Powered by Deep Web Technologies
Note: This page contains sample records for the topic "bioenergy production research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

HAWAII NATURAL ENERGY INSTITUTEwww.hnei.hawaii.edu Bioenergy Research  

E-Print Network [OSTI]

HAWAII NATURAL ENERGY INSTITUTEwww.hnei.hawaii.edu Bioenergy Research Hawaii Natural Energy Development Pathways for Bioenergy Systems Crops Intermediate Products Conversion Technologies Bioenergy.hnei.hawaii.edu Research and the Bioenergy Industry Value Chain Feedstock Production Feedstock Logistics Conversion

2

"Bioenergy Research within SLU" Symposium Program  

E-Print Network [OSTI]

1 "Bioenergy Research within SLU" Symposium Program Tuesday, 25 September 2012 09:00 - 09 School Bioenergy Martin Weih Department of Crop Production Ecology, SLU Uppsala 09:45 ­ 10:00 Swedish funding for bioenergy research 2007-2010 Pär Aronsson Research Officer, Faculty of Natural Resources

3

Bioenergy Research | Clean Energy | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Bioenergy SHARE Bioenergy: Feedstocks to Biopower Oak Ridge National Laboratory brings together teams from across laboratory disciplines and the country to research feedstocks,...

4

Gasification Research BIOENERGY PROGRAM  

E-Print Network [OSTI]

Gasification Research BIOENERGY PROGRAM Description Researchers inthe@tamu.edu Skid-mounted gasifier: 1.8 tons-per-day pilot unit Gasification of cotton gin trash The new Texas A

5

Pyrolysis Research: Bioenergy Testing and Analysis Laboratory BIOENERGY PROGRAM  

E-Print Network [OSTI]

Pyrolysis Research: Bioenergy Testing and Analysis Laboratory BIOENERGY PROGRAM Pyrolysis research is conducted at Texas A&M University at the Bioenergy Testing and Analysis Laboratory. Our researchers create

6

The scientometric evaluation of the research on the production of bioenergy from biomass  

Science Journals Connector (OSTI)

The present study explores the characteristics of the literature on the production of bioenergy from biomass published during the last three decades, based on the databases of Science Citation Index-Expanded (SCIE) and Social Sciences Citation Index (SSCI) and its implications using the scientometric techniques. The results of this study reveal that the research output in this field has grown exponentially during this period reaching to 5892 papers in total with paralleling enormous changes in the research landscape. Papers are mostly journal articles, reviews, and proceedings, being predominantly in English. The US is the most publishing single country producing 27% of the output, but lagging significantly behind the Europe as a whole (near 50%). The Chinese Academy of Sciences is the most contributing institution where the most publishing author is A Demirbas. Biomass & Bioenergy is the most publishing journal whilst, Energy & Fuels is the most published subject area. The total number of citations is 82,732, giving a ratio for the Average Citations per Item as 13.83 and H-index as 102. The results of this first-ever such study of its kind show that the scientometric analysis has a great potential to gain valuable insights into the evolution of the research on the production of bioenergy from biomass.

Ozcan Konur

2012-01-01T23:59:59.000Z

7

Reporting on marginal lands for bioenergy feedstock production -a modest proposal Brian K. Richards1  

E-Print Network [OSTI]

1 Reporting on marginal lands for bioenergy feedstock production - a modest proposal Brian K.edu ---PREPRINT In press 2014, BioEnergy Research --- Abstract Growing bioenergy feedstocks can provide a long research. Using marginal lands for bioenergy feedstock production Discussions of renewable bioenergy

Walter, M.Todd

8

NREL: Biomass Research - National Bioenergy Center  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

National Bioenergy Center National Bioenergy Center The National Bioenergy Center (NBC) was established in October 2000 to support the science and technology goals of the U.S. Department of Energy (DOE) Bioenergy Technologies Office. Headquartered at NREL, this virtual center unifies DOE's efforts to advance technology for producing renewable transportation fuels from biomass. A primary goal is to demonstrate the production of cost-competitive cellulosic ethanol by 2012. Collaborating with industrial, academic, and other governmental research, development, and commercialization efforts is central to achieving this goal. Mission The National Bioenergy Center's mission is to foster capability to catalyze the replacement of petroleum with transportation fuels from biomass by delivering innovative, cost-effective biofuels solutions.

9

Agave Transcriptomes and microbiomes for bioenergy research  

E-Print Network [OSTI]

as a biofuel feedstock. GCB Bioenergy 3, 6878, (2011). [2]in Agave tequilana. GCB Bioenergy 3, 2536, (2011). [4]and microbiomes for bioenergy research Stephen Gross 1,2 ,

Gross, Stephen

2013-01-01T23:59:59.000Z

10

JGI - DOE Bioenergy Research Centers  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

DOE Bioenergy Research Centers DOE Bioenergy Research Centers DOE JGI performs sequencing on behalf of the U.S. Department of Energy Bioenergy Research Centers. The Centers are intended to accelerate basic research in the development of cellulosic ethanol and other biofuels, advancing the federal initiative that seeks to reduce U.S. gasoline consumption by 20% within 10 years through increased efficiency and diversification of clean energy sources. The three Centers are located in geographically distinct areas and use different plants both for laboratory research and for improving feedstock crops. DOE BioEnergy Science Center led by DOE's Oak Ridge National Laboratory in Oak Ridge, Tennessee. This center will focus on the resistance of plant fiber to breakdown into sugars and is studying the potential energy crops

11

Developing a Portfolio of Sustainable Bioenergy Feedstock Production Systems for the US Midwest: A Research and Demonstration Project  

E-Print Network [OSTI]

Developing a Portfolio of Sustainable Bioenergy Feedstock Production Systems for the US Midwest a growing portion of our bioenergy feedstocks. While such second generation feedstocks show numerous agroecosystems. A portfolio approach is needed. Potential systems to be included in the bioenergy feedstock

Debinski, Diane M.

12

Bioenergy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Bioenergy Bioenergy Los Alamos developing next-generation of biofuels from renewable resources Read caption + Los Alamos scientists used genetic engineering to develop magnetic algae, thus making it much easier to harvest for biofuel production. Harvesting algae accounts for approximately 15-20 percent of the total cost of biofuel production-magnetic algae can reduce such costs by more than 90%. Overview of Research and Highlights The next-generation of biofuels are being developed at Los Alamos. Made from renewable resources, biofuels could yield reduced carbon dioxide emissions. Los Alamos scientists are * working to bring cellulosic ethanol (made from the inedible parts of plants, instead of corn) and algae-based fuels to the marketplace in ways that make them economically competitive with fossil fuels and prevent a strain on valuable food

13

Neutron Technologies for Bioenergy Research  

SciTech Connect (OSTI)

Neutron scattering is a powerful technique that can be used to probe the structures and dynamics of complex systems. It can provide a fundamental understanding of the processes involved in the production of biofuels from lignocellulosic biomass. A variety of neutron scattering technologies are available to elucidate both the organization and deconstruction of this complex composite material and the associations and morphology of the component polymers and the enzymes acting on them, across multiple length scales ranging from Angstroms to micrometers and time scales from microseconds to picoseconds. Unlike most other experimental techniques, neutron scattering is uniquely sensitive to hydrogen (and its isotope deuterium), an atom abundantly present throughout biomass and a key effector in many biological, chemical, and industrial processes for producing biofuels. Sensitivity to hydrogen, the ability to replace hydrogen with deuterium to alter scattering levels, the fact that neutrons cause little or no direct radiation damage, and the ability of neutrons to exchange thermal energies with materials, provide neutron scattering technologies with unique capabilities for bioenergy research. Further, neutrons are highly penetrating, making it possible to employ sample environments that are not suitable for other techniques. The true power of neutron scattering is realized when it is combined with computer simulation and modeling and contrast variation techniques enabled through selective deuterium labeling.

Langan, Paul [ORNL

2012-01-01T23:59:59.000Z

14

Carbon Offsets for Forestry and Bioenergy: Researching Opportunities...  

Open Energy Info (EERE)

Offsets for Forestry and Bioenergy: Researching Opportunities for Poor Rural Communities Jump to: navigation, search Name Carbon Offsets for Forestry and Bioenergy: Researching...

15

Production of bioenergy and biochemicals from industrial and  

E-Print Network [OSTI]

Production of bioenergy and biochemicals from industrial and agricultural wastewater Largus T biological processing strat- egies that produce bioenergy or biochemicals while treating industrial on wastewater treatment from pollution control to resource exploitation. Many bioprocesses can provide bioenergy

Angenent, Lars T.

16

Biofuel Production Datasets from DOE's Bioenergy Knowledge Discovery Framework (KDF)  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The Bioenergy Knowledge Discovery Framework invites users to discover the power of bioenergy through an interface that provides extensive access to research data and literature, GIS mapping tools, and collaborative networks. The Bioenergy KDF supports efforts to develop a robust and sustainable bioenergy industry. The KDF facilitates informed decision making by providing a means to synthesize, analyze, and visualize vast amounts of information in a relevant and succinct manner. It harnesses Web 2.0 and social networking technologies to build a collective knowledge system that can better examine the economic and environmental impacts of development options for biomass feedstock production, biorefineries, and related infrastructure. [copied from https://www.bioenergykdf.net/content/about]

Holdings include datasets, models, and maps and the collections arel growing due to both DOE contributions and data uploads from individuals.

17

Feedstock Production Datasets from the Bioenergy Knowledge Discovery Framework  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The Bioenergy Knowledge Discovery Framework invites users to discover the power of bioenergy through an interface that provides extensive access to research data and literature, GIS mapping tools, and collaborative networks. The Bioenergy KDF supports efforts to develop a robust and sustainable bioenergy industry. The KDF facilitates informed decision making by providing a means to synthesize, analyze, and visualize vast amounts of information in a relevant and succinct manner. It harnesses Web 2.0 and social networking technologies to build a collective knowledge system that can better examine the economic and environmental impacts of development options for biomass feedstock production, biorefineries, and related infrastructure. [copied from https://www.bioenergykdf.net/content/about] Holdings include datasets, models, and maps and the collections are growing due to both DOE contributions and data uploads from individuals.

18

Bioenergy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Bioenergy Bioenergy Bioenergy Research into alternative forms of energy, especially energy security, is one of the major national security imperatives of this century. Get Expertise Babetta Marrone Biofuels Program Manager Email Rebecca McDonald Bioscience Communications Email Srinivas Iyer Bioscience Group Leader Email Richard Sayre Senior Scientist Email "Research into alternative forms of energy, of which biofuels is a key component, is one of the major national security imperatives of this century. Energy security is vital to our future national security and the efficient functioning of our market economy." -LANL Director Charles McMillan Los Alamos developing next-generation of biofuels from renewable resources Read caption + Los Alamos scientists used genetic engineering to develop magnetic algae,

19

Utilizing Bioenergy By-products in Beef Production Systems The newly expanded renewable fuels standard requires 36 billion gallons of renewable  

E-Print Network [OSTI]

Utilizing Bioenergy By-products in Beef Production Systems The newly expanded renewable fuels studies. Current research focuses on impacts of feeding by-prod- ucts of the bioenergy industry on Animal

20

EMBRAPAs Food-Feed-Bioenergy Production Systems  

Science Journals Connector (OSTI)

Embrapas concept of integrated and decentralized food-feed- bioenergy production on a farm is presented. The ... for demonstration purposes are briefly described. The bioenergy component in these systems is base...

Levon Yeganiantz; Adhemar Brandini

1986-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "bioenergy production research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Bioenergy Production Pathways and Value-Chain Components  

E-Print Network [OSTI]

Bioenergy Production Pathways and Value-Chain Components Prepared for the U.S. Department of Energy on Life Cycle Analyses of Bioenergy Systems Prepared by Hawai`i Natural Energy Institute School of Ocean or reflect those of the United States Government or any agency thereof. #12;Bioenergy Production Pathways

22

DOE Provides $30 Million to Jump Start Bioenergy Research Centers |  

Broader source: Energy.gov (indexed) [DOE]

30 Million to Jump Start Bioenergy Research Centers 30 Million to Jump Start Bioenergy Research Centers DOE Provides $30 Million to Jump Start Bioenergy Research Centers October 1, 2007 - 2:49pm Addthis DOE Bioenergy Research Center Investment Tops $400 Million WASHINGTON, DC-The U.S. Department of Energy (DOE) today announced it has invested nearly $30 million in end-of-fiscal-year (2007) funds to accelerate the start-up of its three new Bioenergy Research Centers, bringing total DOE Bioenergy Research Center investment to over $400 million. The three DOE Bioenergy Research Centers-located in Oak Ridge, Tennessee; Madison, Wisconsin; and near Berkeley, California-selected by DOE this June, bring together multidisciplinary teams of leading scientists to advance research needed to make cellulosic ethanol and other biofuels

23

Bioenergy Research Centers U.S. Department of Energy Office  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Bioenergy Research Centers Bioenergy Research Centers U.S. Department of Energy Office of Science U.S. Department of Energy Office of Science Suggested citation: U.S. DOE. 2010. U.S. Department of Energy's Bioen- ergy Research Centers: An Overview of the Science, DOE/SC-0127. Office of Biological and Environmental Research within the DOE Office of Science (genomicscience.energy.gov/centers/brcbrochure.pdf). Sources for cover images: Joint BioEnergy Institute photo by Jona- than Remis, Lawrence Berkeley National Laboratory. BioEnergy Sci- ence Center photo by Seokwon Jung and Arthur Ragauskas, Georgia Institute of Technology. Great Lakes Bioenergy Research Center photo by Kurt Stepnitz, Michigan State University. Websites for DOE Bioenergy Research Centers DOE Joint BioEnergy Institute

24

RESEARCH Open Access Short and long-term carbon balance of bioenergy  

E-Print Network [OSTI]

, and the occurrence and intensity of a future wildfire in this stand. In this study we investigate the carbon balance is a carbon intensive energy source; in our study we find that carbon emissions from bioenergy electricityRESEARCH Open Access Short and long-term carbon balance of bioenergy electricity production fueled

25

The US Department of Energy Great Lakes Bioenergy Research Center: Midwestern Biomass as a Resource for Renewable Fuels  

Science Journals Connector (OSTI)

The Great Lakes Bioenergy Research Center is one of three Bioenergy Research Centers establish by the US Department...

Steven Slater; Kenneth Keegstra; Timothy J. Donohue

2010-03-01T23:59:59.000Z

26

Dear Participant, Welcome to the symposium `Bioenergy Research within SLU' on Tuesday, September 25, at  

E-Print Network [OSTI]

Dear Participant, Welcome to the symposium `Bioenergy Research within SLU' on Tuesday, September 25 on the web page of the Research school Bioenergy (http://www.slu.se/sv/forskarskolor/bioenergy/) on Monday

27

USDA and DOE Fund 10 Research Projects to Accelerate Bioenergy Crop  

Broader source: Energy.gov (indexed) [DOE]

USDA and DOE Fund 10 Research Projects to Accelerate Bioenergy Crop USDA and DOE Fund 10 Research Projects to Accelerate Bioenergy Crop Production and Spur Economic Impact USDA and DOE Fund 10 Research Projects to Accelerate Bioenergy Crop Production and Spur Economic Impact August 11, 2011 - 3:55pm Addthis WASHINGTON, DC -- The U.S. Departments of Energy and Agriculture have awarded 10 grants totaling $12.2 million to spur research into improving the efficiency and cost-effectiveness of growing biofuel and bioenergy crops. The investments are part of a broader effort by the Obama administration to develop domestic renewable energy and advanced biofuels, providing a more secure future for America's energy needs and creating new opportunities for the American farming industry. "Biofuels, along with other advanced vehicle technologies, hold the

28

USDA and DOE Fund 10 Research Projects to Accelerate Bioenergy Crop  

Broader source: Energy.gov (indexed) [DOE]

USDA and DOE Fund 10 Research Projects to Accelerate Bioenergy Crop USDA and DOE Fund 10 Research Projects to Accelerate Bioenergy Crop Production and Spur Economic Impact USDA and DOE Fund 10 Research Projects to Accelerate Bioenergy Crop Production and Spur Economic Impact August 11, 2011 - 3:55pm Addthis WASHINGTON, DC -- The U.S. Departments of Energy and Agriculture have awarded 10 grants totaling $12.2 million to spur research into improving the efficiency and cost-effectiveness of growing biofuel and bioenergy crops. The investments are part of a broader effort by the Obama administration to develop domestic renewable energy and advanced biofuels, providing a more secure future for America's energy needs and creating new opportunities for the American farming industry. "Biofuels, along with other advanced vehicle technologies, hold the

29

Shades of green : spatial and temporal variability of potentials, costs and environmental impacts of bioenergy production.  

E-Print Network [OSTI]

??Bioenergy is expected to play an important role in future energy supply. However, increased implementation of large scale bioenergy production could have significant adverse effects. (more)

Hilst, F. van der

2012-01-01T23:59:59.000Z

30

Sustainable Food & Bioenergy Systems Program-Sustainable Crop Production Option 2014-2015 Catalog  

E-Print Network [OSTI]

Sustainable Food & Bioenergy Systems Program- Sustainable Crop Production Option 2014-2015 Catalog SFBS 146 Intro to Sustainable Food & Bioenergy Systems ................................ S

Dyer, Bill

31

Bioenergy crop productivity and potential climate change mitigation from marginal lands in the United States: An  

E-Print Network [OSTI]

Bioenergy crop productivity and potential climate change mitigation from marginal lands bioenergy crops grown on marginal lands in the United States. Two broadly tested cellulosic crops June 2014 Introduction Bioenergy, an important renewable energy produced from biological materials

Zhuang, Qianlai

32

Energy Department Selects Three Bioenergy Research Centers for $375 Million  

Broader source: Energy.gov (indexed) [DOE]

Three Bioenergy Research Centers for $375 Three Bioenergy Research Centers for $375 Million in Federal Funding Energy Department Selects Three Bioenergy Research Centers for $375 Million in Federal Funding June 26, 2007 - 2:08pm Addthis Basic Genomics Research Furthers President Bush's Plan to Reduce Gasoline Usage 20 Percent in Ten Year WASHINGTON, DC - U. S. Department of Energy (DOE) Secretary Samuel W. Bodman today announced that DOE will invest up to $375 million in three new Bioenergy Research Centers that will be located in Oak Ridge, Tennessee; Madison, Wisconsin; and near Berkeley, California. The Centers are intended to accelerate basic research in the development of cellulosic ethanol and other biofuels, advancing President Bush's Twenty in Ten Initiative, which seeks to reduce U.S. gasoline consumption by 20 percent

33

A Virtual Visit to Bioenergy Research at the National Laboratories  

Office of Energy Efficiency and Renewable Energy (EERE)

For National Bioenergy Day on October 22, bioenergy facilities across the country are holding open houses to increase public awareness of bioenergy and its role in the clean energy landscape. By the same token, the Bioenergy Technologies Office (BETO) is offering this virtual open house of its national laboratoriesthe facilities at the core of BETOs research and development. If you want to know how Energy Department bioenergy funding is making an impact, be sure to take a look at our national labs47% of BETO funding this past year went to the national laboratories. Of that funding, about half went to the National Renewable Energy Laboratory. Pacific Northwest National Laboratory, Idaho National Laboratory, and Oak Ridge National Laboratory also received a large share.

34

Bioenergy and Bioproducts BIOENERGY PROGRAM  

E-Print Network [OSTI]

Bioenergy and Bioproducts BIOENERGY PROGRAM Texas AgriLife Research, a part of the Texas A&M University System, is a national leader in bioenergy and bioproducts research, development

35

Carbon Offsets for Forestry and Bioenergy: Researching Opportunities for  

Open Energy Info (EERE)

Carbon Offsets for Forestry and Bioenergy: Researching Opportunities for Carbon Offsets for Forestry and Bioenergy: Researching Opportunities for Poor Rural Communities Jump to: navigation, search Name Carbon Offsets for Forestry and Bioenergy: Researching Opportunities for Poor Rural Communities Agency/Company /Organization Overseas Development Institute Sector Energy, Land Focus Area Renewable Energy, Biomass, Forestry Topics Policies/deployment programs, Background analysis Resource Type Publications Website http://www.odi.org.uk/resource Country Uganda, India Eastern Africa, Southern Asia References Carbon Offsets for Forestry and Bioenergy: Researching Opportunities for Poor Rural Communities[1] Summary "This report presents findings from a research study in Uganda and India looking at the opportunities that carbon offset projects offer for poor

36

Bioprocessing of Microalgae for Bioenergy and Recombinant Protein Production  

E-Print Network [OSTI]

This dissertation investigates harvesting of marine microalgae for bioenergy and production of two recombinant proteins for therapeutic applications in Chlamydomonas reinhardtii. The first study describes harvesting of marine microalgae...

Garzon Sanabria, Andrea J

2013-07-31T23:59:59.000Z

37

Three Essays on Bioenergy Production in the United States  

E-Print Network [OSTI]

This dissertation examines future prospects of bioenergy production in the United States. The analysis examines three issues on liquid fuel and cellulosic ethanol. First, the amount that costs need to decrease in order to make cellulosic ethanol...

Wlodarz, Marta

2013-12-02T23:59:59.000Z

38

Our Commitment to Bioenergy Sustainability  

Broader source: Energy.gov [DOE]

To enhance the benefits of bioenergy while mitigating concerns, the Biomass Program combines advanced analysis with applied research to understand and address the potential environmental impacts of bioenergy production.

39

Seasonal energy storage using bioenergy production from abandoned croplands  

Science Journals Connector (OSTI)

Bioenergy has the unique potential to provide a dispatchable and carbon-negative component to renewable energy portfolios. However, the sustainability, spatial distribution, and capacity for bioenergy are critically dependent on highly uncertain land-use impacts of biomass agriculture. Biomass cultivation on abandoned agriculture lands is thought to reduce land-use impacts relative to biomass production on currently used croplands. While coarse global estimates of abandoned agriculture lands have been used for large-scale bioenergy assessments, more practical technological and policy applications will require regional, high-resolution information on land availability. Here, we present US county-level estimates of the magnitude and distribution of abandoned cropland and potential bioenergy production on this land using remote sensing data, agriculture inventories, and land-use modeling. These abandoned land estimates are 61% larger than previous estimates for the US, mainly due to the coarse resolution of data applied in previous studies. We apply the land availability results to consider the capacity of biomass electricity to meet the seasonal energy storage requirement in a national energy system that is dominated by wind and solar electricity production. Bioenergy from abandoned croplands can supply most of the seasonal storage needs for a range of energy production scenarios, regions, and biomass yield estimates. These data provide the basis for further down-scaling using models of spatially gridded land-use areas as well as a range of applications for the exploration of bioenergy sustainability.

J Elliott Campbell; David B Lobell; Robert C Genova; Andrew Zumkehr; Christopher B Field

2013-01-01T23:59:59.000Z

40

USDA and DOE Fund Genomics Projects For Bioenergy Fuels Research |  

Broader source: Energy.gov (indexed) [DOE]

Fund Genomics Projects For Bioenergy Fuels Research Fund Genomics Projects For Bioenergy Fuels Research USDA and DOE Fund Genomics Projects For Bioenergy Fuels Research August 9, 2006 - 8:43am Addthis WASHINGTON, DC - Aug. 9, 2006 - Energy Secretary Samuel Bodman and Agriculture Secretary Mike Johanns today announced that the Department of Agriculture and the Department of Energy (DOE) have jointly awarded nine grants totaling $5.7 million for biobased fuels research that will accelerate the development of alternative fuel resources. Bodman commented, "These research projects build upon DOE's strategic investments in genomics, to accelerate scientific discovery and promote the development of alternative energy sources vital to America's energy and economic security." "To be a reliable renewable energy source, farmers and ranchers will need

Note: This page contains sample records for the topic "bioenergy production research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Bioenergy Production via Microbial Conversion of Residual Oil to Natural Gas  

Science Journals Connector (OSTI)

...Microbiology May 15, 2008 ARTICLE PHYSIOLOGY AND BIOTECHNOLOGY Bioenergy Production via Microbial Conversion of Residual Oil to Natural...alkanes by anaerobic microorganisms. Nature 401: 266-269. Bioenergy production via microbial conversion of residual oil to natural...

Lisa M. Gieg; Kathleen E. Duncan; Joseph M. Suflita

2008-03-31T23:59:59.000Z

42

Student Job (2 positions at Great Lakes Bioenergy Research Center (GLBRC))  

E-Print Network [OSTI]

Student Job (2 positions at Great Lakes Bioenergy Research Center (GLBRC)) Full-time summer job upon experience and qualifications. The Great Lakes Bioenergy Research Center (GLBRC) has openings

Liblit, Ben

43

Bioenergy Production from Perennial Energy Crops: A Consequential LCA of 12 Bioenergy Scenarios including Land Use Changes  

Science Journals Connector (OSTI)

Bioenergy Production from Perennial Energy Crops: A Consequential LCA of 12 Bioenergy Scenarios including Land Use Changes ... In the endeavor of optimizing the sustainability of bioenergy production in Denmark, this consequential life cycle assessment (LCA) evaluated the environmental impacts associated with the production of heat and electricity from one hectare of Danish arable land cultivated with three perennial crops: ryegrass (Lolium perenne), willow (Salix viminalis) and Miscanthus giganteus. ... Soil carbon changes, direct and indirect land use changes as well as uncertainty analysis (sensitivity, MonteCarlo) were included in the LCA. ...

Davide Tonini; Lorie Hamelin; Henrik Wenzel; Thomas Astrup

2012-11-05T23:59:59.000Z

44

Texas AgriLife Research with General Atomics Pilots Microalgae Ponds in Pecos BIOENERGY PROGRAM  

E-Print Network [OSTI]

Texas AgriLife Research with General Atomics Pilots Microalgae Ponds in Pecos BIOENERGY PROGRAM on the tank bottom will be opened. The Continued on back #12;http://AgBioenergy.tamu.edu concentrated algae

45

Sustainable Management of Carbon, Nutrients, and Agrichemicals through Cycling of Bioresources fom Bioenergy and Livestock Production and Municipalities  

E-Print Network [OSTI]

Bioenergy and Livestock Production and Municipalities Bioenergy and livestock industries and municipalities offer bioresources for sustained crop productivity and environmental quality. In the emerging bioenergy and a potential source of carbon· credits for bioenergy systems. Incorporation of the char by-product in soil can

46

Special issue: current status of bioenergy research Don-Hee Park Sang Yup Lee  

E-Print Network [OSTI]

EDITORIAL Special issue: current status of bioenergy research Don-Hee Park · Sang Yup Lee Published the world. The Bioenergy Korea Conference 2012 International Symposium was held on 24­25 April 2012 conversion in the field of bioenergy. Also, several papers on general enzyme technology and bioconversion

47

Nutrient use efficiency in bioenergy cropping systems: Critical research questions  

E-Print Network [OSTI]

x giganteus. Biomass Bioenergy 12:21-24. Christian, D.G. ,for-biofuels systems. Biomass Bioenergy Gentry, L.E. , F.E.cynosuroides. Biomass Bioenergy 12:419-428. Brejda, J.J.

Brouder, Sylvie; Volenec, Jeffrey J; Turco, Ronald; Smith, Douglas R; Ejeta, Gebisa

2009-01-01T23:59:59.000Z

48

The BioEnergy Science Center (BESC) is a U.S. Department of Energy Bioenergy Research Center supported by the Office of Biological and Environmental Research in the DOE Office of Science Pseudo-lignin Chemistry and Its Impact  

E-Print Network [OSTI]

The BioEnergy Science Center (BESC) is a U.S. Department of Energy Bioenergy Research Center and Biochemistry, BioEnergy Science Center Georgia Institute of Technology, Atlanta, GA *Presenter: arthur by the DOE office of Biological and Environmental Research through the BioEnergy Science Center (BESC). 10 µm

Das, Suman

49

CARBON LIFE-CYCLE AND ECONOMIC ANALYSIS OF FOREST CARBON SEQUESTRATION AND WOODY BIOENERGY PRODUCTION.  

E-Print Network [OSTI]

??Sequestering carbon in standing biomass, using woody bioenergy, and using woody products are the three potential ways to utilize forests in reducing greenhouse gases (GHGs) (more)

Shrestha, Prativa

2013-01-01T23:59:59.000Z

50

U.S. Department of Energy's Bioenergy Research Centers An Overview of the Science  

SciTech Connect (OSTI)

Alternative fuels from renewable cellulosic biomass - plant stalks, trunks, stems, and leaves - are expected to significantly reduce U.S. dependence on imported oil while enhancing national energy security and decreasing the environmental impacts of energy use. Ethanol and other advanced biofuels from cellulosic biomass are renewable alternatives that could increase domestic production of transportation fuels, revitalize rural economies, and reduce carbon dioxide and pollutant emissions. According to U.S. Secretary of Energy Steven Chu, 'Developing the next generation of biofuels is key to our effort to end our dependence on foreign oil and address the climate crisis while creating millions of new jobs that can't be outsourced.' Although cellulosic ethanol production has been demonstrated on a pilot level, developing a cost-effective, commercial-scale cellulosic biofuel industry will require transformational science to significantly streamline current production processes. Woodchips, grasses, cornstalks, and other cellulosic biomass are widely abundant but more difficult to break down into sugars than corn grain - the primary source of U.S. ethanol fuel production today. Biological research is key to accelerating the deconstruction of cellulosic biomass into sugars that can be converted to biofuels. The Department of Energy (DOE) Office of Science continues to play a major role in inspiring, supporting, and guiding the biotechnology revolution over the past 30 years. The DOE Genomic Science program is advancing a new generation of research focused on achieving whole-systems understanding of biology. This program is bringing together scientists in diverse fields to understand the complex biology underlying solutions to DOE missions in energy production, environmental remediation, and climate change science. For more information on the Genomic Science program, see p. 26. To focus the most advanced biotechnology-based resources on the biological challenges of biofuel production, DOE established three Bioenergy Research Centers (BRCs) in September 2007. Each center is pursuing the basic research underlying a range of high-risk, high-return biological solutions for bioenergy applications. Advances resulting from the BRCs are providing the knowledge needed to develop new biobased products, methods, and tools that the emerging biofuel industry can use (see sidebar, Bridging the Gap from Fundamental Biology to Industrial Innovation for Bioenergy, p. 6). The DOE BRCs have developed automated, high-throughput analysis pipelines that will accelerate scientific discovery for biology-based biofuel research. The three centers, which were selected through a scientific peer-review process, are based in geographically diverse locations - the Southeast, the Midwest, and the West Coast - with partners across the nation (see U.S. map, DOE Bioenergy Research Centers and Partners, on back cover). DOE's Lawrence Berkeley National Laboratory leads the DOE Joint BioEnergy Institute (JBEI) in California; DOE's Oak Ridge National Laboratory leads the BioEnergy Science Center (BESC) in Tennessee; and the University of Wisconsin-Madison leads the Great Lakes Bioenergy Research Center (GLBRC). Each center represents a multidisciplinary partnership with expertise spanning the physical and biological sciences, including genomics, microbial and plant biology, analytical chemistry, computational biology and bioinformatics, and engineering. Institutional partners include DOE national laboratories, universities, private companies, and nonprofit organizations.

None

2010-07-01T23:59:59.000Z

51

Integrated Photo-Bioelectrochemical System for Contaminants Removal and Bioenergy Production  

Science Journals Connector (OSTI)

Integrated Photo-Bioelectrochemical System for Contaminants Removal and Bioenergy Production ... This system achieves the simultaneous removal from a synthetic solution of organics (in the MFC) and nutrients (in the algal bioreactor), and the production of bioenergy in electricity and algal biomass through bioelectrochemical and microbiological processes. ...

Li Xiao; Erica B. Young; John A. Berges; Zhen He

2012-09-21T23:59:59.000Z

52

Fundamental & Applied Bioenergy | Clean Energy | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Bioenergy Bioenergy SHARE Fundamental and Applied Bioenergy Steven Brown (left) and Shihui Yang have developed a microbial strain with an improved ability to convert wood products to biofuel as part of research within the DOE BioEnergy Science Center.Source: ORNL News article ORNL researchers are investigating the biological mechanisms underlying production of biofuels so that those mechanisms can be improved and used to develop a new generation of efficient bioenergy strategies that will reduce U.S. dependence on foreign oil and help curb carbon emissions. Fundamental and applied bioenergy research at ORNL includes studies conducted within the BioEnergy Science Center and the following research areas: Bioconversion Science and Technology Plant-Microbe Interfaces

53

RESEARCH Open Access A comparative study of ethanol production using  

E-Print Network [OSTI]

bioenergy research centers (Great Lakes Bioenergy Research Center (GLBRC), Joint BioEnergy Institute (JBEI Engineering and Materials Science, Department of Energy (DOE) Great Lakes Bioenergy Research Center (GLBRC

California at Riverside, University of

54

A scenario based analysis of land competition between food and bioenergy production in the US  

Science Journals Connector (OSTI)

Greenhouse gas abatement policies will increase the demand for renewable sources of energy, including bioenergy. In combination with a global growing demand ... competition for bio-productive land. Proponents of

Daniel J. A. Johansson; Christian Azar

2007-06-01T23:59:59.000Z

55

Economic Impacts of Expanded Woody Biomass Utilization on the Bioenergy and Forest Products Industries in Florida  

E-Print Network [OSTI]

1 Economic Impacts of Expanded Woody Biomass Utilization on the Bioenergy and Forest Products as the starting point for implementation of the CGE model, which finds a solution where all markets

Florida, University of

56

Effects of Biochar Recycling on Switchgrass Growth and Soil and Water Quality in Bioenergy Production Systems  

E-Print Network [OSTI]

Intensive biomass production in emerging bioenergy systems could increase nonpoint-source sediment and nutrient losses and impair surface and groundwater quality. Recycling biochar, a charcoal byproduct from pyrolysis of biomass, provides potential...

Husmoen, Derek Howard

2012-07-16T23:59:59.000Z

57

Essays on Economic and Environmental Analysis of Taiwanese Bioenergy Production on Set-Aside Land  

E-Print Network [OSTI]

Domestic production of bioenergy by utilizing set-aside land in Taiwan can reduce Taiwans reliance on expensive and politically insecure foreign fossil fuels while also reducing the combustion of fossil fuels, which emit substantial amounts...

Kung, Chih-Chun

2012-02-14T23:59:59.000Z

58

Advancing Sustainable Bioenergy: Evolving Stakeholder Interests and the Relevance of Research  

Science Journals Connector (OSTI)

The sustainability of future bioenergy production rests on more than continual improvements in its environmental, economic, and social impacts. The emergence of new biomass feedstocks, an expanding array of conve...

Timothy Lawrence Johnson; Jeffrey M. Bielicki

2013-02-01T23:59:59.000Z

59

Chapter 4 - Production Technology for Bioenergy Crops and Trees  

Science Journals Connector (OSTI)

Abstract New technologies for producing energy crops and trees based on fundamental studies have been developed to improve self-sufficiency in food and feed supplies in addition to achieving sustainable natural resources. Energy crops and trees with improved leaf growth, light interception of crop canopy, photosynthetic rate, lodging resistance, and saccharification efficiency of lignocellulose, among many other traits, need to be explored. DNA marker-assisted selection using genome information has been developed as a powerful tool for breeding new bioenergy crops and trees. In this chapter, the concept and basic technologies for producing biomass from herbaceous energy crops and trees, ecophysiological characteristics for high yield and biomass production, genetic analyses of the traits responsible for biomass production, and molecular breeding for improving these traits are discussed. The definitions of herbaceous energy crops for the first and second generations, agronomy and breeding technology for these crops are explained. Recent studies on woody cell wall formation and genetic improvements associated with biomass saccharification in energy crops and woods are introduced.

Tadashi Hirasawa; Taiichiro Ookawa; Shinya Kawai; Ryo Funada; Shinya Kajita

2014-01-01T23:59:59.000Z

60

ASSESSMENT OF NON-INDUSTRIAL PRIVATE FOREST LANDOWNER WILLINGNESS TO HARVEST WOODY BIOMASS IN SUPPORT OF BIOENERGY PRODUCTION IN MISSISSIPPI.  

E-Print Network [OSTI]

?? Harvesting woody biomass for biofuel has become an important research topic. In Mississippi, feasibility of utilizing woody biomass for bioenergy lies in the willingness (more)

Gruchy, Steven Ray

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "bioenergy production research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Bioscience Research @ LANL LA-UR-13-23186 Bioenergy and Biome Sciences  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Bioscience Research @ LANL Bioscience Research @ LANL LA-UR-13-23186 Bioenergy and Biome Sciences Making fuel from plants and algae Algae naturally produce oil, which is the basis of diesel fuel, but can also be converted to other kinds of fuel. Scientists at Los Alamos are studying which types of algae are best for fuel production, how to make them grow faster and produce more lipids, and also how to extract the algae from the water in which they live. Read more about algae: Fuel can also be made from other plants by taking apart cellulose-the material in their leaves and stalks. Cellulose is very strong and complex, though, and scientists at Los Alamos are working hard to determine how to break it down

62

Bioenergy KDF  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Navigation Navigation Home Sign-In Contact Us Register Search this site: Search Connect: Bioenergy Library Map Tools & Apps Overview The Bioenergy KDF supports the development of a sustainable bioenergy industry by providing access to a variety of data sets, publications, and collaboration and mapping tools that support bioenergy research, analysis, and decision making. In the KDF, users can search for information, contribute data, and use the tools and map interface to synthesize, analyze, and visualize information in a spatially integrated manner. Read more and watch a short walkthrough video lease note: The KDF works best in the Google Chrome or Mozilla Firefox browsers. What Would You Like to Do? CONTRIBUTE DATA Fill out the contribute form to add data sets and other types of

63

Integrated Photo-Bioelectrochemical System for Contaminants Removal and Bioenergy Production  

E-Print Network [OSTI]

a long history, especially in removing nutrients, and provides additional services by usingIntegrated Photo-Bioelectrochemical System for Contaminants Removal and Bioenergy Production Li. This system achieves the simultaneous removal from a synthetic solution of organics (in the MFC) and nutrients

Berges, John A.

