Powered by Deep Web Technologies
Note: This page contains sample records for the topic "bioenergy lightsource renewables" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Bioenergy  

NLE Websites -- All DOE Office Websites (Extended Search)

Bioenergy Bioenergy Bioenergy Research into alternative forms of energy, especially energy security, is one of the major national security imperatives of this century. Get Expertise Babetta Marrone Biofuels Program Manager Email Rebecca McDonald Bioscience Communications Email Srinivas Iyer Bioscience Group Leader Email Richard Sayre Senior Scientist Email "Research into alternative forms of energy, of which biofuels is a key component, is one of the major national security imperatives of this century. Energy security is vital to our future national security and the efficient functioning of our market economy." -LANL Director Charles McMillan Los Alamos developing next-generation of biofuels from renewable resources Read caption + Los Alamos scientists used genetic engineering to develop magnetic algae,

2

Bioenergy  

NLE Websites -- All DOE Office Websites (Extended Search)

Bioenergy Bioenergy Los Alamos developing next-generation of biofuels from renewable resources Read caption + Los Alamos scientists used genetic engineering to develop magnetic algae, thus making it much easier to harvest for biofuel production. Harvesting algae accounts for approximately 15-20 percent of the total cost of biofuel production-magnetic algae can reduce such costs by more than 90%. Overview of Research and Highlights The next-generation of biofuels are being developed at Los Alamos. Made from renewable resources, biofuels could yield reduced carbon dioxide emissions. Los Alamos scientists are * working to bring cellulosic ethanol (made from the inedible parts of plants, instead of corn) and algae-based fuels to the marketplace in ways that make them economically competitive with fossil fuels and prevent a strain on valuable food

3

II. Biofuels & Bioenergy Harnessing the metabolic power of microbes and the renewable carbon resevoir of  

E-Print Network (OSTI)

II. Biofuels & Bioenergy Harnessing the metabolic power of microbes and the renewable carbon, and artistic elements in building the Biotech Expo poster entries. Online Resources on Biofuels & Bioenergy of Agriculture: Bioenergy & Biofuels http://riley.nal.usda.gov/nal_display/index.php?info_center=8&tax_level=3

Hammock, Bruce D.

4

Energy Department Announces Five-Year Renewal of Funding for Bioenergy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Department Announces Five-Year Renewal of Funding for Energy Department Announces Five-Year Renewal of Funding for Bioenergy Research Centers Energy Department Announces Five-Year Renewal of Funding for Bioenergy Research Centers April 4, 2013 - 1:48pm Addthis NEWS MEDIA CONTACT (202) 586-4940 WASHINGTON - The U.S. Department of Energy today announced it would fund its three Bioenergy Research Centers for an additional five-year period, subject to continued congressional appropriations. The three Centers -including the BioEnergy Research Center (BESC) led by Oak Ridge National Laboratory, the Great Lakes Bioenergy Research Center (GLBRC) led by the University of Wisconsin-Madison in partnership with Michigan State University, and the Joint BioEnergy Institute (JBEI) led by Lawrence Berkeley National Laboratory-were established by the Department's

5

Energy Department Announces Five-Year Renewal of Funding for Bioenergy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Five-Year Renewal of Funding for Five-Year Renewal of Funding for Bioenergy Research Centers Energy Department Announces Five-Year Renewal of Funding for Bioenergy Research Centers April 4, 2013 - 1:48pm Addthis NEWS MEDIA CONTACT (202) 586-4940 WASHINGTON - The U.S. Department of Energy today announced it would fund its three Bioenergy Research Centers for an additional five-year period, subject to continued congressional appropriations. The three Centers -including the BioEnergy Research Center (BESC) led by Oak Ridge National Laboratory, the Great Lakes Bioenergy Research Center (GLBRC) led by the University of Wisconsin-Madison in partnership with Michigan State University, and the Joint BioEnergy Institute (JBEI) led by Lawrence Berkeley National Laboratory-were established by the Department's

6

Utilizing Bioenergy By-products in Beef Production Systems The newly expanded renewable fuels standard requires 36 billion gallons of renewable  

E-Print Network (OSTI)

Utilizing Bioenergy By-products in Beef Production Systems The newly expanded renewable fuels standard requires 36 billion gallons of renewable fuels be used annually by 2022, which allows continued

7

STANFORD SYNCHROTRON RADIATION LIGHTSOURCE  

E-Print Network (OSTI)

-926-4100 SLAC is operated by Stanford University for the U.S. Department of Energy SSRL Facility Research Associate for Small Angle X-ray Scattering The Stanford Synchrotron Radiation Lightsource (SSRL) has) program. This position has a component (roughly 50%) that involves beam line development at SSRL

Ford, James

8

Ris Energy Report 2 Bioenergy is energy of biological and renewable origin,  

E-Print Network (OSTI)

of bioenergy resources are fuel wood, bagasse, organic waste, biogas and bioethanol. Bioenergy is the only in biomass conversion, combined with signifi- cant changes in energy markets, have stimulated this trend should continue to develop gasification and fuel cell conversion systems based on biomass. Conversion

9

Bioenergy Blog  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

blog Office of Energy Efficiency & blog Office of Energy Efficiency & Renewable Energy Forrestal Building 1000 Independence Avenue, SW Washington, DC 20585 en From the Lab to Your Gas Tank: 4 Bioenergy Testing Facilities That Are Making a Difference http://energy.gov/eere/articles/lab-your-gas-tank-4-bioenergy-testing-facilities-are-making-difference bioenergy-testing-facilities-are-making-difference" class="title-link">From the Lab to Your Gas Tank: 4 Bioenergy Testing Facilities That Are Making a Difference

10

SLAC Lightsource User Access Guidelines and Agreement  

NLE Websites -- All DOE Office Websites (Extended Search)

Lightsource User Access Guidelines & Agreement Lightsource User Access Guidelines & Agreement August 3, 2011 SLAC-I-030-306-001-00-R002 1 SLAC Lightsource User Access Guidelines and Agreement LCLS / SSRL User Research Administration approval (signature/date): LCLS Safety Office approval (signature/date): SSRL Safety Office approval (signature/date): XFO Operations approval (signature/date): Revision Record Revision Date Revised Section(s) Affected Description of Change R001 October 4 th , 2010 User Form Updated SLAC Lightsource User Access Agreement Form R000 Sept 14, 2009 Original Release SLAC Lightsource User Access Guidelines & Agreement August 3, 2011 SLAC-I-030-306-001-00-R002 1 SLAC LIGHTSOURCE USER ACCESS GUIDELINES & AGREEMENT Introduction Welcome to SSRL and LCLS, SLAC's lightsource user facilities. We hope that your stay here will be

11

IEA-Renewable Energy Technologies, Bioenergy Agreement Task 37: Energy from Biogas and Landfill Gas  

E-Print Network (OSTI)

and Landfill Gas Teknologiområde: Anvendt forskning og udvikling, herunder viden formidling, -udveksling og-Bioenergy, Task 37- Energy from Biogas and Landfill Gas", via samarbejde, informationsudveksling, fælles analyser and landfill gas. I dette tidsinterval er en række aktiviteter blevet gennemført, herunder deltagelse til task

12

Abstract Bioenergy is a critical part of renewable energy solution to today's energy crisis that threatens world economic growth. Corn ethanol has been growing rapidly  

E-Print Network (OSTI)

127 Abstract Bioenergy is a critical part of renewable energy solution to today's energy crisis, Institute of Process Engineering, Beijing 100190, China M. Cai College of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310035, China T. Gu (*) Department of Chemical

Gu, Tingyue

13

THE STANFORD SYNCHROTRON RADIATION LIGHTSOURCE STRATEGIC PLAN:  

NLE Websites -- All DOE Office Websites (Extended Search)

THE STANFORD SYNCHROTRON THE STANFORD SYNCHROTRON RADIATION LIGHTSOURCE STRATEGIC PLAN: 2013 - 2018 MEETING THE SCIENTIFIC CHALLENGES OF THE FUTURE FEBRUARY 2013 TABLE OF CONTENTS 1 Executive Summary ................................................................................................................................................. 1 2 Synchrotron Radiation - A Unique Tool .................................................................................................................. 1 3 Stanford Synchrotron Radiation Lightsource .......................................................................................................... 3 3.1 Looking into the Future: Building a New User Facility Paradigm at SSRL ....................................................... 4

14

SC e-journals, Renewable Energy  

Office of Scientific and Technical Information (OSTI)

Renewable Energy Agricultural & Forest Meteorology Biomass & Bioenergy BioEnergy Research Electricity Journal, The Journal of Renewable and Sustainable Energy Process Biochemistry...

15

EERE: Bioenergy Technologies Office Home Page  

NLE Websites -- All DOE Office Websites (Extended Search)

Bioenergy Technologies Office Search Bioenergy Technologies Office Search Search Help Bioenergy Technologies Office HOME ABOUT THE PROGRAM RESEARCH & DEVELOPMENT FINANCIAL OPPORTUNITIES INFORMATION RESOURCES NEWS EVENTS EERE » Bioenergy Technologies Office Site Map Printable Version Share this resource Send a link to EERE: Bioenergy Technologies Office Home Page to someone by E-mail Share EERE: Bioenergy Technologies Office Home Page on Facebook Tweet about EERE: Bioenergy Technologies Office Home Page on Twitter Bookmark EERE: Bioenergy Technologies Office Home Page on Google Bookmark EERE: Bioenergy Technologies Office Home Page on Delicious Rank EERE: Bioenergy Technologies Office Home Page on Digg Find More places to share EERE: Bioenergy Technologies Office Home Page on AddThis.com... Biomass is a clean, renewable energy source that can help to significantly

16

Image Bank from Lightsources.org  

DOE Data Explorer (OSTI)

Llightsources.org is the result of a collaboration among communicators from light-source facilities around the world. The site serves as a clearing house for light-source-related news, high-resolution photos and graphics, educational material, and user-related information and is updated daily. The lightsources Image Bank allows users to search by facility and by keywords or phrases within categories of images such as: accelerators, experiments, light source science, instrumentation, etc.

17

Bioenergy Assessment Toolkit  

NLE Websites -- All DOE Office Websites (Extended Search)

Bioenergy Assessment Toolkit Bioenergy Assessment Toolkit Anelia Milbrandt and Caroline Uriarte Produced under direction of the United States Agency for International Development by the National Renewable Energy Laboratory (NREL) under Interagency Agreement AEG-P-00-00003-00; Work for Others Agreement number 3010543; Task Numbers WFE2.1012, WFE2.1013, and WFE2.1014. Technical Report NREL/TP-6A20-56456 October 2012 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Contract No. DE-AC36-08GO28308 National Renewable Energy Laboratory 15013 Denver West Parkway Golden, CO 80401 303-275-3000 * www.nrel.gov Bioenergy Assessment Toolkit Anelia Milbrandt and Caroline Uriarte

18

History of the Stanford Synchrotron Radiation Lightsource | Stanford...  

NLE Websites -- All DOE Office Websites (Extended Search)

History of the Stanford Synchrotron Radiation Lightsource SPEAR Based on new applications of synchrotron radiation, SSRL began in 1973 as the Stanford Synchrotron Radiation Project...

19

SSRL in SLAC Today | Stanford Synchrotron Radiation Lightsource  

NLE Websites -- All DOE Office Websites (Extended Search)

in SLAC Today Subscribe to SSRL in SLAC Today feed URL: https:news.slac.stanford.edutagsprograms-facilitieslightsourcesstanford-synchrotron-radiation-lightsource-ssrl...

20

C3 BioEnergy | Open Energy Information  

Open Energy Info (EERE)

Product C3 BioEnergy is an early-stage biofuels technology company. Plans to make propane, propylene, and hydrogen from renewable biomass resources. References C3 BioEnergy1...

Note: This page contains sample records for the topic "bioenergy lightsource renewables" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

EERE: Bioenergy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

biorefinery in the distance and an airplane flying overhead Photo of tractor harvesting biomass feedstock Photo of a traditional three stone open fire Bioenergy uses materials...

22

implementing bioenergy applied research & development  

E-Print Network (OSTI)

1 A Northern Centre for Renewable Energy implementing bioenergy applied research & development plant measures to become carbon neutral and operate on renewable energy. UNBC is uniquely positioned for Climate Solutions, and UNBC. The Green University Centre will be a model of energy efficiency

Northern British Columbia, University of

23

2012 Bioenergy Action Plan Prepared by the Bioenergy Interagency Working Group  

E-Print Network (OSTI)

's diverse biomass resources for conversion to "low-carbon" biofuels, biogas, and renewable electricity; 2, biomass, biogas, biomethane, biorefinery, biogenic, Bioenergy Action Plan, renewable; biomass residues and biogas. Current bioenergy production in California includes: 33 biomass plants that generate a combined

24

Bioenergy in Transition  

Science Conference Proceedings (OSTI)

Biomass is a versatile, abundant, and renewable energy resource used widely throughout the world. It is perhaps the most common energy resource in developing countries, used primarily for cooking and heating. While industrialized and newly developing nations have turned to fossil fuels to support economic growth, some are returning to biomass as a means of preserving their depleting natural resources, reducing dependence on imported fossil fuels, strengthening agricultural industries, or reducing environmental pollution. A number of technological advancements, particularly in converting biomass into electricity or alcohol transporation fuels, have triggered this reassessment of biomass as a significant energy resource. The writers report on research and development taking place worldwide, with a focus on work being done in Hawaii. They also assess the technical and economic feasibility of adapting bioenergy technology elsewhere, with particular attention directed at the potential of alcohol fuels for transporation applications and the need to develop bioenergy crops as a precursor to expanded alcohol fuel use and renewable electricity generation.

Overend, R. P.; Kinoshita, C. M.; Antal, M. J.

1996-12-01T23:59:59.000Z

25

Bioenergy in transition  

Science Conference Proceedings (OSTI)

Biomass is a versatile, abundant, and renewable energy resource used widely throughout the world. It is perhaps the most common energy resource in developing countries, used primarily for cooking and heating. While industrialized and newly developing nations have turned to fossil fuels to support economic growth, some are returning to biomass as a means of preserving their depleting natural resources, reducing dependence on imported fossil fuels, strengthening agricultural industries, or reducing environmental pollution. A number of technological advancements, particularly in converting biomass into electricity or alcohol transportation fuels, have triggered this reassessment of biomass as a significant energy resource. The writers report on research and development taking place worldwide, with a focus on work being done in Hawaii. They also assess the technical and economic feasibility of adapting bioenergy technology elsewhere, with particular attention directed at the potential of alcohol fuels for transportation applications and the need to develop bioenergy crops as a precursor to expanded alcohol fuel use and renewable electricity generation.

Overend, R.P. [National Renewable Energy Lab., Golden, CO (United States); Kinoshita, C.M.; Antal, M.J. Jr. [Univ. of Hawaii, Honolulu, HI (United States). Hawaii Natural Energy Inst.

1996-12-01T23:59:59.000Z

26

Bioenergy KDF  

NLE Websites -- All DOE Office Websites (Extended Search)

Navigation Navigation Home Sign-In Contact Us Register Search this site: Search Connect: Bioenergy Library Map Tools & Apps Overview The Bioenergy KDF supports the development of a sustainable bioenergy industry by providing access to a variety of data sets, publications, and collaboration and mapping tools that support bioenergy research, analysis, and decision making. In the KDF, users can search for information, contribute data, and use the tools and map interface to synthesize, analyze, and visualize information in a spatially integrated manner. Read more and watch a short walkthrough video lease note: The KDF works best in the Google Chrome or Mozilla Firefox browsers. What Would You Like to Do? CONTRIBUTE DATA Fill out the contribute form to add data sets and other types of

27

Careers in Renewable Energy  

DOE Green Energy (OSTI)

This publication describes the job opportunities, technologies, and market for each of the major renewable energy fields (wind power, solar power, bioenergy, geothermal energy, and hydropower).

Waggoner, T.

2001-01-15T23:59:59.000Z

28

Renewable Energy: An Overview  

DOE Green Energy (OSTI)

This fact sheet provides an introduction to renewable energy technologies: hydropower, bioenergy, geothermal energy, solar energy, wind energy, hydrogen, and ocean energy.

Tromly, K.

2001-03-14T23:59:59.000Z

29

Definition: Bioenergy | Open Energy Information  

Open Energy Info (EERE)

Bioenergy Bioenergy Energy produced from organic materials from plants or animals.[1][2] View on Wikipedia Wikipedia Definition Bioenergy is renewable energy made available from materials derived from biological sources. Biomass is any organic material which has stored sunlight in the form of chemical energy. As a fuel it may include wood, wood waste, straw, manure, sugarcane, and many other byproducts from a variety of agricultural processes. By 2010, there was 35GW of globally installed bioenergy capacity for electricity generation, of which 7GW was in the United States. In its most narrow sense it is a synonym to biofuel, which is fuel derived from biological sources. In its broader sense it includes biomass, the biological material used as a biofuel, as well as the

30

Explore Bioenergy Technology Careers | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Bioenergy Technology Careers Bioenergy Technology Careers Explore Bioenergy Technology Careers About Bioenergy Technologies Office Energy from abundant, renewable, domestic biomass can reduce U.S. dependence on oil, lower impacts on climate, and stimulate jobs and economic growth. Photo of a woman tending to plants in a lab. What jobs are available? Feedstocks Farmers Seasonal workers Tree farm workers Mechanical engineers Harvesting equipment mechanics Equipment production workers Chemical engineers Chemical application specialists Chemical production workers Biochemists Aquaculture technicians Agricultural engineers Genetic engineers and scientists Storage facility operators Conversion Microbiologists Clean room technicians Industrial engineers Chemical & mechanical engineers Plant operators

31

Renewable Energy Equipment Manufacturer Tax Credit | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Manufacturer Tax Credit Renewable Energy Equipment Manufacturer Tax Credit Eligibility Commercial Industrial Savings For Bioenergy Biofuels Alternative Fuel Vehicles Commercial...

