National Library of Energy BETA

Sample records for bioenergy production research

  1. Bioenergy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bioenergy Bioenergy Research into alternative forms of energy, especially energy security, is one of the major national security imperatives of this century. Get Expertise Babetta...

  2. Roadmap for Bioenergy and Biobased Products in the United States

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    7 Roadmap for Bioenergy and Biobased Products in the United States Biomass Research and Development Technical Advisory Committee Biomass Research and Development Initiative October...

  3. The Future of Bioenergy Feedstock Production

    Office of Environmental Management (EM)

    2 Bioenergy Technologies Office background Feedstock assessment, production and logistics Biomass yield improvements Sustainable feedstock production Future...

  4. Achieving Water-Sustainable Bioenergy Production | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Production Breakout Session 3-A: Growing a Water-Smart Bioeconomy Achieving Water-Sustainable Bioenergy Production May Wu, Principal Environmental System Analyst in the...

  5. ORNL researchers contribute to major UN bioenergy and sustainability...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ORNL researchers contribute to major bioenergy and sustainability report ORNL researchers Keith Kline and Virginia Dale contributed to a major United Nations report on bioenergy...

  6. Feedstock Production Datasets from the Bioenergy Knowledge Discovery Framework

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Bioenergy Knowledge Discovery Framework invites users to discover the power of bioenergy through an interface that provides extensive access to research data and literature, GIS mapping tools, and collaborative networks. The Bioenergy KDF supports efforts to develop a robust and sustainable bioenergy industry. The KDF facilitates informed decision making by providing a means to synthesize, analyze, and visualize vast amounts of information in a relevant and succinct manner. It harnesses Web 2.0 and social networking technologies to build a collective knowledge system that can better examine the economic and environmental impacts of development options for biomass feedstock production, biorefineries, and related infrastructure. [copied from https://www.bioenergykdf.net/content/about] Holdings include datasets, models, and maps and the collections are growing due to both DOE contributions and data uploads from individuals.

  7. Biofuel Production Datasets from DOE's Bioenergy Knowledge Discovery Framework (KDF)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Bioenergy Knowledge Discovery Framework invites users to discover the power of bioenergy through an interface that provides extensive access to research data and literature, GIS mapping tools, and collaborative networks. The Bioenergy KDF supports efforts to develop a robust and sustainable bioenergy industry. The KDF facilitates informed decision making by providing a means to synthesize, analyze, and visualize vast amounts of information in a relevant and succinct manner. It harnesses Web 2.0 and social networking technologies to build a collective knowledge system that can better examine the economic and environmental impacts of development options for biomass feedstock production, biorefineries, and related infrastructure. [copied from https://www.bioenergykdf.net/content/about]

    Holdings include datasets, models, and maps and the collections arel growing due to both DOE contributions and data uploads from individuals.

  8. Agave Transcriptomes and microbiomes for bioenergy research

    E-Print Network [OSTI]

    Gross, Stephen

    2013-01-01

    other bioenergy feedstocks Dataset Viridiplantae 46% densityof Agave species as a bioenergy feedstocks. density Abstract

  9. Bioenergy Research | Clean Energy | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    research feedstocks, feedstock logistics, biorefineries, product delivery, and the sustainability of the supply chain. Its goal is to enable the US national vision of large-scale...

  10. Bioenergy

    SciTech Connect (OSTI)

    2014-11-20

    Scientists and engineers at Idaho National Laboratory are working with partners throughout the bioenergy industry in preprocessing and characterization to ensure optimum feedstock quality. This elite team understands that addressing feedstock variability is a critical component in the biofuel production process.

  11. RESEARCH Open Access Short and long-term carbon balance of bioenergy

    E-Print Network [OSTI]

    by offsetting fossil fuel electricity generation emissions, and potentially by avoided pyrogenic emissions dueRESEARCH Open Access Short and long-term carbon balance of bioenergy electricity production fueled bioenergy electricity production are offset by avoided fossil fuel electricity emissions. The carbon benefit

  12. Review of Sorghum Production Practices: Applications for Bioenergy

    SciTech Connect (OSTI)

    Turhollow Jr, Anthony F; Webb, Erin; Downing, Mark

    2010-06-01

    Sorghum has great potential as an annual energy crop. While primarily grown for its grain, sorghum can also be grown for animal feed and sugar. Sorghum is morphologically diverse, with grain sorghum being of relatively short stature and grown for grain, while forage and sweet sorghums are tall and grown primarily for their biomass. Under water-limited conditions sorghum is reliably more productive than corn. While a relatively minor crop in the United States (about 2% of planted cropland), sorghum is important in Africa and parts of Asia. While sorghum is a relatively efficient user of water, it biomass potential is limited by available moisture. The following exhaustive literature review of sorghum production practices was developed by researchers at Oak Ridge National Laboratory to document the current state of knowledge regarding sorghum production and, based on this, suggest areas of research needed to develop sorghum as a commercial bioenergy feedstock. This work began as part of the China Biofuels Project sponsored by the DOE Energy Efficiency and Renewable Energy Program to communicate technical information regarding bioenergy feedstocks to government and industry partners in China, but will be utilized in a variety of programs in which evaluation of sorghum for bioenergy is needed. This report can also be used as a basis for data (yield, water use, etc.) for US and international bioenergy feedstock supply modeling efforts.

  13. Promoting Sustainable Bioenergy Production and Trade Issue Paper No. 17

    E-Print Network [OSTI]

    Promoting Sustainable Bioenergy Production and Trade Issue Paper No. 17 June 2009 l ICTSD Programme and Development University of Reading EU Support for Biofuels and Bioenergy, Environmental Sustainability Criteria School of Agriculture, Policy and Development University of Reading EU Support for Biofuels and Bioenergy

  14. Water and energy footprints of bioenergy crop production on marginal lands

    E-Print Network [OSTI]

    Chen, Jiquan

    of Zoology, Michigan State University, East Lansing, MI 48824, USA Abstract Water and energy demandsWater and energy footprints of bioenergy crop production on marginal lands A . K . B H A R D WA J and S . K . H A M I LT O N *w} *Great Lakes Bioenergy Research Center, Michigan State University, East

  15. Bioprocessing of Microalgae for Bioenergy and Recombinant Protein Production

    E-Print Network [OSTI]

    Garzon Sanabria, Andrea J

    2013-07-31

    This dissertation investigates harvesting of marine microalgae for bioenergy and production of two recombinant proteins for therapeutic applications in Chlamydomonas reinhardtii. The first study describes harvesting of ...

  16. A roadmap for research on crassulacean acid metabolism (CAM) to enhance sustainable food and bioenergy production in a hotter, drier world

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Yang, Xiaohan; Cushman, John C.; Borland, Anne M.; Edwards, Erika; Wullschleger, Stan D.; Tuskan, Gerald A.; Owen, Nick; Griffiths, Howard; Smith, J. Andrew C.; Cestari De Paoli, Henrique; et al

    2015-07-07

    Crassulacean acid metabolism (CAM) is a specialized mode of photosynthesis that features nocturnal CO? uptake, facilitates increased water-use efficiency (WUE), and enables CAM plants to inhabit water-limited environments such as semi-arid deserts or seasonally dry forests. Human population growth and global climate change now present challenges for agricultural production systems to increase food, feed, forage, fiber, and fuel production. One approach to meet these challenges is to increase reliance on CAM crops, such as Agave and Opuntia, for biomass production on semi-arid, abandoned, marginal, or degraded agricultural lands. Major research efforts are now underway to assess the productivity of CAMmore†Ľcrop species and to harness the WUE of CAM by engineering this pathway into existing food and bioenergy crops. An improved understanding of CAM gained through intensive and expanded research efforts has potential for high returns on research investment in the foreseeable future. To help realize the potential of sustainable dryland agricultural systems, it is necessary to address scientific questions related to the genomic features, regulatory mechanisms, and evolution of CAM; CAM-into-C3 engineering; and the production of CAM crops. Answering these questions requires collaborative efforts to build infrastructure for CAM model systems, field trials, mutant collections, and data management.ę†less

  17. Advancing sustainable bioenergy: Evolving stakeholder interests and the relevance of research

    SciTech Connect (OSTI)

    Johnson, Timothy L [U.S. Environmental Protection Agency, Raleigh, North Carolina; Bielicki, Dr Jeffrey M [University of Minnesota; Dodder, Rebecca [U.S. Environmental Protection Agency; Hilliard, Michael R [ORNL; Kaplan, Ozge [U.S. Environmental Protection Agency; Miller, C. Andy [U.S. Environmental Protection Agency

    2013-01-01

    The sustainability of future bioenergy production rests on more than continual improvements in its environmental, economic, and social impacts. The emergence of new biomass feedstocks, an expanding array of conversion pathways, and expected increases in overall bioenergy production are connecting diverse technical, social, and policy communities. These stakeholder groups have different and potentially conflicting values and cultures, and therefore different goals and decision making processes. Our aim is to discuss the implications of this diversity for bioenergy researchers. The paper begins with a discussion of bioenergy stakeholder groups and their varied interests, and illustrates how this diversity complicates efforts to define and promote sustainable bioenergy production. We then discuss what this diversity means for research practice. Researchers, we note, should be aware of stakeholder values, information needs, and the factors affecting stakeholder decision making if the knowledge they generate is to reach its widest potential use. We point out how stakeholder participation in research can increase the relevance of its products, and argue that stakeholder values should inform research questions and the choice of analytical assumptions. Finally, we make the case that additional natural science and technical research alone will not advance sustainable bioenergy production, and that important research gaps relate to understanding stakeholder decision making and the need, from a broader social science perspective, to develop processes to identify and accommodate different value systems. While sustainability requires more than improved scientific and technical understanding, the need to understand stakeholder values and manage diversity presents important research opportunities.

  18. Updated 2-11-06 Research to Advance Grass Bioenergy

    E-Print Network [OSTI]

    Pawlowski, Wojtek

    produced grass pellets at 2.8% ash content. Most clean wood products will have an ash content below 1 the grass bioenergy industry. Current Status Grass pellet bioenergy appears to be an economically and environmentally appropriate system for generating some local energy in rural America. A grass pellet system should

  19. A Virtual Visit to Bioenergy Research at the National Laboratories

    Office of Energy Efficiency and Renewable Energy (EERE)

    For National Bioenergy Day on October 22, bioenergy facilities across the country are holding open houses to increase public awareness of bioenergy and its role in the clean energy landscape. By the same token, the Bioenergy Technologies Office (BETO) is offering this virtual open house of its national laboratoriesóthe facilities at the core of BETOís research and development. If you want to know how Energy Department bioenergy funding is making an impact, be sure to take a look at our national labsó47% of BETO funding this past year went to the national laboratories. Of that funding, about half went to the National Renewable Energy Laboratory. Pacific Northwest National Laboratory, Idaho National Laboratory, and Oak Ridge National Laboratory also received a large share.

  20. Our Commitment to Bioenergy Sustainability

    Broader source: Energy.gov [DOE]

    To enhance the benefits of bioenergy while mitigating concerns, the Biomass Program combines advanced analysis with applied research to understand and address the potential environmental impacts of bioenergy production.

  1. Developing a Portfolio of Sustainable Bioenergy Feedstock Production Systems for the US Midwest: A Research and Demonstration Project

    E-Print Network [OSTI]

    Jager, Henriette I.

    into the foreseeable future. While the Energy Independence and Security Act of 2007 acknowledges that grain) establishment, production, harvest, and transport costs, (4) water use and quality impacts, (5) above

  2. Integrated Photo-Bioelectrochemical System for Contaminants Removal and Bioenergy Production

    E-Print Network [OSTI]

    photobioelectrochemical (IPB) system was developed by installing a microbial fuel cell (MFC) inside an algal bioreactor fuel cells (MFCs)3 with algal bioreactors4 for wastewater treatment and bioenergy production. MFCs energy recovery from waste. To address this challenge, the key research tasks include optimizing a more

  3. HAWAII NATURAL ENERGY INSTITUTEwww.hnei.hawaii.edu Bioenergy Research

    E-Print Network [OSTI]

    HAWAII NATURAL ENERGY INSTITUTEwww.hnei.hawaii.edu Bioenergy Research Hawaii Natural Energy Institute Briefing for Rear Admiral Matthew Klunder Chief of Naval Research Hawaii Natural Energy Institute University of Hawaii September 7, 2012 #12;Corn Sweet Sorghum Sugarcane Guinea Grass Banagrass Eucalyptus

  4. Bioenergy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News PublicationsAudits & InspectionsBeryllium andSampler As AnEl biodiésel esBioenergy

  5. HAWAII NATURAL ENERGY INSTITUTEwww.hnei.hawaii.edu Bioenergy Research

    E-Print Network [OSTI]

    Starch Fiber Oil Hydrolysis Transesterification Combustion Gasification Pyrolysis Ethanol Biodiesel Production - CTAHR Gasification & Contaminant Removal - HNEI Technology Assessment Fuel Fit for Purpose, banagrass, Eucalyptus, and Leucaena. Biomass and Bioenergy. 33 pp. 247-254. Chillingworth, M. and S.Q. Turn

  6. Review of Bioenergy Research A report for BBSRC Strategy Board

    E-Print Network [OSTI]

    Edinburgh, University of

    as part of a multi-faceted low-carbon solution for the UK's future energy supply. There are powerful, longReview of Bioenergy Research A report for BBSRC Strategy Board March 2006 [© BBSRC, 2006] 1 #12 Summary ________________________________________________________ 4 CHAPTER 1: DRIVERS FOR RENEWABLE ENERGY

  7. IEA Bioenergy Task 42 on Biorefineries: Co-production of fuels, chemicals, power and materials from biomass

    E-Print Network [OSTI]

    : national bioenergy production, non-energetic biomass use, bioenergy related policy goals, national oil1 IEA Bioenergy Task 42 on Biorefineries: Co-production of fuels, chemicals, power and materials developed by the members of IEA Bioenergy Task 42 on Biorefinery: Co-production of Fuels, Chemicals, Power

  8. Bioenergy Knowledge Discovery Framework (KDF) Fact Sheet

    SciTech Connect (OSTI)

    2013-07-29

    The Bioenergy Knowledge Discovery Framework (KDF) is an online collaboration and geospatial analysis tool that allows researchers, policymakers, and investors to explore and engage the latest bioenergy research. This publication describes how the KDF harnesses Web 2.0 and social networking technologies to build a collective knowledge system that facilitates collaborative production, integration, and analysis of bioenergy-related information.

  9. Bioenergy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Read caption + Los Alamos scientists used genetic engineering to develop magnetic algae, thus making it much easier to harvest for biofuel production. Harvesting algae...

  10. Pathways Toward Sustainable Bioenergy Feedstock Production in...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    toward greater sustainability. We are providing actionable information on the life cycle environmental impacts of biomass production and use. 2 3 Quad Chart Overview * Project...

  11. U.S. Department of Energy's Bioenergy Research Centers An Overview of the Science

    SciTech Connect (OSTI)

    2010-07-01

    Alternative fuels from renewable cellulosic biomass - plant stalks, trunks, stems, and leaves - are expected to significantly reduce U.S. dependence on imported oil while enhancing national energy security and decreasing the environmental impacts of energy use. Ethanol and other advanced biofuels from cellulosic biomass are renewable alternatives that could increase domestic production of transportation fuels, revitalize rural economies, and reduce carbon dioxide and pollutant emissions. According to U.S. Secretary of Energy Steven Chu, 'Developing the next generation of biofuels is key to our effort to end our dependence on foreign oil and address the climate crisis while creating millions of new jobs that can't be outsourced.' Although cellulosic ethanol production has been demonstrated on a pilot level, developing a cost-effective, commercial-scale cellulosic biofuel industry will require transformational science to significantly streamline current production processes. Woodchips, grasses, cornstalks, and other cellulosic biomass are widely abundant but more difficult to break down into sugars than corn grain - the primary source of U.S. ethanol fuel production today. Biological research is key to accelerating the deconstruction of cellulosic biomass into sugars that can be converted to biofuels. The Department of Energy (DOE) Office of Science continues to play a major role in inspiring, supporting, and guiding the biotechnology revolution over the past 30 years. The DOE Genomic Science program is advancing a new generation of research focused on achieving whole-systems understanding of biology. This program is bringing together scientists in diverse fields to understand the complex biology underlying solutions to DOE missions in energy production, environmental remediation, and climate change science. For more information on the Genomic Science program, see p. 26. To focus the most advanced biotechnology-based resources on the biological challenges of biofuel production, DOE established three Bioenergy Research Centers (BRCs) in September 2007. Each center is pursuing the basic research underlying a range of high-risk, high-return biological solutions for bioenergy applications. Advances resulting from the BRCs are providing the knowledge needed to develop new biobased products, methods, and tools that the emerging biofuel industry can use (see sidebar, Bridging the Gap from Fundamental Biology to Industrial Innovation for Bioenergy, p. 6). The DOE BRCs have developed automated, high-throughput analysis pipelines that will accelerate scientific discovery for biology-based biofuel research. The three centers, which were selected through a scientific peer-review process, are based in geographically diverse locations - the Southeast, the Midwest, and the West Coast - with partners across the nation (see U.S. map, DOE Bioenergy Research Centers and Partners, on back cover). DOE's Lawrence Berkeley National Laboratory leads the DOE Joint BioEnergy Institute (JBEI) in California; DOE's Oak Ridge National Laboratory leads the BioEnergy Science Center (BESC) in Tennessee; and the University of Wisconsin-Madison leads the Great Lakes Bioenergy Research Center (GLBRC). Each center represents a multidisciplinary partnership with expertise spanning the physical and biological sciences, including genomics, microbial and plant biology, analytical chemistry, computational biology and bioinformatics, and engineering. Institutional partners include DOE national laboratories, universities, private companies, and nonprofit organizations.

  12. Golbal Economic and Environmental Impacts of Increased Bioenergy Production

    SciTech Connect (OSTI)

    Wallace Tyner

    2012-05-30

    The project had three main objectives: to build and incorporate an explicit biomass energy sector within the GTAP analytical framework and data base; to provide an analysis of the impact of renewable fuel standards and other policies in the U.S. and E.U, as well as alternative biofuel policies in other parts of the world, on changes in production, prices, consumption, trade and poverty; and to evaluate environmental impacts of alternative policies for bioenergy development. Progress and outputs related to each objective are reported.

  13. U.S, Department of Energy's Bioenergy Research Centers An Overview of the Science

    SciTech Connect (OSTI)

    2009-07-01

    Alternative fuels from renewable cellulosic biomass--plant stalks, trunks, stems, and leaves--are expected to significantly reduce U.S. dependence on imported oil while enhancing national energy security and decreasing the environmental impacts of energy use. Ethanol and other advanced biofuels from cellulosic biomass are renewable alternatives that could increase domestic production of transportation fuels, revitalize rural economies, and reduce carbon dioxide and pollutant emissions. According to U.S. Secretary of Energy Steven Chu, 'Developing the next generation of biofuels is key to our effort to end our dependence on foreign oil and address the climate crisis while creating millions of new jobs that can't be outsourced'. In the United States, the Energy Independence and Security Act (EISA) of 2007 is an important driver for the sustainable development of renewable biofuels. As part of EISA, the Renewable Fuel Standard mandates that 36 billion gallons of biofuels are to be produced annually by 2022, of which 16 billion gallons are expected to come from cellulosic feedstocks. Although cellulosic ethanol production has been demonstrated on a pilot level, developing a cost-effective, commercial-scale cellulosic biofuel industry will require transformational science to significantly streamline current production processes. Woodchips, grasses, cornstalks, and other cellulosic biomass are widely abundant but more difficult to break down into sugars than corn grain--the primary source of U.S. ethanol fuel production today. Biological research is key to accelerating the deconstruction of cellulosic biomass into sugars that can be converted to biofuels. The Department of Energy (DOE) Office of Science continues to play a major role in inspiring, supporting, and guiding the biotechnology revolution over the past 25 years. The DOE Genomic Science Program is advancing a new generation of research focused on achieving whole-systems understanding for biology. This program is bringing together scientists in diverse fields to understand the complex biology underlying solutions to DOE missions in energy production, environmental remediation, and climate change science. New interdisciplinary research communities are emerging, as are knowledgebases and scientific and computational resources critical to advancing large-scale, genome-based biology. To focus the most advanced biotechnology-based resources on the biological challenges of biofuel production, DOE established three Bioenergy Research Centers (BRCs) in September 2007. Each center is pursuing the basic research underlying a range of high-risk, high-return biological solutions for bioenergy applications. Advances resulting from the BRCs will provide the knowledge needed to develop new biobased products, methods, and tools that the emerging biofuel industry can use. The scientific rationale for these centers and for other fundamental genomic research critical to the biofuel industry was established at a DOE workshop involving members of the research community (see sidebar, Biofuel Research Plan, below). The DOE BRCs have developed automated, high-throughput analysis pipelines that will accelerate scientific discovery for biology-based biofuel research. The three centers, which were selected through a scientific peer-review process, are based in geographically diverse locations--the Southeast, the Midwest, and the West Coast--with partners across the nation. DOE's Oak Ridge National Laboratory leads the BioEnergy Science Center (BESC) in Tennessee; the University of Wisconsin-Madison leads the Great Lakes Bioenergy Research Center (GLBRC); and DOE's Lawrence Berkeley National Laboratory leads the DOE Joint BioEnergy Institute (JBEI) in California. Each center represents a multidisciplinary partnership with expertise spanning the physical and biological sciences, including genomics, microbial and plant biology, analytical chemistry, computational biology and bioinformatics, and engineering. Institutional partners include DOE national laboratories, universities, private companies,

  14. Forest Products Supply Chain --Availability of Woody Biomass in Indiana for Bioenergy Production

    E-Print Network [OSTI]

    Cooperative Development Center has recently sponsored a study in wood residue for wood pellet production or wood waste biomass ∑ Map Indiana's wood waste for each potential bioenergy supply chain ∑ Develop break-even analyses for transportation logistics of wood waste biomass Isaac S. Slaven Abstract: The purpose

  15. Our Commitment to Bioenergy Sustainability

    SciTech Connect (OSTI)

    2011-07-01

    This fact sheet describes how the Biomass Program and its partners combine advanced analysis with applied research to understand and address the potential environmental, economic, and social impacts of bioenergy production.

  16. Impacts of land use change due to biofuel crops on carbon balance, bioenergy production, and agricultural

    E-Print Network [OSTI]

    Zhuang, Qianlai

    Impacts of land use change due to biofuel crops on carbon balance, bioenergy production that biofuel crops have much higher net pri- mary production (NPP) than soybean and wheat crops. When food). Global biofuel production has increased dramatically in the last decade, especially in United States

  17. Land-Use Change and Bioenergy

    SciTech Connect (OSTI)

    None

    2011-07-01

    This publication describes the Biomass Programís efforts to examine the intersection of land-use change and bioenergy production. It describes legislation requiring land-use change assessments, key data and modeling challenges, and the research needs to better assess and understand the impact of bioenergy policy on land-use decisions.

  18. Energy Department Selects Three Bioenergy Research Centers for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    cellulose in plant material into ethanol or other biofuels that serve as a substitute for gasoline. This research is critical because future biofuels production will require the...

  19. Fundamental & Applied Bioenergy | Clean Energy | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    have developed a microbial strain with an improved ability to convert wood products to biofuel as part of research within the DOE BioEnergy Science Center.Source: ORNL News article...

  20. Essays on Economic and Environmental Analysis of Taiwanese Bioenergy Production on Set-Aside Land†

    E-Print Network [OSTI]

    Kung, Chih-Chun

    2012-02-14

    . This dissertation examines Taiwanís potential for bioenergy production using feedstocks grown on set-aside land and discusses the consequent effects on Taiwanís energy security plus benefits and greenhouse gas (GHG) emissions. The Taiwan Agricultural Sector Model...

  1. Integrated Photo-Bioelectrochemical System for Contaminants Removal and Bioenergy Production

    E-Print Network [OSTI]

    Berges, John A.

    photobioelectrochemical (IPB) system was developed by installing a microbial fuel cell (MFC) inside an algal bioreactor fuel cells (MFCs)3 with algal bioreactors4 for wastewater treatment and bioenergy production. MFCs. An analysis of the attached and suspended microbes in the cathode revealed diverse bacterial taxa typical

  2. 08-ERD-071 Final Report: New Molecular Probes and Catalysts for Bioenergy Research

    SciTech Connect (OSTI)

    Thelen, M P; Rowe, A A; Siebers, A K; Jiao, Y

    2011-03-07

    A major thrust in bioenergy research is to develop innovative methods for deconstructing plant cell wall polymers, such as cellulose and lignin, into simple monomers that can be biologically converted to ethanol and other fuels. Current techniques for monitoring a broad array of cell wall materials and specific degradation products are expensive and time consuming. To monitor various polymers and assay their breakdown products, molecular probes for detecting specific carbohydrates and lignins are urgently needed. These new probes would extend the limited biochemical techniques available, and enable realtime imaging of ultrastructural changes in plant cells. Furthermore, degradation of plant biomass could be greatly accelerated by the development of catalysts that can hydrolyze key cell wall polysaccharides and lignin. The objective of this project was to develop cheap and efficient DNA reagents (aptamers) used to detect and quantify polysaccharides, lignin, and relevant products of their breakdown. A practical goal of the research was to develop electrochemical aptamer biosensors, which could be integrated into microfluidic devices and used for high-throughput screening of enzymes or biological systems that degrade biomass. Several important model plant cell wall polymers and compounds were targeted for specific binding and purification of aptamers, which were then tested by microscopic imaging, circular dichroism, surface plasmon resonance, fluorescence anisotropy, and electrochemical biosensors. Using this approach, it was anticiated that we could provide a basis for more efficient and economically viable biofuels, and the technologies established could be used to design molecular tools that recognize targets sought in medicine or chemical and biological defense projects.

  3. Hawaii Bioenergy Master Plan Bioenergy Technology

    E-Print Network [OSTI]

    technology assessment was conducted as part of the Hawaii Bioenergy Master Plan mandated by Act 253 collected in preparing this task and include: 1. The State should continue a bioenergy technology assessment-oil production X Y Charcoal production X X Y Bio-oil production for fuels X X Y Combustion X Y Renewable diesel

  4. Feedstock Logistics of a Mobile Pyrolysis System and Assessment of Soil Loss Due to Biomass Removal for Bioenergy Production

    E-Print Network [OSTI]

    Bumguardner, Marisa

    2012-10-19

    The purpose of this study was to assess feedstock logistics for a mobile pyrolysis system and to quantify the amount of soil loss caused by harvesting agricultural feedstocks for bioenergy production. The analysis of feedstock logistics...

  5. Nutrient use efficiency in bioenergy cropping systems: Critical research questions

    E-Print Network [OSTI]

    Brouder, Sylvie; Volenec, Jeffrey J; Turco, Ronald; Smith, Douglas R; Ejeta, Gebisa

    2009-01-01

    2 O release from agro- biofuel production negates the globalconsidered suitable for biofuel production bringing highlyrelease from agro-biofuel production may negate any expected

  6. Special issue: current status of bioenergy research Don-Hee Park Sang Yup Lee

    E-Print Network [OSTI]

    processes are presented. As the field of bioenergy is rapidly growing from traditional forms of bioethanol

  7. Global Simulation of Bioenergy Crop Productivity: Analytical framework and Case Study for Switchgrass

    SciTech Connect (OSTI)

    Nair, S. Surendran [University of Tennessee, Knoxville (UTK)] [University of Tennessee, Knoxville (UTK); Nichols, Jeff A. {Cyber Sciences} [ORNL; Post, Wilfred M [ORNL] [ORNL; Wang, Dali [ORNL] [ORNL; Wullschleger, Stan D [ORNL] [ORNL; Kline, Keith L [ORNL] [ORNL; Wei, Yaxing [ORNL] [ORNL; Singh, Nagendra [ORNL] [ORNL; Kang, Shujiang [ORNL] [ORNL

    2014-01-01

    Contemporary global assessments of the deployment potential and sustainability aspects of biofuel crops lack quantitative details. This paper describes an analytical framework capable of meeting the challenges associated with global scale agro-ecosystem modeling. We designed a modeling platform for bioenergy crops, consisting of five major components: (i) standardized global natural resources and management data sets, (ii) global simulation unit and management scenarios, (iii) model calibration and validation, (iv) high-performance computing (HPC) modeling, and (v) simulation output processing and analysis. A case study with the HPC- Environmental Policy Integrated Climate model (HPC-EPIC) to simulate a perennial bioenergy crop, switchgrass (Panicum virgatum L.) and global biomass feedstock analysis on grassland demonstrates the application of this platform. The results illustrate biomass feedstock variability of switchgrass and provide insights on how the modeling platform can be expanded to better assess sustainable production criteria and other biomass crops. Feedstock potentials on global grasslands and within different countries are also shown. Future efforts involve developing databases of productivity, implementing global simulations for other bioenergy crops (e.g. miscanthus, energycane and agave), and assessing environmental impacts under various management regimes. We anticipated this platform will provide an exemplary tool and assessment data for international communities to conduct global analysis of biofuel biomass feedstocks and sustainability.

  8. Production of bioenergy and biochemicals from industrial and

    E-Print Network [OSTI]

    Angenent, Lars T.

    and agricultural wastewater, includ- ing methanogenic anaerobic digestion, biological hydro- gen production material in industrial and agricultural wastewater Methanogenic anaerobic digestion of organic material

  9. Energy Department Selects Three Bioenergy Research Centers for...

    Broader source: Energy.gov (indexed) [DOE]

    Basic Genomics Research Furthers President Bush's Plan to Reduce Gasoline Usage 20 Percent in Ten Year WASHINGTON, DC - U. S. Department of Energy (DOE) Secretary Samuel W. Bodman...

  10. USDA and DOE Fund 10 Research Projects to Accelerate Bioenergy...

    Broader source: Energy.gov (indexed) [DOE]

    will be conducted on switchgrass, poplar, Miscanthus and Brachypodium, among other plants. The potential benefits of this research range from decreasing oil imports to...

  11. Assessment of the sustainability of bioenergy production from algal feedstock†

    E-Print Network [OSTI]

    Aitken, Douglas

    2014-06-30

    Growing concerns regarding the impact of fossil fuel use upon the environment and the cost of production have led to a growth in the interest of obtaining energy from biomass. 1st and 2nd generation biomass types, however, ...

  12. Bioenergy: America's Energy Future

    ScienceCinema (OSTI)

    Nelson, Bruce; Volz, Sara; Male, Johnathan; Wolfson, Johnathan; Pray, Todd; Mayfield, Stephen; Atherton, Scott; Weaver, Brandon

    2014-08-12

    Bioenergy: America's Energy Future is a short documentary film showcasing examples of bioenergy innovations across the biomass supply chain and the United States. The film highlights a few stories of individuals and companies who are passionate about achieving the promise of biofuels and addressing the challenges of developing a thriving bioeconomy. This outreach product supports media initiatives to expand the public's understanding of the bioenergy industry and sustainable transportation and was developed by the U.S. Department of Energy Bioenergy Technologies Office (BETO), Oak Ridge National Laboratory, Green Focus Films, and BCS, Incorporated.

  13. Bioenergy: America's Energy Future

    SciTech Connect (OSTI)

    Nelson, Bruce; Volz, Sara; Male, Johnathan; Wolfson, Johnathan; Pray, Todd; Mayfield, Stephen; Atherton, Scott; Weaver, Brandon

    2014-07-31

    Bioenergy: America's Energy Future is a short documentary film showcasing examples of bioenergy innovations across the biomass supply chain and the United States. The film highlights a few stories of individuals and companies who are passionate about achieving the promise of biofuels and addressing the challenges of developing a thriving bioeconomy. This outreach product supports media initiatives to expand the public's understanding of the bioenergy industry and sustainable transportation and was developed by the U.S. Department of Energy Bioenergy Technologies Office (BETO), Oak Ridge National Laboratory, Green Focus Films, and BCS, Incorporated.

  14. Development of Genomic and Genetic Tools for Foxtail Millet, and Use of These Tools in the Improvement of Biomass Production for Bioenergy Crops

    SciTech Connect (OSTI)

    Doust, Andrew, N.

    2011-11-11

    The overall aim of this research was to develop genomic and genetic tools in foxtail millet that will be useful in improving biomass production in bioenergy crops such as switchgrass, napier grass, and pearl millet. A variety of approaches have been implemented, and our lab has been primarily involved in genome analysis and quantitative genetic analysis. Our progress in these activities has been substantially helped by the genomic sequence of foxtail millet produced by the Joint Genome Institute (Bennetzen et al., in prep). In particular, the annotation and analysis of candidate genes for architecture, biomass production and flowering has led to new insights into the control of branching and flowering time, and has shown how closely related flowering time is to vegetative architectural development and biomass accumulation. The differences in genetic control identified at high and low density plantings have direct relevance to the breeding of bioenergy grasses that are tolerant of high planting densities. The developmental analyses have shown how plant architecture changes over time and may indicate which genes may best be manipulated at various times during development to obtain required biomass characteristics. This data contributes to the overall aim of significantly improving genetic and genomic tools in foxtail millet that can be directed to improvement of bioenergy grasses such as switchgrass, where it is important to maximize vegetative growth for greatest biomass production.

  15. Research questions How could the conversion of marginal agricultural lands to bioenergy switchgrass

    E-Print Network [OSTI]

    Nebraska-Lincoln, University of

    .R. and Schemske, D.W. 2010. Perennial biomass feedstocks enhance avian diversity. GCB Bioenergy 1080:1-12. Samson

  16. Sustainable bioenergy production from marginal lands in the US Midwest

    SciTech Connect (OSTI)

    Gelfand, Ilya; Sahajpal, Ritvik; Zhang, Xuesong; Izaurralde, Roberto C.; Gross, Katherine L.; Robertson, G. P.

    2013-01-24

    Long-term measurements of global warming impact coupled with spatially explicit modeling suggests that both climate benefits and the production potential of cellulosic crops grown on marginal lands of the US North Central region are substantial but will be insufficient to meet long-term biofuel needs.

