National Library of Energy BETA

Sample records for biofuel production facilities

  1. An Integrated Assessment of Location-Dependent Scaling for Microalgae Biofuel Production Facilities

    SciTech Connect (OSTI)

    Coleman, Andre M.; Abodeely, Jared; Skaggs, Richard; Moeglein, William AM; Newby, Deborah T.; Venteris, Erik R.; Wigmosta, Mark S.

    2014-07-01

    Successful development of a large-scale microalgae-based biofuels industry requires comprehensive analysis and understanding of the feedstock supply chain—from facility siting/design through processing/upgrading of the feedstock to a fuel product. The evolution from pilot-scale production facilities to energy-scale operations presents many multi-disciplinary challenges, including a sustainable supply of water and nutrients, operational and infrastructure logistics, and economic competitiveness with petroleum-based fuels. These challenges are addressed in part by applying the Integrated Assessment Framework (IAF)—an integrated multi-scale modeling, analysis, and data management suite—to address key issues in developing and operating an open-pond facility by analyzing how variability and uncertainty in space and time affect algal feedstock production rates, and determining the site-specific “optimum” facility scale to minimize capital and operational expenses. This approach explicitly and systematically assesses the interdependence of biofuel production potential, associated resource requirements, and production system design trade-offs. The IAF was applied to a set of sites previously identified as having the potential to cumulatively produce 5 billion-gallons/year in the southeastern U.S. and results indicate costs can be reduced by selecting the most effective processing technology pathway and scaling downstream processing capabilities to fit site-specific growing conditions, available resources, and algal strains.

  2. Enerkem Mississippi Biofuels Pontotoc, MS Facility

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Enerkem Mississippi Biofuels Pontotoc, MS Facility 2013 IBR Peer Review May 21 st , 2013 ... as part of the first wave of advanced biofuels projects in the U.S. The advanced and ...

  3. ECCO Biofuels | Open Energy Information

    Open Energy Info (EERE)

    ECCO Biofuels Jump to: navigation, search Name: ECCO Biofuels Place: Texas Sector: Biofuels Product: ECCO Biofuels manufactures biodiesel production facilities as well as produces...

  4. LC Biofuels | Open Energy Information

    Open Energy Info (EERE)

    LC Biofuels Jump to: navigation, search Name: LC Biofuels Place: Richmond, California Sector: Biofuels Product: Biofuels producer that owns and operatres a 1.3m facility in...

  5. A Prospective Target for Advanced Biofuel Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Prospective Target for Advanced Biofuel Production A Prospective Target for Advanced Biofuel Production Print Thursday, 02 February 2012 13:34 The sesquiterpene bisabolene was...

  6. Biofuels Company Builds New Facility in Nebraska | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biofuels Company Builds New Facility in Nebraska Biofuels Company Builds New Facility in Nebraska March 24, 2010 - 2:54pm Addthis Novozymes was awarded a 28.4 million tax credit ...

  7. Conversion Technologies for Advanced Biofuels - Carbohydrates Production

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Production Conversion Technologies for Advanced Biofuels - Carbohydrates Production Purdue University report-out presentation at the CTAB webinar on Carbohydrates Production. ctab_webinar_carbohydrates_production.pdf (519.37 KB) More Documents & Publications Advanced Conversion Roadmap Workshop Workshop on Conversion Technologies for Advanced Biofuels - Carbohydrates Conversion Technologies for Advanced Biofuels - Carbohydrates Upgrading

  8. Wastewater Reclamation and Biofuel Production Using Algae | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wastewater Reclamation and Biofuel Production Using Algae Wastewater Reclamation and Biofuel Production Using Algae Breakout Session 2-A: The Future of Algae-Based Biofuels ...

  9. Conversion Technologies for Advanced Biofuels … Bio-Oil Production

    Broader source: Energy.gov (indexed) [DOE]

    David C. Dayton Director, Chemistry and Biofuels Center for Energy Technology RTI ... integrated biorefinery technology development activities for biofuels production. ...

  10. Efflux Pumps to Increase Microbial Tolerance and Biofuel Production...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Biofuel Production Lawrence Berkeley National Laboratory Contact LBL About This Technology Publications: PDF Document Publication Engineering microbial biofuel tolerance ...

  11. Kreido Biofuels formerly Gemwood Productions | Open Energy Information

    Open Energy Info (EERE)

    Kreido Biofuels formerly Gemwood Productions Jump to: navigation, search Name: Kreido Biofuels (formerly Gemwood Productions) Place: Camarillo, California Zip: 93012 Product:...

  12. Metabolomics of Clostridial Biofuel Production

    SciTech Connect (OSTI)

    Rabinowitz, Joshua D; Aristilde, Ludmilla; Amador-Noguez, Daniel

    2015-09-08

    Members of the genus Clostridium collectively have the ideal set of the metabolic capabilities for fermentative biofuel production: cellulose degradation, hydrogen production, and solvent excretion. No single organism, however, can effectively convert cellulose into biofuels. Here we developed, using metabolomics and isotope tracers, basic science knowledge of Clostridial metabolism of utility for future efforts to engineer such an organism. In glucose fermentation carried out by the biofuel producer Clostridium acetobutylicum, we observed a remarkably ordered series of metabolite concentration changes as the fermentation progressed from acidogenesis to solventogenesis. In general, high-energy compounds decreased while low-energy species increased during solventogenesis. These changes in metabolite concentrations were accompanied by large changes in intracellular metabolic fluxes, with pyruvate directed towards acetyl-CoA and solvents instead of oxaloacetate and amino acids. Thus, the solventogenic transition involves global remodeling of metabolism to redirect resources from biomass production into solvent production. In contrast to C. acetobutylicum, which is an avid fermenter, C. cellulolyticum metabolizes glucose only slowly. We find that glycolytic intermediate concentrations are radically different from fast fermenting organisms. Associated thermodynamic and isotope tracer analysis revealed that the full glycolytic pathway in C. cellulolyticum is reversible. This arises from changes in cofactor utilization for phosphofructokinase and an alternative pathway from phosphoenolpyruvate to pyruvate. The net effect is to increase the high-energy phosphate bond yield of glycolysis by 150% (from 2 to 5) at the expense of lower net flux. Thus, C. cellulolyticum prioritizes glycolytic energy efficiency over speed. Degradation of cellulose results in other sugars in addition to glucose. Simultaneous feeding of stable isotope-labeled glucose and unlabeled pentose sugars

  13. Conversion Technologies for Advanced Biofuels - Bio-Oil Production...

    Energy Savers [EERE]

    Oil Production Conversion Technologies for Advanced Biofuels - Bio-Oil Production RTI International report-out at the CTAB webinar on Conversion Technologies for Advanced Biofuels ...

  14. Second-Generation Biofuels from Multi-Product Biorefineries Combine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Second-Generation Biofuels from Multi-Product Biorefineries Combine Economic Sustainability With Environmental Sustainability Second-Generation Biofuels from Multi-Product ...

  15. Second-Generation Biofuels from Multi-Product Biorefineries Combine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cellana Inc. 2014 Second-Generation Biofuels from Multi-Product Biorefineries Combine ... commercial-scale quantities of advanced biofuels. 4. To the extent that the prices of ...

  16. Harnessing Biotechnology to Accelerate Advanced Biofuels Production |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Harnessing Biotechnology to Accelerate Advanced Biofuels Production Harnessing Biotechnology to Accelerate Advanced Biofuels Production April 12, 2016 - 10:13am Addthis Improving Access to Energy-Rich Sugars. Ning Sun is part of a team of researchers in the Energy Department's Joint BioEnergy Institute (JBEI) Deconstruction Division exploring methods to pretreat biomass. | Image courtesy of JBEI Improving Access to Energy-Rich Sugars. Ning Sun is part of a team of

  17. Production of Advanced Biofuels via Liquefaction - Hydrothermal

    Office of Scientific and Technical Information (OSTI)

    Liquefaction Reactor Design: April 5, 2013 (Technical Report) | SciTech Connect Production of Advanced Biofuels via Liquefaction - Hydrothermal Liquefaction Reactor Design: April 5, 2013 Citation Details In-Document Search Title: Production of Advanced Biofuels via Liquefaction - Hydrothermal Liquefaction Reactor Design: April 5, 2013 This report provides detailed reactor designs and capital costs, and operating cost estimates for the hydrothermal liquefaction reactor system, used for

  18. Nuclear Facilities Production Facilities

    National Nuclear Security Administration (NNSA)

    Facilities Production Facilities Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. Sand 2011-4582P. ENERGY U.S. DEPARTMENT OF Gamma Irradiation Facility (GIF) The GIF provides test cells for the irradiation of experiments with high-intensity gamma ray sources. The main features

  19. Impacts of Climate Change on Biofuels Production

    SciTech Connect (OSTI)

    Melillo, Jerry M.

    2014-04-30

    The overall goal of this research project was to improve and use our biogeochemistry model, TEM, to simulate the effects of climate change and other environmental changes on the production of biofuel feedstocks. We used the improved version of TEM that is coupled with the economic model, EPPA, a part of MIT’s Earth System Model, to explore how alternative uses of land, including land for biofuels production, can help society meet proposed climate targets. During the course of this project, we have made refinements to TEM that include development of a more mechanistic plant module, with improved ecohydrology and consideration of plant-water relations, and a more detailed treatment of soil nitrogen dynamics, especially processes that add or remove nitrogen from ecosystems. We have documented our changes to TEM and used the model to explore the effects on production in land ecosystems, including changes in biofuels production.

  20. Patriot BioFuels | Open Energy Information

    Open Energy Info (EERE)

    BioFuels Jump to: navigation, search Name: Patriot BioFuels Place: Little Rock, Arkansas Zip: 72201 Product: Arkansas-based biodiesel company with production facilities at...

  1. Conversion Technologies for Advanced Biofuels - Bio-Oil Production |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Oil Production Conversion Technologies for Advanced Biofuels - Bio-Oil Production RTI International report-out at the CTAB webinar on Conversion Technologies for Advanced Biofuels - Bio-Oil Production. ctab_webinar_bio_oils_production.pdf (772.25 KB) More Documents & Publications Conversion Technologies for Advanced Biofuels - Bio-Oil Upgrading 2013 Peer Review Presentations-Bio-oil Workshop on Conversion Technologies for Advanced Biofuels - Bio-Oils

  2. Benefits of Biofuel Production and Use in Minnesota

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Upgrading existing facilities to use cellulosic agricultural wastes and resources from the 17 million acres of forest can establish Minnesota as a leader in advanced biofuels. ...

  3. Biofuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transportation Energy Co-Evolution of Biofuels Lignocellulosic Biomass Microalgae ... Twitter Google + Vimeo Newsletter Signup SlideShare Biofuels HomeBiofuels Permalink JBEI ...

  4. Biofuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transportation Energy Co-Evolution of Biofuels Lignocellulosic Biomass Microalgae ... Twitter Google + Vimeo Newsletter Signup SlideShare Biofuels HomeBiofuels National ...

  5. Advanced Biofuels Cost of Production | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Presentation given by the Biomass Program's Zia Haq at the Aviation Biofuels Conference on the cost of production of advanced biofuels. aviationbiofuelshaq.pdf (514.11 KB) More ...

  6. Assessing Impact of Biofuel Production on Regional Water Resource...

    Broader source: Energy.gov (indexed) [DOE]

    Impact of Biofuel Production on Regional Water Resource Use and Availability May Wu Ph.D. ... 15, 2012 Biofuel Is a Key Component in Water-Energy Nexus 1 2 Potential Cellulosic ...

  7. From pandemic preparedness to biofuel production: Tobacco finds...

    Office of Scientific and Technical Information (OSTI)

    Opportunities now exist repurposing tobacco expression systems for exciting new applications in synthetic biology, biofuels production and industrial enzyme production. Lastly, as ...

  8. Multiphase Flow Modeling of Biofuel Production Processes

    SciTech Connect (OSTI)

    D. Gaston; D. P. Guillen; J. Tester

    2011-06-01

    As part of the Idaho National Laboratory's (INL's) Secure Energy Initiative, the INL is performing research in areas that are vital to ensuring clean, secure energy supplies for the future. The INL Hybrid Energy Systems Testing (HYTEST) Laboratory is being established to develop and test hybrid energy systems with the principal objective to safeguard U.S. Energy Security by reducing dependence on foreign petroleum. HYTEST involves producing liquid fuels in a Hybrid Energy System (HES) by integrating carbon-based (i.e., bio-mass, oil-shale, etc.) with non-carbon based energy sources (i.e., wind energy, hydro, geothermal, nuclear, etc.). Advances in process development, control and modeling are the unifying vision for HES. This paper describes new modeling tools and methodologies to simulate advanced energy processes. Needs are emerging that require advanced computational modeling of multiphase reacting systems in the energy arena, driven by the 2007 Energy Independence and Security Act, which requires production of 36 billion gal/yr of biofuels by 2022, with 21 billion gal of this as advanced biofuels. Advanced biofuels derived from microalgal biomass have the potential to help achieve the 21 billion gal mandate, as well as reduce greenhouse gas emissions. Production of biofuels from microalgae is receiving considerable interest due to their potentially high oil yields (around 600 gal/acre). Microalgae have a high lipid content (up to 50%) and grow 10 to 100 times faster than terrestrial plants. The use of environmentally friendly alternatives to solvents and reagents commonly employed in reaction and phase separation processes is being explored. This is accomplished through the use of hydrothermal technologies, which are chemical and physical transformations in high-temperature (200-600 C), high-pressure (5-40 MPa) liquid or supercritical water. Figure 1 shows a simplified diagram of the production of biofuels from algae. Hydrothermal processing has significant

  9. Biofuels Information Center

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biofuels Information Center BETO 2015 Peer Review Kristi Moriarty March 24, 2015 2 Goal Statement * The purpose of the Biofuels Information Center (BIC) task is to increase deployment of biofuels production facilities and infrastructure by providing essential biofuels data, tools, and information to all stakeholders * The Bioenergy Atlas tools provide interactive maps and analysis of all relevant biomass data with the purpose of growing the domestic bioenergy market for biofuels and biopower

  10. Biofuels Fuels Technology Pathway Options for Advanced Drop-in Biofuels Production

    SciTech Connect (OSTI)

    Kevin L Kenney

    2011-09-01

    Advanced drop-in hydrocarbon biofuels require biofuel alternatives for refinery products other than gasoline. Candidate biofuels must have performance characteristics equivalent to conventional petroleum-based fuels. The technology pathways for biofuel alternatives also must be plausible, sustainable (e.g., positive energy balance, environmentally benign, etc.), and demonstrate a reasonable pathway to economic viability and end-user affordability. Viable biofuels technology pathways must address feedstock production and environmental issues through to the fuel or chemical end products. Potential end products include compatible replacement fuel products (e.g., gasoline, diesel, and JP8 and JP5 jet fuel) and other petroleum products or chemicals typically produced from a barrel of crude. Considering the complexity and technology diversity of a complete biofuels supply chain, no single entity or technology provider is capable of addressing in depth all aspects of any given pathway; however, all the necessary expert entities exist. As such, we propose the assembly of a team capable of conducting an in-depth technology pathway options analysis (including sustainability indicators and complete LCA) to identify and define the domestic biofuel pathways for a Green Fleet. This team is not only capable of conducting in-depth analyses on technology pathways, but collectively they are able to trouble shoot and/or engineer solutions that would give industrial technology providers the highest potential for success. Such a team would provide the greatest possible down-side protection for high-risk advanced drop-in biofuels procurement(s).

  11. Synthetic biology for microbial production of lipid-based biofuels...

    Office of Scientific and Technical Information (OSTI)

    Synthetic biology for microbial production of lipid-based biofuels Citation Details In-Document Search This content will become publicly available on October 22, 2017 Title: ...

  12. Design, Construction, and Implementation of Novel Biofuel Production...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Design, Construction, and Implementation of Novel Biofuel Production Capabilities in Filamentous Fungi March 26, 2015 Technology Area Review Kenneth S. Bruno Pacific Northwest ...

  13. Advanced Biofuels (and Bio-products) Process Demonstration Unit...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biofuels (and Bio-products) Process Demonstration Unit Todd Pray, PhD, MBA March 25, 2015 Biochemical Conversion Area DOE Bioenergy Technologies Office (BETO) Project Peer Review ...

  14. Assessing Impact of Biofuel Production on Regional Water Resource...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    May Wu, ANL, 81512 webinar presentation on the environmental impacts attributable to wastewater from biofuels production. wuwebinar.pdf (4.26 MB) More Documents & Publications ...

  15. Recycling of Nutrients and Water in Algal Biofuels Production

    Broader source: Energy.gov (indexed) [DOE]

    Peer Review Recycling of Nutrients and Water in Algal Biofuels Production Civil and ... and demonstrating efficient recycling of water, nutrients, & some carbon. * Without ...

  16. Impact of Projected Biofuel Production on Water Use and Water...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Impact of Projected Biofuel Production on Water Use and Water Quality Technology Area Review: Sustainability WBS: 11.1.1.1 Principal Investigator: May Wu Argonne National ...

  17. Biofuel Production in the Western U.S.

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biofuel Production in the Western U.S. March 25, 2015 Analysis & Sustainability Mark Wigmosta PNNL This presentation does not contain any proprietary, confidential, or otherwise ...

  18. Algae Raceway Testing Facility Brings Algal Biofuels One Step Closer to Reality

    Office of Energy Efficiency and Renewable Energy (EERE)

    A new algae raceway testing facility opened earlier this month at Sandia National Laboratories in Livermore, California, that could help bring algal biofuels one step closer to commercialization....

  19. Partnering with Industry to Advance Biofuels, NREL's Integrated Biorefinery Research Facility (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-10-01

    Fact sheet describing NREL's Integrated Biorefinery Research Facility and its availability to biofuels' industry partners who want to operate, test, and develop biorefining technology and equipment.

  20. BioFuel Energy Corp | Open Energy Information

    Open Energy Info (EERE)

    Energy Corp Jump to: navigation, search Name: BioFuel Energy Corp Place: Denver, Colorado Zip: 80202 Product: Develops, owns and operates ethanol facilities. References: BioFuel...

  1. PowerSHIFT Biofuels LLC | Open Energy Information

    Open Energy Info (EERE)

    Biofuels LLC Jump to: navigation, search Name: PowerSHIFT Biofuels LLC Place: Wyoming Product: Focused on biodiesel plants and power generation facilities in the US. References:...

  2. Water Gunks Up Biofuels Production from Bio-Oils | U.S. DOE Office...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Water Gunks Up Biofuels Production from Bio-Oils Biological and Environmental Research ... Water Gunks Up Biofuels Production from Bio-Oils New findings will help extend the ...

  3. Water Gunks Up Biofuels Production from Bio-Oils | U.S. DOE Office...

    Office of Science (SC) Website

    Water Gunks Up Biofuels Production from Bio-Oils Advanced Scientific Computing Research ... Water Gunks Up Biofuels Production from Bio-Oils New findings will help extend the ...

  4. Siting algae cultivation facilities for biofuel production in the United States: trade-offs between growth rate, site constructability, water availability, and infrastructure

    SciTech Connect (OSTI)

    Venteris, Erik R.; McBride, Robert; Coleman, Andre M.; Skaggs, Richard; Wigmosta, Mark S.

    2014-02-21

    Locating sites for new algae cultivation facilities is a complex task. The climate must support high growth rates, and cultivation ponds require appropriate land and water resources as well as key utility and transportation infrastructure. We employ our spatiotemporal Biomass Assessment Tool (BAT) to select promising locations based on the open-pond cultivation of Arthrospira sp. and a strain of the order Desmidiales. 64,000 potential sites across the southern United States were evaluated. We progressively apply a range of screening criteria and track their impact on the number of selected sites, geographic location, and biomass productivity. Both strains demonstrate maximum productivity along the Gulf of Mexico coast, with the highest values on the Florida peninsula. In contrast, sites meeting all selection criteria for Arthrospira were located along the southern coast of Texas and for Desmidiales were located in Louisiana and southern Arkansas. Site selection was driven mainly by the lack of oil pipeline access in Florida and elevated groundwater salinity in southern Texas. The requirement for low salinity freshwater (<400 mg L-1) constrained Desmidiales locations; siting flexibility is greater for salt-tolerant species such as Arthrospira. Combined siting factors can result in significant departures from regions of maximum productivity but are within the expected range of site-specific process improvements.

  5. Integrating the Production of Biofuels and Bioproducts | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Integrating the Production of Biofuels and Bioproducts Integrating the Production of Biofuels and Bioproducts April 28, 2016 - 11:25am Addthis Non-food biomass such as the crop residue (the leftover material from crops like stalks, leaves, and husks of corn plants following harvest) pictured above can be converted to biofuels as well as high-value products such as plastics, chemicals, and fertilizers. Non-food biomass such as the crop residue (the leftover material from crops like

  6. Single, Key Gene Discovery Could Streamline Production of Biofuels |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Single, Key Gene Discovery Could Streamline Production of Biofuels Single, Key Gene Discovery Could Streamline Production of Biofuels August 11, 2011 - 3:51pm Addthis WASHINGTON, DC -- A team of researchers at the Department of Energy's BioEnergy Science Center (BESC) have pinpointed the exact, single gene that controls ethanol production capacity in a microorganism. This discovery could be the missing link in developing biomass crops that produce higher concentrations

  7. Biofuels

    ScienceCinema (OSTI)

    Kalluri, Udaya

    2014-05-23

    Udaya Kalluri is part of a multidisciplinary scientific team working to unlock plants in order to create more potent biofuels without harsh processing.

  8. Biofuels

    SciTech Connect (OSTI)

    Kalluri, Udaya

    2014-05-02

    Udaya Kalluri is part of a multidisciplinary scientific team working to unlock plants in order to create more potent biofuels without harsh processing.

  9. Biofuel Production Initiative at Claflin University Final Report

    SciTech Connect (OSTI)

    Chowdhury, Kamal

    2011-07-20

    For US transportation fuel independence or reduced dependence on foreign oil, the Federal Government has mandated that the country produce 36 billion gallons (bg) of renewable transportation fuel per year for its transportation fuel supply by 2022. This can be achieved only if development of efficient technology for second generation biofuel from ligno-cellulosic sources is feasible. To be successful in this area, development of a widely available, renewable, cost-effective ligno-cellulosic biomass feedstock that can be easily and efficiently converted biochemically by bacteria or other fast-growing organisms is required. Moreover, if the biofuel type is butanol, then the existing infrastructure to deliver fuel to the customer can be used without additional costs and retrofits. The Claflin Biofuel Initiative project is focused on helping the US meet the above-mentioned targets. With support from this grant, Claflin University (CU) scientists have created over 50 new strains of microorganisms that are producing butanol from complex carbohydrates and cellulosic compounds. Laboratory analysis shows that a number of these strains are producing higher percentages of butanol than other methods currently in use. All of these recombinant bacterial strains are producing relatively high concentrations of acetone and numerous other byproducts as well. Therefore, we are carrying out intense mutations in the selected strains to reduce undesirable byproducts and increase the desired butanol production to further maximize the yield of butanol. We are testing the proof of concept of producing pre-industrial large scale biobutanol production by utilizing modifications of currently commercially available fermentation technology and instrumentation. We have already developed an initial process flow diagram (PFD) and selected a site for a biobutanol pilot scale facility in Orangeburg, SC. With the recent success in engineering new strains of various biofuel producing bacteria at CU

  10. Benefits of Biofuel Production and Use in Illinois

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    convert cellulosic agricultural residues, such as corn stover, into advanced biofuels and high- value products. Algae, energy crops, and woody and urban wastes are among the 12.3 ...

  11. Impact of Projected Biofuel Production on Water Use and Water...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Impact of Projected Biofuel Production on Water Use and Water Quality March 27-29, 2015 Analysis and Sustainability WBS:4.2.1.10 May Wu Argonne National Laboratory This ...

  12. An Energy-limited Model of Algal Biofuels Production: Towards the Next Generation of Advanced Biofuels

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Dunlop, Eric

    2013-01-01

    Algal biofuels are increasingly important as a source of renewable energy. The absence of reliable thermodynamic and other property data, and the large amount of kinetic data that would normally be required have created a major barrier to simulation. Additionally, the absence of a generally accepted flowsheet for biofuel production means that detailed simulation of the wrong approach is a real possibility. This model of algal biofuel production estimates the necessary data and places it into a heuristic model using a commercial simulator that back-calculates the process structure required. Furthermore, complex kinetics can be obviated for now by putting themore » simulator into energy limitation and forcing it to solve for the missing design variables, such as bioreactor surface area, productivity, and oil content. The model does not attempt to prescribe a particular approach, but provides a guide towards a sound engineering approach to this challenging and important problem.« less

  13. An Energy-limited Model of Algal Biofuels Production: Towards the Next Generation of Advanced Biofuels

    SciTech Connect (OSTI)

    Dunlop, Eric

    2013-01-01

    Algal biofuels are increasingly important as a source of renewable energy. The absence of reliable thermodynamic and other property data, and the large amount of kinetic data that would normally be required have created a major barrier to simulation. Additionally, the absence of a generally accepted flowsheet for biofuel production means that detailed simulation of the wrong approach is a real possibility. This model of algal biofuel production estimates the necessary data and places it into a heuristic model using a commercial simulator that back-calculates the process structure required. Furthermore, complex kinetics can be obviated for now by putting the simulator into energy limitation and forcing it to solve for the missing design variables, such as bioreactor surface area, productivity, and oil content. The model does not attempt to prescribe a particular approach, but provides a guide towards a sound engineering approach to this challenging and important problem.

  14. Genes for Xylose Fermentation, Enhanced Biofuel Production in Yeast -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Innovation Portal Genes for Xylose Fermentation, Enhanced Biofuel Production in Yeast Great Lakes Bioenergy Research Center Contact GLBRC About This Technology Technology Marketing SummaryEfficient fermentation of cellulosic feedstocks is an essential step in the production of biofuel from plant materials. Glucose and xylose are the two most abundant monomeric carbohydrates found in hemicellulose. Saccharomyces cerevisiae, the yeast most commonly used for industrial fermentation, is

  15. Microorganisms to Speed Production of Biofuels - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Microorganisms to Speed Production of Biofuels Oak Ridge National Laboratory Contact ORNL About This Technology Technology Marketing SummaryResearchers at ORNL developed microorganisms that can quickly overcome the resistance of biomass to breakdown, and improved both the cost and efficiency of the biofuel conversion process.DescriptionConventional biomass pretreatment methods release sugars, weak acids, and metabolic by-products that slow down or even stop fermentation, resulting in slower

  16. Systems-Level Synthetic Biology for Advanced Biofuel Production

    SciTech Connect (OSTI)

    Ruffing, Anne; Jensen, Travis J.; Strickland, Lucas Marshall; Meserole, Stephen; Tallant, David

    2015-03-01

    Cyanobacteria have been shown to be capable of producing a variety of advanced biofuels; however, product yields remain well below those necessary for large scale production. New genetic tools and high throughput metabolic engineering techniques are needed to optimize cyanobacterial metabolisms for enhanced biofuel production. Towards this goal, this project advances the development of a multiple promoter replacement technique for systems-level optimization of gene expression in a model cyanobacterial host: Synechococcus sp. PCC 7002. To realize this multiple-target approach, key capabilities were developed, including a high throughput detection method for advanced biofuels, enhanced transformation efficiency, and genetic tools for Synechococcus sp. PCC 7002. Moreover, several additional obstacles were identified for realization of this multiple promoter replacement technique. The techniques and tools developed in this project will help to enable future efforts in the advancement of cyanobacterial biofuels.

  17. Biofuel Production in the Western U.S.

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biofuel Production in the Western U.S. March 25, 2015 Analysis & Sustainability Mark Wigmosta PNNL This presentation does not contain any proprietary, confidential, or otherwise restricted information Goal Statement Goal: Identify opportunities and sustainability constraints at the sub-county- level to support aquatic and terrestrial biofuel feedstocks. Three focus areas: Identify spatial and temporal patterns in consumptive water use and locations of water scarcity. Provide a detailed

  18. Large-scale production of marine algae for biofuels

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tuesday May 21, 2013 Algae Platform Review Mark Huntley (Contact Principal Investigator) Charles Greene (Principal Investigator) Cornell University Marine Algal Biofuels Consortium Marine Algal Biofuels Consortium Overall Goal and Key Objectives Our primary goal is to evaluate the commercial viability of a fully integrated, marine algal-production-to-finished-fuel technology pathway, based on data from scalable outdoor unit operations, that demonstrates: (1) by Q4 2013, performance against clear

  19. Genes related to xylose fermentation and methods of using same for enhanced biofuel production

    DOE Patents [OSTI]

    Wohlbach, Dana J.; Gasch, Audrey P.

    2015-09-29

    The present invention provides isolated gene sequences involved in xylose fermentation and related recombinant yeast which are useful in methods of enhanced biofuel production, particularly ethanol production. Methods of bioengineering recombinant yeast useful for biofuel production are also provided.

  20. Genes related to xylose fermentation and methods of using same for enhanced biofuel production

    DOE Patents [OSTI]

    Wohlbach, Dana J.; Gasch, Audrey P.

    2014-08-05

    The present invention provides isolated gene sequences involved in xylose fermentation and related recombinant yeast which are useful in methods of enhanced biofuel production, particularly ethanol production. Methods of bioengineering recombinant yeast useful for biofuel production are also provided.

  1. Synergy Biofuels LLC | Open Energy Information

    Open Energy Info (EERE)

    Biofuels LLC Jump to: navigation, search Name: Synergy Biofuels LLC Place: Dryden, Virginia Zip: 24243 Product: Developing a 3m gallon (11.4m litre) biodiesel facility in Lee...

  2. Water Gunks Up Biofuels Production from Bio-Oils | U.S. DOE Office...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Water Gunks Up Biofuels Production from Bio-Oils Basic Energy Sciences (BES) BES Home ... Water Gunks Up Biofuels Production from Bio-Oils New findings will help extend the ...

  3. Algae-Based Biofuels: Applications and Co-Products | Open Energy...

    Open Energy Info (EERE)

    Algae-Based Biofuels: Applications and Co-Products Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Algae-Based Biofuels: Applications and Co-Products AgencyCompany...

  4. Methods for the economical production of biofuel from biomass

    DOE Patents [OSTI]

    Hawkins, Andrew C; Glassner, David A; Buelter, Thomas; Wade, James; Meinhold, Peter; Peters, Matthew W; Gruber, Patrick R; Evanko, William A; Aristidou, Aristos A; Landwehr, Marco

    2013-04-30

    Methods for producing a biofuel are provided. Also provided are biocatalysts that convert a feedstock to a biofuel.

  5. Engineering E. coli for Biofuel, Bioproduct Production | U.S. DOE Office of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science (SC) Engineering E. coli for Biofuel, Bioproduct Production Biological and Environmental Research (BER) BER Home About Research Facilities Science Highlights Searchable Archive of BER Highlights External link Benefits of BER Funding Opportunities Biological & Environmental Research Advisory Committee (BERAC) Community Resources Contact Information Biological and Environmental Research U.S. Department of Energy SC-23/Germantown Building 1000 Independence Ave., SW Washington, DC

  6. Tappable Pine Trees: Commercial Production of Terpene Biofuels in Pine

    SciTech Connect (OSTI)

    2012-01-01

    PETRO Project: The University of Florida is working to increase the amount of turpentine in harvested pine from 4% to 20% of its dry weight. While enhanced feedstocks for biofuels have generally focused on fuel production from leafy plants and grasses, the University of Florida is experimenting with enhancing fuel production in a species of pine that is currently used in the paper pulping industry. Pine trees naturally produce around 3-5% terpene content in the wood—terpenes are the energy-dense fuel molecules that are the predominant components of turpentine. The team aims to increase the terpene storage potential and production capacity while improving the terpene composition to a point at which the trees could be tapped while alive, like sugar maples. Growth and production from these trees will take years, but this pioneering technology could have significant impact in making available an economical and domestic source of aviation and diesel biofuels.

  7. Recycling of Nutrients and Water in Algal Biofuels Production

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Recycling of Nutrients and Water in Algal Biofuels Production Thursday, May 23, 2013 DOE Bioenergy Production Technologies Office Algae R&D Activities Peer Review PI: Tryg Lundquist Ph D P E (Engineering) PI: Tryg Lundquist, Ph.D., P.E. (Engineering) Co-PI: Corinne Lehr, Ph.D. (Chemistry) C f S California Polytechnic State University San Luis Obispo This presentation does not contain any proprietary, confidential, or otherwise restricted information Goal Statement * Improve the

  8. Turning Bacteria into Biofuel: Development of an Integrated Microbial Electrocatalytic (MEC) System for Liquid Biofuel Production from CO2

    SciTech Connect (OSTI)

    2010-08-01

    Electrofuels Project: LBNL is improving the natural ability of a common soil bacteria called Ralstonia eutropha to use hydrogen and carbon dioxide for biofuel production. First, LBNL is genetically modifying the bacteria to produce biofuel at higher concentrations. Then, LBNL is using renewable electricity obtained from solar, wind, or wave power to produce high amounts of hydrogen in the presence of the bacteria—increasing the organism’s access to its energy source and improving the efficiency of the biofuel-creation process. Finally, LBNL is tethering electrocatalysts to the bacteria’s surface which will further accelerate the rate at which the organism creates biofuel. LBNL is also developing a chemical method to transform the biofuel that the bacteria produce into ready-to-use jet fuel.

  9. Second-Generation Biofuels from Multi-Product Biorefineries Combine Economic Sustainability With Environmental Sustainability

    Broader source: Energy.gov [DOE]

    Breakout Session 3B—Integration of Supply Chains III: Algal Biofuels Strategy Second-Generation Biofuels from Multi-Product Biorefineries Combine Economic Sustainability With Environmental Sustainability Martin Sabarsky, Chief Executive Officer, Cellana

  10. WHEB Biofuels | Open Energy Information

    Open Energy Info (EERE)

    WHEB Biofuels Jump to: navigation, search Name: WHEB Biofuels Place: London, United Kingdom Sector: Biofuels Product: Ethanol producer that also invests in emerging biofuels...

  11. West Biofuels | Open Energy Information

    Open Energy Info (EERE)

    Biofuels Jump to: navigation, search Name: West Biofuels Place: California Sector: Biofuels Product: West Biofuels LLC is a 2007 start-up company based in California with funding...

  12. Rusni Biofuels | Open Energy Information

    Open Energy Info (EERE)

    Biofuels Jump to: navigation, search Name: Rusni Biofuels Place: Andhra Pradesh, India Sector: Biofuels Product: Rusni Biofuels India (P) Ltd.,we are specialized in sales of...

  13. Border Biofuels | Open Energy Information

    Open Energy Info (EERE)

    Border Biofuels Jump to: navigation, search Name: Border Biofuels Place: Melrose, United Kingdom Zip: TD6 OSG Sector: Biofuels Product: Biofuels business which went into...

  14. Northeast Biofuels | Open Energy Information

    Open Energy Info (EERE)

    Biofuels Jump to: navigation, search Name: Northeast Biofuels Place: United Kingdom Sector: Biofuels Product: Northeast biofuels is a cluster of companies and organisations...

  15. Abundant Biofuels | Open Energy Information

    Open Energy Info (EERE)

    Biofuels Jump to: navigation, search Name: Abundant Biofuels Place: Monterey, California Sector: Biofuels Product: Abundant Biofuels plans to develop biodiesel feedstock...

  16. FACTSHEET: Energy Department Investments in Biofuels Innovation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... a user facility to help optimize the processes and technologies required to turn bulky, unstable non-food crops into pellets and other uniform feedstocks for biofuel production. ...

  17. Methods and materials for deconstruction of biomass for biofuels production

    DOE Patents [OSTI]

    Schoeniger, Joseph S; Hadi, Masood Zia

    2015-05-05

    The present invention relates to nucleic acids, peptides, vectors, cells, and plants useful in the production of biofuels. In certain embodiments, the invention relates to nucleic acid sequences and peptides from extremophile organisms, such as SSO1949 and Ce1A, that are useful for hydrolyzing plant cell wall materials. In further embodiments, the invention relates to modified versions of such sequences that have been optimized for production in one or both of monocot and dicot plants. In other embodiments, the invention provides for targeting peptide production or activity to a certain location within the cell or organism, such as the apoplast. In further embodiments, the invention relates to transformed cells or plants. In additional embodiments, the invention relates to methods of producing biofuel utilizing such nucleic acids, peptides, targeting sequences, vectors, cells, and/or plants.