32

State Bioenergy Primer: Information and Resources for States on Issues, Opportunities, and Options for Advancing Bioenergy  

NLE Websites -- All DOE Office Websites (Extended Search)

State State Bioenergy Primer information and resources for States on issues, opportunities, and options for Advancing Bioenergy U.S. EnvironmEntal ProtEction agEncy and national rEnEwablE EnErgy laboratory SEPtEmbEr 15, 2009 TABle of ConTenTS Acknowledgements ________________________________________________________________ iv Key Acronyms and Abbreviations ______________________________________________________ v executive Summary ___________________________________________________ 1 introduction _________________________________________________________ 3 1.1 How the Primer Is Organized ____________________________________________________ 5 1.2 References ____________________________________________________________________ 5 What is Bioenergy? ____________________________________________________

33

Abellon Bioenergy | Open Energy Information  

Open Energy Info (EERE)

Abellon Bioenergy Abellon Bioenergy Jump to: navigation, search Name Abellon Bioenergy Place Ahmedabad, Gujarat, India Zip 380054 Sector Renewable Energy Product Ahmedabad-based start-up project developer having interest in renewable energy. Coordinates 26.93077°, 80.66416° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":26.93077,"lon":80.66416,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

34

Bioenergy Blog | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Blog Blog Bioenergy Blog RSS December 16, 2013 The Integrated Biorefinery Research Facility at the National Renewable Energy Laboratory in Golden, Colorado enables partners to test conversion technologies on up to one ton of biomass material a day. | Photo by Dennis Schroeder, National Renewable Energy Laboratory From the Lab to Your Gas Tank: 4 Bioenergy Testing Facilities That Are Making a Difference The Energy Department is working to cut the cost of biofuel production by supporting advanced development and demonstration facilities throughout the country that enable researchers to fully examine their efforts on a large scale without having to maintain an expensive pilot plant. November 6, 2013 National Renewable Energy Laboratory researcher Lee Elliott collects samples of algae at a creek in Golden, Colorado. | Photo by Dennis Schroeder, National Renewable Energy Laboratory

35

Welcome to Stanford Synchrotron Radiation Lightsource | Stanford  

NLE Websites -- All DOE Office Websites

content Skip to search content Skip to search SLAC National Accelerator Laboratory DOE Stanford SLAC SSRL LCLS AD PPA SUNCAT PULSE SIMES Stanford Synchrotron Radiation Lightsource An Office of Science User Facility Home About SSRL What is SSRL? Director's Office Organization Advisory Panels History SSRL News SSRL News and Events Science Highlights Press Releases SSRL Newsletter Photon Science Seminars SSRL Presents User Resources User Resources User Portal Schedules Deadlines Forms & Applications Beam Lines Beam Lines Map By Number By Technique Photon Source Parameters SPEAR3 Status Science at SSRL Science at SSRL Science Highlights Photon Science Faculty SSRL Imaging Group SSRL SMB Program Publications Publications & Reports SSRL Headline News SSRL Fact Sheet SSRL Brochure SLAC Discovery Brochure SPEAR3 SPEAR3

36

Study on the Feasibility of Bioenergy Development in China  

Science Conference Proceedings (OSTI)

To develop bioenergy characterized with environment friendliness and renew ability is inevitable to undergo, in order to solve the problem of fossil energy shortage, to respond to such disastrous consequence as greenhouse effect and acrid rain on the ... Keywords: fossil energy, energy crisis, renewable energy, bioenergy

Shen Xilin

2011-11-01T23:59:59.000Z

37

BioEnergy Science Center Media Room  

NLE Websites -- All DOE Office Websites (Extended Search)

Bioenergy Research Centers DOE Bioenergy Research Centers Great Lakes Bioenergy Research Center (GLBRC) Joint BioEnergy Institute (JBEI)...

38

BioEnergy Science Center reaches 500th publication | ornl.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

News Feature BioEnergy Science Center reaches 500th publication A book, part of the Wiley Series in Renewable Resources, that was co-written and edited by BioEnergy Science Center...

39

NREL: Biomass Research - National Bioenergy Center  

NLE Websites -- All DOE Office Websites (Extended Search)

National Bioenergy Center National Bioenergy Center The National Bioenergy Center (NBC) was established in October 2000 to support the science and technology goals of the U.S. Department of Energy (DOE) Bioenergy Technologies Office. Headquartered at NREL, this virtual center unifies DOE's efforts to advance technology for producing renewable transportation fuels from biomass. A primary goal is to demonstrate the production of cost-competitive cellulosic ethanol by 2012. Collaborating with industrial, academic, and other governmental research, development, and commercialization efforts is central to achieving this goal. Mission The National Bioenergy Center's mission is to foster capability to catalyze the replacement of petroleum with transportation fuels from biomass by delivering innovative, cost-effective biofuels solutions.

40

Bioenergy | Open Energy Information  

Open Energy Info (EERE)

Bioenergy Jump to: navigation, search Dictionary.png Bioenergy: Energy produced from organic materials from plants or animals. Other definitions:Wikipedia Reegle 1 This article...

Note: This page contains sample records for the topic "bioenergy lightsource renewables" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Argonne National Laboratory Launches Bioenergy Assessment Tools |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Argonne National Laboratory Launches Bioenergy Assessment Tools Argonne National Laboratory Launches Bioenergy Assessment Tools Argonne National Laboratory Launches Bioenergy Assessment Tools September 30, 2013 - 4:00pm Addthis A researcher loads a biomass sample into spinning ring cup. Argonne National Laboratory has launched two online tools that assess the resource consumption and greenhouse gas emissions associated with biofuel production. | Photo courtesy of National Renewable Energy Laboratory A researcher loads a biomass sample into spinning ring cup. Argonne National Laboratory has launched two online tools that assess the resource consumption and greenhouse gas emissions associated with biofuel production. | Photo courtesy of National Renewable Energy Laboratory Paul Lester Communications Specialist for the Office of Energy Efficiency and Renewable

42

Tax Credits for Renewable Energy Facilities | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tax Credits for Renewable Energy Facilities Tax Credits for Renewable Energy Facilities Eligibility Commercial Savings For Bioenergy Water Buying & Making Electricity Solar...

43

State Bioenergy Primer: Information and Resources for States on Issues, Opportunities, and Options for Advancing Bioenergy  

SciTech Connect

One renewable energy option that states frequently consider to meet their clean energy goals is the use of biomass resources to develop bioenergy. Bioenergy includes bioheat, biopower, biofuels, and bioproducts. This document provides an overview of biomass feedstocks, basic information about biomass conversion technologies, and a discussion of benefits and challenges of bioenergy options. The Primer includes a step-wise framework, resources, and tools for determining the availability of feedstocks, assessing potential markets for biomass, and identifying opportunities for action at the state level. Each chapter contains a list of selected resources and tools that states can use to explore topics in further detail.

Byrnett, D. S.; Mulholland, D.; Zinsmeister, E.; Doris, E.; Milbrandt, A.; Robichaud. R.; Stanley, R.; Vimmerstedt, L.

2009-09-01T23:59:59.000Z

44

Biocatalysis and Bioenergy  

Science Conference Proceedings (OSTI)

An up-to-date overview of diverse findings and accomplishments in biocatalysis and bioenergy. Biocatalysis and Bioenergy Biofuels and Bioproducts and Biodiesel Hardback Books Biofuels - Bioproducts John Wiley and Sons An up-to-date overview of div

45

User Facility Access Policy | Stanford Synchrotron Radiation Lightsource  

NLE Websites -- All DOE Office Websites (Extended Search)

Facility Access Policy Facility Access Policy 1. Summary The Stanford Synchrotron Radiation Lightsource (SSRL) at SLAC National Accelerator Laboratory is a U.S. Department of Energy (DOE) Office of Science national user facility that provides synchrotron radiation to researchers in many fields of science and technology, including biology, catalysis, chemistry, energy, engineering, forensics, geoscience, materials science, medicine, molecular environmental science, and physics. With a pioneering start in 1974, the facility was upgraded to a state-of-the-art third generation lightsource in 2004, providing major improvements in emittance, ring current and new or upgraded beam lines. SSRL's research programs include both the x-ray and ultraviolet regions of the spectrum. SSRL is primarily supported by the DOE Offices of Basic Energy Sciences

46

Online Toolkit Fosters Bioenergy Innovation | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Toolkit Fosters Bioenergy Innovation Toolkit Fosters Bioenergy Innovation Online Toolkit Fosters Bioenergy Innovation January 21, 2011 - 2:27pm Addthis Learn more about the Bioenergy Knowledge Discovery Framework, an online data sharing and mapping toolkit. Paul Bryan Biomass Program Manager, Office of Energy Efficiency & Renewable Energy What will the project do? The $241 million loan guarantee for Diamond Green Diesel, funding which will support the construction of a facility that will nearly triple the amount of renewable diesel produced domestically. The online data sharing and mapping toolkit provides the extensive data, analysis, and visualization tools to monitor the bioenergy industry. Yesterday, Secretary Chu announced a $241 million loan guarantee for Diamond Green Diesel, funding which will support the construction of a

47

Solarvest BioEnergy | Open Energy Information  

Open Energy Info (EERE)

Solarvest BioEnergy Jump to: navigation, search Name Solarvest BioEnergy Place Bloomington, Indiana Zip 3057 Sector Bioenergy, Hydro, Hydrogen, Solar Product Solarvest BioEnergy's...

48

Bioenergy Technologies Office: Sustainability  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Overview Financial Opportunities Publications Contact Us Sustainability The Bioenergy Technologies Office's activities are guided by a commitment to environmental, economic,...

49

Renewable Energy Portfolio Standard | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Portfolio Standard Renewable Energy Portfolio Standard Eligibility Investor-Owned Utility Municipal Utility Retail Supplier Rural Electric Cooperative Savings For Bioenergy...

50

Renewable Generation Requirement | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Generation Requirement Renewable Generation Requirement Eligibility Investor-Owned Utility Retail Supplier Savings For Bioenergy Buying & Making Electricity Water Solar Heating &...

51

Fulcrum Bioenergy Inc | Open Energy Information  

Open Energy Info (EERE)

Fulcrum Bioenergy Inc Fulcrum Bioenergy Inc Jump to: navigation, search Name Fulcrum Bioenergy, Inc. Place Pleasanton, California Zip 94588 Sector Bioenergy, Renewable Energy Product Fulcrum BioEnergy is a waste-to-fuels company that focuses on the development of clean, environmentally responsible facilities for the conversion of municipal solid waste and other waste products to ethanol and other renewable transportation fuels. Coordinates 28.967394°, -98.478862° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":28.967394,"lon":-98.478862,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

52

Bioenergy News  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

news Office of Energy Efficiency & news Office of Energy Efficiency & Renewable Energy Forrestal Building 1000 Independence Avenue, SW Washington, DC 20585 en Secretary Moniz Announces New Biofuels Projects to Drive Cost Reductions, Technological Breakthroughs http://energy.gov/articles/secretary-moniz-announces-new-biofuels-projects-drive-cost-reductions-technological Secretary Moniz Announces New Biofuels Projects to Drive Cost Reductions, Technological Breakthroughs

53

Constraints to bio-energy development  

DOE Green Energy (OSTI)

The energy crisis has prompted research and development of renewable, domestic, cost-effective and publicly acceptable energy alternatives. Among these are the bioconversion technologies. To date bio-energy research has been directed toward the mechanics of the conversion processes and technical assessment of the environmental impacts. However, there are other obstacles to overcome before biomass can be converted to more useful forms of energy that fit existing need. Barriers to bio-energy resource application in the US are identified. In addition, examples from several agricultural regions serve to illustrate site-specific resource problems.

Parsons, V.B.

1980-01-01T23:59:59.000Z

54

User Financial Accounts | Stanford Synchrotron Radiation Lightsource  

NLE Websites -- All DOE Office Websites (Extended Search)

Financial Accounts Financial Accounts Why Have a User Financial Account? Each user group should establish a user financial account to procure gases, chemicals, supplies or services to support your experiment at SLAC's user facilities and to send samples, dewars, or other equipment between SLAC and your institution. Establishing/Renewing a User Financial Account The most common method of establishing or renewing a user financial account is by providing a purchase order (PO) (or a letter from the financial officer of the user institution). The PO should be made to SLAC National Accelerator Laboratory for the amount of estimated expenditures (the suggested minimum is $1,000). The PO should include the expiration date, user names, funding agency, grant/contract number and whether expenditures

55

Sustainable Bioenergy: A Framework for Decision Makers | Open Energy  

Open Energy Info (EERE)

Sustainable Bioenergy: A Framework for Decision Makers Sustainable Bioenergy: A Framework for Decision Makers Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Sustainable Bioenergy: A Framework for Decision Makers Agency/Company /Organization: Food and Agriculture Organization of the United Nations Sector: Energy, Land Focus Area: Renewable Energy, Biomass Topics: Implementation, Policies/deployment programs Resource Type: Guide/manual, Lessons learned/best practices Website: esa.un.org/un-energy/pdf/susdev.Biofuels.FAO.pdf References: Sustainable Bioenergy: A Framework for Decision Makers[1] "In this publication, UN-Energy seeks to structure an approach to the current discussion on bioenergy, it is the contribution of the UN system to the issues that need further attention, analysis and valuation, so that

56

Smithfield Bioenergy | Open Energy Information  

Open Energy Info (EERE)

Smithfield Bioenergy Jump to: navigation, search Name Smithfield Bioenergy Place Smithfield, Virginia Zip 23430 Product Biodiesel producer based in Virgina References Smithfield...

57

Bio Renewables Group | Open Energy Information  

Open Energy Info (EERE)

Name Bio-Renewables Group Place United Kingdom Zip CB6 2BA Sector Biomass, Renewable Energy Product Specialist in bio-energy consultancy, research and project development related...

58

Bioenergy KDF | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Bioenergy KDF Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Bioenergy KDF Agency/Company /Organization: US Department of Energy Office of Biomass Program Partner: Oak Ridge National Laboratory Sector: Energy Focus Area: Renewable Energy, Biomass Phase: Bring the Right People Together Topics: Background analysis, Resource assessment Resource Type: Maps, Presentation, Publications, Technical report, Software/modeling tools User Interface: Website Website: bioenergykdf.net Web Application Link: bioenergykdf.net Cost: Free OpenEI Keyword(s): Energy Efficiency and Renewable Energy (EERE) Tools Coordinates: 36.00941332491°, -84.270080532879° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.00941332491,"lon":-84.270080532879,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

59

Videos from the DOE BioEnergy Science Center (BESC): Redefining the Frontiers of Bioenergy  

DOE Data Explorer (OSTI)

Bioenergy is energy derived from biomass. Biofuel is formed from biomass, and can be used to power greener vehicles and herald more efficient energy production. The Energy Independence and Security Act (EISA) set a renewable fuel standard of 36 billion gallons of biofuel processed annually by 2022, with 16 billion gallons coming from cellulosic feedstock such as switchgrass and poplar. To reach this goal, the Department of Energy (DOE) set up three Bioenergy Research Centers in September 2007. The BioEnergy Science Center (BESC) is researching methods to easily break down cell walls of switchgrass and poplar to form biofuel, as well as researching enzymes and microbes that will do the breaking down of the plant material. By modifying the genome of the biomass, BESC can form a more populous, easily broken down feedstock that will grow easily and be available for use. By modifying the genome of the microbes, the process of breaking down the biomass into biofuel will be expedited and simplified at the same time [Copied with editing from http://bioenergycenter.org/what-is-bioenergy/]. BESC presentation videos include: Bioenergy Conversion and the BioEnergy Science Center: An Introduction to the Challenges in Making Cellulosic Biofuels Lignin Biosynthesis and Its Manipulation for the Development of Dedicated Bioenergy Crops Microbial Cellulose Utilization: Fundamentals and Biotechnology The Clostridium Thermocellum Cellulosome: A Molecular Machine for Cellulose Degradation Biobutanol from Biomass Applied Photosynthesis: Putting Photosystem I to Work Plant Genome Structure and Evolution as Tools for the Improvement of Biomass Crops \tCool C4 Photosynthesis. Miscanthus -- A Means to Achieve Large Sustainable Supplies of Bioenergy Feedstock without Impacts on Food Production Second Generation Pentose Utilizing Yeast Strains Biomass to Hydrogen Gas at 100 Degrees Celsius Light Harvesting for Algal Biofuels. The Center also provides a photo gallery, fact sheets, and other media-rich information.

60

Renewable Energy Generation Zone Property Tax Abatement | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Generation Zone Property Tax Abatement Renewable Energy Generation Zone Property Tax Abatement Eligibility Commercial Industrial Savings For Bioenergy Biofuels Alternative Fuel...

Note: This page contains sample records for the topic "bioenergy lightsource renewables" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Renewable Energy Sales Tax Exemption | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sales Tax Exemption Renewable Energy Sales Tax Exemption Eligibility Commercial Industrial Utility Savings For Bioenergy Buying & Making Electricity Water Solar Wind Program...

62

Renewable Energy Systems Tax Credit (Personal) | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Personal) Renewable Energy Systems Tax Credit (Personal) Eligibility Commercial Multi-Family Residential Residential Savings For Bioenergy Buying & Making Electricity Water Heating...

63

EERE: Sustainable Transportation - Bioenergy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

ponds used for large-scale algae biomass production. Vehicles Bioenergy Hydrogen and Fuel Cells Photo of a commercial airplane in the sky. The U.S. Department of Energy (DOE)...

64

Interactions among bioenergy feedstock choices, landscape dynamics, and land use  

SciTech Connect

Landscape implications of bioenergy feedstock choices are significant and depend on land-use practices and their environmental impacts. Although land-use changes and carbon emissions associated with bioenergy feedstock production are dynamic and complicated, lignocellulosic feedstocks may offer opportunities that enhance sustainability when compared to other transportation fuel alternatives. For bioenergy sustainability, major drivers and concerns revolve around energy security, food production, land productivity, soil carbon and erosion, greenhouse gas emissions, biodiversity, air quality, and water quantity and quality. The many implications of bioenergy feedstock choices require several indicators at multiple scales to provide a more complete accounting of effects. Ultimately, the long-term sustainability of bioenergy feedstock resources (as well as food supplies) throughout the world depends on land-use practices and landscape dynamics. Land-management decisions often invoke trade-offs among potential environmental effects and social and economic factors as well as future opportunities for resource use. The hypothesis being addressed in this paper is that sustainability of bioenergy feedstock production can be achieved via appropriately designed crop residue and perennial lignocellulosic systems. We find that decision makers need scientific advancements and adequate data that both provide quantitative and qualitative measures of the effects of bioenergy feedstock choices at different spatial and temporal scales and allow fair comparisons among available options for renewable liquid fuels.

Dale, Virginia H [ORNL; Kline, Keith L [ORNL; Wright, Lynn L [ORNL; Perlack, Robert D [ORNL; Downing, Mark [ORNL; Graham, Robin Lambert [ORNL

2011-01-01T23:59:59.000Z

65

Carbon Offsets for Forestry and Bioenergy: Researching Opportunities for  

Open Energy Info (EERE)

Carbon Offsets for Forestry and Bioenergy: Researching Opportunities for Carbon Offsets for Forestry and Bioenergy: Researching Opportunities for Poor Rural Communities Jump to: navigation, search Name Carbon Offsets for Forestry and Bioenergy: Researching Opportunities for Poor Rural Communities Agency/Company /Organization Overseas Development Institute Sector Energy, Land Focus Area Renewable Energy, Biomass, Forestry Topics Policies/deployment programs, Background analysis Resource Type Publications Website http://www.odi.org.uk/resource Country Uganda, India Eastern Africa, Southern Asia References Carbon Offsets for Forestry and Bioenergy: Researching Opportunities for Poor Rural Communities[1] Summary "This report presents findings from a research study in Uganda and India looking at the opportunities that carbon offset projects offer for poor

66

U.S. Bioenergy Statistics | Data.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

U.S. Bioenergy Statistics U.S. Bioenergy Statistics Agriculture Community Menu DATA APPS EVENTS DEVELOPER STATISTICS COLLABORATE ABOUT Agriculture You are here Data.gov » Communities » Agriculture » Data U.S. Bioenergy Statistics Dataset Summary Description The U.S. Bioenergy Statistics are a source of information on biofuels intended to present a picture of the renewable energy industry and its relationship to agriculture. Where appropriate, data are presented in both a calendar year and the relevant marketing year timeframe to increase utility to feedstock-oriented users. The statistics highlight the factors that influence the demand for agricultural feedstocks for biofuels production; for instance, numerous tables emphasize the relationship between energy and commodity markets.

