOE to utilize a more modern test engine, the previous naturally-aspirated Caterpillar model 1Y73 single cylinder engine was replaced with a turbocharged (by use of shop air compressor and back pressure control valve) single cylinder version of the Cummins model 855 engine.

  10. Renewable Diesel Fuels: Status of Technology and R&D Needs |...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (298.95 KB) More Documents & Publications New Diesel Feedstocks and Future Fuels Return Condensate to the Boiler BiodieselFuelManagementBestPracticesReport.pdf

  11. Miscible, multi-component, diesel fuels and methods of bio-oil transformation

    DOE Patents [OSTI]

    Adams, Thomas; Garcia, Manuel; Geller, Dan; Goodrum, John W.; Pendergrass, Joshua T.

    2010-10-26

    Briefly described, embodiments of this disclosure include methods of recovering bio-oil products, fuels, diesel fuels, and the like are disclosed.

  12. U.S. diesel fuel price hits 2014 low

    U.S. Energy Information Administration (EIA) Indexed Site

    hits 2014 low The U.S. average retail price for on-highway diesel fuel has fallen to its lowest level so far in 2014 at 3.86 a gallon on Monday. That's down 1.1 cents from a ...

  13. Emission Characteristics of a Diesel Engine Operating with In-Cylinder Gasoline and Diesel Fuel Blending

    SciTech Connect (OSTI)

    Prikhodko, Vitaly Y; Curran, Scott; Barone, Teresa L; Lewis Sr, Samuel Arthur; Storey, John Morse; Cho, Kukwon; Wagner, Robert M; Parks, II, James E

    2010-01-01

    Advanced combustion regimes such as homogeneous charge compression ignition (HCCI) and premixed charge compression ignition (PCCI) offer benefits of reduced nitrogen oxides (NOx) and particulate matter (PM) emissions. However, these combustion strategies often generate higher carbon monoxide (CO) and hydrocarbon (HC) emissions. In addition, aldehydes and ketone emissions can increase in these modes. In this study, the engine-out emissions of a compression-ignition engine operating in a fuel reactivity- controlled PCCI combustion mode using in-cylinder blending of gasoline and diesel fuel have been characterized. The work was performed on a 1.9-liter, 4-cylinder diesel engine outfitted with a port fuel injection system to deliver gasoline to the engine. The engine was operated at 2300 rpm and 4.2 bar brake mean effective pressure (BMEP) with the ratio of gasoline to diesel fuel that gave the highest engine efficiency and lowest emissions. Engine-out emissions for aldehydes, ketones and PM were compared with emissions from conventional diesel combustion. Sampling and analysis was carried out following micro-tunnel dilution of the exhaust. Particle geometric mean diameter, number-size distribution, and total number concentration were measured by a scanning mobility particle sizer (SMPS). For the particle mass measurements, samples were collected on Teflon-coated quartz-fiber filters and analyzed gravimetrically. Gaseous aldehydes and ketones were sampled using dinitrophenylhydrazine-coated solid phase extraction cartridges and the extracts were analyzed by liquid chromatography/mass spectrometry (LC/MS). In addition, emissions after a diesel oxidation catalyst (DOC) were also measured to investigate the destruction of CO, HC and formaldehydes by the catalyst.

  14. Hydrogen as a Supplemental Fuel in Diesel Engines | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    as a Supplemental Fuel in Diesel Engines Hydrogen as a Supplemental Fuel in Diesel Engines Poster presentation from the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT). deer07_bika.pdf (177.65 KB) More Documents & Publications Fuels of the Future for Cars and Trucks Renewable Diesel Vehicle Technologies Office:

  15. Fuel effects on flame lift-off under diesel conditions

    SciTech Connect (OSTI)

    Persson, Helena; Andersson, Oeivind; Egnell, Rolf

    2011-01-15

    An apparent relation between the lift-off length under diesel conditions and the ignition quality of a fuel has previously been reported. To cast light on the underlying mechanism, the current study aims to separate flame lift-off effects of the chemical ignition delay from those of other fuel properties under diesel conditions. Flame lift-off was measured in an optical diesel engine by high-speed video imaging of OH-chemiluminescence. Fuel and ambient-gas properties were varied during the experiment. Only a weak correlation was found between ignition delay and lift-off length. The data indicate that this correlation is due to a common, stronger correlation with the ambient oxygen concentration. The chemical ignition delay and the fuel type had similar, weak effects on the lift-off length. A recently proposed mechanism for lift-off stabilization was used to interpret the results. It assumes that reactants approaching the lift-off position of the jet are mixed with high-temperature products found along the edges of the flame, which trigger autoignition. In this picture, the fuel effect is most likely due to differences in the amount of mixing with high-temperature products that is required for autoignition. In the current experiment, all lift-off effects seem to arise from variations in the reactant and product temperatures, induced by fuel and ambient properties. (author)

  16. Chemical Kinetic Research on HCCI & Diesel Fuels

    Broader source: Energy.gov [DOE]

    2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

  17. Chemical Kinetic Research on HCCI & Diesel Fuels

    Broader source: Energy.gov [DOE]

    2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  18. Chemical Kinetic Research on HCCI & Diesel Fuels

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  19. Advanced Petroleum-Based Fuels -- Diesel Emissions Control Project (APBF-DEC)

    SciTech Connect (OSTI)

    Not Available

    2003-03-01

    Annual progress report of the Advanced Petroleum-based fuels-Diesel Emissions Control Project. Contains information on 5 test projects to determine the best combinations of low-sulfur diesel fuels, lubricants, diesel engines, and emission control systems to meet projected emissions standards.

  20. Application of a Diesel Fuel Reformer for Tier 2 Bin 5 Emissions |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters 2005_deer_bonadies.pdf (1.07 MB) More Documents & Publications Application of a Diesel Fuel Reformer for Tier 2 Bin 5 Emissions Delphi On-board Ammonia Generation (OAG) On-Board Ammonia Generation Using Delphi Diesel Fuel Reformer

  1. Fact #555: January 26, 2009 Transit Buses are Relying Less on Diesel Fuel |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 5: January 26, 2009 Transit Buses are Relying Less on Diesel Fuel Fact #555: January 26, 2009 Transit Buses are Relying Less on Diesel Fuel In 1995, over 95% of the fuel used in transit buses was diesel. In 2006, diesel fuel constituted just under 75% of the fuel used by transit buses while other fuel types such as compressed natural gas (CNG) and liquefied natural gas (LNG) have become much more prevalent. The use of CNG in buses has grown from less than 2% in 1995 to

  2. Fact #650: November 22, 2010 Diesel Fuel Prices hit a Two-Year High |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 50: November 22, 2010 Diesel Fuel Prices hit a Two-Year High Fact #650: November 22, 2010 Diesel Fuel Prices hit a Two-Year High According to the Energy Information Administration's weekly fuel price data, the price of highway diesel fuel on the week of November 17, 2010, reached a 2-year high of $3.18 per gallon. Back in 2008, the prices for gasoline and diesel fuel rose to record levels in mid-summer, but plummeted by about 50% before the end of the year. Though fuel

  3. Impacts of Biodiesel Fuel Blends Oil Dilution on Light-Duty Diesel Engine Operation

    SciTech Connect (OSTI)

    Thornton, M. J.; Alleman, T. L.; Luecke, J.; McCormick, R. L.

    2009-08-01

    Assesses oil dilution impacts on a diesel engine operating with a diesel particle filter, NOx storage, a selective catalytic reduction emission control system, and a soy-based 20% biodiesel fuel blend.

  4. Effect of Alternative Fuels on Soot Properties and Regeneration of Diesel

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Particulate Filters | Department of Energy Alternative Fuels on Soot Properties and Regeneration of Diesel Particulate Filters Effect of Alternative Fuels on Soot Properties and Regeneration of Diesel Particulate Filters 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters 2005_deer_song.pdf (2.06 MB) More Documents & Publications Impact of EGR on Soot Nanostructure and Reactivity Fuel Impacts on Soot Nanostructure and Reactivity Fuel Formulation Effects on

  5. Emissions from Buses with DDC 6V92 Engines Using Synthetic Diesel Fuel

    SciTech Connect (OSTI)

    Paul Norton; Keith Vertin; Nigel N. Clark; Donald W. Lyons; Mridul Gautam; Stephen Goguen; James Eberhardt

    1999-05-03

    Synthetic diesel fuel can be made from a variety of feedstocks, including coal, natural gas and biomass. Synthetic diesel fuels can have very low sulfur and aromatic content, and excellent autoignition characteristics. Moreover, synthetic diesel fuels may also economically competitive with California diesel fuel if .roduced in large volumes. Previous engine laboratory and field tests using a heavy-duty chassis dynamometer indicate that synthetic diesel fuel made using the Fischer-Tropsch (F-T) catalytic conversion process is a promising alternative fuel, because it can be used in unmodified diesel engines, and can reduce exhaust emissions substantially. The objective of this study was a preliminary assessment of the emissions from older model transit operated on Mossgas synthetic diesel fuel. The study compared emissions from transit buses operating on Federal no. 2 Diesel fuel, Mossgas synthetic diesel (MGSD), and a 50/50 blend of the two fuels. The buses were equipped with unmodified Detroit Diesel 6V92 2-stroke diesel engines. Six 40-foot buses were tested. Three of the buses had recently rebuilt engines and were equipped with an oxidation catalytic converter. Vehicle emissions measurements were performed using West Virginia University's unique transportable chassis dynamometer. The emissions were measured over the Central Business District (CBD) driving cycle. The buses performed well on both neat and blended MGSD fuel. Three buses without catalytic converters were tested. Compared to their emissions when operating on Federal no. 2 diesel fuel, these buses emitted an average of 5% lower oxides of nitrogen (NOx) and 20% lower particulate matter (PM) when operating on neat MGSD fuel. Catalyst equipped buses emitted an average of 8% lower NOx and 31% lower PM when operating on MGSD than when operating on Federal no. 2 diesel fuel.

  6. Optimum Biofuels | Open Energy Information

    Open Energy Info (EERE)

    Biofuels Jump to: navigation, search Name: Optimum Biofuels Place: Higley, Arizona Zip: 85236 Product: Arizona-based operator of a bio diesel refinery in Coolidge, with soybean oil...

  7. Chemical Kinetic Research on HCCI & Diesel Fuels

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Laboratory Chemical Kinetic Research on HCCI & Diesel Fuels William J. Pitz (PI), Charles K. Westbrook, Marco Mehl, M. Lee Davisson Lawrence Livermore National Laboratory May 12, 2009 DOE National Laboratory Advanced Combustion Engine R&D Merit Review and Peer Evaluation Washington, DC This presentation does not contain any proprietary or confidential information This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under

  8. Fabrication of small-orifice fuel injectors for diesel engines.

    SciTech Connect (OSTI)

    Woodford, J. B.; Fenske, G. R.

    2005-04-08

    Diesel fuel injector nozzles with spray hole diameters of 50-75 {micro}m have been fabricated via electroless nickel plating of conventionally made nozzles. Thick layers of nickel are deposited onto the orifice interior surfaces, reducing the diameter from {approx}200 {micro}m to the target diameter. The nickel plate is hard, smooth, and adherent, and covers the orifice interior surfaces uniformly.

  9. Coal-fueled diesels for modular power generation

    SciTech Connect (OSTI)

    Wilson, R.P.; Rao, A.K.; Smith, W.C.

    1993-11-01

    Interest in coal-fueled heat engines revived after the sharp increase in the prices of natural gas and petroleum in the 1970`s. Based on the success of micronized coal water slurry combustion tests in an engine in the 1980`s, Morgantown Energy Technology Center (METC) of the US Department of Energy. initiated several programs for the development of advanced coal-fueled diesel and gas turbine engines for use in cogeneration, small utilities, industrial applications and transportation. Cooper-Bessemer and Arthur D. Little have been developing technology since 1985, under the sponsor of METC, to enable coal water slurry (CWS) to be utilized in large bore, medium-speed diesel engines. Modular power generation applications in the 10--100 MW size (each plant typically using from two to eight engines) are the target applications for the late 1990`s and beyond when, according to the US DOE and other projections, oil and natural gas prices are expected to escalate much more rapidly compared to the price of coal. As part of this program over 7.50 hours of prototype engine operation has been achieved on coal water slurry (CWS), including over 100 hours operation of a six-cylinder full scale engine with Integrated Emissions Control System in 1993. In this paper, the authors described the project cost of the CWS fuel used, the heat rate of the engine operating on CWS, the projected maintenance cost for various engine components, and the demonstrated low emissions characteristics of the coal diesel system.

  10. Advanced Research in Diesel Fuel Sprays Using X-rays from the Advanced

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Photon Source | Department of Energy Research in Diesel Fuel Sprays Using X-rays from the Advanced Photon Source Advanced Research in Diesel Fuel Sprays Using X-rays from the Advanced Photon Source 2003 DEER Conference Presentation: Argonne National Laboratory 2003_deer_powell.pdf (925.28 KB) More Documents & Publications Vehicle Technologies Office Merit Review 2014: Fuel Injection and Spray Research Using X-Ray Diagnostics X-Ray Characterization of Diesel Sprays and the Effects of

  11. Verification of Shell GTL Fuel as CARB Alternative Diesel | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Verification of Shell GTL Fuel as CARB Alternative Diesel Verification of Shell GTL Fuel as CARB Alternative Diesel Presentation given at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT). deer07_dahlstrom.pdf (684.84 KB) More Documents & Publications Rigorous HDD Emissions Capabilities of Shell GTL Fuel

  12. Chemical Kinetic Research on HCCI & Diesel Fuels | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Chemical Kinetic Research on HCCI & Diesel Fuels Chemical Kinetic Research on HCCI & Diesel Fuels 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. ace_13_pitz.pdf (1.42 MB) More Documents & Publications Multidimensional simulation and chemical kinetics development for high efficiency clean combustion engines Chemical Kinetic Research on HCCI & Diesel Fuels Vehicle Technologies Office

  13. Table 16. U.S. No. 2 Diesel Fuel Prices by Sales Type

    Gasoline and Diesel Fuel Update (EIA)

    "Resellers'Retailers' Monthly Petroleum Product Sales Report." 16. U.S. No. 2 Diesel Fuel Prices by Sales Type 30 Energy Information Administration Petroleum Marketing Annual...

  14. Rapid engine test to measure injector fouling in diesel engines using vegetable oil fuels

    SciTech Connect (OSTI)

    Korus, R.A.; Jaiduk, J.; Peterson, C.L.

    1985-11-01

    Short engine tests were used to determine the rate of carbon deposition on direct injection diesel nozzles. Winter rape, high-oleic and high-linoleic safflower blends with 50% diesel were tested for carbon deposit and compared to that with D-2 Diesel Control Fuel. Deposits were greatest with the most unsaturated fuel, high-linoleic safflower, and least with winter rape. All vegetable oil blends developed power similar to diesel fueled engines with a 6 to 8% greater fuel consumption. 8 references.

  15. Use of a Diesel Fuel Processor for Rapid and Efficient Regeneration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Efficient Regeneration of Single Leg NOx Adsorber Systems Use of a Diesel Fuel Processor for Rapid and Efficient Regeneration of Single Leg NOx Adsorber Systems 2003 DEER ...

  16. Propane-Diesel Dual Fuel for CO2 and Nox Reduction

    Broader source: Energy.gov [DOE]

    Test results show significant CO2 and NOx emission reductions, fuel economy gains, and overall energy savings with propane injection in a diesel engine.

  17. Table 40. No. 2 Diesel Fuel Prices by Sales Type, PAD District...

    U.S. Energy Information Administration (EIA) Indexed Site

    Type, PAD District, and Selected States Energy Information Administration Petroleum Marketing Annual 1996 233 Table 40. No. 2 Diesel Fuel Prices by Sales Type, PAD District,...

  18. Table 41. No. 2 Diesel Fuel Prices by Sulfur Content, Sales...

    U.S. Energy Information Administration (EIA) Indexed Site

    Content, Sales Type, and PAD District 242 Energy Information Administration Petroleum Marketing Annual 1997 Table 41. No. 2 Diesel Fuel Prices by Sulfur Content, Sales Type,...

  19. Table 41. No. 2 Diesel Fuel Prices by Sulfur Content, Sales...

    U.S. Energy Information Administration (EIA) Indexed Site

    Content, Sales Type, and PAD District 242 Energy Information Administration Petroleum Marketing Annual 1996 Table 41. No. 2 Diesel Fuel Prices by Sulfur Content, Sales Type,...

  20. Table 40. No. 2 Diesel Fuel Prices by Sales Type, PAD District...

    U.S. Energy Information Administration (EIA) Indexed Site

    Type, PAD District, and Selected States Energy Information Administration Petroleum Marketing Annual 1997 233 Table 40. No. 2 Diesel Fuel Prices by Sales Type, PAD District,...

  1. Recovery Act. Solid Oxide Fuel Cell Diesel Auxilliary Power Unit Demonstration

    SciTech Connect (OSTI)

    Geiger, Gail E.

    2013-09-30

    Solid Oxide Fuel Cell Diesel Auxilliary Power Unit Demonstration Project. Summarizing development of Delphi’s next generation SOFC system as the core power plant to prove the viability of the market opportunity for a 3-5 kW diesel SOFC system. Report includes test and demonstration results from testing the diesel APU in a high visibility fleet customer vehicle application.

  2. FUEL FORMULATION EFFECTS ON DIESEL FUEL INJECTION, COMBUSTION, EMISSIONS AND EMISSION CONTROL

    SciTech Connect (OSTI)

    Boehman, A; Alam, M; Song, J; Acharya, R; Szybist, J; Zello, V; Miller, K

    2003-08-24

    This paper describes work under a U.S. DOE sponsored Ultra Clean Fuels project entitled ''Ultra Clean Fuels from Natural Gas,'' Cooperative Agreement No. DE-FC26-01NT41098. In this study we have examined the incremental benefits of moving from low sulfur diesel fuel and ultra low sulfur diesel fuel to an ultra clean fuel, Fischer-Tropsch diesel fuel produced from natural gas. Blending with biodiesel, B100, was also considered. The impact of fuel formulation on fuel injection timing, bulk modulus of compressibility, in-cylinder combustion processes, gaseous and particulate emissions, DPF regeneration temperature and urea-SCR NOx control has been examined. The primary test engine is a 5.9L Cummins ISB, which has been instrumented for in-cylinder combustion analysis and in-cylinder visualization with an engine videoscope. A single-cylinder engine has also been used to examine in detail the impacts of fuel formulation on injection timing in a pump-line-nozzle fueling system, to assist in the interpretation of results from the ISB engine.

  3. Energy Department Announces $13.4 Million to Develop Advanced Biofuels and Bioproducts

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Energy Department announced today up to $13.4 million for five projects to develop advanced biofuels and bioproducts that will help drive down the cost of producing gasoline, diesel, and jet fuel from biomass.

  4. Combustion and Emissions Performance of Dual-Fuel Gasoline and Diesel HECC

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    on a Multi-Cylinder Light Duty Diesel Engine | Department of Energy Combustion and Emissions Performance of Dual-Fuel Gasoline and Diesel HECC on a Multi-Cylinder Light Duty Diesel Engine Combustion and Emissions Performance of Dual-Fuel Gasoline and Diesel HECC on a Multi-Cylinder Light Duty Diesel Engine Poster presented at the 16th Directions in Engine-Efficiency and Emissions Research (DEER) Conference in Detroit, MI, September 27-30, 2010. p-06_curran.pdf (416.42 KB) More Documents

  5. Effects of fuel stability upon injection-nozzle deposit formation in road-tested diesel engines

    SciTech Connect (OSTI)

    Fortnagel, M.; Herrbrich, B.

    1985-01-01

    The properties of diesel fuels have changed distinctly, especially in the United States. Fuel-related problems-one of which is the injector-nozzle coking in passenger-car diesel engines-have arisen due to deteriorated fuel qualities. Extended investigations of road-tested diesel engines suggest a link between fuel stability and the coke-deposit mechanism. Stabilizing poor-quality fuels by a chemical-additive package resulted in troublefree operation over extended mileage. Thus fuel stability, which evidently has to be secured at the refinery, shows up as an important property for satisfactory engine operation.

  6. A NMR-Based Carbon-Type Analysis of Diesel Fuel Blends From Various Sources

    SciTech Connect (OSTI)

    Bays, J. Timothy; King, David L.

    2013-05-10

    In collaboration with participants of the Coordinating Research Council (CRC) Advanced Vehicle/Fuels/Lubricants (AVFL) Committee, and project AVFL-19, the characteristics of fuels from advanced and renewable sources were compared to commercial diesel fuels. The main objective of this study was to highlight similarities and differences among the fuel types, i.e. ULSD, renewables, and alternative fuels, and among fuels within the different fuel types. This report summarizes the carbon-type analysis from 1H and 13C{1H} nuclear magnetic resonance spectroscopy (NMR) of 14 diesel fuel samples. The diesel fuel samples come from diverse sources and include four commercial ultra-low sulfur diesel fuels (ULSD), one gas-to-liquid diesel fuel (GTL), six renewable diesel fuels (RD), two shale oil-derived diesel fuels, and one oil sands-derived diesel fuel. Overall, the fuels examined fall into two groups. The two shale oil-derived samples and the oil-sand-derived sample closely resemble the four commercial ultra-low sulfur diesels, with SO1 and SO2 most closely matched with ULSD1, ULSD2, and ULSD4, and OS1 most closely matched with ULSD3. As might be expected, the renewable diesel fuels, with the exception of RD3, do not resemble the ULSD fuels because of their very low aromatic content, but more closely resemble the gas-to-liquid sample (GTL) in this respect. RD3 is significantly different from the other renewable diesel fuels in that the aromatic content more closely resembles the ULSD fuels. Fused-ring aromatics are readily observable in the ULSD, SO, and OS samples, as well as RD3, and are noticeably absent in the remaining RD and GTL fuels. Finally, ULSD3 differs from the other ULSD fuels by having a significantly lower aromatic carbon content and higher cycloparaffinic carbon content. In addition to providing important comparative compositional information regarding the various diesel fuels, this report also provides important information about the capabilities of NMR

  7. Metabolic engineering of microorganisms for biofuels production: from bugs to synthetic biology to fuels

    SciTech Connect (OSTI)

    Kuk Lee, Sung; Chou, Howard; Ham, Timothy S.; Soon Lee, Taek; Keasling, Jay D.

    2009-12-02

    The ability to generate microorganisms that can produce biofuels similar to petroleum-based transportation fuels would allow the use of existing engines and infrastructure and would save an enormous amount of capital required for replacing the current infrastructure to accommodate biofuels that have properties significantly different from petroleum-based fuels. Several groups have demonstrated the feasibility of manipulating microbes to produce molecules similar to petroleum-derived products, albeit at relatively low productivity (e.g. maximum butanol production is around 20 g/L). For cost-effective production of biofuels, the fuel-producing hosts and pathways must be engineered and optimized. Advances in metabolic engineering and synthetic biology will provide new tools for metabolic engineers to better understand how to rewire the cell in order to create the desired phenotypes for the production of economically viable biofuels.

  8. Biofuels Basics | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biofuels Basics Unlike other renewable energy sources, biomass can be converted directly into liquid fuels, called "biofuels," to help meet transportation fuel needs. The two most ...

  9. Coal-fueled diesel technology development Emissions Control

    SciTech Connect (OSTI)

    Van Kleunen, W.; Kaldor, S.; Gal, E.; Mengel, M.; Arnold, M.

    1994-01-01

    GEESI Emissions Control program activity ranged from control concept testing of 10 CFM slipstream from a CWS fuel single cylinder research diesel engine to the design, installation, and operation of a full-size Emissions Control system for a full-size CWS fuel diesel engine designed for locomotive operation.Early 10 CFM slipstream testing program activity was performed to determine Emissions Characteristics and to evaluate Emissions Control concepts such a Barrier filtration, Granular bed filtration, and Cyclone particulate collection for reduction of particulate and gaseous emissions. Use of sorbent injection into the engine exhaust gas upstream of the barrier filter or use of sorbent media in the granular bed filter were found to provide reduction of exhaust gas SO{sub 2} and NO{sub x} in addition to collection of ash particulate. Emergence of the use of barrier filtration as a most practical Emissions Control concept disclosed a need to improve cleanability of the filter media in order to avoid reduction of turbocharger performance by excessive barrier filter pressure drop. The next progression of program activity, after the slipstream feasibility state, was 500 CFM cold flow testing of control system concepts. The successful completion of 500 CFM cold flow testing of the Envelope Filter led to a subsequent progression to a similar configuration Envelope Filter designed to operate at 500 CFM hot gas flow from the CWS fuel research diesel engine in the GETS engine test laboratory. This Envelope Filter included the design aspect proven by cold flow testing as well as optimization of the selection of the installed filter media.

  10. Final Report for NFE-07-00912: Development of Model Fuels Experimental...

    Office of Scientific and Technical Information (OSTI)

    New fuels include bio-fuels such as ethanol or bio-diesel, drop-in bio-derived fuels and those derived from new crude oil sources such as gas-to-liquids, coal-to-liquids, oil ...