  17. Three Essays on Bioenergy Production in the United States†

    E-Print Network [OSTI]

    Wlodarz, Marta

    2013-12-02

    . ............................................................................. 20 8. Projected ethanol price and cost of satisfying cellulosic mandate per gallon (Annual Energy Outlook gasoline price projection is for Free On Board (F.O.B.) rack gasoline price... ethanol more cost-effective. Furthermore, several companies (e.g. BP, Coskata, DuPont Danisco Cellulosic Ethanol, Range Fuels, Poet) have been considering cellulosic ethanol production (EPA 2009). , So far, none of them has achieved lignocellulosic...

  18. USDA and DOE Fund Genomics Projects For Bioenergy Fuels Research |

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OF APPLICABLEStatutoryin the Nation's,USDA & DOE ReleaseProduction and

  19. International Energy Agency Bioenergy 2015

    Broader source: Energy.gov [DOE]

    This year, Sweden is hosting the International Energy Agency Bioenergy Task 38 conference on climate change effects of biomass and bioenergy systems, bringing together several international experts with an interest in bioenergy for the two-day program. The aim of the conference is to provide cutting-edge knowledge about the climate effects of converting wood products into bioenergy , as well as methods to analyze these effects. Feedstocks and Algae Program Manager Alison Goss Eng will be representing the U.S. Department of Energyís Bioenergy Technologies Office at the meeting.

  20. Webinar: Using the New Bioenergy KDF for Data Discovery and Research

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    other advanced biofuels such as hydrocarbon fuels (renewable gasoline, diesel, jet fuel), algae-derived biofuels, and biobutanol. The Bioenergy Technologies Office forms...

  1. The Carbon Footprint of Bioenergy Sorghum Production in Central Texas: Production Implications on Greenhouse Gas Emissions, Carbon Cycling, and Life Cycle Analysis†

    E-Print Network [OSTI]

    Storlien, Joseph Orgean

    2013-06-13

    the soil surface and at two depths below 30 cm. Analysis of change in SOC across time to estimate net CO_(2) emissions to the atmosphere revealed bioenergy sorghum production accrued high amounts of SOC annually. Most treatments accrued more than 4 Mg C ha...

  2. Bioenergy Science Center KnowledgeBase

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Syed, M. H.; Karpinets, T. V.; Parang, M.; Leuze, M. R.; Park, B. H.; Hyatt, D.; Brown, S. D.; Moulton, S. Galloway, M.D.; Uberbacher, E. C.

    The challenge of converting cellulosic biomass to sugars is the dominant obstacle to cost effective production of biofuels in s capable of significant enough quantities to displace U. S. consumption of fossil transportation fuels. The BioEnergy Science Center (BESC) tackles this challenge of biomass recalcitrance by closely linking (1) plant research to make cell walls easier to deconstruct, and (2) microbial research to develop multi-talented biocatalysts tailor-made to produce biofuels in a single step. [from the 2011 BESC factsheet] The BioEnergy Science Center (BESC) is a multi-institutional, multidisciplinary research (biological, chemical, physical and computational sciences, mathematics and engineering) organization focused on the fundamental understanding and elimination of biomass recalcitrance. The BESC Knowledgebase and its associated tools is a discovery platform for bioenergy research. It consists of a collection of metadata, data, and computational tools for data analysis, integration, comparison and visualization for plants and microbes in the center.The BESC Knowledgebase (KB) and BESC Laboratory Information Management System (LIMS) enable bioenergy researchers to perform systemic research. [http://bobcat.ornl.gov/besc/index.jsp

  3. Stakeholder Database from the Center for Bioenergy Sustainability (Learn who the experts are)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Center for BioEnergy Sustainability (CBES) is a leading resource for dealing with the environmental impacts and the ultimate sustainability of biomass production for conversion to biofuels and bio-based products. Its purpose is to use science and analysis to understand the sustainability (environmental, economic, and social) of current and potential future bioenergy production and distribution; to identify approaches to enhance bioenergy sustainability; and to serve as an independent source of the highest quality data and analysis for bioenergy stakeholders and decision makers. ... On the operational level, CBES is a focal point and business-development vehicle for ORNLís capabilities related to bioenergy sustainability and socioeconomic analyses. As such, it complements the BioEnergy Science Center (BESC), also located at ORNL, which focuses on the problem of converting lignocellulosic biomass into reactive intermediaries necessary for the cellulosic biofuel industry. Together, these centers provide a strong integrating mechanism and business-development tool for ORNL's science and technology portfolio in bioenergy [taken and edited from http://web.ornl.gov/sci/ees/cbes/. The Stakeholder Database allows you to find experts in bioenergy by their particular type of expertise, their affiliations or locations, their specific research areas or research approaches, etc.

  4. Feedstock Logistics Datasets from DOE's Bioenergy Knowledge Discovery Framework (KDF)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Bioenergy Knowledge Discovery Framework invites users to discover the power of bioenergy through an interface that provides extensive access to research data and literature, GIS mapping tools, and collaborative networks. The Bioenergy KDF supports efforts to develop a robust and sustainable bioenergy industry. The KDF facilitates informed decision making by providing a means to synthesize, analyze, and visualize vast amounts of information in a relevant and succinct manner. It harnesses Web 2.0 and social networking technologies to build a collective knowledge system that can better examine the economic and environmental impacts of development options for biomass feedstock production, biorefineries, and related infrastructure. Holdings include datasets, models, and maps. [from https://www.bioenergykdf.net/content/about

  5. Biofuel Distribution Datasets from the Bioenergy Knowledge Discovery Framework

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Bioenergy Knowledge Discovery Framework invites users to discover the power of bioenergy through an interface that provides extensive access to research data and literature, GIS mapping tools, and collaborative networks. The Bioenergy KDF supports efforts to develop a robust and sustainable bioenergy industry. The KDF facilitates informed decision making by providing a means to synthesize, analyze, and visualize vast amounts of information in a relevant and succinct manner. It harnesses Web 2.0 and social networking technologies to build a collective knowledge system that can better examine the economic and environmental impacts of development options for biomass feedstock production, biorefineries, and related infrastructure. [copied from https://www.bioenergykdf.net/content/about] Holdings include datasets, models, and maps and the collections are growing due to both DOE contributions and individuals' data uploads.

  6. Effects of Biochar Recycling on Switchgrass Growth and Soil and Water Quality in Bioenergy Production Systems†

    E-Print Network [OSTI]

    Husmoen, Derek Howard

    2012-07-16

    sources of mineral nutrients and organic carbon for sustaining biomass productivity and preserving soil and water. Yet, research is needed to verify that recycling of pyrolysis biochars will enhance crop growth and soil and environmental quality similar...

  7. Bioenergy Technologies Office Releases Symbiosis Biofeedstock...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    this information to inform future commercial production of microbial mutualistic microbes, and identifying issues specific to utilizing mutualists in bioenergy crop...

  8. Texas AgriLife Research with General Atomics Pilots Microalgae Ponds in Pecos BIOENERGY PROGRAM

    E-Print Network [OSTI]

    production goal would be 5,000 gallons per acre, and researchers are evaluating hybrid systems that could tied to coal-fired power plants, which could use carbon dioxide emissions and waste heat for algae the raceways, and pumps move the water from one pond to another. A laboratory supports the production facility

  9. Obama Administration Announces New Funding for Biomass Research...

    Energy Savers [EERE]

    up to 35 million over three years to support research and development in advanced biofuels, bioenergy and high-value biobased products. The projects funded through the Biomass...

  10. Bioenergy 2015 Call for Posters

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energyís Bioenergy Technologies Office (BETO) invites students, researchers, public and private organizations, and members of the general public to submit abstracts that BETO will review and consider for inclusion in the poster session at BETOís eighth annual conference, Bioenergy 2015: Opportunities in a Changing Energy Landscape. The conference will be held June 23Ė24, 2015, at the Walter E. Washington Convention Center in Washington, D.C.

  11. Biomass for Bioenergy: an overview of

    E-Print Network [OSTI]

    Pennycook, Steve

    Biomass for Bioenergy: an overview of research at ORNL Environmental Science Division Climate. Kline (presenter) Virginia Dale, Laurence Eaton, Matt Langholtz, and others, ORNL #12;Biomass&TChemical and molecular science Plasma and fusion energy science Biomass #12;Lighter weight vehicles Bioenergy research

  12. USDA, DOE Announce Up to $25 Million in Funding for Biomass Research...

    Office of Environmental Management (EM)

    in funding for research and development of technologies and processes to produce biofuels, bioenergy, and high-value biobased products, subject to annual appropriations....

  13. Factors contributing to carbon fluxes from bioenergy harvests in the U.S. Northeast: an analysis using

    E-Print Network [OSTI]

    Keeton, William S.

    of fossil fuels for energy production (`bioenergy' such as combusting woodchips or pellets for electricity

  14. BETO Announces Bioenergy Technologies Incubator FOA

    Broader source: Energy.gov [DOE]

    The Office of Energy Efficiency and Renewable Energy (EERE) has released a new $10 million funding opportunity announcement (FOA) to support innovative technologies and solutions that could help achieve bioenergy development goals, but are not significantly represented in the Bioenergy Technology Office's (BETO√'s) existing multi-year program plans or current research and development portfolio.

  15. The U.S. Dry-Mill Ethanol Industry: Biobased Products and Bioenergy Initiative Success Stories

    SciTech Connect (OSTI)

    2009-10-28

    This fact sheet provides an overview of the history of ethanol production in the United States and describes innovations in dry-mill ethanol production.

  16. MODEL BASED BIOMASS SYSTEM DESIGN OF FEEDSTOCK SUPPLY SYSTEMS FOR BIOENERGY PRODUCTION

    SciTech Connect (OSTI)

    David J. Muth, Jr.; Jacob J. Jacobson; Kenneth M. Bryden

    2013-08-01

    Engineering feedstock supply systems that deliver affordable, high-quality biomass remains a challenge for the emerging bioenergy industry. Cellulosic biomass is geographically distributed and has diverse physical and chemical properties. Because of this feedstock supply systems that deliver cellulosic biomass resources to biorefineries require integration of a broad set of engineered unit operations. These unit operations include harvest and collection, storage, preprocessing, and transportation processes. Design decisions for each feedstock supply system unit operation impact the engineering design and performance of the other system elements. These interdependencies are further complicated by spatial and temporal variances such as climate conditions and biomass characteristics. This paper develops an integrated model that couples a SQL-based data management engine and systems dynamics models to design and evaluate biomass feedstock supply systems. The integrated model, called the Biomass Logistics Model (BLM), includes a suite of databases that provide 1) engineering performance data for hundreds of equipment systems, 2) spatially explicit labor cost datasets, and 3) local tax and regulation data. The BLM analytic engine is built in the systems dynamics software package PowersimTM. The BLM is designed to work with thermochemical and biochemical based biofuel conversion platforms and accommodates a range of cellulosic biomass types (i.e., herbaceous residues, short- rotation woody and herbaceous energy crops, woody residues, algae, etc.). The BLM simulates the flow of biomass through the entire supply chain, tracking changes in feedstock characteristics (i.e., moisture content, dry matter, ash content, and dry bulk density) as influenced by the various operations in the supply chain. By accounting for all of the equipment that comes into contact with biomass from the point of harvest to the throat of the conversion facility and the change in characteristics, the BLM evaluates economic performance of the engineered system, as well as determining energy consumption and green house gas performance of the design. This paper presents a BLM case study delivering corn stover to produce cellulosic ethanol. The case study utilizes the BLM to model the performance of several feedstock supply system designs. The case study also explores the impact of temporal variations in climate conditions to test the sensitivity of the engineering designs. Results from the case study show that under certain conditions corn stover can be delivered to the cellulosic ethanol biorefinery for $35/dry ton.

  17. Vision for Bioenergy and Biobased Products in the United States (2006)

    SciTech Connect (OSTI)

    2006-12-13

    Establish far-reaching goals to increase the role of biobased energy and products in our nationís economy

  18. Bioenergy 2015 Press Room

    Broader source: Energy.gov [DOE]

    This U.S. Department of Energy Bioenergy 2015 online press room provides contacts, information, and resources to members of the media who cover Bioenergy 2015 conference-related news.

  19. In Search of Spatial Opportunities for Sustainable Bioenergy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Search of Spatial Opportunities for Sustainable Bioenergy Production Apr 17 2014 03:30 PM - 04:30 PM Yetta Jager, National Institute for Mathematical and Biological Syntheses ,...

  20. Biofuel Enduse Datasets from the Bioenergy Knowledge Discovery Framework (KDF)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Bioenergy Knowledge Discovery Framework invites users to discover the power of bioenergy through an interface that provides extensive access to research data and literature, GIS mapping tools, and collaborative networks. The Bioenergy KDF supports efforts to develop a robust and sustainable bioenergy industry. The KDF facilitates informed decision making by providing a means to synthesize, analyze, and visualize vast amounts of information in a relevant and succinct manner. It harnesses Web 2.0 and social networking technologies to build a collective knowledge system that can better examine the economic and environmental impacts of development options for biomass feedstock production, biorefineries, and related infrastructure. [copied from https://www.bioenergykdf.net/content/about]

    Holdings include datasets, models, and maps. This is a very new resource, but the collections will grow due to both DOE contributions and individuals∆ data uploads. Currently the Biofuel Enduse collection includes 133 items. Most of these are categorized as literature, but 36 are listed as datasets and ten as models.

  1. Thermochemical Process Development Unit: Researching Fuels from Biomass, Bioenergy Technologies (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2009-01-01

    The Thermochemical Process Development Unit (TCPDU) at the National Renewable Energy Laboratory (NREL) is a unique facility dedicated to researching thermochemical processes to produce fuels from biomass.

  2. NREL National Bioenergy Center Overview

    SciTech Connect (OSTI)

    Foust, Thomas; Pienkos, Phil; Sluiter, Justin; Magrini, Kim; McMillan, Jim

    2014-07-28

    The demand for clean, sustainable, secure energy is growing... and the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) is answering the call. NREL's National Bioenergy Center is pioneering biofuels research and development and accelerating the pace these technologies move into the marketplace.

  3. Bioenergy Feedstock Development Program Status Report

    SciTech Connect (OSTI)

    Kszos, L.A.

    2001-02-09

    The U.S. Department of Energy's (DOE's) Bioenergy Feedstock Development Program (BFDP) at Oak Ridge National Laboratory (ORNL) is a mission-oriented program of research and analysis whose goal is to develop and demonstrate cropping systems for producing large quantities of low-cost, high-quality biomass feedstocks for use as liquid biofuels, biomass electric power, and/or bioproducts. The program specifically supports the missions and goals of DOE's Office of Fuels Development and DOE's Office of Power Technologies. ORNL has provided technical leadership and field management for the BFDP since DOE began energy crop research in 1978. The major components of the BFDP include energy crop selection and breeding; crop management research; environmental assessment and monitoring; crop production and supply logistics operational research; integrated resource analysis and assessment; and communications and outreach. Research into feedstock supply logistics has recently been added and will become an integral component of the program.

  4. The Carbon Balance of Bioenergy Production in Wisconsin Keith R. Cronin

    E-Print Network [OSTI]

    Wisconsin at Madison, University of

    through payments for carbon sequestration and other environmental co-benefits. However, the environmental to determine possible carbon sequestration opportunities across Wisconsin. Estimates of per-hectare carbon production yields modest carbon sequestration effects in the southern and western portions of the state

  5. Characterization of the bacterial metagenome in an industrial algae bioenergy production system

    SciTech Connect (OSTI)

    Huang, Shi; Fulbright, Scott P; Zeng, Xiaowei; Yates, Tracy; Wardle, Greg; Chisholm, Stephen T; Xu, Jian; Lammers, Peter

    2011-03-16

    Cultivation of oleaginous microalgae for fuel generally requires growth of the intended species to the maximum extent supported by available light. The presence of undesired competitors, pathogens and grazers in cultivation systems will create competition for nitrate, phosphate, sulfate, iron and other micronutrients in the growth medium and potentially decrease microalgal triglyceride production by limiting microalgal health or cell density. Pathogenic bacteria may also directly impact the metabolism or survival of individual microalgal cells. Conversely, symbiotic bacteria that enhance microalgal growth may also be present in the system. Finally, the use of agricultural and municipal wastes as nutrient inputs for microalgal production systems may lead to the introduction and proliferation of human pathogens or interfere with the growth of bacteria with beneficial effects on system performance. These considerations underscore the need to understand bacterial community dynamics in microalgal production systems in order to assess microbiome effects on microalgal productivity and pathogen risks. Here we focus on the bacterial component of microalgal production systems and describe a pipeline for metagenomic characterization of bacterial diversity in industrial cultures of an oleaginous alga, Nannochloropsis salina. Environmental DNA was isolated from 12 marine algal cultures grown at Solix Biofuels, a region of the 16S rRNA gene was amplified by PCR, and 16S amplicons were sequenced using a 454 automated pyrosequencer. The approximately 70,000 sequences that passed quality control clustered into 53,950 unique sequences. The majority of sequences belonged to thirteen phyla. At the genus level, sequences from all samples represented 169 different genera. About 52.94% of all sequences could not be identified at the genus level and were classified at the next highest possible resolution level. Of all sequences, 79.92% corresponded to 169 genera and 70 other taxa. We apply a principal component analysis across the initial sample set to draw correlations between sample variables and changes in microbiome populations.

  6. Cotton Production Research Laboratory - 2†

    E-Print Network [OSTI]

    Unknown

    2009-01-01

    The literature on status, product symbolism, product involvement, and reference group influence is reviewed to conceptually define the Product Symbolic Status construct. The research consisted of two studies (N = 524) that examined 17 different...

  7. USDA and DOE Fund 10 Research Projects to Accelerate Bioenergy Crop

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OF APPLICABLEStatutoryin the Nation's,USDA & DOE ReleaseProduction and Spur

  8. The impact of mineral fertilizers on the carbon footprint of crop production

    E-Print Network [OSTI]

    Brentrup, Frank

    2009-01-01

    of food, feed and bio-energy. Intensive crop production withfor food, feed and bio-energy. The agricultural contribution

  9. Argonne National Laboratory Scientists Study Benefits of Bioenergy Crop Integration

    Broader source: Energy.gov [DOE]

    Scientists at Argonne National Laboratory (ANL), funded by the U.S. Department of Energyís Bioenergy Technologies Office (BETO), are studying multifunctional landscapes and how they can benefit farmers, the environment, and the bioenergy industry nationwide. Their study, ďMultifunctional landscapes: Site characterization and field-scale design to incorporate biomass production into an agricultural system,Ē is set to be published in September 2015 in the journal, Biomass and Bioenergy.

  10. Geospatial Science and Technology for Bioenergy Modeling the Sustainability of the National Bioenergy Infrastructure

    E-Print Network [OSTI]

    Geospatial Science and Technology for Bioenergy Modeling the Sustainability of the National sensing, and geospatial data services. With High Performance Computing (HPC), global geospatial data: ∑ Feasibility of sustainably producing biofuels ∑ Reliability of biofuel production and distribution ∑ Security

  11. Bioenergy 2015 Press Kit

    Broader source: Energy.gov [DOE]

    This U.S. Department of Energy Bioenergy 2015 Press Kit provides contacts and resources to media who cover conference-related news.

  12. Bioenergy and Bioproducts BIOENERGY PROGRAM

    E-Print Network [OSTI]

    for commercialization potential∑ Germplasm for commercial production∑ Minimum production cut off of 100 gal/oil/acre annually (current oil production∑ yields range from 35 to 50 gal/acre using conventional oilseeds .) Sustainable production agronomics∑ Machine systems for mechanical harvest∑ Cost-effective oil extraction

  13. Isotope Research 229 Th production

    E-Print Network [OSTI]

    Isotope Research ≠ 229 Th production We recently completed an ARRA-funded project of this type on 229 Th production reactions [Str11]. This long-lived isotope is important as a precursor to 225 Ac of accelerator production of 229 Th via the 230 Th(p,2n)229 Pa reaction. The 229 Pa decays primarily by electron

  14. Small-Scale Bioenergy Alternatives for Industry, Farm, and Institutions : A User`s Perspective.

    SciTech Connect (OSTI)

    Folk, Richard

    1991-12-31

    This report presents research on biomass as an energy source. Topics include: bioenergy development and application; bioenergy combustion technology; and bioenergy from agricultural, forest, and urban resources. There are a total of 57 individual reports included. Individual reports are processed separately for the databases.

  15. Ris Energy Report 2 Bioenergy resources: an introduction

    E-Print Network [OSTI]

    3 RisÝ Energy Report 2 Bioenergy resources: an introduction Bioenergy is energy of biological, but its real technical and economic potential is much lower. The WEC Survey of Energy Resources (WEC 2001 and renewable origin, normally in the form of purpose-grown energy crops or by-products from agriculture

  16. Bioenergy Reports

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biological Barriers to Cellulosic Ethanol - A Joint Research Agenda, Jun 2006 (8.9 MB) Roadmap for Agricultural Biomass Feedstock Supply in the United States, Nov 2003 (3.5 MB)...

  17. Bioenergy 2015: Opportunities in a Changing Energy Landscape

    Broader source: Energy.gov [DOE]

    On June 23Ė24, 2015, the U.S. Department of Energy's (DOEís) Bioenergy Technologies Office (BETO) will host its eighth annual conferenceóBioenergy 2015: Opportunities in a Changing Energy Landscape. Co-hosted with the Clean Energy Research and Education Foundation (CEREF), this year's conference will focus on opportunities and challenges in our current highly dynamic energy ecosystem.

  18. Sustainable Forest Bioenergy Initiative

    SciTech Connect (OSTI)

    Breger, Dwayne; Rizzo, Rob

    2011-09-20

    In the stateís Electricity Restructuring Act of 1998, the Commonwealth of Massachusetts recognized the opportunity and strategic benefits to diversifying its electric generation capacity with renewable energy. Through this legislation, the Commonwealth established one of the nationís first Renewable Energy Portfolio Standard (RPS) programs, mandating the increasing use of renewable resources in its energy mix. Bioenergy, meeting low emissions and advanced technology standards, was recognized as an eligible renewable energy technology. Stimulated by the stateís RPS program, several project development groups have been looking seriously at building large woody biomass generation units in western Massachusetts to utilize the woody biomass resource. As a direct result of this development, numerous stakeholders have raised concerns and have prompted the state to take a leadership position in pursuing a science based analysis of biomass impacts on forest and carbon emissions, and proceed through a rulemaking process to establish prudent policy to support biomass development which can contribute to the stateís carbon reduction commitments and maintain safeguards for forest sustainability. The Massachusetts Sustainable Forest Bioenergy Initiative (SFBI) was funded by the Department of Energy and started by the Department of Energy Resources before these contentious biomass issues were fully raised in the state, and continued throughout the substantive periods of this policy development. Thereby, while SFBI maintained its focus on the initially proposed Scope of Work, some aspects of this scope were expanded or realigned to meet the needs for groundbreaking research and policy development being advanced by DOER. SFBI provided DOER and the Commonwealth with a foundation of state specific information on biomass technology and the biomass industry and markets, the most comprehensive biomass fuel supply assessment for the region, the economic development impact associated with biomass usage, an understanding of forest management trends including harvesting and fuel processing methods, and the carbon profile of utilizing forest based woody biomass for the emerging biomass markets. Each of the tasks and subtasks have provided an increased level of understanding to support new directives, policies and adaptation of existing regulations within Massachusetts. The project has provided the essential information to allow state policymakers and regulators to address emerging markets, while ensuring forest sustainability and understanding the complex science on CO2 accounting and impacts as a result of biomass harvesting for power generation. The public at large and electricity ratepayers in Massachusetts will all benefit from the information garnered through this project. This is a result of the stateís interest to provide financial incentives to only biomass projects that demonstrate an acceptable carbon profile, an efficient use of the constrained supply of fuel, and the harvest of biomass to ensure forest sustainability. The goals of the Massachusetts Sustainable Forest Bioenergy Initiative as proposed in 2006 were identified as: increase the diversity of the Massachusetts energy mix through biomass; promote economic development in the rural economy through forest industry job creation; help fulfill the stateís energy and climate commitments under the Renewable Energy Portfolio Standard and Climate Protection Plan; assist the development of a biomass fuel supply infrastructure to support energy project demands; provide education and outreach to the public on the benefits and impacts of bioenergy; improve the theory and practice of sustainable forestry in the Commonwealth. Completed project activities summarized below will demonstrate the effectiveness of the project in meeting the above goals. In addition, as discussed above, Massachusetts DOER needed to make some modifications to its work plan and objectives during the term of this project due to changing public policy demands brought forth in the course of the public discours

  19. DEVELOPING STATE POLICIES SUPPORTIVE OF BIOENERGY DEVELOPMENT

    SciTech Connect (OSTI)

    Kathryn Baskin

    2004-10-31

    Working within the context of the Southern States Biobased Alliance (SSBA) and with officials in each state, the Southern States Energy Board (SSEB) is identifying bioenergy-related policies and programs within each state to determine their impact on the development, deployment or use of bioenergy. In addition, SSEB will determine which policies have impacted industry's efforts to develop, deploy or use biobased technologies or products. As a result, SSEB will work with the Southern States Biobased Alliance to determine how policy changes might address any negative impacts or enhance positive impacts. In addition to analysis of domestic policies and programs, this project will include the development of a U.S.-Brazil Biodiesel Pilot Project. The purpose of this effort is to promote and facilitate the commercialization of biodiesel and bioenergy production and demand in Brazil.

  20. DEVELOPING STATE POLICIES SUPPORTIVE OF BIOENERGY DEVELOPMENT

    SciTech Connect (OSTI)

    Kathryn Baskin

    2005-04-30

    Working within the context of the Southern States Biobased Alliance (SSBA) and with officials in each state, the Southern States Energy Board (SSEB) is identifying bioenergy-related policies and programs within each state to determine their impact on the development, deployment or use of bioenergy. In addition, SSEB will determine which policies have impacted industry's efforts to develop, deploy or use biobased technologies or products. As a result, SSEB will work with the Southern States Biobased Alliance to determine how policy changes might address any negative impacts or enhance positive impacts. In addition to analysis of domestic policies and programs, this project will include the development of a U.S.-Brazil Biodiesel Pilot Project. The purpose of this effort is to promote and facilitate the commercialization of biodiesel and bioenergy production and demand in Brazil.

  1. DEVELOPING STATE POLICIES SUPPORTIVE OF BIOENERGY DEVELOPMENT

    SciTech Connect (OSTI)

    Kathryn Baskin

    2005-01-31

    Working within the context of the Southern States Biobased Alliance (SSBA) and with officials in each state, the Southern States Energy Board (SSEB) is identifying bioenergy-related policies and programs within each state to determine their impact on the development, deployment or use of bioenergy. In addition, SSEB will determine which policies have impacted industry's efforts to develop, deploy or use biobased technologies or products. As a result, SSEB will work with the Southern States Biobased Alliance to determine how policy changes might address any negative impacts or enhance positive impacts. In addition to analysis of domestic policies and programs, this project will include the development of a U.S.-Brazil Biodiesel Pilot Project. The purpose of this effort is to promote and facilitate the commercialization of biodiesel and bioenergy production and demand in Brazil.

  2. DEVELOPING STATE POLICIES SUPPORTIVE OF BIOENERGY DEVELOPMENT

    SciTech Connect (OSTI)

    Kathryn Baskin

    2004-07-28

    Working within the context of the Southern States Biobased Alliance (SSBA) and with officials in each state, the Southern States Energy Board (SSEB) is identifying bioenergy-related policies and programs within each state to determine their impact on the development, deployment or use of bioenergy. In addition, SSEB will determine which policies have impacted industry's efforts to develop, deploy or use biobased technologies or products. As a result, SSEB will work with the Southern States Biobased Alliance to determine how policy changes might address any negative impacts or enhance positive impacts. In addition to analysis of domestic policies and programs, this project will include the development of a U.S.-Brazil Biodiesel Pilot Project. The purpose of this effort is to promote and facilitate the commercialization of biodiesel and bioenergy production and demand in Brazil.

  3. Biomass Basics: The Facts About Bioenergy

    SciTech Connect (OSTI)

    2015-04-01

    Biomass Basics: The Facts About Bioenergy. This document provides general information about bioenergy and its creation and potential uses.

  4. Bioenergy & Clean Cities

    Broader source: Energy.gov [DOE]

    DOE's Bioenergy Technologies Office†and the†Clean Cities program regularly conduct a joint Web conference for state energy office representatives and Clean Cities coordinators. The Web conferences...

  5. Bioenergy 2015 Confirmed Speakers

    Office of Energy Efficiency and Renewable Energy (EERE)

    A list of confirmed speakers for Bioenergy 2015: Opportunities in a Changing Energy Landscape, which will be held on June 23Ė24, 2015, at the Walter E. Washington Convention Center in Washington, D.C.

  6. Interactions among bioenergy feedstock choices, landscape dynamics, and land use

    SciTech Connect (OSTI)

    Dale, Virginia H [ORNL; Kline, Keith L [ORNL; Wright, Lynn L [ORNL; Perlack, Robert D [ORNL; Downing, Mark [ORNL; Graham, Robin Lambert [ORNL

    2011-01-01

    Landscape implications of bioenergy feedstock choices are significant and depend on land-use practices and their environmental impacts. Although land-use changes and carbon emissions associated with bioenergy feedstock production are dynamic and complicated, lignocellulosic feedstocks may offer opportunities that enhance sustainability when compared to other transportation fuel alternatives. For bioenergy sustainability, major drivers and concerns revolve around energy security, food production, land productivity, soil carbon and erosion, greenhouse gas emissions, biodiversity, air quality, and water quantity and quality. The many implications of bioenergy feedstock choices require several indicators at multiple scales to provide a more complete accounting of effects. Ultimately, the long-term sustainability of bioenergy feedstock resources (as well as food supplies) throughout the world depends on land-use practices and landscape dynamics. Land-management decisions often invoke trade-offs among potential environmental effects and social and economic factors as well as future opportunities for resource use. The hypothesis being addressed in this paper is that sustainability of bioenergy feedstock production can be achieved via appropriately designed crop residue and perennial lignocellulosic systems. We find that decision makers need scientific advancements and adequate data that both provide quantitative and qualitative measures of the effects of bioenergy feedstock choices at different spatial and temporal scales and allow fair comparisons among available options for renewable liquid fuels.

  7. Hawaii Bioenergy Master Plan Issue Reports

    E-Print Network [OSTI]

    and bioremediation processes; ∑ Document methods to increase water use efficiency for bioenergy production including of Ocean Earth Sciences and Technology December 2009 #12;TABLE OF CONTENTS 2.1 Land and water resources Land and Water Resources Submitted to Hawaii Natural Energy Institute School of Ocean and Earth Science

  8. NREL SBV Pilot Bioenergy Technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    conversion technologies, biomass process and sustainability analysis, and feedstock logistics. Capabilities The NREL National Bioenergy Center develops, refines, and validates...

  9. Developing Switchgrass as a Bioenergy Crop

    SciTech Connect (OSTI)

    Bouton, J.; Bransby, D.; Conger, B.; McLaughlin, S.; Ocumpaugh, W.; Parrish, D.; Taliaferro, C.; Vogel, K.; Wullschleger, S.

    1998-11-08

    The utilization of energy crops produced on American farms as a source of renewable fuels is a concept with great relevance to current ecological and economic issues at both national and global scales. Development of a significant national capacity to utilize perennial forage crops, such as switchgrass (Panicum virgatum, L.) as biofuels could benefit our agricultural economy by providing an important new source of income for farmers. In addition energy production from perennial cropping systems, which are compatible with conventional fining practices, would help reduce degradation of agricultural soils, lower national dependence on foreign oil supplies, and reduce emissions of greenhouse gases and toxic pollutants to the atmosphere (McLaughlin 1998). Interestingly, on-farm energy production is a very old concept, extending back to 19th century America when both transpofiation and work on the farm were powered by approximately 27 million draft animals and fueled by 34 million hectares of grasslands (Vogel 1996). Today a new form of energy production is envisioned for some of this same acreage. The method of energy production is exactly the same - solar energy captured in photosynthesis, but the subsequent modes of energy conversion are vastly different, leading to the production of electricity, transportation fuels, and chemicals from the renewable feedstocks. While energy prices in the United States are among the cheapest in the world, the issues of high dependency on imported oil, the uncertainties of maintaining stable supplies of imported oil from finite reserves, and the environmental costs associated with mining, processing, and combusting fossil fuels have been important drivers in the search for cleaner burning fuels that can be produced and renewed from the landscape. At present biomass and bioenergy combine provide only about 4% of the total primary energy used in the U.S. (Overend 1997). By contrast, imported oil accounts for approximately 44% of the foreign trade deficit in the U.S. and about 45% of the total annual U.S. oil consumption of 34 quads (1 quad = 1015 Btu, Lynd et al. 1991). The 22 quads of oil consumed by transportation represents approximately 25% of all energy use in the US and excedes total oil imports to the US by about 50%. This oil has environmental and social costs, which go well beyond the purchase price of around $15 per barrel. Renewable energy from biomass has the potential to reduce dependency on fossil fhels, though not to totally replace them. Realizing this potential will require the simultaneous development of high yielding biomass production systems and bioconversion technologies that efficiently convert biomass energy into the forms of energy and chemicals usable by industry. The endpoint criterion for success is economic gain for both agricultural and industrial sectors at reduced environmental cost and reduced political risk. This paper reviews progress made in a program of research aimed at evaluating and developing a perennial forage crop, switchgrass as a regional bioenergy crop. We will highlight here aspects of research progress that most closely relate to the issues that will determine when and how extensively switchgrass is used in commercial bioenergy production.