67

BESC funding renewed | ornl.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

ORNL BioEnergy Science Center funding renewed ORNL BioEnergy Science Center funding renewed April 12, 2013 The U.S. Department of Energy today announced it would fund its three Bioenergy Research Centers for an additional five-year period, subject to continued congressional appropriations. The three Centers-including the BioEnergy Research Center (BESC) led by Oak Ridge National Laboratory, the Great Lakes Bioenergy Research Center (GLBRC) led by the University of Wisconsin-Madison in partnership with Michigan State University, and the Joint BioEnergy Institute (JBEI) led by Lawrence Berkeley National Laboratory-were established by the Department's Office of Science in 2007 as an innovative program to accelerate fundamental research breakthroughs toward the development of advanced, next-generation biofuels.

68

OECD/IEA 2013 World Renewable Energy  

E-Print Network (OSTI)

© OECD/IEA 2013 World Renewable Energy Outlook 2030-2050 Paolo Frankl Head, Renewable Energy'humanité CNRS ­ Ademe ­ Unesco, Paris, 3 octobre 2013 #12;© OECD/IEA 2013 Current share of renewables% Electricity Transport Industry Buildings Other sectors Non-OECD solid biomass Bioenergy Other renewables Non

Canet, Léonie

69

Bioenergy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Transportation » Bioenergy Transportation » Bioenergy Bioenergy EERE leads U.S. researchers and other partners in making transportation cleaner and more efficient through solutions that put electric drive vehicles on the road and replace oil with clean domestic fuels. EERE leads U.S. researchers and other partners in making transportation cleaner and more efficient through solutions that put electric drive vehicles on the road and replace oil with clean domestic fuels. Image of a passenger airplane flying, with blue sky above and clouds below. The U.S. Department of Energy (DOE) funds research, development, and demonstration to help develop sustainable and cost-competitive biofuels, bioproducts, and biopower. For biofuels, DOE has lowered the cost of non-food-based ethanol by more than $6 per gallon since 2001, and it is now

70

How can land-use modelling tools inform bioenergy policies?  

E-Print Network (OSTI)

generation biofuels are the follow-up of 2nd generation biofuels, from the same raw material up to H2, renewable, biofuels and biorefinery. Bioenergy is the chemical energy contained in organic materials production. Biofuels are biomass materials directly used as solid fuel or converted into liquid or gaseous

DeLucia, Evan H.

71

Center For BioEnergy Sustainability Achievements and Activities February September 30, 2009 Center for BioEnergy Sustainability  

E-Print Network (OSTI)

-Use Change and Bioenergy, in Vonore, Tennessee. The workshop was sponsored by the U.S. Department of Energy. DPE/SC-0114, U.S. Department of Energy Office of Science and U.S. Department of Agriculture (http://genomicsgtl.energy workshop, ORNL/CBES-001, U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy

72

FACT SHEET: BIOENERGY WORKING GROUP  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

, 2010 , 2010 1 FACT SHEET: BIOENERGY WORKING GROUP At the Clean Energy Ministerial in Washington, D.C. on July 19 th and 20 th , ministers launched a Bioenergy Working Group, which will advance the deployment of bioenergy technologies by implementing recommendations of the Technology Action Plan on Bioenergy Technologies that was released by the Major Economies Forum Global Partnership in December 2009. The Working Group will work in close cooperation with the Global Bioenergy Partnership (GBEP), which is co-chaired by Brazil and Italy. Initial key activities of the Working Group include: 1. Global Bioenergy Atlas: The Working Group will combine and build upon existing databases of sustainably-developed bioenergy potential around the globe and make it available in an open web-

73

Factors for Bioenergy Market Development  

DOE Green Energy (OSTI)

Focusing on the development of the whole bioenergy market rather than isolated projects, this paper contributes to the identification of barriers and drivers behind bioenergy technology implementation. It presents a framework for the assessment of the potentials for bioenergy market growth to be used by decision makers in administration and industry. The conclusions are based on case studies of operating bioenergy markets in Austria, US and Sweden. Six important factors for bioenergy market growth have been identified: (1) Integration with other business, e.g. for biomass procurement, (2) Scale effects of bioenergy market, (3) Competition on bioenergy market, (4) Competition with other business, (5) National policy, (6) Local policy and local opinion. Different applications of the framework are discussed.

Roos, A.; Hektor, B.; Graham, R.L.; Rakos, C.

1998-10-04T23:59:59.000Z

74

Bioenergy Technologies Office: About the Bioenergy Technologies...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

with sustainable, renewable energy alternatives. Imagine, for example, a transportation fuel made from an energy crop that can grow on marginal lands unsuitable for producing food,...

75

DOE Bioenergy Center Special Issue. The Bioenergy Sciences Center  

NLE Websites -- All DOE Office Websites (Extended Search)

Bioenergy Bioenergy Center Special Issue. The Bioenergy Sciences Center (BESC) Richard A. Dixon Published online: 22 October 2009 # Springer Science + Business Media, LLC. 2009 Keywords Bioenergy centers . United States Department of Energy . Biomass recalcitrance . High-throughput screening . Plant transformation This issue of BioEnergy Research is the first of three special issues to feature work from the US Department of Energy (DOE) Bioenergy Centers. In June 2006, the DOE's Genomes to Life Program published a report, entitled "Breaking the biological barriers to cellulosic ethanol: a joint research agenda," that outlined research areas requir- ing significant investment in order to meet the target of making cellulosic ethanol cost-competitive by 2012. Words were converted to action in June 2007 when Energy Secretary Samuel W. Bodman announced the establishment of

76

Agave Transcriptomes and microbiomes for bioenergy research  

E-Print Network (OSTI)

as a biofuel feedstock. GCB Bioenergy 3, 6878, (2011). [2]in Agave tequilana. GCB Bioenergy 3, 2536, (2011). [4]and microbiomes for bioenergy research Stephen Gross 1,2 ,

Gross, Stephen

2013-01-01T23:59:59.000Z

77

USDA and DOE Fund Genomics Projects For Bioenergy Fuels Research |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fund Genomics Projects For Bioenergy Fuels Research Fund Genomics Projects For Bioenergy Fuels Research USDA and DOE Fund Genomics Projects For Bioenergy Fuels Research August 9, 2006 - 8:43am Addthis WASHINGTON, DC - Aug. 9, 2006 - Energy Secretary Samuel Bodman and Agriculture Secretary Mike Johanns today announced that the Department of Agriculture and the Department of Energy (DOE) have jointly awarded nine grants totaling $5.7 million for biobased fuels research that will accelerate the development of alternative fuel resources. Bodman commented, "These research projects build upon DOE's strategic investments in genomics, to accelerate scientific discovery and promote the development of alternative energy sources vital to America's energy and economic security." "To be a reliable renewable energy source, farmers and ranchers will need

78

UNEP-Bioenergy Decision Support Tool | Open Energy Information  

Open Energy Info (EERE)

UNEP-Bioenergy Decision Support Tool UNEP-Bioenergy Decision Support Tool Jump to: navigation, search LEDSGP green logo.png FIND MORE DIA TOOLS This tool is part of the Development Impacts Assessment (DIA) Toolkit from the LEDS Global Partnership. Tool Summary LAUNCH TOOL Name: UNEP-Bioenergy Decision Support Tool Agency/Company /Organization: United Nations Environment Programme (UNEP) Partner: Food and Agriculture Organization of the United Nations Sector: Land Focus Area: Renewable Energy, Biomass, - Biofuels, - Biomass Combustion, - Biomass Gasification, - Biomass Pyrolysis, - Landfill Gas, People and Policy Topics: Co-benefits assessment, - Energy Access, - Energy Security, - Environmental and Biodiversity, - Health, Implementation, Market analysis, Policies/deployment programs Resource Type: Guide/manual, Publications

79

Facility will focus on bioenergy, global food security  

NLE Websites -- All DOE Office Websites (Extended Search)

Facility will focus on bioenergy, global food security Facility will focus on bioenergy, global food security Facility will focus on bioenergy, global food security The New Mexico Consortium expects to complete the 27,000 square foot laboratory and office facility next spring. May 22, 2012 Aerial view of Los Alamos National Laboratory Aerial view of Los Alamos National Laboratory. Contact Kevin Roark Communications Office (505) 665-9202 Email Los Alamos, N.M., May 22, 2012 - U.S. Senator Tom Udall (D-NM) spoke at the groundbreaking ceremony marking the start of construction on the New Mexico Consortium's (NMC) biological research facility last Friday afternoon. Senator Udall noted New Mexico's novel and extensive contributions to our nation's renewable energy efforts and congratulated LANL, the NMC, and Richard Sayre on their commitment to advancing the nations goals for energy

80

Bioenergy Technologies Office: Integrated Biorefineries  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

transportation fuels, chemicals, and heat and power. Biofuels Infrastructure moves the fuel from a biorefining plant to the pump. Bioenergy is used to power today's vehicles. A...

Note: This page contains sample records for the topic "bioenergy lightsource renewables" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Image Gallery : BioEnergy Science Center  

NLE Websites -- All DOE Office Websites (Extended Search)

GO About Research Resources Education Industry Redefining the Frontiers of Bioenergy Research Publications BESC Wiki (internal only) BESC Knowledgbase Biofacts BioEnergy Science...

82

Biosciences Division: Endurance Bioenergy Reactor(tm)  

NLE Websites -- All DOE Office Websites (Extended Search)

Endurance Bioenergy Reactor(tm) DOE Logo Search BIO ... Search Argonne Home > BIO home > Endurance Bioenergy Reactor(tm) BIO Home Page About BIO News Releases Research Publications...

83

Great Lakes Bioenergy Research Center Technologies Available ...  

Great Lakes Bioenergy Research Center Technologies Available for Licensing Established by the Department of Energy (DOE) in 2007, the Great Lakes Bioenergy Research ...

84

Argonne National Laboratory Launches Bioenergy Assessment Tools...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Argonne National Laboratory Launches Bioenergy Assessment Tools Argonne National Laboratory Launches Bioenergy Assessment Tools September 30, 2013 - 4:00pm Addthis A researcher...

85

Fundamental & Applied Bioenergy | Clean Energy | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

a new generation of efficient bioenergy strategies that will reduce U.S. dependence on foreign oil and help curb carbon emissions. Fundamental and applied bioenergy research at...

86

Photon Science for Renewable Energy  

SciTech Connect

Our current fossil-fuel-based system is causing potentially catastrophic changes to our planet. The quest for renewable, nonpolluting sources of energy requires us to understand, predict, and ultimately control matter and energy at the electronic, atomic, and molecular levels. Light-source facilities - the synchrotrons of today and the next-generation light sources of tomorrow - are the scientific tools of choice for exploring the electronic and atomic structure of matter. As such, these photon-science facilities are uniquely positioned to jump-start a global revolution in renewable and carbonneutral energy technologies. In these pages, we outline and illustrate through examples from our nation's light sources possible scientific directions for addressing these profound yet urgent challenges.

Hussain, Zahid; Tamura, Lori; Padmore, Howard; Schoenlein, Bob; Bailey, Sue

2010-03-31T23:59:59.000Z

87

Photon Science for Renewable Energy  

SciTech Connect

Our current fossil-fuel-based system is causing potentially catastrophic changes to our planet. The quest for renewable, nonpolluting sources of energy requires us to understand, predict, and ultimately control matter and energy at the electronic, atomic, and molecular levels. Light-source facilities - the synchrotrons of today and the next-generation light sources of tomorrow - are the scientific tools of choice for exploring the electronic and atomic structure of matter. As such, these photon-science facilities are uniquely positioned to jump-start a global revolution in renewable and carbonneutral energy technologies. In these pages, we outline and illustrate through examples from our nation's light sources possible scientific directions for addressing these profound yet urgent challenges.

Hussain, Zahid; Tamura, Lori; Padmore, Howard; Schoenlein, Bob; Bailey, Sue

2010-03-31T23:59:59.000Z

88

Bioenergy crop models: Descriptions, data requirements and future challenges  

SciTech Connect

Field studies that address the production of lignocellulosic biomass as a source of renewable energy provide critical data for the development of bioenergy crop models. A literature survey revealed that 14 models have been used for simulating bioenergy crops including herbaceous and woody bioenergy crops, and for crassulacean acid metabolism (CAM) crops. These models simulate field-scale production of biomass for switchgrass (ALMANAC, EPIC, and Agro-BGC), miscanthus (MISCANFOR, MISCANMOD, and WIMOVAC), sugarcane (APSIM, AUSCANE, and CANEGRO), and poplar and willow (SECRETS and 3PG). Two models are adaptations of dynamic global vegetation models and simulate biomass yields of miscanthus and sugarcane at regional scales (Agro-IBIS and LPJmL). Although it lacks the complexity of other bioenergy crop models, the environmental productivity index (EPI) is the only model used to estimate biomass production of CAM (Agave and Opuntia) plants. Except for the EPI model, all models include representations of leaf area dynamics, phenology, radiation interception and utilization, biomass production, and partitioning of biomass to roots and shoots. A few models simulate soil water, nutrient, and carbon cycle dynamics, making them especially useful for assessing the environmental consequences (e.g., erosion and nutrient losses) associated with the large-scale deployment of bioenergy crops. The rapid increase in use of models for energy crop simulation is encouraging; however, detailed information on the influence of climate, soils, and crop management practices on biomass production is scarce. Thus considerable work remains regarding the parameterization and validation of process-based models for bioenergy crops; generation and distribution of high-quality field data for model development and validation; and implementation of an integrated framework for efficient, high-resolution simulations of biomass production for use in planning sustainable bioenergy systems.

Nair, S. Surendran [University of Tennessee, Knoxville (UTK); Kang, Shujiang [ORNL; Zhang, Xuesong [Pacific Northwest National Laboratory (PNNL); Miguez, Fernando [Iowa State University; Izaurralde, Dr. R. Cesar [Pacific Northwest National Laboratory (PNNL); Post, Wilfred M [ORNL; Dietze, Michael [University of Illinois, Urbana-Champaign; Lynd, L. [Dartmouth College; Wullschleger, Stan D [ORNL

2012-01-01T23:59:59.000Z

89

From the Lab to Your Gas Tank: 4 Bioenergy Testing Facilities That Are  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

From the Lab to Your Gas Tank: 4 Bioenergy Testing Facilities That From the Lab to Your Gas Tank: 4 Bioenergy Testing Facilities That Are Making a Difference From the Lab to Your Gas Tank: 4 Bioenergy Testing Facilities That Are Making a Difference December 16, 2013 - 2:46pm Addthis The Integrated Biorefinery Research Facility at the National Renewable Energy Laboratory in Golden, Colorado enables partners to test conversion technologies on up to one ton of biomass material a day. | Photo by Dennis Schroeder, National Renewable Energy Laboratory The Integrated Biorefinery Research Facility at the National Renewable Energy Laboratory in Golden, Colorado enables partners to test conversion technologies on up to one ton of biomass material a day. | Photo by Dennis Schroeder, National Renewable Energy Laboratory Leslie Pezzullo

90

From the Lab to Your Gas Tank: 4 Bioenergy Testing Facilities That Are  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

From the Lab to Your Gas Tank: 4 Bioenergy Testing Facilities That From the Lab to Your Gas Tank: 4 Bioenergy Testing Facilities That Are Making a Difference From the Lab to Your Gas Tank: 4 Bioenergy Testing Facilities That Are Making a Difference December 16, 2013 - 2:46pm Addthis The Integrated Biorefinery Research Facility at the National Renewable Energy Laboratory in Golden, Colorado enables partners to test conversion technologies on up to one ton of biomass material a day. | Photo by Dennis Schroeder, National Renewable Energy Laboratory The Integrated Biorefinery Research Facility at the National Renewable Energy Laboratory in Golden, Colorado enables partners to test conversion technologies on up to one ton of biomass material a day. | Photo by Dennis Schroeder, National Renewable Energy Laboratory Leslie Pezzullo

91

International Conference on Wood-based Bioenergy LIGNA+Hannover, Germany, 17-18 May 2007  

E-Print Network (OSTI)

consumption, e.g. China ­ Nuclear safety #12;International Conference on Wood-based Bioenergy LIGNA ­ European Union & member countries · 20% renewable energy target in 2020 ­ United States' government lagging: NTC Photo: Stora Enso Photo: Stora Enso EU renewable energy 2005 Germany, 4.8% European Union, 6

92

Alternative Fuels Data Center: Renewable Fuel Promotion  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Renewable Fuel Renewable Fuel Promotion to someone by E-mail Share Alternative Fuels Data Center: Renewable Fuel Promotion on Facebook Tweet about Alternative Fuels Data Center: Renewable Fuel Promotion on Twitter Bookmark Alternative Fuels Data Center: Renewable Fuel Promotion on Google Bookmark Alternative Fuels Data Center: Renewable Fuel Promotion on Delicious Rank Alternative Fuels Data Center: Renewable Fuel Promotion on Digg Find More places to share Alternative Fuels Data Center: Renewable Fuel Promotion on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Renewable Fuel Promotion The Texas Bioenergy Policy Council and the Texas Bioenergy Research Committee were established to promote the goal of making biofuels a

93

Bioenergy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

development pathways that offer the greatest potential for commercialization Feedstock Supply Identifying and developing efficient, sustainable, renewable, biological materials for...

94

Biofuel and Bioenergy implementation scenarios  

E-Print Network (OSTI)

Biofuel and Bioenergy implementation scenarios Final report of VIEWLS WP5, modelling studies #12;Biofuel and Bioenergy implementation scenarios Final report of VIEWLS WP5, modelling studies By André of this project are to provide structured and clear data on the availability and performance of biofuels

95

Renewable Energy Goal | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Renewable Energy Goal Renewable Energy Goal Renewable Energy Goal < Back Eligibility Utility Savings Category Bioenergy Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Energy Sources Solar Home Weatherization Wind Program Info State Oklahoma Program Type Renewables Portfolio Standard Provider Oklahoma Corporation Commission In May 2010, Oklahoma established a renewable energy goal for electric utilities operating in the state. The goal calls for 15% of the total installed generation capacity in Oklahoma to be derived from renewable sources by 2015. There are no interim targets, and the goal does not extend past 2015. Eligible renewable energy resources include wind, solar, hydropower, hydrogen, geothermal, biomass, and other renewable energy

96

Bioenergy News | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Bioenergy News Bioenergy News Bioenergy News RSS August 30, 2011 USDA, Departments of Energy and Navy Seek Input from Industry to Advance Biofuels for Military and Commercial Transportation WASHINGTON, Aug. August 10, 2011 Department of Energy Releases New 'Billion-Ton' Study Highlighting Opportunities for Growth in Bioenergy Resources Washington, D.C. - The U.S. Department of Energy today released a report - 2011 U.S. Billion-Ton Update: Biomass Supply for a Bioenergy and Bioproducts Industry - detailing U.S. biomass feedstock potential nationwide. The report examines the nation's capacity to produce a billion dry tons of biomass resources annually for energy uses without impacting other vital U.S. June 10, 2011 Department of Energy Announces up to $36 Million to Support the Development

97

National Bioenergy Center Biochemical Platform Integration Project  

DOE Green Energy (OSTI)

April through June 2008 update on activities of the National Bioenergy Center's Biochemical Platform Integration Project.

