National Library of Energy BETA

Sample records for biofuel fueling infrastructure

  1. Alternative Fuels Data Center: California Ramps Up Biofuels Infrastructure

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    California Ramps Up Biofuels Infrastructure to someone by E-mail Share Alternative Fuels Data Center: California Ramps Up Biofuels Infrastructure on Facebook Tweet about Alternative Fuels Data Center: California Ramps Up Biofuels Infrastructure on Twitter Bookmark Alternative Fuels Data Center: California Ramps Up Biofuels Infrastructure on Google Bookmark Alternative Fuels Data Center: California Ramps Up Biofuels Infrastructure on Delicious Rank Alternative Fuels Data Center: California Ramps

  2. Task Force on Biofuels Infrastructure

    Broader source: Energy.gov [DOE]

    Under the federal Renewable Fuels Standard (RFS) adopted in 2005 and amended in 2007, the United States is committed to a substantial (five-fold) increase in its use of biofuels by 2022. The National Commission on Energy Policy (NCEP) convened a Biofuels Infrastructure Task Force in 2008 to examine the infrastructure implications of this relatively swift and unprecedented shift in the composition of the nation’s transportation fuel supply. Specifically, the Task Force explored issues and developed recommendations for advancing the infrastructure investments needed to support timely and cost-effective implementation of the current biofuels mandate.

  3. BioFuels Atlas Presentation

    Office of Energy Efficiency and Renewable Energy (EERE)

    Kristi Moriarity's presentation on NREL's BioFuels Atlas from the May 12, 2011, Clean Cities and Biomass Program State webinar.

  4. United States Fuel Resiliency: US Fuels Supply Infrastructure

    Broader source: Energy.gov [DOE]

    Report: United States Fuel Resiliency – U.S. Fuels Supply Infrastructure Study: (1) Infrastructure Characterization; (II) Vulnerability to Natural and Physical Threats; and (III) Vulnerability and Resilience This report assesses the U.S. fuels supply transportation, storage, and distribution (TS&D) infrastructure, its vulnerabilities (natural and physical threats), and its resiliency. The analysis employs a region-by-region perspective of U.S. fuels supply infrastructure, mirroring the Petroleum Administration for Defense Districts (PADDs) system that underpins liquid fuels commerce. The report also assesses the TS&D networks for crude oil and condensates, petroleum products (gasoline, diesel, natural gas liquids, biofuels, and natural gas. Key findings include:

  5. Alternative Fuels Data Center: Renewable Hydrocarbon Biofuels

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Renewable Hydrocarbon Biofuels to someone by E-mail Share Alternative Fuels Data Center: Renewable Hydrocarbon Biofuels on Facebook Tweet about Alternative Fuels Data Center: Renewable Hydrocarbon Biofuels on Twitter Bookmark Alternative Fuels Data Center: Renewable Hydrocarbon Biofuels on Google Bookmark Alternative Fuels Data Center: Renewable Hydrocarbon Biofuels on Delicious Rank Alternative Fuels Data Center: Renewable Hydrocarbon Biofuels on Digg Find More places to share Alternative Fuels

  6. Patriot BioFuels | Open Energy Information

    Open Energy Info (EERE)

    BioFuels Jump to: navigation, search Name: Patriot BioFuels Place: Little Rock, Arkansas Zip: 72201 Product: Arkansas-based biodiesel company with production facilities at...

  7. SG BioFuels | Open Energy Information

    Open Energy Info (EERE)

    SG BioFuels Jump to: navigation, search Name: SG BioFuels Place: Encinitas, California Zip: 92024 Product: California-based biofuel producer operating across the United States....

  8. Gem BioFuels | Open Energy Information

    Open Energy Info (EERE)

    BioFuels Jump to: navigation, search Name: Gem BioFuels Place: Douglas, Isle of Man, United Kingdom Zip: IM1 4LB Product: Ilse of Man-based biodiesel feedstock developer with...

  9. Argonaut BioFuels | Open Energy Information

    Open Energy Info (EERE)

    Argonaut BioFuels Jump to: navigation, search Name: Argonaut BioFuels Place: Virginia Product: Manufacturer of wood pellets that has a plant in Virginia, US. References: Argonaut...

  10. Aurora BioFuels Inc | Open Energy Information

    Open Energy Info (EERE)

    BioFuels Inc Jump to: navigation, search Name: Aurora BioFuels Inc. Place: Alameda, California Zip: 94502 Sector: Biofuels, Renewable Energy Product: California-based renewable...

  11. Alternative Fuels Data Center: Ethanol Fueling Infrastructure Development

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Infrastructure Development to someone by E-mail Share Alternative Fuels Data Center: Ethanol Fueling Infrastructure Development on Facebook Tweet about Alternative Fuels Data Center: Ethanol Fueling Infrastructure Development on Twitter Bookmark Alternative Fuels Data Center: Ethanol Fueling Infrastructure Development on Google Bookmark Alternative Fuels Data Center: Ethanol Fueling Infrastructure Development on Delicious Rank Alternative Fuels Data Center: Ethanol Fueling Infrastructure

  12. Alternative Fuels Data Center: Propane Fueling Infrastructure Development

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Infrastructure Development to someone by E-mail Share Alternative Fuels Data Center: Propane Fueling Infrastructure Development on Facebook Tweet about Alternative Fuels Data Center: Propane Fueling Infrastructure Development on Twitter Bookmark Alternative Fuels Data Center: Propane Fueling Infrastructure Development on Google Bookmark Alternative Fuels Data Center: Propane Fueling Infrastructure Development on Delicious Rank Alternative Fuels Data Center: Propane Fueling Infrastructure

  13. Alternative Fuels Data Center: Hydrogen Fueling Infrastructure Development

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fueling Infrastructure Development to someone by E-mail Share Alternative Fuels Data Center: Hydrogen Fueling Infrastructure Development on Facebook Tweet about Alternative Fuels Data Center: Hydrogen Fueling Infrastructure Development on Twitter Bookmark Alternative Fuels Data Center: Hydrogen Fueling Infrastructure Development on Google Bookmark Alternative Fuels Data Center: Hydrogen Fueling Infrastructure Development on Delicious Rank Alternative Fuels Data Center: Hydrogen Fueling

  14. Alternative Fuels Data Center: Biodiesel Fueling Infrastructure Development

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Infrastructure Development to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Fueling Infrastructure Development on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Fueling Infrastructure Development on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Fueling Infrastructure Development on Google Bookmark Alternative Fuels Data Center: Biodiesel Fueling Infrastructure Development on Delicious Rank Alternative Fuels Data Center: Biodiesel Fueling

  15. California Low Carbon Fuels Infrastructure Investment Initiative...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Low Carbon Fuels Infrastructure Investment Initiative California Low Carbon Fuels Infrastructure Investment Initiative 2012 DOE Hydrogen and Fuel Cells Program and Vehicle...

  16. Alternative Fuels Data Center: Cities Clean up With Biofuels

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Cities Clean up With Biofuels to someone by E-mail Share Alternative Fuels Data Center: Cities Clean up With Biofuels on Facebook Tweet about Alternative Fuels Data Center: Cities Clean up With Biofuels on Twitter Bookmark Alternative Fuels Data Center: Cities Clean up With Biofuels on Google Bookmark Alternative Fuels Data Center: Cities Clean up With Biofuels on Delicious Rank Alternative Fuels Data Center: Cities Clean up With Biofuels on Digg Find More places to share Alternative Fuels Data

  17. BioFuel Energy Corp | Open Energy Information

    Open Energy Info (EERE)

    Energy Corp Jump to: navigation, search Name: BioFuel Energy Corp Place: Denver, Colorado Zip: 80202 Product: Develops, owns and operates ethanol facilities. References: BioFuel...

  18. BioFuels Energy LLC | Open Energy Information

    Open Energy Info (EERE)

    BioFuels Energy LLC Jump to: navigation, search Name: BioFuels Energy, LLC Place: Encinitas, California Zip: 92024 Sector: Renewable Energy Product: Encinitas-based renewable...

  19. Seattle Biodiesel aka Seattle BioFuels | Open Energy Information

    Open Energy Info (EERE)

    Seattle Biodiesel aka Seattle BioFuels Jump to: navigation, search Name: Seattle Biodiesel (aka Seattle BioFuels) Place: Seattle, Washington Sector: Renewable Energy Product:...

  20. BioFuels Atlas (Presentation)

    SciTech Connect (OSTI)

    Moriarty, K.

    2011-02-01

    Presentation for biennial merit review of Biofuels Atlas, a first-pass visualization tool that allows users to explore the potential of biomass-to-biofuels conversions at various locations and scales.

  1. Alternative Fuels Data Center: Natural Gas Fueling Infrastructure

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Development Infrastructure Development to someone by E-mail Share Alternative Fuels Data Center: Natural Gas Fueling Infrastructure Development on Facebook Tweet about Alternative Fuels Data Center: Natural Gas Fueling Infrastructure Development on Twitter Bookmark Alternative Fuels Data Center: Natural Gas Fueling Infrastructure Development on Google Bookmark Alternative Fuels Data Center: Natural Gas Fueling Infrastructure Development on Delicious Rank Alternative Fuels Data Center:

  2. BioFuel Oasis | Open Energy Information

    Open Energy Info (EERE)

    Zip: 94710 Product: A worker-owned cooperative to sell commercial biodiesel that meets ASTM standards. References: BioFuel Oasis1 This article is a stub. You can help OpenEI by...

  3. Hydrogen Fueling Infrastructure Research and Station Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Infrastructure Research and Station Technology Webinar Slides Hydrogen Fueling Infrastructure Research and Station Technology Webinar Slides Download presentation slides from the...

  4. Sandia Energy - Widespread Hydrogen Fueling Infrastructure Is...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Widespread Hydrogen Fueling Infrastructure Is the Goal of H2FIRST Project Home Infrastructure Security Energy Transportation Energy Facilities Partnership Capabilities News News &...

  5. Tomorrow BioFuels LLC | Open Energy Information

    Open Energy Info (EERE)

    Tomorrow BioFuels LLC Jump to: navigation, search Name: Tomorrow BioFuels LLC Place: Cranston, Rhode Island Zip: 2921 Product: Rhode Island-based algae-to-fuel technology...

  6. Tarryn Miller: Fueling biofuel's promise

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    "I really like algal work; it's something I can really get behind and believe in," Miller adds. "They are great candidates for biofuel and bio-product production, and they produce ...

  7. NREL Alt Fuel Lessons Learned: Hydrogen Infrastructure

    Broader source: Energy.gov [DOE]

    Presented at Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen Conference, April 2-3, 2008, Sacramento, California

  8. Hydrogen, Fuel Cells and Infrastructure Technologies Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Program FY2003 Merit Review and Peer Evaluation Report Hydrogen, Fuel Cells and ... U.S. Department of Energy Hydrogen, Fuel Cells and Infrastructure Technologies Program FY ...

  9. Hydrogen, Fuel Cells and Infrastructure Technologies Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Program: 2002 Annual Progress Report Hydrogen, Fuel Cells and Infrastructure Technologies Program: 2002 Annual Progress Report The Department of Energy's Hydrogen, Fuel Cells and ...

  10. Celsys BioFuels Inc | Open Energy Information

    Open Energy Info (EERE)

    Celsys BioFuels Inc Jump to: navigation, search Name: Celsys BioFuels Inc. Place: Indiana Product: Celsys was formed in 2006 to commercialise cellulosic ethanol technology that was...

  11. Houston BioFuels Consultants | Open Energy Information

    Open Energy Info (EERE)

    BioFuels Consultants Jump to: navigation, search Name: Houston BioFuels Consultants Place: Kingwood, Texas Zip: 77345 Product: A Houston-based consultancy run by oil industry...

  12. PrairieFire BioFuels Cooperative | Open Energy Information

    Open Energy Info (EERE)

    PrairieFire BioFuels Cooperative Jump to: navigation, search Name: PrairieFire BioFuels Cooperative Place: Madison, Wisconsin Zip: 53704 Product: A member-owned cooperative which...

  13. Harvest BioFuels LLC | Open Energy Information

    Open Energy Info (EERE)

    BioFuels LLC Jump to: navigation, search Name: Harvest BioFuels LLC Place: Addison, Texas Zip: TX 75001 Product: Setting up corn-based ethanol plants. Coordinates: 38.477365,...

  14. Metabolic engineering of microorganisms for biofuels production: from bugs to synthetic biology to fuels

    SciTech Connect (OSTI)

    Kuk Lee, Sung; Chou, Howard; Ham, Timothy S.; Soon Lee, Taek; Keasling, Jay D.

    2009-12-02

    The ability to generate microorganisms that can produce biofuels similar to petroleum-based transportation fuels would allow the use of existing engines and infrastructure and would save an enormous amount of capital required for replacing the current infrastructure to accommodate biofuels that have properties significantly different from petroleum-based fuels. Several groups have demonstrated the feasibility of manipulating microbes to produce molecules similar to petroleum-derived products, albeit at relatively low productivity (e.g. maximum butanol production is around 20 g/L). For cost-effective production of biofuels, the fuel-producing hosts and pathways must be engineered and optimized. Advances in metabolic engineering and synthetic biology will provide new tools for metabolic engineers to better understand how to rewire the cell in order to create the desired phenotypes for the production of economically viable biofuels.

  15. Refueling Infrastructure for Alternative Fuel Vehicles: Lessons...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen (PDF 257 KB), Dean Fry, BP Panel Session III: Innovation and Coordination Moderator: Stefan ...

  16. Refueling Infrastructure for Alternative Fuel Vehicles: Lessons...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    from the DOE sponsored Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen workshop to understand how lessons from past experiences can...

  17. Refueling Infrastructure for Alternative Fuel Vehicles: Lessons...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PDF icon fry.pdf More Documents & Publications HYDROGEN TO THE HIGHWAYS NREL Alt Fuel Lessons Learned: Hydrogen Infrastructure Safety Analysis of Type 4 Tanks in CNG Vehicles

  18. Costs Associated With Propane Vehicle Fueling Infrastructure

    SciTech Connect (OSTI)

    Smith, M.; Gonzales, J.

    2014-08-01

    This document is designed to help fleets understand the cost factors associated with propane vehicle fueling infrastructure. It provides an overview of the equipment and processes necessary to develop a propane fueling station and offers estimated cost ranges.

  19. Costs Associated With Propane Vehicle Fueling Infrastructure

    SciTech Connect (OSTI)

    Smith, M.; Gonzales, J.

    2014-08-05

    This document is designed to help fleets understand the cost factors associated with propane vehicle fueling infrastructure. It provides an overview of the equipment and processes necessary to develop a propane fueling station and offers estimated cost ranges.

  20. California Low Carbon Fuels Infrastructure Investment Initiative |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Low Carbon Fuels Infrastructure Investment Initiative California Low Carbon Fuels Infrastructure Investment Initiative 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon arravt082_ti_bowen_2012_o.pdf More Documents & Publications The Future of Home Heating StateActivity.pdf Hydrogen & Fuel Cells Program Overview

  1. Food Security and Nutrition NONE 09 BIOMASS FUELS; BIOFUELS;...

    Office of Scientific and Technical Information (OSTI)

    Level Panel of Experts on Food Security and Nutrition NONE 09 BIOMASS FUELS; BIOFUELS; PRODUCTION; AGRICULTURE; ENERGY POLICY; SOCIO-ECONOMIC FACTORS; SUSTAINABLE DEVELOPMENT;...

  2. Property:RenewableFuelStandard/RenewableBiofuel | Open Energy...

    Open Energy Info (EERE)

    Property Edit with form History Facebook icon Twitter icon Property:RenewableFuelStandardRenewableBiofuel Jump to: navigation, search This is a property of type Number. Pages...

  3. Property:RenewableFuelStandard/AdvancedBiofuel | Open Energy...

    Open Energy Info (EERE)

    Property Edit with form History Facebook icon Twitter icon Property:RenewableFuelStandardAdvancedBiofuel Jump to: navigation, search This is a property of type Number. Pages...

  4. Property:RenewableFuelStandard/UndifferentiatedAdvancedBiofuel...

    Open Energy Info (EERE)

    Property Edit with form History Facebook icon Twitter icon Property:RenewableFuelStandardUndifferentiatedAdvancedBiofuel Jump to: navigation, search This is a property of type...

  5. Hydrogen Fueling Infrastructure Research and Station Technology

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Infrastructure Research and Station Technology Erika Sutherland U.S. Department of Energy Fuel Cell Technologies Office 2 Question and Answer * Please type your question into the question box hydrogenandfuelcells.energy.gov Hydrogen Fueling Infrastructure Research and Station Technology Chris Ainscough, Joe Pratt, Jennifer Kurtz, Brian Somerday, Danny Terlip, Terry Johnson November 18, 2014 Objective: Ensure that FCEV customers have a positive fueling experience relative to conventional

  6. NREL: Hydrogen and Fuel Cells Research - Hydrogen Fueling Infrastructure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Analysis Fueling Infrastructure Analysis As the market grows for hydrogen fuel cell electric vehicles, so does the need for a comprehensive hydrogen fueling infrastructure. NREL's technology validation team is analyzing the availability and performance of existing hydrogen fueling stations, benchmarking the current status, and providing feedback related to capacity, utilization, station build time, maintenance, fueling, and geographic coverage. Overview Composite Data Products Publications

  7. FY 2003 Progress Report for Hydrogen, Fuel Cells and Infrastructure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    FY 2003 Progress Report for Hydrogen, Fuel Cells and Infrastructure Technologies Program FY 2003 Progress Report for Hydrogen, Fuel Cells and Infrastructure Technologies Program...

  8. Texas Hydrogen Highway - Fuel Cell Hybrid Bus and Fueling Infrastructure

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology Showcase | Department of Energy Hydrogen Highway - Fuel Cell Hybrid Bus and Fueling Infrastructure Technology Showcase Texas Hydrogen Highway - Fuel Cell Hybrid Bus and Fueling Infrastructure Technology Showcase 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. PDF icon tvp_04_hitchcock.pdf More Documents & Publications Hydrogen Education in Texas DOE Vehicle Technologies Program 2009

  9. Biofuels Fuels Technology Pathway Options for Advanced Drop-in Biofuels Production

    SciTech Connect (OSTI)

    Kevin L Kenney

    2011-09-01

    Advanced drop-in hydrocarbon biofuels require biofuel alternatives for refinery products other than gasoline. Candidate biofuels must have performance characteristics equivalent to conventional petroleum-based fuels. The technology pathways for biofuel alternatives also must be plausible, sustainable (e.g., positive energy balance, environmentally benign, etc.), and demonstrate a reasonable pathway to economic viability and end-user affordability. Viable biofuels technology pathways must address feedstock production and environmental issues through to the fuel or chemical end products. Potential end products include compatible replacement fuel products (e.g., gasoline, diesel, and JP8 and JP5 jet fuel) and other petroleum products or chemicals typically produced from a barrel of crude. Considering the complexity and technology diversity of a complete biofuels supply chain, no single entity or technology provider is capable of addressing in depth all aspects of any given pathway; however, all the necessary expert entities exist. As such, we propose the assembly of a team capable of conducting an in-depth technology pathway options analysis (including sustainability indicators and complete LCA) to identify and define the domestic biofuel pathways for a Green Fleet. This team is not only capable of conducting in-depth analyses on technology pathways, but collectively they are able to trouble shoot and/or engineer solutions that would give industrial technology providers the highest potential for success. Such a team would provide the greatest possible down-side protection for high-risk advanced drop-in biofuels procurement(s).

  10. BioFuels and BioEnergy - SRSCRO

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    bio BioFuels and BioEnergy Bioenergy is renewable energy derived from biological sources, to be used for heat, electricity, or vehicle fuel. Biofuels are a wide range of fuels which are in some way derived from biomass and are among the most rapidly growing renewable energy technologies. Biomass, a renewable energy source, is biological material from living, or recently living organisms, such as wood, waste, (hydrogen) gas, and even alage. For the average citizen, algae is often viewed as a

  11. Fuel Cell Electric Vehicles and Hydrogen Infrastructure: Deployment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electric Vehicles and Hydrogen Infrastructure: Deployment and Issues Fuel Cell Electric Vehicles and Hydrogen Infrastructure: Deployment and Issues This presentation by Bill Elrick...

  12. E3 BioFuels | Open Energy Information

    Open Energy Info (EERE)

    E3 BioFuels Place: Shawnee, Kansas Zip: 66218 Product: Owns a 90.9m litres-a-year ethanol plant in Nebraska; an anaerobic digester generates all the biogas needed to operate...

  13. Vimmerstedt, L. J.; Bush, B. W. 09 BIOMASS FUELS BIOMASS; BIOFUEL...

    Office of Scientific and Technical Information (OSTI)

    Investment on the Growth of the Biofuels Industry Vimmerstedt, L. J.; Bush, B. W. 09 BIOMASS FUELS BIOMASS; BIOFUEL; DEMONSTRATION; DEPLOYMENT; LEARNING; POLICY; SYSTEM DYNAMICS;...

  14. Increasing Biofuel Deployment and Utilization through Development of Renewable Super Premium: Infrastructure Assessment

    SciTech Connect (OSTI)

    Moriarty, K.; Kass, M.; Theiss, T.

    2014-11-01

    A high octane fuel and specialized vehicle are under consideration as a market opportunity to meet federal requirements for renewable fuel use and fuel economy. Infrastructure is often cited as a barrier for the introduction of a new fuel. This report assesses infrastructure readiness for E25 (25% ethanol; 75% gasoline) and E25+ (more than 25% ethanol). Both above-ground and below-ground equipment are considered as are the current state of stations, codes and regulations, and materials compatibility.

  15. Simulating Impacts of Disruptions to Liquid Fuels Infrastructure |

    Energy Savers [EERE]

    Department of Energy Simulating Impacts of Disruptions to Liquid Fuels Infrastructure Simulating Impacts of Disruptions to Liquid Fuels Infrastructure This report presents a methodology for estimating the impacts of events that damage or disrupt liquid fuels infrastructure. The impact of a disruption depends on which components of the infrastructure are damaged, the time required for repairs, and the position of the disrupted components in the fuels supply network. Impacts are estimated for

  16. DOE Announces Webinars on Hydrogen Fueling Infrastructure Technology...

    Broader source: Energy.gov (indexed) [DOE]

    Hydrogen Fueling Infrastructure Research and Station Technology Webinar Sponsor: Fuel Cell Technologies Office The Energy Department will present a live webinar entitled "An...

  17. Increasing Biofuel Deployment and Utilization through Development of Renewable Super Premium: Infrastructure Assessment

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Increasing Biofuel Deployment and Utilization through Development of Renewable Super Premium: Infrastructure Assessment K. Moriarty National Renewable Energy Laboratory M. Kass and T. Theiss Oak Ridge National Laboratory Technical Report NREL/TP-5400-61684 November 2014 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This report is available at no cost from the National

  18. BioPower Atlas and BioFuels Atlas | Open Energy Information

    Open Energy Info (EERE)

    Atlas and BioFuels Atlas Jump to: navigation, search Tool Summary LAUNCH TOOL Name: BioPower Atlas and BioFuels Atlas AgencyCompany Organization: National Renewable Energy...

  19. DuPont's Journey to Build a Global Cellulosic BioFuel Business...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DuPont's Journey to Build a Global Cellulosic BioFuel Business Enterprise DuPont's Journey to Build a Global Cellulosic BioFuel Business Enterprise Plenary I: Progress in Advanced ...

  20. FY 2003 Progress Report for Hydrogen, Fuel Cells and Infrastructure

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technologies Program | Department of Energy FY 2003 Progress Report for Hydrogen, Fuel Cells and Infrastructure Technologies Program FY 2003 Progress Report for Hydrogen, Fuel Cells and Infrastructure Technologies Program This FY 2003 Progress Report presents a description of the fuel cell and hydrogen research conducted by the Hydrogen, Fuel Cells and Infrastructure Technologies Program in fiscal year 2003 (FY 2003), projects to be implemented in FY 2004, and the research priorities for FY

  1. DOE Hydrogen and Fuel Cell Overview: 2011 Hydrogen Infrastructure Market

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Readiness Workshop | Department of Energy and Fuel Cell Overview: 2011 Hydrogen Infrastructure Market Readiness Workshop DOE Hydrogen and Fuel Cell Overview: 2011 Hydrogen Infrastructure Market Readiness Workshop Presentation by Sunita Satyapal, U.S. Department of Energy Fuel Cell Technologies Program Manager, at the Hydrogen Infrastructure Market Readiness Workshop, February 16, 2011, in Washington, D.C. PDF icon DOE Hydrogen and Fuel Cell Overview More Documents & Publications DOE

  2. H2FIRST: Hydrogen Fueling Infrastructure Research and Station Technology |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy FIRST: Hydrogen Fueling Infrastructure Research and Station Technology H2FIRST: Hydrogen Fueling Infrastructure Research and Station Technology Hydrogen Fueling Infrastructure Research and Station Technology (H2FIRST) is a project launched by the U.S. Department of Energy's (DOE's) Fuel Cell Technologies Office (FCTO) within the Office of Energy Efficiency and Renewable Energy. The project leverages capabilities at the national laboratories to address the technology

  3. Advancing Hydrogen Infrastructure and Fuel Cell Electric Vehicle |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Hydrogen Infrastructure and Fuel Cell Electric Vehicle Advancing Hydrogen Infrastructure and Fuel Cell Electric Vehicle January 13, 2015 - 11:31am Addthis H2USA, a public-private partnership, was co-launched by DOE and industry partners to promote advancing hydrogen infrastructure to support more transportation energy options for consumers. H2USA, a public-private partnership, was co-launched by DOE and industry partners to promote advancing hydrogen infrastructure to

  4. Hydrogen, Fuel Cells and Infrastructure Technologies Program FY2003 Merit

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Review and Peer Evaluation Report | Department of Energy Hydrogen, Fuel Cells and Infrastructure Technologies Program FY2003 Merit Review and Peer Evaluation Report Hydrogen, Fuel Cells and Infrastructure Technologies Program FY2003 Merit Review and Peer Evaluation Report This document summarizes the comments provided by the Merit Review Panel at the U.S. Department of Energy Hydrogen, Fuel Cells and Infrastructure Technologies Program FY 2003 Merit Review and Peer Evaluation, held on May

  5. Refueliing Infrastructure for Alternative Fuel Vehicles: Lessons Learned

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Hydrogen | Department of Energy Refueliing Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen Refueliing Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen Agenda for Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen Conference, April 2-3, 2008, Sacramento, California PDF icon agenda_3-19-2008.pdf More Documents & Publications Proceedings of the 2005 Hydrogen Pipeline Working Group Workshop City of

  6. Webinar November 18: An Overview of the Hydrogen Fueling Infrastructure

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research and Station Technology (H2FIRST) Project | Department of Energy 18: An Overview of the Hydrogen Fueling Infrastructure Research and Station Technology (H2FIRST) Project Webinar November 18: An Overview of the Hydrogen Fueling Infrastructure Research and Station Technology (H2FIRST) Project November 12, 2014 - 7:27pm Addthis The Energy Department will present a live webinar entitled "An Overview of the Hydrogen Fueling Infrastructure Research and Station Technology (H2FIRST)

  7. NREL UL Fuel Dispensing Infrastructure Intermediate Blends Performance Testing (Presentation)

    SciTech Connect (OSTI)

    Moriarty, K.; Clark, W.

    2011-01-01

    Presentation provides an overview of NREL's project to determine compatibility and safe performance of installed fuel dispensing infrastructure with E15.

  8. EERE Success Story-Advancing Hydrogen Infrastructure and Fuel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    vehicles (FCEVs) by conducting coordinated technical and market analysis, and evaluating alternative fueling infrastructure that can enable cost reductions and economies of scale. ...

  9. Biofuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  10. Biofuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  11. Hydrogen Fueling Infrastructure Research and Station Technology Webinar Slides

    Broader source: Energy.gov [DOE]

    Presentation slides from the DOE Fuel Cell Technologies Office webinar "An Overview of the Hydrogen Fueling Infrastructure Research and Station Technology (H2FIRST) Project" held on November 18, 2014.

  12. Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen | Department of Energy Presented at Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen Conference, April 2-3, 2008, Sacramento, California PDF icon fry.pdf More Documents & Publications HYDROGEN TO THE HIGHWAYS NREL Alt Fuel Lessons Learned: Hydrogen Infrastructure Safety Analysis of Type 4 Tanks in CNG Vehicles

  13. EERE Success Story-Advancing Hydrogen Infrastructure and Fuel Cell

    Office of Environmental Management (EM)

    Electric Vehicle | Department of Energy Hydrogen Infrastructure and Fuel Cell Electric Vehicle EERE Success Story-Advancing Hydrogen Infrastructure and Fuel Cell Electric Vehicle January 13, 2015 - 11:31am Addthis H2USA, a public-private partnership, was co-launched by DOE and industry partners to promote advancing hydrogen infrastructure to support more transportation energy options for consumers. H2USA, a public-private partnership, was co-launched by DOE and industry partners to promote

  14. Overview of Aviation Fuel Markets for Biofuels Stakeholders

    SciTech Connect (OSTI)

    Davidson, C.; Newes, E.; Schwab, A.; Vimmerstedt, L.

    2014-07-01

    This report is for biofuels stakeholders interested the U.S. aviation fuel market. Jet fuel production represents about 10% of U.S. petroleum refinery production. Exxon Mobil, Chevron, and BP top producers, and Texas, Louisiana, and California are top producing states. Distribution of fuel primarily involves transport from the Gulf Coast to other regions. Fuel is transported via pipeline (60%), barges on inland waterways (30%), tanker truck (5%), and rail (5%). Airport fuel supply chain organization and fuel sourcing may involve oil companies, airlines, airline consortia, airport owners and operators, and airport service companies. Most fuel is used for domestic, commercial, civilian flights. Energy efficiency has substantially improved due to aircraft fleet upgrades and advanced flight logistic improvements. Jet fuel prices generally track prices of crude oil and other refined petroleum products, whose prices are more volatile than crude oil price. The single largest expense for airlines is jet fuel, so its prices and persistent price volatility impact industry finances. Airlines use various strategies to manage aviation fuel price uncertainty. The aviation industry has established goals to mitigate its greenhouse gas emissions, and initial estimates of biojet life cycle greenhouse gas emissions exist. Biojet fuels from Fischer-Tropsch and hydroprocessed esters and fatty acids processes have ASTM standards. The commercial aviation industry and the U.S. Department of Defense have used aviation biofuels. Additional research is needed to assess the environmental, economic, and financial potential of biojet to reduce greenhouse gas emissions and mitigate long-term upward price trends, fuel price volatility, or both.

  15. Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen | Department of Energy Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen On April 2-3, 2008, participants from industry, government agencies, universities, and national laboratories participated in a workshop to review lessons learned from efforts to commercialize alternative fuel vehicles and to discuss how those lessons apply to the commercialization of hydrogen

  16. NREL: Hydrogen and Fuel Cells Research - Hydrogen Infrastructure Testing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Research Facility Hydrogen Infrastructure Testing and Research Facility Text Version The Hydrogen Infrastructure Testing and Research Facility (HITRF) at NREL's Energy Systems Integration Facility (ESIF) consists of hydrogen storage, compression, and dispensing capabilities for fuel cell vehicle fueling and component testing. The HITRF is the first facility of its kind in Colorado and will be available to industry for use in research and development activities. In addition to fueling

  17. Fuel Cell Electric Vehicles and Hydrogen Infrastructure: Deployment and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Issues | Department of Energy Electric Vehicles and Hydrogen Infrastructure: Deployment and Issues Fuel Cell Electric Vehicles and Hydrogen Infrastructure: Deployment and Issues This presentation by Bill Elrick of the California Fuel Cell Partnership was given at the DOE Hydrogen Compression, Storage, and Dispensing Workshop on March 19, 2013. PDF icon csd_workshop_2_elrick.pdf More Documents & Publications FCEVs and Hydrogen in California Vision for Rollout of Fuel Cell Vehicles and

  18. Costs Associated With Compressed Natural Gas Vehicle Fueling Infrastructure

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Costs Associated With Compressed Natural Gas Vehicle Fueling Infrastructure Factors to consider in the implementation of fueling stations and equipment Margaret Smith, New West Technologies (DOE HQ Technical Support) John Gonzales, National Renewable Energy Laboratory This document has been peer reviewed by the natural gas industry. September 2014 2 Introduction This document is designed to help fleets understand the cost factors associated with fueling infrastructure for compressed natural gas

  19. Transitioning to Biofuels: A System-of-Systems Perspective; Preprint

    SciTech Connect (OSTI)

    Riley, C.; Sandor, D.

    2008-06-01

    Using the existing fuel supply chain infrastructure as a framework, this paper discusses a vision for transitioning to a larger biofuels industry and the challenges associated with a massive market and infrastructure transformation.