  11. Fact #645: October 18, 2010 Price of Diesel Fuel versus Gasoline in Europe

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy 5: October 18, 2010 Price of Diesel Fuel versus Gasoline in Europe Fact #645: October 18, 2010 Price of Diesel Fuel versus Gasoline in Europe A comparison between the average annual price of a gallon of gasoline and a gallon of highway diesel fuel in several European countries shows that a large change took place in 2008. In most of the selected countries, the price of gasoline was 30 to 95 cents higher than that of diesel from 2001 to 2007. In 2008, the price

  12. Advanced Petroleum-Based fuels - Diesel Emissions Control (APBF-DEC)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Activity | Department of Energy Petroleum-Based fuels - Diesel Emissions Control (APBF-DEC) Activity Advanced Petroleum-Based fuels - Diesel Emissions Control (APBF-DEC) Activity 2003 DEER Conference Presentation: National Renewable Energy Laboratory deer_2003_thornton.pdf (100.17 KB) More Documents & Publications Status of APBF-DEC NOx Adsorber/DPF Projects Full Useful Life (120,000 miles) Exhaust Emission Performance of a NOx Adsorber and Diesel Particle Filter Equipped Passenger Car

  13. Road to Fuel Savings: Clean Diesel Trucks Gain Momentum with Nissan and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cummins Collaboration | Department of Energy Road to Fuel Savings: Clean Diesel Trucks Gain Momentum with Nissan and Cummins Collaboration Road to Fuel Savings: Clean Diesel Trucks Gain Momentum with Nissan and Cummins Collaboration August 28, 2014 - 9:51am Addthis Pictured here is a clean diesel engine for light trucks that was part of Cummins research and development effort from 1997-2004. Supported with funding by the Energy Department, this engine is as clean and quiet as a gasoline

  14. Selectlive Catalytic Reducution of NOx wilth Diesel-Based Fuels as

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reductants | Department of Energy Selectlive Catalytic Reducution of NOx wilth Diesel-Based Fuels as Reductants Selectlive Catalytic Reducution of NOx wilth Diesel-Based Fuels as Reductants 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters 2005_deer_marshall.pdf (174.66 KB) More Documents & Publications Bifunctional Catalysts for the Selective Catalytic Reduction of NO by Hydrocarbons Bifunctional Catalysts for the Selective Catalytic Reduction of NO by

  15. Diesel engine performance and emissions using different fuel/additive combinations

    SciTech Connect (OSTI)

    Sutton, D.L.; Rush, M.W.; Richards, P.

    1988-01-01

    It is probable that diesel fuel quality in Europe will fall as the need to blend conversion components into the diesel pool increases. In particular diesel ignition quality and stability could decrease and carbon residue and aromatic content increase. This paper discusses the effects of worsening fuel quality on combustion, injection characteristics and emissions and the efficacy of appropriate additives in overcoming these effects. Both direct injection and indirect injection engines were used in the investigations.

  16. Emissions From Various Biodiesel Sources Compared to a Range of Diesel Fuels in DPF Equipped Diesel Engines

    SciTech Connect (OSTI)

    Williams, A.; Burton, J.; Christensen, E.; McCormick, R. L.; Tester, J.

    2011-01-01

    The purpose of this study was to measure the impact of various sources of petroleum-based and bio-based diesel fuels on regulated emissions and fuel economy in diesel particulate filter (DPF) equipped diesel engines. Two model year 2008 diesel engines were tested with nine fuels including a certification ultra-low sulfur diesel (ULSD), local ULSD, high aromatic ULSD, low aromatic ULSD, and twenty percent blends of biodiesel derived from algae, camelina, soy, tallow, and yellow grease. Regulated emissions were measured over the heavy duty diesel transient test cycle. Measurements were also made of DPF-out particle size distribution and total particle count from a 13-mode steady state test using a fast mobility particle sizer. Test engines were a 2008 Cummins ISB and a 2008 International Maxx Force 10, both equipped with actively regenerated DPFs. Fuel consumption was roughly 2% greater over the transient test cycle for the B20 blends versus certification ULSD in both engines, consistent with the slightly lower energy content of biodiesel. Unlike studies conducted on older model engines, these engines equipped with diesel oxidation catalysts and DPFs showed small or no measurable fuel effect on the tailpipe emissions of total hydrocarbons (THC), carbon monoxide (CO) and particulate matter (PM). No differences in particle size distribution or total particle count were seen in a comparison of certification ULSD and B20 soy, with the exception of engine idling conditions where B20 produced a small reduction in the number of nucleation mode particles. In the Cummins engine, B20 prepared from algae, camelina, soy, and tallow resulted in an approximately 2.5% increase in nitrogen oxides (NO{sub x}) compared to the base fuel. The International engine demonstrated a higher degree of variability for NO{sub x} emissions, and fuel effects could not be resolved (p > 0.05). The group of petroleum diesel test fuels produced a range of NO{sub x} emissions very similar to that

  17. Transition to Ultra-Low-Sulfur Diesel Fuel: Effects on Prices and Supply, The

    Reports and Publications (EIA)

    2001-01-01

    This report discusses the implications of the new regulations for vehicle fuel efficiency and examines the technology, production, distribution, and cost implications of supplying diesel fuel to meet the new standards.

  18. Diesel NOx-PM Reduction with Fuel Economy Increase by IMET-OBC...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NOx-PM Reduction with Fuel Economy Increase by IMET-OBC-DPF + Hydrated-EGR System for Retrofit of In-Use Trucks Diesel NOx-PM Reduction with Fuel Economy Increase by ...

  19. U.S. diesel fuel price falls to lowest level since July 2012

    U.S. Energy Information Administration (EIA) Indexed Site

    fuel price falls to lowest level since July 2012 The U.S. average retail price for on-highway diesel fuel fell to its lowest point since July 2012 at 3.80 a gallon on Monday. ...

  20. Optical investigation of the combustion behaviour inside the engine operating in HCCI mode and using alternative diesel fuel

    SciTech Connect (OSTI)

    Mancaruso, E.; Vaglieco, B.M.

    2010-04-15

    In order to understand the effect of both the new homogeneous charge compression ignition (HCCI) combustion process and the use of biofuel, optical measurements were carried out into a transparent CR diesel engine. Rape seed methyl ester was used and tests with several injection pressures were performed. OH and HCO radical were detected and their evolutions were analyzed during the whole combustion. Moreover, soot concentration was measured by means the two colour pyrometry method. The reduction of particulate emission with biodiesel as compared to the diesel fuel was noted. Moreover, this effect resulted higher increasing the injection pressure. In the case of RME the oxidation of soot depends mainly from O{sub 2} content of fuel and OH is responsible of the NO formation in the chamber as it was observed for NO{sub x} exhaust emission. Moreover, it was investigated the evolution of HCO and CO into the cylinder. HCO was detected at the start of combustion. During the combustion, HCO oxidizes due to the increasing temperature and it produces CO. Both fuels have similar trend, the highest concentrations are detected for low injection pressure. This effect is more evident for the RME fuel. (author)

  1. Methylal and Methylal-Diesel Blended Fuels from Use In Compression-Ignition Engines

    SciTech Connect (OSTI)

    Keith D. Vertin; James M. Ohi; David W. Naegeli; Kenneth H. Childress; Gary P. Hagen; Chris I. McCarthy; Adelbert S. Cheng; Robert W. Dibble

    1999-05-05

    Gas-to-liquids catalytic conversion technologies show promise for liberating stranded natural gas reserves and for achieving energy diversity worldwide. Some gas-to-liquids products are used as transportation fuels and as blendstocks for upgrading crude derived fuels. Methylal (CH{sub 3}-O-CH{sub 2}-O-CH{sub 3}) also known as dimethoxymethane or DMM, is a gas-to-liquid chemical that has been evaluated for use as a diesel fuel component. Methylal contains 42% oxygen by weight and is soluble in diesel fuel. The physical and chemical properties of neat methylal and for blends of methylal in conventional diesel fuel are presented. Methylal was found to be more volatile than diesel fuel, and special precautions for distribution and fuel tank storage are discussed. Steady state engine tests were also performed using an unmodified Cummins 85.9 turbocharged diesel engine to examine the effect of methylal blend concentration on performance and emissions. Substantial reductions of particulate matter emissions h ave been demonstrated 3r IO to 30% blends of methylal in diesel fuel. This research indicates that methylal may be an effective blendstock for diesel fuel provided design changes are made to vehicle fuel handling systems.

  2. Solar Reforming of Carbon Dioxide to Produce Diesel Fuel

    SciTech Connect (OSTI)

    Dennis Schuetzle; Robert Schuetzle

    2010-12-31

    This project focused on the demonstration of an innovative technology, referred to as the Sunexus CO2 Solar Reformer, which utilizes waste CO2 as a feedstock for the efficient and economical production of synthetic diesel fuel using solar thermal energy as the primary energy input. The Sunexus technology employs a two stage process for the conversion of CO2 to diesel fuel. A solar reforming system, including a specially designed reactor and proprietary CO2 reforming catalyst, was developed and used to convert captured CO2 rich gas streams into syngas (primarily hydrogen and carbon monoxide) using concentrated solar energy at high conversion efficiencies. The second stage of the system (which has been demonstrated under other funding) involves the direct conversion of the syngas into synthetic diesel fuel using a proprietary catalyst (Terra) previously developed and validated by Pacific Renewable Fuels and Chemicals (PRFC). The overall system energy efficiency for conversion of CO2 to diesel fuel is 74%, due to the use of solar energy. The results herein describe modeling, design, construction, and testing of the Sunexus CO2 Solar Reformer. Extensive parametric testing of the solar reformer and candidate catalysts was conducted and chemical kinetic models were developed. Laboratory testing of the Solar Reformer was successfully completed using various gas mixtures, temperatures, and gas flow rates/space velocities to establish performance metrics which can be employed for the design of commercial plants. A variety of laboratory tests were conducted including dry reforming (CO2 and CH{sub 4}), combination dry/steam reforming (CO2, CH{sub 4} & H{sub 2}O), and tri-reforming (CO2, CH{sub 4}, H{sub 2}O & O{sub 2}). CH{sub 4} and CO2 conversions averaged 95-100% and 50-90% per reformer cycle, respectively, depending upon the temperatures and gas space velocities. No formation of carbon deposits (coking) on the catalyst was observed in any of these tests. A 16 ft. diameter

  3. The Future of Biofuels: U.S. (and Global) Airlines & Aviation Alternative Fuels

    U.S. Energy Information Administration (EIA) Indexed Site

    Biofuels: U.S. (and Global) Airlines & Aviation Alternative Fuels 2014 EIA Conference Nancy N. Young, VP-Environment July 15, 2014 Why Airlines Want Alternative Fuels airlines.org 2 » New Supply Chain * Energy Security/Supply Reliability * Competitor to Petroleum-Based Fuels » Environmental Benefit/Imperative * Greenhouse Gas (Carbon) Emissions Benefits * Reduce Emissions Affecting Local Air Quality * Do Not Induce Other Environmental Problems U.S. Airlines' Fuel Costs Are High, Volatile

  4. Effect of GTL Diesel Fuels on Emissions and Engine Performance

    Office of Energy Efficiency and Renewable Energy (EERE)

    2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: DaimlerChrysler Research and Technology

  5. Diesel Reforming for Solid Oxide Fuel Cell Application

    SciTech Connect (OSTI)

    Liu, D-J.; Sheen, S-H.; Krumpelt, M.

    2005-01-27

    This presentation discusses the development of a diesel reforming catalyst and catalytic system development.

  6. Alternatives to Diesel Fuel in California - Fuel Cycle Energy and Emission Effects of Possible Replacements Due to the TAC Diesel Particulate Decision

    SciTech Connect (OSTI)

    Christopher L. Saraicks; Donald M. Rote; Frank Stodolsky; James J. Eberhardt

    2000-05-01

    Limitations on petroleum-based diesel fuel in California could occur pursuant to the 1998 declaration by California's Air Resources Board (CARB) that the particulate matter component of diesel exhaust is a carcinogen, therefore a toxic air contaminant (TAC) subject to the state's Proposition 65. It is the declared intention of CARB not to ban or restrict diesel fuel, per se, at this time. Assuming no total ban, Argonne National Laboratory (ANL) explored two feasible ''mid-course'' strategies, each of which results in some degree of (conventional) diesel displacement. In the first case, with substantial displacement of compression ignition by spark ignition engines, diesel fuel is assumed admissible for ignition assistance as a pilot fuel in natural gas (NG)-powered heavy-duty vehicles. Gasoline demand in California increases by 32.2 million liters (8.5 million gallons) per day overall, about 21 percent above projected 2010 baseline demand. Natural gas demand increases by 13.6 million diesel liter (3.6 million gallon) equivalents per day, about 7 percent above projected (total) consumption level. In the second case, ressionignition engines utilize substitutes for petroleum-based diesel having similar ignition and performance properties. For each case we estimated localized air emission plus generalized greenhouse gas and energy changes. Fuel replacement by di-methyl ether yields the greatest overall reduction in NOx emissions, though all scenarios bring about PM10 reductions relative to the 2010 baseline, with greatest reductions from the first case described above and the least from fuel replacement by Fischer-Tropsch synthetic diesel. Economic implications of vehicle and engine replacement were not formally evaluated.

  7. Alternatives to diesel fuel in California - fuel cycle energy and emission effects of possible replacements due to the TAC diesel particulate decision.

    SciTech Connect (OSTI)

    Saricks, C. L.; Rote, D. M.; Stodolsky, F.; Eberhardt, J. J.

    1999-12-03

    Limitations on petroleum-based diesel fuel in California could occur pursuant to the 1998 declaration by California's Air Resources Board (CARB) that the particulate matter component of diesel exhaust is a carcinogen, therefore a toxic air contaminant (TAC) subject to the state's Proposition 65. It is the declared intention of CARB not to ban or restrict diesel fuel per se, at this time. Assuming no total ban, Argonne National Laboratory (ANL) explored two feasible mid-course strategies, each of which results in some degree of (conventional) diesel displacement. In the first case, with substantial displacement of compression-ignition by spark-ignition engines, diesel fuel is assumed admissible for ignition assistance as a pilot fuel in natural gas (NG)-powered heavy-duty vehicles. Gasoline demand in California increases by 32.2 million liters (8.5 million gallons) per day overall, about 21% above projected 2010 baseline demand. Natural gas demand increases by 13.6 million diesel liter (3.6 million gallon) equivalents per day, about 7% above projected (total) consumption level. In the second case, compression-ignition engines utilize substitutes for petroleum-based diesel having similar ignition and performance properties. For each case the authors estimated localized air emission plus generalized greenhouse gas and energy changes. Fuel replacement by di-methyl ether yields the greatest overall reduction in NOX emissions, though all scenarios bring about PM{sub 10} reductions relative to the 2010 baseline, with greatest reductions from the first case described above and the least from fuel replacement by Fischer-Tropsch synthetic diesel. Economic implications of vehicle and engine replacement were not formally evaluated.

  8. Fuel Cell Power Plants Biofuel Case Study - Tulare, CA | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Success story about fuel cell power plants using wastewater treatment gas in Tulare, California. Presented by Frank Wolak, Fuel Cell Energy, at the NRELDOE Biogas and Fuel Cells ...

  9. Use of a Diesel Fuel Processor for Rapid and Efficient Regeneration of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Single Leg NOx Adsorber Systems | Department of Energy Use of a Diesel Fuel Processor for Rapid and Efficient Regeneration of Single Leg NOx Adsorber Systems Use of a Diesel Fuel Processor for Rapid and Efficient Regeneration of Single Leg NOx Adsorber Systems 2003 DEER Conference Presentation: Catalytica Energy Systems Inc. 2003_deer_betta.pdf (172.77 KB) More Documents & Publications Transient Dynamometer Testing of a Single-Leg NOX Adsorber Combined with a Fuel Processor for Enhanced

  10. Agricultural Bio-Fueled Generation of Electricity and Development of Durable and Efficent NOx Reduction

    SciTech Connect (OSTI)

    Boyd, Rodney

    2007-08-08

    The objective of this project was to define the scope and cost of a technology research and development program that will demonstrate the feasibility of using an off-the-shelf, unmodified, large bore diesel powered generator in a grid-connected application, utilizing various blends of BioDiesel as fuel. Furthermore, the objective of project was to develop an emissions control device that uses a catalytic process and BioDiesel (without the presence of Ammonia or Urea)to reduce NOx and other pollutants present in a reciprocating engine exhaust stream with the goal of redefining the highest emission reduction efficiencies possible for a diesel reciprocating generator. Process: Caterpillar Power Generation adapted an off-the-shelf Diesel Generator to run on BioDiesel and various Petroleum Diesel/BioDiesel blends. EmeraChem developed and installed an exhaust gas cleanup system to reduce NOx, SOx, volatile organics, and particulates. The system design and function was optimized for emissions reduction with results in the 90-95% range;

  11. Proposed premium diesel fuel spec elicits calls for tougher, better defined parameters

    SciTech Connect (OSTI)

    Peckham, J.

    1998-01-01

    The debate over the definition of premium diesel fuel - what it is and what it should be - is heating up in industry circles. A number of automotive associations, additive makers and standards-setting organizations have jumped into the fray, and the fight is likely to turn volcanic when it comes down to deciding exactly what will constitute a premium diesel and how its properties will be measured. This story details some recent developments in and responses to the ongoing conflict. The Engine Manufacturers Association (EMA), representing 33 international diesel engine makers, recently launched a survey of U.S. diesel fuel marketers to see which ones will offer a fuel meeting EMA`s revised {open_quotes}FQP-1A{close_quotes} premium diesel fuel recommendations. Following the survey, EMA intends to publicize which companies offer such a fuel. The EMA premium fuel specifications are much tougher than the US standard ASTM D 975 fuel and tougher than the newly proposed {open_quotes}premium{close_quotes} diesel fuel from the National Conference of Weights & Measures (NCWM) task force. Earlier this year, Amoco became the first (and so far only) US refiner to offer a fuel meeting all the FQP specifications, but only in certain Midwest markets.

  12. Marathon Sees Diesel Fuel in Future | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (840.84 KB) More Documents & Publications What is the Future of U.S. Diesel Production? Diesel vs Gasoline Production Year-in-Review: 2014 Energy Infrastructure Events ...

  13. Fuels for Advanced Combustion Engines Research Diesel Fuels: Analysis of Physical and Chemical Properties

    SciTech Connect (OSTI)

    Gallant, Tom; Franz, Jim; Alnajjar, Mikhail; Storey, John Morse; Lewis Sr, Samuel Arthur; Sluder, Scott; Cannella, William C; Fairbridge, Craig; Hager, Darcy; Dettman, Heather; Luecke, Jon; Ratcliff, Matthew A.; Zigler, Brad

    2009-01-01

    The CRC Fuels for Advanced Combustion Engines working group has worked to identify a matrix of research diesel fuels for use in advanced combustion research applications. Nine fuels were specified and formulated to investigate the effects of cetane number aromatic content and 90% distillation fraction. Standard ASTM analyses were performed on the fuels as well as GC/MS and /u1H//u1/u3C NMR analyses and thermodynamic characterizations. Details of the actual results of the fuel formulations compared with the design values are presented, as well as results from standard analyses, such as heating value, viscosity and density. Cetane number characterizations were accomplished by using both the engine method and the Ignition Quality Tester (IQT/sT) apparatus.

  14. Fact #576: June 22, 2009 Carbon Dioxide from Gasoline and Diesel Fuel |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 6: June 22, 2009 Carbon Dioxide from Gasoline and Diesel Fuel Fact #576: June 22, 2009 Carbon Dioxide from Gasoline and Diesel Fuel The amount of carbon dioxide released into the atmosphere by a vehicle is primarily determined by the carbon content of the fuel. However, there is a small portion of the fuel that is not oxidized into carbon dioxide when the fuel is burned. The Environmental Protection Agency (EPA) has published information on carbon dioxide emissions from

  15. A Universal Dual-Fuel Controller for OEM/Aftermarket Diesel Engineswit...

    Broader source: Energy.gov (indexed) [DOE]

    KB) More Documents & Publications Active DPF for Off-Road Particulate Matter (PM) Control Propane-Diesel Dual Fuel for CO2 and Nox Reduction DPF for a Tractor Auxiliary Power Unit

  16. Emissions from In-Use NG, Propane, and Diesel Fueled Heavy Duty...

    Broader source: Energy.gov (indexed) [DOE]

    Emissions tests of in-use heavy-duty vehicles showed that, natural gas- and propane-fueled vehicles have high emissions of NH3 and CO, compared to diesel vehicles, while meeting ...

  17. Emissions from In-Use NG, Propane, and Diesel Fueled Heavy Duty Vehicles

    Office of Energy Efficiency and Renewable Energy (EERE)

    Emissions tests of in-use heavy-duty vehicles showed that, natural gas- and propane-fueled vehicles have high emissions of NH3 and CO, compared to diesel vehicles, while meeting certification requirements

  18. Demand, Supply, and Price Outlook for Low-Sulfur Diesel Fuel

    Reports and Publications (EIA)

    1993-01-01

    The Clean Air Act Amendments of 1990 established a new, sharply lower standard for the maximum sulfur content of on-highway diesel fuel, to take effect October 1, 1993.

  19. Table 41. No. 2 Diesel Fuel Prices by Sulfur Content, Sales...

    U.S. Energy Information Administration (EIA) Indexed Site

    57.8 42.0 See footnotes at end of table. 200 Energy Information AdministrationPetroleum Marketing Annual 1998 Table 41. No. 2 Diesel Fuel Prices by Sulfur Content, Sales Type,...

  20. Table 41. No. 2 Diesel Fuel Prices by Sulfur Content, Sales...

    U.S. Energy Information Administration (EIA) Indexed Site

    62.6 47.4 See footnotes at end of table. 200 Energy Information AdministrationPetroleum Marketing Annual 1999 Table 41. No. 2 Diesel Fuel Prices by Sulfur Content, Sales Type,...

  1. Table 40. No. 2 Diesel Fuel Prices by Sales Type, PAD District...

    U.S. Energy Information Administration (EIA) Indexed Site

    62.4 65.5 51.3 See footnotes at end of table. Energy Information AdministrationPetroleum Marketing Annual 1999 191 Table 40. No. 2 Diesel Fuel Prices by Sales Type, PAD District,...

  2. Table 41. No. 2 Diesel Fuel Prices by Sulfur Content, Sales...

    U.S. Energy Information Administration (EIA) Indexed Site

    51.8 See footnotes at end of table. 242 Energy Information Administration Petroleum Marketing Annual 1995 Table 41. No. 2 Diesel Fuel Prices by Sulfur Content, Sales Type,...

  3. Table 40. No. 2 Diesel Fuel Prices by Sales Type, PAD District...

    U.S. Energy Information Administration (EIA) Indexed Site

    64.6 54.0 See footnotes at end of table. Energy Information Administration Petroleum Marketing Annual 1995 233 Table 40. No. 2 Diesel Fuel Prices by Sales Type, PAD District,...

  4. Table 40. No. 2 Diesel Fuel Prices by Sales Type, PAD District...

    U.S. Energy Information Administration (EIA) Indexed Site

    60.4 60.0 45.2 See footnotes at end of table. Energy Information AdministrationPetroleum Marketing Annual 1998 191 Table 40. No. 2 Diesel Fuel Prices by Sales Type, PAD District,...

  5. Fact #861 February 23, 2015 Idle Fuel Consumption for Selected Gasoline and Diesel Vehicles

    Office of Energy Efficiency and Renewable Energy (EERE)

    Based on a worksheet developed by Argonne National Laboratory, the idle fuel consumption rate for selected gasoline and diesel vehicles with no load (no use of accessories such as air conditioners,...

  6. Turning Bacteria into Fuel: Cyanobacteria Designed for Solar-Powered Highly Efficient Production of Biofuels

    SciTech Connect (OSTI)

    2010-01-01

    Broad Funding Opportunity Announcement Project: ASU is engineering a type of photosynthetic bacteria that efficiently produce fatty acidsa fuel precursor for biofuels. This type of bacteria, called Synechocystis, is already good at converting solar energy and carbon dioxide (CO2) into a type of fatty acid called lauric acid. ASU has modified the organism so it continuously converts sunlight and CO2 into fatty acidsoverriding its natural tendency to use solar energy solely for cell growth and maximizing the solar-to-fuel conversion process. ASUs approach is different because most biofuels research focuses on increasing cellular biomass and not on excreting fatty acids. The project has also identified a unique way to convert the harvested lauric acid into a fuel that can be easily blended with existing transportation fuels.

  7. Wear mechanism and wear prevention in coal-fueled diesel engines. Task 7, Extended wear testing

    SciTech Connect (OSTI)

    Wakenell, J.F.; Fritz, S.G.; Schwalb, J.A.

    1991-07-01

    Over the past several years, interest has arisen in the development of coal-fired diesel engines for the purpose of efficiently utilizing the extensive coal reserves in the United States, and therefore reducing dependence on foreign oil. One process, which is being considered for use in producing clean coal fuel products involves mild gasification. This process produces by-products which can be further refined and, when blended with neat diesel fuel, used as an engine fuel. The purpose of this task was to test a blend of this coal liquid and diesel fuel (referred to as coal-lite) in an engine, and determine if any detrimental results were observed. This was done by performing a back-to-back performance and emission test of neat diesel fuel and the coal-lite fuel, followed by a 500-hour test of the coal-lite fuel, and completed by a back-to-back performance and emission test of the coal-lite fuel and neat diesel fuel.

  8. Wear mechanism and wear prevention in coal-fueled diesel engines

    SciTech Connect (OSTI)

    Wakenell, J.F.; Fritz, S.G.; Schwalb, J.A.