  18. Lipid Extraction from Wet-Algae for Biofuel Production - Energy Innovation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Portal Biomass and Biofuels Biomass and Biofuels Advanced Materials Advanced Materials Find More Like This Return to Search Lipid Extraction from Wet-Algae for Biofuel Production University of Colorado Contact CU About This Technology Technology Marketing SummaryThere is a growing interest in algal biofuels; however, current methods of a thermal separation process for solvent mixtures involve concomitant issues and increased energy consumption. A research team at the University of Colorado

  19. Increasing Feedstock Production for Biofuels: Economic Drivers, Environmental Implications, and the Role of Research

    SciTech Connect (OSTI)

    none,

    2009-10-27

    The Biomass Research and Development Board (Board) commissioned an economic analysis of feedstocks to produce biofuels. The Board seeks to inform investments in research and development needed to expand biofuel production. This analysis focuses on feedstocks; other interagency teams have projects underway for other parts of the biofuel sector (e.g., logistics). The analysis encompasses feedstocks for both conventional and advanced biofuels from agriculture and forestry sources.

  20. National Microalgae Biofuel Production Potential and Resource Demand

    SciTech Connect (OSTI)

    Wigmosta, Mark S.; Coleman, Andre M.; Skaggs, Richard; Huesemann, Michael H.; Lane, Leonard J.

    2011-04-14

    Microalgae continue to receive global attention as a potential sustainable "energy crop" for biofuel production. An important step to realizing the potential of algae is quantifying the demands commercial-scale algal biofuel production will place on water and land resources. We present a high-resolution national resource and oil production assessment that brings to bear fundamental research questions of where open pond microalgae production can occur, how much land and water resource is required, and how much energy is produced. Our study suggests under current technology microalgae have the potential to generate 220 billion liters/year of oil, equivalent to 48% of current U.S. petroleum imports for transportation fuels. However, this level of production would require 5.5% of the land area in the conterminous U.S., and nearly three times the volume of water currently used for irrigated agriculture, averaging 1,421 L water per L of oil. Optimizing the selection of locations for microalgae production based on water use efficiency can greatly reduce total water demand. For example, focusing on locations along the Gulf Coast, Southeastern Seaboard, and areas adjacent to the Great Lakes, shows a 75% reduction in water demand to 350 L per L of oil produced with a 67% reduction in land use. These optimized locations have the potential to generate an oil volume equivalent to 17% of imports for transportation fuels, equal to the Energy Independence and Security Act year 2022 "advanced biofuels" production target, and utilizing some 25% of the current irrigation consumptive water demand for the U. S. These results suggest that, with proper planning, adequate land and water are available to meet a significant portion of the U.S. renewable fuel goals.

  1. PETRO: Higher Productivity Crops for Biofuels

    SciTech Connect (OSTI)

    2012-01-01

    PETRO Project: The 10 projects that comprise ARPA-E’s PETRO Project, short for “Plants Engineered to Replace Oil,” aim to develop non-food crops that directly produce transportation fuel. These crops can help supply the transportation sector with agriculturally derived fuels that are cost-competitive with petroleum and do not affect U.S. food supply. PETRO aims to redirect the processes for energy and carbon dioxide (CO2) capture in plants toward fuel production. This would create dedicated energy crops that serve as a domestic alternative to petroleum-based fuels and deliver more energy per acre with less processing prior to the pump.

  2. Assessing Impact of Biofuel Production on Regional Water Resource Use and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Availability | Department of Energy Assessing Impact of Biofuel Production on Regional Water Resource Use and Availability Assessing Impact of Biofuel Production on Regional Water Resource Use and Availability Dr. May Wu, ANL, 8/15/12 webinar presentation on the environmental impacts attributable to wastewater from biofuels production. wu_webinar.pdf (4.26 MB) More Documents & Publications Achieving Water-Sustainable Bioenergy Production 2013 Peer Review Presentations-Analysis and

  3. Maturation of biomass-to-biofuels conversion technology pathways for rapid expansion of biofuels production: A system dynamics perspective

    SciTech Connect (OSTI)

    Vimmerstedt, Laura J.; Bush, Brian W.; Hsu, Dave D.; Inman, Daniel; Peterson, Steven O.

    2014-08-12

    The Biomass Scenario Model (BSM) is a system-dynamics simulation model intended to explore the potential for rapid expansion of the biofuels industry. The model is not predictive — it uses scenario assumptions based on various types of data to simulate industry development, emphasizing how incentives and technological learning-by-doing might accelerate industry growth. The BSM simulates major sectors of the biofuels industry, including feedstock production and logistics, conversion, distribution, and end uses, as well as interactions among sectors. The model represents conversion of biomass to biofuels as a set of technology pathways, each of which has allowable feedstocks, capital and operating costs, allowable products, and other defined characteristics. This study and the BSM address bioenergy modeling analytic needs that were identified in recent literature reviews. Simulations indicate that investments are most effective at expanding biofuels production through learning-by-doing when they are coordinated with respect to timing, pathway, and target sector within the biofuels industry. Effectiveness metrics include timing and magnitude of increased production, incentive cost and cost effectiveness, and avoidance of windfall profits. Investment costs and optimal investment targets have inherent risks and uncertainties, such as the relative value of investment in more-mature versus less mature pathways. These can be explored through scenarios, but cannot be precisely predicted. Dynamic competition, including competition for cellulosic feedstocks and ethanol market shares, intensifies during times of rapid growth. Ethanol production increases rapidly, even up to Renewable Fuel Standards-targeted volumes of biofuel, in simulations that allow higher blending proportions of ethanol in gasoline-fueled vehicles. Published 2014. This document is a U.S. Government work and is in the public domain in the USA. Biofuels, Bioproducts, Biorefining published by John Wiley

  4. Maturation of biomass-to-biofuels conversion technology pathways for rapid expansion of biofuels production: A system dynamics perspective

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Vimmerstedt, Laura J.; Bush, Brian W.; Hsu, Dave D.; Inman, Daniel; Peterson, Steven O.

    2014-08-12

    The Biomass Scenario Model (BSM) is a system-dynamics simulation model intended to explore the potential for rapid expansion of the biofuels industry. The model is not predictive — it uses scenario assumptions based on various types of data to simulate industry development, emphasizing how incentives and technological learning-by-doing might accelerate industry growth. The BSM simulates major sectors of the biofuels industry, including feedstock production and logistics, conversion, distribution, and end uses, as well as interactions among sectors. The model represents conversion of biomass to biofuels as a set of technology pathways, each of which has allowable feedstocks, capital and operatingmore » costs, allowable products, and other defined characteristics. This study and the BSM address bioenergy modeling analytic needs that were identified in recent literature reviews. Simulations indicate that investments are most effective at expanding biofuels production through learning-by-doing when they are coordinated with respect to timing, pathway, and target sector within the biofuels industry. Effectiveness metrics include timing and magnitude of increased production, incentive cost and cost effectiveness, and avoidance of windfall profits. Investment costs and optimal investment targets have inherent risks and uncertainties, such as the relative value of investment in more-mature versus less mature pathways. These can be explored through scenarios, but cannot be precisely predicted. Dynamic competition, including competition for cellulosic feedstocks and ethanol market shares, intensifies during times of rapid growth. Ethanol production increases rapidly, even up to Renewable Fuel Standards-targeted volumes of biofuel, in simulations that allow higher blending proportions of ethanol in gasoline-fueled vehicles. Published 2014. This document is a U.S. Government work and is in the public domain in the USA. Biofuels, Bioproducts, Biorefining published by John

  5. Environmental indicators for sustainable production of algal biofuels

    SciTech Connect (OSTI)

    Efroymson, Rebecca Ann; Dale, Virginia H

    2014-01-01

    For analyzing sustainability of algal biofuels, we identify 16 environmental indicators that fall into six categories: soil quality, water quality and quantity, air quality, greenhouse gas emissions, biodiversity, and productivity. Indicators are selected to be practical, widely applicable, predictable in response, anticipatory of future changes, independent of scale, and responsive to management. Major differences between algae and terrestrial plant feedstocks, as well as their supply chains for biofuel, are highlighted, for they influence the choice of appropriate sustainability indicators. Algae strain selection characteristics do not generally affect which indicators are selected. The use of water instead of soil as the growth medium for algae determines the higher priority of water- over soil-related indicators. The proposed set of environmental indicators provides an initial checklist for measures of biofuel sustainability but may need to be modified for particular contexts depending on data availability, goals of the stakeholders, and financial constraints. Use of these indicators entails defining sustainability goals and targets in relation to stakeholder values in a particular context and can lead to improved management practices.

  6. Environmental indicators for sustainable production of algal biofuels

    SciTech Connect (OSTI)

    Efroymson, Rebecca A.; Dale, Virginia H.

    2014-10-01

    For analyzing sustainability of algal biofuels, we identify 16 environmental indicators that fall into six categories: soil quality, water quality and quantity, air quality, greenhouse gas emissions, biodiversity, and productivity. Indicators are selected to be practical, widely applicable, predictable in response, anticipatory of future changes, independent of scale, and responsive to management. Major differences between algae and terrestrial plant feedstocks, as well as their supply chains for biofuel, are highlighted, for they influence the choice of appropriate sustainability indicators. Algae strain selection characteristics do not generally affect which indicators are selected. The use of water instead of soil as the growth medium for algae determines the higher priority of water- over soil-related indicators. The proposed set of environmental indicators provides an initial checklist for measures of biofuel sustainability but may need to be modified for particular contexts depending on data availability, goals of the stakeholders, and financial constraints. Ultimately, use of these indicators entails defining sustainability goals and targets in relation to stakeholder values in a particular context and can lead to improved management practices.

  7. Environmental indicators for sustainable production of algal biofuels

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Efroymson, Rebecca A.; Dale, Virginia H.

    2014-10-01

    For analyzing sustainability of algal biofuels, we identify 16 environmental indicators that fall into six categories: soil quality, water quality and quantity, air quality, greenhouse gas emissions, biodiversity, and productivity. Indicators are selected to be practical, widely applicable, predictable in response, anticipatory of future changes, independent of scale, and responsive to management. Major differences between algae and terrestrial plant feedstocks, as well as their supply chains for biofuel, are highlighted, for they influence the choice of appropriate sustainability indicators. Algae strain selection characteristics do not generally affect which indicators are selected. The use of water instead of soil as themore » growth medium for algae determines the higher priority of water- over soil-related indicators. The proposed set of environmental indicators provides an initial checklist for measures of biofuel sustainability but may need to be modified for particular contexts depending on data availability, goals of the stakeholders, and financial constraints. Ultimately, use of these indicators entails defining sustainability goals and targets in relation to stakeholder values in a particular context and can lead to improved management practices.« less

  8. Integrated Biorefinery Research Facility: Advancing Biofuels Technology (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2009-03-01

    The Integrated Biorefinery Research Facility (IBRF) at the National Renewable Energy Laboratory (NREL) expands NREL's cellulosic ethanol research and development and collaboration capabilities.

  9. Agriculture and Energy Departments Announce New Investments to Drive Innovations in Biofuels and Biobased Products

    Broader source: Energy.gov [DOE]

    U.S. Departments of Agriculture and Energy announced a $41 million investment that will drive more efficient biofuels production and feedstock improvements.

  10. A model for improving microbial biofuel production using a synthetic feedback loop

    SciTech Connect (OSTI)

    Dunlop, Mary; Keasling, Jay; Mukhopadhyay, Aindrila

    2011-07-14

    Cells use feedback to implement a diverse range of regulatory functions. Building synthetic feedback control systems may yield insight into the roles that feedback can play in regulation since it can be introduced independently of native regulation, and alternative control architectures can be compared. We propose a model for microbial biofuel production where a synthetic control system is used to increase cell viability and biofuel yields. Although microbes can be engineered to produce biofuels, the fuels are often toxic to cell growth, creating a negative feedback loop that limits biofuel production. These toxic effects may be mitigated by expressing efflux pumps that export biofuel from the cell. We developed a model for cell growth and biofuel production and used it to compare several genetic control strategies for their ability to improve biofuel yields. We show that controlling efflux pump expression directly with a biofuel-responsive promoter is a straight forward way of improving biofuel production. In addition, a feed forward loop controller is shown to be versatile at dealing with uncertainty in biofuel production rates.

  11. An Integrative Modeling Framework to Evaluate the Productivity and Sustainability of Biofuel Crop Production Systems

    SciTech Connect (OSTI)

    Zhang, Xuesong; Izaurralde, Roberto C.; Manowitz, David H.; West, T. O.; Post, W. M.; Thomson, Allison M.; Bandaru, V. P.; Nichols, J.; Williams, J.R.

    2010-09-08

    The potential expansion of biofuel production raises food, energy, and environmental challenges that require careful assessment of the impact of biofuel production on greenhouse gas (GHG) emissions, soil erosion, nutrient loading, and water quality. In this study, we describe a spatially-explicit integrative modeling framework (SEIMF) to understand and quantify the environmental impacts of different biomass cropping systems. This SEIMF consists of three major components: 1) a geographic information system (GIS)-based data analysis system to define spatial modeling units with resolution of 56 m to address spatial variability, 2) the biophysical and biogeochemical model EPIC (Environmental Policy Integrated Climate) applied in a spatially-explicit way to predict biomass yield, GHG emissions, and other environmental impacts of different biofuel crops production systems, and 3) an evolutionary multi-objective optimization algorithm for exploring the trade-offs between biofuel energy production and unintended ecosystem-service responses. Simple examples illustrate the major functions of the SEIMF when applied to a 9-county Regional Intensive Modeling Area (RIMA) in SW Michigan to 1) simulate biofuel crop production, 2) compare impacts of management practices and local ecosystem settings, and 3) optimize the spatial configuration of different biofuel production systems by balancing energy production and other ecosystem-service variables. Potential applications of the SEIMF to support life cycle analysis and provide information on biodiversity evaluation and marginal-land identification are also discussed. The SEIMF developed in this study is expected to provide a useful tool for scientists and decision makers to understand sustainability issues associated with the production of biofuels at local, regional, and national scales.

  12. Biofuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bioenergy Technologies Office 2016 Billion-Ton Report 2016 Billion-Ton Report Within 25 years, the United States could produce enough biomass to support a bioeconomy, including renewable aquatic and terrestrial biomass resources that could be used for energy and to develop products for economic, environmental, social, and national security benefits. Read more Algae Education Helping Grow Jobs of the Future Algae Education Helping Grow Jobs of the Future Algae is coming out of the pond and into

  13. Advancing Commercialization of Algal Biofuels Through Increased Biomass Productivity and Technology Integration

    SciTech Connect (OSTI)

    Bai, Xuemei; Sabarsky, Martin

    2013-09-30

    Cellana is a leading developer of algae-based bioproducts, and its pre-commercial production of marine microalgae takes place at Cellana?s Kona Demonstration Facility (KDF) in Hawaii. KDF is housing more than 70 high-performing algal strains for different bioproducts, of which over 30 have been grown outside at scale. So far, Cellana has produced more than 10 metric tons of algal biomass for the development of biofuels, animal feed, and high-value nutraceuticals. Cellana?s ALDUO algal cultivation technology allows Cellana to grow non-extremophile algal strains at large scale with no contamination disruptions. Cellana?s research and production at KDF have addressed three major areas that are crucial for the commercialization of algal biofuels: yield improvement, cost reduction, and the overall economics. Commercially acceptable solutions have been developed and tested for major factors limiting areal productivity of algal biomass and lipids based on years of R&D work conducted at KDF. Improved biomass and lipid productivity were achieved through strain improvement, culture management strategies (e.g., alleviation of self-shading, de-oxygenation, and efficient CO2 delivery), and technical advancement in downstream harvesting technology. Cost reduction was achieved through optimized CO2 delivery system, flue gas utilization technology, and energy-efficient harvesting technology. Improved overall economics was achieved through a holistic approach by integration of high-value co-products in the process, in addition to yield improvements and cost reductions.

  14. International Coastal Biofuels | Open Energy Information

    Open Energy Info (EERE)

    Coastal Biofuels Jump to: navigation, search Name: International Coastal Biofuels Place: Tazewell, Virginia Zip: 24651 Sector: Biofuels Product: International Coastal Biofuels is a...

  15. Tees Valley Biofuels | Open Energy Information

    Open Energy Info (EERE)

    Tees Valley Biofuels Jump to: navigation, search Name: Tees Valley Biofuels Place: United Kingdom Sector: Biofuels Product: Company set up by North East Biofuels to establish an...

  16. Blackhawk Biofuels LLC | Open Energy Information

    Open Energy Info (EERE)

    Blackhawk Biofuels LLC Jump to: navigation, search Name: Blackhawk Biofuels, LLC Place: Freeport, Illinois Zip: 61032 Sector: Biofuels Product: Blackhawk Biofuels was founded by a...

  17. Blue Ridge Biofuels LLC | Open Energy Information

    Open Energy Info (EERE)

    Biofuels LLC Jump to: navigation, search Name: Blue Ridge Biofuels LLC Place: Asheville, North Carolina Zip: 28801 Sector: Biofuels Product: Blue Ridge Biofuels is a worker...

  18. Mid America Biofuels LLC | Open Energy Information

    Open Energy Info (EERE)

    Biofuels LLC Jump to: navigation, search Name: Mid-America Biofuels LLC Place: Jefferson City, Missouri Zip: 65102 Sector: Biofuels Product: Joint Venture of Biofuels LLC,...

  19. US Canadian Biofuels Inc | Open Energy Information

    Open Energy Info (EERE)

    Canadian Biofuels Inc Jump to: navigation, search Name: US Canadian Biofuels Inc. Place: Green Bay, Wisconsin Zip: 54313 Sector: Biofuels Product: US Canadian Biofuels Inc is the...

  20. Best Biofuels LLC | Open Energy Information

    Open Energy Info (EERE)

    Biofuels LLC Jump to: navigation, search Name: Best Biofuels LLC Place: Austin, Texas Zip: 78746 Sector: Biofuels Product: Best Biofuels is developing and commercialising vegetable...

  1. Northwest Missouri Biofuels LLC | Open Energy Information

    Open Energy Info (EERE)

    Missouri Biofuels LLC Jump to: navigation, search Name: Northwest Missouri Biofuels, LLC Place: St Joseph, Missouri Sector: Biofuels Product: Northwest Missouri Biofuels operates a...

  2. Endicott Biofuels II LLC | Open Energy Information

    Open Energy Info (EERE)

    Endicott Biofuels II LLC Jump to: navigation, search Name: Endicott Biofuels II, LLC Place: Houston, Texas Zip: 77060-3235 Sector: Biofuels Product: Houston-based biofuels producer...

  3. Empire Biofuels LLC | Open Energy Information

    Open Energy Info (EERE)

    Biofuels LLC Jump to: navigation, search Name: Empire Biofuels LLC Place: New York, New York Zip: 13148 Sector: Biofuels Product: Empire Biofuels LLC (Empire) was founded in April...

  4. Momentum Biofuels Inc | Open Energy Information

    Open Energy Info (EERE)

    Momentum Biofuels Inc Jump to: navigation, search Name: Momentum Biofuels Inc Place: League City, Texas Zip: 77573 Sector: Biofuels Product: Momentum Biofuels, a Texas-based...

  5. Vermont Biofuels Initiative: Local Production for Local Use to Supply a Portion of Vermont's Energy Needs

    SciTech Connect (OSTI)

    Sawyer, Scott; Kahler, Ellen

    2009-05-31

    The Vermont Biofuels initiative (VBI) is the Vermont Sustainable Jobs Fund's (VSJF) biomass-to-biofuels market development program. Vermont is a small state with a large petroleum dependency for transportation (18th in per capita petroleum consumption) and home heating (55% of all households use petroleum for heating). The VBI marks the first strategic effort to reduce Vermont's dependency on petroleum through the development of homegrown alternatives. As such, it supports the four key priorities of the U.S. Department of Energy's Multi-year Biomass Plan: 1.) Dramatically reduce dependence on foreign oil; 2.) Promote the use of diverse, domestic and sustainable energy resources; 3.) Reduce carbon emissions from energy production and consumption; 4.) Establish a domestic bioindustry. In 2005 VSJF was awarded with a $496,000 Congressionally directed award from U.S. Senator Patrick Leahy. This award was administered through the U.S. Department of Energy (DE-FG36- 05GO85017, hereafter referred to as DOE FY05) with $396,000 to be used by VSJF for biodiesel development and $100,000 to be used by the Vermont Department of Public Service for methane biodigester projects. The intent and strategic focus of the VBI is similar to another DOE funded organization-the Biofuels Center of North Carolina-in that it is a nonprofit driven, statewide biofuels market development effort. DOE FY05 funds were expensed from 2006 through 2008 for seven projects: 1) a feedstock production, logistics, and biomass conversion research project conducted by the University of Vermont Extension; 2) technical assistance in the form of a safety review and engineering study of State Line Biofuels existing biodiesel production facility; 3) technical assistance in the form of a safety review and engineering study of Borderview Farm's proposed biodiesel production facility; 4) technology and infrastructure purchases for capacity expansion at Green Technologies, LLC, a waste vegetable biodiesel producer; 5

  6. Benefits of Biofuel Production and Use in Hawaii

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of biofuels, visit: navy.milsubmitdisplay.asp?storyid82044 acore.orgfilespdfsRenewable-Energy-for-Military-Installations.pdf For more information on Hawaiian biomass ...

  7. Benefits of Biofuel Production and Use in Nebraska

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    be upgraded to convert cellulosic agricultural residues into advanced biofuels and high- value byproducts. Algae, energy crops, and urban wastes are among the other sustainable ...

  8. Godavari Biofuel | Open Energy Information

    Open Energy Info (EERE)

    Godavari Biofuel Jump to: navigation, search Name: Godavari Biofuel Place: Maharashtra, India Product: Holds license to produce ethanol. References: Godavari Biofuel1 This...

  9. Biofuels International | Open Energy Information

    Open Energy Info (EERE)

    International Jump to: navigation, search Name: Biofuels International Place: Indiana Sector: Biofuels Product: Pittsburgh based biofuels project developer presently developing a...

  10. SG Biofuels | Open Energy Information

    Open Energy Info (EERE)

    Biofuels Jump to: navigation, search Name: SG Biofuels Address: 132. N. El Camino Real Place: Encinitas, California Zip: 92024 Region: Southern CA Area Sector: Biofuels Product:...

  11. Algenol Biofuels | Open Energy Information

    Open Energy Info (EERE)

    Algenol Biofuels Jump to: navigation, search Name: Algenol Biofuels Place: Bonita Springs, Florida Zip: 34135 Sector: Biofuels, Carbon Product: Algenol is developing a process for...

  12. United Biofuels | Open Energy Information

    Open Energy Info (EERE)

    Biofuels Jump to: navigation, search Name: United Biofuels Place: York, Pennsylvania Product: Waste and animal fats to biofuel producer, switched to animal fats from soy in fall of...

  13. Shirke Biofuels | Open Energy Information

    Open Energy Info (EERE)

    Shirke Biofuels Jump to: navigation, search Name: Shirke Biofuels Place: India Product: Indian biodiesel producer. References: Shirke Biofuels1 This article is a stub. You can...

  14. Bently Biofuels | Open Energy Information

    Open Energy Info (EERE)

    Bently Biofuels Jump to: navigation, search Name: Bently Biofuels Place: Minden, Nevada Zip: 89423 Product: Biodiesel producer in Nevada. References: Bently Biofuels1 This...

  15. Use of tamarisk as a potential feedstock for biofuel production.

    SciTech Connect (OSTI)

    Sun, Amy Cha-Tien; Norman, Kirsten

    2011-01-01

    This study assesses the energy and water use of saltcedar (or tamarisk) as biomass for biofuel production in a hypothetical sub-region in New Mexico. The baseline scenario consists of a rural stretch of the Middle Rio Grande River with 25% coverage of mature saltcedar that is removed and converted to biofuels. A manufacturing system life cycle consisting of harvesting, transportation, pyrolysis, and purification is constructed for calculating energy and water balances. On a dry short ton woody biomass basis, the total energy input is approximately 8.21 mmBTU/st. There is potential for 18.82 mmBTU/st of energy output from the baseline system. Of the extractable energy, approximately 61.1% consists of bio-oil, 20.3% bio-char, and 18.6% biogas. Water consumptive use by removal of tamarisk will not impact the existing rate of evapotranspiration. However, approximately 195 gal of water is needed per short ton of woody biomass for the conversion of biomass to biocrude, three-quarters of which is cooling water that can be recovered and recycled. The impact of salt presence is briefly assessed. Not accounted for in the baseline are high concentrations of Calcium, Sodium, and Sulfur ions in saltcedar woody biomass that can potentially shift the relative quantities of bio-char and bio-oil. This can be alleviated by a pre-wash step prior to the conversion step. More study is needed to account for the impact of salt presence on the overall energy and water balance.

  16. "Trojan Horse" strategy for deconstruction of biomass for biofuels production.

    SciTech Connect (OSTI)

    Sinclair, Michael B.; Hadi, Masood Z.; Timlin, Jerilyn Ann; Thomson, James; Whalen, Maureen; Thilmony, Roger; Tran-Gyamfi, Mary; Simmons, Blake Alexander; Sapra, Rajat

    2008-08-01

    Production of renewable biofuels to displace fossil fuels currently consumed in the transportation sector is a pressing multi-agency national priority. Currently, nearly all fuel ethanol is produced from corn-derived starch. Dedicated 'energy crops' and agricultural waste are preferred long-term solutions for renewable, cheap, and globally available biofuels as they avoid some of the market pressures and secondary greenhouse gas emission challenges currently facing corn ethanol. These sources of lignocellulosic biomass are converted to fermentable sugars using a variety of chemical and thermochemical pretreatments, which disrupt cellulose and lignin cross-links, allowing exogenously added recombinant microbial enzymes to more efficiently hydrolyze the cellulose for 'deconstruction' into glucose. This process is plagued with inefficiencies, primarily due to the recalcitrance of cellulosic biomass, mass transfer issues during deconstruction, and low activity of recombinant deconstruction enzymes. Costs are also high due to the requirement for enzymes and reagents, and energy-intensive and cumbersome pretreatment steps. One potential solution to these problems is found in synthetic biology; they propose to engineer plants that self-produce a suite of cellulase enzymes targeted to the apoplast for cleaving the linkages between lignin and cellulosic fibers; the genes encoding the degradation enzymes, also known as cellulases, are obtained from extremophilic organisms that grow at high temperatures (60-100 C) and acidic pH levels (<5). These enzymes will remain inactive during the life cycle of the plant but become active during hydrothermal pretreatment i.e., elevated temperatures. Deconstruction can be integrated into a one-step process, thereby increasing efficiency (cellulose-cellulase mass-transfer rates) and reducing costs. The proposed disruptive technologies address biomass deconstruction processes by developing transgenic plants encoding a suite of enzymes used

  17. Metabolic engineering of microorganisms for biofuels production: from bugs to synthetic biology to fuels

    SciTech Connect (OSTI)

    Kuk Lee, Sung; Chou, Howard; Ham, Timothy S.; Soon Lee, Taek; Keasling, Jay D.

    2009-12-02

    The ability to generate microorganisms that can produce biofuels similar to petroleum-based transportation fuels would allow the use of existing engines and infrastructure and would save an enormous amount of capital required for replacing the current infrastructure to accommodate biofuels that have properties significantly different from petroleum-based fuels. Several groups have demonstrated the feasibility of manipulating microbes to produce molecules similar to petroleum-derived products, albeit at relatively low productivity (e.g. maximum butanol production is around 20 g/L). For cost-effective production of biofuels, the fuel-producing hosts and pathways must be engineered and optimized. Advances in metabolic engineering and synthetic biology will provide new tools for metabolic engineers to better understand how to rewire the cell in order to create the desired phenotypes for the production of economically viable biofuels.

  18. Risks to global biodiversity from fossil-fuel production exceed those from biofuel production

    SciTech Connect (OSTI)

    Dale, Virginia H; Parish, Esther S; Kline, Keith L

    2015-01-01

    Potential global biodiversity impacts from near-term gasoline production are compared to biofuel, a renewable liquid transportation fuel expected to substitute for gasoline in the near term (i.e., from now until c. 2030). Petroleum exploration activities are projected to extend across more than 5.8 billion ha of land and ocean worldwide (of which 3.1 billion is on land), much of which is in remote, fragile terrestrial ecosystems or off-shore oil fields that would remain relatively undisturbed if not for interest in fossil fuel production. Future biomass production for biofuels is projected to fall within 2.0 billion ha of land, most of which is located in areas already impacted by human activities. A comparison of likely fuel-source areas to the geospatial distribution of species reveals that both energy sources overlap with areas with high species richness and large numbers of threatened species. At the global scale, future petroleum production areas intersect more than double the area and higher total number of threatened species than future biofuel production. Energy options should be developed to optimize provisioning of ecosystem services while minimizing negative effects, which requires information about potential impacts on critical resources. Energy conservation and identifying and effectively protecting habitats with high-conservation value are critical first steps toward protecting biodiversity under any fuel production scenario.

  19. Risks to global biodiversity from fossil-fuel production exceed those from biofuel production

    SciTech Connect (OSTI)

    Dale, Virginia H.; Parish, Esther S.; Kline, Keith L.

    2014-12-02

    Potential global biodiversity impacts from near-term gasoline production are compared to biofuel, a renewable liquid transportation fuel expected to substitute for gasoline in the near term (i.e., from now until c. 2030). Petroleum exploration activities are projected to extend across more than 5.8 billion ha of land and ocean worldwide (of which 3.1 billion is on land), much of which is in remote, fragile terrestrial ecosystems or off-shore oil fields that would remain relatively undisturbed if not for interest in fossil fuel production. Future biomass production for biofuels is projected to fall within 2.0 billion ha of land, most of which is located in areas already impacted by human activities. A comparison of likely fuel-source areas to the geospatial distribution of species reveals that both energy sources overlap with areas with high species richness and large numbers of threatened species. At the global scale, future petroleum production areas intersect more than double the area and higher total number of threatened species than future biofuel production. Energy options should be developed to optimize provisioning of ecosystem services while minimizing negative effects, which requires information about potential impacts on critical resources. Furthermore, energy conservation and identifying and effectively protecting habitats with high-conservation value are critical first steps toward protecting biodiversity under any fuel production scenario.

  20. Risks to global biodiversity from fossil-fuel production exceed those from biofuel production

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Dale, Virginia H.; Parish, Esther S.; Kline, Keith L.

    2014-12-02

    Potential global biodiversity impacts from near-term gasoline production are compared to biofuel, a renewable liquid transportation fuel expected to substitute for gasoline in the near term (i.e., from now until c. 2030). Petroleum exploration activities are projected to extend across more than 5.8 billion ha of land and ocean worldwide (of which 3.1 billion is on land), much of which is in remote, fragile terrestrial ecosystems or off-shore oil fields that would remain relatively undisturbed if not for interest in fossil fuel production. Future biomass production for biofuels is projected to fall within 2.0 billion ha of land, most ofmore » which is located in areas already impacted by human activities. A comparison of likely fuel-source areas to the geospatial distribution of species reveals that both energy sources overlap with areas with high species richness and large numbers of threatened species. At the global scale, future petroleum production areas intersect more than double the area and higher total number of threatened species than future biofuel production. Energy options should be developed to optimize provisioning of ecosystem services while minimizing negative effects, which requires information about potential impacts on critical resources. Furthermore, energy conservation and identifying and effectively protecting habitats with high-conservation value are critical first steps toward protecting biodiversity under any fuel production scenario.« less

  1. Membranes with artificial free-volume for biofuel production

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Petzetakis, Nikos; Doherty, Cara M.; Thornton, Aaron W.; Chen, X. Chelsea; Cotanda, Pepa; Hill, Anita J.; Balsara, Nitash P.

    2015-06-24

    Free-volume of polymers governs transport of penetrants through polymeric films. Control over free-volume is thus important for the development of better membranes for a wide variety of applications such as gas separations, pharmaceutical purifications and energy storage. To date, methodologies used to create materials with different amounts of free-volume are based primarily on chemical synthesis of new polymers. Here we report a simple methodology for generating free-volume based on the self-assembly of polyethylene-b-polydimethylsiloxane-b-polyethylene triblock copolymers. Here, we have used this method to fabricate a series of membranes with identical compositions but with different amounts of free-volume. We use the termmore » artificial free-volume to refer to the additional free-volume created by self-assembly. The effect of artificial free-volume on selective transport through the membranes was tested using butanol/water and ethanol/water mixtures due to their importance in biofuel production. Moreover, we found that the introduction of artificial free-volume improves both alcohol permeability and selectivity.« less

  2. Membranes with artificial free-volume for biofuel production

    SciTech Connect (OSTI)

    Petzetakis, Nikos; Doherty, Cara M.; Thornton, Aaron W.; Chen, X. Chelsea; Cotanda, Pepa; Hill, Anita J.; Balsara, Nitash P.

    2015-06-24

    Free-volume of polymers governs transport of penetrants through polymeric films. Control over free-volume is thus important for the development of better membranes for a wide variety of applications such as gas separations, pharmaceutical purifications and energy storage. To date, methodologies used to create materials with different amounts of free-volume are based primarily on chemical synthesis of new polymers. Here we report a simple methodology for generating free-volume based on the self-assembly of polyethylene-b-polydimethylsiloxane-b-polyethylene triblock copolymers. Here, we have used this method to fabricate a series of membranes with identical compositions but with different amounts of free-volume. We use the term artificial free-volume to refer to the additional free-volume created by self-assembly. The effect of artificial free-volume on selective transport through the membranes was tested using butanol/water and ethanol/water mixtures due to their importance in biofuel production. Moreover, we found that the introduction of artificial free-volume improves both alcohol permeability and selectivity.

  3. Natural Oil Production from Microorganisms: Bioprocess and Microbe Engineering for Total Carbon Utilization in Biofuel Production

    SciTech Connect (OSTI)

    2010-07-15

    Electrofuels Project: MIT is using carbon dioxide (CO2) and hydrogen generated from electricity to produce natural oils that can be upgraded to hydrocarbon fuels. MIT has designed a 2-stage biofuel production system. In the first stage, hydrogen and CO2 are fed to a microorganism capable of converting these feedstocks to a 2-carbon compound called acetate. In the second stage, acetate is delivered to a different microorganism that can use the acetate to grow and produce oil. The oil can be removed from the reactor tank and chemically converted to various hydrocarbons. The electricity for the process could be supplied from novel means currently in development, or more proven methods such as the combustion of municipal waste, which would also generate the required CO2 and enhance the overall efficiency of MIT’s biofuel-production system.

  4. World Biofuels Production Potential Understanding the Challenges to Meeting the U.S. Renewable Fuel Standard

    SciTech Connect (OSTI)

    Sastri, B.; Lee, A.