  20. National Bio-fuel Energy Laboratory

    SciTech Connect (OSTI)

    Jezierski, Kelly

    2010-12-27

    The National Biofuel Energy Laboratory or NBEL was a consortia consisting of non-profits, universities, industry, and OEMs. NextEnergy Center (NEC) in Detroit, Michigan was the prime with Wayne State University as the primary subcontractor. Other partners included: Art Van Furniture; Biodiesel Industries Inc. (BDI); Bosch; Clean Emission Fluids (CEF); Delphi; Oakland University; U.S. TARDEC (The Army); and later Cummins Bridgeway. The program was awarded to NextEnergy by U.S. DOE-NREL on July 1, 2005. The period of performance was about five (5) years, ending June 30, 2010. This program was executed in two phases: 1.Phase I focused on bench-scale R&D and performance-property-relationships. 2.Phase II expanded those efforts into further engine testing, emissions testing, and on-road fleet testing of biodiesel using additional types of feedstock (i.e., corn, and choice white grease based). NextEnergy a non-profit 501(c)(3) organization based in Detroit was originally awarded a $1.9 million grant from the U.S. Dept. of Energy for Phase I of the NBEL program. A few years later, NextEnergy and its partners received an additional $1.9MM in DOE funding to complete Phase II. The NBEL funding was completely exhausted by the program end date of June 30, 2010 and the cost share commitment of 20% minimum has been exceeded nearly two times over. As a result of the work performed by the NBEL consortia, the following successes were realized: 1.Over one hundred publications and presentations have been delivered by the NBEL consortia, including but not limited to: R&D efforts on algae-based biodiesel, novel heterogeneous catalysis, biodiesel properties from a vast array of feedstock blends, cold flow properties, engine testing results (several Society of Automotive Engineers [SAE] papers have been published on this research), emissions testing results, and market quality survey results. 2.One new spinoff company (NextCAT) was formed by two WSU Chemical Engineering professors and another co-founder, based on a novel heterogeneous catalyst that may be retrofitted into idled biodiesel manufacturing facilities to restart production at a greatly reduced cost. 3.Three patents have been filed by WSU and granted based on the NextCAT focus. 4.The next-generation advanced biodiesel dispensing unit (CEF F.A.S.T. unit version 2) was developed by Clean Emission Fluids (CEF). 5.NBEL aided in the preparing a sound technical basis for setting an ASTM B20 standard: ASTM Standard D7467-08 was passed in June of 2008 and officially published on October of 2008. 6.NBEL has helped to understand composition-property-performance relationships, from not only a laboratory and field testing scale, for biodiesel blends from a spectrum of feedstocks. 7.NBEL helped propel the development of biodiesel with improved performance, cetane numbers, cold flow properties, and oxidative stability. 8.Data for over 30,000 miles has been logged for the fleet testing that select members of the consortia participated in. There were five vehicles that participated in the fleet testing. Art Van provided two vehicles, one that remained idle for most of the time and one that was used often for commercial furniture deliveries, Oakland University provided one vehicle, NEC provided one vehicle, and The Night Move provided one vehicle. These vehicles were light to medium duty (2.0 to 6.6 L displacement), used B5 or B20 blends from multiple sources of feedstock (corn-, choice white grease-, and soybean-based blends) and sources (NextDiesel, BDI, or Wacker Oil), experienced a broad range in ambient temperatures (from -9 F in Michigan winters to 93 F in the summertime), and both city and highway driving conditions.

  1. lignocellulosic biofuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    lignocellulosic biofuels - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced

  2. Biofuels

    ScienceCinema (OSTI)

    Kalluri, Udaya

    2014-05-23

    Udaya Kalluri is part of a multidisciplinary scientific team working to unlock plants in order to create more potent biofuels without harsh processing.

  3. Biofuels

    SciTech Connect (OSTI)

    Kalluri, Udaya

    2014-05-02

    Udaya Kalluri is part of a multidisciplinary scientific team working to unlock plants in order to create more potent biofuels without harsh processing.

  4. Webinar November 18: An Overview of the Hydrogen Fueling Infrastructur...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    "An Overview of the Hydrogen Fueling Infrastructure Research and Station Technology (H2FIRST) Project" on Tuesday, November 18, from 12:00 to 1:00 Eastern Standard Time (EST). ...

  5. Transportation Energy Futures Series: Alternative Fuel Infrastructure Expansion: Costs, Resources, Production Capacity, and Retail Availability for Low-Carbon Scenarios

    SciTech Connect (OSTI)

    Melaina, M. W.; Heath, G.; Sandor, D.; Steward, D.; Vimmerstedt, L.; Warner, E.; Webster, K. W.

    2013-04-01

    Achieving the Department of Energy target of an 80% reduction in greenhouse gas emissions by 2050 depends on transportation-related strategies combining technology innovation, market adoption, and changes in consumer behavior. This study examines expanding low-carbon transportation fuel infrastructure to achieve deep GHG emissions reductions, with an emphasis on fuel production facilities and retail components serving light-duty vehicles. Three distinct low-carbon fuel supply scenarios are examined: Portfolio: Successful deployment of a range of advanced vehicle and fuel technologies; Combustion: Market dominance by hybridized internal combustion engine vehicles fueled by advanced biofuels and natural gas; Electrification: Market dominance by electric drive vehicles in the LDV sector, including battery electric, plug-in hybrid, and fuel cell vehicles, that are fueled by low-carbon electricity and hydrogen. A range of possible low-carbon fuel demand outcomes are explored in terms of the scale and scope of infrastructure expansion requirements and evaluated based on fuel costs, energy resource utilization, fuel production infrastructure expansion, and retail infrastructure expansion for LDVs. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored transportation-related strategies for abating GHGs and reducing petroleum dependence.

  6. Hydrogen Fuel Cells Backup Infrastructure Cleanly and Quietly | Department

    Office of Environmental Management (EM)

    of Energy Fuel Cells Backup Infrastructure Cleanly and Quietly Hydrogen Fuel Cells Backup Infrastructure Cleanly and Quietly August 25, 2010 - 1:00pm Addthis Sprint Nextel Corp. is deploying new fuel cells - such as these from ReliOn - to sites throughout the country. | Photo courtesy of Sprint Nextel Corp. Sprint Nextel Corp. is deploying new fuel cells - such as these from ReliOn - to sites throughout the country. | Photo courtesy of Sprint Nextel Corp. Maya Payne Smart Former Writer for

  7. DuPont's Journey to Build a Global Cellulosic BioFuel Business Enterprise

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy DuPont's Journey to Build a Global Cellulosic BioFuel Business Enterprise DuPont's Journey to Build a Global Cellulosic BioFuel Business Enterprise Plenary I: Progress in Advanced Biofuels DuPont's Journey to Build a Global Cellulosic BioFuel Business Enterprise William Provine, Director-Science and Technology External Affairs, DuPont PDF icon provine_biomass_2014.pdf More Documents & Publications A Comparison of Key PV Backsheet and Module Properties from Fielded

  8. Fueling the Navy's Great Green Fleet with Advanced Biofuels | Department of

    Energy Savers [EERE]

    Energy Navy's Great Green Fleet with Advanced Biofuels Fueling the Navy's Great Green Fleet with Advanced Biofuels December 5, 2011 - 5:44pm Addthis Idaho National Laboratory describes R&D efforts to transform raw biomass into quality feedstocks for the production of renewable fuels, power and bioproducts. Aaron Crowell Senior Technical Research Analyst What does this project do? Develops and utilizes domestically produced biofuels to make our military and the nation more secure. From

  9. NREL, Sandia Team to Improve Hydrogen Fueling Infrastructure - News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Releases | NREL NREL, Sandia Team to Improve Hydrogen Fueling Infrastructure April 30, 2014 A new project led by the Energy Department's National Renewable Energy Laboratory (NREL) and Sandia National Laboratories will support H2USA, a public-private partnership co-launched by industry and the Energy Department, and will work to ensure that hydrogen fuel cell vehicle owners have a positive fueling experience as fuel cell electric vehicles are introduced starting in 2014-2015. By tackling the

  10. Technology Validation of Fuel Cell Vehicles and Their Hydrogen Infrastructure (Presentation)

    SciTech Connect (OSTI)

    Sprik, S.; Kurtz, J.; Wipke, K.; Saur, G.; Ainscough, C.

    2013-10-22

    This presentation summarizes NREL's analysis and validation of fuel cell electric vehicles and hydrogen fueling infrastructure technologies.

  11. Validation of Hydrogen Fuel Cell Vehicle and Infrastructure Technology (Fact Sheet)

    Broader source: Energy.gov [DOE]

    Fact sheet on Validation of Hydrogen Fuel Cell Vehicle and Infrastructure Technology activities at NREL.

  12. Alternative Fuels Data Center: Maps and Data

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fuels & Infrastructure All Categories Vehicles AFVs and HEVs Fuel Consumption and Efficiency Vehicle Market Driving Patterns Fuels & Infrastructure Fuel Trends Emissions Alternative Fueling Stations Idle Reduction Transportation Infrastructure Biofuels Production Laws & Incentives Regulated Fleets Federal Fleets State & Alt Fuel Providers Clean Cities Vehicles Petroleum Use Reduction Program OR Go Sort by: Category Most Recent Most Popular 54 results Fuel Trends -

  13. Transportation Energy Futures Series: Alternative Fuel Infrastructure...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for Low-Carbon Scenarios TRANSPORTATION ENERGY FUTURES SERIES: Alternative Fuel ... A Study Sponsored by U.S. Department of Energy Office of Energy Efficiency and Renewable ...

  14. Refueliing Infrastructure for Alternative Fuel Vehicles: Lessons...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Proceedings of the 2005 Hydrogen Pipeline Working Group Workshop City of Tulare Renewable Biogas Fuel Cell Project Microsoft Word - AL2003-04.doc

  15. Alternative Fuels Data Center: Maps and Data

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Biofuels Production All Categories Vehicles AFVs and HEVs Fuel Consumption and Efficiency Vehicle Market Driving Patterns Fuels & Infrastructure Fuel Trends Emissions Alternative Fueling Stations Idle Reduction Transportation Infrastructure Biofuels Production Laws & Incentives Regulated Fleets Federal Fleets State & Alt Fuel Providers Clean Cities Vehicles Petroleum Use Reduction Program OR Go Sort by: Category Most Recent Most Popular 16 results Biofuelsatlas BioFuels Atlas

  16. Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen | Department of Energy Proceedings from the DOE sponsored Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen workshop to understand how lessons from past experiences can inform future efforts to commercialize hydrogen vehicles. PDF icon 43669.pdf More Documents & Publications IPHE Infrastructure Workshop - Workshop Proceedings, February 25-26, 2010 Sacramento, CA Hydrogen Energy Storage for Grid and Transportation Services Workshop Hydrogen

  17. SunLine Test Drives Hydrogen Bus: Hydrogen Fuel Cell & Infrastructure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Test Drives Hydrogen Bus: Hydrogen Fuel Cell & Infrastructure Technologies Program, Fuel Cell Bus Demonstration Projects Fact Sheet. SunLine Test Drives Hydrogen Bus: Hydrogen Fuel ...

  18. National Advanced Biofuels Consortium (NABC), Biofuels for Advancing America (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-06-01

    Introduction to the National Advanced Biofuels Consortium, a collaboration between 17 national laboratory, university, and industry partners that is conducting cutting-edge research to develop infrastructure-compatible, sustainable, biomass-based hydrocarbon fuels.

  19. Biofuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & ... Sandia Participated in the 3rd Annual Technology Forum of the U.S.-China Clean ...

  20. Simulating Impacts of Disruptions to Liquid Fuels Infrastructure

    SciTech Connect (OSTI)

    Wilson, Michael; Corbet, Thomas F.; Baker, Arnold B.; O'Rourke, Julia M.

    2015-04-01

    This report presents a methodology for estimating the impacts of events that damage or disrupt liquid fuels infrastructure. The impact of a disruption depends on which components of the infrastructure are damaged, the time required for repairs, and the position of the disrupted components in the fuels supply network. Impacts are estimated for seven stressing events in regions of the United States, which were selected to represent a range of disruption types. For most of these events the analysis is carried out using the National Transportation Fuels Model (NTFM) to simulate the system-level liquid fuels sector response. Results are presented for each event, and a brief cross comparison of event simulation results is provided.

  1. Costs Associated With Compressed Natural Gas Vehicle Fueling Infrastructure

    SciTech Connect (OSTI)

    Smith, M.; Gonzales, J.

    2014-09-01

    This document is designed to help fleets understand the cost factors associated with fueling infrastructure for compressed natural gas (CNG) vehicles. It provides estimated cost ranges for various sizes and types of CNG fueling stations and an overview of factors that contribute to the total cost of an installed station. The information presented is based on input from professionals in the natural gas industry who design, sell equipment for, and/or own and operate CNG stations.

  2. Nationwide Bio-Fuel Resource Mapping PRISM - EM

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... of Expanding Biofuel Demand, Journal of Agricultural and Applied Economics Vol. 41, No.2, August 2009, pp ... Earth Day public lecture, Dakota State University, Madison, SD, May 25. ...

  3. Hydrogen, Fuel Cells and Infrastructure Technologies Program: 2002 Annual Progress Report

    Broader source: Energy.gov [DOE]

    The Department of Energy’s Hydrogen, Fuel Cells and Infrastructure Technologies program’s 2002 annual progress report.

  4. Fuel Cell Vehicle and Infrastructure Learning Demonstration Status and Results (Presentation)

    SciTech Connect (OSTI)

    Wipke, K.; Sprik, S.; Kurtz, J.; Ramsden, T.; Garbak, J.

    2008-10-13

    Presentation on the Fuel Cell Vehicle and Infrastructure Learning Demonstration project prepared for the 215th Electrochemical Society Meeting.

  5. Alternative Fuels Data Center: Developing Infrastructure to Charge Plug-In

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Electric Vehicles Developing Infrastructure to Charge Plug-In Electric Vehicles to someone by E-mail Share Alternative Fuels Data Center: Developing Infrastructure to Charge Plug-In Electric Vehicles on Facebook Tweet about Alternative Fuels Data Center: Developing Infrastructure to Charge Plug-In Electric Vehicles on Twitter Bookmark Alternative Fuels Data Center: Developing Infrastructure to Charge Plug-In Electric Vehicles on Google Bookmark Alternative Fuels Data Center: Developing

  6. Bio-Fuel Production Assisted with High Temperature Steam Electrolysis

    SciTech Connect (OSTI)

    Grant Hawkes; James O'Brien; Michael McKellar

    2012-06-01

    Two hybrid energy processes that enable production of synthetic liquid fuels that are compatible with the existing conventional liquid transportation fuels infrastructure are presented. Using biomass as a renewable carbon source, and supplemental hydrogen from high-temperature steam electrolysis (HTSE), these two hybrid energy processes have the potential to provide a significant alternative petroleum source that could reduce dependence on imported oil. The first process discusses a hydropyrolysis unit with hydrogen addition from HTSE. Non-food biomass is pyrolyzed and converted to pyrolysis oil. The pyrolysis oil is upgraded with hydrogen addition from HTSE. This addition of hydrogen deoxygenates the pyrolysis oil and increases the pH to a tolerable level for transportation. The final product is synthetic crude that could then be transported to a refinery and input into the already used transportation fuel infrastructure. The second process discusses a process named Bio-Syntrolysis. The Bio-Syntrolysis process combines hydrogen from HTSE with CO from an oxygen-blown biomass gasifier that yields syngas to be used as a feedstock for synthesis of liquid synthetic crude. Conversion of syngas to liquid synthetic crude, using a biomass-based carbon source, expands the application of renewable energy beyond the grid to include transportation fuels. It can also contribute to grid stability associated with non-dispatchable power generation. The use of supplemental hydrogen from HTSE enables greater than 90% utilization of the biomass carbon content which is about 2.5 times higher than carbon utilization associated with traditional cellulosic ethanol production. If the electrical power source needed for HTSE is based on nuclear or renewable energy, the process is carbon neutral. INL has demonstrated improved biomass processing prior to gasification. Recyclable biomass in the form of crop residue or energy crops would serve as the feedstock for this process. A process model of syngas production using high temperature electrolysis and biomass gasification is presented. Process heat from the biomass gasifier is used to heat steam for the hydrogen production via the high temperature steam electrolysis process. Oxygen produced form the electrolysis process is used to control the oxidation rate in the oxygen-blown biomass gasifier.

  7. Distribution Infrastructure and End Use | Department of Energy

    Office of Environmental Management (EM)

    Distribution Infrastructure and End Use Distribution Infrastructure and End Use The expanded Renewable Fuel Standard (RFS2) created under the Energy Independence and Security Act (EISA) of 2007 requires 36 billion gallons of biofuels to be blended into transportation fuel by 2022. Meeting the RFS2 target introduces new challenges for U.S. infrastructure, as modifications will be needed to transport and deliver renewable fuels that are not compatible with existing petroleum infrastructure. The

  8. World Biofuels Production Potential Understanding the Challenges to Meeting the U.S. Renewable Fuel Standard

    SciTech Connect (OSTI)

    Sastri, B.; Lee, A.

    2008-09-15

    This study by the U.S. Department of Energy (DOE) estimates the worldwide potential to produce biofuels including biofuels for export. It was undertaken to improve our understanding of the potential for imported biofuels to satisfy the requirements of Title II of the 2007 Energy Independence and Security Act (EISA) in the coming decades. Many other countries biofuels production and policies are expanding as rapidly as ours. Therefore, we modeled a detailed and up-to-date representation of the amount of biofuel feedstocks that are being and can be grown, current and future biofuels production capacity, and other factors relevant to the economic competitiveness of worldwide biofuels production, use, and trade. The Oak Ridge National Laboratory (ORNL) identified and prepared feedstock data for countries that were likely to be significant exporters of biofuels to the U.S. The National Renewable Energy Laboratory (NREL) calculated conversion costs by conducting material flow analyses and technology assessments on biofuels technologies. Brookhaven National Laboratory (BNL) integrated the country specific feedstock estimates and conversion costs into the global Energy Technology Perspectives (ETP) MARKAL (MARKet ALlocation) model. The model uses least-cost optimization to project the future state of the global energy system in five year increments. World biofuels production was assessed over the 2010 to 2030 timeframe using scenarios covering a range U.S. policies (tax credits, tariffs, and regulations), as well as oil prices, feedstock availability, and a global CO{sub 2} price. All scenarios include the full implementation of existing U.S. and selected other countries biofuels policies (Table 4). For the U.S., the most important policy is the EISA Title II Renewable Fuel Standard (RFS). It progressively increases the required volumes of renewable fuel used in motor vehicles (Appendix B). The RFS requires 36 billion (B) gallons (gal) per year of renewable fuels by 2022. Within the mandate, amounts of advanced biofuels, including biomass-based diesel and cellulosic biofuels, are required beginning in 2009. Imported renewable fuels are also eligible for the RFS. Another key U.S. policy is the $1.01 per gal tax credit for producers of cellulosic biofuels enacted as part of the 2008 Farm Bill. This credit, along with the DOE's research, development and demonstration (RD&D) programs, are assumed to enable the rapid expansion of U.S. and global cellulosic biofuels production needed for the U.S. to approach the 2022 RFS goal. While the Environmental Protection Agency (EPA) has yet to issue RFS rules to determine which fuels would meet the greenhouse gas (GHG) reduction and land use restrictions specified in EISA, we assume that cellulosic ethanol, biomass-to-liquid fuels (BTL), sugar-derived ethanol, and fatty acid methyl ester biodiesel would all meet the EISA advanced biofuel requirements. We also assume that enough U.S. corn ethanol would meet EISA's biofuel requirements or otherwise be grandfathered under EISA to reach 15 B gal per year.

  9. Performance of Biofuels and Biofuel Blends | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Performance of Biofuels and Biofuel Blends Performance of Biofuels and Biofuel Blends 2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon ft003_mccormick_2013_o.pdf More Documents & Publications Performance of Biofuels and Biofuel Blends Quality, Performance, and Emission Impacts of Biofuels and Biofuel Blends Vehicle Technologies Office Merit Review 2014: Performance of Biofuels and Biofuel Blends

  10. SunLine Test Drives Hydrogen Bus: Hydrogen Fuel Cell & Infrastructure

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technologies Program, Fuel Cell Bus Demonstration Projects Fact Sheet. | Department of Energy Test Drives Hydrogen Bus: Hydrogen Fuel Cell & Infrastructure Technologies Program, Fuel Cell Bus Demonstration Projects Fact Sheet. SunLine Test Drives Hydrogen Bus: Hydrogen Fuel Cell & Infrastructure Technologies Program, Fuel Cell Bus Demonstration Projects Fact Sheet. Fact sheet describes the ThunderPower hydrogen fuel cell bus that was demonstrated at SunLine Transit Agency from

  11. United States Fuel Resiliency Volume I U.S. Fuels Supply Infrastructure

    Broader source: Energy.gov (indexed) [DOE]

    Volume I U.S. Fuels Supply Infrastructure Infrastructure Characterization FINAL REPORT Prepared for: Office of Energy Policy and Systems Analysis U.S. Department of Energy September 2014 INTEK Inc. Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees or contractors, makes any warranty, express or implied, or assumes any legal liability or

  12. Alternative Fuels Data Center: Maps and Data

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    State & Alt Fuel Providers All Categories Vehicles AFVs and HEVs Fuel Consumption and Efficiency Vehicle Market Driving Patterns Fuels & Infrastructure Fuel Trends Emissions Alternative Fueling Stations Idle Reduction Transportation Infrastructure Biofuels Production Laws & Incentives Regulated Fleets Federal Fleets State & Alt Fuel Providers Clean Cities Vehicles Petroleum Use Reduction Program OR Go Sort by: Category Most Recent Most Popular 6 results

  13. next-generation biofuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    next-generation biofuels - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced

  14. Fuel Cell Power Plants Biofuel Case Study- Tulare, CA

    Broader source: Energy.gov [DOE]

    Success story about fuel cell power plants using wastewater treatment gas in Tulare, California. Presented by Frank Wolak, Fuel Cell Energy, at the NREL/DOE Biogas and Fuel Cells Workshop held June 11-13, 2012, in Golden, Colorado.

  15. Benefits of Biofuel Production and Use in New Mexico

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mexico's abundance of land and unique climate are well suited to the production of drop-in biofuels from versatile feedstocks such as algae. The Bioenergy Technologies Office (BETO) enables the development of novel technologies that can establish New Mexico as a leader in the bioeconomy. New Mexico New Mexico's two national laboratories play a key role in biofuels research. Drop-in biofuels are the non-petroleum fuel option that is compatible with today's U.S. transportation infrastructure.

  16. United States Fuel Resiliency Volume II U.S. Fuels Supply Infrastructure

    Broader source: Energy.gov (indexed) [DOE]

    Fuel Resiliency Volume II U.S. Fuels Supply Infrastructure Vulnerability to Natural and Physical Threats FINAL REPORT Prepared for: Office of Energy Policy and Systems Analysis U.S. Department of Energy September 2014 INTEK Inc. . Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees or contractors, makes any warranty, express or implied, or assumes

  17. Appendix G - GPRA06 hydrogen, fuel cells, and infrastructure technologies (HFCIT) program

    SciTech Connect (OSTI)

    None, None

    2009-01-18

    The target markets for the Office of Hydrogen, Fuel Cells, and Infrastructure Technologies (HFCIT) program include transportation (cars and light trucks) and stationary (particularly residential and commercial) applications.

  18. NREL UL E15 Fuel Dispensing Infrastructure Intermediate Blends Performance Testing (Presentation)

    SciTech Connect (OSTI)

    Moriarty, K.; Clark, W.

    2011-02-01

    Presentation provides an overview of NREL's project to determine compatibility and safe performance of installed fuel dispensing infrastructure with E15.

  19. Agenda for the 2010-2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and Infrastructure Meeting

    Broader source: Energy.gov [DOE]

    This agenda provides information about the 2010-2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and Infrastructure meeting on January 31, 2007.

  20. Turning Bacteria into Fuel: Cyanobacteria Designed for Solar-Powered Highly Efficient Production of Biofuels

    SciTech Connect (OSTI)

    2010-01-01

    Broad Funding Opportunity Announcement Project: ASU is engineering a type of photosynthetic bacteria that efficiently produce fatty acidsa fuel precursor for biofuels. This type of bacteria, called Synechocystis, is already good at converting solar energy and carbon dioxide (CO2) into a type of fatty acid called lauric acid. ASU has modified the organism so it continuously converts sunlight and CO2 into fatty acidsoverriding its natural tendency to use solar energy solely for cell growth and maximizing the solar-to-fuel conversion process. ASUs approach is different because most biofuels research focuses on increasing cellular biomass and not on excreting fatty acids. The project has also identified a unique way to convert the harvested lauric acid into a fuel that can be easily blended with existing transportation fuels.

  1. Infrastructure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Infrastructure The facility houses equipment such as glove box, fume hoods, oxygen-free nanopure water system and ultrasonic processors. Schlenk-type techniques are routinely used...

  2. Alternative Fuels Data Center: Maps and Data

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Clean Cities All Categories Vehicles AFVs and HEVs Fuel Consumption and Efficiency Vehicle Market Driving Patterns Fuels & Infrastructure Fuel Trends Emissions Alternative Fueling Stations Idle Reduction Transportation Infrastructure Biofuels Production Laws & Incentives Regulated Fleets Federal Fleets State & Alt Fuel Providers Clean Cities Vehicles Petroleum Use Reduction Program OR Go Sort by: Category Most Recent Most Popular 9 results Petroleum Use Reduction -

  3. Alternative Fuels Data Center: Maps and Data

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Consumption and Efficiency All Categories Vehicles AFVs and HEVs Fuel Consumption and Efficiency Vehicle Market Driving Patterns Fuels & Infrastructure Fuel Trends Emissions Alternative Fueling Stations Idle Reduction Transportation Infrastructure Biofuels Production Laws & Incentives Regulated Fleets Federal Fleets State & Alt Fuel Providers Clean Cities Vehicles Petroleum Use Reduction Program OR Go Sort by: Category Most Recent Most Popular 15 results

  4. Alternative Fuels Data Center: Maps and Data

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Petroleum Use Reduction All Categories Vehicles AFVs and HEVs Fuel Consumption and Efficiency Vehicle Market Driving Patterns Fuels & Infrastructure Fuel Trends Emissions Alternative Fueling Stations Idle Reduction Transportation Infrastructure Biofuels Production Laws & Incentives Regulated Fleets Federal Fleets State & Alt Fuel Providers Clean Cities Vehicles Petroleum Use Reduction Program OR Go Sort by: Category Most Recent Most Popular 5 results

  5. Alternative Fuels Data Center: Maps and Data

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Regulated Fleets All Categories Vehicles AFVs and HEVs Fuel Consumption and Efficiency Vehicle Market Driving Patterns Fuels & Infrastructure Fuel Trends Emissions Alternative Fueling Stations Idle Reduction Transportation Infrastructure Biofuels Production Laws & Incentives Regulated Fleets Federal Fleets State & Alt Fuel Providers Clean Cities Vehicles Petroleum Use Reduction Program OR Go Sort by: Category Most Recent Most Popular 7 results Federal Fleets -

  6. Biofuel Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biofuel Basics Biofuel Basics July 30, 2013 - 11:38am Addthis Text Version Photo of a woman in goggles handling a machine filled with biofuels. Biofuels are liquid or gaseous fuels produced from biomass. Most biofuels are used for transportation, but some are used as fuels to produce electricity. The expanded use of biofuels offers an array of benefits for our energy security, economic growth, and environment. Current biofuels research focuses on new forms of biofuels such as ethanol and

  7. Fuel from Bacteria: Bioconversion of Carbon Dioxide to Biofuels by Facultatively Autotrophic Hydrogen Bacteria

    SciTech Connect (OSTI)

    2010-07-01

    Electrofuels Project: Ohio State is genetically modifying bacteria to efficiently convert carbon dioxide directly into butanol, an alcohol that can be used directly as a fuel blend or converted to a hydrocarbon, which closely resembles a gasoline. Bacteria are typically capable of producing a certain amount of butanol before it becomes too toxic for the bacteria to survive. Ohio State is engineering a new strain of the bacteria that could produce up to 50% more butanol before it becomes too toxic for the bacteria to survive. Finding a way to produce more butanol more efficiently would significantly cut down on biofuel production costs and help make butanol cost competitive with gasoline. Ohio State is also engineering large tanks, or bioreactors, to grow the biofuel-producing bacteria in, and they are developing ways to efficiently recover biofuel from the tanks.

  8. Partnering with Industry to Develop Advanced Biofuels

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Partnering with Industry to Develop Advanced Biofuels > David C. Carroll GTI President and CEO Biomass 2014 July 29, 2014 2 Advanced Biofuels Tenets > Converting indigenous resources is good for the economy > Abundant non-food biomass is available > Drop-in, infrastructure-compatible fuels have vast markets > Seek commercial competitiveness without subsidy > Scale of supply requires innovation for process efficiency > Policy needs to ensure access to markets > Funds are

  9. Phillips BioFuel Supply Co | Open Energy Information

    Open Energy Info (EERE)

    to create an area wide marketing and distribution network for agriculturally sourced biodiesel fuel in Vermont, eastern upstate NY, western NH and Quebec south in Canada....

  10. Assessment of capital requirements for alternative fuels infrastructure under the PNGV program

    SciTech Connect (OSTI)

    Stork, K.; Singh, M.; Wang, M.; Vyas, A.

    1998-12-31

    This paper presents an assessment of the capital requirements of using six different fuels in the vehicles with tripled fuel economy (3X vehicles) that the Partnership for a new Generation of Vehicles is currently investigating. The six fuels include two petroleum-based fuels (reformulated gasoline and low-sulfur diesel) and four alternative fuels (methanol, ethanol, dimethyl ether, and hydrogen). This study develops estimates of cumulative capital needs for establishing fuels production and distribution infrastructure to accommodate 3X vehicle fuel needs. Two levels of fuel volume-70,000 barrels per day and 1.6 million barrels per day-were established for meeting 3X-vehicle fuel demand. As expected, infrastructure capital needs for the high fuel demand level are much higher than for the low fuel demand level. Between fuel production infrastructure and distribution infrastructure, capital needs for the former far exceed those for the latter. Among the four alternative fuels, hydrogen bears the largest capital needs for production and distribution infrastructure.

  11. Risks to global biodiversity from fossil-fuel production exceed those from biofuel production

    SciTech Connect (OSTI)

    Dale, Virginia H; Parish, Esther S; Kline, Keith L

    2015-01-01

    Potential global biodiversity impacts from near-term gasoline production are compared to biofuel, a renewable liquid transportation fuel expected to substitute for gasoline in the near term (i.e., from now until c. 2030). Petroleum exploration activities are projected to extend across more than 5.8 billion ha of land and ocean worldwide (of which 3.1 billion is on land), much of which is in remote, fragile terrestrial ecosystems or off-shore oil fields that would remain relatively undisturbed if not for interest in fossil fuel production. Future biomass production for biofuels is projected to fall within 2.0 billion ha of land, most of which is located in areas already impacted by human activities. A comparison of likely fuel-source areas to the geospatial distribution of species reveals that both energy sources overlap with areas with high species richness and large numbers of threatened species. At the global scale, future petroleum production areas intersect more than double the area and higher total number of threatened species than future biofuel production. Energy options should be developed to optimize provisioning of ecosystem services while minimizing negative effects, which requires information about potential impacts on critical resources. Energy conservation and identifying and effectively protecting habitats with high-conservation value are critical first steps toward protecting biodiversity under any fuel production scenario.

  12. United States Fuel Resiliency Volume III U.S. Fuels Supply Infrastructure

    Broader source: Energy.gov (indexed) [DOE]

    Volume III U.S. Fuels Supply Infrastructure Vulnerabilities and Resiliency FINAL REPORT Prepared for: Office of Energy Policy and Systems Analysis U.S. Department of Energy September 2014 INTEK Inc. Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees or contractors, makes any warranty, express or implied, or assumes any legal liability or

  13. Biofuels Information Center

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biofuels Information Center BETO 2015 Peer Review Kristi Moriarty March 24, 2015 2 Goal Statement * The purpose of the Biofuels Information Center (BIC) task is to increase deployment of biofuels production facilities and infrastructure by providing essential biofuels data, tools, and information to all stakeholders * The Bioenergy Atlas tools provide interactive maps and analysis of all relevant biomass data with the purpose of growing the domestic bioenergy market for biofuels and biopower

  14. DuPont's Journey to Build a Global Cellulosic BioFuel Business Enterprise

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DuPont's Journey to Build a Global Cellulosic BioFuel Business Enterprise Copyright © 2014 DuPont. All rights reserved 1 William D. Provine, Director - Science & Technology Biomass 2014 - Washington, DC | July 29 th , 2014 2 2 Regulation G The attached charts include company information that does not conform to generally accepted accounting principles (GAAP). Management believes that an analysis of this data is meaningful to investors because it provides insight with respect to ongoing

  15. Infrastructure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Infrastructure (D2SA) Co-Chairs: Christopher Beggio, Sandia National Laboratories Robin Goldstone, Lawrence Livermore National Laboratories 1 Contributors * Bill Allcock, Argonne Leadership Computing Facility * Chris Beggio, Sandia National Laboratories * Clay England, Oak Ridge Leadership Computing Facility * Doug Fuller, Oak Ridge Leadership Computing Facility * Robin Goldstone, Lawrence Livermore National Laboratory * Jason Hick, National Energy Research Scientific Computing Center * Kyle

  16. Fuel from Tobacco and Arundo Donax: Synthetic Crop for Direct Drop-in Biofuel Production through Re-routing the Photorespiration Intermediates and Engineering Terpenoid Pathways

    SciTech Connect (OSTI)

    None

    2012-02-15

    PETRO Project: Biofuels offer renewable alternatives to petroleum-based fuels that reduce net greenhouse gas emissions to nearly zero. However, traditional biofuels production is limited not only by the small amount of solar energy that plants convert through photosynthesis into biological materials, but also by inefficient processes for converting these biological materials into fuels. Farm-ready, non-food crops are needed that produce fuels or fuel-like precursors at significantly lower costs with significantly higher productivity. To make biofuels cost-competitive with petroleum-based fuels, biofuels production costs must be cut in half.

  17. Infrastructure Requirements for an Expanded Fuel Ethanol Industry

    SciTech Connect (OSTI)

    Reynolds, Robert E.

    2002-01-15

    This report provides technical information specifically related to ethanol transportation, distribution, and marketing issues. This report required analysis of the infrastructure requirements for an expanded ethanol industry.

  18. Alcohol-fueled vehicles: An alternative fuels vehicle, emissions, and refueling infrastructure technology assessment

    SciTech Connect (OSTI)

    McCoy, G.A.; Kerstetter, J.; Lyons, J.K.

    1993-06-01

    Interest in alternative motor vehicle fuels has grown tremendously over the last few years. The 1990 Clean Air Act Amendments, the National Energy Policy Act of 1992 and the California Clean Air Act are primarily responsible for this resurgence and have spurred both the motor fuels and vehicle manufacturing industries into action. For the first time, all three U.S. auto manufacturers are offering alternative fuel vehicles to the motoring public. At the same time, a small but growing alternative fuels refueling infrastructure is beginning to develop across the country. Although the recent growth in alternative motor fuels use is impressive, their market niche is still being defined. Environmental regulations, a key driver behind alternative fuel use, is forcing both car makers and the petroleum industry to clean up their products. As a result, alternative fuels no longer have a lock on the clean air market and will have to compete with conventional vehicles in meeting stringent future vehicle emission standards. The development of cleaner burning gasoline powered vehicles has signaled a shift in the marketing of alternative fuels. While they will continue to play a major part in the clean vehicle market, alternative fuels are increasingly recognized as a means to reduce oil imports. This new role is clearly defined in the National Energy Policy Act of 1992. The Act identifies alternative fuels as a key strategy for reducing imports of foreign oil and mandates their use for federal and state fleets, while reserving the right to require private and municipal fleet use as well.