    1991-07-01

    Over the past several years, interest has arisen in the development of coal-fired diesel engines for the purpose of efficiently utilizing the extensive coal reserves in the United States, and therefore reducing dependence on foreign oil. One process, which is being considered for use in producing clean coal fuel products involves mild gasification. This process produces by-products which can be further refined and, when blended with neat diesel fuel, used as an engine fuel. The purpose of this task was to test a blend of this coal liquid and diesel fuel (referred to as coal-lite) in an engine, and determine if any detrimental results were observed. This was done by performing a back-to-back performance and emission test of neat diesel fuel and the coal-lite fuel, followed by a 500-hour test of the coal-lite fuel, and completed by a back-to-back performance and emission test of the coal-lite fuel and neat diesel fuel.

  9. Innovative Gasification to Produce Fischer-Tropsch Jet and Diesel Fuel

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Innovative Gasification to Produce Fischer- Tropsch Jet and Diesel Fuel March 23, 2015 Jerod Smeenk Frontline BioEnergy, LLC This presentation does not contain any proprietary, confidential, or otherwise restricted information 1 Acronyms and definitions * BP - budget period (i.e., project phase) * BPD - barrel per day * BTL - biomass-to-liquids * F-76 - military spec diesel fuel * FT - Fischer-Tropsch process * IE - independent engineer engaged by the DOE to monitor and review project details *

  10. Vegetable oils as an on the farm diesel fuel substitute: the North Carolina situation. Final report

    SciTech Connect (OSTI)

    Harwood, H.J.

    1981-06-01

    The state-of-the-art of using vegetable oil as a diesel fuel alternative is reviewed. Particular emphasis has been placed on using vegetable oil in farm vehicles as an emergency fuel which may be produced on-farm. The following are reviewed: the mechanical feasibility, on-farm fuel production, and economic analysis.

  11. Energy Department Awards up to $4 Million to Develop Advanced Biofuels and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bioproducts | Department of Energy up to $4 Million to Develop Advanced Biofuels and Bioproducts Energy Department Awards up to $4 Million to Develop Advanced Biofuels and Bioproducts August 27, 2015 - 1:23pm Addthis The Energy Department today announced two additional projects selected to receive up to $4 million to develop next-generation biofuels that will help reduce the cost of producing gasoline, diesel, and jet fuels from biomass. These projects-in addition to five projects previously

  12. Energy Department Awards $6 Million to Advance Cost-Competitive Biofuels |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Awards $6 Million to Advance Cost-Competitive Biofuels Energy Department Awards $6 Million to Advance Cost-Competitive Biofuels July 15, 2014 - 12:00pm Addthis The Energy Department today announced $6 million for two projects to develop next generation biofuels that will help drive down the cost of producing gasoline, diesel, and jet fuels from biomass. The research and development projects, located in California and North Carolina, will focus on lowering production

  13. Response of Oil Sands Derived Fuels in Diesel HCCI Operation | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Response of Oil Sands Derived Fuels in Diesel HCCI Operation Response of Oil Sands Derived Fuels in Diesel HCCI Operation Presentation given at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT). deer07_bunting.pdf (3.17 MB) More Documents & Publications APBF Effects on Combustion Statistical Overview of

  14. On-Board Ammonia Generation Using Delphi Diesel Fuel Reformer | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy On-Board Ammonia Generation Using Delphi Diesel Fuel Reformer On-Board Ammonia Generation Using Delphi Diesel Fuel Reformer Presentation given at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT). deer07_hemingway.pdf (420.54 KB) More Documents & Publications Delphi On-board Ammonia Generation (OAG) LNT

  15. The U.S. average retail price for on-highway diesel fuel rose this week

    U.S. Energy Information Administration (EIA) Indexed Site

    The U.S. average retail price for on-highway diesel fuel rose this week The U.S. average retail price for on-highway diesel fuel rose slightly to $3.90 a gallon on Monday. That's up 8-tenths of a penny from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Diesel prices were highest in the New England region, at 4.16 a gallon, down a penny from a week ago. Prices were lowest in the Rocky Mountain States at $3.68 a gallon, down 1.7

  16. U.S. Diesel Fuel Price Increases for First Time Since June

    U.S. Energy Information Administration (EIA) Indexed Site

    diesel fuel price increase for first time since June The U.S. average retail price for on-highway diesel fuel rose to $3.68 a gallon on Monday. That's up 5.4 cents from a week ago and marks the first increase since late June, based on the weekly price survey by the U.S. Energy Information Administration. Diesel prices were highest in the Rocky Mountain states at 3.80 a gallon, up 8.3 cents from a week ago. Prices were lowest in the Lower Atlantic states at 3.50 a gallon, down 3.6 cents. This is

  17. U.S. diesel fuel price continue to decrease; lowest level since February 2010

    U.S. Energy Information Administration (EIA) Indexed Site

    diesel fuel price continue to decrease; lowest level since February 2010 The U.S. average retail price for on-highway diesel fuel fell to $2.83 a gallon on Monday. That's down 3 ½ cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Diesel prices were highest in the Central Atlantic region at 3.04 a gallon, down 3.7 cents from a week ago. Prices were lowest at 2.77 a gallon in the Midwest states, down 3.9 cents and in the Gulf Coast region, down

  18. U.S. diesel fuel price decreases for first time in six weeks

    U.S. Energy Information Administration (EIA) Indexed Site

    diesel fuel price decreases for first time in six weeks The U.S. average retail price for on-highway diesel fuel fell to $2.92 a gallon on Monday. That's down 2.7 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Diesel prices were highest in the Central Atlantic region at 3.31 a gallon, down 2.2 cents from a week ago. Prices were lowest in the Gulf Coast region at 2.76 a gallon, down 3.2 cents.

  19. U.S. diesel fuel price decreases for first time in six weeks

    U.S. Energy Information Administration (EIA) Indexed Site

    diesel fuel prices continue to decrease The U.S. average retail price for on-highway diesel fuel fell to $2.75 a gallon on Monday. That's down 3 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Diesel prices were highest in the Central Atlantic and New England regions at 3.08 a gallon. Prices were lowest in the Gulf Coast states at 2.64 a gallon, down 3.2 cents from a week ago.

  20. U.S. diesel fuel price decreases for first time in six weeks

    U.S. Energy Information Administration (EIA) Indexed Site

    diesel fuel prices continue to increase The U.S. average retail price for on-highway diesel fuel rose to $2.81 a gallon on Monday. That's up 3.1 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Diesel prices were highest in the Central Atlantic region at 3.11 a gallon, up 2.9 cents from a week ago. Prices were lowest in the Gulf Coast states at 2.68 a gallon, up 2.4 cents.

  1. U.S. diesel fuel price decreases for the second week in a row

    U.S. Energy Information Administration (EIA) Indexed Site

    diesel fuel price decreases for the second week in a row The U.S. average retail price for on-highway diesel fuel fell to $2.86 a gallon on Monday. That's down 5.3 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Diesel prices were highest in the Central Atlantic region at 3.23 a gallon, down 8 cents from a week ago. Prices were lowest in the Gulf Coast states at 2.72 a gallon, down 4.8 cents.

  2. U.S. diesel fuel price falls to lowest level in four years

    U.S. Energy Information Administration (EIA) Indexed Site

    diesel fuel price falls to lowest level in four years The U.S. average retail price for on-highway diesel fuel fell to $3.28 a gallon on Monday. That's down 13.8 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Diesel prices were highest in the New England region at 3.43 a gallon, down 4.2 cents from a week ago. Prices were lowest in the Gulf Coast region at 3.18 a gallon, down 15.3 cents. This is Amerine Woodyard, with EIA, in Washington.

  3. U.S. diesel fuel price falls to lowest level since February 2011

    U.S. Energy Information Administration (EIA) Indexed Site

    , 2014 U.S. diesel fuel price falls to lowest level since February 2011 The U.S. average retail price for on-highway diesel fuel fell to $3.62 a gallon on Monday. That's down 1.2 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Diesel prices were highest in the West Coast region at 3.79 a gallon, down a penny from a week ago. Prices were lowest in the Lower Atlantic and Gulf Coast regions at 3.53 a gallon, down 2.2 cents and down 3.1 cents,

  4. U.S. diesel fuel price falls to lowest level since January 2011

    U.S. Energy Information Administration (EIA) Indexed Site

    diesel fuel price falls to lowest level since January 2011 The U.S. average retail price for on-highway diesel fuel fell to its lowest level since January 2011 at $3.42 a gallon on Monday. That's down 11.6 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Diesel prices were highest in the Rocky Mountain states at 3.50 a gallon, down 15.1 cents from a week ago. Prices were lowest in the Lower Atlantic states at 3.31 a gallon, down 7.2 cents.

  5. U.S. diesel fuel price increase for first time since November

    U.S. Energy Information Administration (EIA) Indexed Site

    diesel fuel price increase for first time since November The U.S. average retail price for on-highway diesel fuel rose to $2.84 a gallon on Monday. That's up 4 tenths of a penny from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Diesel prices were highest in the Central Atlantic region at 3.04 a gallon, up one tenth of a penny from a week ago. Prices were lowest in the Gulf Coast states at 2.76 a gallon, down eight tenths of a penny.

  6. U.S. diesel fuel price increases for first time in 6 weeks

    U.S. Energy Information Administration (EIA) Indexed Site

    diesel fuel price increases for first time in 6 weeks The U.S. average retail price for on-highway diesel fuel rose for the first time in 6 weeks to $2.78 a gallon on Monday. That's up 2.6 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Diesel prices were highest in the Central Atlantic region at 3.08 a gallon, up a tenth of a penny from a week ago. Prices were lowest in the Gulf Coast and Midwest states at 2.66 a gallon.

  7. U.S. diesel fuel price increases for the first time in a month

    U.S. Energy Information Administration (EIA) Indexed Site

    5, 2015 U.S. diesel fuel price increases for the first time in a month The U.S. average retail price for on-highway diesel fuel rose for the first time in a month to $2.49 a gallon on Monday. That's up 1.6 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Diesel prices were highest in the West Coast states at 2.69 a gallon, up 2-tenths of a penny from a week ago. Prices were lowest in the Gulf Coast states at 2.32 a gallon, remaining unchanged

  8. U.S. diesel fuel price shows no movement from a week ago

    U.S. Energy Information Administration (EIA) Indexed Site

    diesel fuel price shows no movement from a week ago The U.S. average retail price for on-highway diesel fuel showed no movement from a week ago. The average price remained flat at $3.81 a gallon on Monday, based on the weekly price survey by the U.S. Energy Information Administration. Diesel prices were highest in the West Coast region at 4.03 a gallon, up 4-tenths of a penny from a week ago. Prices were lowest in the Gulf Coast region at 3.72 a gallon, down half a penny.

  9. U.S. diesel fuel prices falls to lowest level since mid-July 2012

    U.S. Energy Information Administration (EIA) Indexed Site

    4, 2014 U.S. diesel fuel prices falls to lowest level since mid-July 2012 The U.S. average retail price for on-highway diesel fuel fell to $3.70 a gallon on Monday. That's down 3 1/2 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Diesel prices were highest in the West Coast region at 3.89 a gallon, down 4.2 cents from a week ago. Prices were lowest in the Lower Atlantic, Midwest, and Gulf Coast regions at 3.64 a gallon. This is Amerine

  10. U.S. diesel fuel prices increase for first time in a month

    U.S. Energy Information Administration (EIA) Indexed Site

    diesel fuel prices increase for first time in a month The U.S. average retail price for on-highway diesel fuel rose for the first time in a month to $2.50 a gallon on Monday. That's up 1.7 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Diesel prices were highest in the West Coast states at 2.72 a gallon, up 1.9 cents from a week ago. Prices were lowest in the Gulf Coast states at 2.32 a gallon, up 2.7 cents. This is Amerine Woodyard

  11. U.S. diesel fuel prices increase for first time since June

    U.S. Energy Information Administration (EIA) Indexed Site

    diesel fuel prices increase for first time since June The U.S. average retail price for on-highway diesel fuel rose for the first time since June to $2.37 a gallon on Monday. That's up 6 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Diesel prices were highest in the West Coast states at 2.62 a gallon, up 4 cents from a week ago. Prices were lowest in the Gulf Coast states at 2.25 a gallon, up 7

  12. U.S. diesel fuel prices increase for first time since mid-May

    U.S. Energy Information Administration (EIA) Indexed Site

    diesel fuel prices increase for first time since mid-May The U.S. average retail price for on-highway diesel fuel rose for the first time since mid-May to $2.53 a gallon on Monday. That's up 2 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Diesel prices were highest in the West Coast states at 2.75 a gallon, up 2.3 cents from a week ago. Prices were lowest in the Gulf Coast states at 2.39 a gallon, up 9-tenths of a penny

  13. Heavy-duty H2-Diesel Dual Fuel Engines | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    duty H2-Diesel Dual Fuel Engines Heavy-duty H2-Diesel Dual Fuel Engines Brake thermal efficiency can be improved with the addition of a large amount of hydrogen at medium to high loads deer09_li.pdf (37.32 KB) More Documents & Publications Evaluation of NTE Windows and a Work-Based Method to Determine In-Use Emissions of a Heavy-Duty Diesel Engine Status of APBF-DEC NOx Adsorber/DPF Projects Integrated Engine and Aftertreatment Technology Roadmap for EPA 2010 Heavy-duty Emissions Regulations

  14. Fuel Efficient Diesel Particulate Filter (DPF) Modeling and Development

    SciTech Connect (OSTI)

    Stewart, Mark L.; Gallant, Thomas R.; Kim, Do Heui; Maupin, Gary D.; Zelenyuk, Alla

    2010-08-01

    The project described in this report seeks to promote effective diesel particulate filter technology with minimum fuel penalty by enhancing fundamental understanding of filtration mechanisms through targeted experiments and computer simulations. The overall backpressure of a filtration system depends upon complex interactions of particulate matter and ash with the microscopic pores in filter media. Better characterization of these phenomena is essential for exhaust system optimization. The acicular mullite (ACM) diesel particulate filter substrate is under continuing development by Dow Automotive. ACM is made up of long mullite crystals which intersect to form filter wall framework and protrude from the wall surface into the DPF channels. ACM filters have been demonstrated to effectively remove diesel exhaust particles while maintaining relatively low backpressure. Modeling approaches developed for more conventional ceramic filter materials, such as silicon carbide and cordierite, have been difficult to apply to ACM because of properties arising from its unique microstructure. Penetration of soot into the high-porosity region of projecting crystal structures leads to a somewhat extended depth filtration mode, but with less dramatic increases in pressure drop than are normally observed during depth filtration in cordierite or silicon carbide filters. Another consequence is greater contact between the soot and solid surfaces, which may enhance the action of some catalyst coatings in filter regeneration. The projecting crystals appear to provide a two-fold benefit for maintaining low backpressures during filter loading: they help prevent soot from being forced into the throats of pores in the lower porosity region of the filter wall, and they also tend to support the forming filter cake, resulting in lower average cake density and higher permeability. Other simulations suggest that soot deposits may also tend to form at the tips of projecting crystals due to the axial

  15. Kinetic Model Development for the Combustion of Particulate Matter from Conventional and Soy Methyl Ester Diesel Fuels

    SciTech Connect (OSTI)

    Strzelec, Andrea

    2009-12-01

    The primary objective of this research has been to investigate how the oxidation characteristics of diesel particulate matter (PM) are affected by blending soy-based biodiesel fuel with conventional ultra low sulfur diesel (ULSD) fuel. PM produced in a light duty engine from different biodiesel-conventional fuel blends was subjected to a range of physical and chemical measurements in order to better understand the mechanisms by which fuel-related changes to oxidation reactivity are brought about. These observations were then incorporated into a kinetic model to predict PM oxidation. Nanostructure of the fixed carbon was investigated by HR-TEM and showed that particulates from biodiesel had a more open structure than particulates generated from conventional diesel fuel, which was confirmed by BET surface area measurements. Surface area evolution with extent of oxidation reaction was measured for PM from ULSD and biodiesel. Biodiesel particulate has a significantly larger surface area for the first 40% of conversion, at which point the samples become quite similar. Oxidation characteristics of nascent PM and the fixed carbon portion were measured by temperature programmed oxidation (TPO) and it was noted that increased biodiesel blending lowered the light-off temperature as well as the temperature where the peak rate of oxidation occurred. A shift in the oxidation profiles of all fuels was seen when the mobile carbon fraction was removed, leaving only the fixed carbon, however the trend in temperature advantage of the biofuel blending remained. The mobile carbon fraction was measured by temperature programmed desorption found to generally increase with increasing biodiesel blend level. The relative change in the light-off temperatures for the nascent and fixed carbon samples was found to be related to the fraction of mobile carbon. Effective Arrhenius parameters for fixed carbon oxidation were directly measured with isothermal, differential oxidation experiments

  16. Compatibility Assessment of Fuel System Elastomers with Bio-oil and Diesel Fuel

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kass, Michael D.; Janke, Christopher J.; Connatser, Raynella M.; Lewis, Samuel A.; Keiser, James R.; Gaston, Katherine

    2016-07-12

    Here we report that bio-oil derived via fast pyrolysis is being developed as a renewable fuel option for petroleum distillates. The compatibility of neat bio-oil with six elastomer types was evaluated against the elastomer performance in neat diesel fuel, which served as the baseline. The elastomers included two fluorocarbons, six acrylonitrile butadiene rubbers (NBRs), and one type each of fluorosilicone, silicone, styrene butadiene rubber (SBR), polyurethane, and neoprene. Specimens of each material were exposed to the liquid and gaseous phases of the test fuels for 4 weeks at 60 °C, and properties in the wetted and dried states were measured.more » Exposure to bio-oil produced significant volume expansion in the fluorocarbons, NBRs, and fluorosilicone; however, excessive swelling (over 80%) was only observed for the two fluorocarbons and two NBR grades. The polyurethane specimens were completely degraded by the bio-oil. In contrast, both silicone and SBR exhibited lower swelling levels in bio-oil compared to neat diesel fuel. The implication is that, while polyurethane and fluorocarbon may not be acceptable seal materials for bio-oils, silicone may offer a lower cost alternative.« less

  17. Diesel Reforming for Fuel Cell Auxiliary Power Units

    SciTech Connect (OSTI)

    Borup, R.; Parkinson, W. J.; Inbody, M.; Brosha, E.L.; Guidry, D.R.

    2005-01-27

    This objective of this project was to develop technology suitable for onboard reforming of diesel. The approach was to examine catalytic partial oxidation and steam reforming.

  18. Radio Frequency Diesel Particulate Filter Sensor Reduces Fuel...

    Office of Environmental Management (EM)

    Microwave, Detroit Diesel, Oak Ridge National Laboratory (ORNL), New York City Department of Sanitation EERE Investment 2 million Clean Energy Sector Sustainable transportation...

  19. Diamond Green Diesel: Diversifying Our Transportation Fuel Supply...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Diamond Green Diesel project is a joint venture between Valero Energy Corporation and Darling International Inc. Valero Energy Corporation will direct the design, construction ...

  20. Diesel fuel component contribution to engine emissions and performance. Final report

    SciTech Connect (OSTI)

    Erwin, J.; Ryan, T.W. III; Moulton, D.S.

    1994-11-01

    Contemporary diesel fuel is a blend of several refinery streams chosen to meet specifications. The need to increase yield of transportation fuel from crude oil has resulted in converting increased proportions of residual oil to lighter products. This conversion is accomplished by thermal, catalytic, and hydrocracking of high molecular weight materials rich in aromatic compounds. The current efforts to reformulate California diesel fuel for reduced emissions from existing engines is an example of another driving force affecting refining practice: regulations designed to reduce exhaust emissions. Although derived from petroleum crude oil, reformulated diesel fuel is an alternative to current specification-grade diesel fuel, and this alternative presents opportunities and questions to be resolved by fuel and engine research. Various concerned parties have argued that regulations for fuel reformulation have not been based on an adequate data base. Despite numerous studies, much ambiguity remains about the relationship of exhaust parameters to fuel composition, particularly for diesel fuel. In an effort to gather pertinent data, the automobile industry and the oil refiners have joined forces in the Air Quality Improvement Research Program (AUTO/OIL) to address this question for gasoline. The objective of that work is to define the relationship between gasoline composition and the magnitude and composition of the exhaust emissions. The results of the AUTO/OEL program will also be used, along with other data bases, to define the EPA {open_quotes}complex model{close_quotes} for reformulated gasolines. Valuable insights have been gained for compression ignition engines in the Coordinating Research Council`s VE-1 program, but no program similar to AUTO/OIL has been started for diesel fuel reformulation. A more detailed understanding of the fuel/performance relationship is a readily apparent need.

  1. Fuel from Bacteria: Bioconversion of Carbon Dioxide to Biofuels by Facultatively Autotrophic Hydrogen Bacteria

    SciTech Connect (OSTI)

    2010-07-01

    Electrofuels Project: Ohio State is genetically modifying bacteria to efficiently convert carbon dioxide directly into butanol, an alcohol that can be used directly as a fuel blend or converted to a hydrocarbon, which closely resembles a gasoline. Bacteria are typically capable of producing a certain amount of butanol before it becomes too toxic for the bacteria to survive. Ohio State is engineering a new strain of the bacteria that could produce up to 50% more butanol before it becomes too toxic for the bacteria to survive. Finding a way to produce more butanol more efficiently would significantly cut down on biofuel production costs and help make butanol cost competitive with gasoline. Ohio State is also engineering large tanks, or bioreactors, to grow the biofuel-producing bacteria in, and they are developing ways to efficiently recover biofuel from the tanks.

  2. Diesel-fueled solid oxide fuel cell auxiliary power units for heavy-duty vehicles

    SciTech Connect (OSTI)

    Krause, T.; Kumar, R.; Krumpelt, M.

    2000-05-15

    This paper explores the potential of solid oxide fuel cells (SOFCS) as 3--10 kW auxiliary power units for trucks and military vehicles operating on diesel fuel. It discusses the requirements and specifications for such units, and the advantages, challenges, and development issues for SOFCS used in this application. Based on system design and analysis, such systems should achieve efficiencies approaching 40% (lower heating value), with a relatively simple system configuration. The major components of such a system are the fuel cell stack, a catalytic autothermal reformer, and a spent gas burner/air preheater. Building an SOFC-based auxiliary power unit is not straightforward, however, and the tasks needed to develop a 3--10 kW brassboard demonstration unit are outlined.

  3. Beyond Diesel - Renewable Diesel

    SciTech Connect (OSTI)

    Not Available

    2002-07-01

    CTTS fact sheet describing NREL's new Renewable Fuels and Lubricants (ReFUEL) Research Laboratory, which will be used to facilitate increased renewable diesel use in heavy-duty vehicles.

  4. Phillips BioFuel Supply Co | Open Energy Information

    Open Energy Info (EERE)

    to create an area wide marketing and distribution network for agriculturally sourced biodiesel fuel in Vermont, eastern upstate NY, western NH and Quebec south in Canada....

  5. Alternative Fuels Data Center: Cities Clean up With Biofuels

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    ... GE Showcases Innovation in Alternative Fuel Vehicles July 15, 2015 Photo of a locomotive engine carrying passenger cars. New Hampshire Railway Makes Tracks With Biodiesel June 27, ...

  6. Estimating Impacts of Diesel Fuel Reformulation with Vector-based Blending

    SciTech Connect (OSTI)

    Hadder, G.R.

    2003-01-23

    The Oak Ridge National Laboratory Refinery Yield Model has been used to study the refining cost, investment, and operating impacts of specifications for reformulated diesel fuel (RFD) produced in refineries of the U.S. Midwest in summer of year 2010. The study evaluates different diesel fuel reformulation investment pathways. The study also determines whether there are refinery economic benefits for producing an emissions reduction RFD (with flexibility for individual property values) compared to a vehicle performance RFD (with inflexible recipe values for individual properties). Results show that refining costs are lower with early notice of requirements for RFD. While advanced desulfurization technologies (with low hydrogen consumption and little effect on cetane quality and aromatics content) reduce the cost of ultra low sulfur diesel fuel, these technologies contribute to the increased costs of a delayed notice investment pathway compared to an early notice investment pathway for diesel fuel reformulation. With challenging RFD specifications, there is little refining benefit from producing emissions reduction RFD compared to vehicle performance RFD. As specifications become tighter, processing becomes more difficult, blendstock choices become more limited, and refinery benefits vanish for emissions reduction relative to vehicle performance specifications. Conversely, the emissions reduction specifications show increasing refinery benefits over vehicle performance specifications as specifications are relaxed, and alternative processing routes and blendstocks become available. In sensitivity cases, the refinery model is also used to examine the impact of RFD specifications on the economics of using Canadian synthetic crude oil. There is a sizeable increase in synthetic crude demand as ultra low sulfur diesel fuel displaces low sulfur diesel fuel, but this demand increase would be reversed by requirements for diesel fuel reformulation.

  7. Simulation studies of diesel engine performance with oxygen enriched air and water emulsified fuels

    SciTech Connect (OSTI)

    Assanis, D.N.; Baker, D. ); Sekar, R.R.; Siambekos, C.T.; Cole, R.L.; Marciniak, T.J. )

    1990-01-01

    A computer simulation code of a turbocharged, turbocompound diesel engine was modified to study the effects of using oxygen-enriched combustion air and water-emulsified diesel fuels. Oxygen levels of 21 percent to 40 percent by volume in the combustion air were studied. Water content in the fuel was varied from 0 percent to 50 percent mass. Simulation studies and a review and analysis of previous work in this area led to the following conclusions about expected engine performance and emissions: the power density of the engine is significantly increased by oxygen enrichment. Ignition delay and particulate emissions are reduced. Combustion temperatures and No{sub x} emissions are increased with oxygen enrichment but could be brought back to the base levels by introducing water in the fuel. The peak cylinder pressure which increases with the power output level might result in mechanical problems with engine components. Oxygen enrichment also provides an opportunity to use cheaper fuel such as No. 6 diesel fuel. Overall, the adverse effects of oxygen enrichment could be countered by the addition of water and it appears that an optimum combination of water content, oxygen level, and base diesel fuel quality may exist. This could yield improved performance and emissions characteristics compared to a state-of-the-art diesel engine. 9 refs., 8 figs.