64

WHY STUDY FOREST OPERATIONS, BIOPRODUCTS AND BIOENERGY AT THE UNIVERSITY OF MAINE?  

E-Print Network [OSTI]

WHY STUDY FOREST OPERATIONS, BIOPRODUCTS AND BIOENERGY AT THE UNIVERSITY OF MAINE? e efficient-developed cluster of industrial forests and processing facilities for the production of bioproducts and bioenergy for research and field experience. UMaine's Forest Operations, Bioproducts and Bioenergy Program has been

Thomas, Andrew

65

Feedstock Logistics of a Mobile Pyrolysis System and Assessment of Soil Loss Due to Biomass Removal for Bioenergy Production  

E-Print Network [OSTI]

The purpose of this study was to assess feedstock logistics for a mobile pyrolysis system and to quantify the amount of soil loss caused by harvesting agricultural feedstocks for bioenergy production. The analysis of feedstock logistics...

Bumguardner, Marisa

2012-10-19T23:59:59.000Z

66

The Carbon Footprint of Bioenergy Sorghum Production in Central Texas: Production Implications on Greenhouse Gas Emissions, Carbon Cycling, and Life Cycle Analysis  

E-Print Network [OSTI]

Enhanced interest in biofuel production has renewed interest in bioenergy crop production within the United States. Agricultures role in biofuel production is critical because it has the potential to supply renewable energy while minimizing...

Storlien, Joseph Orgean

2013-06-13T23:59:59.000Z

67

Role of community acceptance in sustainable bioenergy projects in India  

Science Journals Connector (OSTI)

Abstract Community acceptance has been identified as one of the key requirements for a sustainable bioenergy project. However less attention has been paid to this aspect from developing nations and small projects perspective. Therefore this research examines the role of community acceptance for sustainable small scale bioenergy projects in India. While addressing the aim, this work identifies influence of community over bioenergy projects, major concerns of communities regarding bioenergy projects and factors influencing perceptions of communities about bioenergy projects. The empirical research was carried out on four bioenergy companies in India as case studies. It has been identified that communities have significant influence over bioenergy projects in India. Local air pollution, inappropriate storage of by-products and credibility of developer are identified as some of the important concerns. Local energy needs, benefits to community from bioenergy companies, level of trust on company and relationship between company and the community are some of the prime factors which influence community?s perception on bioenergy projects. This research sheds light on important aspects related to community acceptance of bioenergy projects, and this information would help practitioners in understanding the community perceptions and take appropriate actions to satisfy them.

Vimal Kumar Eswarlal; Geoffrey Vasudevan; Prasanta Kumar Dey; Padma Vasudevan

2014-01-01T23:59:59.000Z

68

Global Simulation of Bioenergy Crop Productivity: Analytical Framework and Case Study for Switchgrass  

SciTech Connect (OSTI)

A global energy crop productivity model that provides geospatially explicit quantitative details on biomass potential and factors affecting sustainability would be useful, but does not exist now. This study describes a modeling platform capable of meeting many challenges associated with global-scale agro-ecosystem modeling. We designed an analytical framework for bioenergy crops consisting of six major components: (i) standardized natural resources datasets, (ii) global field-trial data and crop management practices, (iii) simulation units and management scenarios, (iv) model calibration and validation, (v) high-performance computing (HPC) simulation, and (vi) simulation output processing and analysis. The HPC-Environmental Policy Integrated Climate (HPC-EPIC) model simulated a perennial bioenergy crop, switchgrass (Panicum virgatum L.), estimating feedstock production potentials and effects across the globe. This modeling platform can assess soil C sequestration, net greenhouse gas (GHG) emissions, nonpoint source pollution (e.g., nutrient and pesticide loss), and energy exchange with the atmosphere. It can be expanded to include additional bioenergy crops (e.g., miscanthus, energy cane, and agave) and food crops under different management scenarios. The platform and switchgrass field-trial dataset are available to support global analysis of biomass feedstock production potential and corresponding metrics of sustainability.

Kang, Shujiang [ORNL; Kline, Keith L [ORNL; Nair, S. Surendran [University of Tennessee, Knoxville (UTK); Nichols, Dr Jeff A [ORNL; Post, Wilfred M [ORNL; Brandt, Craig C [ORNL; Wullschleger, Stan D [ORNL; Wei, Yaxing [ORNL; Singh, Nagendra [ORNL

2013-01-01T23:59:59.000Z

69

BRAZILIAN'S BIOENERGY SUCCESS POWERED BY THE SUN  

E-Print Network [OSTI]

BRAZILIAN'S BIOENERGY SUCCESS POWERED BY THE SUN Caroline Rayol Resources and Bioenergy Project : Market opening 2003 : Flex-fuel car 2004 : Biodiesel Production and Use National Program 2006

Canet, Léonie

70

Bioenergy Geradora de Energia | Open Energy Information  

Open Energy Info (EERE)

Bioenergy Geradora de Energia Jump to: navigation, search Name: Bioenergy - Geradora de Energia Place: Sao Paulo, Sao Paulo, Brazil Zip: 1456010 Sector: Wind energy Product: Brazil...

71

Vision for Bioenergy and Biobased Products in the United States  

Broader source: Energy.gov [DOE]

Establish far-reaching goals to increase the role of biobased energy and products in our nations economy

72

Updated 2-11-06 Research to Advance Grass Bioenergy  

E-Print Network [OSTI]

that interfere with the combustion process (K and Cl). Research to understand grass species-soil type

Pawlowski, Wojtek

73

Logistics cost analysis of rice residues for second generation bioenergy production in Ghana  

Science Journals Connector (OSTI)

Abstract This study explores the techno-economic potential of rice residues as a bioenergy resource to meet Ghanas energy demands. Major rice growing regions of Ghana have 7090% of residues available for bioenergy production. To ensure cost-effective biomass logistics, a thorough cost analysis was made for two bioenergy routes. Logistics costs for a 5MWe straw combustion plant were 39.01, 47.52 and 47.89USD/t for Northern, Ashanti and Volta regions respectively. Logistics cost for a 0.25MWe husk gasification plant (with roundtrip distance 10km) was 2.64USD/t in all regions. Capital cost (6672%) contributes significantly to total logistics costs of straw, however for husk logistics, staff (40%) and operation and maintenance costs (46%) dominate. Baling is the major processing logistic cost for straw, contributing to 4648% of total costs. Scale of straw unit does not have a large impact on logistic costs. Transport distance of husks has considerable impact on logistic costs.

Pooja Vijay Ramamurthi; Maria Cristina Fernandes; Per Sieverts Nielsen; Clemente Pedro Nunes

2014-01-01T23:59:59.000Z

74

Bioenergy Technologies FY14 Budget At-a-Glance  

Broader source: Energy.gov (indexed) [DOE]

BIOENERGY TECHNOLOGIES AT-A-GLANCE Bioenergy Technologies supports targeted research, development, demonstration, and deployment (RDD&D) activities to progress sustainable, nationwide production of advanced biofuels that will displace a share of petroleum-derived fuels, mitigate climate change, create American jobs, and increase U.S. energy security. What We Do Bioenergy Technologies employs an integrated, cross- cutting RDD&D strategy to develop commercially viable biomass utilization technologies. The office makes strategic investments in the following areas:  Feedstock Infrastructure advances a sustainable, secure, reliable, and affordable biomass feedstock supply for the U.S. bioenergy industry.  Conversion R&D identifies and develops viable

75

Cost-effective policy instruments for greenhouse gas emission reduction and fossil fuel substitution through bioenergy production in Austria  

Science Journals Connector (OSTI)

Climate change mitigation and security of energy supply are important targets of Austrian energy policy. Bioenergy production based on resources from agriculture and forestry is an important option for attaining these targets. To increase the share of bioenergy in the energy supply, supporting policy instruments are necessary. The cost-effectiveness of these instruments in attaining policy targets depends on the availability of bioenergy technologies. Advanced technologies such as second-generation biofuels, biomass gasification for power production, and bioenergy with carbon capture and storage (BECCS) will likely change the performance of policy instruments. This article assesses the cost-effectiveness of energy policy instruments, considering new bioenergy technologies for the year 2030, with respect to greenhouse gas emission (GHG) reduction and fossil fuel substitution. Instruments that directly subsidize bioenergy are compared with instruments that aim at reducing GHG emissions. A spatially explicit modeling approach is used to account for biomass supply and energy distribution costs in Austria. Results indicate that a carbon tax performs cost-effectively with respect to both policy targets if BECCS is not available. However, the availability of BECCS creates a trade-off between GHG emission reduction and fossil fuel substitution. Biofuel blending obligations are costly in terms of attaining the policy targets.

Johannes Schmidt; Sylvain Leduc; Erik Dotzauer; Erwin Schmid

2011-01-01T23:59:59.000Z

76

Bioenergy: America's Energy Future  

ScienceCinema (OSTI)

Bioenergy: America's Energy Future is a short documentary film showcasing examples of bioenergy innovations across the biomass supply chain and the United States. The film highlights a few stories of individuals and companies who are passionate about achieving the promise of biofuels and addressing the challenges of developing a thriving bioeconomy. This outreach product supports media initiatives to expand the public's understanding of the bioenergy industry and sustainable transportation and was developed by the U.S. Department of Energy Bioenergy Technologies Office (BETO), Oak Ridge National Laboratory, Green Focus Films, and BCS, Incorporated.

Nelson, Bruce; Volz, Sara; Male, Johnathan; Wolfson, Johnathan; Pray, Todd; Mayfield, Stephen; Atherton, Scott; Weaver, Brandon

2014-08-12T23:59:59.000Z

77

Bioenergy: America's Energy Future  

SciTech Connect (OSTI)

Bioenergy: America's Energy Future is a short documentary film showcasing examples of bioenergy innovations across the biomass supply chain and the United States. The film highlights a few stories of individuals and companies who are passionate about achieving the promise of biofuels and addressing the challenges of developing a thriving bioeconomy. This outreach product supports media initiatives to expand the public's understanding of the bioenergy industry and sustainable transportation and was developed by the U.S. Department of Energy Bioenergy Technologies Office (BETO), Oak Ridge National Laboratory, Green Focus Films, and BCS, Incorporated.

Nelson, Bruce; Volz, Sara; Male, Johnathan; Wolfson, Johnathan; Pray, Todd; Mayfield, Stephen; Atherton, Scott; Weaver, Brandon

2014-07-31T23:59:59.000Z

78

Development of Genomic and Genetic Tools for Foxtail Millet, and Use of These Tools in the Improvement of Biomass Production for Bioenergy Crops  

SciTech Connect (OSTI)

The overall aim of this research was to develop genomic and genetic tools in foxtail millet that will be useful in improving biomass production in bioenergy crops such as switchgrass, napier grass, and pearl millet. A variety of approaches have been implemented, and our lab has been primarily involved in genome analysis and quantitative genetic analysis. Our progress in these activities has been substantially helped by the genomic sequence of foxtail millet produced by the Joint Genome Institute (Bennetzen et al., in prep). In particular, the annotation and analysis of candidate genes for architecture, biomass production and flowering has led to new insights into the control of branching and flowering time, and has shown how closely related flowering time is to vegetative architectural development and biomass accumulation. The differences in genetic control identified at high and low density plantings have direct relevance to the breeding of bioenergy grasses that are tolerant of high planting densities. The developmental analyses have shown how plant architecture changes over time and may indicate which genes may best be manipulated at various times during development to obtain required biomass characteristics. This data contributes to the overall aim of significantly improving genetic and genomic tools in foxtail millet that can be directed to improvement of bioenergy grasses such as switchgrass, where it is important to maximize vegetative growth for greatest biomass production.

Doust, Andrew, N.

2011-11-11T23:59:59.000Z

79

Biofuel and Bioenergy implementation scenarios  

E-Print Network [OSTI]

and bioenergy markets are modelled with the aim to conduct quantitative analyses on the production and costsBiofuel and Bioenergy implementation scenarios Final report of VIEWLS WP5, modelling studies #12;Biofuel and Bioenergy implementation scenarios Final report of VIEWLS WP5, modelling studies By André

80

Bioenergy technology balancing energy output with environmental  

E-Print Network [OSTI]

E2.3 Bioenergy technology ­ balancing energy output with environmental benefitsbenefits John standards #12;Is it right to grow bioenergy? Or How much bioenergy production is right? #12;Historical bioenergy Farmers historically used 25% land for horse feed #12;Energy crops are `solar panels' Solar energy

Levi, Ran

Note: This page contains sample records for the topic "bioenergy production research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

EERE: Bioenergy Technologies Office Home Page  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Bioenergy Technologies Office Search Bioenergy Technologies Office Search Search Help Bioenergy Technologies Office HOME ABOUT THE PROGRAM RESEARCH & DEVELOPMENT FINANCIAL OPPORTUNITIES INFORMATION RESOURCES NEWS EVENTS EERE » Bioenergy Technologies Office Site Map Printable Version Share this resource Send a link to EERE: Bioenergy Technologies Office Home Page to someone by E-mail Share EERE: Bioenergy Technologies Office Home Page on Facebook Tweet about EERE: Bioenergy Technologies Office Home Page on Twitter Bookmark EERE: Bioenergy Technologies Office Home Page on Google Bookmark EERE: Bioenergy Technologies Office Home Page on Delicious Rank EERE: Bioenergy Technologies Office Home Page on Digg Find More places to share EERE: Bioenergy Technologies Office Home Page on AddThis.com... Biomass is a clean, renewable energy source that can help to significantly

82

Applying consequential LCA to support energy policy: Land use change effects of bioenergy production  

Science Journals Connector (OSTI)

Abstract Luxembourg aims at complying with the EU objective of attaining a 14% use of bioenergy in the national grid by 2020. The increase of biomethane production from energy crops could be a valuable option in achieving this objective. However, the overall environmental benefit of such option is yet to be proven. Consequential Life Cycle Assessment (CLCA) has shown to be a useful tool to evaluate the environmental suitability of future energy scenarios and policies. The objective of this study was, therefore, to evaluate the environmental consequences of modifying the Luxembourgish agricultural system to increase maize production for biomethane generation. A total of 10 different scenarios were modelled using a partial equilibrium (PE) model to identify changes in land cultivation based on farmers' revenue maximisation, which were then compared to the baseline scenario, i.e. the state of the agricultural sector in 2009. The results were divided into three different consequential decision contexts, presenting differing patterns in terms of land use changes (LUCs) but with minor shifts in environmental impacts. Nevertheless, energy from maize production would imply substantially higher environmental impacts when compared with the current use of natural gas, mainly due to increases in climate change and agricultural land occupation impacts. The results are discussed based on the consequences they may generate on the bioenergy policy, the management of arable land, the changes in importexport flows in Luxembourg and \\{LUCs\\} in the domestic agricultural system. In addition, the specific PE+LCA method presented intends to be of use for other regional studies in which a high level of site-specific data is available.

Ian Vzquez-Rowe; Antonino Marvuglia; Sameer Rege; Enrico Benetto

2014-01-01T23:59:59.000Z

83

Argonne National Laboratory Launches Bioenergy Assessment Tools |  

Broader source: Energy.gov (indexed) [DOE]

Argonne National Laboratory Launches Bioenergy Assessment Tools Argonne National Laboratory Launches Bioenergy Assessment Tools Argonne National Laboratory Launches Bioenergy Assessment Tools September 30, 2013 - 4:00pm Addthis A researcher loads a biomass sample into spinning ring cup. Argonne National Laboratory has launched two online tools that assess the resource consumption and greenhouse gas emissions associated with biofuel production. | Photo courtesy of National Renewable Energy Laboratory A researcher loads a biomass sample into spinning ring cup. Argonne National Laboratory has launched two online tools that assess the resource consumption and greenhouse gas emissions associated with biofuel production. | Photo courtesy of National Renewable Energy Laboratory Paul Lester Communications Specialist for the Office of Energy Efficiency and Renewable

84

Bioenergy Blog | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Blog Blog Bioenergy Blog RSS December 16, 2013 The Integrated Biorefinery Research Facility at the National Renewable Energy Laboratory in Golden, Colorado enables partners to test conversion technologies on up to one ton of biomass material a day. | Photo by Dennis Schroeder, National Renewable Energy Laboratory From the Lab to Your Gas Tank: 4 Bioenergy Testing Facilities That Are Making a Difference The Energy Department is working to cut the cost of biofuel production by supporting advanced development and demonstration facilities throughout the country that enable researchers to fully examine their efforts on a large scale without having to maintain an expensive pilot plant. November 6, 2013 National Renewable Energy Laboratory researcher Lee Elliott collects samples of algae at a creek in Golden, Colorado. | Photo by Dennis Schroeder, National Renewable Energy Laboratory

85

Potential of bioenergy production from industrial kenaf (Hibiscus cannabinus L.) based on Malaysian perspective  

Science Journals Connector (OSTI)

Abstract Nowadays, the energy requirement of increasing population is creating energy crisis, and its become a serious and alarming thread for sustainability of natural resources. Moreover, upcoming demand of energy requirement is growing faster in developing countries as compared to developed ones. Malaysia is one of the fastest growing, developing countries, which is experiencing drastic and regular growth in population and economy in the recent years. It is an urgent requirement for the government and policy makers to explore alternative energy sources to accomplish upcoming demands of a growing population in the form of energy sufficiency. Malaysia is blessed with tropical and sub-tropical climates, which are suitable for exploring the green agriculture and forest potential. Most of the available energy resources in the form of fossil fuels have already been explored, and it is expected that energy demand will grow continuously by two to three fold in the next decades. Biomass resource is abundant in Malaysia. This can be considered as an alternative source of renewable and sustainable energy, with a promising future to fulfil continuous and uninterrupted supply of energy. Agricultural biomass such as Industrial Kenaf (Hibiscus cannabinus L.) has been successfully investigated as a great potential to be used as a renewable and sustainable feedstock for the production of bio-energy. Kenaf regarded as a traditional crop of Malaysia. Kenaf biomass would appear as a potential material for great sustainable energy (bioethanol, biohydrogen, bioenergy) supplier in the coming future. In this review, we have provided an insight of kenaf biomass, its morphology, structure, chemical compositions, storage and sowing, cultivation, harvesting, yield and different sustainable energy possible to get from it. We also discuss the feasibility of kenaf biomass as a sustainable energy source supplier in Malaysian prospective.

N. Saba; M. Jawaid; K.R. Hakeem; M.T. Paridah; A. Khalina; O.Y. Alothman

2015-01-01T23:59:59.000Z

86

DOE Bioenergy Center Special Issue. The Bioenergy Sciences Center  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Bioenergy Bioenergy Center Special Issue. The Bioenergy Sciences Center (BESC) Richard A. Dixon Published online: 22 October 2009 # Springer Science + Business Media, LLC. 2009 Keywords Bioenergy centers . United States Department of Energy . Biomass recalcitrance . High-throughput screening . Plant transformation This issue of BioEnergy Research is the first of three special issues to feature work from the US Department of Energy (DOE) Bioenergy Centers. In June 2006, the DOE's Genomes to Life Program published a report, entitled "Breaking the biological barriers to cellulosic ethanol: a joint research agenda," that outlined research areas requir- ing significant investment in order to meet the target of making cellulosic ethanol cost-competitive by 2012. Words were converted to action in June 2007 when Energy Secretary Samuel W. Bodman announced the establishment of

87

Integration of Management Measures for Bioenergy Production from Spatial and Temporal Perspectives in a Forest Regionthe Case of Finland  

Science Journals Connector (OSTI)

The utilization and management of forest resources in the short term are dependent on the available resources in a region, which may not have been managed for bioenergy production. In the long term, the...

Antti Kilpelinen; Mitch Baker

2013-01-01T23:59:59.000Z

88

Perennial Grass Breeding Program BIOENERGY PROGRAM  

E-Print Network [OSTI]

Perennial Grass Breeding Program BIOENERGY PROGRAM One Texas AgriLife Research initiative for bioenergy is the perennial grass breeding program. Results are outlined here. Pearl Millet-Napiergrass P

89

Bioenergy Science Center KnowledgeBase  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The challenge of converting cellulosic biomass to sugars is the dominant obstacle to cost effective production of biofuels in s capable of significant enough quantities to displace U. S. consumption of fossil transportation fuels. The BioEnergy Science Center (BESC) tackles this challenge of biomass recalcitrance by closely linking (1) plant research to make cell walls easier to deconstruct, and (2) microbial research to develop multi-talented biocatalysts tailor-made to produce biofuels in a single step. [from the 2011 BESC factsheet] The BioEnergy Science Center (BESC) is a multi-institutional, multidisciplinary research (biological, chemical, physical and computational sciences, mathematics and engineering) organization focused on the fundamental understanding and elimination of biomass recalcitrance. The BESC Knowledgebase and its associated tools is a discovery platform for bioenergy research. It consists of a collection of metadata, data, and computational tools for data analysis, integration, comparison and visualization for plants and microbes in the center.The BESC Knowledgebase (KB) and BESC Laboratory Information Management System (LIMS) enable bioenergy researchers to perform systemic research. [http://bobcat.ornl.gov/besc/index.jsp

Syed, M.H.; Karpinets, T.V.; Parang, M.; Leuze, M.R.; Park, B.H.; Hyatt, D.; Brown, S.D.; Moulton, S. Galloway, M.D.; Uberbacher E.C.

90

Stakeholder Database from the Center for Bioenergy Sustainability (Learn who the experts are)  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The Center for BioEnergy Sustainability (CBES) is a leading resource for dealing with the environmental impacts and the ultimate sustainability of biomass production for conversion to biofuels and bio-based products. Its purpose is to use science and analysis to understand the sustainability (environmental, economic, and social) of current and potential future bioenergy production and distribution; to identify approaches to enhance bioenergy sustainability; and to serve as an independent source of the highest quality data and analysis for bioenergy stakeholders and decision makers. ... On the operational level, CBES is a focal point and business-development vehicle for ORNLs capabilities related to bioenergy sustainability and socioeconomic analyses. As such, it complements the BioEnergy Science Center (BESC), also located at ORNL, which focuses on the problem of converting lignocellulosic biomass into reactive intermediaries necessary for the cellulosic biofuel industry. Together, these centers provide a strong integrating mechanism and business-development tool for ORNL's science and technology portfolio in bioenergy [taken and edited from http://web.ornl.gov/sci/ees/cbes/. The Stakeholder Database allows you to find experts in bioenergy by their particular type of expertise, their affiliations or locations, their specific research areas or research approaches, etc.

91

Bioenergy Business Partner Information Gathering Form  

E-Print Network [OSTI]

Bioenergy Business Partner Information Gathering Form Fax completed form to the Agribusiness.hnei.hawaii.edu/bmpp/stakeholders.asp Partners are organizations that perform, intend to perform, or should perform bioenergy processes and/or requirements. Please tell us about your organization and the role it plays in bioenergy production in Hawaii

92

Bioenergy | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Transportation » Bioenergy Transportation » Bioenergy Bioenergy EERE leads U.S. researchers and other partners in making transportation cleaner and more efficient through solutions that put electric drive vehicles on the road and replace oil with clean domestic fuels. EERE leads U.S. researchers and other partners in making transportation cleaner and more efficient through solutions that put electric drive vehicles on the road and replace oil with clean domestic fuels. Image of a passenger airplane flying, with blue sky above and clouds below. The U.S. Department of Energy (DOE) funds research, development, and demonstration to help develop sustainable and cost-competitive biofuels, bioproducts, and biopower. For biofuels, DOE has lowered the cost of non-food-based ethanol by more than $6 per gallon since 2001, and it is now

93

Hawaii Bioenergy Master Plan Bioenergy Technology  

E-Print Network [OSTI]

-commercial bioenergy demonstration projects. 6. Hawaii should establish a bioenergy/biofuel development fund to support should be allocated to support training manpower in the field of bioenergy/biofuel technology. Table E.1Hawaii Bioenergy Master Plan Bioenergy Technology University of Hawaii at Manoa Samir Khanal

94

Biofuel Distribution Datasets from the Bioenergy Knowledge Discovery Framework  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The Bioenergy Knowledge Discovery Framework invites users to discover the power of bioenergy through an interface that provides extensive access to research data and literature, GIS mapping tools, and collaborative networks. The Bioenergy KDF supports efforts to develop a robust and sustainable bioenergy industry. The KDF facilitates informed decision making by providing a means to synthesize, analyze, and visualize vast amounts of information in a relevant and succinct manner. It harnesses Web 2.0 and social networking technologies to build a collective knowledge system that can better examine the economic and environmental impacts of development options for biomass feedstock production, biorefineries, and related infrastructure. [copied from https://www.bioenergykdf.net/content/about] Holdings include datasets, models, and maps and the collections are growing due to both DOE contributions and individuals' data uploads.

95

Feedstock Logistics Datasets from DOE's Bioenergy Knowledge Discovery Framework (KDF)  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The Bioenergy Knowledge Discovery Framework invites users to discover the power of bioenergy through an interface that provides extensive access to research data and literature, GIS mapping tools, and collaborative networks. The Bioenergy KDF supports efforts to develop a robust and sustainable bioenergy industry. The KDF facilitates informed decision making by providing a means to synthesize, analyze, and visualize vast amounts of information in a relevant and succinct manner. It harnesses Web 2.0 and social networking technologies to build a collective knowledge system that can better examine the economic and environmental impacts of development options for biomass feedstock production, biorefineries, and related infrastructure. Holdings include datasets, models, and maps. [from https://www.bioenergykdf.net/content/about

96

Optimizing Feedstock Logistics and Assessment of Hydrologic Impacts for Sustainable Bio-Energy Production  

E-Print Network [OSTI]

builder was used to automate the GIS analysis. Network analysis was used to find the best route to move the mobile pyrolysis units to new locations and to identify the closest refinery to transport the bio-crude oil. To produce bioenergy from feedstocks...

Ha, Mi-Ae 1979-

2012-12-11T23:59:59.000Z

97

Bioenergy Blog  

Broader source: Energy.gov (indexed) [DOE]

blog Office of Energy Efficiency & blog Office of Energy Efficiency & Renewable Energy Forrestal Building 1000 Independence Avenue, SW Washington, DC 20585 en From the Lab to Your Gas Tank: 4 Bioenergy Testing Facilities That Are Making a Difference http://energy.gov/eere/articles/lab-your-gas-tank-4-bioenergy-testing-facilities-are-making-difference bioenergy-testing-facilities-are-making-difference" class="title-link">From the Lab to Your Gas Tank: 4 Bioenergy Testing Facilities That Are Making a Difference

98

Alterra Bioenergy LLC | Open Energy Information  

Open Energy Info (EERE)

Alterra Bioenergy LLC Alterra Bioenergy LLC Jump to: navigation, search Name Alterra Bioenergy LLC Place Macon, Georgia Sector Biofuels Product Manufacturer and distributor of biofuels. References Alterra Bioenergy LLC[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Alterra Bioenergy LLC is a company located in Macon, Georgia . References ↑ "Alterra Bioenergy LLC" Retrieved from "http://en.openei.org/w/index.php?title=Alterra_Bioenergy_LLC&oldid=342070" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load)

99

Bioenergy Technologies Office Overview | Department of Energy  

Office of Environmental Management (EM)

More Documents & Publications Bioenergy Technologies Office Overview August 2014 Monthly News Blast Algal Biofuels: Long-Term Energy Benefits Drive U.S. Research...

100

The Bioenergy Knowledge Discovery Framework (KDF) | Department...  

Energy Savers [EERE]

and investors to explore and engage the latest bioenergy research. The KDF harnesses Web 2.0 and social networking technologies to build a collective knowledge system that...

Note: This page contains sample records for the topic "bioenergy production research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Washington, D.C. and Tennessee: Bioenergy Technologies Office Announces Launch of New and Improved KDF  

Broader source: Energy.gov [DOE]

The relaunched Bioenergy KDF supports the development of a sustainable bioenergy industry by providing unique value for researchers, private industry, policymakers, and the public.

102

Bioscience: Bioenergy, Biosecurity, and Health  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Bioscience: Bioenergy, Biosecurity, and Health Bioscience: Bioenergy, Biosecurity, and Health /science-innovation/_assets/images/icon-science.jpg Bioscience: Bioenergy, Biosecurity, and Health Los Alamos scientists are developing science and technology to improve pathogen detection, create better therapeutics, and anticipate-even prevent-epidemics and pandemics. Bioenergy» Environmental Microbiology» Proteins» Biosecurity and Health» Genomics and Systems Biology» Algal vats Read caption + Los Alamos scientists used genetic engineering to develop magnetic algae, thus making it much easier to harvest for biofuel production. Harvesting algae accounts for approximately 15-20 percent of the total cost of biofuel production-magnetic algae can reduce such costs by more than 90%. Overview Charlie McMillan, Director of Los Alamos National Laboratory

103

Bioenergy Technologies Office FY 2015 Budget At-A-Glance  

Broader source: Energy.gov [DOE]

The Bioenergy Technologies Office supports targeted research, development, demonstration, and deployment (RDD&D) activities to advance the sustainable, nationwide production of advanced biofuels that will displace a share of petroleum?derived fuels, mitigate climate change, create jobs, and increase United States energy security.

104

Agricultural Chemistry and Bioenergy  

Science Journals Connector (OSTI)

Agricultural Chemistry and Bioenergy ... Renewed interest in converting biomass to biofuels such as ethanol, other forms of bioenergy, and bioenergy byproducts or coproducts of commercial value opens opportunities for chemists, including agricultural chemists and related disciplines. ...

William J. Orts; Kevin M. Holtman; James N. Seiber

2008-05-13T23:59:59.000Z

105

Explore Bioenergy Technology Careers | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Bioenergy Technology Careers Bioenergy Technology Careers Explore Bioenergy Technology Careers About Bioenergy Technologies Office Energy from abundant, renewable, domestic biomass can reduce U.S. dependence on oil, lower impacts on climate, and stimulate jobs and economic growth. Photo of a woman tending to plants in a lab. What jobs are available? Feedstocks Farmers Seasonal workers Tree farm workers Mechanical engineers Harvesting equipment mechanics Equipment production workers Chemical engineers Chemical application specialists Chemical production workers Biochemists Aquaculture technicians Agricultural engineers Genetic engineers and scientists Storage facility operators Conversion Microbiologists Clean room technicians Industrial engineers Chemical & mechanical engineers Plant operators

106

Measuring and moderating the water resource impact of biofuel production and trade  

E-Print Network [OSTI]

commodity markets due to bioenergy production could the market share of bioenergy. If comprehensive,

Fingerman, Kevin Robert

2012-01-01T23:59:59.000Z

107

Sorghum Program BIOENERGY PROGRAM  

E-Print Network [OSTI]

Sorghum Program BIOENERGY PROGRAM Sorghums are important nongrain lignocellulosic feedstocks Biomass Switch Grass Forage Sorghum Bioenergy Sorghum Biomass per acre per year that can be converted (DT

108

BioEnergy Blog  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

bioenergy985271 BioEnergy Blog en Energy Department Helping Lower Biofuel Costs for the Nation http:energy.goveerearticlesenergy-department-helping-lower-biofuel-costs-nation...

109

Bioenergy for Sustainable Development  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Sustainable Bioenergy High-Impact Opportunity Sustainable Energy For All BIOENERGY FOR SUSTAINABLE DEVELOPMENT Overview * Energy poverty is widespread and prevents economic...

110

Global bioenergy potential from high-lignin agricultural residue  

Science Journals Connector (OSTI)

...production systems has a global bioenergy production potential of 4.1...efficiency (1540%) of the bioenergy into actual electricity...Costa Rica, Chile, and Argentina (coconut, olive, mango...2000 (17, 18). Modeling Bioenergy Based on Geospatial Data Shows...

Venugopal Mendu; Tom Shearin; J. Elliott Campbell; Jr; Jozsef Stork; Jungho Jae; Mark Crocker; George Huber; Seth DeBolt

2012-01-01T23:59:59.000Z

111

A Bioenergy Ecosystem - ORNL Review Vol. 44, No. 3, 2011  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Search Magazine Search Magazine Go Features Next Article Previous Article Comments Home Clyde Thurman A Bioenergy Ecosystem BESC partnerships translate R&D into biofuels Paul Gilna, director of the BioEnergy Science Center at ORNL, is a man on a mission. In fact his entire organization is working under a Department of Energy mandate to focus the world's leading scientific minds and resources on revolutionizing bioenergy production. When the center was created in 2007, this innovative partnership of national laboratories, a private research foundation, universities and industries set out to break down the barriers to developing viable and affordable biofuel alternatives to petroleum-based fuels from plants that do not compete with food crops, such as switchgrass or poplar trees. Four years into a five-year mission, they

112

USDA, DOE Announce $18 Million Solicitation for Biomass Research...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

will be available for research and development of biomass-based products, biofuels, bioenergy and related processes. USDA and DOE are issuing these grant solicitations for...

113

Bioenergy: Americas Energy Future  

Office of Energy Efficiency and Renewable Energy (EERE)

Bioenergy: America's Energy Future is a short documentary film showcasing examples of bioenergy innovations across the biomass supply chain and the United States. The film highlights a few stories of individuals and companies who are passionate about achieving the promise of biofuels and addressing the challenges of developing a thriving bioeconomy. This outreach product supports media initiatives to expand the publics understanding of the bioenergy industry and sustainable transportation and was developed by the U.S. Department of Energy Bioenergy Technologies Office (BETO), Oak Ridge National Laboratory, Green Focus Films, and BCS, Incorporated.

114

Hawaii Bioenergy Master Plan Financial Incentives And Barriers; And  

E-Print Network [OSTI]

Hawaii Bioenergy Master Plan Financial Incentives And Barriers; And Other Funding Sources Prepared Summary The goal of this section of the Hawaii Bioenergy Master Plan is to identify and evaluate financial incentives and barriers at points along the bioenergy industry value chain (feedstock production, feedstock

115

Bioenergy Review Mapping Work Resource efficiency science programme  

E-Print Network [OSTI]

Bioenergy Review ­ Mapping Work Resource efficiency science programme Science report: SC070001/SR2 #12;ii Science Report ­ Bioenergy Review ­ Mapping Work The Environment Agency is the leading public, biomass, bioenergy, waste, wood-fuel, land, land-take, mapping, 2010, GIS Research Contractor: Forest

116

Evaluating ecosystem processes in willow short rotation coppice bioenergy plantations  

E-Print Network [OSTI]

Evaluating ecosystem processes in willow short rotation coppice bioenergy plantations R E B E C C body of research linking bioenergy cultivation to changing patterns of biodiversity, there has been remarkably little interest in how bioenergy plantations affect key ecosystem processes underpinning impor

117

BETO Announces Bioenergy Technologies Incubator FOA  

Broader source: Energy.gov [DOE]

The Office of Energy Efficiency and Renewable Energy (EERE) has released a new $10 million funding opportunity announcement (FOA) to support innovative technologies and solutions that could help achieve bioenergy development goals, but are not significantly represented in the Bioenergy Technology Office's (BETO's) existing multi-year program plans or current research and development portfolio.

118

Sustainability trade-offs in bioenergy development in the Philippines: An application of conjoint analysis  

Science Journals Connector (OSTI)

Abstract Sustainability assessments of bioenergy production are essential because it can have both positive and negative impacts on society. Human preferences that influence trade-off decisions on the relevant determinants and indicators of sustainability should be taken into account in these assessments. In this paper, we conducted a survey with five groups of respondents including government officials and employees, academic and research professionals, private company managers and workers, farm owners and workers, and others (e.g. students, residents, etc.) to assess their trade-off decisions on bioenergy development in the Philippines. The analyses of the survey results reveal that sustainability of bioenergy production will depend on the choice of biomass feedstock and these choices depend on people's perceptions. Heterogeneous perceptions among the different groups of respondents on the appropriate bioenergy feedstock to achieve economic, social and ecological sustainability suggest that sustainability of bioenergy is not a generic concept. The use of aggregate indices for sustainability assessments that ignore these perceptions on bioenergy production can thus be very misleading. The preference weights from conjoint analysis, which measure human preferences on different determinants and indicators of economic, social and ecological sustainability, can help improve sustainability assessments.