  19. Alternative Fuel Infrastructure Expansion: Costs, Resources, Production Capacity, and Retail Availability for Low-Carbon Scenarios

    Broader source: Energy.gov [DOE]

    The petroleum-based transportation fuel system is complex and highly developed, in contrast to the nascent low-petroleum, low-carbon alternative fuel system. This report examines how expansion of the low-carbon transportation fuel infrastructure could contribute to deep reductions in petroleum use and greenhouse gas (GHG) emissions across the U.S. transportation sector. Three low-carbon scenarios, each using a different combination of low-carbon fuels, were developed to explore infrastructure expansion trends consistent with a study goal of reducing transportation sector GHG emissions to 80% less than 2005 levels by 2050.These scenarios were compared to a business-as-usual (BAU) scenario and were evaluated with respect to four criteria: fuel cost estimates, resource availability, fuel production capacity expansion, and retail infrastructure expansion.

  20. Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen; Workshop Proceedings

    SciTech Connect (OSTI)

    Melaina, M. W.; McQueen, S.; Brinch, J.

    2008-07-01

    DOE sponsored the Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen workshop to understand how lessons from past experiences can inform future efforts to commercialize hydrogen vehicles. This report contains the proceedings from the workshop.

  1. Webinar: An Overview of the Hydrogen Fueling Infrastructure Research and Station Technology (H2FIRST) Project

    Broader source: Energy.gov [DOE]

    The Energy Department will present a live webinar entitled "An Overview of the Hydrogen Fueling Infrastructure Research and Station Technology (H2FIRST) Project" on Tuesday, November 18, from 12:00...

  2. Webinar: Overview of the Hydrogen Fueling Infrastructure Research and Station Technology (H2FIRST) Project

    Broader source: Energy.gov [DOE]

    Text version and video recording of the webinar titled "An Overview of the Hydrogen Fueling Infrastructure Research and Station Technology (H2FIRST) Project," originally presented on November 18, 2014.

  3. Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen; Workshop Proceedings

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen Workshop Proceedings M.W. Melaina National Renewable Energy Laboratory S. McQueen and J. Brinch Energetics Incorporated Sacramento, California April 3, 2008 Proceedings NREL/BK-560-43669 July 2008 NREL is operated by Midwest Research Institute ● Battelle Contract No. DE-AC36-99-GO10337 Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen Workshop Proceedings M.W. Melaina

  4. EIS-0453: Recapitalization of Infrastructure Supporting Naval Spent Nuclear Fuel Handling at the Idaho National Laboratory

    Broader source: Energy.gov [DOE]

    The Draft EIS evaluates the potential environmental impacts associated with recapitalizing the infrastructure needed to ensure the long-term capability of the Naval Nuclear Propulsion Program (NNPP) to support naval spent nuclear fuel handling capabilities provided by the Expended Core Facility (ECF). Significant upgrades are necessary to ECF infrastructure and water pools to continue safe and environmentally responsible naval spent nuclear fuel handling until at least 2060.

  5. biomass-to-biofuels transformation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    biomass-to-biofuels transformation - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management

  6. Co-Evolution of Biofuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Evolution of Biofuels - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced

  7. Alternative Fuels Data Center: Maps and Data

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Transportation Infrastructure All Categories Vehicles AFVs and HEVs Fuel Consumption and Efficiency Vehicle Market Driving Patterns Fuels & Infrastructure Fuel Trends Emissions Alternative Fueling Stations Idle Reduction Transportation Infrastructure Biofuels Production Laws & Incentives Regulated Fleets Federal Fleets State & Alt Fuel Providers Clean Cities Vehicles Petroleum Use Reduction Program OR Go Sort by: Category Most Recent Most Popular 5 results Freight_tons_thumbnail

  8. Biofuels Quality Surveys | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Quality Surveys Biofuels Quality Surveys 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon ft013_alleman_2012_p.pdf More Documents & Publications Performance of Biofuels and Biofuel Blends Performance of Biofuels and Biofuel Blends Quality, Performance, and Emission Impacts of Biofuels and Biofuel Blends

  9. #LabChat Q&A: Biofuels of the Future, Sept. 26 at 2 pm EDT

    Broader source: Energy.gov [DOE]

    Our biofuels experts can answer your questions about biofuels, bioenergy and the next generation of fuel.

  10. Mississippi State University Cooling, Heating, and Power (Micro-CHP) and Bio-Fuel Center

    SciTech Connect (OSTI)

    Mago, Pedro; Newell, LeLe

    2014-01-31

    Between 2008 and 2014, the U.S. Department of Energy funded the MSU Micro-CHP and Bio-Fuel Center located at Mississippi State University. The overall objective of this project was to enable micro-CHP (micro-combined heat and power) utilization, to facilitate and promote the use of CHP systems and to educate architects, engineers, and agricultural producers and scientists on the benefits of CHP systems. Therefore, the work of the Center focused on the three areas: CHP system modeling and optimization, outreach, and research. In general, the results obtained from this project demonstrated that CHP systems are attractive because they can provide energy, environmental, and economic benefits. Some of these benefits include the potential to reduce operational cost, carbon dioxide emissions, primary energy consumption, and power reliability during electric grid disruptions. The knowledge disseminated in numerous journal and conference papers from the outcomes of this project is beneficial to engineers, architects, agricultural producers, scientists and the public in general who are interested in CHP technology and applications. In addition, more than 48 graduate students and 23 undergraduate students, benefited from the training and research performed in the MSU Micro-CHP and Bio-Fuel Center.

  11. Biofuels | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biofuels Biofuels Image Biofuels from Algae: Algae is widely touted as one of the next best sources for fueling the world's energy needs. But one of the greatest challenges in creating biofuels from algae is how to economically extract and isolate fuel-related chemicals from algae. Ames Laboratory researchers are developing nanoscale "sponges" that soak up the oil produced by the algae without killing the algae, thus dramatically reducing production costs. Ethanol from Syngas: Ethanol

  12. Algae as a Feedstock for Transportation Fuels. The Future of Biofuels?

    SciTech Connect (OSTI)

    McGill, Ralph

    2008-05-15

    Events in world energy markets over the past several years have prompted many new technical developments as well as political support for alternative transportation fuels, especially those that are renewable. We have seen dramatic rises in the demand for and production of fuel ethanol from sugar cane and corn and biodiesel from vegetable oils. The quantities of these fuels being used continue to rise dramatically, and their use is helping to create a political climate for doing even more. But, the quantities are still far too small to stem the tide of rising crude prices worldwide. In fact, the use of some traditional crops (corn, sugar, soy, etc.) in making fuels instead of food is apparently beginning to impact the cost of food worldwide. Thus, there is considerable interest in developing alternative biofuel feedstocks for use in making fuels -- feedstocks that are not used in the food industries. Of course, we know that there is a lot of work in developing cellulosic-based ethanol that would be made from woody biomass. Process development is the critical path for this option, and the breakthrough in reducing the cost of the process has been elusive thus far. Making biodiesel from vegetable oils is a well-developed and inexpensive process, but to date there have been few reasonable alternatives for making biodiesel, although advanced processes such as gasification of biomass remain an option.

  13. NREL: Learning - Biofuels Basics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biofuels Basics This video provides an overview of NREL research on converting biomass to liquid fuels. Text Version Unlike other renewable energy sources, biomass can be converted directly into liquid fuels, called "biofuels," to help meet transportation fuel needs. The two most common types of biofuels in use today are ethanol and biodiesel. Ethanol is an alcohol, the same as in beer and wine (although ethanol used as a fuel is modified to make it undrinkable). It is most commonly

  14. Alternative Fuels Data Center: Maps and Data

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fueling Stations All Categories Vehicles AFVs and HEVs Fuel Consumption and Efficiency Vehicle Market Driving Patterns Fuels & Infrastructure Fuel Trends Emissions Alternative Fueling Stations Idle Reduction Transportation Infrastructure Biofuels Production Laws & Incentives Regulated Fleets Federal Fleets State & Alt Fuel Providers Clean Cities Vehicles Petroleum Use Reduction Program OR Go Sort by: Category Most Recent Most Popular 13 results Arra-thumb ARRA

  15. Linear regression analysis of emissions factors when firing fossil fuels and biofuels in a commercial water-tube boiler

    SciTech Connect (OSTI)

    Sharon Falcone Miller; Bruce G. Miller

    2007-12-15

    This paper compares the emissions factors for a suite of liquid biofuels (three animal fats, waste restaurant grease, pressed soybean oil, and a biodiesel produced from soybean oil) and four fossil fuels (i.e., natural gas, No. 2 fuel oil, No. 6 fuel oil, and pulverized coal) in Penn State's commercial water-tube boiler to assess their viability as fuels for green heat applications. The data were broken into two subsets, i.e., fossil fuels and biofuels. The regression model for the liquid biofuels (as a subset) did not perform well for all of the gases. In addition, the coefficient in the models showed the EPA method underestimating CO and NOx emissions. No relation could be studied for SO{sub 2} for the liquid biofuels as they contain no sulfur; however, the model showed a good relationship between the two methods for SO{sub 2} in the fossil fuels. AP-42 emissions factors for the fossil fuels were also compared to the mass balance emissions factors and EPA CFR Title 40 emissions factors. Overall, the AP-42 emissions factors for the fossil fuels did not compare well with the mass balance emissions factors or the EPA CFR Title 40 emissions factors. Regression analysis of the AP-42, EPA, and mass balance emissions factors for the fossil fuels showed a significant relationship only for CO{sub 2} and SO{sub 2}. However, the regression models underestimate the SO{sub 2} emissions by 33%. These tests illustrate the importance in performing material balances around boilers to obtain the most accurate emissions levels, especially when dealing with biofuels. The EPA emissions factors were very good at predicting the mass balance emissions factors for the fossil fuels and to a lesser degree the biofuels. While the AP-42 emissions factors and EPA CFR Title 40 emissions factors are easier to perform, especially in large, full-scale systems, this study illustrated the shortcomings of estimation techniques. 23 refs., 3 figs., 8 tabs.

  16. Webinar: Overview of the Hydrogen Fueling Infrastructure Research...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... The last thing we want to do is put impure fuel into a vehicle. We don't want to use the vehicle as a guinea pig. So this is important. Sort of the two sub-tasks within this are ...

  17. Assessment of PNGV fuels infrastructure. Phase 1 report: Additional capital needs and fuel-cycle energy and emissions impacts

    SciTech Connect (OSTI)

    Wang, M.; Stork, K.; Vyas, A.; Mintz, M.; Singh, M.; Johnson, L.

    1997-01-01

    This report presents the methodologies and results of Argonne`s assessment of additional capital needs and the fuel-cycle energy and emissions impacts of using six different fuels in the vehicles with tripled fuel economy (3X vehicles) that the Partnership for a New Generation of Vehicles is currently investigating. The six fuels included in this study are reformulated gasoline, low-sulfur diesel, methanol, ethanol, dimethyl ether, and hydrogen. Reformulated gasoline, methanol, and ethanol are assumed to be burned in spark-ignition, direct-injection engines. Diesel and dimethyl ether are assumed to be burned in compression-ignition, direct-injection engines. Hydrogen and methanol are assumed to be used in fuel-cell vehicles. The authors have analyzed fuels infrastructure impacts under a 3X vehicle low market share scenario and a high market share scenario. The assessment shows that if 3X vehicles are mass-introduced, a considerable amount of capital investment will be needed to build new fuel production plants and to establish distribution infrastructure for methanol, ethanol, dimethyl ether, and hydrogen. Capital needs for production facilities will far exceed those for distribution infrastructure. Among the four fuels, hydrogen will bear the largest capital needs. The fuel efficiency gain by 3X vehicles translates directly into reductions in total energy demand, fossil energy demand, and CO{sub 2} emissions. The combination of fuel substitution and fuel efficiency results in substantial petroleum displacement and large reductions in emissions of nitrogen oxide, carbon monoxide, volatile organic compounds, sulfur oxide, and particulate matter of size smaller than 10 microns.

  18. Connecticut Company to Advance Hydrogen Infrastructure and Fueling Station Technologies

    Broader source: Energy.gov [DOE]

    As part of the U.S. Energy Department's commitment to give American businesses more options to cut energy costs and reduce reliance on imported oil, the Department today announced a $1.4 million investment to Wallingford- based Proton Energy Systems to collect and analyze performance data for hydrogen fueling stations and advanced refueling components. The projects will also help to track the performance and technical progress of innovative refueling systems to find ways to lower costs and improve operation. These investments are part of the Department's broader strategy to advance U.S. leadership in hydrogen and fuel cell technological innovation and help the industry bring these technologies into the marketplace at lower cost.

  19. Biofuels Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Education & Workforce Development » Resources » Biomass Basics » Biofuels Basics Biofuels Basics Biofuels such as ethanol and biodiesel can make a big difference in improving our environment, helping our economy, and reducing our dependence on foreign oil. This page discusses biofuels research supported by the Bioenergy Technologies Office. Biofuels for Transportation Ethanol Biodiesel Renewable Diesel Biofuels for Transportation Most vehicles on the road today are fueled by gasoline and

  20. United States National Hydrogen Fuel Cell Vehicle and Infrastructure Learning Demonstration - Status and Results (Presentation)

    SciTech Connect (OSTI)

    Wipke,K.; Sprik, S.; Kurtz, J.; Ramsden, T.; Garbak, J.

    2009-03-06

    This presentation provides status and results for the United States National Hydrogen Fuel Cell Vehicle Learning Demonstration, including project objectives, partners, the National Renewable Energy Laboratory's role in the project and methodology, how to access complete results, and results of vehicle and infrastructure analysis.

  1. Biofuels and food security

    Office of Scientific and Technical Information (OSTI)

    ... (World Health Organization). 2006. Fuel for ... J. & Herrera, S. 2010. Biofuels in Brazil: debates and impacts. The Journal of ... Water Management Institute ...

  2. Alternative Fuels Data Center: Maps and Data

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFVs and HEVs All Categories Vehicles AFVs and HEVs Fuel Consumption and Efficiency Vehicle Market Driving Patterns Fuels & Infrastructure Fuel Trends Emissions Alternative Fueling Stations Idle Reduction Transportation Infrastructure Biofuels Production Laws & Incentives Regulated Fleets Federal Fleets State & Alt Fuel Providers Clean Cities Vehicles Petroleum Use Reduction Program OR Go Sort by: Category Most Recent Most Popular 20 results Generated_thumb20140804-20533-1loi25i AFV

  3. Alternative Fuels Data Center: Maps and Data

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Driving Patterns All Categories Vehicles AFVs and HEVs Fuel Consumption and Efficiency Vehicle Market Driving Patterns Fuels & Infrastructure Fuel Trends Emissions Alternative Fueling Stations Idle Reduction Transportation Infrastructure Biofuels Production Laws & Incentives Regulated Fleets Federal Fleets State & Alt Fuel Providers Clean Cities Vehicles Petroleum Use Reduction Program OR Go Sort by: Category Most Recent Most Popular 8 results Generated_thumb20150707-30390-mmwhbn

  4. Alternative Fuels Data Center: Maps and Data

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Emissions All Categories Vehicles AFVs and HEVs Fuel Consumption and Efficiency Vehicle Market Driving Patterns Fuels & Infrastructure Fuel Trends Emissions Alternative Fueling Stations Idle Reduction Transportation Infrastructure Biofuels Production Laws & Incentives Regulated Fleets Federal Fleets State & Alt Fuel Providers Clean Cities Vehicles Petroleum Use Reduction Program OR Go Sort by: Category Most Recent Most Popular 5 results Generated_thumb20130810-31804-53z5da Carbon

  5. Alternative Fuels Data Center: Maps and Data

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Federal Fleets All Categories Vehicles AFVs and HEVs Fuel Consumption and Efficiency Vehicle Market Driving Patterns Fuels & Infrastructure Fuel Trends Emissions Alternative Fueling Stations Idle Reduction Transportation Infrastructure Biofuels Production Laws & Incentives Regulated Fleets Federal Fleets State & Alt Fuel Providers Clean Cities Vehicles Petroleum Use Reduction Program OR Go Sort by: Category Most Recent Most Popular 1 result Generated_thumb20140804-6137-1paywcu AFV

  6. Alternative Fuels Data Center: Maps and Data

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Trends All Categories Vehicles AFVs and HEVs Fuel Consumption and Efficiency Vehicle Market Driving Patterns Fuels & Infrastructure Fuel Trends Emissions Alternative Fueling Stations Idle Reduction Transportation Infrastructure Biofuels Production Laws & Incentives Regulated Fleets Federal Fleets State & Alt Fuel Providers Clean Cities Vehicles Petroleum Use Reduction Program OR Go Sort by: Category Most Recent Most Popular 13 results Generated_thumb20150812-20436-7eyqju Average

  7. Alternative Fuels Data Center: Maps and Data

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Idle Reduction All Categories Vehicles AFVs and HEVs Fuel Consumption and Efficiency Vehicle Market Driving Patterns Fuels & Infrastructure Fuel Trends Emissions Alternative Fueling Stations Idle Reduction Transportation Infrastructure Biofuels Production Laws & Incentives Regulated Fleets Federal Fleets State & Alt Fuel Providers Clean Cities Vehicles Petroleum Use Reduction Program OR Go Sort by: Category Most Recent Most Popular 2 results Generated_thumb20150813-22546-19hiukh

  8. Alternative Fuels Data Center: Maps and Data

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Laws & Incentives All Categories Vehicles AFVs and HEVs Fuel Consumption and Efficiency Vehicle Market Driving Patterns Fuels & Infrastructure Fuel Trends Emissions Alternative Fueling Stations Idle Reduction Transportation Infrastructure Biofuels Production Laws & Incentives Regulated Fleets Federal Fleets State & Alt Fuel Providers Clean Cities Vehicles Petroleum Use Reduction Program OR Go Sort by: Category Most Recent Most Popular 10 results - Biodiesel_li_by_state Biodiesel

  9. Alternative Fuels Data Center: Maps and Data

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Program All Categories Vehicles AFVs and HEVs Fuel Consumption and Efficiency Vehicle Market Driving Patterns Fuels & Infrastructure Fuel Trends Emissions Alternative Fueling Stations Idle Reduction Transportation Infrastructure Biofuels Production Laws & Incentives Regulated Fleets Federal Fleets State & Alt Fuel Providers Clean Cities Vehicles Petroleum Use Reduction Program OR Go Sort by: Category Most Recent Most Popular 2 results Ccities_map Clean Cities Coalition Locations

  10. Alternative Fuels Data Center: Maps and Data

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Vehicle Market All Categories Vehicles AFVs and HEVs Fuel Consumption and Efficiency Vehicle Market Driving Patterns Fuels & Infrastructure Fuel Trends Emissions Alternative Fueling Stations Idle Reduction Transportation Infrastructure Biofuels Production Laws & Incentives Regulated Fleets Federal Fleets State & Alt Fuel Providers Clean Cities Vehicles Petroleum Use Reduction Program OR Go Sort by: Category Most Recent Most Popular 7 results Generated_thumb20150623-24606-9p4e26 AFV

  11. Secretary Chu Announces Nearly $80 Million Investment for Advanced Biofuels Research and Fueling Infrastructure

    Broader source: Energy.gov [DOE]

    Investment builds upon the Department's ongoing effort to spur the creation of the domestic bio-industry and create new jobs

  12. Texas Hydrogen Highway Fuel Cell Hybrid Bus and Fueling Infrastructure Technology Showcase - Final Scientific/Technical Report

    SciTech Connect (OSTI)

    Hitchcock, David

    2012-06-29

    The Texas Hydrogen Highway project has showcased a hydrogen fuel cell transit bus and hydrogen fueling infrastructure that was designed and built through previous support from various public and private sector entities. The aim of this project has been to increase awareness among transit agencies and other public entities on these transportation technologies, and to place such technologies into commercial applications, such as a public transit agency. The initial project concept developed in 2004 was to show that a skid-mounted, fully-integrated, factory-built and tested hydrogen fueling station could be used to simplify the design, and lower the cost of fueling infrastructure for fuel cell vehicles. The approach was to design, engineer, build, and test the integrated fueling station at the factory then install it at a site that offered educational and technical resources and provide an opportunity to showcase both the fueling station and advanced hydrogen vehicles. The two primary technology components include: Hydrogen Fueling Station: The hydrogen fueling infrastructure was designed and built by Gas Technology Institute primarily through a funding grant from the Texas Commission on Environmental Quality. It includes hydrogen production, clean-up, compression, storage, and dispensing. The station consists of a steam methane reformer, gas clean-up system, gas compressor and 48 kilograms of hydrogen storage capacity for dispensing at 5000 psig. The station is skid-mounted for easy installation and can be relocated if needed. It includes a dispenser that is designed to provide temperaturecompensated fills using a control algorithm. The total station daily capacity is approximately 50 kilograms. Fuel Cell Bus: The transit passenger bus built by Ebus, a company located in Downey, CA, was commissioned and acquired by GTI prior to this project. It is a fuel cell plug-in hybrid electric vehicle which is ADA compliant, has air conditioning sufficient for Texas operations, and regenerative braking for battery charging. It uses a 19.3 kW Ballard PEM fuel cell, will store 12.6 kg of hydrogen at 350 Bar, and includes a 60 kWh battery storage system. The objectives of the project included the following: (a) To advance commercialization of hydrogen-powered transit buses and supporting infrastructure; (b) To provide public outreach and education by showcasing the operation of a 22-foot fuel cell hybrid shuttle bus and Texas first hydrogen fueling infrastructure; and (c) To showcase operation of zero-emissions vehicle for potential transit applications. As mentioned above, the project successfully demonstrated an early vehicle technology, the Ebus plug-in hybrid fuel cell bus, and that success has led to the acquisition of a more advanced vehicle that can take advantage of the same fueling infrastructure. Needed hydrogen station improvements have been identified that will enhance the capabilities of the fueling infrastructure to serve the new bus and to meet the transit agency needs. Over the course of this project, public officials, local government staff, and transit operators were engaged in outreach and education activities that acquainted them with the real world operation of a fuel cell bus and fueling infrastructure. Transit staff members in the Dallas/Ft. Worth region were invited to a workshop in Arlington, Texas at the North Central Texas Council of Governments to participate in a workshop on hydrogen and fuel cells, and to see the fuel cell bus in operation. The bus was trucked to the meeting for this purpose so that participants could see and ride the bus. Austin area transit staff members visited the fueling site in Austin to be briefed on the bus and to participate in a fueling demonstration. This led to further meetings to determine how a fuel cell bus and fueling station could be deployed at Capital Metro Transit. Target urban regions that expressed additional interest during the project in response to the outreach meetings and showcase events include San Antonio and Austin, Texas. In summary, the project objectives were achieved in the following ways: Through presentations and papers provided to a variety of audiences in multiple venues, the project team fulfilled its goal of providing education and outreach on hydrogen technology to statewide audiences. The project team generated interest that exists well beyond the completion of the project, and indeed, helped to generate financial support for a subsequent hydrogen vehicle project in Austin. The University of Texas, Center for ElectroMechanics operated the fuel cell-electric Ebus vehicle for over 13,000 miles in Austin, Texas in a variety of routes and loading configurations. The project took advantage of prior efforts that created a hydrogen fueling station and fuel cell electric-hybrid bus and continued to verify their technical foundation, while informing and educating potential future users of how these technologies work.

  13. Welsh Biofuels Ltd | Open Energy Information

    Open Energy Info (EERE)

    Welsh Biofuels Ltd Jump to: navigation, search Name: Welsh Biofuels Ltd Place: Brynmenym Bridgend, United Kingdom Zip: CF329RQ Sector: Biomass Product: Biomass fuel company...

  14. Energy 101 | Biofuels | Department of Energy

    Energy Savers [EERE]

    This includes investments in clean, renewable biofuels. So what exactly is biofuel? It's clean, renewable fuel produced from biomass -- organic material such as plants, residue ...

  15. Assessing the Economic Potential of Advanced Biofuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the Economic Potential of Advanced Biofuels - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste

  16. Algae Raceway to speed path to biofuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Algae Raceway to speed path to biofuels - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management

  17. Bioproducts and biofuels … growing together!

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and biofuels - growing together! © Virent 2014 - All Rights Reserved Bioproducts: Enabling Fuels and Growing the Bioeconomy DOE Biomass 2014 Washington, D.C. Andrew Held Virent, Inc. Virent at a glance The global leader in catalytic biorefinery research, development, and commercialization. Partners & Investors > $77 MM in Equity Funding > $79 MM in Gov & Industry Technology Infrastructure 25x Development Pilot Plants 2x Larger Demo Plants Catalytically converting plant-based

  18. The transition to hydrogen as a transportation fuel: Costs and infrastructure requirements

    SciTech Connect (OSTI)

    Schock, R.N.; Berry, G.D.; Ramback, G.D.; Smith, J.R.

    1996-03-20

    Hydrogen fuel, used in an internal combustion engine optimized for maximum efficiency and as part of a hybrid-electric vehicle, will give excellent performance and range with emissions below one-tenth the ultra-low emission vehicle standards being considered in California as Equivalent Zero Emission Vehicles. These vehicles can also be manufactured with increased but not excessive cost. Hydrogen-fueled engines have demonstrated indicated efficiencies of more than 50% under lean operation. Combining optimized engines and other advanced components, the overall vehicle efficiency should approach 40%, compared with 13% for a conventional vehicle in the urban driving cycle. The optimized engine-generator unit is the mechanical equivalent of the fuel cell but at a cost competitive with today`s engines. The increased efficiency of hybrid-electric vehicles now makes hydrogen fuel competitive with today`s conventional vehicles. Conservative analysis of the infrastructure options to support a transition to a hydrogen-fueled light-duty fleet indicates that hydrogen may be utilized at a total cost comparable to the 3.1 cents/km U.S. vehicle operators pay today while using conventional automobiles. Both on-site production by electrolysis or reforming of natural gas and liquid hydrogen distribution offer the possibility of a smooth transition by taking advantage of existing large-scale energy infrastructures. Eventually, renewable sources of electricity and scalable methods of making hydrogen will have lower costs than today. With a hybrid-electric propulsion system, the infrastructure to supply hydrogen and the vehicles to use it can be developed today and thus be in place when fuel cells become economical for vehicle use.

  19. Performance of Biofuels and Biofuel Blends

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Performance of Biofuels and Biofuel Blends Robert McCormick Vehicle Technologies Program Merit Review - Fuels and Lubricants Technologies May 16, 2013 Project ID: FT003 This presentation does not contain any proprietary, confidential, or otherwise restricted information. 2 Overview Timeline Start date: Oct 2012 End date: Sept 2013 Percent complete: 66% Program funded one year at a time Barriers VTP MYPP Fuels & Lubricants Technologies Goals * By 2013 identify light-duty (LD) non-petroleum

  20. LIQUID BIO-FUEL PRODUCTION FROM NON-FOOD BIOMASS VIA HIGH TEMPERATURE STEAM ELECTROLYSIS

    SciTech Connect (OSTI)

    G. L. Hawkes; J. E. O'Brien; M. G. McKellar

    2011-11-01

    Bio-Syntrolysis is a hybrid energy process that enables production of synthetic liquid fuels that are compatible with the existing conventional liquid transportation fuels infrastructure. Using biomass as a renewable carbon source, and supplemental hydrogen from high-temperature steam electrolysis (HTSE), bio-syntrolysis has the potential to provide a significant alternative petroleum source that could reduce US dependence on imported oil. Combining hydrogen from HTSE with CO from an oxygen-blown biomass gasifier yields syngas to be used as a feedstock for synthesis of liquid transportation fuels via a Fischer-Tropsch process. Conversion of syngas to liquid hydrocarbon fuels, using a biomass-based carbon source, expands the application of renewable energy beyond the grid to include transportation fuels. It can also contribute to grid stability associated with non-dispatchable power generation. The use of supplemental hydrogen from HTSE enables greater than 90% utilization of the biomass carbon content which is about 2.5 times higher than carbon utilization associated with traditional cellulosic ethanol production. If the electrical power source needed for HTSE is based on nuclear or renewable energy, the process is carbon neutral. INL has demonstrated improved biomass processing prior to gasification. Recyclable biomass in the form of crop residue or energy crops would serve as the feedstock for this process. A process model of syngas production using high temperature electrolysis and biomass gasification is presented. Process heat from the biomass gasifier is used to heat steam for the hydrogen production via the high temperature steam electrolysis process. Oxygen produced form the electrolysis process is used to control the oxidation rate in the oxygen-blown biomass gasifier. Based on the gasifier temperature, 94% to 95% of the carbon in the biomass becomes carbon monoxide in the syngas (carbon monoxide and hydrogen). Assuming the thermal efficiency of the power cycle for electricity generation is 50%, (as expected from GEN IV nuclear reactors), the syngas production efficiency ranges from 70% to 73% as the gasifier temperature decreases from 1900 K to 1500 K. Parametric studies of system pressure, biomass moisture content and low temperature alkaline electrolysis are also presented.

  1. Polymers for hydrogen infrastructure and vehicle fuel systems : applications, properties, and gap analysis.

    SciTech Connect (OSTI)

    Barth, Rachel Reina; Simmons, Kevin L.; San Marchi, Christopher W.

    2013-10-01

    This document addresses polymer materials for use in hydrogen service. Section 1 summarizes the applications of polymers in hydrogen infrastructure and vehicle fuel systems and identifies polymers used in these applications. Section 2 reviews the properties of polymer materials exposed to hydrogen and/or high-pressure environments, using information obtained from published, peer-reviewed literature. The effect of high pressure on physical and mechanical properties of polymers is emphasized in this section along with a summary of hydrogen transport through polymers. Section 3 identifies areas in which fuller characterization is needed in order to assess material suitability for hydrogen service.

  2. Pathways for Algal Biofuels

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DEPARTMENT OF ENERGY BIOMASS PROGRAM Pathways for Algal Biofuels November 27, 2012 Daniel B. Fishman Lead Technology Development Manager 2 | Biomass Program eere.energy.gov Adds value to unproductive or marginal lands of a range of biofuel feedstocks suitable for diesel and aviation fuels Activities include R&D on algal feedstocks and issues related to the sustainable production of algae-derived biofuels. Algae Feedstocks Courtesy Sapphire Courtesy Sapphire Courtesy University of Arizona 3

  3. DOE Selects NREL as a New Biofuels R&D Program Leader - News Releases |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL DOE Selects NREL as a New Biofuels R&D Program Leader January 13, 2010 The U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) will co-lead a new national program to develop advanced biofuels that are compatible with the nation's existing hydrocarbon fuels infrastructure. The $33.8 million in funding for this research effort comes as part of a larger package of biofuels investments under the American Recovery and Reinvestment Act announced today by Energy

  4. Engineering Biofuels from Photosynthetic Bacteria | Argonne National

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory Engineering Biofuels from Photosynthetic Bacteria Technology available for licensing: Using photosynthetic bacteria to produce biofuels. 30-70% of the fuel's waste can be used to create other fuel sources Combines both engineered and natural photosynthetic mechanisms to generate the fuel PDF icon biofuels_from_bacteria

  5. Participant List for the 2010-2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and Infrastructure Meeting on January 31, 2007

    Broader source: Energy.gov [DOE]

    This list describes the participants at the 2010-2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and Infrastructure meeting on January 31, 2007.

  6. Sandia's Biofuels Program

    ScienceCinema (OSTI)

    Simmons, Blake; Singh, Seema; Lane, Todd; Reichardt, Tom; Davis, Ryan

    2014-07-24

    Sandia's biofuels program is focused on developing next-generation, renewable fuel solutions derived from biomass. In this video, various Sandia researchers discuss the program and the tools they employ to tackle the technical challenges they face.

  7. Sandia's Biofuels Program

    SciTech Connect (OSTI)

    Simmons, Blake; Singh, Seema; Lane, Todd; Reichardt, Tom; Davis, Ryan

    2014-07-22

    Sandia's biofuels program is focused on developing next-generation, renewable fuel solutions derived from biomass. In this video, various Sandia researchers discuss the program and the tools they employ to tackle the technical challenges they face.

  8. California: Advanced 'Drop-In' Biofuels Power the Navy's Green...

    Broader source: Energy.gov (indexed) [DOE]

    to Pennsylvania Fueling the Navy's Great Green Fleet with Advanced Biofuels Cellana, ... Five Energy Department Accomplishments in Algal Biofuels Project Overview Positive Impact ...

  9. Biofuel Advanced Research and Development LLC BARD | Open Energy...

    Open Energy Info (EERE)

    biofuels startup company that aims to produce soy biodiesel initially but plans to transition to algae-oil based fuels in 2010. References: Biofuel Advanced Research and...

  10. JBEI Updates Techno-Economic Modeling Tools for Biofuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Updates Techno-Economic Modeling Tools for Biofuels - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste

  11. Lignin-Feasting Microbe Holds Promise for Biofuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lignin-Feasting Microbe Holds Promise for Biofuels - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste

  12. Benefits of Biofuel Production and Use in Mississippi

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mississippi can leverage its biomass resources to produce renewable fuels and products. The Bioenergy Technologies Office enables the development of novel technologies that can be used to establish Mississippi as a leader in the growing bioeconomy. Mississippi Abundant biomass resources and existing infrastructure present Mississippi the opportunity to benefit from both traditional and renewable energy sources. Developing advanced biofuels can boost economic development, improve energy security,

  13. Benefits of Biofuel Production and Use in Washington

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Washington obtains more than 75% of its electricity from renewable resources and is a national leader in energy conservation and energy efficiency. The Bioenergy Technologies Office (BETO) enables the development of novel technologies that can be used to support state energy priorities. Washington Drop-in biofuels produced from state biomass resources could use the existing infrastructure and distribution networks to reduce dependence on petroleum-based transportation fuels, stimulate economic

  14. PNNL Aviation Biofuels

    SciTech Connect (OSTI)

    Plaza, John; Holladay, John; Hallen, Rich

    2014-10-23

    Commercial airplanes really don’t have the option to move away from liquid fuels. Because of this, biofuels present an opportunity to create new clean energy jobs by developing technologies that deliver stable, long term fuel options. The Department of Energy’s Pacific Northwest National Laboratory is working with industrial partners on processes to convert biomass to aviation fuels.