  8. Risks to global biodiversity from fossil-fuel production exceed those from biofuel production

    SciTech Connect (OSTI)

    Dale, Virginia H; Parish, Esther S; Kline, Keith L

    2015-01-01

    Potential global biodiversity impacts from near-term gasoline production are compared to biofuel, a renewable liquid transportation fuel expected to substitute for gasoline in the near term (i.e., from now until c. 2030). Petroleum exploration activities are projected to extend across more than 5.8 billion ha of land and ocean worldwide (of which 3.1 billion is on land), much of which is in remote, fragile terrestrial ecosystems or off-shore oil fields that would remain relatively undisturbed if not for interest in fossil fuel production. Future biomass production for biofuels is projected to fall within 2.0 billion ha of land, most of which is located in areas already impacted by human activities. A comparison of likely fuel-source areas to the geospatial distribution of species reveals that both energy sources overlap with areas with high species richness and large numbers of threatened species. At the global scale, future petroleum production areas intersect more than double the area and higher total number of threatened species than future biofuel production. Energy options should be developed to optimize provisioning of ecosystem services while minimizing negative effects, which requires information about potential impacts on critical resources. Energy conservation and identifying and effectively protecting habitats with high-conservation value are critical first steps toward protecting biodiversity under any fuel production scenario.

  9. Risks to global biodiversity from fossil-fuel production exceed those from biofuel production

    SciTech Connect (OSTI)

    Dale, Virginia H.; Parish, Esther S.; Kline, Keith L.

    2014-12-02

    Potential global biodiversity impacts from near-term gasoline production are compared to biofuel, a renewable liquid transportation fuel expected to substitute for gasoline in the near term (i.e., from now until c. 2030). Petroleum exploration activities are projected to extend across more than 5.8 billion ha of land and ocean worldwide (of which 3.1 billion is on land), much of which is in remote, fragile terrestrial ecosystems or off-shore oil fields that would remain relatively undisturbed if not for interest in fossil fuel production. Future biomass production for biofuels is projected to fall within 2.0 billion ha of land, most of which is located in areas already impacted by human activities. A comparison of likely fuel-source areas to the geospatial distribution of species reveals that both energy sources overlap with areas with high species richness and large numbers of threatened species. At the global scale, future petroleum production areas intersect more than double the area and higher total number of threatened species than future biofuel production. Energy options should be developed to optimize provisioning of ecosystem services while minimizing negative effects, which requires information about potential impacts on critical resources. Furthermore, energy conservation and identifying and effectively protecting habitats with high-conservation value are critical first steps toward protecting biodiversity under any fuel production scenario.

  10. Risks to global biodiversity from fossil-fuel production exceed those from biofuel production

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Dale, Virginia H.; Parish, Esther S.; Kline, Keith L.

    2014-12-02

    Potential global biodiversity impacts from near-term gasoline production are compared to biofuel, a renewable liquid transportation fuel expected to substitute for gasoline in the near term (i.e., from now until c. 2030). Petroleum exploration activities are projected to extend across more than 5.8 billion ha of land and ocean worldwide (of which 3.1 billion is on land), much of which is in remote, fragile terrestrial ecosystems or off-shore oil fields that would remain relatively undisturbed if not for interest in fossil fuel production. Future biomass production for biofuels is projected to fall within 2.0 billion ha of land, most ofmore » which is located in areas already impacted by human activities. A comparison of likely fuel-source areas to the geospatial distribution of species reveals that both energy sources overlap with areas with high species richness and large numbers of threatened species. At the global scale, future petroleum production areas intersect more than double the area and higher total number of threatened species than future biofuel production. Energy options should be developed to optimize provisioning of ecosystem services while minimizing negative effects, which requires information about potential impacts on critical resources. Furthermore, energy conservation and identifying and effectively protecting habitats with high-conservation value are critical first steps toward protecting biodiversity under any fuel production scenario.« less

  11. Development of OTM Syngas Process and Testing of Syngas Derived Ultra-clean Fuels in Diesel Engines and Fuel Cells

    SciTech Connect (OSTI)

    E.T. Robinson; James P. Meagher; Prasad Apte; Xingun Gui; Tytus R. Bulicz; Siv Aasland; Charles Besecker; Jack Chen Bart A. van Hassel; Olga Polevaya; Rafey Khan; Piyush Pilaniwalla

    2002-12-31

    This topical report summarizes work accomplished for the Program from November 1, 2001 to December 31, 2002 in the following task areas: Task 1: Materials Development; Task 2: Composite Development; Task 4: Reactor Design and Process Optimization; Task 8: Fuels and Engine Testing; 8.1 International Diesel Engine Program; 8.2 Nuvera Fuel Cell Program; and Task 10: Program Management. Major progress has been made towards developing high temperature, high performance, robust, oxygen transport elements. In addition, a novel reactor design has been proposed that co-produces hydrogen, lowers cost and improves system operability. Fuel and engine testing is progressing well, but was delayed somewhat due to the hiatus in program funding in 2002. The Nuvera fuel cell portion of the program was completed on schedule and delivered promising results regarding low emission fuels for transportation fuel cells. The evaluation of ultra-clean diesel fuels continues in single cylinder (SCTE) and multiple cylinder (MCTE) test rigs at International Truck and Engine. FT diesel and a BP oxygenate showed significant emissions reductions in comparison to baseline petroleum diesel fuels. Overall through the end of 2002 the program remains under budget, but behind schedule in some areas.

  12. The dieselization of America: An integrated strategy for future transportation fuels

    SciTech Connect (OSTI)

    Eberhardt, J.J.

    1997-12-31

    The Diesel Cycle engine has already established itself as the engine-of-choice for the heavy duty transport industry because of its fuel efficiency, durability, and reliability. In addition, it has also been shown to be capable of using alternative fuels, albeit at efficiencies lower than that achieved with petroleum-derived diesel fuel. Alternative fuel dedicated engines have not made significant penetration of the heavy duty truck market because truck fleet operators need a cost-competitive fuel and reliable supply and fueling infrastructure. In lieu of forcing diverse fuels from many diverse domestic feedstocks onto the end-users, the Office of Heavy Vehicle Technologies envisions that a future fuels strategy for the heavy duty transport sector is one where the diverse feedstocks are utilized to provide a single fuel specification (dispensed from the existing fueling infrastructure) that would run efficiently in a single high efficiency energy conversion device, the Diesel Cycle engine. In so doing, the US Commercial transport industry may gain a measure of security from the rapid fuel price increases by relying less on a single feedstock source to meet its increasing fuel requirements.

  13. Electrically-Assisted Diesel Particulate Filter Regeneration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Electrically-Assisted Diesel Particulate Filter Regeneration Substrate Studies of an Electrically-Assisted Diesel Particulate Filter Biofuels Impact ...

  14. Local biofuels power plants with fuel cell generators

    SciTech Connect (OSTI)

    Lindstroem, O.

    1996-12-31

    The fuel cell should be a most important option for Asian countries now building up their electricity networks. The fuel cell is ideal for the schemes for distributed generation which are more reliable and efficient than the centralized schemes so far favoured by the industrialized countries in the West. Not yet developed small combined cycle power plants with advanced radial gas turbines and compact steam turbines will be the competition. Hot combustion is favoured today but cold combustion may win in the long run thanks to its environmental advantages. Emission standards are in general determined by what is feasible with available technology. The simple conclusion is that the fuel cell has to prove that it is competitive to the turbines in cost engineering terms. A second most important requirement is that the fuel cell option has to be superior with respect to electrical efficiency.

  15. NOx reduction in diesel fuel flames by additions of water and CO{sub 2}

    SciTech Connect (OSTI)

    Li, S.C.

    1997-12-31

    Natural gas has the highest heating value per unit mass (50.1 MJ/kg, LHV) of any of the hydrocarbon fuels (e.g., butane, liquid diesel fuel, gasoline, etc.). Since it has the lowest carbon content per unit mass, combustion of natural gas produces much less carbon dioxide, soot particles, and oxide of nitrogen than combustion of liquid diesel fuel. In view of anticipated strengthening of regulations on pollutant emissions from diesel engines, alternative fuels, such as compressed natural gas (CNG) and liquefied natural gas (LNG) have been experimentally introduced to replace the traditional diesel fuels in heavy-duty trucks, transit buses, off-road vehicles, locomotives, and stationary engines. To help in applying natural gas in Diesel engines and increasing combustion efficiency, the emphasis of the present paper is placed on the detailed flame chemistry of methane-air combustion. The present work is the continued effort in finding better methods to reduce NO{sub x}. The goal is to identify a reliable chemical reaction mechanism for natural gas in both premixed and diffusion flames and to establish a systematic reduced mechanism which may be useful for large-scale numerical modeling of combustion behavior in natural gas engines.

  16. Advanced Petroleum-Based fuels - Diesel Emissions Control (APBF...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Status of APBF-DEC NOx AdsorberDPF Projects Full Useful Life (120,000 miles) Exhaust Emission Performance of a NOx Adsorber and Diesel Particle Filter Equipped Passenger Car and ...

  17. Impact of Fuel Metal Impurities on Diesel Exhaust Catalysts ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in biodiesel on full useful life durability of catalysts in diesel exhaust aftertreatment systems p-31williams.pdf (402.04 KB) More Documents & Publications Impact of Biodiesel ...

  18. Fuel from Tobacco and Arundo Donax: Synthetic Crop for Direct Drop-in Biofuel Production through Re-routing the Photorespiration Intermediates and Engineering Terpenoid Pathways

    SciTech Connect (OSTI)

    2012-02-15

    PETRO Project: Biofuels offer renewable alternatives to petroleum-based fuels that reduce net greenhouse gas emissions to nearly zero. However, traditional biofuels production is limited not only by the small amount of solar energy that plants convert through photosynthesis into biological materials, but also by inefficient processes for converting these biological materials into fuels. Farm-ready, non-food crops are needed that produce fuels or fuel-like precursors at significantly lower costs with significantly higher productivity. To make biofuels cost-competitive with petroleum-based fuels, biofuels production costs must be cut in half.

  19. Quality, Performance, and Emission Impacts of Biofuels and Biofuel Blends |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Quality, Performance, and Emission Impacts of Biofuels and Biofuel Blends Quality, Performance, and Emission Impacts of Biofuels and Biofuel Blends 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation ft003_mccormick_2011_o.pdf (820.98 KB) More Documents & Publications Performance of Biofuels and Biofuel Blends Performance of Biofuels and Biofuel Blends Quality, Performance, and Emission Impacts of

  20. Performance of Biofuels and Biofuel Blends | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Biofuels and Biofuel Blends Performance of Biofuels and Biofuel Blends 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting ft003_mccormick_2012_o.pdf (1.47 MB) More Documents & Publications Quality, Performance, and Emission Impacts of Biofuels and Biofuel Blends Performance of Biofuels and Biofuel Blends Recent Research to Address Technical Barriers to Increased Use of Biodiesel

  1. Coal fueled diesel system for stationary power applications-technology development

    SciTech Connect (OSTI)

    1995-08-01

    The use of coal as a fuel for diesel engines dates back to the early days of the development of the engine. Dr. Diesel envisioned his concept as a multi-fuel engine, with coal a prime candidate due to the fact that it was Germany`s primary domestic energy resource. It is interesting that the focus on coal burning diesel engines appears to peak about every twenty years as shortages of other energy resources increase the economic attractiveness of using coal. This periodic interest in coal started in Germany with the work of Diesel in the timeframe 1898-1906. Pawlikowski carried on the work from 1916 to 1928. Two German companies commercialized the technology prior to and during World War II. The next flurry of activity occurred in the United States in the period from 1957-69, with work done at Southwest Research Institute, Virginia Polytechnical University, and Howard University. The current period of activity started in 1978 with work sponsored by the Conservation and Renewable Energy Branch of the US Department of Energy. This work was done at Southwest Research Institute and by ThermoElectron at Sulzer Engine in Switzerland. In 1982, the Fossil Energy Branch of the US Department of Energy, through the Morgantown Energy Technology Center (METC) initiated a concentrated effort to develop coal burning diesel and gas turbine engines. The diesel engine work in the METC sponsored program was performed at Arthur D. Little (Cooper-Bessemer as subcontractor), Bartlesville Energy Technology Center (now NIPER), Caterpillar, Detroit Diesel Corporation, General Motor Corporation (Electromotive Division), General Electric, Southwest Research Institute, and various universities and other research and development organizations. This DOE-METC coal engine RD & D initiative which spanned the 1982-1993 timeframe is the topic of this review document. The combustion of a coal-water fuel slurry in a diesel engine is described. The engine modifications necessary are discussed.

  2. Advanced Petroleum-Based Fuels--Diesel Emissions Control Project (APBF-DEC): Lubricants Project, Phase 1 Summary, July 2004

    SciTech Connect (OSTI)

    Not Available

    2004-07-01

    The Advanced Petroleum Based Fuels-Diesel Emission Control project is a government/industry collaborative project to identify the optimal combinations of low-sulfur diesel fuels, lubricants, diesel engines, and emission control systems to meet projected emission standards for the 2004-2010 time period. This summary describes the results of the first phase of the lubricants study investigating the impact on lubricant formulation on engine-out emissions.

  3. Emissions comparison of alternative fuels in an advanced automotive diesel engine. Interim report, October 1997--April 1998

    SciTech Connect (OSTI)

    Sirman, M.B.; Owens, E.C.; Whitney, K.A.

    1998-09-01

    Exhaust emissions mappings were conducted for six alternative diesel fuels in a Daimler-Benz (DB) OM6l1 diesel engine. The OM6l 1 engine is a 2.2L, direct-injection diesel with a Bosch, high-pressure, common-rail, fuel-injection system. The engine design closely matches the specifications of the Partnership for a New Generation Vehicle (PNGV) target compression-ignition engine. Triplicate 13-mode, steady-state test sequences were performed for each fuel, with a 2-D control fuel serving as the baseline. No adjustments were made to the engine to compensate for any performance differences resulting from fuel property variations.

  4. Feasibility of Producing and Using Biomass-Based Diesel and Jet Fuel in the United States

    SciTech Connect (OSTI)

    Milbrandt, A.; Kinchin, C.; McCormick, R.

    2013-12-01

    The study summarizes the best available public data on the production, capacity, cost, market demand, and feedstock availability for the production of biomass-based diesel and jet fuel. It includes an overview of the current conversion processes and current state-of-development for the production of biomass-based jet and diesel fuel, as well as the key companies pursuing this effort. Thediscussion analyzes all this information in the context of meeting the RFS mandate, highlights uncertainties for the future industry development, and key business opportunities.

  5. The U.S. average retail price for on-highway diesel fuel rose this week

    U.S. Energy Information Administration (EIA) Indexed Site

    The U.S. average retail price for on-highway diesel fuel rose this week The U.S. average retail price for on-highway diesel fuel rose to $3.93 a gallon on Monday. That's up 2 ½ cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Prices increased in all regions across the U.S. The highest prices were found in the New England region, at 4.18 a gallon, up 2.3 cents from a week ago. Prices were lowest in the Rocky Mountain States at $3.74 a gallon,

  6. Update on Transition to Ultra-Low-Sulfur Diesel Fuel (released in AEO2006)

    Reports and Publications (EIA)

    2006-01-01

    On November 8, 2005, the Environmental Protection Agency (EPA) Administrator signed a direct final rule that will shift the retail compliance date for offering ultra-low sulfur diesel (ULSD) for highway use from September 1, 2006, to October 15, 2006. The change will allow more time for retail outlets and terminals to comply with the new 15 parts per million (ppm) sulfur standard, providing time for entities in the diesel fuel distribution system to flush higher sulfur fuel out of the system during the transition. Terminals will have until September 1, 2006, to complete their transitions to ULSD. The previous deadline was July 15, 2006.

  7. Coal-fueled diesel technology development. Final report, March 3, 1988--January 31, 1994

    SciTech Connect (OSTI)

    1994-01-31

    Since 1979, the US Department of Energy has been sponsoring Research and Development programs to use coal as a fuel for diesel engines. In 1984, under the partial sponsorship of the Burlington Northern and Norfolk Southern Railroads, GE completed a 30-month study on the economic viability of a coal-fueled locomotive. In response to a GE proposal to continue researching the economic and technical feasibility of a coal-fueled diesel engine for locomotives, DOE awarded a contract to GE Corporate Research and Development for a three-year program that began in March 1985 and was completed in 1988. That program was divided into two parts: an Economic Assessment Study and a Technical Feasibility Study. The Economic Assessment Study evaluated the benefits to be derived from development of a coal-fueled diesel engine. Seven areas and their economic impact on the use of coal-fueled diesels were examined; impact on railroad infrastructure, expected maintenance cost, environmental considerations, impact of higher capital costs, railroad training and crew costs, beneficiated coal costs for viable economics, and future cost of money. The Technical Feasibility Study used laboratory- and bench-scale experiments to investigate the combustion of coal. The major accomplishments of this study were the development of injection hardware for coal water slurry (CWS) fuel, successful testing of CWS fuel in a full-size, single-cylinder, medium-speed diesel engine, evaluation of full-scale engine wear rates with metal and ceramic components, and the characterization of gaseous and particulate emissions. Full combustion of CWS fuel was accomplished at full and part load with reasonable manifold conditions.

  8. Impact of Fuel Metal Impurities on the Durability of a Light-Duty Diesel Aftertreatment System

    SciTech Connect (OSTI)

    Williams, A.; Burton, J.; McCormick, R. L.; Toops, T.; Wereszczak, A. A.; Fox, E. E.; Lance, M. J.; Cavataio, G.; Dobson, D.; Warner, J.; Brezny, R.; Nguyen, K.; Brookshear, D. W.

    2013-04-01

    Alkali and alkaline earth metal impurities found in diesel fuels are potential poisons for diesel exhaust catalysts. A set of diesel engine production exhaust systems was aged to 150,000 miles. These exhaust systems included a diesel oxidation catalyst, selective catalytic reduction (SCR) catalyst, and diesel particulate filter (DPF). Four separate exhaust systems were aged, each with a different fuel: ultralow sulfur diesel containing no measureable metals, B20 (a common biodiesel blend) containing sodium, B20 containing potassium, and B20 containing calcium, which were selected to simulate the maximum allowable levels in B100 according to ASTM D6751. Analysis included Federal Test Procedure emissions testing, bench-flow reactor testing of catalyst cores, electron probe microanalysis (EPMA), and measurement of thermo-mechanical properties of the DPFs. EPMA imaging found that the sodium and potassium penetrated into the washcoat, while calcium remained on the surface. Bench-flow reactor experiments were used to measure the standard nitrogen oxide (NOx) conversion, ammonia storage, and ammonia oxidation for each of the aged SCR catalysts. Vehicle emissions tests were conducted with each of the aged catalyst systems using a chassis dynamometer. The vehicle successfully passed the 0.2 gram/mile NOx emission standard with each of the four aged exhaust systems.

  9. Bio-Fuel Production Assisted with High Temperature Steam Electrolysis

    SciTech Connect (OSTI)

    Grant Hawkes; James O'Brien; Michael McKellar

    2012-06-01

    Two hybrid energy processes that enable production of synthetic liquid fuels that are compatible with the existing conventional liquid transportation fuels infrastructure are presented. Using biomass as a renewable carbon source, and supplemental hydrogen from high-temperature steam electrolysis (HTSE), these two hybrid energy processes have the potential to provide a significant alternative petroleum source that could reduce dependence on imported oil. The first process discusses a hydropyrolysis unit with hydrogen addition from HTSE. Non-food biomass is pyrolyzed and converted to pyrolysis oil. The pyrolysis oil is upgraded with hydrogen addition from HTSE. This addition of hydrogen deoxygenates the pyrolysis oil and increases the pH to a tolerable level for transportation. The final product is synthetic crude that could then be transported to a refinery and input into the already used transportation fuel infrastructure. The second process discusses a process named Bio-Syntrolysis. The Bio-Syntrolysis process combines hydrogen from HTSE with CO from an oxygen-blown biomass gasifier that yields syngas to be used as a feedstock for synthesis of liquid synthetic crude. Conversion of syngas to liquid synthetic crude, using a biomass-based carbon source, expands the application of renewable energy beyond the grid to include transportation fuels. It can also contribute to grid stability associated with non-dispatchable power generation. The use of supplemental hydrogen from HTSE enables greater than 90% utilization of the biomass carbon content which is about 2.5 times higher than carbon utilization associated with traditional cellulosic ethanol production. If the electrical power source needed for HTSE is based on nuclear or renewable energy, the process is carbon neutral. INL has demonstrated improved biomass processing prior to gasification. Recyclable biomass in the form of crop residue or energy crops would serve as the feedstock for this process. A process model

  10. Novel injector techniques for coal-fueled diesel engines. Final report

    SciTech Connect (OSTI)

    Badgley, P.R.

    1992-09-01

    This report, entitled ``Novel Injector Techniques for Coal-Fueled Diesel Engines,`` describes the progress and findings of a research program aimed at development of a dry coal powder fuel injector in conjunction with the Thermal Ignition Combustion System (TICS) concept to achieve autoignition of dry powdered coal in a single-cylinder high speed diesel engine. The basic program consisted of concept selection, analysis and design, bench testing and single cylinder engine testing. The coal injector concept which was selected was a one moving part dry-coal-powder injector utilizing air blast injection. Adiabatics has had previous experience running high speed diesel engines on both direct injected directed coal-water-slurry (CWS) fuel and also with dry coal powder aspirated into the intake air. The Thermal Ignition Combustion System successfully ignited these fuels at all speeds and loads without requiring auxiliary ignition energy such as pilot diesel fuel, heated intake air or glow or spark plugs. Based upon this prior experience, it was shown that the highest efficiency and fastest combustion was with the dry coal, but that the use of aspiration of coal resulted in excessive coal migration into the engine lubrication system. Based upon a desire of DOE to utilize a more modern test engine, the previous naturally-aspirated Caterpillar model 1Y73 single cylinder engine was replaced with a turbocharged (by use of shop air compressor and back pressure control valve) single cylinder version of the Cummins model 855 engine.

  11. Membrane process designs in the recovery of bio-fuels and bio-chemicals

    SciTech Connect (OSTI)

    Leeper, S.A.

    1990-01-01

    In this presentation, the emerging membrane unit operations and process designs that can be used in recovery of fuels and organic chemicals produced via bioconversion are briefly summarized. Product recovery costs are a major barrier to increased use of bioconversion for the production of fuels and chemicals. The integration of developing membrane unit operations into product recovery schemes may reduce process energy requirements and cost. Membrane unit operations that are used or studied in recovery of bio-fuels and organic chemicals include pervaporation (PV), vapor permeation (VPe), reverse osmosis (RO), membrane extraction, and electrodialysis (ED). Although it can be argued that ultrafiltration (UF) is used to purify bio-fuels and bio-chemicals, UF is not included in this survey for two reasons: (1) the primary uses of UF in bioprocessing are to clarify fermentation broth and to retain cells/enzymes in bioreactors and (2) the literature on UF in biotechnology is expansive. Products of bioconversion for which data are compiled include ethanol, acetone, butanol, glycerol, isopropanol, ethyl acetate, fusel oils, acetaldehyde, acetic acid, butyric acid, citric acid, propionic acid, succinic acid, and tartaric acid. 13 refs.

  12. New Feedstocks and Replacement Fuel Diesel Engine Challenges...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications BiodieselFuelManagementBestPracticesReport.pdf Vehicle Technologies Office: 2008-2009 Fuels Technologies R&D Progress Report Biodiesel Basics ...

  13. U.S. diesel fuel price forecast to be 1 penny lower this summer at $3.94 a gallon

    U.S. Energy Information Administration (EIA) Indexed Site

    diesel fuel price forecast to be 1 penny lower this summer at $3.94 a gallon The retail price of diesel fuel is expected to average $3.94 a gallon during the summer driving season that which runs from April through September. That's close to last summer's pump price of $3.95, according to the latest monthly energy outlook from the U.S. Energy Information Administration. Demand for distillate fuel, which includes diesel fuel, is expected to be up less than 1 percent from last summer. Daily

  14. Table 16. U.S. No. 2 Diesel Fuel Prices by Sales Type

    U.S. Energy Information Administration (EIA) Indexed Site

    58.8 64.9 67.0 67.7 63.6 54.6 Dash (-) No data reported. a Includes low-sulfur diesel fuel only. b All end-user sales not included in the other end-user categories...

  15. Table 16. U.S. No. 2 Diesel Fuel Prices by Sales Type

    U.S. Energy Information Administration (EIA) Indexed Site

    ... 60.5 64.5 68.5 69.4 65.4 55.2 a Includes low-sulfur diesel fuel only. b All end-user sales not included in the other end-user categories...

  16. Table 16. U.S. No. 2 Diesel Fuel Prices by Sales Type

    U.S. Energy Information Administration (EIA) Indexed Site

    ... 51.6 56.2 59.3 60.4 56.2 45.4 a Includes low-sulfur diesel fuel only. b All end-user sales not included in the other end-user categories...