  10. Reducing the negative human-health impacts of bioenergy crop emissions through region-specific crop selection

    E-Print Network [OSTI]

    Porter, WC; Rosenstiel, TN; Guenther, A; Lamarque, J-F; Barsanti, K

    2015-01-01

    of future total biomass energy production potentials arean attractive option for biomass-based energy production incharacteristics and energy balance Biomass Bioenergy 33 635Ė

  11. Annual Summary of Teaching, Research & Extension

    E-Print Network [OSTI]

    Bohnhoff, David

    and environment, construction, bio-energy and energy systems, and agricultural safety and health. Research

  12. Solar Thermochemical Hydrogen Production Research (STCH): Thermochemic...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the production of hydrogen and identifies the critical path challenges to the commercial potential of each cycle. Solar Thermochemical Hydrogen Production Research (STCH):...

  13. Bioenergy 2015 Agenda | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bioenergy 2015 Agenda Bioenergy 2015 Agenda Working agenda for Bioenergy 2015: Opportunities in a Changing Energy Landscape. The conference will be held on June 23-24, 2015, at the...

  14. Webinar: Landscape Design for Sustainable Bioenergy Systems

    Broader source: Energy.gov [DOE]

    The Energy Departmentís Bioenergy Technologies Office will present a live informational webcast on the Landscape Design for Sustainable Bioenergy Systems Funding Opportunity (DE-FOA-0001179) on November 3, 2014, 1:30 p.m.Ė3:00 p.m. Eastern Standard Time. This FOA seeks interdisciplinary projects that apply landscape design approaches to integrate cellulosic feedstock production into existing agricultural and forestry systems while maintaining or enhancing environmental and socio-economic sustainability including ecosystem services and food, feed, and fiber production. For the purposes of this FOA, cellulosic feedstock production refers to dedicated annual and perennial energy crops, use of agricultural and forestry residues, or a combination of these options.

  15. Bioenergy 2015 Agenda | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Agenda Bioenergy 2015 Agenda Below is an agenda overview of the Bioenergy 2015 schedule of events. A more detailed agenda with session descriptions and speakers (as they become...

  16. Growing America's Energy Future: Bioenergy Technologies Office...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    made possible by 50 million in cost-shared DOE funding. Bioenergy Successes 2014 BIOENERGY TECHNOLOGIES OFFICE Completed Feedstock Logistics Projects Demonstrate...

  17. Functional Genomics of Drought Tolerance in Bioenergy Crops

    SciTech Connect (OSTI)

    Yin, Hengfu [ORNL; Chen, Rick [ORNL; Yang, Jun [ORNL; Weston, David [ORNL; Chen, Jay [ORNL; Muchero, Wellington [ORNL; Ye, Ning [ORNL; Tschaplinski, Timothy J [ORNL; Wullschleger, Stan D [ORNL; Cheng, Zong-Ming [ORNL; Tuskan, Gerald A [ORNL; Yang, Xiaohan [ORNL

    2014-01-01

    With the predicted trends in climate change, drought will increasingly impose a grand challenge to biomass production. Most of the bioenergy crops have some degree of drought susceptibility with low water-use efficiency (WUE). It is imperative to improve drought tolerance and WUE in bioenergy crops for sustainable biomass production in arid and semi-arid regions with minimal water input. Genetics and functional genomics can play a critical role in generating knowledge to inform and aid genetic improvement of drought tolerance in bioenergy crops. The molecular aspect of drought response has been extensively investigated in model plants like Arabidopsis, yet our understanding of the molecular mechanisms underlying drought tolerance in bioenergy crops are limited. Crops exhibit various responses to drought stress depending on species and genotype. A rational strategy for studying drought tolerance in bioenergy crops is to translate the knowledge from model plants and pinpoint the unique features associated with individual species and genotypes. In this review, we summarize the general knowledge about drought responsive pathways in plants, with a focus on the identification of commonality and specialty in drought responsive mechanisms among different species and/or genotypes. We describe the genomic resources developed for bioenergy crops and discuss genetic and epigenetic regulation of drought responses. We also examine comparative and evolutionary genomics to leverage the ever-increasing genomics resources and provide new insights beyond what has been known from studies on individual species. Finally, we outline future exploration of drought tolerance using the emerging new technologies.

  18. Engineering Cellulase Enzymes for Bioenergy

    E-Print Network [OSTI]

    Atreya, Meera Elizabeth

    2015-01-01

    25. Becker, D. et al. Engineering of a glycosidase Family 7Engineering Cellulase Enzymes for Bioenergy By MeeraSummer 2015 Abstract Engineering Cellulase Enzymes for

  19. Sustainable Bioenergy and the RSB

    Broader source: Energy.gov [DOE]

    Plenary V: Biofuels and Sustainability: Acknowledging Challenges and Confronting MisconceptionsSustainable Bioenergy and the RSBBarbara Bramble, Senior Director for International Wildlife...

  20. Research, Development, Demonstration, and Deployment | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research, Development, Demonstration, and Deployment Research, Development, Demonstration, and Deployment The Bioenergy Technologies Office's research, development, demonstration,...

  1. Biofuel and Bioenergy implementation scenarios

    E-Print Network [OSTI]

    Biofuel and Bioenergy implementation scenarios Final report of VIEWLS WP5, modelling studies #12;Biofuel and Bioenergy implementation scenarios Final report of VIEWLS WP5, modelling studies By Andrť of this project are to provide structured and clear data on the availability and performance of biofuels

  2. Ris Energy Report 2 Bioenergy is energy of biological and renewable origin,

    E-Print Network [OSTI]

    of bioenergy in the industrialised coun- tries, on the other hand, varies from 4% in the USA to 20% in Finland; ∑ electricity supply; and ∑ heating. In the transport sector, biodiesel produced from veg- etable oils could. For electricity production, the use of bioenergy crops is an effective way to mitigate the greenhouse effect

  3. Our Commitment to Bioenergy Sustainability | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Our Commitment to Bioenergy Sustainability Our Commitment to Bioenergy Sustainability To enhance the benefits of bioenergy while mitigating concerns, the Biomass Program combines...

  4. Webtrends Archives by Fiscal Year ó Bioenergy

    Office of Energy Efficiency and Renewable Energy (EERE)

    From the EERE Web Statistics Archive: Bioenergy Technologies Office, Webtrends archives by fiscal year.

  5. Bioenergy | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowaWisconsin:Pontiac Biomass Facility Jump to: navigation,Bioenergy Jump to:

  6. Bioenergy Success Stories

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataEnergy Webinar:I DueBETO Quiz -TechnologiesRubricToolkit61 Bioenergy

  7. Bioenergy Technologies Office Releases Symbiosis Biofeedstock Conference Summary Report

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Bioenergy Technologies Office (BETO) hosted the two-day Symbiosis Biofeedstock ConferenceĚ at Cornell University in Ithaca, New York, on June 20-??21, 2013. The conference brought together diverse members of the public, private, and academic sectors to explore the challenges and opportunities associated with expanding the commercial use of microbial-based products to increase biofeedstock production.

  8. implementing bioenergy applied research & development

    E-Print Network [OSTI]

    Northern British Columbia, University of

    operations UNBC, Western Economic Diversification, and the Wood Pellet Association of Canada have installed a wood pellet facility to provide heat to the University's I.K. Barber Enhanced Forestry Laboratory

  9. Hawaii Bioenergy Master Plan Bioenergy Technology

    E-Print Network [OSTI]

    production X Y Charcoal production X X Y Bio-oil production for fuels X X Y Combustion X Y Renewable diesel Anaerobic Digestion Heat X Y Power X Y Biogas production via cracking of fats, oil, and grease X 1. This effort included the characterization of the status of crops and crop production technologies

  10. Bioenergy Deployment Consortium (BDC) 2014 Fall Symposium

    Broader source: Energy.gov [DOE]

    The 2014 BDC Fall Symposium will be held on October 21Ė22, 2014 in Fort Myers, Florida. The event will include a tour of the Algenol facility on Wednesday morning. The symposium will have panels for progress reports from current cellulosic bio-product companies, updates on government policy from several agencies, scale-up strategies,and lessons learned. POET-DSM will provide the after dinner success story. Neil Rossmeissl, Program Manager, Algal Program, Bioenergy Technologies Office, will be delivering the keynote address on expanding the bioeconomy.

  11. Evaluating ecosystem processes in willow short rotation coppice bioenergy plantations

    E-Print Network [OSTI]

    and alternative land-uses: arable and set-aside (agricultural land taken out of production). We deployed litter cultivation of biomass for biofuels (trans- port fuels) and bioenergy (heat and power) has pro- voked much of the northern hemisphere, how- ever, a small, but growing proportion of biomass crops consist of tree species

  12. Bioenergy with Carbon Capture and Sequestration Workshop

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energyís (DOEís) Office of Fossil Energy (FE) and Bioenergy Technologies Office (BETO) co-hosted the Bioenergy with Carbon Capture and Sequestration (BECCS) Workshop on...

  13. Bioenergy in a Multifunctional Landscape- Text-Alt Version

    Broader source: Energy.gov [DOE]

    How can our landscapes be managed most effectively to produce crops for food, feed, and bioenergy, while also protecting our water resources by preventing the loss of nutrients from the soil? Dr. Cristina Negri and her team at the U.S. Department of Energyís Argonne National Laboratory are tackling this question at an agricultural research site located in Fairbury, Illinois.

  14. Purpose-designed Crop Plants for Biofuels BIOENERGY PROGRAM

    E-Print Network [OSTI]

    Purpose-designed Crop Plants for Biofuels BIOENERGY PROGRAM The Texas AgriLife Research Center for the biofuels industry. This program recognizes that the ideal combination of traits required for an economically and energetically sustainable biofuels industry does not yet exist in a single plant spe- cies

  15. Bioenergy Technologies Office Multi-Year Program Plan: July 2014

    SciTech Connect (OSTI)

    none,

    2014-07-09

    This is the May 2014 Update to the Bioenergy Technologies Office Multi-Year Program Plan, which sets forth the goals and structure of the Office. It identifies the research, development, demonstration, and deployment activities the Office will focus on over the next five years and outlines why these activities are important to meeting the energy and sustainability challenges facing the nation.

  16. Center for BioEnergy Sustainability http://www.ornl.gov/cbes/ Bioenergy, Sustainability, and Land-Use Change Report

    E-Print Network [OSTI]

    Pennycook, Steve

    versus coal. March 23-27 ≠ Several ORNL researchers participated in the Department of Energy's BioEnergy Technologies Office (BETO) 2015 Project Peer Review in Alexandria, Virginia. The following presentations were Durability Relationships for Improved Low-Cost Clean Cookstoves by Tim Theiss Increasing Biofuel Deployment

  17. Bridging Research to Implementation, from Fields to Wheels

    E-Print Network [OSTI]

    Lee, Dongwon

    IOENERG Bridging Research to Implementation, from Fields to Wheels BioEnergy Bridge BioEnergy BridgeTM The Penn State BioEnergy BridgeTM is a university/private/public consortium assembled to address development and engine testing∑ The BioEnergy Bridge will combine Penn State's long-standing tradition

  18. Algal Biofuels Research Laboratory (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-08-01

    This fact sheet provides information about Algal Biofuels Research Laboratory capabilities and applications at NREL's National Bioenergy Center.

  19. SYNTHESIS Industrial-strength ecology: trade-offs and opportunities in algal biofuel production

    E-Print Network [OSTI]

    for biofuel productivity and resilience. We argue that a community engineering approach that manages and productive biofuel ecosystems. We review evidence for trade-offs, challenges and opportunities in algal biofuel cultivation with a goal of guiding research towards intensifying bioenergy production using

  20. Plant and microbial research seeks biofuel production from lignocellulose

    E-Print Network [OSTI]

    Bartley, Laura E; Ronald, Pamela C

    2009-01-01

    sugar yields for biofuel production. Nat Biotechnol 25(7):research seeks biofuel production from lignocellulose A keylignocellulosic biofuel production and highlight scientific

  1. Bioenergy 2015: Attendee Networking Tool

    Broader source: Energy.gov [DOE]

    For the Bioenergy 2015 Conference, this tool offers a concise listing of participants' background, areas of expertise, areas of need, and business contact information. Users can sort the information by clicking on the arrows in the header rows. Users can also filter by keywords by typing them into the search field in order to find individuals with skill sets complementary to their own.

  2. Sustainable Management of Biogeochemical Cycles in Soils Amended with Bio-Resources from Livestock, Bioenergy, and Urban Systems†

    E-Print Network [OSTI]

    Schnell, Ronnie Wayne

    2011-10-21

    without sacrificing crop productivity. Alum treatment of bioresources prior to land application effectively reduced runoff loss of dissolved P to levels observed for control soil. For situations in which large, volume-based bioresource rates are top... biomass and residues used for bioenergy production. Recycling byproducts of bioenergy production may be necessary to maintain levels of C and nutrients in soil (Anex et al., 2007; Johnson et al., 2004). In addition to benefiting crop growth...

  3. Trade-offs of different land and bioenergy policies on the path to achieving climate targets.

    SciTech Connect (OSTI)

    Calvin, Katherine V.; Wise, Marshall A.; Kyle, G. Page; Patel, Pralit L.; Clarke, Leon E.; Edmonds, James A.

    2014-04-16

    Many papers have shown that bioenergy and land-use are potentially important elements in a strategy to limit anthropogenic climate change. But, significant expansion of bioenergy production can have a large terrestrial footprint. In this paper, we test the implications for land use, the global energy system, carbon cycle, and carbon prices of meeting a specific climate target, using a single fossil fuel and industrial sector policy instrumentóthe carbon tax, but with five alternative bioenergy and land-use policy architectures. We find that the policies we examined have differing effects on the different segments of the economy. Comprehensive land policies can reduce land-use change emissions, increasing allowable emissions in the energy system, but have implications for the cost of food. Bioenergy taxes and constraints, on the other hand, have little effect on food prices, but can result in increased carbon and energy prices.

  4. About the Bioenergy Technologies Office: Growing America's Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    You are here Home About the Bioenergy Technologies Office: Growing America's Energy Future About the Bioenergy Technologies Office: Growing America's Energy Future The U.S....

  5. Bioenergy Technologies Office: Association of Fish and Wildlife...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bioenergy Technologies Office: Association of Fish and Wildlife Agencies Agricultural Conservation Committee Meeting Bioenergy Technologies Office: Association of Fish and Wildlife...

  6. Bibliography, Bioenergy Technologies Office Multi-Year Program...

    Broader source: Energy.gov (indexed) [DOE]

    M. (2013). "Status of Advanced Biofuels Demonstration Facilities in 2012: A Report to IEA Bioenergy Task 39," http:demoplants.bioenergy2020.eufilesDemoplantsReportFinal.pd...

  7. Office of the Biomass Program Educational Opportunities in Bioenergy...

    Broader source: Energy.gov (indexed) [DOE]

    Biomass Program at the Educational Opportunities in Bioenergy webinar. obpeducationalopportunitieswebinar.pdf More Documents & Publications Webinar: Using the New Bioenergy KDF...

  8. Engineering The recent interest in bioenergy has motivated a closer

    E-Print Network [OSTI]

    Chemical Engineering The recent interest in bioenergy has motivated a closer look at microorganisms could facilitate other important biotransformations related to bioenergy applications. Our laboratory

  9. ORNL Bioenergy technologies

    SciTech Connect (OSTI)

    Davison, Brian; Narula, Chaintanya; Langholtz, Matt; Dale, Virginia

    2014-07-02

    ORNL researchers discuss breakthroughs in biomass conversion, feedstocks, logistics and sustainability

  10. ORNL Bioenergy technologies

    ScienceCinema (OSTI)

    Davison, Brian; Narula, Chaintanya; Langholtz, Matt; Dale, Virginia

    2014-07-15

    ORNL researchers discuss breakthroughs in biomass conversion, feedstocks, logistics and sustainability

  11. Bioenergy Technologies Office Program Management Review

    Broader source: Energy.gov [DOE]

    The Bioenergy Technologies Office will be hosting its biennial Program Management Peer Review on June 25, 2015 at the Walter E. Washington Convention Center.

  12. Bioenergy Knowledge Discovery Framework Recognized at National...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    50 papers with wide-ranging topics in the field of geospatial information systems. The paper explains how the Bioenergy Knowledge Discovery Framework (KDF) is bringing together...

  13. International Market Opportunities in Bioenergy: Leveraging U...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Biomass 2014: Breakout Speaker Biographies Bioenergy Technologies Office Overview U.S. and Brazil Bilateral Collaboration on Biofuels...

  14. ABENGOA BIOENERGY | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram:Y-12 Beta-3 Racetracks25 AMOSystem forAAPGABENGOA BIOENERGY ABENGOA

  15. Model for Developing Educational Research Productivity: The Medical Education Research Group

    E-Print Network [OSTI]

    2015-01-01

    Educational Outcomes Research in Emergency 11. Anderson KDand Deiorio NM. Education Research: A Primer Surgery. 1995;Characteristics of a productive research patient-oriented

  16. Streamlining Bioenergy Feedstock Engineering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    markets. The collaborative feedstock research cycle begins with lab-scale feedstock "recipe" development. Large volumes of selected formulations can then be produced using the...

  17. Research Facilities & Centers | Clean Energy | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Clean Energy Research Areas Research Highlights Facilities and Centers BioEnergy Science Center Building Technologies Research and Integration Center Carbon Fiber Technology...

  18. Bioenergy with Carbon Capture and Sequestration Workshop

    Broader source: Energy.gov [DOE]

    The Office of Fossil Energy (FE) and the Bioenergy Technologies Office (BETO) in the Office of Energy Efficiency and Renewable Energy (EERE) at the U.S. Department of Energy (DOE) is hosting a Bioenergy with Carbon Capture and Sequestration (BECCS) Workshop on Monday, May 18, 2015 in Washington, DC.

  19. Social Aspects of Bioenergy Sustainability Workshop Report

    SciTech Connect (OSTI)

    Luchner, Sarah; Johnson, Kristen; Lindauer, Alicia; McKinnon, Taryn; Broad, Max

    2013-05-30

    The Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy Bioenergy Technologies Office held a workshop on ďSocial Aspects of BioenergyĒ on April 24, 2012, in Washington, D.C., and convened a webinar on this topic on May 8, 2012. The findings and recommendations from the workshop and webinar are compiled in this report.

  20. Hawaii Bioenergy Master Plan Stakeholder Comment

    E-Print Network [OSTI]

    Hawaii Bioenergy Master Plan Volume III Stakeholder Comment Prepared for State of Hawaii Department of Business, Economic Development and Tourism By University of Hawaii Hawaii Natural Energy Institute School of Ocean Earth Sciences and Technology December 2009 #12;i Hawaii Bioenergy Master Plan Volume III

  1. Bioenergy: how much can we expect for 2050? This content has been downloaded from IOPscience. Please scroll down to see the full text.

    E-Print Network [OSTI]

    Montana, University of

    forage production to provide that amount of energy. Such a high level of bioenergy supply would roughly Hall, Princeton, NJ 08544, USA helmut.haberl@aau.at Abstract Estimates of global primary bioenergy has doubled in the last century. We estimate the maximum physical potential of the world's total land

  2. Hawaii Bioenergy Master Plan Potential Environmental Impacts of

    E-Print Network [OSTI]

    Hawaii Bioenergy Master Plan Potential Environmental Impacts of Bioenergy Development in Hawaii of the potential environmental impacts associated with bioenergy development in Hawaii was conducted as part of the Hawaii Bioenergy Master Plan mandated by Act 253 of the Hawaii State Legislature in 2007. This effort

  3. Mapping intra-field yield variation using high resolution satellite imagery to integrate bioenergy and environmental stewardship in an agricultural watershed

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hamada, Yuki; Ssegane, Herbert; Negri, Maria Cristina

    2015-07-31

    Biofuels are important alternatives for meeting our future energy needs. Successful bioenergy crop production requires maintaining environmental sustainability and minimum impacts on current net annual food, feed, and fiber production. The objectives of this study were to: (1) determine under-productive areas within an agricultural field in a watershed using a single date; high resolution remote sensing and (2) examine impacts of growing bioenergy crops in the under-productive areas using hydrologic modeling in order to facilitate sustainable landscape design. Normalized difference indices (NDIs) were computed based on the ratio of all possible two-band combinations using the RapidEye and the National Agriculturalmore†ĽImagery Program images collected in summer 2011. A multiple regression analysis was performed using 10 NDIs and five RapidEye spectral bands. The regression analysis suggested that the red and near infrared bands and NDI using red-edge and near infrared that is known as the red-edge normalized difference vegetation index (RENDVI) had the highest correlation (R2 = 0.524) with the reference yield. Although predictive yield map showed striking similarity to the reference yield map, the model had modest correlation; thus, further research is needed to improve predictive capability for absolute yields. Forecasted impact using the Soil and Water Assessment Tool model of growing switchgrass (Panicum virgatum) on under-productive areas based on corn yield thresholds of 3.1, 4.7, and 6.3 Mg∑ha-1 showed reduction of tile NO3-N and sediment exports by 15.9%Ė25.9% and 25%Ė39%, respectively. Corresponding reductions in water yields ranged from 0.9% to 2.5%. While further research is warranted, the study demonstrated the integration of remote sensing and hydrologic modeling to quantify the multifunctional value of projected future landscape patterns in a context of sustainable bioenergy crop production.ę†less

  4. Bioenergy `96: Partnerships to develop and apply biomass technologies. Volume I and II

    SciTech Connect (OSTI)

    1996-12-31

    The conference proceedings consist of two volumes of papers detailing numerous issues related to biomass energy production and use. An author and keyword index are provided in the proceedings. A total of 143 papers were selected for the database. Papers were selected from the following areas from Volume 1: feedstock production, harvest, storage, and delivery; the DOE biomass power program; technical, economic, and policy barriers and incentives; new developments in biomass combustion; advancements in biomass gasification; liquid fuels production and use; and case studies of bioenergy projects. From Volume 2, subtopics selected included: bioenergy systems for distributed generation; assessment and use of biomass wastes; non-technical barriers to bioenergy implementation; improving commercial viability through integrated systems; and anaerobic digestion.

  5. Pyrolysis for waste management: A life cycle assesment of biodegradable waste, bioenergy generation and biochar production in Glasgow and Clyde valley†

    E-Print Network [OSTI]

    Ibarrola, Rodrigo

    2009-01-01

    Biochar production and waste treatment by pyrolysis represent an attractive solution to decrease carbon dioxide atmospheric concentrations and to enhance the enrichment of soils by treating in a more sustainable way the biodegradable waste generated...

  6. CEE Bioenergie | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar Energy LLC JumpBiossenceBrunswick, Maine:IAEAT JumpCEE Bioenergie Jump to:

  7. Alterra Bioenergy | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar Energy LLC Jump to: navigation, search Name: Alliance'Novel'Bioenergy Jump

  8. Sustainable Bioenergy | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking With Livermore NationalSurprisingSustainabilitySustainable Bioenergy

  9. Bioenergy Toolkit | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowaWisconsin:Pontiac Biomass Facility Jump to: navigation, searchBioenergy

  10. Presentation 2.1: Review of global bioenergy scenarios Jack N. Saddler

    E-Print Network [OSTI]

    ;#12;Forest Products Biotechnology at UBC Review of global bioenergy scenarios W.E. Mabee, J.N. Saddler Forest Forest Products Biotechnology at UBC Oil Prices and World Events $0 $10 $20 $30 $40 $50 $60 $70 $80 1997 Dec 2002 - Feb 2003 Iraq War 20 Mar 2003 > (US$/barrel West Texas Crude Oil) Hurricane Katrina 29 Aug

  11. BIOENERGY AND BIOFUELS Performance of a pilot-scale continuous flow microbial

    E-Print Network [OSTI]

    a maximum of 7.4 A/m3 by the planned end of the test (after 100 days). Gas production reached a maximum of 0.19Ī0.04 L/L/day, although most of the product gas was converted to methane (86Ī6%). In order to increase performance. Keywords Biohydrogen . Biomethane . Bioelectricity. Microbial electrolysis cell . Bioenergy

  12. Invasive plant species as potential bioenergy producers and carbon contributors.

    SciTech Connect (OSTI)

    Young, S.; Gopalakrishnan, G.; Keshwani, D.

    2011-03-01

    Current cellulosic bioenergy sources in the United States are being investigated in an effort to reduce dependence on foreign oil and the associated risks to national security and climate change (Koh and Ghazoul 2008; Demirbas 2007; Berndes et al. 2003). Multiple sources of renewable plant-based material have been identified and include agricultural and forestry residues, municipal solid waste, industrial waste, and specifically grown bioenergy crops (Demirbas et al. 2009; Gronowska et al. 2009). These sources are most commonly converted to energy through direct burning, conversion to gas, or conversion to ethanol. Annual crops, such as corn (Zea Mays L.) and sorghum grain, can be converted to ethanol through fermentation, while soybean and canola are transformed into fatty acid methyl esters (biodiesel) by reaction with an alcohol (Demirbas 2007). Perennial grasses are one of the more viable sources for bioenergy due to their continuous growth habit, noncrop status, and multiple use products (Lewandowski el al. 2003). In addition, a few perennial grass species have very high water and nutrient use efficiencies producing large quantities of biomass on an annual basis (Dohleman et al. 2009; Grantz and Vu 2009).

  13. Agronomic Suitability of Bioenergy Crops in Mississippi

    SciTech Connect (OSTI)

    Lemus, Rocky; Baldwin, Brian; Lang, David

    2011-10-01

    In Mississippi, some questions need to be answered about bioenergy crops: how much suitable land is available? How much material can that land produce? Which production systems work best in which scenarios? What levels of inputs will be required for productivity and longterm sustainability? How will the crops reach the market? What kinds of infrastructure will be necessary to make that happen? This publication helps answer these questions: √?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬Ę√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬Ę Which areas in the state are best for bioenergy crop production? √?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬Ę√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬Ę How much could these areas produce sustainably? √?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬Ę√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬Ę How can bioenergy crops impact carbon sequestration and carbon credits? √?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬Ę√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬Ę How will these crops affect fertilizer use and water quality? √?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬Ę√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬

  14. BioEnergy Blog | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    D.C. for their Winning Bioenergy Infographic A team of five freshmen from Williamsburg High School for Architecture and Design in Brooklyn, New York-designed an infographic on the...

  15. GCAM Bioenergy and Land Use Modeling

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Leon Clarke. 2013. "Can radiative forcing be limited to 2.6 Wm-2 without negative emissions from bioenergy and CO2 capture and storage?" Climatic Change. Special Issue on...

  16. BIOENERGI ER BLEVET MODERNE 4DECEMBER 2003

    E-Print Network [OSTI]

    at bruge biomasse til energi. Opfyring med brśnde og opvarmning med halmfyr eller biogas er kendte, biogas og bioethanol. Bioenergi er den eneste vedvarende energikilde, der findes i fast, flydende og

  17. Sorghum bioenergy genotypes, genes and pathways†

    E-Print Network [OSTI]

    Plews, Ian Kenneth

    2009-05-15

    and this plant is a potentially important bioenergy crop for Texas. The diversity of the twelve high biomass sorghum genotypes was analyzed using 50 simple sequence repeats (SSR) markers with genome coverage. The accumulation of biomass during sorghum development...

  18. Bioenergy in Energy Transformation and Climate Management

    SciTech Connect (OSTI)

    Rose, Steven K.; Kriegler, Elmar; Bibas, Ruben; Calvin, Katherine V.; Popp, Alexander; van Vuuren, Detlef; Weyant, John

    2014-04-01

    Unlike fossil fuels, biomass is a renewable resource that can sequester carbon during growth, be converted to energy, and then re-grown. Biomass is also a flexible fuel that can service many end-uses. This paper explores the importance of bioenergy to potential future energy transformation and climate change management. Using a model comparison of fifteen models, we characterize and analyze future dependence on, and the value of, bioenergy in achieving potential long-run climate objectivesóreducing radiative forcing to 3.7 and 2.8 W/m2 in 2100 (approximately 550 and 450 ppm carbon dioxide equivalent atmospheric concentrations). Model scenarios project, by 2050, bioenergy growth of 2 to 10% per annum reaching 5 to 35 percent of global primary energy, and by 2100, bioenergy becoming 15 to 50 percent of global primary energy. Non-OECD regions are projected to be the dominant suppliers of biomass, as well as consumers, with up to 35 percent of regional electricity from biopower by 2050, and up to 70 percent of regional liquid fuels from biofuels by 2050. Bioenergy is found to be valuable to many models with significant implications for mitigation costs and world consumption. The availability of bioenergy, in particular biomass with carbon dioxide capture and storage (BECCS), notably affects the cost-effective global emissions trajectory for climate management by accommodating prolonged near-term use of fossil fuels. We also find that models cost-effectively trade-off land carbon and nitrous oxide emissions for the long-run climate change management benefits of bioenergy. Overall, further evaluation of the viability of global large-scale bioenergy is merited.

  19. Bio-energy feedstock yields and their water quality benefits in Mississippi

    SciTech Connect (OSTI)

    Parajuli, Prem B.

    2011-08-10

    Cellulosic and agricultural bio-energy crops can, under careful management, be harvested as feedstock for bio-fuels production and provide environmental benefits. However, it is required to quantify their relative advantages in feedstock production and water quality. The primary objective of this research was to evaluate potential feedstock yield and water quality benefit scenarios of bioenergy crops: Miscanthus (Miscanthus-giganteus), Switchgrass (Panicum virgatum), Johnsongrass (Sorghum halepense), Alfalfa (Medicago sativa L.), Soybean {Glycine max (L.) Merr.}, and Corn (Lea mays) in the Upper Pearl River watershed (UPRW), Mississippi using a Soil and Water Assessment Tool (SWAT). The SWAT model was calibrated (January 1981 to December 1994) and validated (January 1995 to September 2008) using monthly measured stream flow data. The calibrated and validated model determined good to very good performance for stream flow prediction (R2 and E from 0.60 to 0.86). The RMSE values (from 14 m3 s-1 to 37 m3 s-1) were estimated at similar levels of errors during model calibration and validation. The long-term average annual potential feedstock yield as an alternative energy source was determined the greatest when growing Miscanthus grass (373,849 Mg) as followed by Alfalfa (206,077 Mg), Switchgrass (132,077 Mg), Johnsongrass (47,576 Mg), Soybean (37,814 Mg), and Corn (22,069 Mg) in the pastureland and cropland of the watershed. Model results determined that average annual sediment yield from the Miscanthus grass scenario determined the least (1.16 Mg/ha) and corn scenario the greatest (12.04 Mg/ha). The SWAT model simulated results suggested that growing Miscanthus grass in the UPRW would have the greatest potential feedstock yield and water quality benefits.

  20. Plant and microbial research seeks biofuel production from lignocellulose

    E-Print Network [OSTI]

    Bartley, Laura E; Ronald, Pamela C

    2009-01-01

    sugar yields for biofuel production. Nat Biotechnol 25(7):Plant and microbial research seeks biofuel production fromA key strategy for biofuel produc- tion is making use of the

  1. Bioenergy

    Broader source: Energy.gov [DOE]

    Learn how the Energy Department is working to sustainably transform the nation's abundant renewable resources into biomass energy.

  2. Bioenergy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O OLaura|Bilayer Graphene GetsBiodiesel - SSC

  3. Pacific Northwest and Alaska Bioenergy Program Year Book; 1992-1993 Yearbook with 1994 Activities.

    SciTech Connect (OSTI)

    Pacific Northwest and Alaska Bioenergy Program; United States. Bonneville Power Administration.

    1994-04-01

    The U.S. Department of Energy administers five Regional Bioenergy Programs to encourage regionally specific application of biomass and municipal waste-to-energy technologies to local needs, opportunities and potentials. The Pacific Northwest and Alaska region has taken up a number of applied research and technology projects, and supported and guided its five participating state energy programs. This report describes the Pacific Northwest and Alaska Regional Bioenergy Program, and related projects of the state energy agencies, and summarizes the results of technical studies. It also considers future efforts of this regional program to meet its challenging assignment.

  4. Climate implications of algae-based bioenergy systems Andres Clarens, PhD

    E-Print Network [OSTI]

    Walter, M.Todd

    Climate implications of algae-based bioenergy systems Andres Clarens, PhD Assistant Professor Civil of algae and other nonconventional feedstocks, are being developed. This talk will explore several systems priorities. This is an especially challenging problem for algae-based biofuels because production pathways

  5. Bioenergy 2015: Opportunities in a Changing Energy Landscape

    Broader source: Energy.gov [DOE]

    On June 23Ė24, 2015, the U.S. Department of Energy's (DOEís) Bioenergy Technologies Office (BETO) will host its eighth annual conferenceóBioenergy 2015: Opportunities in a Changing Energy Landscape...

  6. Preparing the Next Generation of Bioenergy Leaders | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Preparing the Next Generation of Bioenergy Leaders Preparing the Next Generation of Bioenergy Leaders March 31, 2015 - 5:12pm Addthis Dr. Valerie Sarisky-Reed Dr. Valerie...

  7. Bioenergy 2015: Opportunities in a Changing Energy Landscape

    Broader source: Energy.gov [DOE]

    On June 23Ė24, 2015, the U.S. Department of Energy's (DOEís) Bioenergy Technologies Office (BETO) will host its eighth annual conferenceóBioenergy 2015: Opportunities in a Changing Energy Landscape.

  8. Special issue: bioenergy Don-Hee Park Sang Yup Lee

    E-Print Network [OSTI]

    . As the field of bioenergy is rapidly moving forward with rather traditional bioethanol and biodiesel to more

  9. IEA Bioenergy task 40 Country report for the Netherlands

    E-Print Network [OSTI]

    1 IEA Bioenergy task 40 ≠ Country report for the Netherlands Update 2006 Martin Junginger Marc de-energy trade #12;IEA Bioenergy task 40 Country report for the Netherlands ≠update 2006 i IEA Bioenergy Task 40.Junginger@chem.uu.nl, A.Faaij@chem.uu.nl Report NWS-E-2006-XX ISBN 90-73958-96-2 September 2006 #12;IEA Bioenergy task 40

  10. Bioenergy Technologies Office R&D Pathways: Algal Lipid Upgrading...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Upgrading More Documents & Publications Algal Lipid Extraction and Upgrading to Hydrocarbons Technology Pathway Pathways for Algal Biofuels Bioenergy Technologies Office...