  15. Pathways to Commercial Success: Technologies and Products Supported by the Hydrogen, Fuel Cells and Infrastructure Technologies Program

    SciTech Connect (OSTI)

    none,

    2009-08-01

    This report documents the results of an effort to identify and characterize commercial and near-commercial (emerging) technologies and products that benefited from the support of the Hydrogen, Fuel Cells and Infrastructure Technologies Program and its predecessor programs within DOE's Office of Energy Efficiency and Renewable Energy.

  16. Biofuels Marker Opportunities

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Convenience & Fuel Retailing Biofuels Market Opportunities John Eichberger NACS Vice President Government Relations Fuels Institute Executive Director The Association for Convenience & Fuel Retailing Influencing Consumers Follow the money The Association for Convenience & Fuel Retailing The Association for Convenience & Fuel Retailing Consumers Focused on $ January 2014 Consumer Survey: * 2/3 of consumers shop by price * 2/3 will go out of their way to save 5 cpg To save 5

  17. Vehicle Technologies Office Merit Review 2014: Performance of Biofuels and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biofuel Blends | Department of Energy of Biofuels and Biofuel Blends Vehicle Technologies Office Merit Review 2014: Performance of Biofuels and Biofuel Blends Presentation given by NREL at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about performance of biofuels and biofuel blends. PDF icon ft003_mccormick_2014_o.pdf More Documents & Publications Vehicle Technologies Office Merit Review 2015: Performance of

  18. Status and Prospects of the Global Automotive Fuel Cell Industry and Plans for Deployment of Fuel Cell Vehicles and Hydrogen Refueling Infrastructure

    SciTech Connect (OSTI)

    Greene, David L; Duleep, Gopal

    2013-06-01

    Automobile manufacturers leading the development of mass-market fuel cell vehicles (FCVs) were interviewed in Japan, Korea, Germany and the United States. There is general agreement that the performance of FCVs with respect to durability, cold start, packaging, acceleration, refueling time and range has progressed to the point where vehicles that could be brought to market in 2015 will satisfy customer expectations. However, cost and the lack of refueling infrastructure remain significant barriers. Costs have been dramatically reduced over the past decade, yet are still about twice what appears to be needed for sustainable market success. While all four countries have plans for the early deployment of hydrogen refueling infrastructure, the roles of government, industry and the public in creating a viable hydrogen refueling infrastructure remain unresolved. The existence of an adequate refueling infrastructure and supporting government policies are likely to be the critical factors that determine when and where hydrogen FCVs are brought to market.

  19. Fuel from wastewater : harnessing a potential energy source in Canada through the co-location of algae biofuel production to sources of effluent, heat and CO2.

    SciTech Connect (OSTI)

    Passell, Howard David; Whalen, Jake; Pienkos, Philip P.; O'Leary, Stephen J.; Roach, Jesse Dillon; Moreland, Barbara D.; Klise, Geoffrey Taylor

    2010-12-01

    Sandia National Laboratories is collaborating with the National Research Council (NRC) Canada and the National Renewable Energy Laboratory (NREL) to develop a decision-support model that will evaluate the tradeoffs associated with high-latitude algae biofuel production co-located with wastewater, CO2, and waste heat. This project helps Canada meet its goal of diversifying fuel sources with algae-based biofuels. The biofuel production will provide a wide range of benefits including wastewater treatment, CO2 reuse and reduction of demand for fossil-based fuels. The higher energy density in algae-based fuels gives them an advantage over crop-based biofuels as the 'production' footprint required is much less, resulting in less water consumed and little, if any conversion of agricultural land from food to fuel production. Besides being a potential source for liquid fuel, algae have the potential to be used to generate electricity through the burning of dried biomass, or anaerobically digested to generate methane for electricity production. Co-locating algae production with waste streams may be crucial for making algae an economically valuable fuel source, and will certainly improve its overall ecological sustainability. The modeling process will address these questions, and others that are important to the use of water for energy production: What are the locations where all resources are co-located, and what volumes of algal biomass and oil can be produced there? In locations where co-location does not occur, what resources should be transported, and how far, while maintaining economic viability? This work is being funded through the U.S. Department of Energy (DOE) Biomass Program Office of Energy Efficiency and Renewable Energy, and is part of a larger collaborative effort that includes sampling, strain isolation, strain characterization and cultivation being performed by the NREL and Canada's NRC. Results from the NREL / NRC collaboration including specific productivities of selected algal strains will eventually be incorporated into this model.

  20. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Biofuel Incentive The Agricultural Growth, Research, and Innovation Program may offer grants, loans, or other financial incentives to alternative fuel retailers for the installation of ethanol blender pumps or other rural economic infrastructure activities, or to producers of transportation fuels from cellulosic material or bio-based products. Once established, the program will remain in effective through June 30, 2025, with funding subject to legislative appropriation. (Reference Senate File 5,

  1. Advanced Biofuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  2. Challenge # 2 Logistics and Compatibility with Existing Infrastructure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technologies for Advanced Biofuels - Bio-Oil Upgrading Conversion Technologies for Advanced Biofuels - Bio-Oil Production Thermochemical Conversion Proceeses to Aviation Fuels...

  3. Biofuels Issues and Trends - Energy Information Administration

    Gasoline and Diesel Fuel Update (EIA)

    Biofuels Issues and Trends Release date: October 15, 2012 (updated October 18, 2012 for cellulosic production and October 23, 2012 for RSF2 volume clarification) Highlights Biofuels is a collective term for liquid fuels derived from renewable sources, including ethanol, biodiesel, and other renewable liquid fuels. This report focuses on ethanol and biodiesel, the most widely available biofuels. From 2009 to the middle of 2012, the U.S. biofuels industry increased its output and prepared to meet

  4. Brazil's biofuels scenario

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    LIVRO VERDE DO ETANOL LIVRO VERDE DO ETANOL Brazil's biofuels scenario: What are the main drivers which will shape investments in the long term? Artur Yabe Milanez Manager BNDES Biofuels Department LIVRO VERDE DO ETANOL LIVRO VERDE DO ETANOL 0 1 2 3 4 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 ETANOL FLEX FUEL GASOLINA Growing fuel market In 2013, more than 3 million flex fuel vehicles were sold, which now represents more than 60% of Brazilian car fleet. million of cars

  5. Accelerating Commercialization of Algal Biofuels Through Partnerships (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01

    This brochure describes National Renewable Energy Laboratory's (NREL's) algal biofuels research capabilities and partnership opportunities. NREL is accelerating algal biofuels commercialization through: (1) Advances in applied biology; (2) Algal strain development; (3) Development of fuel conversion pathways; (4) Techno-economic analysis; and (5) Development of high-throughput lipid analysis methodologies. NREL scientists and engineers are addressing challenges across the algal biofuels value chain, including algal biology, cultivation, harvesting and extraction, and fuel conversion. Through partnerships, NREL can share knowledge and capabilities in the following areas: (1) Algal Biology - A fundamental understanding of algal biology is key to developing cost-effective algal biofuels processes. NREL scientists are experts in the isolation and characterization of microalgal species. They are identifying genes and pathways involved in biofuel production. In addition, they have developed a high-throughput, non-destructive technique for assessing lipid production in microalgae. (2) Cultivation - NREL researchers study algal growth capabilities and perform compositional analysis of algal biomass. Laboratory-scale photobioreactors and 1-m2 open raceway ponds in an on-site greenhouse allow for year-round cultivation of algae under a variety of conditions. A bioenergy-focused algal strain collection is being established at NREL, and our laboratory houses a cryopreservation system for long-term maintenance of algal cultures and preservation of intellectual property. (3) Harvesting and Extraction - NREL is investigating cost-effective harvesting and extraction methods suitable for a variety of species and conditions. Areas of expertise include cell wall analysis and deconstruction and identification and utilization of co-products. (4) Fuel Conversion - NREL's excellent capabilities and facilities for biochemical and thermochemical conversion of biomass to biofuels are being applied to algal biofuels processes. Analysts are also testing algal fuel properties to measure energy content and ensure compatibility with existing fueling infrastructure. (5) Cross-Cutting Analysis - NREL scientists and engineers are conducting rigorous techno-economic analyses of algal biofuels processes. In addition, they are performing a full life cycle assessment of the entire algae-to-biofuels process.

  6. water infrastructure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    infrastructure - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear

  7. Hydrogen Infrastructure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Infrastructure - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear

  8. EA-1850: Flambeau River BioFuels, Inc. Proposed Wood Biomass-to-Liquid Fuel Biorefinery, Park Falls, Wisconsin

    Broader source: Energy.gov [DOE]

    NOTE: This EA has been cancelled. This EA will evaluate the environmental impacts of a proposal to provide federal funding to Flambeau River Biofuels (FRB) to construct and operate a biomass-to-liquid biorefinery in Park Falls, Wisconsin, on property currently used by Flambeau Rivers Paper, LLC (FRP) for a pulp and paper mill and Johnson Timber Corporation's (JTC) Summit Lake Yard for timber storage. This project would design a biorefinery which would produce up to 1,150 barrels per day (bpd) of clean syncrude. The biorefinery would also supply steam to the FRP mill, meeting the majority of the mill's steam demand and reducing or eliminating the need for the existing biomass/coal-fired boiler. The biorefinery would also include a steam turbine generator that will produce "green" electrical power for use by the biorefinery or for sale to the electric utility.

  9. Applying the Energy Service Company Model to Advance Deployment of Fleet Natural Gas Vehicles and Fueling Infrastructure

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Applying the Energy Service Company Model to Advance Deployment of Fleet Natural Gas Vehicles and Fueling Infrastructure June 2014 ACKNOWLEDGEMENTS The Center for Climate and Energy Solutions (C2ES) and the National Association of State Energy Officials (NASEO) would like to thank the U.S. Department of Energy for providing financial support for this report. C2ES would also like to thank the following for their substantial input: Jay Albert, Ken Berlin, Linda Bluestein, Ken Brown, William

  10. Sandia National Laboratories: Research: Biofuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biofuels Overcoming challenges to make advanced "drop-in" biofuels a reality Sandia researchers are developing clean and renewable sources of energy to help minimize climate change and reduce U.S. dependence on foreign oil. To this end, we are creating thermochemical, chemical, and biochemical conversion technologies to efficiently generate renewable biofuels that can displace gasoline, diesel, and jet fuel with no loss of performance or engine efficiency. Sandia is focused on two

  11. Flying F Bio Fuels | Open Energy Information

    Open Energy Info (EERE)

    F Bio Fuels Jump to: navigation, search Name: Flying F Bio-Fuels Place: Iowa Product: Flying F Bio-Fuels conducts technological research in bio-fuels. References: Flying F...

  12. NGV fleet fueling station business plan: A public, private and utility partnership to identify economical business options for implementation of CNG fueling infrastructure

    SciTech Connect (OSTI)

    Not Available

    1993-07-01

    The City of Long Beach recently incorporated an additional 61 natural gas vehicles (NGV) within its own fleet, bringing the City`s current NGV fleet to 171 NGVs. During January 1992, the City opened its first public access compressed natural gas (CNG) fueling station (86 CFM). This action served as the City`s first step toward developing the required CNG infrastructure to accommodate its growing NGV fleet, as well as those of participating commercial and private fleet owners. The City of Long Beach is committed to promoting NGVs within its own fleet, as well as encouraging NGV use by commercial and private fleet owners and resolving market development barriers. The NGV Business Plan provides recommendations for priority locations, station size and design, capital investment, partnership and pricing options. The NGV Business Plan also includes an econometric model to calculate CNG infrastructure cost recovery options, based on CNG market research within the City of Long Beach and Southern California area. Furthermore, the NGV Business Plan provides the City with a guide regarding CNG infrastructure investment, partnerships and private fueling programs. Although the NGV Business Plan was developed to address the prevailing CNG-related issues affecting the City of Long Beach, the methodology used within the NGV Business Plan and, more significantly, the accompanying econometric model will assist local governments, nation-wide, in the successful implementation of similar CNG infrastructures required for effective market penetration of NGVs.

  13. Gas-to-liquids synthetic fuels for use in fuel cells : reformability, energy density, and infrastructure compatibility.

    SciTech Connect (OSTI)

    Ahmed, S.; Kopasz, J. P.; Russell, B. J.; Tomlinson, H. L.

    1999-09-08

    The fuel cell has many potential applications, from power sources for electric hybrid vehicles to small power plants for commercial buildings. The choice of fuel will be critical to the pace of its commercialization. This paper reviews the various liquid fuels being considered as an alternative to direct hydrogen gas for the fuel cell application, presents calculations of the hydrogen and carbon dioxide yields from autothermal reforming of candidate liquid fuels, and reports the product gas composition measured from the autothermal reforming of a synthetic fuel in a micro-reactor. The hydrogen yield for a synthetic paraffin fuel produced by a cobalt-based Fischer-Tropsch process was found to be similar to that of retail gasoline. The advantages of the synthetic fuel are that it contains no contaminants that would poison the fuel cell catalyst, is relatively benign to the environment, and could be transported in the existing fuel distribution system.

  14. Research and development of Proton-Exchange-Membrane (PEM) fuel cell system for transportation applications. Fuel cell infrastructure and commercialization study

    SciTech Connect (OSTI)

    1996-11-01

    This paper has been prepared in partial fulfillment of a subcontract from the Allison Division of General Motors under the terms of Allison`s contract with the U.S. Department of Energy (DE-AC02-90CH10435). The objective of this task (The Fuel Cell Infrastructure and Commercialization Study) is to describe and prepare preliminary evaluations of the processes which will be required to develop fuel cell engines for commercial and private vehicles. This report summarizes the work undertaken on this study. It addresses the availability of the infrastructure (services, energy supplies) and the benefits of creating public/private alliances to accelerate their commercialization. The Allison prime contract includes other tasks related to the research and development of advanced solid polymer fuel cell engines and preparation of a demonstration automotive vehicle. The commercialization process starts when there is sufficient understanding of a fuel cell engine`s technology and markets to initiate preparation of a business plan. The business plan will identify each major step in the design of fuel cell (or electrochemical) engines, evaluation of the markets, acquisition of manufacturing facilities, and the technical and financial resources which will be required. The process will end when one or more companies have successfully developed and produced fuel cell engines at a profit. This study addressed the status of the information which will be required to prepare business plans, develop the economic and market acceptance data, and to identify the mobility, energy and environment benefits of electrochemical or fuel cell engines. It provides the reader with information on the status of fuel cell or electrochemical engine development and their relative advantages over competitive propulsion systems. Recommendations and descriptions of additional technical and business evaluations that are to be developed in more detail in Phase II, are included.

  15. Ethanol Distribution, Dispensing, and Use: Analysis of a Portion of the Biomass-to-Biofuels Supply Chain Using System Dynamics

    SciTech Connect (OSTI)

    Vimmerstedt, L. J.; Bush, B.; Peterson, S.

    2012-05-01

    The Energy Independence and Security Act of 2007 targets use of 36 billion gallons of biofuels per year by 2022. Achieving this may require substantial changes to current transportation fuel systems for distribution, dispensing, and use in vehicles. The U.S. Department of Energy and the National Renewable Energy Laboratory designed a system dynamics approach to help focus government action by determining what supply chain changes would have the greatest potential to accelerate biofuels deployment. The National Renewable Energy Laboratory developed the Biomass Scenario Model, a system dynamics model which represents the primary system effects and dependencies in the biomass-to-biofuels supply chain. The model provides a framework for developing scenarios and conducting biofuels policy analysis. This paper focuses on the downstream portion of the supply chain-represented in the distribution logistics, dispensing station, and fuel utilization, and vehicle modules of the Biomass Scenario Model. This model initially focused on ethanol, but has since been expanded to include other biofuels. Some portions of this system are represented dynamically with major interactions and feedbacks, especially those related to a dispensing station owner's decision whether to offer ethanol fuel and a consumer's choice whether to purchase that fuel. Other portions of the system are modeled with little or no dynamics; the vehicle choices of consumers are represented as discrete scenarios. This paper explores conditions needed to sustain an ethanol fuel market and identifies implications of these findings for program and policy goals. A large, economically sustainable ethanol fuel market (or other biofuel market) requires low end-user fuel price relative to gasoline and sufficient producer payment, which are difficult to achieve simultaneously. Other requirements (different for ethanol vs. other biofuel markets) include the need for infrastructure for distribution and dispensing and widespread use of high ethanol blends in flexible-fuel vehicles.

  16. Fungible and Compatible Biofuels

    Office of Energy Efficiency and Renewable Energy (EERE)

    The purpose of this study is to summarize the various barriers to more widespread distribution of biofuels through our common carrier fuel distribution system, which includes pipelines, barges and rail, fuel tankage, and distribution terminals, and with a special focus on biofuels, which may come into increased usage in the future. Addressing these barriers is necessary to allow the more widespread utilization and distribution of biofuels, in support of a renewable fuels standard and possible future low-carbon fuel standards. By identifying these barriers early, for fuels not currently in widespread use, they can be addressed in related research and development. These barriers can be classified into several categories, including operating practice, regulatory, technical, and acceptability barriers. Possible solutions to these issues are discussed, including compatibility evaluation, changes to biofuels, regulatory changes, and changes in the distribution system or distribution practices. No actual experimental research has been conducted in the writing of this report, but results are used to develop recommendations for future research and additional study as appropriate.

  17. International Trade of Biofuels (Brochure), Energy Analysis,...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and trade of biofuels have increased to meet global demand for renewable fuels. Ethanol and biodiesel contribute much of this trade because they are the most established...

  18. Quantitative Analysis of Biofuel Sustainability, Including Land...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    life cycle analysis of biofuels continue to improve 2 Feedstock Production Feedstock Logistics, Storage and Transportation Feedstock Conversion Fuel Transportation and...

  19. SunFuel Midstream | Open Energy Information

    Open Energy Info (EERE)

    acquires, builds, finances and operates biofuel infrastructure assets such as biofuel storage and blending terminals, rail, barge and truck receiving terminals and rail and truck...

  20. Micro Cooling, Heating, and Power (Micro-CHP) and Bio-Fuel Center, Mississippi State University

    SciTech Connect (OSTI)

    Louay Chamra

    2008-09-26

    Initially, most micro-CHP systems will likely be designed as constant-power output or base-load systems. This implies that at some point the power requirement will not be met, or that the requirement will be exceeded. Realistically, both cases will occur within a 24-hour period. For example, in the United States, the base electrical load for the average home is approximately 2 kW while the peak electrical demand is slightly over 4 kW. If a 3 kWe micro- CHP system were installed in this situation, part of the time more energy will be provided than could be used and for a portion of the time more energy will be required than could be provided. Jalalzadeh-Azar [6] investigated this situation and presented a comparison of electrical- and thermal-load-following CHP systems. In his investigation he included in a parametric analysis addressing the influence of the subsystem efficiencies on the total primary energy consumption as well as an economic analysis of these systems. He found that an increase in the efficiencies of the on-site power generation and electrical equipment reduced the total monthly import of electricity. A methodology for calculating performance characteristics of different micro-CHP system components will be introduced in this article. Thermodynamic cycles are used to model each individual prime mover. The prime movers modeled in this article are a spark-ignition internal combustion engine (Otto cycle) and a diesel engine (Diesel cycle). Calculations for heat exchanger, absorption chiller, and boiler modeling are also presented. The individual component models are then linked together to calculate total system performance values. Performance characteristics that will be observed for each system include maximum fuel flow rate, total monthly fuel consumption, and system energy (electrical, thermal, and total) efficiencies. Also, whether or not both the required electrical and thermal loads can sufficiently be accounted for within the system specifications is observed. Case study data for various micro-CHP system configurations have been discussed and compared. Comparisons are made of the different prime mover/fuel combinations. Also, micro- CHP monthly energy cost results are compared for each system configuration to conventional monthly utility costs for equivalent monthly building power, heating, and cooling requirements.

  1. DOE Perspectives on Advanced Hydrocarbon-based Biofuels | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Advanced Hydrocarbon-based Biofuels DOE Perspectives on Advanced Hydrocarbon-based Biofuels Zia Haq, DPA Coordinator, presentation on DOE Perspectives on Advanced Hydrocarbon-based Biofuels. PDF icon 4_haq_roundtable.pdf More Documents & Publications A Review of DOE Biofuels Program Technology Pathway Selection Effort Thermochemical Conversion Proceeses to Aviation Fuels

  2. Biofuel from Bacteria and Sunlight: Shewanella as an Ideal Platform for Producing Hydrocarbons

    SciTech Connect (OSTI)

    None

    2010-01-01

    Broad Funding Opportunity Announcement Project: The University of Minnesota is developing clean-burning, liquid hydrocarbon fuels from bacteria. The University is finding ways to continuously harvest hydrocarbons from a type of bacteria called Shewanella by using a photosynthetic organism to constantly feed Shewanella the sugar it needs for energy and hydrocarbon production. The two organisms live and work together as a system. Using Shewanella to produce hydrocarbon fuels offers several advantages over traditional biofuel production methods. First, it eliminates many of the time-consuming and costly steps involved in growing plants and harvesting biomass. Second, hydrocarbon biofuels resemble current petroleum-based fuels and would therefore require few changes to the existing fuel refining and distribution infrastructure in the U.S.

  3. Hydrogen Transition Infrastructure Analysis

    SciTech Connect (OSTI)

    Melendez, M.; Milbrandt, A.

    2005-05-01

    Presentation for the 2005 U.S. Department of Energy Hydrogen Program review analyzes the hydrogen infrastructure needed to accommodate a transitional hydrogen fuel cell vehicle demand.

  4. Agricultural Bio-Fueled Generation of Electricity and Development of Durable and Efficent NOx Reduction

    SciTech Connect (OSTI)

    Boyd, Rodney

    2007-08-08

    The objective of this project was to define the scope and cost of a technology research and development program that will demonstrate the feasibility of using an off-the-shelf, unmodified, large bore diesel powered generator in a grid-connected application, utilizing various blends of BioDiesel as fuel. Furthermore, the objective of project was to develop an emissions control device that uses a catalytic process and BioDiesel (without the presence of Ammonia or Urea)to reduce NOx and other pollutants present in a reciprocating engine exhaust stream with the goal of redefining the highest emission reduction efficiencies possible for a diesel reciprocating generator. Process: Caterpillar Power Generation adapted an off-the-shelf Diesel Generator to run on BioDiesel and various Petroleum Diesel/BioDiesel blends. EmeraChem developed and installed an exhaust gas cleanup system to reduce NOx, SOx, volatile organics, and particulates. The system design and function was optimized for emissions reduction with results in the 90-95% range;

  5. Biofuels from Bacteria, Electricity, and CO2: Biofuels from CO2 Using Ammonia or Iron-Oxidizing Bacteria in Reverse Microbial Fuel Cells

    SciTech Connect (OSTI)

    2010-07-01

    Electrofuels Project: Electrofuels Project: Columbia University is using carbon dioxide (CO2) from ambient air, ammoniaan abundant and affordable chemical, and a bacteria called N. europaea to produce liquid fuel. The Columbia University team is feeding the ammonia and CO2 into an engineered tank where the bacteria live. The bacteria capture the energy from ammonia and then use that energy to convert CO2 into a liquid fuel. When the bacteria use up all the ammonia, renewable electricity can regenerate it and pump it back into the systemcreating a continuous fuel-creation cycle. In addition, Columbia University is also working with the bacteria A. ferrooxidans to capture and use energy from ferrous iron to produce liquid fuels from CO2.

  6. Vehicle Technologies Office Merit Review 2014: Unlocking Private Sector Financing for Alternative Fuel Vehicles and Fueling Infrastructure

    Broader source: Energy.gov [DOE]

    Presentation given by National Association of State Energy Officials at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting...

  7. Smart Power Infrastructure Demonstration for Energy Reliability and Security (SPIDERS)Fuel Duration Analysis Brief

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Duration Analysis Brief Mr. Ross Roley PACOM Energy Innovation Office Lead SPIDERS Operational Manager August 2015 UNCLASSIFIED/Distribution A Fuel Duration Assumptions - Load data collected by Sandia National Laboratories at 15 min intervals Jan 2011 - Jan 2012 (worst case data used) - Critical load data collected by Sandia every 5 min for 2 weeks in Aug 2012 (worst case data used) - Standardized fuel consumption rates for various size generators provided by Sandia - Inventory of Camp

  8. CONNECTICUT BIOFUELS TECHNOLOGY PROJECT

    SciTech Connect (OSTI)

    BARTONE, ERIK

    2010-09-28

    DBS Energy Inc. (DBS) intends on using the Connecticut Biofuels Technology Project for the purpose of developing a small-scale electric generating systems that are located on a distributed basis and utilize biodiesel as its principle fuel source. This project will include research and analysis on the quality and applied use of biodiesel for use in electricity production, 2) develop dispatch center for testing and analysis of the reliability of dispatching remote generators operating on a blend of biodiesel and traditional fossil fuels, and 3) analysis and engineering research on fuel storage options for biodiesel of fuels for electric generation.

  9. Algal Biofuel Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Algal Biofuel Technologies States Biomass/ Clean Cities Web Conference November 6, 2008 Al Darzins, Ph.D. Principal Group Manager National Bioenergy Center NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy operated by the Alliance for Sustainable Energy, LLC al_darzins@nrel.gov (303) 384-7757 Advanced Biofuels in 2007 EISA Section 202 R bl F l St d d t i l t i l Section 202 - Renewable Fuels Standard sets aggressive volumetric goals:

  10. Folium - Biofuels from Tobacco - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biomass and Biofuels Biomass and Biofuels Find More Like This Return to Search Folium - Biofuels from Tobacco Lawrence Berkeley National Laboratory Contact LBL About This Technology Technology Marketing Summary FOLIUM is a research project aimed at producing high-density liquid fuels in the green biomass of tobacco. By introducing genetic material from microorganisms and other plants, tobacco can synthesize hydrocarbon fuels in its leaves and stems. Also, tobacco can be engineered to increase

  11. Energy 101: Biofuels | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biofuels Energy 101: Biofuels Addthis Description Biomass is an organic renewable energy source that includes materials such as agriculture and forest residues, energy crops, and algae. Scientists and engineers at the U.S. Department of Energy and its national laboratories are finding new, more efficient ways to convert biomass into biofuels that can take the place of conventional fuels like gasoline, diesel, and jet fuel. This video shows how biomass is broken down and refined into sustainable

  12. AgriFuel Company | Open Energy Information

    Open Energy Info (EERE)

    to: navigation, search Name: AgriFuel Company Place: Cranford, New Jersey Sector: Biofuels Product: AgriFuel produces and markets biofuels refined from waste vegetable oil,...

  13. Full Circle Fuels | Open Energy Information

    Open Energy Info (EERE)

    search Name: Full Circle Fuels Place: Oberlin, Ohio Zip: 44074 Sector: Biofuels Product: Alternative fuels center dedicated to increasing awareness and use of biofuels in...

  14. Infrastructure Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  15. Infrastructure Assurance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Assurance - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy

  16. Infrastructure Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  17. Advanced Drop-In Biofuels Initiative Agenda | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Drop-In Biofuels Initiative Agenda Advanced Drop-In Biofuels Initiative Agenda Agenda for the Advanced Drop-In Biofuels Initiative Industry Roundtable PDF icon industry_roundtable_agenda.pdf More Documents & Publications Department of the Navy, DPA Presentation Bulk Fuel Procurement Process & Alternative Drop-in Fuel Biomass Program Monthly News Blast: August

  18. Review of Transportation Issues & Comparison of Infrastructure Costs for a Renewable Fuels Standard

    Reports and Publications (EIA)

    2002-01-01

    This paper analyzes the inter-regional transportation issues and associated costs for increased distribution of renewable fuels with the assumption that ethanol will be used to meet the standards.

  19. National Algal Biofuels Technology Roadmap

    SciTech Connect (OSTI)

    Ferrell, John; Sarisky-Reed, Valerie

    2010-05-01

    The framework for National Algal Biofuels Technology Roadmap was constructed at the Algal Biofuels Technology Roadmap Workshop, held December 9-10, 2008, at the University of Maryland-College Park. The Workshop was organized by the Biomass Program to discuss and identify the critical challenges currently hindering the development of a domestic, commercial-scale algal biofuels industry. This Roadmap presents information from a scientific, economic, and policy perspectives that can support and guide RD&D investment in algal biofuels. While addressing the potential economic and environmental benefits of using algal biomass for the production of liquid transportation fuels, the Roadmap describes the current status of algae RD&D. In doing so, it lays the groundwork for identifying challenges that likely need to be overcome for algal biomass to be used in the production of economically viable biofuels.

  20. Siting algae cultivation facilities for biofuel production in the United States: trade-offs between growth rate, site constructability, water availability, and infrastructure

    SciTech Connect (OSTI)

    Venteris, Erik R.; McBride, Robert; Coleman, Andre M.; Skaggs, Richard; Wigmosta, Mark S.

    2014-02-21

    Locating sites for new algae cultivation facilities is a complex task. The climate must support high growth rates, and cultivation ponds require appropriate land and water resources as well as key utility and transportation infrastructure. We employ our spatiotemporal Biomass Assessment Tool (BAT) to select promising locations based on the open-pond cultivation of Arthrospira sp. and a strain of the order Desmidiales. 64,000 potential sites across the southern United States were evaluated. We progressively apply a range of screening criteria and track their impact on the number of selected sites, geographic location, and biomass productivity. Both strains demonstrate maximum productivity along the Gulf of Mexico coast, with the highest values on the Florida peninsula. In contrast, sites meeting all selection criteria for Arthrospira were located along the southern coast of Texas and for Desmidiales were located in Louisiana and southern Arkansas. Site selection was driven mainly by the lack of oil pipeline access in Florida and elevated groundwater salinity in southern Texas. The requirement for low salinity freshwater (<400 mg L-1) constrained Desmidiales locations; siting flexibility is greater for salt-tolerant species such as Arthrospira. Combined siting factors can result in significant departures from regions of maximum productivity but are within the expected range of site-specific process improvements.

  1. World Biofuels Study

    SciTech Connect (OSTI)

    Alfstad,T.

    2008-10-01

    This report forms part of a project entitled 'World Biofuels Study'. The objective is to study world biofuel markets and to examine the possible contribution that biofuel imports could make to help meet the Renewable Fuel Standard (RFS) of the Energy Independence and Security Act of 2007 (EISA). The study was sponsored by the Biomass Program of the Assistant Secretary for Energy Efficiency and Renewable Energy (EERE), U.S. Department of Energy. It is a collaborative effort among the Office of Policy and International Affairs (PI), Department of Energy and Oak Ridge National Laboratory (ORNL), National Renewable Energy Laboratory (NREL) and Brookhaven National Laboratory (BNL). The project consisted of three main components: (1) Assessment of the resource potential for biofuel feedstocks such as sugarcane, grains, soybean, palm oil and lignocellulosic crops and development of supply curves (ORNL). (2) Assessment of the cost and performance of biofuel production technologies (NREL). (3) Scenario-based analysis of world biofuel markets using the ETP global energy model with data developed in the first parts of the study (BNL). This report covers the modeling and analysis part of the project conducted by BNL in cooperation with PI. The Energy Technology Perspectives (ETP) energy system model was used as the analytical tool for this study. ETP is a 15 region global model designed using the MARKAL framework. MARKAL-based models are partial equilibrium models that incorporate a description of the physical energy system and provide a bottom-up approach to study the entire energy system. ETP was updated for this study with biomass resource data and biofuel production technology cost and performance data developed by ORNL and NREL under Tasks 1 and 2 of this project. Many countries around the world are embarking on ambitious biofuel policies through renewable fuel standards and economic incentives. As a result, the global biofuel demand is expected to grow very rapidly over the next two decades, provided policymakers stay the course with their policy goals. This project relied on a scenario-based analysis to study global biofuel markets. Scenarios were designed to evaluate the impact of different policy proposals and market conditions. World biofuel supply for selected scenarios is shown in Figure 1. The reference case total biofuel production increases from 12 billion gallons of ethanol equivalent in 2005 to 54 billion gallons in 2020 and 83 billion gallons in 2030. The scenarios analyzed show volumes ranging from 46 to 64 billion gallons in 2020, and from about 72 to about 100 billion gallons in 2030. The highest production worldwide occurs in the scenario with high feedstock availability combined with high oil prices and more rapid improvements in cellulosic biofuel conversion technologies. The lowest global production is found in the scenario with low feedstock availability, low oil prices and slower technology progress.

  2. Biofuels: Helping to Move the Industry to the Next Level

    Broader source: Energy.gov [DOE]

    In our committment to tripling biofuel production in the next 12 years, we've in the past two years announced 40 projects and over $850 million to projects focused on cellulosic biofuels and next generation hydrocarbon fuels.

  3. Biochemical Conversion: Using Hydrolysis, Fermentation, and Catalysis to Make Fuels and Chemicals

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    New pathways will enable energy-efficient biochemical conversion of lignocellulosic biomass into biofuels that are compatible with today's vehicles and infrastructure. Photos (clockwise from upper left): iStock/4373820, Energetics Inc., iStock/6091090, NREL/15040 Biochemical Conversion: Using Enzymes, Microbes, and Catalysts to Make Fuels and Chemicals Advanced biofuels are part of America's all-of-the-above strategy to develop domestic energy resources and win the global race in clean energy

  4. International Trade of Biofuels (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2013-05-01

    In recent years, the production and trade of biofuels has increased to meet global demand for renewable fuels. Ethanol and biodiesel contribute much of this trade because they are the most established biofuels. Their growth has been aided through a variety of policies, especially in the European Union, Brazil, and the United States, but ethanol trade and production have faced more targeted policies and tariffs than biodiesel. This fact sheet contains a summary of the trade of biofuels among nations, including historical data on production, consumption, and trade.

  5. Summary report on transportation of nuclear fuel materials in Japan : transportation infrastructure, threats identified in open literature, and physical protection regulations.

    SciTech Connect (OSTI)

    Cochran, John Russell; Ouchi, Yuichiro (Japan Atomic Energy Agency, Japan); Furaus, James Phillip; Marincel, Michelle K.

    2008-03-01

    This report summarizes the results of three detailed studies of the physical protection systems for the protection of nuclear materials transport in Japan, with an emphasis on the transportation of mixed oxide fuel materials1. The Japanese infrastructure for transporting nuclear fuel materials is addressed in the first section. The second section of this report presents a summary of baseline data from the open literature on the threats of sabotage and theft during the transport of nuclear fuel materials in Japan. The third section summarizes a review of current International Atomic Energy Agency, Japanese and United States guidelines and regulations concerning the physical protection for the transportation of nuclear fuel materials.