  17. Low-temperature pyrolysis of coal to produce diesel-fuel blends

    SciTech Connect (OSTI)

    Shafer, T.B.; Jett, O.J.; Wu, J.S.

    1982-10-01

    Low-temperature (623 to 773/sup 0/K) coal pyrolysis was investigated in a bench-scale retort. Factorially designed experiments were conducted to determine the effects of temperature, coal-particle size, and nitrogen flow rate on the yield of liquid products. Yield of condensable organic products relative to the proximate coal volatile matter increased by 3.1 and 6.4 wt % after increasing nitrogen purge flow rate from 0.465 to 1.68 L/min and retort temperature from 623 to 723/sup 0/K, respectively. The liquid product may be suitable for blending with diesel fuel. The viscosity and density of coal liquids produced at 723/sup 0/K were compared with those of diesel fuel. The coal liquids had a higher carbon-to-hydrogen ratio and a lower aliphatic-to-aromatic ratio than premium quality No. 2 diesel fuel. It was recommended that liquids from coal pyrolysis be blended with diesel fuel to determine stability of the mixture and performance of the blend in internal combustion engines.

  18. U.S. diesel fuel prices falls to lowest level since mid-July...

    U.S. Energy Information Administration (EIA) Indexed Site

    prices falls to lowest level since mid-July 2012 The U.S. average retail price for on-highway diesel fuel fell to its lowest level since mid-July 2012 at 3.73 a gallon on Monday. ...

  19. Diesel Emission Control -- Sulfur Effects (DECSE) Program; Phase I Interim Date Report No. 3: Diesel Fuel Sulfur Effects on Particulate Matter Emissions

    SciTech Connect (OSTI)

    DOE; ORNL; NREL; EMA; MECA

    1999-11-15

    The Diesel Emission Control-Sulfur Effects (DECSE) is a joint government/industry program to determine the impact of diesel fuel sulfur levels on emission control systems whose use could lower emissions of nitrogen oxides (NO{sub x}) and particulate matter (PM) from on-highway trucks in the 2002--2004 model years. Phase 1 of the program was developed with the following objectives in mind: (1) evaluate the effects of varying the level of sulfur content in the fuel on the emission reduction performance of four emission control technologies; and (2) measure and compare the effects of up to 250 hours of aging on selected devices for multiple levels of fuel sulfur content. This interim report covers the effects of diesel fuel sulfur level on particulate matter emissions for four technologies.

  20. Biofuels Marker Opportunities

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Convenience & Fuel Retailing Biofuels Market Opportunities John Eichberger NACS Vice President Government Relations Fuels Institute Executive Director The Association for ...

  1. New process to convert lipids and cellulosic biomass to renewable diesel -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Innovation Portal Vehicles and Fuels Vehicles and Fuels Biomass and Biofuels Biomass and Biofuels Advanced Materials Advanced Materials Find More Like This Return to Search New process to convert lipids and cellulosic biomass to renewable diesel University of Colorado Contact CU About This Technology Technology Marketing SummaryA research team at the University of Colorado Denver led by Arunprakash Karunanithi has developed a decarboxylation process that will provide pathways to

  2. Coal-fueled high-speed diesel engine development: Task 2, Market assessment and economic analysis

    SciTech Connect (OSTI)

    Kakwani, R. M.; Wilson, Jr., R. P.; Winsor, R. E.

    1991-12-01

    Based on the preliminary coal engine design developed, this task was conducted to identify the best opportunity(s) to enter the market with the future coal-fueled, high-speed diesel engine. The results of this market and economic feasibility assessment will be used to determine what specific heavy duty engine application(s) are most attractive for coal fuel, and also define basic economic targets for the engine to be competitive.

  3. Renewable Energy Laboratory Development for Biofuels Advanced Combustion Studies

    SciTech Connect (OSTI)

    Soloiu, Valentin A.

    2012-03-31

    The research advanced fundamental science and applied engineering for increasing the efficiency of internal combustion engines and meeting emissions regulations with biofuels. The project developed a laboratory with new experiments and allowed investigation of new fuels and their combustion and emissions. This project supports a sustainable domestic biofuels and automotive industry creating economic opportunities across the nation, reducing the dependence on foreign oil, and enhancing U.S. energy security. The one year period of research developed fundamental knowledge and applied technology in advanced combustion, emissions and biofuels formulation to increase vehicle's efficiency. Biofuels combustion was investigated in a Compression Ignition Direct Injection (DI) to develop idling strategies with biofuels and an Indirect Diesel Injection (IDI) intended for auxiliary power unit.

  4. NREL and California Air Agency to Test Clean Diesel Fuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Air Quality Management District (SCAQMD) to determine if using the fuel can help reduce air pollution. Fischer-Tropsch fuels can be produced from natural gas, biomass or coal. ...

  5. Chemical Kinetics Research on HCCI and Diesel Fuels

    Broader source: Energy.gov [DOE]

    Discusses detailed chemical kinetics mechanisms for complex hydrocarbon fuels and computationally efficiecnt, accurate methodologies for modeling advanced combustion strategies.

  6. Emission Performance of Modern Diesel Engines Fueled with Biodiesel

    Broader source: Energy.gov [DOE]

    This study presents full quantification of biodiesel's impact on emissions and fuel economy with the inclusion of DPF regeneration events.

  7. Economics of sunflower oil as an extender or substitute for diesel fuel

    SciTech Connect (OSTI)

    Helgeson, D.L.; Schaffner, L.W.

    1982-05-01

    The economics of sunflower oil as an extender or substitute for diesel fuel in US agriculture, with particular emphasis on North Dakota, is examined. A study of the spot market prices indicates that crude sunflower oil has moved closer competitively with bulk diesel prices. On the question of energy efficiency, it is estimated, that using current production and processing estimates, there is a positive net energy ratio of 5.78 to 1. Processing can take place at the commercial leveL, in intermediate sized plants or on-farm. Costs were analyzed for three sizes of farm presses. (Refs. 6).

  8. Fuel Economy Improvements from a Hybrid-Electric/Diesel Powertrain in a

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Class 4 Parcel Delivery Vehicle | Department of Energy Economy Improvements from a Hybrid-Electric/Diesel Powertrain in a Class 4 Parcel Delivery Vehicle Fuel Economy Improvements from a Hybrid-Electric/Diesel Powertrain in a Class 4 Parcel Delivery Vehicle The goal of this project is to provide data to help bridge the gap between R&D and the commercial availability of advanced vehicle technologies that reduce petroleum use in the U.S. and improve air quality. p-13_thornton.pdf (476.67

  9. #LabChat Q&A: Biofuels of the Future, Sept. 26 at 2 pm EDT

    Broader source: Energy.gov [DOE]

    Our biofuels experts can answer your questions about biofuels, bioenergy and the next generation of fuel.

  10. Economic feasibility of diesel fuel substitutes from oilseeds in New York State

    SciTech Connect (OSTI)

    Lazarus, W.F.; Pitt, R.E.

    1984-11-01

    The feasibility of producing oilseeds for feed and for a diesel fuel substitute has primarily been discussed in terms of the major oilseed producing areas. The Northeast region of the United States is a major agricultural producing area which imports large quantities of soybean meal for cattle feed. This paper considers the technical and economic feasibility of producing oilseeds for feed and fuel in New York State, which is selected as a case study for the region. The possible crops considered for expanded production are sunflowers, soybeans, and flax. It is found that if enough oilseeds are grown to replace 25% of the diesel fuel used on farms, then at most 5% of the cropland would have to be converted to oilseeds, and meal would not be produced in excess of the amount currently used. The cost of producing oil is calculated as the cost of producing the seed plus the cost of processing minus the value of the meal. Enterprise budgets are developed for estimating oilseed production costs in New York State. The cost of processing is estimated for both an industrial-size plant, which does not now exist in New York, and a small on-farm plant. It is found that the diesel fuel and vegetable oil prices would have to rise substantially before oilseeds were produced in the Northeast region for feed and fuel. Moreover, the construction of an oilseed processing facility would not necessarily stimulate production of oilseeds in the region. 22 references.

  11. A Multicomponent Blend as a Diesel Fuel Surrogate for Compression Ignition Engine Applications

    SciTech Connect (OSTI)

    Pei, Yuanjiang; Mehl, Marco; Liu, Wei; Lu, Tianfeng; Pitz, William J.; Som, Sibendu

    2015-05-12

    A mixture of n-dodecane and m-xylene is investigated as a diesel fuel surrogate for compression ignition engine applications. Compared to neat n-dodecane, this binary mixture is more representative of diesel fuel because it contains an alkyl-benzene which represents an important chemical class present in diesel fuels. A detailed multi-component mechanism for n-dodecane and m-xylene was developed by combining a previously developed n-dodecane mechanism with a recently developed mechanism for xylenes. The xylene mechanism is shown to reproduce experimental ignition data from a rapid compression machine and shock tube, speciation data from the jet stirred reactor and flame speed data. This combined mechanism was validated by comparing predictions from the model with experimental data for ignition in shock tubes and for reactivity in a flow reactor. The combined mechanism, consisting of 2885 species and 11754 reactions, was reduced to a skeletal mechanism consisting 163 species and 887 reactions for 3D diesel engine simulations. The mechanism reduction was performed using directed relation graph (DRG) with expert knowledge (DRG-X) and DRG-aided sensitivity analysis (DRGASA) at a fixed fuel composition of 77% of n-dodecane and 23% m-xylene by volume. The sample space for the reduction covered pressure of 1 – 80 bar, equivalence ratio of 0.5 – 2.0, and initial temperature of 700 – 1600 K for ignition. The skeletal mechanism was compared with the detailed mechanism for ignition and flow reactor predictions. Finally, the skeletal mechanism was validated against a spray flame dataset under diesel engine conditions documented on the Engine Combustion Network (ECN) website. These multi-dimensional simulations were performed using a Representative Interactive Flame (RIF) turbulent combustion model. Encouraging results were obtained compared to the experiments with regards to the predictions of ignition delay and lift-off length at different ambient temperatures.

  12. Comparing the Performance of SunDiesel and Conventional Diesel...

    Broader source: Energy.gov (indexed) [DOE]

    Mixed-mode diesel HCCI with External Mixture Formation: Preliminary Results Fuel Formulation Effects on Diesel Fuel Injection, Combustion, Emissions and Emission Control Variable ...

  13. Mississippi State University Cooling, Heating, and Power (Micro-CHP) and Bio-Fuel Center

    SciTech Connect (OSTI)

    Mago, Pedro; Newell, LeLe

    2014-01-31

    Between 2008 and 2014, the U.S. Department of Energy funded the MSU Micro-CHP and Bio-Fuel Center located at Mississippi State University. The overall objective of this project was to enable micro-CHP (micro-combined heat and power) utilization, to facilitate and promote the use of CHP systems and to educate architects, engineers, and agricultural producers and scientists on the benefits of CHP systems. Therefore, the work of the Center focused on the three areas: CHP system modeling and optimization, outreach, and research. In general, the results obtained from this project demonstrated that CHP systems are attractive because they can provide energy, environmental, and economic benefits. Some of these benefits include the potential to reduce operational cost, carbon dioxide emissions, primary energy consumption, and power reliability during electric grid disruptions. The knowledge disseminated in numerous journal and conference papers from the outcomes of this project is beneficial to engineers, architects, agricultural producers, scientists and the public in general who are interested in CHP technology and applications. In addition, more than 48 graduate students and 23 undergraduate students, benefited from the training and research performed in the MSU Micro-CHP and Bio-Fuel Center.

  14. ,"U.S. On-Highway Diesel Fuel Prices"

    U.S. Energy Information Administration (EIA) Indexed Site

    On-Highway Diesel Fuel Prices" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","W Diesel Prices - All Types",11,"Weekly","9/5/2016","3/21/1994" ,"Data 2","M Diesel Prices - All Types",11,"Monthly","8/2016","3/15/1994" ,"Data 3","W

  15. Isoprenoid based alternative diesel fuel (Patent) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Research Org: Argonne National Laboratory (ANL), Argonne, IL (United States) Sponsoring Org: USDOE Country of Publication: United States Language: English Subject: 09 BIOMASS FUELS ...

  16. Volatility of Gasoline and Diesel Fuel Blends for Supercritical...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Preparation, Injection and Combustion of Supercritical Fluids Evaluation of Biodiesel Fuels from Supercritical Fluid Processing with the Advanced ...

  17. Advances in X-Ray Diagnostics of Diesel Fuel Sprays

    Broader source: Energy.gov [DOE]

    Recent advances in high-speed X-ray imaging has shown several distinct behaviors of commercial fuel injectors that cannot be seen with more conventional techniques.

  18. Algae as a Feedstock for Transportation Fuels. The Future of Biofuels?

    SciTech Connect (OSTI)

    McGill, Ralph

    2008-05-15

    Events in world energy markets over the past several years have prompted many new technical developments as well as political support for alternative transportation fuels, especially those that are renewable. We have seen dramatic rises in the demand for and production of fuel ethanol from sugar cane and corn and biodiesel from vegetable oils. The quantities of these fuels being used continue to rise dramatically, and their use is helping to create a political climate for doing even more. But, the quantities are still far too small to stem the tide of rising crude prices worldwide. In fact, the use of some traditional crops (corn, sugar, soy, etc.) in making fuels instead of food is apparently beginning to impact the cost of food worldwide. Thus, there is considerable interest in developing alternative biofuel feedstocks for use in making fuels -- feedstocks that are not used in the food industries. Of course, we know that there is a lot of work in developing cellulosic-based ethanol that would be made from woody biomass. Process development is the critical path for this option, and the breakthrough in reducing the cost of the process has been elusive thus far. Making biodiesel from vegetable oils is a well-developed and inexpensive process, but to date there have been few reasonable alternatives for making biodiesel, although advanced processes such as gasification of biomass remain an option.

  19. NREL and Johnson Matthey Announce Five-Year Collaboration on Biofuels -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News Releases | NREL and Johnson Matthey Announce Five-Year Collaboration on Biofuels Goal is to develop new catalysts to lower costs for producing biofuels December 14, 2012 The U.S. Department of Energy's National Renewable Energy Laboratory (NREL) will partner with Johnson Matthey, a global specialty chemicals company, in a five-year, $7 million effort to economically produce drop-in gasoline, diesel and jet fuel from non-food biomass feedstocks, the federal laboratory announced today.

  20. On-board diesel autothermal reforming for PEM fuel cells: Simulation and optimization

    SciTech Connect (OSTI)

    Cozzolino, Raffaello Tribioli, Laura

    2015-03-10

    Alternative power sources are nowadays the only option to provide a quick response to the current regulations on automotive pollutant emissions. Hydrogen fuel cell is one promising solution, but the nature of the gas is such that the in-vehicle conversion of other fuels into hydrogen is necessary. In this paper, autothermal reforming, for Diesel on-board conversion into a hydrogen-rich gas suitable for PEM fuel cells, has investigated using the simulation tool Aspen Plus. A steady-state model has been developed to analyze the fuel processor and the overall system performance. The components of the fuel processor are: the fuel reforming reactor, two water gas shift reactors, a preferential oxidation reactor and H{sub 2} separation unit. The influence of various operating parameters such as oxygen to carbon ratio, steam to carbon ratio, and temperature on the process components has been analyzed in-depth and results are presented.

  1. Swedish tests on rape-seed oil as an alternative to diesel fuel

    SciTech Connect (OSTI)

    Johansson, E.; Nordstroem, O.

    1982-01-01

    The cheapest version of Swedish rape-seed oil was chosen. First the rape-seed oil was mixed in different proportions with regular diesel fuel. A mixture of 1/3 rape-seed oil and 2/3 regular diesel fuel (R 33) was then selected for a long-term test. A Perkins 4.248 diesel engine was used for laboratory tests. Four regular farm tractors, owned and operated by farmers, and two tractors belonging to the Institute have been running on R 33. Each tractor was calibrated on a dynamometer according to Swedish and ISO-standards before they were operated on R 33. Since then the tractors have been regularly recalibrated. The test tractors have been operated on R 33 for more than 3400 h. An additional 1200 h have been covered by the laboratory test engine. None of the test tractors have hitherto required repairs due to the use of R 33, but some fuel filters have been replaced. Some fuel injectors have been cleaned due to deposits on the nozzles. 4 figures, 1 table.

  2. On droplet combustion of biodiesel fuel mixed with diesel/alkanes in microgravity condition

    SciTech Connect (OSTI)

    Pan, Kuo-Long; Li, Je-Wei; Chen, Chien-Pei; Wang, Ching-Hua

    2009-10-15

    The burning characteristics of a biodiesel droplet mixed with diesel or alkanes such as dodecane and hexadecane were experimentally studied in a reduced-gravity environment so as to create a spherically symmetrical flame without the influence of natural convection due to buoyancy. Small droplets on the order of 500 {mu}m in diameter were initially injected via a piezoelectric technique onto the cross point intersected by two thin carbon fibers; these were prepared inside a combustion chamber that was housed in a drag shield, which was freely dropped onto a foam cushion. It was found that, for single component droplets, the tendency to form a rigid soot shell was relatively small for biodiesel fuel as compared to that exhibited by the other tested fuels. The soot created drifted away readily, showing a puffing phenomenon; this could be related to the distinct molecular structure of biodiesel leading to unique soot layers that were more vulnerable to oxidative reactivity as compared to the soot generated by diesel or alkanes. The addition of biodiesel to these more traditional fuels also presented better performance with respect to annihilating the soot shell, particularly for diesel. The burning rate generally follows that of multi-component fuels, by some means in terms of a lever rule, whereas the mixture of biodiesel and dodecane exhibits a somewhat nonlinear relation with the added fraction of dodecane. This might be related to the formation of a soot shell. (author)

  3. Investigation of Bio-Diesel Fueled Engines under Low-Temperature Combustion Strategies

    SciTech Connect (OSTI)

    Chia-fon F. Lee; Alan C. Hansen

    2010-09-30

    In accordance with meeting DOE technical targets this research was aimed at developing and optimizing new fuel injection technologies and strategies for the combustion of clean burning renewable fuels in diesel engines. In addition a simultaneous minimum 20% improvement in fuel economy was targeted with the aid of this novel advanced combustion system. Biodiesel and other renewable fuels have unique properties that can be leveraged to reduce emissions and increase engine efficiency. This research is an investigation into the combustion characteristics of biodiesel and its impacts on the performance of a Low Temperature Combustion (LTC) engine, which is a novel engine configuration that incorporates technologies and strategies for simultaneously reducing NOx and particulate emissions while increasing engine efficiency. Generating fundamental knowledge about the properties of biodiesel and blends with petroleum-derived diesel and their impact on in-cylinder fuel atomization and combustion processes was an important initial step to being able to optimize fuel injection strategies as well as introduce new technologies. With the benefit of this knowledge experiments were performed on both optical and metal LTC engines in which combustion and emissions could be observed and measured under realistic conditions. With the aid these experiments and detailed combustion models strategies were identified and applied in order to improve fuel economy and simultaneously reduce emissions.

  4. Biofuels | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biofuels Biofuels Image Biofuels from Algae: Algae is widely touted as one of the next best sources for fueling the world's energy needs. But one of the greatest challenges in creating biofuels from algae is how to economically extract and isolate fuel-related chemicals from algae. Ames Laboratory researchers are developing nanoscale "sponges" that soak up the oil produced by the algae without killing the algae, thus dramatically reducing production costs. Ethanol from Syngas: Ethanol

  5. Emissions and fuel economy of a Comprex pressure wave supercharged diesel. Report EPA-AA-TEB-81-1

    SciTech Connect (OSTI)

    Barth, E.A.; Burgenson, R.N.

    1980-10-01

    In order to increase public interest in vehicles equipped with diesel engines, methods of improving diesel-fueled engine performance, as compared to current gasoline-fueled counterparts, are being investigated. One method to increase performance is to supercharge or turbocharge the engine. This report details an EPA assessment of a supercharging technique previously evaluated, however, since that evaluation, specific areas of operation have been refined.

  6. A Universal Dual-Fuel Controller for OEM/Aftermarket Diesel Engineswith Comprehensive Fuel & Emission Control

    Broader source: Energy.gov [DOE]

    Presents a universal dual fuel ratio controller designed to control the fueling and emissions of dual fuel systems

  7. Diesel Fueled SOFC for Class 7/Class 8 On-Highway Truck Auxiliary Power

    SciTech Connect (OSTI)

    Vesely, Charles John-Paul; Fuchs, Benjamin S.; Booten, Chuck W.

    2010-03-31

    The following report documents the progress of the Cummins Power Generation (CPG) Diesel Fueled SOFC for Class 7/Class 8 On-Highway Truck Auxiliary Power (SOFC APU) development and final testing under the U.S. Department of Energy (DOE) Energy Efficiency and Renewable Energy (EERE) contract DE-FC36-04GO14318. This report overviews and summarizes CPG and partner development leading to successful demonstration of the SOFC APU objectives and significant progress towards SOFC commercialization. Significant SOFC APU Milestones: Demonstrated: Operation meeting SOFC APU requirements on commercial Ultra Low Sulfur Diesel (ULSD) fuel. SOFC systems operating on dry CPOX reformate. Successful start-up and shut-down of SOFC APU system without inert gas purge. Developed: Low cost balance of plant concepts and compatible systems designs. Identified low cost, high volume components for balance of plant systems. Demonstrated efficient SOFC output power conditioning. Demonstrated SOFC control strategies and tuning methods.

  8. New Diesel Feedstocks and Future Fuels | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and Fuel Partnership and 21st Century Truck Programs. ...

  9. New Feedstocks and Replacement Fuel Diesel Engine Challenges

    Broader source: Energy.gov [DOE]

    Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and Fuel Partnership and 21st Century Truck Programs.

  10. Linear regression analysis of emissions factors when firing fossil fuels and biofuels in a commercial water-tube boiler

    SciTech Connect (OSTI)

    Sharon Falcone Miller; Bruce G. Miller

    2007-12-15

    This paper compares the emissions factors for a suite of liquid biofuels (three animal fats, waste restaurant grease, pressed soybean oil, and a biodiesel produced from soybean oil) and four fossil fuels (i.e., natural gas, No. 2 fuel oil, No. 6 fuel oil, and pulverized coal) in Penn State's commercial water-tube boiler to assess their viability as fuels for green heat applications. The data were broken into two subsets, i.e., fossil fuels and biofuels. The regression model for the liquid biofuels (as a subset) did not perform well for all of the gases. In addition, the coefficient in the models showed the EPA method underestimating CO and NOx emissions. No relation could be studied for SO{sub 2} for the liquid biofuels as they contain no sulfur; however, the model showed a good relationship between the two methods for SO{sub 2} in the fossil fuels. AP-42 emissions factors for the fossil fuels were also compared to the mass balance emissions factors and EPA CFR Title 40 emissions factors. Overall, the AP-42 emissions factors for the fossil fuels did not compare well with the mass balance emissions factors or the EPA CFR Title 40 emissions factors. Regression analysis of the AP-42, EPA, and mass balance emissions factors for the fossil fuels showed a significant relationship only for CO{sub 2} and SO{sub 2}. However, the regression models underestimate the SO{sub 2} emissions by 33%. These tests illustrate the importance in performing material balances around boilers to obtain the most accurate emissions levels, especially when dealing with biofuels. The EPA emissions factors were very good at predicting the mass balance emissions factors for the fossil fuels and to a lesser degree the biofuels. While the AP-42 emissions factors and EPA CFR Title 40 emissions factors are easier to perform, especially in large, full-scale systems, this study illustrated the shortcomings of estimation techniques. 23 refs., 3 figs., 8 tabs.

  11. Recycled waste oil: A fuel for medium speed diesel engines?

    SciTech Connect (OSTI)

    Cheng, A.B.L.; Poynton, W.A.; Howard, J.G.

    1996-12-31

    This paper describes the exploratory engine trials that Mirrlees Blackstone has undertaken to investigate the effect of fueling an engine using waste oil derived from used lubricants. The effect on the engine`s mechanical components, and thermal performance are examined, and the steps taken to overcome problems are discussed. The proposed engine is sited within the Research and Development facilities, housed separately from the manufacturing plant. The unit is already capable of operating on two different types of fuel with single engine set up. It is a 3 cylinder, 4-stroke turbocharged direct injection engine mounted on an underbase and it operates at 600 rpm, 15.0 bar B.M.E.P. (Brake Mean Effective Pressure). It is a mature engine, built {approximately} 20 years previously, and used for emergency stand-by duties in the company`s powerhouse. The test engine is coupled to an alternator and the electricity generated is fed to the national grid. Initial samples of treated fuel oil, analyzed by an independent oil analysis consultant, indicated that the fuel oil does not correspond to a normal fuel oil. They contained high concentrations of trace elements (i.e. calcium, phosphorus, lead, aluminum and silicon) which was consistent with sourcing from waste lubricating oils. The fuel oil was considered to be too severe for use in an engine.

  12. Driving Biofuels End Use: BETO/VTO Collaborations

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Conventional Engine + Realistic Fuels GEFORCE - Near term technology exploration 6 6 | Vehicle Technologies Program Efficiency Through Biofuels Biofuel blends enhance ...

  13. Algal Biofuels Strategy Workshop - Fall Event

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Algae fractionation will generally produce three streams that can be converted to biofuels, for example, proteins to butanol, sugar to ethanol, and lipids to diesel. Glucose and ...

  14. The second generation of electronic diesel fuel injection systems - Investigation with a rotary pump

    SciTech Connect (OSTI)

    Yamada, K.; Oshizawa, H.