    2008-09-15

    This study by the U.S. Department of Energy (DOE) estimates the worldwide potential to produce biofuels including biofuels for export. It was undertaken to improve our understanding of the potential for imported biofuels to satisfy the requirements of Title II of the 2007 Energy Independence and Security Act (EISA) in the coming decades. Many other countries biofuels production and policies are expanding as rapidly as ours. Therefore, we modeled a detailed and up-to-date representation of the amount of biofuel feedstocks that are being and can be grown, current and future biofuels production capacity, and other factors relevant to the economic competitiveness of worldwide biofuels production, use, and trade. The Oak Ridge National Laboratory (ORNL) identified and prepared feedstock data for countries that were likely to be significant exporters of biofuels to the U.S. The National Renewable Energy Laboratory (NREL) calculated conversion costs by conducting material flow analyses and technology assessments on biofuels technologies. Brookhaven National Laboratory (BNL) integrated the country specific feedstock estimates and conversion costs into the global Energy Technology Perspectives (ETP) MARKAL (MARKet ALlocation) model. The model uses least-cost optimization to project the future state of the global energy system in five year increments. World biofuels production was assessed over the 2010 to 2030 timeframe using scenarios covering a range U.S. policies (tax credits, tariffs, and regulations), as well as oil prices, feedstock availability, and a global CO{sub 2} price. All scenarios include the full implementation of existing U.S. and selected other countries biofuels policies (Table 4). For the U.S., the most important policy is the EISA Title II Renewable Fuel Standard (RFS). It progressively increases the required volumes of renewable fuel used in motor vehicles (Appendix B). The RFS requires 36 billion (B) gallons (gal) per year of renewable fuels by 2022

  5. Production Facility SCADA Design Report

    SciTech Connect (OSTI)

    Dale, Gregory E.; Holloway, Michael Andrew; Baily, Scott A.; Woloshun, Keith Albert; Wheat, Robert Mitchell Jr.

    2015-03-23

    The following report covers FY 14 activities to develop supervisory control and data acquisition (SCADA) system for the Northstar Moly99 production facility. The goal of this effort is to provide Northstar with a baseline system design.

  6. NREL's Cyanobacteria Engineering Shortens Biofuel Production Process, Captures CO2

    SciTech Connect (OSTI)

    2015-09-01

    This highlight describes NREL's work to systematically analyze the flow of energy in a photosynthetic microbe and show how the organism adjusts its metabolism to meet the increased energy demand for making ethylene. This work successfully demonstrates that the organism could cooperate by stimulating photosynthesis. The results encourage further genetic engineering for the conversion of CO2 to biofuels and chemicals. This highlight is being developed for the September 2015 Alliance S&T Board meeting. biofuels and chemicals. This highlight is being developed for the September 2015 Alliance S&T Board meeting.

  7. Milestone Reached: New Process Reduces Cost and Risk of Biofuel Production from Bio-Oil Upgrading

    Office of Energy Efficiency and Renewable Energy (EERE)

    Battelle—a nonprofit research and development organization that operates many of the national laboratories—reached an Energy Department project milestone to demonstrate at least 1,000 hours of bio-oil hydrotreatment on a single catalyst charge. Typically, it takes many catalysts to convert a bio-oil intermediate into biofuel, making the conversion process expensive. Battelle’s new process substantially reduces the cost and risk of biofuel production and helps make the process more commercially viable.

  8. Conversion Technologies for Advanced Biofuels - Carbohydrates...

    Energy Savers [EERE]

    Production Conversion Technologies for Advanced Biofuels - Carbohydrates Production Purdue ... on Conversion Technologies for Advanced Biofuels - Carbohydrates Conversion Technologies ...

  9. SeQuential Biofuels LLC | Open Energy Information

    Open Energy Info (EERE)

    Biofuels LLC Jump to: navigation, search Name: SeQuential Biofuels LLC Place: Portland, Oregon Zip: 97231 Sector: Biofuels Product: A biofuels marketing and distribution company...

  10. Benefits of Biofuel Production and Use in California

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    is the second-highest energy-consuming state in the nation and a leading promoter of energy efficiency and renewable energy. The Bioenergy Technologies Office (BETO) enables the development of novel technologies that can be used to establish California as a leader in the bioeconomy. California California is a leader in sustainable transportation, having required reductions in the carbon intensity of transportation fuels since 2011. Biofuels can play a key role in meeting state goals for reducing

  11. Carbon Calculator for Land Use Change from Biofuels Production (CCLUB). Users' Manual and Technical Documentation

    SciTech Connect (OSTI)

    Dunn, Jennifer B.; Qin, Zhangcai; Mueller, Steffen; Kwon, Ho-young; Wander, Michelle M.; Wang, Michael

    2014-09-01

    The Carbon Calculator for Land Use Change from Biofuels Production (CCLUB) calculates carbon emissions from land use change (LUC) for four different ethanol production pathways including corn grain ethanol and cellulosic ethanol from corn stover, Miscanthus, and switchgrass. This document discusses the version of CCLUB released September 30, 2014 which includes corn and three cellulosic feedstocks: corn stover, Miscanthus, and switchgrass.

  12. New Leaf Biofuel | Open Energy Information

    Open Energy Info (EERE)

    Biofuel Jump to: navigation, search Name: New Leaf Biofuel Address: 1380 Garnet Place: San Diego, California Zip: 92109 Region: Southern CA Area Sector: Biofuels Product: Collects...

  13. Continental Biofuels Corporation | Open Energy Information

    Open Energy Info (EERE)

    Continental Biofuels Corporation Jump to: navigation, search Name: Continental Biofuels Corporation Place: Dallas, Texas Zip: 75240 Sector: Biofuels Product: Dallas-based company...

  14. Biofuels Power Corp | Open Energy Information

    Open Energy Info (EERE)

    Power Corp Jump to: navigation, search Name: Biofuels Power Corp Place: The Woodlands, Texas Zip: 77380 Sector: Biofuels, Renewable Energy Product: Biofuels Power Corp produces and...

  15. DuPont Biofuels | Open Energy Information

    Open Energy Info (EERE)

    Biofuels Jump to: navigation, search Name: DuPont Biofuels Place: Wilmington, Delaware Zip: 19898 Product: Biofuel technology development subsidiary of DuPont. Co-developing...

  16. BP Biofuels Brasil | Open Energy Information

    Open Energy Info (EERE)

    Biofuels Brasil Jump to: navigation, search Name: BP Biofuels Brasil Place: Campinas, Sao Paulo, Brazil Zip: 13025-320 Sector: Biofuels Product: Brazil based BP subsidiary focused...

  17. Amereco Biofuels Corp | Open Energy Information

    Open Energy Info (EERE)

    Amereco Biofuels Corp Jump to: navigation, search Name: Amereco Biofuels Corp Place: Phoenix, Arizona Zip: 85028 Sector: Biofuels Product: Amereco pursues technologies that...

  18. Greenergy Biofuels Limited | Open Energy Information

    Open Energy Info (EERE)

    Biofuels Limited Jump to: navigation, search Name: Greenergy Biofuels Limited Place: London, Greater London, United Kingdom Zip: WC1V 7BD Sector: Biofuels Product: Imports, blends...

  19. Aaditya Biofuels Ltd | Open Energy Information

    Open Energy Info (EERE)

    Aaditya Biofuels Ltd Jump to: navigation, search Name: Aaditya Biofuels Ltd. Place: Gujarat, India Product: Gujarat-based biodiesel producer. References: Aaditya Biofuels Ltd.1...

  20. Butamax Advanced Biofuels LLC | Open Energy Information

    Open Energy Info (EERE)

    Butamax Advanced Biofuels LLC Jump to: navigation, search Name: Butamax Advanced Biofuels LLC Place: Wilmington, Delaware Zip: 19880-0268 Sector: Biofuels Product: Delaware-based...

  1. Raven Biofuels International Corporation | Open Energy Information

    Open Energy Info (EERE)

    Biofuels International Corporation Jump to: navigation, search Name: Raven Biofuels International Corporation Place: Paramus, New Jersey Zip: 07652-1236 Sector: Biofuels Product:...

  2. What Biofuel Production Can Learn from the Zoo: Michelle A. O'Malley |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    U.S. DOE Office of Science (SC) What Biofuel Production Can Learn from the Zoo: Michelle A. O'Malley News News Home Featured Articles 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 Science Headlines Science Highlights Presentations & Testimony News Archives Communications and Public Affairs Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5430 05.11.16 What Biofuel Production Can Learn from the Zoo:

  3. Advancing Commercialization of Algal Biofuels through Increased...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advancing Commercialization of Algal Biofuels through Increased Biomass Productivity ... including: NAABB, Cornell's Marine Algal Biofuels Consortium, ATP3. * Participation in ...

  4. Development of Renewable Biofuels Technology by Transcriptomic...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    information Development of Renewable Biofuels Technology by Transcriptomic Analysis ... and the development of diatoms as biofuels production organisms, which will ...

  5. Mead Biofuel | Open Energy Information

    Open Energy Info (EERE)

    Biofuel Jump to: navigation, search Name: Mead Biofuel Place: Eastsound, Washington State Zip: 98245 Product: Distributor of biodiesel throughout the San Juan Islands, Washington....

  6. Michigan Biofuel | Open Energy Information

    Open Energy Info (EERE)

    Biofuel Jump to: navigation, search Name: Michigan Biofuel Place: Lupton, Michigan Product: Michigan-based manufacturer of biodiesel processors and related equipment. Coordinates:...

  7. Vercipia Biofuels | Open Energy Information

    Open Energy Info (EERE)

    Vercipia Biofuels Jump to: navigation, search Name: Vercipia Biofuels Place: Highlands County, Florida Product: Florida-based JV owning existing intellectual property and...

  8. Piedmont Biofuels | Open Energy Information

    Open Energy Info (EERE)

    Biofuels Jump to: navigation, search Name: Piedmont Biofuels Place: Chatham County, North Carolina Product: Community coop producing biodiesel in small scale to cope with Chatham...

  9. Greenlight Biofuels | Open Energy Information

    Open Energy Info (EERE)

    Biofuels Jump to: navigation, search Name: Greenlight Biofuels Place: Charlottesville, Virginia Product: Charlottesville-based company that develops, builds, owns and operates...

  10. Mint Biofuels | Open Energy Information

    Open Energy Info (EERE)

    Biofuels Jump to: navigation, search Name: Mint Biofuels Place: Pune, Maharashtra, India Zip: 412 111 Product: Maharashtra-based biodiesel producer. Coordinates: 18.52671,...

  11. Integrity Biofuels | Open Energy Information

    Open Energy Info (EERE)

    Biofuels Jump to: navigation, search Name: Integrity Biofuels Place: Grammer, Indiana Product: Planning a 38m litre (10m gallon) per year biodiesel plant in Indiana. Coordinates:...

  12. Acciona Biofuels | Open Energy Information

    Open Energy Info (EERE)

    Acciona Biofuels Jump to: navigation, search Name: Acciona Biofuels Place: Pamplona, Spain Zip: 31002 Product: A subsidiary of Acciona Energia, that specialises in the...

  13. Optimum Biofuels | Open Energy Information

    Open Energy Info (EERE)

    Biofuels Jump to: navigation, search Name: Optimum Biofuels Place: Higley, Arizona Zip: 85236 Product: Arizona-based operator of a bio diesel refinery in Coolidge, with soybean oil...

  14. FUMPA Biofuels | Open Energy Information

    Open Energy Info (EERE)

    FUMPA Biofuels Jump to: navigation, search Name: FUMPA Biofuels Place: Redwood Falls, MN, Minnesota Product: Biodiesel producer based in Redwood Falls, Minnesota. References: FUMPA...

  15. Yokayo Biofuels | Open Energy Information

    Open Energy Info (EERE)

    Yokayo Biofuels Jump to: navigation, search Name: Yokayo Biofuels Place: Ukiah, California Zip: 95482 Product: California-based biodiesel producer and distributor with operations...

  16. Keystone Biofuels | Open Energy Information

    Open Energy Info (EERE)

    Keystone Biofuels Jump to: navigation, search Name: Keystone Biofuels Place: Shiremanstown, Pennsylvania Product: Biodiesel producer that runs a 3.7m liter plant in Pennsylvania....

  17. Riksch Biofuels | Open Energy Information

    Open Energy Info (EERE)

    Riksch Biofuels Jump to: navigation, search Name: Riksch Biofuels Place: Crawfordsville, Iowa Zip: 52621 Product: Biodiesel producer building a plant in Crawfordsville, IA...

  18. Austin Biofuels | Open Energy Information

    Open Energy Info (EERE)

    Austin Biofuels Jump to: navigation, search Name: Austin Biofuels Place: Austin, Texas Product: Supplies pure and blended biodiesel to all of Texas. It has benefited from support...

  19. EERE Success Story-California: Cutting-Edge Biofuels Research and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Entrepreneurship Provide a Proving Ground | Department of Energy Cutting-Edge Biofuels Research and Entrepreneurship Provide a Proving Ground EERE Success Story-California: Cutting-Edge Biofuels Research and Entrepreneurship Provide a Proving Ground April 18, 2013 - 12:00am Addthis The Advanced Biofuels Process Demonstration Unit (ABPDU) at DOE's Lawrence Berkeley National Laboratory provides state-of-the-art facilities for advanced biofuels and bioproducts production to create efficient

  20. CleanTech Biofuels | Open Energy Information

    Open Energy Info (EERE)

    CleanTech Biofuels Jump to: navigation, search Name: CleanTech Biofuels Place: St. Louis, Missouri Zip: 63130 Sector: Biofuels Product: CleanTech Biofuels holds exclusive licenses...

  1. CPS Biofuels | Open Energy Information

    Open Energy Info (EERE)

    CPS Biofuels Jump to: navigation, search Name: CPS Biofuels Place: Cary, North Carolina Zip: 27513 Sector: Biofuels Product: R&D company that is developing a new process to produce...

  2. Chromatin landscaping in algae reveals novel regulation pathway for biofuels production

    SciTech Connect (OSTI)

    Ngan, Chew Yee; Wong, Chee-Hong; Choi, Cindy; Pratap, Abhishek; Han, James; Wei, Chia-Lin

    2013-02-19

    The diminishing reserve of fossil fuels calls for the development of biofuels. Biofuels are produced from renewable resources, including photosynthetic organisms, generating clean energy. Microalgae is one of the potential feedstock for biofuels production. It grows easily even in waste water, and poses no competition to agricultural crops for arable land. However, little is known about the algae lipid biosynthetic regulatory mechanisms. Most studies relied on the homology to other plant model organisms, in particular Arabidopsis or through low coverage expression analysis to identify key enzymes. This limits the discovery of new components in the biosynthetic pathways, particularly the genetic regulators and effort to maximize the production efficiency of algal biofuels. Here we report an unprecedented and de novo approach to dissect the algal lipid pathways through disclosing the temporal regulations of chromatin states during lipid biosynthesis. We have generated genome wide chromatin maps in chlamydomonas genome using ChIP-seq targeting 7 histone modifications and RNA polymerase II in a time-series manner throughout conditions activating lipid biosynthesis. To our surprise, the combinatory profiles of histone codes uncovered new regulatory mechanism in gene expression in algae. Coupled with matched RNA-seq data, chromatin changes revealed potential novel regulators and candidate genes involved in the activation of lipid accumulations. Genetic perturbation on these candidate regulators further demonstrated the potential to manipulate the regulatory cascade for lipid synthesis efficiency. Exploring epigenetic landscape in microalgae shown here provides powerful tools needed in improving biofuel production and new technology platform for renewable energy generation, global carbon management, and environmental survey.

  3. Sequencing of Multiple Clostridial Genomes Related to Biomass Conversion and Biofuel Production

    SciTech Connect (OSTI)

    Hemme, Christopher; Mouttaki, Housna; Lee, Yong-Jin; Goodwin, Lynne A.; Lucas, Susan; Copeland, A; Lapidus, Alla L.; Glavina Del Rio, Tijana; Tice, Hope; Saunders, Elizabeth H; Detter, J. Chris; Han, Cliff; Pitluck, Sam; Land, Miriam L; Hauser, Loren John; Kyrpides, Nikos C; Mikhailova, Natalia; He, Zhili; Wu, Liyou; Van Nostrand, Joy; Henrissat, Bernard; HE, Qiang; Lawson, Paul A.; Tanner, Ralph S.; Lynd, Lee R; Wiegel, Juergen; Fields, Dr. Matthew Wayne; Arkin, Adam; Schadt, Christopher Warren; Stevenson, Bradley S.; McInerney, Michael J.; Yang, Yunfeng; Dong, Hailiang; Xing, Defeng; Ren, Nanqi; Wang, Aijie; Ding, Shi-You; Himmel, Michael E; Taghavi, Safiyh; Rubin, Edward M.; Zhou, Jizhong

    2010-01-01

    Modern methods to develop microbe-based biomass conversion processes require a system-level understanding of the microbes involved. Clostridium species have long been recognized as ideal candidates for processes involving biomass conversion and production of various biofuels and other industrial products. To expand the knowledge base for clostridial species relevant to current biofuel production efforts, we have sequenced the genomes of 20 species spanning multiple genera. The majority of species sequenced fall within the class III cellulosome-encoding Clostridium and the class V saccharolytic Thermoanaerobacteraceae. Species were chosen based on representation in the experimental literature as model organisms, ability to degrade cellulosic biomass either by free enzymes or by cellulosomes, ability to rapidly ferment hexose and pentose sugars to ethanol, and ability to ferment synthesis gas to ethanol. The sequenced strains significantly increase the number of noncommensal/nonpathogenic clostridial species and provide a key foundation for future studies of biomass conversion, cellulosome composition, and clostridial systems biology.

  4. Genetic resources for advanced biofuel production described with the Gene Ontology

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Torto-Alalibo, Trudy; Purwantini, Endang; Lomax, Jane; Setubal, Joao C.; Mukhopadhyay, Biswarup; Tyler, Brett M.

    2014-10-10

    Dramatic increases in research in the area of microbial biofuel production coupled with high-throughput data generation on bioenergy-related microbes has led to a deluge of information in the scientific literature and in databases. Consolidating this information and making it easily accessible requires a unified vocabulary.The Gene Ontology (GO) fulfills that requirement, as it is a well-developed structured vocabulary that describes the activities and locations of gene products in a consistent manner across all kingdoms of life. The Microbial ENergy processes Gene Ontology (http://www.mengo.biochem.vt.edu) project is extending the GO to include new terms to describe microbial processes of interest to bioenergymore » production. Our effort has added over 600 bioenergy related terms to the Gene Ontology. These terms will aid in the comprehensive annotation of gene products from diverse energy-related microbial genomes. An area of microbial energy research that has received a lot of attention is microbial production of advanced biofuels. These include alcohols such as butanol, isopropanol, isobutanol, and fuels derived from fatty acids, isoprenoids, and polyhydroxyalkanoates. These fuels are superior to first generation biofuels (ethanol and biodiesel esterified from vegetable oil or animal fat), can be generated from non-food feedstock sources, can be used as supplements or substitutes for gasoline, diesel and jet fuels, and can be stored and distributed using existing infrastructure. We review the roles of genes associated with synthesis of advanced biofuels, and at the same time introduce the use of the GO to describe the functions of these genes in a standardized way.« less

  5. Genetic resources for advanced biofuel production described with the Gene Ontology

    SciTech Connect (OSTI)

    Torto-Alalibo, Trudy; Purwantini, Endang; Lomax, Jane; Setubal, Joao C.; Mukhopadhyay, Biswarup; Tyler, Brett M.

    2014-10-10

    Dramatic increases in research in the area of microbial biofuel production coupled with high-throughput data generation on bioenergy-related microbes has led to a deluge of information in the scientific literature and in databases. Consolidating this information and making it easily accessible requires a unified vocabulary.The Gene Ontology (GO) fulfills that requirement, as it is a well-developed structured vocabulary that describes the activities and locations of gene products in a consistent manner across all kingdoms of life. The Microbial ENergy processes Gene Ontology (http://www.mengo.biochem.vt.edu) project is extending the GO to include new terms to describe microbial processes of interest to bioenergy production. Our effort has added over 600 bioenergy related terms to the Gene Ontology. These terms will aid in the comprehensive annotation of gene products from diverse energy-related microbial genomes. An area of microbial energy research that has received a lot of attention is microbial production of advanced biofuels. These include alcohols such as butanol, isopropanol, isobutanol, and fuels derived from fatty acids, isoprenoids, and polyhydroxyalkanoates. These fuels are superior to first generation biofuels (ethanol and biodiesel esterified from vegetable oil or animal fat), can be generated from non-food feedstock sources, can be used as supplements or substitutes for gasoline, diesel and jet fuels, and can be stored and distributed using existing infrastructure. We review the roles of genes associated with synthesis of advanced biofuels, and at the same time introduce the use of the GO to describe the functions of these genes in a standardized way.

  6. Lipid recovery from wet oleaginous microbial biomass for biofuel production: A critical review

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Dong, Tao; Knoshaug, Eric P.; Pienkos, Philip T.; Laurens, Lieve M. L.

    2016-06-15

    Biological lipids derived from oleaginous microorganisms are promising precursors for renewable biofuel productions. Direct lipid extraction from wet cell-biomass is favored because it eliminates the need for costly dehydration. However, the development of a practical and scalable process for extracting lipids from wet cell-biomass is far from ready to be commercialized, instead, requiring intensive research and development to understand the lipid accessibility, mechanisms in mass transfer and establish robust lipid extraction approaches that are practical for industrial applications. Furthermore, this paper aims to present a critical review on lipid recovery in the context of biofuel productions with special attention tomore » cell disruption and lipid mass transfer to support extraction from wet biomass.« less

  7. Benefits of Biofuel Production and Use in Colorado

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Primary product: Clean biomass cookstoves Feedstock: Multiple (woody crops: coconut, fir, oak, and wood pellets) Location: Fort Collins Stage: University of Colorado and C2B2 ...

  8. Benefits of Biofuel Production and Use in Mississippi

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    that can be used to establish Mississippi as a leader in the growing bioeconomy. ... production can establish Mississippi as a leader in sustainable fuels-creating jobs and ...

  9. Algal Biofuels | Bioenergy | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biofuels NREL is developing technologies and helping prepare a new generation workforce to enable the commercialization of algal biofuels. Photo of bright green algae in flasks in fluid inside a lit, metallic grow chamber. We are focused on understanding the current cost for algal biofuels production and using that information to identify and develop cost reduction strategies. Our work is distributed across the entire value chain from production strain identification to biofuel and bioproducts

  10. Bioenergy & Biofuels Projects | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bioenergy & Biofuels Projects Bioenergy & Biofuels Projects Bioenergy & Biofuels Projects Bioenergy & Biofuels Projects Bioenergy & Biofuels Projects Bioenergy & Biofuels Projects BIOENERGY &amp; BIOFUELS 1 PROJECT in 1 LOCATION 25,000,000 GALLONS ANNUAL PRODUCTION CAPACITY 14,900,000 GALLONS OF GASOLINE SAVED ANNUALLY 132,000 METRIC TONS OF CO2 EMISSIONS PREVENTED ANNUALLY ALL FIGURES AS OF MARCH 2015 BIOENERGY &amp; BIOFUELS PROJECT LOAN PROGRAM TECHNOLOGY

  11. Designer synthetic media for studying microbial-catalyzed biofuel production

    SciTech Connect (OSTI)

    Tang, Xiaoyu [Biogas Inst. of Ministry of Agriculture, Chengdu (China); da Costa Sousa, Leonardo [Michigan State Univ., East Lansing, MI (United States); Jin, Mingjie [Michigan State Univ., East Lansing, MI (United States); Chundawat, Shishir [Michigan State Univ., East Lansing, MI (United States); State Univ. of New Jersey, Piscataway, NJ (United States); Chambliss, Charles [Baylor Univ., Waco, TX (United States); Lau, Ming W [Michigan State Univ., East Lansing, MI (United States); Xiao, Zeyi [Sichuan Univ., Chengdu (China); Dale, Bruce E [Michigan State Univ., East Lansing, MI (United States); Balan, Venkatesh [Michigan State Univ., East Lansing, MI (United States)

    2015-01-01

    Background: The fermentation inhibition of yeast or bacteria by lignocellulose-derived degradation products, during hexose/pentose co-fermentation, is a major bottleneck for cost-effective lignocellulosic biorefineries. To engineer microbial strains for improved performance, it is critical to understand the mechanisms of inhibition that affect fermentative organisms in the presence of major components of a lignocellulosic hydrolysate. The development of a synthetic lignocellulosic hydrolysate (SH) media with a composition similar to the actual biomass hydrolysate will be an important advancement to facilitate these studies. In this work, we characterized the nutrients and plant-derived decomposition products present in AFEX pretreated corn stover hydrolysate (ACH). The SH was formulated based on the ACH composition and was further used to evaluate the inhibitory effects of various families of decomposition products during Saccharomyces cerevisiae 424A (LNH-ST) fermentation. Results: The ACH contained high levels of nitrogenous compounds, notably amides, pyrazines, and imidazoles. In contrast, a relatively low content of furans and aromatic and aliphatic acids were found in the ACH. Though most of the families of decomposition products were inhibitory to xylose fermentation, due to their abundance, the nitrogenous compounds showed the most inhibition. From these compounds, amides (products of the ammonolysis reaction) contributed the most to the reduction of the fermentation performance. However, this result is associated to a concentration effect, as the corresponding carboxylic acids (products of hydrolysis) promoted greater inhibition when present at the same molar concentration as the amides. Due to its complexity, the formulated SH did not perfectly match the fermentation profile of the actual hydrolysate, especially the growth curve. However, the SH formulation was effective for studying the inhibitory effect of various compounds on yeast fermentation

  12. Designer synthetic media for studying microbial-catalyzed biofuel production

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Tang, Xiaoyu; da Costa Sousa, Leonardo; Jin, Mingjie; Chundawat, Shishir; Chambliss, Charles; Lau, Ming W; Xiao, Zeyi; Dale, Bruce E; Balan, Venkatesh

    2015-01-01

    Background: The fermentation inhibition of yeast or bacteria by lignocellulose-derived degradation products, during hexose/pentose co-fermentation, is a major bottleneck for cost-effective lignocellulosic biorefineries. To engineer microbial strains for improved performance, it is critical to understand the mechanisms of inhibition that affect fermentative organisms in the presence of major components of a lignocellulosic hydrolysate. The development of a synthetic lignocellulosic hydrolysate (SH) media with a composition similar to the actual biomass hydrolysate will be an important advancement to facilitate these studies. In this work, we characterized the nutrients and plant-derived decomposition products present in AFEX™ pretreated corn stover hydrolysate (ACH). Themore » SH was formulated based on the ACH composition and was further used to evaluate the inhibitory effects of various families of decomposition products during Saccharomyces cerevisiae 424A (LNH-ST) fermentation. Results: The ACH contained high levels of nitrogenous compounds, notably amides, pyrazines, and imidazoles. In contrast, a relatively low content of furans and aromatic and aliphatic acids were found in the ACH. Though most of the families of decomposition products were inhibitory to xylose fermentation, due to their abundance, the nitrogenous compounds showed the most inhibition. From these compounds, amides (products of the ammonolysis reaction) contributed the most to the reduction of the fermentation performance. However, this result is associated to a concentration effect, as the corresponding carboxylic acids (products of hydrolysis) promoted greater inhibition when present at the same molar concentration as the amides. Due to its complexity, the formulated SH did not perfectly match the fermentation profile of the actual hydrolysate, especially the growth curve. However, the SH formulation was effective for studying the inhibitory effect of various compounds on yeast

  13. Soil carbon sequestration and land use change associated with biofuel production: Empirical evidence

    SciTech Connect (OSTI)

    Qin, Zhangcai; Dunn, Jennifer B.; Kwon, Hoyoung; Mueller, Steffen; Wander, Michelle M.

    2016-01-01

    Soil organic carbon (SOC) change can be a major impact of land use change (LUC) associated with biofuel feedstock production. By collecting and analyzing data from worldwide field observations with major LUCs from cropland, grassland and forest to lands producing biofuel crops (i.e., corn, switchgrass, Miscanthus, poplar and willow), we were able to estimate SOC response ratios and sequestration rates and evaluate the effects of soil depth and time scale on SOC change. Both the amount and rate of SOC change were highly dependent on the specific land transition. Irrespective of soil depth or time horizon, cropland conversions resulted in an overall SOC gain of 6-14% relative to initial SOC level, while conversion from grassland or forest to corn (without residue removal) or poplar caused significant carbon loss (9-35%). No significant SOC changes were observed in land converted from grasslands or forests to switchgrass, Miscanthus or willow. The SOC response ratios were similar in both 0-30 and 0-100 cm soil depths in most cases, suggesting SOC changes in deep soil and that use of top soil only for SOC accounting in biofuel life cycle analysis (LCA) might underestimate total SOC changes. Soil carbon sequestration rates varied greatly among studies and land transition types. Generally, the rates of SOC change tended to be the greatest during the 10 years following land conversion, and had declined to approach 0 within about 20 years for most LUCs. Observed trends in SOC change were generally consistent with previous reports. Soil depth and duration of study significantly influence SOC change rates and so should be considered in carbon emission accounting in biofuel LCA. High uncertainty remains for many perennial systems, field trials and modeling efforts are needed to determine the site- and system-specific rates and direction of change associated with their production.

  14. Enhanced Production of Biofuel Precursors in Microalgae - Energy Innovation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Enhanced Oil Recovery Enhanced Oil Recovery Cross-section illustrating how carbon dioxide and water can be used to flush residual oil from a subsurface rock formation between wells. Cross-section illustrating how carbon dioxide and water can be used to flush residual oil from a subsurface rock formation between wells. Crude oil development and production in U.S. oil reservoirs can include up to three distinct phases: primary, secondary, and tertiary (or enhanced) recovery. During primary

  15. CO{sub 2} capture and biofuels production with microalgae

    SciTech Connect (OSTI)

    Benemann, J.R.

    1995-11-01

    Microalgae cultivation in large open ponds is the only biological process capable of directly utilizing power plant flue gas CO{sub 2} for production of renewable fuels, such as biodiesel, thus mitigating the potential for global warming. Past and recent systems studies have concluded that in principle this concept could be economically feasible, but that this technology still requires both fundamental and applied long-term R&D.

  16. Techno-Economic Analysis of Biofuels Production Based on Gasification

    SciTech Connect (OSTI)

    Swanson, R. M.; Platon, A.; Satrio, J. A.; Brown, R. C.; Hsu, D. D.

    2010-11-01

    This study compares capital and production costs of two biomass-to-liquid production plants based on gasification. The first biorefinery scenario is an oxygen-fed, low-temperature (870?C), non-slagging, fluidized bed gasifier. The second scenario is an oxygen-fed, high-temperature (1,300?C), slagging, entrained flow gasifier. Both are followed by catalytic Fischer-Tropsch synthesis and hydroprocessing to naphtha-range (gasoline blend stock) and distillate-range (diesel blend stock) liquid fractions. Process modeling software (Aspen Plus) is utilized to organize the mass and energy streams and cost estimation software is used to generate equipment costs. Economic analysis is performed to estimate the capital investment and operating costs. Results show that the total capital investment required for nth plant scenarios is $610 million and $500 million for high-temperature and low-temperature scenarios, respectively. Product value (PV) for the high-temperature and low-temperature scenarios is estimated to be $4.30 and $4.80 per gallon of gasoline equivalent (GGE), respectively, based on a feedstock cost of $75 per dry short ton. Sensitivity analysis is also performed on process and economic parameters. This analysis shows that total capital investment and feedstock cost are among the most influential parameters affecting the PV.

  17. Bio-Fuel Production Assisted with High Temperature Steam Electrolysis

    SciTech Connect (OSTI)

    Grant Hawkes; James O'Brien; Michael McKellar

    2012-06-01

    Two hybrid energy processes that enable production of synthetic liquid fuels that are compatible with the existing conventional liquid transportation fuels infrastructure are presented. Using biomass as a renewable carbon source, and supplemental hydrogen from high-temperature steam electrolysis (HTSE), these two hybrid energy processes have the potential to provide a significant alternative petroleum source that could reduce dependence on imported oil. The first process discusses a hydropyrolysis unit with hydrogen addition from HTSE. Non-food biomass is pyrolyzed and converted to pyrolysis oil. The pyrolysis oil is upgraded with hydrogen addition from HTSE. This addition of hydrogen deoxygenates the pyrolysis oil and increases the pH to a tolerable level for transportation. The final product is synthetic crude that could then be transported to a refinery and input into the already used transportation fuel infrastructure. The second process discusses a process named Bio-Syntrolysis. The Bio-Syntrolysis process combines hydrogen from HTSE with CO from an oxygen-blown biomass gasifier that yields syngas to be used as a feedstock for synthesis of liquid synthetic crude. Conversion of syngas to liquid synthetic crude, using a biomass-based carbon source, expands the application of renewable energy beyond the grid to include transportation fuels. It can also contribute to grid stability associated with non-dispatchable power generation. The use of supplemental hydrogen from HTSE enables greater than 90% utilization of the biomass carbon content which is about 2.5 times higher than carbon utilization associated with traditional cellulosic ethanol production. If the electrical power source needed for HTSE is based on nuclear or renewable energy, the process is carbon neutral. INL has demonstrated improved biomass processing prior to gasification. Recyclable biomass in the form of crop residue or energy crops would serve as the feedstock for this process. A process model

  18. Biofuels | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biofuels Biofuels Image Biofuels from Algae: Algae is widely touted as one of the next best sources for fueling the world's energy needs. But one of the greatest challenges in creating biofuels from algae is how to economically extract and isolate fuel-related chemicals from algae. Ames Laboratory researchers are developing nanoscale "sponges" that soak up the oil produced by the algae without killing the algae, thus dramatically reducing production costs. Ethanol from Syngas: Ethanol

  19. Catalytic Fast Pyrolysis for the Production of the Hydrocarbon Biofuels

    SciTech Connect (OSTI)

    Nimlos, M. R.; Robichaud, D. J.; Mukaratate, C.; Donohoe, B. S.; Iisa, K.

    2013-01-01

    Catalytic fast pyrolysis is a promising technique for conversion of biomass into hydrocarbons for use as transportation fuels. For over 30 years this process has been studied and it has been demonstrated that oils can be produced with high concentrations of hydrocarbons and low levels of oxygen. However, the yields from this type of conversion are typically low and the catalysts, which are often zeolites, are quickly deactivated through coking. In addition, the hydrocarbons produced are primarily aromatic molecules (benzene, toluene, xylene) that not desirable for petroleum refineries and are not well suited for diesel or jet engines. The goals of our research are to develop new multifunction catalysts for the production of gasoline, diesel and jet fuel range molecules and to improve process conditions for higher yields and low coking rates. We are investigating filtration and the use of hydrogen donor molecules to improve catalyst performance.

  20. Biofuel Production Datasets from DOE's Bioenergy Knowledge Discovery Framework (KDF)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Bioenergy Knowledge Discovery Framework invites users to discover the power of bioenergy through an interface that provides extensive access to research data and literature, GIS mapping tools, and collaborative networks. The Bioenergy KDF supports efforts to develop a robust and sustainable bioenergy industry. The KDF facilitates informed decision making by providing a means to synthesize, analyze, and visualize vast amounts of information in a relevant and succinct manner. It harnesses Web 2.0 and social networking technologies to build a collective knowledge system that can better examine the economic and environmental impacts of development options for biomass feedstock production, biorefineries, and related infrastructure. [copied from https://www.bioenergykdf.net/content/about]

    Holdings include datasets, models, and maps and the collections arel growing due to both DOE contributions and data uploads from individuals.

  1. PPC Worley and Independence Biofuels JV | Open Energy Information

    Open Energy Info (EERE)

    Worley and Independence Biofuels JV Jump to: navigation, search Name: PPC, Worley and Independence Biofuels JV Place: Pennsylvania Sector: Biofuels Product: JV between PPC, Worley...

  2. Aurora BioFuels Inc | Open Energy Information

    Open Energy Info (EERE)

    BioFuels Inc Jump to: navigation, search Name: Aurora BioFuels Inc. Place: Alameda, California Zip: 94502 Sector: Biofuels, Renewable Energy Product: California-based renewable...

  3. Understanding and engineering enzymes for enhanced biofuel production.

    SciTech Connect (OSTI)

    Simmons, Blake Alexander; Volponi, Joanne V.; Sapra, Rajat; Faulon, Jean-Loup Michel; Buffleben, George M.; Roe, Diana C.