Lilibeth A. Acosta; Elena A. Eugenio; Nelson H. Enano Jr.; Damasa B. Magcale-Macandog; Belita A. Vega; Paula Beatrice M. Macandog; Jemimah Mae A. Eugenio; Marilou A. Lopez; Arnold R. Salvacion; Wolfgang Lucht

2014-01-01T23:59:59.000Z

119

Research Note The removal of tree stumps and coarse roots from felling sites as a source of woody biomass for bioenergy generation  

E-Print Network [OSTI]

biomass for bioenergy generation is well established in parts of Europe, and interest has been expressed

120

Is bioenergy trade good for the environment? Jean-Marc Bourgeona  

E-Print Network [OSTI]

Is bioenergy trade good for the environment? Jean-Marc Bourgeona , Hélène Ollivierb a of bioenergy trade on greenhouse gas emissions using a two-good, three-factor model. Bioenergy emissions depending on regional comparative advantages. Keywords: bioenergy, intermediate product, North

Paris-Sud XI, Université de

Note: This page contains sample records for the topic "bioenergy production research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Net carbon fluxes at stand and landscape scales from wood bioenergy harvests in the US Northeast  

E-Print Network [OSTI]

Net carbon fluxes at stand and landscape scales from wood bioenergy harvests in the US Northeast gas emissions implications of wood biomass (`bioenergy') harvests are highly uncer- tain yet of great bioenergy is only one of many products. We used field data to formulate bioenergy harvest scenarios, applied

Vermont, University of

122

Bioscience: Bioenergy, Biosecurity, and Health  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Bioscience: Bioenergy, Biosecurity, and Health science-innovationassetsimagesicon-science.jpg Bioscience: Bioenergy, Biosecurity, and Health Los Alamos scientists are...

123

USDA, DOE Announce Up to $25 Million in Funding for Biomass Research...  

Office of Environmental Management (EM)

in funding for research and development of technologies and processes to produce biofuels, bioenergy, and high-value biobased products, subject to annual appropriations....

124

Translational Genomics for Bioenergy Production from Fuelstock Grasses: Maize as the Model Species  

Science Journals Connector (OSTI)

...their stomata open for gas exchange during photosynthesis...MAKE SENSE FOR BIOFUEL PRODUCTION IN THE U.S. Sugarcane...sustainable biofuel production in most current discussions...KEY LESSON FROM MAIZE PRODUCTION AGRICULTURE A prime...progeny. To save the cost of manually detasseling...

Carolyn J. Lawrence; Virginia Walbot

2007-07-27T23:59:59.000Z

125

Bioenergy for Sustainable Development | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Bioenergy for Sustainable Development Bioenergy for Sustainable Development Deployment Markets Keynote Bioenergy for Sustainable Development Gerard Ostheimer, Global Lead,...

126

Bioenergy: how much?  

Science Journals Connector (OSTI)

The perspective by Haberl etal (2013 Environ. Res. Lett. 8 031004) entitled 'Bioenergy: how much can we expect for 2050?' is timely and valuable. It deals with an important subject since contrasting views on the subject make it very difficult for policy makers to adopt policies that would allow 'production and consumption of energy at sustainable levels', in the words of the authors. It is therefore very important to sort out from the abundant literature on the issue which are the facts and which are the biases and preferences.

Jos Goldemberg; Suani Teixeira Coelho

2013-01-01T23:59:59.000Z

127

National Bioenergy Day 2014  

Broader source: Energy.gov [DOE]

Bioenergy, the use of agricultural waste and forestry byproducts to generate heat and energy, will be celebrated during the second annual National Bioenergy Day on October 22, 2014. This is an...

128

Abellon Bioenergy | Open Energy Information  

Open Energy Info (EERE)

Abellon Bioenergy Abellon Bioenergy Jump to: navigation, search Name Abellon Bioenergy Place Ahmedabad, Gujarat, India Zip 380054 Sector Renewable Energy Product Ahmedabad-based start-up project developer having interest in renewable energy. Coordinates 26.93077°, 80.66416° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":26.93077,"lon":80.66416,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

129

Future perspectives of international bioenergy trade  

Science Journals Connector (OSTI)

Abstract According to the IEA World Energy Outlook 2012, primary demand for bioenergy will strongly increase up to the year 2035: the demand for biofuels and biomass for electricity is expected to triple. These changes will have an impact on the regional balance of demand and supply of bioenergy leading to both increasing trade flows and changes in trade patterns. The GFPM, TIMER and POLES models have been selected for a detailed comparison of scenarios and their impact on global bioenergy trade: In ambitious scenarios, 1426% of global bioenergy demand is traded between regions in 2030. The model scenarios show a huge range of potential bioenergy trade: for solid biomass, in ambitious scenarios bioenergy trade ranges from 700Mt to more than 2,500Mt in 2030. For liquid biomass, the ambitious scenarios show a bioenergy trade in the range of 65 - >360Mt in 2030. Considering the currently very small share of internationally traded bioenergy, this would result in huge challenges and require tremendous changes in terms of production, pretreatment of biomass and development of logistic chains.

Julian Matzenberger; Lukas Kranzl; Eric Tromborg; Martin Junginger; Vassilis Daioglou; Chun Sheng Goh; Kimon Keramidas

2015-01-01T23:59:59.000Z

130

Bioenergy News | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Bioenergy News Bioenergy News Bioenergy News RSS August 1, 2013 Secretary Moniz Announces New Biofuels Projects to Drive Cost Reductions, Technological Breakthroughs During remarks at the Energy Department's Biomass 2013 annual conference, Secretary Moniz highlighted the important role biofuels play in the Administration's Climate Action Plan. July 31, 2013 Florida Project Produces Nation's First Cellulosic Ethanol at Commercial-Scale Groundbreaking Project Deploys Technology Developed Through Early Energy Department R&D Investments July 1, 2013 Energy Department Announces Investment to Accelerate Next Generation Biofuels Following last week's rollout of President Obama's plan to cut carbon pollution, the Energy Department today announced four research and development projects to bring next generation biofuels on line faster and

131

Translational Genomics for Bioenergy Production: There's Room for More Than One Model  

Science Journals Connector (OSTI)

...Celluloseic Ethanol: A Joint Research Agenda, DOE/SC-0095 (U.S. Department of Energy Office of Science and Office of Energy Efficiency and Renewable Energy), www.doegenomestolife.org/biofuels/ . Wu, J.L., et al. (2005). Chemical...

Daniel R. Bush; Jan E. Leach

2007-10-26T23:59:59.000Z

132

Carbon debt of Conservation Reserve Program (CRP) grasslands converted to bioenergy production  

Science Journals Connector (OSTI)

...converting CRP grassland to agriculture have ranged from...life cycle analysis (LCA) of biofuel and fossil fuel production...converted to no-till agriculture to 68 7 Mg CO 2 eha ?1 , with 9...life cycle analysis (LCA) and models (1113) to estimate fossil...States Department of Agriculture Farm Services...

Ilya Gelfand; Terenzio Zenone; Poonam Jasrotia; Jiquan Chen; Stephen K. Hamilton; G. Philip Robertson

2011-01-01T23:59:59.000Z

133

Translational Genomics for Bioenergy Production from Fuelstock Grasses: Maize as the Model Species  

Science Journals Connector (OSTI)

...visit the Grass Genera of the World website at http://delta-intkey...plants for lignocellulosic energy production. For example...half of U.S. liquid fuel consumption using cellulose-derived ethanol, the U.S. Departments of Energy and Agriculture project that...

Carolyn J. Lawrence; Virginia Walbot

2007-07-27T23:59:59.000Z

134

BioEnergy Solutions BES | Open Energy Information  

Open Energy Info (EERE)

California Zip: 93309 Product: Bakersfield-based firm installing and operating biogas plants for farmers and food producers. References: BioEnergy Solutions (BES)1 This...

135

Bioenergy and Food Security Criteria and Indicators (BEFSCI) Website | Open  

Open Energy Info (EERE)

Bioenergy and Food Security Criteria and Indicators (BEFSCI) Website Bioenergy and Food Security Criteria and Indicators (BEFSCI) Website Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Bioenergy and Food Security Criteria and Indicators (BEFSCI) Website Focus Area: Other Biofuels Topics: Training Material Website: www.fao.org/bioenergy/foodsecurity/befsci/en/ Equivalent URI: cleanenergysolutions.org/content/bioenergy-and-food-security-criteria- Language: English Policies: Deployment Programs DeploymentPrograms: Technical Assistance This website-created by the Bioenergy and food Security project of the Food and Agriculture Organization of the United Nations (FAO)-provides policymakers and practitioners a set of criteria, indicators, good practices, and policy options for sustainable bioenergy production to

136

Biofuel Enduse Datasets from the Bioenergy Knowledge Discovery Framework (KDF)  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The Bioenergy Knowledge Discovery Framework invites users to discover the power of bioenergy through an interface that provides extensive access to research data and literature, GIS mapping tools, and collaborative networks. The Bioenergy KDF supports efforts to develop a robust and sustainable bioenergy industry. The KDF facilitates informed decision making by providing a means to synthesize, analyze, and visualize vast amounts of information in a relevant and succinct manner. It harnesses Web 2.0 and social networking technologies to build a collective knowledge system that can better examine the economic and environmental impacts of development options for biomass feedstock production, biorefineries, and related infrastructure. [copied from https://www.bioenergykdf.net/content/about]

Holdings include datasets, models, and maps. This is a very new resource, but the collections will grow due to both DOE contributions and individuals data uploads. Currently the Biofuel Enduse collection includes 133 items. Most of these are categorized as literature, but 36 are listed as datasets and ten as models.

137

Sustainable Energy Research Team publications Whittaker, C., Adams, P., McManus, M.C Securing a Bioenergy Supply: UK and US in  

E-Print Network [OSTI]

.C Securing a Bioenergy Supply: UK and US in Perspectives on Biofuels: Potential Benefits and Possible, G.P. McManus, M.C. and Mezzullo, W. G, 2011. Barriers to and drivers for UK bioenergy development

Martin, Ralph R.

138

GIS and Location Theory Based Bioenergy Systems Planning.  

E-Print Network [OSTI]

??This research is concerned with bioenergy systems planning and optimization modelling in the context of locating biomass power plants and allocating available biomass feedstock to (more)

Dong, Jingyuan

2008-01-01T23:59:59.000Z

139

Thermochemical Process Development Unit: Researching Fuels from Biomass, Bioenergy Technologies (Fact Sheet)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Highlights Highlights Thermochemical conversion technologies convert biomass and its residues to fuels and chemicals using gasification and pyrolysis. Gasification entails heating biomass and results in a mixture of carbon monoxide and hydrogen, known as syngas. Pyrolysis, which is heating biomass in the absence of oxygen, produces liquid pyrolysis oil. Both syngas and pyrolysis oil can be chemically converted into clean, renewable transportation fuels and chemicals. The Thermochemical Process Development Unit (TCPDU) at the National Renewable Energy Laboratory (NREL) is a unique facility dedicated to researching thermochemical processes to produce fuels from biomass. Thermochemical processes include gasification and pyrolysis-processes used to convert

140

Bioenergy Success Stories  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

61 Bioenergy Success Stories en Departments of Energy, Navy, and Agriculture Invest 210 million in Three Commercial Biorefineries to Produce Drop-in Biofuel for the Military...

Note: This page contains sample records for the topic "bioenergy production research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Bioenergy Impact on Wisconsin's Workforce  

Broader source: Energy.gov [DOE]

Troy Runge, Wisconsin Bioenergy Initiative, presents on bioenergy's impact on Wisconsin's workforce development for the Biomass/Clean Cities States webinar.

142

Trade-offs of different land and bioenergy policies on the path to achieving climate targets  

Science Journals Connector (OSTI)

Many papers have shown that bioenergy and land-use are potentially important elements ... anthropogenic climate change. But, significant expansion of bioenergy production can have a large terrestrial footprint. ....

Katherine Calvin; Marshall Wise; Page Kyle; Pralit Patel; Leon Clarke

2014-04-01T23:59:59.000Z

143

Switchgrass for Bioenergy held at the University of NebraskaLincoln  

E-Print Network [OSTI]

Switchgrass for Bioenergy held at the University of Nebraska­Lincoln Agricultural Research. Cenusa bioenergy, a USDA-funded research initiative, is investigating the creation of a sustainable Diagnostic Clinics Switchgrass for Bioenergy training session was conducted during the UNL Extension Late

Farritor, Shane

144

USDA and DOE Partnership Seeks to Develop Better Plants for Bioenergy |  

Broader source: Energy.gov (indexed) [DOE]

Partnership Seeks to Develop Better Plants for Partnership Seeks to Develop Better Plants for Bioenergy USDA and DOE Partnership Seeks to Develop Better Plants for Bioenergy September 2, 2010 - 12:00am Addthis WASHINGTON, Sept. 2, 2010 -- Energy Secretary Steven Chu and Agriculture Secretary Tom Vilsack today announced research awards under a joint DOE-USDA program aimed at improving and accelerating genetic breeding programs to create plants better suited for bioenergy production. The $8.9 million investment is part of the Obama Administration's broader effort to diversify the nation's energy portfolio and to accelerate the development of new energy technologies designed to decrease the nation's dependence on foreign oil. "Cost-effective, sustainable biofuels are crucial to building a clean energy economy," said Secretary Chu. "By harnessing the power of science

145

Strategic sourcing in the UK bioenergy industry  

Science Journals Connector (OSTI)

Successful supply chain management requires the management of a complex, multi-stakeholder, multi-criteria system. Stakeholder inclusion in the supply chain design and decision making processes is an area of growing interest for companies looking to design sustainable supply chains or produce sustainable products. This paper demonstrates the use of the integrated quality function deployment and analytic hierarchy process (QFDAHP) method for the inclusion of a wide group of stakeholder requirements into the supplier selection process. The method provides a weighted ranked list of evaluating criteria which can be used to assess potential suppliers in the UK renewable bioenergy industry. The bioenergy industry is suitable as there are many stakeholders placing various requirements upon potential biomass suppliers. The paper uses a mixture of literature review and semi-structured industry interviews to answer three research questions: which stakeholder groups are important when selecting biomass suppliers for the UK? What requirements are made by these stakeholders on the supply of biomass fuels and feedstocks? Which evaluating criteria are most important?

James A. Scott; William Ho; Prasanta K. Dey

2013-01-01T23:59:59.000Z

146

Investigation of management strategies for the production of sweet sorghum as a bioenergy crop and preservation of crop residue by the ensiling process.  

E-Print Network [OSTI]

??The objective of this project was to investigate management practices for sweet sorghum as a bioenergy crop in Iowa and its storability as an ensiled (more)

Cogdill, Todd Joseph

2008-01-01T23:59:59.000Z

147

Bioenergy production on degraded and marginal land : assessing its potentials, economic performance, and environmental impacts for different settings and geographical scales.  

E-Print Network [OSTI]

??Current global energy supply is primarily based on fossil fuels and is widely considered to be unsustainable. Bioenergy is considered an important option in making (more)

Wicke, B.

2011-01-01T23:59:59.000Z

148

Bacterial community structures are unique and resilient in full-scale bioenergy systems  

E-Print Network [OSTI]

Bacterial community structures are unique and resilient in full-scale bioenergy systems Jeffrey J digestion is the most successful bioenergy technology worldwide with, at its core, undefined microbialFrac | community function | digester | sludge The production of bioenergy from wastes is an essential com- ponent

Hammerton, James

149

Canada Biomass-Bioenergy Report May 31, 2006  

E-Print Network [OSTI]

Canada Biomass-Bioenergy Report May 31, 2006 Doug Bradley President Climate Change Solutions National Team Leader- IEA Bioenergy Task 40- Biotrade 402 Third Avenue ·Ottawa, Ontario ·Canada K1S 2K7 of the ten provinces. Canada resembles the US in its market-oriented economic system, pattern of production

150

BETO Announces Request for Information on Landscape Design for Sustainable Bioenergy Systems  

Broader source: Energy.gov [DOE]

The U.S. Department of Energys (DOEs) Bioenergy Technologies Office (BETO) invites public comment on its request for information (RFI) regarding landscape design for sustainable bioenergy systems. The purpose of this RFI is to solicit feedback from bioenergy stakeholders on landscape design approaches that integrate cellulosic bioenergy feedstock production into existing agricultural and forestry systems while maintaining or enhancing environmental and socio-economic sustainability.

151

The Center for BioEnergy Sustainability (CBES) At Oak Ridge National Laboratory (ORNL)  

E-Print Network [OSTI]

The Center for BioEnergy Sustainability (CBES) At Oak Ridge National Laboratory (ORNL) is pleased of bioenergy crops as well as the impacts that the expansion of these crops over large areas may have on climate, water, nutrient, and biodiversity. The DOE Great Lakes Bioenergy Research Center (GLBRC) has been

152

SLU, Spring 2012 Bioenergy and social sciences: economics and sociology, 5hp  

E-Print Network [OSTI]

SLU, Spring 2012 1/6 Bioenergy and social sciences: economics and sociology, 5hp PNS0083 Bioenergy and social sciences: economics and sociology, 5hp The course is given as part of the postgraduate research school "Bioenergy". The overall objective of the course is: 1. to enable the students

153

The Center for BioEnergy Sustainability (CBES) at Oak Ridge National Laboratory (ORNL)  

E-Print Network [OSTI]

The Center for BioEnergy Sustainability (CBES) at Oak Ridge National Laboratory (ORNL) is pleased Studies Great Lakes Bioenergy Research Center University of Wisconsin-Madison. Co-Leader in Creating Sustainable Bioenergy Practices Jackson's program focuses on structure and function of managed, semi

154

Environmental and Economic Trade-Offs in a Watershed When Using Corn Stover for Bioenergy  

Science Journals Connector (OSTI)

Environmental and Economic Trade-Offs in a Watershed When Using Corn Stover for Bioenergy ... Taken together, these are the principal reasons corn stover has been looked upon favorably in the policy dialogue relative to dedicated bioenergy crops. ... Research that considers greenhouse gases, water quality, and farm-gate economics of cellulosic bioenergy crops together in a single integrated analysis is needed given societal concerns about the overall impact of using agricultural land to grow bioenergy crops. ...

Benjamin M. Gramig; Carson J. Reeling; Raj Cibin; Indrajeet Chaubey

2013-01-22T23:59:59.000Z

155

Research Strategies for Increasing Productivity of Intensively Managed  

E-Print Network [OSTI]

fiber production from a smaller land base and provides market incentives to keep these lands under, plantation forestry, intensive silviculture, biomass T raditional and emerging markets for wood products and bioenergy are likely to increase pressure on forests and create incentives for enhancing their pro

156

Bioenergy | Open Energy Information  

Open Energy Info (EERE)

Bioenergy: Energy produced from organic materials from plants or animals. Other definitions:Wikipedia Reegle 1 This article is a stub. You can help OpenEI by expanding it....

157

Fulcrum Bioenergy Inc | Open Energy Information  

Open Energy Info (EERE)

Fulcrum Bioenergy Inc Fulcrum Bioenergy Inc Jump to: navigation, search Name Fulcrum Bioenergy, Inc. Place Pleasanton, California Zip 94588 Sector Bioenergy, Renewable Energy Product Fulcrum BioEnergy is a waste-to-fuels company that focuses on the development of clean, environmentally responsible facilities for the conversion of municipal solid waste and other waste products to ethanol and other renewable transportation fuels. Coordinates 28.967394°, -98.478862° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":28.967394,"lon":-98.478862,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

158

Frontline BioEnergy LLC | Open Energy Information  

Open Energy Info (EERE)

Frontline BioEnergy LLC Frontline BioEnergy LLC Jump to: navigation, search Name Frontline BioEnergy LLC Place Ames, Iowa Zip 50010 Sector Bioenergy, Biomass Product Frontline BioEnergy Inc develops and installs gasification systems and individual equipment to convert biomass into valuable products. Coordinates 30.053389°, -94.742269° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.053389,"lon":-94.742269,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

159

Center for BioEnergy Sustainability | Open Energy Information  

Open Energy Info (EERE)

Sustainability Sustainability Jump to: navigation, search Logo: Center for BioEnergy Sustainability Name Center for BioEnergy Sustainability Agency/Company /Organization Oak Ridge National Laboratory Sector Energy Focus Area Biomass Topics Resource assessment Resource Type Dataset, Maps Website http://www.ornl.gov/sci/besd/c References Center for BioEnergy Sustainability[1] Abstract The Center for BioEnergy Sustainability, or CBES, is a Center at Oak Ridge National Laboratory with a focus on dealing with the environmental impacts and the ultimate sustainability of biomass production for conversion to biofuels and bio-based products. The Center for BioEnergy Sustainability, or CBES, is a Center at Oak Ridge National Laboratory with a focus on "dealing with the environmental impacts

160

Kent BioEnergy | Open Energy Information  

Open Energy Info (EERE)

Kent BioEnergy Kent BioEnergy Jump to: navigation, search Name Kent BioEnergy Address 11125 Flintkote Avenue Place San Diego, California Zip 92121 Sector Biofuels Product Technologies that use algae in biofuel production, water pollution remediation, CO2 absorption, etc Website http://www.kentbioenergy.com/ Coordinates 32.904312°, -117.231255° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.904312,"lon":-117.231255,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "bioenergy production research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

DEVELOPING STATE POLICIES SUPPORTIVE OF BIOENERGY DEVELOPMENT  

SciTech Connect (OSTI)

Working within the context of the Southern States Biobased Alliance (SSBA) and with officials in each state, the Southern States Energy Board (SSEB) is identifying bioenergy-related policies and programs within each state to determine their impact on the development, deployment or use of bioenergy. In addition, SSEB will determine which policies have impacted industry's efforts to develop, deploy or use biobased technologies or products. As a result, SSEB will work with the Southern States Biobased Alliance to determine how policy changes might address any negative impacts or enhance positive impacts. In addition to analysis of domestic policies and programs, this project will include the development of a U.S.-Brazil Biodiesel Pilot Project. The purpose of this effort is to promote and facilitate the commercialization of biodiesel and bioenergy production and demand in Brazil.

Kathryn Baskin

2005-04-30T23:59:59.000Z

162

DEVELOPING STATE POLICIES SUPPORTIVE OF BIOENERGY DEVELOPMENT  

SciTech Connect (OSTI)

Working within the context of the Southern States Biobased Alliance (SSBA) and with officials in each state, the Southern States Energy Board (SSEB) is identifying bioenergy-related policies and programs within each state to determine their impact on the development, deployment or use of bioenergy. In addition, SSEB will determine which policies have impacted industry's efforts to develop, deploy or use biobased technologies or products. As a result, SSEB will work with the Southern States Biobased Alliance to determine how policy changes might address any negative impacts or enhance positive impacts. In addition to analysis of domestic policies and programs, this project will include the development of a U.S.-Brazil Biodiesel Pilot Project. The purpose of this effort is to promote and facilitate the commercialization of biodiesel and bioenergy production and demand in Brazil.

Kathryn Baskin

2005-01-31T23:59:59.000Z

163

Forest Products Research  

Science Journals Connector (OSTI)

... pieces of research work under investigation were considered, as also the possibility of establishing a substation of the Laboratory in Scotland. The Board noted with appreciation that there was direct ...

1937-01-02T23:59:59.000Z

164

DOE Perspectives on Sustainable Bioenergy Landscapes  

Broader source: Energy.gov [DOE]

DOE Perspectives on Sustainable Bioenergy Landscapes; Kristen Johnson, Sustainability Program Technology Manager, Bioenergy Technologies Office; November 19, 2014

165

Tersus BioEnergy | Open Energy Information  

Open Energy Info (EERE)

Tersus BioEnergy Tersus BioEnergy Jump to: navigation, search Name Tersus BioEnergy Place London, Greater London, United Kingdom Zip W1J 5PT Sector Bioenergy, Biomass Product Subsidiary of Tersus Energy. Tersus BioEnergy invests in companies developing biofuel and biomass and waste technologies. Typical investment size USD 500,000-USD 5m Coordinates 51.506325°, -0.127144° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":51.506325,"lon":-0.127144,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

166

Nishant Bioenergy P Ltd | Open Energy Information  

Open Energy Info (EERE)

Nishant Bioenergy P Ltd Nishant Bioenergy P Ltd Jump to: navigation, search Logo: Nishant Bioenergy P Ltd Name Nishant Bioenergy P Ltd Address Sector 18-D, Chandigarh Place Chandigarh Zip 160018 Sector Bioenergy Product Biomass Fuel Pellet and Biomass Pellet Fired Cook Stove for institutional use Stock Symbol Stove Earth Stove Year founded 1999 Number of employees 1-10 Company Type For Profit Phone number 09815609301 Website http://www.nishantbioenergy.co Coordinates 30.7347851°, 76.7884713° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.7347851,"lon":76.7884713,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

167

Department of Energy Offers Abengoa Bioenergy a Conditional Commitment for  

Broader source: Energy.gov (indexed) [DOE]

Abengoa Bioenergy a Conditional Abengoa Bioenergy a Conditional Commitment for a $133.9 Million Loan Guarantee Department of Energy Offers Abengoa Bioenergy a Conditional Commitment for a $133.9 Million Loan Guarantee August 19, 2011 - 11:15am Addthis Groundbreaking Cellulosic Ethanol Project Expected to Create Over 300 Jobs and Build Nation's Capacity for Cellulosic Ethanol Production Washington D.C. - U.S. Energy Secretary Steven Chu today announced the offer of a conditional commitment for a $133.9 million loan guarantee to Abengoa Bioenergy Biomass of Kansas LLC (ABBK) to support the development of a commercial-scale cellulosic ethanol plant. ABBK's parent company and project sponsor, Abengoa Bioenergy US Holding, Inc., estimates the project will create approximately 300 construction jobs and 65 permanent

168

DEVELOPING STATE POLICIES SUPPORTIVE OF BIOENERGY DEVELOPMENT  

SciTech Connect (OSTI)

Working within the context of the Southern States Biobased Alliance (SSBA) and with officials in each state, the Southern States Energy Board (SSEB) is identifying bioenergy-related policies and programs within each state to determine their impact on the development, deployment or use of bioenergy. In addition, SSEB will determine which policies have impacted industry's efforts to develop, deploy or use biobased technologies or products. As a result, SSEB will work with the Southern States Biobased Alliance to determine how policy changes might address any negative impacts or enhance positive impacts.

Kathryn Baskin

2004-04-30T23:59:59.000Z

169

Northeast Kansas Bioenergy LLC | Open Energy Information  

Open Energy Info (EERE)

Kansas Bioenergy LLC Kansas Bioenergy LLC Jump to: navigation, search Name Northeast Kansas Bioenergy LLC Place Hiawatha, Kansas Zip 66434 Product Developing and integrated Bioethanol / Biodiesel refinery near Hiawatha, Kansas Coordinates 39.853465°, -95.527144° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.853465,"lon":-95.527144,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

170

Our Partners : BioEnergy Science Center  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Bringing the best and the brightest together. Bringing the best and the brightest together. The mission of the Department of Energy BioEnergy Science Center is to revolutionize how Bioenergy is processed within five years. To reach this goal, we have assembled a world-class team of some of the world's leading experts and facilities. We are working together to develop alternative fuel solutions that are a viable and affordable option to petroleum-based fuels. To accomplish this mission, The BioEnergy Science Center is backed by more than $80 million in investments from state and private-sector sources. This includes $30 million toward research and equipment and a $40 million, 250,000 gallons-a-year switchgrass-to-ethanol demonstration facility. View the INTERACTIVE MAP to learn more about the specific contributions we

171

Biological and Environmental Research Network Requirements  

E-Print Network [OSTI]

Cesar Izaurralde, PNNL (GLBRC) Bill Johnston, ESnet (Bioenergy Research Center (GLBRC) needs assistance with dataBioenergy Research Center (GLBRC) has developed a high-

Dart, Eli

2014-01-01T23:59:59.000Z

172

Bioenergy Assessment Toolkit  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Bioenergy Assessment Toolkit Bioenergy Assessment Toolkit Anelia Milbrandt and Caroline Uriarte Produced under direction of the United States Agency for International Development by the National Renewable Energy Laboratory (NREL) under Interagency Agreement AEG-P-00-00003-00; Work for Others Agreement number 3010543; Task Numbers WFE2.1012, WFE2.1013, and WFE2.1014. Technical Report NREL/TP-6A20-56456 October 2012 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Contract No. DE-AC36-08GO28308 National Renewable Energy Laboratory 15013 Denver West Parkway Golden, CO 80401 303-275-3000 * www.nrel.gov Bioenergy Assessment Toolkit Anelia Milbrandt and Caroline Uriarte

173

Erratum to: Crop Residue Considerations for Sustainable Bioenergy Feedstock Supplies  

Science Journals Connector (OSTI)

Two regrettable errors occurred in citing a critical funding source for the multi-location research summarized in the 2014 article entitled Crop Residue Considerations for Sustainable Bioenergy Feedstock Supplie...

Douglas L. Karlen; Jane M. F. Johnson

2014-09-01T23:59:59.000Z

174

Energy Department Announces Five-Year Renewal of Funding for Bioenergy  

Broader source: Energy.gov (indexed) [DOE]

Energy Department Announces Five-Year Renewal of Funding for Energy Department Announces Five-Year Renewal of Funding for Bioenergy Research Centers Energy Department Announces Five-Year Renewal of Funding for Bioenergy Research Centers April 4, 2013 - 1:48pm Addthis NEWS MEDIA CONTACT (202) 586-4940 WASHINGTON - The U.S. Department of Energy today announced it would fund its three Bioenergy Research Centers for an additional five-year period, subject to continued congressional appropriations. The three Centers -including the BioEnergy Research Center (BESC) led by Oak Ridge National Laboratory, the Great Lakes Bioenergy Research Center (GLBRC) led by the University of Wisconsin-Madison in partnership with Michigan State University, and the Joint BioEnergy Institute (JBEI) led by Lawrence Berkeley National Laboratory-were established by the Department's

175

Energy Department Announces Five-Year Renewal of Funding for Bioenergy  

Broader source: Energy.gov (indexed) [DOE]

Five-Year Renewal of Funding for Five-Year Renewal of Funding for Bioenergy Research Centers Energy Department Announces Five-Year Renewal of Funding for Bioenergy Research Centers April 4, 2013 - 1:48pm Addthis NEWS MEDIA CONTACT (202) 586-4940 WASHINGTON - The U.S. Department of Energy today announced it would fund its three Bioenergy Research Centers for an additional five-year period, subject to continued congressional appropriations. The three Centers -including the BioEnergy Research Center (BESC) led by Oak Ridge National Laboratory, the Great Lakes Bioenergy Research Center (GLBRC) led by the University of Wisconsin-Madison in partnership with Michigan State University, and the Joint BioEnergy Institute (JBEI) led by Lawrence Berkeley National Laboratory-were established by the Department's

176

FACT SHEET: BIOENERGY WORKING GROUP  

Broader source: Energy.gov (indexed) [DOE]

, 2010 , 2010 1 FACT SHEET: BIOENERGY WORKING GROUP At the Clean Energy Ministerial in Washington, D.C. on July 19 th and 20 th , ministers launched a Bioenergy Working Group, which will advance the deployment of bioenergy technologies by implementing recommendations of the Technology Action Plan on Bioenergy Technologies that was released by the Major Economies Forum Global Partnership in December 2009. The Working Group will work in close cooperation with the Global Bioenergy Partnership (GBEP), which is co-chaired by Brazil and Italy. Initial key activities of the Working Group include: 1. Global Bioenergy Atlas: The Working Group will combine and build upon existing databases of sustainably-developed bioenergy potential around the globe and make it available in an open web-

177

Bioenergy: how much can we expect for 2050?  

Science Journals Connector (OSTI)

Estimates of global primary bioenergy potentials in the literature span almost three orders of magnitude. We narrow that range by discussing biophysical constraints on bioenergy potentials resulting from plant growth (NPP) and its current human use. In the last 30years, terrestrial NPP was almost constant near 54PgCyr?1, despite massive efforts to increase yields in agriculture and forestry. The global human appropriation of terrestrial plant production has doubled in the last century. We estimate the maximum physical potential of the world's total land area outside croplands, infrastructure, wilderness and denser forests to deliver bioenergy at approximately 190EJyr?1. These pasture lands, sparser woodlands, savannas and tundras are already used heavily for grazing and store abundant carbon; they would have to be entirely converted to bioenergy and intensive forage production to provide that amount of energy. Such a high level of bioenergy supply would roughly double the global human biomass harvest, with far-reaching effects on biodiversity, ecosystems and food supply. Identifying sustainable levels of bioenergy and finding ways to integrate bioenergy with food supply and ecological conservation goals remains a huge and pressing scientific challenge.

Helmut Haberl; Karl-Heinz Erb; Fridolin Krausmann; Steve Running; Timothy D Searchinger; W Kolby Smith

2013-01-01T23:59:59.000Z

178

Forest Bioenergy or Forest Carbon? Assessing Trade-Offs in Greenhouse Gas Mitigation with Wood-Based Fuels  

Science Journals Connector (OSTI)

Forest Bioenergy or Forest Carbon? ... Forest carbon consequences of biomass harvest for bioenergy production can significantly delay and reduce GHG mitigation and should be included in life cycle studies. ... The potential of forest-based bioenergy to reduce greenhouse gas (GHG) emissions when displacing fossil-based energy must be balanced with forest carbon implications related to biomass harvest. ...

Jon McKechnie; Steve Colombo; Jiaxin Chen; Warren Mabee; Heather L. MacLean

2010-12-10T23:59:59.000Z

179

Bioenergy Development in Thailand: Challenges and Strategies  

Science Journals Connector (OSTI)

Abstract In recognition of concerns about the security of energy supply and climate change, the Thai government has developed Alternative Energy Development Plan for the period 20122021. Under this plan, the production of bio- ethanol and biodiesel in 2021 is expected to grow significantly. This growth will add more pressures on water and land requirements for growing energy crops. This is likely to contribute to worsening the security of water and food supply. This paper, therefore, provides an overview of the bioenergy development and current policies in Thailand with a view to identify the challenges faced by the development of bioenergy. A review of the bioenergy policies reveals that the existing policies have been exclusively focus on energy perspective and largely ignore the significance of the implications arising from the interdependencies between energy, water and food. There is a lack of understanding of the interrelationships between bioenergy, water and food policy interactions. The lack of such understanding is likely to pose several challenges including food or fuel dilemma, security of water supply and issues surrounding land use for biofuel production. This paper further emphasizes the need to develop an integrated framework for developing an understanding of the relationships between energy, water and land.

Supannika Wattana

2014-01-01T23:59:59.000Z

180

CO2 fluxes of transitional bioenergy crops: effect of land conversion during the first year of cultivation  

E-Print Network [OSTI]

CO2 fluxes of transitional bioenergy crops: effect of land conversion during the first year of Environmental Sciences, University of Toledo, Toledo, OH 43606, USA, wGreat Lakes Bioenergy Research Center be invoked in the first year by conversion of grasslands to biofuel crops. Keywords: bioenergy crops, carbon

Chen, Jiquan

Note: This page contains sample records for the topic "bioenergy production research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

IEA Bioenergy Task 42 on Biorefineries: Co-production of fuels, chemicals, power and materials from biomass  

E-Print Network [OSTI]

(DENMARK) Leonard Boniface, Maurice Dohy, Jean-Cristophe Pouet (FRANCE) Thomas Willke (GERMANY) Patrick countries: Austria, Canada, Denmark, France, Germany, Ireland, and the Netherlands. The overview includes........................................................................16 8. Bioethanol, biodiesel and biogas: production and capacity...........................17 9

182

Webinar: Landscape Design for Sustainable Bioenergy Systems  

Broader source: Energy.gov [DOE]

The Energy Departments Bioenergy Technologies Office will present a live informational webcast on the Landscape Design for Sustainable Bioenergy Systems Funding Opportunity (DE-FOA-0001179) on November 3, 2014, 1:30 p.m.3:00 p.m. Eastern Standard Time. This FOA seeks interdisciplinary projects that apply landscape design approaches to integrate cellulosic feedstock production into existing agricultural and forestry systems while maintaining or enhancing environmental and socio-economic sustainability including ecosystem services and food, feed, and fiber production. For the purposes of this FOA, cellulosic feedstock production refers to dedicated annual and perennial energy crops, use of agricultural and forestry residues, or a combination of these options.

183

Joining : BioEnergy Science Center  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Inventions Inventions The effective translation of BESC research results into applications testing and potential deployment is an implicit part of reaching DOE's bioenergy goals. The BESC member institutions recognize that a common strategy is important to the success of BESC. To promote the commercialization of new technologies, our plan is to: Maintain a single portal for information about available technologies. This web site features inventions and commercial opportunities in addition to the information content related to the research program Provide a single point of contact for the licensing of new BESC inventions on behalf of our team (contact speckrr@ornl.gov) Periodically Host a "BioEnergy Nexus" venture forum Provide opportunity for research institutions and private companies

184

Bioenergy Knowledge Discovery Framework Recognized at National...  

Energy Savers [EERE]

Knowledge Discovery Framework (KDF) is bringing together the bioenergy community through Web-based tools, and was presented by Bioenergy KDF team members from Oak Ridge National...