Not Available

2008-07-01T23:59:59.000Z

98

lightsources.org: An Internet Site for Light SourceCommunication  

SciTech Connect

Research at the world's accelerator- (storage-ring and linac) based light sources is one of the most dynamic and rapidly growing fields of science. It frequently results in direct benefits to society, thereby demonstrating the value of the research with very concrete examples, but this is not widely understood or appreciated outside of the immediate user community. Our growing group of light source communicators from facilities in Europe, Asia, and the Americas, inspired by the Interactions.org Web site created by high-energy (elementary-particle)physics communicators, concluded that a light source community Web site (lightsources.org) would be the best tool for establishing effective collaboration between the communications offices of the world's light sources and to maximize the impact of our efforts. We envision lightsources.org to serve as a one-stop-shopping site for information about all aspects of light sources and the research they make possible. Audiences to be served include science communicators, the press, policymakers, the light source community, the wider scientific community, the science-interested public, and students and educators. Our proposal has been sent to the world's light source facility directors by J. Murray Gibson (APS) and William G. Stirling (ESRF). As a result,light sources.org is now being supported by a growing list of facilities from Europe, North America, and Asia. We hope to launch lightsources.org before the end of 2004.

Robinson, Art

2004-10-04T23:59:59.000Z

99

Austin - Renewables Portfolio Standard | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Austin - Renewables Portfolio Standard Austin - Renewables Portfolio Standard Austin - Renewables Portfolio Standard < Back Eligibility Municipal Utility Savings Category Bioenergy Buying & Making Electricity Water Solar Wind Program Info State Texas Program Type Renewables Portfolio Standard Provider Austin Energy The City of Austin, Texas, has been an early adopter of the Renewable Portfolio Standard (RPS) regulatory incentive. Using long term planning strategies, the City has set annual benchmarks for the percentage of renewable energy it uses annually. In February 2007, the Austin City Council approved Resolution 20070215-023, adopting the mayor's [http://www.austintexas.gov/department/austin-climate-protection-program Climate Protection Plan]. The Resolution increased Austin's renewable

100

Bioscience: Bioenergy, Biosecurity, and Health  

NLE Websites -- All DOE Office Websites (Extended Search)

Bioscience: Bioenergy, Biosecurity, and Health Bioscience: Bioenergy, Biosecurity, and Health /science-innovation/_assets/images/icon-science.jpg Bioscience: Bioenergy, Biosecurity, and Health Los Alamos scientists are developing science and technology to improve pathogen detection, create better therapeutics, and anticipate-even prevent-epidemics and pandemics. Bioenergy» Environmental Microbiology» Proteins» Biosecurity and Health» Genomics and Systems Biology» Algal vats Read caption + Los Alamos scientists used genetic engineering to develop magnetic algae, thus making it much easier to harvest for biofuel production. Harvesting algae accounts for approximately 15-20 percent of the total cost of biofuel production-magnetic algae can reduce such costs by more than 90%. Overview Charlie McMillan, Director of Los Alamos National Laboratory

Note: This page contains sample records for the topic "bioenergy lightsource renewables" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

JGI - DOE Bioenergy Research Centers  

NLE Websites -- All DOE Office Websites (Extended Search)

DOE Bioenergy Research Centers DOE Bioenergy Research Centers DOE JGI performs sequencing on behalf of the U.S. Department of Energy Bioenergy Research Centers. The Centers are intended to accelerate basic research in the development of cellulosic ethanol and other biofuels, advancing the federal initiative that seeks to reduce U.S. gasoline consumption by 20% within 10 years through increased efficiency and diversification of clean energy sources. The three Centers are located in geographically distinct areas and use different plants both for laboratory research and for improving feedstock crops. DOE BioEnergy Science Center led by DOE's Oak Ridge National Laboratory in Oak Ridge, Tennessee. This center will focus on the resistance of plant fiber to breakdown into sugars and is studying the potential energy crops

102

Alterra Bioenergy | Open Energy Information  

Open Energy Info (EERE)

Alterra has developed a 56.85mLpa (15m gallon) capacity, multifeedstock biodiesel production facility in Georgia. References Alterra Bioenergy1 LinkedIn Connections CrunchBase...

103

Bioenergy in India: Barriers and Policy Options | Open Energy Information  

Open Energy Info (EERE)

Bioenergy in India: Barriers and Policy Options Bioenergy in India: Barriers and Policy Options Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Bioenergy in India: Barriers and Policy Options Agency/Company /Organization: UNEP-Risoe Centre Sector: Energy Focus Area: Renewable Energy, Biomass, - Biofuels Topics: Implementation, Market analysis, Pathways analysis, Background analysis Resource Type: Publications, Lessons learned/best practices, Case studies/examples Website: tech-action.org/Perspectives/BioenergyIndia.pdf Country: India Cost: Free UN Region: Southern Asia Coordinates: 20.593684°, 78.96288° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":20.593684,"lon":78.96288,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

104

Review of Sorghum Production Practices: Applications for Bioenergy  

SciTech Connect

Sorghum has great potential as an annual energy crop. While primarily grown for its grain, sorghum can also be grown for animal feed and sugar. Sorghum is morphologically diverse, with grain sorghum being of relatively short stature and grown for grain, while forage and sweet sorghums are tall and grown primarily for their biomass. Under water-limited conditions sorghum is reliably more productive than corn. While a relatively minor crop in the United States (about 2% of planted cropland), sorghum is important in Africa and parts of Asia. While sorghum is a relatively efficient user of water, it biomass potential is limited by available moisture. The following exhaustive literature review of sorghum production practices was developed by researchers at Oak Ridge National Laboratory to document the current state of knowledge regarding sorghum production and, based on this, suggest areas of research needed to develop sorghum as a commercial bioenergy feedstock. This work began as part of the China Biofuels Project sponsored by the DOE Energy Efficiency and Renewable Energy Program to communicate technical information regarding bioenergy feedstocks to government and industry partners in China, but will be utilized in a variety of programs in which evaluation of sorghum for bioenergy is needed. This report can also be used as a basis for data (yield, water use, etc.) for US and international bioenergy feedstock supply modeling efforts.

Turhollow Jr, Anthony F [ORNL; Webb, Erin [ORNL; Downing, Mark [ORNL

2010-06-01T23:59:59.000Z

105

USDA and DOE Fund 10 Research Projects to Accelerate Bioenergy Crop  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

USDA and DOE Fund 10 Research Projects to Accelerate Bioenergy Crop USDA and DOE Fund 10 Research Projects to Accelerate Bioenergy Crop Production and Spur Economic Impact USDA and DOE Fund 10 Research Projects to Accelerate Bioenergy Crop Production and Spur Economic Impact August 11, 2011 - 3:55pm Addthis WASHINGTON, DC -- The U.S. Departments of Energy and Agriculture have awarded 10 grants totaling $12.2 million to spur research into improving the efficiency and cost-effectiveness of growing biofuel and bioenergy crops. The investments are part of a broader effort by the Obama administration to develop domestic renewable energy and advanced biofuels, providing a more secure future for America's energy needs and creating new opportunities for the American farming industry. "Biofuels, along with other advanced vehicle technologies, hold the

106

Geek-Up[10.01.10] -- Mapping Bioenergy and Magnetic Vector Potential, New  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

0.01.10] -- Mapping Bioenergy and Magnetic Vector 0.01.10] -- Mapping Bioenergy and Magnetic Vector Potential, New Atmosphere-Monitoring Tools and "Sour" Gas Streams Geek-Up[10.01.10] -- Mapping Bioenergy and Magnetic Vector Potential, New Atmosphere-Monitoring Tools and "Sour" Gas Streams October 1, 2010 - 3:33pm Addthis Elizabeth Meckes Elizabeth Meckes Director of User Experience & Digital Technologies, Office of Public Affairs This week, the National Renewable Energy Laboratory (NREL) announced the launch of an online portal for energy geeks and "cartophiles" alike. NREL's BioEnergy Atlas encompasses two analysis and mapping tools - BioPower and BioFuels. These tools can summarize state-by-state energy use and infrastructure for traditional and bioenery power, fuels and resources

107

USDA and DOE Fund 10 Research Projects to Accelerate Bioenergy Crop  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

USDA and DOE Fund 10 Research Projects to Accelerate Bioenergy Crop USDA and DOE Fund 10 Research Projects to Accelerate Bioenergy Crop Production and Spur Economic Impact USDA and DOE Fund 10 Research Projects to Accelerate Bioenergy Crop Production and Spur Economic Impact August 11, 2011 - 3:55pm Addthis WASHINGTON, DC -- The U.S. Departments of Energy and Agriculture have awarded 10 grants totaling $12.2 million to spur research into improving the efficiency and cost-effectiveness of growing biofuel and bioenergy crops. The investments are part of a broader effort by the Obama administration to develop domestic renewable energy and advanced biofuels, providing a more secure future for America's energy needs and creating new opportunities for the American farming industry. "Biofuels, along with other advanced vehicle technologies, hold the

108

Sustainable Future for Bioenergy To meet the mandated national bioenergy goals, the evolving  

E-Print Network (OSTI)

Sustainable Future for Bioenergy To meet the mandated national bioenergy goals, the evolving region. While bioenergy demand and end use may be FRQFHQWUDWHG LQ KLJKO\\ SRSXODWHG DUHDV LWV SURGXFWLRQ Mapping the future of bioenergy with Geographic Information Systems (GIS) and other cutting edge data

109

Geospatial Science and Technology for Bioenergy Modeling the Sustainability of the National Bioenergy Infrastructure  

E-Print Network (OSTI)

source was the report Sustainable Bioenergy created for the International Seminar on Sustainable Energy

110

Renewables Portfolio Standard | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Renewables Portfolio Standard Renewables Portfolio Standard Renewables Portfolio Standard < Back Eligibility Investor-Owned Utility Municipal Utility Retail Supplier Savings Category Other Bioenergy Commercial Heating & Cooling Manufacturing Buying & Making Electricity Alternative Fuel Vehicles Hydrogen & Fuel Cells Water Solar Wind Program Info State Connecticut Program Type Renewables Portfolio Standard Provider Connecticut Public Utilities Regulatory Authority Established in 1998 and subsequently revised several times, Connecticut's renewables portfolio standard (RPS) requires each electric supplier and each electric distribution company wholesale supplier to obtain at least 23% of its retail load by using renewable energy by January 1, 2020. The RPS also requires each electric supplier and each electric distribution

111

Columbia - Renewables Portfolio Standard | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Columbia - Renewables Portfolio Standard Columbia - Renewables Portfolio Standard Columbia - Renewables Portfolio Standard < Back Eligibility Municipal Utility Savings Category Bioenergy Buying & Making Electricity Water Solar Heating & Cooling Commercial Heating & Cooling Heating Water Heating Wind Program Info State Missouri Program Type Renewables Portfolio Standard Provider Columbia Water and Light In November 2004, voters in Columbia, Missouri approved a proposal to adopt a local renewables portfolio standard (RPS).* The initiative requires the city's municipal utility, Columbia Water and Light, to generate or purchase electricity generated from eligible renewable-energy resources at the following levels: * 2% by December 31, 2007 * 5% by December 31, 2012 * 10% by December 31, 2017 * 15% by December 31, 2022

112

Renewables Portfolio Standard | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Renewables Portfolio Standard Renewables Portfolio Standard Renewables Portfolio Standard < Back Eligibility Investor-Owned Utility Retail Supplier Rural Electric Cooperative Savings Category Bioenergy Biofuels Alternative Fuel Vehicles Commercial Heating & Cooling Manufacturing Buying & Making Electricity Hydrogen & Fuel Cells Water Wind Solar Home Weatherization Heating & Cooling Heating Water Heating Program Info State New Hampshire Program Type Renewables Portfolio Standard Provider New Hampshire Public Utilities Commission New Hampshire's renewable portfolio standard (RPS), established in May 2007, requires the state's electricity providers -- with the exception of municipal utilities -- to acquire by 2025 renewable energy certificates (RECs) equivalent to 24.8% of retail electricity sold to end-use customers.

113

Renewable Portfolio Standard | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Renewable Portfolio Standard Renewable Portfolio Standard Renewable Portfolio Standard < Back Eligibility Investor-Owned Utility Municipal Utility Rural Electric Cooperative Utility Savings Category Bioenergy Biofuels Alternative Fuel Vehicles Commercial Heating & Cooling Manufacturing Buying & Making Electricity Hydrogen & Fuel Cells Water Solar Home Weatherization Heating & Cooling Water Heating Wind Program Info State Wisconsin Program Type Renewables Portfolio Standard Provider Public Service Commission of Wisconsin In 1998 Wisconsin enacted Act 204, requiring regulated utilities in eastern Wisconsin to install to an aggregate total of 50 MW of new renewable-based electric capacity by December 31, 2000. In October 1999 Wisconsin enacted Act 9, becoming the first state to enact a renewable portfolio standard

114

Pacific Rim Summit on Industrial Biotechnology & Bioenergy |...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pacific Rim Summit on Industrial Biotechnology & Bioenergy Pacific Rim Summit on Industrial Biotechnology & Bioenergy December 8, 2013 8:00AM EST to December 11, 2013 5:00PM EST...

115

Pacific Rim Summit on Industrial Biotechnology & Bioenergy |...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pacific Rim Summit on Industrial Biotechnology & Bioenergy Pacific Rim Summit on Industrial Biotechnology & Bioenergy December 8, 2013 12:00PM EST to December 11, 2013 12:00PM EST...

116

Fact Sheets : BioEnergy Science Center  

NLE Websites -- All DOE Office Websites (Extended Search)

Fact Sheets DOE Mission Focus: BioFuels US Department of Energy's Genomic Science Program DOE BioEnergy Science Center - fact sheet - 2011 DOE BioEnergy Science Center - fact sheet...

117

Teacher Tools : BioEnergy Science Center  

NLE Websites -- All DOE Office Websites (Extended Search)

Tools for the Teacher The BioEnergy Science Center is committed to communicating research on bioenergy with the education community and to promote understanding of the science by...

118

Bioenergy Technology Ltd | Open Energy Information  

Open Energy Info (EERE)

Bioenergy Technology Ltd Jump to: navigation, search Name Bioenergy Technology Ltd Place East Sussex, United Kingdom Zip TN22 5RU Sector Biomass Product Firm dedicated to the use...

119

Bioenergy crop models: Descriptions, data requirements and future challenges  

SciTech Connect

Field studies that address the production of lignocellulosic biomass as a potential source of renewable energy are making available critical information for the development, validation, and use of bioenergy crop models. A literature survey revealed that 14 models have been developed and validated for herbaceous and woody bioenergy crops, and for Crassulacean acid metabolism (CAM) crops adapted to arid lands. These models simulate field-scale production of biomass for switchgrass (ALMANAC, EPIC, and Agro-BGC), miscanthus (MISCANFOR, MISCANMOD, and WIMOVAC), sugarcane (APSIM, AUSCANE, and CANEGRO), and poplar and willow (SECRETS and 3PG). Two models are adaptations of dynamic global vegetation models and simulate biomass yields of miscanthus and sugarcane as plant function types at regional scales (Agro-IBIS and LPJmL). A model of biomass production in CAM plants has been developed (EPI), but lacks the sophistication of the other models. Except for CAM plants, all the models include representations of leaf area dynamics, radiation interception and utilization, biomass production, and partitioning of biomass to roots and shoots. A few of the models are capable of simulating soil water, nutrient, and carbon cycle processes, making them especially useful for assessing environmental consequences (e.g., erosion and nutrient losses) associated with the field-scale deployment of bioenergy crops. Similar to other process-based models, simulations are challenged by computing and data management issues and an integrated framework for model testing and inter-comparison is needed. Considerable work remains concerning the development of models for unconventional bioenergy crops like CAM plants, generation and distribution of high-quality field data for model development and validation, and development of an integrated framework for efficient execution of large-scale simulations for use in planning regional to global sustainable bioenergy production systems.

Surendran Nair, Sujith; Kang, Shujiang; Zhang, Xuesong; Miguez, Fernando; Izaurralde, Roberto C.; Post, W. M.; Dietze, Michael; Lynd, Lee R.; Wullschleger, Stan D.