    2009-01-01

    Today, carbon-rich fossil fuels, primarily oil, coal and natural gas, provide 85% of the energy consumed in the United States. The release of greenhouse gases from these fuels has spurred research into alternative, non-fossil energy sources. Lignocellulosic biomass is renewable resource that is carbon-neutral, and can provide a raw material for alternative transportation fuels. Plant-derived biomass contains cellulose, which is difficult to convert to monomeric sugars for production of fuels. The development of cost-effective and energy-efficient processes to transform the cellulosic content of biomass into fuels is hampered by significant roadblocks, including the lack of specifically developed energy crops, the difficulty in separating biomass components, the high costs of enzymatic deconstruction of biomass, and the inhibitory effect of fuels and processing byproducts on organisms responsible for producing fuels from biomass monomers. One of the main impediments to more widespread utilization of this important resource is the recalcitrance of cellulosic biomass and techniques that can be utilized to deconstruct cellulosic biomass.

  4. Advanced Biofuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Predictive Simulation of Engines Transportation Energy Consortiums Engine Combustion ... for Pretreating Mixed Blends of Biofuel Feedstocks Biofuels, Biomass, Energy, ...

  5. World-Class Test Facility Increases Efficiency of Solar Products...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    World-Class Test Facility Increases Efficiency of Solar Products World-Class Test Facility Increases Efficiency of Solar Products World-Class Test Facility Increases Efficiency of ...

  6. Biofuels from Microalgae: Review of Products, Processes and Potential, with Special Focus on Dunaliella sp.

    SciTech Connect (OSTI)

    Huesemann, Michael H.; Benemann, John R.

    2009-12-31

    There is currently great interest in using microalgae for the production of biofuels, mainly due to the fact that microalgae can produce biofuels at a much higher productivity than conventional plants and that they can be cultivated using water, in particular seawater, and land not competing for resources with conventional agriculture. However, at present such microalgae-based technologies are not yet developed and the economics of such processes are uncertain. We review power generation by direct combustion, production of hydrogen and other fuel gases and liquids by gasification and pyrolysis, methane generation by anaerobic digestion, ethanol fermentations, and hydrogen production by dark and light-driven metabolism. We in particular discuss the production of lipids, vegetable oils and hydrocarbons, which could be converted to biodiesel. Direct combustion for power generation has two major disadvantages in that the high N-content of algal biomass causes unacceptably high NOx emissions and losses of nitrogen fertilizer. Thus, the use of sun-dried microalgal biomass would not be cost-competitive with other solid fuels such as coal and wood. Thermochemical conversion processes such as gasification and pyrolysis have been successfully demonstrated in the laboratory but will be difficult to scale up commercially and suffers from similar, though sometimes not as stringent, limitations as combustion. Anaerobic digestion of microalgal cells yields only about 0.3 L methane per g volatile solids destroyed, about half of the maximum achievable, but yields can be increased by adding carbon rich substrates to circumvent ammonia toxicity caused by the N-rich algal biomass. Anaerobic digestion would be best suited for the treatment of algal biomass waste after value-added products have been separated. Algae can also be grown to accumulate starches or similar fermentable products, and ethanol or similar (e.g., butanol) fermentations could be applied to such biomass, but research

  7. Soil Carbon Change and Net Energy Associated with Biofuel Production on Marginal Lands: A Regional Modeling Perspective

    SciTech Connect (OSTI)

    Bandaru, Varaprasad; Izaurralde, Roberto C.; Manowitz, David H.; Link, Robert P.; Zhang, Xuesong; Post, W. M.

    2013-12-01

    The use of marginal lands (MLs) for biofuel production has been contemplated as a promising solution for meeting biofuel demands. However, there have been concerns with spatial location of MLs, their inherent biofuel potential, and possible environmental consequences with the cultivation of energy crops. Here, we developed a new quantitative approach that integrates high-resolution land cover and land productivity maps and uses conditional probability density functions for analyzing land use patterns as a function of land productivity to classify the agricultural lands. We subsequently applied this method to determine available productive croplands (P-CLs) and non-crop marginal lands (NC-MLs) in a nine-county Southern Michigan. Furthermore, Spatially Explicit Integrated Modeling Framework (SEIMF) using EPIC (Environmental Policy Integrated Climate) was used to understand the net energy (NE) and soil organic carbon (SOC) implications of cultivating different annual and perennial production systems.

  8. Versatile microbial surface-display for environmental remediation and biofuels production

    SciTech Connect (OSTI)

    Wu, Cindy H.; Mulchandani, Ashok; Chen, wilfred

    2008-02-14

    Surface display is a powerful technique that utilizes natural microbial functional components to express proteins or peptides on the cell exterior. Since the reporting of the first surface-display system in the mid-1980s, a variety of new systems have been reported for yeast, Gram-positive and Gram-negative bacteria. Non-conventional display methods are emerging, eliminating the generation of genetically modified microorganisms. Cells with surface display are used as biocatalysts, biosorbents and biostimulants. Microbial cell-surface display has proven to be extremely important for numerous applications ranging from combinatorial library screening and protein engineering to bioremediation and biofuels production.

  9. Biofuels from E. Coli: Engineering E. coli as an Electrofuels Chassis for Isooctane Production

    SciTech Connect (OSTI)

    2010-07-16

    Electrofuels Project: Ginkgo Bioworks is bypassing photosynthesis and engineering E. coli to directly use carbon dioxide (CO2) to produce biofuels. E. coli doesn’t naturally metabolize CO2, but Ginkgo Bioworks is manipulating and incorporating the genes responsible for CO2 metabolism into the microorganism. By genetically modifying E. coli, Ginkgo Bioworks will enhance its rate of CO2 consumption and liquid fuel production. Ginkgo Bioworks is delivering CO2 to E. coli as formic acid, a simple industrial chemical that provides energy and CO2 to the bacterial system.

  10. From Pandemic Preparedness to Biofuel Production: Tobacco Finds Its Biotechnology Niche in North America

    SciTech Connect (OSTI)

    Powell, Joshua D.

    2015-09-25

    As part of my NSD Innovation awarded funds (95470 Powell Innovation: charge code N38540) one my deliverables was a review article for journal submission summarizing my work on this project. My NSD Innovation project is expressing Ebola antibodies in tobacco plants. I've attached abstract below Title: From pandemic preparedness to biofuel production: tobacco finds its biotechnology niche in North America Abstract: Abstract: In 2012 scientists funded by the U.S. Defense Advanced Research Projects Agency (DARPA) produced 10 million doses of influenza vaccine in tobacco in a milestone deadline of one month. Recently the experimental antibody cocktail Zmapp™, also produced in tobacco, has shown promise as an emergency intervention therapeutic against Ebola. These two examples showcase how collaborative efforts between government, private industry and academia are applying plant biotechnology to combat pathogenic agents. Opportunities now exist repurposing tobacco expression systems for exciting new applications in synthetic biology, biofuels production and industrial enzyme production. As plant-produced biotherapeutics become more mainstream, government funding agencies need to be cognizant of the idea that many plant-produced biologicals are often safer, cheaper and just as efficacious as their counterparts that are produced using traditional expression systems.

  11. From pandemic preparedness to biofuel production: Tobacco finds its biotechnology niche in North America

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Powell, Joshua D.

    2015-09-25

    As part of my NSD Innovation awarded funds (95470 Powell Innovation: charge code N38540) one my deliverables was a review article for journal submission summarizing my work on this project. My NSD Innovation project is expressing Ebola antibodies in tobacco plants. I've attached abstract below Title: From pandemic preparedness to biofuel production: tobacco finds its biotechnology niche in North America Abstract: Abstract: In 2012 scientists funded by the U.S. Defense Advanced Research Projects Agency (DARPA) produced 10 million doses of influenza vaccine in tobacco in a milestone deadline of one month. Recently the experimental antibody cocktail Zmapp™, also produced inmore » tobacco, has shown promise as an emergency intervention therapeutic against Ebola. These two examples showcase how collaborative efforts between government, private industry and academia are applying plant biotechnology to combat pathogenic agents. Opportunities now exist repurposing tobacco expression systems for exciting new applications in synthetic biology, biofuels production and industrial enzyme production. Lastly, as plant-produced biotherapeutics become more mainstream, government funding agencies need to be cognizant of the idea that many plant-produced biologicals are often safer, cheaper and just as efficacious as their counterparts that are produced using traditional expression systems.« less

  12. From pandemic preparedness to biofuel production: Tobacco finds its biotechnology niche in North America

    SciTech Connect (OSTI)

    Powell, Joshua D.

    2015-09-25

    As part of my NSD Innovation awarded funds (95470 Powell Innovation: charge code N38540) one my deliverables was a review article for journal submission summarizing my work on this project. My NSD Innovation project is expressing Ebola antibodies in tobacco plants. I've attached abstract below Title: From pandemic preparedness to biofuel production: tobacco finds its biotechnology niche in North America Abstract: Abstract: In 2012 scientists funded by the U.S. Defense Advanced Research Projects Agency (DARPA) produced 10 million doses of influenza vaccine in tobacco in a milestone deadline of one month. Recently the experimental antibody cocktail Zmapp™, also produced in tobacco, has shown promise as an emergency intervention therapeutic against Ebola. These two examples showcase how collaborative efforts between government, private industry and academia are applying plant biotechnology to combat pathogenic agents. Opportunities now exist repurposing tobacco expression systems for exciting new applications in synthetic biology, biofuels production and industrial enzyme production. Lastly, as plant-produced biotherapeutics become more mainstream, government funding agencies need to be cognizant of the idea that many plant-produced biologicals are often safer, cheaper and just as efficacious as their counterparts that are produced using traditional expression systems.

  13. Acid-Catalyzed Algal Biomass Pretreatment for Integrated Lipid and Carbohydrate-Based Biofuels Production

    SciTech Connect (OSTI)

    Laurens, L. M. L.; Nagle, N.; Davis, R.; Sweeney, N.; Van Wychen, S.; Lowell, A.; Pienkos, P. T.

    2014-11-12

    One of the major challenges associated with algal biofuels production in a biorefinery-type setting is improving biomass utilization in its entirety, increasing the process energetic yields and providing economically viable and scalable co-product concepts. We demonstrate the effectiveness of a novel, integrated technology based on moderate temperatures and low pH to convert the carbohydrates in wet algal biomass to soluble sugars for fermentation, while making lipids more accessible for downstream extraction and leaving a protein-enriched fraction behind. We studied the effect of harvest timing on the conversion yields, using two algal strains; Chlorella and Scenedesmus, generating biomass with distinctive compositional ratios of protein, carbohydrate, and lipids. We found that the late harvest Scenedesmus biomass had the maximum theoretical biofuel potential at 143 gasoline gallon equivalent (GGE) combined fuel yield per dry ton biomass, followed by late harvest Chlorella at 128 GGE per ton. Our experimental data show a clear difference between the two strains, as Scenedesmus was more successfully converted in this process with a demonstrated 97 GGE per ton. Our measurements indicated a release of >90% of the available glucose in the hydrolysate liquors and an extraction and recovery of up to 97% of the fatty acids from wet biomass. Techno-economic analysis for the combined product yields indicates that this process exhibits the potential to improve per-gallon fuel costs by up to 33% compared to a lipids-only process for one strain, Scenedesmus, grown to the mid-point harvest condition.

  14. Fuel from Tobacco and Arundo Donax: Synthetic Crop for Direct Drop-in Biofuel Production through Re-routing the Photorespiration Intermediates and Engineering Terpenoid Pathways

    SciTech Connect (OSTI)

    2012-02-15

    PETRO Project: Biofuels offer renewable alternatives to petroleum-based fuels that reduce net greenhouse gas emissions to nearly zero. However, traditional biofuels production is limited not only by the small amount of solar energy that plants convert through photosynthesis into biological materials, but also by inefficient processes for converting these biological materials into fuels. Farm-ready, non-food crops are needed that produce fuels or fuel-like precursors at significantly lower costs with significantly higher productivity. To make biofuels cost-competitive with petroleum-based fuels, biofuels production costs must be cut in half.

  15. Biofuel Authority Rajasthan | Open Energy Information

    Open Energy Info (EERE)

    Authority Rajasthan Jump to: navigation, search Name: Biofuel Authority Rajasthan Place: Jaipur, Rajasthan, India Zip: 302005 Sector: Biofuels Product: Jaipur-based local body to...

  16. Biofuel Industries Group LLC | Open Energy Information

    Open Energy Info (EERE)

    Industries Group LLC Jump to: navigation, search Name: Biofuel Industries Group LLC Place: Adrian, Michigan Zip: 49221 Product: Biofuel Industries Group, LLC owns and operates the...

  17. Biofuel Energy Corporation | Open Energy Information

    Open Energy Info (EERE)

    Biofuel Energy Corporation Address: 1600 Broadway Place: Denver, Colorado Zip: 80202 Region: Rockies Area Sector: Biofuels Product: Ethanol producer Website: bfenergy.com...

  18. Cross-cutting Technologies for Advanced Biofuels

    Broader source: Energy.gov (indexed) [DOE]

    Cross-cutting Technologies for Advanced Biofuels Report-Out Webinar February 9, 2012 Adam ... Cost Largest cost contributor to biofuels production Impact of Harvesting...

  19. United Biofuels Private Limited | Open Energy Information

    Open Energy Info (EERE)

    United Biofuels Private Limited Jump to: navigation, search Name: United Biofuels Private Limited Place: Tamil Nadu, India Sector: Biomass Product: India-based owner and operator...

  20. Central Texas Biofuels LLC | Open Energy Information

    Open Energy Info (EERE)

    Texas Biofuels LLC Jump to: navigation, search Name: Central Texas Biofuels LLC Place: Giddings, Texas Zip: 78942 Product: Biodiesel producer in Giddings, Texas. References:...

  1. Enhanced Biofuels Technologies India | Open Energy Information

    Open Energy Info (EERE)

    Biofuels Technologies India Jump to: navigation, search Name: Enhanced Biofuels & Technologies India Place: Coimbatore, Tamil Nadu, India Zip: 641 029 Product: Tamil Nadu-based...

  2. BRMF Georgia Mountain Biofuels | Open Energy Information

    Open Energy Info (EERE)

    BRMF Georgia Mountain Biofuels Jump to: navigation, search Name: BRMFGeorgia Mountain Biofuels Place: Clayton, Georgia Product: Biodiesel plant developer in Georgia. References:...

  3. Ultimate Biofuels LLC | Open Energy Information

    Open Energy Info (EERE)

    Biofuels LLC Jump to: navigation, search Name: Ultimate Biofuels LLC Place: Ann Arbor, Michigan Zip: 48108 Product: Plans to develop sweet sorghum based ethanol plants. References:...

  4. US Biofuels Inc USB | Open Energy Information

    Open Energy Info (EERE)

    Inc USB Jump to: navigation, search Name: US Biofuels, Inc (USB) Place: Delaware Sector: Biofuels Product: A Delaware corporation and a wholly owned subsidiary of Australian...

  5. Biofuels America Inc | Open Energy Information

    Open Energy Info (EERE)

    Biofuels America Inc Jump to: navigation, search Name: Biofuels America Inc Place: Memphis, Tennessee Zip: 38126 Product: Tennessee-based company that has proposed building a...

  6. Independence Biofuels Inc | Open Energy Information

    Open Energy Info (EERE)

    Biofuels Inc Jump to: navigation, search Name: Independence Biofuels Inc Place: Middletown, Pennsylvania Zip: 17057 Sector: Renewable Energy, Vehicles Product: Provides clean,...

  7. Carolina Biofuels LLC | Open Energy Information

    Open Energy Info (EERE)

    Carolina Biofuels LLC Place: North Carolina Zip: 29687 Product: Biodiesel producer based in South Carolina. References: Carolina Biofuels LLC1 This article is a stub. You can...

  8. Flambeau River Biofuels | Open Energy Information

    Open Energy Info (EERE)

    Flambeau River Biofuels Jump to: navigation, search Name: Flambeau River Biofuels Place: Park Falls, Wisconsin Sector: Biomass Product: A subsidiary of Flambeau River Papers LLC...

  9. US Biofuels Ltd Ohio | Open Energy Information

    Open Energy Info (EERE)

    Biofuels Ltd Ohio Jump to: navigation, search Name: US Biofuels Ltd (Ohio) Place: Columbus, Ohio Zip: 43215 Product: Builder of a bioethanol plant in Richmond, OH. References: US...

  10. Greenlight Biofuels Ltd | Open Energy Information

    Open Energy Info (EERE)

    Ltd Jump to: navigation, search Name: Greenlight Biofuels Ltd. Place: Texas Product: Texas-based biodiesel producer. References: Greenlight Biofuels Ltd.1 This article is a stub....

  11. Biofuels of Colorado LLC | Open Energy Information

    Open Energy Info (EERE)

    of Colorado LLC Jump to: navigation, search Name: Biofuels of Colorado LLC Place: Denver, Colorado Zip: 80216 Product: Biodiesel producer in Denver, Colorado. References: Biofuels...

  12. Welsh Biofuels Ltd | Open Energy Information

    Open Energy Info (EERE)

    Welsh Biofuels Ltd Jump to: navigation, search Name: Welsh Biofuels Ltd Place: Brynmenym Bridgend, United Kingdom Zip: CF329RQ Sector: Biomass Product: Biomass fuel company...

  13. Middle Georgia Biofuels | Open Energy Information

    Open Energy Info (EERE)

    Georgia Biofuels Jump to: navigation, search Name: Middle Georgia Biofuels Place: East Dublin, Georgia Zip: 31027 Product: Georgia-based biodiesel producer. References: Middle...

  14. ASAlliances Biofuels Defunct | Open Energy Information

    Open Energy Info (EERE)

    ASAlliances Biofuels Defunct Jump to: navigation, search Name: ASAlliances Biofuels (Defunct) Place: Dallas, Texas Product: Former JV formed to construct three large-scale ethanol...

  15. Greenleaf Biofuels LLC | Open Energy Information

    Open Energy Info (EERE)

    Greenleaf Biofuels LLC Jump to: navigation, search Name: Greenleaf Biofuels LLC Place: Guilford, Connecticut Zip: 6437 Product: Connecticut-based biodiesel start-up planning to...

  16. BlackGold Biofuels | Open Energy Information

    Open Energy Info (EERE)

    BlackGold Biofuels Jump to: navigation, search Name: BlackGold Biofuels Place: Philadelphia, Pennsylvania Zip: 19107 Product: Philadelphia-based developer of a waste...

  17. North American Biofuels | Open Energy Information

    Open Energy Info (EERE)

    Biofuels Jump to: navigation, search Name: North American Biofuels Place: Bohemia, New York Product: Biodiesel eqwuipment manufacturer and producer of biodiesel Coordinates:...

  18. Midwestern Biofuels LLC | Open Energy Information

    Open Energy Info (EERE)

    Midwestern Biofuels LLC Jump to: navigation, search Name: Midwestern Biofuels LLC Place: South Shore, Kentucky Zip: 41175 Sector: Biomass Product: Kentucky-based biomass energy...

  19. United Biofuels Inc | Open Energy Information

    Open Energy Info (EERE)

    Biofuels Inc Jump to: navigation, search Name: United Biofuels Inc Place: Plover, Wisconsin Zip: 54467 Sector: Biomass Product: Wisconsin-based manufacturer and distributor of...

  20. India Biofuels Company IBFC | Open Energy Information

    Open Energy Info (EERE)

    IBFC Jump to: navigation, search Name: India Biofuels Company (IBFC) Place: Madhya Pradesh, India Product: India-based company that intends to develop biofuel feedstock...

  1. Memphis Biofuels LLC | Open Energy Information

    Open Energy Info (EERE)

    Biofuels LLC Jump to: navigation, search Name: Memphis Biofuels LLC Place: Memphis, Tennessee Product: Biodiesel start-up planning to construct a 36-million-gallon-per-year...

  2. Verde Biofuels Inc | Open Energy Information

    Open Energy Info (EERE)

    Biofuels Inc Jump to: navigation, search Name: Verde Biofuels Inc Place: Fountain Inn, South Carolina Product: The company is a biodiesel producer and distributor. References:...

  3. Triangle biofuels Industries | Open Energy Information

    Open Energy Info (EERE)

    Triangle biofuels Industries Jump to: navigation, search Name: Triangle biofuels Industries Place: Iowa Product: Biodiesel producer developing a 19mlpa plant in Johnston, IA....

  4. Borger Biofuels LLLP | Open Energy Information

    Open Energy Info (EERE)

    Borger Biofuels LLLP Jump to: navigation, search Name: Borger Biofuels LLLP Place: Borger, Texas Product: Developing a 110m gallon ethanol plant in Borger, Texas. Coordinates:...

  5. CREDA HPCL Biofuels | Open Energy Information

    Open Energy Info (EERE)

    CREDA HPCL Biofuels Jump to: navigation, search Name: CREDA-HPCL Biofuels Place: Raipur, India Zip: 492001 Sector: Renewable Energy Product: Indian-based joint venture between...

  6. PetroSun Biofuels China | Open Energy Information

    Open Energy Info (EERE)

    PetroSun Biofuels China Jump to: navigation, search Name: PetroSun Biofuels China Place: China Sector: Biofuels Product: PetroSun Biofuels China is a wholly owned subsidiary of...

  7. SG BioFuels | Open Energy Information

    Open Energy Info (EERE)

    SG BioFuels Jump to: navigation, search Name: SG BioFuels Place: Encinitas, California Zip: 92024 Product: California-based biofuel producer operating across the United States....

  8. Sun Biofuels SBF | Open Energy Information

    Open Energy Info (EERE)

    Biofuels SBF Jump to: navigation, search Name: Sun Biofuels (SBF) Place: London, Greater London, United Kingdom Zip: W8 7LP Product: London-based jatropha and biofuel project...

  9. SunBelt Biofuels | Open Energy Information

    Open Energy Info (EERE)

    SunBelt Biofuels Jump to: navigation, search Logo: SunBelt Biofuels Name: SunBelt Biofuels Place: Soperton, Georgia Zip: 30457 Sector: Biomass Product: Freedom Giant Miscanthus...

  10. Acid-Catalyzed Algal Biomass Pretreatment for Integrated Lipid and Carbohydrate-Based Biofuels Production

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Laurens, L. M. L.; Nagle, N.; Davis, R.; Sweeney, N.; Van Wychen, S.; Lowell, A.; Pienkos, P. T.

    2014-11-12

    One of the major challenges associated with algal biofuels production in a biorefinery-type setting is improving biomass utilization in its entirety, increasing the process energetic yields and providing economically viable and scalable co-product concepts. We demonstrate the effectiveness of a novel, integrated technology based on moderate temperatures and low pH to convert the carbohydrates in wet algal biomass to soluble sugars for fermentation, while making lipids more accessible for downstream extraction and leaving a protein-enriched fraction behind. We studied the effect of harvest timing on the conversion yields, using two algal strains; Chlorella and Scenedesmus, generating biomass with distinctive compositionalmore » ratios of protein, carbohydrate, and lipids. We found that the late harvest Scenedesmus biomass had the maximum theoretical biofuel potential at 143 gasoline gallon equivalent (GGE) combined fuel yield per dry ton biomass, followed by late harvest Chlorella at 128 GGE per ton. Our experimental data show a clear difference between the two strains, as Scenedesmus was more successfully converted in this process with a demonstrated 97 GGE per ton. Our measurements indicated a release of >90% of the available glucose in the hydrolysate liquors and an extraction and recovery of up to 97% of the fatty acids from wet biomass. Techno-economic analysis for the combined product yields indicates that this process exhibits the potential to improve per-gallon fuel costs by up to 33% compared to a lipids-only process for one strain, Scenedesmus, grown to the mid-point harvest condition.« less

  11. EERE Success Story-California: Cutting-Edge Biofuels Research...

    Broader source: Energy.gov (indexed) [DOE]

    The Advanced Biofuels Process Demonstration Unit (ABPDU) at DOE's Lawrence Berkeley National Laboratory provides state-of-the-art facilities for advanced biofuels and bioproducts ...

  12. Sandia Energy - One-Pot-to-Prep Biomass for Biofuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    One-Pot-to-Prep Biomass for Biofuels Home Renewable Energy Energy Transportation Energy Biofuels Facilities Partnership JBEI News News & Events Research & Capabilities Biomass...

  13. A Dynamic Simulation of the Indirect Land Use Implications of Recent Biofuel Production and Use in the United States.

    SciTech Connect (OSTI)

    Oladosu, Gbadebo A; Kline, Keith L

    2013-01-01

    The global indirect land use change (ILUC) implications of biofuel use in the United States of America (USA) from 2001 to 2010 are evaluated with a dynamic general equilibrium model. The effects of biofuels production on agricultural land area vary by year; from a net expansion of 0.17 ha per 1000 gallons produced (2002) to a net contraction of 0.13 ha per 1000 gallons (2018) in Case 1 of our simulation. In accordance with the general narrative about the implications of biofuel policy, agricultural land area increased in many regions of the world. However, oil-export dependent economies experienced agricultural land contraction because of reductions in their revenues. Reducing crude oil imports is a major goal of biofuel policy, but the land use change implications have received little attention in the literature. Simulations evaluating the effects of doubling supply elasticities for land and fossil resources show that these parameters can significantly influence the land use change estimates. Therefore, research that provides empirically-based and spatially-detailed agricultural land-supply curves and capability to project future fossil energy prices is critical for improving estimates of the effects of biofuel policy on land use.

  14. ARM Climate Research Facility Quarterly Value-Added Product Report...

    Office of Scientific and Technical Information (OSTI)

    ARM Climate Research Facility Quarterly Value-Added Product Report Citation Details In-Document Search Title: ARM Climate Research Facility Quarterly Value-Added Product Report ...

  15. Development of Agave as a dedicated biomass source: production of biofuels from whole plants

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Mielenz, Jonathan R.; Rodriguez, Jr, Miguel; Thompson, Olivia A; Yang, Xiaohan; Yin, Hengfu

    2015-01-01

    Background: Agave species can grow well in semi-arid marginal agricultural lands around the world. Selected Agave species are used largely for alcoholic beverage production in Mexico. There are expanding research efforts to use the plentiful residues (bagasse) for ethanol production as the beverage manufacturing process only uses the juice from the central core of mature plants. Here we investigate the potential of over a dozen Agave species, including three from cold semi-arid regions of the United States, to produce biofuels using the whole plant. Results: Ethanol was readily produced by Saccharomyces cerevisiae from hydrolysate of ten whole Agaves with themore » use of a proper blend of biomass degrading enzymes that overcomes toxicity of most of the species tested. Unlike yeast fermentations, Clostridium beijerinckii produced butanol plus acetone from nine species tested. Butyric acid, a precursor of butanol, was also present due to incomplete conversion during the screening process. Since Agave contains high levels of free and poly-fructose which are readily destroyed by acidic pretreatment, a two step process was used developed to depolymerized poly-fructose while maintaining its fermentability. The hydrolysate from before and after dilute acid processing was used in C. beijerinckii acetone and butanol fermentations with selected Agave species. Conclusions: Results have shown Agave s potential to be a source of fermentable sugars beyond the existing beverage species to now include species previously unfermentable by yeast, including cold tolerant lines. This development may stimulate development of Agave as a dedicated feedstock for biofuels in semi-arid regions throughout the globe.« less

  16. Development of Agave as a dedicated biomass source: production of biofuels from whole plants

    SciTech Connect (OSTI)

    Mielenz, Jonathan R.; Rodriguez, Jr, Miguel; Thompson, Olivia A; Yang, Xiaohan; Yin, Hengfu

    2015-01-01

    Background: Agave species can grow well in semi-arid marginal agricultural lands around the world. Selected Agave species are used largely for alcoholic beverage production in Mexico. There are expanding research efforts to use the plentiful residues (bagasse) for ethanol production as the beverage manufacturing process only uses the juice from the central core of mature plants. Here we investigate the potential of over a dozen Agave species, including three from cold semi-arid regions of the United States, to produce biofuels using the whole plant. Results: Ethanol was readily produced by Saccharomyces cerevisiae from hydrolysate of ten whole Agaves with the use of a proper blend of biomass degrading enzymes that overcomes toxicity of most of the species tested. Unlike yeast fermentations, Clostridium beijerinckii produced butanol plus acetone from nine species tested. Butyric acid, a precursor of butanol, was also present due to incomplete conversion during the screening process. Since Agave contains high levels of free and poly-fructose which are readily destroyed by acidic pretreatment, a two step process was used developed to depolymerized poly-fructose while maintaining its fermentability. The hydrolysate from before and after dilute acid processing was used in C. beijerinckii acetone and butanol fermentations with selected Agave species. Conclusions: Results have shown Agave s potential to be a source of fermentable sugars beyond the existing beverage species to now include species previously unfermentable by yeast, including cold tolerant lines. This development may stimulate development of Agave as a dedicated feedstock for biofuels in semi-arid regions throughout the globe.

  17. Biofuels Issues and Trends

    Gasoline and Diesel Fuel Update (EIA)

    Office of the Chief Economist Office of Energy Policy and New Uses Tony Radich Agricultural Economist tradich@oce.usda.gov EIA State Heating Oil and Propane Program Workshop Washington, DC July 13, 2016 Biofuel in diesel and heating oil Office of the Chief Economist Office of Energy Policy and New Uses Agenda *What is distillate fuel and which biofuels are compatible? *Federal, state, and local policies on biofuels in distillate fuel *Economics of biodiesel production, including the effects of

  18. Pathways for Algal Biofuels

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DEPARTMENT OF ENERGY BIOMASS PROGRAM Pathways for Algal Biofuels November 27, 2012 Daniel B. Fishman Lead Technology Development Manager 2 | Biomass Program eere.energy.gov Adds value to unproductive or marginal lands of a range of biofuel feedstocks suitable for diesel and aviation fuels Activities include R&D on algal feedstocks and issues related to the sustainable production of algae-derived biofuels. Algae Feedstocks Courtesy Sapphire Courtesy Sapphire Courtesy University of Arizona 3

  19. US Biofuels | Open Energy Information

    Open Energy Info (EERE)

    Name: US Biofuels Place: Rome, Georgia Product: Biodiesel producer based in Georgia References: US Biofuels1 This article is a stub. You can help OpenEI by expanding it. US...

  20. Hampton Biofuels | Open Energy Information

    Open Energy Info (EERE)

    Biofuels Jump to: navigation, search Name: Hampton Biofuels Place: New York, New York Zip: 10017 Product: A start-up looking to develop a biodiesel plant in upstate New York....

  1. %22Trojan Horse%22 strategy for deconstruction of biomass for biofuels production.

    SciTech Connect (OSTI)

    Simmons, Blake Alexander; Sinclair, Michael B.; Yu, Eizadora; Timlin, Jerilyn Ann; Hadi, Masood Z.; Tran-Gyamfi, Mary

    2011-02-01

    Production of renewable biofuels to displace fossil fuels currently consumed in the transportation sector is a pressing multiagency national priority (DOE/USDA/EERE). Currently, nearly all fuel ethanol is produced from corn-derived starch. Dedicated 'energy crops' and agricultural waste are preferred long-term solutions for renewable, cheap, and globally available biofuels as they avoid some of the market pressures and secondary greenhouse gas emission challenges currently facing corn ethanol. These sources of lignocellulosic biomass are converted to fermentable sugars using a variety of chemical and thermochemical pretreatments, which disrupt cellulose and lignin cross-links, allowing exogenously added recombinant microbial enzymes to more efficiently hydrolyze the cellulose for 'deconstruction' into glucose. This process is plagued with inefficiencies, primarily due to the recalcitrance of cellulosic biomass, mass transfer issues during deconstruction, and low activity of recombinant deconstruction enzymes. Costs are also high due to the requirement for enzymes and reagents, and energy-intensive cumbersome pretreatment steps. One potential solution to these problems is found in synthetic biology-engineered plants that self-produce a suite of cellulase enzymes. Deconstruction can then be integrated into a one-step process, thereby increasing efficiency (cellulose-cellulase mass-transfer rates) and reducing costs. The unique aspects of our approach are the rationally engineered enzymes which become Trojan horses during pretreatment conditions. During this study we rationally engineered Cazy enzymes and then integrated them into plant cells by multiple transformation techniques. The regenerated plants were assayed for first expression of these messages and then for the resulting proteins. The plants were then subjected to consolidated bioprocessing and characterized in detail. Our results and possible implications of this work on developing dedicated energy crops

  2. Cross-cutting Technologies for Advanced Biofuels | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cross-cutting Technologies for Advanced Biofuels Cross-cutting Technologies for Advanced Biofuels NREL report-out presentation at the CTAB webinar on crosscutting technologies for advanced biofuels. ctab_webinar_crosscutting.pdf (1.34 MB) More Documents & Publications Innovative Topics for Advanced Biofuels Conversion Technologies for Advanced Biofuels - Carbohydrates Production Conversion Technologies for Advanced Biofuels - Carbohydrates Upgrading

  3. Innovative Topics for Advanced Biofuels | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Innovative Topics for Advanced Biofuels Innovative Topics for Advanced Biofuels PNNL report-out presentation at the CTAB webinar on innovative topics for advanced biofuels. ctab_webinar_innovative_topics.pdf (1.55 MB) More Documents & Publications Cross-cutting Technologies for Advanced Biofuels Conversion Technologies for Advanced Biofuels - Carbohydrates Production Conversion Technologies for Advanced Biofuels - Bio-Oil Upgrading

  4. The watershed-scale optimized and rearranged landscape design (WORLD) model and local biomass processing depots for sustainable biofuel production: Integrated life cycle assessments

    SciTech Connect (OSTI)

    Eranki, Pragnya L.; Manowitz, David H.; Bals, Bryan D.; Izaurralde, Roberto C.; Kim, Seungdo; Dale, Bruce E.

    2013-07-23

    An array of feedstock is being evaluated as potential raw material for cellulosic biofuel production. Thorough assessments are required in regional landscape settings before these feedstocks can be cultivated and sustainable management practices can be implemented. On the processing side, a potential solution to the logistical challenges of large biorefi neries is provided by a network of distributed processing facilities called local biomass processing depots. A large-scale cellulosic ethanol industry is likely to emerge soon in the United States. We have the opportunity to influence the sustainability of this emerging industry. The watershed-scale optimized and rearranged landscape design (WORLD) model estimates land allocations for different cellulosic feedstocks at biorefinery scale without displacing current animal nutrition requirements. This model also incorporates a network of the aforementioned depots. An integrated life cycle assessment is then conducted over the unified system of optimized feedstock production, processing, and associated transport operations to evaluate net energy yields (NEYs) and environmental impacts.

  5. Simulating and evaluating best management practices for integrated landscape management scenarios in biofuel feedstock production

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ha, Miae; Wu, May

    2015-09-08

    Sound crop and land management strategies can maintain land productivity and improve the environmental sustainability of agricultural crop and feedstock production. With this study, it evaluates a strategy of incorporating landscape design and management concepts into bioenergy feedstock production. It examines the effect of land conversion and agricultural best management practices (BMPs) on water quality (nutrients and suspended sediments) and hydrology. The strategy was applied to the watershed of the South Fork Iowa River in Iowa, where the focus was on converting low-productivity land to provide cellulosic biomass and implementing riparian buffers. The Soil and Water Assessment Tool (SWAT) wasmore » employed to simulate the impact at watershed and sub-basin scales. The study compared the representation of buffers by using trapping efficiency and area ratio methods in SWAT. Landscape design and management scenarios were developed to quantify water quality under (i) current land use, (ii) partial land conversion to switchgrass, and (iii) riparian buffer implementation. Results show that implementation of vegetative barriers and riparian buffer can trap the loss of total nitrogen, total phosphorus, and sediment significantly. The effect increases with the increase of buffer area coverage. Implementing riparian buffer at 30 m width is able to produce 4 million liters of biofuels. When low-productivity land (15.2% of total watershed land area) is converted to grow switchgrass, suspended sediment, total nitrogen, total phosphorus, and nitrate loadings are reduced by 69.3%, 55.5%, 46.1%, and 13.4%, respectively. The results highlight the significant role of lower-productivity land and buffers in cellulosic biomass and provide insights into the design of an integrated landscape with a conservation buffer for future bioenergy feedstock production.« less

  6. Simulating and evaluating best management practices for integrated landscape management scenarios in biofuel feedstock production

    SciTech Connect (OSTI)

    Ha, Miae; Wu, May

    2015-09-08

    Sound crop and land management strategies can maintain land productivity and improve the environmental sustainability of agricultural crop and feedstock production. With this study, it evaluates a strategy of incorporating landscape design and management concepts into bioenergy feedstock production. It examines the effect of land conversion and agricultural best management practices (BMPs) on water quality (nutrients and suspended sediments) and hydrology. The strategy was applied to the watershed of the South Fork Iowa River in Iowa, where the focus was on converting low-productivity land to provide cellulosic biomass and implementing riparian buffers. The Soil and Water Assessment Tool (SWAT) was employed to simulate the impact at watershed and sub-basin scales. The study compared the representation of buffers by using trapping efficiency and area ratio methods in SWAT. Landscape design and management scenarios were developed to quantify water quality under (i) current land use, (ii) partial land conversion to switchgrass, and (iii) riparian buffer implementation. Results show that implementation of vegetative barriers and riparian buffer can trap the loss of total nitrogen, total phosphorus, and sediment significantly. The effect increases with the increase of buffer area coverage. Implementing riparian buffer at 30 m width is able to produce 4 million liters of biofuels. When low-productivity land (15.2% of total watershed land area) is converted to grow switchgrass, suspended sediment, total nitrogen, total phosphorus, and nitrate loadings are reduced by 69.3%, 55.5%, 46.1%, and 13.4%, respectively. The results highlight the significant role of lower-productivity land and buffers in cellulosic biomass and provide insights into the design of an integrated landscape with a conservation buffer for future bioenergy feedstock production.