185

U.S. Bioenergy Statistics | Data.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

U.S. Bioenergy Statistics U.S. Bioenergy Statistics Agriculture Community Menu DATA APPS EVENTS DEVELOPER STATISTICS COLLABORATE ABOUT Agriculture You are here Data.gov » Communities » Agriculture » Data U.S. Bioenergy Statistics Dataset Summary Description The U.S. Bioenergy Statistics are a source of information on biofuels intended to present a picture of the renewable energy industry and its relationship to agriculture. Where appropriate, data are presented in both a calendar year and the relevant marketing year timeframe to increase utility to feedstock-oriented users. The statistics highlight the factors that influence the demand for agricultural feedstocks for biofuels production; for instance, numerous tables emphasize the relationship between energy and commodity markets.

186

Thailand-Key Results and Policy Recommendations for Future Bioenergy  

Open Energy Info (EERE)

and Policy Recommendations for Future Bioenergy and Policy Recommendations for Future Bioenergy Development Jump to: navigation, search Name Thailand-Key Results and Policy Recommendations for Future Bioenergy Development Agency/Company /Organization Food and Agriculture Organization of the United Nations Sector Land Focus Area Biomass, Agriculture Topics Co-benefits assessment, Policies/deployment programs, Background analysis Resource Type Lessons learned/best practices Website http://www.fao.org/docrep/013/ Country Thailand UN Region South-Eastern Asia References Thailand-Key Results and Policy Recommendations for Future Bioenergy Development[1] Abstract "The Government of Thailand, through its Alternative Energy Development Plan, has set a target to increase biofuel production to five billion

187

DOE and USDA Select Projects for more than $24 Million in Biomass Research and Development Grants  

Broader source: Energy.gov [DOE]

The U.S. Departments of Agriculture and Energy today announcedprojects selected for more than $24 million in grants to research and develop technologiesto produce biofuels, bioenergy and high-value biobased products.

188

An overview of the biomass resource potential of Norway for bioenergy use  

Science Journals Connector (OSTI)

This paper provides an overview of the Norwegian biomass resources for bioenergy use, bioenergy market and frame conditions through a comparison with Denmark, Finland and Sweden, which have a leading role in bioenergy production in the European Union. Although the contribution of renewable energy in Norway is among the highest in Europe (58%), mainly due to hydroelectricity, bioenergy has a low contribution to Norwegian energy supply (6%). As the experience from the other EU Member States showed, long-term, stable policies and relatively strong incentives are needed to initiate and build up a bioenergy market. In Norway, there is still a significant available potential for increasing the bioenergy contribution to the energy supply. The abundance and relatively low prices of energy (i.e. fossil fuels and electricity), in connection with the need of high investment costs, did not favour so far bioenergy production. Additional forest biomass may be mobilized in Norway by more intensive management of currently exploited forests. However, there are several limitations related to topography, accessibility and economics. The biomass resources and the full range of technologies available for heat or electricity generation both at small and large scale that can provide good opportunities for increased bioenergy production. The experience gained in Denmark, Finland and Sweden may be relevant for Norway, as well as for other EU Member States, where there is a deficit of mobilization of biomass resources and insufficient industrial integration of bioenergy with other forest-based sectors.

Nicolae Scarlat; Jean-Francois Dallemand; Odd Jarle Skjelhaugen; Dan Asplund; Lars Nesheim

2011-01-01T23:59:59.000Z

189

A holistic sustainability assessment tool for bioenergy using the Global Bioenergy Partnership (GBEP) sustainability indicators  

Science Journals Connector (OSTI)

Abstract In 2011 the Global Bioenergy Partnership (GBEP) released a set of indicators for sustainable bioenergy. However, two important issues still remain unresolved. One of them is the definition of sustainability, and the other is the lack of a holistic assessment tool for drawing conclusions from the indicators. The aim of this paper is to provide clarification on the concept of sustainability in the context of the GBEP indicators, and to develop a holistic assessment tool for assessing the sustainability of bioenergy programmes. The GBEP indicators are diverse in terms of what to measure, and some of them are not sufficiently directly related to the concept of sustainability. This makes the indicators ambiguous regarding to sustainability assessment. This study identifies whether the GBEP indicators are concerned with strong or weak sustainability, and develops a tool based on Multi Criteria Analysis (MCA) which can be used for assessing sustainability of bioenergy programmes using the GBEP indicators. The tool is demonstrated in an example for assessing the sustainability of biofuel production in a case study of Kyoto. We found that the biodiesel production in Kyoto performs well on the environmental pillar, but badly on the economic pillar, and based on the weights applied in this study the overall sustainability is better than diesel fuel. The holistic assessment tool provides practical information to policymakers on both ex-ante and ex-post policy evaluations.

Takashi Hayashi; Ekko C. van Ierland; Xueqin Zhu

2014-01-01T23:59:59.000Z

190

The water footprint of bioenergy  

Science Journals Connector (OSTI)

...hunger threshold. Households may make decisions...replacement of fossil energy with bioenergy generates...biofuels. Bioenergy. Energy derived from biomass...and industrial and household organic waste...beet Morocco 56 Japan 0 Russia 455 Russia...of 9 Table S3. Energy provided by ethanol...

Winnie Gerbens-Leenes; Arjen Y. Hoekstra; Theo H. van der Meer

2009-01-01T23:59:59.000Z

191

Effect of Harvest Dates on Biomass Accumulation and Composition in Bioenergy Sorghum  

E-Print Network [OSTI]

for use as a feedstock for ethanol production. Other factors such as water use efficiency, drought tolerance, yield potential, composition, and established production systems also make sorghum a logical choice as a feedstock for bioenergy production...

Borden, Dustin Ross

2012-02-14T23:59:59.000Z

192

BRAZIL RESEARCH INITIATIVES  

E-Print Network [OSTI]

Bioenergy Research Collaboration As a partner of the Great Lakes Bioenergy Research Center (GLBRC among agricultural researchers and stakeholders around the world. MSU's work with the GLBRC is organized

Liu, Taosheng

193

Bioenergy News | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Bioenergy News Bioenergy News Bioenergy News RSS August 30, 2011 USDA, Departments of Energy and Navy Seek Input from Industry to Advance Biofuels for Military and Commercial Transportation WASHINGTON, Aug. August 10, 2011 Department of Energy Releases New 'Billion-Ton' Study Highlighting Opportunities for Growth in Bioenergy Resources Washington, D.C. - The U.S. Department of Energy today released a report - 2011 U.S. Billion-Ton Update: Biomass Supply for a Bioenergy and Bioproducts Industry - detailing U.S. biomass feedstock potential nationwide. The report examines the nation's capacity to produce a billion dry tons of biomass resources annually for energy uses without impacting other vital U.S. June 10, 2011 Department of Energy Announces up to $36 Million to Support the Development

194

2012 Bioenergy Action Plan Prepared by the Bioenergy Interagency Working Group  

E-Print Network [OSTI]

2012 Bioenergy Action Plan Prepared by the Bioenergy Interagency Working Group AUGUST 2012 Edmund G. Brown Jr., Governor #12;Bioenergy Interagency Working Group Julia Levin, Chair, Bioenergy Interagency and the California Energy Commission with input from the Bioenergy Interagency Working Group. This report

195

NETWORK OF EXCELLENCE The CAP & Bioenergy  

E-Print Network [OSTI]

a campaign to inform farmers about markets for energy crops. #12;BIOENERGY NETWORK OF EXCELLENCE BAPBIOENERGY NETWORK OF EXCELLENCE The CAP & Bioenergy Driver or Barrier? IEA Bioenergy ExCo58://www.ieabioenergy.com/DocSet.aspx?id=5331 #12;BIOENERGY NETWORK OF EXCELLENCE IIIEE ? · A (relatively) small institute in a large University

196

Advanced Bioenergy LLC | Open Energy Information  

Open Energy Info (EERE)

Bioenergy LLC Bioenergy LLC Place Minneapolis, Minnesota Zip 55305 Product Developer of the 378.5m litre pa bioethanol plant in Fairmount. Coordinates 44.979035°, -93.264929° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.979035,"lon":-93.264929,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

197

BETO Announces Launch of the Bioenergy KDF Legislative Library  

Broader source: Energy.gov [DOE]

The Bioenergy Technologies Office is pleased to announce the release of a new Bioenergy Knowledge Discovery Framework (Bioenergy KDF) resource: the Legislative Library.

198

Abengoa Bioenergy Biomass of Kansas LLC | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Bioenergy Biomass of Kansas LLC Abengoa Bioenergy Biomass of Kansas LLC Abengoa Bioenergy Biomass of Kansas LLC Location: Hugoton, KS Eligibility: 1705 Snapshot In September 2011,...

199

Biomass Basics: The Facts About Bioenergy | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Basics: The Facts About Bioenergy Biomass Basics: The Facts About Bioenergy This document provides general information about bioenergy and its creation and potential uses....

200

Availability and cost of agricultural residues for bioenergy generation; International literature review and a case study for South Africa.  

E-Print Network [OSTI]

??Background The sustainability of first generation bioenergy has been researched intensively due to problems resulting from land use change. There is a growing interest to (more)

Valk, M.

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "bioenergy production research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Industrial Relations : BioEnergy Science Center  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Overview Overview The effective translation of BESC research results into applications testing and potential deployment is an implicit part of reaching DOE's bioenergy goals. The BESC member institutions recognize that a common strategy is important to the success of BESC. To promote the commercialization of new technologies, our plan is to: Maintain a single portal for information about available technologies. This web site will feature inventions and commercial opportunities in additoin to the information content related to the research program Provide a single point of contact for the licensing of new BESC inventions on behalf of our team (contact: Renae Speck) Provide opportunity for research institutions and private companies to become "BESC Affiliates"

202

USDA Projections of Bioenergy-Related Corn and Soyoil Use for 2010-2019  

E-Print Network [OSTI]

USDA Projections of Bioenergy-Related Corn and Soyoil Use for 2010-2019 Daniel M. O released long term projections for grain and energy markets at its 2010 Agricultural Outlook Forum, and the quantity of U.S. feedgrains and oilseeds to be used in bioenergy production processes, The USDA's long term

203

Age-Dependent Demographic Rates of the Bioenergy Crop Miscanthus 3 giganteus  

E-Print Network [OSTI]

grass Miscanthus 3 giganteus is currently being planted as a bioenergy crop in the north central region renewable energy production (Genovesi 2011; Raghu et al. 2006). Biofuels, produced from crops, are a sourceAge-Dependent Demographic Rates of the Bioenergy Crop Miscanthus 3 giganteus in Illinois David P

Sims, Gerald K.

204

Berkeley Lab Scientific Programs: Biological Sciences for Energy Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Biological Sciences for Energy Research Biological Sciences for Energy Research Biosci image Arabidopsis plants in the growth room at the Joint BioEnergy Institute (JBEI) Biomass encompasses all plant or vegetative materials and represents a vast repository of solar energy that was captured and stored in plant sugars via photosynthesis. Extracting and fermenting plant sugars into advanced biofuels that can replace gasoline on a gallon-for-gallon basis has the potential to far exceed today's entire global production of oil. Berkeley Lab researchers are working towards this goal via three major efforts - the Joint BioEnergy Institute, the Joint Genome Institute, and the Energy Biosciences Institute. The Joint BioEnergy Institute (JBEI) JBEI is one of the three U.S. Department of Energy (DOE) Bioenergy Research

205

future science group 675ISSN 1759-726910.4155/BFS.12.65 2012 Future Science Ltd In the past decade, the annual production of bio-  

E-Print Network [OSTI]

decade, the annual production of bio- diesel had increased globally by 5 billion gallons [201]. Meanwhile if the reaction time were extended. ReseaRch aRticle 1 Bio-Energy Center, Montana State University ­ Northern

He, Brian

206

Hydrogen Production and Delivery Research  

SciTech Connect (OSTI)

In response to DOE's Solicitation for Grant Applications DE-PS36-03GO93007, 'Hydrogen Production and Delivery Research', SRI International (SRI) proposed to conduct work under Technical Topic Area 5, Advanced Electrolysis Systems; Sub-Topic 5B, High-Temperature Steam Electrolysis. We proposed to develop a prototype of a modular industrial system for low-cost generation of H{sub 2} (<$2/kg) by steam electrolysis with anodic depolarization by CO. Water will be decomposed electrochemically into H{sub 2} and O{sub 2} on the cathode side of a high-temperature electrolyzer. Oxygen ions will migrate through an oxygen-ion-conductive solid oxide electrolyte. Gas mixtures on the cathode side (H{sub 2} + H{sub 2}O) and on the anode side (CO + CO{sub 2}) will be reliably separated by the solid electrolyte. Depolarization of the anodic process will decrease the electrolysis voltage, and thus the electricity required for H{sub 2} generation and the cost of produced H{sub 2}. The process is expected to be at least 10 times more energy-efficient than low-temperature electrolysis and will generate H{sub 2} at a cost of approximately $1-$1.5/kg. The operating economics of the system can be made even more attractive by deploying it at locations where waste heat is available; using waste heat would reduce the electricity required for heating the system. Two critical targets must be achieved: an H{sub 2} production cost below $2/kg, and scalable design of the pilot H{sub 2} generation system. The project deliverables would be (1) a pilot electrolysis system for H{sub 2} generation, (2) an economic analysis, (3) a market analysis, and (4) recommendations and technical documentation for field deployment. DOE was able to provide only 200K out of 1.8M (or about 10% of awarded budget), so project was stopped abruptly.

Iouri Balachov, PhD

2007-10-15T23:59:59.000Z

207

Definition: Bioenergy | Open Energy Information  

Open Energy Info (EERE)

Bioenergy Bioenergy Energy produced from organic materials from plants or animals.[1][2] View on Wikipedia Wikipedia Definition Bioenergy is renewable energy made available from materials derived from biological sources. Biomass is any organic material which has stored sunlight in the form of chemical energy. As a fuel it may include wood, wood waste, straw, manure, sugarcane, and many other byproducts from a variety of agricultural processes. By 2010, there was 35GW of globally installed bioenergy capacity for electricity generation, of which 7GW was in the United States. In its most narrow sense it is a synonym to biofuel, which is fuel derived from biological sources. In its broader sense it includes biomass, the biological material used as a biofuel, as well as the

208

Assessment of global bioenergy potentials  

Science Journals Connector (OSTI)

A recently published literature review (Berndes et al. 2003) analysed 17 studies that reported bioenergy potentials, all published in the 1990s except...2001...) which became available in 2001. The analysed studi...

Ruth Offermann; Thilo Seidenberger

2011-01-01T23:59:59.000Z

209

New and emerging bioenergy technologies  

E-Print Network [OSTI]

Rohstoffe e.V. Germany Consultant Charles Butcher Science Journalist Risø Energy Report 2 #12;1. Preface 3 2 or fisheries. Examples of bioenergy resources are fuel wood, bagasse, organic waste, biogas and bioethanol

210

Los Alamos National Laboratory: Bioscience Division: Bioenergy &  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Cliff Unkefer Cliff Unkefer Deputy Group Leader Kathy Elsberry Group Office Administrator Janet Friedman Group Office 505 667 0075 B Div People Scientists in B-8 Develop Strategies for Bioenergy, Bioremediation and Climate Change Research As part of the Bioscience mission to address issues in environmental stewardship, this group focuses on discovering the molecular principles that underpin biological diversity, specificity, response and function. This is achieved through research in environmental microbiology, microbial genomics, metabolomics, systematics and phylogeny and can be applied to the advancement of bioenergy technologies and bioremediation as well as to our understanding of carbon cycling. B-8 Teams Chemical Conversion Metabolomics Environmental Microbiology

211

Carbon Green BioEnergy LLC | Open Energy Information  

Open Energy Info (EERE)

BioEnergy LLC BioEnergy LLC Jump to: navigation, search Name Carbon Green BioEnergy LLC Place Chicago, Illinois Zip 60603 Sector Efficiency Product Chicago-based company dedicated to optimising biofuel production through management, energy efficiency, and operational improvements. Coordinates 41.88415°, -87.632409° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.88415,"lon":-87.632409,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

212

BESC Affiliate Program : BioEnergy Science Center  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Affiliate Program Affiliate Program The BioEnergy Science Center has among its goals the effective, coordinated commercialization of appropriate technologies through formation of start-up ventures as well as licensing to corporate entities pursuing biofuels development. The effective translation of BESC research results into applications testing and potential deployment is an implicit part of reaching DOE's bioenergy goals. Toward this end, we are offering companies and universities the opportunity to become BESC Affiliates and receive the following benefits: An invitation to participate in all bio-energy related training, summer courses, symposia, and seminars hosted by or connected with BESC Notification of all publications resulting from BESC sponsored research, as well as timely information about BESC news

213

Bioenergy Deployment Consortium (BDC) 2014 Fall Symposium  

Broader source: Energy.gov [DOE]

The 2014 BDC Fall Symposium will be held on October 2122, 2014 in Fort Myers, Florida. The event will include a tour of the Algenol facility on Wednesday morning. The symposium will have panels for progress reports from current cellulosic bio-product companies, updates on government policy from several agencies, scale-up strategies,and lessons learned. POET-DSM will provide the after dinner success story. Neil Rossmeissl, Program Manager, Algal Program, Bioenergy Technologies Office, will be delivering the keynote address on expanding the bioeconomy.

214

DOE Perspectives on Sustainable Bioenergy Landscapes  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

| Bioenergy Technologies Office biomass.energy.gov Kristen Johnson Sustainability T echnology M anager Bioenergy Technologies Office U.S. D epartment o f E nergy ( DOE) Green L...

215

Kai BioEnergy Corporation | Open Energy Information  

Open Energy Info (EERE)

Kai BioEnergy Corporation Kai BioEnergy Corporation Jump to: navigation, search Name Kai BioEnergy Corporation Place Del Mar, California Zip 92014 Sector Biofuels Product Developing technologies to produce biodiesel from algae Website http://www.kaibioenergy.com/ Coordinates 32.964294°, -117.265191° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.964294,"lon":-117.265191,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

216

Anhui Yineng Bioenergy Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Yineng Bioenergy Co Ltd Yineng Bioenergy Co Ltd Jump to: navigation, search Name Anhui Yineng Bioenergy Co Ltd Place Hefei, Anhui Province, China Product A Chinese bio-oil equipment manufacturer Coordinates 31.86141°, 117.27562° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":31.86141,"lon":117.27562,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

217

Borgford BioEnergy LLC | Open Energy Information  

Open Energy Info (EERE)

Borgford BioEnergy LLC Borgford BioEnergy LLC Jump to: navigation, search Name Borgford BioEnergy LLC Place Colville, Washington State Zip 99114 Sector Biomass Product Washington-based developer of biomass-to-energy projects. Coordinates 48.54657°, -117.904754° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":48.54657,"lon":-117.904754,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

218

Facility will focus on bioenergy, global food security  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Facility will focus on bioenergy, global food security Facility will focus on bioenergy, global food security Facility will focus on bioenergy, global food security The New Mexico Consortium expects to complete the 27,000 square foot laboratory and office facility next spring. May 22, 2012 Aerial view of Los Alamos National Laboratory Aerial view of Los Alamos National Laboratory. Contact Kevin Roark Communications Office (505) 665-9202 Email Los Alamos, N.M., May 22, 2012 - U.S. Senator Tom Udall (D-NM) spoke at the groundbreaking ceremony marking the start of construction on the New Mexico Consortium's (NMC) biological research facility last Friday afternoon. Senator Udall noted New Mexico's novel and extensive contributions to our nation's renewable energy efforts and congratulated LANL, the NMC, and Richard Sayre on their commitment to advancing the nations goals for energy

219

Research in Context Scientific Production and Researchers' Experience in Jordan  

E-Print Network [OSTI]

1 Research in Context Scientific Production and Researchers' Experience in Jordan Pénélope Larzillière The social and political context of research in Jordan is made up of the national system for the Hashemite regime. Jordan, with a population of 5.4 million, is categorised as a lower ­ middle income

Paris-Sud XI, Université de

220

Press Releases: BioEnergy Science Center  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Press Releases Press Releases Chu presents energy research, development vision to senators U.S. Energy Secretary Steven Chu testified at a U.S. Senate Energy and Natural Resources Committee hearing March 5. During his testimony, Chu presented his vision for energy research and development at the... Source: Checkbiotech (Trade), March 11, 2009 Keywords Matched: Oak Ridge National Country: Switzerland Region: SourceType: News Laboratory: ORNL Feed Source: Meltwater Chu presents energy research, development vision to senators: An example, Chu said, is the current biofuels research underway at the three BioEnergy Research Centers located at the Oak Ridge National Laboratory in Oak Ridge, Tenn.; the University of Wisconsin in Madison; and Lawrence Berkeley National Laboratory. March 10, 2009

Note: This page contains sample records for the topic "bioenergy production research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Hawaii Bioenergy Master Plan Economic Impacts  

E-Print Network [OSTI]

Hawaii Bioenergy Master Plan Economic Impacts Prepared for The Hawaii Natural Energy Institute: averaging $49/barrel. Although there are several avenues by which a local bioenergy industry could develop mandate implementation, amongst other federal and state-level incentives, was to prompt a local bioenergy

222

Moderne bioenergi -et nyt dansk vkstomrde?  

E-Print Network [OSTI]

Moderne bioenergi - et nyt dansk vækstområde? 11. december 2003 Marriott Hotel, København #12;Moderne bioenergi - et nyt dansk vækstområde? Velkomst og introduktion Jørgen Kjems, administrerende direktør, Risø #12;Program 13.40-14.00 Perspektiver for moderne bioenergi Hans Larsen, Risø 14

223

Hawaii Bioenergy Master Plan Stakeholder Comment  

E-Print Network [OSTI]

Hawaii Bioenergy Master Plan Volume III Stakeholder Comment Prepared for State of Hawaii Department of Ocean Earth Sciences and Technology December 2009 #12;i Hawaii Bioenergy Master Plan Volume III Stakeholder Comment Comments on the Draft Hawaii Bioenergy Master Plan were solicited by posting the document

224

Bioenergy Knowledge Discovery Framework Recognized at National Conference  

Broader source: Energy.gov [DOE]

The paper and poster presentation "Bioenergy KDF: Enabling Spatiotemporal Data Synthesis and Research Collaboration" was awarded second place for best paper at the ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, held November 47 in Dallas, Texas.

225

Purpose-designed Crop Plants for Biofuels BIOENERGY PROGRAM  

E-Print Network [OSTI]

Purpose-designed Crop Plants for Biofuels BIOENERGY PROGRAM The Texas AgriLife Research Center for the biofuels industry. This program recognizes that the ideal combination of traits required for an economically and energetically sustainable biofuels industry does not yet exist in a single plant spe- cies

226

Economic assessment of regional bioenergy systems in Australia: a flow analysis application  

Science Journals Connector (OSTI)

This paper describes a modelling tool that integrates Material Flow Analysis, energy production and Greenhouse Gas (GHG) emissions accounting for biomass flows at a regional scale. This tool allows comprehensive analysis of alternative systems for management of biomass waste and bioenergy production in regional areas. Different possible options for processing a range of biomass waste streams can be evaluated against multiple criteria including various environmental impacts and cost-effectiveness. The objective is to support the design of integrated biomass waste and bioenergy systems that maximise synergies and optimise tradeoffs between bioenergy production, GHG emissions, recycling of valuable soil nutrients and control of harmful contaminants. This analytical tool is applied to a major agricultural region in Australia, the Murrumbidgee Irrigation Area. A scenario demonstrates how the construction of different types of bioenergy plant can offer valuable benefits with regard to renewable energy production, GHG emission reductions, increasing phosphorus cycling back to soils and reduced cadmium contamination.

Napat Jakrawatana; Stephen Moore; Iain MacGill

2009-01-01T23:59:59.000Z

227

Energy Department Announces Up to $14 Million for Applying Landscape Design to Cellulosic Bioenergy  

Broader source: Energy.gov [DOE]

The Energy Department today announced up to $14 million to support landscape design approaches that maintain or enhance the environmental and socio-economic sustainability of cellulosic bioenergy through the improvement of feedstock production, logistics systems, and technology development.

228

A global conversation about energy from biomass: the continental conventions of the global sustainable bioenergy project  

Science Journals Connector (OSTI)

...climate, geography, biological resources, cultural traditions and politico-economic situations. A range of biomass feedstocks are employed for bioenergy production in the Asia-Oceania countries, such as oil palm (Malaysia and Indonesia...

2011-01-01T23:59:59.000Z

229

Integrating place-specific livelihood and equity outcomes into global assessments of bioenergy deployment  

Science Journals Connector (OSTI)

Integrated assessment models suggest that the large-scale deployment of bioenergy could contribute to ambitious climate change mitigation efforts. However, such a shift would intensify the global competition for land, with possible consequences for 1.5 billion smallholder livelihoods that these models do not consider. Maintaining and enhancing robust livelihoods upon bioenergy deployment is an equally important sustainability goal that warrants greater attention. The social implications of biofuel production are complex, varied and place-specific, difficult to model, operationalize and quantify. However, a rapidly developing body of social science literature is advancing the understanding of these interactions. In this letter we link human geography research on the interaction between biofuel crops and livelihoods in developing countries to integrated assessments on biofuels. We review case-study research focused on first-generation biofuel crops to demonstrate that food, income, land and other assets such as health are key livelihood dimensions that can be impacted by such crops and we highlight how place-specific and global dynamics influence both aggregate and distributional outcomes across these livelihood dimensions. We argue that place-specific production models and land tenure regimes mediate livelihood outcomes, which are also in turn affected by global and regional markets and their resulting equilibrium dynamics. The place-specific perspective suggests that distributional consequences are a crucial complement to aggregate outcomes; this has not been given enough weight in comprehensive assessments to date. By narrowing the gap between place-specific case studies and global models, our discussion offers a route towards integrating livelihood and equity considerations into scenarios of future bioenergy deployment, thus contributing to a key challenge in sustainability sciences.

Felix Creutzig; Esteve Corbera; Simon Bolwig; Carol Hunsberger

2013-01-01T23:59:59.000Z

230

Bioenergy Sustainability at the Regional Scale  

SciTech Connect (OSTI)

To meet national goals for biofuels production, there are going to be large increases in acreage planted to dedicated biofuels crops. These acreages may be in perennial grasses, annual crops, short rotation woody crops, or other types of vegetation and may involve use of existing cropland, marginal lands, abandoned lands or conversion of forest land. The establishment of bioenergy crops will affect ecological processes and their interactions and thus have an influence on ecosystem services provided by the lands on which these crops are grown. The regional-scale effects of bioenergy choices on ecosystem services need special attention because they often have been neglected yet can affect the ecological, social and economic aspects of sustainability. A regional-scale perspective provides the opportunity to make more informed choices about crop selection and management, particularly with regard to water quality and quantity issues, and also about other aspects of ecological, social, and economic sustainability. We give special attention to cellulosic feedstocks because of the opportunities they provide. Adopting an adaptive management approach for biofuels feedstock production planning will be possible to a certain extent if there is adequate monitoring data on the effects of changes in land use. Effects on water resources are used as an example and existing understanding of water resource effects are analyzed in detail. Current results indicate that there may be water quality improvements coupled with some decreases in available water for downstream uses.

Kline, Keith L [ORNL; Dale, Virginia H [ORNL; Mulholland, Patrick J [ORNL; Lowrance, Richard [USDA-ARS Southeast Watershed Research Laboratory, Tifton, Georgia; Robertson, G. Phillip [W.K. Kellogg Biological Station and Great Lakes Bioenergy Research

2010-11-01T23:59:59.000Z

231

Raymond Burns > Product Research Technologist - Exxon Mobile...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Raymond Burns Product Research Technologist - Exxon Mobile raymond.burns@gmail.com Formerly a member of the DiSalvo Group, Ray earned his PhD in August 2013...

232

Research | NREL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

energy grid integration. Learn More National Bioenergy Center National Center for Photovoltaics National Wind Technology Center Publications Data & Resources Research Highlights...

233

Pacific Northwest and Alaska Regional Bioenergy Program : Five Year Report, 1985-1990.  

SciTech Connect (OSTI)

This five-year report describes activities of the Pacific Northwest and Alaska Regional Bioenergy Program between 1985 and 1990. Begun in 1979, this Regional Bioenergy Program became the model for the nation's four other regional bioenergy programs in 1983. Within the time span of this report, the Pacific Northwest and Alaska Regional Bioenergy Program has undertaken a number of applied research and technology projects, and supported and guided the work of its five participating state energy programs. During this period, the Regional Bioenergy Program has brought together public- and private-sector organizations to promote the use of local biomass and municipal-waste energy resources and technologies. This report claims information on the mission, goals and accomplishments of the Regional Bioenergy Program. It describes the biomass projects conducted by the individual states of the region, and summarizes the results of the programs technical studies. Publications from both the state and regional projects are listed. The report goes on to consider future efforts of the Regional Bioenergy Program under its challenging assignment. Research activities include: forest residue estimates; Landsat biomass mapping; woody biomass plantations; industrial wood-fuel market; residential space heating with wood; materials recovery of residues; co-firing wood chips with coal; biomass fuel characterization; wood-boosted geothermal power plants; wood gasification; municipal solid wastes to energy; woodstove study; slash burning; forest depletion; and technology transfer. 9 figs., 6 tabs.

Pacific Northwest and Alaska Bioenergy Program (U.S.)

1991-02-01T23:59:59.000Z

234

DOE to Invest $250 Million in New Bioenergy Centers | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

$250 Million in New Bioenergy Centers $250 Million in New Bioenergy Centers DOE to Invest $250 Million in New Bioenergy Centers August 2, 2006 - 4:48pm Addthis Basic Genomics Research on the Development of Biofuels to be Accelerated JOLIET, IL - U.S. Department of Energy (DOE) Secretary Samuel W. Bodman announced today that DOE will spend $250 million to establish and operate two new Bioenergy Research Centers to accelerate basic research on the development of cellulosic ethanol and other biofuels. The Secretary made the announcement with Congressman Jerry Weller (IL-11th), local officials and biofuels stakeholders during a visit to Channahon, IL. "This is an important step toward our goal of replacing 30 percent of transportation fuels with biofuels by 2030," Secretary Bodman said. "The

235

ORNL Bioenergy technologies  

SciTech Connect (OSTI)

ORNL researchers discuss breakthroughs in biomass conversion, feedstocks, logistics and sustainability

Davison, Brian; Narula, Chaintanya; Langholtz, Matt; Dale, Virginia

2014-07-02T23:59:59.000Z

236

Bird communities in future bioenergy landscapes of the Upper Midwest  

Science Journals Connector (OSTI)

...The effects of bioenergy crop management...that extensive literature reviews have concluded...understanding how different bioenergy crops, and the...Fargione JE ( 2009 ) Bioenergy and wildlife: Threats and...Camp M ( 1995 ) A review and synthesis of habitat...

Timothy D. Meehan; Allen H. Hurlbert; Claudio Gratton

2010-01-01T23:59:59.000Z

237

STAFFREPORT Prepared for the Bioenergy Interagency Working Group  

E-Print Network [OSTI]

STAFFREPORT Prepared for the Bioenergy Interagency Working Group: Air Resources Board 2010 2009 PROGRESS TO PLAN BIOENERGY ACTION PLAN FOR CALIFORNIA CALIFORNIA ENERGY COMMISSION #12, and et. al. 2010. 2009 Progress to Plan Bioenergy Action Plan for California. California Energy

238

Track Bioenergy Legislation with New Web Tool | Department of...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Track Bioenergy Legislation with New Web Tool Track Bioenergy Legislation with New Web Tool February 27, 2014 - 5:59pm Addthis The Bioenergy KDF Legislative Library aims to help...

239

16 September 2014 SENT TO LSU AGCENTER/LOUISIANA FOREST PRODUCTS DEVELOPMENT CENTER -FOREST SECTOR / FORESTY PRODUCTS INTEREST GROUP  

E-Print Network [OSTI]

into bioenergy. Respondents were asked if they would participate in a biomass-to-bioenergy market with an option resources, the development and expansion of a biomass industry in the U.S. will require the use of bioenergy agricultural residues from harvesting activities should be used for bioenergy production, a little more than 63

240

Biomass and Bioenergy 31 (2007) 638645 Forest bioenergy system to reduce the hazard of wildfires  

E-Print Network [OSTI]

Biomass and Bioenergy 31 (2007) 638­645 Forest bioenergy system to reduce the hazard of wildfires for bioenergy. The start-up project is in the Nutrioso area of the Alpine Ranger District, Apache. The outlet for the wood fuel pellets is the growing market for house and business heating, and co

Note: This page contains sample records for the topic "bioenergy production research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Bioenergy Toolkit | Open Energy Information  

Open Energy Info (EERE)

Bioenergy Toolkit Bioenergy Toolkit Jump to: navigation, search Stage 3 LEDS Home Introduction to Framework Assess current country plans, policies, practices, and capacities Develop_BAU Stage 4: Prioritizing and Planning for Actions Begin execution of implementation plans 1.0. Organizing the LEDS Process 1.1. Institutional Structure for LEDS 1.2. Workplan to Develop the LEDS 1.3. Roles and responsibilities to develop LEDS 2.1. Assess current country plans, policies, practices, and capacities 2.2. Compile lessons learned and good practices from ongoing and previous sustainable development efforts in the country 2.3. Assess public and private sector capacity to support initiatives 2.4. Assess and improve the national GHG inventory and other economic and resource data as needed for LEDS development

242

Bioenergy Documentary | OpenEI Community  

Open Energy Info (EERE)

and was developed by the U.S. Department of Energy Bioenergy Technologies Office (BETO), Oak Ridge National Laboratory, Green Focus Films, and BCS, Incorporated. --- Subscribe to...

243

Abengoa Bioenergy Biomass of Kansas, LLC  

Broader source: Energy.gov (indexed) [DOE]

Abengoa Bioenergy Biomass of Kansas, LLC Corporate HQ: Chesterfield, Missouri Proposed Facility Location: Hugoton, Stevens County, Kansas Description: This project from a committed...

244

Bioenergy & Clean Cities | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Bioenergy Technologies Office and the Clean Cities program regularly conduct a joint Web conference for state energy office representatives and Clean Cities coordinators. The...

245

EIS-0407: Abengoa Biomass Bioenergy Project near Hugoton, Stevens...  

Broader source: Energy.gov (indexed) [DOE]

07: Abengoa Biomass Bioenergy Project near Hugoton, Stevens County, KS EIS-0407: Abengoa Biomass Bioenergy Project near Hugoton, Stevens County, KS August 20, 2010 EIS-0407: Final...

246

ABSTRACT: Bioenergy Harvesting Technologies to Supply Crop Residues...  

Broader source: Energy.gov (indexed) [DOE]

ABSTRACT: Bioenergy Harvesting Technologies to Supply Crop Residues In a Densified Large Square Bale Format ABSTRACT: Bioenergy Harvesting Technologies to Supply Crop Residues In a...

247

Biomass IBR Fact Sheet: Abengoa Bioenergy | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Sheet: Abengoa Bioenergy Integrated Biorefinery for Conversion of Biomass to Ethanol, Power, and Heat ibrcommercialabengoa.pdf More Documents & Publications Abengoa Bioenergy...

248

Guofu Bioenergy Science Technology Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Guofu Bioenergy Science Technology Co Ltd Jump to: navigation, search Name: Guofu Bioenergy Science & Technology Co Ltd Place: Beijing Municipality, China Zip: 100101 Sector:...

249

Air Products Research Alliance University of California,  

E-Print Network [OSTI]

Air Products Research Alliance with University of California, Santa Barbara Carrington Smith issued since 1971 100 new patents/year Chemical Industry Safety Leader Several university alliances Partnerships University Alliances Early access for company to new/emerging technology Linkages to new

California at Santa Barbara, University of

250

Bioenergy Success Stories  

Broader source: Energy.gov [DOE]

The Office of Energy Efficiency and Renewable Energy's (EERE) successes in developing sustainable, cost-competitive biofuels, bioproducts, and biopower translate into clean, affordable fuels for the cars and trucks of today and tomorrow, and products and power that can help reduce dependence on fossil fuels.

251

Towards closing the nitrogen flow in UK agriculture: An explorative study of integrated food and bioenergy production with increased nitrogen recirculation.  

E-Print Network [OSTI]

??Nitrogen is an essential growth factor in nature and for food production. It exists in many forms, including reactive nitrogen compounds available for plant uptake, (more)

Skenhall, Sara Alongi

2011-01-01T23:59:59.000Z

252

E-Print Network 3.0 - a-1 fuel production Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

& Biomaterials Waste Cooking Oil Crops Intermediate Products Conversion... Technologies Bioenergy Products Ethanol Biodiesel Electricity & Heat Other Fuels, Chemicals, &...