2012-03-15T23:59:59.000Z

120

Bioenergy plants in the United States and China  

NLE Websites -- All DOE Office Websites (Extended Search)

181 (2011) 621- 622 Contents lists available at SciVerse ScienceDirect Plant Science j o u r n a l h o m e p a g e : w w w . e l s e v i e r . c o m / l o c a t e / p l a n t s c i Editorial Bioenergy plants in the United States and China The emerging bio-economies of the US and China hinge on the development of dedicated bioenergy feedstocks that will increase the production of next-generation biofuels and bioproducts. While biofuels might have less eventual importance than bioproducts, transportation needs for both countries require increasingly more biofuels to be produced in the coming decades. The US Renewable Fuels Standard mandate 136 billion litres of biofuels by 2022. Nearly 80 billion litres are required to be "advanced biofuels," generally regarded as fuels from non-corn and soybean feedstocks. Because

Note: This page contains sample records for the topic "bioenergy lightsource renewables" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Bioenergy News | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Bioenergy News Bioenergy News Bioenergy News RSS August 1, 2013 Secretary Moniz Announces New Biofuels Projects to Drive Cost Reductions, Technological Breakthroughs During remarks at the Energy Department's Biomass 2013 annual conference, Secretary Moniz highlighted the important role biofuels play in the Administration's Climate Action Plan. July 31, 2013 Florida Project Produces Nation's First Cellulosic Ethanol at Commercial-Scale Groundbreaking Project Deploys Technology Developed Through Early Energy Department R&D Investments July 1, 2013 Energy Department Announces Investment to Accelerate Next Generation Biofuels Following last week's rollout of President Obama's plan to cut carbon pollution, the Energy Department today announced four research and development projects to bring next generation biofuels on line faster and

122

Available online at www.sciencedirect.com Biomass and Bioenergy 26 (2004) 6169  

E-Print Network (OSTI)

Available online at www.sciencedirect.com Biomass and Bioenergy 26 (2004) 61­69 National renewable energy policy and local opposition in the UK: the failed development of a biomass electricity plant March 2003; accepted 2 April 2003 Abstract Biomass energy developments in the UK are supported

Heinke, Dietmar

123

Developing Switchgrass as a Bioenergy Crop  

DOE Green Energy (OSTI)

The utilization of energy crops produced on American farms as a source of renewable fuels is a concept with great relevance to current ecological and economic issues at both national and global scales. Development of a significant national capacity to utilize perennial forage crops, such as switchgrass (Panicum virgatum, L.) as biofuels could benefit our agricultural economy by providing an important new source of income for farmers. In addition energy production from perennial cropping systems, which are compatible with conventional fining practices, would help reduce degradation of agricultural soils, lower national dependence on foreign oil supplies, and reduce emissions of greenhouse gases and toxic pollutants to the atmosphere (McLaughlin 1998). Interestingly, on-farm energy production is a very old concept, extending back to 19th century America when both transpofiation and work on the farm were powered by approximately 27 million draft animals and fueled by 34 million hectares of grasslands (Vogel 1996). Today a new form of energy production is envisioned for some of this same acreage. The method of energy production is exactly the same - solar energy captured in photosynthesis, but the subsequent modes of energy conversion are vastly different, leading to the production of electricity, transportation fuels, and chemicals from the renewable feedstocks. While energy prices in the United States are among the cheapest in the world, the issues of high dependency on imported oil, the uncertainties of maintaining stable supplies of imported oil from finite reserves, and the environmental costs associated with mining, processing, and combusting fossil fuels have been important drivers in the search for cleaner burning fuels that can be produced and renewed from the landscape. At present biomass and bioenergy combine provide only about 4% of the total primary energy used in the U.S. (Overend 1997). By contrast, imported oil accounts for approximately 44% of the foreign trade deficit in the U.S. and about 45% of the total annual U.S. oil consumption of 34 quads (1 quad = 1015 Btu, Lynd et al. 1991). The 22 quads of oil consumed by transportation represents approximately 25% of all energy use in the US and excedes total oil imports to the US by about 50%. This oil has environmental and social costs, which go well beyond the purchase price of around $15 per barrel. Renewable energy from biomass has the potential to reduce dependency on fossil fhels, though not to totally replace them. Realizing this potential will require the simultaneous development of high yielding biomass production systems and bioconversion technologies that efficiently convert biomass energy into the forms of energy and chemicals usable by industry. The endpoint criterion for success is economic gain for both agricultural and industrial sectors at reduced environmental cost and reduced political risk. This paper reviews progress made in a program of research aimed at evaluating and developing a perennial forage crop, switchgrass as a regional bioenergy crop. We will highlight here aspects of research progress that most closely relate to the issues that will determine when and how extensively switchgrass is used in commercial bioenergy production.

Bouton, J.; Bransby, D.; Conger, B.; McLaughlin, S.; Ocumpaugh, W.; Parrish, D.; Taliaferro, C.; Vogel, K.; Wullschleger, S.

1998-11-08T23:59:59.000Z

124

Alterra Bioenergy LLC | Open Energy Information  

Open Energy Info (EERE)

Alterra Bioenergy LLC Alterra Bioenergy LLC Jump to: navigation, search Name Alterra Bioenergy LLC Place Macon, Georgia Sector Biofuels Product Manufacturer and distributor of biofuels. References Alterra Bioenergy LLC[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Alterra Bioenergy LLC is a company located in Macon, Georgia . References ↑ "Alterra Bioenergy LLC" Retrieved from "http://en.openei.org/w/index.php?title=Alterra_Bioenergy_LLC&oldid=342070" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load)

125

Fundamental & Applied Bioenergy | Clean Energy | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Bioenergy Bioenergy SHARE Fundamental and Applied Bioenergy Steven Brown (left) and Shihui Yang have developed a microbial strain with an improved ability to convert wood products to biofuel as part of research within the DOE BioEnergy Science Center.Source: ORNL News article ORNL researchers are investigating the biological mechanisms underlying production of biofuels so that those mechanisms can be improved and used to develop a new generation of efficient bioenergy strategies that will reduce U.S. dependence on foreign oil and help curb carbon emissions. Fundamental and applied bioenergy research at ORNL includes studies conducted within the BioEnergy Science Center and the following research areas: Bioconversion Science and Technology Plant-Microbe Interfaces

126

Renewable Energy Renaissance Zones | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Renewable Energy Renaissance Zones Renewable Energy Renaissance Zones Renewable Energy Renaissance Zones < Back Eligibility Commercial Industrial Local Government Savings Category Bioenergy Solar Buying & Making Electricity Alternative Fuel Vehicles Heating & Cooling Swimming Pool Heaters Water Heating Commercial Heating & Cooling Heating Wind Maximum Rebate None Program Info Start Date 07/12/2006 State Michigan Program Type Industry Recruitment/Support Rebate Amount 100% abatement of Michigan Business Tax, state education tax, personal and real property taxes, and local income taxes Provider Michigan Economic Development Corporation In 2006, Michigan enacted legislation allowing for the creation of Renewable Energy Renaissance Zones (RERZ). Renaissance zones -- renewable energy renaissance zones are just one type -- offer significant tax

127

Renewables Portfolio Standard | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » Renewables Portfolio Standard Renewables Portfolio Standard < Back Eligibility Investor-Owned Utility Municipal Utility Rural Electric Cooperative Savings Category Bioenergy Water Buying & Making Electricity Alternative Fuel Vehicles Hydrogen & Fuel Cells Solar Wind Program Info State Minnesota Program Type Renewables Portfolio Standard Provider Minnesota Department of Commerce Minnesota enacted legislation in 2007 that created a renewable portfolio standard (RPS) for Xcel Energy, created a separate RPS for other electric utilities,* and modified the state's existing non-mandated renewable-energy objective. In 2013, further legislation (H.F 729) was enacted to create a 1.5% solar standard for public utilities, a distributed generation

128

Renewable Portfolio Standard | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » Renewable Portfolio Standard Renewable Portfolio Standard < Back Eligibility Investor-Owned Utility Rural Electric Cooperative Savings Category Heating & Cooling Commercial Heating & Cooling Heat Pumps Bioenergy Biofuels Alternative Fuel Vehicles Manufacturing Buying & Making Electricity Hydrogen & Fuel Cells Water Solar Heating Water Heating Wind Program Info State Hawaii Program Type Renewables Portfolio Standard Provider Hawaii Public Utilities Commission Under Hawaii's Renewable Portfolio Standard (RPS), each electric utility company that sells electricity for consumption in Hawaii must establish the following percentages of "renewable electrical energy" sales: * 10% of its net electricity sales by December 31, 2010;

129

Short-Rotation Crops for Bioenergy: Proceedings of IEA, Bioenergy, Task 17 Meeting in Auburn, Alabama, USA, September 6-9, 1999  

DOE Green Energy (OSTI)

These proceedings are the results of the third meeting of Task 17 (Short-Rotation Crops for Bioenergy) within the framework of International Energy Agency (IEA), Bioenergy. (Minutes from the meeting can be seen at page 91.) The meeting was held in Auburn, Alabama, USA, September 6--9, 1999. The meeting was held soon after President Clinton of the United States signed Executive Order No.13134: DEVELOPING AND PROMOTING BIOBASED PRODUCTS AND BIOENERGY on August 12, 1999. Executive orders in the US are official documents, through which the President of the US manages the operation of the Federal Government. This order outlines the administration's goal of tripling the use of biomass products and bioenergy in the US by the year 2010. During the time of this meeting, it was also known from sources in Europe that the European Union (EU) commission was working on draft instructions to its member countries on how to increase the use of renewable energy from six to twelve percent in Europe within 10 years. The objectives of Task 17 support the goals of member countries for bioenergy production and use. These objectives are as follows: to stimulate the full-scale implementation of energy crops in the participating countries; to strengthen the contacts and co-operation between participating countries, scientists, biomass producers, machine developers, entrepreneurs, and end users to select the most urgent research and development areas and suggest projects of co-operation; to inform Ex-Co- members; and to deliver proceedings from the meetings.

Wright, L.L.

2001-01-30T23:59:59.000Z

130

Golbal Economic and Environmental Impacts of Increased Bioenergy Production  

DOE Green Energy (OSTI)

The project had three main objectives: to build and incorporate an explicit biomass energy sector within the GTAP analytical framework and data base; to provide an analysis of the impact of renewable fuel standards and other policies in the U.S. and E.U, as well as alternative biofuel policies in other parts of the world, on changes in production, prices, consumption, trade and poverty; and to evaluate environmental impacts of alternative policies for bioenergy development. Progress and outputs related to each objective are reported.

Wallace Tyner

2012-05-30T23:59:59.000Z

131

Invasive plant species as potential bioenergy producers and carbon contributors.  

Science Conference Proceedings (OSTI)

Current cellulosic bioenergy sources in the United States are being investigated in an effort to reduce dependence on foreign oil and the associated risks to national security and climate change (Koh and Ghazoul 2008; Demirbas 2007; Berndes et al. 2003). Multiple sources of renewable plant-based material have been identified and include agricultural and forestry residues, municipal solid waste, industrial waste, and specifically grown bioenergy crops (Demirbas et al. 2009; Gronowska et al. 2009). These sources are most commonly converted to energy through direct burning, conversion to gas, or conversion to ethanol. Annual crops, such as corn (Zea Mays L.) and sorghum grain, can be converted to ethanol through fermentation, while soybean and canola are transformed into fatty acid methyl esters (biodiesel) by reaction with an alcohol (Demirbas 2007). Perennial grasses are one of the more viable sources for bioenergy due to their continuous growth habit, noncrop status, and multiple use products (Lewandowski el al. 2003). In addition, a few perennial grass species have very high water and nutrient use efficiencies producing large quantities of biomass on an annual basis (Dohleman et al. 2009; Grantz and Vu 2009).

Young, S.; Gopalakrishnan, G.; Keshwani, D. (Energy Systems); (Univ. of Nebraska)

2011-03-01T23:59:59.000Z

132

Biomass Conversion Task IV 1987 program of work: International Energy Agency Bioenergy Agreement  

DOE Green Energy (OSTI)

Biomass is a major, renewable energy resource through out the world, and extensive research is being conducted by many countries on bioenergy technologies. In an effort to improve communications and cooperation in the area of biomass energy, several nations have agreed to a cooperative program of work under the International Energy Agency's Bioenergy Agreement (IEA/BA). Three areas of major importance have been identified including Short Rotation Forestry, Conventional Forestry, and Biomass Conversion. This document describes the 1987 Program of Work for cooperative activities in the area of Biomass Conversion. The background of the cooperation and descriptions of specific conversion projects are presented. Details of activity funding are also provided. 3 tabs.

Stevens, D.J.

1986-12-01T23:59:59.000Z

133

Biodiesel Production from Algal Blooms: A Step towards Renewable Energy Generation & Measurement  

Science Conference Proceedings (OSTI)

Usage of Bio-energy is becoming more and more prominent due to the peak oil crisis. Bio-energy is the energy which can be synthesized using methods and raw material which are available in nature and are derived from the biological sources. They are referred ... Keywords: Bio-Diesel, Octane Number, Ph Measurement, Renewable Energy Generation, Trans-Esterification

Shabana Urooj, Athar Hussain, Narayani Srivastava

2012-07-01T23:59:59.000Z

134

Nutrient use efficiency in bioenergy cropping systems: Critical research questions  

E-Print Network (OSTI)

x giganteus. Biomass Bioenergy 12:21-24. Christian, D.G. ,for-biofuels systems. Biomass Bioenergy Gentry, L.E. , F.E.cynosuroides. Biomass Bioenergy 12:419-428. Brejda, J.J.

Brouder, Sylvie; Volenec, Jeffrey J; Turco, Ronald; Smith, Douglas R; Ejeta, Gebisa

2009-01-01T23:59:59.000Z

135

Bioenergy Toolkit | Open Energy Information  

Open Energy Info (EERE)

Bioenergy Toolkit Bioenergy Toolkit Jump to: navigation, search Stage 3 LEDS Home Introduction to Framework Assess current country plans, policies, practices, and capacities Develop_BAU Stage 4: Prioritizing and Planning for Actions Begin execution of implementation plans 1.0. Organizing the LEDS Process 1.1. Institutional Structure for LEDS 1.2. Workplan to Develop the LEDS 1.3. Roles and responsibilities to develop LEDS 2.1. Assess current country plans, policies, practices, and capacities 2.2. Compile lessons learned and good practices from ongoing and previous sustainable development efforts in the country 2.3. Assess public and private sector capacity to support initiatives 2.4. Assess and improve the national GHG inventory and other economic and resource data as needed for LEDS development

136

NREL: News - NREL Names New Executives to Lead Bioenergy, Bioscience and  

NLE Websites -- All DOE Office Websites (Extended Search)

113 113 NREL Names New Executives to Lead Bioenergy, Bioscience and Energy Systems Integration Facility April 12, 2013 The U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) recently made three key hires to lead research centers. NREL has named Tom Foust, a nine-year NREL veteran, as its National Bioenergy Center Director; David Post as the Center Director for the Energy Systems Integration Facility (ESIF); and Rich Greene as Biosciences Center Director. Tom Foust to Head National Bioenergy Center For the past three years, Foust has been Executive Director of the National Advanced Biofuels Consortium (NABC), responsible for leading 18 biofuels organizations in a $50-million-dollar project to develop advanced "drop-in" replacement biofuels. He replaces Mike Cleary who retired in

137

Our Partners : BioEnergy Science Center  

NLE Websites -- All DOE Office Websites (Extended Search)

GO About Research Resources Education Industry Redefining the Frontiers of Bioenergy Research About Current Openings Our Partners People Who's Who Research Biomass Formation...

138

BESC Research : BioEnergy Science Center  

NLE Websites -- All DOE Office Websites (Extended Search)

GO About Research Resources Education Industry Redefining the Frontiers of Bioenergy Research Biomass Formation Deconstruction and Conversion Enabling Technologies BESC Research...

139

Terranova Bioenergy LLC | Open Energy Information  

Open Energy Info (EERE)

search Name Terranova Bioenergy LLC Place Larkspur, California Zip 94939 Sector Biofuels Product California-based project developer and consultant in the field of biofuels....

140

About BESC : BioEnergy Science Center  

NLE Websites -- All DOE Office Websites (Extended Search)

About BESC The BioEnergy Science Center (BESC) is a multi-institutional (18 partner), multidisciplinary research (biological, chemical, physical and computational sciences,...

Note: This page contains sample records for the topic "bioenergy lightsource renewables" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Resources : BioEnergy Science Center  

NLE Websites -- All DOE Office Websites (Extended Search)

Resources Publications BESC Knowledgebase Biofacts BESC BioEnergy Science Center Fact Sheets BESC Press Releases Videos Audio e-Magazine Images Our Research BESC Wiki (internal...

142

Bioenergy Geradora de Energia | Open Energy Information  

Open Energy Info (EERE)

navigation, search Name Bioenergy - Geradora de Energia Place Sao Paulo, Sao Paulo, Brazil Zip 1456010 Sector Wind energy Product Brazil based wind project developer. References...

143

Bioenergy Technologies Office: Research and Development  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Office are focused on addressing technical barriers, providing engineering solutions, and developing the scientific and engineering underpinnings of a bioenergy industry. Near- to...

144

Genes to Gasoline : BioEnergy Science Center  

NLE Websites -- All DOE Office Websites (Extended Search)

GO About Research Resources Education Industry Redefining the Frontiers of Bioenergy Research Publications BESC Wiki (internal only) BESC Knowledgbase Biofacts BioEnergy Science...

145

Guofu Bioenergy Science Technology Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Guofu Bioenergy Science Technology Co Ltd Jump to: navigation, search Name Guofu Bioenergy Science & Technology Co Ltd Place Beijing Municipality, China Zip 100101 Sector Biomass...

146

BioEnergy Science Center (BESC) | Clean Energy | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

& Resources News and Awards Supporting Organizations Redefining The Frontiers of Bioenergy Home | Science & Discovery | Clean Energy | Facilities and Centers | BioEnergy...

147

DOE Hydrogen Analysis Repository: Biomass Supply for Bioenergy...  

NLE Websites -- All DOE Office Websites (Extended Search)

Biomass Supply for Bioenergy and Bioproducts Project Summary Full Title: Biomass as Feedstock for a Bioenergy and Bioproducts Industry: The Technical Feasibility of a Billion-Ton...

148

Guangxi Funan Bioenergy Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Guangxi Funan Bioenergy Co Ltd Jump to: navigation, search Name Guangxi Funan Bioenergy Co Ltd Place Guangxi Autonomous Region, China Sector Biomass Product Guangxi-based biomass...

149

Idaho National Laboratory Bioenergy Program | Open Energy Information  

Open Energy Info (EERE)

Data Page Edit with form History Share this page on Facebook icon Twitter icon Idaho National Laboratory Bioenergy Program Jump to: navigation, search Logo: Bioenergy...

150

Carbon Offsets for Forestry and Bioenergy: Researching Opportunities...  

Open Energy Info (EERE)

Carbon Offsets for Forestry and Bioenergy: Researching Opportunities for Poor Rural Communities Jump to: navigation, search Name Carbon Offsets for Forestry and Bioenergy:...

151

eMagazine : BioEnergy Science Center  

NLE Websites -- All DOE Office Websites (Extended Search)

Bioenergy Research Centers - An overview of the Science The Science Behind Cheaper Biofuels a Bioenergy Ecosystem - BESC partnerships translate R&D into biofuels High-Speed...