  7. Toda Cathode Materials Production Facility | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cathode Materials Production Facility Toda Cathode Materials Production Facility 2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting arravt017_es_han_2013_p.pdf (1.45 MB) More Documents & Publications Toda Material/Component Production Facilities Toda Material/Component Production Facilities

  8. Algal Biofuels Fact Sheet

    SciTech Connect (OSTI)

    2009-10-27

    This fact sheet provides information on algal biofuels, which are generating considerable interest around the world. They may represent a sustainable pathway for helping to meet the U.S. biofuel production targets set by the Energy Independence and Security Act of 2007.

  9. Sources of biomass feedstock variability and the potential impact on biofuels production

    SciTech Connect (OSTI)

    Williams, C. Luke; Westover, Tyler L.; Emerson, Rachel M.; Tumuluru, Jaya Shankar; Li, Chenlin

    2015-11-23

    In this study, terrestrial lignocellulosic biomass has the potential to be a carbon neutral and domestic source of fuels and chemicals. However, the innate variability of biomass resources, such as herbaceous and woody materials, and the inconsistency within a single resource due to disparate growth and harvesting conditions, presents challenges for downstream processes which often require materials that are physically and chemically consistent. Intrinsic biomass characteristics, including moisture content, carbohydrate and ash compositions, bulk density, and particle size/shape distributions are highly variable and can impact the economics of transforming biomass into value-added products. For instance, ash content increases by an order of magnitude between woody and herbaceous feedstocks (from ~0.5 to 5 %, respectively) while lignin content drops by a factor of two (from ~30 to 15 %, respectively). This increase in ash and reduction in lignin leads to biofuel conversion consequences, such as reduced pyrolysis oil yields for herbaceous products as compared to woody material. In this review, the sources of variability for key biomass characteristics are presented for multiple types of biomass. Additionally, this review investigates the major impacts of the variability in biomass composition on four conversion processes: fermentation, hydrothermal liquefaction, pyrolysis, and direct combustion. Finally, future research processes aimed at reducing the detrimental impacts of biomass variability on conversion to fuels and chemicals are proposed.

  10. Sources of biomass feedstock variability and the potential impact on biofuels production

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Williams, C. Luke; Westover, Tyler L.; Emerson, Rachel M.; Tumuluru, Jaya Shankar; Li, Chenlin

    2015-11-23

    In this study, terrestrial lignocellulosic biomass has the potential to be a carbon neutral and domestic source of fuels and chemicals. However, the innate variability of biomass resources, such as herbaceous and woody materials, and the inconsistency within a single resource due to disparate growth and harvesting conditions, presents challenges for downstream processes which often require materials that are physically and chemically consistent. Intrinsic biomass characteristics, including moisture content, carbohydrate and ash compositions, bulk density, and particle size/shape distributions are highly variable and can impact the economics of transforming biomass into value-added products. For instance, ash content increases by anmore » order of magnitude between woody and herbaceous feedstocks (from ~0.5 to 5 %, respectively) while lignin content drops by a factor of two (from ~30 to 15 %, respectively). This increase in ash and reduction in lignin leads to biofuel conversion consequences, such as reduced pyrolysis oil yields for herbaceous products as compared to woody material. In this review, the sources of variability for key biomass characteristics are presented for multiple types of biomass. Additionally, this review investigates the major impacts of the variability in biomass composition on four conversion processes: fermentation, hydrothermal liquefaction, pyrolysis, and direct combustion. Finally, future research processes aimed at reducing the detrimental impacts of biomass variability on conversion to fuels and chemicals are proposed.« less

  11. Toda Material/Component Production Facilities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Toda Material/Component Production Facilities Toda Material/Component Production Facilities 2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. esarravt017_han_2010_p.pdf (2.09 MB) More Documents & Publications Toda Material/Component Production Facilities Toda Material/Component Production Facilities Toda Cathode Materials Production Facility

  12. BETO Project Improves Production of Renewable Chemical from Cellulosic...

    Energy Savers [EERE]

    The process could also be applied to biofuel production to make a cellulosic ethanol facility more commercially viable. Learn more from the Genomatica press release....

  13. ARM Climate Research Facility Quarterly Value-Added Product Report...

    Office of Scientific and Technical Information (OSTI)

    Program Document: ARM Climate Research Facility Quarterly Value-Added Product Report Citation Details In-Document Search Title: ARM Climate Research Facility Quarterly Value-Added ...

  14. ARM Climate Research Facility Quarterly Value-Added Product Report...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: ARM Climate Research Facility Quarterly Value-Added Product Report Citation Details In-Document Search Title: ARM Climate Research Facility Quarterly Value-Added ...

  15. ARM Climate Research Facility Quarterly Value-Added Product Report...

    Office of Scientific and Technical Information (OSTI)

    Climate Research Facility Quarterly Value-Added Product Report Fourth Quarter: July 1-September 30, 2012 Citation Details In-Document Search Title: ARM Climate Research Facility ...

  16. DOE and USDA Award $10 Million to Advance Biofuels, Bioenergy...

    Energy Savers [EERE]

    USDA Award 10 Million to Advance Biofuels, Bioenergy, and Biobased Products DOE and USDA Award 10 Million to Advance Biofuels, Bioenergy, and Biobased Products May 9, 2016 - ...

  17. Whole Turf Algae to biofuels-final-sm

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Whole Turf Algae Polyculture Biofuels The production and conversion of whole turf algae ... and sustainable production of biofuels from benthic algal polyculture turf biomass. ...

  18. NREL Algal Biofuels Projects and Partnerships (Brochure), NREL...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL is engaged in several algal biofuels research and development projects focused on improving the economics of the algal biofuels production process Novel Microalgal Production ...

  19. Metabolic Engineering of Clostridium thermocellum for Biofuel Production (2013 DOE JGI Genomics of Energy and Environment 8th Annual User Meeting)

    SciTech Connect (OSTI)

    Guess, Adam

    2013-03-01

    Adam Guss of Oak Ridge National Lab on "Metabolic engineering of Clostridium thermocellum for biofuel production" at the 8th Annual Genomics of Energy & Environment Meeting on March 28, 2013 in Walnut Creek, Calif.

  20. Advantages of Enzyme Could Lead to Improved Biofuels Production (Fact Sheet), NREL Highlights in Science, NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cellulase C. bescii CelA, a highly active and stable enzyme, exhibits a new cellulose digestion paradigm promoting inter-cellulase synergy. C. bescii CelA, a hydrolytic enzyme with multiple functional domains, may have several advantages over other fungal and bacterial cellulases for use in biofuels production: very high specific activity, stability at elevated tempera- tures, and a novel digestion mechanism. A research team from the U.S. Department of Energy's Bio- Energy Science Center, which

  1. Assessing methanotrophy and carbon fixation for biofuel production by Methanosarcina acetivorans

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Nazem-Bokaee, Hadi; Gopalakrishnan, Saratram; Ferry, James G.; Wood, Thomas K.; Maranas, Costas D.

    2016-01-17

    Methanosarcina acetivorans is a model archaeon with renewed interest due to its unique reversible methane production pathways. However, the mechanism and relevant pathways implicated in (co)utilizing novel carbon substrates in this organism are still not fully understood. This paper provides a comprehensive inventory of thermodynamically feasible routes for anaerobic methane oxidation, co-reactant utilization, and maximum carbon yields of major biofuel candidates by M. acetivorans. Here, an updated genome-scale metabolic model of M. acetivorans is introduced (iMAC868 containing 868 genes, 845 reactions, and 718 metabolites) by integrating information from two previously reconstructed metabolic models (i.e., iVS941 and iMB745), modifying 17 reactions,more » adding 24 new reactions, and revising 64 gene-proteinreaction associations based on newly available information. The new model establishes improved predictions of growth yields on native substrates and is capable of correctly predicting the knockout outcomes for 27 out of 28 gene deletion mutants. By tracing a bifurcated electron flow mechanism, the iMAC868 model predicts thermodynamically feasible (co)utilization pathway of methane and bicarbonate using various terminal electron acceptors through the reversal of the aceticlastic pathway. In conclusion, this effort paves the way in informing the search for thermodynamically feasible ways of (co)utilizing novel carbon substrates in the domain Archaea.« less

  2. Developing Research Capabilities in Energy Biosciences: Design principles of photosynthetic biofuel production.

    SciTech Connect (OSTI)

    Donald D. Brown; David Savage

    2012-06-30

    The current fossil fuel-based energy infrastructure is not sustainable. Solar radiation is a plausible alternative, but realizing it as such will require significant technological advances in the ability to harvest light energy and convert it into suitable fuels. The biological system of photosynthesis can carry out these reactions, and in principle could be engineered using the tools of synthetic biology. One desirable implementation would be to rewire the reactions of a photosynthetic bacterium to direct the energy harvested from solar radiation into the synthesis of the biofuel H2. Proposed here is a series of experiments to lay the basic science groundwork for such an attempt. The goal is to elucidate the transcriptional network of photosynthesis using a novel driver-reporter screen, evolve more robust hydrogenases for improved catalysis, and to test the ability of the photosynthetic machinery to directly produce H2 in vivo. The results of these experiments will have broad implications for the understanding of photosynthesis, enzyme function, and the engineering of biological systems for sustainable energy production. The ultimate impact could be a fundamental transformation of the world's energy economy.

  3. Engineering Biofuels from Photosynthetic Bacteria - Energy Innovation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Portal Biomass and Biofuels Biomass and Biofuels Find More Like This Return to Search Engineering Biofuels from Photosynthetic Bacteria Argonne National Laboratory Contact ANL About This Technology <em>Schematic of the overall approach including the invented method for production of co-factors and anchors as biofuel precursors.</em> Schematic of the overall approach including the invented method for production of co-factors and anchors as biofuel precursors. Technology Marketing

  4. Production Facility System Reliability Analysis Report

    SciTech Connect (OSTI)

    Dale, Crystal Buchanan; Klein, Steven Karl

    2015-10-06

    This document describes the reliability, maintainability, and availability (RMA) modeling of the Los Alamos National Laboratory (LANL) design for the Closed Loop Helium Cooling System (CLHCS) planned for the NorthStar accelerator-based 99Mo production facility. The current analysis incorporates a conceptual helium recovery system, beam diagnostics, and prototype control system into the reliability analysis. The results from the 1000 hr blower test are addressed.

  5. Toda Material/Component Production Facilities

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Merit Review June 7-9, 2010 Washington D.C. Jun Nakano, David Han, Yasuhiro Abe Toda America Inc. Project ID: ARRAVT017 Esarravt017_han_2010_p_final This presentation does not contain any proprietary, confidential, or otherwise restricted information. Overview Li-ion Cathode Materials Production Facility Timelines Start: February, 2010 Finish: December, 2013 1 st Line Schedule: Feb., 2011 Completion: ~10% Challenges Compressed schedule - first line production within 1 year

  6. Carbon Calculator for Land Use Change from Biofuels Production (CCLUB). Users' manual and technical documentation.

    SciTech Connect (OSTI)

    Mueller, S; Dunn, JB; Wang, M

    2012-06-07

    The Carbon Calculator for Land Use Change from Biofuels Production (CCLUB) calculates carbon emissions from land use change (LUC) for four different ethanol production pathways including corn grain ethanol and cellulosic ethanol from corn stover, miscanthus, and switchgrass. This document discusses the version of CCLUB released May 31, 2012 which includes corn, as did the previous CCLUB version, and three cellulosic feedstocks: corn stover, miscanthus, and switchgrass. CCLUB calculations are based upon two data sets: land change areas and above- and below-ground carbon content. Table 1 identifies where these data are stored and used within the CCLUB model, which is built in MS Excel. Land change area data is from Purdue University's Global Trade Analysis Project (GTAP) model, a computable general equilibrium (CGE) economic model. Section 2 describes the GTAP data CCLUB uses and how these data were modified to reflect shrubland transitions. Feedstock- and spatially-explicit below-ground carbon content data for the United States were generated with a surrogate model for CENTURY's soil organic carbon sub-model (Kwon and Hudson 2010) as described in Section 3. CENTURY is a soil organic matter model developed by Parton et al. (1987). The previous CCLUB version used more coarse domestic carbon emission factors. Above-ground non-soil carbon content data for forest ecosystems was sourced from the USDA/NCIAS Carbon Online Estimator (COLE) as explained in Section 4. We discuss emission factors used for calculation of international greenhouse gas (GHG) emissions in Section 5. Temporal issues associated with modeling LUC emissions are the topic of Section 6. Finally, in Section 7 we provide a step-by-step guide to using CCLUB and obtaining results.

  7. Biofuels combustion*

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Westbrook, Charles K.

    2013-01-04

    This review describes major features of current research in renewable fuels derived from plants and from fatty acids. Recent and ongoing fundamental studies of biofuel molecular structure, oxidation reactions, and biofuel chemical properties are reviewed, in addition to combustion applications of biofuels in the major types of engines in which biofuels are used. Biofuels and their combustion are compared with combustion features of conventional petroleum-based fuels. Two main classes of biofuels are described, those consisting of small, primarily alcohol, fuels (particularly ethanol, n-butanol, and iso-pentanol) that are used primarily to replace or supplement gasoline and those derived from fatty acidsmore » and used primarily to replace or supplement conventional diesel fuels. As a result, research efforts on so-called second- and third-generation biofuels are discussed briefly.« less

  8. Biofuels combustion*

    SciTech Connect (OSTI)

    Westbrook, Charles K.

    2013-01-04

    This review describes major features of current research in renewable fuels derived from plants and from fatty acids. Recent and ongoing fundamental studies of biofuel molecular structure, oxidation reactions, and biofuel chemical properties are reviewed, in addition to combustion applications of biofuels in the major types of engines in which biofuels are used. Biofuels and their combustion are compared with combustion features of conventional petroleum-based fuels. Two main classes of biofuels are described, those consisting of small, primarily alcohol, fuels (particularly ethanol, n-butanol, and iso-pentanol) that are used primarily to replace or supplement gasoline and those derived from fatty acids and used primarily to replace or supplement conventional diesel fuels. As a result, research efforts on so-called second- and third-generation biofuels are discussed briefly.

  9. Heartland Biofuel | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name: Heartland Biofuel Place: Flora, Indiana Product: Biodiesel producer that operates a 1.7m plant in Flora, Indiana. Coordinates: 32.54209,...

  10. Biofuels Digest | Open Energy Information

    Open Energy Info (EERE)

    Digest Jump to: navigation, search Name: Biofuels Digest Address: 801 Brickell Avenue Suite 900 Place: Miami, Florida Zip: 33131 Sector: Services Product: Information Year Founded:...

  11. Verenium Biofuels Fact Sheet | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Verenium Biofuels Fact Sheet Verenium Biofuels Fact Sheet Operation and maintenance of a demonstration-scale facility in Jennings, Louisiana with some capital additions. Verenium_Biofuels.pdf (19.29 KB) More Documents & Publications Pacific Ethanol, Inc Verenium Pilot- and Demonstration-Scale Biorefinery Pacific Ethanol, Inc

  12. Hanford, WA Selected as Plutonium Production Facility | National Nuclear

    National Nuclear Security Administration (NNSA)

    Security Administration | (NNSA) Hanford, WA Selected as Plutonium Production Facility Hanford, WA Selected as Plutonium Production Facility Hanford, WA Groves selects Hanford, Washington, as site for full-scale plutonium production and separation facilities. Three reactors--B, D, and F--are built

  13. Toda Material/Component Production Facilities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting arravt017_es_han_2012_p.pdf (1.52 MB) More Documents & Publications Toda Material/Component Production Facilities Toda Cathode Materials Production Facility Toda Material/Component Production Facilities

  14. Toda Material/Component Production Facilities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation arravt017_es_han_2011_p.pdf (1.08 MB) More Documents & Publications Toda Material/Component Production Facilities Toda Material/Component Production Facilities Toda Cathode Materials Production Facility

  15. Legislating Biofuels in the United States (Presentation)

    SciTech Connect (OSTI)

    Clark, W.

    2008-07-01

    Legislation supporting U.S. biofuels production can help to reduce petroleum consumption and increase the nation's energy security.

  16. Production of Advanced Biofuels via Liquefaction - Hydrothermal Liquefaction Reactor Design: April 5, 2013

    SciTech Connect (OSTI)

    Knorr, D.; Lukas, J.; Schoen, P.

    2013-11-01

    This report provides detailed reactor designs and capital costs, and operating cost estimates for the hydrothermal liquefaction reactor system, used for biomass-to-biofuels conversion, under development at Pacific Northwest National Laboratory. Five cases were developed and the costs associated with all cases ranged from $22 MM/year - $47 MM/year.

  17. A Review of DOE Biofuels Program | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A Review of DOE Biofuels Program A Review of DOE Biofuels Program Presentation given by the Biomass Program's Zia Haq at NIST's 4th International Conference on Biofuels Standards on the Biomass Program. nist_haq.pdf (858.66 KB) More Documents & Publications Technology Pathway Selection Effort DOE Perspectives on Advanced Hydrocarbon-based Biofuels Advanced Biofuels Cost of Production

  18. Conversion Technologies for Advanced Biofuels … Bio-Oil Upgrading

    Broader source: Energy.gov (indexed) [DOE]

    Focus on process development activities and underlying science for biofuels production. ... Bio-oil analysis National Advanced Biofuels Consortium Hydrothermal liquefaction ...

  19. Biofuel-Producing Lactobacillus Strain - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Microbial transformation of biomass into biofuels remains an important part of the United ... products and second generation biofuels such as isobutanol More Information ...

  20. Milestone Reached: New Process Reduces Cost and Risk of Biofuel...

    Broader source: Energy.gov (indexed) [DOE]

    a bio-oil intermediate into biofuel, making the conversion process expensive. Battelle's new process substantially reduces the cost and risk of biofuel production and helps make ...

  1. Mapping biofuel field: A bibliometric evaluation of research output

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Starbuck Downes, C. Meghan; Boeing, Wiebke; Deng, Shuguang; Ivey, Shanna; Khandan, Nirmal; Schaub, Tanner; Unc, Adrian; Van Voorhies, Wayne; Lammers, Pete

    2013-08-14

    Fundamental research as part of the National Alliance for Advanced Biofuels and Bioproducts for the advancement of technology for algal based biofuel products.

  2. BioFuels Energy LLC | Open Energy Information

    Open Energy Info (EERE)

    BioFuels Energy LLC Jump to: navigation, search Name: BioFuels Energy, LLC Place: Encinitas, California Zip: 92024 Sector: Renewable Energy Product: Encinitas-based renewable...

  3. Deadwood Biofuels LLC Kramer Energy Group | Open Energy Information

    Open Energy Info (EERE)

    Deadwood Biofuels LLC Kramer Energy Group Jump to: navigation, search Name: Deadwood Biofuels LLC (Kramer Energy Group) Place: Rapid City, South Dakota Zip: 57709 Product: South...

  4. Biofuels Center of North Carolina | Open Energy Information

    Open Energy Info (EERE)

    Center of North Carolina Jump to: navigation, search Name: Biofuels Center of North Carolina Place: Oxford, North Carolina Zip: 27565 Sector: Biofuels Product: State-funded,...

  5. Seattle Biodiesel aka Seattle BioFuels | Open Energy Information

    Open Energy Info (EERE)

    Seattle Biodiesel aka Seattle BioFuels Jump to: navigation, search Name: Seattle Biodiesel (aka Seattle BioFuels) Place: Seattle, Washington Sector: Renewable Energy Product:...

  6. Mission Biofuels India Pvt Ltd MBIPL | Open Energy Information

    Open Energy Info (EERE)

    Biofuels India Pvt Ltd MBIPL Jump to: navigation, search Name: Mission Biofuels India Pvt Ltd (MBIPL) Place: Mumbai, Maharashtra, India Zip: 400076 Sector: Wind energy Product:...

  7. HERO BX formerly Lake Erie Biofuels | Open Energy Information

    Open Energy Info (EERE)

    HERO BX formerly Lake Erie Biofuels Jump to: navigation, search Name: HERO BX (formerly Lake Erie Biofuels) Place: Erie, Pennsylvania Product: Pennsylvania-based project developer...

  8. AE Biofuels Inc formerly Marwich II Ltd | Open Energy Information

    Open Energy Info (EERE)

    Marwich II Ltd Jump to: navigation, search Name: AE Biofuels Inc. (formerly Marwich II Ltd.) Place: West Palm Beach, Florida Zip: 33414 Sector: Biofuels Product: Marwich II, Ltd....

  9. Ultra Soy of America DBA USA Biofuels | Open Energy Information

    Open Energy Info (EERE)

    Ultra Soy of America DBA USA Biofuels Jump to: navigation, search Name: Ultra Soy of America (DBA USA Biofuels) Place: Fort Wayne, Indiana Zip: 46898 Sector: Biofuels Product: An...

  10. New Biofuel Technology to Diversify U.S. Energy Portfolio

    Broader source: Energy.gov [DOE]

    The clean energy startup Agrivida and the ethanol producer POET are partnering to enhance biofuel production.

  11. A New Biofuels Technology Blooms in Iowa | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A New Biofuels Technology Blooms in Iowa A New Biofuels Technology Blooms in Iowa Addthis Description Cellulosic biofuels made from agricultural waste have caught the attention of many farmers and could be the next revolution in renewable biofuels production. This video shows how an innovative technology that converts waste products from the corn harvest into renewable biofuels will help the U.S. produce billions of gallons of cellulosic biofuels over the coming decade. It will also stimulate

  12. Turning Bacteria into Fuel: Cyanobacteria Designed for Solar-Powered Highly Efficient Production of Biofuels

    SciTech Connect (OSTI)

    2010-01-01

    Broad Funding Opportunity Announcement Project: ASU is engineering a type of photosynthetic bacteria that efficiently produce fatty acidsa fuel precursor for biofuels. This type of bacteria, called Synechocystis, is already good at converting solar energy and carbon dioxide (CO2) into a type of fatty acid called lauric acid. ASU has modified the organism so it continuously converts sunlight and CO2 into fatty acidsoverriding its natural tendency to use solar energy solely for cell growth and maximizing the solar-to-fuel conversion process. ASUs approach is different because most biofuels research focuses on increasing cellular biomass and not on excreting fatty acids. The project has also identified a unique way to convert the harvested lauric acid into a fuel that can be easily blended with existing transportation fuels.

  13. EERE Success Story-BASF Catalysts Opens Cathode Production Facility |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy BASF Catalysts Opens Cathode Production Facility EERE Success Story-BASF Catalysts Opens Cathode Production Facility March 5, 2015 - 6:27pm Addthis BASF Catalysts, a battery component manufacturer, is running the largest cathode materials manufacturing facility in the country with support from EERE's Vehicle Technologies Office (VTO). The factory was supported by a $25 million American Recovery and Reinvestment Act project. Located in Elyria, Ohio, the facility at full

  14. A New Biofuels Technology Blooms in Iowa

    Office of Energy Efficiency and Renewable Energy (EERE)

    Cellulosic biofuels made from agricultural waste have caught the attention of many farmers and could be the next revolution in renewable biofuels production. This video shows how an innovative...

  15. Gem BioFuels | Open Energy Information

    Open Energy Info (EERE)

    BioFuels Jump to: navigation, search Name: Gem BioFuels Place: Douglas, Isle of Man, United Kingdom Zip: IM1 4LB Product: Ilse of Man-based biodiesel feedstock developer with...

  16. E Biofuels LLC | Open Energy Information

    Open Energy Info (EERE)

    Biofuels LLC Jump to: navigation, search Name: E-Biofuels LLC Place: Fishers, Indiana Zip: 46038 Product: Indiana-based biodiesel producer. Coordinates: 43.01397, -77.471829...

  17. Pan Am Biofuels Inc | Open Energy Information

    Open Energy Info (EERE)

    Am Biofuels Inc Jump to: navigation, search Name: Pan-Am Biofuels Inc Place: Park City, Utah Zip: 84068 Product: Utah-based jatropha oil feedstock producer. References: Pan-Am...

  18. Pinnacle Biofuels Inc | Open Energy Information

    Open Energy Info (EERE)

    Biofuels Inc Jump to: navigation, search Name: Pinnacle Biofuels, Inc. Place: Crossett, Arkansas Zip: 71635 Product: Pinnacle owns and operates a 37.9mLpa (10m gallon) capacity...

  19. Argonaut BioFuels | Open Energy Information

    Open Energy Info (EERE)

    Argonaut BioFuels Jump to: navigation, search Name: Argonaut BioFuels Place: Virginia Product: Manufacturer of wood pellets that has a plant in Virginia, US. References: Argonaut...

  20. Advanced Cellulosic Biofuels | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cellulosic Biofuels Advanced Cellulosic Biofuels Breakout Session 2-B: New/Emerging Pathways Advanced Cellulosic Biofuels Dr. Robert Graham, Chief Executive Officer and Chairman, Ensyn Corporation graham_bioenergy_2015.pdf (1.94 MB) More Documents & Publications Cellulosic Liquid Fuels Commercial Production Today Production of Renewable Fuels from Biomass by FCC Co-processing 2013 Peer Review Presentations-Integrated Biorefineries

  1. Quality, Performance, and Emission Impacts of Biofuels and Biofuel...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications Performance of Biofuels and Biofuel Blends Performance of Biofuels and Biofuel Blends Quality, Performance, and Emission Impacts of Biofuels and ...

  2. A New Biofuels Technology Blooms in Iowa

    SciTech Connect (OSTI)

    Mathisen, Todd; Bruch, Don

    2010-01-01

    Cellulosic biofuels made from agricultural waste have caught the attention of many farmers and could be the next revolution in renewable biofuels production. This video shows how an innovative technology that converts waste products from the corn harvest into renewable biofuels will help the U.S. produce billions of gallons of cellulosic biofuels over the coming decade. It will also stimulate local economies and reduce U.S. dependence on foreign oil.

  3. A New Biofuels Technology Blooms in Iowa

    ScienceCinema (OSTI)

    Mathisen, Todd; Bruch, Don;

    2013-05-29

    Cellulosic biofuels made from agricultural waste have caught the attention of many farmers and could be the next revolution in renewable biofuels production. This video shows how an innovative technology that converts waste products from the corn harvest into renewable biofuels will help the U.S. produce billions of gallons of cellulosic biofuels over the coming decade. It will also stimulate local economies and reduce U.S. dependence on foreign oil.

  4. EA-1727: AE Polysilicon Corporation Polysilicon Production Facility in

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fairless Hills, PA | Department of Energy 7: AE Polysilicon Corporation Polysilicon Production Facility in Fairless Hills, PA EA-1727: AE Polysilicon Corporation Polysilicon Production Facility in Fairless Hills, PA November 1, 2010 EA-1727: Final Environmental Assessment Loan Guarantee To AE Polysilicon Corporation for Construction And Startup Of Their Phase 2 Polysilicon Production Facility In Fairless Hills, Pennsylvania November 19, 2010 EA-1727: Finding of No Significant Impact

  5. KCP celebrates production milestone at new facility | National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    celebrates production milestone at new facility | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing...

  6. Stowe Power Production Plant Biomass Facility | Open Energy Informatio...

    Open Energy Info (EERE)

    Stowe Power Production Plant Sector Biomass Facility Type Landfill Gas Location Montgomery County, Pennsylvania Coordinates 40.2290075, -75.3878525 Show Map Loading map......

  7. ARM Climate Research Facility Quarterly Value-Added Product Report

    SciTech Connect (OSTI)

    Sivaraman, Chitra

    2014-11-21

    The purpose of this report is to provide a concise status update for value-added products (VAP) implemented by the Atmospheric Radiation Measurement (ARM) Climate Research Facility.

  8. Isotope production facility produces cancer-fighting actinium

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cancer therapy gets a boost from new isotope Isotope production facility produces cancer-fighting actinium A new medical isotope project shows promise for rapidly producing major ...

  9. Decommissioning of U.S. Uranium Production Facilities

    Reports and Publications (EIA)

    1995-01-01

    This report analyzes the uranium production facility decommissioning process and its potential impact on uranium supply and prices. 1995 represents the most recent publication year.

  10. EA-1727: AE Polysilicon Corporation Polysilicon Production Facility...

    Broader source: Energy.gov (indexed) [DOE]

    In Fairless Hills, Pennsylvania November 19, 2010 EA-1727: Finding of No Significant Impact Construction and Startup of their Phase 2 Polysilicon Production Facility in...

  11. Production and Injection data for NV Binary facilities

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Mines, Greg

    Excel files are provided with well production and injection data for binary facilities in Nevada. The files contain the data that reported montly to the Nevada Bureau of Mines and Geology (NBMG) by the facility operators. this data has been complied into Excel spreadsheets for each of the facilities given on the NBMG web site.

  12. Production and Injection data for NV Binary facilities

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Mines, Greg

    2013-12-24

    Excel files are provided with well production and injection data for binary facilities in Nevada. The files contain the data that reported montly to the Nevada Bureau of Mines and Geology (NBMG) by the facility operators. this data has been complied into Excel spreadsheets for each of the facilities given on the NBMG web site.

  13. Regional Algal Biofuel Production Potential in the Coterminous United States as Affected by Resource Availability Trade-offs

    SciTech Connect (OSTI)

    Venteris, Erik R.; Skaggs, Richard; Wigmosta, Mark S.; Coleman, Andre M.

    2014-03-15

    The warm sunny climate and unoccupied arid lands in the American southwest are favorable factors for algae cultivation. However, additional resources affect the overall viability of specific sites and regions. We investigated the tradeoffs between growth rate, water, and CO2 availability and costs for two strains: N. salina and Chlorella sp. We conducted site selection exercises (~88,000 US sites) to produce 21 billion gallons yr-1 (BGY) of renewable diesel (RD). Experimental trials from the National Alliance for Advanced Biofuels and Bio-Products (NAABB) team informed the growth model of our Biomass Assessment Tool (BAT). We simulated RD production by both lipid extraction and hydrothermal liquefaction. Sites were prioritized by the net value of biofuel minus water and flue gas costs. Water cost models for N. salina were based on seawater and high salinity groundwater and for Chlorella, fresh and brackish groundwater. CO2 costs were based on a flue gas delivery model. Selections constrained by production and water were concentrated along the Gulf of Mexico and southeast Atlantic coasts due to high growth rates and low water costs. Adding flue gas constraints increased the spatial distribution, but the majority of sites remained in the southeast. The 21 BGY target required ~3.8 million hectares of mainly forest (41.3%) and pasture (35.7%). Exclusion in favor of barren and scrub lands forced most production to the southwestern US, but with increased water consumption (5.7 times) and decreased economic efficiency (-38%).

  14. Bioproducts to Enable Biofuels Workshop

    Broader source: Energy.gov [DOE]

    The Bioenergy Technologies Office (BETO) is hosting the one-day Bioproducts to Enable Biofuels Workshop on July 16, 2015, in Westminster, Colorado. BETO is seeking to collect information from key industry, university, and national laboratory stakeholders, regarding the challenges associated with the coproduction of biomass derived chemicals and products alongside biofuels.

  15. C2 Biofuels | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name: C2 Biofuels Place: Atlanta, Georgia Product: Ethanol production from cellulose. Coordinates: 33.748315, -84.391109 Show Map Loading...

  16. Conversion Technologies for Advanced Biofuels - Carbohydrates Upgrading |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Upgrading Conversion Technologies for Advanced Biofuels - Carbohydrates Upgrading PNNL report-out presentation at the CTAB webinar on carbohydrates upgrading. ctab_webinar_carbohydrates_upgrading.pdf (583.49 KB) More Documents & Publications Advanced Conversion Roadmap Workshop Conversion Technologies for Advanced Biofuels - Carbohydrates Production Innovative Topics for Advanced Biofuels

  17. World Biofuels Study

    SciTech Connect (OSTI)

    Alfstad,T.

    2008-10-01

    This report forms part of a project entitled 'World Biofuels Study'. The objective is to study world biofuel markets and to examine the possible contribution that biofuel imports could make to help meet the Renewable Fuel Standard (RFS) of the Energy Independence and Security Act of 2007 (EISA). The study was sponsored by the Biomass Program of the Assistant Secretary for Energy Efficiency and Renewable Energy (EERE), U.S. Department of Energy. It is a collaborative effort among the Office of Policy and International Affairs (PI), Department of Energy and Oak Ridge National Laboratory (ORNL), National Renewable Energy Laboratory (NREL) and Brookhaven National Laboratory (BNL). The project consisted of three main components: (1) Assessment of the resource potential for biofuel feedstocks such as sugarcane, grains, soybean, palm oil and lignocellulosic crops and development of supply curves (ORNL). (2) Assessment of the cost and performance of biofuel production technologies (NREL). (3) Scenario-based analysis of world biofuel markets using the ETP global energy model with data developed in the first parts of the study (BNL). This report covers the modeling and analysis part of the project conducted by BNL in cooperation with PI. The Energy Technology Perspectives (ETP) energy system model was used as the analytical tool for this study. ETP is a 15 region global model designed using the MARKAL framework. MARKAL-based models are partial equilibrium models that incorporate a description of the physical energy system and provide a bottom-up approach to study the entire energy system. ETP was updated for this study with biomass resource data and biofuel production technology cost and performance data developed by ORNL and NREL under Tasks 1 and 2 of this project. Many countries around the world are embarking on ambitious biofuel policies through renewable fuel standards and economic incentives. As a result, the global biofuel demand is expected to grow very rapidly over

  18. Cancer-fighting treatment gets boost from Isotope Production Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cancer-fighting treatment gets boost from Isotope Production Facility Cancer-fighting treatment gets boost from Isotope Production Facility New capability expands existing program, creates treatment product in quantity. April 13, 2012 Medical Isotope Work Moves Cancer Treatment Agent Forward Medical Isotope Work Moves Cancer Treatment Agent Forward - Los Alamos scientist Meiring Nortier holds a thorium foil test target for the proof-of-concept production experiments. Research indicates that it

  19. National Algal Biofuels Technology Roadmap

    SciTech Connect (OSTI)

    Ferrell, John; Sarisky-Reed, Valerie

    2010-05-01

    The framework for National Algal Biofuels Technology Roadmap was constructed at the Algal Biofuels Technology Roadmap Workshop, held December 9-10, 2008, at the University of Maryland-College Park. The Workshop was organized by the Biomass Program to discuss and identify the critical challenges currently hindering the development of a domestic, commercial-scale algal biofuels industry. This Roadmap presents information from a scientific, economic, and policy perspectives that can support and guide RD&D investment in algal biofuels. While addressing the potential economic and environmental benefits of using algal biomass for the production of liquid transportation fuels, the Roadmap describes the current status of algae RD&D. In doing so, it lays the groundwork for identifying challenges that likely need to be overcome for algal biomass to be used in the production of economically viable biofuels.