253

Hawaii Bioenergy Master Plan Potential Environmental Impacts of  

E-Print Network [OSTI]

Hawaii Bioenergy Master Plan Potential Environmental Impacts of Bioenergy Development in Hawaii of the potential environmental impacts associated with bioenergy development in Hawaii was conducted as part of the Hawaii Bioenergy Master Plan mandated by Act 253 of the Hawaii State Legislature in 2007. This effort

254

BioEnergy International LLC | Open Energy Information  

Open Energy Info (EERE)

BioEnergy International LLC BioEnergy International LLC Address 1 Pinehill Drive Place Quincy, Massachusetts Zip 02169 Sector Biofuels Product Development and commercialization of next generation biorefineries Website http://www.bioenergyllc.com/ Coordinates 42.228468°, -71.027593° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.228468,"lon":-71.027593,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

255

Bioenergy plants in the United States and China  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

181 (2011) 621- 622 Contents lists available at SciVerse ScienceDirect Plant Science j o u r n a l h o m e p a g e : w w w . e l s e v i e r . c o m / l o c a t e / p l a n t s c i Editorial Bioenergy plants in the United States and China The emerging bio-economies of the US and China hinge on the development of dedicated bioenergy feedstocks that will increase the production of next-generation biofuels and bioproducts. While biofuels might have less eventual importance than bioproducts, transportation needs for both countries require increasingly more biofuels to be produced in the coming decades. The US Renewable Fuels Standard mandate 136 billion litres of biofuels by 2022. Nearly 80 billion litres are required to be "advanced biofuels," generally regarded as fuels from non-corn and soybean feedstocks. Because

256

Sustainable development of bioenergy sector: an integrated methodological framework  

Science Journals Connector (OSTI)

Climate change and sustainable development are interrelated issues, which are of vital importance to government policy and corporate decision makers. The sustainability evaluation of a biomass-based technology with consideration of stakeholder interests can provide a foundation for implementing energy and environmental policies. This study aims to develop an integrated and structured methodological framework for analysing biofuel systems in pursuit of sustainable large scale production. The integrated assessment framework can assist to formulate integrative and transparent policies for sustainable biomass certification. The proposed framework uses first the analytic hierarchy process (AHP) to aid in extracting knowledge and judgments from stakeholders. AHP determines the critical criteria and indicators representing conflicting stakeholders' interests which can be incorporated in creating a dynamic system model for landscape-scale bioenergy modelling and assessment. An integrated AHP and system dynamics approach is currently being applied to assess the sustainable development of forest bioenergy sector in Maine, USA.

Anthony Halog

2011-01-01T23:59:59.000Z

257

Contact Information - Industrial : BioEnergy Science Center  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

BESC Industry Contact Information BESC Industry Contact Information To learn more about BESC's industry program please contact Renae Speck, Director of Technology Transfer and Partnerships for BESC, (865-576-4680), Renae Speck). Renae Speck Renae Speck, PhD spends fifty percent of her time as a Senior Commercialization Manager in the Office of Technology Transfer in the Partnership Directorate and fifty percent of her time as the Manager of Technology Transfer and Partnerships for the BioEnergy Science Center. As a Senior Commercialization Manager, Renae is responsible for portfolio management and commercialization of intellectual property created by researchers and staff in the Biological and Environmental Sciences Divisions as well as any intellectual property created by Oak Ridge National Laboratory staff that is funded by the BioEnergy Science Center

258

Comparison of Arabinoxylan Structure in Bioenergy and Model Grasses  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Arabinoxylan Arabinoxylan Structure in Bioenergy and Model Grasses Ameya R. Kulkarni, 1 Sivakumar Pattathil, 1 Michael G. Hahn, 1,2 William S. York, 1,3 and Malcolm A. O'Neill 1 1 Complex Carbohydrate Research Center and US Department of Energy BioEnergy Science Center, 2 Department of Plant Biology, and 3 Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA Abstract Heteroxylans were solubilized from the alcohol-insoluble residue of switchgrass, rice, Brachypodium, Miscanthus, foxtail millet, and poplar with 1 M KOH. A combination of enzymatic, chemical, nu- clear magnetic resonance (NMR), mass spectroscopic, and immu- nological techniques indicated that grass arabinoxylans have comparable structures and contain no discernible amount of the reducing end sequence present in dicot glucuronoxylan. Our data suggest that rice, Brachypodium, and foxtail

259

Addressing the Need for Alternative Transportation Fuels: The Joint BioEnergy Institute  

E-Print Network [OSTI]

Fuels: The Joint BioEnergy Institute Harvey W. Blanch ,,,, * Joint BioEnergy Institute, Department of Chemicalbiomass monomers. The Joint BioEnergy Institute (JBEI) is a

Blanch, Harvey

2010-01-01T23:59:59.000Z

260

Switchgrass for Forage and Bioenergy: II. Effects of P and K fertilization  

E-Print Network [OSTI]

systems. Biomass and Bioenergy 30:198-206. Fixen, PE. 2007.and persistence under bioenergy harvest systems in thebiomass yields for bioenergy purposes have typically been

Guretzky, John A; Kering, Maru K; Biermacher, Jon T; Cook, Billy J

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "bioenergy production research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Bioenergy KDF | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Bioenergy KDF Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Bioenergy KDF Agency/Company /Organization: US Department of Energy Office of Biomass Program Partner: Oak Ridge National Laboratory Sector: Energy Focus Area: Renewable Energy, Biomass Phase: Bring the Right People Together Topics: Background analysis, Resource assessment Resource Type: Maps, Presentation, Publications, Technical report, Software/modeling tools User Interface: Website Website: bioenergykdf.net Web Application Link: bioenergykdf.net Cost: Free OpenEI Keyword(s): Energy Efficiency and Renewable Energy (EERE) Tools Coordinates: 36.00941332491°, -84.270080532879° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.00941332491,"lon":-84.270080532879,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

262

MONTANA STATE UNIVERSITY DEPARTMENT OF LAND RESOURCES & ENVIRONMENTAL SCIENCES Degree Requirements for a B. S. in Sustainable Foods & Bioenergy Systems Agroecology Option 20142015 Catalog  

E-Print Network [OSTI]

Requirements for a B. S. in Sustainable Foods & Bioenergy Systems Agroecology Option 20142015 Catalog Name ENSC 110 Land Resources & Environmental Sciences 3 F SFBS 146 Intro Sust Food/Bioenergy Systems 3) Vegetable Production 3 F HORT 345 Organic Market Gardening 3 Su NASX 415 (even years) Native Food Systems 3

Maxwell, Bruce D.

263

State Bioenergy Primer: Information and Resources for States on Issues, Opportunities, and Options for Advancing Bioenergy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

State State Bioenergy Primer information and resources for States on issues, opportunities, and options for Advancing Bioenergy U.S. EnvironmEntal ProtEction agEncy and national rEnEwablE EnErgy laboratory SEPtEmbEr 15, 2009 TABle of ConTenTS Acknowledgements ________________________________________________________________ iv Key Acronyms and Abbreviations ______________________________________________________ v executive Summary ___________________________________________________ 1 introduction _________________________________________________________ 3 1.1 How the Primer Is Organized ____________________________________________________ 5 1.2 References ____________________________________________________________________ 5 What is Bioenergy? ____________________________________________________

264

Advancing Bioenergy in Europe: Exploring bioenergy systems and socio-political issues.  

E-Print Network [OSTI]

??This thesis concentrates on bioenergy (or biomass utilised for heat, electricity and fuels for transport) as a renewable energy with significant potentials and options. Biomass (more)

McCormick, Kes

2007-01-01T23:59:59.000Z

265

Agronomic Suitability of Bioenergy Crops in Mississippi  

SciTech Connect (OSTI)

In Mississippi, some questions need to be answered about bioenergy crops: how much suitable land is available? How much material can that land produce? Which production systems work best in which scenarios? What levels of inputs will be required for productivity and longterm sustainability? How will the crops reach the market? What kinds of infrastructure will be necessary to make that happen? This publication helps answer these questions: ???????????????????????????????¢???????????????????????????????????????????????????????????????¢ Which areas in the state are best for bioenergy crop production? ???????????????????????????????¢???????????????????????????????????????????????????????????????¢ How much could these areas produce sustainably? ???????????????????????????????¢???????????????????????????????????????????????????????????????¢ How can bioenergy crops impact carbon sequestration and carbon credits? ???????????????????????????????¢???????????????????????????????????????????????????????????????¢ How will these crops affect fertilizer use and water quality? ???????????????????????????????¢?????????????

Lemus, Rocky; Baldwin, Brian; Lang, David

2011-10-01T23:59:59.000Z

266

Socio-economic drivers in implementing bioenergy projects  

Science Journals Connector (OSTI)

Within the international community there is considerable interest in the socio-economic implications of moving society towards the more widespread use of renewable energy resources. Such change is seen to be very necessary but is often poorly communicated to people and communities who need to accept such changes. There are pockets of activity across the world looking at various approaches to understand this fundamental matter. Typically, socio-economic implications are measured in terms of economic indices, such as employment and monetary gains, but in effect the analysis relates to a number of aspects which include social, cultural, institutional, and environmental issues. The extremely complex nature of bioenergy, many different technologies involved and a number of different, associated aspects (socio-economics, greenhouse gas mitigation potential, environment, ) make this whole topic a complex subject. This paper is primarily a descriptive research and review of literature on employment and other socio-economic aspects of bioenergy systems as drivers for implementing bioenergy projects. Due to the limited information, this paper does not provide absolute quantification on the multiplier effects of local and or national incomes of any particular country or region. The paper intends to trigger a more in-depth discussion of data gaps, potentials, opportunities and challenges. An encouraging trend is that in many countries policy makers are beginning to perceive the potential economic benefits of commercial biomass e.g. employment/earnings, regional economic gain, contribution to security of energy supply and all others.

J. Domac; K. Richards; S. Risovic

2005-01-01T23:59:59.000Z

267

Opportunities and barriers for sustainable international bioenergy trade and strategies to overcome them -A report prepared by IEA Bioenergy Task 40  

E-Print Network [OSTI]

sustainable energy production. Stimulated by the renewable energy policies in several countries, rising oil-side, · On the longer-term, market support policies in the various countries, etc. should be designed to promote them - A report prepared by IEA Bioenergy Task 40 1 Opportunities and barriers for sustainable

268

Bioenergy  

Broader source: Energy.gov [DOE]

Learn how the Energy Department is working to sustainably transform the nation's abundant renewable resources into biomass energy.

269

BIOENERGI ER BLEVET MODERNE 4DECEMBER 2003  

E-Print Network [OSTI]

at bruge biomasse til energi. Opfyring med brænde og opvarmning med halmfyr eller biogas er kendte, biogas og bioethanol. Bioenergi er den eneste vedvarende energikilde, der findes i fast, flydende og

270

Biomass Basics: The Facts About Bioenergy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Basics: The Facts About Bioenergy We Rely on Energy Every Day Energy is essential in our daily lives. We use it to fuel our cars, grow our food, heat our homes, and run our...

271

Sorghum bioenergy genotypes, genes and pathways  

E-Print Network [OSTI]

and this plant is a potentially important bioenergy crop for Texas. The diversity of the twelve high biomass sorghum genotypes was analyzed using 50 simple sequence repeats (SSR) markers with genome coverage. The accumulation of biomass during sorghum development...

Plews, Ian Kenneth

2009-05-15T23:59:59.000Z

272

Ris Energy Report 2 Bioenergy conversion  

E-Print Network [OSTI]

6.3 Risø Energy Report 2 Bioenergy conversion There is a wide range of technologies to derive operate automatically and are in many regions an economic alternative, e.g. Austria and Finland

273

Bioenergy farming using woody crops. A review  

Science Journals Connector (OSTI)

Bioenergy plantations will predictably become the primary source of biomass for energy purposes on a global scale. More specifically, the use of forest wood has been identified as a potential source of biomass fo...

Carmen Roco Rodrguez Pleguezuelo

2014-10-01T23:59:59.000Z

274

Bioenergy in Energy Transformation and Climate Management  

SciTech Connect (OSTI)

Unlike fossil fuels, biomass is a renewable resource that can sequester carbon during growth, be converted to energy, and then re-grown. Biomass is also a flexible fuel that can service many end-uses. This paper explores the importance of bioenergy to potential future energy transformation and climate change management. Using a model comparison of fifteen models, we characterize and analyze future dependence on, and the value of, bioenergy in achieving potential long-run climate objectivesreducing radiative forcing to 3.7 and 2.8 W/m2 in 2100 (approximately 550 and 450 ppm carbon dioxide equivalent atmospheric concentrations). Model scenarios project, by 2050, bioenergy growth of 2 to 10% per annum reaching 5 to 35 percent of global primary energy, and by 2100, bioenergy becoming 15 to 50 percent of global primary energy. Non-OECD regions are projected to be the dominant suppliers of biomass, as well as consumers, with up to 35 percent of regional electricity from biopower by 2050, and up to 70 percent of regional liquid fuels from biofuels by 2050. Bioenergy is found to be valuable to many models with significant implications for mitigation costs and world consumption. The availability of bioenergy, in particular biomass with carbon dioxide capture and storage (BECCS), notably affects the cost-effective global emissions trajectory for climate management by accommodating prolonged near-term use of fossil fuels. We also find that models cost-effectively trade-off land carbon and nitrous oxide emissions for the long-run climate change management benefits of bioenergy. Overall, further evaluation of the viability of global large-scale bioenergy is merited.

Rose, Steven K.; Kriegler, Elmar; Bibas, Ruben; Calvin, Katherine V.; Popp, Alexander; van Vuuren, Detlef; Weyant, John

2014-04-01T23:59:59.000Z

275

Research Report Determinism in Partially Ordered Production Systems  

E-Print Network [OSTI]

Research Report Determinism in Partially Ordered Production Systems Joseph M. Hellerstein IBM Production Systems Joseph M. Hellerstein IBM Almaden Research Center San Jose, CA 95120­6099 hellerst; Abstract The subtlety of interactions between rules in a production system has motivated research into ways

California at Irvine, University of

276

From the Lab to Your Gas Tank: 4 Bioenergy Testing Facilities That Are  

Broader source: Energy.gov (indexed) [DOE]

From the Lab to Your Gas Tank: 4 Bioenergy Testing Facilities That From the Lab to Your Gas Tank: 4 Bioenergy Testing Facilities That Are Making a Difference From the Lab to Your Gas Tank: 4 Bioenergy Testing Facilities That Are Making a Difference December 16, 2013 - 2:46pm Addthis The Integrated Biorefinery Research Facility at the National Renewable Energy Laboratory in Golden, Colorado enables partners to test conversion technologies on up to one ton of biomass material a day. | Photo by Dennis Schroeder, National Renewable Energy Laboratory The Integrated Biorefinery Research Facility at the National Renewable Energy Laboratory in Golden, Colorado enables partners to test conversion technologies on up to one ton of biomass material a day. | Photo by Dennis Schroeder, National Renewable Energy Laboratory Leslie Pezzullo

277

From the Lab to Your Gas Tank: 4 Bioenergy Testing Facilities That Are  

Broader source: Energy.gov (indexed) [DOE]

From the Lab to Your Gas Tank: 4 Bioenergy Testing Facilities That From the Lab to Your Gas Tank: 4 Bioenergy Testing Facilities That Are Making a Difference From the Lab to Your Gas Tank: 4 Bioenergy Testing Facilities That Are Making a Difference December 16, 2013 - 2:46pm Addthis The Integrated Biorefinery Research Facility at the National Renewable Energy Laboratory in Golden, Colorado enables partners to test conversion technologies on up to one ton of biomass material a day. | Photo by Dennis Schroeder, National Renewable Energy Laboratory The Integrated Biorefinery Research Facility at the National Renewable Energy Laboratory in Golden, Colorado enables partners to test conversion technologies on up to one ton of biomass material a day. | Photo by Dennis Schroeder, National Renewable Energy Laboratory Leslie Pezzullo

278

Move Over Flash Pyrolysis, There's a New Bioenergy Sheriff in Town |  

Broader source: Energy.gov (indexed) [DOE]

Move Over Flash Pyrolysis, There's a New Bioenergy Sheriff in Town Move Over Flash Pyrolysis, There's a New Bioenergy Sheriff in Town Move Over Flash Pyrolysis, There's a New Bioenergy Sheriff in Town December 16, 2011 - 12:10pm Addthis Jonathan Peters, a researcher at RTI International (an ARPA-E awardee), characterizes the water content of a bio-oil sample. | Courtesy of RTI International. Jonathan Peters, a researcher at RTI International (an ARPA-E awardee), characterizes the water content of a bio-oil sample. | Courtesy of RTI International. April Saylor April Saylor Former Digital Outreach Strategist, Office of Public Affairs How does it work? This ARPA-E awardee removes the oxygen and other contaminants in the biomass to be turned into fuel with a novel "catalytic biomass pyrolysis" approach. This substance is more carbon efficient, requires less hydrogen to

279

Move Over Flash Pyrolysis, There's a New Bioenergy Sheriff in Town |  

Broader source: Energy.gov (indexed) [DOE]

Move Over Flash Pyrolysis, There's a New Bioenergy Sheriff in Town Move Over Flash Pyrolysis, There's a New Bioenergy Sheriff in Town Move Over Flash Pyrolysis, There's a New Bioenergy Sheriff in Town December 16, 2011 - 12:10pm Addthis Jonathan Peters, a researcher at RTI International (an ARPA-E awardee), characterizes the water content of a bio-oil sample. | Courtesy of RTI International. Jonathan Peters, a researcher at RTI International (an ARPA-E awardee), characterizes the water content of a bio-oil sample. | Courtesy of RTI International. April Saylor April Saylor Former Digital Outreach Strategist, Office of Public Affairs How does it work? This ARPA-E awardee removes the oxygen and other contaminants in the biomass to be turned into fuel with a novel "catalytic biomass pyrolysis" approach. This substance is more carbon efficient, requires less hydrogen to

280

Bio-energy feedstock yields and their water quality benefits in Mississippi  

SciTech Connect (OSTI)

Cellulosic and agricultural bio-energy crops can, under careful management, be harvested as feedstock for bio-fuels production and provide environmental benefits. However, it is required to quantify their relative advantages in feedstock production and water quality. The primary objective of this research was to evaluate potential feedstock yield and water quality benefit scenarios of bioenergy crops: Miscanthus (Miscanthus-giganteus), Switchgrass (Panicum virgatum), Johnsongrass (Sorghum halepense), Alfalfa (Medicago sativa L.), Soybean {Glycine max (L.) Merr.}, and Corn (Lea mays) in the Upper Pearl River watershed (UPRW), Mississippi using a Soil and Water Assessment Tool (SWAT). The SWAT model was calibrated (January 1981 to December 1994) and validated (January 1995 to September 2008) using monthly measured stream flow data. The calibrated and validated model determined good to very good performance for stream flow prediction (R2 and E from 0.60 to 0.86). The RMSE values (from 14 m3 s-1 to 37 m3 s-1) were estimated at similar levels of errors during model calibration and validation. The long-term average annual potential feedstock yield as an alternative energy source was determined the greatest when growing Miscanthus grass (373,849 Mg) as followed by Alfalfa (206,077 Mg), Switchgrass (132,077 Mg), Johnsongrass (47,576 Mg), Soybean (37,814 Mg), and Corn (22,069 Mg) in the pastureland and cropland of the watershed. Model results determined that average annual sediment yield from the Miscanthus grass scenario determined the least (1.16 Mg/ha) and corn scenario the greatest (12.04 Mg/ha). The SWAT model simulated results suggested that growing Miscanthus grass in the UPRW would have the greatest potential feedstock yield and water quality benefits.

Parajuli, Prem B.

2011-08-10T23:59:59.000Z

Note: This page contains sample records for the topic "bioenergy production research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

26 September 2014 SENT TO LSU AGCENTER/LOUISIANA FOREST PRODUCTS DEVELOPMENT CENTER -FOREST SECTOR / FORESTY PRODUCTS INTEREST GROUP  

E-Print Network [OSTI]

markets that employ energy pellets in heating units. As NFR BioEnergy scales up its Louisiana production / FORESTY PRODUCTS INTEREST GROUP 1 9.8.14 NFR BioEnergy Announces $312 Million Energy Project In South PLAQUEMINE, La. -- Today, Gov. Bobby Jindal and Chief Operating Officer Frank Randazzo of NFR BioEnergy

282

Crop Residue Considerations for Sustainable Bioenergy Feedstock Supplies  

Science Journals Connector (OSTI)

The anticipated 2014 launch of three full-scale corn stover bioenergy conversion facilities is a strong US market ... , and several other factors affecting the fledgling bioenergy industry are addressed in this s...

Douglas L. Karlen; Jane M. F. Johnson

2014-06-01T23:59:59.000Z

283

Bird communities in future bioenergy landscapes of the Upper Midwest  

Science Journals Connector (OSTI)

...The effects of bioenergy crop management...that extensive literature reviews have concluded...understanding how different bioenergy crops, and the...conservation: A review of food resource provision...energy, and environment trilemma . Science 325...

Timothy D. Meehan; Allen H. Hurlbert; Claudio Gratton

2010-01-01T23:59:59.000Z

284

Facility will focus on bioenergy, global food security  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Facility will focus on bioenergy, global food security Facility will focus on bioenergy, global food security The New Mexico Consortium expects to complete the 27,000 square foot...

285

REPORT from 1st Annual World Congress of BIOENERGY ,  

E-Print Network [OSTI]

REPORT from 1st Annual World Congress of BIOENERGY , DALIAN, CHINA Dr. Efstratios Kalogirou Earth of SYNERGIA (WTERT Greece) participated in the successful 1st Annual World Congress of BIOENERGY, held between

286

Draft Bioenergy Master Plan for the State of Hawaii  

E-Print Network [OSTI]

Draft Bioenergy Master Plan for the State of Hawaii Prepared for the U.S. Department of Energy DRAFT Hawaii Bioenergy Master Plan Volume I Prepared for State of Hawaii Department of Business

287

Energy Department Announces $10 Million to Develop Innovative Bioenergy Technologies  

Broader source: Energy.gov [DOE]

The Energy Departments Bioenergy Technologies Office (BETO) announces the selection of seven projects across the country to receive up to $10 million to support innovative technologies and solutions to help advance bioenergy development.

288

Bioenergy Pumps New Life into Pulp and Paper Mills | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Bioenergy Pumps New Life into Pulp and Paper Mills Bioenergy Pumps New Life into Pulp and Paper Mills Bioenergy Pumps New Life into Pulp and Paper Mills December 13, 2011 - 4:12pm Addthis Old Town Fuel and Fiber, a former pulp mill, converts a portion of the wood chips used to make pulp to biofuels. | Energy Department photo. Old Town Fuel and Fiber, a former pulp mill, converts a portion of the wood chips used to make pulp to biofuels. | Energy Department photo. Neil Rossmeissl General Engineer What does this project do? Breathes new life into shuttered factories and mills. Saves and creates jobs. Despite Americans' voracious appetite for paper products -- a staggering 700 pounds per person annually -- America's pulp and paper industry has been struggling as of late due to competition from countries where

289

Life cycle assessment of bioenergy systems: State of the art and future challenges  

Science Journals Connector (OSTI)

The use of different input data, functional units, allocation methods, reference systems and other assumptions complicates comparisons of LCA bioenergy studies. In addition, uncertainties and use of specific local factors for indirect effects (like land-use change and N-based soil emissions) may give rise to wide ranges of final results. In order to investigate how these key issues have been addressed so far, this work performs a review of the recent bioenergy LCA literature. The abundance of studies dealing with the different biomass resources, conversion technologies, products and environmental impact categories is summarized and discussed. Afterwards, a qualitative interpretation of the LCA results is depicted, focusing on energy balance, GHG balance and other impact categories. With the exception of a few studies, most \\{LCAs\\} found a significant net reduction in GHG emissions and fossil energy consumption when bioenergy replaces fossil energy.

Francesco Cherubini; Anders Hammer Strmman

2011-01-01T23:59:59.000Z

290

Bioenergy Pumps New Life into Pulp and Paper Mills | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Bioenergy Pumps New Life into Pulp and Paper Mills Bioenergy Pumps New Life into Pulp and Paper Mills Bioenergy Pumps New Life into Pulp and Paper Mills December 13, 2011 - 4:12pm Addthis Old Town Fuel and Fiber, a former pulp mill, converts a portion of the wood chips used to make pulp to biofuels. | Energy Department photo. Old Town Fuel and Fiber, a former pulp mill, converts a portion of the wood chips used to make pulp to biofuels. | Energy Department photo. Neil Rossmeissl General Engineer What does this project do? Breathes new life into shuttered factories and mills. Saves and creates jobs. Despite Americans' voracious appetite for paper products -- a staggering 700 pounds per person annually -- America's pulp and paper industry has been struggling as of late due to competition from countries where

291

Sustainable Bioenergy Production: An Integrated Perspective  

Science Journals Connector (OSTI)

In addition, this chapter discusses the application of Germanys Renewable Energy Source Act and the resulting National Biomass Action Plan. Moreover, it highlights the quota system and feed-in tariffs as promote...

Hans Ruppert; Martin Kappas; Jens Ibendorf

2013-01-01T23:59:59.000Z

292

NREL: News - NREL Names New Executives to Lead Bioenergy, Bioscience and  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

113 113 NREL Names New Executives to Lead Bioenergy, Bioscience and Energy Systems Integration Facility April 12, 2013 The U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) recently made three key hires to lead research centers. NREL has named Tom Foust, a nine-year NREL veteran, as its National Bioenergy Center Director; David Post as the Center Director for the Energy Systems Integration Facility (ESIF); and Rich Greene as Biosciences Center Director. Tom Foust to Head National Bioenergy Center For the past three years, Foust has been Executive Director of the National Advanced Biofuels Consortium (NABC), responsible for leading 18 biofuels organizations in a $50-million-dollar project to develop advanced "drop-in" replacement biofuels. He replaces Mike Cleary who retired in

293

The Global Potential of Bioenergy on Abandoned Agriculture Lands  

Science Journals Connector (OSTI)

The Global Potential of Bioenergy on Abandoned Agriculture Lands ... The global potential for bioenergy from abandoned agriculture lands is determined to be less than 8% of current primary energy demand based on land use data and ecosystem modeling. ... Converting forest lands into bioenergy agriculture could accelerate climate change by emitting carbon stored in forests, while converting food agriculture lands into bioenergy agriculture could threaten food security. ...

J. Elliott Campbell; David B. Lobell; Robert C. Genova; Christopher B. Field

2008-06-25T23:59:59.000Z

294

Biomass as Feedstock for a Bioenergy and Bioproducts Industry...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Industry Biomass Program Peer Review Sustainability Platform Bioenergy Technologies Office: Association of Fish and Wildlife Agencies Agricultural Conservation Committee Meeting...

295

Threshold Dynamics in Soil Carbon Storage for Bioenergy Crops  

Science Journals Connector (OSTI)

Threshold Dynamics in Soil Carbon Storage for Bioenergy Crops ... Because of increasing demands for bioenergy, a considerable amount of land in the midwestern United States could be devoted to the cultivation of second-generation bioenergy crops, such as switchgrass and miscanthus. ... The foliar carbon/nitrogen ratio (C/N) in these bioenergy crops at harvest is significantly higher than the ratios in replaced crops, such as corn or soybean. ...

Dong K. Woo; Juan C. Quijano; Praveen Kumar; Sayo Chaoka; Carl J. Bernacchi

2014-09-10T23:59:59.000Z

296

Biomass and Bioenergy 30 (2006) 316320 How to recover more value from small pine trees  

E-Print Network [OSTI]

Biomass and Bioenergy 30 (2006) 316­320 How to recover more value from small pine trees: Essential of residual biomass. To offset the cost of handling this low-value timber, additional marketing options States market for such products. However, less is known of the capability of essential oils extracted

297

Special issue: bioenergy Don-Hee Park Sang Yup Lee  

E-Print Network [OSTI]

EDITORIAL Special issue: bioenergy Don-Hee Park · Sang Yup Lee Published online: 11 December 2011 ? of the world. The 2011 international symposium on bioenergy Korea was held on 17­18 March 2011. This special, but not limited to, bio- mass cultivation, biomass pretreatment, and biomass conversion in the field of bioenergy

298

Hawaii Bioenergy Master Plan State, County, and Federal  

E-Print Network [OSTI]

Hawaii Bioenergy Master Plan State, County, and Federal Plans, Policies, Statutes, and Regulations, Policies, Statutes, and Regulations was prepared as part of the Hawaii Bioenergy Master Plan project based on information available as of April 28, 2009. #12;ii Hawaii Bioenergy Master Plan State, County and Federal

299

Renewable Technologies and Environmental Injustice: Subsidizing Bioenergy, Promoting Inequity  

E-Print Network [OSTI]

Renewable Technologies and Environmental Injustice: Subsidizing Bioenergy, Promoting Inequity-giganteus biomass, this article shows that bioenergy projects are (1) not clean, given overwhelming particulate biomass in- cineration? No. Despite bioenergy threats to climate change,3,4 and despite the World Bank

Shrader-Frechette, Kristin

300

Bioenergy and land-use competition in Northeast Brazil  

E-Print Network [OSTI]

Bioenergy and land-use competition in Northeast Brazil Christian Azar Department of Physical policies are warranted if use of degraded lands for bioenergy plantations is desired. 1. Introduction There are two main categories of bioenergy: residues and dedicated plantations. In this paper, we exclusively

Note: This page contains sample records for the topic "bioenergy production research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Nitrogen use in switchgrass grown for bioenergy across the USA  

E-Print Network [OSTI]

Nitrogen use in switchgrass grown for bioenergy across the USA V.N. Owens a , D.R. Viands b , H Available online 17 August 2013 Keywords: Nitrogen removal Switchgrass Bioenergy Nitrogen use efficiency as a forage, conservation, and bioenergy crop [1e5]. It offers a number of distinct benefits including broad

Pawlowski, Wojtek

302

Hawaii Bioenergy Master Plan Marc. M. Siah & Associates, Inc.  

E-Print Network [OSTI]

Hawaii Bioenergy Master Plan Permitting Marc. M. Siah & Associates, Inc. Manfred J. Zapka, Ph.D., P including biofuels. Stakeholders in Hawaii's bioenergy industry, however, have identified Hawaii of promising bioenergy projects in the state. To meet its clean energy goals, Hawaii cannot afford

303

Environmental Life Cycle Comparison of Algae to Other Bioenergy Feedstocks  

Science Journals Connector (OSTI)

Environmental Life Cycle Comparison of Algae to Other Bioenergy Feedstocks ... The environmental burdens of cultivating algae for bioenergy have been quantified and compared to several terrestrial crops using a stochastic life cycle model. ... Algae are an appealing source for bioenergy due to their high yields relative to terrestrial energy crops. ...

Andres F. Clarens; Eleazer P. Resurreccion; Mark A. White; Lisa M. Colosi

2010-01-19T23:59:59.000Z

304

20 PLANET EARTH Autumn 2014 Bioenergy the name alone  

E-Print Network [OSTI]

20 PLANET EARTH Autumn 2014 Bioenergy � the name alone implies it's a good thing, environmentally's Den-style experts. Our aim was to work out how using more land to grow bioenergy crops would affect- BioCrop consortium was born. The UK needs bioenergy to meet its greenhouse gas emissions reduction

Brierley, Andrew

305

NREL: Research Participant Program - Research and Deployment Disciplines  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research and Deployment Disciplines Research and Deployment Disciplines Participants in NREL programs are able to study a variety of disciplines within the Lab's research centers: National Bioenergy Center Biochemical engineering, microbiology, molecular biology, chemistry, and chemical engineering related to biomass and derived products. Energy Sciences Bioscience, chemical and materials science, computational science, physics, chemistry, and biological sciences. Electricity, Resources, and Building Systems Integration Physics, mechanical engineering (heat transfer emphasis), and architectural engineering. Hydrogen and Fuel Cells Research Hydrogen technologies and analysis. Materials and Computational Sciences Center Physics, materials science, chemistry, electrical engineering, and basic and applied research using high-performance computing and applied

306

State-of-the-art of fast pyrolysis in IEA bioenergy member countries  

Science Journals Connector (OSTI)

Fast pyrolysis of biomass is becoming increasingly important in some member countries of the International Energy Agency (IEA). Six countries have joined the IEA Task 34 of the Bioenergy Activity: Canada, Finland, Germany, Netherlands, UK, and USA. The National Task Leaders give an overview of the current activities in their countries both on research, pilot and demonstration level.

Dietrich Meier; Bert van de Beld; Anthony V. Bridgwater; Douglas C. Elliott; Anja Oasmaa; Fernando Preto

2013-01-01T23:59:59.000Z

307

NREL: Biomass Research - Thomas Foust  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Thomas Foust Thomas Foust Photo of Thomas Foust Dr. Thomas Foust is an internationally recognized expert in the biomass field. His areas of expertise include feedstock production, biomass-to-fuels conversion technologies, and environmental and societal sustainability issues associated with biofuels. He has more than 20 years of research and research management experience, specializing in biomass feedstocks and conversion technologies. As National Bioenergy Center Director, Dr. Foust guides and directs NREL's research efforts to develop biomass conversion technologies via biochemical and thermochemical routes, as well as critical research areas addressing the sustainability of biofuels. This research focuses on developing the necessary science and technology for converting biomass to biofuels,

308

Final Report, NEAC Subcommittee for Isotope Research & Production Planning  

Broader source: Energy.gov (indexed) [DOE]

Final Report, NEAC Subcommittee for Isotope Research & Production Final Report, NEAC Subcommittee for Isotope Research & Production Planning Final Report, NEAC Subcommittee for Isotope Research & Production Planning Isotopes, including both radioactive and stable isotopes, make important contributions to research, medicine, and industry in the United States and throughout the world. For nearly fifty years, the Department of Energy (DOE) has actively promoted the use of isotopes by funding (a) production of isotopes at a number of national laboratories with unique nuclear reactors or particle accelerators, (b) nuclear medicine research at the laboratories and in academia, (c) research into industrial applications of isotopes, and (d) research into isotope production and processing methods. The radio- pharmaceutical and radiopharmacy industries have their origin in

309

Research, Development, Demonstration, and Deployment  

Broader source: Energy.gov [DOE]

The Bioenergy Technologies Office's research, development, demonstration, and deployment (RDD&D) efforts are organized around five key technical and three cross-cutting elements. The first two...

310

NREL: Hydrogen and Fuel Cells Research - Hydrogen Production...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

5 Cost adjusted to 2007 dollars, accurate to two significant figures. Printable Version Hydrogen & Fuel Cells Research Home Projects Fuel Cells Hydrogen Production & Delivery...

311

Pacific Rim Summit on Industrial Biotechnology & Bioenergy  

Broader source: Energy.gov [DOE]

The ninth annual Pacific Rim Summit on Industrial Biotechnology and Bioenergy will be held from December 79, 2014, in San Diego, California, at the Westin Gaslamp Quarter. Bringing together representatives from various countries all around the Pacific Rim, this event will focus on the growth of the industrial biotechnology and bioenergy sectors in North America and the Asia-Pacific region. Glenn Doyle, BETO's Deployment & Demonstration Technology Manager, will be moderating and speaking at a session on entitled "Utilizing Strategic Partnerships to Grow Your Business" on December 9.

312

Isotope Development & Production for Research and Applications (IDPRA) |  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research » Isotope Research » Isotope Development & Production for Research and Applications (IDPRA) Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Funding Opportunities Nuclear Science Advisory Committee (NSAC) News & Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3613 F: (301) 903-3833 E: sc.np@science.doe.gov More Information » Research Isotope Development & Production for Research and Applications (IDPRA) Print Text Size: A A A RSS Feeds FeedbackShare Page The Isotope subprogram supports the production, and the development of production techniques of radioactive and stable isotopes that are in short supply for research and applications. Isotopes are high-priority

313

Bioenergy Upcoming Events | Department of Energy  

Energy Savers [EERE]

Fri Sat 26 27 28 29 30 31 1 2 3 4 5 6 7 8 F.O. Licht's 17th Annual World Ethanol & Biofuels Conference 8:30AM to 1:20PM CET Webinar: Landscape Design for Sustainable Bioenergy...

314

Analysis of Global Economic and Environmental Impacts of a Substantial Increase in Bioenergy Wallace E. Tyner (wtyner@purdue.edu), Thomas W. Hertel, Farzad Taheripour*, and Dileep K. Birur  

E-Print Network [OSTI]

Analysis of Global Economic and Environmental Impacts of a Substantial Increase in Bioenergy much insight into how alternative bioenergy production scenarios could change global agricultural markets and land-use, with repercussions for international trade. As the World Bank reports, nearly 70

315

USDA Economic Research Service Data Products | Data.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

USDA Economic Research Service Data Products USDA Economic Research Service Data Products Agriculture Community Menu DATA APPS EVENTS DEVELOPER STATISTICS COLLABORATE ABOUT Agriculture You are here Data.gov » Communities » Agriculture » Data USDA Economic Research Service Data Products Dataset Summary Description Complete catalog of current data products from the USDA Economic Research Service. Tags {"agricultural economics","rural sociology",USDA,ERS,"data products"} Dataset Ratings Overall 0 No votes yet Data Utility 0 No votes yet Usefulness 0 No votes yet Ease of Access 0 No votes yet Dataset Additional Information Last Updated 4/10/2013 Publisher Economic Research Service, Department of Agriculture Contact Name Contact Email karlg@ers.usda.gov Unique Identifier USDA-988 Public Access Level public

316

Impacts of increased bioenergy demand on global food markets: an AgMIP economic model intercomparison  

SciTech Connect (OSTI)

Integrated Assessment studies have shown that meeting ambitious greenhouse gas mitigation targets will require substantial amounts of bioenergy as part of the future energy mix. In the course of the Agricultural Model Comparison and Improvement Project (AgMIP), five global agro-economic models were used to analyze a future scenario with global demand for ligno-cellulosic bioenergy rising to about 100 ExaJoule in 2050. From this exercise a tentative conclusion can be drawn that ambitious climate change mitigation need not drive up global food prices much, if the extra land required for bioenergy production is accessible or if the feedstock, e.g. from forests, does not directly compete for agricultural land. Agricultural price effects across models by the year 2050 from high bioenergy demand in an RCP2.6-type scenario appear to be much smaller (+5% average across models) than from direct climate impacts on crop yields in an RCP8.5-type scenario (+25% average across models). However, potential future scarcities of water and nutrients, policy-induced restrictions on agricultural land expansion, as well as potential welfare losses have not been specifically looked at in this exercise.