  6. 2nd International Hydrogen Infrastructure Challenges Webinar...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen Infrastructure Challenges Workshop Summary - NOW, NEDO, and DOE Introduction to SAE Hydrogen Fueling Standardization Light Duty Fuel Cell Electric Vehicle Hydrogen Fueling...

  7. Vehicle Technologies Office: Biofuels End-Use Research | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Alternative Fuels » Vehicle Technologies Office: Biofuels End-Use Research Vehicle Technologies Office: Biofuels End-Use Research Biofuels offer Americans viable domestic, environmentally sustainable alternatives to gasoline and diesel. Learn about the basics, benefits, and issues to consider related to biodiesel and ethanol on the Alternative Fuels Data Center. The Vehicle Technologies Office supports research to increase our knowledge of the effects of biofuels on engines and

  8. Innovation Fuels | Open Energy Information

    Open Energy Info (EERE)

    Fuels Place: Newark, New Jersey Zip: 7104 Sector: Biofuels Product: New Jersey-based biodiesel producer which resulted from the merger of Hampton Biofuels and two other biodiesel...

  9. PADD 5 Transportation Fuels Markets

    U.S. Energy Information Administration (EIA) Indexed Site

    ... As a result, marine vessels are generally highly utilized, and there is minimal capacity ... Renewable fuels and biofuels supplydemand There is minimal biofuels demand in Alaska. ...

  10. Compatibility Study for Plastic, Elastomeric, and Metallic Fueling Infrastructure Materials Exposed to Aggressive Formulations of Ethanol-blended Gasoline

    SciTech Connect (OSTI)

    Kass, Michael D; Pawel, Steven J; Theiss, Timothy J; Janke, Christopher James

    2012-07-01

    In 2008 Oak Ridge National Laboratory began a series of experiments to evaluate the compatibility of fueling infrastructure materials with intermediate levels of ethanol-blended gasoline. Initially, the focus was elastomers, metals, and sealants, and the test fuels were Fuel C, CE10a, CE17a and CE25a. The results of these studies were published in 2010. Follow-on studies were performed with an emphasis on plastic (thermoplastic and thermoset) materials used in underground storage and dispenser systems. These materials were exposed to test fuels of Fuel C and CE25a. Upon completion of this effort, it was felt that additional compatibility data with higher ethanol blends was needed and another round of experimentation was performed on elastomers, metals, and plastics with CE50a and CE85a test fuels. Compatibility of polymers typically relates to the solubility of the solid polymer with a solvent. It can also mean susceptibility to chemical attack, but the polymers and test fuels evaluated in this study are not considered to be chemically reactive with each other. Solubility in polymers is typically assessed by measuring the volume swell of the polymer exposed to the solvent of interest. Elastomers are a class of polymers that are predominantly used as seals, and most o-ring and seal manufacturers provide compatibility tables of their products with various solvents including ethanol, toluene, and isooctane, which are components of aggressive oxygenated gasoline as described by the Society of Automotive Engineers (SAE) J1681. These tables include a ranking based on the level of volume swell in the elastomer associated with exposure to a particular solvent. Swell is usually accompanied by a decrease in hardness (softening) that also affects performance. For seal applications, shrinkage of the elastomer upon drying is also a critical parameter since a contraction of volume can conceivably enable leakage to occur. Shrinkage is also indicative of the removal of one or more components of the elastomers (by the solvent). This extraction of additives can negatively change the properties of the elastomer, leading to reduced performance and durability. For a seal application, some level of volume swell is acceptable, since the expansion will serve to maintain a seal. However, the acceptable level of swell is dependent on the particular application of the elastomer product. It is known that excessive swell can lead to unacceptable extrusion of the elastomer beyond the sealed interface, where it becomes susceptible to damage. Also, since high swell is indicative of high solubility, there is a heightened potential for fluid to seep through the seal and into the environment. Plastics, on the other hand, are used primarily in structural applications, such as solid components, including piping and fluid containment. Volume change, especially in a rigid system, will create internal stresses that may negatively affect performance. In order to better understand and predict the compatibility for a given polymer type and fuel composition, an analysis based on Hansen solubility theory was performed for each plastic and elastomer material. From this study, the solubility distance was calculated for each polymer material and test fuel combination. Using the calculated solubility distance, the ethanol concentration associated with peak swell and overall extent of swell can be predicted for each polymer. The bulk of the material discussion centers on the plastic materials, and their compatibility with Fuel C, CE25a, CE50a, and CE85a. The next section of this paper focuses on the elastomer compatibility with the higher ethanol concentrations with comparison to results obtained previously for the lower ethanol levels. The elastomers were identical to those used in the earlier study. Hansen solubility theory is also applied to the elastomers to provide added interpretation of the results. The final section summarizes the performance of the metal coupons.

  11. Biofuels: 1995 project summaries

    SciTech Connect (OSTI)

    1996-01-01

    Domestic transportation fuels are derived primarily from petroleum and account for about two-thirds of the petroleum consumption in the United States. In 1994, more than 40% of our petroleum was imported. That percentage is likely to increase, as the Middle East has about 75% of the world`s oil reserves, but the United States has only about 5%. Because we rely so heavily on oil (and because we currently have no suitable substitutes for petroleum-based transportation fuels), we are strategically and economically vulnerable to disruptions in the fuel supply. Additionally, we must consider the effects of petroleum use on the environment. The Biofuels Systems Division (BSD) is part of the U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EE). The day-to-day research activities, which address these issues, are managed by the National Renewable Energy Laboratory in Golden, Colorado, and Oak Ridge National Laboratory in Oak Ridge, Tennessee. BSD focuses its research on biofuels-liquid and gaseous fuels made from renewable domestic crops-and aggressively pursues new methods for domestically producing, recovering, and converting the feedstocks to produce the fuels economically. The biomass resources include forage grasses, oil seeds, short-rotation woody crops, agricultural and forestry residues, algae, and certain industrial and municipal waste streams. The resulting fuels include ethanol, methanol, biodiesel, and ethers.

  12. NREL: Biomass Research - Microalgal Biofuels Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Microalgal Biofuels Projects A photo of a man in a white lab coat holding a glass flask that contains a small amount of clear green liquid. An NREL researcher analyzes algae samples for oil content using the Fluorescence Activated Cell Sorter. NREL's microalgal biofuels projects focus on determining the feasibility and economic capability of employing algae as a cost-effective feedstock for fuel production. NREL researchers pioneered developing microalgal biofuels by leading the U.S. Department

  13. A DOE EFRC Center 'title' was established at Princeton University and will focus on the science underlying the development of non-petroleum-based fuels, including carbon-neutral biofuels, and their optimal use in transportation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research and Education Opportunities at the Combustion Energy Frontier Research Center The Combustion Energy Frontier Research Center (CEFRC) has been established at Princeton University by the U.S. Department of Energy (DOE). This Center focuses on the science underlying the development of non-petroleum-based fuels, including biofuels, and their optimal use in transportation. Fundamental insights in combustion and fuel chemistry ranging from quantum chemistry to turbulence-chemistry

  14. Texas Hydrogen Highway - Fuel Cell Hybrid Bus and Fueling Infrastructu...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen Highway - Fuel Cell Hybrid Bus and Fueling Infrastructure Technology Showcase Texas Hydrogen Highway - Fuel Cell Hybrid Bus and Fueling Infrastructure Technology Showcase...

  15. MN Center for Renewable Energy: Cellulosic Ethanol, Optimization of Bio-fuels in Internal Combustion Engines, & Course Development for Technicians in These Areas

    SciTech Connect (OSTI)

    John Frey

    2009-02-22

    This final report for Grant #DE-FG02-06ER64241, MN Center for Renewable Energy, will address the shared institutional work done by Minnesota State University, Mankato and Minnesota West Community and Technical College during the time period of July 1, 2006 to December 30, 2008. There was a no-cost extension request approved for the purpose of finalizing some of the work. The grant objectives broadly stated were to 1) develop educational curriculum to train technicians in wind and ethanol renewable energy, 2) determine the value of cattails as a biomass crop for production of cellulosic ethanol, and 3) research in Optimization of Bio-Fuels in Internal Combustion Engines. The funding for the MN Center for Renewable Energy was spent on specific projects related to the work of the Center.

  16. ClearFuels Technology Inc | Open Energy Information

    Open Energy Info (EERE)

    ClearFuels Technology Inc Jump to: navigation, search Name: ClearFuels Technology Inc Place: Aiea, Hawaii Zip: 96701 Sector: Biofuels Product: Hawaii-based biofuels processing...

  17. Pathways for Algal Biofuels | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pathways for Algal Biofuels Pathways for Algal Biofuels This is a presentation from the November 27, 2012, Sustainable Alternative Fuels Cost Workshop given by Daniel B. Fishman, of the Biomass Program. PDF icon fishman_caafi_workshop.pdf More Documents & Publications Bioenergy Technologies Office Conversion R&D Pathway: Whole Algae Hydrothermal Liquefaction Technology Pathway Selection Effort Whole Algae Hydrothermal Liquefaction

  18. University of Illinois at Urbana-Champaign's GATE Center for Advanced Automotive Bio-Fuel Combustion Engines

    Broader source: Energy.gov [DOE]

    2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

  19. WHEB Biofuels | Open Energy Information

    Open Energy Info (EERE)

    WHEB Biofuels Jump to: navigation, search Name: WHEB Biofuels Place: London, United Kingdom Sector: Biofuels Product: Ethanol producer that also invests in emerging biofuels...

  20. West Biofuels | Open Energy Information

    Open Energy Info (EERE)

    Biofuels Jump to: navigation, search Name: West Biofuels Place: California Sector: Biofuels Product: West Biofuels LLC is a 2007 start-up company based in California with funding...

  1. LC Biofuels | Open Energy Information

    Open Energy Info (EERE)

    LC Biofuels Jump to: navigation, search Name: LC Biofuels Place: Richmond, California Sector: Biofuels Product: Biofuels producer that owns and operatres a 1.3m facility in...

  2. Rusni Biofuels | Open Energy Information

    Open Energy Info (EERE)

    Biofuels Jump to: navigation, search Name: Rusni Biofuels Place: Andhra Pradesh, India Sector: Biofuels Product: Rusni Biofuels India (P) Ltd.,we are specialized in sales of...

  3. Border Biofuels | Open Energy Information

    Open Energy Info (EERE)

    Border Biofuels Jump to: navigation, search Name: Border Biofuels Place: Melrose, United Kingdom Zip: TD6 OSG Sector: Biofuels Product: Biofuels business which went into...

  4. Northeast Biofuels | Open Energy Information

    Open Energy Info (EERE)

    Biofuels Jump to: navigation, search Name: Northeast Biofuels Place: United Kingdom Sector: Biofuels Product: Northeast biofuels is a cluster of companies and organisations...

  5. ECCO Biofuels | Open Energy Information

    Open Energy Info (EERE)

    ECCO Biofuels Jump to: navigation, search Name: ECCO Biofuels Place: Texas Sector: Biofuels Product: ECCO Biofuels manufactures biodiesel production facilities as well as produces...

  6. Abundant Biofuels | Open Energy Information

    Open Energy Info (EERE)

    Biofuels Jump to: navigation, search Name: Abundant Biofuels Place: Monterey, California Sector: Biofuels Product: Abundant Biofuels plans to develop biodiesel feedstock...

  7. DOE Hydrogen, Fuel Cells and Infrastructure Technologies Program Integrated Hydrogen Production, Purification and Compression System

    SciTech Connect (OSTI)

    Tamhankar, Satish; Gulamhusein, Ali; Boyd, Tony; DaCosta, David; Golben, Mark

    2011-06-30

    The project was started in April 2005 with the objective to meet the DOE target of delivered hydrogen of <$1.50/gge, which was later revised by DOE to $2-$3/gge range for hydrogen to be competitive with gasoline as a fuel for vehicles. For small, on-site hydrogen plants being evaluated at the time for refueling stations (the 'forecourt'), it was determined that capital cost is the main contributor to the high cost of delivered hydrogen. The concept of this project was to reduce the cost by combining unit operations for the entire generation, purification, and compression system (refer to Figure 1). To accomplish this, the Fluid Bed Membrane Reactor (FBMR) developed by MRT was used. The FBMR has hydrogen selective, palladium-alloy membrane modules immersed in the reformer vessel, thereby directly producing high purity hydrogen in a single step. The continuous removal of pure hydrogen from the reformer pushes the equilibrium 'forward', thereby maximizing the productivity with an associated reduction in the cost of product hydrogen. Additional gains were envisaged by the integration of the novel Metal Hydride Hydrogen Compressor (MHC) developed by Ergenics, which compresses hydrogen from 0.5 bar (7 psia) to 350 bar (5,076 psia) or higher in a single unit using thermal energy. Excess energy from the reformer provides up to 25% of the power used for driving the hydride compressor so that system integration improved efficiency. Hydrogen from the membrane reformer is of very high, fuel cell vehicle (FCV) quality (purity over 99.99%), eliminating the need for a separate purification step. The hydride compressor maintains hydrogen purity because it does not have dynamic seals or lubricating oil. The project team set out to integrate the membrane reformer developed by MRT and the hydride compression system developed by Ergenics in a single package. This was expected to result in lower cost and higher efficiency compared to conventional hydrogen production technologies. The overall objective was to develop an integrated system to directly produce high pressure, high-purity hydrogen from a single unit, which can meet the DOE cost H2 cost target of $2 - $3/gge when mass produced. The project was divided into two phases with the following tasks and corresponding milestones, targets and decision points. Phase 1 - Task 1 - Verify feasibility of the concept, perform a detailed techno-economic analysis, and develop a test plan; and Task 2: Build and experimentally test a Proof of Concept (POC) integrated membrane reformer/metal hydride compressor system. Phase 2 - Task 3: Build an Advanced Prototype (AP) system with modifications based on POC learning and demonstrate at a commercial site; and Task 4: Complete final product design for mass manufacturing units capable of achieving DOE 2010 H2 cost and performance targets.

  8. Biofuels Impact on DPF Durability | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon pm040_lance_2012_o.pdf More Documents & Publications Vehicle Technologies Office Merit Review 2014: Biofuel Impacts on Aftertreatment Devices (Agreement ID:26463) Project ID:18519 Vehicle Technologies Office Merit Review 2015: Biofuel Impacts on Aftertreatment Devices Biofuels Impact on DPF Durability

  9. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Biofuels Program Impact Studies The Oregon Department of Energy (ODOE) must conduct periodic impact studies related to the biofuels industry in the state. These studies should evaluate such criteria as: jobs created; current and projected feedstock availability; amount of biofuels blends produced and consumed in the state; cost comparison of biofuels blends and petroleum fuel; environmental impacts; and the extent to which Oregon producers import biofuels or biofuels feedstocks from outside the

  10. IPHE Infrastructure Workshop Proceedings

    SciTech Connect (OSTI)

    2010-02-01

    This proceedings contains information from the IPHE Infrastructure Workshop, a two-day interactive workshop held on February 25-26, 2010, to explore the market implementation needs for hydrogen fueling station development.

  11. Biofuels From Poplar Tien, Ming [The Pennsylvania State University...

    Office of Scientific and Technical Information (OSTI)

    peptide poplar, lignin, biofuels, digestibility, peptide The limited supply of fossil fuels and the associated environmental issues associated with their utilization has...

  12. GM's Perspective on Advanced Biofuels | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    GM's Perspective on Advanced Biofuels More Documents & Publications New Directions in Engines and Fuels The Drive for Energy Diversity and Sustainability: The Impact on...

  13. Current Challenges in Commercially Producing Biofuels from Lignocellul...

    Office of Scientific and Technical Information (OSTI)

    Biofuels that are produced from biobased materials are a good alternative to petroleum based fuels. They offer several benefits to society and the environment. Producing second ...

  14. A model for improving microbial biofuel production using a synthetic...

    Office of Scientific and Technical Information (OSTI)

    independently of native regulation, and alternative control architectures can be compared. ... Although microbes can be engineered to produce biofuels, the fuels are often toxic to cell ...

  15. Current Challenges in Commercially Producing Biofuels from Lignocellulosic

    Office of Scientific and Technical Information (OSTI)

    Biomass (Journal Article) | SciTech Connect Current Challenges in Commercially Producing Biofuels from Lignocellulosic Biomass Citation Details In-Document Search Title: Current Challenges in Commercially Producing Biofuels from Lignocellulosic Biomass Biofuels that are produced from biobased materials are a good alternative to petroleum based fuels. They offer several benefits to society and the environment. Producing second generation biofuels is even more challenging than producing first

  16. Partnering with Industry to Develop Advanced Biofuels | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Partnering with Industry to Develop Advanced Biofuels Partnering with Industry to Develop Advanced Biofuels Breakout Session IA-Conversion Technologies I: Industrial Perspectives on Pathways to Advanced Biofuels Partnering with Industry to Develop Advanced Biofuels David C. Carroll, President and Chief Executive Officer, Gas Technology Institute PDF icon carroll_biomass_2014.pdf More Documents & Publications Commercialization of IH2® Biomass Direct-to-Hydrocarbon Fuel Technology

  17. Integrated Biorefineries:Biofuels, Biopower, and Bioproducts | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Integrated Biorefineries:Biofuels, Biopower, and Bioproducts Integrated Biorefineries:Biofuels, Biopower, and Bioproducts The U.S. goal to produce 21 billion gallons of advanced biofuels by 2022 creates an urgent need to bridge the gap between promising research and commercial large-scale production of advanced biofuels. PDF icon ibr_portfolio_overview.pdf More Documents & Publications Biochemical Conversion: Using Hydrolysis, Fermentation, and Catalysis to Make Fuels and

  18. Strategy for the Integration of Hydrogen as a Vehicle Fuel into the Existing Natural Gas Vehicle Fueling Infrastructure of the Interstate Clean Transportation Corridor Project: 22 April 2004--31 August 2005

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy National Renewable Energy Laboratory Innovation for Our Energy Future Subcontract Report Strategy for the Integration of NREL/SR-540-38720 Hydrogen as a Vehicle Fuel into September 2005 the Existing Natural Gas Vehicle Fueling Infrastructure of the Interstate Clean Transportation Corridor Project April 22, 2004 - August 31, 2005 Gladstein, Neandross & Associates Santa Monica, California

  19. Vehicle Technologies Office Merit Review 2015: Developing Kinetic Mechanisms for New Fuels and Biofuels, Including CFD Modeling

    Broader source: Energy.gov [DOE]

    Presentation given by Lawrence Livermore National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and vehicle technologies office annual merit review and peer evaluation meeting about...

  20. Benefits of Biofuel Production and Use in Iowa

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Iowa is a national leader in the development of advanced biofuels. The U.S. Department of Energy (DOE)-supported POET-DSM biorefinery in Emmetsburg leverages the state's extensive biomass resources and existing bioenergy infrastructure to produce advanced biofuels. Iowa Iowa's Integrated Biorefinery * Advanced biofuels produced from excess post-harvest waste help maintain soil health, create another income stream for rural communities, and improve energy security for Iowa. Some of the richest

  1. Benefits of Biofuel Production and Use in Kansas

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Kansas is a national leader in the development of advanced biofuels. The U.S. Department of Energy (DOE)-supported Abengoa biorefinery in Hugoton leverages the state's extensive biomass resources and existing bioenergy infrastructure to produce advanced biofuels. Kansas Kansas' Integrated Biorefinery Advanced biofuels produced from excess post-harvest waste help maintain soil health, create another income stream for rural communities, and improve energy security for Kansas. Robust agricultural

  2. Workshop on Conversion Technologies for Advanced Biofuels - Bio-Oils |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Bio-Oils Workshop on Conversion Technologies for Advanced Biofuels - Bio-Oils Introduction presentation report-out at the CTAB webinar on bio-oils. PDF icon ctab_webinar_bio_oils_intro.pdf More Documents & Publications Conversion Technologies for Advanced Biofuels - Bio-Oil Production Conversion Technologies for Advanced Biofuels - Bio-Oil Upgrading Challenge # 2 Logistics and Compatibility with Existing Infrastructure Throughout Supply Chain

  3. Biofuels: A Solution for Climate Change

    SciTech Connect (OSTI)

    Woodward, S.

    1999-10-04

    Our lives are linked to weather and climate, and to energy use. Since the late 1970s, the U.S. Department of Energy (DOE) has invested in research and technology related to global climate change. DOE's Office Fuels Development (OFD) manages the National Biofuels Program and is the lead technical advisor on the development of biofuels technologies in the United States. Together with industry and other stakeholders, the program seeks to establish a major biofuels industry. Its goals are to develop and commercialize technologies for producing sustainable, domestic, environmentally beneficial, and economically viable fuels from dedicated biomass feedstocks.

  4. Dieselgreen Fuels | Open Energy Information

    Open Energy Info (EERE)

    Dieselgreen Fuels Jump to: navigation, search Logo: DieselGreen Fuels Name: DieselGreen Fuels Place: Austin, Texas Region: Texas Area Sector: Biofuels Product: Grease collection...

  5. California: Agricultural Residues Produce Renewable Fuel | Department...

    Broader source: Energy.gov (indexed) [DOE]

    technology is expected to produce biofuel that reduces greenhouse gas emissions by 80% compared to fossil fuel and help make California a leader in advanced biofuel production. ...

  6. Algenol Announces Commercial Algal Ethanol Fuel Partnership ...

    Energy Savers [EERE]

    This funding allowed Algenol to successfully scale up its production of algal biofuel from ... Ethanol Fuel Partnership Making Algal Biofuel Production More Efficient, Less Expensive ...

  7. Energy Transmission and Infrastructure

    SciTech Connect (OSTI)

    Mathison, Jane

    2012-12-31

    The objective of Energy Transmission and Infrastructure Northern Ohio (OH) was to lay the conceptual and analytical foundation for an energy economy in northern Ohio that will: improve the efficiency with which energy is used in the residential, commercial, industrial, agricultural, and transportation sectors for Oberlin, Ohio as a district-wide model for Congressional District OH-09; identify the potential to deploy wind and solar technologies and the most effective configuration for the regional energy system (i.e., the ratio of distributed or centralized power generation); analyze the potential within the district to utilize farm wastes to produce biofuels; enhance long-term energy security by identifying ways to deploy local resources and building Ohio-based enterprises; identify the policy, regulatory, and financial barriers impeding development of a new energy system; and improve energy infrastructure within Congressional District OH-09. This objective of laying the foundation for a renewable energy system in Ohio was achieved through four primary areas of activity: 1. district-wide energy infrastructure assessments and alternative-energy transmission studies; 2. energy infrastructure improvement projects undertaken by American Municipal Power (AMP) affiliates in the northern Ohio communities of Elmore, Oak Harbor, and Wellington; 3. Oberlin, OH-area energy assessment initiatives; and 4. a district-wide conference held in September 2011 to disseminate year-one findings. The grant supported 17 research studies by leading energy, policy, and financial specialists, including studies on: current energy use in the district and the Oberlin area; regional potential for energy generation from renewable sources such as solar power, wind, and farm-waste; energy and transportation strategies for transitioning the City of Oberlin entirely to renewable resources and considering pedestrians, bicyclists, and public transportation as well as drivers in developing transportation policies; energy audits and efficiency studies for Oberlin-area businesses and Oberlin College; identification of barriers to residential energy efficiency and development of programming to remove these barriers; mapping of the solar-photovoltaic and wind-energy supply chains in northwest Ohio; and opportunities for vehicle sharing and collaboration among the ten organizations in Lorain County from the private, government, non-profit, and educational sectors. With non-grant funds, organizations have begun or completed projects that drew on the findings of the studies, including: creation of a residential energy-efficiency program for the Oberlin community; installation of energy-efficient lighting in Oberlin College facilities; and development by the City of Oberlin and Oberlin College of a 2.27 megawatt solar photovoltaic facility that is expected to produce 3,000 megawatt-hours of renewable energy annually, 12% of the Colleges yearly power needs. Implementation of these and other projects is evidence of the economic feasibility and technical effectiveness of grant-supported studies, and additional projects are expected to advance to implementation in the coming years. The public has benefited through improved energydelivery systems and reduced energy use for street lighting in Elmore, Oak Harbor, and Wellington; new opportunities for assistance and incentives for residential energy efficiency in the Oberlin community; new opportunities for financial and energy savings through vehicle collaboration within Lorain County; and decreased reliance on fossil fuels and expanded production of renewable energy in the region. The dissemination conference and the summary report developed for the conference also benefited the public, but making the findings and recommendations of the regional studies broadly available to elected officials, city managers, educators, representatives of the private sector, and the general public.

  8. Partnering with Industry to Advance Biofuels and Bioproducts (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-12-01

    Fact sheet describing NREL's Integrated Biorefinery Research Facility, a biochemical pilot plant and partnership facility containing equipment and lab space for pretreatement, enzymatic hydrolysis, fermentation, compositional analysis, and downstream processing. For more than 30 years, the U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) has been at the leading edge of research and technology advancements to develop renewable fuels and bioproducts. NREL works to develop cost-competitive alternatives to conventional transportation fuels and value-added biobased chemicals that can be used to manufacture clothing, plastics, lubricants, and other products. NREL is developing technologies and processes to produce a range of sustainable, energy-dense advanced biofuels that are compatible with our existing transportation fuel infrastructure. As part of that effort, NREL's National Bioenergy Center has entered into more than 90 collaborations in the past five years with companies ranging in size from start-ups to those that appear on Fortune magazine's Fortune 100 list. The new Integrated Biorefinery Research Facility (IBRF) showcases NREL's commitment to collaboration and to meeting the nation's biofuels and bioproducts development and deployment goals. Designed to speed the growth of the biofuels and bioproducts industries, the IBRF is a unique $33.5 million pilot facility capable of supporting a variety of projects. The IBRF is available to industry partners who work with NREL through cooperative research and development, technical, and analytical service agreements. With 27,000 ft2 of high bay space, the IBRF provides industry partners with the opportunity to operate, test, and develop their own biorefining technology and equipment.

  9. Biofuels: Project summaries

    SciTech Connect (OSTI)

    Not Available

    1994-07-01

    The US DOE, through the Biofuels Systems Division (BSD) is addressing the issues surrounding US vulnerability to petroleum supply. The BSD goal is to develop technologies that are competitive with fossil fuels, in both cost and environmental performance, by the end of the decade. This document contains summaries of ongoing research sponsored by the DOE BSD. A summary sheet is presented for each project funded or in existence during FY 1993. Each summary sheet contains and account of project funding, objectives, accomplishments and current status, and significant publications.

  10. Biofuels Report Final

    Broader source: Energy.gov [DOE]

    Liquid biofuels produced from lignocellulosic biomass can significantly reduce our dependence on foreign oil, create new jobs, improve rural economies, reduce greenhouse gas emissions, and improve national security. There has been deep bipartisan support for measures such as the Vehicle and Fuel Choices for American Security Act. In his 2006 State of the Union address, the President noted that “With America on the verge of breakthroughs in advanced energy technologies the best way to break the addiction to foreign oil is through new technologies.”

  11. Sandia Energy Biofuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    nhanced-sandia-sintef-collaborationfeed 0 Lignin-Feasting Microbe Holds Promise for Biofuels http:energy.sandia.govlignin-feasting-microbe-holds-promise-for-biofuels http:...

  12. Market Drivers for Biofuels

    Broader source: Energy.gov [DOE]

    This presentation, entitled "Market Drivers for Biofuels," was given at the Third Annual MSW to Biofuels Summit in February, 2013, by Brian Duff.

  13. Fuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fuels - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy

  14. FUNGIBLE AND COMPATIBLE BIOFUELS: LITERATURE SEARCH, SUMMARY, AND

    Office of Scientific and Technical Information (OSTI)

    RECOMMENDATIONS (Technical Report) | SciTech Connect Technical Report: FUNGIBLE AND COMPATIBLE BIOFUELS: LITERATURE SEARCH, SUMMARY, AND RECOMMENDATIONS Citation Details In-Document Search Title: FUNGIBLE AND COMPATIBLE BIOFUELS: LITERATURE SEARCH, SUMMARY, AND RECOMMENDATIONS The purpose of the study described in this report is to summarize the various barriers to more widespread distribution of bio-fuels through our common carrier fuel distribution system, which includes pipelines, barges

  15. Global Economic Effects of USA Biofuel Policy and the Potential Contribution from Advanced Biofuels

    SciTech Connect (OSTI)

    Gbadebo Oladosu; Keith Kline; Paul Leiby; Rocio Uria-Martinez; Maggie Davis; Mark Downing; Laurence Eaton

    2012-01-01

    This study evaluates the global economic effects of the USA renewable fuel standards (RFS2), and the potential contribution from advanced biofuels. Our simulation results imply that these mandates lead to an increase of 0.21 percent in the global gross domestic product (GDP) in 2022, including an increase of 0.8 percent in the USA and 0.02 percent in the rest of the world (ROW); relative to our baseline, no-RFS scenario. The incremental contributions to GDP from advanced biofuels in 2022 are estimated at 0.41 percent and 0.04 percent in the USA and ROW, respectively. Although production costs of advanced biofuels are higher than for conventional biofuels in our model, their economic benefits result from reductions in oil use, and their smaller impacts on food markets compared with conventional biofuels. Thus, the USA advanced biofuels targets are expected to have positive economic benefits.

  16. Analysis of advanced biofuels.

    SciTech Connect (OSTI)

    Dec, John E.; Taatjes, Craig A.; Welz, Oliver; Yang, Yi

    2010-09-01

    Long chain alcohols possess major advantages over ethanol as bio-components for gasoline, including higher energy content, better engine compatibility, and less water solubility. Rapid developments in biofuel technology have made it possible to produce C{sub 4}-C{sub 5} alcohols efficiently. These higher alcohols could significantly expand the biofuel content and potentially replace ethanol in future gasoline mixtures. This study characterizes some fundamental properties of a C{sub 5} alcohol, isopentanol, as a fuel for homogeneous-charge compression-ignition (HCCI) engines. Wide ranges of engine speed, intake temperature, intake pressure, and equivalence ratio are investigated. The elementary autoignition reactions of isopentanol is investigated by analyzing product formation from laser-photolytic Cl-initiated isopentanol oxidation. Carbon-carbon bond-scission reactions in the low-temperature oxidation chemistry may provide an explanation for the intermediate-temperature heat release observed in the engine experiments. Overall, the results indicate that isopentanol has a good potential as a HCCI fuel, either in neat form or in blend with gasoline.

  17. Transportation Infrastructure Requirement Resources | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Infrastructure Requirement Resources Transportation Infrastructure Requirement Resources Federal agencies and certain state governments are required to acquire alternative fuel vehicles as part of the Energy Policy Act of 1992, though they are also entitled to choose a petroleum reduction path as an alternative to the mandate. Find infrastructure requirement resources below. DOE Resource Alternative Fuels Data Center: Natural Gas Fueling Infrastructure Development. Other Resource National

  18. Biofuel Production Initiative at Claflin University Final Report

    SciTech Connect (OSTI)

    Chowdhury, Kamal

    2011-07-20

    For US transportation fuel independence or reduced dependence on foreign oil, the Federal Government has mandated that the country produce 36 billion gallons (bg) of renewable transportation fuel per year for its transportation fuel supply by 2022. This can be achieved only if development of efficient technology for second generation biofuel from ligno-cellulosic sources is feasible. To be successful in this area, development of a widely available, renewable, cost-effective ligno-cellulosic biomass feedstock that can be easily and efficiently converted biochemically by bacteria or other fast-growing organisms is required. Moreover, if the biofuel type is butanol, then the existing infrastructure to deliver fuel to the customer can be used without additional costs and retrofits. The Claflin Biofuel Initiative project is focused on helping the US meet the above-mentioned targets. With support from this grant, Claflin University (CU) scientists have created over 50 new strains of microorganisms that are producing butanol from complex carbohydrates and cellulosic compounds. Laboratory analysis shows that a number of these strains are producing higher percentages of butanol than other methods currently in use. All of these recombinant bacterial strains are producing relatively high concentrations of acetone and numerous other byproducts as well. Therefore, we are carrying out intense mutations in the selected strains to reduce undesirable byproducts and increase the desired butanol production to further maximize the yield of butanol. We are testing the proof of concept of producing pre-industrial large scale biobutanol production by utilizing modifications of currently commercially available fermentation technology and instrumentation. We have already developed an initial process flow diagram (PFD) and selected a site for a biobutanol pilot scale facility in Orangeburg, SC. With the recent success in engineering new strains of various biofuel producing bacteria at CU, it will soon be possible to provide other technical information for the development of process flow diagrams (PFDs) and piping and instrumentation diagrams (P&IDs). This information can be used for the equipment layout and general arrangement drawings for the proposed process and eventual plant. An efficient bio-butanol pilot plant to convert ligno-cellulosic biomass feedstock from bagasse and wood chips will create significant number of green jobs for the Orangeburg, SC community that will be environmentally-friendly and generate much-needed income for farmers in the area.

  19. Water Infrastructure Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Infrastructure Security - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced

  20. Godavari Biofuel | Open Energy Information

    Open Energy Info (EERE)

    Godavari Biofuel Jump to: navigation, search Name: Godavari Biofuel Place: Maharashtra, India Product: Holds license to produce ethanol. References: Godavari Biofuel1 This...

  1. Biofuels International | Open Energy Information

    Open Energy Info (EERE)

    International Jump to: navigation, search Name: Biofuels International Place: Indiana Sector: Biofuels Product: Pittsburgh based biofuels project developer presently developing a...

  2. Cobalt Biofuels | Open Energy Information

    Open Energy Info (EERE)

    Cobalt Biofuels Jump to: navigation, search Logo: Cobalt Biofuels Name: Cobalt Biofuels Address: 500 Clyde Avenue Place: Mountain View, California Zip: 94043 Region: Bay Area...

  3. SG Biofuels | Open Energy Information

    Open Energy Info (EERE)

    Biofuels Jump to: navigation, search Name: SG Biofuels Address: 132. N. El Camino Real Place: Encinitas, California Zip: 92024 Region: Southern CA Area Sector: Biofuels Product:...

  4. Algenol Biofuels | Open Energy Information

    Open Energy Info (EERE)

    Algenol Biofuels Jump to: navigation, search Name: Algenol Biofuels Place: Bonita Springs, Florida Zip: 34135 Sector: Biofuels, Carbon Product: Algenol is developing a process for...