  20. International Trade of Biofuels (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2013-05-01

    In recent years, the production and trade of biofuels has increased to meet global demand for renewable fuels. Ethanol and biodiesel contribute much of this trade because they are the most established biofuels. Their growth has been aided through a variety of policies, especially in the European Union, Brazil, and the United States, but ethanol trade and production have faced more targeted policies and tariffs than biodiesel. This fact sheet contains a summary of the trade of biofuels among nations, including historical data on production, consumption, and trade.

  1. New Understanding of One of Nature's Best Biocatalysts for Biofuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Production | U.S. DOE Office of Science (SC) New Understanding of One of Nature's Best Biocatalysts for Biofuels Production Biological and Environmental Research (BER) BER Home About Research Facilities Science Highlights Searchable Archive of BER Highlights External link Benefits of BER Funding Opportunities Biological & Environmental Research Advisory Committee (BERAC) Community Resources Contact Information Biological and Environmental Research U.S. Department of Energy

  2. Liquefaction of Forest Biomass to Drop-inŽ Hydrocarbon Biofuels...

    Broader source: Energy.gov (indexed) [DOE]

    Liquefaction of Forest Biomass to "Drop-in" Hydrocarbon Biofuels Contract EE0005974 March ... of technologies for production of biofuels and biobased products * Supports the ...

  3. Hydrogen Production and Dispensing Facility Opens at W. Va. Airport |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Hydrogen Production and Dispensing Facility Opens at W. Va. Airport Hydrogen Production and Dispensing Facility Opens at W. Va. Airport August 19, 2009 - 1:00pm Addthis Major General Allen Tackett of the National Guard's 130th Airlift Wing dispenses the first fill-up of hydrogen fuel from the Yeager facility. Major General Allen Tackett of the National Guard's 130th Airlift Wing dispenses the first fill-up of hydrogen fuel from the Yeager facility. Washington, D.C. -- A

  4. Workshop on Conversion Technologies for Advanced Biofuels - Carbohydrates |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Carbohydrates Workshop on Conversion Technologies for Advanced Biofuels - Carbohydrates DOE report-out presentation at the CTAB webinar on carbohydrates. ctab_webinar_carbohydrates_intro.pdf (720.5 KB) More Documents & Publications Conversion Technologies for Advanced Biofuels - Carbohydrates Production Innovative Topics for Advanced Biofuels Cross-cutting Technologies for Advanced Biofuels

  5. Beetles, Biofuel, and Coffee

    SciTech Connect (OSTI)

    Ceja-Navarro, Javier

    2015-05-06

    Berkeley Lab scientist Javier Ceja-Navarro discusses his research on the microbial populations found the guts of insects, specifically the coffee berry borer, which may lead to better pest management and the passalid beetle, which could lead to improved biofuel production.

  6. Biofuel impacts on water.

    SciTech Connect (OSTI)

    Tidwell, Vincent Carroll; Malczynski, Leonard A.; Sun, Amy Cha-Tien

    2011-01-01

    Sandia National Laboratories and General Motors Global Energy Systems team conducted a joint biofuels systems analysis project from March to November 2008. The purpose of this study was to assess the feasibility, implications, limitations, and enablers of large-scale production of biofuels. 90 billion gallons of ethanol (the energy equivalent of approximately 60 billion gallons of gasoline) per year by 2030 was chosen as the book-end target to understand an aggressive deployment. Since previous studies have addressed the potential of biomass but not the supply chain rollout needed to achieve large production targets, the focus of this study was on a comprehensive systems understanding the evolution of the full supply chain and key interdependencies over time. The supply chain components examined in this study included agricultural land use changes, production of biomass feedstocks, storage and transportation of these feedstocks, construction of conversion plants, conversion of feedstocks to ethanol at these plants, transportation of ethanol and blending with gasoline, and distribution to retail outlets. To support this analysis, we developed a 'Seed to Station' system dynamics model (Biofuels Deployment Model - BDM) to explore the feasibility of meeting specified ethanol production targets. The focus of this report is water and its linkage to broad scale biofuel deployment.

  7. Cost estimate for muddy water palladium production facility at Mound

    SciTech Connect (OSTI)

    McAdams, R.K.

    1988-11-30

    An economic feasibility study was performed on the ''Muddy Water'' low-chlorine content palladium powder production process developed by Mound. The total capital investment and total operating costs (dollars per gram) were determined for production batch sizes of 1--10 kg in 1-kg increments. The report includes a brief description of the Muddy Water process, the process flow diagram, and material balances for the various production batch sizes. Two types of facilities were evaluated--one for production of new, ''virgin'' palladium powder, and one for recycling existing material. The total capital investment for virgin facilities ranged from $600,000 --$1.3 million for production batch sizes of 1--10 kg, respectively. The range for recycle facilities was $1--$2.3 million. The total operating cost for 100% acceptable powder production in the virgin facilities ranged from $23 per gram for a 1-kg production batch size to $8 per gram for a 10-kg batch size. Similarly for recycle facilities, the total operating cost ranged from $34 per gram to $5 per gram. The total operating cost versus product acceptability (ranging from 50%--100% acceptability) was also evaluated for both virgin and recycle facilities. Because production sizes studied vary widely and because scale-up factors are unknown for batch sizes greater than 1 kg, all costs are ''order-of-magnitude'' estimates. All costs reported are in 1987 dollars.

  8. Supply Chain Sustainability Analysis of Three Biofuel Pathways

    SciTech Connect (OSTI)

    Jacob J. Jacobson; Erin Searcy; Kara Cafferty; Jennifer B. Dunn; Michael Johnson; Zhichao Wang; Michael Wang; Mary Biddy; Abhijit Dutta; Daniel Inman; Eric Tan; Sue Jones; Lesley Snowden-Swan

    2013-11-01

    The Department of Energy’s (DOE) Bioenergy Technologies Office (BETO) collaborates with industrial, agricultural, and non-profit partners to develop and deploy biofuels and other biologically-derived products. As part of this effort, BETO and its national laboratory teams conduct in-depth techno-economic assessments (TEA) of technologies to produce biofuels as part state of technology (SOT) analyses. An SOT assesses progress within and across relevant technology areas based on actual experimental results relative to technical targets and cost goals from design cases and includes technical, economic, and environmental criteria as available. Overall assessments of biofuel pathways begin with feedstock production and the logistics of transporting the feedstock from the farm or plantation to the conversion facility or biorefinery. The conversion process itself is modeled in detail as part of the SOT analysis. The teams then develop an estimate of the biofuel minimum selling price (MSP) and assess the cost competitiveness of the biofuel with conventional fuels such as gasoline.

  9. Fuel from wastewater : harnessing a potential energy source in Canada through the co-location of algae biofuel production to sources of effluent, heat and CO2.

    SciTech Connect (OSTI)

    Passell, Howard David; Whalen, Jake; Pienkos, Philip P.; O'Leary, Stephen J.; Roach, Jesse Dillon; Moreland, Barbara D.; Klise, Geoffrey Taylor

    2010-12-01

    Sandia National Laboratories is collaborating with the National Research Council (NRC) Canada and the National Renewable Energy Laboratory (NREL) to develop a decision-support model that will evaluate the tradeoffs associated with high-latitude algae biofuel production co-located with wastewater, CO2, and waste heat. This project helps Canada meet its goal of diversifying fuel sources with algae-based biofuels. The biofuel production will provide a wide range of benefits including wastewater treatment, CO2 reuse and reduction of demand for fossil-based fuels. The higher energy density in algae-based fuels gives them an advantage over crop-based biofuels as the 'production' footprint required is much less, resulting in less water consumed and little, if any conversion of agricultural land from food to fuel production. Besides being a potential source for liquid fuel, algae have the potential to be used to generate electricity through the burning of dried biomass, or anaerobically digested to generate methane for electricity production. Co-locating algae production with waste streams may be crucial for making algae an economically valuable fuel source, and will certainly improve its overall ecological sustainability. The modeling process will address these questions, and others that are important to the use of water for energy production: What are the locations where all resources are co-located, and what volumes of algal biomass and oil can be produced there? In locations where co-location does not occur, what resources should be transported, and how far, while maintaining economic viability? This work is being funded through the U.S. Department of Energy (DOE) Biomass Program Office of Energy Efficiency and Renewable Energy, and is part of a larger collaborative effort that includes sampling, strain isolation, strain characterization and cultivation being performed by the NREL and Canada's NRC. Results from the NREL / NRC collaboration including specific

  10. BASF Catalysts Opens Cathode Production Facility | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for BASF battery materials plant in Elyria, Ohio | Photo Courtesy of Nat Clymer Photography, LLC | Driving Battery Production in Ohio Statement by Energy Secretary Steven Chu...

  11. Efficient Technologies and Products for Federal Facilities |...

    Broader source: Energy.gov (indexed) [DOE]

    Find products and technologies covered by a specific efficiency program. ENERGY STAR EPEAT FEMP Designated FEMP Low Standby Power FEMP Promising Technologies WaterSense Advanced ...

  12. Microalgae as a feedstock for biofuel precursors and value-added products: Green fuels and golden opportunities

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Tang, Yuting; Rosenberg, Julian N.; Bohutskyi, Pavlo; Yu, Geng; Betenbaugh, Michael J.; Wang, Fei

    2015-11-16

    In this study, the prospects of biofuel production from microalgal carbohydrates and lipids coupled with greenhouse gas mitigation due to photosynthetic assimilation of CO2 have ushered in a renewed interest in algal feedstock. Furthermore, microalgae (including cyanobacteria) have become established as commercial sources of value-added biochemicals such as polyunsaturated fatty acids and carotenoid pigments used as antioxidants in nutritional supplements and cosmetics. This article presents a comprehensive synopsis of the metabolic basis for accumulating lipids as well as applicable methods of lipid and cellulose bioconversion and final applications of these natural or refined products from microalgal biomass. For lipids, one-stepmore » in situ transesterification offers a new and more accurate approach to quantify oil content. As a complement to microalgal oil fractions, the utilization of cellulosic biomass from microalgae to produce bioethanol by fermentation, biogas by anaerobic digestion, and bio-oil by hydrothermal liquefaction are discussed. Collectively, a compendium of information spanning green renewable fuels and value-added nutritional compounds is provided.« less

  13. Microalgae as a feedstock for biofuel precursors and value-added products: Green fuels and golden opportunities

    SciTech Connect (OSTI)

    Tang, Yuting; Rosenberg, Julian N.; Bohutskyi, Pavlo; Yu, Geng; Betenbaugh, Michael J.; Wang, Fei

    2015-11-16

    In this study, the prospects of biofuel production from microalgal carbohydrates and lipids coupled with greenhouse gas mitigation due to photosynthetic assimilation of CO2 have ushered in a renewed interest in algal feedstock. Furthermore, microalgae (including cyanobacteria) have become established as commercial sources of value-added biochemicals such as polyunsaturated fatty acids and carotenoid pigments used as antioxidants in nutritional supplements and cosmetics. This article presents a comprehensive synopsis of the metabolic basis for accumulating lipids as well as applicable methods of lipid and cellulose bioconversion and final applications of these natural or refined products from microalgal biomass. For lipids, one-step in situ transesterification offers a new and more accurate approach to quantify oil content. As a complement to microalgal oil fractions, the utilization of cellulosic biomass from microalgae to produce bioethanol by fermentation, biogas by anaerobic digestion, and bio-oil by hydrothermal liquefaction are discussed. Collectively, a compendium of information spanning green renewable fuels and value-added nutritional compounds is provided.

  14. Techno-economic and uncertainty analysis of in situ and ex situ fast pyrolysis for biofuel production

    SciTech Connect (OSTI)

    Li, Boyan; Ou, Longwen; Dang, Qi; Meyer, Pimphan A.; Jones, Susanne B.; Brown, Robert C.; Wright, Mark

    2015-11-01

    This study evaluates the techno-economic uncertainty in cost estimates for two emerging biorefinery technologies for biofuel production: in situ and ex situ catalytic pyrolysis. Stochastic simulations based on process and economic parameter distributions are applied to calculate biorefinery performance and production costs. The probability distributions for the minimum fuel-selling price (MFSP) indicate that in situ catalytic pyrolysis has an expected MFSP of $4.20 per gallon with a standard deviation of 1.15, while the ex situ catalytic pyrolysis has a similar MFSP with a smaller deviation ($4.27 per gallon and 0.79 respectively). These results suggest that a biorefinery based on ex situ catalytic pyrolysis could have a lower techno-economic risk than in situ pyrolysis despite a slightly higher MFSP cost estimate. Analysis of how each parameter affects the NPV indicates that internal rate of return, feedstock price, total project investment, electricity price, biochar yield and bio-oil yield are significant parameters which have substantial impact on the MFSP for both in situ and ex situ catalytic pyrolysis.

  15. Quantitative Analysis of Biofuel Sustainability, Including Land...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    life cycle analysis of biofuels continue to improve 2 Feedstock Production Feedstock Logistics, Storage and Transportation Feedstock Conversion Fuel Transportation and...

  16. Algal Biofuels Strategy Workshop - Fall Event

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... could create temperature-tolerant strains. was the rather limited evidence of improved biomass productivities that are needed to make microalgae biofuels cost- competitive. ...

  17. Great Lakes Biofuels LLC | Open Energy Information

    Open Energy Info (EERE)

    Great Lakes Biofuels LLC Place: Madison, Wisconsin Zip: 53704 Sector: Services Product: Biodiesel research, consulting, management distribution and services company. Coordinates:...

  18. Consolidated Biofuels Inc | Open Energy Information

    Open Energy Info (EERE)

    Inc Jump to: navigation, search Name: Consolidated Biofuels Inc Place: McKinney, Texas Zip: 75071 Product: Chicago based producer of biodiesel. Coordinates: 33.19895,...

  19. Biofuels Media Ltd | Open Energy Information

    Open Energy Info (EERE)

    Media Ltd Jump to: navigation, search Name: Biofuels Media Ltd. Place: London, Greater London, United Kingdom Zip: W6 0HX Product: London-based conference organiser Coordinates:...

  20. Production Facility Prototype Blower Installation Report

    SciTech Connect (OSTI)

    Woloshun, Keith Albert; Dale, Gregory E.; Dalmas, Dale Allen; Romero, Frank Patrick

    2015-07-28

    The roots blower in use at ANL for in-beam experiments and also at LANL for flow tests was sized for 12 mm diameter disks and significantly less beam heating.  Currently, the disks are 29 mm in diameter, with a 12 mm FWHM Gaussian beam spot at 42 MeV and 2.86 μA on each side of the target, 5.72 μA total. The target design itself is reported elsewhere.  With the increased beam heating, the helium flow requirement increased so that a larger blower was need for a mass flow rate of 400 g/s at 2.76 MPa (400 psig).  An Aerzen GM 12.4 blower was selected, and is currently being installed at the LANL facility for target and component flow testing.  This report describes this blower/motor/ppressure vessel package and the status of the facility preparations.

  1. Edison is back to production in the new facility building

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    back to production in the new facility building Edison is back to production in the new facility building January 4, 2016 Edison is back online after about 5 weeks of downtime to move to a new facility building, Wang Hall, at the main Berkeley campus. The following are the changes: Edison's batch system is now Slurm. All your old job scripts (for Torque/Moab) will not work anymore. Please visit our Running Jobs page to learn how to run job scripts under Slurm. If you need help with migrating

  2. Milestone Reached: New Process Reduces Cost and Risk of Biofuel...

    Office of Environmental Management (EM)

    Risk of Biofuel Production from Bio-Oil Upgrading Milestone Reached: New Process Reduces Cost and Risk of Biofuel Production from Bio-Oil Upgrading May 6, 2015 - 11:29am Addthis ...

  3. Biofuels are Helping Your Pocketbook and Our Environment

    SciTech Connect (OSTI)

    2009-10-28

    This fact sheet describes some of the financial and environmental benefits of biofuels and dispells myths about ethanol production.

  4. Accelerating Commercialization of Algal Biofuels Through Partnerships (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01

    This brochure describes National Renewable Energy Laboratory's (NREL's) algal biofuels research capabilities and partnership opportunities. NREL is accelerating algal biofuels commercialization through: (1) Advances in applied biology; (2) Algal strain development; (3) Development of fuel conversion pathways; (4) Techno-economic analysis; and (5) Development of high-throughput lipid analysis methodologies. NREL scientists and engineers are addressing challenges across the algal biofuels value chain, including algal biology, cultivation, harvesting and extraction, and fuel conversion. Through partnerships, NREL can share knowledge and capabilities in the following areas: (1) Algal Biology - A fundamental understanding of algal biology is key to developing cost-effective algal biofuels processes. NREL scientists are experts in the isolation and characterization of microalgal species. They are identifying genes and pathways involved in biofuel production. In addition, they have developed a high-throughput, non-destructive technique for assessing lipid production in microalgae. (2) Cultivation - NREL researchers study algal growth capabilities and perform compositional analysis of algal biomass. Laboratory-scale photobioreactors and 1-m2 open raceway ponds in an on-site greenhouse allow for year-round cultivation of algae under a variety of conditions. A bioenergy-focused algal strain collection is being established at NREL, and our laboratory houses a cryopreservation system for long-term maintenance of algal cultures and preservation of intellectual property. (3) Harvesting and Extraction - NREL is investigating cost-effective harvesting and extraction methods suitable for a variety of species and conditions. Areas of expertise include cell wall analysis and deconstruction and identification and utilization of co-products. (4) Fuel Conversion - NREL's excellent capabilities and facilities for biochemical and thermochemical conversion of biomass to biofuels are being

  5. Tropical Soil Bacterium Frees Plant Sugars for Biofuels | U.S...

    Office of Science (SC) Website

    As part of research to improve biofuel production processes, ... abundant, and nonfood energy source that could be used to make sustainable and economically feasible biofuels. ...

  6. Biofuel Tech Straight from the Farm| U.S. DOE Office of Science...

    Office of Science (SC) Website

    for breaking down grasses and other plants into the building blocks for biofuels. ... leading to more efficient conversion of raw biomass to biofuels and biobased products. ...

  7. A GIS COST MODEL TO ASSESS THE AVAILABILITY OF FRESHWATER, SEAWATER, AND SALINE GROUNDWATER FOR ALGAL BIOFUEL PRODUCTION IN THE UNITED STATES

    SciTech Connect (OSTI)

    Venteris, Erik R.; Skaggs, Richard; Coleman, Andre M.; Wigmosta, Mark S.

    2013-03-15

    A key advantage of using microalgae for biofuel production is the ability of some algal strains to thrive in waters unsuitable for conventional crop irrigation such as saline groundwater or seawater. Nonetheless, the availability of sustainable water supplies will provide significant challenges for scale-up and development of algal biofuels. We conduct a limited techno-economic assessment based on the availability of freshwater, saline groundwater, and seawater for use in open pond algae cultivation systems. We explore water issues through GIS-based models of algae biofuel production, freshwater supply, and cost models for supplying seawater and saline groundwater. We estimate that combined, within the coterminous US these resources can support production on the order of 9.46E+7 m3 yr-1 (25 billion gallons yr-1) of renewable biodiesel. Achievement of larger targets requires the utilization of less water efficient sites and relatively expensive saline waters. Geographically, water availability is most favorable for the coast of the Gulf of Mexico and Florida peninsula, where evaporation relative to precipitation is moderate and various saline waters are economically available. As a whole, barren and scrub lands of the southwestern US have limited freshwater supplies so accurate assessment of alternative waters is critical.

  8. Video: A New Biofuels Technology Blooms in Iowa | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Video: A New Biofuels Technology Blooms in Iowa Video: A New Biofuels Technology Blooms in Iowa Cellulosic biofuels made from agricultural residue have caught the attention of many farmers and could be the next revolution in renewable biofuels production. This video shows how an innovative technology that converts waste products from the corn harvest into renewable biofuels could help the United States produce billions of gallons of cellulosic biofuels over the coming decade. It will also

  9. Isotope production facility produces cancer-fighting actinium

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cancer therapy gets a boost from new isotope Isotope production facility produces cancer-fighting actinium A new medical isotope project shows promise for rapidly producing major quantities of a new cancer-treatment agent, actinium 225 (Ac-225). April 11, 2012 Los Alamos scientist Meiring Nortier holds a thorium foil test target for the proof-of-concept production experiments. Los Alamos scientist Meiring Nortier holds a thorium foil test target for the proof-of-concept production experiments.

  10. Market Drivers for Biofuels

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    MARKET DRIVERS FOR BIOFUELS Brian Duff Chief Engineer Bioenergy Technologies Office 3 rd Annual MSW to Biofuels Summit, Orlando, FL February 20-21, 2013 2 | Bioenergy Technologies ...

  11. Brazil's biofuels scenario

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DO ETANOL Brazil's biofuels scenario: What are the main drivers which will shape investments in the long term? Artur Yabe Milanez Manager BNDES Biofuels Department LIVRO VERDE ...

  12. Biofuels Information Center

    Broader source: Energy.gov (indexed) [DOE]

    Biofuels Information Center BETO 2015 Peer Review Kristi Moriarty March 24, 2015 2 Goal Statement * The purpose of the Biofuels Information Center (BIC) task is to increase ...

  13. Algal Biofuels Strategy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Algal Biofuels Strategy Report on Workshop Results and Recent Work Roxanne Dempsey Technology Manager 2 Algal Biofuels Strategy Session Agenda-Report on Workshop Results and Recent ...

  14. Biofuels Basics | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biofuels Basics Unlike other renewable energy sources, biomass can be converted directly into liquid fuels, called "biofuels," to help meet transportation fuel needs. The two most ...

  15. Sandia Energy Biofuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    nhanced-sandia-sintef-collaborationfeed 0 Lignin-Feasting Microbe Holds Promise for Biofuels http:energy.sandia.govlignin-feasting-microbe-holds-promise-for-biofuels http:...

  16. U.S. Plutonium "Pit" Production: Additional Facilities, Production

    National Nuclear Security Administration (NNSA)

    Plutonium "Pit" Production: Additional Facilities, Production Restart are Unnecessary, Costly, and Provocative Greg Mello, 1/18/10 draft A strategy that conserves production capability in existing and nearly-completed Los Alamos facilities for the foreseeable future with neither stockpile production nor expansion of capacity, neither of which are needed, is the one that best minimizes risks, maximizes opportunities, harmonizes goals, and avoids waste of all kinds. Planning for

  17. Corrosion considerations for thermochemical biomass liquefaction process systems in biofuel production

    SciTech Connect (OSTI)

    Brady, Michael P.; Keiser, James R.; Leonard, Donovan N.; Whitmer, Lysle; Thomson, Jeffery K.

    2014-11-11

    Thermochemical liquifaction processing of biomass to produce bio-derived fuels (e.g. gasoline, jet fuel, diesel, home heating oil, etc.) is of great recent interest as a renewable energy source. Approaches under investigation include direct liquefaction, hydrothermal liquefaction, hydropyrolysis, fast pyrolysis, etc. to produce energy dense liquids that can be utilized as produced or further processed to provide products of higher value. An issue with bio-oils is that they tend to contain significant concentrations of organic compounds, which make the bio-oil acidic and a potential source of corrosion issues in in transport, storage, and use. Efforts devoted to modified/further processing of bio-oils to make them less corrosive are currently being widely pursued. Another aspect that must also be addressed is potential corrosion issues in the bio-oil liquefaction process equipment itself. Depending on the specific process, bio-oil liquefaction production temperatures can reach up to 400-600 °C, and involve the presence of aggressive sulfur, and halide species from both the biomass used and/or process additives. Detailed knowledge of the corrosion resistance of candidate process equipment alloys in these bio-oil production environments is currently lacking. Lastly, this paper summarizes our recent, ongoing efforts to assess the extent to which corrosion of bio-oil process equipment may be an issue, with the ultimate goal of providing the basis to select the lowest cost alloy grades capable of providing the long-term corrosion resistance needed for future bio-oil production plants.

  18. Corrosion considerations for thermochemical biomass liquefaction process systems in biofuel production

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Brady, Michael P.; Keiser, James R.; Leonard, Donovan N.; Whitmer, Lysle; Thomson, Jeffery K.

    2014-11-11

    Thermochemical liquifaction processing of biomass to produce bio-derived fuels (e.g. gasoline, jet fuel, diesel, home heating oil, etc.) is of great recent interest as a renewable energy source. Approaches under investigation include direct liquefaction, hydrothermal liquefaction, hydropyrolysis, fast pyrolysis, etc. to produce energy dense liquids that can be utilized as produced or further processed to provide products of higher value. An issue with bio-oils is that they tend to contain significant concentrations of organic compounds, which make the bio-oil acidic and a potential source of corrosion issues in in transport, storage, and use. Efforts devoted to modified/further processing of bio-oilsmore » to make them less corrosive are currently being widely pursued. Another aspect that must also be addressed is potential corrosion issues in the bio-oil liquefaction process equipment itself. Depending on the specific process, bio-oil liquefaction production temperatures can reach up to 400-600 °C, and involve the presence of aggressive sulfur, and halide species from both the biomass used and/or process additives. Detailed knowledge of the corrosion resistance of candidate process equipment alloys in these bio-oil production environments is currently lacking. Lastly, this paper summarizes our recent, ongoing efforts to assess the extent to which corrosion of bio-oil process equipment may be an issue, with the ultimate goal of providing the basis to select the lowest cost alloy grades capable of providing the long-term corrosion resistance needed for future bio-oil production plants.« less

  19. Research Summary: Corrosion Considerations for Thermochemical Biomass Liquefaction Process Systems in Biofuel Production

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Brady, Michael P; Keiser, James R; Leonard, Donovan N; Whitmer, Lysle; Thomson, Jeffery K

    2014-01-01

    Thermochemical liquifaction processing of biomass to produce bio-derived fuels (e.g. gasoline, jet fuel, diesel, home heating oil, etc.) is of great recent interest as a renewable energy source. Approaches under investigation include direct liquefaction, hydrothermal liquefaction, hydropyrolysis, fast pyrolysis, etc. to produce energy dense liquids that can be utilized as produced or further processed to provide products of higher value. An issue with bio-oils is that they tend to contain significant concentrations of organic compounds, which make the bio-oil acidic and a potential source of corrosion issues in in transport, storage, and use. Efforts devoted to modified/further processing of bio-oilsmore » to make them less corrosive are currently being widely pursued. Another aspect that must also be addressed is potential corrosion issues in the bio-oil liquefaction process equipment itself. Depending on the specific process, bio-oil liquefaction production temperatures can reach up to 400-600 C, and involve the presence of aggressive sulfur, and halide species from both the biomass used and/or process additives. Detailed knowledge of the corrosion resistance of candidate process equipment alloys in these bio-oil production environments is currently lacking. This paper summarizes our recent, ongoing efforts to assess the extent to which corrosion of bio-oil process equipment may be an issue, with the ultimate goal of providing the basis to select the lowest cost alloy grades capable of providing the long-term corrosion resistance needed for future bio-oil production plants.« less

  20. Research Summary: Corrosion Considerations for Thermochemical Biomass Liquefaction Process Systems in Biofuel Production

    SciTech Connect (OSTI)

    Brady, Michael P; Keiser, James R; Leonard, Donovan N; Whitmer, Lysle; Thomson, Jeffery K

    2014-01-01

    Thermochemical liquifaction processing of biomass to produce bio-derived fuels (e.g. gasoline, jet fuel, diesel, home heating oil, etc.) is of great recent interest as a renewable energy source. Approaches under investigation include direct liquefaction, hydrothermal liquefaction, hydropyrolysis, fast pyrolysis, etc. to produce energy dense liquids that can be utilized as produced or further processed to provide products of higher value. An issue with bio-oils is that they tend to contain significant concentrations of organic compounds, which make the bio-oil acidic and a potential source of corrosion issues in in transport, storage, and use. Efforts devoted to modified/further processing of bio-oils to make them less corrosive are currently being widely pursued. Another aspect that must also be addressed is potential corrosion issues in the bio-oil liquefaction process equipment itself. Depending on the specific process, bio-oil liquefaction production temperatures can reach up to 400-600 C, and involve the presence of aggressive sulfur, and halide species from both the biomass used and/or process additives. Detailed knowledge of the corrosion resistance of candidate process equipment alloys in these bio-oil production environments is currently lacking. This paper summarizes our recent, ongoing efforts to assess the extent to which corrosion of bio-oil process equipment may be an issue, with the ultimate goal of providing the basis to select the lowest cost alloy grades capable of providing the long-term corrosion resistance needed for future bio-oil production plants.

  1. Vertical Integration of Biomass Saccharification of Enzymes for Sustainable Cellulosic Biofuel Production in a Biorefinery

    SciTech Connect (OSTI)

    Manoj Kumar, PhD

    2011-05-09

    Lignocellulosic biomass is the most abundant, least expensive renewable natural biological resource for the production of biobased products and bioenergy is important for the sustainable development of human civilization in 21st century. For making the fermentable sugars from lignocellulosic biomass, a reduction in cellulase production cost, an improvement in cellulase performance, and an increase in sugar yields are all vital to reduce the processing costs of biorefineries. Improvements in specific cellulase activities for non-complexed cellulase mixtures can be implemented through cellulase engineering based on rational design or directed evolution for each cellulase component enzyme, as well as on the reconstitution of cellulase components. In this paper, we will provide DSM's efforts in cellulase research and developments and focus on limitations. Cellulase improvement strategies based on directed evolution using screening on relevant substrates, screening for higher thermal tolerance based on activity screening approaches such as continuous culture using insoluble cellulosic substrates as a powerful selection tool for enriching beneficial cellulase mutants from the large library. We will illustrate why and how thermostable cellulases are vital for economic delivery of bioproducts from cellulosic biomass using biochemical conversion approach.

  2. LIQUID BIO-FUEL PRODUCTION FROM NON-FOOD BIOMASS VIA HIGH TEMPERATURE STEAM ELECTROLYSIS

    SciTech Connect (OSTI)

    G. L. Hawkes; J. E. O'Brien; M. G. McKellar

    2011-11-01

    Bio-Syntrolysis is a hybrid energy process that enables production of synthetic liquid fuels that are compatible with the existing conventional liquid transportation fuels infrastructure. Using biomass as a renewable carbon source, and supplemental hydrogen from high-temperature steam electrolysis (HTSE), bio-syntrolysis has the potential to provide a significant alternative petroleum source that could reduce US dependence on imported oil. Combining hydrogen from HTSE with CO from an oxygen-blown biomass gasifier yields syngas to be used as a feedstock for synthesis of liquid transportation fuels via a Fischer-Tropsch process. Conversion of syngas to liquid hydrocarbon fuels, using a biomass-based carbon source, expands the application of renewable energy beyond the grid to include transportation fuels. It can also contribute to grid stability associated with non-dispatchable power generation. The use of supplemental hydrogen from HTSE enables greater than 90% utilization of the biomass carbon content which is about 2.5 times higher than carbon utilization associated with traditional cellulosic ethanol production. If the electrical power source needed for HTSE is based on nuclear or renewable energy, the process is carbon neutral. INL has demonstrated improved biomass processing prior to gasification. Recyclable biomass in the form of crop residue or energy crops would serve as the feedstock for this process. A process model of syngas production using high temperature electrolysis and biomass gasification is presented. Process heat from the biomass gasifier is used to heat steam for the hydrogen production via the high temperature steam electrolysis process. Oxygen produced form the electrolysis process is used to control the oxidation rate in the oxygen-blown biomass gasifier. Based on the gasifier temperature, 94% to 95% of the carbon in the biomass becomes carbon monoxide in the syngas (carbon monoxide and hydrogen). Assuming the thermal efficiency of the power

  3. Algal Biofuels Strategy Workshops | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Algal Biofuels Strategy Workshops Algal Biofuels Strategy Workshops Sharpening Our Tools: Algal Biology Toolbox Workshop The U.S. Department of Energy's Bioenergy Technologies Office (BETO) will host the Algal Biology Toolbox Workshop on May 24-25, 2016, in San Diego, California. Because biological productivity is a key driver for the economic viability of algae-based biofuels, improving on the performance of native strains is a critical element of the research efforts funded by BETO's Advanced

  4. Biofuels: Helping to Move the Industry to the Next Level

    Broader source: Energy.gov [DOE]

    In our committment to tripling biofuel production in the next 12 years, we've in the past two years announced 40 projects and over $850 million to projects focused on cellulosic biofuels and next generation hydrocarbon fuels.

  5. Celsys BioFuels Inc | Open Energy Information

    Open Energy Info (EERE)

    Celsys BioFuels Inc Jump to: navigation, search Name: Celsys BioFuels Inc. Place: Indiana Product: Celsys was formed in 2006 to commercialise cellulosic ethanol technology that was...

  6. Houston BioFuels Consultants | Open Energy Information

    Open Energy Info (EERE)

    BioFuels Consultants Jump to: navigation, search Name: Houston BioFuels Consultants Place: Kingwood, Texas Zip: 77345 Product: A Houston-based consultancy run by oil industry...

  7. PrairieFire BioFuels Cooperative | Open Energy Information

    Open Energy Info (EERE)

    PrairieFire BioFuels Cooperative Jump to: navigation, search Name: PrairieFire BioFuels Cooperative Place: Madison, Wisconsin Zip: 53704 Product: A member-owned cooperative which...

  8. Harvest BioFuels LLC | Open Energy Information

    Open Energy Info (EERE)

    BioFuels LLC Jump to: navigation, search Name: Harvest BioFuels LLC Place: Addison, Texas Zip: TX 75001 Product: Setting up corn-based ethanol plants. Coordinates: 38.477365,...

  9. Tomorrow BioFuels LLC | Open Energy Information

    Open Energy Info (EERE)

    Tomorrow BioFuels LLC Jump to: navigation, search Name: Tomorrow BioFuels LLC Place: Cranston, Rhode Island Zip: 2921 Product: Rhode Island-based algae-to-fuel technology...

  10. BlueEarth Biofuels LLC | Open Energy Information

    Open Energy Info (EERE)

    BlueEarth Biofuels LLC Jump to: navigation, search Name: BlueEarth Biofuels LLC Place: Hawaii Zip: 96813 Sector: Renewable Energy Product: Developer of power and renewable-energy...

  11. Biofuel and chemical production by recombinant microorganisms via fermentation of proteinaceous biomass

    DOE Patents [OSTI]

    Liao, James C.; Cho, Kwang Myung; Yan, Yajun; Huo, Yixin

    2016-03-15

    Provided herein are metabolically modified microorganisms characterized by having an increased keto-acid flux when compared with the wild-type organism and comprising at least one polynucleotide encoding an enzyme that when expressed results in the production of a greater quantity of a chemical product when compared with the wild-type organism. The recombinant microorganisms are useful for producing a large number of chemical compositions from various nitrogen containing biomass compositions and other carbon sources. More specifically, provided herein are methods of producing alcohols, acetaldehyde, acetate, isobutyraldehyde, isobutyric acid, n-butyraldehyde, n-butyric acid, 2-methyl-1-butyraldehyde, 2-methyl-1-butyric acid, 3-methyl-1-butyraldehyde, 3-methyl-1-butyric acid, ammonia, ammonium, amino acids, 2,3-butanediol, 1,4-butanediol, 2-methyl-1,4-butanediol, 2-methyl-1,4-butanediamine, isobutene, itaconate, acetoin, acetone, isobutene, 1,5-diaminopentane, L-lactic acid, D-lactic acid, shikimic acid, mevalonate, polyhydroxybutyrate (PHB), isoprenoids, fatty acids, homoalanine, 4-aminobutyric acid (GABA), succinic acid, malic acid, citric acid, adipic acid, p-hydroxy-cinnamic acid, tetrahydrofuran, 3-methyl-tetrahydrofuran, gamma-butyrolactone, pyrrolidinone, n-methylpyrrolidone, aspartic acid, lysine, cadeverine, 2-ketoadipic acid, and/or S-adenosyl-methionine (SAM) from a suitable nitrogen rich biomass.