  11. Extension Bulletin E-3164 New January 2012 Biodiversity Services and Bioenergy Landscapes

    E-Print Network [OSTI]

    Isaacs, Rufus

    . For example, the U.S. Energy Independence and Security Act sets the goal of producing 46 billion gallons Bioenergy Research Center, Michigan State University b Kellogg Biological Station (KBS) Land and Water of fertilizer and pesticides1, which have polluted some ground and surface waters (http://water

  12. LANL capabilities towards bioenergy and biofuels programs

    SciTech Connect (OSTI)

    Olivares, Jose A; Park, Min S; Unkefer, Clifford J; Bradbury, Andrew M; Waldo, Geoffrey S

    2009-01-01

    LANL invented technology for increasing growth and productivity of photosysnthetic organisms, including algae and higher plants. The technology has been extensively tested at the greenhouse and field scale for crop plants. Initial bioreactor testing of its efficacy on algal growth has shown promising results. It increases algal growth rates even under optimwn nutrient supply and careful pH control with CO{sub 2} continuously available. The technology uses a small organic molecule, applied to the plant surfaces or added to the algal growth medium. CO{sub 2} concentration is necessary to optimize algal production in either ponds or reactors. LANL has successfully designed, built and demonstrated an effective, efficient technology using DOE funding. Such a system would be very valuable for capitalizing on local inexpensive sources of CO{sub 2} for algal production operations. Furthermore, our protein engineering team has a concept to produce highly stable carbonic anhydyrase (CA) enzyme, which could be very useful to assure maximum utilization of the CO{sub 2} supply. Stable CA could be used either imnlobilized on solid supports or engineered into the algal strain. The current technologies for harvesting the algae and obtaining the lipids do not meet the needs for rapid, low cost separations for high volumes of material. LANL has obtained proof of concept for the high volume flowing stream concentration of algae, algal lysis and separation of the lipid, protein and water fractions, using acoustic platforms. This capability is targeted toward developing biosynthetics, chiral syntheses, high throughput protein expression and purification, organic chemistry, recognition ligands, and stable isotopes geared toward Bioenergy applications. Areas of expertise include stable isotope chemistry, biomaterials, polymers, biopolymers, organocatalysis, advanced characterization methods, and chemistry of model compounds. The ultimate realization of the ability to design and synthesize materials that mimic or are inspired by natural systems will lead to entirely new applications in the bioenergy areas. In addition, there are new developments in this capability that involve development of catalytic methods for the production of carbon chains from the most abundant carbohydrate on the planet, glucose. These carbon chains will be useful in the production of high density fuels which defined characteristics. In addition, these methods/capabilities will be used to generate feedstocks for industrial processes. LANL is the second largest partner institution of the Department of Energy's Joint Genome Institute (DOE-JGI), and specializes in high throughput genome finishing and analysis in support of DOE missions in energy, bioremediation and carbon sequestration. This group is comprised of molecular biology labs and computational staff who together focus on the high-throughput DNA sequencing of whole microbial genomes, computational finishing and bioinformatics. The applications team focuses on the use of new sequencing technologies to address questions in environmental science. In addition to supporting the DOE mission, this group supports the Nation's national security mission by sequencing critical pathogens and near neighbors in support of relevent application areas.

  13. Hawaii Bioenergy Master Plan Land and Water Resources

    E-Print Network [OSTI]

    with phytoremediation and bioremediation processes; ∑ Document methods to increase water use efficiency for bioenergyHawaii Bioenergy Master Plan Land and Water Resources Submitted to Hawaii Natural Energy Institute of any bioenergy crops in Hawaii is the availability of the land and water necessary to produce

  14. Bird Communities and Biomass Yields in Potential Bioenergy Grasslands

    E-Print Network [OSTI]

    Turner, Monica G.

    richness and the density of total birds and SGCNs, suggesting that grassland bioenergy fields may be moreBird Communities and Biomass Yields in Potential Bioenergy Grasslands Peter J. Blank1 *, David W, Wisconsin, United States of America Abstract Demand for bioenergy is increasing, but the ecological

  15. Figure 1. Primary research site at Cornell with quadruplicate test strips (each ~1 acre) representing four crop treatments.

    E-Print Network [OSTI]

    for these soils. Unfortunately, the research base on perennial bioenergy grass production and impacts crop yields but also the potential for soil carbon accumulation (sequestration) to take place ≠ nitrous oxide [N O] and 4 2methane [CH ] ≠ which have a strong impact on the overall "emissions footprint

  16. Solar Thermochemical Hydrogen Production Research (STCH)

    Fuel Cell Technologies Publication and Product Library (EERE)

    Eight cycles in a coordinated set of projects for Solar Thermochemical Cycles for Hydrogen production (STCH) were self-evaluated for the DOE-EERE Fuel Cell Technologies Program at a Working Group Meet

  17. RESEARCH Open Access Simultaneous cell growth and ethanol production

    E-Print Network [OSTI]

    Chen, Wilfred

    RESEARCH Open Access Simultaneous cell growth and ethanol production from cellulose steps to their practical usage for ethanol production. Ideally, a recombinant microorganism, possessing the capability to utilize cellulose for simultaneous growth and ethanol production, is of great interest. We have

  18. RESEARCH ARTICLE A model for improving microbial biofuel production using

    E-Print Network [OSTI]

    Dunlop, Mary

    RESEARCH ARTICLE A model for improving microbial biofuel production using a synthetic feedback loop be compared. We propose a model for microbial biofuel production where a synthetic control system is used, the fuels are often toxic to cell growth, creating a negative feedback loop that limits biofuel production

  19. Achieving Water-Sustainable Bioenergy Production

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing ToolInternationalReportOffice |4-01r2.pdfATVMAccess to Capitalthe Waste

  20. Agave Transcriptomes and microbiomes for bioenergy research

    E-Print Network [OSTI]

    Gross, Stephen

    2013-01-01

    r = 0.51 r = 0.82 r = 0.70 Heat stress Optimal conditionsresponses to heat and drought stress. A Juvenile Stem r =agaves under heat and drought stress to those under optimal

  1. Great Lakes Bioenergy Research Center Technologies Available...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Biomass and Biofuels Building Energy Efficiency Electricity Transmission Energy Analysis Energy Storage Geothermal Hydrogen and Fuel Cell Hydropower, Wave and...

  2. NREL: Biomass Research - National Bioenergy Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJessework usesof EnergyY-12 NationalNO FEARIntegrated Biorefinery

  3. Center for BioEnergy Sustainability http://www.ornl.gov/cbes/ Bioenergy, Sustainability, and Land-Use Change Report

    E-Print Network [OSTI]

    Pennycook, Steve

    designs. Renewable & Sustainable Energy Review. ORNL Presentations: February 2-4 ≠ Esther Parish "Sustainability, Ecosystem Services, and Bioenergy Development across the Americas" Project. February 27 ≠ UpdateCenter for BioEnergy Sustainability http://www.ornl.gov/cbes/ 1 Bioenergy, Sustainability, and Land

  4. Importance of Biomass Production and Supply

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    is very important. * New, integrated approaches, especially in feedstock supply and logistics with production and conversion, are being developed with partners. 3 | Bioenergy...

  5. State Bioenergy Primer: Information and Resources for States on Issues, Opportunities, and Options for Advancing Bioenergy

    SciTech Connect (OSTI)

    Byrnett, D. S.; Mulholland, D.; Zinsmeister, E.; Doris, E.; Milbrandt, A.; Robichaud. R.; Stanley, R.; Vimmerstedt, L.

    2009-09-01

    One renewable energy option that states frequently consider to meet their clean energy goals is the use of biomass resources to develop bioenergy. Bioenergy includes bioheat, biopower, biofuels, and bioproducts. This document provides an overview of biomass feedstocks, basic information about biomass conversion technologies, and a discussion of benefits and challenges of bioenergy options. The Primer includes a step-wise framework, resources, and tools for determining the availability of feedstocks, assessing potential markets for biomass, and identifying opportunities for action at the state level. Each chapter contains a list of selected resources and tools that states can use to explore topics in further detail.

  6. RESEARCH SURVEYS 2013 -Present

    E-Print Network [OSTI]

    Herr, Hugh

    Technologies, 7/13, 32 pgs BioEnergy 6/13, 36 pgs Food-related Research, 6/13, 22 pgs #12;MIT Industrial, Finance, 4/15, 46 pgs Battery Technologies, 7/13, 32 pgs Big Data / Analytics, 3/14, 52 pgs BioEnergy 6

  7. Biomass Research Program

    ScienceCinema (OSTI)

    Kenney, Kevin; Wright, Christopher; Shelton-Davis, Colleen

    2013-05-28

    INL's mission is to achieve DOE's vision of supplying high-quality raw biomass; preprocessing biomass into advanced bioenergy feedstocks; and delivering bioenergy commodities to biorefineries. You can learn more about research like this at the lab's facebook site http://www.facebook.com/idahonationallaboratory.

  8. Pacific Rim Summit on Industrial Biotechnology & Bioenergy

    Broader source: Energy.gov [DOE]

    The ninth annual Pacific Rim Summit on Industrial Biotechnology and Bioenergy will be held from December 7Ė9, 2014, in San Diego, California, at the Westin Gaslamp Quarter. Bringing together representatives from various countries all around the Pacific Rim, this event will focus on the growth of the industrial biotechnology and bioenergy sectors in North America and the Asia-Pacific region. Glenn Doyle, BETO's Deployment & Demonstration Technology Manager, will be moderating and speaking at a session on entitled "Utilizing Strategic Partnerships to Grow Your Business" on December 9.

  9. Report Explains How Bioenergy Supports Global Sustainability...

    Broader source: Energy.gov (indexed) [DOE]

    productivity and environmental health, and provides a vision for sustainably reducing poverty and reliance on dwindling fossil resources. BETO funding supports researchers from...

  10. Innovation Impact: Breakthrough Research Results (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2013-07-01

    The Innovation Impact brochure captures key breakthrough results across NREL's primary areas of renewable energy and energy efficiency research: solar, wind, bioenergy, transportation, buildings, analysis, and manufacturing technologies.

  11. Actinide Foil Production for MPACT Research

    SciTech Connect (OSTI)

    Beller, Denis

    2012-10-31

    Sensitive fast-neutron detectors are required for use in lead slowing down spectrometry (LSDS), an active interrogation technique for used nuclear fuel assay for Materials Protection, Accounting, and Controls Technologies (MPACT). During the past several years UNLV sponsored a research project at RPI to investigate LSDS; began development of fission chamber detectors for use in LSDS experiments in collaboration with INL, LANL, and Oregon State U.; and participated in a LSDS experiment at LANL. In the LSDS technique, research has demonstrated that these fission chamber detectors must be sensitive to fission energy neutrons but insensitive to thermal-energy neutrons. Because most systems are highly sensitive to large thermal neutron populations due to the well-known large thermal cross section of 235U, even a miniscule amount of this isotope in a fission chamber will overwhelm the small population of higher-energy neutrons. Thus, fast-fission chamber detectors must be fabricated with highly depleted uranium (DU) or ultra-pure thorium (Th), which is about half as efficient as DU. Previous research conducted at RPI demonstrated that the required purity of DU for assay of used nuclear fuel using LSDS is less than 4 ppm 235U, material that until recently was not available in the U.S. In 2009 the PI purchased 3 grams of ultra-depleted uranium (uDU, 99.99998% 238U with just 0.2 √?¬?√?¬Ī 0.1 ppm 235U) from VNIIEF in Sarov, Russia. We received the material in the form of U3O8 powder in August of 2009, and verified its purity and depletion in a FY10 MPACT collaboration project. In addition, chemical processing for use in FC R&D was initiated, fission chamber detectors and a scanning alpha-particle spectrometer were developed, and foils were used in a preliminary LSDS experiment at a LANL/LANSCE in Sept. of 2010. The as-received U3O8 powder must be chemically processed to convert it to another chemical form while maintaining its purity, which then must be used to electro-deposit U or UO2 in extremely thin layers (1 to 2 mg/cm2) on various media such as films, foils, or discs. After many months of investigation and trials in FY10 and 11, UNLV researchers developed a new method to produce pure UO2 deposits on foils using a unique approach, which has never been demonstrated, that involves dissolution of U3O8 directly into room temperature ionic liquid (RTIL) followed by electrodeposition from the RTIL-uDU solution (Th deposition from RTIL had been previously demonstrated). The high-purity dissolution of the U3O8 permits the use of RTIL solutions for deposition of U on metal foils in layers without introducing contamination. In FY10 and early FY11 a natural U surrogate for the uDU was used to investigate this and other techniques. In this research project UNLV will deposit directly from RTIL to produce uDU and Th foils devoid of possible contaminants. After these layers have been deposited, they will be examined for purity and uniformity. UNLV will complete the development and demonstration of the RTIL technology/ methodology to prepare uDU and Th samples for use in constructing fast-neutron detectors. Although this material was purchased for use in research using fast-fission chamber detectors for active inspection techniques for MPACT, it could also contribute to R&D for other applications, such as cross section measurements or neutron spectroscopy for national security

  12. Solar Thermochemical Hydrogen Production Research (STCH)

    SciTech Connect (OSTI)

    Perret, Robert

    2011-05-01

    Eight cycles in a coordinated set of projects for Solar Thermochemical Cycles for Hydrogen production (STCH) were self-evaluated for the DOE-EERE Fuel Cell Technologies Program at a Working Group Meeting on October 8 and 9, 2008. This document reports the initial selection process for development investment in STCH projects, the evaluation process meant to reduce the number of projects as a means to focus resources on development of a few most-likely-to-succeed efforts, the obstacles encountered in project inventory reduction and the outcomes of the evaluation process. Summary technical status of the projects under evaluation is reported and recommendations identified to improve future project planning and selection activities.

  13. Hawaii Bioenergy Master Plan Prepared for

    E-Print Network [OSTI]

    Hawaii Bioenergy Master Plan Volume I Prepared for State of Hawaii Department of Business, Economic Development and Tourism By University of Hawaii Hawaii Natural Energy Institute School of Ocean Earth Sciences and Environmental Management, University of Hawaii Denise Antolini, Professor, William S Richardson School of Law

  14. Hawaii Bioenergy Master Plan Economic Impacts

    E-Print Network [OSTI]

    Hawaii Bioenergy Master Plan Economic Impacts Prepared for The Hawaii Natural Energy Institute By Makena Coffman Department of Urban & Regional Planning University of Hawaii at Manoa December 2009 #12;i, a macroeconomic model of Hawaii's economy, representing macro and sector-level inter-linkages, has been created

  15. Bioenergy Upcoming Events | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    26 27 28 29 30 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 Bioenergy with Carbon Capture and Sequestration Workshop 8:00AM to 4:00PM EDT 24 25 26 27 28 29 30...

  16. NETWORK OF EXCELLENCE The CAP & Bioenergy

    E-Print Network [OSTI]

    , Germany, and the UK. #12;BIOENERGY NETWORK OF EXCELLENCE This presentation ∑ To provide insights residues, waste streams and energy crops. Heat, electricity and biofuels for transport. ∑ Suggests in Europe ≠ Reduce dependence on imported food ≠ Introduce a degree of price stability for consumers

  17. University of Maine Integrated Forest Product Refinery (IFPR) Technology Research

    SciTech Connect (OSTI)

    Pendse, Hemant P.

    2010-11-23

    This project supported research on science and technology that forms a basis for integrated forest product refinery for co-production of chemicals, fuels and materials using existing forest products industry infrastructure. Clear systems view of an Integrated Forest Product Refinery (IFPR) allowed development of a compelling business case for a small scale technology demonstration in Old Town ME for co-production of biofuels using cellulosic sugars along with pulp for the new owners of the facility resulting in an active project on Integrated Bio-Refinery (IBR) at the Old Town Fuel & Fiber. Work on production of advanced materials from woody biomass has led to active projects in bioplastics and carbon nanofibers. A lease for 40,000 sq. ft. high-bay space has been obtained to establish a Technology Research Center for IFPR technology validation on industrially relevant scale. UMaine forest bioproducts research initiative that began in April 2006 has led to establishment of a formal research institute beginning in March 2010.

  18. Advanced Biofuels (and Bio-products) Process Demonstration Unit...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biofuels (and Bio-products) Process Demonstration Unit Todd Pray, PhD, MBA March 25, 2015 Biochemical Conversion Area DOE Bioenergy Technologies Office (BETO) Project Peer Review...

  19. Assessing Impact of Biofuel Production on Regional Water Resource...

    Office of Environmental Management (EM)

    Achieving Water-Sustainable Bioenergy Production Breaking the Biological Barriers to Cellulosic Ethanol, June 2006 Breaking the Biological Barriers to Cellulosic Ethanol, June 2006...

  20. NREL: Biomass Research - NREL Cyanobacteria Ramps Up Photosynthesis...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    passed it to other photosynthetic microbes and green plants. Photosynthesis powers biomass growth in plants and algae, which are potential feedstocks for bioenergy production....

  1. Bioenergy Technologies Office Conversion R&D Pathway: Whole Algae...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Whole Algae Hydrothermal Liquefaction Bioenergy Technologies Office Conversion R&D Pathway: Whole Algae Hydrothermal Liquefaction Whole algae hydrothermal liquefaction is one of...

  2. Sandia Energy - "Bionic" Liquids from Lignin: Joint BioEnergy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    from Lignin: Joint BioEnergy Institute Results Pave the Way for Closed-Loop Biofuel Refineries Home Renewable Energy Energy Transportation Energy Biofuels Facilities Partnership...

  3. CHP and Bioenergy for Landfills and Wastewater Treatment Plants...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Landfills and Wastewater Treatment Plants: Market Opportunities CHP and Bioenergy for Landfills and Wastewater Treatment Plants: Market Opportunities This document explores...

  4. Bioenergy Technologies Office: Association of Fish and Wildlife...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    U.S. Department of Energy Bioenergy Technologies Office Association of Fish & Wildlife Agencies Agricultural Conservation Committee Meeting March 29, 2013 Kristen Johnson...

  5. Bioenergy Technologies Office: Association of Fish and Wildlife...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Office: Association of Fish and Wildlife Agencies Agricultural Conservation Committee Meeting Bioenergy Technologies Office: Association of Fish and Wildlife Agencies Agricultural...

  6. BioenergizeME Office Hours Webinar: Integrating Bioenergy into...

    Office of Environmental Management (EM)

    classroom environment. Bioenergy has applications across multiple science and engineering disciplines and also provides opportunities for real-world learning. The webinar is...

  7. Bioenergy Technologies Office R&D Pathways: Fast Pyrolysis and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fast Pyrolysis and Hydroprocessing Bioenergy Technologies Office R&D Pathways: Fast Pyrolysis and Hydroprocessing In fast pyrolysis and hydrotreating, biomass is rapidly heated in...

  8. ABSTRACT: Bioenergy Harvesting Technologies to Supply Crop Residues...

    Energy Savers [EERE]

    objectives for the integration of advanced logistical systems and focused bioenergy harvesting technologies that supply crop residues and energy crops in a large bale format....

  9. 2015 Project Peer Review International SustainabilityandIEA Bioenergy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    20. Bioenergy Economics and Policies 21. Biomass Resources, Energy Access and Poverty Reduction http:bioenfapesp.orgscopebioenergyindex.phpproject-overview BETO Labs...

  10. Thailand-Key Results and Policy Recommendations for Future Bioenergy...

    Open Energy Info (EERE)

    Thailand-Key Results and Policy Recommendations for Future Bioenergy Development Jump to: navigation, search Name Thailand-Key Results and Policy Recommendations for Future...

  11. CHP and Bioenergy Systems for Landfills and Wastewater Treatment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the following CHP technologies: Reciprocating Engine, Microturbine, Combustion Turbines, Stirling Engine, and Fuel Cell. CHP and Bioenergy Systems for Landfills and Wastewater...

  12. American Recovery and Reinvestment Act of 2009: Bioenergy Technologies...

    Broader source: Energy.gov (indexed) [DOE]

    The Bioenergy Technologies Office rewarded about 178 million in American Recovery and Reinvestment Act of 2009 funds; the projects accelerate advanced biofuels RD&D, speed the...

  13. Bioenergy Technologies Office R&D Pathways: Algal Lipid Upgrading...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    & Publications Pathways for Algal Biofuels Algal Lipid Extraction and Upgrading to Hydrocarbons Technology Pathway Bioenergy Technologies Office Conversion R&D Pathway: Whole...

  14. EIS-0407: Abengoa Biomass Bioenergy Project near Hugoton, Stevens...

    Broader source: Energy.gov (indexed) [DOE]

    6, 2011 EIS-0407: Record of Decision Issuance of a Loan Guarantee to Abengoa Bioenergy Biomass of Kansas, LLC for the Abengoa Biorefinery Project Near Hugoton, Stevens County,...

  15. Reducing the negative human-health impacts of bioenergy crop...

    Office of Scientific and Technical Information (OSTI)

    Reducing the negative human-health impacts of bioenergy crop emissions through region-specific crop selection Citation Details In-Document Search Title: Reducing the negative...

  16. Bioenergy Technologies Office Overview | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram:Y-12Power, IncBio Centers Announcement atof EnergyBioenergy

  17. LANDSCAPE MANAGEMENT FOR SUSTAINABLE SUPPLIES OF BIOENERGY FEEDSTOCK AND ENHANCED SOIL QUALITY

    SciTech Connect (OSTI)

    Douglas L. Karlen; David J. Muth, Jr.

    2012-09-01

    Agriculture can simultaneously address global food, feed, fiber, and energy challenges provided our soil, water, and air resources are not compromised in doing so. As we embark on the 19th Triennial Conference of the International Soil and Tillage Research Organization (ISTRO), I am pleased to proclaim that our members are well poised to lead these endeavors because of our comprehensive understanding of soil, water, agricultural and bio-systems engineering processes. The concept of landscape management, as an approach for integrating multiple bioenergy feedstock sources, including biomass residuals, into current crop production systems, is used as the focal point to show how these ever-increasing global challenges can be met in a sustainable manner. Starting with the 2005 Billion Ton Study (BTS) goals, research and technology transfer activities leading to the 2011 U.S. Department of Energy (DOE) Revised Billion Ton Study (BT2) and development of a residue management tool to guide sustainable crop residue harvest will be reviewed. Multi-location USDA-Agricultural Research Service (ARS) Renewable Energy Assessment Project (REAP) team research and on-going partnerships between public and private sector groups will be shared to show the development of landscape management strategies that can simultaneously address the multiple factors that must be balanced to meet the global challenges. Effective landscape management strategies recognize the importance of natureís diversity and strive to emulate those conditions to sustain multiple critical ecosystem services. To illustrate those services, the soil quality impact of harvesting crop residues are presented to show how careful, comprehensive monitoring of soil, water and air resources must be an integral part of sustainable bioenergy feedstock production systems. Preliminary analyses suggest that to sustain soil resources within the U.S. Corn Belt, corn (Zea mays L.) stover should not be harvested if average grain yields are less than 11 Mg ha-1 (175 bu ac-1) unless more intensive landscape management practices are implemented. Furthermore, although non-irrigated corn grain yields east and west of the primary Corn Belt may not consistently achieve the 11 Mg ha-1 yield levels, corn can still be part of an overall landscape approach for sustainable feedstock production. Another option for producers with consistently high yields (> 12.6 Mg ha-1 or 200 bu ac-1) that may enable them to sustainably harvest even more stover is to decrease their tillage intensity which will reduce fuel use, preserve rhizosphere carbon, and/or help maintain soil structure and soil quality benefits often attributed to no-till production systems. In conclusion, I challenge all ISTRO scientists to critically ask if your research is contributing to improved soil and crop management strategies that effectively address the complexity associated with sustainable food, feed, fiber and fuel production throughout the world.

  18. Research Article Effects of alpine hydropower operations on primary production

    E-Print Network [OSTI]

    Research Article Effects of alpine hydropower operations on primary production in a downstream lake the past century, the construction of hydropower dams in the watershed of Lake Brienz has significantly. According to model calculations, hydropower operations have significantly altered the seasonal dynamics

  19. Bioenergy Knowledge Discovery Framework (KDF)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Data Synthesis and Research Collaboration" - Second place for best paper at the ACM SIGSPATIAL Conference, November 4-7, 2014 in Dallas, Texas. The underlying...

  20. 20 PLANET EARTH Autumn 2014 Bioenergy the name alone

    E-Print Network [OSTI]

    Brierley, Andrew

    speaking. But everything has a carbon footprint and some biofuels might not be so great if their carbon that the carbon footprint of bioenergy may be worse than some fossil fuels. But the truth is we didn't know that many of the assessments Called to account ≠ bioenergy's carbon footprint #12;PLANET EARTH Autumn 2014

  1. Biomechanics of Bioenergy Sorghum [Sorghum Bicolor (L.) moench]†

    E-Print Network [OSTI]

    Gomez, Francisco Ernesto

    2015-08-12

    is considered as one of the highest priorities for a bioenergy sorghum breeding program. In this study, a three-point bending (3PBT) test was used to quantify the biomechanical properties of bioenergy sorghum with different lodging ratings. The 3PBT was able...

  2. Growing and Sustaining Communities with Bioenergy- Text-Alt Version

    Broader source: Energy.gov [DOE]

    From Vero Beach, Florida, to Hugoton, Kansas, to Emmetsburg, Iowa, cellulosic ethanol biorefineries have had major impacts on communities and their residents. In other areas, bioenergy has significant potential to transform current and establish new industry. This short video illustrates how biorefineries and other bioenergy developments can benefit citizens, businesses, and whole communities, helping Americaís rural economies grow and thrive.

  3. CHP and Bioenergy for Landfills and Wastewater Treatment Plants: Market Opportunities

    Broader source: Energy.gov [DOE]

    Overview of market opportunities for CHP and bioenergy for landfills and wastewater treatment plants

  4. Environmental and economic evaluation of bioenergy in Ontario, Canada

    SciTech Connect (OSTI)

    Yimin Zhang; Shiva Habibi; Heather L. MacLean [University of Toronto, Toronto, ON (Canada)

    2007-08-15

    We examined life cycle environmental and economic implications of two near-term scenarios for converting cellulosic biomass to energy, generating electricity from cofiring biomass in existing coal power plants, and producing ethanol from biomass in stand-alone facilities in Ontario, Canada. The study inventories near-term biomass supply in the province, quantifies environmental metrics associated with the use of agricultural residues for producing electricity and ethanol, determines the incremental costs of switching from fossil fuels to biomass, and compares the cost-effectiveness of greenhouse gas (GHG) and air pollutant emissions abatement achieved through the use of the bioenergy. Implementing a biomass cofiring rate of 10% in existing coal-fired power plants would reduce annual GHG emissions by 2.3 million metric tons (t) of CO{sub 2} equivalent (7% of the province's coal power plant emissions). The substitution of gasoline with ethanol/gasoline blends would reduce annual provincial light-duty vehicle fleet emissions between 1.3 and 2.5 million t of CO{sub 2} equivalent (3.5-7% of fleet emissions). If biomass sources other than agricultural residues were used, additional emissions reductions could be realized. At current crude oil prices ($70/barrel) and levels of technology development of the bioenergy alternatives, the biomass electricity cofiring scenario analyzed is more cost-effective for mitigating GHG emissions ($22/t of CO{sub 2} equivalent for a 10% cofiring rate) than the stand-alone ethanol production scenario ($92/t of CO{sub 2} equivalent). 67 refs., 5 figs., 7 tabs.

  5. Research identifies designs for lowering subsea production cost

    SciTech Connect (OSTI)

    Rothberg, R.H.; Hall, J.E. ); Douglas, L.D. ); Manuel, W.S. ); Kirkland, K.G.

    1993-03-08

    To reduce costs and simplify installation operations for subsea hardware, Amoco Production Co. in 1986 began the development of a diverless subsea production system (DSPS). At present, Amoco has completed the testing phase for selected prototype components and has completed a deepwater system design that incorporates many of these ideas. This program has yielded several configurations suitable for full-field development; however, the emphasis of the research and development program has been to identify, design, and test components of key subsystems. This first of a three-part series describes the design considerations, equipment configuration, and subsea trees.

  6. Proceedings of the Bio-Energy '80 world congress and exposition

    SciTech Connect (OSTI)

    1980-01-01

    Many countries are moving with increasing urgency to obtain larger fractions of their energy from biomass. Over 1800 leading experts from 70 countries met on April 21 to 24 in Atlanta to conduct a World Congress and Exposition on Bio-Energy. This summary presents highlights of the Congress and thoughts stimulated by the occasion. Topics addressed include a comparison of international programs, world and country regionalism in the development of energy supplies, fuel versus food or forest products, production of ethyl alcohol, possibilities for expanded production of terrestrial vegetation and marine flora, and valuable chemicals from biomass. Separate abstracts have been prepared for 164 papers for inclusion in the Energy Data Base.

  7. Hydrogen production from water: Recent advances in photosynthesis research

    SciTech Connect (OSTI)

    Greenbaum, E.; Lee, J.W.

    1997-12-31

    The great potential of hydrogen production by microalgal water splitting is predicated on quantitative measurement of the algae`s hydrogen-producing capability, which is based on the following: (1) the photosynthetic unit size of hydrogen production; (2) the turnover time of photosynthetic hydrogen production; (3) thermodynamic efficiencies of conversion of light energy into the Gibbs free energy of molecular hydrogen; (4) photosynthetic hydrogen production from sea water using marine algae; (5) the potential for research advances using modern methods of molecular biology and genetic engineering to maximize hydrogen production. ORNL has shown that sustained simultaneous photoevolution of molecular hydrogen and oxygen can be performed with mutants of the green alga Chlamydomonas reinhardtii that lack a detectable level of the Photosystem I light reaction. This result is surprising in view of the standard two-light reaction model of photosynthesis and has interesting scientific and technological implications. This ORNL discovery also has potentially important implications for maximum thermodynamic conversion efficiency of light energy into chemical energy by green plant photosynthesis. Hydrogen production performed by a single light reaction, as opposed to two, implies a doubling of the theoretically maximum thermodynamic conversion efficiency from {approx}10% to {approx}20%.

  8. Advanced Bioenergy LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OFAMERICA'SHeavyAgencyTendoMassachusetts: Energy ResourcesAdiBioenergy LLC Jump

  9. Orchid Bioenergy Group Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc Jump to:Newberg, Oregon:OGEProjects/DefinitionsOrchid Bioenergy Group Ltd Jump

  10. Alterra Bioenergy LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAand DaltonSolarOpen5All HomeAlphakatResources | OpenBioenergy LLC Jump to:

  11. Kent BioEnergy | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History View NewGuam:onItronKanosh TownKenetech/Wintech Wind FarmKent BioEnergy

  12. Bioenergy Technologies Office Overview | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p a l De p uBUSEnergy||slideshow explains the work of the Bioenergy

  13. Bioenergy Technologies Office Solicitations | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataEnergy Webinar:I DueBETO QuizResults in First Algae Surfboard |Bioenergy

  14. Product Innovation and Strategy, case Stora Enso

    E-Print Network [OSTI]

    and bioenergy businesses, pellets to energy #12;29 October 2007 SET presentation7 Product Innovation business Mega trends ∑ Towards bio-economy ≠ Green energy ≠ Climate change / carbon footprint mitigate against CC! sustainable raw material ∑ Bioenergy is an opportunity Residues value up New

  15. The New Horizons of Bioenergy

    ScienceCinema (OSTI)

    None

    2013-04-19

    At the Office of Energy Efficiency and Renewable Energy's "Biomass 2011" conference, Argonne researcher Seth Snyder spoke with DOE Biomass Program head, Paul Bryan. In this conversation, Snyder explains the process of biochemical conversion, and talks about Argonne's patented resin wafer technology. The resin wafer electrodeionization technology may help significantly reduce the cost of producing clean energy and of the chemicals and water used in industry. The separations technology can also process biomass-based feedstocks into biofuels and chemicals.

  16. Research Extension and Education Programs on Bio-based Energy Technologies and Products

    SciTech Connect (OSTI)

    Jackson, Sam; Harper, David; Womac, Al

    2010-03-02

    The overall objectives of this project were to provide enhanced educational resources for the general public, educational and development opportunities for University faculty in the Southeast region, and enhance research knowledge concerning biomass preprocessing and deconstruction. All of these efforts combine to create a research and education program that enhances the biomass-based industries of the United States. This work was broken into five primary objective areas: ē Task A - Technical research in the area of biomass preprocessing, analysis, and evaluation. ē Tasks B&C - Technical research in the areas of Fluidized Beds for the Chemical Modification of Lignocellulosic Biomass and Biomass Deconstruction and Evaluation. ē Task D - Analyses for the non-scientific community to provides a comprehensive analysis of the current state of biomass supply, demand, technologies, markets and policies; identify a set of feasible alternative paths for biomass industry development and quantify the impacts associated with alternative path. ē Task E - Efforts to build research capacity and develop partnerships through faculty fellowships with DOE national labs The research and education programs conducted through this grant have led to three primary results. They include: ē A better knowledge base related to and understanding of biomass deconstruction, through both mechanical size reduction and chemical processing ē A better source of information related to biomass, bioenergy, and bioproducts for researchers and general public users through the BioWeb system. ē Stronger research ties between land-grant universities and DOE National Labs through the faculty fellowship program. In addition to the scientific knowledge and resources developed, funding through this program produced a minimum of eleven (11) scientific publications and contributed to the research behind at least one patent.

  17. A Bioenergy Ecosystem - ORNL Review Vol. 44, No. 3, 2011

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of the fabric of the project," Gilna says. "Ceres focuses on the development of biomass feedstocks, ArborGen develops wood-based biomass, and Mascoma is a multifaceted bioenergy...

  18. Bioenergy Technologies Office Multi-Year Program Plan: May 2013...

    Office of Environmental Management (EM)

    Technologies Office Multi-Year Program Plan: May 2013 Update Bioenergy Technologies Office Multi-Year Program Plan: May 2013 Update This is the May 2013 Update to the Multi-Year...