    1986-01-01

    This paper describes concepts of the next generation of electronic diesel fuel injection (EDFI) systems, and the test results of the prototype, named ''Model-1.'' Important characteristics of the next generation of EDFI will be; mechanical simplicity, direct control and pump intelligence. Direct spill control using a high speed solenoid valve for injection regulation and pump mounted electronic circuits were used in the ''Model-1'' system. The test results demonstrate the advantages of this system, and suggest possibilities of new function such as individual cylinder control, pilot injection and multi fuel usage.

  15. Abrasive wear by coal-fueled diesel engine and related particles

    SciTech Connect (OSTI)

    Ives, L.K. )

    1992-09-01

    The development of commercially viable diesel engines that operate directly on pulverized coal-fuels will require solution to the problem of severe abrasive wear. The purpose of the work described in this report was to investigate the nature of the abrasive wear problem. Analytical studies were carried out to determine the characteristics of the coal-fuel and associated combustion particles responsible for abrasion. Laboratory pinon-disk wear tests were conducted on oil-particle mixtures to determine the relationship between wear rate and a number of different particle characteristics, contact parameters, specimen materials properties, and other relevant variables.

  16. Application of a Diesel Fuel Reformer for Tier 2 Bin 5 Emissions |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and Fuel Partnership and 21st Century Truck Programs. 2006_deer_bonadies.pdf (748.07 KB) More Documents & Publications Application of a Diesel Fuel Reformer for Tier 2 Bin 5 Emissions Performance Evaluation of the Delphi Non-Thermal Plasma System Under Transient and Steady State Conditions LNT + SCR Aftertreatment for Medium-Heavy Duty Applications: A

  17. USE OF A DIESEL FUEL PROCESSOR FOR RAPID AND EFFICIENT REGENERATION OF SINGLE LEG NOX ADSORBER SYSTEMS

    SciTech Connect (OSTI)

    Betta, R; Cizeron, J; Sheridan, D; Davis, T

    2003-08-24

    Lean NOx adsorber systems are one of the primary candidate technologies for the control of NOx from diesel engines to meet the 2007-2010 US emissions regulations, which require a 90% reduction of NOx from the 2004 regulations. Several of the technical challenges facing this technology are regeneration at low exhaust temperatures and the efficient use of diesel fuel to minimize fuel penalty. A diesel processor system has been developed and tested in a single leg NOx adsorber configuration on a diesel engine test stand. During NOx adsorber regeneration, this fuel processor system performs reduces the exhaust O2 level to zero and efficiently processes the diesel fuel to H2 and CO. Combined with a Nox adsorber catalyst, this system has demonstrated NOx reduction above 90%, regeneration of the NOx adsorber H2/CO pulses as short as 1 second and fuel penalties in the 3 to 4% range at 50% load. This fuel processor system can also be used to provide the desulfation cycle required with sulfur containing fuels as well as providing thermal management for PM filter regeneration.

  18. Simulated comparisons of emissions and fuel efficiency of diesel and gasoline hybrid electric vehicles

    SciTech Connect (OSTI)

    Gao, Zhiming; Chakravarthy, Veerathu K; Daw, C Stuart

    2011-01-01

    This paper presents details and results of hybrid and plug-in hybrid electric passenger vehicle (HEV and PHEV) simulations that account for the interaction of thermal transients from drive cycle demands and engine start/stop events with aftertreatment devices and their associated fuel penalties. The simulations were conducted using the Powertrain Systems Analysis Toolkit (PSAT) software developed by Argonne National Laboratory (ANL) combined with aftertreatment component models developed at Oak Ridge National Lab (ORNL). A three-way catalyst model is used in simulations of gasoline powered vehicles while a lean NOx trap model in used to simulated NOx reduction in diesel powered vehicles. Both cases also use a previously reported methodology for simulating the temperature and species transients associated with the intermittent engine operation and typical drive cycle transients which are a significant departure from the usual experimental steady-state engine-map based approach adopted often in vehicle system simulations. Comparative simulations indicate a higher efficiency for diesel powered vehicles but the advantage is lowered by about a third (for both HEVs and PHEVs) when the fuel penalty associated with operating a lean NOx trap is included and may be reduced even more when fuel penalty associated with a particulate filter is included in diesel vehicle simulations. Through these preliminary studies, it is clearly demonstrated how accurate engine and exhaust systems models that can account for highly intermittent and transient engine operation in hybrid vehicles can be used to account for impact of emissions in comparative vehicle systems studies. Future plans with models for other devices such as particulate filters, diesel oxidation and selective reduction catalysts are also discussed.

  19. An Innovative Injection and Mixing System for Diesel Fuel Reforming

    SciTech Connect (OSTI)

    Spencer Pack

    2007-12-31

    This project focused on fuel stream preparation improvements prior to injection into a solid oxide fuel cell reformer. Each milestone and the results from each milestone are discussed in detail in this report. The first two milestones were the creation of a coking formation test rig and various testing performed on this rig. Initial tests indicated that three anti-carbon coatings showed improvement over an uncoated (bare metal) baseline. However, in follow-up 70 hour tests of the down selected coatings, Scanning Electron Microscope (SEM) analysis revealed that no carbon was generated on the test specimens. These follow-up tests were intended to enable a down selection to a single best anti-carbon coating. Without the formation of carbon it was impossible to draw conclusions as to which anti-carbon coating showed the best performance. The final 70 hour tests did show that AMCX AMC26 demonstrated the lowest discoloration of the metal out of the three down selected anti-carbon coatings. This discoloration did not relate to carbon but could be a useful result when carbon growth rate is not the only concern. Unplanned variations in the series of tests must be considered and may have altered the results. Reliable conclusions could only be drawn from consistent, repeatable testing beyond the allotted time and funding for this project. Milestones 3 and 4 focused on the creation of a preheating pressure atomizer and mixing chamber. A design of experiment test helped identify a configuration of the preheating injector, Build 1, which showed a very uniform fuel spray flow field. This injector was improved upon by the creation of a Build 2 injector. Build 2 of the preheating injector demonstrated promising SMD results with only 22psi fuel pressure and 0.7 in H2O of Air. It was apparent from testing and CFD that this Build 2 has flow field recirculation zones. These recirculation zones may suggest that this Build 2 atomizer and mixer would require steam injection to reduce the

  20. Fact #832: August 4, 2014 Over Half of the Refueling Stations in the U.S. and Canada Sell Diesel Fuel- Dataset

    Broader source: Energy.gov [DOE]

    Excel file with dataset for Fact #832: Over Half of the Refueling Stations in the U.S. and Canada Sell Diesel Fuel

  1. Promise and Challenges of Microalgal-Derived Biofuels

    SciTech Connect (OSTI)

    Pienkos, P. T.; Darzins, A.

    2009-01-01

    Microalgae offer great promise to contribute a significant portion of the renewable fuels that will be required by the Renewable Fuels Standard described in the 2007 Energy Independence and Security Act of the United States. Algal biofuels would be based mainly on the high lipid content of the algal cell and thus would be an ideal feedstock for high energy density transportation fuels, such as biodiesel as well as green diesel, green jet fuel and green gasoline. A comprehensive research and development program for the development of algal biofuels was initiated by the US Department of Energy (DoE) more than 30 years ago, and although great progress was made, the program was discontinued in 1996, because of decreasing federal budgets and low petroleum costs. Interest in algal biofuels has been growing recently due to increased concern over peak oil, energy security, greenhouse gas emissions, and the potential for other biofuel feedstocks to compete for limited agricultural resources. The high productivity of algae suggests that much of the US transportation fuel needs can be met by algal biofuels at a production cost competitive with the cost of petroleum seen during the early part of 2008. Development of algal biomass production technology, however, remains in its infancy. This perspective provides a brief overview of past algal research sponsored by the DoE, the potential of microalgal biofuels and a discussion of the technical and economic barriers that need to be overcome before production of microalgal-derived diesel-fuel substitutes can become a large-scale commercial reality.

  2. Renewable Energy Laboratory Development for Biofuels Advanced Combustion Studies

    SciTech Connect (OSTI)

    Valentin Soloiu

    2012-03-31

    The research advanced fundamental science and applied engineering for increasing the efficiency of internal combustion engines and meeting emissions regulations with biofuels. The project developed a laboratory with new experiments and allowed investigation of new fuels and their combustion and emissions. This project supports a sustainable domestic biofuels and automotive industry creating economic opportunities across the nation, reducing the dependence on foreign oil, and enhancing U.S. energy security. The one year period of research developed fundamental knowledge and applied technology in advanced combustion, emissions and biofuels formulation to increase vehicle's efficiency. Biofuels?? combustion was investigated in a Compression Ignition Direct Injection (DI) to develop idling strategies with biofuels and an Indirect Diesel Injection (IDI) intended for auxiliary power unit.

  3. Performance of winter rape (Brassica napus) based fuel mixtures in diesel engines

    SciTech Connect (OSTI)

    Wagner, G.L.; Peterson, C.L.

    1982-01-01

    Winter rape is well adapted to the Palouse region of Northern Idaho and Eastern Washington. Nearly all of the current US production is grown in this region. Yields of 2200 to 2700 kg/ha with 45 percent oil content are common. Even though present production only 2000 to 2500 ha per year, the long history of production and good yields of oil make winter rape the best potential fuel vegetable oil crop for the region. Winter rape oil is more viscous than sunflower oil (50 cSt at 40/sup 0/C for winter rape and 35 cSt at 40/sup 0/C for sunflower oil) and about 17 times more viscous than diesel. The viscosity of the pure oil has been found too high for operation in typical diesel injector systems. Mixtures and/or additives are essential if the oil is to be a satisfactory fuel. Conversely, the fatty acid composition of witer rape oils is such that it is potentially a more favorable fuel because of reduced rates of oxidation and thermal polymerization. This paper will report on results of short and long term engine tests using winter rape, diesel, and commercial additives as the components. Selection of mixtures for long term screening tests was based on laboratory studies which included high temperature oxidation studies and temperature-viscosity data. Fuel temperature has been monitored at the outlet of the injector nozzle on operating engines so that viscosity comparisons at the actual injector temperature can be made. 1 figure, 3 tables.

  4. Advanced Petroleum-Based Fuels - Diesel Emissions Project (APBF-DEC): 2,000-Hour Performance of a NOx Adsorber Catalyst and Diesel Particle Filter System for a Medium-Duty, Pick-Up Diesel Engine Platform; Final Report

    SciTech Connect (OSTI)

    Not Available

    2007-03-01

    Presents the results of a 2,000-hour test of an emissions control system consisting of a nitrogen oxides adsorber catalyst in combination with a diesel particle filter, advanced fuels, and advanced engine controls in an SUV/pick-up truck vehicle platform.

  5. In-Cylinder Fuel Blending of Gasoline/Diesel for Improved Efficiency and Lowest Possible Emissions on a Multi-Cylinder Light-Duty Diesel Engine

    SciTech Connect (OSTI)

    Curran, Scott; Prikhodko, Vitaly Y; Wagner, Robert M; Parks, II, James E; Cho, Kukwon; Sluder, Scott; Kokjohn, Sage; Reitz, Rolf

    2010-01-01

    In-cylinder fuel blending of gasoline/diesel fuel is investigated on a multi-cylinder light-duty diesel engine as a potential strategy to control in-cylinder fuel reactivity for improved efficiency and lowest possible emissions. This approach was developed and demonstrated at the University of Wisconsin through modeling and single-cylinder engine experiments. The objective of this study is to better understand the potential and challenges of this method on a multi-cylinder engine. More specifically, the effect of cylinder-to-cylinder imbalances, heat rejection, and in-cylinder charge motion as well as the potential limitations imposed by real-world turbo-machinery were investigated on a 1.9-liter four-cylinder engine. This investigation focused on one engine condition, 2300 rpm, 4.2 bar brake mean effective pressure (BMEP). Gasoline was introduced with a port-fuel-injection system. Parameter sweeps included gasoline-to-diesel fuel ratio, intake air mixture temperature, in-cylinder swirl number, and diesel start-of-injection phasing. In addition, engine parameters were trimmed for each cylinder to balance the combustion process for maximum efficiency and lowest emissions. An important observation was the strong influence of intake charge temperature on cylinder pressure rise rate. Experiments were able to show increased thermal efficiency along with dramatic decreases in oxides of nitrogen (NOX) and particulate matter (PM). However, indicated thermal efficiency for the multi-cylinder experiments were less than expected based on modeling and single-cylinder results. The lower indicated thermal efficiency is believed to be due increased heat transfer as compared to the model predictions and suggest a need for improved cylinder-to-cylinder control and increased heat transfer control.

  6. Fabrication and characterization of micro-orifices for diesel fuel injectors.

    SciTech Connect (OSTI)

    Fenske, G.; Woodford, J.; Wang, J.; El-Hannouny, E.; Schaefer, R.; Hamady, F.; National Vehicle and Fuel Emissions Lab.

    2007-04-01

    Stringent emission standards are driving the development of diesel-fuel injection concepts to mitigate in-cylinder formation of particulates. While research has demonstrated significant reduction in particulate formation using micro-orifice technology, implementation requires development of industrial processes to fabricate micro-orifices with diameters as low as 50 gmm and with large length-to-diameter ratios. This paper reviews the different processes being pursued to fabricate micro-orifices and the advanced techniques applied to characterize the performance of micro-orifices. The latter include the use of phase-contrast x-ray imaging of electroless nickel-plated, micro-orifices and laser imaging of fuel sprays at elevated pressures. The experimental results demonstrate an industrially viable process to create small uniform orifices that improve spray formation for fuel injection.

  7. GREET Life-Cycle Analysis of Biofuels

    Broader source: Energy.gov (indexed) [DOE]

    ... NG-based fuels, hydrogen, electricity, and many biofuel types End use transportation applications * ... petroleum energy Water consumption Biofuels have been an ...

  8. Biofuels Quality Surveys | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biofuels Quality Surveys Biofuels Quality Surveys 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting ...

  9. Welsh Biofuels Ltd | Open Energy Information

    Open Energy Info (EERE)

    Welsh Biofuels Ltd Jump to: navigation, search Name: Welsh Biofuels Ltd Place: Brynmenym Bridgend, United Kingdom Zip: CF329RQ Sector: Biomass Product: Biomass fuel company...

  10. Coal-fueled high-speed diesel engine development. Final report, September 28, 1990--November 30, 1993

    SciTech Connect (OSTI)

    Kakwani, R.M.; Winsor, R.E.; Ryan, T.W. III; Schwalb, J.A.; Wahiduzzaman, S.; Wilson, R.P. Jr.

    1993-09-01

    The goal of this program was to study the feasibility of operating a Detroit Diesel Series 149 engine at high speeds using a Coal-Water-Slurry (CWS) fuel. The CWS-fueled 149 engine is proposed for the mine-haul off-highway truck and work boat marine markets. Economic analysis studies indicate that, for these markets, the use of CWS fuel could have sufficient operating cost savings, depending upon the future diesel fuel price, emission control system capital and operating costs, and maintenance and overhaul costs. A major portion of the maintenance costs is expected to be due to lower life and higher cost of the CWS injectors. Injection and combustion systems were specially designed for CWS, and were installed in one cylinder of a Detroit Diesel 8V-149TI engine for testing. The objective was to achieve engine operation for sustained periods at speeds up to 1,900 rpm with reasonable fuel economy and coal burnout rate. A computer simulation predicted autoignition of coal fuel at 1,900 rpm would require an average droplet size of 18 microns and 19:1 compression ratio, so the injection system, and pistons were designed accordingly. The injection system was capable of supplying the required volume of CWS/injection with a duration of approximately 25 crank angle degrees and peak pressures on the order of 100 mpa. In addition to the high compression ratio, the combustion system also utilized hot residual gases in the cylinder, warm inlet air admission and ceramic insulated engine components to enhance combustion. Autoignition of CWS fuel was achieved at 1900 rpm, at loads ranging from 20--80 percent of the rated load of diesel-fuel powered cylinders. Limited emissions data indicates coal burnout rates in excess of 99 percent. NO{sub x} levels were significantly lower, while unburned hydrocarbon levels were higher for the CWS fueled cylinder than for corresponding diesel-fuel powered cylinders.

  11. Micro Cooling, Heating, and Power (Micro-CHP) and Bio-Fuel Center, Mississippi State University

    SciTech Connect (OSTI)

    Louay Chamra

    2008-09-26

    Initially, most micro-CHP systems will likely be designed as constant-power output or base-load systems. This implies that at some point the power requirement will not be met, or that the requirement will be exceeded. Realistically, both cases will occur within a 24-hour period. For example, in the United States, the base electrical load for the average home is approximately 2 kW while the peak electrical demand is slightly over 4 kW. If a 3 kWe micro- CHP system were installed in this situation, part of the time more energy will be provided than could be used and for a portion of the time more energy will be required than could be provided. Jalalzadeh-Azar [6] investigated this situation and presented a comparison of electrical- and thermal-load-following CHP systems. In his investigation he included in a parametric analysis addressing the influence of the subsystem efficiencies on the total primary energy consumption as well as an economic analysis of these systems. He found that an increase in the efficiencies of the on-site power generation and electrical equipment reduced the total monthly import of electricity. A methodology for calculating performance characteristics of different micro-CHP system components will be introduced in this article. Thermodynamic cycles are used to model each individual prime mover. The prime movers modeled in this article are a spark-ignition internal combustion engine (Otto cycle) and a diesel engine (Diesel cycle). Calculations for heat exchanger, absorption chiller, and boiler modeling are also presented. The individual component models are then linked together to calculate total system performance values. Performance characteristics that will be observed for each system include maximum fuel flow rate, total monthly fuel consumption, and system energy (electrical, thermal, and total) efficiencies. Also, whether or not both the required electrical and thermal loads can sufficiently be accounted for within the system

  12. Diesel engine experiments with oxygen enrichment, water addition and lower-grade fuel

    SciTech Connect (OSTI)

    Sekar, R.R.; Marr, W.W.; Cole, R.L.; Marciniak, T.J. ); Schaus, J.E. )

    1990-01-01

    The concept of oxygen enriched air applied to reciprocating engines is getting renewed attention in the context of the progress made in the enrichment methods and the tougher emissions regulations imposed on diesel and gasoline engines. An experimental project was completed in which a direct injection diesel engine was tested with intake oxygen levels of 21% -- 35%. Since an earlier study indicated that it is necessary to use a cheaper fuel to make the concept economically attractive, a less refined fuel was included in the test series. Since a major objection to the use of oxygen enriched combustion air had been the increase in NO{sub x} emissions, a method must be found to reduce NO{sub x}. Introduction of water into the engine combustion process was included in the tests for this purpose. Fuel emulsification with water was the means used here even though other methods could also be used. The teat data indicated a large increase in engine power density, slight improvement in thermal efficiency, significant reductions in smoke and particulate emissions and NO{sub x} emissions controllable with the addition of water. 15 refs., 10 figs., 2 tabs.

  13. Detailed Chemical Kinetic Reaction Mechanisms for Primary Reference Fuels for Diesel Cetane Number and Spark-Ignition Octane Number

    SciTech Connect (OSTI)

    Westbrook, C K; Pitz, W J; Mehl, M; Curran, H J

    2010-03-03

    For the first time, a detailed chemical kinetic reaction mechanism is developed for primary reference fuel mixtures of n-hexadecane and 2,2,4,4,6,8,8-heptamethyl nonane for diesel cetane ratings. The mechanisms are constructed using existing rules for reaction pathways and rate expressions developed previously for the primary reference fuels for gasoline octane ratings, n-heptane and iso-octane. These reaction mechanisms are validated by comparisons between computed and experimental results for shock tube ignition and for oxidation under jet-stirred reactor conditions. The combined kinetic reaction mechanism contains the submechanisms for the primary reference fuels for diesel cetane ratings and submechanisms for the primary reference fuels for gasoline octane ratings, all in one integrated large kinetic reaction mechanism. Representative applications of this mechanism to two test problems are presented, one describing fuel/air autoignition variations with changes in fuel cetane numbers, and the other describing fuel combustion in a jet-stirred reactor environment with the fuel varying from pure 2,2,4,4,6,8,8-heptamethyl nonane (Cetane number of 15) to pure n-hexadecane (Cetane number of 100). The final reaction mechanism for the primary reference fuels for diesel fuel and gasoline is available on the web.

  14. Novel biofuel formulations for enhanced vehicle performance

    SciTech Connect (OSTI)

    Miller, Dennis; Narayan, Ramani; Berglund, Kris; Lira, Carl; Schock, Harold; Jaberi, Farhad; Lee, Tonghun; Anderson, James; Wallington, Timothy; Kurtz, Eric; Ruona, Will; Hass, Heinz

    2013-08-30

    This interdisciplinary research program at Michigan State University, in collaboration with Ford Motor Company, has explored the application of tailored or designed biofuels for enhanced vehicle performance and reduced emissions. The project has included a broad range of experimental research, from chemical and biological formation of advanced biofuel components to multicylinder engine testing of blended biofuels to determine engine performance parameters. In addition, the project included computation modeling of biofuel physical and combustion properties, and simulation of advanced combustion modes in model engines and in single cylinder engines. Formation of advanced biofuel components included the fermentation of five-carbon and six-carbon sugars to n-butanol and to butyric acid, two four-carbon building blocks. Chemical transformations include the esterification of the butyric acid produced to make butyrate esters, and the esterification of succinic acid with n-butanol to make dibutyl succinate (DBS) as attractive biofuel components. The conversion of standard biodiesel, made from canola or soy oil, from the methyl ester to the butyl ester (which has better fuel properties), and the ozonolysis of biodiesel and the raw oil to produce nonanoate fuel components were also examined in detail. Physical and combustion properties of these advanced biofuel components were determined during the project. Physical properties such as vapor pressure, heat of evaporation, density, and surface tension, and low temperature properties of cloud point and cold filter plugging point were examined for pure components and for blends of components with biodiesel and standard petroleum diesel. Combustion properties, particularly emission delay that is the key parameter in compression ignition engines, was measured in the MSU Rapid Compression Machine (RCM), an apparatus that was designed and constructed during the project simulating the compression stroke of an internal combustion

  15. Characterization of coal-water slurry fuel sprays from diesel engine injectors

    SciTech Connect (OSTI)

    Caton, J.A.; Kihm, K.D.

    1993-06-01

    Experiments were conducted to characterize coal-water slurry fuel sprays from diesel engine injectors. Since the combustion event is a strong function of the fuel spray, full characterization of the spray is a necessity for successful engine design and for modeling of the combustion process. Two experimental facilities were used at TAMU to study the injection of coal slurry fuels. The first experimental facility incorporates General Electric locomotive engine components (injection pump, fuel line, and nozzle) and a specially designed diaphragm to separate the abrasive coal slurry fuel from the moving parts of the pump. The second experimental facility is based on an accumulator injector from General Electric. Instrumentation includes instantaneous needle lift and fuel line pressure. A pressurized visualization chamber was used to provide a spray environment which simulated the engine gas density and permitted the use of spray diagnostic techniques. The study was divided into two phases: (1) overall characterization of the spray, and (2) detailed droplet size and size distribution characterization. In addition to this overall characterization of the spray, the second phase of this study characterized the details of the atomization quality.

  16. Method of producing a diesel fuel blend having a pre-determined flash-point and pre-determined increase in cetane number

    DOE Patents [OSTI]

    Waller, Francis Joseph; Quinn, Robert

    2004-07-06

    The present invention relates to a method of producing a diesel fuel blend having a pre-determined flash-point and a pre-determined increase in cetane number over the stock diesel fuel. Upon establishing the desired flash-point and increase in cetane number, an amount of a first oxygenate with a flash-point less than the flash-point of the stock diesel fuel and a cetane number equal to or greater than the cetane number of the stock diesel fuel is added to the stock diesel fuel in an amount sufficient to achieve the pre-determined increase in cetane number. Thereafter, an amount of a second oxygenate with a flash-point equal to or greater than the flash-point of the stock diesel fuel and a cetane number greater than the cetane number of the stock diesel fuel is added to the stock diesel fuel in an amount sufficient to achieve the pre-determined increase in cetane number.

  17. Investigation of Bio-Diesel Fueled Engines under Low-Temperature...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications Heavy-Duty Low-Temperature and Diesel Combustion & Heavy-Duty ... Computational Fluid Dynamics Modeling of Diesel Engine Combustion and Emissions

  18. From Biomass to Biofuels: NREL Leads the Way

    SciTech Connect (OSTI)

    Not Available

    2006-08-01

    This brochure covers how biofuels can help meet future needs for transportation fuels, how biofuels are produced, U.S. potential for biofuels, and NREL's approach to efficient affordable biofuels.

  19. Simulating Study of Premixed Charge Compression Ignition on Light-Duty Diesel Fuel Economy and Emissions Control

    SciTech Connect (OSTI)

    Gao, Zhiming; Daw, C Stuart; Wagner, Robert M

    2012-01-01

    We utilize the Powertrain Systems Analysis Toolkit (PSAT) combined with transient engine and aftertreatment component models to simulate the impact of premixed charge compression ignition (PCCI) on the fuel economy and emissions of light-duty (LD) diesel-powered conventional and hybrid electric vehicles (HEVs). Our simulated aftertreatment train consists of a diesel oxidation catalyst (DOC), lean NOx trap (LNT), and catalyzed diesel particulate filter (DPF). The results indicate that utilizing PCCI combustion significantly reduces fuel consumption and tailpipe emissions for the conventional diesel-powered vehicle with NOx and particulate emissions controls. These benefits result from a favorable engine speed-load distribution over the cycle combined with a corresponding reduction in the need to regenerate the LNT and DPF. However, the current PCCI technology appears to offer less potential benefit for diesel HEVs equipped with similar emissions controls. This is because PCCI can only be activated over a relatively small part of the drive cycle. Thus we conclude that future utilization of PCCI in diesel HEVs will require significant extension of the available speed-load range for PCCI and revision of current HEV engine management strategies before significant benefits can be realized.