  12. Biofuels and certification. A workshop at the Harvard Kennedy School of Government. Summary report

    SciTech Connect (OSTI)

    Devereaux, Charan; Lee, Henry

    2009-06-01

    both forests and food supplies from increased biofuel production is real, it is not clear that setting broad sustainability standards and then requiring sellers to certify that all of those standards have been met is the best way to address these interconnected problems. In particular, if too many standards and related certification requirements are put in place too soon, this could constrain the development of a global biofuels market. In contrast, certification targeted at a specific and limited set of problems and designed with the flexibility to adjust to changes in policies and programs can enhance the public's acceptance of the biofuel option while protecting key social and environmental goals. A second set of questions revolves around the locus of responsibility for certifying whether biofuel production meets sustainability targets. Should the biofuel processing firms, third parties, or governments be responsible for certifying the production of biofuels? This question also elicited significant discussion. While it could be easier to have individual country governments assume the certification of production responsibility, some governments may not have the capacity to implement an effective certification process. Production facilities that comply with international standards should not be kept out of the market because of their government's inability to manage the process. The possible contribution to effective certification of third party organizations or public-private partnerships should not be underestimated.

  13. Dow Kokam Lithium Ion Battery Production Facilities | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation arravt006_es_pham_2011_p.pdf (566.72 KB) More Documents & Publications Dow/Kokam Cell/Battery Production Facilities Dow Kokam Lithium Ion Battery

  14. A process economic assessment of hydrocarbon biofuels production using chemoautotrophic organisms

    SciTech Connect (OSTI)

    Khan, NE; Myers, JA; Tuerk, AL; Curtis, WR

    2014-11-01

    Economic analysis of an ARPA-e Electrofuels (http://arpa-e.energy.gov/?q=arpa-e-programs/electrofuels) process is presented, utilizing metabolically engineered Rhodobacter capsulatus or Ralstonia eutropha to produce the C30+ hydrocarbon fuel, botryococcene, from hydrogen, carbon dioxide, and oxygen. The analysis is based on an Aspen plus (R) bioreactor model taking into account experimentally determined Rba. capsulatus and Rls. eutropha growth and maintenance requirements, reactor residence time, correlations for gas-liquid mass-transfer coefficient, gas composition, and specific cellular fuel productivity. Based on reactor simulation results encompassing technically relevant parameter ranges, the capital and operating costs of the process were estimated for 5000 bbl-fuel/day plant and used to predict fuel cost. Under the assumptions used in this analysis and crude oil prices, the Levelized Cost of Electricity (LCOE) required for economic feasibility must be less than 2(sic)/kWh. While not feasible under current market prices and costs, this work identifies key variables impacting process cost and discusses potential alternative paths toward economic feasibility. (C) 2014 Elsevier Ltd. All rights reserved.

  15. Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facilities The the WTGa1 turbine (aka DOE/SNL #1) retuns to power as part of a final series of commissioning tests. Permalink Gallery First Power for SWiFT Turbine Achieved during Recommissioning Facilities, News, Renewable Energy, SWIFT, Wind Energy, Wind News First Power for SWiFT Turbine Achieved during Recommissioning The Department of Energy's Scaled Wind Farm Technology (SWiFT) Facility reached an exciting milestone with the return to power production of the WTGa1 turbine (aka DOE/SNL #1)

  16. Medical Isotope Production Analyses In KIPT Neutron Source Facility

    SciTech Connect (OSTI)

    Talamo, Alberto; Gohar, Yousry

    2016-01-01

    Medical isotope production analyses in Kharkov Institute of Physics and Technology (KIPT) neutron source facility were performed to include the details of the irradiation cassette and the self-shielding effect. An updated detailed model of the facility was used for the analyses. The facility consists of an accelerator-driven system (ADS), which has a subcritical assembly using low-enriched uranium fuel elements with a beryllium-graphite reflector. The beryllium assemblies of the reflector have the same outer geometry as the fuel elements, which permits loading the subcritical assembly with different number of fuel elements without impacting the reflector performance. The subcritical assembly is driven by an external neutron source generated from the interaction of 100-kW electron beam with a tungsten target. The facility construction was completed at the end of 2015, and it is planned to start the operation during the year of 2016. It is the first ADS in the world, which has a coolant system for removing the generated fission power. Argonne National Laboratory has developed the design concept and performed extensive design analyses for the facility including its utilization for the production of different radioactive medical isotopes. 99Mo is the parent isotope of 99mTc, which is the most commonly used medical radioactive isotope. Detailed analyses were performed to define the optimal sample irradiation location and the generated activity, for several radioactive medical isotopes, as a function of the irradiation time.

  17. Cobalt Biofuels | Open Energy Information

    Open Energy Info (EERE)

    Cobalt Biofuels Jump to: navigation, search Logo: Cobalt Biofuels Name: Cobalt Biofuels Address: 500 Clyde Avenue Place: Mountain View, California Zip: 94043 Region: Bay Area...

  18. Solix Biofuels | Open Energy Information

    Open Energy Info (EERE)

    Solix Biofuels Jump to: navigation, search Logo: Solix Biofuels Name: Solix Biofuels Address: 430 B. North College Ave Place: Fort Collins, Colorado Zip: 80524 Region: Rockies Area...

  19. Summary of Historical Production for Nevada Binary Facilities

    SciTech Connect (OSTI)

    Mines, Greg; Hanson, Hillary

    2014-09-01

    The analysis described was initiated to validate inputs used in the US Department of Energy’s (DOE) economic modeling tool GETEM (Geothermal Electricity Technology Evaluation Model) by using publically available data to identify production trends at operating geothermal binary facilities in the state of Nevada. Data required for this analysis was obtained from the Nevada Bureau of Mines and Geology (NBMG), whom received the original operator reports from the Nevada Division of Minerals (NDOM). The data from the NBMG was inputted into Excel files that have been uploaded to the DOE’s National Geothermal Data System (NGDS). Once data was available in an Excel format, production trends for individual wells and facilities could be established for the periods data was available (thru 2009). Additionally, this analysis identified relationships existing between production (temperature and flow rates), power production and plant conversion efficiencies. The data trends showed that temperature declines have a significant impact on power production, and that in some instances operators increased production flow rate to offset power declines. The production trends with time that were identified are being used to update GETEM’s default inputs.

  20. Summary of Historical Production for Nevada Binary Facilities

    SciTech Connect (OSTI)

    Mines, Greg; Hanson, Hillary

    2001-09-01

    The analysis described was initiated to validate inputs used in the US Department of Energy’s (DOE) economic modeling tool GETEM (Geothermal Electricity Technology Evaluation Model) by using publically available data to identify production trends at operating geothermal binary facilities in the state of Nevada. Data required for this analysis was obtained from the Nevada Bureau of Mines and Geology (NBMG), whom received the original operator reports from the Nevada Division of Minerals (NDOM). The data from the NBMG was inputted into Excel files that have been uploaded to the DOE’s National Geothermal Data System (NGDS). Once data was available in an Excel format, production trends for individual wells and facilities could be established for the periods data was available (thru 2009). Additionally, this analysis identified relationships existing between production (temperature and flow rates), power production and plant conversion efficiencies. The data trends showed that temperature declines have a significant impact on power production, and that in some instances operators increased production flow rate to offset power declines. The production trends with time that were identified are being used to update GETEM’s default inputs.

  1. Global Economic Effects of USA Biofuel Policy and the Potential Contribution from Advanced Biofuels

    SciTech Connect (OSTI)

    Gbadebo Oladosu; Keith Kline; Paul Leiby; Rocio Uria-Martinez; Maggie Davis; Mark Downing; Laurence Eaton

    2012-01-01

    This study evaluates the global economic effects of the USA renewable fuel standards (RFS2), and the potential contribution from advanced biofuels. Our simulation results imply that these mandates lead to an increase of 0.21 percent in the global gross domestic product (GDP) in 2022, including an increase of 0.8 percent in the USA and 0.02 percent in the rest of the world (ROW); relative to our baseline, no-RFS scenario. The incremental contributions to GDP from advanced biofuels in 2022 are estimated at 0.41 percent and 0.04 percent in the USA and ROW, respectively. Although production costs of advanced biofuels are higher than for conventional biofuels in our model, their economic benefits result from reductions in oil use, and their smaller impacts on food markets compared with conventional biofuels. Thus, the USA advanced biofuels targets are expected to have positive economic benefits.

  2. Bioproducts to Enable Biofuels Workshop | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bioproducts to Enable Biofuels Workshop Bioproducts to Enable Biofuels Workshop The Bioenergy Technologies Office (BETO) hosted the one-day Bioproducts to Enable Biofuels Workshop on July 16, 2015, in Denver, Colorado. BETO collected information from key industry, university, and national laboratory stakeholders regarding the challenges associated with the coproduction of biomass-derived chemicals and products alongside biofuels. The following are topic areas of interest covered at the workshop:

  3. New Online Tool Expands Analysis of Biofuels' Water Impact | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Online Tool Expands Analysis of Biofuels' Water Impact New Online Tool Expands Analysis of Biofuels' Water Impact January 23, 2015 - 2:25pm Addthis Last week, Argonne National Laboratory released a new version of the Water Assessment for Transportation Energy Resources (WATER) online tool. As with the previous two versions, WATER 3.0 quantifies the water footprint of various biofuel pathways, providing details of the water consumption required for the production of biofuels.

  4. Integrated Biorefineries:Biofuels, Biopower, and Bioproducts | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Integrated Biorefineries:Biofuels, Biopower, and Bioproducts Integrated Biorefineries:Biofuels, Biopower, and Bioproducts The U.S. goal to produce 21 billion gallons of advanced biofuels by 2022 creates an urgent need to bridge the gap between promising research and commercial large-scale production of advanced biofuels. ibr_portfolio_overview.pdf (1.07 MB) More Documents & Publications Biochemical Conversion: Using Hydrolysis, Fermentation, and Catalysis to Make Fuels and

  5. ARM Climate Research Facility Quarterly Value-Added Product Report

    SciTech Connect (OSTI)

    Sivaraman, Chitra

    2013-07-31

    The purpose of this report is to provide a concise status update for value-added products (VAP) implemented by the Atmospheric Radiation Measurement Climate Research Facility. The report is divided into the following sections: (1) new VAPs for which development has begun, (2) progress on existing VAPs, (3) future VAPs that have been recently approved, (4) other work that leads to a VAP, and (5) top requested VAPs from the archive.

  6. Quality, Performance, and Emission Impacts of Biofuels and Biofuel Blends |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Quality, Performance, and Emission Impacts of Biofuels and Biofuel Blends Quality, Performance, and Emission Impacts of Biofuels and Biofuel Blends 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation ft003_mccormick_2011_o.pdf (820.98 KB) More Documents & Publications Performance of Biofuels and Biofuel Blends Performance of Biofuels and Biofuel Blends Quality, Performance, and Emission Impacts of

  7. Performance of Biofuels and Biofuel Blends | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Biofuels and Biofuel Blends Performance of Biofuels and Biofuel Blends 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting ft003_mccormick_2012_o.pdf (1.47 MB) More Documents & Publications Quality, Performance, and Emission Impacts of Biofuels and Biofuel Blends Performance of Biofuels and Biofuel Blends Recent Research to Address Technical Barriers to Increased Use of Biodiesel

  8. CONNECTICUT BIOFUELS TECHNOLOGY PROJECT

    SciTech Connect (OSTI)

    BARTONE, ERIK

    2010-09-28

    DBS Energy Inc. (DBS) intends on using the Connecticut Biofuels Technology Project for the purpose of developing a small-scale electric generating systems that are located on a distributed basis and utilize biodiesel as its principle fuel source. This project will include research and analysis on the quality and applied use of biodiesel for use in electricity production, 2) develop dispatch center for testing and analysis of the reliability of dispatching remote generators operating on a blend of biodiesel and traditional fossil fuels, and 3) analysis and engineering research on fuel storage options for biodiesel of fuels for electric generation.

  9. Production and Injection data for NV Binary facilities (Dataset) | SciTech

    Office of Scientific and Technical Information (OSTI)

    Connect Dataset: Production and Injection data for NV Binary facilities Citation Details In-Document Search Title: Production and Injection data for NV Binary facilities Excel files are provided with well production and injection data for binary facilities in Nevada. The files contain the data that reported montly to the Nevada Bureau of Mines and Geology (NBMG) by the facility operators. this data has been complied into Excel spreadsheets for each of the facilities given on the NBMG web

  10. Department of Energy to Invest Nearly $18 Million for Advanced Biofuels

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    User Facility | Department of Energy Nearly $18 Million for Advanced Biofuels User Facility Department of Energy to Invest Nearly $18 Million for Advanced Biofuels User Facility March 31, 2010 - 12:00am Addthis WASHINGTON, DC - U.S. Department of Energy Assistant Secretary for Energy Efficiency and Renewable Energy Cathy Zoi today announced that the Department's Lawrence Berkeley National Laboratory will build an advanced biofuels process development facility aimed at speeding the

  11. NREL Science Central to Success of New Biofuels Projects: - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovation Portal Biomass and Biofuels Biomass and Biofuels Return to Search NREL Science Central to Success of New Biofuels Projects: DuPont-NREL Partnership Delivered Key Innovations for Large Scale Cellulosic Ethanol Facility in Iowa National Renewable Energy Laboratory Success Story Details Partner Location Agreement Type Publication Date DuPont Delaware Other February 23, 2015 Summary The Energy Department's National Renewable Energy Laboratory (NREL) played crucial roles in developing

  12. Production | Department of Energy

    Energy Savers [EERE]

    Research & Development Algal Biofuels Production Production PNNL image Algae ... growth rate and high oil content, that make algae attractive to convert into biofuels. ...

  13. Air quality/energy management review of production facilities

    SciTech Connect (OSTI)

    Rosenthal, J.W.

    1995-06-01

    This is the only presentation that integrates energy management and air quality. You will learn how to reduce energy operating costs while minimizing air pollution. This presentation is condensed from a full day course focusing on hands-on techniques for conducting an air quality/energy management review of your operation or plant. The stringent (Non-attainment for PM{sub 10}, Ozone and CO) South Coast Air Quality Management District (SCAQMD) of Southern California rules and regulations are applied to the die casting (metals) industry as well as other production processes. Examples and a case study of real energy intensive production facilities will be used. Developing options for air quality improvement with energy cost control are the key goals of the presentation. Also, the review techniques can be used to determine the {open_quotes}maximum potential to emit{close_quotes} as required for the new Federal EPA, Title V requirements. The outline of the one day course is provided to give the overall scope covered during performing an Air Quality/Energy Management Review of a Production Facility.

  14. Evaluation of medical isotope production with the accelerator production of tritium (APT) facility

    SciTech Connect (OSTI)

    Benjamin, R.W.; Frey, G.D.; McLean, D.C., Jr; Spicer, K.M.; Davis, S.E.; Baron, S.; Frysinger, J.R.; Blanpied, G.; Adcock, D.

    1997-07-10

    The accelerator production of tritium (APT) facility, with its high beam current and high beam energy, would be an ideal supplier of radioisotopes for medical research, imaging, and therapy. By-product radioisotopes will be produced in the APT window and target cooling systems and in the tungsten target through spallation, neutron, and proton interactions. High intensity proton fluxes are potentially available at three different energies for the production of proton- rich radioisotopes. Isotope production targets can be inserted into the blanket for production of neutron-rich isotopes. Currently, the major production sources of radioisotopes are either aging or abroad, or both. The use of radionuclides in nuclear medicine is growing and changing, both in terms of the number of nuclear medicine procedures being performed and in the rapidly expanding range of procedures and radioisotopes used. A large and varied demand is forecast, and the APT would be an ideal facility to satisfy that demand.

  15. Green Zia Application Sandia National Laboratories' Neutron Generator Production Facility

    SciTech Connect (OSTI)

    SAAD, MAX P.; RICHARDSON, ANASTASIA DAWN

    2003-03-01

    The Green Zia Environmental Excellence Program is a voluntary program designed to support and assist all New Mexico businesses to achieve environmental excellence through continuous improvement and effective energy management. The program encourages integration of environmental excellence into business operations and management practices through the establishment of a prevention-based environmental management system. The Neutron Generator Production Facility has participated in the Green Zia Environmental Excellence Program for two years. This document is the submittal application for inclusion in the 2003 Green Zia program year.

  16. Oak Ridge Isotope Production Cyclotron Facility and Target Handling

    SciTech Connect (OSTI)

    Bradley, Eric Craig; Varma, Venugopal Koikal; Egle, Brian; Binder, Jeffrey L; Mirzadeh, Saed; Tatum, B Alan; Burgess, Thomas W; Devore, Joe; Rennich, Mark; Saltmarsh, Michael John; Caldwell, Benjamin Cale

    2011-01-01

    Abstract The Nuclear Science Advisory Committee issued in August 2009 an Isotopes Subcommittee report that recommended the construction and operation of a variable-energy, high-current, multiparticle accelerator for producing medical radioisotopes. To meet the needs identified in the report, Oak Ridge National Laboratory is developing a technical concept for a commercial 70 MeV dual-port-extraction, multiparticle cyclotron to be located at the Holifield Radioactive Ion Beam Facility. The conceptual design of the isotope production facility as envisioned would provide two types of targets for use with this new cyclotron. One is a high-power target cooled by water circulating on both sides, and the other is a commercial target cooled only on one side. The isotope facility concept includes an isotope target vault for target irradiation and a shielded transfer station for radioactive target handling. The targets are irradiated in the isotope target vault. The irradiated targets are removed from the target vault and packaged in an adjoining shielded transfer station before being sent out for postprocessing. This paper describes the conceptual design of the target-handling capabilities required for dealing with these radioactive targets and for minimizing the contamination potential during operations.

  17. BioFuel Oasis | Open Energy Information

    Open Energy Info (EERE)

    Zip: 94710 Product: A worker-owned cooperative to sell commercial biodiesel that meets ASTM standards. References: BioFuel Oasis1 This article is a stub. You can help OpenEI by...

  18. Biofuels in Minnesota: A Success Story

    Broader source: Energy.gov [DOE]

    This PDF provides a Minnesota biofuels success story. It shows the timeline of state actions, the number of biodiesel plants in the state, production and consumption rates, and the NextGen Energy Initiative.

  19. Future of Liquid Biofuels for APEC Economies

    SciTech Connect (OSTI)

    Milbrandt, A.; Overend, R. P.

    2008-05-01

    This project was initiated by APEC Energy Working Group (EWG) to maximize the energy sector's contribution to the region's economic and social well-being through activities in five areas of strategic importance including liquid biofuels production and development.

  20. Northeast Biofuels Collaborative | Open Energy Information

    Open Energy Info (EERE)

    Biofuels Collaborative Jump to: navigation, search Logo: Northeast Biofuels Collaborative Name: Northeast Biofuels Collaborative Address: 101 Tremont Street Place: Boston,...

  1. Moly99 Production Facility: Report on Beamline Components, Requirements, Costs

    SciTech Connect (OSTI)

    Bishofberger, Kip A.

    2015-12-23

    In FY14 we completed the design of the beam line for the linear accelerator production design concept. This design included a set of three bending magnets, quadrupole focusing magnets, and octopoles to flatten the beam on target. This design was generic and applicable to multiple different accelerators if necessary. In FY15 we built on that work to create specifications for the individual beam optic elements, including power supply requirements. This report captures the specification of beam line components with initial cost estimates for the NorthStar production facility.This report is organized as follows: The motivation of the beamline design is introduced briefly, along with renderings of the design. After that, a specific list is provided, which accounts for each beamline component, including part numbers and costs, to construct the beamline. After that, this report details the important sections of the beamline and individual components. A final summary and list of follow-on activities completes this report.

  2. Algae Biofuels Technology | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Algae Biofuels Technology Algae Biofuels Technology Algae Biofuels Technology PDF icon Algae Biofuels Technology More Documents & Publications The Promise and Challenge of Algae as...

  3. Nebraska Biofuel Enzyme Plant Hosts Tour with Senior DOE Official...

    Office of Environmental Management (EM)

    in clean energy manufacturing here in Nebraska and across the nation, ensuring new windmills, solar panels and biofuel products are produced and assembled by American workers." ...

  4. Biofuels and Barbecue Chips: Small Business Develops Process...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    be used to improve two seemingly unrelated products: biofuels and barbecue potato chips. ... industry, including those used in barbecue potato chips and other smoky flavored foods. ...

  5. Food Security and Nutrition NONE 09 BIOMASS FUELS; BIOFUELS;...

    Office of Scientific and Technical Information (OSTI)

    Level Panel of Experts on Food Security and Nutrition NONE 09 BIOMASS FUELS; BIOFUELS; PRODUCTION; AGRICULTURE; ENERGY POLICY; SOCIO-ECONOMIC FACTORS; SUSTAINABLE DEVELOPMENT;...

  6. Designer synthetic media for studying microbial-catalyzed biofuel...

    Office of Scientific and Technical Information (OSTI)

    Designer synthetic media for studying microbial-catalyzed biofuel production Citation Details In-Document Search Title: Designer synthetic media for studying microbial-catalyzed ...

  7. Importance of systems biology in engineering microbes for biofuel...

    Office of Scientific and Technical Information (OSTI)

    Importance of systems biology in engineering microbes for biofuel production Citation Details In-Document Search Title: Importance of systems biology in engineering microbes for ...

  8. Development of the University of Washington Biofuels and Biobased...

    Office of Scientific and Technical Information (OSTI)

    in biofuels production * Investigation of biomass refining following steam explosion * Several studies on use of different biomass feedstocks * Investigation of biomass moisture ...

  9. Analysis of advanced biofuels.

    SciTech Connect (OSTI)

    Dec, John E.; Taatjes, Craig A.; Welz, Oliver; Yang, Yi

    2010-09-01

    Long chain alcohols possess major advantages over ethanol as bio-components for gasoline, including higher energy content, better engine compatibility, and less water solubility. Rapid developments in biofuel technology have made it possible to produce C{sub 4}-C{sub 5} alcohols efficiently. These higher alcohols could significantly expand the biofuel content and potentially replace ethanol in future gasoline mixtures. This study characterizes some fundamental properties of a C{sub 5} alcohol, isopentanol, as a fuel for homogeneous-charge compression-ignition (HCCI) engines. Wide ranges of engine speed, intake temperature, intake pressure, and equivalence ratio are investigated. The elementary autoignition reactions of isopentanol is investigated by analyzing product formation from laser-photolytic Cl-initiated isopentanol oxidation. Carbon-carbon bond-scission reactions in the low-temperature oxidation chemistry may provide an explanation for the intermediate-temperature heat release observed in the engine experiments. Overall, the results indicate that isopentanol has a good potential as a HCCI fuel, either in neat form or in blend with gasoline.

  10. Partnering with Industry to Advance Biofuels and Bioproducts (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-12-01

    Fact sheet describing NREL's Integrated Biorefinery Research Facility, a biochemical pilot plant and partnership facility containing equipment and lab space for pretreatement, enzymatic hydrolysis, fermentation, compositional analysis, and downstream processing. For more than 30 years, the U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) has been at the leading edge of research and technology advancements to develop renewable fuels and bioproducts. NREL works to develop cost-competitive alternatives to conventional transportation fuels and value-added biobased chemicals that can be used to manufacture clothing, plastics, lubricants, and other products. NREL is developing technologies and processes to produce a range of sustainable, energy-dense advanced biofuels that are compatible with our existing transportation fuel infrastructure. As part of that effort, NREL's National Bioenergy Center has entered into more than 90 collaborations in the past five years with companies ranging in size from start-ups to those that appear on Fortune magazine's Fortune 100 list. The new Integrated Biorefinery Research Facility (IBRF) showcases NREL's commitment to collaboration and to meeting the nation's biofuels and bioproducts development and deployment goals. Designed to speed the growth of the biofuels and bioproducts industries, the IBRF is a unique $33.5 million pilot facility capable of supporting a variety of projects. The IBRF is available to industry partners who work with NREL through cooperative research and development, technical, and analytical service agreements. With 27,000 ft2 of high bay space, the IBRF provides industry partners with the opportunity to operate, test, and develop their own biorefining technology and equipment.

  11. COMPUTATIONAL RESOURCES FOR BIOFUEL FEEDSTOCK SPECIES

    SciTech Connect (OSTI)

    Buell, Carol Robin; Childs, Kevin L

    2013-05-07

    While current production of ethanol as a biofuel relies on starch and sugar inputs, it is anticipated that sustainable production of ethanol for biofuel use will utilize lignocellulosic feedstocks. Candidate plant species to be used for lignocellulosic ethanol production include a large number of species within the Grass, Pine and Birch plant families. For these biofuel feedstock species, there are variable amounts of genome sequence resources available, ranging from complete genome sequences (e.g. sorghum, poplar) to transcriptome data sets (e.g. switchgrass, pine). These data sets are not only dispersed in location but also disparate in content. It will be essential to leverage and improve these genomic data sets for the improvement of biofuel feedstock production. The objectives of this project were to provide computational tools and resources for data-mining genome sequence/annotation and large-scale functional genomic datasets available for biofuel feedstock species. We have created a Bioenergy Feedstock Genomics Resource that provides a web-based portal or “clearing house” for genomic data for plant species relevant to biofuel feedstock production. Sequence data from a total of 54 plant species are included in the Bioenergy Feedstock Genomics Resource including model plant species that permit leveraging of knowledge across taxa to biofuel feedstock species.We have generated additional computational analyses of these data, including uniform annotation, to facilitate genomic approaches to improved biofuel feedstock production. These data have been centralized in the publicly available Bioenergy Feedstock Genomics Resource (http://bfgr.plantbiology.msu.edu/).

  12. DOE-Funded Research on Bacterial Enzyme Could Lead to Cheaper Biofuel

    Broader source: Energy.gov [DOE]

    A microorganism found in heated freshwater pools may hold the key to more efficient, cost-effective biofuel production.

  13. Performance of Biofuels and Biofuel Blends

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Performance of Biofuels and Biofuel Blends Robert McCormick Vehicle Technologies Program Merit Review - Fuels and Lubricants Technologies May 16, 2013 Project ID: FT003 This presentation does not contain any proprietary, confidential, or otherwise restricted information. 2 Overview Timeline Start date: Oct 2012 End date: Sept 2013 Percent complete: 66% Program funded one year at a time Barriers VTP MYPP Fuels & Lubricants Technologies Goals * By 2013 identify light-duty (LD) non-petroleum

  14. Sustainable Development of Algae for Biofuel

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Peer Review May 21, 2013 Algae Platform Rebecca Efroymson (PI), Matthew Langholtz, Virginia Dale Oak Ridge National Laboratory Center for BioEnergy Sustainability http://www.ornl.gov/sci/ees/cbes/ Sustainable Development of Algae for Biofuel Goal Statement Project Goal * To support sustainable development of algal biofuels by conducting research that defines and addresses potential environmental, socioeconomic, and production hurdles * To conduct sustainability studies (including indicator

  15. World-Class Test Facility Increases Efficiency of Solar Products

    Broader source: Energy.gov [DOE]

    This photograph features PV arrays at the SunEdison Facility at the Solar Technology Acceleration Center (SolarTAC) in Aurora, Colorado. SolarTAC is an integrated, world-class test facility where...

  16. Biofuels Marker Opportunities

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Convenience & Fuel Retailing Biofuels Market Opportunities John Eichberger NACS Vice President Government Relations Fuels Institute Executive Director The Association for ...

  17. Algal Biofuel Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Algal Biofuel Technologies States Biomass Clean Cities Web Conference November 6, 2008 Al Darzins, Ph.D. Principal Group Manager National Bioenergy Center NREL is a national ...

  18. Biofuels Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Education & Workforce Development » Resources » Biomass Basics » Biofuels Basics Biofuels Basics Biofuels such as ethanol and biodiesel can make a big difference in improving our environment, helping our economy, and reducing our dependence on foreign oil. This page discusses biofuels research supported by the Bioenergy Technologies Office. Biofuels for Transportation Ethanol Biodiesel Renewable Diesel Biofuels for Transportation Most vehicles on the road today are fueled by gasoline and

  19. BIOENERGIZEME INFOGRAPHIC CHALLENGE: Algae Biofuel | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Algae Biofuel BIOENERGIZEME INFOGRAPHIC CHALLENGE: Algae Biofuel BIOENERGIZEME INFOGRAPHIC CHALLENGE: Algae Biofuel

  20. Innovative Topics for Advanced Biofuels

    Broader source: Energy.gov (indexed) [DOE]

    Innovative Topics for Advanced Biofuels Jonathan Male, Ph.D. PNNL Report-Out Webinar ... into biomass sugars to feed advanced biofuels Separations - Compatibility with ...

  1. Biofuels National Strategic Benefits Analysis

    Broader source: Energy.gov (indexed) [DOE]

    Biofuels National Strategic Benefits Analysis March 24, 2015 (Draft 382015) Strategic ... and security benefits associated with biofuels Relevance and tangible outcomes for the ...

  2. SciTech Connect: "biofuels"

    Office of Scientific and Technical Information (OSTI)

    biofuels" Find + Advanced Search Term Search Semantic Search Advanced Search All Fields: "biofuels" Semantic Semantic Term Title: Full Text: Bibliographic Data: Creator ...

  3. Biofuel Solutions | Open Energy Information

    Open Energy Info (EERE)

    developer, which had been developing one plant in Fairmont, Minnesota and another in Wood River, Biofuel Energy LLC took over plant development of Biofuel Solutions' projects in...

  4. Propel Biofuels | Open Energy Information

    Open Energy Info (EERE)

    Propel Biofuels Jump to: navigation, search Name: Propel Biofuels Address: 4444 Woodland Park Ave North Place: Seattle, Washington Zip: 98103 Region: Pacific Northwest Area Sector:...

  5. Lab Breakthrough: ADM Leads to Petroleum-Free Glycol Production Facility |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy ADM Leads to Petroleum-Free Glycol Production Facility Lab Breakthrough: ADM Leads to Petroleum-Free Glycol Production Facility May 22, 2012 - 9:38am Addthis Pacific Northwest National Laboratory discovered a viable way to deliver propylene glycol from feedstock, including glycerin byproducts. ADM licensed that technology and in 2010 completed construction and commissioning of its full-scale production facility for the sole purpose of commercializing the PGRS process.

  6. Fast flux test facility radioisotope production and medical applications

    SciTech Connect (OSTI)

    Schenter, R.E.; Smith, S.G.; Tenforde, T.S.

    1997-12-01

    The Fast Flux Test Facility (FFTF) is a 400-MW, sodium-cooled reactor that operated successfully from 1982 to 1992, conducting work in support of the liquid-metal reactor industry by developing and testing fuel assemblies, control rods, and other core reactor components. Upon termination of this program, the primary mission of FFTF ended, and it was placed in a standby mode in 1993. However, in January 1997 the U.S. Secretary of Energy requested that FFTF be evaluated for a future mission that would consist of a primary goal of producing tritium for nuclear defense applications and a secondary goal of supplying medical isotopes for research and clinical applications. Production by FFTF of tritium for U.S. nuclear weapons would augment the dual-track strategy now under consideration for providing a long-term tritium supply in the United States (consisting of a light water reactor option and an accelerator option). A decision by the Secretary of Energy on proceeding with steps leading toward the possible reactivation of FFTF will be made before the end of 1998.

  7. Research project aims to create affordable biofuels by 2019

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Affordable biofuels by 2019 Research project aims to create affordable biofuels by 2019 Los Alamos National Laboratory, in collaboration with the Colorado School of Mine and Reliance Industries, has received nearly $9 million in funding from the DOE for Producing Algae and Co-Products for Energy (PACE). August 16, 2015 A Los Alamos National Laboratory project with the Colorado School of Mines and Reliance Industries enhances algal biofuels sustainability. A Los Alamos National Laboratory project

  8. Los Alamos technology strikes a chord with algal biofuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technology strikes chord with algal biofuels Los Alamos technology strikes a chord with algal biofuels Sound-wave technology is helping Solix Biofuels, Inc. optimize production of algae-based fuel in a cost-effective, scalable, and environmentally benign fashion. September 2, 2009 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy

  9. Medical and biofuel advances possible with new gene regulation tool

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Medical and biofuel advances possible with new gene regulation tool Medical and biofuel advances possible with new gene regulation tool The key is a tunable switch made from a small non-coding RNA molecule that could have value for medical and even biofuel production purposes. August 20, 2015 Scientists at Los Alamos National Laboratory have manufactured molecular "dimmer" switches to control cellular metabolism with exquisite precision. The research has potential widespread

  10. Workshop on Conversion Technologies for Advanced Biofuels - Bio-Oils |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Bio-Oils Workshop on Conversion Technologies for Advanced Biofuels - Bio-Oils Introduction presentation report-out at the CTAB webinar on bio-oils. ctab_webinar_bio_oils_intro.pdf (635.81 KB) More Documents & Publications Conversion Technologies for Advanced Biofuels - Bio-Oil Production Conversion Technologies for Advanced Biofuels - Bio-Oil Upgrading 2013 Peer Review Presnentations-Plenaries

  11. Algal Biofuels Factsheet: Long-Term Energy Benefits Drive U.S. Research

    SciTech Connect (OSTI)

    2013-03-04

    Algal biofuels are generating considerable interest around the world. In the United States, they represent promising pathways for helping to meet the biofuel production targets set by the Energy Independence and Security Act of 2007.

  12. Property Tax Abatement for Production and Manufacturing Facilities

    Broader source: Energy.gov [DOE]

    Qualifying renewable energy manufacturing facilities are those that (1) produce materials, components or systems to convert solar, wind, geothermal, biomass, biogas or waste heat resources into...

  13. ARM Climate Research Facility Quarterly Value-Added Product Report...

    Office of Scientific and Technical Information (OSTI)

    (VAP) implemented by the Atmospheric Radiation Measurement Climate Research Facility. ... approved, (4) other work that leads to a VAP, and (5) top requested VAPs from the archive. ...

  14. Sustainable Biofuels Development Center

    SciTech Connect (OSTI)

    Reardon, Kenneth F.

    2015-03-01

    The mission of the Sustainable Bioenergy Development Center (SBDC) is to enhance the capability of America’s bioenergy industry to produce transportation fuels and chemical feedstocks on a large scale, with significant energy yields, at competitive cost, through sustainable production techniques. Research within the SBDC is organized in five areas: (1) Development of Sustainable Crops and Agricultural Strategies, (2) Improvement of Biomass Processing Technologies, (3) Biofuel Characterization and Engine Adaptation, (4) Production of Byproducts for Sustainable Biorefining, and (5) Sustainability Assessment, including evaluation of the ecosystem/climate change implication of center research and evaluation of the policy implications of widespread production and utilization of bioenergy. The overall goal of this project is to develop new sustainable bioenergy-related technologies. To achieve that goal, three specific activities were supported with DOE funds: bioenergy-related research initiation projects, bioenergy research and education via support of undergraduate and graduate students, and Research Support Activities (equipment purchases, travel to attend bioenergy conferences, and seminars). Numerous research findings in diverse fields related to bioenergy were produced from these activities and are summarized in this report.

  15. A National-Scale Comparison of Resource and Nutrient Demands for Algae-Based Biofuel Production by Lipid Extraction and Hydrothermal Liquefaction

    SciTech Connect (OSTI)

    Venteris, Erik R.; Skaggs, Richard; Wigmosta, Mark S.; Coleman, Andre M.

    2014-03-01

    Algae’s high productivity provides potential resource advantages over other fuel crops. However, demand for land, water, and nutrients must be minimized to avoid impacts on food production. We apply our national-scale, open-pond, growth and resource models to assess several biomass to fuel technological pathways based on Chlorella. We compare resource demands between hydrothermal liquefaction (HTL) and lipid extraction (LE) to meet 1.89E+10 and 7.95E+10 L yr-1 biofuel targets. We estimate nutrient demands where post-fuel biomass is consumed as co-products and recycling by anaerobic digestion (AD) or catalytic hydrothermal gasification (CHG). Sites are selected through prioritization based on fuel value relative to a set of site-specific resource costs. The highest priority sites are located along the Gulf of Mexico coast, but potential sites exist nationwide. We find that HTL reduces land and freshwater consumption by up to 46% and saline groundwater by around 70%. Without recycling, nitrogen (N) and phosphorous (P) demand is reduced 33%, but is large relative to current U.S. agricultural consumption. The most nutrient-efficient pathways are LE+CHG for N and HTL+CHG for P (by 42%). Resource gains for HTL+CHG are offset by a 344% increase in N consumption relative to LE+CHG (with potential for further recycling). Nutrient recycling is essential to effective use of alternative nutrient sources. Modeling of utilization availability and costs remains, but we find that for HTL+CHG at the 7.95E+10 L yr-1 production target, municipal sources can offset 17% of N and 40% of P demand and animal manures can generally meet demands.