  19. Bioenergy Technologies Office Multi-Year Program Plan: November...

    Energy Savers [EERE]

    November 2014 Update Bioenergy Technologies Office Multi-Year Program Plan: November 2014 Update This Multi-Year Program Plan (MYPP) sets forth the goals and structure of the...

  20. Track Bioenergy Legislation with New Web Tool | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    with New Web Tool February 27, 2014 - 5:59pm Addthis The Bioenergy KDF Legislative Library aims to help the public, industry, and decision makers quickly and easily find...

  1. Seizing our Bioenergy Opportunities in a Changing Energy Landscape

    Office of Energy Efficiency and Renewable Energy (EERE)

    At the Bioenergy Technologies Office, weíre working with public and private partners to develop an industry of advanced biofuels and bioproducts from non-food biomass sources that is commercially...

  2. Bioenergy Demand in a Market Driven Forest Economy (U.S. South...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bioenergy Demand in a Market Driven Forest Economy (U.S. South) Bioenergy Demand in a Market Driven Forest Economy (U.S. South) Breakout Session 1A: Biomass Feedstocks for the...

  3. IEA-Renewable Energy Technologies, Bioenergy Agreement Task 37: Energy from Biogas and Landfill Gas

    E-Print Network [OSTI]

    EFP-06 IEA- Renewable Energy Technologies, Bioenergy Agreement Task 37: Energy from Biogas-Bioenergy, Task 37- Energy from Biogas and Landfill Gas", via samarbejde, informationsudveksling, fślles analyser og international forskningssamarbejde. Det Internationale Energi Agentur ( IEA) er organiseret i en

  4. Bioenergy Technologies Office Multi-Year Program Plan: July 2014 Update-- Sections

    Office of Energy Efficiency and Renewable Energy (EERE)

    This Multi-Year Program Plan (MYPP) sets forth the goals and structure of the Bioenergy Technologies Office. It identifies the research, development, demonstration, and deployment activities the Office will focus on over the next five years and outlines why these activities are important to meeting the energy and sustainability challenges facing the nation. This MYPP is intended for use as an operational guide to help the Office manage and coordinate its activities, as well as a resource to help communicate its mission and goals to stakeholders and the public.

  5. Microarray Transcriptomics Data from the BioEnergy Science Center (BESC)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The BioEnergy Science Center (BESC) is a multi-institutional (18 partner), multidisciplinary research (biological, chemical, physical and computational sciences, mathematics and engineering) organization focused on the fundamental understanding and elimination of biomass recalcitrance. BESC's approach to improve accessibility to the sugars within biomass involves 1) designing plant cell walls for rapid deconstruction and 2) developing multitalented microbes for converting plant biomass into biofuels in a single step (consolidated bioprocessing). Addressing the roadblock of biomass recalcitrance will require a multiscale understanding of plant cell walls from biosynthesis to deconstruction pathways. This integrated understanding would generate models, theories and finally processes that will be used to understand and overcome biomass recalcitrance.

  6. Agronomy Journal Volume 103, Issue 2 2011 509 Native Perennial Grassland Species for Bioenergy

    E-Print Network [OSTI]

    Thomas, David D.

    generation" bio-energy crops (Sanderson and Adler, 2008; Sarath et al., 2008). The most extensively studied

  7. Penn State Ranked #5 Worldwide in Elsevier Alternative Energy Research Leadership Study Study investigated over 3,000 research institutions

    E-Print Network [OSTI]

    Lee, Dongwon

    and Chemicals in the U.S. Bob Wallace, Director Penn State BioEnergy BridgeTM Associate Director: Biomass Energy Center ph: (412) 918-4211 rtw103@psu.edu www.bioenergybridge.psu.edu Supply Chain Management ∑Bioenergy Production ≠ Electricity and Hydrogen ∑Anaerobic Digestion ∑ Algae to Fuels and Chemicals

  8. 2015 Bioenergy Summer Bridge Fellowship Applica;on Please type or print all informa0on

    E-Print Network [OSTI]

    Tullos, Desiree

    2015 Bioenergy Summer Bridge Fellowship Applica;on Please type or print all community; ∑ Why you want to be a Bioenergy Summer Bridge student and what you will become a role model for future Bioenergy Summer Bridge students. Le=er B

  9. The Pennsylvania State University www.BioEnergyBridge.psu.edu 1 BioEnergy Bridge

    E-Print Network [OSTI]

    Lee, Dongwon

    © The Pennsylvania State University www.BioEnergyBridge.psu.edu 1 Penn State BioEnergy# trichard@psu.edu rtw103@psu.edu www.bioenergy.psu.edu Biomass Energy Center #12;© The Pennsylvania State ∑ The BioEnergy BridgeTM will address the full spectrum of challenges to our national priority of reducing

  10. Chapter 9, Land and Bioenergy in Scientific Committee on Problems of the Environment (SCOPE), Bioenergy & Sustainability: bridging the gaps.

    SciTech Connect (OSTI)

    Woods J, Lynd LR; Laser, M; Batistella M, De Castro D; Kline, Keith L; Faaij, Andre

    2015-01-01

    In this chapter we address the questions of whether and how enough biomass could be produced to make a material contribution to global energy supply on a scale and timeline that is consistent with prominent low carbon energy scenarios. We assess whether bioenergy provision necessarily conflicts with priority ecosystem services including food security for the world s poor and vulnerable populations. In order to evaluate the potential land demand for bioenergy, we developed a set of three illustrative scenarios using specified growth rates for each bioenergy sub-sector. In these illustrative scenarios, bioenergy (traditional and modern) increases from 62 EJ/yr in 2010 to 100, 150 and 200 EJ/yr in 2050. Traditional bioenergy grows slowly, increasing by between 0.75% and 1% per year, from 40 EJ/yr in 2010 to 50 or 60 EJ/ yr in 2050, continuing as the dominant form of bioenergy until at least 2020. Across the three scenarios, total land demand is estimated to increase by between 52 and 200 Mha which can be compared with a range of potential land availability estimates from the literature of between 240 million hectares to over 1 billion hectares. Biomass feedstocks arise from combinations of residues and wastes, energy cropping and increased efficiency in supply chains for energy, food and materials. In addition, biomass has the unique capability of providing solid, liquid and gaseous forms of modern energy carriers that can be transformed into analogues to existing fuels. Because photosynthesis fixes carbon dioxide from the atmosphere, biomass supply chains can be configured to store at least some of the fixed carbon in forms or ways that it will not be reemitted to the atmosphere for considerable periods of time, so-called negative emissions pathways. These attributes provide opportunities for bioenergy policies to promote longterm and sustainable options for the supply of energy for the foreseeable future.

  11. Bringing Advanced Computational Techniques to Energy Research

    SciTech Connect (OSTI)

    Mitchell, Julie C

    2012-11-17

    Please find attached our final technical report for the BACTER Institute award. BACTER was created as a graduate and postdoctoral training program for the advancement of computational biology applied to questions of relevance to bioenergy research.

  12. Environmental-performance research priorities: Wood products. Final report

    SciTech Connect (OSTI)

    NONE

    1998-01-15

    This report describes a research plan to establish environmental, energy, and economic performance measures for renewable building materials, and to identify management and technology alternatives to improve environmental performance in a cost-effective manner. The research plan is designed to: (1) collect environmental and economic data on all life-cycle stages of the materials, (2) ensure that the data follows consistent definitions and collection procedures, and (3) develop analytical procedures for life-cycle analysis to address environmental performance questions. The research will be subdivided into a number of individual project modules. The five processing stages of wood used to organize the research plan are: (1) resource management and harvesting; (2) processing; (3) design and construction of structures; (4) use, maintenance, and disposal; and (5) waste recycling. Individual research module descriptions are provided in the report, as well as assessment techniques, research standards and protocol, and research management. 13 refs., 5 figs., 3 tabs.

  13. [National Institute for Petroleum and Energy Research] quarterly technical report, July 1--September 30, 1991. Volume 2, Energy production research

    SciTech Connect (OSTI)

    Not Available

    1992-01-01

    The report is submitted in two volumes, Volume I representing the work accomplished under Fuels Research and Volume II the work for Energy Production Research during the period July 1--Sept. 30, 1991. Topics covered include: chemical flooding, gas displacement, thermal recovery, geoscience technology, resource assessment technology, microbial technology, environmental technology.

  14. Drought effects on composition and yield for corn stover, mixed grasses, and Miscanthus as bioenergy feedstocks

    SciTech Connect (OSTI)

    Rachel Emerson; Amber Hoover; Allison Ray; Jeffrey Lacey; Marnie Cortez; Courtney Payne; Doug Karlen; Stuart Birrell; David Laird; Robert Kallenbach; Josh Egenolf; Matthew Sousek; Thomas Voigt

    2014-11-01

    Drought conditions in 2012 were some of the most severe reported in the United States. It is necessary to explore the effects of drought on the quality attributes of current and potential bioenergy feedstocks. Compositional analysis data for corn stover, Miscanthus, and CRP grasses from one or more locations for years 2010 (normal precipitation levels) and 2012 (a known severe drought year nationally) was collected. Results & discussion: The general trend for samples that experienced drought was an increase in extractives and a decrease in structural sugars and lignin. The TEY yields were calculated to determine the drought effects on ethanol production. All three feedstocks had a decrease of 12-14% in TEY when only decreases of carbohydrate content was analyzed. When looking at the compounded effect of both carbohydrate content and the decreases in dry matter loss for each feedstock there was a TEY decrease of 25%-59%. Conclusion: Drought had a significant impact on the quality of all three bioenergy crops. In all cases where drought was experienced both the quality of the feedstock and the yield decreased. These drought induced effects could have significant economic impacts on biorefineries.

  15. Assessing the potential of bioenergy. Final report, October 1, 1997--September 30, 1998

    SciTech Connect (OSTI)

    Kirschner, J.; Badin, J.

    1998-12-31

    As electricity restructuring proceeds, traditional concepts of how energy is produced, transported, and utilized are likely to change dramatically. Marketplace, policy, and regulatory changes will shape both the domestic and global energy industry, improving opportunities for clean, low-cost energy, competitively priced fuels, and environmentally responsible power systems. Many of these benefits may be obtained by commercial deployment of advanced biomass power conversion technologies. The United BioEnergy Commercialization Association represents the US biomass power industry. Its membership includes investor-owned and public utilities, independent power producers, state and regional bioenergy, equipment manufacturers, and biomass energy developers. To carry out its mission, UBECA has been carrying out the following activities: production of informational and educational materials on biomass energy and distribution of such materials at public forums; technical and market analyses of biomass energy fuels, conversion technologies, and market issues; monitoring of issues affecting the biomass energy community; and facilitating cooperation among members to leverage the funds available for biomass commercialization activities.

  16. Environmental Life Cycle Comparison of Algae to Other Bioenergy

    E-Print Network [OSTI]

    Clarens, Andres

    Environmental Life Cycle Comparison of Algae to Other Bioenergy Feedstocks A N D R E S F . C L A R December 6, 2009. Accepted December 15, 2009. Algae are an attractive source of biomass energy since. In spite of these advantages, algae cultivation has not yet been compared with conventional crops from

  17. MAGLUE: Measurement and Analysis of bioenergy greenhouse gases: Integrating GHGs

    E-Print Network [OSTI]

    sensors Temp and Rh probe Quantum sensor Rain gauge Wind monitor Soil meta-bar coding and meta by the Energy Technologies Institute (ETI). The Consortium are partners are: ∑ Centre for Ecology and Hydrology and their impact on the UK energy system Integrating GHGs into LCAs and the UK Bioenergy Value Chain Modelling

  18. Bioenergy and land-use competition in Northeast Brazil

    E-Print Network [OSTI]

    Bioenergy and land-use competition in Northeast Brazil Christian Azar Department of Physical of Brazil on "good" versus "bad" lands is investigated. It is shown that the value of the higher yields) lands. The focus of the analysis is on the Northeast of Brazil (NE), where the prospects for dedicated

  19. Bioenergy to Biodiversity: Downscaling scenarios of land use change†

    E-Print Network [OSTI]

    MacKenzie, Ian

    2009-11-26

    Bioenergy crops are a key component of Scotlandís strategy to meet 2050 carbon emissions targets. The introduction of these crops could have large scale impacts on the biodiversity of lowland farmland. These impacts depend on the change in land use...

  20. Researchers seek to clean up hazardous legacy of bomb production

    E-Print Network [OSTI]

    Nebraska-Lincoln, University of

    - braska Water Research Initiative Water Quality Research Team. More than 50 years ago, tho u- sands of workers produced more than 3 million bombs at the plant, which is located 30 miles north of Lincoln alternatives to incineration. Incineration is the most common treatment for munitions-contami- nated soil

  1. Bioenergy and the importance of land use policy in a carbon-constrained world

    SciTech Connect (OSTI)

    Calvin, Katherine V.; Edmonds, James A.; Wise, Marshall A.

    2010-06-01

    Policies aimed at limiting anthropogenic climate change would result in significant transformations of the energy and land-use systems. However, increasing the demand for bioenergy could have a tremendous impact on land use, and can result in land clearing and deforestation. Wise et al. (2009a,b) analyzed an idealized policy to limit the indirect land use change emissions from bioenergy. The policy, while effective, would be difficult, if not impossible, to implement in the real world. In this paper, we consider several different land use policies that deviate from this first-best, using the Joint Global Change Research Instituteís Global Change Assessment Model (GCAM). Specifically, these new frameworks are (1) a policy that focuses on just the above-ground or vegetative terrestrial carbon rather than the total carbon, (2) policies that focus exclusively on incentivizing and protecting forestland, and (3) policies that apply an economic penalty on the use of biomass as a proxy to limit indirect land use change emissions. For each policy, we examine its impact on land use, land-use change emissions, atmospheric CO2 concentrations, agricultural supply, and food prices.

  2. Water Research 39 (2005) 46734682 Hydrogen and electricity production from a food processing

    E-Print Network [OSTI]

    2005-01-01

    production. r 2005 Elsevier Ltd. All rights reserved. Keywords: Biohydrogen; Fermentation; ElectricityWater Research 39 (2005) 4673≠4682 Hydrogen and electricity production from a food processing of the organic matter remains in solution. We demonstrate here that hydrogen production from a food processing

  3. Water Research 39 (2005) 38193826 Increased biological hydrogen production with reduced

    E-Print Network [OSTI]

    2005-01-01

    Water Research 39 (2005) 3819≠3826 Increased biological hydrogen production with reduced organic to understand the effect of organic loading on H2 production in chemostat reactors. In order to vary the glucose is produced with acetate as a product (4 mol-H2/mol-acetate) than with butyrate (2 mol-H2/mol

  4. Opportunities and barriers for sustainable international bioenergy trade and strategies to overcome them -A report prepared by IEA Bioenergy Task 40

    E-Print Network [OSTI]

    them - A report prepared by IEA Bioenergy Task 40 1 Opportunities and barriers for sustainable Ryckmans, Martijn Wagener, Arnaldo Walter, Jeremy Woods. For more information of IEA Bioenergy Task 40 recommends to the IEA, UNCTAD, WTO and national trade organisation to include (new) biomass types

  5. Roadmap for Bioenergy and Biobased Products in the United States |

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterestedReplacement-2-A WholesaleRetrofitElectrical Equipment To BeDepartment of

  6. The Future of Bioenergy Feedstock Production | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCEDInstallers/ContractorsPhotovoltaicsState of Pennsylvania U.S.The First Five Years FYFuelThe

  7. Vision for Bioenergy and Biobased Products in the United States |

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OF APPLICABLEStatutoryinEnable LowNewsEnergyOrderEnergyAction Plan

  8. Achieving Water-Sustainable Bioenergy Production | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram:Y-12 Beta-3AUDIT REPORT:Federal Employee Fatality atRenewableAchieving

  9. USDA and DOE Fund 10 Research Projects to Accelerate Bioenergy...

    Broader source: Energy.gov (indexed) [DOE]

    are part of a broader effort by the Obama administration to develop domestic renewable energy and advanced biofuels, providing a more secure future for America's energy needs...

  10. BioEnergy Research ISSN 1939-1234

    E-Print Network [OSTI]

    Landis, Doug

    not only suggest that the choice of biomass feedstock will play an important role in shaping within. Collectively, our results suggest that selection of perennially based biomass feedstocks along with careful

  11. EASTBIO DTP Research Training Bioenergy & Industrial Biotechnology Priority Area

    E-Print Network [OSTI]

    Spoel, Steven

    . Logan, `Exoelectrogenic bacteria that power'microbial fuel cells', Microbiology 7 (May 2009), 375 optimization Suggested papers: Papers by Tom Ward and some of his own work. This includes bioconjugation

  12. Carbon Offsets for Forestry and Bioenergy: Researching Opportunities...

    Open Energy Info (EERE)

    study in Uganda and India looking at the opportunities that carbon offset projects offer for poor rural communities." References "Carbon Offsets for Forestry and...

  13. Energy Department Selects Three Bioenergy Research Centers for $375 Million

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-inPPLfor Innovative Solar Power PlantEnergyLawrence Berkeley,| Department

  14. Events & Topics In Bioenergy | Photosynthetic Antenna Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation Current HABFES OctoberEvan Racah Evan Racah 1517546 Evan RacahOffice

  15. Carbon Offsets for Forestry and Bioenergy: Researching Opportunities for

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar Energy LLC

  16. AUDIT REPORT Office of Science's Bioenergy Research Centers

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p a l De p u t y A s sconveyance of9, 2013ATVMEnergy'sNuclearOffice of

  17. Great Lakes Bioenergy Research Center Technology Marketing Summaries -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverse (Journalvivo Low-Dose LowÔāó We want USDOE to vitrify all Low Activity

  18. DOE Provides $30 Million to Jump Start Bioenergy Research Centers |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-in electric vehicle10nominateEnergy U.S. Energy Secretary

  19. U.S. Billion-Ton Update: Biomass Supply for a Bioenergy and Bioproduct...

    Broader source: Energy.gov (indexed) [DOE]

    2005 report, "Biomass as a Feedstock for a Bioenergy and Bioproducts Industry: The Technical Feasibility of a Billion-Ton Annual Supply" billiontonupdate.pdf More Documents &...

  20. Genetic resources for advanced biofuel production described with the Gene Ontology

    SciTech Connect (OSTI)

    Torto-Alalibo, Trudy; Purwantini, Endang; Lomax, Jane; Setubal, Joao C.; Mukhopadhyay, Biswarup; Tyler, Brett M.

    2014-10-10

    Dramatic increases in research in the area of microbial biofuel production coupled with high-throughput data generation on bioenergy-related microbes has led to a deluge of information in the scientific literature and in databases. Consolidating this information and making it easily accessible requires a unified vocabulary.The Gene Ontology (GO) fulfills that requirement, as it is a well-developed structured vocabulary that describes the activities and locations of gene products in a consistent manner across all kingdoms of life. The Microbial ENergy processes Gene Ontology (http://www.mengo.biochem.vt.edu) project is extending the GO to include new terms to describe microbial processes of interest to bioenergy production. Our effort has added over 600 bioenergy related terms to the Gene Ontology. These terms will aid in the comprehensive annotation of gene products from diverse energy-related microbial genomes. An area of microbial energy research that has received a lot of attention is microbial production of advanced biofuels. These include alcohols such as butanol, isopropanol, isobutanol, and fuels derived from fatty acids, isoprenoids, and polyhydroxyalkanoates. These fuels are superior to first generation biofuels (ethanol and biodiesel esterified from vegetable oil or animal fat), can be generated from non-food feedstock sources, can be used as supplements or substitutes for gasoline, diesel and jet fuels, and can be stored and distributed using existing infrastructure. We review the roles of genes associated with synthesis of advanced biofuels, and at the same time introduce the use of the GO to describe the functions of these genes in a standardized way.

  1. Ecological objectives can be achieved with wood-derived bioenergy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Dale, Virginia H.; Kline, Keith L.; Marland, Gregg; Miner, Reid A.

    2015-08-01

    Renewable, biomass-based energy options can reduce the climate impacts of fossil fuels. However, calculating the effects of wood-derived bioenergy on greenhouse gases (GHGs), and thus on climate, is complicated (Miner et al. 2015). To clarify concerns and options about bioenergy, in November 2014, the US Environmental Protection Agency (EPA) produced a second draft of its Framework for Assessing Biogenic CO2 Emissions fromStationary Sources (http://1.usa.gov/1dikgHq), which considers the latest scientific information and input from stakeholders. In addition, the EPA is expected to make decisions soon about the use of woody biomass under the Clean Power Plan, which sets targets for carbonmore†Ľpollution from power plants.ę†less

  2. Sustainable and efficient pathways for bioenergy recovery from low-value process streams via bioelectrochemical systems in biorefineries

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Borole, Abhijeet P.

    2015-01-01

    Conversion of biomass into bioenergy is possible via multiple pathways resulting in production of biofuels, bioproducts and biopower. Efficient and sustainable conversion of biomass, however, requires consideration of many environmental and societal parameters in order to minimize negative impacts. Integration of multiple conversion technologies and inclusion of upcoming alternatives such as bioelectrochemical systems can minimize these impacts and improve conservation of resources such as hydrogen, water and nutrients via recycle and reuse. This report outlines alternate pathways integrating microbial electrolysis in biorefinery schemes to improve energy efficiency while evaluating environmental sustainability parameters.

  3. DOE - Office of Legacy Management -- Research Products Corp - WI 02

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal Gas &SCE-SessionsSouth Dakota Edgemont,Manufacturing0-19Rulison -ReductionResearch

  4. Bioenergy Feedstock Library and Least-Cost Formulation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based Fuels Researchof Energy|Make Fuels and ChemicalsEnergyBioenergy

  5. Bioenergy Technologies Office FY 2015 Budget At-A-Glance

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based Fuels Researchof Energy|Make Fuels andfor itsEnergyandBioenergy

  6. U.S. DEPARTMENT OF ENERGY BIOENERGY TECHNOLOGIES OFFICE

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCEDInstallers/ContractorsPhotovoltaicsStateof Energy| Department ofAttacks2 FEE0000156BIOENERGY

  7. Bioenergy Technologies FY14 Budget At-a-Glance

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram:Y-12Power, IncBio Centers Announcement at theproduce∆ą BIOENERGY

  8. Bioenergy Technologies Office Fiscal Year 2014 Annual Report | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram:Y-12Power, IncBio Centers Announcement atof Energy Bioenergy

  9. Consortium for Plant Biotechnology Research 2015 Annual Symposium

    Broader source: Energy.gov [DOE]

    Bioenergy Technologies Office (BETO) Director Jonathan Male spoke on BETOís role in the bioeconomy and crosscutting opportunities with plant biotechnology at the Consortium for Plant Biotechnology Research 2015 Annual Symposium.

  10. Bioenergy expert Ragauskas named fourteenth Governor's Chair...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    is moving toward the development and commercialization of biomaterials from biomass feedstocks, largely to improve the cost of biofuel production," said Martin Keller, ORNL's...

  11. Bioenergy Success Stories | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    2013 California: Advanced 'Drop-In' Biofuels Power the Navy's Green Strike Group EERE's investment allowed Solezyme to increase its algal oil production by a factor of 10,...

  12. Dynamic analysis of policy drivers for bioenergy commodity markets

    SciTech Connect (OSTI)

    Robert F. Jeffers; Jacob J. Jacobson; Erin M. Searcy

    2001-01-01

    Biomass is increasingly being considered as a feedstock to provide a clean and renewable source of energy in the form of both liquid fuels and electric power. In the United States, the biofuels and biopower industries are regulated by different policies and have different drivers which impact the maximum price the industries are willing to pay for biomass. This article describes a dynamic computer simulation model that analyzes future behavior of bioenergy feedstock markets given policy and technical options. The model simulates the long-term dynamics of these markets by treating advanced biomass feedstocks as a commodity and projecting the total demand of each industry as well as the market price over time. The model is used for an analysis of the United States bioenergy feedstock market that projects supply, demand, and market price given three independent buyers: domestic biopower, domestic biofuels, and foreign exports. With base-case assumptions, the biofuels industry is able to dominate the market and meet the federal Renewable Fuel Standard (RFS) targets for advanced biofuels. Further analyses suggest that United States bioenergy studies should include estimates of export demand in their projections, and that GHG-limiting policy would partially shield both industries from exporter dominance.

  13. Research Group: Environmental Economics and Natural Resources March 24, 2010 Electricity Production with Intermittent

    E-Print Network [OSTI]

    % of overall electricity consumption in the EU would be produced from renewable energy sources by 201010-152 Research Group: Environmental Economics and Natural Resources March 24, 2010 Electricity Production with Intermittent Sources STEFAN AMBEC AND CLAUDE CRAMPES #12;Electricity Production

  14. Expert Feature: Designing Better Products by Coordinating Marketing Research and Engineering

    E-Print Network [OSTI]

    Michalek, Jeremy J.

    Expert Feature: Designing Better Products by Coordinating Marketing Research and Engineering Jeremy to be responsible for the design, manufacturing and marketing of a new product. As industries and markets have grown, the scale, scope and complexity of these tasks has led to a division of labor: Marketing, design

  15. Sorghum to Ethanol Research

    SciTech Connect (OSTI)

    Dahlberg, Jeff; Wolfrum, Ed

    2010-06-30

    The development of a robust source of renewable transportation fuel will require a large amount of biomass feedstocks. It is generally accepted that in addition to agricultural and forestry residues, we will need crops grown specifically for subsequent conversion into fuels. There has been a lot of research on several of these so-called √ʬ?¬?dedicated bioenergy crops√ʬ?¬Ě including switchgrass, miscanthus, sugarcane, and poplar. It is likely that all of these crops will end up playing a role as feedstocks, depending on local environmental and market conditions. Many different types of sorghum have been grown to produce syrup, grain, and animal feed for many years. It has several features that may make it as compelling as other crops mentioned above as a renewable, sustainable biomass feedstock; however, very little work has been done to investigate sorghum as a dedicated bioenergy crop. The goal of this project was to investigate the feasibility of using sorghum biomass to produce ethanol. The work performed included a detailed examination of the agronomics and composition of a large number of sorghum varieties, laboratory experiments to convert sorghum to ethanol, and economic and life-cycle analyses of the sorghum-to-ethanol process. This work showed that sorghum has a very wide range of composition, which depended on the specific sorghum cultivar as well as the growing conditions. The results of laboratory- and pilot-scale experiments indicated that a typical high-biomass sorghum variety performed very similarly to corn stover during the multi-step process required to convert biomass feedstocks to ethanol; yields of ethanol for sorghum were very similar to the corn stover used as a control in these experiments. Based on multi-year agronomic data and theoretical ethanol production, sorghum can achieve more than 1,300 gallons of ethanol per acre given the correct genetics and environment. In summary, sorghum may be a compelling dedicated bioenergy crop that could help provide a major portion of the feedstocks required to produce renewable domestic transportation fuels.

  16. Sorghum to Ethanol Research

    SciTech Connect (OSTI)

    Jeff Dahlberg, Ph D; Ed Wolfrum, Ph D

    2010-06-30

    The development of a robust source of renewable transportation fuel will require a large amount of biomass feedstocks. It is generally accepted that in addition to agricultural and forestry residues, we will need crops grown specifically for subsequent conversion into fuels. There has been a lot of research on several of these so-called "dedicated bioenergy crops" including switchgrass, miscanthus, sugarcane, and poplar. It is likely that all of these crops will end up playing a role as feedstocks, depending on local environmental and market conditions. Many different types of sorghum have been grown to produce syrup, grain, and animal feed for many years. It has several features that may make it as compelling as other crops mentioned above as a renewable, sustainable biomass feedstock; however, very little work has been done to investigate sorghum as a dedicated bioenergy crop. The goal of this project was to investigate the feasibility of using sorghum biomass to produce ethanol. The work performed included a detailed examination of the agronomics and composition of a large number of sorghum varieties, laboratory experiments to convert sorghum to ethanol, and economic and life-cycle analyses of the sorghum-to-ethanol process. This work showed that sorghum has a very wide range of composition, which depended on the specific sorghum cultivar as well as the growing conditions. The results of laboratory- and pilot-scale experiments indicated that a typical high-biomass sorghum variety performed very similarly to corn stover during the multi-step process required to convert biomass feedstocks to ethanol; yields of ethanol for sorghum were very similar to the corn stover used as a control in these experiments. Based on multi-year agronomic data and theoretical ethanol production, sorghum can achieve more than 1,300 gallons of ethanol per acre given the correct genetics and environment. In summary, sorghum may be a compelling dedicated bioenergy crop that could help provide a major portion of the feedstocks required to produce renewable domestic transportation fuels.

  17. Analysis of Global Economic and Environmental Impacts of a Substantial Increase in Bioenergy Wallace E. Tyner (wtyner@purdue.edu), Thomas W. Hertel, Farzad Taheripour*, and Dileep K. Birur

    E-Print Network [OSTI]

    Analysis of Global Economic and Environmental Impacts of a Substantial Increase in Bioenergy have profound global economic, environmental, and social consequences. Current studies do not provide of biofuels and lack of comprehensive studies on global impacts have opened up several research avenues. Since

  18. Systems-Level Analysis & Bioenergy Market Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    wood, residues, and by-products) in dedicated or cogeneration plants (such as pulp and paper mills or sawmills). Figure 40. U.S. biopower generation sources Source: EIA 2014 Other...

  19. Biomass Basics: The Facts About Bioenergy

    Broader source: Energy.gov [DOE]

    DOE is focusing on new and better ways to make liquid transportation fuels, or ďbiofuels,Ē like ethanol, biodiesel, and renewable gasoline. DOE is also investigating the potential of producing power and a range of products from biomass.

  20. How ambitious can we be in contributing to the world's energy needs with bioenergy,

    E-Print Network [OSTI]

    How ambitious can we be in contributing to the world's energy needs with bioenergy, wind, solar on Sustainable Energies, Technical University of Denmark, 14 ≠ 15 January 2009 #12;Editor: Henrik Bindslev Title: How ambitious can we be in contributing to the world's energy needs with bioenergy, wind, solar

  1. International Market Opportunities in Bioenergy: Leveraging U.S. Government Resources

    Office of Energy Efficiency and Renewable Energy (EERE)

    Breakout Session 3CóFostering Technology Adoption III: International Market Opportunities in Bioenergy International Market Opportunities in Bioenergy: Leveraging U.S. Government Resources Cora Dickson, Senior International Trade Specialist, Office of Energy and Environmental Industries, International Trade Administration, U.S. Department of Commerce

  2. Using Pyrolysis to Convert Unused Urban Biotic Material into Bioenergy and Biochar

    E-Print Network [OSTI]

    Wolberg, George

    Using Pyrolysis to Convert Unused Urban Biotic Material into Bioenergy and Biochar Objective of pyrolysis (low-temperature anaerobic burning) that will generate bio-energy as well as biochar for enriching-explored technology is pyrolysis. Pyrolysis is a low temperature, anaerobic process that avoids incineration

  3. Bio-energy Logistics Network Design Under Price-based Supply and Yield Uncertainty†

    E-Print Network [OSTI]

    Memisoglu, Gokhan

    2014-12-10

    In this dissertation, we study the design and planning of bio-energy supply chain networks. This dissertation consists of 3 studies that focus on different aspects of bio-energy supply chain systems. In the first study, we consider planning...

  4. Biomass and Bioenergy 31 (2007) 646655 Estimating biomass of individual pine trees using airborne lidar

    E-Print Network [OSTI]

    2007-01-01

    Biomass and Bioenergy 31 (2007) 646≠655 Estimating biomass of individual pine trees using airborne biomass and bio-energy feedstocks. The overall goal of this study was to develop a method for assessing aboveground biomass and component biomass for individual trees using airborne lidar data in forest settings

  5. Hawaii Bioenergy Master Plan Economic Impacts

    E-Print Network [OSTI]

    and costs. Thus further study of biofuels for electricity generation and alternative liquid fuel products, from biomass combustion for electricity to biomass for liquid fuel, this study focuses on sugarcane for motor fuel was made effective and a 20% by 2020 Alternative Fuel Standard (AFS) was adopted in 2006, 3

  6. UNEP-Bioenergy Decision Support Tool | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al.,Turin, New York: EnergyU.S. EPA Region 10 Jump3 -LowUNEP-Bioenergy

  7. Guangxi Funan Bioenergy Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainableGlynn County,Solar JumpInformationGrowindFunan Bioenergy Co Ltd Jump

  8. Guofu Bioenergy Science Technology Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainableGlynn County,SolarFERC HydroelectricGuofu Bioenergy Science Technology Co

  9. Anhui Yineng Bioenergy Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar Energy LLC Jump to: navigation, searchAmmonixMassachusetts:Yineng Bioenergy

  10. Track Bioenergy Legislation with New Web Tool | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing ToolInternational Affairs,Department ofARPA-E Top 10 ThingsTrack Bioenergy Legislation

  11. Chongqing Dianfeng Bioenergy Power Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmentalBowerbank,CammackFLIR JumpMaine:WestTexas:Chittenango, NewDianfeng Bioenergy Power Co

  12. Bioenergy Technologies Office Judges Washington State University Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p a l De p uBUSEnergy|| Department-AnnualBIOENERGY

  13. Fact Sheet: Bioenergy Working Group | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12, 2015Executive Order14, 20111,FY 2007TrafficDepartmentin 2014FactBioenergy

  14. Bioenergy Technologies Office FY 2016 Budget At-A-Glance

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataEnergy Webinar:I DueBETO Quiz -TechnologiesRubricToolkit61BIOENERGY

  15. The Bioenergy Knowledge Discovery Framework (KDF)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCEDInstallers/ContractorsPhotovoltaics ¬ĽTanklessResearchEnergy2Fall 2011 TheMarch 2012

  16. Increasing Feedstock Production for Biofuels: Economic Drivers, Environmental Implications, and the Role of Research

    SciTech Connect (OSTI)

    none,

    2009-10-27

    The Biomass Research and Development Board (Board) commissioned an economic analysis of feedstocks to produce biofuels. The Board seeks to inform investments in research and development needed to expand biofuel production. This analysis focuses on feedstocks; other interagency teams have projects underway for other parts of the biofuel sector (e.g., logistics). The analysis encompasses feedstocks for both conventional and advanced biofuels from agriculture and forestry sources.