  20. Engineering microbes to produce biofuels

    SciTech Connect (OSTI)

    Wackett, LP

    2011-06-01

    The current biofuels landscape is chaotic. It is controlled by the rules imposed by economic forces and driven by the necessity of finding new sources of energy, particularly motor fuels. The need is bringing forth great creativity in uncovering new candidate fuel molecules that can be made via metabolic engineering. These next generation fuels include long-chain alcohols, terpenoid hydrocarbons, and diesel-length alkanes. Renewable fuels contain carbon derived from carbon dioxide. The carbon dioxide is derived directly by a photosynthetic fuel-producing organism(s) or via intermediary biomass polymers that were previously derived from carbon dioxide. To use the latter economically, biomass depolymerization processes must improve and this is a very active area of research. There are competitive approaches with some groups using enzyme based methods and others using chemical catalysts. With the former, feedstock and end-product toxicity loom as major problems. Advances chiefly rest on the ability to manipulate biological systems. Computational and modular construction approaches are key. For example, novel metabolic networks have been constructed to make long-chain alcohols and hydrocarbons that have superior fuel properties over ethanol. A particularly exciting approach is to implement a direct utilization of solar energy to make a usable fuel. A number of approaches use the components of current biological systems, but re-engineer them for more direct, efficient production of fuels.

  1. Development of OTM Syngas Process and Testing of Syngas Derived Ultra-clean Fuels in Diesel Engines and Fuel Cells

    SciTech Connect (OSTI)

    E.T. Robinson; John Sirman; Prasad Apte; Xingun Gui; Tytus R. Bulicz; Dan Corgard; John Hemmings

    2005-05-01

    This final report summarizes work accomplished in the Program from January 1, 2001 through December 31, 2004. Most of the key technical objectives for this program were achieved. A breakthrough material system has lead to the development of an OTM (oxygen transport membrane) compact planar reactor design capable of producing either syngas or hydrogen. The planar reactor shows significant advantages in thermal efficiency and a step change reduction in costs compared to either autothermal reforming or steam methane reforming with CO{sub 2} recovery. Syngas derived ultra-clean transportation fuels were tested in the Nuvera fuel cell modular pressurized reactor and in International Truck and Engine single cylinder test engines. The studies compared emission and engine performance of conventional base fuels to various formulations of ultra-clean gasoline or diesel fuels. A proprietary BP oxygenate showed significant advantage in both applications for reducing emissions with minimal impact on performance. In addition, a study to evaluate new fuel formulations for an HCCI engine was completed.

  2. Study of fuel consumption and cooling system in low heat rejection turbocharged diesel engines

    SciTech Connect (OSTI)

    Taymaz, I.; Gur, M.; Cally, I.; Mimaroglu, A.

    1998-07-01

    In a conventional internal combustion engine, approximately one-third of total fuel input energy is converted to useful work. Since the working gas in a practical engine cycle is not exhausted at ambient temperature, a major part of the energy is lost with the exhaust gases. In addition another major part of energy input is rejected in the form of heat via the cooling system. If the energy normally rejected to the coolant could be recovered instead on the crankshaft as useful work, then a substantial improvement in fuel economy would result. At the same time, the cooling water, antifreeze, thermostat, radiator, water pump, cooling fan, and associated hoses and clamps could be eliminated. A new trend in the field of internal combustion engines is to insulate the heat transfer surfaces such as the combustion chamber, cylinder wall, cylinder head, piston and valves by ceramic insulating materials for the improvement of engine performance and elimination of cooling system. In this study, the effect of insulated heat transfer surfaces on direct injected and turbocharged diesel engine fuel consumption and cooling system were investigated. The research engine was a four-stroke, direct injected, six cylinder, turbocharged and intercooled diesel engine. This engine was tested at different speeds and loads conditions without coating. Then, combustion chamber surfaces, cylinder head, valves and piston crown faces was coated with ceramic materials. Ceramic layers were made of CaZrO{sub 3} and MgZrO{sub 3} and plasma coated onto base of the NiCrAl bond coat. The ceramic coated research engine was tested at the same operation conditions as the standard (without coating) engine. The results indicate a reduction in fuel consumption and heat losses to engine cooling system of the ceramic coated engine.

  3. ,"for Electricity(a)","Fuel Oil","Diesel Fuel(b)","(billion"...

    U.S. Energy Information Administration (EIA) Indexed Site

    Unit: Percents." ,,,"Distillate",,,"Coal" ,,,"Fuel Oil",,,"(excluding Coal" ,"Net Demand","Residual","and","Natural Gas(c)","LPG and","Coke and Breeze)" ,"for Electricity(a)","Fuel ...

  4. Wear mechanism and wear prevention in coal-fueled diesel engines

    SciTech Connect (OSTI)

    Schwalb, J.A.; Ryan, T.W.

    1991-10-01

    Coal fueled diesel engines present unique wear problems in the piston ring/cylinder liner area because of their tendency to contaminate the lube-oil with high concentrations of highly abrasive particles. This program involved a series of bench-scale wear tests and engine tests designed to investigate various aspects of the ring/liner wear problem and to make specific recommendations to engine manufacturers as to how to alleviate these problems. The program was organized into tasks, designed to accomplish the following objectives: (1) define the predominant wear mechanisms causing accelerated wear in the ring/liner area; (2) investigate the effectiveness of traditional approaches to wear prevention to prevent wear in coal-fueled engines; (3) further refine information on the most promising approaches to wear prevention; (4) present detailed information and recommendations to engine manufacturers on the most promising approach to wear prevention; (5) present a final report covering the entire program; (6)complete engine tests with a coal-derived liquid fuel, and investigate the effects of the fuel on engine wear and emissions.

  5. Performance of Biofuels and Biofuel Blends

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Performance of Biofuels and Biofuel Blends Robert McCormick Vehicle Technologies Program Merit Review - Fuels and Lubricants Technologies May 16, 2013 Project ID: FT003 This presentation does not contain any proprietary, confidential, or otherwise restricted information. 2 Overview Timeline Start date: Oct 2012 End date: Sept 2013 Percent complete: 66% Program funded one year at a time Barriers VTP MYPP Fuels & Lubricants Technologies Goals * By 2013 identify light-duty (LD) non-petroleum

  6. Report - Production of Gasoline and Diesel from Biomass via Fast Pyrolysis, Hydrotreating and Hydrocracking: A Design Case

    SciTech Connect (OSTI)

    Jones, S. B.; Valkenburg, C.; Walton, C. W.; Elliott, D. C.; Holladay, J. E.; Stevens, D. J.; Kinchin, C.; Czernik, S.

    2009-02-01

    The purpose of this design case study is to evaluate a processing pathway for converting biomass into infrastructure-compatible hydrocarbon biofuels. This design case investigates production of fast pyrolysis oil from biomass and the upgrading of that bio-oil as a means for generating infrastructure-ready renewable gasoline and diesel fuels.

  7. Advanced Research in Diesel Fuel Sprays Using X-rays From The Advanced Photon Source

    SciTech Connect (OSTI)

    Powell, C

    2003-08-24

    The fuel distribution and degree of atomization in the combustion chamber is a primary factor in the formation of emissions in diesel engines. A number of diagnostics to study sprays have been developed over the last twenty years; these are primarily based on visible light measurement techniques. However, visible light scatters strongly from fuel droplets surrounding the spray, which prevents penetration of the light. This has made quantitative measurements of the spray core very difficult, particularly in the relatively dense near- nozzle region [1-3]. For this reason we developed the x-ray technique to study the properties of fuel sprays in a quantitative way [4]. The x-ray technique is not limited by scattering, which allows it to be used to make quantitative measurements of the fuel distribution. These measurements are particularly effective in the region near the nozzle where other techniques fail. This technique has led to a number of new insights into the structure of fuel sprays, including the discovery and quantitative measurement of shock waves generated under some conditions by high-pressure diesel sprays [5]. We also performed the first-ever quantitative measurements of the time-resolved mass distribution in the near-nozzle region, which demonstrated that the spray is atomized only a few nozzle diameters from the orifice [6]. Our recent work has focused on efforts to make measurements under pressurized ambient conditions. We have recently completed a series of measurements at pressures up to 5 bar and are looking at the effect of ambient pressure on the structure of the spray. The enclosed figure shows the mass distributions measured for 1,2, and 5 bar ambient pressures. As expected, the penetration decreases as the pressure increases. This leads to changes in the measured mass distribution, including an increase in the density at the leading edge of the spray. We have also observed a narrowing in the cone angle of the spray core as the pressure

  8. The role of fuel-borne catalyst in diesel particulate oxidation behavior

    SciTech Connect (OSTI)

    Song, Juhun; Boehman, Andre L.; Wang, Jinguo

    2006-07-15

    This study addresses the difference in oxidation behavior of diesel particulates at two different load conditions with and without incorporated metal oxides from an iron-based fuel-borne catalyst (FBC). High-resolution transmission electron microscopy imaging, together with electron energy loss spectroscopy is used to evaluate the microstructure and chemical state of the metal oxides that occur during soot formation and to understand the manner in which these properties can affect subsequent soot oxidation. The results here show that FBC-doped soot at low load is more likely to have enrichment of metal oxide on the outer periphery of the soot surface than FBC-doped soot at high load. From element microanalysis, a higher ratio of metal oxide to carbon was observed with FBC-doped soot at low load. Oxidation results indicate that the higher oxidative reactivity is associated with better spreading of the metal oxide on the soot surface. (author)

  9. Understanding Potential Air Emissions from a Cellulosic Biorefinery Producing Renewable Diesel Blendstock.

    SciTech Connect (OSTI)

    Zhang, Yimin; Heath, Garvin A.; Renzaglia, Jason; Thomas, Mae

    2015-06-22

    The Energy Independence and Security Act of 2007, through the Renewable Fuel Standard (RFS), mandates increased use of biofuels, including cellulosic biofuels. The RFS is expected to spur the development of advanced biofuel technologies (e.g., new and innovative biofuel conversion pathways) as well as the construction of biorefineries (refineries that produce biofuels) using these technologies. To develop sustainable cellulosic biofuels, one of the goals of the Bioenergy Technologies Office (BETO) at the Department of Energy is to minimize air pollutants from the entire biofuel supply chain, as stated in their 2014 Multi-Year Program Plan (2014). Although biofuels in general have been found to have lower life cycle greenhouse gas (GHG) emissions compared to petroleum fuels on an energy basis, biomass feedstock production, harvesting, transportation, processing and conversion are expected to emit a wide range of other air pollutants (e.g., criteria air pollutants, hazardous air pollutants), which could affect the environmental benefits of biofuels when displacing petroleum fuels. While it is important for policy makers, air quality planners and regulators, biofuel developers, and investors to understand the potential implications on air quality from a growing biofuel industry, there is a general lack of information and knowledge about the type, fate and magnitude of potential air pollutant emissions from the production of cellulosic biofuels due to the nascent stage of this emerging industry. This analysis assesses potential air pollutant emissions from a hypothetical biorefinery, selected by BETO for further research and development, which uses a biological conversion process of sugars to hydrocarbons to produce infrastructural-compatible renewable diesel blendstock from cellulosic biomass.

  10. Advanced Biofuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Predictive Simulation of Engines Transportation Energy Consortiums Engine Combustion ... for Pretreating Mixed Blends of Biofuel Feedstocks Biofuels, Biomass, Energy, ...

  11. Systems analysis and futuristic designs of advanced biofuel factory concepts.

    SciTech Connect (OSTI)

    Chianelli, Russ; Leathers, James; Thoma, Steven George; Celina, Mathias Christopher; Gupta, Vipin P.

    2007-10-01

    The U.S. is addicted to petroleum--a dependency that periodically shocks the economy, compromises national security, and adversely affects the environment. If liquid fuels remain the main energy source for U.S. transportation for the foreseeable future, the system solution is the production of new liquid fuels that can directly displace diesel and gasoline. This study focuses on advanced concepts for biofuel factory production, describing three design concepts: biopetroleum, biodiesel, and higher alcohols. A general schematic is illustrated for each concept with technical description and analysis for each factory design. Looking beyond current biofuel pursuits by industry, this study explores unconventional feedstocks (e.g., extremophiles), out-of-favor reaction processes (e.g., radiation-induced catalytic cracking), and production of new fuel sources traditionally deemed undesirable (e.g., fusel oils). These concepts lay the foundation and path for future basic science and applied engineering to displace petroleum as a transportation energy source for good.

  12. Tappable Pine Trees: Commercial Production of Terpene Biofuels in Pine

    SciTech Connect (OSTI)

    2012-01-01

    PETRO Project: The University of Florida is working to increase the amount of turpentine in harvested pine from 4% to 20% of its dry weight. While enhanced feedstocks for biofuels have generally focused on fuel production from leafy plants and grasses, the University of Florida is experimenting with enhancing fuel production in a species of pine that is currently used in the paper pulping industry. Pine trees naturally produce around 3-5% terpene content in the wood—terpenes are the energy-dense fuel molecules that are the predominant components of turpentine. The team aims to increase the terpene storage potential and production capacity while improving the terpene composition to a point at which the trees could be tapped while alive, like sugar maples. Growth and production from these trees will take years, but this pioneering technology could have significant impact in making available an economical and domestic source of aviation and diesel biofuels.

  13. Radio Frequency Diesel Particulate Filter Sensor Reduces Fuel Consumption, Wins R&D 100 Award

    Broader source: Energy.gov [DOE]

    Radio Frequency Diesel Particulate Filter Sensor (RF-DPF) is a sensor that uses radio frequencies to measure the amount and distribution of soot and ash in the filters that remove particulate matter from the exhaust of diesel engines.

  14. Fuel Sulfur Effects on a Medium-Duty Diesel Pick-Up with a NOx Adsorber, Diesel Particle Filter Emissions Control System: 2000-Hour Aging Results

    SciTech Connect (OSTI)

    Thornton, M.; Webb, C. C.; Weber, P. A.; Orban, J.; Slone, E.

    2006-05-01

    Discusses the emission results of a nitrogen oxide adsorber catalyst and a diesel particle filter in a medium-duty, diesel pick-up truck.

  15. Detailed chemical kinetic models for large n-alkanes and iso-alkanes found in conventional and F-T diesel fuels

    SciTech Connect (OSTI)

    Westbrook, C K; Pitz, W J; Mehl, M; Curran, H J

    2009-03-09

    n-Hexadecane and 2,2,4,4,6,8,8-heptamethylnonane represent the primary reference fuels for diesel that are used to determine cetane number, a measure of the ignition property of diesel fuel. With the development of chemical kinetics models for both primary reference fuels, a new capability is now available to model diesel fuel ignition. Additionally, we have developed chemical kinetic models for a whole series of large n-alkanes and a large iso-alkane to represent these chemical classes in fuel surrogates for conventional and future fuels. These chemical kinetic models are used to predict the effect of the aforementioned fuel components on ignition characteristics under conditions found in internal combustion engines.

  16. Detailed chemical kinetic models for large n-alkanes and iso-alkanes found in conventional and F-T diesel fuels

    SciTech Connect (OSTI)

    Westbrook, C K; Pitz, W J; Curran, H J; Mehl, M

    2008-12-15

    Detailed chemical kinetic models are needed to simulate the combustion of current and future transportation fuels. These models should represent the various chemical classes in these fuels. Conventional diesel fuels are composed of n-alkanes, iso-alkanes, cycloalkanes and aromatics (Farrell et al. 2007). For future fuels, there is a renewed interest in Fischer-Tropsch (F-T) processes which can be used to synthesize diesel and other transportation fuels from biomass, coal and natural gas. F-T diesel fuels are expected to be similar to F-T jet fuels which are commonly comprised of iso-alkanes with some n-alkanes (Smith and Bruno, 2008). Thus, n-alkanes and iso-alkanes are common chemical classes in these conventional and future fuels. This paper reports on the development of chemical kinetic models of large n-alkanes and iso-alkanes to represent these chemical classes in conventional and future fuels. Two large iso-alkanes are 2,2,4,4,6,8,8-heptamethylnonane, which is a primary reference fuel for diesel, and isooctane, a primary reference fuel for gasoline. Other iso-alkanes are branched alkanes with a single methyl side chain, typical of most F-T fuels. The chemical kinetic models are then used to predict the effect of these fuel components on ignition characteristics under conditions found in internal combustion engines.

  17. Fact #832: August 4, 2014 Over Half of the Refueling Stations in the U.S. and Canada Sell Diesel Fuel

    Broader source: Energy.gov [DOE]

    A 2014 survey of over 110,000 refueling stations in the U.S. and Canada shows that over half of all refueling stations sell diesel fuel. The survey results are shown for five different regions of...

  18. Engineering Biofuels from Photosynthetic Bacteria | Argonne National

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory Engineering Biofuels from Photosynthetic Bacteria Technology available for licensing: Using photosynthetic bacteria to produce biofuels. 30-70% of the fuel's waste can be used to create other fuel sources Combines both engineered and natural photosynthetic mechanisms to generate the fuel PDF icon biofuels_from_bacteria

  19. Eco-Hybrid Diesel/Glycerin Based Emulsion Fuel | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    KB) More Documents & Publications Department of the Navy, DPA Presentation Development of Marine Thermoelectric Heat Recovery Systems Advanced Drop-In Biofuels Initiative Agenda

  20. NREL: Learning - Biofuels Basics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The two most common types of biofuels in use today are ethanol and biodiesel. Ethanol is an alcohol, the same as in beer and wine (although ethanol used as a fuel is modified to ...

  1. Sandia's Biofuels Program

    ScienceCinema (OSTI)

    Simmons, Blake; Singh, Seema; Lane, Todd; Reichardt, Tom; Davis, Ryan

    2014-07-24

    Sandia's biofuels program is focused on developing next-generation, renewable fuel solutions derived from biomass. In this video, various Sandia researchers discuss the program and the tools they employ to tackle the technical challenges they face.

  2. Sandia's Biofuels Program

    SciTech Connect (OSTI)

    Simmons, Blake; Singh, Seema; Lane, Todd; Reichardt, Tom; Davis, Ryan

    2014-07-22

    Sandia's biofuels program is focused on developing next-generation, renewable fuel solutions derived from biomass. In this video, various Sandia researchers discuss the program and the tools they employ to tackle the technical challenges they face.

  3. Chapter 18: Understanding the Developing Cellulosic Biofuels Industry through Dynamic Modeling

    SciTech Connect (OSTI)

    Newes, E.; Inman, D.; Bush, B.

    2011-01-01

    The purpose of this chapter is to discuss a system dynamics model called the Biomass Scenario Model (BSM), which is being developed by the U.S. Department of Energy as a tool to better understand the interaction of complex policies and their potential effects on the burgeoning cellulosic biofuels industry in the United States. The model has also recently been expanded to include advanced conversion technologies and biofuels (i.e., conversion pathways that yield biomass-based gasoline, diesel, jet fuel, and butanol), but we focus on cellulosic ethanol conversion pathways here. The BSM uses a system dynamics modeling approach (Bush et al., 2008) built on the STELLA software platform.

  4. Development of a Simple Field Test for Vehicle Exhaust to Detect Illicit Use of Dyed Diesel Fuel

    SciTech Connect (OSTI)

    Harvey, Scott D.; Wright, Bob W.

    2011-10-30

    The use of tax-free dyed fuel on public highways in the United States provides a convenient way of evading taxes. Current enforcement involves visual inspection for the red azo dye added to the fuel to designate its tax-free status. This approach has shortcomings such as the invasive nature of the tests and/or various deceptive tactics applied by tax evaders. A test designed to detect dyed fuel use by analyzing the exhaust would circumvent these shortcomings. This paper describes the development of a simple color spot test designed to detect the use of tax-free (dyed) diesel fuel by analyzing the engine exhaust. Development first investigated the combustion products of C.I. Solvent Red 164 (the azo dye formulation used in the United States to tag tax-free fuel). A variety of aryl amines were identified as characteristic molecular remnants that appear to survive combustion. A number of microanalytical color tests specific for aryl amines were then investigated. One test based on the use of 4-(dimethylamino)benzaldehyde seemed particularly applicable and was used in a proof-of-principle experiment. The 4-(dimethylamino)benzaldehyde color spot test was able to clearly distinguish between engines burning regular and dyed diesel fuel. Further development will refine this color spot test to provide an easy-to-use field test for Internal Revenue Service Field Compliance specialists.

  5. Advanced Biofuels from Cellulose via Genetic Engineering of Clostridiu...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2015 Project Peer Review Advanced Biofuels from Cellulose via Genetic Engineering of ... and can be upgraded to branched alkane biofuels for blending into existing fuel ...

  6. Biofuel Advanced Research and Development LLC BARD | Open Energy...

    Open Energy Info (EERE)

    biofuels startup company that aims to produce soy biodiesel initially but plans to transition to algae-oil based fuels in 2010. References: Biofuel Advanced Research and...

  7. California: Advanced 'Drop-In' Biofuels Power the Navy's Green...

    Broader source: Energy.gov (indexed) [DOE]

    to Pennsylvania Fueling the Navy's Great Green Fleet with Advanced Biofuels Cellana, ... Five Energy Department Accomplishments in Algal Biofuels Project Overview Positive Impact ...

  8. Diesel vs Gasoline Production | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    "swing" between diesel and gasoline production deer08leister.pdf (217.54 KB) More Documents & Publications Marathon Sees Diesel Fuel in Future ITP Petroleum Refining: Energy ...

  9. Optimization of Advanced Diesel Engine Combustion Strategies...

    Broader source: Energy.gov (indexed) [DOE]

    Optimization of Advanced Diesel Engine Combustion Strategies Optimization of Advanced Diesel Engine Combustion Strategies Use of Low Cetane Fuel to Enable Low Temperature ...

  10. Efficiency Considerations of Diesel Premixed Charge Compression...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biodiesel's Enabling Characteristics in Attaining Low Temperature Diesel Combustion System-Response Issues Imposed by Biodiesel in a Medium-Duty Diesel Engine Fuel-Induced System ...

  11. PNNL Aviation Biofuels

    SciTech Connect (OSTI)

    Plaza, John; Holladay, John; Hallen, Rich

    2014-10-23

    Commercial airplanes really don’t have the option to move away from liquid fuels. Because of this, biofuels present an opportunity to create new clean energy jobs by developing technologies that deliver stable, long term fuel options. The Department of Energy’s Pacific Northwest National Laboratory is working with industrial partners on processes to convert biomass to aviation fuels.

  12. U.S. average gasoline and diesel fuel prices expected to be slightly lower in 2013 than in 2012

    U.S. Energy Information Administration (EIA) Indexed Site

    average gasoline and diesel fuel prices expected to be slightly lower in 2013 than in 2012 Despite the recent run-up in gasoline prices, the U.S. Energy Information Administration expects falling crude oil prices will lead to a small decline in average motor fuel costs this year compared with last year. The price for regular gasoline is expected to average $3.55 a gallon in 2013 and $3.39 next year, according to EIA's new Short-Term Energy Outlook. That's down from $3.63 a gallon in 2012. For

  13. Lean methane premixed laminar flames doped by components of diesel fuel II: n-propylcyclohexane

    SciTech Connect (OSTI)

    Pousse, E.; Porter, R.; Warth, V.; Glaude, P.A.; Fournet, R.; Battin-Leclerc, F. [Departement de Chimie-Physique des Reactions, Nancy Universite, CNRS, ENSIC, 1 rue Grandville, BP 20451, 54001 Nancy Cedex (France)

    2010-01-15

    For a better understanding of the chemistry involved during the combustion of components of diesel fuel, the structure of a laminar lean premixed methane flame doped with n-propylcyclohexane has been investigated. The inlet gases contained 7.1% (molar) methane, 36.8% oxygen, and 0.81% n-propylcyclohexane (C{sub 9}H{sub 18}), corresponding to an equivalence ratio of 0.68 and a C{sub 9}H{sub 18}/CH{sub 4} ratio of 11.4%. The flame has been stabilized on a burner at a pressure of 6.7 kPa (50 Torr) using argon as diluent, with a gas velocity at the burner of 49.2 cm/s at 333 K. Quantified species included the usual methane C{sub 0}-C{sub 2} combustion products, but also 17 C{sub 3}-C{sub 5} hydrocarbons, seven C{sub 1}-C{sub 3} oxygenated compounds, and only four cyclic C{sub 6+} compounds, namely benzene, 1,3-cyclohexadiene, cyclohexene, and methylenecyclohexane. A new mechanism for the oxidation of n-propylcyclohexane has been proposed. It allows the proper simulation of profiles of most of the products measured in flames, as well as the satisfactory reproduction of experimental results obtained in a jet-stirred reactor. The main reaction pathways of consumption of n-propylcyclohexane have been derived from rate-of-production analysis. (author)

  14. A lean methane premixed laminar flame doped with components of diesel fuel. I. n-Butylbenzene

    SciTech Connect (OSTI)

    Pousse, E.; Glaude, P.A.; Fournet, R.; Battin-Leclerc, F. [Departement de Chimie-Physique des Reactions, Nancy Universite, CNRS, ENSIC, 1 rue Grandville, BP 20451, 54001 Nancy Cedex (France)

    2009-05-15

    To better understand the chemistry involved in the combustion of components of diesel fuel, the structure of a laminar lean premixed methane flame doped with n-butylbenzene has been investigated. The inlet gases contained 7.1% (molar) methane, 36.8% oxygen, and 0.96% n-butylbenzene corresponding to an equivalence ratio of 0.74 and a ratio C{sub 10}H{sub 14}/CH{sub 4} of 13.5%. The flame has been stabilized on a burner at a pressure of 6.7 kPa using argon as diluent, with a gas velocity at the burner of 49.2 cm/s at 333 K. Quantified species included the usual methane C{sub 0}-C{sub 2} combustion products, but also 16 C{sub 3}-C{sub 5} hydrocarbons, and 7 C{sub 1}-C{sub 3} oxygenated compounds, as well as 20 aromatic products. A new mechanism for the oxidation of n-butylbenzene is proposed whose predictions are in satisfactory agreement with measured species profiles in flames and flow reactor experiments. The main reaction pathways of consumption of n-butylbenzene have been derived from flow rate analyses. (author)

  15. Mobility chains analysis of technologies for passenger cars and light duty vehicles fueled with biofuels : application of the Greet model to project the role of biomass in America's energy future (RBAEF) project.