Lotze-Campen, Hermann; von Lampe, Martin; Kyle, G. Page; Fujimori, Shinichiro; Havlik, Petr; van Meijl, Hans; Hasegawa, Tomoko; Popp, Alexander; Schmitz, Christoph; Tabeau, Andrzej; Valin, Hugo; Willenbockel, Dirk; Wise, Marshall A.

2014-01-01T23:59:59.000Z

317

Biomass Research Program  

ScienceCinema (OSTI)

INL's mission is to achieve DOE's vision of supplying high-quality raw biomass; preprocessing biomass into advanced bioenergy feedstocks; and delivering bioenergy commodities to biorefineries. You can learn more about research like this at the lab's facebook site http://www.facebook.com/idahonationallaboratory.

Kenney, Kevin; Wright, Christopher; Shelton-Davis, Colleen

2013-05-28T23:59:59.000Z

318

Research on Rice Production in Texas.  

E-Print Network [OSTI]

in cooperation with the UNITED STATES DEPARTMENT OF AGRICULTURE TEXAS AGRICULTURAL EXPERIMENT STATION R. D. LEWIS. DIRECTOR. COLLEGE STATION. TEXAS ACKNOWLEDGMENTS This manuscript was prepared by E. B. Reynolds in cooperation with the staffs... ............................................................... 17 Literature Cited ........... , ......................................................... 29 Re~earcF) On Rice Production In Texax E. B. REYNOLDS, Professor Department of Agronomy AmHouGH RICE WAS GROWN IN TEXAS on a small scale as early...

Reynolds, E. B.

1954-01-01T23:59:59.000Z

319

Setting the rules of the game: ethical and legal issues raised by bioenergy governance methods  

Science Journals Connector (OSTI)

Bioenergy is increasingly promoted as an energy carrier ... as motivating factors for a shift towards more bioenergy use. The supply and demand of bioenergy is to a high degree steered by ... this regulation is a...

C. Gamborg; P. Sande; H. T. Anker

2012-01-01T23:59:59.000Z

320

High-solids enrichment of thermophilic microbial communities and their enzymes on bioenergy feedstocks  

E-Print Network [OSTI]

and their enzymes on bioenergy feedstocks Amitha P. ReddyVanderGheynst 1,2* Joint BioEnergy Institute, Emeryville, CA2009. The water footprint of bioenergy. Proceedings of the

Reddy, A. P.

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "bioenergy production research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Sustainable use of California biomass resources can help meet state and national bioenergy targets  

E-Print Network [OSTI]

fuel resources. Bio- mass Bioenergy 27:613 20. Parker N,Strategic assessment of bioenergy development in the west:as Feedstock for a Bioenergy and Bioprod- ucts Industry: The

Jenkins, Bryan M; Williams, Robert B; Gildart, Martha C; Kaffka, Stephen R.; Hartsough, Bruce; Dempster, Peter G

2009-01-01T23:59:59.000Z

322

Switchgrass for Forage and Bioenergy: I. Effects of Nitrogen Rate and Harvest System  

E-Print Network [OSTI]

biofuel systems. Biomass and Bioenergy 30:198-206. Muir JP,systems. Biomass and Bioenergy 19: 281-286. Sanderson MA,whether for forage or bioenergy) is defining how crop

Kering, Maru K; Biermacher, Jon T; Cook, Billy J; Guretzky, John A

2009-01-01T23:59:59.000Z

323

Images / Graphics : BioEnergy Science Center  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Images / Graphics Images / Graphics Cellulosic Biofuel Production Steps and Biological Research Challenges Cellulosic Biofuel Production Steps and Biological Research Challenges This figure depicts some key processing steps in an artistâ€(tm)s conception of a future large-scale facility for transforming cellulosic biomass (plant fibers) into biofuels. Three areas where focused biological research can lead to much lower costs and increased productivity include developing crops dedicated to biofuel production (see step 1), engineering enzymes that deconstruct cellulosic biomass (see steps 2 and 3), and engineering microbes and developing new microbial enzyme systems for industrial-scale conversion of biomass sugars into ethanol and other biofuels or bioproducts (see step 4). Biological research challenges

324

Fuel Cell Technologies Researcher Lightens Green Fuel Production  

Office of Energy Efficiency and Renewable Energy (EERE)

Research funded by EEREs Fuel Cell Technologies Office has dramatically increased the efficiency of biofuel production by changing certain genes in algae to make them pale green.

325

Actinide Foil Production for MPACT Research  

SciTech Connect (OSTI)

Sensitive fast-neutron detectors are required for use in lead slowing down spectrometry (LSDS), an active interrogation technique for used nuclear fuel assay for Materials Protection, Accounting, and Controls Technologies (MPACT). During the past several years UNLV sponsored a research project at RPI to investigate LSDS; began development of fission chamber detectors for use in LSDS experiments in collaboration with INL, LANL, and Oregon State U.; and participated in a LSDS experiment at LANL. In the LSDS technique, research has demonstrated that these fission chamber detectors must be sensitive to fission energy neutrons but insensitive to thermal-energy neutrons. Because most systems are highly sensitive to large thermal neutron populations due to the well-known large thermal cross section of 235U, even a miniscule amount of this isotope in a fission chamber will overwhelm the small population of higher-energy neutrons. Thus, fast-fission chamber detectors must be fabricated with highly depleted uranium (DU) or ultra-pure thorium (Th), which is about half as efficient as DU. Previous research conducted at RPI demonstrated that the required purity of DU for assay of used nuclear fuel using LSDS is less than 4 ppm 235U, material that until recently was not available in the U.S. In 2009 the PI purchased 3 grams of ultra-depleted uranium (uDU, 99.99998% 238U with just 0.2 ???± 0.1 ppm 235U) from VNIIEF in Sarov, Russia. We received the material in the form of U3O8 powder in August of 2009, and verified its purity and depletion in a FY10 MPACT collaboration project. In addition, chemical processing for use in FC R&D was initiated, fission chamber detectors and a scanning alpha-particle spectrometer were developed, and foils were used in a preliminary LSDS experiment at a LANL/LANSCE in Sept. of 2010. The as-received U3O8 powder must be chemically processed to convert it to another chemical form while maintaining its purity, which then must be used to electro-deposit U or UO2 in extremely thin layers (1 to 2 mg/cm2) on various media such as films, foils, or discs. After many months of investigation and trials in FY10 and 11, UNLV researchers developed a new method to produce pure UO2 deposits on foils using a unique approach, which has never been demonstrated, that involves dissolution of U3O8 directly into room temperature ionic liquid (RTIL) followed by electrodeposition from the RTIL-uDU solution (Th deposition from RTIL had been previously demonstrated). The high-purity dissolution of the U3O8 permits the use of RTIL solutions for deposition of U on metal foils in layers without introducing contamination. In FY10 and early FY11 a natural U surrogate for the uDU was used to investigate this and other techniques. In this research project UNLV will deposit directly from RTIL to produce uDU and Th foils devoid of possible contaminants. After these layers have been deposited, they will be examined for purity and uniformity. UNLV will complete the development and demonstration of the RTIL technology/ methodology to prepare uDU and Th samples for use in constructing fast-neutron detectors. Although this material was purchased for use in research using fast-fission chamber detectors for active inspection techniques for MPACT, it could also contribute to R&D for other applications, such as cross section measurements or neutron spectroscopy for national security

Beller, Denis

2012-10-31T23:59:59.000Z

326

Innovation Impact: Breakthrough Research Results (Brochure)  

SciTech Connect (OSTI)

The Innovation Impact brochure captures key breakthrough results across NREL's primary areas of renewable energy and energy efficiency research: solar, wind, bioenergy, transportation, buildings, analysis, and manufacturing technologies.

Not Available

2013-07-01T23:59:59.000Z

327

Networks within networks - interaction in bioenergy business  

Science Journals Connector (OSTI)

Collaboration is seen as one of the most important means for small and medium-sized enterprises (SMEs) to compete and innovate in dynamic business environments. This paper approaches this phenomenon by studying a group of Finnish biomass heating firms and their interaction in the bioenergy business. In this paper, two frameworks are combined into a practical two-level tool for relationship and network analysis. This paper offers detailed information on the formation of partnerships and networks around the bioenergy business. Moreover, it speculates about the motives and mechanisms behind an actor's business relations. This study confirms that it is often profitable for SMEs to act simultaneously in different types of networks. In these networks, the firms form relationships that are different in breadth and depth.

Kirsi Kokkonen; Tuomo Kässi; Ville Ojanen

2014-01-01T23:59:59.000Z

328

Bioenergy Assessment Toolkit | Open Energy Information  

Open Energy Info (EERE)

Bioenergy Assessment Toolkit Bioenergy Assessment Toolkit Jump to: navigation, search Stage 3 LEDS Home Introduction to Framework Assess current country plans, policies, practices, and capacities Develop_BAU Stage 4: Prioritizing and Planning for Actions Begin execution of implementation plans 1.0. Organizing the LEDS Process 1.1. Institutional Structure for LEDS 1.2. Workplan to Develop the LEDS 1.3. Roles and responsibilities to develop LEDS 2.1. Assess current country plans, policies, practices, and capacities 2.2. Compile lessons learned and good practices from ongoing and previous sustainable development efforts in the country 2.3. Assess public and private sector capacity to support initiatives 2.4. Assess and improve the national GHG inventory and other economic and resource data as needed for LEDS development

329

NREL: Hydrogen and Fuel Cells Research - Hydrogen Production and Delivery  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hydrogen Production and Delivery Hydrogen Production and Delivery Most of the hydrogen in the United States is produced by steam reforming of natural gas. For the near term, this production method will continue to dominate. Researchers at NREL are developing advanced processes to produce hydrogen economically from sustainable resources. NREL's hydrogen production and delivery R&D efforts, which are led by Huyen Dinh, focus on the following topics: Biological Water Splitting Fermentation Conversion of Biomass and Wastes Photoelectrochemical Water Splitting Solar Thermal Water Splitting Renewable Electrolysis Hydrogen Dispenser Hose Reliability Hydrogen Production and Delivery Pathway Analysis. Biological Water Splitting Certain photosynthetic microbes use light energy to produce hydrogen from

330

Bioenergy Technologies Office: Association of Fish and Wildlife...  

Broader source: Energy.gov (indexed) [DOE]

Office: Association of Fish and Wildlife Agencies Agricultural Conservation Committee Meeting Bioenergy Technologies Office: Association of Fish and Wildlife Agencies Agricultural...

331

Bioenergy Technologies FY14 Budget At-a-Glance  

Office of Energy Efficiency and Renewable Energy (EERE)

Bioenergy Technologies FY14 Budget At-a-Glance, a publication of the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy.

332

About the Bioenergy Technologies Office: Growing America's Energy...  

Energy Savers [EERE]

making affordable, abundant, and high-quality biomass materials accessible for use as bioenergy feedstocks. Feedstock logistics R&D is focused on reducing costs and improving...

333

INEOS-New Planet: Indian River Bioenergy Center | Department...  

Energy Savers [EERE]

source of value for the community." Dr. Peter Williams, Chairman, INEOS New Planet BioEnergy By diverting vegetative waste from the local landfill and minimizing waste...

334

Thailand-Key Results and Policy Recommendations for Future Bioenergy...  

Open Energy Info (EERE)

biofuel feedstock crops. How the Thai Government manages the potential pressures that the bioenergy sector will exert on its natural resources and agricultural markets and the...

335

Assessing Bioenergy Sustainability: Application of a Suite of...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Success Stories Contact Us Index Home | ORNL | Events and Conferences Assessing Bioenergy Sustainability: Application of a Suite of Environmental and Socioeconomic Indicators...

336

Adoption of bioenergy technologies for a sustainable energy system.  

E-Print Network [OSTI]

??A future sustainable energy system must achieve great improvements in energy efficiency and the energy supply must be based on renewable energy sources. Bioenergy will (more)

Bjrnstad, Even

2011-01-01T23:59:59.000Z

337

CHP and Bioenergy Systems for Landfills and Wastewater Treatment...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Systems for Landfills and Wastewater Treatment Plants CHP and Bioenergy Systems for Landfills and Wastewater Treatment Plants There are important issues to consider when selecting...

338

CHP and Bioenergy for Landfills and Wastewater Treatment Plants...  

Broader source: Energy.gov (indexed) [DOE]

for Landfills and Wastewater Treatment Plants: Market Opportunities CHP and Bioenergy for Landfills and Wastewater Treatment Plants: Market Opportunities This document explores...

339

Ris's mission is to create new knowledge based on world-class research, and to ensure that our knowledge is used to promote the development of an  

E-Print Network [OSTI]

research topics: · Fuel cells · Wind · System analysis · Materials science · Bioenergy Fuel Cells and Solid · Commercialization of Danish SOFC technology · Entry markets: · Decentralized electricity production (We) · Micro-CHP (1-5 kWe) · APUs (5-10 kWe) · Collaboration with other companies #12;TOFC Channels to market

340

E-Print Network 3.0 - analysing bioenergy demand Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

normally derived... of bioenergy resources are fuel wood, bagasse, organic waste, biogas and bioethanol. Bioenergy is the only... action on climate change have all served to...

Note: This page contains sample records for the topic "bioenergy production research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

E-Print Network 3.0 - assessing bioenergy options Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

origin, normally derived... of bioenergy resources are fuel wood, bagasse, organic waste, biogas and bioethanol. Bioenergy is the only... action on climate change have all served...

342

BIOENERGY AND BIOFUELS Performance of a pilot-scale continuous flow microbial  

E-Print Network [OSTI]

BIOENERGY AND BIOFUELS Performance of a pilot-scale continuous flow microbial electrolysis cell fed performance. Keywords Biohydrogen . Biomethane . Bioelectricity. Microbial electrolysis cell . Bioenergy

343

> ExplorACES projects attract potential students > Bioenergy grant fuels excitement  

E-Print Network [OSTI]

Inside: > ExplorACES projects attract potential students > Bioenergy grant fuels excitement. Our current technical emphases are in the areas of agricultural automation, bio-energy and bio

Gilbert, Matthew

344

The Joint BioEnergy Institute (JBEI): Developing New Biofuels by Overcoming Biomass Recalcitrance  

E-Print Network [OSTI]

Bioenerg. Res. (010-9086-2 The Joint BioEnergy Institute (JBEI): DevelopingThe mission of the Joint BioEnergy Institute is to advance

Scheller, Henrik Vibe; Singh, Seema; Blanch, Harvey; Keasling, Jay D.

2010-01-01T23:59:59.000Z

345

RESEARCH ARTICLE A model for improving microbial biofuel production using  

E-Print Network [OSTI]

RESEARCH ARTICLE A model for improving microbial biofuel production using a synthetic feedback loop be compared. We propose a model for microbial biofuel production where a synthetic control system is used to increase cell viability and biofuel yields. Although microbes can be engineered to produce biofuels

Dunlop, Mary

346

Creative Discovery Museum : BioEnergy Science Center  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The Creative Discovery Museum The Creative Discovery Museum BESC reaches thousands of students with 'Farming for Fuels' lessons The DOE BioEnergy Science Center and the Creative Discovery Museum in Chattanooga, TN, have developed a set of hands-on lesson plans on BioFuels aimed at students in fourth, fifth and sixth grades. These "Farming for Fuels" lessons educate students about the carbon cycle, the use of lignocellulosic biomass as a substrate for the production of biofuels and the technical and economic obstacles to a bio-based fuel economy. The nationally expanded outreach program has now reached more than 60,000 students, teachers and parents by partnering with museums and centers in Tennessee, Georgia, Texas, Michigan, Illinois, Florida, New York and Arizona. To extend use of the lessons to the general public we have assembled

347

BioEnergy of America Inc | Open Energy Information  

Open Energy Info (EERE)

America Inc America Inc Jump to: navigation, search Name BioEnergy of America Inc Address 30 Executive Avenue Place Edison, New Jersey Zip 08817 Sector Biofuels Product Biofuels producer Website http://www.bioenergyofamerica. Coordinates 40.497076°, -74.375894° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.497076,"lon":-74.375894,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

348

Non-technical success factors for bioenergy projectsLearning from a multiple case study in Japan  

Science Journals Connector (OSTI)

Abstract There is wide agreement in the literature that non-technical factors play a decisive role in the successful implementation of bioenergy projects. One underlying reason is that such projects require the involvement of many stakeholders, such as feedstock producers, engineers, authorities and the concerned public. We analyze the role of bioenergy-specific non-technical factors for the success of bioenergy projects. In a broad literature review we first identify potential success factors belonging to the five dimensions project characteristics, policy framework, regional integration, public perception and stakeholders. Using these factors as conceptual framework, we next analyze six Japanese pilot projects for bioenergy utilization supported by Japans Agriculture, Forestry and Fisheries Research Council. We apply Rough Set Analysis, a data mining method that can be used for small sample sizes to identify patterns in a dataset. We find that, by and large, non-technical factors from all five dimensions such as the stability of the local policy framework co-occur with project success. Furthermore, we show that there are diverging interpretations as to what success in a bioenergy project means. This requires tradeoffs between various goals, which should be identified and addressed explicitly at early stages of such a project.

Yann B. Blumer; Michael Stauffacher; Daniel J. Lang; Kiyotada Hayashi; Susumu Uchida

2013-01-01T23:59:59.000Z

349

Basic Research for Hydrogen Production, Storage and Use  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

DOE Hydrogen and Fuel Cells DOE Hydrogen and Fuel Cells Coordination Meeting 6/2/2003 DOE DOE - - BES Sponsored Workshop on BES Sponsored Workshop on Basic Research for Hydrogen Basic Research for Hydrogen Production, Storage and Use Production, Storage and Use Walter J. Stevens Walter J. Stevens Director Director Chemical Sciences, Geosciences, and Biosciences Division Chemical Sciences, Geosciences, and Biosciences Division Office of Basic Energy Sciences Office of Basic Energy Sciences Workshop dates: May 13-15, 2003 A follow-on workshop to BESAC-sponsored workshop on "Basic Research Needs to Assure a Secure Energy Future" Basic Energy Sciences Basic Energy Sciences Workshop on Hydrogen Production, Storage, and Use Workshop on Hydrogen Production, Storage, and Use DOE Hydrogen and Fuel Cells

350

NREL: Biomass Research - Richard L. Bain  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Richard L. Bain Richard L. Bain Photo of Richard Bain Richard Bain is a Principal Engineer in the National Bioenergy Center at the National Renewable Energy Laboratory in Golden, Colorado. He has worked at NREL since 1990 and has extensive experience in the thermal conversion of biomass, municipal wastes, coal, and petroleum. He is a lead researcher in the area of production of transportation fuels and hydrogen via thermochemical conversion of biomass; technical advisor to the U.S. Department of Energy (DOE) and U.S. Department of Agriculture (USDA) on biofuels demonstrations; and Task Leader for the International Energy Agency Bioenergy Annex Biomass Gasification Task. Dr. Bain manages biomass gasification research activities for the Fuel Cell Technologies Program at NREL and coordinates support to the USDA for

351

Ethanol or Bioelectricity? Life Cycle Assessment of Lignocellulosic Bioenergy Use in Light-Duty Vehicles  

Science Journals Connector (OSTI)

The remaining unfermented material, which includes lignin, is combusted to generate process heat and electricity. ... Delivered feedstock is combusted within a biomass boiler, generating steam to drive a steam turbine electrical generator, and flue gas to dry delivered feedstock. ... Fossil energy use in the bioenergy pathways is associated primarily with three aspects of the life cycle: (i) in the vehicle cycle (production/disposal) stage, coal and natural gas are used extensively. ...

Jason M. Luk; Mohammad Pourbafrani; Bradley A. Saville; Heather L. MacLean

2013-09-09T23:59:59.000Z

352

The water footprint of bioenergy  

Science Journals Connector (OSTI)

...production of bioethanol or biodiesel, which are biofuels that can...electricity, bioethanol, and biodiesel. This study covers the 12...transport fuels (bioethanol and biodiesel) per crop per country. The...biogas, and energy from algae. This study builds upon 2...

Winnie Gerbens-Leenes; Arjen Y. Hoekstra; Theo H. van der Meer

2009-01-01T23:59:59.000Z

353

The water footprint of bioenergy  

Science Journals Connector (OSTI)

...from the FAO (3). In general, yields show variations over the years...yield (ton/ha). In general, yields show variations...Gasifier Com-bined Cycle'' operated at a...vegetable oil as a biofuel in diesel engines (13). In...use, the whole life cycle of a product should be...

Winnie Gerbens-Leenes; Arjen Y. Hoekstra; Theo H. van der Meer

2009-01-01T23:59:59.000Z

354

Accounting for Carbon Dioxide Emissions from Bioenergy Systems  

SciTech Connect (OSTI)

Researchers have recently argued that there is a 'critical climate accounting error' and that we should say 'goodbye to carbon neutral' for bioenergy. Many other analysts have published opionions on the same topic, and the US Environmental Protection Agency posted a specific call for information. The currently burning questions for carbon accounting is how to deal with bioenergy. The questions arises because, unlike for fossil fuels, burning of biomass fuels represents part of a cycle in which combustion releases back to the atmosphere carbon that was earlier removed from the atmosphere by growing plants. In a sustainable system, plants will again remove the carbon dioxide (CO{sub 2}) from the atmosphere. Conceptually, it is clear that there are no net emissions of the greenhouse gas CO{sub 2} if biomass is harvested and combusted at the same rate that biomass grows and removes CO{sub 2} from the atmosphere. The problem lies in the fact that growth and combustion do not occur at the same time or in the same place, and our accounting system boundaries - spatial and temporal - frequently do not provide full and balanced accounting. When the first comprehensive guidelines for estimating national greenhouse gas emissions and sinks were put together by the Organization for Economic Cooperation and Development, they noted that it has been argued that CO{sub 2} emissions resulting from bioenergy consumption should not be included in a country's official emission inventory because there are no net emissions if the biomass is produced sustainably, and if the biomass is not produced sustainably, the loss of carbon will be captured as part of the accounting for emissions from land-use change. In the same philosophical vein, the Kyoto Protocol provides that emissions or sinks of CO{sub 2} from land-use change and forestry activities be measured as the 'verifiable changes in carbon stocks'. From these has grown the convention that emissions from biomass fuels are generally not counted as part of emissions inventories, and biomass energy is sometimes referred to as being 'carbon neutral.' But what happens when a forest is harvested for fuel but takes 60 years to regrow or when biomass is harvested in a country that is not party to an international accord but is burned in a country that is party to an international accord? Biomass energy is only truly 'carbon neutral' if we get the system boundaries right. They need to make sure that the accounting methodology is compatible with our needs and realities in management and policy.

Marland, Gregg [ORNL

2010-12-01T23:59:59.000Z

355

The Climate Impacts of Bioenergy Systems Depend on Market and  

E-Print Network [OSTI]

The Climate Impacts of Bioenergy Systems Depend on Market and Regulatory Policy Contexts D E R E K, and by sequestering atmospheric carbon. Which use mitigates the most emissions depends on market and regulatory the vehicle fleet and bioenergy use are fixed or free parameters constrain the policy questions an analysis

Kammen, Daniel M.

356

The New Horizons of Bioenergy  

ScienceCinema (OSTI)

At the Office of Energy Efficiency and Renewable Energy's "Biomass 2011" conference, Argonne researcher Seth Snyder spoke with DOE Biomass Program head, Paul Bryan. In this conversation, Snyder explains the process of biochemical conversion, and talks about Argonne's patented resin wafer technology. The resin wafer electrodeionization technology may help significantly reduce the cost of producing clean energy and of the chemicals and water used in industry. The separations technology can also process biomass-based feedstocks into biofuels and chemicals.

None

2013-04-19T23:59:59.000Z

357

Sustainable Bioenergy: A Framework for Decision Makers | Open Energy  

Open Energy Info (EERE)

Sustainable Bioenergy: A Framework for Decision Makers Sustainable Bioenergy: A Framework for Decision Makers Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Sustainable Bioenergy: A Framework for Decision Makers Agency/Company /Organization: Food and Agriculture Organization of the United Nations Sector: Energy, Land Focus Area: Renewable Energy, Biomass Topics: Implementation, Policies/deployment programs Resource Type: Guide/manual, Lessons learned/best practices Website: esa.un.org/un-energy/pdf/susdev.Biofuels.FAO.pdf References: Sustainable Bioenergy: A Framework for Decision Makers[1] "In this publication, UN-Energy seeks to structure an approach to the current discussion on bioenergy, it is the contribution of the UN system to the issues that need further attention, analysis and valuation, so that

358

Online Toolkit Fosters Bioenergy Innovation | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Toolkit Fosters Bioenergy Innovation Toolkit Fosters Bioenergy Innovation Online Toolkit Fosters Bioenergy Innovation January 21, 2011 - 2:27pm Addthis Learn more about the Bioenergy Knowledge Discovery Framework, an online data sharing and mapping toolkit. Paul Bryan Biomass Program Manager, Office of Energy Efficiency & Renewable Energy What will the project do? The $241 million loan guarantee for Diamond Green Diesel, funding which will support the construction of a facility that will nearly triple the amount of renewable diesel produced domestically. The online data sharing and mapping toolkit provides the extensive data, analysis, and visualization tools to monitor the bioenergy industry. Yesterday, Secretary Chu announced a $241 million loan guarantee for Diamond Green Diesel, funding which will support the construction of a

359

E-Print Network 3.0 - active natural products Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of Woody Biomass in Indiana for Bioenergy Production... that may be used for energy production and the delivered cost of woody biomass. The primary focus Source: Purdue...

360

Enhanced Charge Transport in Enzyme-Wired Organometallic Block Copolymers for Bioenergy and Biosensors  

Science Journals Connector (OSTI)

Enhanced Charge Transport in Enzyme-Wired Organometallic Block Copolymers for Bioenergy and Biosensors ...

Joungphil Lee; Hyungmin Ahn; Ilyoung Choi; Markus Boese; Moon Jeong Park

2012-03-21T23:59:59.000Z

Note: This page contains sample records for the topic "bioenergy production research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Importance of bioenergy markets for the development of the global energy system  

E-Print Network [OSTI]

Importance of bioenergy markets for the development of the global energy system Nicklas Forsell, Bioenergy, TIAM-FR model, bioenergy markets, climate policies Overview Fossil fuels such as oil, coal international bioenergy markets are still in their infancy, international trade of biofuels, wood pellets

Paris-Sud XI, Université de

362

CHP and Bioenergy for Landfills and Wastewater Treatment Plants: Market Opportunities  

Broader source: Energy.gov [DOE]

Overview of market opportunities for CHP and bioenergy for landfills and wastewater treatment plants

363

Syllabus -Plants for Bioenergy Fall 2011 Instructors: Stacy Bonos and Zane R. Helsel  

E-Print Network [OSTI]

Syllabus - Plants for Bioenergy ­ Fall 2011 11:776:410 Instructors: Stacy Bonos and Zane R. Helsel Breeding) Bonos #12;Course Title: Plants for Bioenergy Instructors: Drs. Stacy Bonos and Zane R. Helsel of bioenergy and discuss various renewable energy sources from biomass. Agronomic and bioenergy traits

Chen, Kuang-Yu

364

2011 Bioenergy Action Plan Prepared by the California Energy Commission for the  

E-Print Network [OSTI]

2011 Bioenergy Action Plan Prepared by the California Energy Commission for the Bioenergy Commission Renewables Committee as part of the Preparation of the 2011 Bioenergy Action Plan ­ docket # 10 policy of the Energy Commission until the report is adopted. #12;i ACKNOWLEDGEMENTS The 2011 Bioenergy

365

Introduction The bioenergy industry is pursuing low-input crops to be  

E-Print Network [OSTI]

1 Introduction The bioenergy industry is pursuing low-input crops to be grown on marginal lands the unintentional introduction and spread of potentially invasive species. Background Information The bioenergy- generation bioenergy crops are grown specifically for biomass pro- duction. Therefore, bioenergy crops

Liskiewicz, Maciej

366

Ris Energy Report 2 Bioenergy is energy of biological and renewable origin,  

E-Print Network [OSTI]

2 Risø Energy Report 2 Bioenergy is energy of biological and renewable origin, normally derived of bioenergy resources are fuel wood, bagasse, organic waste, biogas and bioethanol. Bioenergy is the only action on climate change have all served to increase interest in bioenergy. Technological advances

367

National Bioenergy Center Biochemical Platform Integration Project: Quarterly Update #24, July-September 2009  

SciTech Connect (OSTI)

July to September, 2009 edition of the National Bioenergy Center's Biochemical Platform Integration Project quarterly newsletter.

Schell, D.

2009-10-01T23:59:59.000Z

368

FOA for the Demonstration of an Integrated Biorefinery System: Abengoa Bioenergy Biomass of Kansas, LLC  

Office of Energy Efficiency and Renewable Energy (EERE)

FOA for the Demonstration of an Integrated Biorefinery System: Abengoa Bioenergy Biomass of Kansas, LLC.

369

BioEnergie Park Soesetal GmbH | Open Energy Information  

Open Energy Info (EERE)

BioEnergie Park Soesetal GmbH BioEnergie Park Soesetal GmbH Jump to: navigation, search Name BioEnergie-Park Soesetal GmbH Place Osterode, Lower Saxony, Germany Zip 37520 Sector Biomass Product Lower Saxony-based biomass project developer. Coordinates 53.695599°, 19.973301° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":53.695599,"lon":19.973301,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

370

Downgrading Recent Estimates of Land Available for Biofuel Production  

Science Journals Connector (OSTI)

? National Institute of Agricultural Technology (INTA), Buenos Aires, Argentina ... Recent estimates of additional land available for bioenergy production range from 320 to 1411 million ha. ...

Steffen Fritz; Linda See; Marijn van der Velde; Rachel A. Nalepa; Christoph Perger; Christian Schill; Ian McCallum; Dmitry Schepaschenko; Florian Kraxner; Ximing Cai; Xiao Zhang; Simone Ortner; Rubul Hazarika; Anna Cipriani; Carlos Di Bella; Ahmed H. Rabia; Alfredo Garcia; Maryana Vakolyuk; Kuleswar Singha; Maria E. Beget; Stefan Erasmi; Franziska Albrecht; Brian Shaw; Michael Obersteiner

2012-12-24T23:59:59.000Z

371

Solid woodbased fuels in energy production in Finland.  

E-Print Network [OSTI]

??Political incentives often have a central role in bioenergy production. Influence of these incentives is expected to increase, because conventional fossil fuels are draining and (more)

Mkel, Matti.

2009-01-01T23:59:59.000Z

372

Proceedings of the Bio-Energy '80 world congress and exposition  

SciTech Connect (OSTI)

Many countries are moving with increasing urgency to obtain larger fractions of their energy from biomass. Over 1800 leading experts from 70 countries met on April 21 to 24 in Atlanta to conduct a World Congress and Exposition on Bio-Energy. This summary presents highlights of the Congress and thoughts stimulated by the occasion. Topics addressed include a comparison of international programs, world and country regionalism in the development of energy supplies, fuel versus food or forest products, production of ethyl alcohol, possibilities for expanded production of terrestrial vegetation and marine flora, and valuable chemicals from biomass. Separate abstracts have been prepared for 164 papers for inclusion in the Energy Data Base.

None

1980-01-01T23:59:59.000Z

373

Bioenergy research: a new paradigm in multidisciplinary research  

Science Journals Connector (OSTI)

...Raman scattering (CARS), has shown to...al. in press). CARS microscopy provides...in the corners of cells and in the compound...results in CO and hydrogen gas (known as syngas...to degrade plant cell wall material to...fermentation to liquid fuels (Schubert 2006...

2010-01-01T23:59:59.000Z

374

Bioenergy research: a new paradigm in multidisciplinary research  

Science Journals Connector (OSTI)

...A. B. , D. N. Bolam, H. J. Gilbert, and G. J. Davies 2004 Carbohydrate-binding...Rinzema, and A. J. M. Stams 2007 Microbiology of synthesis gas fermentation for biofuel...Elkins, E. Mathur, and J. Short 2002 Microbiology: what is next?.Geochim. Cosmochim...

2010-01-01T23:59:59.000Z

375

Meeting Energy Needs in Brazil |GE Global Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Brazil Looking a Decade Ahead: Electrical Power Generation in Brazil Ricardo Hernandez Pereira 2014.11.03 In the Bioenergy Systems Organization at GE Global Research - Rio de...

376

Development of bioenergy technologies in Uganda: A review of progress  

Science Journals Connector (OSTI)

Biomass is a renewable energy resource; however, its exploitation raises concerns about its ability to sustain the growing demand and its negative impacts on the environment, particularly in developing countries. These concerns are more prominent on the African continent where high population growth rates is leading to high rates of deforestation due to expansion of agricultural land and increased demand for bioenergy. Use of traditional and inefficient bioenergy technologies and appliances also exacerbate the problem. This paper presents a review of the efforts and progress made by different organisations in promoting improved bioenergy technologies in Uganda. The study was based on an extensive review of available literature on improved bioenergy technologies introduced in the country. It was found that there is high level of wastage of biomass resources since an estimated 72.7% of the population use traditional cooking stoves with efficiency estimated to be less than 10%. Inefficient cooking stoves are also blamed for indoor air pollution and respiratory illness reported amongst its users. Modern bioenergy technologies such as biomass gasification, cogeneration, biogas generation, biomass densification, and energy-efficient cooking stoves have been introduced in the country but have certainly not been widely disseminated. The country should pursue policies that will accelerate proliferation of more efficient bioenergy technologies in order to reduce the negative environmental impacts of bioenergy utilisation and to ensure sustainability of biomass supplies.