152

China-US Workshop on Biotechnology of Bioenergy Plants, Nov. 16-17, 2009, Knoxville, Tennessee, USA Page 1 CChhiinnaa--UUSS WWoorrkksshhoopp oonn BBiiootteecchhnnoollooggyy ooff BBiiooeenneerrggyy PPllaannttss  

E-Print Network (OSTI)

strategically linked to the sustainable development of alternative and renewable energy sources. China production annually from agricultural wastes. China's 21st Century Agenda emphasizes renewable energyChina-US Workshop on Biotechnology of Bioenergy Plants, Nov. 16-17, 2009, Knoxville, Tennessee, USA

Ginzel, Matthew

153

Renewable Energy Grant Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Renewable Energy Grant Program Renewable Energy Grant Program Renewable Energy Grant Program < Back Eligibility Commercial Local Government Tribal Government Utility Savings Category Bioenergy Commercial Heating & Cooling Manufacturing Buying & Making Electricity Alternative Fuel Vehicles Hydrogen & Fuel Cells Water Solar Heating & Cooling Water Heating Wind Program Info Funding Source State appropriation State Alaska Program Type State Grant Program Rebate Amount Varies Provider Alaska Energy Authority In May 2008, Alaska enacted legislation authorizing the creation of a renewable energy grant fund. The legislation recommended that the program be administered by the Alaska Energy Authority (AEA). The grant program is intended to provide assistance to utilities, independent power producers,

154

Renewables Portfolio Standard | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Retail Supplier Retail Supplier Savings Category Bioenergy Commercial Heating & Cooling Manufacturing Buying & Making Electricity Alternative Fuel Vehicles Hydrogen & Fuel Cells Water Energy Sources Solar Wind Program Info State Maine Program Type Renewables Portfolio Standard Provider Maine Public Utilities Commission Maine's original Renewable Resource Portfolio Requirement was passed as part of the state's 1997 electric-utility restructuring law. In 1999, Maine's Public Utility Commission (PUC) adopted rules requiring each electricity provider to supply at least 30% of their total electric sales using electricity generated by eligible renewable and certain energy efficiency resources. Actually, at the time of passage, the required percentage of renewables was actually lower than the existing percentage

155

Renewables Portfolio Goal | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » Renewables Portfolio Goal Renewables Portfolio Goal < Back Eligibility Investor-Owned Utility Municipal Utility Rural Electric Cooperative Savings Category Bioenergy Commercial Heating & Cooling Manufacturing Buying & Making Electricity Water Alternative Fuel Vehicles Hydrogen & Fuel Cells Solar Home Weatherization Heating & Cooling Heating Water Heating Wind Program Info State Utah Program Type Renewables Portfolio Standard Provider Office of Energy Development Utah enacted ''The Energy Resource and Carbon Emission Reduction Initiative'' ([http://le.utah.gov/~2008/bills/sbillenr/sb0202.pdf S.B. 202]) in March 2008. While this law contains some provisions similar to those found in renewable portfolio standards (RPSs) adopted by other

156

N. Mariana Islands - Renewables Portfolio Standard | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

N. Mariana Islands - Renewables Portfolio Standard N. Mariana Islands - Renewables Portfolio Standard N. Mariana Islands - Renewables Portfolio Standard < Back Eligibility Utility Savings Category Bioenergy Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Solar Heating & Cooling Commercial Heating & Cooling Heating Water Heating Wind Program Info Program Type Renewables Portfolio Standard The Commonwealth of the Northern Mariana Islands enacted its Renewables Portfolio Standard in September 2007, in which a certain percentage of its net electricity sales must come from renewable energy. Under the law, the Commonwealth Utilities Corporation (the Islands' only and semi-autonomous public utility provider) must meet the following benchmarks: * 10% of net electricity sales by December 31, 2008

157

Puerto Rico - Renewable Energy Portfolio Standard | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Puerto Rico - Renewable Energy Portfolio Standard Puerto Rico - Renewable Energy Portfolio Standard Puerto Rico - Renewable Energy Portfolio Standard < Back Eligibility Utility Savings Category Bioenergy Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Solar Home Weatherization Wind Program Info Program Type Renewables Portfolio Standard Provider Energy Affairs Administration Note: Compliance for this standard does not begin until 2015. Additional rules and regulations are needed to implement this law; this record will be updated periodically as the rules are developed. In July 2010, Puerto Rico enacted the island's first Renewable Energy Portfolio Standard in an effort to spur renewable energy development as well as reduce Puerto Rico's dependence on imported foreign oil (Puerto

158

Alternative and Renewable Energy Portfolio Standard | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Alternative and Renewable Energy Portfolio Standard Alternative and Renewable Energy Portfolio Standard Alternative and Renewable Energy Portfolio Standard < Back Eligibility Investor-Owned Utility Retail Supplier Savings Category Bioenergy Biofuels Alternative Fuel Vehicles Commercial Heating & Cooling Manufacturing Buying & Making Electricity Hydrogen & Fuel Cells Water Solar Home Weatherization Wind Program Info State West Virginia Program Type Renewables Portfolio Standard Provider West Virginia Division of Energy In June 2009, West Virginia enacted an ''Alternative and Renewable Energy Portfolio Standard'' that requires investor-owned utilities (IOUs)* with more than 30,000 residential customers to supply 25% of retail electric sales from eligible alternative and renewable energy resources by 2025.

159

Property Tax Assessment for Renewable Energy Equipment | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Property Tax Assessment for Renewable Energy Equipment Property Tax Assessment for Renewable Energy Equipment Property Tax Assessment for Renewable Energy Equipment < Back Eligibility Utility Savings Category Bioenergy Water Buying & Making Electricity Solar Wind Program Info State Arizona Program Type Property Tax Incentive Rebate Amount Renewable-energy equipment assessed at 20% of its depreciated cost Provider Arizona Department of Revenue Renewable energy equipment owned by utilities and other entities operating in Arizona is assessed at 20% of its depreciated cost for the purpose of determining property tax. "Renewable energy equipment" is defined as "electric generation facilities, electric transmission, electric distribution, gas distribution or combination gas and electric transmission

160

Genomics:GTL Bioenergy Research Centers White Paper  

DOE Green Energy (OSTI)

In his Advanced Energy Initiative announced in January 2006, President George W. Bush committed the nation to new efforts to develop alternative sources of energy to replace imported oil and fossil fuels. Developing cost-effective and energy-efficient methods of producing renewable alternative fuels such as cellulosic ethanol from biomass and solar-derived biofuels will require transformational breakthroughs in science and technology. Incremental improvements in current bioenergy production methods will not suffice. The Genomics:GTL Bioenergy Research Centers will be dedicated to fundamental research on microbe and plant systems with the goal of developing knowledge that will advance biotechnology-based strategies for biofuels production. The aim is to spur substantial progress toward cost-effective production of biologically based renewable energy sources. This document describes the rationale for the establishment of the centers and their objectives in light of the U.S. Department of Energy's mission and goals. Developing energy-efficient and cost-effective methods of producing alternative fuels such as cellulosic ethanol from biomass will require transformational breakthroughs in science and technology. Incremental improvements in current bioenergy-production methods will not suffice. The focus on microbes (for cellular mechanisms) and plants (for source biomass) fundamentally exploits capabilities well known to exist in the microbial world. Thus 'proof of concept' is not required, but considerable basic research into these capabilities remains an urgent priority. Several developments have converged in recent years to suggest that systems biology research into microbes and plants promises solutions that will overcome critical roadblocks on the path to cost-effective, large-scale production of cellulosic ethanol and other renewable energy from biomass. The ability to rapidly sequence the DNA of any organism is a critical part of these new capabilities, but it is only a first step. Other advances include the growing number of high-throughput techniques for protein production and characterization; a range of new instrumentation for observing proteins and other cell constituents; the rapid growth of commercially available reagents for protein production; a new generation of high-intensity light sources that provide precision imaging on the nanoscale and allow observation of molecular interactions in ultrafast time intervals; major advances in computational capability; and the continually increasing numbers of these instruments and technologies within the national laboratory infrastructure, at universities, and in private industry. All these developments expand our ability to elucidate mechanisms present in living cells, but much more remains to be done. The Centers are designed to accomplish GTL program objectives more rapidly, more effectively, and at reduced cost by concentrating appropriate technologies and scientific expertise, from genome sequence to an integrated systems understanding of the pathways and internal structures of microbes and plants most relevant to developing bioenergy compounds. The Centers will seek to understand the principles underlying the structural and functional design of selected microbial, plant, and molecular systems. This will be accomplished by building technological pathways linking the genome-determined components in an organism with bioenergy-relevant cellular systems that can be characterized sufficiently to generate realistic options for biofuel development. In addition, especially in addressing what are believed to be nearer-term approaches to renewable energy (e.g., producing cellulosic ethanol cost-effectively and energy-efficiently), the Center research team must understand in depth the current industrial-level roadblocks and bottlenecks (see section, GTL's Vision for Biological Energy Alternatives, below). For the Centers, and indeed the entire BER effort, to be successful, Center research must be integrated with individual investigator research, and coordination of activities,

Mansfield, Betty Kay [ORNL; Alton, Anita Jean [ORNL; Andrews, Shirley H [ORNL; Bownas, Jennifer Lynn [ORNL; Casey, Denise [ORNL; Martin, Sheryl A [ORNL; Mills, Marissa [ORNL; Nylander, Kim [ORNL; Wyrick, Judy M [ORNL; Drell, Dr. Daniel [Office of Science, Department of Energy; Weatherwax, Sharlene [U.S. Department of Energy; Carruthers, Julie [U.S. Department of Energy

2006-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "bioenergy lightsource renewables" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Genomics:GTL Bioenergy Research Centers White Paper  

SciTech Connect

In his Advanced Energy Initiative announced in January 2006, President George W. Bush committed the nation to new efforts to develop alternative sources of energy to replace imported oil and fossil fuels. Developing cost-effective and energy-efficient methods of producing renewable alternative fuels such as cellulosic ethanol from biomass and solar-derived biofuels will require transformational breakthroughs in science and technology. Incremental improvements in current bioenergy production methods will not suffice. The Genomics:GTL Bioenergy Research Centers will be dedicated to fundamental research on microbe and plant systems with the goal of developing knowledge that will advance biotechnology-based strategies for biofuels production. The aim is to spur substantial progress toward cost-effective production of biologically based renewable energy sources. This document describes the rationale for the establishment of the centers and their objectives in light of the U.S. Department of Energy's mission and goals. Developing energy-efficient and cost-effective methods of producing alternative fuels such as cellulosic ethanol from biomass will require transformational breakthroughs in science and technology. Incremental improvements in current bioenergy-production methods will not suffice. The focus on microbes (for cellular mechanisms) and plants (for source biomass) fundamentally exploits capabilities well known to exist in the microbial world. Thus 'proof of concept' is not required, but considerable basic research into these capabilities remains an urgent priority. Several developments have converged in recent years to suggest that systems biology research into microbes and plants promises solutions that will overcome critical roadblocks on the path to cost-effective, large-scale production of cellulosic ethanol and other renewable energy from biomass. The ability to rapidly sequence the DNA of any organism is a critical part of these new capabilities, but it is only a first step. Other advances include the growing number of high-throughput techniques for protein production and characterization; a range of new instrumentation for observing proteins and other cell constituents; the rapid growth of commercially available reagents for protein production; a new generation of high-intensity light sources that provide precision imaging on the nanoscale and allow observation of molecular interactions in ultrafast time intervals; major advances in computational capability; and the continually increasing numbers of these instruments and technologies within the national laboratory infrastructure, at universities, and in private industry. All these developments expand our ability to elucidate mechanisms present in living cells, but much more remains to be done. The Centers are designed to accomplish GTL program objectives more rapidly, more effectively, and at reduced cost by concentrating appropriate technologies and scientific expertise, from genome sequence to an integrated systems understanding of the pathways and internal structures of microbes and plants most relevant to developing bioenergy compounds. The Centers will seek to understand the principles underlying the structural and functional design of selected microbial, plant, and molecular systems. This will be accomplished by building technological pathways linking the genome-determined components in an organism with bioenergy-relevant cellular systems that can be characterized sufficiently to generate realistic options for biofuel development. In addition, especially in addressing what are believed to be nearer-term approaches to renewable energy (e.g., producing cellulosic ethanol cost-effectively and energy-efficiently), the Center research team must understand in depth the current industrial-level roadblocks and bottlenecks (see section, GTL's Vision for Biological Energy Alternatives, below). For the Centers, and indeed the entire BER effort, to be successful, Center research must be integrated with individual investigator research, and coordina

Mansfield, Betty Kay [ORNL; Alton, Anita Jean [ORNL; Andrews, Shirley H [ORNL; Bownas, Jennifer Lynn [ORNL; Casey, Denise [ORNL; Martin, Sheryl A [ORNL; Mills, Marissa [ORNL; Nylander, Kim [ORNL; Wyrick, Judy M [ORNL; Drell, Dr. Daniel [Office of Science, Department of Energy; Weatherwax, Sharlene [U.S. Department of Energy; Carruthers, Julie [U.S. Department of Energy

2006-08-01T23:59:59.000Z

162

Addressing the Need for Alternative Transportation Fuels: The Joint BioEnergy Institute  

E-Print Network (OSTI)

Fuels: The Joint BioEnergy Institute Harvey W. Blanch ,,,, * Joint BioEnergy Institute, Department of Chemicalbiomass monomers. The Joint BioEnergy Institute (JBEI) is a

Blanch, Harvey

2010-01-01T23:59:59.000Z

163

Switchgrass for Forage and Bioenergy: II. Effects of P and K fertilization  

E-Print Network (OSTI)

systems. Biomass and Bioenergy 30:198-206. Fixen, PE. 2007.and persistence under bioenergy harvest systems in thebiomass yields for bioenergy purposes have typically been

Guretzky, John A; Kering, Maru K; Biermacher, Jon T; Cook, Billy J

2009-01-01T23:59:59.000Z

164

Renewable Resource Standard | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Renewable Resource Standard Renewable Resource Standard Renewable Resource Standard < Back Eligibility Investor-Owned Utility Retail Supplier Savings Category Bioenergy Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Solar Wind Program Info State Montana Program Type Renewables Portfolio Standard Provider Montana Public Service Commission Montana's renewable portfolio standard (RPS), enacted in April 2005 as part of the Montana Renewable Power Production and Rural Economic Development Act, requires public utilities and competitive electricity suppliers to obtain a percentage of their retail electricity sales from eligible renewable resources according to the following schedule: * 5% for compliance years 2008-2009 (1/1/2008 - 12/31/2009) * 10% for compliance years 2010-2014 (1/1/2010 - 12/31/2014)

165

Renewables Portfolio Standard | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Renewables Portfolio Standard Renewables Portfolio Standard Renewables Portfolio Standard < Back Eligibility Investor-Owned Utility Rural Electric Cooperative Savings Category Bioenergy Alternative Fuel Vehicles Hydrogen & Fuel Cells Water Buying & Making Electricity Solar Home Weatherization Heating & Cooling Commercial Heating & Cooling Heating Wind Program Info State Kansas Program Type Renewables Portfolio Standard Provider Kansas Corporation Commission Kansas adopted the Renewable Energy Standards Act in 2009 (K.S.A. 66-1256), establishing a renewable portfolio standard (RPS). This statute requires the state's investor-owned and cooperative utilities to generate or purchase 10% of their electricity from eligible renewable resources in the years 2011-2015, 15% in the years 2016-2019, and 20% by 2020.

166

Top-Off Injection and Higher Currents at the Stanford Synchrotron Radiation Lightsource  

Science Conference Proceedings (OSTI)

The Stanford Synchrotron Radiation Lightsource (SSRL) at the SLAC National Accelerator Laboratory is a 234 m circumference storage ring for 3 GeV electrons with its synchrotron radiation serving currently 13 beamlines with about 27 experimental stations. It operated for long time with 100 mA peak current provided by usually three injections per day. In July 2009, the maximum beam current was raised to 200 mA. Over the period from June 2009 to March 2010, Top-Off operation started at every beamline. Top-Off, i.e., the injection of electrons into the storage ring with injection stoppers open, is necessary for SSRL to reach its design current of 500 mA. In the future, the maximal power of the injection current will also soon be raised from currently 1.5 W to 5 W. The Radiation Protection Department at SLAC worked with SSRL on the specifications for the safety systems for operation with Top-Off injection and higher beam currents.

Bauer, Johannes

2011-04-05T23:59:59.000Z

167

Experiences from First Top-Off Injection at the Stanford Synchrotron Radiation Lightsource  

Science Conference Proceedings (OSTI)

As the Stanford Synchrotron Radiation Lightsource (SSRL) of the SLAC National Accelerator Laboratory (SLAC) is moving toward Top-Off injection mode, SLAC's Radiation Protection Department is working with SSRL on minimizing the radiological hazards of this mode. One such hazard is radiation that is created inside the accelerator concrete enclosure by injected beam. Since during Top-Off injection the stoppers that would otherwise isolate the storage ring from the experimental area stay open, the stoppers no longer prevent such radiation from reaching the experimental area. The level of this stray radiation was measured in April 2008 during the first Top-Off injection tests. They revealed radiation dose rates of up to 18 microSv/h (1.8 millirem/h) outside the experimental hutches, significantly higher than our goal of 1 microSv/h (0.1 millirem/h). Non-optimal injection increased the measured dose rates by a factor two. Further tests in 2008 indicated that subsequent improvements by SSRL to the injection system have reduced the dose rates to acceptable levels. This presentation describes the studies performed before the Top-Off tests, the tests themselves and their major results (both under initial conditions and after improvements were implemented), and presents the controls being implemented for full and routine Top-Off injection.

Bauer, J.M.; Liu, J.C.; Prinz, A.; Rokni, S.H.; /SLAC

2009-12-11T23:59:59.000Z

168

Renewable Energy Systems Exemption | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Systems Exemption Systems Exemption Renewable Energy Systems Exemption < Back Eligibility Commercial Industrial Residential Savings Category Bioenergy Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Heating & Cooling Commercial Heating & Cooling Solar Heating Swimming Pool Heaters Water Heating Wind Program Info State Oregon Program Type Property Tax Incentive Rebate Amount 100% Provider Oregon Department of Energy Oregon law states that any change in real market value to property due to the installation of a qualifying renewable energy system is exempt from assessment of the property's value for property tax purposes. Qualifying renewables include solar, geothermal, wind, water, fuel cell or methane gas systems used to heat, cool or generate electricity. This exemption is

169

Renewables Portfolio Standard | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Municipal Utility Municipal Utility Savings Category Bioenergy Biofuels Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Solar Home Weatherization Wind Program Info State California Program Type Renewables Portfolio Standard Provider California Energy Commission California's Renewables Portfolio Standard (RPS) was originally established by legislation enacted in 2002. Subsequent amendments to the law have resulted in a requirement for California's electric utilities to have 33% of their retail sales derived from eligible renewable energy resources in 2020 and all subsequent years. The law established interim targets for the utilities as shown below. By January 1, 2012, the California Public Utilities Commission (CPUC) must establish specific

170

Renewable Power Procurement Policy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Power Procurement Policy Power Procurement Policy Renewable Power Procurement Policy < Back Eligibility State Government Savings Category Bioenergy Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Solar Water Wind Program Info State New York Program Type Green Power Purchasing Provider New York State Energy Research and Development Authority New York Governor George Pataki signed Executive Order No. 111 to promote "Green and Clean" State Buildings and Vehicles on June 10, 2001. The renewable-power procurement component of this order commits the state government to purchase a portion of its electric power from renewable energy resources -- at least 10% from resources such as wind, solar thermal, photovoltaics (solar electric), sustainably managed biomass,

171

Renewable Energy Standard | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Standard Standard Renewable Energy Standard < Back Eligibility Investor-Owned Utility Municipal Utility Rural Electric Cooperative Savings Category Bioenergy Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Solar Wind Program Info State Colorado Program Type Renewables Portfolio Standard Provider Colorado Public Utilities Commission '''''Note: The law described on this page was amended by Senate Bill 252 of 2013. Among other changes, the bill doubled the renewable energy requirement for cooperative utilities of a certain size, allowed for additional technologies to qualify, created a distributed generation carve-out for cooperative utilities, and made a new requirement for generation and transmission cooperatives. After signing the legislation,

172

Video : BioEnergy Science Center  

NLE Websites -- All DOE Office Websites (Extended Search)

The Future of Bioenergy Spring 2009 Seminars and Speakers These presentations use "MediaSite" which allows a two-screen view of both the speaker and the slides. This format...