  16. Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facilities Facilities LANL's mission is to develop and apply science and technology to ensure the safety, security, and reliability of the U.S. nuclear deterrent; reduce global threats; and solve other emerging national security and energy challenges. Contact Operator Los Alamos National Laboratory (505) 667-5061 Some LANL facilities are available to researchers at other laboratories, universities, and industry. Unique facilities foster experimental science, support the Lab's security mission

  17. Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Secure and Sustainable Energy Future Mission/Facilities Facilities Tara Camacho-Lopez 2016-04-06T18:06:13+00:00 National Solar Thermal Test Facility (NSTTF) facility_nsttf_slide NSTTF's primary goal is to provide experimental engineering data for the design, construction, and operation of unique components and systems in proposed solar thermal electrical plants, which have three generic system architectures: line-focus (trough and continuous linear Fresnel reflector systems), point-focus central

  18. Jeff Edlund of the NNSA Production Office Y12 Site Named 2015 Facility

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Representative of the Year | Department of Energy Jeff Edlund of the NNSA Production Office Y12 Site Named 2015 Facility Representative of the Year Jeff Edlund of the NNSA Production Office Y12 Site Named 2015 Facility Representative of the Year May 24, 2016 - 10:30am Addthis Jeff Edlund of the NNSA Production Office Y12 Site Named 2015 Facility Representative of the Year About 200 Department of Energy (DOE) federal employees are Facility Representatives (FR) who provide day-to-day oversight

  19. Expanded North Carolina Lithium Facility Opens, Boosting U.S. Production of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    a Key Manufacturing Material | Department of Energy North Carolina Lithium Facility Opens, Boosting U.S. Production of a Key Manufacturing Material Expanded North Carolina Lithium Facility Opens, Boosting U.S. Production of a Key Manufacturing Material June 29, 2012 - 12:28pm Addthis News Media Contact (202) 586-4940 WASHINGTON - Today, U.S. Energy Secretary Steven Chu recognized the opening of Rockwood Lithium's expanded manufacturing facility in Kings Mountain, North Carolina. Rockwood is

  20. Biofuels Report Final | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biofuels Report Final Biofuels Report Final Liquid biofuels produced from lignocellulosic biomass can significantly reduce our dependence on foreign oil, create new jobs, improve ...

  1. Bioproducts and Biofuels - Growing Together! | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Biofuels - Growing Together Bioproducts and Biofuels - Growing Together Breakout Session 2B-Integration of Supply Chains II: Bioproducts-Enabling Biofuels and Growing the ...

  2. Advanced Biofuels Industry Roundtable - List of Participants...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biofuels Industry Roundtable - List of Participants Advanced Biofuels Industry Roundtable - List of Participants List of Participants from the May 18 Advanced Biofuels Industry ...

  3. Folium - Biofuels from Tobacco - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biomass and Biofuels Biomass and Biofuels Find More Like This Return to Search Folium - Biofuels from Tobacco Lawrence Berkeley National Laboratory Contact LBL About This ...

  4. Biofuels - Biomass Feedstock - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biomass and Biofuels Biomass and Biofuels Find More Like This Return to Search Biofuels - Biomass Feedstock Idaho National Laboratory Contact INL About This Technology Technology ...

  5. Category:Biofuels | Open Energy Information

    Open Energy Info (EERE)

    Biofuels Organizations Pages in category "Biofuels" This category contains only the following page. T The Biofuels Center of North Carolina Retrieved from "http:en.openei.orgw...

  6. Novare Biofuels Inc | Open Energy Information

    Open Energy Info (EERE)

    Novare Biofuels Inc Jump to: navigation, search Logo: Novare Biofuels Inc Name: Novare Biofuels Inc Address: 2983 Sterling Ct Place: Boulder, Colorado Zip: 80301 Region: Rockies...

  7. Computer Modeling of Carbon Metabolism Enables Biofuel Engineering (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-09-01

    In an effort to reduce the cost of biofuels, the National Renewable Energy Laboratory (NREL) has merged biochemistry with modern computing and mathematics. The result is a model of carbon metabolism that will help researchers understand and engineer the process of photosynthesis for optimal biofuel production.

  8. Biofuels News, Vol. 3, No. 1 (Spring/Summer 2000)

    SciTech Connect (OSTI)

    Brown, H.

    2000-08-15

    This is the Newsletter for DOE Biofuels Program. Articles are presented on collection and use of corn stover for bioethanol production, the state workshop program on ethanol, and a subcontract to Genencor for improvement of cellulase enzyme production.

  9. NREL: Learning - Biofuels Basics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The two most common types of biofuels in use today are ethanol and biodiesel. Ethanol is an alcohol, the same as in beer and wine (although ethanol used as a fuel is modified to ...

  10. Sandia's Biofuels Program

    ScienceCinema (OSTI)

    Simmons, Blake; Singh, Seema; Lane, Todd; Reichardt, Tom; Davis, Ryan

    2014-07-24

    Sandia's biofuels program is focused on developing next-generation, renewable fuel solutions derived from biomass. In this video, various Sandia researchers discuss the program and the tools they employ to tackle the technical challenges they face.

  11. Sandia's Biofuels Program

    SciTech Connect (OSTI)

    Simmons, Blake; Singh, Seema; Lane, Todd; Reichardt, Tom; Davis, Ryan

    2014-07-22

    Sandia's biofuels program is focused on developing next-generation, renewable fuel solutions derived from biomass. In this video, various Sandia researchers discuss the program and the tools they employ to tackle the technical challenges they face.

  12. Biofuel Feedstock Assessment For Selected Countries

    SciTech Connect (OSTI)

    Kline, Keith L; Oladosu, Gbadebo A; Wolfe, Amy K; Perlack, Robert D; Dale, Virginia H

    2008-02-01

    Findings from biofuel feedstock production assessments and projections of future supply are presented and discussed. The report aims to improve capabilities to assess the degree to which imported biofuel could contribute to meeting future U.S. targets to reduce dependence on imported oil. The study scope was focused to meet time and resource requirements. A screening process identified Argentina, Brazil, Canada, China, Colombia, India, Mexico, and the Caribbean Basin Initiative (CBI) region for initial analysis, given their likely role in future feedstock supply relevant to U.S. markets. Supply curves for selected feedstocks in these countries are projected for 2012, 2017 and 2027. The supply functions, along with calculations to reflect estimated supplies available for export and/or biofuel production, were provided to DOE for use in a broader energy market allocation study. Potential cellulosic supplies from crop and forestry residues and perennials were also estimated for 2017 and 2027. The analysis identified capacity to potentially double or triple feedstock production by 2017 in some cases. A majority of supply growth is derived from increasing the area cultivated (especially sugarcane in Brazil). This is supplemented by improving yields and farming practices. Most future supplies of corn and wheat are projected to be allocated to food and feed. Larger shares of future supplies of sugarcane, soybean and palm oil production will be available for export or biofuel. National policies are catalyzing investments in biofuel industries to meet targets for fuel blending that generally fall in the 5-10% range. Social and environmental concerns associated with rapid expansion of feedstock production are considered. If the 2017 projected feedstock supply calculated as 'available' for export or biofuel were converted to fuel, it would represent the equivalent of about 38 billion gallons of gasoline. Sugarcane and bagasse dominate the available supply, representing 64% of

  13. Biofuel Feedstock Assessment for Selected Countries

    SciTech Connect (OSTI)

    Kline, K.L.; Oladosu, G.A.; Wolfe, A.K.; Perlack, R.D.; Dale, V.H.

    2008-02-18

    Findings from biofuel feedstock production assessments and projections of future supply are presented and discussed. The report aims to improve capabilities to assess the degree to which imported biofuel could contribute to meeting future U.S. targets to reduce dependence on imported oil. The study scope was focused to meet time and resource requirements. A screening process identified Argentina, Brazil, Canada, China, Colombia, India, Mexico, and the Caribbean Basin Initiative (CBI) region for initial analysis, given their likely role in future feedstock supply relevant to U.S. markets. Supply curves for selected feedstocks in these countries are projected for 2012, 2017 and 2027. The supply functions, along with calculations to reflect estimated supplies available for export and/or biofuel production, were provided to DOE for use in a broader energy market allocation study. Potential cellulosic supplies from crop and forestry residues and perennials were also estimated for 2017 and 2027. The analysis identified capacity to potentially double or triple feedstock production by 2017 in some cases. A majority of supply growth is derived from increasing the area cultivated (especially sugarcane in Brazil). This is supplemented by improving yields and farming practices. Most future supplies of corn and wheat are projected to be allocated to food and feed. Larger shares of future supplies of sugarcane, soybean and palm oil production will be available for export or biofuel. National policies are catalyzing investments in biofuel industries to meet targets for fuel blending that generally fall in the 5-10% range. Social and environmental concerns associated with rapid expansion of feedstock production are considered. If the 2017 projected feedstock supply calculated as ‘available’ for export or biofuel were converted to fuel, it would represent the equivalent of about 38 billion gallons of gasoline. Sugarcane and bagasse dominate the available supply, representing 64

  14. Whole Turf Algae to biofuels-final-sm

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Whole Turf Algae Polyculture Biofuels The production and conversion of whole turf algae polyculture maximizes fuels, chemicals and nutrients New Approach to Algal Biomass Production Sandia National Laboratories in partnership with the Smithsonian Institute and HydroMentia are pursuing the affordable, scalable and sustainable production of biofuels from benthic algal polyculture turf biomass. The highly productive, easily harvested and dewatered algae is a promising new alternative for achieving

  15. Life-cycle energy and GHG emissions of forest biomass harvest and transport for biofuel production in Michigan

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhang, Fengli; Johnson, Dana M.; Wang, Jinjiang

    2015-04-01

    High dependence on imported oil has increased U.S. strategic vulnerability and prompted more research in the area of renewable energy production. Ethanol production from renewable woody biomass, which could be a substitute for gasoline, has seen increased interest. This study analysed energy use and greenhouse gas emission impacts on the forest biomass supply chain activities within the State of Michigan. A life-cycle assessment of harvesting and transportation stages was completed utilizing peer-reviewed literature. Results for forest-delivered ethanol were compared with those for petroleum gasoline using data specific to the U.S. The analysis from a woody biomass feedstock supply perspective uncoveredmore » that ethanol production is more environmentally friendly (about 62% less greenhouse gas emissions) compared with petroleum based fossil fuel production. Sensitivity analysis was conducted with key inputs associated with harvesting and transportation operations. The results showed that research focused on improving biomass recovery efficiency and truck fuel economy further reduced GHG emissions and energy consumption.« less

  16. Life-cycle energy and GHG emissions of forest biomass harvest and transport for biofuel production in Michigan

    SciTech Connect (OSTI)

    Zhang, Fengli; Johnson, Dana M.; Wang, Jinjiang

    2015-04-01

    High dependence on imported oil has increased U.S. strategic vulnerability and prompted more research in the area of renewable energy production. Ethanol production from renewable woody biomass, which could be a substitute for gasoline, has seen increased interest. This study analysed energy use and greenhouse gas emission impacts on the forest biomass supply chain activities within the State of Michigan. A life-cycle assessment of harvesting and transportation stages was completed utilizing peer-reviewed literature. Results for forest-delivered ethanol were compared with those for petroleum gasoline using data specific to the U.S. The analysis from a woody biomass feedstock supply perspective uncovered that ethanol production is more environmentally friendly (about 62% less greenhouse gas emissions) compared with petroleum based fossil fuel production. Sensitivity analysis was conducted with key inputs associated with harvesting and transportation operations. The results showed that research focused on improving biomass recovery efficiency and truck fuel economy further reduced GHG emissions and energy consumption.

  17. Nevada Production and Injection Well Data for Facilities with Flash Steam

    Office of Scientific and Technical Information (OSTI)

    Plants (Dataset) | SciTech Connect Dataset: Nevada Production and Injection Well Data for Facilities with Flash Steam Plants Citation Details In-Document Search Title: Nevada Production and Injection Well Data for Facilities with Flash Steam Plants Files contain a summary of the production and injection data submitted by the geothermal operators to the Nevada Bureau of Mines and Geology over the period from 1985 thru 2009 Authors: Mines, Greg Publication Date: 2014-03-26 OSTI Identifier:

  18. Screening Prosopis (mesquite) species for biofuel production on semi-arid lands. Final report, April 1, 1978-March 30, 1981

    SciTech Connect (OSTI)

    Felker, P; Cannell, G H; Clark, P R; Osborn, J F; Nash, P

    1985-01-01

    Arid adapted nitrogen fixing trees and shrubs of the genus Prosopis (mesquite) have been examined for woody biomass production on semi-arid lands of southwestern United States. A germ-plasm collection of 900 accessions from North and South America and Africa was assembled. Field studies screening for biomass production, frost tolerance, response to irrigation, pod production and heat/drought tolerance involved a total of 80 accessions. Selections made from survivors of coal/frost screening trial had more frost tolerance and biomass productivity than prostrate selections from the ranges of Arizona, New Mexico and west Texas. Thirteen Prosopis species were found to nodulate, reduce acetylene to ethylene, and grow on a nitrogen free media in greenhouse experiments. The salinity tolerance of six Prosopis species was examined on a nitrogen free media in greenhouse experiments. No reduction in growth occurred for any species tested at a salinity of 6000 mg NaC1/L which is considered too saline for normal agricultural crops. Individual trees have grown 5 to 7 cm in basal diameter, and 2.0 to 3.7 meters in height per year and have achieved 50 kg oven dry weight per tree in 2 years with 600 mm water application per year. Vegetative propagation techniques have been developed and clones of these highly productive trees have been made. Small pilots on 1.5 x 1.5 m spacing in the California Imperial Valley had a first and second season dry matter production of 11.7 and 16.9 T/ha for P. chilensis (0009), 7.1 and 6.9 T/ha for P. glandulosa var. torreyana (0001), 9.8 and 19.2 T/ha for P. alba (0039) and 7.9 and 14.5 T/ha for progency of a California ornamental (0163). The projected harvested costs of $25.00 per oven dry ton or $1.50 per million Btu's compare favorable with coal and other alternative fuel sources in South Texas.

  19. Use of the fast flux test facility for tritium production

    SciTech Connect (OSTI)

    Drell, S.; Hammer, D.; Cornwall, J.M.; Dyson, F.; Garwin, R.

    1996-10-25

    This report provides the results of a JASON review of the technical feasibility of using the Department of Energy`s (DOE`s) Fast Flux Test Facility (FFTF) to generate tritium needed for the enduring United States nuclear weapons stockpile.

  20. Microalgal Biofuels Analysis Laboratory Procedures | Bioenergy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Microalgal Biofuels Analysis Laboratory Procedures NREL develops laboratory analytical procedures (LAPs) for analyzing microalgal biofuels. These procedures help scientists and ...

  1. Integrated Biorefineries: Biofuels, Bioproducts, and Biopower...

    Energy Savers [EERE]

    Biorefineries: Biofuels, Bioproducts, and Biopower Integrated Biorefineries: Biofuels, Bioproducts, and Biopower Achieving national energy and climate goals will require an ...

  2. Advanced Cellulosic Biofuels - Leveraging Ensyn's Commercially...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Cellulosic Biofuels Leveraging Ensyn's commercially-proven RTP technology 2015 ... Refinery Coprocessing vs traditional approaches Traditional biofuels Ethanol, biodiesel ...

  3. Conversion Technologies for Advanced Biofuels - Carbohydrates...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Upgrading Conversion Technologies for Advanced Biofuels - Carbohydrates Upgrading PNNL ... Advanced Conversion Roadmap Workshop Conversion Technologies for Advanced Biofuels - ...

  4. Guiding optimal biofuels : a comparative analysis of the biochemical production of ethanol and fatty acid ethyl esters from switchgrass.

    SciTech Connect (OSTI)

    Paap, Scott M.; West, Todd H.; Manley, Dawn Kataoka; Dibble, Dean C.; Simmons, Blake Alexander; Steen, Eric J.; Beller, Harry R.; Keasling, Jay D.; Chang, Shiyan

    2013-01-01

    In the current study, processes to produce either ethanol or a representative fatty acid ethyl ester (FAEE) via the fermentation of sugars liberated from lignocellulosic materials pretreated in acid or alkaline environments are analyzed in terms of economic and environmental metrics. Simplified process models are introduced and employed to estimate process performance, and Monte Carlo analyses were carried out to identify key sources of uncertainty and variability. We find that the near-term performance of processes to produce FAEE is significantly worse than that of ethanol production processes for all metrics considered, primarily due to poor fermentation yields and higher electricity demands for aerobic fermentation. In the longer term, the reduced cost and energy requirements of FAEE separation processes will be at least partially offset by inherent limitations in the relevant metabolic pathways that constrain the maximum yield potential of FAEE from biomass-derived sugars.

  5. Exploring the Utilization of Complex Algal Communities to Address Algal Pond Crash and Increase Annual Biomass Production for Algal Biofuels

    SciTech Connect (OSTI)

    Hamilton, Cyd E.

    2014-03-25

    This white paper briefly reviews the research literature exploring complex algal communities as a means of increasing algal biomass production via increased tolerance, resilience, and resistance to a variety of abiotic and biotic perturbations occurring within harvesting timescales. This paper identifies what data are available and whether more research utilizing complex communities is needed to explore the potential of complex algal community stability (CACS) approach as a plausible means to increase biomass yields regardless of ecological context and resulting in decreased algal-based fuel prices by reducing operations costs. By reviewing the literature for what we do and do not know, in terms of CACS methodologies, this report will provide guidance for future research addressing pond crash phenomena.

  6. Algal Biofuels Techno-Economic Analysis | Bioenergy | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biofuels Techno-Economic Analysis To promote an understanding of the challenges and opportunities unique to microalgae, NREL's Algae Techno-Economic Analysis group focuses on techno-economic analysis (TEA) for the production and conversion of algal biomass into biofuels and coproducts. We help research technologies that will enable the production of cost-competitive hydrocarbon fuels and products from algal biomass in support of the goals of the U.S. Department of Energy's (DOE's) Bioenergy

  7. Center for Advanced Biofuel Systems (CABS) Final Report

    SciTech Connect (OSTI)

    Kutchan, Toni M.

    2015-12-02

    One of the great challenges facing current and future generations is how to meet growing energy demands in an environmentally sustainable manner. Renewable energy sources, including wind, geothermal, solar, hydroelectric, and biofuel energy systems, are rapidly being developed as sustainable alternatives to fossil fuels. Biofuels are particularly attractive to the U.S., given its vast agricultural resources. The first generation of biofuel systems was based on fermentation of sugars to produce ethanol, typically from food crops. Subsequent generations of biofuel systems, including those included in the CABS project, will build upon the experiences learned from those early research results and will have improved production efficiencies, reduced environmental impacts and decreased reliance on food crops. Thermodynamic models predict that the next generations of biofuel systems will yield three- to five-fold more recoverable energy products. To address the technological challenges necessary to develop enhanced biofuel systems, greater understanding of the non-equilibrium processes involved in solar energy conversion and the channeling of reduced carbon into biofuel products must be developed. The objective of the proposed Center for Advanced Biofuel Systems (CABS) was to increase the thermodynamic and kinetic efficiency of select plant- and algal-based fuel production systems using rational metabolic engineering approaches grounded in modern systems biology. The overall strategy was to increase the efficiency of solar energy conversion into oils and other specialty biofuel components by channeling metabolic flux toward products using advanced catalysts and sensible design:1) employing novel protein catalysts that increase the thermodynamic and kinetic efficiencies of photosynthesis and oil biosynthesis; 2) engineering metabolic networks to enhance acetyl-CoA production and its channeling towards lipid synthesis; and 3) engineering new metabolic networks for the

  8. Evaluation of a Low-Cost Salmon Production Facility; 1988 Annual Report.

    SciTech Connect (OSTI)

    Hill, James M.; Olson, Todd

    1989-05-01

    This fiscal year 1988 study sponsored by the Bonneville Power Administration evaluates an existing, small-scale salmon production facility operated and maintained by the Clatsop County Economic Development Committee's Fisheries Project.

  9. BioFuels Atlas (Presentation)

    SciTech Connect (OSTI)

    Moriarty, K.

    2011-02-01

    Presentation for biennial merit review of Biofuels Atlas, a first-pass visualization tool that allows users to explore the potential of biomass-to-biofuels conversions at various locations and scales.

  10. National Advanced Biofuels Consortium Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Biofuels Consortium Virent Board of Directors June 15, 2010 NABC: For Open Distribution Biomass R&D Evolution Prior Focus Cellulosic Ethanol RD&D Technoeconomic Analysis Sustainability Analysis Future Focus Cellulosic Ethanol RD&D Advanced Biofuels R&D Technoeconomic Analysis Resource Analysis/Allocation Sustainability Analysis & LCA Biopower Biomass Intermediates Algal Biofuels R&D NABC: For Open Distribution * Create a U.S. Advanced Biofuels Research Consortium

  11. Algal Biofuels | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Algal Biofuels Algal Biofuels Algae image The Bioenergy Technologies Office's (BETO's) Algae Program is carrying out a long-term applied research and development (R&D) strategy to increase the yields and lower the costs of algal biofuels by working with partners to develop new technologies, to integrate technologies at commercially-relevant scales, and conduct crosscutting analyses to understand the potential and challenges of an algal biofuel industry that is capable of annually producing

  12. Biofuel Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biofuel Basics Biofuel Basics July 30, 2013 - 11:38am Addthis Text Version Photo of a woman in goggles handling a machine filled with biofuels. Most vehicles on the road today run on gasoline and diesel fuels, which are produced from oil-a non-renewable resource, meaning supplies are limited. Renewable resources, in contrast, are constantly replenished and are unlikely to run out. Biomass is one type of renewable resource that can be converted into liquid fuels (biofuels) for transportation.

  13. Performance Characterization of the Production Facility Prototype Helium Flow System

    SciTech Connect (OSTI)

    Woloshun, Keith Albert; Dale, Gregory E.; Dalmas, Dale Allen; Romero, Frank Patrick

    2015-12-16

    The roots blower in use at ANL for in-beam experiments and also at LANL for flow tests was sized for 12 mm diameter disks and significantly less beam heating. Currently, the disks are 29 mm in diameter, with a 12 mm FWHM Gaussian beam spot at 42 MeV and 2.86 μA on each side of the target, 5.72 μA total. The target design itself is reported elsewhere. With the increased beam heating, the helium flow requirement increased so that a larger blower was need for a mass flow rate of 400 g/s at 2.76 MPa (400 psig). An Aerzen GM 12.4 blower was selected, and is currently being installed at the LANL facility for target and component flow testing. This report describes this blower/motor/pressure vessel package and the status of the facility preparations. Blower performance (mass flow rate as a function of loop pressure drop) was measured at 4 blower speeds. Results are reported below.

  14. Sustainable Algal Biofuels Consortium

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Algal Biofuels Consortium Thursday May 21, 2013 9.5.1.5, 9.5.1.7, 9.5.1.8 Dr. Gary Dirks (SABC Principal Investigator) Dr. John McGowen (SABC Project Manager) Arizona State University Dr. Philip Pienkos (SABC Director) NREL Cultivating Energy Solutions The primary goals were to evaluate biochemical conversion as a potentially viable strategy for converting all the components of algal biomass into biofuels and evaluate the fit-for-use properties of those algal derived fuels and fuel

  15. Algae to Biofuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Algae to Biofuels Algae to Biofuels What if you could power your life using pond scum? Algae, plant-like aquatic microorganisms, produce oil similar to petroleum and can be grown almost anywhere, don't need to be fed and actually remove pollution from the air. algae Squeezing Power from Pond Scum Near industrial plants on undesirable land, scientists raise algae that suck up harmful exhaust and thrive in the non-drinkable wastewater. algae Why Algae? Algae produce at least 32 times more oil than

  16. EERE Success Story-BASF Catalysts Opens Cathode Production Facility...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    March 5, 2015 - 6:27pm Addthis BASF Catalysts, a battery component manufacturer, is ... forward; in 2012, they lowered the production costs of battery cathodes by more than 15%. ...

  17. Search for Efficient Technologies and Products for Federal Facilities

    Broader source: Energy.gov [DOE]

    The Federal Energy Management Program provides information and resources about energy- and water-efficient technologies and products that are well suited for federal applications and can help agencies meet federal laws and requirements.

  18. Wheeling for cogeneration and small power-production facilities

    SciTech Connect (OSTI)

    Tiano, J.R.; Zimmer, M.J.

    1982-01-01

    New problems have arisen over the ability to wheel power from decentralized cogeneration and small generation sources between electric utilities or between industrial facilities within a common geographical area. This article explores the historical and current positions of the Federal Power Commission, now the Federal Energy Regulatory Commission (FERC) as it has interpreted its authority under Part II of the Federal Power Act to order the wheeling of electric power. The authors also outline and discuss related antitrust issues which often arise within the context of wheeling and the possibilities of recognizing potential antitrust violations as a factor in promoting wheeling arrangements. Concluding that Congress will not address the issue, they recommend the negotiation of wheeling rates by project sponsors to introduce flexibility and avoid more regulation and costly antitrust litigation. 21 references.

  19. E3 BioFuels | Open Energy Information

    Open Energy Info (EERE)

    E3 BioFuels Place: Shawnee, Kansas Zip: 66218 Product: Owns a 90.9m litres-a-year ethanol plant in Nebraska; an anaerobic digester generates all the biogas needed to operate...

  20. Lab Discovery: Water Leads to Chemical that "Gunks Up" Biofuels...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lab Discovery: Water Leads to Chemical that "Gunks Up" Biofuels Production November 20, 2014 - 12:16pm Addthis In this episode of 90 Seconds of Discovery, Catalysis Scientist ...

  1. From the Lab to Your Gas Tank: 4 Bioenergy Testing Facilities That Are Making a Difference

    Broader source: Energy.gov [DOE]

    The Energy Department is working to cut the cost of biofuel production by supporting advanced development and demonstration facilities throughout the country that enable researchers to fully examine their efforts on a large scale without having to maintain an expensive pilot plant.

  2. Lab Discovery: Water Leads to Chemical that "Gunks Up" Biofuels

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Production | Department of Energy Lab Discovery: Water Leads to Chemical that "Gunks Up" Biofuels Production Lab Discovery: Water Leads to Chemical that "Gunks Up" Biofuels Production November 20, 2014 - 12:16pm Addthis In this episode of 90 Seconds of Discovery, Catalysis Scientist Robert Weber explains why bio-oil often gunks up during refining. Knowledge gained from this research could improve methods for refining biofuel. Researchers at Pacific Northwest National

  3. National Alliance for Advanced Biofuels and Bioproducts Synopsis (NAABB)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Final Report | Department of Energy Alliance for Advanced Biofuels and Bioproducts Synopsis (NAABB) Final Report National Alliance for Advanced Biofuels and Bioproducts Synopsis (NAABB) Final Report In 2010, the NAABB was formed to further understand the impacts of algae on overall biomass and liquid transportation fuel production. The consortium consisted of 39 partner institutions and primarily focused on feedstock supply, feedstock logistics, and conversion/production pathways. The NAABB

  4. Feasibility of a digester gas fuel production facility

    SciTech Connect (OSTI)

    Dakes, G.; Greene, D.S.; Sheehan, J.F.

    1982-03-01

    Results of studies on the feasibility of using digester gas produced from wastewater sludge to fuel vehicles are reported. Availability and suitability of digester gas as well as digester gas production records and test analyses on digester gas were reviewed. The feasibility of the project based on economic and environmental considerations is reported and compared to possible alternative uses of the digester gas.

  5. PNNL Aviation Biofuels

    SciTech Connect (OSTI)

    Plaza, John; Holladay, John; Hallen, Rich

    2014-10-23

    Commercial airplanes really don’t have the option to move away from liquid fuels. Because of this, biofuels present an opportunity to create new clean energy jobs by developing technologies that deliver stable, long term fuel options. The Department of Energy’s Pacific Northwest National Laboratory is working with industrial partners on processes to convert biomass to aviation fuels.

  6. Meeting the Demand for Biofuels: Impact on Land Use and Carbon Mitigation

    SciTech Connect (OSTI)

    Khanna, Madhu; Jain, Atul; Onal, Hayri; Scheffran, Jurgen; Chen, Xiaoguang; Erickson, Matt; Huang, Haixiao; Kang, Seungmo.

    2011-08-14

    The purpose of this research was to develop an integrated, interdisciplinary framework to investigate the implications of large scale production of biofuels for land use, crop production, farm income and greenhouse gases. In particular, we examine the mix of feedstocks that would be viable for biofuel production and the spatial allocation of land required for producing these feedstocks at various gasoline and carbon emission prices as well as biofuel subsidy levels. The implication of interactions between energy policy that seeks energy independence from foreign oil and climate policy that seeks to mitigate greenhouse gas emissions for the optimal mix of biofuels and land use will also be investigated. This project contributes to the ELSI research goals of sustainable biofuel production while balancing competing demands for land and developing policy approaches needed to support biofuel production in a cost-effective and environmentally friendly manner.

  7. Economy Through Product Diversity: Integrated Biorefineries

    Energy Savers [EERE]

    broad range of biomass feedstocks into affordable biofuels, biopower, and other products. ... produce 21 billion gallons of advanced biofuels in 2022. This target creates an urgent ...

  8. Biofuels and Food Security. A report by the High Level Panel...

    Office of Scientific and Technical Information (OSTI)

    production of food, principally land, biodiversity, water and labour are not put at risk. ... market-driven dynamics; Address the land, water and resource implications of biofuel ...

  9. Smart Federal Partnerships Build Our Biofuels Future | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Smart Federal Partnerships Build Our Biofuels Future Smart Federal Partnerships Build Our Biofuels Future April 13, 2015 - 10:30am Addthis The Energy Department’s Bioenergy Technologies Office engages with the U.S. Department of Agriculture on many projects, including guidance on the proper removal of corn stover (non-edible corn husks, stalks, and leaves) from the field when it is used for cellulosic ethanol and other advanced biofuel production. A corn stover bale is pictured here. The

  10. Energy Department Announces $15 Million to Advance Algae-based Biofuels and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bioproducts | Department of Energy 5 Million to Advance Algae-based Biofuels and Bioproducts Energy Department Announces $15 Million to Advance Algae-based Biofuels and Bioproducts July 14, 2016 - 11:00am Addthis The Energy Department today announced up to $15 million for three projects aimed at reducing the production costs of algae-based biofuels and bioproducts through improvements in algal biomass yields. These projects will develop highly productive algal cultivation systems and couple

  11. Strategic Perspectives on Biofuels

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Perspectives on Biofuels Bioenergy 2015: Opportunities in a Changing Energy Landscape Washington, DC June 24, 2015 Lee Rybeck Lynd Thayer School of Engineering, Dartmouth College Global Sustainable Bioenergy Project Bioenergy Science Center Enchi Corp. Thayer School of Engineering, Dartmouth GSB Global Sustainable Bioenergy The two biggest energy supply challenges to get to a low-carbon world Second half of low-carbon electricity - in light of intermittency of other renewables Second half of

  12. Evaluation of syngas production unit cost of bio-gasification facility using regression analysis techniques

    SciTech Connect (OSTI)

    Deng, Yangyang; Parajuli, Prem B.

    2011-08-10

    Evaluation of economic feasibility of a bio-gasification facility needs understanding of its unit cost under different production capacities. The objective of this study was to evaluate the unit cost of syngas production at capacities from 60 through 1800Nm 3/h using an economic model with three regression analysis techniques (simple regression, reciprocal regression, and log-log regression). The preliminary result of this study showed that reciprocal regression analysis technique had the best fit curve between per unit cost and production capacity, with sum of error squares (SES) lower than 0.001 and coefficient of determination of (R 2) 0.996. The regression analysis techniques determined the minimum unit cost of syngas production for micro-scale bio-gasification facilities of $0.052/Nm 3, under the capacity of 2,880 Nm 3/h. The results of this study suggest that to reduce cost, facilities should run at a high production capacity. In addition, the contribution of this technique could be the new categorical criterion to evaluate micro-scale bio-gasification facility from the perspective of economic analysis.

  13. Consortium for Algal Biofuels Commercialization (CAB-Comm)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Consortium for Algal Biofuels Commercialization (CAB-Comm) March 23, 2015 Biomass Program Algae Peer Review Stephen Mayfield University of California, San Diego This presentation does not contain any proprietary, confidential, or otherwise restricted information CAB-Comm Goal Statement * Three research areas: - Crop Protection - Nutrient Utilization and Recycling - Genetic Tool Development * Increase in biomass productivity, and creation advanced biotechnology tools to enable the biofuel and

  14. Nationwide Bio-Fuel Resource Mapping PRISM - EM

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nationwide Bio-Fuel Resource Mapping PRISM - EM  March 2015  Technology Area Review  Chris Daly and Michael Halbleib  Oregon State University 2 Estimating the Potential Distribution and Yield of Biomass Crops Resource Assessment Objective: Gain an understanding of the spatial distribution of current and potential biofuel/bio-energy feedstock resources across the country Envisioned outcome: A series of national geo- referenced grids (maps) that describe potential productivity patterns

  15. Conversion Technologies for Advanced Biofuels - Bio-Oil Upgrading |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Oil Upgrading Conversion Technologies for Advanced Biofuels - Bio-Oil Upgrading PNNL report-out at the CTAB webinar on Bio-Oil Upgrading. ctab_webinar_bio_oils_upgrading.pdf (361.56 KB) More Documents & Publications Conversion Technologies for Advanced Biofuels - Bio-Oil Production Thermochemical Conversion Proceeses to Aviation Fuels 2013 Peer Review Presentations-Bio-oil

  16. Thermochemical Conversion: Using Heat and Catalysis to Make Biofuels and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bioproducts | Department of Energy Thermochemical Conversion: Using Heat and Catalysis to Make Biofuels and Bioproducts Thermochemical Conversion: Using Heat and Catalysis to Make Biofuels and Bioproducts The Bioenergy Technologies Office works with industry to develop pathways that use heat, pressure, and catalysis to convert domestic, non-food biomass into gasoline, jet fuel, and other products. thermochemical_four_pager.pdf (4.64 MB) More Documents & Publications 2013 Peer Review

  17. Sandia National Laboratories: Research: Biofuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biofuels Overcoming challenges to make advanced "drop-in" biofuels a reality Sandia researchers are developing clean and renewable sources of energy to help minimize climate change and reduce U.S. dependence on foreign oil. To this end, we are creating thermochemical, chemical, and biochemical conversion technologies to efficiently generate renewable biofuels that can displace gasoline, diesel, and jet fuel with no loss of performance or engine efficiency. Sandia is focused on two

  18. Tarryn Miller: Fueling biofuel's promise

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tarryn Miller: Fueling biofuel's promise Tarryn Miller: Fueling biofuel's promise Student intern driven to develop cyanobacteria as viable carbon-neutral energy source. August 27, 2013 Tarryn Miller: Fueling biofuel's promise Student intern driven to develop cyanobacteria as viable carbon-neutral energy source. "Utilizing scientific discoveries for the good of human kind and flora and fauna here on earth has the utmost importance in my mind. If I can help create a sustainable energy source,

  19. Biofuels and Renewable Energy Page

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bioenergy Conventional Renewable Energy Wind Power Hydro Power Power System INL Home Biofuels and Renewable Energy Renewable energy resources are expected to play major role in...

  20. BioFuels Atlas Presentation

    Office of Energy Efficiency and Renewable Energy (EERE)

    Kristi Moriarity's presentation on NREL's BioFuels Atlas from the May 12, 2011, Clean Cities and Biomass Program State webinar.