  5. Solix Biofuels | Open Energy Information

    Open Energy Info (EERE)

    Solix Biofuels Jump to: navigation, search Logo: Solix Biofuels Name: Solix Biofuels Address: 430 B. North College Ave Place: Fort Collins, Colorado Zip: 80524 Region: Rockies Area...

  6. United Biofuels | Open Energy Information

    Open Energy Info (EERE)

    Biofuels Jump to: navigation, search Name: United Biofuels Place: York, Pennsylvania Product: Waste and animal fats to biofuel producer, switched to animal fats from soy in fall of...

  7. Shirke Biofuels | Open Energy Information

    Open Energy Info (EERE)

    Shirke Biofuels Jump to: navigation, search Name: Shirke Biofuels Place: India Product: Indian biodiesel producer. References: Shirke Biofuels1 This article is a stub. You can...

  8. Bently Biofuels | Open Energy Information

    Open Energy Info (EERE)

    Bently Biofuels Jump to: navigation, search Name: Bently Biofuels Place: Minden, Nevada Zip: 89423 Product: Biodiesel producer in Nevada. References: Bently Biofuels1 This...

  9. Experimental Investigation of Spark-Ignited Combustion with High-Octane Biofuels and EGR. 2. Fuel and EGR Effects on Knock-Limited Load and Speed

    SciTech Connect (OSTI)

    Splitter, Derek A; Szybist, James P

    2013-01-01

    The present study experimentally investigates spark-ignited combustion with 87 AKI E0 gasoline in its neat form and in midlevel alcohol gasoline blends with 24% vol/vol isobutanol gasoline (IB24) and 30% vol/vol ethanol gasoline (E30). A single-cylinder research engine is used with an 11.85:1 compression ratio, hydraulically actuated valves, laboratory intake air, and was capable of external exhaust gas recirculation (EGR). Experiments were conducted with all fuels to full-load conditions with = 1, using both 0% and 15% external-cooled EGR. Higher octane number biofuel blends exhibited increased stoichiometric torque capability at this compression ratio, where the unique properties of ethanol enabled a doubling of the stoichiometric torque capability with E30 as compared to that of 87AKI, up to 20 bar IMEPg (indicating mean effective pressure gross) at = 1. The results demonstrate that for all fuels, EGR is a key enabler for increasing engine efficiency but is less useful for knock mitigation with E30 than for 87AKI gasoline or IB24. Under knocking conditions, 15% EGR is found to offer 1 CA of CA50 timing advance with E30, whereas up to 5 CA of CA50 advance is possible with knock-limited 87AKI gasoline. Compared to 87AKI, both E30 and IB24 are found to have reduced adiabatic flame temperature and shorter combustion durations, which reduce knocking propensity beyond that indicated by the octane number. However, E30+0% EGR is found to exhibit the better antiknock properties than either 87AKI+15% EGR or IB24+15% EGR, expanding the knock limited operating range and engine stoichiometric torque capability at high compression ratio. Furthermore, the fuel sensitivity (S) of E30 was attributed to reduced speed sensitivity of E30, expanding the low-speed stoichiometric torque capability at high compression ratio. The results illustrate that intermediate alcohol gasoline blends exhibit exceptional antiknock properties and performance beyond that indicated by the octane number tests, particularly E30.

  10. Biomass and Biofuels Technologies - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technology Marketing Summaries Site Map Printable Version Share this resource About Search Categories (15) Advanced Materials Biomass and Biofuels Marketing Summaries (158) Success Stories (3) Building Energy Efficiency Electricity Transmission Energy Analysis Energy Storage Geothermal Hydrogen and Fuel Cell Hydropower, Wave and Tidal Industrial Technologies Solar Photovoltaic Solar Thermal Startup America Vehicles and Fuels Wind Energy Partners (27) Visual Patent Search Success Stories Browse

  11. Lessons and Challenges for Early Hydrogen Refueling Infrastructure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Infrastructure Presented at Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen Conference, April 2-3, 2008, Sacramento, California PDF icon...

  12. Biofuels Task Force.pdf

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    TASK FORCE ON BIOFUELS INFRASTRUCTURE N A T I O N A L C O M M I S S I O N O N E N E R G Y P O L I C Y ' S Disclaimer This report is a product of a Task Force with participants of diverse expertise and affi liations, addressing many complex and contentious topics. It is inevitable that arriving at a consensus document in these circumstances entailed compromises. Accordingly, it should not be as- sumed that every member is entirely satisfi ed with every formulation in this document, or even that

  13. Bio Fuel Systems BFS | Open Energy Information

    Open Energy Info (EERE)

    Fuel Systems BFS Jump to: navigation, search Name: Bio Fuel Systems (BFS) Place: Alicante, Spain Sector: Biomass Product: Bio Fuel Systems focuses on the development of biofuel...

  14. Biofuels National Strategic Benefits Analysis

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biofuels National Strategic Benefits Analysis March 24, 2015 (Draft 3/8/2015) Strategic Analysis and Sustainability Principal Investigator: Paul Leiby (ORNL) Co-Investigators: Rocio Uria-Martinez (ORNL)and Maxwell Brown (Colo. Sch. Of Mines) This presentation does not contain any proprietary, confidential, or otherwise restricted information *2 Managed by UT-Battelle for the U.S. Department of Energy *Presentation_name Goal Statement * To assess, quantify and explain potential fuel market

  15. Genetic resources for advanced biofuel production described with the Gene Ontology

    SciTech Connect (OSTI)

    Torto-Alalibo, Trudy; Purwantini, Endang; Lomax, Jane; Setubal, Joao C.; Mukhopadhyay, Biswarup; Tyler, Brett M.

    2014-10-10

    Dramatic increases in research in the area of microbial biofuel production coupled with high-throughput data generation on bioenergy-related microbes has led to a deluge of information in the scientific literature and in databases. Consolidating this information and making it easily accessible requires a unified vocabulary.The Gene Ontology (GO) fulfills that requirement, as it is a well-developed structured vocabulary that describes the activities and locations of gene products in a consistent manner across all kingdoms of life. The Microbial ENergy processes Gene Ontology (http://www.mengo.biochem.vt.edu) project is extending the GO to include new terms to describe microbial processes of interest to bioenergy production. Our effort has added over 600 bioenergy related terms to the Gene Ontology. These terms will aid in the comprehensive annotation of gene products from diverse energy-related microbial genomes. An area of microbial energy research that has received a lot of attention is microbial production of advanced biofuels. These include alcohols such as butanol, isopropanol, isobutanol, and fuels derived from fatty acids, isoprenoids, and polyhydroxyalkanoates. These fuels are superior to first generation biofuels (ethanol and biodiesel esterified from vegetable oil or animal fat), can be generated from non-food feedstock sources, can be used as supplements or substitutes for gasoline, diesel and jet fuels, and can be stored and distributed using existing infrastructure. We review the roles of genes associated with synthesis of advanced biofuels, and at the same time introduce the use of the GO to describe the functions of these genes in a standardized way.

  16. Genetic resources for advanced biofuel production described with the Gene Ontology

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Torto-Alalibo, Trudy; Purwantini, Endang; Lomax, Jane; Setubal, Joao C.; Mukhopadhyay, Biswarup; Tyler, Brett M.

    2014-10-10

    Dramatic increases in research in the area of microbial biofuel production coupled with high-throughput data generation on bioenergy-related microbes has led to a deluge of information in the scientific literature and in databases. Consolidating this information and making it easily accessible requires a unified vocabulary.The Gene Ontology (GO) fulfills that requirement, as it is a well-developed structured vocabulary that describes the activities and locations of gene products in a consistent manner across all kingdoms of life. The Microbial ENergy processes Gene Ontology (http://www.mengo.biochem.vt.edu) project is extending the GO to include new terms to describe microbial processes of interest to bioenergymore » production. Our effort has added over 600 bioenergy related terms to the Gene Ontology. These terms will aid in the comprehensive annotation of gene products from diverse energy-related microbial genomes. An area of microbial energy research that has received a lot of attention is microbial production of advanced biofuels. These include alcohols such as butanol, isopropanol, isobutanol, and fuels derived from fatty acids, isoprenoids, and polyhydroxyalkanoates. These fuels are superior to first generation biofuels (ethanol and biodiesel esterified from vegetable oil or animal fat), can be generated from non-food feedstock sources, can be used as supplements or substitutes for gasoline, diesel and jet fuels, and can be stored and distributed using existing infrastructure. We review the roles of genes associated with synthesis of advanced biofuels, and at the same time introduce the use of the GO to describe the functions of these genes in a standardized way.« less

  17. Alternative Transportation Technologies: Hydrogen, Biofuels,...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transportation Technologies: Hydrogen, Biofuels, Advanced Efficiency, and Plug-in Hybrid Electric Vehicles Alternative Transportation Technologies: Hydrogen, Biofuels, Advanced ...

  18. President Obama Announces Major Initiative to Spur Biofuels Industry and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Enhance America's Energy Security | Department of Energy Major Initiative to Spur Biofuels Industry and Enhance America's Energy Security President Obama Announces Major Initiative to Spur Biofuels Industry and Enhance America's Energy Security August 16, 2011 - 11:45am Addthis USDA, Department of Energy and Navy Partner to Advance Biofuels to Fuel Military and Commercial Transportation, Displace Need for Foreign Oil, and Strengthen Rural America WASHINGTON, Aug. 16, 2011 - President Obama

  19. National Advanced Biofuels Consortium Overview | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Biofuels Consortium Overview National Advanced Biofuels Consortium Overview This PDF gives an overview of the National Advanced Biofuels Consortium (NABC). It shows the prior focus of NABC as well as the future focus, and it discusses objectives, funding, research, and the organizational structure of the NABC. PDF icon nabc_overview_presentation.pdf More Documents & Publications NABC Webinar Thermochemical Conversion Proceeses to Aviation Fuels

  20. Live webcast on groundbreaking results of Algal Biofuels Consortium, June

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    11 Live webcast on Algal Biofuels Consortium Live webcast on groundbreaking results of Algal Biofuels Consortium, June 11 Jose A. Olivares will present an overview of the technologies and processes that are needed to widely produce algae-based liquid transportation fuels. June 10, 2014 Jose A. Olivares Jose A. Olivares Contact Nancy Ambrosiano Communications Office (505) 667-0471 Email The Energy Department will present a live webcast titled "Algal Biofuels Consortium Releases

  1. Los Alamos technology strikes a chord with algal biofuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technology strikes chord with algal biofuels Los Alamos technology strikes a chord with algal biofuels Sound-wave technology is helping Solix Biofuels, Inc. optimize production of algae-based fuel in a cost-effective, scalable, and environmentally benign fashion. September 2, 2009 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy

  2. The Science Behind Cheaper Biofuels | Department of Energy

    Energy Savers [EERE]

    The Science Behind Cheaper Biofuels The Science Behind Cheaper Biofuels August 15, 2011 - 11:50am Addthis Brookhaven National Laboratory is modeling the metabolic processes in rapeseed plants to optimize production of plant oils for biofuels. Shown above are developing embryos extracted from a growing rapeseed plant. The embryos accumulate seed oils which represent the most energy-dense form of biologically stored sunlight, and have great potential as renewable resources for fuel and industrial

  3. 6 New Things Happening with Biofuels | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    6 New Things Happening with Biofuels 6 New Things Happening with Biofuels June 19, 2015 - 9:39am Addthis Pat Adams Pat Adams Digital Content Specialist, Office of Public Affairs Over the past few years, scientists across the country have been revolutionizing the future of fuel. Biofuels researchers from the Department Energy's National Laboratories and its partners have achieved some significant milestones, and there's a lot more in the works. Check out what's new: 1. They're getting a lot

  4. Infrastructure Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering ...

  5. Algae to Biofuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Algae to Biofuels Algae to Biofuels What if you could power your life using pond scum? Algae, plant-like aquatic microorganisms, produce oil similar to petroleum and can be grown...

  6. Pearson Fuels | Open Energy Information

    Open Energy Info (EERE)

    San Diego, California Zip: 92105 Region: Southern CA Area Sector: Biofuels Product: Alternative fuel distributor provides ethanol-based fuels Website: www.pearsonfuels.com...

  7. Algal Biofuels Strategy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Algal Biofuels Strategy Report on Workshop Results and Recent Work Roxanne Dempsey Technology Manager 2 Algal Biofuels Strategy Session Agenda-Report on Workshop Results and Recent Work * Outcomes of the two DOE-hosted algae stakeholder workshops and the Algae Program's plans for future research. * Results of the National Alliance for Advanced Biofuels and Bioproducts consortium * Testbed projects and industrial partner perspectives * A panel discussion on the impacts of biofuel-enabling

  8. Hydrogen and Infrastructure Costs | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Infrastructure Costs Hydrogen and Infrastructure Costs Presentation by Fred Joseck, U.S. Department of Energy Fuel Cell Technologies Program, at the Hydrogen Infrastructure Market Readiness Workshop, February 17, 2011, in Washington, DC. PDF icon wkshp_market_readiness_joseck.pdf More Documents & Publications Overview of Hydrogen and Fuel Cells: National Academy of Sciences March 2011 H2A Delivery Models and Results Analysis of a Cluster Strategy for Near Term Hydrogen Infrastructure Rollout

  9. Pathways to Commercial Success: Technologies and Products Supported by the Hydrogen, Fuel Cells and Infrastructure Technologies Program

    Fuel Cell Technologies Publication and Product Library (EERE)

    This report documents the results of an effort to identify and characterize commercial and near-commercial (emerging) technologies and products that benefited from the support of the Hydrogen, Fuel Ce

  10. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fuel Definition and Specifications Alternative fuels include biofuel, ethanol, methanol, hydrogen, coal-derived liquid fuels, electricity, natural gas, propane gas, or a synthetic transportation fuel. Biofuel is defined as a renewable, biodegradable, combustible liquid or gaseous fuel derived from biomass or other renewable resources that can be used as transportation fuel, combustion fuel, or refinery feedstock and that meets ASTM specifications and federal quality requirements for

  11. Northeast Biofuels Collaborative | Open Energy Information

    Open Energy Info (EERE)

    Biofuels Collaborative Jump to: navigation, search Logo: Northeast Biofuels Collaborative Name: Northeast Biofuels Collaborative Address: 101 Tremont Street Place: Boston,...

  12. Conversion Technologies for Advanced Biofuels - Bio-Oil Upgrading |

    Office of Environmental Management (EM)

    Department of Energy Oil Upgrading Conversion Technologies for Advanced Biofuels - Bio-Oil Upgrading PNNL report-out at the CTAB webinar on Bio-Oil Upgrading. PDF icon ctab_webinar_bio_oils_upgrading.pdf More Documents & Publications Conversion Technologies for Advanced Biofuels - Bio-Oil Production Thermochemical Conversion Proceeses to Aviation Fuels

  13. Clean Burn Fuels LLC | Open Energy Information

    Open Energy Info (EERE)

    Burn Fuels LLC Jump to: navigation, search Name: Clean Burn Fuels LLC Place: Raleigh, North Carolina Zip: 27603 Sector: Biofuels Product: Biofuels developer planning to build a 60m...

  14. International Coastal Biofuels | Open Energy Information

    Open Energy Info (EERE)

    Coastal Biofuels Jump to: navigation, search Name: International Coastal Biofuels Place: Tazewell, Virginia Zip: 24651 Sector: Biofuels Product: International Coastal Biofuels is a...

  15. Tees Valley Biofuels | Open Energy Information

    Open Energy Info (EERE)

    Tees Valley Biofuels Jump to: navigation, search Name: Tees Valley Biofuels Place: United Kingdom Sector: Biofuels Product: Company set up by North East Biofuels to establish an...

  16. Blackhawk Biofuels LLC | Open Energy Information

    Open Energy Info (EERE)

    Blackhawk Biofuels LLC Jump to: navigation, search Name: Blackhawk Biofuels, LLC Place: Freeport, Illinois Zip: 61032 Sector: Biofuels Product: Blackhawk Biofuels was founded by a...

  17. Blue Ridge Biofuels LLC | Open Energy Information

    Open Energy Info (EERE)

    Biofuels LLC Jump to: navigation, search Name: Blue Ridge Biofuels LLC Place: Asheville, North Carolina Zip: 28801 Sector: Biofuels Product: Blue Ridge Biofuels is a worker...

  18. Mid America Biofuels LLC | Open Energy Information

    Open Energy Info (EERE)

    Biofuels LLC Jump to: navigation, search Name: Mid-America Biofuels LLC Place: Jefferson City, Missouri Zip: 65102 Sector: Biofuels Product: Joint Venture of Biofuels LLC,...

  19. US Canadian Biofuels Inc | Open Energy Information

    Open Energy Info (EERE)

    Canadian Biofuels Inc Jump to: navigation, search Name: US Canadian Biofuels Inc. Place: Green Bay, Wisconsin Zip: 54313 Sector: Biofuels Product: US Canadian Biofuels Inc is the...

  20. Best Biofuels LLC | Open Energy Information

    Open Energy Info (EERE)

    Biofuels LLC Jump to: navigation, search Name: Best Biofuels LLC Place: Austin, Texas Zip: 78746 Sector: Biofuels Product: Best Biofuels is developing and commercialising vegetable...

  1. Northwest Missouri Biofuels LLC | Open Energy Information

    Open Energy Info (EERE)

    Missouri Biofuels LLC Jump to: navigation, search Name: Northwest Missouri Biofuels, LLC Place: St Joseph, Missouri Sector: Biofuels Product: Northwest Missouri Biofuels operates a...

  2. Endicott Biofuels II LLC | Open Energy Information

    Open Energy Info (EERE)

    Endicott Biofuels II LLC Jump to: navigation, search Name: Endicott Biofuels II, LLC Place: Houston, Texas Zip: 77060-3235 Sector: Biofuels Product: Houston-based biofuels producer...

  3. Empire Biofuels LLC | Open Energy Information

    Open Energy Info (EERE)

    Biofuels LLC Jump to: navigation, search Name: Empire Biofuels LLC Place: New York, New York Zip: 13148 Sector: Biofuels Product: Empire Biofuels LLC (Empire) was founded in April...

  4. Momentum Biofuels Inc | Open Energy Information

    Open Energy Info (EERE)

    Momentum Biofuels Inc Jump to: navigation, search Name: Momentum Biofuels Inc Place: League City, Texas Zip: 77573 Sector: Biofuels Product: Momentum Biofuels, a Texas-based...

  5. Benefits of Biofuel Production and Use in Missouri

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Missouri is well situated to become a national leader in the development of advanced biofuels. The Bioenergy Technologies Office enables the development of novel technologies that Missouri can use to leverage its existing bioenergy infrastructure and biomass resources. Missouri Missouri's Pilot-Scale Integrated Biorefinery Benefits of Biofuel Production and Use in Missouri BIOENERGY TECHNOLOGIES OFFICE For more information, visit bioenergy.energy.gov DOE/EERE-1184 * September 2015 Strategic

  6. Benefits of Biofuel Production and Use in Nebraska

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nebraska can leverage its extensive biomass resources and existing bioenergy infrastructure to become a leader in the production of advanced biofuels. The Bioenergy Technologies Office (BETO) enables the development of novel technologies that can benefit Nebraska. Nebraska In 2012, Nebraskans consumed 34.5 million barrels of petroleum for transportation-11 times the state's production. Investing in biofuel production can create new jobs, improve energy security, and reduce harmful emissions.

  7. Benefits of Biofuel Production and Use in Ohio

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ohio can leverage its extensive biomass resources and existing infrastructure to increase output of advanced biofuels. The Bioenergy Technologies Office (BETO) enables the development of novel technologies that can establish Ohio as a leader in the growing bioeconomy. Ohio In 2012, Ohio consumed 40 times more petroleum than it produced (with transportation accounting for nearly 80% of consumption). Locally produced biofuels can reduce this high dependence on imported petroleum. Ohio's

  8. Benefits of Biofuel Production and Use in Tennessee

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tennessee is the leading ethanol-producing state in the Southeast. The Bioenergy Technologies Office (BETO) enables the development of novel technologies that Tennessee can use to leverage its existing bioenergy infrastructure and biomass resources to become a leader in advanced biofuels. Tennessee In 2012, Tennessee consumed 340 times more petroleum than it produced. Biofuels produced from local biomass can create jobs and reduce dependence on petroleum. Tennessee's transportation- related

  9. http://www.energy.gov/media/F...Biofuels_Lower_Gas_Prices.pdf | Department

    Broader source: Energy.gov (indexed) [DOE]

    of Energy energy.gov/media/F...Biofuels_Lower_Gas_Prices.pdf More Documents & Publications Fact Sheet: Gas Prices and Oil Consumption Would Increase Without Biofuels Biofuels & Greenhouse Gas Emissions: Myths versus Facts Ethanol: Producting Food, Feed, and Fuel

  10. Hydrogen Infrastructure Market Readiness: Opportunities and Potential...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Recent progress with fuel cell electric vehicles (FCEVs) has focused attention on hydrogen infrastructure as a critical commercialization barrier. With major automakers focused on ...

  11. Geographically Based Hydrogen Demand and Infrastructure Rollout...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Scenario Analysis Presentation by Margo Melendez at the 2010-2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and Infrastructure meeting on January 31, 2007. PDF icon...

  12. Current Challenges in Commercially Producing Biofuels from Lignocellulosic Biomass

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Balan, Venkatesh

    2014-01-01

    Biofuels that are produced from biobased materials are a good alternative to petroleum based fuels. They offer several benefits to society and the environment. Producing second generation biofuels is even more challenging than producing first generation biofuels due the complexity of the biomass and issues related to producing, harvesting, and transporting less dense biomass to centralized biorefineries. In addition to this logistic challenge, other challenges with respect to processing steps in converting biomass to liquid transportation fuel like pretreatment, hydrolysis, microbial fermentation, and fuel separation still exist and are discussed in this review. The possible coproducts that could be producedmore » in the biorefinery and their importance to reduce the processing cost of biofuel are discussed. About $1 billion was spent in the year 2012 by the government agencies in US to meet the mandate to replace 30% existing liquid transportation fuels by 2022 which is 36 billion gallons/year. Other countries in the world have set their own targets to replace petroleum fuel by biofuels. Because of the challenges listed in this review and lack of government policies to create the demand for biofuels, it may take more time for the lignocellulosic biofuels to hit the market place than previously projected.« less

  13. 2nd International Hydrogen Infrastructure Challenges Webinar Slides |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy nd International Hydrogen Infrastructure Challenges Webinar Slides 2nd International Hydrogen Infrastructure Challenges Webinar Slides Presentation slides from the Fuel Cell Technologies Office webinar "2nd International Hydrogen Infrastructure Challenges Webinar" held on March 10, 2015. PDF icon 2nd International Hydrogen Infrastructure Challenges Webinar Slides More Documents & Publications International Hydrogen Infrastructure Challenges Workshop Summary

  14. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Residential Compressed Natural Gas (CNG) Fueling Infrastructure Rebate The Nebraska Energy Office (NEO) offers rebates for qualified CNG fueling infrastructure that is installed at a residence after January 4, 2016. The rebate amount is 50% of the cost of the fueling infrastructure, up to $2,500 for each installation. Qualified fueling infrastructure includes new dispensers certified for use with CNG from a private home or residence for non-commercial use. Fueling infrastructure is not eligible

  15. Air Liquide - Biogas & Fuel Cells

    Broader source: Energy.gov (indexed) [DOE]

    and the environment PT Loma WWTP, Biogas to Fuel Cell Power BioFuels Energy Biogas to BioMethane to 4.5 MW Fuel Cell Power 3 FCE Fuel Cells 2 via directed...

  16. Hydrogen Scenario Analysis Summary Report: Analysis of the Transition to Hydrogen Fuel Cell Vehicles and the Potential Hydrogen Energy Infrastructure Requirements

    SciTech Connect (OSTI)

    Greene, David L; Leiby, Paul Newsome; James, Brian; Perez, Julie; Melendez, Margo; Milbrandt, Anelia; Unnasch, Stefan; Rutherford, Daniel; Hooks, Matthew

    2008-03-01

    Achieving a successful transition to hydrogen-powered vehicles in the U.S. automotive market will require strong and sustained commitment by hydrogen producers, vehicle manufacturers, transporters and retailers, consumers, and governments. The interaction of these agents in the marketplace will determine the real costs and benefits of early market transformation policies, and ultimately the success of the transition itself. The transition to hydrogen-powered transportation faces imposing economic barriers. The challenges include developing and refining a new and different power-train technology, building a supporting fuel infrastructure, creating a market for new and unfamiliar vehicles, and achieving economies of scale in vehicle production while providing an attractive selection of vehicle makes and models for car-buyers. The upfront costs will be high and could persist for a decade or more, delaying profitability until an adequate number of vehicles can be produced and moved into consumer markets. However, the potential rewards to the economy, environment, and national security are immense. Such a profound market transformation will require careful planning and strong, consistent policy incentives. Section 811 of the Energy Policy Act (EPACT) of 2005, Public Law 109-59 (U.S. House, 2005), calls for a report from the Secretary of Energy on measures to support the transition to a hydrogen economy. The report was to specifically address production and deployment of hydrogen-fueled vehicles and the hydrogen production and delivery infrastructure needed to support those vehicles. In addition, the 2004 report of the National Academy of Sciences (NAS, 2004), The Hydrogen Economy, contained two recommendations for analyses to be conducted by the U.S. Department of Energy (DOE) to strengthen hydrogen energy transition and infrastructure planning for the hydrogen economy. In response to the EPACT requirement and NAS recommendations, DOE's Hydrogen, Fuel Cells and Infrastructure Technologies Program (HFCIT) has supported a series of analyses to evaluate alternative scenarios for deployment of millions of hydrogen fueled vehicles and supporting infrastructure. To ensure that these alternative market penetration scenarios took into consideration the thinking of the automobile manufacturers, energy companies, industrial hydrogen suppliers, and others from the private sector, DOE held several stakeholder meetings to explain the analyses, describe the models, and solicit comments about the methods, assumptions, and preliminary results (U.S. DOE, 2006a). The first stakeholder meeting was held on January 26, 2006, to solicit guidance during the initial phases of the analysis; this was followed by a second meeting on August 9-10, 2006, to review the preliminary results. A third and final meeting was held on January 31, 2007, to discuss the final analysis results. More than 60 hydrogen energy experts from industry, government, national laboratories, and universities attended these meetings and provided their comments to help guide DOE's analysis. The final scenarios attempt to reflect the collective judgment of the participants in these meetings. However, they should not be interpreted as having been explicitly endorsed by DOE or any of the stakeholders participating. The DOE analysis examined three vehicle penetration scenarios: Scenario 1--Production of thousands of vehicles per year by 2015 and hundreds of thousands per year by 2019. This option is expected to lead to a market penetration of 2.0 million fuel cell vehicles (FCV) by 2025. Scenario 2--Production of thousands of FCVs by 2013 and hundreds of thousands by 2018. This option is expected to lead to a market penetration of 5.0 million FCVs by 2025. Scenario 3--Production of thousands of FCVs by 2013, hundreds of thousands by 2018, and millions by 2021 such that market penetration is 10 million by 2025. Scenario 3 was formulated to comply with the NAS recommendation: 'DOE should map out and evaluate a transition plan consistent with developing the infrastructure and hydrogen resources necessary to support the committee's hydrogen vehicle penetration scenario, or another similar demand scenario (NAS, 2004, p. 4).' Each of the scenarios was extensively discussed at the stakeholder meetings and each received support from industry. Although there was no consensus on a particular vehicle penetration rate, it was agreed that this set of scenarios is inclusive of industry expectations and could provide a basis to interpolate or extrapolate the results to other cases. The purpose of the DOE study was not to select any one scenario but to assess the costs and impacts of achieving each.

  17. Energy Department Announces New Investment to Accelerate Next Generation Biofuels

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Energy Department announced four research and development projects to bring next generation biofuels on line faster and drive down the cost of producing gasoline, diesel and jet fuels from biomass.

  18. Importance of systems biology in engineering microbes for biofuel

    Office of Scientific and Technical Information (OSTI)

    production (Journal Article) | SciTech Connect Importance of systems biology in engineering microbes for biofuel production Citation Details In-Document Search Title: Importance of systems biology in engineering microbes for biofuel production Microorganisms have been rich sources for natural products, some of which have found use as fuels, commodity chemicals, specialty chemicals, polymers, and drugs, to name a few. The recent interest in production of transportation fuels from renewable

  19. Biomass and Biofuels Technologies Available for Licensing - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovation Portal Biomass and Biofuels Site Map Printable Version Share this resource About Search Categories (15) Advanced Materials Biomass and Biofuels Marketing Summaries (158) Success Stories (3) Building Energy Efficiency Electricity Transmission Energy Analysis Energy Storage Geothermal Hydrogen and Fuel Cell Hydropower, Wave and Tidal Industrial Technologies Solar Photovoltaic Solar Thermal Startup America Vehicles and Fuels Wind Energy Partners (27) Visual Patent Search Success

  20. Engineering microbes to produce biofuels

    SciTech Connect (OSTI)

    Wackett, LP

    2011-06-01

    The current biofuels landscape is chaotic. It is controlled by the rules imposed by economic forces and driven by the necessity of finding new sources of energy, particularly motor fuels. The need is bringing forth great creativity in uncovering new candidate fuel molecules that can be made via metabolic engineering. These next generation fuels include long-chain alcohols, terpenoid hydrocarbons, and diesel-length alkanes. Renewable fuels contain carbon derived from carbon dioxide. The carbon dioxide is derived directly by a photosynthetic fuel-producing organism(s) or via intermediary biomass polymers that were previously derived from carbon dioxide. To use the latter economically, biomass depolymerization processes must improve and this is a very active area of research. There are competitive approaches with some groups using enzyme based methods and others using chemical catalysts. With the former, feedstock and end-product toxicity loom as major problems. Advances chiefly rest on the ability to manipulate biological systems. Computational and modular construction approaches are key. For example, novel metabolic networks have been constructed to make long-chain alcohols and hydrocarbons that have superior fuel properties over ethanol. A particularly exciting approach is to implement a direct utilization of solar energy to make a usable fuel. A number of approaches use the components of current biological systems, but re-engineer them for more direct, efficient production of fuels.

  1. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Payments Through the Bioenergy Program for Advanced Biofuels (Section 9005), eligible producers of advanced biofuels, or fuels derived from renewable biomass other than corn kernel starch, may receive payments to support expanded production of advanced biofuels. Payment amounts will depend on the quantity and duration of production by the eligible producer; the net nonrenewable energy content of the advanced biofuel, if sufficient data is available; the number of producers participating in the

  2. Challenge # 2 Logistics and Compatibility with Existing Infrastructure

    Office of Environmental Management (EM)

    Throughout Supply Chain | Department of Energy 2 Logistics and Compatibility with Existing Infrastructure Throughout Supply Chain Challenge # 2 Logistics and Compatibility with Existing Infrastructure Throughout Supply Chain Presentation on Challenge # 2 Logistics and Compatibility with Existing Infrastructure Throughout Supply Chain on May 9, 2012, at the Pyrolysis Oil Workshop. PDF icon pyrolysis_challenge2.pdf More Documents & Publications Conversion Technologies for Advanced Biofuels

  3. Replace Fossil Fuels, Final Technical Report Roberts, William...

    Office of Scientific and Technical Information (OSTI)

    Crude Glycerol as Cost-Effective Fuel for Combined Heat and Power to Replace Fossil Fuels, Final Technical Report Roberts, William L 09 BIOMASS FUELS biofuels, glycerin, glycerol,...

  4. City of Tulare Renewable Biogas Fuel Cell Project | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Synergy between Membranes and Microbial Fuel Cells High Temperature BOP and Fuel Processing Fuel Cell Power Plants Biofuel Case Study - Tulare, CA

  5. Major DOE Biofuels Project Locations | Department of Energy

    Office of Environmental Management (EM)

    Algal Biofuel Technologies Slide 1

  6. CPS Biofuels | Open Energy Information

    Open Energy Info (EERE)

    CPS Biofuels Jump to: navigation, search Name: CPS Biofuels Place: Cary, North Carolina Zip: 27513 Sector: Biofuels Product: R&D company that is developing a new process to produce...

  7. Biofuels Information Center

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biofuels Information Center BETO 2015 Peer Review Kristi Moriarty March 24, 2015 2 Goal ...docsfy06osti39181.pdf Electricity rates (residential, commercial, ...

  8. Biofuels Market Opportunities

    Broader source: Energy.gov [DOE]

    Breakout Session 2C—Fostering Technology Adoption II: Expanding the Pathway to Market Biofuels Market Opportunities John Eichberger, Vice President Government Relations, National Association of Convenience Stores

  9. BIOENERGIZEME INFOGRAPHIC CHALLENGE: Algae Biofuel | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Algae Biofuel BIOENERGIZEME INFOGRAPHIC CHALLENGE: Algae Biofuel BIOENERGIZEME INFOGRAPHIC CHALLENGE: Algae Biofuel

  10. E15 and Infrastructure

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    E15 and Infrastructure K. Moriarty National Renewable Energy Laboratory J. Yanowitz Ecoengineering, Inc. Produced under direction of Renewable Fuels Association by the National Renewable Energy Laboratory (NREL) under Technical Services Agreement No. TSA 14-665 and Task No. WTJZ.1000. Strategic Partnership Project Report NREL/TP-5400-64156 May 2015 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for

  11. Biofuel Solutions | Open Energy Information

    Open Energy Info (EERE)

    developer, which had been developing one plant in Fairmont, Minnesota and another in Wood River, Biofuel Energy LLC took over plant development of Biofuel Solutions' projects in...

  12. Mead Biofuel | Open Energy Information

    Open Energy Info (EERE)

    Biofuel Jump to: navigation, search Name: Mead Biofuel Place: Eastsound, Washington State Zip: 98245 Product: Distributor of biodiesel throughout the San Juan Islands, Washington....

  13. Michigan Biofuel | Open Energy Information

    Open Energy Info (EERE)

    Biofuel Jump to: navigation, search Name: Michigan Biofuel Place: Lupton, Michigan Product: Michigan-based manufacturer of biodiesel processors and related equipment. Coordinates:...

  14. Vercipia Biofuels | Open Energy Information

    Open Energy Info (EERE)

    Vercipia Biofuels Jump to: navigation, search Name: Vercipia Biofuels Place: Highlands County, Florida Product: Florida-based JV owning existing intellectual property and...