173

Video : BioEnergy Science Center  

NLE Websites -- All DOE Office Websites (Extended Search)

Video Seeing Energy Solutions In Fields The Jason Project The Future of Bioenergy - Spring 2009 Seminars and Speakers HowStuffWorks Show: Episode 3: Cellulose Energy HowStuffWorks...

174

Students & Kids : BioEnergy Science Center  

NLE Websites -- All DOE Office Websites (Extended Search)

Our Earth needs Your Help The Department of Energy BioEnergy Science Center (BESC) created this web site to give you the tools and resources to start making a difference. Learn...

175

Bioenergy  

NLE Websites -- All DOE Office Websites (Extended Search)

Harvesting algae accounts for approximately 15-20 percent of the total cost of biofuel production-magnetic algae can reduce such costs by more than 90%. Overview of Research and...

176

Renewable Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Renewable Energy Renewable Energy1354608000000Renewable EnergySome of these resources are LANL-only and will require Remote Access.No Renewable Energy Some of these resources are...

177

Property Tax Exemption for Renewable Energy Systems | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Property Tax Exemption for Renewable Energy Systems Property Tax Exemption for Renewable Energy Systems Property Tax Exemption for Renewable Energy Systems < Back Eligibility Agricultural Commercial Industrial Multi-Family Residential Residential Savings Category Bioenergy Alternative Fuel Vehicles Hydrogen & Fuel Cells Water Buying & Making Electricity Heating & Cooling Commercial Heating & Cooling Solar Heating Water Heating Wind Manufacturing Program Info State Connecticut Program Type Property Tax Incentive Rebate Amount 100% exemption for renewable energy property; municipalities are authorized to exempt certain CHP systems Provider Connecticut Office of Policy and Management Connecticut provides a property tax exemption for "Class I" renewable energy systems* and hydropower facilities** that generate electricity for

178

Renewables Portfolio Standard | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Renewables Portfolio Standard Renewables Portfolio Standard Renewables Portfolio Standard < Back Eligibility Investor-Owned Utility Municipal Utility Retail Supplier Rural Electric Cooperative Savings Category Bioenergy Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Solar Wind Program Info State Delaware Program Type Renewables Portfolio Standard Provider Delaware Public Service Commission In 2005, [http://depsc.delaware.gov/electric/rpsact.pdf S.B. 74] established a renewables portfolio standard (RPS) requiring retail electricity suppliers to purchase 10% of the electricity sold in the state from renewable sources by 2019-2020 (the compliance year, or CY, runs from June - May). [http://legis.delaware.gov/LIS/lis144.nsf/vwLegislation/SB+19/$file/legis.html?open

179

Renewable Energy Standard | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Renewable Energy Standard Renewable Energy Standard Renewable Energy Standard < Back Eligibility Investor-Owned Utility Retail Supplier Rural Electric Cooperative Savings Category Bioenergy Commercial Heating & Cooling Manufacturing Buying & Making Electricity Alternative Fuel Vehicles Hydrogen & Fuel Cells Water Solar Heating & Cooling Heating Water Heating Wind Program Info State Arizona Program Type Renewables Portfolio Standard Provider Arizona Corporation Commission In November 2006, the Arizona Corporation Commission (ACC) adopted [http://images.edocket.azcc.gov/docketpdf/0000063561.pdf final rules] to expand the state's Renewable Energy Standard (RES) to 15% by 2025, with 30% of the renewable energy to be derived from distributed energy technologies (~2,000 megawatts). In June 2007, the state attorney general certified the

180

Renewable Electricity Standard | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Renewable Electricity Standard Renewable Electricity Standard Renewable Electricity Standard < Back Eligibility Investor-Owned Utility Savings Category Bioenergy Biofuels Alternative Fuel Vehicles Hydrogen & Fuel Cells Water Buying & Making Electricity Solar Home Weatherization Wind Program Info State Missouri Program Type Renewables Portfolio Standard Provider Missouri Public Service Commission In November 2008, voters in Missouri enacted Proposition C, a ballot initiative that repealed the state's existing voluntary renewable energy and energy efficiency objective and replaced it with an expanded, mandatory renewable electricity standard of 15% by 2021. The standard also contains a solar electricity carve-out of 2% of each interim portfolio requirement meaning that by 2021, 0.3% of retail electricity sales must be derived from

Note: This page contains sample records for the topic "bioenergy lightsource renewables" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Renewable Energy Standard | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Renewable Energy Standard Renewable Energy Standard Renewable Energy Standard < Back Eligibility Investor-Owned Utility Retail Supplier Savings Category Bioenergy Biofuels Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Solar Wind Program Info State Rhode Island Program Type Renewables Portfolio Standard Provider Rhode Island Office of Energy Resources Rhode Island's Renewable Energy Standard (RES), established in June 2004, requires the state's retail electricity providers -- including non-regulated power producers and distribution companies -- to supply 16% of their retail electricity sales from renewable resources by the end of 2019. The requirement began at 3% by the end of 2007, and then increases an additional 0.5% per year through 2010, an additional 1% per year from 2011

182

A GIS decision support system for regional forest management to assess biomass availability for renewable energy production  

Science Conference Proceedings (OSTI)

Currently, the use of a mix of renewable and traditional energy sources is deemed to help in solving increasing energy demands and environmental issues, thus making it particularly important to assess the availability of renewable energy sources. In ... Keywords: Bioenergy, Decision support system, Environmental sustainability, Forest residues, GIS, Harvesting techniques modelling, Renewable energy

Pietro Zambelli; Chiara Lora; Raffaele Spinelli; Clara Tattoni; Alfonso Vitti; Paolo Zatelli; Marco Ciolli

2012-12-01T23:59:59.000Z

183

Bioenergy Technologies Office: Biomass Feedstocks  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

is defined as any renewable, biological material that can be used directly as a fuel, or converted to another form of fuel or energy product. Biomass feedstocks are the...

184

Renewable Energy and Climate Change  

SciTech Connect

The Intergovernmental Panel on Climate Change issued the Special Report on Renewable Energy Sources and Climate Change Mitigation (SRREN) at http://srren.ipcc-wg3.de/ (May 2011 electronic version; printed form ISBN 978-1-107-60710-1, 2012). More than 130 scientists contributed to the report.* The SRREN assessed existing literature on the future potential of renewable energy for the mitigation of climate change within a portfolio of mitigation options including energy conservation and efficiency, fossil fuel switching, RE, nuclear and carbon capture and storage (CCS). It covers the six most important renewable energy technologies - bioenergy, direct solar, geothermal, hydropower, ocean and wind, as well as their integration into present and future energy systems. It also takes into consideration the environmental and social consequences associated with these technologies, the cost and strategies to overcome technical as well as non-technical obstacles to their application and diffusion.

Chum, H. L.

2012-01-01T23:59:59.000Z

185

NREL-United States/Brazil Bioenergy Technical Workshop | Open Energy  

Open Energy Info (EERE)

NREL-United States/Brazil Bioenergy Technical Workshop NREL-United States/Brazil Bioenergy Technical Workshop Jump to: navigation, search Tool Summary LAUNCH TOOL Name: NREL-United States/Brazil Bioenergy Technical Workshop Agency/Company /Organization: National Renewable Energy Laboratory Sector: Energy Focus Area: Renewable Energy, Biomass, - Biofuels Resource Type: Workshop, Training materials User Interface: Website Website: www.nrel.gov/international/ Country: Brazil South America Coordinates: -14.235004°, -51.92528° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":-14.235004,"lon":-51.92528,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

186

G K Bioenergy Pvt Ltd | Open Energy Information  

Open Energy Info (EERE)

G K Bioenergy Pvt Ltd Jump to: navigation, search Name G.K.Bioenergy Pvt. Ltd. Place Namakkal District, India Zip 637 109 Sector Biomass Product Tamil Nadu-based biomass project...

187

Fact Sheet: Bioenergy Working Group | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Bioenergy Working Group Fact Sheet: Bioenergy Working Group A fact sheet detailling the group launched at the Clean Energy Ministerial in Washington, D.C. on July 19th and 20th,...

188

Hestia BioEnergy LLC | Open Energy Information  

Open Energy Info (EERE)

Hestia BioEnergy LLC Jump to: navigation, search Name Hestia BioEnergy LLC Place New York, New York Zip 11378 Sector Biomass Product Hestia builds, operates and owns biomass...

189

BioEnergy of America | Open Energy Information  

Open Energy Info (EERE)

BioEnergy of America Jump to: navigation, search Name BioEnergy of America Place Edison, New Jersey Zip 8817 Product Defunct New Jersey biodiesel project developer & owner. Company...

190

Nishant Bioenergy P Ltd | Open Energy Information  

Open Energy Info (EERE)

Nishant Bioenergy P Ltd Nishant Bioenergy P Ltd Jump to: navigation, search Logo: Nishant Bioenergy P Ltd Name Nishant Bioenergy P Ltd Address Sector 18-D, Chandigarh Place Chandigarh Zip 160018 Sector Bioenergy Product Biomass Fuel Pellet and Biomass Pellet Fired Cook Stove for institutional use Stock Symbol Stove Earth Stove Year founded 1999 Number of employees 1-10 Company Type For Profit Phone number 09815609301 Website http://www.nishantbioenergy.co Coordinates 30.7347851°, 76.7884713° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.7347851,"lon":76.7884713,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

191

Tersus BioEnergy | Open Energy Information  

Open Energy Info (EERE)

Tersus BioEnergy Tersus BioEnergy Jump to: navigation, search Name Tersus BioEnergy Place London, Greater London, United Kingdom Zip W1J 5PT Sector Bioenergy, Biomass Product Subsidiary of Tersus Energy. Tersus BioEnergy invests in companies developing biofuel and biomass and waste technologies. Typical investment size USD 500,000-USD 5m Coordinates 51.506325°, -0.127144° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":51.506325,"lon":-0.127144,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

192

Biomass Conversion Task IV 1986-1988 Program of Work. International Energy Agency Bioenergy Agreement  

DOE Green Energy (OSTI)

Biomass is a major, renewable energy resource throughout much of the world, and extensive research is being conducted on bioenergy technologies. In an effort to improve communications and cooperation in the area of biomass energy, several countries have agreed to a cooperative program of work under the International Energy Agency's Bioenergy Agreement (IEA/BA). Three areas of major importance have been identified including Short Rotation Forestry, Conventional Forestry, and Biomass Conversion. This document describes a Program of Work for cooperative activities in the area of Biomass Conversion. The background of the cooperation and general descriptions of specific conversion projects are presented. Details of activity funding are also provided. Finally, individual Activity Plans for specific cooperative activities are attached for reference. These plans describe projected work for the period 1986 to 1988.

Stevens, D.J.

1986-08-01T23:59:59.000Z

193

Renewables Portfolio Standard | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Renewables Portfolio Standard Renewables Portfolio Standard Renewables Portfolio Standard < Back Eligibility Investor-Owned Utility Rural Electric Cooperative Savings Category Bioenergy Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Solar Wind Program Info State New Mexico Program Type Renewables Portfolio Standard Provider New Mexico Public Regulation Commission '''''Note: The New Mexico Public Regulation Commission (PRC) [http://www.nmprc.state.nm.us/administrative-services/docs/press-releases... passed an order] in December 2012, making some significant changes to the state's Renewables Portfolio Standard. Notably, the order increased the carve-out for wind from 20% to 30% of the overall standard. It also increased the reasonable cost threshold for investor-owned utilities such

194

Renewable Energy Pilot Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Renewable Energy Pilot Program Renewable Energy Pilot Program Renewable Energy Pilot Program < Back Eligibility Investor-Owned Utility Rural Electric Cooperative Savings Category Bioenergy Commercial Heating & Cooling Manufacturing Buying & Making Electricity Alternative Fuel Vehicles Hydrogen & Fuel Cells Water Energy Sources Solar Home Weatherization Heating & Cooling Wind Program Info State Louisiana Program Type Other Policy Provider Louisiana Public Service Commission In June 2010, the Louisiana Public Service Commission (LPSC) unanimously approved a Renewable Energy Pilot Program for the state. The final implementation plan was adopted in November 2010. The goal of the pilot program is to determine whether a renewable portfolio standard is suitable for Louisiana. The pilot program has two major components: the Research

195

Renewable Energy Trust Fund | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Renewable Energy Trust Fund Renewable Energy Trust Fund Renewable Energy Trust Fund < Back Eligibility Agricultural Commercial Industrial Institutional Nonprofit Residential Schools Utility Savings Category Bioenergy Commercial Heating & Cooling Manufacturing Buying & Making Electricity Alternative Fuel Vehicles Hydrogen & Fuel Cells Water Solar Home Weatherization Wind Program Info State Massachusetts Program Type Public Benefits Fund Provider Massachusetts Clean Energy Center The renewable energy fund, known as the Massachusetts Renewable Energy Trust Fund, is supported by a non-bypassable surcharge of $0.0005 per kilowatt-hour (0.5 mill/kWh), imposed on customers of all investor-owned electric utilities and competitive municipal utilities in Massachusetts. (Non-competitive municipal utilities generally may opt into the Fund by

196

Renewable Energy Standard | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Renewable Energy Standard Renewable Energy Standard Renewable Energy Standard < Back Eligibility Investor-Owned Utility Municipal Utility Retail Supplier Rural Electric Cooperative Savings Category Bioenergy Commercial Heating & Cooling Manufacturing Buying & Making Electricity Water Solar Wind Program Info State Michigan Program Type Renewables Portfolio Standard Provider Michigan Public Service Commission '''''Note: The Michigan Public Service Commission (MPSC) created a temporary order ([http://www.dleg.state.mi.us/mpsc/orders/electric/2008/u-15800_12-04-2008... U-15800]) in December of 2008 to address implementation issues for renewable energy and energy optimization plans arising from the passage of PA 295. In March of 2010 the MPSC was granted informal approval of its RPS governing rules by the Michigan State Office of Administrative Hearings and

197

Renewable Energy  

Energy.gov (U.S. Department of Energy (DOE))

Renewable energy leveraged from natural, renewable resources delivers electricity, heating, cooling, and other applications to Federal facilities and fleets. By using renewable energy, Federal agencies increase national security, conserve natural resources, and meet regulatory requirements and goals.

198

Kent BioEnergy | Open Energy Information  

Open Energy Info (EERE)

Kent BioEnergy Kent BioEnergy Jump to: navigation, search Name Kent BioEnergy Address 11125 Flintkote Avenue Place San Diego, California Zip 92121 Sector Biofuels Product Technologies that use algae in biofuel production, water pollution remediation, CO2 absorption, etc Website http://www.kentbioenergy.com/ Coordinates 32.904312°, -117.231255° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.904312,"lon":-117.231255,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

199

Northeast Kansas Bioenergy LLC | Open Energy Information  

Open Energy Info (EERE)

Kansas Bioenergy LLC Kansas Bioenergy LLC Jump to: navigation, search Name Northeast Kansas Bioenergy LLC Place Hiawatha, Kansas Zip 66434 Product Developing and integrated Bioethanol / Biodiesel refinery near Hiawatha, Kansas Coordinates 39.853465°, -95.527144° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.853465,"lon":-95.527144,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

200

Our Partners : BioEnergy Science Center  

NLE Websites -- All DOE Office Websites (Extended Search)

Bringing the best and the brightest together. Bringing the best and the brightest together. The mission of the Department of Energy BioEnergy Science Center is to revolutionize how Bioenergy is processed within five years. To reach this goal, we have assembled a world-class team of some of the world's leading experts and facilities. We are working together to develop alternative fuel solutions that are a viable and affordable option to petroleum-based fuels. To accomplish this mission, The BioEnergy Science Center is backed by more than $80 million in investments from state and private-sector sources. This includes $30 million toward research and equipment and a $40 million, 250,000 gallons-a-year switchgrass-to-ethanol demonstration facility. View the INTERACTIVE MAP to learn more about the specific contributions we

Note: This page contains sample records for the topic "bioenergy lightsource renewables" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

DEVELOPING STATE POLICIES SUPPORTIVE OF BIOENERGY DEVELOPMENT  

DOE Green Energy (OSTI)

Working within the context of the Southern States Biobased Alliance (SSBA) and with officials in each state, the Southern States Energy Board (SSEB) is identifying bioenergy-related policies and programs within each state to determine their impact on the development, deployment or use of bioenergy. In addition, SSEB will determine which policies have impacted industry's efforts to develop, deploy or use biobased technologies or products. As a result, SSEB will work with the Southern States Biobased Alliance to determine how policy changes might address any negative impacts or enhance positive impacts. In addition to analysis of domestic policies and programs, this project will include the development of a U.S.-Brazil Biodiesel Pilot Project. The purpose of this effort is to promote and facilitate the commercialization of biodiesel and bioenergy production and demand in Brazil.

Kathryn Baskin

2004-10-31T23:59:59.000Z

202

DEVELOPING STATE POLICIES SUPPORTIVE OF BIOENERGY DEVELOPMENT  

DOE Green Energy (OSTI)

Working within the context of the Southern States Biobased Alliance (SSBA) and with officials in each state, the Southern States Energy Board (SSEB) is identifying bioenergy-related policies and programs within each state to determine their impact on the development, deployment or use of bioenergy. In addition, SSEB will determine which policies have impacted industry's efforts to develop, deploy or use biobased technologies or products. As a result, SSEB will work with the Southern States Biobased Alliance to determine how policy changes might address any negative impacts or enhance positive impacts. In addition to analysis of domestic policies and programs, this project will include the development of a U.S.-Brazil Biodiesel Pilot Project. The purpose of this effort is to promote and facilitate the commercialization of biodiesel and bioenergy production and demand in Brazil.

Kathryn Baskin

2005-01-31T23:59:59.000Z

203

DEVELOPING STATE POLICIES SUPPORTIVE OF BIOENERGY DEVELOPMENT  

DOE Green Energy (OSTI)

Working within the context of the Southern States Biobased Alliance (SSBA) and with officials in each state, the Southern States Energy Board (SSEB) is identifying bioenergy-related policies and programs within each state to determine their impact on the development, deployment or use of bioenergy. In addition, SSEB will determine which policies have impacted industry's efforts to develop, deploy or use biobased technologies or products. As a result, SSEB will work with the Southern States Biobased Alliance to determine how policy changes might address any negative impacts or enhance positive impacts. In addition to analysis of domestic policies and programs, this project will include the development of a U.S.-Brazil Biodiesel Pilot Project. The purpose of this effort is to promote and facilitate the commercialization of biodiesel and bioenergy production and demand in Brazil.