Collins Okello; Stefania Pindozzi; Salvatore Faugno; Lorenzo Boccia

2013-01-01T23:59:59.000Z

377

DOE and USDA Select Projects for more than $24 Million in Biomass Research  

Broader source: Energy.gov (indexed) [DOE]

DOE and USDA Select Projects for more than $24 Million in Biomass DOE and USDA Select Projects for more than $24 Million in Biomass Research and Development Grants DOE and USDA Select Projects for more than $24 Million in Biomass Research and Development Grants November 12, 2009 - 12:00am Addthis Washington, DC - The U.S. Departments of Agriculture and Energy today announced projects selected for more than $24 million in grants to research and develop technologies to produce biofuels, bioenergy and high-value biobased products. Of the $24.4 million announced today, DOE plans to invest up to $4.9 million with USDA contributing up to $19.5 million. Advanced biofuels produced through this funding are expected to reduce greenhouse gas emissions by at least 50 percent compared to fossil fuels. "The selected projects will help make bioenergy production from renewable

378

DOE and USDA Select Projects for more than $24 Million in Biomass Research  

Broader source: Energy.gov (indexed) [DOE]

and USDA Select Projects for more than $24 Million in Biomass and USDA Select Projects for more than $24 Million in Biomass Research and Development Grants DOE and USDA Select Projects for more than $24 Million in Biomass Research and Development Grants November 12, 2009 - 12:00am Addthis Washington, DC - The U.S. Departments of Agriculture and Energy today announced projects selected for more than $24 million in grants to research and develop technologies to produce biofuels, bioenergy and high-value biobased products. Of the $24.4 million announced today, DOE plans to invest up to $4.9 million with USDA contributing up to $19.5 million. Advanced biofuels produced through this funding are expected to reduce greenhouse gas emissions by at least 50 percent compared to fossil fuels. "The selected projects will help make bioenergy production from renewable

379

Addressing the Need for Alternative Transportation Fuels: The Joint BioEnergy Institute  

SciTech Connect (OSTI)

Today, carbon-rich fossil fuels, primarily oil, coal, and natural gas, provide 85% of the energy consumed in the U.S. As world demand increases, oil reserves may become rapidly depleted. Fossil fuel use increases CO{sub 2} emissions and raises the risk of global warming. The high energy content of liquid hydrocarbon fuels makes them the preferred energy source for all modes of transportation. In the U.S. alone, transportation consumes >13.8 million barrels of oil per day and generates 0.5 gigatons of carbon per year. This release of greenhouse gases has spurred research into alternative, nonfossil energy sources. Among the options (nuclear, concentrated solar thermal, geothermal, hydroelectric, wind, solar, and biomass), only biomass has the potential to provide a high-energy-content transportation fuel. Biomass is a renewable resource that can be converted into carbon-neutral transporation fuels. Currently, biofuels such as ethanol are produced largely from grains, but there is a large, untapped resource (estimated at more than a billion tons per year) of plant biomass that could be utilized as a renewable, domestic source of liquid fuels. Well-established processes convert the starch content of the grain into sugars that can be fermented to ethanol. The energy efficiency of starch-based biofuels is however not optimal, while plant cell walls (lignocellulose) represent a huge untapped source of energy. Plant-derived biomass contains cellulose, which is more difficult to convert to sugars; hemicellulose, which contains a diversity of carbohydrates that have to be efficiently degraded by microorganisms to fuels; and lignin, which is recalcitrant to degradation and prevents cost-effective fermentation. The development of cost-effective and energy-efficient processes to transform lignocellulosic biomass into fuels is hampered by significant roadblocks, including the lack of specifically developed energy crops, the difficulty in separating biomass components, low activity of enzymes used to deconstruct biomass, and the inhibitory effect of fuels and processing byproducts on organisms responsible for producing fuels from biomass monomers. The Joint BioEnergy Institute (JBEI) is a U.S. Department of Energy (DOE) Bioenergy Research Center that will address these roadblocks in biofuels production. JBEI draws on the expertise and capabilities of three national laboratories (Lawrence Berkeley National Laboratory (LBNL), Sandia National Laboratories (SNL), and Lawrence Livermore National Laboratory (LLNL)), two leading U.S. universities (University of California campuses at Berkeley (UCB) and Davis (UCD)), and a foundation (Carnegie Institute for Science, Stanford) to develop the scientific and technological base needed to convert the energy stored in lignocellulose into transportation fuels and commodity chemicals. Established scientists from the participating organizations are leading teams of researchers to solve the key scientific problems and develop the tools and infrastructure that will enable other researchers and companies to rapidly develop new biofuels and scale production to meet U.S. transportation needs and to develop and rapidly transition new technologies to the commercial sector. JBEI's biomass-to-biofuels research approach is based in three interrelated scientific divisions and a technologies division. The Feedstocks Division will develop improved plant energy crops to serve as the raw materials for biofuels. The Deconstruction Division will investigate the conversion of this lignocellulosic plant material to sugar and aromatics. The Fuels Synthesis Division will create microbes that can efficiently convert sugar and aromatics into ethanol and other biofuels. JBEI's cross-cutting Technologies Division will develop and optimize a set of enabling technologies including high-throughput, chipbased, and omics platforms; tools for synthetic biology; multi-scale imaging facilities; and integrated data analysis to support and integrate JBEI's scientific program.

Blanch, Harvey; Adams, Paul; Andrews-Cramer, Katherine; Frommer, Wolf; Simmons, Blake; Keasling, Jay

2008-01-18T23:59:59.000Z

380

Property Tax Abatement for Production and Manufacturing Facilities |  

Broader source: Energy.gov (indexed) [DOE]

Abatement for Production and Manufacturing Facilities Abatement for Production and Manufacturing Facilities Property Tax Abatement for Production and Manufacturing Facilities < Back Eligibility Commercial Industrial Savings Category Bioenergy Commercial Heating & Cooling Manufacturing Buying & Making Electricity Alternative Fuel Vehicles Hydrogen & Fuel Cells Solar Heating & Cooling Swimming Pool Heaters Water Heating Heating Wind Program Info Start Date 5/25/2007 State Montana Program Type Industry Recruitment/Support Rebate Amount 50% tax abatement Provider Montana Department of Revenue In May 2007, Montana enacted legislation (H.B. 3) that allows a property tax abatement for new renewable energy production facilities, new renewable energy manufacturing facilities, and renewable energy research and

Note: This page contains sample records for the topic "bioenergy production research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

10 Questions for a Bioenergy Expert: Melinda Hamilton | Department of  

Broader source: Energy.gov (indexed) [DOE]

Bioenergy Expert: Melinda Hamilton Bioenergy Expert: Melinda Hamilton 10 Questions for a Bioenergy Expert: Melinda Hamilton February 15, 2011 - 4:43pm Addthis Melinda Hamilton | Photo courtesy of the Idaho National Laboratory Melinda Hamilton | Photo courtesy of the Idaho National Laboratory Niketa Kumar Niketa Kumar Public Affairs Specialist, Office of Public Affairs Meet Melinda Hamilton - she's a bioenergy expert and the Director of Education Programs at Idaho National Laboratory. She recently took some time to share what she's doing to help ramp-up U.S. competitiveness in science and technology, why Jane Goodall led her to a career in science and what can happen in a lab if you don't start with a good plan. Q: What sparked your interest to pursue a career in science? Melinda Hamilton: The answer is kind of corny, but the truth is when I was

382

Bioenergy Technologies Office R&D Pathways: Algal Lipid Upgrading  

Broader source: Energy.gov [DOE]

Algal lipid upgrading is one of eight priority pathways chosen to convert biomass into hydrocarbon fuels by the Bioenergy Technologies Office. These pathways were down-selected from an initial list of 18.

383

DOE's Bioenergy Technologies Office Supports Military-Grade Biofuels  

Broader source: Energy.gov [DOE]

Our Bioenergy Technologies Office (BETO) is helping the U.S. military increase the nations #energy security, reduce greenhouse gas emissions, and create jobs in #America by advancing renewable biofuels.

384

Bioenergy Technologies Office Multi-Year Program Plan: July 2014...  

Broader source: Energy.gov (indexed) [DOE]

and can displace a share of petroleum-derived fuels to reduce U.S. dependence on foreign oil Encourage the creation of a new domestic bioenergy and bioproduct industry....

385

Department of Energy Offers Abengoa Bioenergy a Conditional Commitment...  

Office of Environmental Management (EM)

of a conditional commitment for a 133.9 million loan guarantee to Abengoa Bioenergy Biomass of Kansas LLC (ABBK) to support the development of a commercial-scale cellulosic...

386

Global bioenergy potential from high-lignin agricultural residue  

Science Journals Connector (OSTI)

...net greenhouse-gas flux for bioenergy...cycle (IBGCC) power generation concept: The...Mill Wastes-Fired Power Generation Systems and...Waste IX (Inst Gas Technol, Chicago...cycle (IBGCC) power generation concept: The...

Venugopal Mendu; Tom Shearin; J. Elliott Campbell; Jr; Jozsef Stork; Jungho Jae; Mark Crocker; George Huber; Seth DeBolt

2012-01-01T23:59:59.000Z

387

Hydrogen production from water: Recent advances in photosynthesis research  

SciTech Connect (OSTI)

The great potential of hydrogen production by microalgal water splitting is predicated on quantitative measurement of the algae`s hydrogen-producing capability, which is based on the following: (1) the photosynthetic unit size of hydrogen production; (2) the turnover time of photosynthetic hydrogen production; (3) thermodynamic efficiencies of conversion of light energy into the Gibbs free energy of molecular hydrogen; (4) photosynthetic hydrogen production from sea water using marine algae; (5) the potential for research advances using modern methods of molecular biology and genetic engineering to maximize hydrogen production. ORNL has shown that sustained simultaneous photoevolution of molecular hydrogen and oxygen can be performed with mutants of the green alga Chlamydomonas reinhardtii that lack a detectable level of the Photosystem I light reaction. This result is surprising in view of the standard two-light reaction model of photosynthesis and has interesting scientific and technological implications. This ORNL discovery also has potentially important implications for maximum thermodynamic conversion efficiency of light energy into chemical energy by green plant photosynthesis. Hydrogen production performed by a single light reaction, as opposed to two, implies a doubling of the theoretically maximum thermodynamic conversion efficiency from {approx}10% to {approx}20%.

Greenbaum, E.; Lee, J.W. [Oak Ridge National Lab., TN (United States). Chemical Technology Div.

1997-12-31T23:59:59.000Z

388

Local and remote climate impacts from expansion of woody biomass for bioenergy feedstock in the Southeastern US  

E-Print Network [OSTI]

as a feedstock for a bioenergy and bioproducts industry: TheCooling the greenhouse with bioenergy. Nature, 353, 1112.F. , and C. Azar, 2009: Bioenergy plantations or long- term

Murphy, L.N.

2014-01-01T23:59:59.000Z

389

NREL: Biomass Research - Eric P. Knoshaug  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Eric P. Knoshaug Eric P. Knoshaug Photo of Eric Knoshaug Eric P. Knoshaug is a senior scientist in the Applied Science section of the National Bioenergy Center at the National Renewable Energy Laboratory in Golden, Colorado. He joined NREL in August 2000 and has since worked on engineering yeast for efficient utilization of biomass-generated pentose sugars, protein design and evolution for increased activity on recalcitrant biomass substrates, and increasing lipid production in microalgae. Current projects include: Pentose utilization in yeast Algal growth systems Algal lipid production and nitrogen stress responses Enzymatic degradation of algal biomass. Research Interests Microbiology Molecular biology Microbial physiology Fermentation and growth systems development Metabolic engineering

390

Bioenergy and rural development: The role of agroforestry in a Tanzanian village economy  

Science Journals Connector (OSTI)

Abstract Recent papers indicate that decentralized bioenergy crop production offers increased market access and income diversification strategies for the rural population. The analyses concentrate on the potential effects of newly discussed crops such as Jatropha curcas, cassava, and sugarcane on macro level. Thereby two aspects are neglected, the income effects on micro level, and the integration of traditional firewood production systems for comparison. To fill this gap, an Environmentally Extended Social Accounting Matrix (ESAM) at the village level is developed and applied to a rural village in Tanzania. The objective is first to explore the integration of agroforestry systems in rural smallholder systems and second to analyze income effects of agricultural biomass production for bioenergy purposes in comparison to firewood production. In order to distinguish the use of firewood from public and private tree resources, environmental accounts for changes in tree stocks (public and private) are included. Findings indicate the importance of including common firewood production as a reference point. The highest income effect for the poorest households derives from agroforestry, which households use as a source of firewood and fruits for sale or home consumption, followed by J. curcas, sugarcane and finally cassava. Agroforestry in general has been also found to substantially release the pressure on public forest reserves.

Anja Fae; Etti Winter; Ulrike Grote

2014-01-01T23:59:59.000Z

391

Press Releases: BioEnergy Science Center  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Press Releases Press Releases Mascoma Announces Major Cellulosic Biofuel Technology Breakthrough Lebanon, NH - May 7, 2009: Mascoma Corporation today announced that the company has made major research advances in consolidated bioprocessing, or CBP, a low-cost processing strategy for production of biofuels from cellulosic biomass. CBP avoids the need for the costly production of cellulase enzymes by using engineered microorganisms that produce cellulases and ethanol at high yield in a single step. "This is a true breakthrough that takes us much, much closer to billions of gallons of low cost cellulosic biofuels," said Michigan State University's Dr. Bruce Dale, who is also Editor of the journal Biofuels, Bioproducts and Biorefineries. "Many had thought that CBP was years or even decades away,

392

E-Print Network 3.0 - alternative agricultural products Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Wallace Tyner, Purdue... University 2007 Farm Bill: Implications for US & Global BioEnergy Production ... Source: Dyer, Bill - Department of Plant Sciences and Plant...

393

E-Print Network 3.0 - agricultural production Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Theater, MSU-Bozeman 282B Strand Union Building Summary: and outreach programs focus on bioenergy production opportunities, agricultural policy and consumer economics... and...

394

E-Print Network 3.0 - advanced biofuels production Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

biomass supply, . . . how much land? Future Biofuel Production... Program Section 9005: Bioenergy Program for Advanced Biofuels ... Source: Gray, Matthew - Department of...

395

E-Print Network 3.0 - agricultural production energeticky Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Theater, MSU-Bozeman 282B Strand Union Building Summary: and outreach programs focus on bioenergy production opportunities, agricultural policy and consumer economics... and...

396

E-Print Network 3.0 - agricultural products Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Theater, MSU-Bozeman 282B Strand Union Building Summary: and outreach programs focus on bioenergy production opportunities, agricultural policy and consumer economics... and...

397

E-Print Network 3.0 - advanced biofuel production Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

biomass supply, . . . how much land? Future Biofuel Production... Program Section 9005: Bioenergy Program for Advanced Biofuels ... Source: Gray, Matthew - Department of...

398

32 Robust og bredygtig bioenergi september 2012 Af Brian Vad Mathiesen, David  

E-Print Network [OSTI]

32 Robust og bæredygtig bioenergi · september 2012 Af Brian Vad Mathiesen, David Connolly, Henrik me- get el ind i transportsektoren som muligt. #12;Robust og bæredygtig bioenergi · september 2012 33

Schaltz, Erik

399

BIOENERGY/BIOFUELS/BIOCHEMICALS Chromatographic determination of 1, 4-b-xylooligosaccharides  

E-Print Network [OSTI]

BIOENERGY/BIOFUELS/BIOCHEMICALS Chromatographic determination of 1, 4-b. Li � R. Kumar � C. E. Wyman BioEnergy Science Center, Oak Ridge, TN 37831, USA 123 J Ind Microbiol

California at Riverside, University of

400

Rerouting Carbon Flux To Enhance Photosynthetic Productivity  

Science Journals Connector (OSTI)

...discussions and the critical review of the manuscript. We acknowledge...membrane transport proteins (review). Mol. Membr. Biol. 21...Biofuels from microalgae-a review of technologies for production...Souza. 2010. Sugarcane for bioenergy production: an assessment...

Daniel C. Ducat; J. Abraham Avelar-Rivas; Jeffrey C. Way; Pamela A. Silver

2012-02-03T23:59:59.000Z

Note: This page contains sample records for the topic "bioenergy production research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Land-use transition for bioenergy and climate stabilization: model comparison of drivers, impacts and interactions with other land use based mitigation options  

SciTech Connect (OSTI)

This study is a model comparison assessing the drivers and impacts of bioenergy production on the global land system and the interaction with other land use based mitigation options in the context of the EMF 27 project. We compare and evaluate results from three integrated assessment models (GCAM, IMAGE, and ReMIND/MAgPIE). All three models project that dedicated bioenergy crops and biomass residues are a potentially important and cost-effective component of the energy system. But bioenergy deployment levels and feedstock composition vary notably across models as do the implications for land-use and greenhouse gas emissions and the interaction with other land use based mitigation measures. Despite numerous model differences, we identify a few that are likely contributing to differences in land-use and emissions attributable to energy crop deployment.

Popp, Alexander; Rose, Steven K.; Calvin, Katherine V.; Van Vuuren, Detlef; Dietrich, Jan P.; Wise, Marshall A.; Stehfest, Eike; Humpenoder, Florian; Kyle, G. Page; Van Vliet, Jasper; Bauer, Nico; Lotze-Campen, Hermann; Klein, David; Kriegler, Elmar

2014-04-01T23:59:59.000Z

402

E-Print Network 3.0 - affect crop production Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research Center Collection: Environmental Sciences and Ecology 98 Land-use Changes and Bioenergy ORNL History of Exploring Changes in Land Use in the United States Summary: with...

403

Bioenergy Technologies Office Multi-Year Program Plan: November 2014 Update  

Broader source: Energy.gov [DOE]

This Multi-Year Program Plan (MYPP) sets forth the goals and structure of the Bioenergy Technologies Office. It identifies the research, development, demonstration, and deployment activities the Office will focus on over the next five years and outlines why these activities are important to meeting the energy and sustainability challenges facing the nation. This MYPP is intended for use as an operational guide to help the Office manage and coordinate its activities, as well as a resource to help communicate its mission and goals to stakeholders and the public.

404

Bioenergy Technologies Office Multi-Year Program Plan: November 2014 Update-- Sections  

Broader source: Energy.gov [DOE]

This Multi-Year Program Plan (MYPP) sets forth the goals and structure of the Bioenergy Technologies Office. It identifies the research, development, demonstration, and deployment activities the Office will focus on over the next five years and outlines why these activities are important to meeting the energy and sustainability challenges facing the nation. This MYPP is intended for use as an operational guide to help the Office manage and coordinate its activities, as well as a resource to help communicate its mission and goals to stakeholders and the public.

405

Bioenergy Technologies Office Multi-Year Program Plan: July 2014 Update  

Broader source: Energy.gov [DOE]

This Multi-Year Program Plan (MYPP) sets forth the goals and structure of the Bioenergy Technologies Office. It identifies the research, development, demonstration, and deployment activities the Office will focus on over the next five years and outlines why these activities are important to meeting the energy and sustainability challenges facing the nation. This MYPP is intended for use as an operational guide to help the Office manage and coordinate its activities, as well as a resource to help communicate its mission and goals to stakeholders and the public.

406

Bioenergy Technologies Office Multi-Year Program Plan: July 2014 Update-- Sections  

Broader source: Energy.gov [DOE]

This Multi-Year Program Plan (MYPP) sets forth the goals and structure of the Bioenergy Technologies Office. It identifies the research, development, demonstration, and deployment activities the Office will focus on over the next five years and outlines why these activities are important to meeting the energy and sustainability challenges facing the nation. This MYPP is intended for use as an operational guide to help the Office manage and coordinate its activities, as well as a resource to help communicate its mission and goals to stakeholders and the public.

407

Microarray Transcriptomics Data from the BioEnergy Science Center (BESC)  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The BioEnergy Science Center (BESC) is a multi-institutional (18 partner), multidisciplinary research (biological, chemical, physical and computational sciences, mathematics and engineering) organization focused on the fundamental understanding and elimination of biomass recalcitrance. BESC's approach to improve accessibility to the sugars within biomass involves 1) designing plant cell walls for rapid deconstruction and 2) developing multitalented microbes for converting plant biomass into biofuels in a single step (consolidated bioprocessing). Addressing the roadblock of biomass recalcitrance will require a multiscale understanding of plant cell walls from biosynthesis to deconstruction pathways. This integrated understanding would generate models, theories and finally processes that will be used to understand and overcome biomass recalcitrance.

408

U.S. Billion-Ton Update: Biomass Supply for a Bioenergy and Bioproduct...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

WORKSHOP Biomass Program Peer Review Sustainability Platform Bioenergy Technologies Office: Association of Fish and Wildlife Agencies Agricultural Conservation Committee Meeting...

409

Medical isotope production: A new research initiative for the Annular Core Research Reactor  

SciTech Connect (OSTI)

An investigation has been performed to evaluate the capabilities of the Annular Core Research Reactor and its supporting Hot Cell Facility for the production of {sup 99}Mo and its separation from the fission product stream. Various target irradiation locations for a variety of core configurations were investigated, including the central cavity, fuel and reflector locations, and special target configurations outside the active fuel region. Monte Carlo techniques, in particular MCNP using ENDF B-V cross sections, were employed for the evaluation. The results indicate that the reactor, as currently configured, and with its supporting Hot Cell Facility, would be capable in meeting the current US demand if called upon. Modest modifications, such as increasing the capacity of the external heat exchangers, would permit significantly higher continuous power operation and even greater {sup 99}Mo production ensuring adequate capacity for future years.

Coats, R.L.; Parma, E.J.

1993-12-31T23:59:59.000Z

410

DRAFT ENVIRONMENTAL ASSESSMENT FOR THE NATIONAL CENTER FOR NATURAL PRODUCTS RESEARCH  

E-Print Network [OSTI]

DRAFT ENVIRONMENTAL ASSESSMENT FOR THE NATIONAL CENTER FOR NATURAL PRODUCTS RESEARCH PHASE II BLANK #12;ENVIRONMENTAL ASSESSMENT FOR THE NATIONAL CENTER FOR NATURAL PRODUCTS RESEARCH PHASE II. #12;ENVIRONMENTAL ASSESSMENT FOR THE NATIONAL CENTER FOR NATURAL PRODUCTS RESEARCH PHASE II UNIVERSITY

Tchumper, Gregory S.

411

The Center for BioEnergy Sustainability (CBES) At Oak Ridge National Laboratory (ORNL)  

E-Print Network [OSTI]

­ ORNL Bioenergy Resource & Engineering Systems Matt has expertise in accounting for non-market amenitiesThe Center for BioEnergy Sustainability (CBES) At Oak Ridge National Laboratory (ORNL) is pleased of Short-rotation Pine for Bioenergy on Water Quality and Quantity Using a Watershed-scale Experiment

412

Available online at www.sciencedirect.com Biomass and Bioenergy 24 (2003) 269276  

E-Print Network [OSTI]

commercial markets are poor, there has been a great deal of success in utilizing bioenergy by designatingAvailable online at www.sciencedirect.com Biomass and Bioenergy 24 (2003) 269­276 Flagsta 's wildÿre fuels treatments: prescriptions for community involvement and a source of bioenergy Allen

413

Ris har udgivet en rapport om moderne bioenergi. Den slr fast, at  

E-Print Network [OSTI]

Risø har udgivet en rapport om moderne bioenergi. Den slår fast, at biomasse er en ligeså værdifuld teknologi, der skal til for at udnytte hele dens potentiale. RIS?NYT N O 42003 MODERNE BIOENERGI HAR STORE MULIGHEDER Moderne bioenergi har store muligheder Af Hans Larsen, Jens Kossmann og Leif Sønderberg Petersen

414

Bioenergy crop greenhouse gas mitigation potential under a range of management practices  

E-Print Network [OSTI]

Bioenergy crop greenhouse gas mitigation potential under a range of management practices T A R A W been proposed as viable bioenergy crops because of their potential to yield harvest- able biomass-senescence harvests are a more effective means than maximizing yield potential. Keywords: bioenergy, feedstocks, GHG

DeLucia, Evan H.

415

Concorso Tesi di Laurea e Concorso Tesi di Dottorato di Ricerca BioEnergy Italy 2014  

E-Print Network [OSTI]

Concorso Tesi di Laurea e Concorso Tesi di Dottorato di Ricerca BioEnergy Italy 2014 Bioenergie, Chimica Verde e Agricoltura Destinato ai laureati di qualsiasi Facoltà che hanno dell'uso delle bioenergie o della chimica verde in agricoltura I Concorsi - promossi da Cremona

Segatti, Antonio

416

IMproved Assessment of the Greenhouse gas balance of bioeNErgy pathways (IMAGINE)  

E-Print Network [OSTI]

IMproved Assessment of the Greenhouse gas balance of bioeNErgy pathways (IMAGINE) Evaluation - ENERBIO Livrable D4.1 : GHG balances of bioenergy pathways Mars 2012 Nathalie GAGNAIRE, Benoît GABRIELLE sources by bioenergy mostly hinges on the uncertainty on the magnitude of nitrous oxide (N2O) emissions

Paris-Sud XI, Université de

417

Multi Criteria Analysis for bioenergy systems assessments Thomas Buchholz a,, Ewald Rametsteiner b  

E-Print Network [OSTI]

Multi Criteria Analysis for bioenergy systems assessments Thomas Buchholz a,?, Ewald Rametsteiner b Available online 11 November 2008 Keywords: Multi Criteria Analysis Bioenergy Sustainability a b s t r a c t Sustainable bioenergy systems are, by definition, embedded in social, economic, and environmental contexts

Vermont, University of

418

The Pennsylvania State University www.BioEnergyBridge.psu.edu 1 BioEnergy Bridge  

E-Print Network [OSTI]

© The Pennsylvania State University www.BioEnergyBridge.psu.edu 1 Penn State BioEnergy# trichard@psu.edu rtw103@psu.edu www.bioenergy.psu.edu Biomass Energy Center #12;© The Pennsylvania State · The BioEnergy BridgeTM will address the full spectrum of challenges to our national priority of reducing

Lee, Dongwon

419

*** Draft: do not cite or distribute -COP7 Bioenergy Document: October 18, 2001 *** Address Correspondence to  

E-Print Network [OSTI]

*** Draft: do not cite or distribute - COP7 Bioenergy Document: October 18, 2001 *** Address;*** Draft: do not cite or distribute - COP7 Bioenergy Document: October 18, 2001 *** 10/23/01 Page 2 of 111 omasera@ate.oikos.unam.mx #12;*** Draft: do not cite or distribute - COP7 Bioenergy Document: October 18

Kammen, Daniel M.

420

Bioenergy Feedstock Potential from Short-Rotation Woody Crops in a Dryland Environment  

Science Journals Connector (OSTI)

Bioenergy Feedstock Potential from Short-Rotation Woody Crops in a Dryland Environment ... Bioslurry as a Fuel. 1. Viability of a Bioslurry-Based Bioenergy Supply Chain for Mallee Biomass in Western Australia ... Bioslurry as a Fuel. 1. Viability of a Bioslurry-Based Bioenergy Supply Chain for Mallee Biomass in Western Australia ...

R. J. Harper; S. J. Sochacki; K. R. J. Smettem; N. Robinson

2009-08-28T23:59:59.000Z

Note: This page contains sample records for the topic "bioenergy production research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

2014 Bioenergy Summer Bridge Fellowship Applica;on Please type or print all informa0on  

E-Print Network [OSTI]

2014 Bioenergy Summer Bridge Fellowship Applica;on Please type or print all want to be a Bioenergy Summer Bridge student and what you hope to contribute for future Bioenergy Summer Bridge students. Le=er B: Write and in-depth le

Tullos, Desiree

422

Carbon Dioxide Emissions Associated with Bioenergy and Other Biogenic  

Open Energy Info (EERE)

Carbon Dioxide Emissions Associated with Bioenergy and Other Biogenic Carbon Dioxide Emissions Associated with Bioenergy and Other Biogenic Sources Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Carbon Dioxide Emissions Associated with Bioenergy and Other Biogenic Sources Agency/Company /Organization: United States Environmental Protection Agency Sector: Energy, Climate Focus Area: Biomass, - Biomass Combustion, - Biomass Gasification, - Biomass Pyrolysis, - Biofuels, - Landfill Gas, - Waste to Energy, Greenhouse Gas Phase: Evaluate Options Resource Type: Publications, Guide/manual User Interface: Website Website: www.epa.gov/climatechange/emissions/biogenic_emissions.html Cost: Free References: EPA, 40 CFR Part 60[1] Tailoring Rule[2] Biogenic Emissions[3] The 'EPA Climate Change - Green House Gas Emissions - Carbon Dioxide

423

UNEP-Bioenergy Decision Support Tool | Open Energy Information  

Open Energy Info (EERE)

UNEP-Bioenergy Decision Support Tool UNEP-Bioenergy Decision Support Tool Jump to: navigation, search LEDSGP green logo.png FIND MORE DIA TOOLS This tool is part of the Development Impacts Assessment (DIA) Toolkit from the LEDS Global Partnership. Tool Summary LAUNCH TOOL Name: UNEP-Bioenergy Decision Support Tool Agency/Company /Organization: United Nations Environment Programme (UNEP) Partner: Food and Agriculture Organization of the United Nations Sector: Land Focus Area: Renewable Energy, Biomass, - Biofuels, - Biomass Combustion, - Biomass Gasification, - Biomass Pyrolysis, - Landfill Gas, People and Policy Topics: Co-benefits assessment, - Energy Access, - Energy Security, - Environmental and Biodiversity, - Health, Implementation, Market analysis, Policies/deployment programs Resource Type: Guide/manual, Publications

424

RESEARCH ON CARBON PRODUCTS FROM COAL USING AN EXTRACTIVE PROCESS  

SciTech Connect (OSTI)

This report presents the results of a one-year effort directed at the exploration of the use of coal as a feedstock for a variety of industrially-relevant carbon products. The work was basically divided into three focus areas. The first area dealt with the acquisition of laboratory equipment to aid in the analysis and characterization of both the raw coal and the coal-derived feedstocks. Improvements were also made on the coal-extraction pilot plant which will now allow larger quantities of feedstock to be produced. Mass and energy balances were also performed on the pilot plant in an attempt to evaluate the scale-up potential of the process. The second focus area dealt with exploring hydrogenation conditions specifically aimed at testing several less-expensive candidate hydrogen-donor solvents. Through a process of filtration and vacuum distillation, viable pitch products were produced and evaluated. Moreover, a recycle solvent was also isolated so that the overall solvent balance in the system could be maintained. The effect of variables such as gas pressure and gas atmosphere were evaluated. The pitch product was analyzed and showed low ash content, reasonable yield, good coking value and a coke with anisotropic optical texture. A unique plot of coke yield vs. pitch softening point was discovered to be independent of reaction conditions or hydrogen-donor solvent. The third area of research centered on the investigation of alternate extraction solvents and processing conditions for the solvent extraction step. A wide variety of solvents, co-solvents and enhancement additives were tested with varying degrees of success. For the extraction of raw coal, the efficacy of the alternate solvents when compared to the benchmark solvent, N-methyl pyrrolidone, was not good. However when the same coal was partially hydrogenated prior to solvent extraction, all solvents showed excellent results even for extractions performed at room temperature. Standard analyses of the extraction products indicated that they had the requisite properties of viable carbon-product precursors.

Peter G. Stansberry; Alfred H. Stiller; John W. Zondlo; Chong Chen; Brian Bland; David Fenton

2002-03-31T23:59:59.000Z

425

E-Print Network 3.0 - asian livestock production Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

production but will produce millions of tons of by-products that can be fed... Utilizing Bioenergy By-products in Beef Production Systems The newly expanded renewable fuels......

426

An empirical analysis of the relationship between individual characteristics and research productivity  

Science Journals Connector (OSTI)

This paper provides an analysis of the relationship between research performance and individual characteristics (e.g., career path information) of researchers, based on information provided in the curriculum vitaes of 565 excellent researchers within ... Keywords: Career path, Curriculum vitae, Diversity of career, Practical physician, Research grant, Research productivity

Naomi Fukuzawa

2014-06-01T23:59:59.000Z

427

Bioenergy in India: Barriers and Policy Options | Open Energy Information  

Open Energy Info (EERE)

Bioenergy in India: Barriers and Policy Options Bioenergy in India: Barriers and Policy Options Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Bioenergy in India: Barriers and Policy Options Agency/Company /Organization: UNEP-Risoe Centre Sector: Energy Focus Area: Renewable Energy, Biomass, - Biofuels Topics: Implementation, Market analysis, Pathways analysis, Background analysis Resource Type: Publications, Lessons learned/best practices, Case studies/examples Website: tech-action.org/Perspectives/BioenergyIndia.pdf Country: India Cost: Free UN Region: Southern Asia Coordinates: 20.593684°, 78.96288° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":20.593684,"lon":78.96288,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

428

Oilseeds for Biofuels and Biochemicals in Texas BIOENERGY PROGRAM  

E-Print Network [OSTI]

Oilseeds for Biofuels and Biochemicals in Texas BIOENERGY PROGRAM Description feedstocks (primarily soybean) with food and feed markets. The price of October 2009 Chicago soybean oil to be competitive in the domestic market. U.S. biodiesel manfacturers are closing, consolidating, or suspending

429

Generating Bioenergy Solutions for the Clean Energy Economy of Tomorrow  

Broader source: Energy.gov [DOE]

Bioenergy Technologies Office selects student team from Redmond, Washington, to present at the Biomass 2014 conference, which is taking place July 29 to July 30 in Washington, D.C. The team was chosen for their idea on how to help the nation transition to renewable forms of energy using cellulosic ethanol.

430

How can land-use modelling tools inform bioenergy policies?  

Science Journals Connector (OSTI)

...information and processes to assess the consequences...fuels (e.g. biodiesel, bioethanol...a comprehensive evaluation of these different...occur. Realistic evaluations of bioenergy scenarios...tequila-making process can be used as...palm or soya bean biodiesel [10]. While...

2011-01-01T23:59:59.000Z

431

Assessing the potential of bioenergy. Final report, October 1, 1997--September 30, 1998  

SciTech Connect (OSTI)

As electricity restructuring proceeds, traditional concepts of how energy is produced, transported, and utilized are likely to change dramatically. Marketplace, policy, and regulatory changes will shape both the domestic and global energy industry, improving opportunities for clean, low-cost energy, competitively priced fuels, and environmentally responsible power systems. Many of these benefits may be obtained by commercial deployment of advanced biomass power conversion technologies. The United BioEnergy Commercialization Association represents the US biomass power industry. Its membership includes investor-owned and public utilities, independent power producers, state and regional bioenergy, equipment manufacturers, and biomass energy developers. To carry out its mission, UBECA has been carrying out the following activities: production of informational and educational materials on biomass energy and distribution of such materials at public forums; technical and market analyses of biomass energy fuels, conversion technologies, and market issues; monitoring of issues affecting the biomass energy community; and facilitating cooperation among members to leverage the funds available for biomass commercialization activities.

Kirschner, J.; Badin, J.

1998-12-31T23:59:59.000Z

432

Rerouting Carbon Flux To Enhance Photosynthetic Productivity  

Science Journals Connector (OSTI)

...reported in academic literature for cyanobacteria or...rates from existing literature on cyanobacteria...photobioreactor-like environments (high light and high...discussions and the critical review of the manuscript...2010. Sugarcane for bioenergy production: an assessment...

Daniel C. Ducat; J. Abraham Avelar-Rivas; Jeffrey C. Way; Pamela A. Silver

2012-02-03T23:59:59.000Z

433

Opportunities for Farmers in Biomass Feedstock Production  

Broader source: Energy.gov [DOE]

Plenary IV: Advances in Bioenergy FeedstocksFrom Field to Fuel Opportunities for Farmers in Biomass Feedstock Production J. Richard Hess, Idaho National Lab, Director of Energy Systems & Technology Division

434

RESEARCH ARTICLE Environmental impact of greenhouse tomato production  

E-Print Network [OSTI]

, regarding the structure of the system, the inputs for production, and the waste products. Results show) and 40% in France excluding potatoes (deduced from Jeannequin et al. 2005). Land and water availability

Paris-Sud XI, Université de

435

Tradeoffs in ecosystem services of prairies managed for bioenergy production.  

E-Print Network [OSTI]

??The use of perennial plant materials as a renewable source of energy may constitute an important opportunity to improve the environmental sustainability of managed land. (more)

Jarchow, Meghann Elizabeth

2012-01-01T23:59:59.000Z

436

Roadmap for Bioenergy and Biobased Products in the United States  

Broader source: Energy.gov [DOE]

Biomass resources are a sustainable and environmentally friendly feedstock that can contribute significantly to a diverse energy portfolio.

437

BioEnergy Research ISSN 1939-1234  

E-Print Network [OSTI]

of this assessment, algae were grown at several cultivation scales and processed using centrifugation for harvesting.013, and 0.36, respectively. Keywords Algae . Energy return on investment . Energy balance . Net energy ratio . Biofuel . Biodiesel C. M. Beal :R. E. Hebner :M. E. Webber :R. S. Ruoff Department of Mechanical

438

EASTBIO DTP Research Training Bioenergy & Industrial Biotechnology Priority Area  

E-Print Network [OSTI]

. Logan, `Exoelectrogenic bacteria that power'microbial fuel cells', Microbiology 7 (May 2009), 375 optimization Suggested papers: Papers by Tom Ward and some of his own work. This includes bioconjugation

Spoel, Steven

439

Sandia National Laboratories: BioEnergy Research Centers  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Doppler Velocimeter EC Top Publications A Comparison of Platform Options for Deep-water Floating Offshore Vertical Axis Wind Turbines: An Initial Study Nonlinear Time-Domain...

440

The radionuclide research and production program at Brookhaven National Laboratory  

SciTech Connect (OSTI)

The DOE-supported, {open_quotes}Radionuclide and Radiopharmaceutical Research for Medicine{close_quotes} program at BNL has a long record of accomplishment. In the 1950s and 1960s the Hot Lab Division was responsible for the development for such important isotopes as {sup 90}Mo, {sup 90}Sr, {sup 132, 133}I, and especially the generator systems {sup 90}Mo/{sup 99m}Tc, {sup 90}Sr/{sup 90}Y and {sup 68}Ge/{sup 68}Ga. The role in the growth of nuclear medicine of the {sup 99}Mo generator was, and still is, critical. Another very important isotope, {sup 201}Tl for myocardial perfusion studies, was developed in the early 1970s. In 1972 program focus changed somewhat with the construction of the Brookhaven Linac Isotope Producer (BLIP). This was the world`s first facility to demonstrate the capability of a large proton linac for efficient no-carrier added radionuclide production by spallation reactions. It utilizes the excess beam capacity of the 200 MeV proton linac injector for the Alternating Gradient Synchroton. Over two dozen previously unavailable isotopes have been developed at the BLIP, including {sup 67}Cu, {sup 68}Ge, {sup 82}Sr, {sup 96}Tc, {sup 123}I, and {sub 127}Xe. Also, other promising isotopes were developed using the High Flux Beam Reactor, including {sup 117m}Sn, {sup 109}Pd, {sup 47}Sc, and {sup 199}Au. Year-round operation with increased beam current can be implemented to alleviate the shortage of, and the interruption in, the supply of medically useful isotopes.