  15. Piedmont Biofuels | Open Energy Information

    Open Energy Info (EERE)

    Biofuels Jump to: navigation, search Name: Piedmont Biofuels Place: Chatham County, North Carolina Product: Community coop producing biodiesel in small scale to cope with Chatham...

  16. Greenlight Biofuels | Open Energy Information

    Open Energy Info (EERE)

    Biofuels Jump to: navigation, search Name: Greenlight Biofuels Place: Charlottesville, Virginia Product: Charlottesville-based company that develops, builds, owns and operates...

  17. Mint Biofuels | Open Energy Information

    Open Energy Info (EERE)

    Biofuels Jump to: navigation, search Name: Mint Biofuels Place: Pune, Maharashtra, India Zip: 412 111 Product: Maharashtra-based biodiesel producer. Coordinates: 18.52671,...

  18. Integrity Biofuels | Open Energy Information

    Open Energy Info (EERE)

    Biofuels Jump to: navigation, search Name: Integrity Biofuels Place: Grammer, Indiana Product: Planning a 38m litre (10m gallon) per year biodiesel plant in Indiana. Coordinates:...

  19. Propel Biofuels | Open Energy Information

    Open Energy Info (EERE)

    Propel Biofuels Jump to: navigation, search Name: Propel Biofuels Address: 4444 Woodland Park Ave North Place: Seattle, Washington Zip: 98103 Region: Pacific Northwest Area Sector:...

  20. Acciona Biofuels | Open Energy Information

    Open Energy Info (EERE)

    Acciona Biofuels Jump to: navigation, search Name: Acciona Biofuels Place: Pamplona, Spain Zip: 31002 Product: A subsidiary of Acciona Energia, that specialises in the...

  1. Optimum Biofuels | Open Energy Information

    Open Energy Info (EERE)

    Biofuels Jump to: navigation, search Name: Optimum Biofuels Place: Higley, Arizona Zip: 85236 Product: Arizona-based operator of a bio diesel refinery in Coolidge, with soybean oil...

  2. FUMPA Biofuels | Open Energy Information

    Open Energy Info (EERE)

    FUMPA Biofuels Jump to: navigation, search Name: FUMPA Biofuels Place: Redwood Falls, MN, Minnesota Product: Biodiesel producer based in Redwood Falls, Minnesota. References: FUMPA...

  3. Yokayo Biofuels | Open Energy Information

    Open Energy Info (EERE)

    Yokayo Biofuels Jump to: navigation, search Name: Yokayo Biofuels Place: Ukiah, California Zip: 95482 Product: California-based biodiesel producer and distributor with operations...

  4. Keystone Biofuels | Open Energy Information

    Open Energy Info (EERE)

    Keystone Biofuels Jump to: navigation, search Name: Keystone Biofuels Place: Shiremanstown, Pennsylvania Product: Biodiesel producer that runs a 3.7m liter plant in Pennsylvania....

  5. Riksch Biofuels | Open Energy Information

    Open Energy Info (EERE)

    Riksch Biofuels Jump to: navigation, search Name: Riksch Biofuels Place: Crawfordsville, Iowa Zip: 52621 Product: Biodiesel producer building a plant in Crawfordsville, IA...

  6. Austin Biofuels | Open Energy Information

    Open Energy Info (EERE)

    Austin Biofuels Jump to: navigation, search Name: Austin Biofuels Place: Austin, Texas Product: Supplies pure and blended biodiesel to all of Texas. It has benefited from support...

  7. SciTech Connect: "biofuels"

    Office of Scientific and Technical Information (OSTI)

    biofuels" Find + Advanced Search Term Search Semantic Search Advanced Search All Fields: "biofuels" Semantic Semantic Term Title: Full Text: Bibliographic Data: Creator ...

  8. Green Spirit Fuels | Open Energy Information

    Open Energy Info (EERE)

    Spirit Fuels Jump to: navigation, search Name: Green Spirit Fuels Place: Somerset, United Kingdom Zip: BA8 OTN Sector: Biofuels Product: The company was founded to produce and...

  9. Bio Clean Fuels Inc | Open Energy Information

    Open Energy Info (EERE)

    Fuels Inc Jump to: navigation, search Name: Bio-Clean Fuels Inc Place: California Sector: Hydro Product: Califonia-based biofuel technology and engineering company. The company is...

  10. Natura Bio Fuels Ltd | Open Energy Information

    Open Energy Info (EERE)

    Natura Bio Fuels Ltd Jump to: navigation, search Name: Natura Bio-Fuels Ltd. Place: Bangalore, Karnataka, India Zip: 560091 Sector: Biomass Product: Bangalore-based biomass project...

  11. Lessons and Challenges for Early Hydrogen Refueling Infrastructure |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy and Challenges for Early Hydrogen Refueling Infrastructure Lessons and Challenges for Early Hydrogen Refueling Infrastructure Presented at Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen Conference, April 2-3, 2008, Sacramento, California PDF icon lessons_melaina_final.pdf More Documents & Publications Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen Hydrogen Infrastructure Strategies Technical

  12. Algal Biofuels Fact Sheet

    SciTech Connect (OSTI)

    2009-10-27

    This fact sheet provides information on algal biofuels, which are generating considerable interest around the world. They may represent a sustainable pathway for helping to meet the U.S. biofuel production targets set by the Energy Independence and Security Act of 2007.

  13. An Integrated Assessment of Location-Dependent Scaling for Microalgae Biofuel Production Facilities

    SciTech Connect (OSTI)

    Coleman, Andre M.; Abodeely, Jared; Skaggs, Richard; Moeglein, William AM; Newby, Deborah T.; Venteris, Erik R.; Wigmosta, Mark S.

    2014-07-01

    Successful development of a large-scale microalgae-based biofuels industry requires comprehensive analysis and understanding of the feedstock supply chain—from facility siting/design through processing/upgrading of the feedstock to a fuel product. The evolution from pilot-scale production facilities to energy-scale operations presents many multi-disciplinary challenges, including a sustainable supply of water and nutrients, operational and infrastructure logistics, and economic competitiveness with petroleum-based fuels. These challenges are addressed in part by applying the Integrated Assessment Framework (IAF)—an integrated multi-scale modeling, analysis, and data management suite—to address key issues in developing and operating an open-pond facility by analyzing how variability and uncertainty in space and time affect algal feedstock production rates, and determining the site-specific “optimum” facility scale to minimize capital and operational expenses. This approach explicitly and systematically assesses the interdependence of biofuel production potential, associated resource requirements, and production system design trade-offs. The IAF was applied to a set of sites previously identified as having the potential to cumulatively produce 5 billion-gallons/year in the southeastern U.S. and results indicate costs can be reduced by selecting the most effective processing technology pathway and scaling downstream processing capabilities to fit site-specific growing conditions, available resources, and algal strains.

  14. Algae as a Feedstock for Biofuels: An Assessment of the State of Technology and Opportunities. Final Report

    SciTech Connect (OSTI)

    Sikes, K.; McGill, R.; Van Walwijk, M.

    2011-05-15

    The pursuit of a stable, economically-sound, and environmentally-friendly source of transportation fuel has led to extensive research and development (R&D) efforts focused on the conversion of various feedstocks into biofuels. Some feedstocks, such as sugar cane, corn and woody biomass, are targeted because their structures can be broken down into sugars and fermented into alcohols. Other feedstocks, such as vegetable oils, are appealing because they contain considerable amounts of lipids, which can be extracted and converted into biodiesel or other fuels. While significant R&D and commercial strides have been made with each of these feedstocks, technical and market barriers (e.g., cost, scalability, infrastructure requirements, and 'food vs. fuel' debates) currently limit the penetration of the resultant biofuels into the mainstream. Because of algae's ability to potentially address several of these barriers, its use as a feedstock for biofuels has led to much excitement and initiative within the energy industry. Algae are highly diverse, singleor multi-cellular organisms comprised of mostly lipids, protein, and carbohydrates, which may be used to produce a wide variety of biofuels. Algae offer many competitive advantages over other feedstocks, including: 1) Higher potential lipid content than terrestrial plants, sometimes exceeding 50% of the cell's dry biomass (U.S. DOE, May '10; Tornabene et al., 1983) 2) Rapid growth rates that are 20-30 times higher than terrestrial crops (McDill, 2009) and, in some cases, capable of doubling in size with 10 hours 3) Diverse number of species that can collectively thrive in a wide range of environments throughout the world, presenting an overall high overall tolerance for climate, sunlight, nutrient levels, etc. 4) Daily harvesting potential instead of seasonal harvest periods associated with terrestrial crops 5) Potential to redirect CO2 from industry operations to algal cultivation facilities to be used in an algal biofuel cycle before it is released into the atmosphere 6) Ability to be cultivated on land that that is unsuitable for agriculture, so it does not directly compete with farmland Given microalgae's high lipid content and rapid growth rates, maximum oil yields of 20,000--115,000 L/ha/yr (2,140-13,360 gal/ac/yr) have been estimated. xiv 7) Ability to thrive in seawater, wastewater, or other non-potable sources, so it does not directly compete with fresh water resources. In fact, wastewater can provide algae with some essential nutrients, such as nitrogen, so algae may contribute to cleaning up wastewater streams. 8) Non-toxic and biodegradable 9) Co-products that may present high value in other markets, including nutriceuticals and cosmetics Given microalgae's high lipid content and rapid growth rate, maximum oil yields of 20,000 -- 115,000 liters per hectare per year (L/ha/yr) (2,140 -- 13,360 gallons per acre per year) (Baldos, 2009; Wijffels, 2008) have been estimated, which is considerably higher than any other competing feedstock. Although algae species collectively present many strong advantages (although one specific species is unlikely to possess all of the advantages listed), a sustainable algal biofuel industry is at least one or two decades away from maturity, and no commercial scale operations currently exist. Several barriers must first be overcome before algal biofuels can compete with traditional petroleum-based fuels. Production chains with net energy output need to be identified, and continued R&D is needed to reduce the cost in all segments of the production spectrum (e.g., harvesting, dewatering, extracting of oil). Further research to identify strains with high production rates and/or oil yields may also improve competitiveness within the market. Initiatives to seamlessly integrate algal biofuels into the existing transportation infrastructure may increase their convenience level.

  15. Cyber Security for Electric Infrastructure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cyber Security for Electric Infrastructure - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management

  16. Coulee Region Bio Fuels LLC | Open Energy Information

    Open Energy Info (EERE)

    Region Bio Fuels LLC Jump to: navigation, search Name: Coulee Region Bio-Fuels LLC Place: Ettrick, Wisconsin Zip: 54627 Sector: Biofuels Product: LLC created by PrairieFire...

  17. Transportation Infrastructure

    Office of Environmental Management (EM)

    Infrastructure New Technologies * Potential need for dual-use casks * DOE should look toward industry & international communities for innovations * Industry unclear about delivery & receipt locations * Advances in physical & tracking technologies need to be factored in * Cost-benefit analysis of new technology Training & Dry Runs * Begin as soon as possible * Suggested order: #1-demonstrations, #2-training, #3-dry-runs * Don't re-invent the wheel- look at international programs *

  18. Infrastructure Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to enhance the nation's security and prosperity through sustainable, transformative approaches to our most challenging energy, climate, and infrastructure problems. vision Important applications of these capabilities include performing assessment of facility vulnerabilities and resultant consequences of a range of attack scenarios related to nuclear facilities after 9/11. these comprehensive analyses were able to realistically represent the actual attack, the response of the facility to the

  19. Infrastructure Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to enhance the nation's security and prosperity through sustainable, transformative approaches to our most challenging energy, climate, and infrastructure problems. vision the capability set needed to address safe and secure management of these radioactive materials includes a broad set of engineering and scientific disciplines such as physics; nuclear, mechanical, civil, and systems engineering; and chemistry. In addition, Sandia has a tool set that enhances the ability to perform high level

  20. Biofuel Feedstock Assessment For Selected Countries

    SciTech Connect (OSTI)

    Kline, Keith L; Oladosu, Gbadebo A; Wolfe, Amy K; Perlack, Robert D; Dale, Virginia H; McMahon, Matthew

    2008-02-01

    Findings from biofuel feedstock production assessments and projections of future supply are presented and discussed. The report aims to improve capabilities to assess the degree to which imported biofuel could contribute to meeting future U.S. targets to reduce dependence on imported oil. The study scope was focused to meet time and resource requirements. A screening process identified Argentina, Brazil, Canada, China, Colombia, India, Mexico, and the Caribbean Basin Initiative (CBI) region for initial analysis, given their likely role in future feedstock supply relevant to U.S. markets. Supply curves for selected feedstocks in these countries are projected for 2012, 2017 and 2027. The supply functions, along with calculations to reflect estimated supplies available for export and/or biofuel production, were provided to DOE for use in a broader energy market allocation study. Potential cellulosic supplies from crop and forestry residues and perennials were also estimated for 2017 and 2027. The analysis identified capacity to potentially double or triple feedstock production by 2017 in some cases. A majority of supply growth is derived from increasing the area cultivated (especially sugarcane in Brazil). This is supplemented by improving yields and farming practices. Most future supplies of corn and wheat are projected to be allocated to food and feed. Larger shares of future supplies of sugarcane, soybean and palm oil production will be available for export or biofuel. National policies are catalyzing investments in biofuel industries to meet targets for fuel blending that generally fall in the 5-10% range. Social and environmental concerns associated with rapid expansion of feedstock production are considered. If the 2017 projected feedstock supply calculated as 'available' for export or biofuel were converted to fuel, it would represent the equivalent of about 38 billion gallons of gasoline. Sugarcane and bagasse dominate the available supply, representing 64% of the total. Among the nations studied, Brazil is the source of about two-thirds of available supplies, followed distantly by Argentina (12%), India and the CBI region.

  1. Biofuel Feedstock Assessment for Selected Countries

    SciTech Connect (OSTI)

    Kline, K.L.; Oladosu, G.A.; Wolfe, A.K.; Perlack, R.D.; Dale, V.H.

    2008-02-18

    Findings from biofuel feedstock production assessments and projections of future supply are presented and discussed. The report aims to improve capabilities to assess the degree to which imported biofuel could contribute to meeting future U.S. targets to reduce dependence on imported oil. The study scope was focused to meet time and resource requirements. A screening process identified Argentina, Brazil, Canada, China, Colombia, India, Mexico, and the Caribbean Basin Initiative (CBI) region for initial analysis, given their likely role in future feedstock supply relevant to U.S. markets. Supply curves for selected feedstocks in these countries are projected for 2012, 2017 and 2027. The supply functions, along with calculations to reflect estimated supplies available for export and/or biofuel production, were provided to DOE for use in a broader energy market allocation study. Potential cellulosic supplies from crop and forestry residues and perennials were also estimated for 2017 and 2027. The analysis identified capacity to potentially double or triple feedstock production by 2017 in some cases. A majority of supply growth is derived from increasing the area cultivated (especially sugarcane in Brazil). This is supplemented by improving yields and farming practices. Most future supplies of corn and wheat are projected to be allocated to food and feed. Larger shares of future supplies of sugarcane, soybean and palm oil production will be available for export or biofuel. National policies are catalyzing investments in biofuel industries to meet targets for fuel blending that generally fall in the 5-10% range. Social and environmental concerns associated with rapid expansion of feedstock production are considered. If the 2017 projected feedstock supply calculated as ‘available’ for export or biofuel were converted to fuel, it would represent the equivalent of about 38 billion gallons of gasoline. Sugarcane and bagasse dominate the available supply, representing 64% of the total. Among the nations studied, Brazil is the source of about two-thirds of available supplies, followed distantly by Argentina (12%), India and the CBI region.

  2. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Support for Advance Biofuel Development The California Legislature urges the U.S. Congress or the U.S. Environmental Protection Agency to take action to amend the U.S. Renewable Fuel Standard to favor non-food crop biofuel feedstocks and promote the development of advanced fuels, such as cellulosic ethanol. (Reference Assembly Joint Resolution 21, 2013

  3. Turning Bacteria into Biofuel: Development of an Integrated Microbial Electrocatalytic (MEC) System for Liquid Biofuel Production from CO2

    SciTech Connect (OSTI)

    2010-08-01

    Electrofuels Project: LBNL is improving the natural ability of a common soil bacteria called Ralstonia eutropha to use hydrogen and carbon dioxide for biofuel production. First, LBNL is genetically modifying the bacteria to produce biofuel at higher concentrations. Then, LBNL is using renewable electricity obtained from solar, wind, or wave power to produce high amounts of hydrogen in the presence of the bacteria—increasing the organism’s access to its energy source and improving the efficiency of the biofuel-creation process. Finally, LBNL is tethering electrocatalysts to the bacteria’s surface which will further accelerate the rate at which the organism creates biofuel. LBNL is also developing a chemical method to transform the biofuel that the bacteria produce into ready-to-use jet fuel.

  4. IPHE Infrastructure Workshop | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    IPHE Infrastructure Workshop IPHE Infrastructure Workshop This interactive workshop, held February 25-26, 2010, in Sacramento, CA, focused on realistic, practical issues with the aim of producing information to help develop policies, technologies, and incentives that will contribute to the success of hydrogen fuel retailers. Organizers of the workshop include IPHE (International Partnership for Hydrogen and Fuel Cells in the Economy), the U.S. Department of Energy, California Fuel Cell

  5. Infrastructure Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    waste to return of research reactor fuel of U.S. origin. In addition, Snl supports the nrC in the development of technical bases to support various rule-making activities...

  6. California Hydrogen Infrastructure Project

    SciTech Connect (OSTI)

    Edward C. Heydorn

    2013-03-12

    Air Products and Chemicals, Inc. has completed a comprehensive, multiyear project to demonstrate a hydrogen infrastructure in California. The specific primary objective of the project was to demonstrate a model of a “real-world” retail hydrogen infrastructure and acquire sufficient data within the project to assess the feasibility of achieving the nation’s hydrogen infrastructure goals. The project helped to advance hydrogen station technology, including the vehicle-to-station fueling interface, through consumer experiences and feedback. By encompassing a variety of fuel cell vehicles, customer profiles and fueling experiences, this project was able to obtain a complete portrait of real market needs. The project also opened its stations to other qualified vehicle providers at the appropriate time to promote widespread use and gain even broader public understanding of a hydrogen infrastructure. The project engaged major energy companies to provide a fueling experience similar to traditional gasoline station sites to foster public acceptance of hydrogen. Work over the course of the project was focused in multiple areas. With respect to the equipment needed, technical design specifications (including both safety and operational considerations) were written, reviewed, and finalized. After finalizing individual equipment designs, complete station designs were started including process flow diagrams and systems safety reviews. Material quotes were obtained, and in some cases, depending on the project status and the lead time, equipment was placed on order and fabrication began. Consideration was given for expected vehicle usage and station capacity, standard features needed, and the ability to upgrade the station at a later date. In parallel with work on the equipment, discussions were started with various vehicle manufacturers to identify vehicle demand (short- and long-term needs). Discussions included identifying potential areas most suited for hydrogen fueling stations with a focus on safe, convenient, fast-fills. These potential areas were then compared to and overlaid with suitable sites from various energy companies and other potential station operators. Work continues to match vehicle needs with suitable fueling station locations. Once a specific site was identified, the necessary agreements could be completed with the station operator and expected station users. Detailed work could then begin on the site drawings, permits, safety procedures and training needs. Permanent stations were successfully installed in Irvine (delivered liquid hydrogen), Torrance (delivered pipeline hydrogen) and Fountain Valley (renewable hydrogen from anaerobic digester gas). Mobile fueling stations were also deployed to meet short-term fueling needs in Long Beach and Placerville. Once these stations were brought online, infrastructure data was collected and reported to DOE using Air Products’ Enterprise Remote Access Monitoring system. Feedback from station operators was incorporated to improve the station user’s fueling experience.

  7. Novel biofuel formulations for enhanced vehicle performance

    SciTech Connect (OSTI)

    Miller, Dennis; Narayan, Ramani; Berglund, Kris; Lira, Carl; Schock, Harold; Jaberi, Farhad; Lee, Tonghun; Anderson, James; Wallington, Timothy; Kurtz, Eric; Ruona, Will; Hass, Heinz

    2013-08-30

    This interdisciplinary research program at Michigan State University, in collaboration with Ford Motor Company, has explored the application of tailored or designed biofuels for enhanced vehicle performance and reduced emissions. The project has included a broad range of experimental research, from chemical and biological formation of advanced biofuel components to multicylinder engine testing of blended biofuels to determine engine performance parameters. In addition, the project included computation modeling of biofuel physical and combustion properties, and simulation of advanced combustion modes in model engines and in single cylinder engines. Formation of advanced biofuel components included the fermentation of five-carbon and six-carbon sugars to n-butanol and to butyric acid, two four-carbon building blocks. Chemical transformations include the esterification of the butyric acid produced to make butyrate esters, and the esterification of succinic acid with n-butanol to make dibutyl succinate (DBS) as attractive biofuel components. The conversion of standard biodiesel, made from canola or soy oil, from the methyl ester to the butyl ester (which has better fuel properties), and the ozonolysis of biodiesel and the raw oil to produce nonanoate fuel components were also examined in detail. Physical and combustion properties of these advanced biofuel components were determined during the project. Physical properties such as vapor pressure, heat of evaporation, density, and surface tension, and low temperature properties of cloud point and cold filter plugging point were examined for pure components and for blends of components with biodiesel and standard petroleum diesel. Combustion properties, particularly emission delay that is the key parameter in compression ignition engines, was measured in the MSU Rapid Compression Machine (RCM), an apparatus that was designed and constructed during the project simulating the compression stroke of an internal combustion engine under highly instrumented conditions. Simulation of and experimentation on combustion in single and multicylinder engines was carried out in detail throughout the project. The combustion behavior of biofuel blends neat and in petroleum were characterized in the MSU optical engine, in part to validate results obtained in the RCM and to provide data for comparison with simulations. Simulation of in- cylinder, low-temperature combustion included development of an extensive fuel injection model that included fuel spray breakup, evaporation, and ignition, along with prediction of cylinder temperature, pressure, and work produced. Single cylinder and multicylinder engine tests under advanced low-temperature combustion conditions conducted at Ford Motor Company validated experimental and simulation results obtained in the MSU engine and in MSU simulations. Single cylinder engine tests of an advanced biofuel containing biodiesel and dibutyl succinate, carried out under low-temperature combustion conditions, showed similar power generation and gas-phase emissions (CO, HC, NOx), but a reduction in particulates of as much as 60% relative to neat biodiesel and 95% relative to petroleum diesel at the same operating conditions. This remarkable finding suggests that biofuels may be able to play a role in eliminating the need for particulate removal systems in diesel vehicles. The multicylinder engine tests at Ford, carried out using butyl nonanoate as an advanced biofuel, also gave promising results, showing a strong decline in particulate emissions and simultaneously a modest decrease in NOx emissions relative to standard petroleum diesel at the same conditions. In summary, this project has shown that advanced biofuels and their blends are capable of maintaining performance while reducing emissions, particularly particulates (soot), in 3 compression ignition engines. The interdisciplinary nature of biofuel production and testing has identified fuel properties that are capable of producing such performance, thus providing direction for the implementation of renewable fuels for U.S. transportation. The testing and simulation studies have deepened our understanding of combustion 1) by advancing the rigor with which simulations can be carried out and 2) by illustrating that differences in biofuel and petroleum fuel properties can be used to predict differences in combustion behavior in engines. The future viability of biofuels for compression ignition (diesel) engines is now subject to economic (cost) uncertainty more so than to technical barriers, as the advanced biofuel blends developed here can improve cold-weather fuel properties, provide similar engine performance, and reduce emissions.

  8. New Leaf Biofuel | Open Energy Information

    Open Energy Info (EERE)

    Biofuel Jump to: navigation, search Name: New Leaf Biofuel Address: 1380 Garnet Place: San Diego, California Zip: 92109 Region: Southern CA Area Sector: Biofuels Product: Collects...

  9. Continental Biofuels Corporation | Open Energy Information

    Open Energy Info (EERE)

    Continental Biofuels Corporation Jump to: navigation, search Name: Continental Biofuels Corporation Place: Dallas, Texas Zip: 75240 Sector: Biofuels Product: Dallas-based company...

  10. Biofuels Power Corp | Open Energy Information

    Open Energy Info (EERE)

    Power Corp Jump to: navigation, search Name: Biofuels Power Corp Place: The Woodlands, Texas Zip: 77380 Sector: Biofuels, Renewable Energy Product: Biofuels Power Corp produces and...

  11. DuPont Biofuels | Open Energy Information

    Open Energy Info (EERE)

    Biofuels Jump to: navigation, search Name: DuPont Biofuels Place: Wilmington, Delaware Zip: 19898 Product: Biofuel technology development subsidiary of DuPont. Co-developing...

  12. Category:Biofuels | Open Energy Information

    Open Energy Info (EERE)

    Biofuels Organizations Pages in category "Biofuels" This category contains only the following page. T The Biofuels Center of North Carolina Retrieved from "http:en.openei.orgw...

  13. BP Biofuels Brasil | Open Energy Information

    Open Energy Info (EERE)

    Biofuels Brasil Jump to: navigation, search Name: BP Biofuels Brasil Place: Campinas, Sao Paulo, Brazil Zip: 13025-320 Sector: Biofuels Product: Brazil based BP subsidiary focused...

  14. Amereco Biofuels Corp | Open Energy Information

    Open Energy Info (EERE)

    Amereco Biofuels Corp Jump to: navigation, search Name: Amereco Biofuels Corp Place: Phoenix, Arizona Zip: 85028 Sector: Biofuels Product: Amereco pursues technologies that...

  15. Greenergy Biofuels Limited | Open Energy Information

    Open Energy Info (EERE)

    Biofuels Limited Jump to: navigation, search Name: Greenergy Biofuels Limited Place: London, Greater London, United Kingdom Zip: WC1V 7BD Sector: Biofuels Product: Imports, blends...

  16. Novare Biofuels Inc | Open Energy Information

    Open Energy Info (EERE)

    Novare Biofuels Inc Jump to: navigation, search Logo: Novare Biofuels Inc Name: Novare Biofuels Inc Address: 2983 Sterling Ct Place: Boulder, Colorado Zip: 80301 Region: Rockies...

  17. Aaditya Biofuels Ltd | Open Energy Information

    Open Energy Info (EERE)

    Aaditya Biofuels Ltd Jump to: navigation, search Name: Aaditya Biofuels Ltd. Place: Gujarat, India Product: Gujarat-based biodiesel producer. References: Aaditya Biofuels Ltd.1...

  18. Butamax Advanced Biofuels LLC | Open Energy Information

    Open Energy Info (EERE)

    Butamax Advanced Biofuels LLC Jump to: navigation, search Name: Butamax Advanced Biofuels LLC Place: Wilmington, Delaware Zip: 19880-0268 Sector: Biofuels Product: Delaware-based...

  19. Raven Biofuels International Corporation | Open Energy Information

    Open Energy Info (EERE)

    Biofuels International Corporation Jump to: navigation, search Name: Raven Biofuels International Corporation Place: Paramus, New Jersey Zip: 07652-1236 Sector: Biofuels Product:...

  20. Cutting Biofuel Production Costs | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cutting Biofuel Production Costs Working to use sunlight to convert biomass to biofuels, ... bioderived alcohols to benzaldehyde, toluene, and the zero-emission biofuel hydrogen. ...

  1. A Brief Literature Overview of Various Routes to Biorenewable Fuels from Lipids for the National Alliance for Advanced Biofuels and Bio-products (NAABB) Consortium

    SciTech Connect (OSTI)

    Albrecht, Karl O.; Hallen, Richard T.

    2011-03-29

    Renewable methods of producing transportation fuels are currently the focus of numerous large research efforts across the globe. Renewable fuel produced from algal lipids is one aspect of this research that could have profound implications on future transportation fuel requirements. However, technical challenges remain in several areas of algal-lipid-based fuels. These challenges include the identification and development of robust and productive algal species as well as extraction methods to recover the produced lipids. Not the least of these technical challenges is the conversion of the algae lipids to fungible fuels. This brief literature review focuses primarily on state-of-the-art downstream applications of producing fuel from fats and lipids, which can be applied to ongoing research with algae-derived lipids.

  2. Tailoring next-generation biofuels and their combustion in next-generation engines.

    SciTech Connect (OSTI)

    Gladden, John Michael; Wu, Weihua; Taatjes, Craig A.; Scheer, Adam Michael; Turner, Kevin M.; Yu, Eizadora T.; O'Bryan, Greg; Powell, Amy Jo; Gao, Connie W.

    2013-11-01

    Increasing energy costs, the dependence on foreign oil supplies, and environmental concerns have emphasized the need to produce sustainable renewable fuels and chemicals. The strategy for producing next-generation biofuels must include efficient processes for biomass conversion to liquid fuels and the fuels must be compatible with current and future engines. Unfortunately, biofuel development generally takes place without any consideration of combustion characteristics, and combustion scientists typically measure biofuels properties without any feedback to the production design. We seek to optimize the fuel/engine system by bringing combustion performance, specifically for advanced next-generation engines, into the development of novel biosynthetic fuel pathways. Here we report an innovative coupling of combustion chemistry, from fundamentals to engine measurements, to the optimization of fuel production using metabolic engineering. We have established the necessary connections among the fundamental chemistry, engine science, and synthetic biology for fuel production, building a powerful framework for co-development of engines and biofuels.

  3. USDA Feedstocks and Biofuels

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Chief Economist Office of Energy Policy and New Uses Harry S. Baumes, Ph. D. Director ... and Biofuels Office of the Chief Economist Office of Energy Policy and New Uses * ...

  4. Fact Sheet: National Biofuels Action Plan | Department of Energy

    Energy Savers [EERE]

    Sheet: National Biofuels Action Plan Fact Sheet: National Biofuels Action Plan October 7, 2008 - 4:14pm Addthis In an effort to meet President Bush's "Twenty in Ten" goal and meet the Renewable Fuel Standard (RFS) targets in the Energy Independence and Security Act of 2007 (EISA) the Biomass Research and Development Board (the Board)-co-chaired by the U.S. Department of Agriculture (USDA) and the U.S. Department of Energy (DOE)-developed the National Biofuels Action Plan (NBAP) to

  5. Biofuels Issues and Trends

    Gasoline and Diesel Fuel Update (EIA)

    Biofuels Issues and Trends October 2012 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. Energy Information Administration | Biofuels Issues and Trends i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the United States Government.

  6. BiofuelsReportFinal

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    BASED ON THE JUNE 25-26, 2007 WORKSHOP WASHINGTON, D.C. A RESEARCH ROADMAP FOR MAKING LIGNOCELLULOSIC BIOFUELS A PRACTICAL REALITY UNIVERSITY OF MASSACHUSETTS AMHERST SPONSORED BY: Breaking the Chemical and Engineering Barriers to Lignocellulosic Biofuels: Next Generation Hydrocarbon Biorefineries THE NATIONAL SCIENCE FOUNDATION AMERICAN CHEMICAL SOCIETY THE DEPARTMENT OF ENERGY Publication Date: March 2008 Suggested citation for this document: NSF. 2008. Breaking the Chemical and Engineering

  7. Mobility chains analysis of technologies for passenger cars and light duty vehicles fueled with biofuels : application of the Greet model to project the role of biomass in America's energy future (RBAEF) project.

    SciTech Connect (OSTI)

    Wu, M.; Wu, Y.; Wang, M; Energy Systems

    2008-01-31

    The Role of Biomass in America's Energy Future (RBAEF) is a multi-institution, multiple-sponsor research project. The primary focus of the project is to analyze and assess the potential of transportation fuels derived from cellulosic biomass in the years 2015 to 2030. For this project, researchers at Dartmouth College and Princeton University designed and simulated an advanced fermentation process to produce fuel ethanol/protein, a thermochemical process to produce Fischer-Tropsch diesel (FTD) and dimethyl ether (DME), and a combined heat and power plant to co-produce steam and electricity using the ASPEN Plus{trademark} model. With support from the U.S. Department of Energy (DOE), Argonne National Laboratory (ANL) conducted, for the RBAEF project, a mobility chains or well-to-wheels (WTW) analysis using the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model developed at ANL. The mobility chains analysis was intended to estimate the energy consumption and emissions associated with the use of different production biofuels in light-duty vehicle technologies.

  8. Whole Turf Algae to biofuels-final-sm

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Whole Turf Algae Polyculture Biofuels The production and conversion of whole turf algae polyculture maximizes fuels, chemicals and nutrients New Approach to Algal Biomass Production Sandia National Laboratories in partnership with the Smithsonian Institute and HydroMentia are pursuing the affordable, scalable and sustainable production of biofuels from benthic algal polyculture turf biomass. The highly productive, easily harvested and dewatered algae is a promising new alternative for achieving

  9. Thermochemical Conversion: Using Heat and Catalysis to Make Biofuels and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bioproducts | Department of Energy Conversion: Using Heat and Catalysis to Make Biofuels and Bioproducts Thermochemical Conversion: Using Heat and Catalysis to Make Biofuels and Bioproducts The Bioenergy Technologies Office works with industry to develop pathways that use heat, pressure, and catalysis to convert domestic, non-food biomass into gasoline, jet fuel, and other products. PDF icon thermochemical_four_pager.pdf More Documents & Publications BETO Conversion Program Replacing the

  10. Advanced Biofuels: How Scientists are Engineering Bacteria to Help Drive

    Energy Savers [EERE]

    America | Department of Energy Advanced Biofuels: How Scientists are Engineering Bacteria to Help Drive America Advanced Biofuels: How Scientists are Engineering Bacteria to Help Drive America December 6, 2011 - 2:12pm Addthis Strains of E. coli bacteria were engineered to digest switchgrass biomass and synthesize its sugars into gasoline, diesel and jet fuel. | Image courtesy of Berkeley Lab. Strains of E. coli bacteria were engineered to digest switchgrass biomass and synthesize its sugars

  11. Imagine Tomorrow: Student Competition Leads to Innovative Biofuel Ideas |

    Energy Savers [EERE]

    Department of Energy Imagine Tomorrow: Student Competition Leads to Innovative Biofuel Ideas Imagine Tomorrow: Student Competition Leads to Innovative Biofuel Ideas May 28, 2014 - 9:20am Addthis Watch the video above to learn more about the Imagine Tomorrow competition. Leslie Ovard Bioenergy Policy Specialist, Bioenergy Technologies Office Can you imagine if solar panels could be used to grow algae for fuel? Or if your morning coffee could not only get your day started, but also serve as a

  12. National Alliance for Advanced Biofuels and Bioproducts Synopsis (NAABB)

    Office of Environmental Management (EM)

    Final Report | Department of Energy National Alliance for Advanced Biofuels and Bioproducts Synopsis (NAABB) Final Report National Alliance for Advanced Biofuels and Bioproducts Synopsis (NAABB) Final Report In 2010, the NAABB was formed to further understand the impacts of algae on overall biomass and liquid transportation fuel production. The consortium consisted of 39 partner institutions and primarily focused on feedstock supply, feedstock logistics, and conversion/production pathways.