    SciTech Connect (OSTI)

    Wu, M.; Wu, Y.; Wang, M; Energy Systems

    2008-01-31

    The Role of Biomass in America's Energy Future (RBAEF) is a multi-institution, multiple-sponsor research project. The primary focus of the project is to analyze and assess the potential of transportation fuels derived from cellulosic biomass in the years 2015 to 2030. For this project, researchers at Dartmouth College and Princeton University designed and simulated an advanced fermentation process to produce fuel ethanol/protein, a thermochemical process to produce Fischer-Tropsch diesel (FTD) and dimethyl ether (DME), and a combined heat and power plant to co-produce steam and electricity using the ASPEN Plus{trademark} model. With support from the U.S. Department of Energy (DOE), Argonne National Laboratory (ANL) conducted, for the RBAEF project, a mobility chains or well-to-wheels (WTW) analysis using the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model developed at ANL. The mobility chains analysis was intended to estimate the energy consumption and emissions associated with the use of different production biofuels in light-duty vehicle technologies.

  16. Carbon-Type Analysis and Comparison of Original and Reblended FACE Diesel Fuels (FACE 2, FACE 4, and FACE 7)

    SciTech Connect (OSTI)

    Bays, J. Timothy; King, David L.; O'Hagan, Molly J.

    2012-10-01

    This report summarizes the carbon-type analysis from 1H and 13C{1H} nuclear magnetic resonance spectroscopy (NMR) of Fuels for Advanced Combustion Engines (FACE) diesel blends, FD-2B, FD 4B, and FD-7B, and makes comparison of the new blends with the original FACE diesel blends, FD 2A, FD 4A, and FD-7A, respectively. Generally, FD-2A and FD-2B are more similar than the A and B blends of FD-4 and FD-7. The aromatic carbon content is roughly equivalent, although the new FACE blends have decreased monoaromatic content and increased di- and tri-cycloaromatic content, as well as a higher overall aromatic content, than the original FACE blends. The aromatic components of the new FACE blends generally have a higher alkyl substitution with longer alkyl substituents. The naphthenic and paraffinic contents remained relatively consistent. Based on aliphatic methyl and methylene carbon ratios, cetane numbers for FD-2A and -2B, and FD-7A and -7B are predicted to be consistent, while the cetane number for FD-4B is predicted to be higher than FD-4A. Overall, the new FACE fuel blends are fairly consistent with the original FACE fuel blends, but there are observable differences. In addition to providing important comparative compositional information on reformulated FACE diesel blends, this report also provides important information about the capabilities of the team at Pacific Northwest National Laboratory in the use of NMR spectroscopy for the detailed characterization and comparison of fuels and fuel blends.

  17. BioFacts: Fueling a stronger economy, Global warming and biofuels emissions

    SciTech Connect (OSTI)

    1994-12-01

    The focus of numerous federal and state regulations being proposed and approved today is the reduction of automobile emissions -- particularly carbon dioxide (CO{sub 2}), which is the greenhouse gas considered responsible for global warming. Studies conducted by the USDOE through the National Renewable Energy Laboratory (NREL) indicate that the production and use of biofuels such as biodiesel, ethanol, and methanol could nearly eliminate the contribution of net CO{sub 2} from automobiles. This fact sheet provides and overview of global warming, followed by a summary of NREL`s study results.

  18. Vehicle Technologies Office Merit Review 2014: Performance of Biofuels and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biofuel Blends | Department of Energy of Biofuels and Biofuel Blends Vehicle Technologies Office Merit Review 2014: Performance of Biofuels and Biofuel Blends Presentation given by NREL at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about performance of biofuels and biofuel blends. ft003_mccormick_2014_o.pdf (1.04 MB) More Documents & Publications Vehicle Technologies Office Merit Review 2015: Performance of

  19. An indirect sensing technique for diesel fuel quantity control. Technical progress report, October 1--December 31, 1998

    SciTech Connect (OSTI)

    MacCarley, C.A.

    1999-01-26

    Work has proceeded intensely with the objective of completing the commercial prototype system prior to the end of the contract period. At the time of this report, testing and refinement of the commercial version of the system has not been completed. During this reporting period, several major milestones were reached and many significant lessons were learned. These are described. The experimental retrofit system has achieved all performance objectives in engine dynamometer tests. The prototype commercial version of the system will begin demonstration service on the first of several Santa Maria Area Transit (SMAT) transit buses on February 1, 1999. The commercial system has been redesignated the Electronic Diesel Smoke Reduction System (EDSRS) replacing the original internal pseudonym ADSC. The focus has been narrowed to a retrofit product suitable for installation on existing mechanically-governed diesel engines. Included in this potential market are almost all diesel-powered passenger cars and light trucks manufactured prior to the introduction of the most recent clean diesel engines equipped with particulate traps and electronic controls. Also included are heavy-duty trucks, transit vehicles, school buses, and agricultural equipment. This system is intended to prevent existing diesel engines from overfueling to the point of visible particulate emissions (smoke), while allowing maximum smoke-limited torque under all operating conditions. The system employs a microcontroller and a specialized exhaust particulate emission sensor to regulate the maximum allowable fuel quantity via an adaptive throttle-limit map. This map specifies a maximum allowable throttle position as a function of engine speed, turbocharger boost pressure and engine coolant temperature. The throttle position limit is mechanized via a servo actuator inserted in the throttle cable leading to the injection pump.

  20. Influence of fuel variables on the operation of automotive open and pre-chamber diesel and spark ignited stratified charge engines: a literature study covering petroleum and syncrude derived fuels

    SciTech Connect (OSTI)

    Needham, J.R.

    1980-09-01

    A literature study has been carried out to ascertain the influence of fuels and fuel variables on the operation of automotive diesel and spark ignited stratified charge engines with a view to understanding the impact of future fuels derived from Syncrude. The findings from the search are presented and discussed in detail, conclusions reached and recommendations made.

  1. Experimental Studies for CPF and SCR Model, Control System, and OBD Development for Engines Using Diesel and Biodiesel Fuels

    SciTech Connect (OSTI)

    Johnson, John; Naber, Jeffrey; Parker, Gordon; Yang, Song-Lin; Stevens, Andrews; Pihl, Josh

    2013-04-30

    The research carried out on this project developed experimentally validated Diesel Oxidation Catalyst (DOC), Diesel Particulate Filter (DPF), and Selective Catalytic Reduction (SCR) high‐fidelity models that served as the basis for the reduced order models used for internal state estimation. The high‐fidelity and reduced order/estimator codes were evaluated by the industrial partners with feedback to MTU that improved the codes. Ammonia, particulate matter (PM) mass retained, PM concentration, and NOX sensors were evaluated and used in conjunction with the estimator codes. The data collected from PM experiments were used to develop the PM kinetics using the high‐fidelity DPF code for both NO2 assisted oxidation and thermal oxidation for Ultra Low Sulfur Fuel (ULSF), and B10 and B20 biodiesel fuels. Nine SAE papers were presented and this technology transfer process should provide the basis for industry to improve the OBD and control of urea injection and fuel injection for active regeneration of the PM in the DPF using the computational techniques developed. This knowledge will provide industry the ability to reduce the emissions and fuel consumption from vehicles in the field. Four MS and three PhD Mechanical Engineering students were supported on this project and their thesis research provided them with expertise in experimental, modeling, and controls in aftertreatment systems.

  2. Coal liquefaction process wherein jet fuel, diesel fuel and/or ASTM No. 2 fuel oil is recovered

    DOE Patents [OSTI]

    Bauman, Richard F.; Ryan, Daniel F.

    1982-01-01

    An improved process for the liquefaction of coal and similar solid carbonaceous materials wherein a hydrogen donor solvent or diluent derived from the solid carbonaceous material is used to form a slurry of the solid carbonaceous material and wherein the naphthenic components from the solvent or diluent fraction are separated and used as jet fuel components. The extraction increases the relative concentration of hydroaromatic (hydrogen donor) components and as a result reduces the gas yield during liquefaction and decreases hydrogen consumption during said liquefaction. The hydrogenation severity can be controlled to increase the yield of naphthenic components and hence the yield of jet fuel and in a preferred embodiment jet fuel yield is maximized while at the same time maintaining solvent balance.

  3. Advanced Cellulosic Biofuels | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cellulosic Biofuels Advanced Cellulosic Biofuels Breakout Session 2-B: New/Emerging Pathways Advanced Cellulosic Biofuels Dr. Robert Graham, Chief Executive Officer and Chairman, Ensyn Corporation graham_bioenergy_2015.pdf (1.94 MB) More Documents & Publications Cellulosic Liquid Fuels Commercial Production Today Production of Renewable Fuels from Biomass by FCC Co-processing 2013 Peer Review Presentations-Integrated Biorefineries

  4. Coal-fueled diesel system for stationary power applications -- Technology development. Final report, March 1988--June 1994

    SciTech Connect (OSTI)

    1995-10-01

    Morgantown Energy Technology Center, Cooper-Bessemer and Arthur D. Little have developed the technology to enable coal-water slurry to be utilized in large-bore, medium-speed diesel engines. The target application is modular power generation in the 10 to 100 MW size, with each plant using between two and eight engines. Such systems are expected to be economically attractive in the non-utility generation market after 2000, when oil and natural gas prices are expected to escalate rapidly compared to the price of coal. During this development program, over 1,000 hours of prototype engine operation have been achieved on coal-water slurry (CWS), including over 100 hours operation of a six-cylinder, 1.8 MW engine with an integrated emissions control system. Arthur D. Little, Inc., managed the coal-fueled diesel development, with Cooper-Bessemer as the principal subcontractor responsible for the engine design and testing. Several key technical advances which enable the viability of the coal-fueled diesel engine were made under this program. Principal among them are the development and demonstration of (1) durable injection nozzles; (2) an integrated emissions control system; ad (3) low-cost clean coal slurry formulations optimized for the engine. Significant advances in all subsystem designs were made to develop the full-scale Cooper-Bessemer coal engine components in preparation for a 100-hour proof-of-concept test of an integrated system, including emissions controls. The Clean Coal Diesel power plant of the future will provide a cost-competitive, low-emissions, modular, coal-based power generation option to the non-utility generation, small utility, independent power producer, and cogeneration markets. Combined cycle efficiencies will be approximately 48% (lower heating value basis) and installed cost will be approximately $1,300/kW (1992 dollars).

  5. Fuel from wastewater : harnessing a potential energy source in Canada through the co-location of algae biofuel production to sources of effluent, heat and CO2.

    SciTech Connect (OSTI)

    Passell, Howard David; Whalen, Jake; Pienkos, Philip P.; O'Leary, Stephen J.; Roach, Jesse Dillon; Moreland, Barbara D.; Klise, Geoffrey Taylor

    2010-12-01

    Sandia National Laboratories is collaborating with the National Research Council (NRC) Canada and the National Renewable Energy Laboratory (NREL) to develop a decision-support model that will evaluate the tradeoffs associated with high-latitude algae biofuel production co-located with wastewater, CO2, and waste heat. This project helps Canada meet its goal of diversifying fuel sources with algae-based biofuels. The biofuel production will provide a wide range of benefits including wastewater treatment, CO2 reuse and reduction of demand for fossil-based fuels. The higher energy density in algae-based fuels gives them an advantage over crop-based biofuels as the 'production' footprint required is much less, resulting in less water consumed and little, if any conversion of agricultural land from food to fuel production. Besides being a potential source for liquid fuel, algae have the potential to be used to generate electricity through the burning of dried biomass, or anaerobically digested to generate methane for electricity production. Co-locating algae production with waste streams may be crucial for making algae an economically valuable fuel source, and will certainly improve its overall ecological sustainability. The modeling process will address these questions, and others that are important to the use of water for energy production: What are the locations where all resources are co-located, and what volumes of algal biomass and oil can be produced there? In locations where co-location does not occur, what resources should be transported, and how far, while maintaining economic viability? This work is being funded through the U.S. Department of Energy (DOE) Biomass Program Office of Energy Efficiency and Renewable Energy, and is part of a larger collaborative effort that includes sampling, strain isolation, strain characterization and cultivation being performed by the NREL and Canada's NRC. Results from the NREL / NRC collaboration including specific

  6. Alternative Fuel Vehicle Data - Energy Information Administration

    U.S. Energy Information Administration (EIA) Indexed Site

    & Alternative Fuels - U.S. Energy Information Administration (EIA) U.S. Energy Information Administration - EIA - Independent Statistics and Analysis Sources & Uses Petroleum & Other Liquids Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas Exploration and reserves, storage, imports and exports, production, prices, sales. Electricity Sales, revenue and prices, power plants, fuel use, stocks, generation, trade,

  7. Low sulfur diesel production in PEMEX Refinacion refineries

    SciTech Connect (OSTI)

    Celestinos, J.

    1994-12-31

    This report was presented by Jose Celestinos, the Subdirector for Production, Pemex Refining Company in Mexico. The distribution and consumption of diesel fuel in Mexico was discussed as well as other topics involving diesel fuel such as: sulphur content, production of desulpherized diesel, diesel standard emissions and evaluation of emissions, and test specifications for the production of diesel fuel.

  8. Recent Progress on Steam Hydrogasification of Carbonaceous Matter to Clean Synthetic Diesel Fuel

    Broader source: Energy.gov [DOE]

    2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

  9. EA-1850: Flambeau River BioFuels, Inc. Proposed Wood Biomass-to-Liquid Fuel Biorefinery, Park Falls, Wisconsin

    Broader source: Energy.gov [DOE]

    NOTE: This EA has been cancelled. This EA will evaluate the environmental impacts of a proposal to provide federal funding to Flambeau River Biofuels (FRB) to construct and operate a biomass-to-liquid biorefinery in Park Falls, Wisconsin, on property currently used by Flambeau Rivers Paper, LLC (FRP) for a pulp and paper mill and Johnson Timber Corporation's (JTC) Summit Lake Yard for timber storage. This project would design a biorefinery which would produce up to 1,150 barrels per day (bpd) of clean syncrude. The biorefinery would also supply steam to the FRP mill, meeting the majority of the mill's steam demand and reducing or eliminating the need for the existing biomass/coal-fired boiler. The biorefinery would also include a steam turbine generator that will produce "green" electrical power for use by the biorefinery or for sale to the electric utility.

  10. Fungible and Compatible Biofuels | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fungible and Compatible Biofuels Fungible and Compatible Biofuels The purpose of this study is to summarize the various barriers to more widespread distribution of biofuels through our common carrier fuel distribution system, which includes pipelines, barges and rail, fuel tankage, and distribution terminals, and with a special focus on biofuels, which may come into increased usage in the future. Addressing these barriers is necessary to allow the more widespread utilization and distribution of

  11. Analysis of Coconut-Derived Biodiesel and Conventional Diesel Fuel Samples from the Philippines: Task 2 Final Report

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Analysis of Coconut-Derived Biodiesel and Conventional Diesel Fuel Samples from the Philippines Task 2 Final Report T.L. Alleman and R.L. McCormick Milestone Report NREL/MP-540-38643 January 2006 National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 * www.nrel.gov Operated for the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy by Midwest Research Institute * Battelle Contract No. DE-AC36-99-GO10337 Analysis of Coconut-

  12. Biofuels Market Opportunities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biofuels Market Opportunities Biofuels Market Opportunities Breakout Session 2C-Fostering Technology Adoption II: Expanding the Pathway to Market Biofuels Market Opportunities John Eichberger, Vice President Government Relations, National Association of Convenience Stores eichberger_biomass_2014.pdf (727.47 KB) More Documents & Publications End Use and Fuel Certification Fuels of the Future: Accelerating the Co-Optimization of Fuels and Engines Flexible Fuel Vehicles: Providing a Renewable

  13. Assessment of the O2Diesel Operational Safety Program: December 23, 2002 -- June 30, 2007

    SciTech Connect (OSTI)

    TIAX LLC

    2006-06-01

    This report assesses O2Diesel's operational safety program using its ethanol-diesel blended fuel product.

  14. Flying F Bio Fuels | Open Energy Information

    Open Energy Info (EERE)

    F Bio Fuels Jump to: navigation, search Name: Flying F Bio-Fuels Place: Iowa Product: Flying F Bio-Fuels conducts technological research in bio-fuels. References: Flying F...

  15. Reducing the deactivation of Ni-metal during the catalytic partial oxidation of a surrogate diesel fuel mixture

    SciTech Connect (OSTI)

    Haynes, Daniel J.; Campos, Andrew; Smith, Mark W.; Berry, David A.; Shekhawat, Dushyant; Spivey, James J.

    2010-09-01

    Ni catalysts are active and selective for the conversion of hydrocarbon into synthesis gas. However, conventional supported Ni catalysts rapidly deactivate at the high temperatures required for partial oxidation of diesel fuel by sintering and metal vaporization, as well as by carbon deposition and sulfur poisoning. Thus, to reduce deactivation Ni (3 wt%) was substituted into the structures of Ba-hexaaluminate (BNHA) and La–Sr–Zr pyrochlore (LSZN), and their activity was compared to a supported Ni/Al2O3 for the catalytic partial oxidation (CPOX) of a surrogate diesel fuel. Characterization by XRD showed a single phase -alumina for the hexaaluminate, while LSZN had a pyrochlore structure with a defect SrZrO3 perovskite phase. Temperature programmed reduction experiments confirmed Ni was reducible in all catalysts. XANES results confirmed that Ni atoms were substituted into the hexaaluminate and pyrochlore structures, as spectra for each catalyst showed different coordination environments for Ni compared to a NiO standard. During CPOX activity tests (T = 900°C and WHSV= 50,000 scc/gcat/h), the LSZN pyrochlore produced stable H2 and CO yields in the presence of 5 wt% 1-methylnaphthalene and 50ppmw dibenzothiophene/n-tetradecane for 2 h, while both Ni/Al2O3 and BNHA catalysts were irreversibly deactivated by this mixture over the same time. Activity loss was strongly linked to carbon formation

  16. Vaporization modeling of petroleum-biofuel drops using a hybrid multi-component approach

    SciTech Connect (OSTI)

    Zhang, Lei; Kong, Song-Charng

    2010-11-15

    Numerical modeling of the vaporization characteristics of multi-component fuel mixtures is performed in this study. The fuel mixtures studied include those of binary components, biodiesel, diesel-biodiesel, and gasoline-ethanol. The use of biofuels has become increasingly important for reasons of environmental sustainability. Biofuels are often blended with petroleum fuels, and the detailed understanding of the vaporization process is essential to designing a clean and efficient combustion system. In this study, a hybrid vaporization model is developed that uses continuous thermodynamics to describe petroleum fuels and discrete components to represent biofuels. The model is validated using the experimental data of n-heptane, n-heptane-n-decane mixture, and biodiesel. Since biodiesel properties are not universal due to the variation in feedstock, methods for predicting biodiesel properties based on the five dominant fatty acid components are introduced. Good levels of agreement in the predicted and measured drop size histories are obtained. Furthermore, in modeling the diesel-biodiesel drop, results show that the drop lifetime increases with the biodiesel concentration in the blend. During vaporization, only the lighter components of diesel fuel vaporize at the beginning. Biodiesel components do not vaporize until some time during the vaporization process. On the other hand, results of gasoline-ethanol drops indicate that both fuels start to vaporize once the process begins. At the beginning, the lighter components of gasoline have a slightly higher vaporization rate than ethanol. After a certain time, ethanol vaporizes faster than the remaining gasoline components. At the end, the drop reduces to a regular gasoline drop with heavier components. Overall, the drop lifetime increases as the concentration of ethanol increases in the drop due to the higher latent heat. (author)

  17. Microalgae as a feedstock for biofuel precursors and value-added products: Green fuels and golden opportunities

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Tang, Yuting; Rosenberg, Julian N.; Bohutskyi, Pavlo; Yu, Geng; Betenbaugh, Michael J.; Wang, Fei

    2015-11-16

    In this study, the prospects of biofuel production from microalgal carbohydrates and lipids coupled with greenhouse gas mitigation due to photosynthetic assimilation of CO2 have ushered in a renewed interest in algal feedstock. Furthermore, microalgae (including cyanobacteria) have become established as commercial sources of value-added biochemicals such as polyunsaturated fatty acids and carotenoid pigments used as antioxidants in nutritional supplements and cosmetics. This article presents a comprehensive synopsis of the metabolic basis for accumulating lipids as well as applicable methods of lipid and cellulose bioconversion and final applications of these natural or refined products from microalgal biomass. For lipids, one-stepmore » in situ transesterification offers a new and more accurate approach to quantify oil content. As a complement to microalgal oil fractions, the utilization of cellulosic biomass from microalgae to produce bioethanol by fermentation, biogas by anaerobic digestion, and bio-oil by hydrothermal liquefaction are discussed. Collectively, a compendium of information spanning green renewable fuels and value-added nutritional compounds is provided.« less

  18. Microalgae as a feedstock for biofuel precursors and value-added products: Green fuels and golden opportunities

    SciTech Connect (OSTI)

    Tang, Yuting; Rosenberg, Julian N.; Bohutskyi, Pavlo; Yu, Geng; Betenbaugh, Michael J.; Wang, Fei

    2015-11-16

    In this study, the prospects of biofuel production from microalgal carbohydrates and lipids coupled with greenhouse gas mitigation due to photosynthetic assimilation of CO2 have ushered in a renewed interest in algal feedstock. Furthermore, microalgae (including cyanobacteria) have become established as commercial sources of value-added biochemicals such as polyunsaturated fatty acids and carotenoid pigments used as antioxidants in nutritional supplements and cosmetics. This article presents a comprehensive synopsis of the metabolic basis for accumulating lipids as well as applicable methods of lipid and cellulose bioconversion and final applications of these natural or refined products from microalgal biomass. For lipids, one-step in situ transesterification offers a new and more accurate approach to quantify oil content. As a complement to microalgal oil fractions, the utilization of cellulosic biomass from microalgae to produce bioethanol by fermentation, biogas by anaerobic digestion, and bio-oil by hydrothermal liquefaction are discussed. Collectively, a compendium of information spanning green renewable fuels and value-added nutritional compounds is provided.

  19. Experimental Investigation of Fuel-Reactivity Controlled Compression Ignition (RCCI) Combustion Mode in a Multi-Cylinder, Light-Duty Diesel Engine

    SciTech Connect (OSTI)

    Cho, Kukwon; Curran, Scott; Prikhodko, Vitaly Y; Sluder, Scott; Parks, II, James E; Wagner, Robert M

    2011-01-01

    An experimental study was performed to provide the combustion and emission characteristics resulting from fuel-reactivity controlled compression ignition (RCCI) combustion mode utilizing dual-fuel approach in a light-duty, multi-cylinder diesel engine. In-cylinder fuel blending using port fuel injection of gasoline before intake valve opening (IVO) and early-cycle, direct injection of diesel fuel was used as the charge preparation and fuel blending strategy. In order to achieve the desired auto-ignition quality through the stratification of the fuel-air equivalence ratio ( ), blends of commercially available gasoline and diesel fuel were used. Engine experiments were performed at an engine speed of 2300rpm and an engine load of 4.3bar brake mean effective pressure (BMEP). It was found that significant reduction in both nitrogen oxide (NOx) and particulate matter (PM) was realized successfully through the RCCI combustion mode even without applying exhaust gas recirculation (EGR). However, high carbon monoxide (CO) and hydrocarbon (HC) emissions were observed. The low combustion gas temperature during the expansion and exhaust processes seemed to be the dominant source of high CO emissions in the RCCI combustion mode. The high HC emissions during the RCCI combustion mode could be due to the increased combustion quenching layer thickness as well as the -stratification at the periphery of the combustion chamber. The slightly higher brake thermal efficiency (BTE) of the RCCI combustion mode was observed than the other combustion modes, such as the conventional diesel combustion (CDC) mode, and single-fuel, premixed charge compression ignition (PCCI) combustion mode. The parametric study of the RCCI combustion mode revealed that the combustion phasing and/or the peak cylinder pressure rise rate of the RCCI combustion mode could be controlled by several physical parameters premixed ratio (rp), intake swirl intensity, and start of injection (SOI) timing of directly

  20. The Effect of Diesel Fuel Properties on Emissions-Restrained Fuel Economy at Mid-Load Conditions

    Broader source: Energy.gov [DOE]

    Statistical models developed from designed esperiments (varying fuel properties and engine control parameters) were used to optimize fuel consumption subject to emissions and engine performance constraints.