Mausner, L.F.; Kurczak, S.; Schnakenberg, H.; Kolsky, K.L.; Srivastava, S.C. [Brookhaven National Laboratory, Upton, NY (United States)

1993-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "bioenergy production research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

The response of fatty acids and pigments to variations in temperature and irradiance in the Marine Diatom Thalassiosira pseudonana :  

E-Print Network [OSTI]

bioenergy biopro- cessing: Biomethane production, digestatevia digestion to yield biomethane gas [8]. Novel research is

Shang, Frank F.

2011-01-01T23:59:59.000Z

442

Biomass and nutrient removal by willow clones in experimental bioenergy plantations in New York State  

Science Journals Connector (OSTI)

The development of short-rotation intensive cultural (SRIC) willow systems as a source of bioenergy and bioproducts is growing in the northeastern and midwestern United States. Important data for sustainable management such as nutrient removal and nutrient use efficiency in willow bioenergy plantations is lacking. This study reports wood biomass production, annual removal of nutrients, and nutrient use efficiency in experimental plantings of SRIC willow and poplar at Tully, New York. Effects of clone, fertilization, irrigation, planting density, and harvest cycle were analyzed. Annual biomass production of 1522 dryMg/ha removed 7586, 1011, 2732, 5279 and 45kg/ha/year of N, P, K, Ca and Mg, respectively. For all the variables studied, the responses depended on clone. Fertilization and irrigation increased rates of nutrient removal by means of increased biomass production. Unlike planting density, harvest cycle significantly affected rates of nutrient removal and nutrient use efficiency. For clone SV1 (Salix dasyclados), an irrigated and fertilized planting with a density of 36,960trees/ha harvested on a 3-year rotation had the highest biomass production and nutrient use efficiency, and the lowest rates of nutrient removal. The annual harvest cycle had the lowest nutrient use efficiency and the highest annual removal of nutrients suggesting that this choice would be most appropriate for biomass crops that are to be used as buffer strips to manage nutrient runoff from agricultural fields. An appropriate choice of clone, planting density, and harvest cycle could tailor the rates of nutrient removal and nutrient use efficiency to match the objective of the planting.

Hector G. Adegbidi; Timothy A. Volk; Edwin H. White; Lawrence P. Abrahamson; Russell D. Briggs; Donald H. Bickelhaupt

2001-01-01T23:59:59.000Z

443

Energy Related Research Expertise Mechanical Engineering Department  

E-Print Network [OSTI]

a combustion process, bubbles in the cooling system in nuclear plants. Amy Shen: nanotechnology, bioenergy economic implications (e.g., job creation and changes in resource markets) in all assessments. Research

Anderson, Richard

444

Economic Policy and Resource Implications of Biofuel Feedstock Production  

E-Print Network [OSTI]

vulnerable to erosion and loss of productivity. In analyses carried out separately by Malcolm, Aillery, and Weinberg (2009) and Taylor and Lacewell (2009a), it was found that meeting the bioenergy production mandates would expand cropland requirements... the traditional food crops for the available land, production of biomass crops for ethanol can be expected to extend to marginal lands and lands with degraded production capabilities (Lal and Pimentel 2007). 7 7 Such expansion to produce bioenergy...

Adusumilli, Naveen

2012-10-19T23:59:59.000Z

445

NREL: Biomass Research - Research Staff  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research Staff Research Staff NREL's biomass research staff includes: Management team Technology and research areas Research support areas. Search the NREL staff directory to contact any of the research staff listed below. Management Team The biomass management team is composed of: Thomas Foust, National Bioenergy Center Director Robert Baldwin, Principal Scientist, Thermochemical Conversion Phil Pienkos, Applied Science Principal Group Manager Kim Magrini, Catalysis and Thermochemical Sciences and Engineering R&D Principal Group Manager Jim McMillan, Biochemical Process R&D Principal Group Manager Rich Bain, Principal Engineer, Thermochemical Sciences Mark Davis, Thermochemical Platform Lead Richard Elander, Biochemical Platform Lead Dan Blake, Emeritus Back to Top Technology and Research Areas

446

Single, Key Gene Discovery Could Streamline Production of Biofuels |  

Broader source: Energy.gov (indexed) [DOE]

Single, Key Gene Discovery Could Streamline Production of Biofuels Single, Key Gene Discovery Could Streamline Production of Biofuels Single, Key Gene Discovery Could Streamline Production of Biofuels August 11, 2011 - 3:51pm Addthis WASHINGTON, DC -- A team of researchers at the Department of Energy's BioEnergy Science Center (BESC) have pinpointed the exact, single gene that controls ethanol production capacity in a microorganism. This discovery could be the missing link in developing biomass crops that produce higher concentrations of ethanol at lower costs. "The Department of Energy relies on the scientific discoveries of its labs and research centers to improve the production of clean energy sources," said Energy Secretary Steven Chu. "This discovery is an important step in developing biomass crops that could increase yield of

447

[National Institute for Petroleum and Energy Research] quarterly technical report, July 1--September 30, 1991. Volume 2, Energy production research  

SciTech Connect (OSTI)

The report is submitted in two volumes, Volume I representing the work accomplished under Fuels Research and Volume II the work for Energy Production Research during the period July 1--Sept. 30, 1991. Topics covered include: chemical flooding, gas displacement, thermal recovery, geoscience technology, resource assessment technology, microbial technology, environmental technology.

Not Available

1992-01-01T23:59:59.000Z

448

Cell Fabrication Facility Team Production and Research Activities...  

Broader source: Energy.gov (indexed) [DOE]

and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting es030jansen2013o.pdf More Documents & Publications Current Research Activities in Electrode and...

449

International Journal of Production Research Vol. 48, No. 4, 15 February 2010, 933955  

E-Print Network [OSTI]

conserves a considerable portion of the energy utilised in production of those components. This hasInternational Journal of Production Research Vol. 48, No. 4, 15 February 2010, 933­955 RESEARCH ARTICLE A machine learning approach to optimise the usage of recycled material in a remanufacturing

Gosavi, Abhijit

450

Chapter 6 - Databases for Bioenergy-Related Enzymes  

Science Journals Connector (OSTI)

Abstract As one of the many clean and renewable energy forms, bioenergy, especially the liquid biofuels, has received great attention in the past 5 years, as biofuels have a great potential to be used for replacing the fossil-based gasoline as transportation fuels. However, the lignocellulosic biofuels are currently too expensive because plant cell walls, the major component of plant biomass, are recalcitrant to microbial/enzymatic deconstruction. In order to achieve the practical goals, reduce plant cell wall recalcitrance to enzymatic degradation and develop low-cost microbial or engineering approaches to releasing sugars, plant and microbial biologists as well as engineers have been working together to study the molecular mechanisms underlying plant biomass formation and microbial degradation. The past decades have seen a lot of genes experimentally characterized to be involved in plant cell wall synthesis or deconstruction. As a result, many bioenergy-related databases have been developed to collect and classify these genes, which are further used for annotating newly sequenced genomes. Here we summarize these bioenergy-related databases, with a special focus on plant resources. We also discuss the limitation of existing resources and suggest that there is still a strong need for new databases. The newly developed database should include not only enzymes, but also other important genes such as transcription factors, micro ribonucleic acid and transporters by extensive literature curation. The integration of various high-throughput omics data, e.g. comparative genomics data and precomputed bioinformatics data, is also highly recommended for developing new bioenergy-related databases.

Yanbin Yin

2014-01-01T23:59:59.000Z

451

Analyses of bioenergy systems: detecting hard-coding errors in spreadsheets, and comparing biofuel cropping systems.  

E-Print Network [OSTI]

??Like any other technology, bioenergy has a spectrum of advantages and disadvantages associated with it. Biofuels, for instance, are expected to reduce the dependence on (more)

Rawat, Vertika

2011-01-01T23:59:59.000Z

452

High-solids enrichment of thermophilic microbial communities and their enzymes on bioenergy feedstocks  

E-Print Network [OSTI]

Progress and Challenges in Enzyme Development for Biomasscommunities and their enzymes on bioenergy feedstocks AmithaStrain selection, enzyme extraction optimization, and

Reddy, A. P.

2012-01-01T23:59:59.000Z

453

Energy Department Announces $7 Million to Develop Advanced Logistics for Bioenergy Feedstocks  

Office of Energy Efficiency and Renewable Energy (EERE)

The Energy Department announced today up to $7 million for two projects aimed at developing and demonstrating ways to reduce the cost of delivering bioenergy feedstocks to biorefineries.

454

U.S. Billion-Ton Update: Biomass Supply for a Bioenergy and Bioproducts Industry  

Broader source: Energy.gov [DOE]

An update to the 2005 report, "Biomass as a Feedstock for a Bioenergy and Bioproducts Industry: The Technical Feasibility of a Billion-Ton Annual Supply"

455

The water shoesize vs. footprint of bioenergy  

Science Journals Connector (OSTI)

...importance. Calculating a water footprint is therefore crucial for agriculture-based products. As the carbon footprint elaboration has...Assessing the Environmental Impacts of Freshwater Consumption in LCA . Environ Sci Technol 43 : 4098 4104 . The authors declare...

Stephan Pfister; Stefanie Hellweg

2009-01-01T23:59:59.000Z

456

Ghana?s bioenergy policy: Is 20% biofuel integration achievable by 2030?  

Science Journals Connector (OSTI)

Abstract In dealing with the climate change externality of the fossil-fuel dominated transport sector, bio-fuels are widely seen as a solution. Through its Bioenergy Policy, Ghana seeks to improve oil supply security, save foreign exchange, create jobs and reduce emissions from the transport sector by integrating 20% biofuels into the transport fuel mix by 2030. This paper systematically analyses the transport fuel demand in Ghana to determine the biofuel supply target in 2020 and 2030 and evaluates the resource input requirements for integration of biofuels into the transport fuel mix. It provides a detailed picture of bio-fuel prospects in Ghana in the 2030 horizon. The research concludes that though significant yield improvement is required to meet the target, the target is achievable.

Insah Iddrisu; Subhes C. Bhattacharyya

2015-01-01T23:59:59.000Z

457

Our Affiliates : BioEnergy Science Center  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Meet Our Affiliates Meet Our Affiliates DSM logo The purpose of DSM is to create brighter lives for people today and generations to come. DSM is now driving advances in alternative and renewable energy, such as pioneering the development of biomass-based chemicals and materials. We are involved in wind and solar power, the creation of second generation biofuels, and the production of lighter, more fuel-efficient cars, planes and trains. We are also combining our knowledge in the area of materials with advances in health and nutrition. Elanco logo Elanco is a global, innovation-driven company that develops and markets products to improve animal health and protein production in more than 75 countries. Elanco is a division of Eli Lilly and Company, a leading global pharmaceutical corporation. Elanco is committed to protein

458

Overview of hydrogen production research in the Clean Energy Research Laboratory (CERL) at UOIT  

Science Journals Connector (OSTI)

Abstract This paper discusses new hydrogen production methods that have been actively investigated both theoretically and experimentally at UOIT and some recent findings through experimental measurements and analysis. A major cluster of activities at UOIT has developed novel hydrogen production systems from electrolysis to thermochemical cycles and from integrated cycles to solar-light based hydrogen production processes. The results confirm that both thermochemical cycles and photochemical processes offer promising potential for sustainable hydrogen production.

I. Dincer; G.F. Naterer

2014-01-01T23:59:59.000Z

459

Publications : BioEnergy Science Center  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Publications Publications Click on the Header name to sort. 564 Records as of 01/04/2014 Publication Date Author Title Journal/Book Volume/Issue Focus Area DOI 11/01/2011 Abraham Defining the Boundaries and Characterizing the Landscape of Functional Genome Expression in Vascular Tissues of Populus using Shotgun Proteomics View Document Journal of Proteome Research Abraham, P., Adams, R., Giannone, R.J., Kalluri, U., Ranjan, P., Erickson, B., Shah, M., Tuskan, G.A., Hettich, R.L. "Defining the Boundaries and Characterizing the Landscape of Functional Genome Expression in Vascular Tissues of Populus using Shotgun Proteomics." Journal of Proteome Research 11:449-460, 2012. Research Area: Characterization and Modeling 10.1021/pr200851y 10/16/2012 Abraham Putting the pieces together: high-performance LC-MS/MS provides network-pathway-, and protein-level perspectives in Populus

460

Press Releases: BioEnergy Science Center  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Press Releases Press Releases Current Press Releases BESC researchers tap into genetic reservoir of heat-loving bacteria - 2012 Foxtail Millet Offers Clues for Assembling the Switchgrass Genome - 2012 Gerald A. Tuskan named Forest Biotechnologist of the Year - 2012 ORNL explores proteins in Yellowstone bacteria for biofuel inspiration - 2012 UGA discovery changes how scientists think about plant cell wall formation - 2011 Research collaboration at the Samuel Roberts Noble Foundation discover new type of lignin in vanilla cactus - 2011 First-of-a-kind tension weed study broadens biofuels research - 2011 New lignin "lite" switchgrass boots biofuel yield by more than one-third - 2011 Key Plant Traits Yield More Sugar For Biofuels - 2011 BESC Scores a First with Isobutanol Directly from Cellulose - 2011

Note: This page contains sample records for the topic "bioenergy production research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

DOE, USDA Announce Funding for Biomass Research and Development Initiative  

Broader source: Energy.gov (indexed) [DOE]

DOE, USDA Announce Funding for Biomass Research and Development DOE, USDA Announce Funding for Biomass Research and Development Initiative DOE, USDA Announce Funding for Biomass Research and Development Initiative May 6, 2010 - 12:00am Addthis Washington, DC - The U.S. Departments of Energy (DOE) and Agriculture (USDA) today jointly announced up to $33 million in funding for research and development of technologies and processes to produce biofuels, bioenergy and high-value biobased products, subject to annual appropriations. These projects will support the Obama Administration's comprehensive energy strategy of increasing the nation's energy, economic and national security by reducing our reliance on foreign oil and reducing greenhouse gases. "These projects will help advance the production of biofuels and related

462

Sustainability criteria for bioenergy systems: results from an expert survey Thomas Buchholz*, Valerie A. Luzadis, Timothy A. Volk  

E-Print Network [OSTI]

Sustainability criteria for bioenergy systems: results from an expert survey Thomas Buchholz in revised form 10 April 2009 Accepted 24 April 2009 Available online 9 May 2009 Keywords: Bioenergy and concerns about regional and national security are driving the development and use of biomass for bioenergy

Vermont, University of

463

Modeling Miscanthus in the Soil and Water Assessment Tool (SWAT) to Simulate Its Water Quality Effects As a Bioenergy Crop  

Science Journals Connector (OSTI)

Modeling Miscanthus in the Soil and Water Assessment Tool (SWAT) to Simulate Its Water Quality Effects As a Bioenergy Crop ... There is increasing interest in perennial grasses as a renewable source of bioenergy and feedstock for second-generation cellulosic biofuels. ... Due to global warming and energy independence concerns, there is increasing interest in perennial grasses as a renewable source of bioenergy. ...

Tze Ling Ng; J. Wayland Eheart; Ximing Cai; Fernando Miguez

2010-08-03T23:59:59.000Z

464

Protective role of bioenergy of specific soil (Si02) of Madina Munawrrah in the field of oncology.  

Science Journals Connector (OSTI)

...Nov 12-15, 2006 Protective role of bioenergy of specific soil (Si02) of Madina Munawrrah...the preventive and therapeutic role of Bioenergy of specific Soil (Si02) of Madina Munawrrah...Group A was negative control group). Bioenergy of specific SiO2 (taken from the earth...

Mulazim H. Bukhari; Abbas Iqbal; Yasmin Abbas; Eyad Hasan A. Kamel

2006-12-01T23:59:59.000Z

465

Biofacts : BioEnergy Science Center  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

BioFacts BioFacts What causes global warming? Carbon dioxide and other air pollution trap in the sun's heat in the atmosphere. Coal-burning power plants and automobiles are the largest U.S. sources of carbon dioxide pollution. What are alternative fuels? Alternative fuels, such as biofuels, are substitutes for conventional fossil fuels, such as petroleum (oil), coal, propane and natural gas. Common U.S. agricultural products specifically grown for biofuel production include switchgrass and soybeans. What is switchgrass anyway? Switchgrass is a common, warm-season grass that can be used to make an environmentally friendly biofuel and alternative to traditional gasoline. By 2050, biofuels could reduce our greenhouse gas emissions by 1.7 billion tons per year - equivalent to more than 80% of current

466

Hydrogen (H2) Production by Oxygenic Phototrophs  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Production by Oxygenic Phototrophs Eric L. Hegg Michigan State University Great Lakes Bioenergy Research Center Bioresour. Technol. 2011, 102, 8589-8604 Major Challenges to H 2 Photoproduction Biological Challenges * Poor efficiency of H 2 production * Poor heterologous expression of H 2 -forming enzymes * Low quantum yields * Competition for reducing equivalents; poor electron coupling * Sensitivity of H 2 -forming enzymes to O 2 M. Ghirardi, Abstract #1751, Honolulu PRiME 2012 Technical Challenges * Mixture of H 2 and O 2 ; H 2 separation and storage * CO 2 addition and overall reactor design Overcoming Low Efficiency: Improving ET * Eliminate or down-regulate pathways competing for ele * Production of organic acids * Formation of NADPH/carbon fixation

467

IEA-Renewable Energy Technologies, Bioenergy Agreement Task 37: Energy from Biogas and Landfill Gas  

E-Print Network [OSTI]

EFP-06 IEA- Renewable Energy Technologies, Bioenergy Agreement Task 37: Energy from Biogas-Bioenergy, Task 37- Energy from Biogas and Landfill Gas", via samarbejde, informationsudveksling, fælles analyser. biogas fra anaerob udrådning (AD) som en integreret gylle og affalds behandlings teknologi. Arbejdet

468

International Conference on Wood-based Bioenergy LIGNA+Hannover, Germany, 17-18 May 2007  

E-Print Network [OSTI]

International Conference on Wood-based Bioenergy LIGNA+Hannover, Germany, 17-18 May 2007 Photo: NTC Marketing Specialist and Sebastian Hetsch, Consultant Food and Agricultural Organization & UN Economic Commission for Europe Geneva, Switzerland #12;International Conference on Wood-based Bioenergy LIGNA

469

International Market Opportunities in Bioenergy: Leveraging U.S. Government Resources  

Broader source: Energy.gov [DOE]

Breakout Session 3CFostering Technology Adoption III: International Market Opportunities in Bioenergy International Market Opportunities in Bioenergy: Leveraging U.S. Government Resources Cora Dickson, Senior International Trade Specialist, Office of Energy and Environmental Industries, International Trade Administration, U.S. Department of Commerce

470

30 Robust og bredygtig bioenergi september 2012 Af Brian Vad Mathiesen, Henrik Lund,  

E-Print Network [OSTI]

30 Robust og bæredygtig bioenergi · september 2012 Af Brian Vad Mathiesen, Henrik Lund, Frede K erstatte de fossile brændsler med biobrændsler og bioenergi, og/eller i hvor høj grad vi skal satse på

Pillai, Jayakrishnan Radhakrishna

471

Biomass and Bioenergy 31 (2007) 646655 Estimating biomass of individual pine trees using airborne lidar  

E-Print Network [OSTI]

Biomass and Bioenergy 31 (2007) 646­655 Estimating biomass of individual pine trees using airborne biomass and bio-energy feedstocks. The overall goal of this study was to develop a method for assessing aboveground biomass and component biomass for individual trees using airborne lidar data in forest settings

472

Who's Who : BioEnergy Science Center  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Who's Who Who's Who PRINCIPAL INVESTIGATORS AND NOTABLE SCIENTISTS OF BESC Will York - Biosynthesis Dr. William York is an Associate Professor Biochemistry and Molecular Biology, and Adjunct Associate Professor of Computer Science and Plant Biology at the University of Georgia in Athens. His diverse research interests include the development and application of spectroscopic and computational methods for the structural characterization of complex carbohydrates, the development of bioinformatics tools to study the roles of carbohydrates in living systems, and the development of realistic models describing the assembly and morphogenesis of the plant cell walls, which are the most abundant component of terrestrial biomass. This research has potential applications, for example, in biomedical science and development

473

ARM - Procedure for Submitting Science and Research Products to the Data  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

DocumentationProcedure for Submitting Science and Research DocumentationProcedure for Submitting Science and Research Products to the Data Archive Policies, Plans, Descriptions Data Documentation Home Data Sharing and Distribution Policy Data Management and Documentation Plan Data Product Registration and Submission Reading netCDF and HDF Data Files Time in ARM netCDF Data Files Data Archive Documentation ARM Archive's Catalog of Data Streams (Updated monthly) Access to Historical ARM Data More on Understanding and Finding ARM Data Data Quality Problem Reporting Procedure for Submitting Science and Research Products to the Data Archive The Principal Investigator (PI) establishes contact with an ARM Translator to describe the data product. The Translator collects enough information to describe the PI Product within the Translator group; thereby resulting in assignment of the

474

Obama Administration Announces New Funding for Biomass Research and  

Broader source: Energy.gov (indexed) [DOE]

New Funding for Biomass Research and New Funding for Biomass Research and Development Initiative Obama Administration Announces New Funding for Biomass Research and Development Initiative March 22, 2012 - 1:12pm Addthis COLUMBUS, Ohio - Today, as President Obama went to Ohio State University to discuss the Administration's all-out, all-of-the-above strategy for American energy, the White House announced up to $35 million over three years to support research and development in advanced biofuels, bioenergy and high-value biobased products. The projects funded through the Biomass Research and Development Initiative (BRDI) - a joint program through the U.S. Department of Agriculture (USDA) and the U.S. Energy Department (DOE) - will help develop economically and environmentally sustainable sources of renewable biomass and increase the availability of

475

Project of Rotating Carbon High-Power Neutron Target. Research of Graphite Properties for Production of High Intensity Neutron Source  

E-Print Network [OSTI]

Project of Rotating Carbon High-Power Neutron Target. Research of Graphite Properties for Production of High Intensity Neutron Source

Gubin, K V; Bak, P A; Kot, N K; Logatchev, P V

2001-01-01T23:59:59.000Z

476

To advance and share knowledge, discover solutions and promote opportunities in food and agriculture, bioenergy, health, the environment and human well-  

E-Print Network [OSTI]

and agriculture, bioenergy, health, the environment and human well- being. Vision: To lead in science, innovation

Sheridan, Jennifer

477

Consortium for Plant Biotechnology Research 2015 Annual Symposium  

Broader source: Energy.gov [DOE]

BETO Director Jonathan Male will be speaking on the Bioenergy Technologies Offices role in the bioeconomy and cross-cutting opportunities with plant biotechnology at the Consortium for Plant Biotechnology Research 2015 Annual Symposium.

478

The International Energy Agency Cooperative Research on Biomass for Energy  

Science Journals Connector (OSTI)

The Bioenergy Agreement of the International Energy Agency promotes cooperative research among its participating countries on biomass for energy. Three areas in this field are under study: biomass growth and prod...

R. Gambles; L. Zsuffa

1988-01-01T23:59:59.000Z

479

Licensing : BioEnergy Science Center  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Available for Licensing Available for Licensing As new inventions are disclosed from BESC researchers, we will post information about the inventions on this webpage. Use the search engine below to match your technology needs with BESC disclosures or view all technologies in a particular category by clicking on the category below. View all inventions Enter keywords in the box. Separate the words with a comma (,) for multiple keywords. GO Advanced Biofuels (1 Inventions) Bioconversion (2 Inventions) Biomass Grasses (7 Inventions) Trees (1 Inventions) Genetic Tools (9 Inventions) Biotechnology (9 Inventions) Imaging (2 Inventions) PreTreatment (2 Inventions) Adams, Michael A (2 Inventions) Albersheim, Ivana G. (1 Invention) Backe, Jason (1 Invention) Bar-Peled, Maor (1 Invention) Bhave, Ramesh R (2 Inventions)

480

The NOAA Environmental Research Laboratories do not approve. recommend, or endorse any proprietary product or  

E-Print Network [OSTI]

Environmental Research Laboratories. in any advertising or sales promotion which would indicate or imply the advertised product to be used or purchased because of this NOAA Environmental Research Laboratories collected in Lake Huron during 1966 by the Federal Water Pollution Control Administration. Most

Note: This page contains sample records for the topic "bioenergy production research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Systematic Structural Characterization of Metabolites in Arabidopsis via Candidate Substrate-Product Pair Networks  

Science Journals Connector (OSTI)

...Biochemistry and the Department of Energy Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University...Wisconsin 53726 e Genomics Research Institute, University...searches in the Chemical Abstract Service database, the...

Kris Morreel; Yvan Saeys; Oana Dima; Fachuang Lu; Yves Van de Peer; Ruben Vanholme; John Ralph; Bartel Vanholme; Wout Boerjan

2014-03-31T23:59:59.000Z

482

Sorghum to Ethanol Research  

SciTech Connect (OSTI)

The development of a robust source of renewable transportation fuel will require a large amount of biomass feedstocks. It is generally accepted that in addition to agricultural and forestry residues, we will need crops grown specifically for subsequent conversion into fuels. There has been a lot of research on several of these so-called â??dedicated bioenergy cropsâ? including switchgrass, miscanthus, sugarcane, and poplar. It is likely that all of these crops will end up playing a role as feedstocks, depending on local environmental and market conditions. Many different types of sorghum have been grown to produce syrup, grain, and animal feed for many years. It has several features that may make it as compelling as other crops mentioned above as a renewable, sustainable biomass feedstock; however, very little work has been done to investigate sorghum as a dedicated bioenergy crop. The goal of this project was to investigate the feasibility of using sorghum biomass to produce ethanol. The work performed included a detailed examination of the agronomics and composition of a large number of sorghum varieties, laboratory experiments to convert sorghum to ethanol, and economic and life-cycle analyses of the sorghum-to-ethanol process. This work showed that sorghum has a very wide range of composition, which depended on the specific sorghum cultivar as well as the growing conditions. The results of laboratory- and pilot-scale experiments indicated that a typical high-biomass sorghum variety performed very similarly to corn stover during the multi-step process required to convert biomass feedstocks to ethanol; yields of ethanol for sorghum were very similar to the corn stover used as a control in these experiments. Based on multi-year agronomic data and theoretical ethanol production, sorghum can achieve more than 1,300 gallons of ethanol per acre given the correct genetics and environment. In summary, sorghum may be a compelling dedicated bioenergy crop that could help provide a major portion of the feedstocks required to produce renewable domestic transportation fuels.

Dahlberg, Jeff; Wolfrum, Ed

2010-06-30T23:59:59.000Z

483

Liquid biofuels in GreeceCurrent status in production and research  

Science Journals Connector (OSTI)

This paper reviews the state of liquid biofuels in Greece and presents the current situation in production and research. The first part presents the production potential in terms of cultivated crops along with the industrial activity on biofuels and their distribution in the country. In the second part the research activities are discussed. It is shown that the Greek biofuel potential is significant although some problems in the allocation of the fuel resulted in severe constraints to efficiency. Research on the optimization of biodiesel properties and on the development of 2nd generation biofuels as well on the assessment of their impacts on engine performance and emissions is remarkable and promising.

2014-01-01T23:59:59.000Z

484

Working with Production Home Builders to Build and Research "Near Zero  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Working with Production Home Builders to Build and Research "Near Zero Working with Production Home Builders to Build and Research "Near Zero Energy" Homes & Communities in California Speaker(s): Bruce Baccei Date: March 23, 2006 - 12:00pm Location: Bldg. 90 For a glimpse of the houses of tomorrow, one need look no further than the work of a few forward-thinking production builders. Combining solar energy technologies with energy-efficient features and energy-saving construction techniques, these builders are constructing production houses that generate nearly as much electricity as they consume on an annual basis.The houses, developed under the U.S. Department of Energy's (DOE) Building America research program, act as miniature power plants. As a result, the estimated total annual energy cost for houses in the Zero-Energy Home (ZEH) program

485

Silviculture Forest Productivity and Nutrition  

E-Print Network [OSTI]

15 Silviculture Forest Productivity and Nutrition Fire and Fuel Load Management Tree crops for bio-energy Productivity of Semi-mature Cape Pines Across Gradients of Water and Nutrient Availability The nutrient as optimise the period of their release to use in controlled release fertilizer mixtures. This will make large

Geldenhuys, Jaco

486

Research Facilities & Centers | Clean Energy | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Clean Energy Clean Energy Research Areas Research Highlights Facilities and Centers BioEnergy Science Center Building Technologies Research and Integration Center Carbon Fiber Technology Facility Center For Structural Molecular Biology Climate Change Science Institute Joint Institute for Biological Sciences Manufacturing Demonstration Facility National Transportation Research Center Tools & Resources News and Awards Supporting Organizations Clean Energy Home | Science & Discovery | Clean Energy | Facilities and Centers SHARE Facilities, Centers Welcome Industry, Academia Oak Ridge National Laboratory facilities and capabilities together provide a unique environment for Clean Energy research. For example, as the lead institution for DOE's BioEnergy Science Center, ORNL is pioneering

487

USDA, DOE Announce $18 Million Solicitation for Biomass Research and  

Broader source: Energy.gov (indexed) [DOE]

$18 Million Solicitation for Biomass Research $18 Million Solicitation for Biomass Research and Development USDA, DOE Announce $18 Million Solicitation for Biomass Research and Development June 11, 2007 - 1:40pm Addthis WASHINGTON - The U.S. Department of Agriculture (USDA) and the U.S. Department of Energy (DOE) today announced a combined total of up to $18 million will be available for research and development of biomass-based products, biofuels, bioenergy and related processes. USDA and DOE are issuing these grant solicitations for several types of projects aimed at increasing the availability of alternative and renewable fuels, which will help further President Bush's bold energy initiatives, including Twenty in Ten. The Twenty in Ten Initiative promotes greater energy security through increased efficiency and diversification of energy sources. USDA

488

Special Section for the 4th International Conference on BiorefineryToward Bioenergy  

Science Journals Connector (OSTI)

Special Section for the 4th International Conference on BiorefineryToward Bioenergy ... The 4th International Conference on BiorefineryToward Bioenergy, held between Dec 3 and 5, 2013, in Xiamen, China, aimed to provide a forum and bring scientists, engineers, and technologists together for an in-depth discussion on biorefinery technologies. ... We hope that this special section will be helpful to the reader and that it might enhance academic exchanges between scholars and industries in the bioenergy field all over the world. ...

Lu Lin; Shijie Liu

2014-06-19T23:59:59.000Z

489

Carbon Sequestration - A Natural Resource Management and Research & Development Agency Point of View  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

-- -- A Natural Resource Management and Research & Development Agency Point of View Jim Reaves Staff Director USDA Forest Service R&D Vegetation Management and Protection Research Forests and carbon management § The USDA Forest Service is a research and resource management agency § Carbon is the foundation of forest productivity and sustainability § Carbon sequestration is an additional outcome of good forest management and utilization Forests and carbon sequestration n Forests and forest products are important CO 2 sinks n Carbon sinks offer a potentially significant low-cost opportunity to address carbon sequestration n Feedstocks for bioenergy production provide both clean energy and fossil fuel offsets Trends in forest and agriculture carbon sequestration -342 -12 -7

490

USDA and DOE Award Biomass Research and Development Grants to Reduce  

Broader source: Energy.gov (indexed) [DOE]

USDA and DOE Award Biomass Research and Development Grants to USDA and DOE Award Biomass Research and Development Grants to Reduce America's Reliance on Imported Oil USDA and DOE Award Biomass Research and Development Grants to Reduce America's Reliance on Imported Oil May 5, 2011 - 12:00am Addthis WASHINGTON - As part of the Obama Administration's comprehensive plan to address rising gas prices, U.S. Agriculture Secretary Tom Vilsack and U.S. Energy Secretary Steven Chu today announced a total of $47 million to fund eight research and development projects that will support the production of biofuels, bioenergy and high-value biobased products from a variety of biomass sources. These investments in clean, sustainable transportation fuels will help reduce U.S. oil imports, support economic development in rural America, create clean energy jobs for U.S. workers, and protect

491

Innovation Impact: Breakthrough Research Results (Brochure), NREL (National Renewable Energy Laboratory)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

INNOVATION INNOVATION IMPACT Breakthrough Research Results NREL's campus in Golden, Colorado, is a model of sustainable energy and energy efficiency. INNOVATION IMPACT NREL has a rich history of scientific innovation and partnering with industry in research and development to bring new products and technologies into manufacturing production. In these pages we have captured key breakthrough results across our primary areas of renewable energy and energy efficiency research: solar, wind, bioenergy, transportation, buildings, analysis, and manufacturing technologies. It is our hope that these examples convey the breadth of research at NREL. Under the stewardship of the Office of Energy Efficiency and Renewable Energy at the U.S. Department of Energy (DOE), NREL is focused

492

USDA and DOE Award Biomass Research and Development Grants to Reduce  

Broader source: Energy.gov (indexed) [DOE]

USDA and DOE Award Biomass Research and Development Grants to USDA and DOE Award Biomass Research and Development Grants to Reduce America's Reliance on Imported Oil USDA and DOE Award Biomass Research and Development Grants to Reduce America's Reliance on Imported Oil May 5, 2011 - 12:00am Addthis WASHINGTON - As part of the Obama Administration's comprehensive plan to address rising gas prices, U.S. Agriculture Secretary Tom Vilsack and U.S. Energy Secretary Steven Chu today announced a total of $47 million to fund eight research and development projects that will support the production of biofuels, bioenergy and high-value biobased products from a variety of biomass sources. These investments in clean, sustainable transportation fuels will help reduce U.S. oil imports, support economic development in rural America, create clean energy jobs for U.S. workers, and protect

493

Geek-Up[10.01.10] -- Mapping Bioenergy and Magnetic Vector Potential, New  

Broader source: Energy.gov (indexed) [DOE]

0.01.10] -- Mapping Bioenergy and Magnetic Vector 0.01.10] -- Mapping Bioenergy and Magnetic Vector Potential, New Atmosphere-Monitoring Tools and "Sour" Gas Streams Geek-Up[10.01.10] -- Mapping Bioenergy and Magnetic Vector Potential, New Atmosphere-Monitoring Tools and "Sour" Gas Streams October 1, 2010 - 3:33pm Addthis Elizabeth Meckes Elizabeth Meckes Director of User Experience & Digital Technologies, Office of Public Affairs This week, the National Renewable Energy Laboratory (NREL) announced the launch of an online portal for energy geeks and "cartophiles" alike. NREL's BioEnergy Atlas encompasses two analysis and mapping tools - BioPower and BioFuels. These tools can summarize state-by-state energy use and infrastructure for traditional and bioenery power, fuels and resources

494

Crop Residue Removal for Bioenergy Reduces Soil Carbon Pools: How Can We Offset Carbon Losses?  

Science Journals Connector (OSTI)

Crop residue removal for bioenergy can deplete soil organic carbon (SOC) ... been, however, widely discussed. This paper reviews potential practices that can be used to offset the SOC lost with residue removal. Literature

Humberto Blanco-Canqui

2013-03-01T23:59:59.000Z

495

National Bioenergy Center Biochemical Platform Integration Project: Quarterly Update #26, January - March 2010  

SciTech Connect (OSTI)

January-March, 2010 edition of the National Bioenergy Center's Biochemical Platform Integration Project quarterly newsletter. Issue topics: understanding and improving sugar measurements in biomass hydrolysates; expansion of the NREL/DOE Biochemical Pilot Plant.

Schell, D.

2010-04-01T23:59:59.000Z

496

GREET Bioenergy Life Cycle Analysis and Key Issues for Woody Feedstocks  

Broader source: Energy.gov [DOE]

Breakout Session 2DBuilding Market Confidence and Understanding II: Carbon Accounting and Woody Biofuels GREET Bioenergy Life Cycle Analysis and Key Issues for Woody Feedstocks Michael Wang, Senior Scientist, Energy Systems, Argonne National Laboratory

497

Reproduced with pennission from Nature COMMENTARY Cooling the greenhouse with bioenergy  

E-Print Network [OSTI]

Reproduced with pennission from Nature COMMENTARY Cooling the greenhouse with bioenergy D. o. Hall combustionwould be once more. The technology for making markets, it is well-suited for energy ap- compensatedfor

498

ABSTRACT: Bioenergy Harvesting Technologies to Supply Crop Residues In a Densified Large Square Bale Format  

Broader source: Energy.gov [DOE]

This abstract from AGCO presents the project objectives for the integration of advanced logistical systems and focused bioenergy harvesting technologies that supply crop residues and energy crops in a large bale format.

499

Bioenergy Technologies Office Conversion R&D Pathway: Syngas Upgrading to Hydrocarbon Fuels  

Broader source: Energy.gov [DOE]

Syngas upgrading to hydrocarbon fuels is one of eight priority pathways chosen to convert biomass into hydrocarbon fuels by the Bioenergy Technologies Office. These pathways were down-selected from an initial list of 18.

500

Bioenergy Technologies Office Conversion R&D Pathway: Whole Algae Hydrothermal Liquefaction  

Broader source: Energy.gov [DOE]

Whole algae hydrothermal liquefaction is one of eight priority pathways chosen to convert biomass into hydrocarbon fuels by the Bioenergy Technologies Office. These pathways were down-selected from an initial list of 18.