  13. Biofuels Impact on DPF Durability | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon pm040_lance_2011_p.pdf More Documents & Publications Biofuels Impact on DPF Durability DPF Performance with Biodiesel Blends Non-Petroleum-Based Fuels: Effects on Emissions Control Technologies

  14. FUNGIBLE AND COMPATIBLE BIOFUELS: LITERATURE SEARCH, SUMMARY, AND RECOMMENDATIONS

    SciTech Connect (OSTI)

    Bunting, Bruce G; Bunce, Michael; Barone, Teresa L; Storey, John Morse

    2011-04-01

    The purpose of the study described in this report is to summarize the various barriers to more widespread distribution of bio-fuels through our common carrier fuel distribution system, which includes pipelines, barges and rail, fuel tankage, and distribution terminals. Addressing these barriers is necessary to allow the more widespread utilization and distribution of bio-fuels, in support of a renewable fuels standard and possible future low-carbon fuel standards. These barriers can be classified into several categories, including operating practice, regulatory, technical, and acceptability barriers. Possible solutions to these issues are discussed; including compatibility evaluation, changes to bio-fuels, regulatory changes, and changes in the distribution system or distribution practices. No actual experimental research has been conducted in the writing of this report, but results are used to develop recommendations for future research and additional study as appropriate. This project addresses recognized barriers to the wider use of bio-fuels in the areas of development of codes and standards, industrial and consumer awareness, and materials compatibility issues.

  15. Infrastructure Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    From a Department of Defense (DoD) perspective, SMrs offer great advantage for energy security with stable fuel cost profiles, a secure installation for meeting base-load power demands with a robust, secured reactor design (i.e., energy security), potential to provide potable water and synthetic fuels, and a means to exceed DoD greenhouse gases (GhG) reduction goals. While presently SMrs are being proposed based on various reactor technologies, SMrs based on light-water reactor (lWr)

  16. Take a Closer Look:Biofuels Can Support Environmental, Economic and Social Goals

    SciTech Connect (OSTI)

    Dale, Bruce E.; Anderson, James; Brown, Dr. Robert C.; Csonka, Steven; Dale, Virginia H; Herwick, Gary; Jackson, Randall; Johnson, Kristen; Jordan, Nicholas; Kaffka, Stephen R; Kline, Keith L; Lynd, Lee R; Malmstrom, Carolyn; Garlock, Rebecca; Richard, Tom; Taylor, Caroline; Wang, Mr. Michael

    2014-07-01

    The US Congress passed the Renewable Fuels Standard (RFS) seven years ago. Since then, biofuels have gone from darling to scapegoat for many environmentalists, policy makers, and the general public. The reasons for this shift are complex and include concerns about environmental degradation, uncertainties about impact on food security, new access to fossil fuels, and overly optimistic timetables. As a result, many people have written off biofuels. However, numerous studies indicate that biofuels, if managed sustainably, can help solve pressing environmental, social and economic problems (Figure 1). The scientific and policy communities should take a closer look by reviewing the key assumptions underlying opposition to biofuels and carefully consider the probable alternatives. Liquid fuels based on fossil raw materials are likely to come at increasing environmental cost. Sustainable futures require energy conservation, increased efficiency, and alternatives to fossil fuels, including biofuels.

  17. CleanTech Biofuels | Open Energy Information

    Open Energy Info (EERE)

    CleanTech Biofuels Jump to: navigation, search Name: CleanTech Biofuels Place: St. Louis, Missouri Zip: 63130 Sector: Biofuels Product: CleanTech Biofuels holds exclusive licenses...

  18. Increasing Biofuel Deployment through Renewable Super Premium

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Demonstration & Market Transformation Platform Tim Theiss, ORNL Bob McCormick, NREL Jeongwoo Han, ANL Increasing Biofuel Deployment through Renewable Super Premium 2015 Bioenergy Technologies Office Peer Review March 23, 2015 2 | Bioenergy Technologies Office Project Goals are Aligned with DMT & BETO Goals 2025 CAFE Standards (U.S. EPA and U.S. NHTSA standards) FUEL ECONOMY STANDARDS 70% NO x & PM, 85% NMOG < 10 ppm sulfur in gasoline (U.S. EPA Tier 3 regulations) EMISSIONS

  19. GREET Life-Cycle Analysis of Biofuels

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    BETO Project Peer Review GREET Life-Cycle Analysis of Biofuels March 24, 2015 Analysis and Sustainability Michael Wang, Jennifer B. Dunn Argonne National Laboratory Key acronyms list AD Anaerobic digestion FR Forest residue AEO Annual Energy Outlook FTD Fischer Tropsch Diesel AEZ Agricultural Ecological Zone FN Fuel gas/natural gas AGE Air emissions, greenhouse gas emissions, energy consumption FY Fiscal year ALU Algal lipid upgrading GHG Greenhouse gas AHTL Algal hydrothermal liquefaction GREET

  20. National Biofuels Action Plan, October 2008

    SciTech Connect (OSTI)

    none,

    2008-10-01

    To help industry achieve the aggressive national goals, Federal agencies will need to continue to enhance their collaboration. The Biomass Research and Development (R&D) Board was created by Congress in the Biomass Research and Development Act of 2000. The National Biofuels Action Plan outlines areas where interagency cooperation will help to evolve bio-based fuel production technologies from promising ideas to competitive solutions.

  1. Conversion Technologies for Advanced Biofuels - Carbohydrates...

    Broader source: Energy.gov (indexed) [DOE]

    Advanced Conversion Roadmap Workshop Workshop on Conversion Technologies for Advanced Biofuels - Carbohydrates Conversion Technologies for Advanced Biofuels - Carbohydrates...

  2. Bioenergy & Biofuels Projects | Department of Energy

    Energy Savers [EERE]

    Bioenergy & Biofuels Projects Bioenergy & Biofuels Projects Bioenergy & Biofuels Projects Bioenergy & Biofuels Projects Bioenergy & Biofuels Projects Bioenergy & Biofuels Projects BIOENERGY &amp; BIOFUELS 1 PROJECT in 1 LOCATION 25,000,000 GALLONS ANNUAL PRODUCTION CAPACITY 14,900,000 GALLONS OF GASOLINE SAVED ANNUALLY 132,000 METRIC TONS OF CO2 EMISSIONS PREVENTED ANNUALLY ALL FIGURES AS OF MARCH 2015 BIOENERGY &amp; BIOFUELS PROJECT LOAN PROGRAM TECHNOLOGY

  3. Michigan E85 Infrastructure

    SciTech Connect (OSTI)

    Sandstrom, Matthew M.

    2012-03-30

    This is the final report for a grant-funded project to financially assist and otherwise provide support to projects that increase E85 infrastructure in Michigan at retail fueling locations. Over the two-year project timeframe, nine E85 and/or flex-fuel pumps were installed around the State of Michigan at locations currently lacking E85 infrastructure. A total of five stations installed the nine pumps, all providing cost share toward the project. By using cost sharing by station partners, the $200,000 provided by the Department of Energy facilitated a total project worth $746,332.85. This project was completed over a two-year timetable (eight quarters). The first quarter of the project focused on project outreach to station owners about the incentive on the installation and/or conversion of E85 compatible fueling equipment including fueling pumps, tanks, and all necessary electrical and plumbing connections. Utilizing Clean Energy Coalition (CEC) extensive knowledge of gasoline/ethanol infrastructure throughout Michigan, CEC strategically placed these pumps in locations to strengthen the broad availability of E85 in Michigan. During the first and second quarters, CEC staff approved projects for funding and secured contracts with station owners; the second through eighth quarters were spent working with fueling station owners to complete projects; the third through eighth quarters included time spent promoting projects; and beginning in the second quarter and running for the duration of the project was spent performing project reporting and evaluation to the US DOE. A total of 9 pumps were installed (four in Elkton, two in Sebewaing, one in East Lansing, one in Howell, and one in Whitmore Lake). At these combined station locations, a total of 192,445 gallons of E85, 10,786 gallons of E50, and 19,159 gallons of E30 were sold in all reporting quarters for 2011. Overall, the project has successfully displaced 162,611 gallons (2,663 barrels) of petroleum, and reduced regional GHG emissions by 375 tons in the first year of station deployment.

  4. Algae Biofuels Technology | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Algae Biofuels Technology Algae Biofuels Technology Algae Biofuels Technology PDF icon Algae Biofuels Technology More Documents & Publications The Promise and Challenge of Algae as Renewable Sources of Biofuels National Alliance for Advanced Biofuels and Bioproducts Synopsis (NAABB) Final Report U.S. Department of Energy Biomass Program

  5. Energy Department Awards $6 Million to Advance Cost-Competitive Biofuels |

    Office of Environmental Management (EM)

    Department of Energy Advance Cost-Competitive Biofuels Energy Department Awards $6 Million to Advance Cost-Competitive Biofuels July 15, 2014 - 12:00pm Addthis The Energy Department today announced $6 million for two projects to develop next generation biofuels that will help drive down the cost of producing gasoline, diesel, and jet fuels from biomass. The research and development projects, located in California and North Carolina, will focus on lowering production costs by maximizing the

  6. GIS-Based Infrastructure Modeling | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    GIS-Based Infrastructure Modeling GIS-Based Infrastructure Modeling Presentation by NREL's Keith Parks at the 2010 - 2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and Infrastructure Meeting on August 9 - 10, 2006 in Washington, D.C. PDF icon parks_gis_infrastructure_modeling.pdf More Documents & Publications DOE Hydrogen Transition Analysis Workshop Geographically-Based Infrastructure Analysis for California Hydrogen and FCV Implementation Scenarios, 2010 - 2025

  7. Geographically-Based Infrastructure Analysis for California | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Geographically-Based Infrastructure Analysis for California Geographically-Based Infrastructure Analysis for California Presentation by Joan Ogden of the University of California at the 2010 - 2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and Infrastructure Meeting on August 9 - 10, 2006 in Washington, D.C. PDF icon ogden_geo_infrastructure_analysis.pdf More Documents & Publications Hydrogen Infrastructure Strategies EIS-0105: Draft Environmental Impact Statement Natural

  8. US Biofuels | Open Energy Information

    Open Energy Info (EERE)

    Name: US Biofuels Place: Rome, Georgia Product: Biodiesel producer based in Georgia References: US Biofuels1 This article is a stub. You can help OpenEI by expanding it. US...

  9. Hampton Biofuels | Open Energy Information

    Open Energy Info (EERE)

    Biofuels Jump to: navigation, search Name: Hampton Biofuels Place: New York, New York Zip: 10017 Product: A start-up looking to develop a biodiesel plant in upstate New York....

  10. NREL: Energy Systems Integration Facility - Research Infrastructure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Infrastructure The foundation of the Energy Systems Integration Facility is its research infrastructure. In addition to extensive fixed equipment, the facility incorporates electrical, thermal, fuels, and data acquisition bus work throughout. These research buses tie individual laboratories together and allow interconnection of equipment between laboratories as well as rapid reconfiguration of systems under test. The Energy Systems Integration Facility offers the following research

  11. Algal Biofuels | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Algal Biofuels Algal Biofuels Algae image The Bioenergy Technologies Office's (BETO's) Algae Program is carrying out a long-term applied research and development (R&D) strategy to increase the yields and lower the costs of algal biofuels by working with partners to develop new technologies, to integrate technologies at commercially-relevant scales, and conduct crosscutting analyses to understand the potential and challenges of an algal biofuel industry that is capable of annually producing

  12. Geographically Based Hydrogen Demand and Infrastructure Analysis...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Presentation by NREL's Margo Melendez at the 2010 - 2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and Infrastructure Meeting on August 9 - 10, 2006 in Washington, D.C....

  13. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fuel Use Requirement All state agencies must, to the extent practicable, use 100% biofuels or electricity to operate all publicly owned vehicles. Agencies may substitute natural gas or propane for electricity or biofuel if the Washington State Department of Commerce (Department) determines that electricity and biofuel are not reasonably available. Practicability and measures of compliance are defined in rules adopted by the Washington State Department of Commerce. In addition,

  14. Promise and Challenges of Microalgal-Derived Biofuels

    SciTech Connect (OSTI)

    Pienkos, P. T.; Darzins, A.

    2009-01-01

    Microalgae offer great promise to contribute a significant portion of the renewable fuels that will be required by the Renewable Fuels Standard described in the 2007 Energy Independence and Security Act of the United States. Algal biofuels would be based mainly on the high lipid content of the algal cell and thus would be an ideal feedstock for high energy density transportation fuels, such as biodiesel as well as green diesel, green jet fuel and green gasoline. A comprehensive research and development program for the development of algal biofuels was initiated by the US Department of Energy (DoE) more than 30 years ago, and although great progress was made, the program was discontinued in 1996, because of decreasing federal budgets and low petroleum costs. Interest in algal biofuels has been growing recently due to increased concern over peak oil, energy security, greenhouse gas emissions, and the potential for other biofuel feedstocks to compete for limited agricultural resources. The high productivity of algae suggests that much of the US transportation fuel needs can be met by algal biofuels at a production cost competitive with the cost of petroleum seen during the early part of 2008. Development of algal biomass production technology, however, remains in its infancy. This perspective provides a brief overview of past algal research sponsored by the DoE, the potential of microalgal biofuels and a discussion of the technical and economic barriers that need to be overcome before production of microalgal-derived diesel-fuel substitutes can become a large-scale commercial reality.

  15. Performance of Biofuels and Biofuel Blends

    Broader source: Energy.gov [DOE]

    2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  16. State Experience in Hydrogen Infrastructure in California | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Experience in Hydrogen Infrastructure in California State Experience in Hydrogen Infrastructure in California Presentation by Gerhard Achtelik, California Air Resources Board, at the Hydrogen Infrastructure Market Readiness Workshop, February 17, 2011, in Washington, DC. PDF icon wkshp_market_readiness_achtelik.pdf More Documents & Publications Hydrogen Fueling for Current and Anticipated Fuel Cell Electric Vehicles (FCEVs) FCEVs and Hydrogen in California Fuel Cell Electric

  17. Geographically Based Hydrogen Demand and Infrastructure Analysis |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Analysis Geographically Based Hydrogen Demand and Infrastructure Analysis Presentation by NREL's Margo Melendez at the 2010 - 2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and Infrastructure Meeting on August 9 - 10, 2006 in Washington, D.C. PDF icon melendez_geo_h2_demand.pdf More Documents & Publications 2010 - 2025 Scenario Analysis Meeting Agenda for August 9 - 10, 2006 Agenda for the 2010-2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and

  18. Renewable Energy Laboratory Development for Biofuels Advanced Combustion Studies

    SciTech Connect (OSTI)

    Soloiu, Valentin

    2012-03-31

    The research advanced fundamental science and applied engineering for increasing the efficiency of internal combustion engines and meeting emissions regulations with biofuels. The project developed a laboratory with new experiments and allowed investigation of new fuels and their combustion and emissions. This project supports a sustainable domestic biofuels and automotive industry creating economic opportunities across the nation, reducing the dependence on foreign oil, and enhancing U.S. energy security. The one year period of research developed fundamental knowledge and applied technology in advanced combustion, emissions and biofuels formulation to increase vehicle's efficiency. Biofuels?? combustion was investigated in a Compression Ignition Direct Injection (DI) to develop idling strategies with biofuels and an Indirect Diesel Injection (IDI) intended for auxiliary power unit.

  19. Alternative Fuels Data Center: Innovations Improve Electric Vehicle

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Charging Infrastructure Innovations Improve Electric Vehicle Charging Infrastructure to someone by E-mail Share Alternative Fuels Data Center: Innovations Improve Electric Vehicle Charging Infrastructure on Facebook Tweet about Alternative Fuels Data Center: Innovations Improve Electric Vehicle Charging Infrastructure on Twitter Bookmark Alternative Fuels Data Center: Innovations Improve Electric Vehicle Charging Infrastructure on Google Bookmark Alternative Fuels Data Center: Innovations

  20. Sandia Energy - Center for Infrastructure Research and Innovation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    More Efficient Fuel Cells under Development by Engineers Read More Permalink Gallery High-Efficiency Solar Thermochemical Reactor for Hydrogen Production Center for Infrastructure...

  1. Analysis of the Hydrogen Infrastructure Needed to Enable Commercial...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Conference Paper Analysis of the Hydrogen NRELCP-540-37903 Infrastructure Needed to March 2005 Enable Commercial Introduction of Hydrogen- Fueled Vehicles Preprint M. Melendez and...

  2. SeQuential Biofuels LLC | Open Energy Information

    Open Energy Info (EERE)

    Biofuels LLC Jump to: navigation, search Name: SeQuential Biofuels LLC Place: Portland, Oregon Zip: 97231 Sector: Biofuels Product: A biofuels marketing and distribution company...

  3. Cellu-WHAT-sic? Communicating the biofuels message to local stakeholders

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Author Author's Title Event Date Presentation Title Cellu-WHAT-sic? Communicating the biofuels message to local stakeholders Matt Merritt Director of Public Relations, POET-DSM Advanced Biofuels July 29, 2014 Project LIBERTY * 25 million gallons-per-year cellulosic ethanol plant * Co-located with an existing grain-based ethanol plant * Utilizes existing infrastructure * POET-DSM designed sustainable biomass supply system * Byproduct of cellulosic process (lignin) is used to generate biogas that

  4. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fueling Infrastructure Grants As part of the Delaware Clean Transportation Incentive Program, the Delaware Department of Natural Resources and Environmental Control (DNREC) provides grant funding for public and private alternative fueling stations, including DC fast electric vehicle supply equipment (EVSE), natural gas, propane, and hydrogen fueling infrastructure. The grant funds 75% of the cost of public access fueling infrastructure and 50% of the cost of private access fueling

  5. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fueling Infrastructure Tax Credit For tax years beginning before January 1, 2020, a tax credit is available for up to 75% of the cost of installing commercial alternative fueling infrastructure. Eligible alternative fuels include natural gas, propane, and electricity. The infrastructure must be new and must not have been previously installed or used to fuel alternative fuel vehicles. A tax credit is also available for up to 50% of the cost of installing a residential compressed natural gas

  6. Biofuel impacts on water.

    SciTech Connect (OSTI)

    Tidwell, Vincent Carroll; Malczynski, Leonard A.; Sun, Amy Cha-Tien

    2011-01-01

    Sandia National Laboratories and General Motors Global Energy Systems team conducted a joint biofuels systems analysis project from March to November 2008. The purpose of this study was to assess the feasibility, implications, limitations, and enablers of large-scale production of biofuels. 90 billion gallons of ethanol (the energy equivalent of approximately 60 billion gallons of gasoline) per year by 2030 was chosen as the book-end target to understand an aggressive deployment. Since previous studies have addressed the potential of biomass but not the supply chain rollout needed to achieve large production targets, the focus of this study was on a comprehensive systems understanding the evolution of the full supply chain and key interdependencies over time. The supply chain components examined in this study included agricultural land use changes, production of biomass feedstocks, storage and transportation of these feedstocks, construction of conversion plants, conversion of feedstocks to ethanol at these plants, transportation of ethanol and blending with gasoline, and distribution to retail outlets. To support this analysis, we developed a 'Seed to Station' system dynamics model (Biofuels Deployment Model - BDM) to explore the feasibility of meeting specified ethanol production targets. The focus of this report is water and its linkage to broad scale biofuel deployment.

  7. Beetles, Biofuel, and Coffee

    SciTech Connect (OSTI)

    Ceja-Navarro, Javier

    2015-05-06

    Berkeley Lab scientist Javier Ceja-Navarro discusses his research on the microbial populations found the guts of insects, specifically the coffee berry borer, which may lead to better pest management and the passalid beetle, which could lead to improved biofuel production.

  8. Process Design and Economics for the Conversion of Algal Biomass to Biofuels: Algal Biomass Fractionation to Lipid- and Carbohydrate-Derived Fuel Products

    SciTech Connect (OSTI)

    Davis, R.; Kinchin, C.; Markham, J.; Tan, E.; Laurens, L.; Sexton, D.; Knorr, D.; Schoen, P.; Lukas, J.

    2014-09-01

    Beginning in 2013, NREL began transitioning from the singular focus on ethanol to a broad slate of products and conversion pathways, ultimately to establish similar benchmarking and targeting efforts. One of these pathways is the conversion of algal biomass to fuels via extraction of lipids (and potentially other components), termed the 'algal lipid upgrading' or ALU pathway. This report describes in detail one potential ALU approach based on a biochemical processing strategy to selectively recover and convert select algal biomass components to fuels, namely carbohydrates to ethanol and lipids to a renewable diesel blendstock (RDB) product. The overarching process design converts algal biomass delivered from upstream cultivation and dewatering (outside the present scope) to ethanol, RDB, and minor coproducts, using dilute-acid pretreatment, fermentation, lipid extraction, and hydrotreating.

  9. Geographically-Based Infrastructure Analysis

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Previous and Ongoing * HYDS ME - Evaluates best infrastructure options * Interstate Infrastructure Analysis - Minimal infrastructure to facilitate interstate travel during ...

  10. IPHE Infrastructure Workshop- Workshop Proceedings, February 25-26, 2010 Sacramento, CA

    Broader source: Energy.gov [DOE]

    Proceedings of the February 2010 International Partnership for Hydrogen and Fuel Cells in the Economy (IPHE) Infrastructure Workshop.

  11. Vivergo Fuels | Open Energy Information

    Open Energy Info (EERE)

    navigation, search Name: Vivergo Fuels Place: United Kingdom Product: Vivergo Fuels is a joint venture formed to build and operate a world-scale biofuel plant in the UK....

  12. Benefits of Biofuel Production and Use in Illinois

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Illinois can leverage its extensive biomass resources and existing infrastructure to increase advanced biofuels production. The Bioenergy Technologies Office (BETO) enables the development of novel technologies that can be used to establish Illinois as a leader in the growing bioeconomy. Illinois Illinois is among the top 10 petroleum-consuming states. In 2012, Illinois consumed 25 times more petroleum than it produced. Investing in the advanced bioeconomy will boost economic development,

  13. Support to Biofuels in Latin America and the Caribbean

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Support to Biofuels in Latin America and the Caribbean Arnaldo Vieira de Carvalho Inter-American Development Bank - IDB Energy Division Infrastructure and Environment Department Washington, DC arnaldov@iadb.org; +1 202 623 1719 BIOMASS 2014: Growing the Future Bioeconomy Washington DC, July 29-30, 2014 Inter-American Development Bank - IDB * Oldest regional development bank (1959): 48 member countries - 26 borrowers (with >50% votes in the Board); HQs in Washington, DC, offices in all

  14. Method for producing bio-fuel that integrates heat from carbon-carbon bond-forming reactions to drive biomass gasification reactions

    DOE Patents [OSTI]

    Cortright, Randy D. (Madison, WI); Dumesic, James A. (Verona, WI)

    2011-01-18

    A low-temperature catalytic process for converting biomass (preferably glycerol recovered from the fabrication of bio-diesel) to synthesis gas (i.e., H.sub.2/CO gas mixture) in an endothermic gasification reaction is described. The synthesis gas is used in exothermic carbon-carbon bond-forming reactions, such as Fischer-Tropsch, methanol, or dimethylether syntheses. The heat from the exothermic carbon-carbon bond-forming reaction is integrated with the endothermic gasification reaction, thus providing an energy-efficient route for producing fuels and chemicals from renewable biomass resources.

  15. Method for producing bio-fuel that integrates heat from carbon-carbon bond-forming reactions to drive biomass gasification reactions

    DOE Patents [OSTI]

    Cortright, Randy D.; Dumesic, James A.

    2013-04-02

    A low-temperature catalytic process for converting biomass (preferably glycerol recovered from the fabrication of bio-diesel) to synthesis gas (i.e., H.sub.2/CO gas mixture) in an endothermic gasification reaction is described. The synthesis gas is used in exothermic carbon-carbon bond-forming reactions, such as Fischer-Tropsch, methanol, or dimethylether syntheses. The heat from the exothermic carbon-carbon bond-forming reaction is integrated with the endothermic gasification reaction, thus providing an energy-efficient route for producing fuels and chemicals from renewable biomass resources.

  16. Method for producing bio-fuel that integrates heat from carbon-carbon bond-forming reactions to drive biomass gasification reactions

    DOE Patents [OSTI]

    Cortright, Randy D. (Madison, WI); Dumesic, James A. (Verona, WI)

    2012-04-10

    A low-temperature catalytic process for converting biomass (preferably glycerol recovered from the fabrication of bio-diesel) to synthesis gas (i.e., H.sub.2/CO gas mixture) in an endothermic gasification reaction is described. The synthesis gas is used in exothermic carbon-carbon bond-forming reactions, such as Fischer-Tropsch, methanol, or dimethylether syntheses. The heat from the exothermic carbon-carbon bond-forming reaction is integrated with the endothermic gasification reaction, thus providing an energy-efficient route for producing fuels and chemicals from renewable biomass resources.

  17. Strategy for the Integration of Hydrogen as a Vehicle Fuel into the Existing Natural Gas Vehicle Fueling Infrastructure of the Interstate Clean Transportation Corridor Project: 22 April 2004--31 August 2005

    SciTech Connect (OSTI)

    Gladstein, Neandross and Associates

    2005-09-01

    Evaluates opportunities to integrate hydrogen into the fueling stations of the Interstate Clean Transportation Corridor--an existing network of LNG fueling stations in California and Nevada.

  18. DOE Announces Webinars on Compressed Natural Gas Infrastructure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    estimate the cost to install fueling infrastructure for vehicles that run on propane. Curtis Donaldson from CleanFUEL USA discusses key components of a propane station, how a...

  19. Challenge # 2 Logistics and Compatibility with Existing Infrastructure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Production location 2. Transporting feedstocks and fuel 3. Aging of oil 4. Oil storage 5. Infrastructure compatible fuels 6. How do we identify low-cost options? Challenge 2. ...

  20. Power Ecalene Fuels Inc | Open Energy Information

    Open Energy Info (EERE)

    Arvada, Colorado Zip: 80007 Region: Rockies Area Sector: Biofuels Product: Mixed alcohol transportation fuel Website: www.powerecalene.com Coordinates: 39.862942,...

  1. Vehicle Technologies Office Merit Review 2015: Biofuel Impacts on Aftertreatment Devices

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about biofuel impacts...

  2. Energy Department Announces $13.4 Million to Develop Advanced Biofuels and Bioproducts

    Broader source: Energy.gov [DOE]

    The Energy Department announced today up to $13.4 million for five projects to develop advanced biofuels and bioproducts that will help drive down the cost of producing gasoline, diesel, and jet fuel from biomass.

  3. 2nd International Hydrogen Infrastructure Challenges Webinar

    Broader source: Energy.gov [DOE]

    On Tuesday, March 10, at 8 a.m. EDT, the Fuel Cell Technologies Office will present a webinar to summarize the 2nd international information exchange on the hydrogen refueling infrastructure challenges and potential solutions to support the successful global commercialization of hydrogen fuel cell electric vehicles.

  4. Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project

    SciTech Connect (OSTI)

    Stottler, Gary

    2012-02-08

    General Motors, LLC and energy partner Shell Hydrogen, LLC, deployed a system of hydrogen fuel cell electric vehicles integrated with a hydrogen fueling station infrastructure to operate under real world conditions as part of the U.S. Department of Energy's Controlled Hydrogen Fleet and Infrastructure Validation and Demonstration Project. This technical report documents the performance and describes the learnings from progressive generations of vehicle fuel cell system technology and multiple approaches to hydrogen generation and delivery for vehicle fueling.

  5. Fuel Cell Power | Open Energy Information

    Open Energy Info (EERE)

    Fuel Cell Power Place: United Kingdom Product: Information provider of fuel cells and their supporting infrastructure. References: Fuel Cell Power1 This article is a stub. You...

  6. Advanced Biofuels Workshop

    Gasoline and Diesel Fuel Update (EIA)

    August 1, 2012 In Attendance U.S. Energy Information Administration 1000 Independence Ave. SW, Room 2E-069 Washington, DC 20585 Adam Sieminski EIA Terry Higgins Hart Downstream Energy Services Peter Ryus RSB Services Foundation Zia Haq DOE Robert Kozak Atlantic Biomass Conversion Leticia Phillips UNICA/Brazillian Sugarecane Industry Assoc. Paul Kamp Leifmark, LLC/Inbicon Biomass Steve Gerber Fiberight Joanne Ivancic Advanced Biofuels USA John G. Cowie Agenda 2020 Technology Alliance Jeff Hazle

  7. Advanced Biofuels Cost of Production | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biofuels Cost of Production Advanced Biofuels Cost of Production Presentation given by the Biomass Program's Zia Haq at the Aviation Biofuels Conference on the cost of production of advanced biofuels. PDF icon aviation_biofuels_haq.pdf More Documents & Publications A Review of DOE Biofuels Program DOE Perspectives on Advanced Hydrocarbon-based Biofuels Pathways for Algal Biofuels

  8. Sun Biofuels SBF | Open Energy Information

    Open Energy Info (EERE)

    Biofuels SBF Jump to: navigation, search Name: Sun Biofuels (SBF) Place: London, Greater London, United Kingdom Zip: W8 7LP Product: London-based jatropha and biofuel project...

  9. SunBelt Biofuels | Open Energy Information

    Open Energy Info (EERE)

    SunBelt Biofuels Jump to: navigation, search Logo: SunBelt Biofuels Name: SunBelt Biofuels Place: Soperton, Georgia Zip: 30457 Sector: Biomass Product: Freedom Giant Miscanthus...

  10. 5 boro biofuel | Open Energy Information

    Open Energy Info (EERE)

    boro biofuel Jump to: navigation, search Logo: 5 boro biofuel Name: 5 boro biofuel Address: 100 maiden lane Place: New York, New York Zip: 10035 Region: Northeast - NY NJ CT PA...

  11. Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Project Solicitation | Department of Energy Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project Solicitation Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project Solicitation The Fuel Cell Technologies Office of the Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy is soliciting financial assistance Applications with the objective of supporting industry efforts and the President's Hydrogen Fuel Initiative in

  12. Heartland Biofuel | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name: Heartland Biofuel Place: Flora, Indiana Product: Biodiesel producer that operates a 1.7m plant in Flora, Indiana. Coordinates: 32.54209,...

  13. Biofuels Digest | Open Energy Information

    Open Energy Info (EERE)

    Digest Jump to: navigation, search Name: Biofuels Digest Address: 801 Brickell Avenue Suite 900 Place: Miami, Florida Zip: 33131 Sector: Services Product: Information Year Founded:...

  14. Biofuels and Renewable Energy Page

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bioenergy Conventional Renewable Energy Wind Power Hydro Power Power System INL Home Biofuels and Renewable Energy Renewable energy resources are expected to play major role in...

  15. Alternative Transportation Refueling Infrastructure in the U.S. 2014:

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Status and Challenges | Department of Energy Alternative Transportation Refueling Infrastructure in the U.S. 2014: Status and Challenges Alternative Transportation Refueling Infrastructure in the U.S. 2014: Status and Challenges Lack of adequate refueling infrastructure is a major barrier to the success of alternative motor fuels. A transition from fossil petroleum to alternative, low-carbon transportation fuels appears to be necessary to mitigate the adverse impacts of global warming,

  16. DOE Has Issued Request for Information Regarding Hydrogen Infrastructure

    Office of Environmental Management (EM)

    and FCEVs | Department of Energy Has Issued Request for Information Regarding Hydrogen Infrastructure and FCEVs DOE Has Issued Request for Information Regarding Hydrogen Infrastructure and FCEVs December 18, 2013 - 12:00am Addthis The U.S. Department of Energy's (DOE) Fuel Cell Technologies Office has issued a request for information (RFI) seeking feedback from interested stakeholders regarding strategies for a robust market introduction of hydrogen supply, infrastructure, and fuel cell

  17. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    and Infrastructure Tax Credit for Businesses Business owners and others may be eligible for a tax credit of 35% of eligible costs for qualified alternative fuel infrastructure projects, or the incremental or conversion cost of two or more AFVs. Qualified infrastructure includes facilities for mixing, storing, compressing, or dispensing fuels for vehicles operating on alternative fuels. Qualified alternative fuels include electricity, natural gas, gasoline blended with at least 85% ethanol (E85),

  18. Bulk Fuel Procurement Process & Alternative Drop-in Fuel | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Bulk Fuel Procurement Process & Alternative Drop-in Fuel Bulk Fuel Procurement Process & Alternative Drop-in Fuel Jeanne Binder, DLA Energy, presentation on Bulk Fuel Procurement Process & Alternative Drop-in Fuel at the Advanced Biofuels Industry Roundtable. PDF icon 7_binder_roundtable.pdf More Documents & Publications DLA Energy: Your Supplemental Energy Contracting Venue Advanced Drop-In Biofuels Initiative Agenda FUPWG Spring 2015 Agenda and Presentations

  19. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Renewable Fuel Promotion The Texas Bioenergy Policy Council and the Texas Bioenergy Research Committee were established to promote the goal of making biofuels a significant part of the energy industry in Texas by January 1, 2019. The Policy Council is tasked with the following: Provide a vision for unifying the state's agricultural, energy, and research strengths in a successful launch of a cellulosic biofuel and bioenergy industry; Foster development of cellulosic and bio-based fuels; Pursue

  20. Biomass and Biofuels Success Stories - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Success Stories Site Map Printable Version Share this resource About Search Categories (15) Advanced Materials Biomass and Biofuels Marketing Summaries (158) Success Stories (3) Building Energy Efficiency Electricity Transmission Energy Analysis Energy Storage Geothermal Hydrogen and Fuel Cell Hydropower, Wave and Tidal Industrial Technologies Solar Photovoltaic Solar Thermal Startup America Vehicles and Fuels Wind Energy Partners (27) Visual Patent Search Success Stories Graphic of a full-grown