  17. RESEARCH ARTICLE Open Access SND2, a NAC transcription factor gene, regulates

    E-Print Network [OSTI]

    for pulp, paper and bioenergy production [1]. In angios- perms, the two principle sclerenchyma cell types, which provide mechanical strength and which make up the bulk of woody biomass [2]. Wood density

  18. Argonne National Laboratory Launches Bioenergy Assessment Tools |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based Fuels Research atDepartment of Energy Planning toDepartment of

  19. Bioenergy Technologies Office | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann JacksonDepartment of EnergyResearchers atDayWhenBethany Sparn,DepartmentWatch the

  20. Architecture of the Multi-Modal Organizational Research and Production Heterogeneous Network (MORPHnet)

    SciTech Connect (OSTI)

    Aiken, R.J.; Carlson, R.A.; Foster, I.T. [and others

    1997-01-01

    The research and education (R&E) community requires persistent and scaleable network infrastructure to concurrently support production and research applications as well as network research. In the past, the R&E community has relied on supporting parallel network and end-node infrastructures, which can be very expensive and inefficient for network service managers and application programmers. The grand challenge in networking is to provide support for multiple, concurrent, multi-layer views of the network for the applications and the network researchers, and to satisfy the sometimes conflicting requirements of both while ensuring one type of traffic does not adversely affect the other. Internet and telecommunications service providers will also benefit from a multi-modal infrastructure, which can provide smoother transitions to new technologies and allow for testing of these technologies with real user traffic while they are still in the pre-production mode. The authors proposed approach requires the use of as much of the same network and end system infrastructure as possible to reduce the costs needed to support both classes of activities (i.e., production and research). Breaking the infrastructure into segments and objects (e.g., routers, switches, multiplexors, circuits, paths, etc.) gives the capability to dynamically construct and configure the virtual active networks to address these requirements. These capabilities must be supported at the campus, regional, and wide-area network levels to allow for collaboration by geographically dispersed groups. The Multi-Modal Organizational Research and Production Heterogeneous Network (MORPHnet) described in this report is an initial architecture and framework designed to identify and support the capabilities needed for the proposed combined infrastructure and to address related research issues.

  1. Selective Gaseous Extraction: Research, Development and Training for Isotope Production, Final Technical Report

    SciTech Connect (OSTI)

    Bertch, Timothy C,

    2014-03-31

    General Atomics and the University of Missouri Research Reactor (MURR) completed research and development of selective gaseous extraction of fission products from irradiated fuel, which included training and education of MURR students. The process used porous fuel and after irradiation flowed product gases through the fuel to selectively removed desired fission products with the primary goal of demonstrating the removal of rhodium 105. High removal rates for the ruthenium/rhodium (Ru/Rh), tellurium/iodine (Te/I) and molybdenum/technetium (Mo/Tc) series were demonstrated. The success of this research provides for the reuse of the target for further production, significantly reducing the production of actinide wastes relative to processes that dissolve the target. This effort was conducted under DOE funding (DE-SC0007772). General Atomics objective of the project was to conduct R&D on alternative methods to produce a number of radioactive isotopes currently needed for medical and industry applications to include rhodium-105 and other useful isotopes. Selective gaseous extraction was shown to be effective at removing radioisotopes of the ruthenium/rhodium, tellurium/iodine and molybdenum/technetium decay chains while having trace to no quantities of other fission products or actinides. This adds a new, credible method to the area of certain commercial isotope production beyond current techniques, while providing significant potential reduction of process wastes. Waste reduction, along with reduced processing time/cost provides for superior economic feasibility which may allow domestic production under full cost recovery practices. This provides the potential for improved access to domestically produced isotopes for medical diagnostics and treatment at reduced cost, providing for the public good.

  2. International Journal of Production Research, Vol. 45, No. 7, 1 April 2007, 15051519

    E-Print Network [OSTI]

    GrŁninger, Michael

    to a range of approaches from companies including concurrent engineering, lean manufacture and agileInternational Journal of Production Research, Vol. 45, No. 7, 1 April 2007, 1505≠1519 Manufacturing. GUNENDRANy, A. F. CUTTING-DECELLEz and M. GRUNINGERx yWolfson School of Mechanical and Manufacturing

  3. International Conference on Production Research A. Kusiak, Innovation A Data-Driven of Products and Services: Bridging World's Economies, 19th

    E-Print Network [OSTI]

    Kusiak, Andrew

    19 th International Conference on Production Research A. Kusiak, Innovation A Data, ICPR 19, Valparaiso, Chile, August 2007, pp. 1-6. INNOVATION OF PRODUCTS AND SERVICES: BRIDGING WORLD `successful innovation' only after it has been proven in market. Certainly, market failures of products

  4. Metsntutkimuslaitos Skogsforskningsinstitutet Finnish Forest Research Institute www.metla.fi Overview of Finnish Wood Fuel Supply

    E-Print Network [OSTI]

    Bio Training Week Finland 09th April 2013 Contents Bioenergy Research at Metla Biomass availability estimations) * Bioeconomy (2011 - 2015) * Climate change (2011 ≠ 2015) * Sustainable land use (2011 - 2014) * Baltic sea

  5. A Landscape Design for Bioenergy Cropping Options Need for a Landscape Design

    E-Print Network [OSTI]

    . Several technological pathways connect the various biomass sources to diverse forms of bioenergy (fuels this approach addresses the questions of biofuel selection and deployment. These objectives are being addressed

  6. Bioenergy Technologies Office R&D Pathways: Ex-Situ Catalytic...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ex-Situ Catalytic Fast Pyrolysis Bioenergy Technologies Office R&D Pathways: Ex-Situ Catalytic Fast Pyrolysis In ex-situ catalytic fast pyrolysis, biomass is heated with catalysts...

  7. Bioenergy Technologies Office R&D Pathways: In-Situ Catalytic...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    In-Situ Catalytic Fast Pyrolysis Bioenergy Technologies Office R&D Pathways: In-Situ Catalytic Fast Pyrolysis The in-situ catalytic fast pyrolysis pathway involves rapidly heating...

  8. GREET Bioenergy Life Cycle Analysis and Key Issues for Woody Feedstocks

    Broader source: Energy.gov [DOE]

    Breakout Session 2DóBuilding Market Confidence and Understanding II: Carbon Accounting and Woody Biofuels GREET Bioenergy Life Cycle Analysis and Key Issues for Woody Feedstocks Michael Wang, Senior Scientist, Energy Systems, Argonne National Laboratory

  9. BIOENERGY/BIOFUELS/BIOCHEMICALS Chromatographic determination of 1, 4-b-xylooligosaccharides

    E-Print Network [OSTI]

    California at Riverside, University of

    BIOENERGY/BIOFUELS/BIOCHEMICALS Chromatographic determination of 1, 4-b For the majority of lignocellulosic feedstocks for produc- tion of bioethanol and other biofuels, heteroxylans activity [22] or further hydrolyzed into fermentable sugars as platform molecules for biofuels [23

  10. Bioenergy Demand in a Market Driven Forest Economy (U.S. South)

    Broader source: Energy.gov [DOE]

    Breakout Session 1A: Biomass Feedstocks for the Bioeconomy Bioenergy Demand in a Market Driven Forest Economy (U.S. South) Robert C. Abt, Professor of Natural Resource Economics and Management, North Carolina State University

  11. From User-Centered to Adoption-Centered Design: A Case Study of an HCI Research Innovation Becoming a Product

    E-Print Network [OSTI]

    Wobbrock, Jacob O.

    endure attempted dissemination as a commercial product. Although the extent to which any innovation innovations develop into commercial products [11]. Given that research- ers usually lack the knowledgeFrom User-Centered to Adoption-Centered Design: A Case Study of an HCI Research Innovation Becoming

  12. Reducing the negative human-health impacts of bioenergy crop emissions through region-specific crop selection

    E-Print Network [OSTI]

    Porter, WC; Rosenstiel, TN; Guenther, A; Lamarque, J-F; Barsanti, K

    2015-01-01

    bioenergy crops such as eucalyptus, giant reed, anduse of crops such as poplar, eucalyptus, and switchgrass asemitters such as eucalyptus. The com- bined health bene?ts

  13. National Institute for Petroleum and Energy Research quarterly technical report, July 1--September 30, 1992. Volume 2, Energy production research

    SciTech Connect (OSTI)

    Not Available

    1992-12-01

    Volume II includes: chemical flooding--supporting research; gas displacement--supporting research; thermal recovery--supporting research; geoscience technology; resource assessment technology; and microbial technology.

  14. An Integrated Model for Assessment of Sustainable Agricultural Residue Removal Limits for Bioenergy Systems

    SciTech Connect (OSTI)

    D. Muth; K. M. Bryden

    2003-12-01

    Agricultural residues have been identified as a significant potential resource for bioenergy production, but serious questions remain about the sustainability of harvesting residues. Agricultural residues play an important role in limiting soil erosion from wind and water and in maintaining soil organic carbon. Because of this, multiple factors must be considered when assessing sustainable residue harvest limits. Validated and accepted modeling tools for assessing these impacts include the Revised Universal Soil Loss Equation Version 2 (RUSLE2), the Wind Erosion Prediction System (WEPS), and the Soil Conditioning Index. Currently, these models do not work together as a single integrated model. Rather, use of these models requires manual interaction and data transfer. As a result, it is currently not feasible to use these computational tools to perform detailed sustainable agricultural residue availability assessments across large spatial domains or to consider a broad range of land management practices. This paper presents an integrated modeling strategy that couples existing datasets with the RUSLE2 water erosion, WEPS wind erosion, and Soil Conditioning Index soil carbon modeling tools to create a single integrated residue removal modeling system. This enables the exploration of the detailed sustainable residue harvest scenarios needed to establish sustainable residue availability. Using this computational tool, an assessment study of residue availability for the state of Iowa was performed. This study included all soil types in the state of Iowa, four representative crop rotation schemes, variable crop yields, three tillage management methods, and five residue removal methods. The key conclusions of this study are that under current management practices and crop yields nearly 26.5 million Mg of agricultural residue are sustainably accessible in the state of Iowa, and that through the adoption of no till practices residue removal could sustainably approach 40 million Mg. However, when considering the economics and logistics of residue harvest, yields below 2.25 Mg ha-1 are generally considered to not be viable for a commercial bioenergy system. Applying this constraint, the total agricultural residue resource available in Iowa under current management practices is 19 million Mg. Previously published results have shown residue availability from 22 million Mg to over 50 million Mg in Iowa.

  15. Spatial Modeling of Geographic Patterns in Biodiversity and Biofuel Production

    E-Print Network [OSTI]

    Spatial Modeling of Geographic Patterns in Biodiversity and Biofuel Production How can the US for increasing biofuel production have already come under fire because of real and perceived threats.S. will be to ensure that bioenergy supplies meet sustainable production standards that include consideration

  16. A Review on Biomass Densification Systems to Develop Uniform Feedstock Commodities for Bioenergy Application

    SciTech Connect (OSTI)

    Jaya Shankar Tumuluru; Christopher T. Wright; J. Richard Hess; Kevin L. Kenney

    2011-11-01

    Developing uniformly formatted, densified feedstock from lignocellulosic biomass is of interest to achieve consistent physical properties like size and shape, bulk and unit density, and durability, which significantly influence storage, transportation and handling characteristics, and, by extension, feedstock cost and quality. A variety of densification systems are considered for producing a uniform format feedstock commodity for bioenergy applications, including (a) baler, (b) pellet mill, (c) cuber, (d) screw extruder, (e) briquette press, (f) roller press, (g) tablet press, and (g) agglomerator. Each of these systems has varying impacts on feedstock chemical and physical properties, and energy consumption. This review discusses the suitability of these densification systems for biomass feedstocks and the impact these systems have on specific energy consumption and end product quality. For example, a briquette press is more flexible in terms of feedstock variables where higher moisture content and larger particles are acceptable for making good quality briquettes; or among different densification systems, a screw press consumes the most energy because it not only compresses but also shears and mixes the material. Pretreatment options like preheating, grinding, steam explosion, torrefaction, and ammonia fiber explosion (AFEX) can also help to reduce specific energy consumption during densification and improve binding characteristics. Binding behavior can also be improved by adding natural binders, such as proteins, or commercial binders, such as lignosulphonates. The quality of the densified biomass for both domestic and international markets is evaluated using PFI (United States Standard) or CEN (European Standard).

  17. [National Institute for Petroleum and Energy Research] quarterly technical report, October 1--December 31, 1992. Volume 2, Energy production research

    SciTech Connect (OSTI)

    Not Available

    1993-04-01

    Accomplishments for the past quarter are described for the following tasks: chemical flooding--supporting research; gas displacement--supporting research; thermal recovery--supporting research; geoscience technology; resource assessment technology; and microbial technology.

  18. National Institute for Petroleum and Energy Research quarterly technical report, April 1--June 30, 1992. Volume 2, Energy production research

    SciTech Connect (OSTI)

    Not Available

    1992-09-01

    Progress reports are presented for: chemical flooding--supporting research; gas displacement-supporting research; thermal recovery-supporting research; geoscience technology; resource assessment technology; and microbial technology. (AT)

  19. U.S. Billion-Ton Update: Biomass Supply for a Bioenergy and Bioproducts Industry

    SciTech Connect (OSTI)

    Downing, Mark; Eaton, Laurence M; Graham, Robin Lambert; Langholtz, Matthew H; Perlack, Robert D; Turhollow Jr, Anthony F; Stokes, Bryce; Brandt, Craig C

    2011-08-01

    The report, Biomass as Feedstock for a Bioenergy and Bioproducts Industry: The Technical Feasibility of a Billion-Ton Annual Supply (generally referred to as the Billion-Ton Study or 2005 BTS), was an estimate of 'potential' biomass based on numerous assumptions about current and future inventory, production capacity, availability, and technology. The analysis was made to determine if conterminous U.S. agriculture and forestry resources had the capability to produce at least one billion dry tons of sustainable biomass annually to displace 30% or more of the nation's present petroleum consumption. An effort was made to use conservative estimates to assure confidence in having sufficient supply to reach the goal. The potential biomass was projected to be reasonably available around mid-century when large-scale biorefineries are likely to exist. The study emphasized primary sources of forest- and agriculture-derived biomass, such as logging residues, fuel treatment thinnings, crop residues, and perennially grown grasses and trees. These primary sources have the greatest potential to supply large, reliable, and sustainable quantities of biomass. While the primary sources were emphasized, estimates of secondary residue and tertiary waste resources of biomass were also provided. The original Billion-Ton Resource Assessment, published in 2005, was divided into two parts-forest-derived resources and agriculture-derived resources. The forest resources included residues produced during the harvesting of merchantable timber, forest residues, and small-diameter trees that could become available through initiatives to reduce fire hazards and improve forest health; forest residues from land conversion; fuelwood extracted from forests; residues generated at primary forest product processing mills; and urban wood wastes, municipal solid wastes (MSW), and construction and demolition (C&D) debris. For these forest resources, only residues, wastes, and small-diameter trees were considered. The 2005 BTS did not attempt to include any wood that would normally be used for higher-valued products (e.g., pulpwood) that could potentially shift to bioenergy applications. This would have required a separate economic analysis, which was not part of the 2005 BTS. The agriculture resources in the 2005 BTS included grains used for biofuels production; crop residues derived primarily from corn, wheat, and small grains; and animal manures and other residues. The cropland resource analysis also included estimates of perennial energy crops (e.g., herbaceous grasses, such as switchgrass, woody crops like hybrid poplar, as well as willow grown under short rotations and more intensive management than conventional plantation forests). Woody crops were included under cropland resources because it was assumed that they would be grown on a combination of cropland and pasture rather than forestland. In the 2005 BTS, current resource availability was estimated at 278 million dry tons annually from forestlands and slightly more than 194 million dry tons annually from croplands. These annual quantities increase to about 370 million dry tons from forestlands and to nearly 1 billion dry tons from croplands under scenario conditions of high-yield growth and large-scale plantings of perennial grasses and woody tree crops. This high-yield scenario reflects a mid-century timescale ({approx}2040-2050). Under conditions of lower-yield growth, estimated resource potential was projected to be about 320 and 580 million dry tons for forest and cropland biomass, respectively. As noted earlier, the 2005 BTS emphasized the primary resources (agricultural and forestry residues and energy crops) because they represent nearly 80% of the long-term resource potential. Since publication of the BTS in April 2005, there have been some rather dramatic changes in energy markets. In fact, just prior to the actual publication of the BTS, world oil prices started to increase as a result of a burgeoning worldwide demand and concerns about long-term supplies. By the end of the summer, oil pri

  20. IEA Bioenergy Task 40Sustainable International Bioenergy Trade:Securing Supply and Demand Country Report 2014óUnited States

    SciTech Connect (OSTI)

    Hess, J. Richard; Lamers, Patrick; Roni, Mohammad S.; Jacobson, Jacob J.; Heath, Brendi

    2015-01-01

    Logistical barrier are tied to feedstock harvesting, collection, storage and distribution. Current crop harvesting machinery is unable to selectively harvest preferred components of cellulosic biomass while maintaining acceptable levels of soil carbon and minimizing erosion. Actively managing biomass variability imposes additional functional requirements on biomass harvesting equipment. A physiological variation in biomass arises from differences in genetics, degree of crop maturity, geographical location, climatic events, and harvest methods. This variability presents significant cost and performance risks for bioenergy systems. Currently, processing standards and specifications for cellulosic feedstocks are not as well-developed as for mature commodities. Biomass that is stored with high moisture content or exposed to moisture during storage is susceptible to spoilage, rotting, spontaneous combustion, and odor problems. Appropriate storage methods and strategies are needed to better define storage requirements to preserve the volume and quality of harvested biomass over time and maintain its conversion yield. Raw herbaceous biomass is costly to collect, handle, and transport because of its low density and fibrous nature. Existing conventional, bale-based handling equipment and facilities cannot cost-effectively deliver and store high volumes of biomass, even with improved handling techniques. Current handling and transportation systems designed for moving woodchips can be inefficient for bioenergy processes due to the costs and challenges of transporting, storing, and drying high-moisture biomass. The infrastructure for feedstock logistics has not been defined for the potential variety of locations, climates, feedstocks, storage methods, processing alternatives, etc., which will occur at a national scale. When setting up biomass fuel supply chains, for large-scale biomass systems, logistics are a pivotal part in the system. Various studies have shown that long-distance international transport by ship is feasible in terms of energy use and transportation costs, but availability of suitable vessels and meteorological conditions (e.g., winter time in Scandinavia and Russia) need to be considered. However, local transportation by truck (both in biomass exporting and importing countries) may be a high-cost factor, which can influence the overall energy balance and total biomass costs.

  1. Process Design and Economics for the Conversion of Lignocellulosic Biomass to Hydrocarbon Fuels. Thermochemical Research Pathways with In Situ and Ex Situ Upgrading of Fast Pyrolysis Vapors

    SciTech Connect (OSTI)

    Dutta, Abhijit; Sahir, Asad; Tan, Eric; Humbird, David; Snowden-Swan, Lesley J.; Meyer, Pimphan; Ross, Jeff; Sexton, Danielle; Yap, Raymond; Lukas, John Lukas

    2015-03-01

    This report was developed as part of the U.S. Department of Energyís Bioenergy Technologies Officeís efforts to enable the development of technologies for the production of infrastructurecompatible, cost-competitive liquid hydrocarbon fuels from biomass. Specifically, this report details two conceptual designs based on projected product yields and quality improvements via catalyst development and process integration. It is expected that these research improvements will be made within the 2022 timeframe. The two conversion pathways detailed are (1) in situ and (2) ex situ upgrading of vapors produced from the fast pyrolysis of biomass. While the base case conceptual designs and underlying assumptions outline performance metrics for feasibility, it should be noted that these are only two of many other possibilities in this area of research. Other promising process design options emerging from the research will be considered for future techno-economic analysis.

  2. Deep-Sea Research II 54 (2007) 10291044 A one-dimensional simulation of biological production in two

    E-Print Network [OSTI]

    Feng, Ming

    2007-01-01

    Deep-Sea Research II 54 (2007) 1029≠1044 A one-dimensional simulation of biological production Engineering, University of Western Australia, 35 Stirling Hwy, Crawley 6009, WA, Australia Received 21 flux. Instead, entrainment of productive shelf waters during the formation of the anticyclonic eddy

  3. Shale Gas Production Theory and Case Analysis We researched the process of oil recovery and shale gas

    E-Print Network [OSTI]

    Huang, Xun

    Shale Gas Production Theory and Case Analysis (Siemens) We researched the process of oil recovery and shale gas recovery and compare the difference between conventional and unconventional gas reservoir and recovery technologies. Then we did theoretical analysis on the shale gas production. According

  4. Natural products and supplements for geriatric depression and cognitive disorders: An evaluation of the research

    E-Print Network [OSTI]

    Varteresian, T; Varteresian, T; Lavretsky, H

    2014-01-01

    to recommend various natural supplements and products, aKeywords Natural products . Supplements . Geriatric . Moodnatural products and supplements for vari- ous medical

  5. Genetic resources for advanced biofuel production described with the Gene Ontology

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Torto-Alalibo, Trudy; Purwantini, Endang; Lomax, Jane; Setubal, Joao C.; Mukhopadhyay, Biswarup; Tyler, Brett M.

    2014-10-10

    Dramatic increases in research in the area of microbial biofuel production coupled with high-throughput data generation on bioenergy-related microbes has led to a deluge of information in the scientific literature and in databases. Consolidating this information and making it easily accessible requires a unified vocabulary.The Gene Ontology (GO) fulfills that requirement, as it is a well-developed structured vocabulary that describes the activities and locations of gene products in a consistent manner across all kingdoms of life. The Microbial ENergy processes Gene Ontology (http://www.mengo.biochem.vt.edu) project is extending the GO to include new terms to describe microbial processes of interest to bioenergymore†Ľproduction. Our effort has added over 600 bioenergy related terms to the Gene Ontology. These terms will aid in the comprehensive annotation of gene products from diverse energy-related microbial genomes. An area of microbial energy research that has received a lot of attention is microbial production of advanced biofuels. These include alcohols such as butanol, isopropanol, isobutanol, and fuels derived from fatty acids, isoprenoids, and polyhydroxyalkanoates. These fuels are superior to first generation biofuels (ethanol and biodiesel esterified from vegetable oil or animal fat), can be generated from non-food feedstock sources, can be used as supplements or substitutes for gasoline, diesel and jet fuels, and can be stored and distributed using existing infrastructure. We review the roles of genes associated with synthesis of advanced biofuels, and at the same time introduce the use of the GO to describe the functions of these genes in a standardized way.ę†less

  6. 2 March 2014 SENT TO LSU AGCENTER/LOUISIANA FOREST PRODUCTS DEVELOPMENT CENTER -FOREST SECTOR / FORESTY PRODUCTS INTEREST GROUP

    E-Print Network [OSTI]

    2 March 2014 SENT TO LSU AGCENTER/LOUISIANA FOREST PRODUCTS DEVELOPMENT CENTER - FOREST SECTOR / FORESTY PRODUCTS INTEREST GROUP 1 Webinar Archive The Transatlantic Trade in Wood for Energy Slides. Organized by the Pinchot Institute for Conservation and the International Energy Agency (IEA) Bioenergy

  7. Waste to Wisdom: Utilizing forest residues for the production of bioenergy and biobased products

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematics And Statistics ¬Ľ USAJobs SearchAMERICA'S FUTURE. regulators02-03HeatWasteDepartment

  8. Urban Wood-Based Bio-Energy Systems in Seattle

    SciTech Connect (OSTI)

    Stan Gent, Seattle Steam Company

    2010-10-25

    Seattle Steam Company provides thermal energy service (steam) to the majority of buildings and facilities in downtown Seattle, including major hospitals (Swedish and Virginia Mason) and The Northwest (Level I) Regional Trauma Center. Seattle Steam has been heating downtown businesses for 117 years, with an average length of service to its customers of 40 years. In 2008 and 2009 Seattle Steam developed a biomass-fueled renewable energy (bio-energy) system to replace one of its gas-fired boilers that will reduce greenhouse gases, pollutants and the amount of waste sent to landfills. This work in this sub-project included several distinct tasks associated with the biomass project development as follows: a. Engineering and Architecture: Engineering focused on development of system control strategies, development of manuals for start up and commissioning. b. Training: The project developer will train its current operating staff to operate equipment and facilities. c. Flue Gas Clean-Up Equipment Concept Design: The concept development of acid gas emissions control system strategies associated with the supply wood to the project. d. Fuel Supply Management Plan: Development of plans and specifications for the supply of wood. It will include potential fuel sampling analysis and development of contracts for delivery and management of fuel suppliers and handlers. e. Integrated Fuel Management System Development: Seattle Steam requires a biomass Fuel Management System to track and manage the delivery, testing, processing and invoicing of delivered fuel. This application will be web-based and accessed from a password-protected URL, restricting data access and privileges by user-level.

  9. Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Research Isotopes produced at Los Alamos National Laboratory are saving lives, advancing cutting-edge research and keeping the U.S. safe. Research thorium test foil A...

  10. 2011 Photosynthesis Gordon Research Conference & Seminar (June 11-17, 2011, Davidson College, Davidson, North Carolina)

    SciTech Connect (OSTI)

    Prof. Krishna Niyogi

    2011-06-17

    Photosynthesis is the biological process that converts solar energy into chemical energy. Elucidation of the mechanisms of photosynthetic energy conversion at a molecular level is fundamentally important for understanding the biology of photosynthetic organisms, for optimizing biological solar fuels production, and for developing biologically inspired approaches to solar energy conversion. The 2011 Gordon Conference on Photosynthesis will present cutting-edge research focusing on the biochemical aspects of photosynthesis, including: (1) structure, assembly, and function of photosynthetic complexes; (2) the mechanism of water splitting by PSII; (3) light harvesting and quenching; (4) alternative electron transport pathways; (5) biosynthesis of pigments and cofactors; and (6) improvement of photosynthesis for bioenergy and food production. Reflecting the interdisciplinary nature of photosynthesis research, a diverse group of invited speakers will represent a variety of scientific approaches to investigate photosynthesis, such as biochemistry, molecular genetics, structural biology, systems biology, and spectroscopy. Highly interactive poster sessions provide opportunities for graduate students and postdocs to present their work and exchange ideas with leaders in the field. One of the highlights of the Conference is a session featuring short talks by junior investigators selected from the poster presentations. The collegial atmosphere of the Photosynthesis GRC, with programmed discussion sessions as well as informal gatherings in the afternoons and evenings, enables participants to brainstorm, exchange ideas, and forge new collaborations. For the second time, this Conference will be immediately preceded by a Gordon Research Seminar on Photosynthesis (June 11-12, 2011, at the same location), with a focus on 'Photosynthesis, Bioenergy, and the Environment.' The GRS provides an additional opportunity for graduate students and postdocs to present their research, and it provides a mechanism to encourage active participation by junior scientists interested in photosynthesis and its applications.

  11. Part 2: Perspectives on the Bioenergy Industry: Issue Reports "There are lots of uncertainties and competition."

    E-Print Network [OSTI]

    with phytoremediation and bioremediation processes; ∑ Document methods to increase water use efficiency for bioenergy of this report. 2.1 Land and water resources College of Tropical Agriculture and Human Resources (CTAHR University of Hawaii #12;12 2.1 Water and Land Resources EXECUTIVE SUMMARY Project Background Based on Act

  12. International Conference on Wood-based Bioenergy LIGNA+Hannover, Germany, 17-18 May 2007

    E-Print Network [OSTI]

    1985 1990 1995 2000 2005 2010 2015 2020 Year Amount(inmillioncubicmetresWRME) Recovered paper Net pulp fossil fuel prices ∑ Energy security ∑ Policies to reduce climate change ∑ Wood industries' wood needs consumption, e.g. China ≠ Nuclear safety #12;International Conference on Wood-based Bioenergy LIGNA

  13. BioEnergy Landscape: From Photosynthesis to Fossil Fuels to Advanced Biofuels

    E-Print Network [OSTI]

    Kostic, Milivoje M.

    BioEnergy Landscape: From Photosynthesis to Fossil Fuels to Advanced Biofuels - Fundamentals for substitution of fossil fuels since they are natural extensions of fossil fuels, and the existing energy in transportation to replace fossil fuels. Energy is the cause for all processes across all space and time scales

  14. Hawai'i Bioenergy Master Plan Green Jobs, Biofuels Development, and

    E-Print Network [OSTI]

    Hawai'i Bioenergy Master Plan Green Jobs, Biofuels Development, and Hawaii's Labor Market associated with biofuels in Hawai'i. In particular, it discusses how a potential biofuels industry might policy makers and leaders consider how best to support biofuels. One major labor market question

  15. National Bioenergy Center - Biochemical Platform Integration Project: Quarterly Update, Winter 2010

    SciTech Connect (OSTI)

    Schell, D.

    2011-02-01

    Winter 2011 edition of the National Bioenergy Center's Biochemical Platform Integration Project quarterly newsletter. Issue topics: 33rd Symposium on Biotechnology for Fuels and Chemicals program topic areas; results from reactive membrane extraction of inhibitors from dilute-acid pretreated corn stover; list of 2010 task publications.

  16. National Bioenergy Center, Biochemical Platform Integration Project: Quarterly Update, Summer 2011 (Newsletter)

    SciTech Connect (OSTI)

    Not Available

    2011-09-01

    Summer 2011 issue of the National Bioenergy Center Biochemical Platform Integration Project quarterly update. Issue topics: evaluating new analytical techniques for measuring soluble sugars in the liquid portion of biomass hydrolysates, and measurement of the fraction of insoluble solids in biomass slurries.

  17. Bioenergy crop greenhouse gas mitigation potential under a range of management practices

    E-Print Network [OSTI]

    DeLucia, Evan H.

    Bioenergy crop greenhouse gas mitigation potential under a range of management practices T A R A W on marginal lands annually without displacing food and to contribute to greenhouse gas (GHG) reduction an important renewable energy source for replacement of fossil fuels, but is of questionable greenhouse gas

  18. Reducing effluent discharge and recovering bioenergy in an osmotic microbial fuel cell treating domestic wastewater

    E-Print Network [OSTI]

    of application, but they are energy-intensive because of high hydraulic pressures, and membrane fouling remains osmosis into an MFC for simultaneous wastewater treatment, bioenergy recovery, and water extractionMFC achieved water flux of 1.06≠1.49 LMH and reduced wastewater effluent by 24.3≠72.2% depending on hydraulic

  19. Bioenergy Technologies Office Multi-Year Program Plan: March 2015 Update

    SciTech Connect (OSTI)

    none,

    2015-03-01

    This is the March 2015 Update to the Multi-Year Program Plan, which sets forth the goals and structure of the Bioenergy Technologies Office. It identifies the RDD&D activities the Office will focus on over the next four years.

  20. Bioenergy Technologies Office Multi-Year Program Plan: November 2014 Update

    SciTech Connect (OSTI)

    2014-11-01

    This is the November 2014 Update to the Multi-Year Program Plan, which sets forth the goals and structure of the Bioenergy Technologies Office. It identifies the RDD&D activities the Office will focus on over the next four years.

  1. Biomass Program Outreach and Communication The Bioenergy Feedstock Information Network (BFIN)

    E-Print Network [OSTI]

    + Biomass Program Outreach and Communication The Bioenergy Feedstock Information Network (BFIN) About ten years ago ORNL launched BFIN providing a gateway to a wealth of biomass feedstock information by ORNL. Regional partnership workshops The Regional Biomass Energy Feedstock Partnership is comprised

  2. BIOENERGY AND BIOFUELS Domestic wastewater treatment using multi-electrode continuous

    E-Print Network [OSTI]

    BIOENERGY AND BIOFUELS Domestic wastewater treatment using multi-electrode continuous flow MFCs density was 148Ī8 mA/m2 (1,000 ), the maximum power density was 120 mW/m2 , and the overall COD removal % change in the COD concentration across the reactor (influent versus effluent) and the current density

  3. BIOENERGY AND BIOFUELS A multi-electrode continuous flow microbial fuel cell

    E-Print Network [OSTI]

    BIOENERGY AND BIOFUELS A multi-electrode continuous flow microbial fuel cell with separator this separator with the cathode. The maximum power density was 975 mW/m2 , with an overall chemical oxygen demand densities, the recovery of elec- trons as current [coulombic efficiency (CE)], and energy recovery while

  4. BIOENERGY AND BIOFUELS Anodic biofilms in microbial fuel cells harbor low numbers

    E-Print Network [OSTI]

    BIOENERGY AND BIOFUELS Anodic biofilms in microbial fuel cells harbor low numbers of higher a higher-power density (17.4 mW/m2 ) than the mixed culture, although voltage generation was variable. Our; Kiely et al. 2010; Parameswaran et al. 2009a, b). In general, power densities for acetic acid

  5. Risk Management in Product Design: Current State, Conceptual Model and Future Research

    E-Print Network [OSTI]

    Oehmen, Josef

    Risk management is an important element of product design. It helps to minimize the project- and product-related risks such as project budget and schedule overrun, or missing product cost and quality targets. Risk management ...

  6. Effect of crop residue harvest on long-term crop yield, soil erosion, and carbon balance: tradeoffs for a sustainable bioenergy feedstock

    SciTech Connect (OSTI)

    Gregg, Jay S.; Izaurralde, Roberto C.

    2010-08-26

    Agricultural residues are a potential feedstock for bioenergy production, if residue harvest can be done sustainably. The relationship between crop residue harvest, soil erosion, crop yield and carbon balance was modeled with the Erosion Productivity Impact Calculator/ Environment Policy Integrated Climate (EPIC) using a factorial design. Four crop rotations (winter wheat [Triticum aestivum (L.)] Ė sunflower [Helianthus annuus]; spring wheat [Triticum aestivum (L.)] Ė canola [Brassica napus]; corn [Zea mays L.] Ė soybean [Glycine max (L.) Merr.]; and cotton [Gossypium hirsutum] Ė peanut [Arachis hypogaea]) were simulated at four US locations each, under different topographies (0-10% slope), and management practices [crop residue removal rates (0-75%), conservation practices (no till, contour cropping, strip cropping, terracing)].

  7. Reducing the negative human-health impacts of bioenergy crop emissions through region-specific crop selection

    E-Print Network [OSTI]

    Guenther, Alex

    An expected global increase in bioenergy-crop cultivation as an alternative to fossil fuels will have consequences on both global climate and local air quality through changes in biogenic emissions of volatile organic ...

  8. An Integrated Modeling and Data Management Strategy for Cellulosic Biomass Production Decisions

    SciTech Connect (OSTI)

    David J. Muth Jr.; K. Mark Bryden; Joshua B. Koch

    2012-07-01

    Emerging cellulosic bioenergy markets can provide land managers with additional options for crop production decisions. Integrating dedicated bioenergy crops such as perennial grasses and short rotation woody species within the agricultural landscape can have positive impacts on several environmental processes including increased soil organic matter in degraded soils, reduced sediment loading in watersheds, lower green house gas (GHG) fluxes, and reduced nutrient loading in watersheds. Implementing this type of diverse bioenergy production system in a way that maximizes potential environmental benefits requires a dynamic integrated modeling and data management strategy. This paper presents a strategy for designing diverse bioenergy cropping systems within the existing row crop production landscape in the midwestern United States. The integrated model developed quantifies a wide range environmental processes including soil erosion from wind and water, soil organic matter changes, and soil GHG fluxes within a geospatial data management framework. This framework assembles and formats information from multiple spatial and temporal scales. The data assembled includes yield and productivity data from harvesting equipment at the 1m scale, surface topography data from LiDAR mapping at the less than 1m scale, soil data from US soil survey databases at the 10m to 100m scale, and climate data at the county scale. These models and data tools are assembled into an integrated computational environment that is used to determine sustainable removal rates for agricultural residues for bioenergy production at the sub-field scale under a wide range of land management practices. Using this integrated model, innovative management practices including cover cropping are then introduced and evaluated for their impact on bioenergy production and important environmental processes. The impacts of introducing dedicated energy crops onto high-risk landscape positions currently being manage in row crop production are also investigated.

  9. International Journal of Production Research, Vol. 44, Nos. 1819, 15 September1 October 2006, 40274041

    E-Print Network [OSTI]

    Kusiak, Andrew

    that minimizes the risk of producing faulty products. The extracted knowledge plays an important role is lower than the cost of the lost material and labour. Nevertheless, when the product delivery time

  10. Potential of Using Poultry Litter as a Feedstock for Energy Production Rangika Perera, Graduate Research Assistant

    E-Print Network [OSTI]

    ............................................ 11 5.3 Issues on the gasification of poultry litter for energy production: USDA, 2007) ............... 5 Figure 2: Geographical Distribution of Turkey Production in the U) .............................................................................. 8 Table 2: Litter Estimates for Turkey Operations (2008 & 2009

  11. Center for Biotechnology Research Groups

    E-Print Network [OSTI]

    Moeller, Ralf

    Microorganisms 28 Post-transcriptional regulatory networks 30 Bioenergetics for Bioenergy 32 Plant Genetics

  12. Bioenergy Technologies Office R&D with University of California...

    Energy Savers [EERE]

    chemicals in everyday products. It may also provide a revenue stream for start-up companies seeking to scale-up algae production to the quantities required to meet the...

  13. Potential of Using Poultry Litter as a Feedstock for Energy Production Rangika Perera, Graduate Research Assistant

    E-Print Network [OSTI]

    Wu, Qinglin

    Potential of Using Poultry Litter as a Feedstock for Energy Production Rangika Perera, Graduate................................................................................................... 9 5. Environmental and Social Issues of Energy Production using Poultry Litter ....................................... 10 5.1 Issues on the anaerobic digestion of poultry litter for energy production

  14. [National Institute for Petroleum and Energy Research] quarterly technical report for April--June 30, 1993. Volume 2, Energy Production Research

    SciTech Connect (OSTI)

    Not Available

    1993-09-01

    Progress reports are presented for: chemical flooding--supporting research; gas displacement--supporting research; thermal recovery--supporting research; geoscience technology; resource assessment technology; and microbial technology. Chemical flooding includes; development of improved chemical flooding methods; development of improved alkaline flooding methods; mobility control and sweep improvement in chemical flooding; and surfactant-enhanced alkaline flooding field project. Gas displacement research covers: gas flooding performance prediction improvement; and mobility control, profile modification, and sweep improvement in gas flooding. Thermal recovery research includes: thermal processes for light oil recovery; thermal processes for heavy oil recovery; feasibility study of heavy oil recovery in the Midcontinent region: Oklahoma, Kansas, and Missouri; simulation analysis of steam-foam projects; and organization of UNITAR 6th International Conference on Heavy Crude and Tar Sands. Geoscience technology covers: three-phase relative permeability; and imaging techniques applied to the study of fluids in porous media. Resource assessment technology includes: reservoir assessment and characterization; TORIS research support; upgrade the BPO Crude Oil Analysis Data Base; compilation and analysis of outcrop data from the Muddy and Almond Formations; and horizontal well production from fractured reservoir. Microbial Technology covers: development of improved microbial flooding methods; and microbial-enhanced waterflooding field project.

  15. Research

    E-Print Network [OSTI]

    My research interests. Numerical method of stochastic partial differential equations; Uncertainty Quantification; High-order numerical method; Domain†...

  16. Research

    E-Print Network [OSTI]

    author

    Research Interests. Mathematical biology: Computational modelling of biological systems, experimental design and control of cellular processes. Applied math:†...

  17. Argonne National Laboratory Scientists Study Benefits of Bioenergy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    research --Ecology --Environmental modeling tools --Land reclamation --Water quality Security -Cyber security -Decision science --Emergency & disaster management --Public...

  18. Developing an Integrated Model Framework for the Assessment of Sustainable Agricultural Residue Removal Limits for Bioenergy Systems

    SciTech Connect (OSTI)

    David Muth, Jr.; Jared Abodeely; Richard Nelson; Douglas McCorkle; Joshua Koch; Kenneth Bryden

    2011-08-01

    Agricultural residues have significant potential as a feedstock for bioenergy production, but removing these residues can have negative impacts on soil health. Models and datasets that can support decisions about sustainable agricultural residue removal are available; however, no tools currently exist capable of simultaneously addressing all environmental factors that can limit availability of residue. The VE-Suite model integration framework has been used to couple a set of environmental process models to support agricultural residue removal decisions. The RUSLE2, WEPS, and Soil Conditioning Index models have been integrated. A disparate set of databases providing the soils, climate, and management practice data required to run these models have also been integrated. The integrated system has been demonstrated for two example cases. First, an assessment using high spatial fidelity crop yield data has been run for a single farm. This analysis shows the significant variance in sustainably accessible residue across a single farm and crop year. A second example is an aggregate assessment of agricultural residues available in the state of Iowa. This implementation of the integrated systems model demonstrates the capability to run a vast range of scenarios required to represent a large geographic region.

  19. Conversion of residual organics in corn stover-derived biorefinery stream to bioenergy via microbial fuel cell

    SciTech Connect (OSTI)

    Borole, Abhijeet P; Hamilton, Choo Yieng; Schell, Daniel J

    2012-01-01

    A biorefinery process typically uses about 4-10 times as much water as the amount of biofuel generated. The wastewater produced in a biorefinery process contains residual sugars, 5-furfural, phenolics, and other pretreatment and fermentation byproducts. Treatment of the wastewater can reduce the need for fresh water and potentially add to the environmental benefits of the process. Use of microbial fuel cells (MFCs) for conversion of the various organics present in a post-fermentation biorefinery stream is reported here. The organic loading was varied over a wide range to assess removal efficiency, coulombic efficiency and power production. A coulombic efficiency of 40% was observed for a low loading of 1% (0.66 g/L) and decreased to 1.8% for the undiluted process stream (66.4 g/L organic loading). A maximum power density of 1180 mW/m2 was observed at a loading of 8%. Excessive loading was found to result in poor electrogenic performance. The results indicate that operation of an MFC at an intermediate loading using dilution and recirculation of the process stream can enable effective treatment with bioenergy recovery.

  20. The Mississippi University Research Consortium for the Utilization of Biomass: Production of Alternative Fuels from Waste Biomass Initiative

    SciTech Connect (OSTI)

    Drs. Mark E. Zapp; Todd French; Lewis Brown; Clifford George; Rafael Hernandez; Marvin Salin; Drs. Huey-Min Hwang, Ken Lee, Yi Zhang; Maria Begonia; Drs. Clint Williford; Al Mikell; Drs. Robert Moore; Roger Hester .

    2009-03-31

    The Mississippi Consortium for the Utilization of Biomass was formed via funding from the US Department of Energy's EPSCoR Program, which is administered by the Office of Basic Science. Funding was approved in July of 1999 and received by participating Mississippi institutions by 2000. The project was funded via two 3-year phases of operation (the second phase was awarded based on the high merits observed from the first 3-year phase), with funding ending in 2007. The mission of the Consortium was to promote the utilization of biomass, both cultured and waste derived, for the production of commodity and specialty chemicals. These scientific efforts, although generally basic in nature, are key to the development of future industries within the Southeastern United States. In this proposal, the majority of the efforts performed under the DOE EPSCoR funding were focused primarily toward the production of ethanol from lignocellulosic feedstocks and biogas from waste products. However, some of the individual projects within this program investigated the production of other products from biomass feeds (i.e. acetic acid and biogas) along with materials to facilitate the more efficient production of chemicals from biomass. Mississippi is a leading state in terms of raw biomass production. Its top industries are timber, poultry production, and row crop agriculture. However, for all of its vast amounts of biomass produced on an annual basis, only a small percentage of the biomass is actually industrially produced into products, with the bulk of the biomass being wasted. This situation is actually quite representative of many Southeastern US states. The research and development efforts performed attempted to further develop promising chemical production techniques that use Mississippi biomass feedstocks. The three processes that were the primary areas of interest for ethanol production were syngas fermentation, acid hydrolysis followed by hydrolyzate fermentation, and enzymatic conversion. All three of these processes are of particular interest to states in the Southeastern US since the agricultural products produced in this region are highly variable in terms of actual crop, production quantity, and the ability of land areas to support a particular type of crop. This greatly differs from the Midwestern US where most of this region's agricultural land supports one to two primary crops, such as corn and soybean. Therefore, developing processes which are relatively flexible in terms of biomass feedstock is key to the southeastern region of the US if this area is going to be a 'player' in the developing biomass to chemicals arena. With regard to the fermentation of syngas, research was directed toward developing improved biocatalysts through organism discovery and optimization, improving ethanol/acetic acid separations, evaluating potential bacterial contaminants, and assessing the use of innovative fermentors that are better suited for supporting syngas fermentation. Acid hydrolysis research was directed toward improved conversion yields and rates, acid recovery using membranes, optimization of fermenting organisms, and hydrolyzate characterization with changing feedstocks. Additionally, a series of development efforts addressed novel separation techniques for the separation of key chemicals from fermentation activities. Biogas related research focused on key factors hindering the widespread use of digester technologies in non-traditional industries. The digestion of acetic acids and other fermentation wastewaters was studied and methods used to optimize the process were undertaken. Additionally, novel laboratory methods were designed along with improved methods of digester operation. A search for better performing digester consortia was initiated coupled with improved methods to initiate their activity within digester environments. The third activity of the consortium generally studied the production of 'other' chemicals from waste biomass materials found in Mississippi. The two primary examples of this activity are production of chem

  1. Webinar: Demonstration of NREL's BioEnergy Atlas Tools | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataEnergy Webinar: Demonstration of NREL's BioEnergy Atlas Tools Webinar:

  2. Environmental assessment of the atlas bio-energy waste wood fluidized bed gasification power plant. Final report

    SciTech Connect (OSTI)

    Holzman, M.I.

    1995-08-01

    The Atlas Bio-Energy Corporation is proposing to develop and operate a 3 MW power plant in Brooklyn, New York that will produce electricity by gasification of waste wood and combustion of the produced low-Btu gas in a conventional package steam boiler coupled to a steam-electric generator. The objectives of this project were to assist Atlas in addressing the environmental permit requirements for the proposed power plant and to evaluate the environmental and economic impacts of the project compared to more conventional small power plants. The project`s goal was to help promote the commercialization of biomass gasification as an environmentally acceptable and economically attractive alternative to conventional wood combustion. The specific components of this research included: (1) Development of a permitting strategy plan; (2) Characterization of New York City waste wood; (3) Characterization of fluidized bed gasifier/boiler emissions; (4) Performance of an environmental impact analysis; (5) Preparation of an economic evaluation; and (6) Discussion of operational and maintenance concerns. The project is being performed in two phases. Phase I, which is the subject of this report, involves the environmental permitting and environmental/economic assessment of the project. Pending NYSERDA participation, Phase II will include development and implementation of a demonstration program to evaluate the environmental and economic impacts of the full-scale gasification project.

  3. Section Two, Bioenergy Technologies Office Multi-Year Program...

    Broader source: Energy.gov (indexed) [DOE]

    with the plant cell walls, vascular ash in the plant, and introduced ash resulting from soil contamination. Ash cannot be converted to a biofuel product and causes operational...

  4. Bioenergy Technologies Office Multi-Year Program Plan: November...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the methane reforming process (for hydrogen production), blowdown from the steam and cooling water systems, and evaporation and drift from the cooling towers. It is assumed that...

  5. Department of Energy Offers Abengoa Bioenergy a Conditional Commitment...

    Broader source: Energy.gov (indexed) [DOE]

    Groundbreaking Cellulosic Ethanol Project Expected to Create Over 300 Jobs and Build Nation's Capacity for Cellulosic Ethanol Production Washington D.C. - U.S. Energy Secretary...

  6. Appendix D: 2012 Cellulosic Ethanol Success, Bioenergy Technologies...

    Broader source: Energy.gov (indexed) [DOE]

    produce cellulosic ethanol at commercial-scale costs that are competitive with gasoline production at 110barrel of crude oil. Many industry partners are also demonstrating...

  7. Hawaii Bioenergy Master Plan Land and Water Resources

    E-Print Network [OSTI]

    production including selection of biomass feedstocks, modeling of crop water use; technologies including of biomass feedstocks, agricultural practices, and any other factors; and ∑ Estimate and document biofuel

  8. Bioenergy market competition for biomass: A system dynamics review of current policies

    SciTech Connect (OSTI)

    Jacob J. Jacobson; Robert Jeffers

    2013-07-01

    There is growing interest in the United States and abroad to increase the use of biomass as an energy source due to environmental and energy security benefits. In the United States, the biofuel and biopower industries are regulated by different policies and different agencies and have different drivers, which impact the maximum price the industries are willing to pay for biomass. This article describes a dynamic computer simulation model that analyzes future behavior of bioenergy feedstock markets based on varying policy and technical options. The model simulates the long-term dynamics of these markets by treating advanced biomass feedstocks as a commodity and projecting the total demand of each industry, as well as the market price over time. The model is used for an analysis of the United States bioenergy feedstock market that projects supply, demand, and market price given three independent buyers: domestic biopower, domestic biofuels, and foreign exports. With base-case assumptions, the biofuels industry is able to dominate the market and meet the federal Renewable Fuel Standard (RFS) targets for advanced biofuels. Further analyses suggest that United States bioenergy studies should include estimates of export demand for biomass in their projections, and that GHG-limiting policy would partially shield both industries from export dominance.

  9. RESEARCH ARTICLE Diversity and evolution of sound production in the social behavior

    E-Print Network [OSTI]

    Tricas, Timothy C.

    that two sound production mechanisms exist in the bannerfish clade and that other mechanisms are used). Here, we determine the kinematic action patterns associated with sound production during social for the tail slap acoustic behaviors. Independent contrast analysis shows a correlation between sound duration

  10. Bioenergy Chances and Limits German National Academy of Sciences Leopoldina

    E-Print Network [OSTI]

    Roegner, Matthias

    clean renewable energy carrier; its oxidation for production of heat or electricity yields water (H2 O on the electrolysis of wa- ter. Large-scale production usually relies on costly high-pressure and high to have a promising future but is currently limited by costs that are about ten times higher than those

  11. The Climate Impacts of Bioenergy Systems Depend on Market and

    E-Print Network [OSTI]

    Kammen, Daniel M.

    on the life cycle GHG emissions from fuels (5-7). Life cycle assessment (LCA) characterizes the environmental, and disposal of the product (8). Two styles of LCA have emerged in the literature: attributional LCA is a static analysis based on a product's supply chain, whereas consequential LCA considers the net

  12. Hydrogen Separations and Purification Working Group (PURIWG) Kick-Off & Hydrogen Production Technical Team Research Review

    E-Print Network [OSTI]

    , SNL, Margaret Welk o Bulk Amorphous Membranes, SRNL, Paul Korinko 12:00 - 12:30 Lunch 12:30 Research

  13. ARM Climate Research Facility Quarterly Value-Added Product Report Fourth Quarter: July 1ĖSeptember 30, 2012

    SciTech Connect (OSTI)

    Sivaraman, C

    2012-11-13

    The purpose of this report is to provide a concise status update for value-added products (VAP) implemented by the Atmospheric Radiation Measurement (ARM) Climate Research Facility. The report is divided into the following sections: (1) new VAPs for which development has begun, (2) progress on existing VAPs, (3) future VAPs that have been recently approved, (4) other work that leads to a VAP, and (5) top requested VAPs from the archive.

  14. Production

    Broader source: Energy.gov [DOE]

    Algae production R&D focuses on exploring resource use and availability, algal biomass development and improvements, characterizing algal biomass components, and the ecology and engineering of cultivation systems.

  15. "Wet" Waste-to-Energy in the Bioenergy Technologies Office

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Minnesota will receive up to 2.5 million to develop a fermentation process, using biogas and bacteria, for the production of lactic acid. This process could be used for the...

  16. Research and development for the declassification productivity initiative. Quarterly report, January 1997--August 1997

    SciTech Connect (OSTI)

    Bessonet, C.G. de

    1997-03-05

    The highlight for the first quarter was the presentation of research progress and findings at the DPI Symposium on March 5, 1997. Since that presentation, additional progress was slowed down due to the decreased budget funding for year two, and consequently, the decrease in time-effort of the principal investigators. This report summarizes the progress in each of the topical areas to date. A research article has been prepared for publication for the Optical Character Recognition project; two progress reports are included for the Logical Analysis project; and two progress reports for the Knowledge Representation project. Research activities for the Tipster Technology project will resume this fall.

  17. DOE to Invest $250 Million in New Bioenergy Centers | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Basic Genomics Research on the Development of Biofuels to be Accelerated JOLIET, IL - U.S. Department of Energy (DOE) Secretary Samuel W. Bodman announced today that DOE will spend...

  18. ARM Climate Research Facility Spectral Surface Albedo Value-Added Product (VAP) Report

    SciTech Connect (OSTI)

    McFarlane, S; Gaustad, K; Long, C; Mlawer, E

    2011-07-15

    This document describes the input requirements, output data products, and methodology for the Spectral Surface Albedo (SURFSPECALB) value-added product (VAP). The SURFSPECALB VAP produces a best-estimate near-continuous high spectral resolution albedo data product using measurements from multifilter radiometers (MFRs). The VAP first identifies best estimates for the MFR downwelling and upwelling shortwave irradiance values, and then calculates narrowband spectral albedo from these best-estimate irradiance values. The methodology for finding the best-estimate values is based on a simple process of screening suspect data and backfilling screened and missing data with estimated values when possible. The resulting best-estimate MFR narrowband spectral albedos are used to determine a daily surface type (snow, 100% vegetation, partial vegetation, or 0% vegetation). For non-snow surfaces, a piecewise continuous function is used to estimate a high spectral resolution albedo at 1 min temporal and 10 cm-1 spectral resolution.

  19. QUARKONIUM PRODUCTION IN RELATIVISTIC NUCLEAR COLLISIONS. PROCEEDINGS OF RIKEN BNL RESEARCH CENTER WORKSHOP, VOLUME 12

    SciTech Connect (OSTI)

    KHARZEEV,D.

    1999-04-20

    The RIKEN-BNL Workshop on Quarkonium Production in Relativistic Nuclear Collisions was held September 28--October 2, 1998, at Brookhaven National Laboratory. The Workshop brought together about 50 invited participants from around the world and a number of Brookhaven physicists from both particle and nuclear physics communities.

  20. Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMassR&D100 Winners *ReindustrializationEnergyWindNO.RequirementsResearch Research

  1. Hawaii Bioenergy Master Plan Financial Incentives And Barriers; And

    E-Print Network [OSTI]

    and private financing vehicles for alternative energy and greenhouse gas (GHG) emissions reductions for: Hawai`i Natural Energy Institute University of Hawai`i at Manoa 1680 East West Road, POST 109 Honolulu, HI 96822 Prepared by: University of Hawai`i Economic Research Organization Energy and Greenhouse

  2. Research Summary: Corrosion Considerations for Thermochemical Biomass Liquefaction Process Systems in Biofuel Production

    SciTech Connect (OSTI)

    Brady, Michael P; Keiser, James R; Leonard, Donovan N; Whitmer, Lysle; Thomson, Jeffery K

    2014-01-01

    Thermochemical liquifaction processing of biomass to produce bio-derived fuels (e.g. gasoline, jet fuel, diesel, home heating oil, etc.) is of great recent interest as a renewable energy source. Approaches under investigation include direct liquefaction, hydrothermal liquefaction, hydropyrolysis, fast pyrolysis, etc. to produce energy dense liquids that can be utilized as produced or further processed to provide products of higher value. An issue with bio-oils is that they tend to contain significant concentrations of organic compounds, which make the bio-oil acidic and a potential source of corrosion issues in in transport, storage, and use. Efforts devoted to modified/further processing of bio-oils to make them less corrosive are currently being widely pursued. Another aspect that must also be addressed is potential corrosion issues in the bio-oil liquefaction process equipment itself. Depending on the specific process, bio-oil liquefaction production temperatures can reach up to 400-600 C, and involve the presence of aggressive sulfur, and halide species from both the biomass used and/or process additives. Detailed knowledge of the corrosion resistance of candidate process equipment alloys in these bio-oil production environments is currently lacking. This paper summarizes our recent, ongoing efforts to assess the extent to which corrosion of bio-oil process equipment may be an issue, with the ultimate goal of providing the basis to select the lowest cost alloy grades capable of providing the long-term corrosion resistance needed for future bio-oil production plants.

  3. Live wires: direct extracellular electron exchange for bioenergy and the bioremediation of energy-related contamination

    SciTech Connect (OSTI)

    Lovley, DR

    2011-12-01

    Microorganisms that can form direct electrical connections with insoluble minerals, electrodes, or other microorganisms can play an important role in some traditional as well as novel bioenergy strategies and can be helpful in the remediation of environmental contamination resulting from the use of more traditional energy sources. The surprising discovery that microorganisms in the genus Geobacter are capable of forming highly conductive networks of filaments that transfer electrons along their length with organic metallic-like conductivity, rather than traditional molecule to molecule electron exchange, provides an explanation for the ability of Geobacter species to grow in subsurface environments with insoluble Fe(III) oxides as the electron acceptor, and effectively remediate groundwater contaminated with hydrocarbon fuels or uranium and similar contaminants associated with the mining and processing of nuclear fuel. A similar organic metallic-like conductivity may be an important mechanism for microorganisms to exchange electrons in syntrophic associations, such as those responsible for the conversion of organic wastes to methane in anaerobic digesters, a proven bioenergy technology. Biofilms with conductivities rivaling those of synthetic polymers help Geobacter species generate the high current densities in microbial fuel cells producing electric current from organic compounds. Electron transfer in the reverse direction, i.e. from electrodes to microbes, is the basis for microbial electrosynthesis, in which microorganisms reduce carbon dioxide to fuels and other useful organic compounds with solar energy in a form of artificial photosynthesis that is more efficient and avoids many of the environmental sustainability concerns associated with biomass-based bioenergy strategies. The ability of Geobacter species to produce highly conductive electronic networks that function in water opens new possibilities in the emerging field of bioelectronics.

  4. Microalgal Production of Jet Fuel: Cooperative Research and Development Final Report, CRADA Number CRD-07-208

    SciTech Connect (OSTI)

    Jarvis, E. E.; Pienkos, P. T.

    2012-06-01

    Microalgae are photosynthetic microorganisms that can use CO2 and sunlight to generate the complex biomolecules necessary for their survival. These biomolecules include energy-rich lipid compounds that can be converted using existing refinery equipment into valuable bio-derived fuels, including jet fuel for military and commercial use. Through a dedicated and thorough collaborative research, development and deployment program, the team of the National Renewable Energy Laboratory (NREL) and Chevron will identify a suitable algae strain that will surpass the per-acre biomass productivity of terrestrial plant crops.

  5. ARM Climate Research Facility Quarterly Value-Added Product Report Fourth Quarter: July 01ĖSeptember 30, 2011

    SciTech Connect (OSTI)

    Sivaraman, C

    2011-11-02

    The purpose of this report is to provide a concise status update for value-added products (VAP) implemented by the Atmospheric Radiation Measurement Climate Research Facility. The report is divided into the following sections: (1) new VAPs for which development has begun, (2) progress on existing VAPs, (3) future VAPs that have been recently approved, (4) other work that leads to a VAP, and (5) top requested VAPs from the archive. New information is highlighted in blue text. New information about processed data by the developer is highlighted in red text.

  6. Bioenergy Technologies Office Multi-Year Program Plan: March 2015 Update

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram:Y-12Power, IncBio Centers Announcement atof Energy BioenergyMa r c

  7. Bioenergy Technologies Office Multi-Year Program Plan: March 2015 Update --

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram:Y-12Power, IncBio Centers Announcement atof Energy BioenergyMa r

  8. Bioenergy Technologies Office Multi-Year Program Plan: March 2015 Update |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram:Y-12Power, IncBio Centers Announcement atof Energy BioenergyMa

  9. Optimizing Feedstock Logistics and Assessment of Hydrologic Impacts for Sustainable Bio-Energy Production

    E-Print Network [OSTI]

    Ha, Mi-Ae 1979-

    2012-12-11

    .S., possible feedstocks are corn stover, energy sorghum, and switchgrass. A grid-based Geographic Information System (GIS) program was developed to identify optimum locations for mobile pyrolysis units based on feedstock availability in the NC region. Model...

  10. Carbon debt of Conservation Reserve Program (CRP) grasslands converted to bioenergy production

    E-Print Network [OSTI]

    Chen, Jiquan

    to blunt the climate im- pact of future CRP conversion. land-use change | renewable energy | carbon balance of the environmental impacts of fossil fuel use have stimulated interest in renewable energy sources from agri), providing well-recognized bio- diversity, water quality, and carbon (C) sequestration benefits that could

  11. HAWAII NATURAL ENERGY INSTITUTEwww.hnei.hawaii.edu Bioenergy Products from Fiber

    E-Print Network [OSTI]

    turbines, fuel cells, etc. #12; for transportation, greater power generation efficiency, greater number of potential end uses ≠ Gasification fiber ∑ Advantages: greater power generation efficiency, greater number of potential end uses

  12. HAWAII NATURAL ENERGY INSTITUTEwww.hnei.hawaii.edu Bioenergy Products from Fiber

    E-Print Network [OSTI]

    ≠ Combustion to generate steam for power ∑ 2000ļF, excess air for complete combustion, mature technology #12 turbines, fuel cells, etc. #12;

  13. Bioenergy crop productivity and potential climate change mitigation from marginal lands in the United States: An

    E-Print Network [OSTI]

    Zhuang, Qianlai

    ņChampaign, Urbana, IL 61801, USA Abstract Growing biomass feedstocks from marginal lands is becoming an increasingly

  14. of Energy's Los Alamos National Laboratory and Great Lakes Bioenergy Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLosThe 26thI D- 6 0 4 2 r m m m m port m fm f m T m jm tm r

  15. Webinar: Using the New Bioenergy KDF for Data Discovery and Research |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematics And Statistics ¬Ľ USAJobs SearchAMERICA'S FUTURE.Projects atWe Wantin Making Bulk Energy

  16. American Recovery and Reinvestment Act of 2009: Bioenergy Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based Fuels Research at NRELDepartmentJuneAmerescoEnergyDepartmentCongressOffice

  17. BETO Announces Launch of the Bioenergy KDF Legislative Library | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based Fuels Research atDepartmentAuditsDepartmentj.BETO Active Projectof

  18. Research on drilling fluids and cement slurries at Standard Oil Production Company: an internship report†

    E-Print Network [OSTI]

    Flipse, Eugene Charles, 1956-

    2013-03-13

    on Drilling Fluids and Cement Slurries at Standard Oil Production Company An Internship Report by EUGENE CHARLES FLIPSE Dr. K. R. Hall Chairman, Advisory Committee Dr. A Juazis Internship Supervisor )r j. c. He C-, IsCMXDYfJ C Holste Member Dr...). The internship covered the period from June 10, 1985 until June 15, 1986. Dr. Arnis Judzis was the internship supervisor. The chairman of the intern's committee was Dr. K. R. Hall. Mr. Flipse was assigned to the SOPC Drilling Fluids Laboratory during his...

  19. Sustainability in Bioenergy: A Nation Connected | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservationBio-Inspired Solar Fuel Production 1:Physics Lab April 23, 2014,

  20. The Research Team | Center for Bio-Inspired Solar Fuel Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDidDevelopment TopMetathesisSediments and RelatedProjectResearch Team

  1. Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II) by Carbon-RichProtonAboutNuclearPrincipal InvestigatorsResearch

  2. Sustainability in Bioenergy: A Nation Connected Text Version | Department

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking With Livermore NationalSurprisingSustainability Sign InResearch Asof

  3. InsideIllinoisFeb. 15, 2007 Vol. 26, No. 14

    E-Print Network [OSTI]

    Bashir, Rashid

    to the study and production of feedstock for biofuel production. Researchers will explore the potential Initiative will put Illinois at forefront of farm bioenergy production Bioenergy production Stephen P. Long. The researchers have found that this hardy perennial grass is more than twice as productive as switchgrass

  4. Bioenergy and emerging biomass conversion technologies Hanne stergrd, Ris National Laboratory, Technical University of Denmark DTU, Denmark

    E-Print Network [OSTI]

    Bioenergy and emerging biomass conversion technologies Hanne ōstergŚrd, RisÝ National Laboratory in the Agricultural Outlook from OECD-FAO, these predictions may be misleading and biomass may increase more rapidly Biomass and waste Hydro Nuclear Gas Oil Coal Fig 1 Total primary energy supply3 ∑ The transport sector

  5. Reducing the negative human-health impacts of bioenergy crop emissions through region-specific crop selection

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Porter, William C.; Rosenstiel, Todd N.; Guenther, Alex; Lamarque, Jean-Francois; Barsanti, Kelley

    2015-05-06

    An expected global increase in bioenergy-crop cultivation as an alternative to fossil fuels will have consequences on both global climate and local air quality through changes in biogenic emissions of volatile organic compounds (VOCs). While greenhouse gas emissions may be reduced through the substitution of next-generation bioenergy crops such as eucalyptus, giant reed, and switchgrass for fossil fuels, the choice of species has important ramifications for human health, potentially reducing the benefits of conversion due to increases in ozone (O?) and fine particulate matter (PM???) levels as a result of large changes in biogenic emissions. Using the Community Earth Systemmore†ĽModel we simulate the conversion of marginal and underutilized croplands worldwide to bioenergy crops under varying future anthropogenic emissions scenarios. A conservative global replacement using high VOC-emitting crop profiles leads to modeled population-weighted O? increases of 5Ė27 ppb in India, 1Ė9 ppb in China, and 1Ė6 ppb in the United States, with peak PM??? increases of up to 2 ?gm?≥. We present a metric for the regional evaluation of candidate bioenergy crops, as well as results for the application of this metric to four representative emissions profiles using four replacement scales (10Ė100% maximum estimated available land). Finally, we assess the total health and climate impacts of biogenic emissions, finding that the negative consequences of using high-emitting crops could exceed 50% of the positive benefits of reduced fossil fuel emissions in value.ę†less

  6. Using a Decision Support System to Optimize Production of Agricultural Crop Residue Biofeedstock

    SciTech Connect (OSTI)

    Reed L. Hoskinson; Ronald C. Rope; Raymond K. Fink

    2007-04-01

    For several years the Idaho National Laboratory (INL) has been developing a Decision Support System for Agriculture (DSS4Ag) which determines the economically optimum recipe of various fertilizers to apply at each site in a field to produce a crop, based on the existing soil fertility at each site, as well as historic production information and current prices of fertilizers and the forecast market price of the crop at harvest, for growing a crop such as wheat, potatoes, corn, or cotton. In support of the growing interest in agricultural crop residues as a bioenergy feedstock, we have extended the capability of the DSS4Ag to develop a variable-rate fertilizer recipe for the simultaneous economically optimum production of both grain and straw, and have been conducting field research to test this new DSS4Ag. In this paper we report the results of two years of field research testing and enhancing the DSS4Agís ability to economically optimize the fertilization for the simultaneous production of both grain and its straw, where the straw is an agricultural crop residue that can be used as a biofeedstock.

  7. Zoomable map of poplar proteins | ornl.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    surroundings could help bioenergy researchers develop plants better suited to biofuel production. The study is featured on the cover of January's Molecular and Cellular...

  8. U.S. Departments of Agriculture and Energy Announce Funding for...

    Office of Environmental Management (EM)

    over three to four years that will support research and development in advanced biofuels, bioenergy and high-value biobased products. The projects funded through the Biomass...

  9. www.planetearth.nerc.ac.uk Autumn 2014 Trout in hot water Biodiversity and big data Bioenergy's carbon footprint Sustainable drainage

    E-Print Network [OSTI]

    Brierley, Andrew

    's carbon footprint ∑ Sustainable drainage Intothe #12;Front cover image courtesy Ben Langford About us NERC to account ≠ bioenergy's carbon footprint What's the true cost of growing our fuel? 22 The science

  10. Geek-Up[10.01.10]-- Mapping Bioenergy and Magnetic Vector Potential, New Atmosphere-Monitoring Tools and "Sour" Gas Streams

    Broader source: Energy.gov [DOE]

    Geeks, pay attention! We've got a BioEnergy Atlas, aerosols and climate, sour stuff, and 3D magnetic interactions in this edition of the Geek Up!

  11. A Multi-Model Analysis of the Regional and Sectoral Roles of Bioenergy in Near- and Long-Term CO2 Emissions

    SciTech Connect (OSTI)

    Calvin, Katherine V.; Wise, Marshall A.; Klein, David; McCollum, David; Tavoni, Massimo; van der Zwaan, Bob; Van Vuuren, Detlef

    2013-11-01

    We study the near term and the longer term the contribution of bioenergy in different LIMITS scenarios as modeled by the participating models in the LIMITS project. With These scenarios have proven useful for exploring a range of outcomes for bioenergy use in response to both regionally diverse near term policies and the transition to a longer-term global mitigation policy and target. The use of several models has provided a source of heterogeneity in terms of incorporating uncertain assumptions about future socioeconomics and technology, as well as different paradigms for how the world may respond to policies. The results have also highlighted the heterogeneity and versatility of bioenergy itself, with different types of resources and applications in several energy sectors. In large part due to this versatility, the contribution of bioenergy to climate mitigation is a robust response across all models, despite their differences.

  12. Charcoal production in the Argentine Dry Chaco: Where, how and who? Carla V. Rueda a,b,

    E-Print Network [OSTI]

    Nacional de San Luis, Universidad

    Bioenergy Forest development Charcoal production has been widespread in the past and is still common where); together with existing environmental (forest cover/biomass), social (population density, poverty), and infrastructure (roads) data. While most of the region has low kiln densities (b1 kiln every 1000 km2 ), foci

  13. RIKEN Center for Sustainable Resource Science Gene Discovery Research Group

    E-Print Network [OSTI]

    Fukai, Tomoki

    Genomics Research Group Cellulose Production Research Team Enzyme Research Team Bioplastic Research Team

  14. Research Network Product Development

    E-Print Network [OSTI]

    Berlin,Technische Universitšt

    , and Functional Testing of nanostructured metallic and ceramic materials for electrochemical energy conversion and storage, such as batteries, fuel cells, super capacitors. Single Cell building and testing. 2

  15. Bioenergy News

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p a l De p uBUSEnergy|| Department-Annual UpdatespeakerOn October

  16. Bioenergy Walkthrough

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram:Y-12Power, IncBio Centers Announcement atofPyrolysisTechnologies

  17. Fully Integrated Lignocellulosic Biorefinery with Onsite Production of Enzymes and Yeast

    SciTech Connect (OSTI)

    Manoj Kumar, PhD

    2010-06-14

    Lignocellulosic biomass is the most abundant, least expensive renewable natural biological resource for the production of biobased products and bioenergy is important for the sustainable development of human civilization in 21st century. For making the fermentable sugars from lignocellulosic biomass, a reduction in cellulase production cost, an improvement in cellulase performance, and an increase in sugar yields are all vital to reduce the processing costs of biorefineries. Improvements in specific cellulase activities for non-complexed cellulase mixtures can be implemented through cellulase engineering based on rational design or directed evolution for each cellulase component enzyme, as well as on the reconstitution of cellulase components. In this paper, we will provide DSM's efforts in cellulase research and developments and focus on limitations. Cellulase improvement strategies based on directed evolution using screening on relevant substrates, screening for higher thermal tolerance based on activity screening approaches such as continuous culture using insoluble cellulosic substrates as a powerful selection tool for enriching beneficial cellulase mutants from the large library. We will illustrate why and how thermostable cellulases are vital for economic delivery of bioproducts from cellulosic biomass using biochemical conversion approach.

  18. Vertical Integration of Biomass Saccharification of Enzymes for Sustainable Cellulosic Biofuel Production in a Biorefinery

    SciTech Connect (OSTI)

    Manoj Kumar, PhD

    2011-05-09

    Lignocellulosic biomass is the most abundant, least expensive renewable natural biological resource for the production of biobased products and bioenergy is important for the sustainable development of human civilization in 21st century. For making the fermentable sugars from lignocellulosic biomass, a reduction in cellulase production cost, an improvement in cellulase performance, and an increase in sugar yields are all vital to reduce the processing costs of biorefineries. Improvements in specific cellulase activities for non-complexed cellulase mixtures can be implemented through cellulase engineering based on rational design or directed evolution for each cellulase component enzyme, as well as on the reconstitution of cellulase components. In this paper, we will provide DSM's efforts in cellulase research and developments and focus on limitations. Cellulase improvement strategies based on directed evolution using screening on relevant substrates, screening for higher thermal tolerance based on activity screening approaches such as continuous culture using insoluble cellulosic substrates as a powerful selection tool for enriching beneficial cellulase mutants from the large library. We will illustrate why and how thermostable cellulases are vital for economic delivery of bioproducts from cellulosic biomass using biochemical conversion approach.

  19. Researchers smash the inkjet resolution barrier | printweek.com | Latest Pr...ews, Jobs, Features, Product Reviews, Used Printing and Packaging Machinery q Skip to Content

    E-Print Network [OSTI]

    Rogers, John A.

    , Product Reviews, Used Printing and Packaging Machinery q Skip to Content q Skip to Channel Navigation q Buying q Paper q Materials q Business q Environment q Design http://www.printweek.com/news/737375 Printing and Packaging Machinery News q Print Article q Email to a friend Researchers smash the inkjet

  20. Biomedical Engineering Bionanosystems Research at Louisiana Tech University

    SciTech Connect (OSTI)

    Palmer, James; Lvov, Yuri; Hegab, Hisham; Snow, Dale; Wilson, Chester; McDonald, John; Walker, Lynn; Pratt, Jon; Davis, Despina; Agarwal, Mangilal; DeCoster, Mark; Feng, June; Que, Long; O'Neal, Chad; Guilbeau, Eric; Zivanovic, Sandra; Dobbins, Tabbetha; Gold, Scott; Mainardi, Daniela; Gowda, Shathabish; Napper, Stan

    2010-03-25

    The nature of this project is to equip and support research in nanoengineered systems for biomedical, bioenvironmental, and bioenergy applications. Funds provided by the Department of Energy (DoE) under this Congressional Directive were used to support two ongoing research projects at Louisiana Tech University in biomedical, bioenvironmental, and bioenergy applications. Two major projects (Enzyme Immobilization for Large Scale Reactors to Reduce Cellulosic Ethanol Costs, and Nanocatalysts for Coal and Biomass Conversion to Diesel Fuel) and to fund three to five additional seed projects were funded using the project budget. The project funds also allowed the purchase and repair of sophisticated research equipment that will support continued research in these areas for many years to come. Project funds also supported faculty, graduate students, and undergraduate students, contributing to the development of a technically sophisticated work force in the region and the State. Descriptions of the technical accomplishments for each funded project are provided. Biofuels are an important part of the solution for sustainable transportation fuel and energy production for the future. Unfortunately, the country's appetite for fuel cannot be satisfied with traditional sugar crops such as sugar cane or corn. Emerging technologies are allowing cellulosic biomass (wood, grass, stalks, etc.) to also be converted into ethanol. Cellulosic ethanol does not compete with food production and it has the potential to decrease greenhouse gas (GHG) emissions by 86% versus current fossil fuels (current techniques for corn ethanol only reduce greenhouse gases by 19%). Because of these advantages, the federal government has made cellulosic ethanol a high priority. The Energy Independence and Security Act of 2007 (EISA) requires a minimum production of at least 16 billion gallons of cellulosic ethanol by 2022. Indeed, the Obama administration has signaled an ambitious commitment of achieving 2 billion gallons of cellulosic ethanol by 2013. Louisiana is well positioned to become a national contributor in cellulosic ethanol, with an excellent growing season, a strong pulp/paper industry, and one of the nation's first cellulosic ethanol demonstration plants. Dr. Palmer in Chemical Engineering at Louisiana Tech University is collaborating with Drs. Lvov and Snow in Chemistry and Dr. Hegab in Mechanical Engineering to capitalize on these advantages by applying nanotechnology to improve the cellulosic ethanol processes. In many of these processes, expensive enzymes are used to convert the cellulose to sugars. The nanotechnology processes developed at Louisiana Tech University can immobilize these enzymes and therefore significantly reduce the overall costs of the process. Estimates of savings range from approximately $32 million at each cellulosic ethanol plant, to $7.5 billion total if the 16 billion gallons of cellulosic ethanol is achieved. This process has the advantage of being easy to apply in a large-scale commercial environment and can immobilize a wide variety or mixture of enzymes for production. Two primary objectives with any immobilization technique are to demonstrate reusability and catalytic activity (both reuse of the immobilized enzyme and reuse of the polymer substrate). The scale-up of the layering-by-layering process has been a focus this past year as some interesting challenges in the surface chemistry have become evident. Catalytic activity of cellulase is highly dependent upon how the feed material is pretreated to enhance digestion. Therefore, efforts this year have been performed this year to characterize our process on a few of the more prevalent pretreatment methods.

  1. Process Design and Economics for the Conversion of Lignocellulosic Biomass to Hydrocarbons via Indirect Liquefaction. Thermochemical Research Pathway to High-Octane Gasoline Blendstock Through Methanol/Dimethyl Ether Intermediates

    SciTech Connect (OSTI)

    Tan, Eric C. D.; Talmadge, Michael; Dutta, Abhijit; Hensley, Jesse; Schaidle, Josh; Biddy, Mary; Humbird, David; Snowden-Swan, Lesley J.; Ross, Jeff; Sexton, Danielle; Yap, Raymond; Lukas, John

    2015-03-01

    This report was developed as part of the U.S. Department of Energyís Bioenergy Technologies Officeís (BETOís) efforts to enable the development of technologies for the production of infrastructure-compatible, cost-competitive liquid hydrocarbon fuels from lignocellulosic biomass feedstocks. The research funded by BETO is designed to advance the state of technology of biomass feedstock supply and logistics, conversion, and overall system sustainability. It is expected that these research improvements will be made within the 2022 timeframe. As part of their involvement in this research and development effort, the National Renewable Energy Laboratory and the Pacific Northwest National Laboratory investigate the economics of conversion pathways through the development of conceptual biorefinery process models and techno-economic analysis models. This report describes in detail one potential conversion process for the production of high-octane gasoline blendstock via indirect liquefaction of biomass. The processing steps of this pathway include the conversion of biomass to synthesis gas or syngas via indirect gasification, gas cleanup, catalytic conversion of syngas to methanol intermediate, methanol dehydration to dimethyl ether (DME), and catalytic conversion of DME to high-octane, gasoline-range hydrocarbon blendstock product. The conversion process configuration leverages technologies previously advanced by research funded by BETO and demonstrated in 2012 with the production of mixed alcohols from biomass. Biomass-derived syngas cleanup via reforming of tars and other hydrocarbons is one of the key technology advancements realized as part of this prior research and 2012 demonstrations. The process described in this report evaluates a new technology area for the downstream utilization of clean biomass-derived syngas for the production of high-octane hydrocarbon products through methanol and DME intermediates. In this process, methanol undergoes dehydration to DME, which is subsequently converted via homologation reactions to high-octane, gasoline-range hydrocarbon products.

  2. The European Forest Institute and the Finnish Forest Research Institute: The supply of woody biomass from the forests in the EU can be

    E-Print Network [OSTI]

    Karelia in Eastern Finland showed that if the paying ability of a user of logging residues reduces 4, Finnish Forest Research Institute, tel. +358 50 391 3088, perttu.anttila @ metla.fi Final reports: http://ec.europa.eu/energy/renewables/studies/bioenergy

  3. Integration of Feedstock Assembly System and Cellulosic Ethanol Conversion Models to Analyze Bioenergy System Performance

    SciTech Connect (OSTI)

    Jared M. Abodeely; Douglas S. McCorkle; Kenneth M. Bryden; David J. Muth; Daniel Wendt; Kevin Kenney

    2010-09-01

    Research barriers continue to exist in all phases of the emerging cellulosic ethanol biorefining industry. These barriers include the identification and development of a sustainable and abundant biomass feedstock, the assembly of viable assembly systems formatting the feedstock and moving it from the field (e.g., the forest) to the biorefinery, and improving conversion technologies. Each of these phases of cellulosic ethanol production are fundamentally connected, but computational tools used to support and inform analysis within each phase remain largely disparate. This paper discusses the integration of a feedstock assembly system modeling toolkit and an Aspen Plusģ conversion process model. Many important biomass feedstock characteristics, such as composition, moisture, particle size and distribution, ash content, etc. are impacted and most effectively managed within the assembly system, but generally come at an economic cost. This integration of the assembly system and the conversion process modeling tools will facilitate a seamless investigation of the assembly system conversion process interface. Through the integrated framework, the user can design the assembly system for a particular biorefinery by specifying location, feedstock, equipment, and unit operation specifications. The assembly system modeling toolkit then provides economic valuation, and detailed biomass feedstock composition and formatting information. This data is seamlessly and dynamically used to run the Aspen Plusģ conversion process model. The model can then be used to investigate the design of systems for cellulosic ethanol production from field to final product.

  4. Sustainable use of California biomass resources can help meet state and national bioenergy targets

    E-Print Network [OSTI]

    Jenkins, Bryan M; Williams, Robert B; Gildart, Martha C; Kaffka, Stephen R.; Hartsough, Bruce; Dempster, Peter G

    2009-01-01

    cessing. Annually, biofuel production from these resourcesFeedstock potential of biofuel production and raised ques-part of a study of biofuel production in the western United

  5. A Photosynthetic Hydrogel for Catalytic Hydrogen Production ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Photosynthetic Hydrogel for Catalytic Hydrogen Production Home > Research > ANSER Research Highlights > A Photosynthetic Hydrogel for Catalytic Hydrogen Production...

  6. The Department of Energy`s Rocky Flats Plant: A guide to record series useful for health related research. Volume 4: Production and materials handling

    SciTech Connect (OSTI)

    1995-08-01

    This is the fourth in a series of seven volumes which constitute a guide to records of the Rocky Flats Plant useful for conducting health-related research. The primary purpose of Volume 4 is to describe record series pertaining to production and materials handling activities at the Department of Energy`s (DOE) Rocky Flats Plant, now named the Rocky Flats Environmental Technology Site, near Denver, Colorado. History Associates Incorporated (HAI) prepared this guide as part of its work as the support services contractor for DOE`s Epidemiologic Records Inventory Project. This introduction briefly describes the Epidemiologic Records Inventory Project and HAI`s role in the project, provides a history of production and materials handling practices at Rocky Flats, and identifies organizations contributing to production and materials handling policies and activities. Other topics include the scope and arrangement of the guide and the organization to contact for access to these records.

  7. S u m m e r 2 0 1 5 g r o w 1FOXES, COYOTES AND BADGERS TURF SCIENCE AT WHISTLING STRAITS P, FROM POLLUTANT TO PRODUCT College of Agricultural & Life Sciences

    E-Print Network [OSTI]

    Turner, Monica G.

    , FROM POLLUTANT TO PRODUCT College of Agricultural & Life Sciences UNIVERSITY OF WISCONSIN MADISON of biogas 12 Living Science Horticulture professor Irwin Goldman sparks a love of plants among students from of Energy, has been to realize the grand vision of a biorefinery--the bioenergy version of the petroleum

  8. Proceedings of RIKEN BNL Research Center Workshop: Brookhaven Summer Program on Quarkonium Production in Elementary and Heavy Ion Collisions

    SciTech Connect (OSTI)

    Dumitru, A.; Lourenco, C.; Petreczky, P.; Qiu, J., Ruan, L.

    2011-08-03

    Understanding the structure of the hadron is of fundamental importance in subatomic physics. Production of heavy quarkonia is arguably one of the most fascinating subjects in strong interaction physics. It offers unique perspectives into the formation of QCD bound states. Heavy quarkonia are among the most studied particles both theoretically and experimentally. They have been, and continue to be, the focus of measurements in all high energy colliders around the world. Because of their distinct multiple mass scales, heavy quarkonia were suggested as a probe of the hot quark-gluon matter produced in heavy-ion collisions; and their production has been one of the main subjects of the experimental heavy-ion programs at the SPS and RHIC. However, since the discovery of J/psi at Brookhaven National Laboratory and SLAC National Accelerator Laboratory over 36 years ago, theorists still have not been able to fully understand the production mechanism of heavy quarkonia, although major progresses have been made in recent years. With this in mind, a two-week program on quarkonium production was organized at BNL on June 6-17, 2011. Many new experimental data from LHC and from RHIC were presented during the program, including results from the LHC heavy ion run. To analyze and correctly interpret these measurements, and in order to quantify properties of the hot matter produced in heavy-ion collisions, it is necessary to improve our theoretical understanding of quarkonium production. Therefore, a wide range of theoretical aspects on the production mechanism in the vacuum as well as in cold nuclear and hot quark-gluon medium were discussed during the program from the controlled calculations in QCD and its effective theories such as NRQCD to various models, and to the first principle lattice calculation. The scientific program was divided into three major scientific parts: basic production mechanism for heavy quarkonium in vacuum or in high energy elementary collisions; the formation of quarkonium in nuclear medium as well as the strong interacting quark-gluon matter produced in heavy ion collisions; and heavy quarkonium properties from the first principle lattice calculations. The heavy quarkonium production at a future Electron-Ion Collider (EIC) was also discussed at the meeting. The highlight of the meeting was the apparent success of the NRQCD approach at next-to-leading order in the description of the quarkonium production in proton-proton, electron-proton and electron positron collisions. Still many questions remain open in lattice calculations of in-medium quarkonium properties and in the area of cold nuclear matter effects.

  9. Forest products and services, international trade Trade in forest products and services

    E-Print Network [OSTI]

    , particularly in Europe, bio-energy is gaining in importance. On the other hand, wood is facing stiff

  10. Framework Programme for Research

    E-Print Network [OSTI]

    Framework Programme for Research on Organic Production and Consumption 2010≠2012 Centre for Research on Organic Production and Consumption 2010≠2012 1 Preface The interest in organic products (Organic Agriculture ≠ Production and Consumption. Frame- work Programme for Research 2007≠2009; CUL, 2007

  11. Biomass & Bioenergy, 2010, 34(7), 923-930, doi:10.1016/j.biombioe.2010.01.039. EEEnnneeerrrgggyyy rrreeeqqquuuiiirrreeemmmeeennnttt fffooorrr fffiiinnneee gggrrriiinnndddiiinnnggg ooofff tttooorrrrrreeefffiiieeeddd wwwooooooddd

    E-Print Network [OSTI]

    Paris-Sud XI, Universitť de

    Biomass & Bioenergy, 2010, 34(7), 923-930, doi:10.1016/j.biombioe.2010.01.039. 1 EEEnnneeerrrgggyyy of biomass as a source of energy. Wood and biomass contain a lot of available energy. For example, the low heating value (LHV) of dry wood ranges between 4300 and 5400 kWh/t, depending on the species. Biomass can

  12. Abstract Bioenergy is a critical part of renewable energy solution to today's energy crisis that threatens world economic growth. Corn ethanol has been growing rapidly

    E-Print Network [OSTI]

    Gu, Tingyue

    .1 Introduction An integrated approach using different forms of renewable energy such as wind, solar, and biomass127 Abstract Bioenergy is a critical part of renewable energy solution to today's energy crisis as energy crops on poor lands that are otherwise vacant. However, lignocellu- losic biomass is notoriously

  13. Global change and the value of biodiversity for new product research. Final project report, September 1, 1995--August 31, 1996

    SciTech Connect (OSTI)

    Simpson, R.D.; Sedjo, R.A.

    1997-06-01

    A number of biologists believe that human activities are causing species extinctions at alarming rates. The only precedents, they claim, are to be found in the mass extinctions associated with a handful of apocalyptic volcanic eruptions and/or meteorite strikes distributed over geological time scales. Slowing the rates of greenhouse gas emissions, natural habitat destruction, and other factors that are believed to be inducing modem extinctions could be very expensive, however. It is natural to ask, then, what is the value of preserving biodiversity. One (although admittedly, among many) argument frequently made is that biodiversity is a source of new industrial, agricultural, and, particularly, pharmaceutical products. Natural organisms, it is argued, are great repositories of genetic information. Wild species, in their struggle to capture prey, escape predators, resist infection, and enhance reproductive success have evolved chemical mechanisms more elaborate and inventive than those synthetic chemists can now create. If these chemical mechanisms could be adapted and refined for human use, they could be of great value. There has, therefore, been considerable interest among natural scientists and conservation advocates in {open_quotes}biodiversity prospecting{close_quotes} the search for new commercial products among naturally occurring organisms-as both a mechanism and an argument for preserving biodiversity. In recent years economists and others have attempted to estimate the value of biodiversity for use in new product development. These studies vary considerably in their data, methods, and estimates. The Simpson, Sedjo and Reid and Polasky and Solow papers differ from previous work in that they focus on what is arguably the economically relevant issue: what is the value of biodiversity on the margin.

  14. Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan - Section 3.1 Hydrogen Production

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing Tool Fits the Bill Financing Tool Fits theSunShot Prize: RaceEnergyFuelPRODUCTION

  15. Meeting of Bioenergy and Industrial Biotechnology research theme Public perception and regulation of biotechnology and genetic engineering

    E-Print Network [OSTI]

    Spoel, Steven

    -life-created-Craig-Venter--wipe- humanity.html - media reaction http://www.bbc.co.uk/blogs/newsnight/susanwatts/2010/0 5/assessing genetic modification and the use of gene editing technology - Liang et al., 2015. CRISPR/Cas9-mediated Study turned down by Science and Nature `Designer babies' Technology progressing too fast for society

  16. Hydrogen Production

    SciTech Connect (OSTI)

    2014-09-01

    This 2-page fact sheet provides a brief introduction to hydrogen production technologies. Intended for a non-technical audience, it explains how different resources and processes can be used to produce hydrogen. It includes an overview of research goals as well as ďquick factsĒ about hydrogen energy resources and production technologies.

  17. Due to depletion of oil resources, increasing fuel prices and environmental issues associated with burning of fossil fuels, extensive research has been performed in biofuel production and dramatic progress has

    E-Print Network [OSTI]

    Due to depletion of oil resources, increasing fuel prices and environmental issues associated with burning of fossil fuels, extensive research has been performed in biofuel production and dramatic progress has been made. But still problems exist in economically production of biofuels. One major problem

  18. Biologically Enhanced Carbon Sequestration: Research Needs and Opportunities

    E-Print Network [OSTI]

    Oldenburg, Curtis M.

    2008-01-01

    8.1 Lehmann, J. (2007). Bio-energy in the black. Frontiers0.9 Pg C/yr Terrestrial CS Bio-energy crops 0.5-0.8 Pg C/yr

  19. High biofuel production of Botryococcus braunii using optimized cultivation strategies

    E-Print Network [OSTI]

    Yu, Wei

    2014-01-01

    involving efficient bio-energy conversion [19] . Biofuelsof bio-oil and biochar from rapeseed cake. Renew. Energy,

  20. Development of a Sorption Enhanced Steam Hydrogasification Process for In-situ Carbon Dioxide (CO2) Removal and Enhanced Synthetic Fuel Production

    E-Print Network [OSTI]

    Liu, Zhongzhe

    2013-01-01

    targets and the role of bio-energy with carbon capture andCO 2 emission, such as bio-energy with carbon capture and

  1. RISNEWS DECEMBER2007NO Global climate and energy challenges can be solved

    E-Print Network [OSTI]

    ). Within the field of sustainable energy, we conduct research into bioenergy, fuel cells and hydrogen ............................................9 New production of fuel cells- bilities of extensive energy-efficiency improve- ments in both production and consumption

  2. Technical support for the Ohio Clean Coal Technology Program. Volume 2, Baseline of knowledge concerning process modification opportunities, research needs, by-product market potential, and regulatory requirements: Final report

    SciTech Connect (OSTI)

    Olfenbuttel, R.; Clark, S.; Helper, E.; Hinchee, R.; Kuntz, C.; Means, J.; Oxley, J.; Paisley, M.; Rogers, C.; Sheppard, W.; Smolak, L.

    1989-08-28

    This report was prepared for the Ohio Coal Development Office (OCDO) under Grant Agreement No. CDO/R-88-LR1 and comprises two volumes. Volume 1 presents data on the chemical, physical, and leaching characteristics of by-products from a wide variety of clean coal combustion processes. Volume 2 consists of a discussion of (a) process modification waste minimization opportunities and stabilization considerations; (b) research and development needs and issues relating to clean coal combustion technologies and by-products; (c) the market potential for reusing or recycling by-product materials; and (d) regulatory considerations relating to by-product disposal or reuse.

  3. 2009 Plant Cell Walls Gordon Research Conference-August 2-7,2009

    SciTech Connect (OSTI)

    Debra Mohnen

    2009-08-07

    Plant cell walls are a complex cellular compartment essential for plant growth, development and response to biotic and abiotic stress and a major biological resource for meeting our future bioenergy and natural product needs. The goal of the 2009 Plant Cell Walls Gordon Research Conference is to summarize and critically evaluate the current level of understanding of the structure, synthesis and function of the whole plant extracellular matrix, including the polysaccharides, proteins, lignin and waxes that comprise the wall, and the enzymes and regulatory proteins that drive wall synthesis and modification. Innovative techniques to study how both primary and secondary wall polymers are formed and modified throughout plant growth will be emphasized, including rapid advances taking place in the use of anti-wall antibodies and carbohydrate binding proteins, comparative and evolutionary wall genomics, and the use of mutants and natural variants to understand and identify wall structure-function relationships. Discussions of essential research advances needed to push the field forward toward a systems biology approach will be highlighted. The meeting will include a commemorative lecture in honor of the career and accomplishments of the late Emeritus Professor Bruce A. Stone, a pioneer in wall research who contributed over 40 years of outstanding studies on plant cell wall structure, function, synthesis and remodeling including emphasis on plant cell wall beta-glucans and arabinogalactans. The dwindling supply of fossil fuels will not suffice to meet our future energy and industrial product needs. Plant biomass is the renewable resource that will fill a large part of the void left by vanishing fossil fuels. It is therefore critical that basic research scientists interact closely with industrial researchers to critically evaluate the current state of knowledge regarding how plant biomass, which is largely plant cell walls, is synthesized and utilized by the plant. A final goal of the meeting is to bring together academic, research center, and industrial scientists to identify the most crucial and fundamental basic research questions and directions that will supply the information needed to understand, modify and use plant biomass for human industrial and energy needs.

  4. Switchgrass for Forage and Bioenergy: I. Effects of Nitrogen Rate and Harvest System

    E-Print Network [OSTI]

    Kering, Maru K; Biermacher, Jon T; Cook, Billy J; Guretzky, John A

    2009-01-01

    2001. Biomass production of 'Alamo' switchgrass in responseTexas found biomass yields of Alamo, a southern lowland typeremains limited. In 2007, Alamo switchgrass was established

  5. Sustainable use of California biomass resources can help meet state and national bioenergy targets

    E-Print Network [OSTI]

    Jenkins, Bryan M; Williams, Robert B; Gildart, Martha C; Kaffka, Stephen R.; Hartsough, Bruce; Dempster, Peter G

    2009-01-01

    costs, remain ity of biomass energy production to supportand Exhibition on Biomass for Energy and Industry. Sevilla,California Biomass Collaborative/California Energy

  6. From the Lab to Your Gas Tank: 4 Bioenergy Testing Facilities...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    a combustible product. Processing and converting a biomass feedstock into a useable biofuel or bioproduct after the feedstock has been delivered to a biorefinery can be complex...

  7. Prepared by: Ryan Nadel In August this year, the International Union of Forest Research Organisations (IUFRO) hosted its 23rd

    E-Print Network [OSTI]

    for people; Climate change and forestry; Bio-Energy; Forest Biodiversity Conservation; Forests and water

  8. Best Management Practices Poplar Manual

    E-Print Network [OSTI]

    Minnesota, University of

    products 33 Composite products 33 Bioenergy 33 Animal feed products 33 Agroforestry benefits 33 Intangible

  9. DOE and USDA Announce More than $10 Million in Bioenergy Plant...

    Broader source: Energy.gov (indexed) [DOE]

    than 10 million to accelerate fundamental research in the development of cellulosic biofuels. "Cellulosic biofuels offer one of the best near- to mid-term alternatives we have,...

  10. Bioenergy Demand in a Market Driven Forest Economy (U.S. South...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to model supply over time * Then look at the impact of various demand scenarios * Pellet demand scenarios and carbon consequences dominate current research - biofuels not so...

  11. Research Misconduct (Research Integrity

    E-Print Network [OSTI]

    Wapstra, Erik

    Research Misconduct (Research Integrity Coordinator report) Glossary ADR Associate Dean Research ANDS Australian National Data Sharing ITS Information Technology Services NeCTAR National eResearch Collaboration Tools and Resources RSDI Research Storage Data Infrastructure input Research Integrity Advisors

  12. Improving microbial biogasoline production in Escherichia coli...

    Office of Scientific and Technical Information (OSTI)

    CA (United States). Dept. of Chemical and Biomolecular Engineering and Dept. of Bioengineering. Joint BioEnergy Inst., Emeryville, CA (United States); Lawrence Berkeley National...

  13. Switchgrass for Forage and Bioenergy: II. Effects of P and K fertilization

    E-Print Network [OSTI]

    Guretzky, John A; Kering, Maru K; Biermacher, Jon T; Cook, Billy J

    2009-01-01

    2001. Biomass production of 'Alamo' switchgrass in responsePanicum virgatum L. cv. Alamo) was seeded at 4.5 kg/ha purelowland varieties such as Alamo yielded close to 14,970 kg

  14. High-solids enrichment of thermophilic microbial communities and their enzymes on bioenergy feedstocks

    E-Print Network [OSTI]

    Reddy, A. P.

    2012-01-01

    from a Switchgrass-Adapted Compost Community. PLoS One 5(1):2004. Microbial Ecology of Compost. In: Lens P, Hamelers B,succession during mushroom compost production and sequence-

  15. The Economic and Financial Implications of Supplying a Bioenergy Conversion Facility with Cellulosic Biomass Feedstocks†

    E-Print Network [OSTI]

    McLaughlin, Will

    2012-02-14

    Comprehensive analyses are conducted of the holistic farm production-harvesting-transporting-pre-refinery storage supply chain paradigm which represents the totality of important issues affecting the conversion facility ...

  16. Cotton Production Research Laboratory - 3†

    E-Print Network [OSTI]

    Unknown

    2005-07-25

    This dissertation set out to identify effective qualitative and quantitative management tools used by financial officers (CFOs) in carrying out their management functions of planning, decision making, organizing, staffing, ...

  17. Metabolic Engineering and Modeling of Metabolic Pathways to Improve Hydrogen Production by Photosynthetic Bacteria

    SciTech Connect (OSTI)

    Jiao, Y.; Navid, A.

    2014-12-19

    Rising energy demands and the imperative to reduce carbon dioxide (CO2) emissions are driving research on biofuels development. Hydrogen gas (H2) is one of the most promising biofuels and is seen as a future energy carrier by virtue of the fact that 1) it is renewable, 2) does not evolve the ďgreenhouse gasĒ CO2 in combustion, 3) liberates large amounts of energy per unit weight in combustion (having about 3 times the energy content of gasoline), and 4) is easily converted to electricity by fuel cells. Among the various bioenergy strategies, environmental groups and others say that the concept of the direct manufacture of alternative fuels, such as H2, by photosynthetic organisms is the only biofuel alternative without significant negative criticism [1]. Biological H2 production by photosynthetic microorganisms requires the use of a simple solar reactor such as a transparent closed box, with low energy requirements, and is considered as an attractive system to develop as a biocatalyst for H2 production [2]. Various purple bacteria including Rhodopseudomonas palustris, can utilize organic substrates as electron donors to produce H2 at the expense of solar energy. Because of the elimination of energy cost used for H2O oxidation and the prevention of the production of O2 that inhibits the H2-producing enzymes, the efficiency of light energy conversion to H2 by anoxygenic photosynthetic bacteria is in principle much higher than that by green algae or cyanobacteria, and is regarded as one of the most promising cultures for biological H2 production [3]. Here implemented a simple and relatively straightforward strategy for hydrogen production by photosynthetic microorganisms using sunlight, sulfur- or iron-based inorganic substrates, and CO2 as the feedstock. Carefully selected microorganisms with bioengineered beneficial traits act as the biocatalysts of the process designed to both enhance the system efficiency of CO2 fixation and the net hydrogen production rate. Additionally we applied metabolic engineering approaches guided by computational modeling for the chosen model microorganisms to enable efficient hydrogen production.

  18. Estimates of Biomass Yield for Perennial Bioenergy Grasses in the USA

    E-Print Network [OSTI]

    Jain, Atul K.

    . S. Kheshgi ExxonMobil Research and Engineering Company, Annandale, NJ 08801, USA M. Khanna yields over the period 2001≠2012 in the eastern USA. The validation with observed data from sites across

  19. STAG RESEARCH CENTERSTAG RESEARCH

    E-Print Network [OSTI]

    Abrahams, I. David

    STAG RESEARCH CENTERSTAG RESEARCH CENTERSTAG RESEARCH CENTER Postrgraduate study in mathematical physics Marika Taylor Mathematical Sciences and STAG research centre, Southampton December 19, 2014 Marika Taylor (University of Southampton) Mathematical Physics December 19, 2014 1 / 26 #12;STAG RESEARCH

  20. USDA Projections of Bioenergy-Related Corn and Soyoil Use for 2010-2019

    E-Print Network [OSTI]

    through 2019 period included estimates of world and U.S. energy prices, ethanol and biodiesel production the sector. Expansion of biodiesel use in the EU raises demand for vegetable oils in global markets." Key.S. and World economic growth, b) the value of the U.S. dollar, c) oil prices, d) domestic and international