Kathryn Baskin

2004-07-28T23:59:59.000Z

204

DEVELOPING STATE POLICIES SUPPORTIVE OF BIOENERGY DEVELOPMENT  

DOE Green Energy (OSTI)

Working within the context of the Southern States Biobased Alliance (SSBA) and with officials in each state, the Southern States Energy Board (SSEB) is identifying bioenergy-related policies and programs within each state to determine their impact on the development, deployment or use of bioenergy. In addition, SSEB will determine which policies have impacted industry's efforts to develop, deploy or use biobased technologies or products. As a result, SSEB will work with the Southern States Biobased Alliance to determine how policy changes might address any negative impacts or enhance positive impacts. In addition to analysis of domestic policies and programs, this project will include the development of a U.S.-Brazil Biodiesel Pilot Project. The purpose of this effort is to promote and facilitate the commercialization of biodiesel and bioenergy production and demand in Brazil.

Kathryn Baskin

2005-04-30T23:59:59.000Z

205

Model Ordinance for Renewable Energy Projects | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Model Ordinance for Renewable Energy Projects Model Ordinance for Renewable Energy Projects Model Ordinance for Renewable Energy Projects < Back Eligibility Agricultural Commercial Fed. Government Industrial Institutional Local Government Nonprofit Residential Schools State Government Savings Category Bioenergy Biofuels Alternative Fuel Vehicles Commercial Heating & Cooling Manufacturing Buying & Making Electricity Solar Wind Program Info State Oregon Program Type Solar/Wind Permitting Standards Provider Oregon Department of Energy '''''NOTE: This model ordinance was designed to provide guidance to local governments that wish to develop their own siting rules for renewable energy projects. While it was developed by the Oregon Department of Energy, the model itself has no legal or regulatory authority.'''''

206

Renewable Energy Resources Trust Fund | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » Renewable Energy Resources Trust Fund Renewable Energy Resources Trust Fund < Back Eligibility Commercial Industrial Institutional Residential Utility Savings Category Bioenergy Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Solar Heating & Cooling Commercial Heating & Cooling Heating Water Heating Wind Program Info State Illinois Program Type Public Benefits Fund Provider Illinois Department of Commerce and Economic Opportunity Illinois's 1997 electric-industry restructuring legislation created separate public benefits funds that support renewable energy and residential [http://www.dsireusa.org/library/includes/incentive2.cfm?Incentive_Code=I... energy efficiency]. The Renewable Energy Resources Trust Fund (RERTF)

207

Renewable Auction Mechanism (RAM) (California) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Renewable Auction Mechanism (RAM) (California) Renewable Auction Mechanism (RAM) (California) Renewable Auction Mechanism (RAM) (California) < Back Eligibility Commercial Industrial Savings Category Bioenergy Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Solar Home Weatherization Wind Program Info State California Program Type Other Incentive Provider California Public Utilities Commission The Renewable Auction Mechanism (RAM), approved by the California Public Utilities Commission (CPUC) in December 2010, is expected to result in 1,299 megawatts (MW) of new distributed generation over the course of two years. RAM is designed to streamline the procurement process for distributed generation projects between 3 MW and 20 MW* in capacity while ensuring the lowest costs for ratepayers.

208

DEVELOPING STATE POLICIES SUPPORTIVE OF BIOENERGY DEVELOPMENT  

DOE Green Energy (OSTI)

Working within the context of the Southern States Biobased Alliance (SSBA) and with officials in each state, the Southern States Energy Board (SSEB) is identifying bioenergy-related policies and programs within each state to determine their impact on the development, deployment or use of bioenergy. In addition, SSEB will determine which policies have impacted industry's efforts to develop, deploy or use biobased technologies or products. As a result, SSEB will work with the Southern States Biobased Alliance to determine how policy changes might address any negative impacts or enhance positive impacts.

Kathryn Baskin

2003-01-15T23:59:59.000Z

209

DEVELOPING STATE POLICIES SUPPORTIVE OF BIOENERGY DEVELOPMENT  

DOE Green Energy (OSTI)

Working within the context of the Southern States Biobased Alliance (SSBA) and with officials in each state, the Southern States Energy Board (SSEB) is identifying bioenergy-related policies and programs within each state to determine their impact on the development, deployment or use of bioenergy. In addition, SSEB will determine which policies have impacted industry's efforts to develop, deploy or use biobased technologies or products. As a result, SSEB will work with the Southern States Biobased Alliance to determine how policy changes might address any negative impacts or enhance positive impacts.

Kathryn Baskin

2002-04-30T23:59:59.000Z

210

DEVELOPING STATE POLICIES SUPPORTIVE OF BIOENERGY DEVELOPMENT  

DOE Green Energy (OSTI)

Working within the context of the Southern States Biobased Alliance (SSBA) and with officials in each state, the Southern States Energy Board (SSEB) is identifying bioenergy-related policies and programs within each state to determine their impact on the development, deployment or use of bioenergy. In addition, SSEB will determine which policies have impacted industry's efforts to develop, deploy or use biobased technologies or products. As a result, SSEB will work with the Southern States Biobased Alliance to determine how policy changes might address any negative impacts or enhance positive impacts.

Kathryn Baskin

2002-11-01T23:59:59.000Z

211

DEVELOPING STATE POLICIES SUPPORTIVE OF BIOENERGY DEVELOPMENT  

DOE Green Energy (OSTI)

Working within the context of the Southern States Biobased Alliance (SSBA) and with officials in each state, the Southern States Energy Board (SSEB) is identifying bioenergy-related policies and programs within each state to determine their impact on the development, deployment or use of bioenergy. In addition, SSEB will determine which policies have impacted industry's efforts to develop, deploy or use biobased technologies or products. As a result, SSEB will work with the Southern States Biobased Alliance to determine how policy changes might address any negative impacts or enhance positive impacts.

Kathryn Baskin

2003-04-15T23:59:59.000Z

212

DEVELOPING STATE POLICIES SUPPORTIVE OF BIOENERGY DEVELOPMENT  

DOE Green Energy (OSTI)

Working within the context of the Southern States Biobased Alliance (SSBA) and with officials in each state, the Southern States Energy Board (SSEB) is identifying bioenergy-related policies and programs within each state to determine their impact on the development, deployment or use of bioenergy. In addition, SSEB will determine which policies have impacted industry's efforts to develop, deploy or use biobased technologies or products. As a result, SSEB will work with the Southern States Biobased Alliance to determine how policy changes might address any negative impacts or enhance positive impacts.

Kathryn Baskin

2004-04-30T23:59:59.000Z

213

DEVELOPING STATE POLICIES SUPPORTIVE OF BIOENERGY DEVELOPMENT  

DOE Green Energy (OSTI)

Working within the context of the Southern States Biobased Alliance (SSBA) and with officials in each state, the Southern States Energy Board (SSEB) is identifying bioenergy-related policies and programs within each state to determine their impact on the development, deployment or use of bioenergy. In addition, SSEB will determine which policies have impacted industry's efforts to develop, deploy or use biobased technologies or products. As a result, SSEB will work with the Southern States Biobased Alliance to determine how policy changes might address any negative impacts or enhance positive impacts.

Kathryn Baskin

2002-07-31T23:59:59.000Z

214

DEVELOPING STATE POLICIES SUPPORTIVE OF BIOENERGY DEVELOPMENT  

SciTech Connect

Working within the context of the Southern States Biobased Alliance (SSBA) and with officials in each state, the Southern States Energy Board (SSEB) is identifying bioenergy-related policies and programs within each state to determine their impact on the development, deployment or use of bioenergy. In addition, SSEB will determine which policies have impacted industry's efforts to develop, deploy or use biobased technologies or products. As a result, SSEB will work with the Southern States Biobased Alliance to determine how policy changes might address any negative impacts or enhance positive impacts.

Kathryn Baskin

2003-01-15T23:59:59.000Z

215

DEVELOPING STATE POLICIES SUPPORTIVE OF BIOENERGY DEVELOPMENT  

SciTech Connect

Working within the context of the Southern States Biobased Alliance (SSBA) and with officials in each state, the Southern States Energy Board (SSEB) is identifying bioenergy-related policies and programs within each state to determine their impact on the development, deployment or use of bioenergy. In addition, SSEB will determine which policies have impacted industry's efforts to develop, deploy or use biobased technologies or products. As a result, SSEB will work with the Southern States Biobased Alliance to determine how policy changes might address any negative impacts or enhance positive impacts.

Kathryn Baskin

2003-10-31T23:59:59.000Z

216

DEVELOPING STATE POLICIES SUPPORTIVE OF BIOENERGY DEVELOPMENT  

SciTech Connect

Working within the context of the Southern States Biobased Alliance (SSBA) and with officials in each state, the Southern States Energy Board (SSEB) is identifying bioenergy-related policies and programs within each state to determine their impact on the development, deployment or use of bioenergy. In addition, SSEB will determine which policies have impacted industry's efforts to develop, deploy or use biobased technologies or products. As a result, SSEB will work with the Southern States Biobased Alliance to determine how policy changes might address any negative impacts or enhance positive impacts.

Kathryn Baskin

2003-04-15T23:59:59.000Z

217

DEVELOPING STATE POLICIES SUPPORTIVE OF BIOENERGY DEVELOPMENT  

DOE Green Energy (OSTI)

Working within the context of the Southern States Biobased Alliance (SSBA) and with officials in each state, the Southern States Energy Board (SSEB) is identifying bioenergy-related policies and programs within each state to determine their impact on the development, deployment or use of bioenergy. In addition, SSEB will determine which policies have impacted industry's efforts to develop, deploy or use biobased technologies or products. As a result, SSEB will work with the Southern States Biobased Alliance to determine how policy changes might address any negative impacts or enhance positive impacts.

Kathryn Baskin

2003-10-31T23:59:59.000Z

218

Renewable Portfolio Standard | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Portfolio Standard Portfolio Standard Renewable Portfolio Standard < Back Eligibility Investor-Owned Utility Retail Supplier Savings Category Bioenergy Biofuels Alternative Fuel Vehicles Water Buying & Making Electricity Solar Wind Program Info State Illinois Program Type Renewables Portfolio Standard In August 2007, Illinois enacted legislation (Public Act 095-0481) that created the Illinois Power Agency (IPA). The agency's purpose is to develop electricity procurement plans for investor-owned electric utilities (EUs) supplying over 100,000 Illinois customers to ensure "adequate, reliable, affordable, efficient, and environmentally sustainable electric service at the lowest total cost." The only EUs that meet these criteria and are therefore subject to the IPA procurement process are Commonwealth

219

Bioenergy and Food Security Criteria and Indicators (BEFSCI) Website | Open  

Open Energy Info (EERE)

Bioenergy and Food Security Criteria and Indicators (BEFSCI) Website Bioenergy and Food Security Criteria and Indicators (BEFSCI) Website Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Bioenergy and Food Security Criteria and Indicators (BEFSCI) Website Focus Area: Other Biofuels Topics: Training Material Website: www.fao.org/bioenergy/foodsecurity/befsci/en/ Equivalent URI: cleanenergysolutions.org/content/bioenergy-and-food-security-criteria- Language: English Policies: Deployment Programs DeploymentPrograms: Technical Assistance This website-created by the Bioenergy and food Security project of the Food and Agriculture Organization of the United Nations (FAO)-provides policymakers and practitioners a set of criteria, indicators, good practices, and policy options for sustainable bioenergy production to

220

Bioenergy Research Centers U.S. Department of Energy Office  

NLE Websites -- All DOE Office Websites (Extended Search)

Bioenergy Research Centers Bioenergy Research Centers U.S. Department of Energy Office of Science U.S. Department of Energy Office of Science Suggested citation: U.S. DOE. 2010. U.S. Department of Energy's Bioen- ergy Research Centers: An Overview of the Science, DOE/SC-0127. Office of Biological and Environmental Research within the DOE Office of Science (genomicscience.energy.gov/centers/brcbrochure.pdf). Sources for cover images: Joint BioEnergy Institute photo by Jona- than Remis, Lawrence Berkeley National Laboratory. BioEnergy Sci- ence Center photo by Seokwon Jung and Arthur Ragauskas, Georgia Institute of Technology. Great Lakes Bioenergy Research Center photo by Kurt Stepnitz, Michigan State University. Websites for DOE Bioenergy Research Centers DOE Joint BioEnergy Institute

Note: This page contains sample records for the topic "bioenergy lightsource renewables" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

DOE Provides $30 Million to Jump Start Bioenergy Research Centers |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

30 Million to Jump Start Bioenergy Research Centers 30 Million to Jump Start Bioenergy Research Centers DOE Provides $30 Million to Jump Start Bioenergy Research Centers October 1, 2007 - 2:49pm Addthis DOE Bioenergy Research Center Investment Tops $400 Million WASHINGTON, DC-The U.S. Department of Energy (DOE) today announced it has invested nearly $30 million in end-of-fiscal-year (2007) funds to accelerate the start-up of its three new Bioenergy Research Centers, bringing total DOE Bioenergy Research Center investment to over $400 million. The three DOE Bioenergy Research Centers-located in Oak Ridge, Tennessee; Madison, Wisconsin; and near Berkeley, California-selected by DOE this June, bring together multidisciplinary teams of leading scientists to advance research needed to make cellulosic ethanol and other biofuels

222

Developing bioenergy fuels: Biopower fact sheet  

DOE Green Energy (OSTI)

Successful development of biomass crops requires unique cooperation between researchers and members of the energy, agriculture, forestry, and environmental communities. DOE's Bioenergy Feedstock Development Program provides a mechanism to integrate the efforts of this diverse group. The federal government must continue to share risks (costs of growing, harvesting, storing, and supplying energy crops) for early adopters of energy crop technology and biomass energy producers.

Shepherd, P.

2000-06-02T23:59:59.000Z

223

Bioenergy Science Center KnowledgeBase  

DOE Data Explorer (OSTI)

The challenge of converting cellulosic biomass to sugars is the dominant obstacle to cost effective production of biofuels in s capable of significant enough quantities to displace U. S. consumption of fossil transportation fuels. The BioEnergy Science Center (BESC) tackles this challenge of biomass recalcitrance by closely linking (1) plant research to make cell walls easier to deconstruct, and (2) microbial research to develop multi-talented biocatalysts tailor-made to produce biofuels in a single step. [from the 2011 BESC factsheet] The BioEnergy Science Center (BESC) is a multi-institutional, multidisciplinary research (biological, chemical, physical and computational sciences, mathematics and engineering) organization focused on the fundamental understanding and elimination of biomass recalcitrance. The BESC Knowledgebase and its associated tools is a discovery platform for bioenergy research. It consists of a collection of metadata, data, and computational tools for data analysis, integration, comparison and visualization for plants and microbes in the center.The BESC Knowledgebase (KB) and BESC Laboratory Information Management System (LIMS) enable bioenergy researchers to perform systemic research. [http://bobcat.ornl.gov/besc/index.jsp

Syed, M. H.; Karpinets, T. V.; Parang, M.; Leuze, M. R.; Park, B. H.; Hyatt, D.; Brown, S. D.; Moulton, S. Galloway, M.D.; Uberbacher, E. C.

224

Watershed Perspective on Bioenergy Sustainability Participant Summary  

E-Print Network (OSTI)

encompasses research projects at all points along the bioenergy supply chains. As an ecosystem ecologist who and developing supply chain models of cellulosic ethanol production. hilliardmr@ornl.gov Ice, George NCASI 541 of biomass/biofuels in forests, looking at nutrient cyclinc and effects on soil and water. mbadams

225

Renewable Portfolio Standard | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Portfolio Standard Portfolio Standard Renewable Portfolio Standard < Back Eligibility Investor-Owned Utility Savings Category Bioenergy Biofuels Alternative Fuel Vehicles Commercial Heating & Cooling Manufacturing Buying & Making Electricity Hydrogen & Fuel Cells Water Solar Heating & Cooling Water Heating Wind Program Info State New York Program Type Renewables Portfolio Standard Provider New York State Energy Research and Development Authority The New York Public Service Commission (PSC) adopted a renewable portfolio standard (RPS) in September 2004 and issued implementation rules in April 2005. As originally designed, New York's RPS had a renewables target of 25% of state electricity consumption by 2013, but was expanded in January 2010 to 30% by 2015 by order of the PSC. Of this 30%, approximately 20.7% of the

226

Renewables Portfolio Standard | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Renewables Portfolio Standard Renewables Portfolio Standard Renewables Portfolio Standard < Back Eligibility Investor-Owned Utility Retail Supplier Savings Category Bioenergy Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Solar Wind Program Info State New Jersey Program Type Renewables Portfolio Standard Provider New Jersey Board of Public Utilities Note: In July 2012 New Jersey enacted S.B. 1925 substantially revising its solar carve-out. The summary below incorporates information on the changes made to the solar carve-out as well as the qualification of certain hydropower projects under the RPS. While it contains information on many of the most important changes made by the law, it is not exhaustive and lacks some details. Extensive rule making activity will be necessary to implement

227

Renewable Portfolio Standard | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Portfolio Standard Portfolio Standard Renewable Portfolio Standard < Back Eligibility Investor-Owned Utility Municipal Utility Retail Supplier Rural Electric Cooperative Savings Category Bioenergy Buying & Making Electricity Water Alternative Fuel Vehicles Hydrogen & Fuel Cells Solar Wind Program Info State Oregon Program Type Renewables Portfolio Standard Provider Oregon Department of Energy As part of the Oregon Renewable Energy Act of 2007 ([http://www.leg.state.or.us/07reg/measpdf/sb0800.dir/sb0838.en.pdf Senate Bill 838]), the state of Oregon established a renewable portfolio standard (RPS) for electric utilities and retail electricity suppliers. Different RPS targets apply depending on a utility's size. Electricity service suppliers must meet the requirements applicable to the electric utilities

228

Renewable Portfolio Standard | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Renewable Portfolio Standard Renewable Portfolio Standard Renewable Portfolio Standard < Back Eligibility Investor-Owned Utility Retail Supplier Savings Category Bioenergy Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Solar Home Weatherization Wind Program Info State Massachusetts Program Type Renewables Portfolio Standard Provider Massachusetts Department of Energy Resources NOTE: NOTE: In February 2013, the Massachusetts Department of Energy Resources (DOER) issued proposed changes to its RPS Class I and RPS Solar Carve-Out programs. The DOER accepted comments through March 25, 2013. In addition, the DOER has developed a draft Assurance of Qualification Guideline and an emergency regulation to provide clarity to the queuing and review process as Solar Carve-Out cap is approached. All drafts, comments,

229

Maricopa County - Renewable Energy Systems Zoning Ordinance | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Maricopa County - Renewable Energy Systems Zoning Ordinance Maricopa County - Renewable Energy Systems Zoning Ordinance Maricopa County - Renewable Energy Systems Zoning Ordinance < Back Eligibility Commercial Industrial Residential Savings Category Bioenergy Water Buying & Making Electricity Energy Sources Solar Heating & Cooling Water Heating Wind Other Program Info State Arizona Program Type Solar/Wind Permitting Standards Provider Maricopa County The Maricopa County Zoning Ordinance contains provisions for siting renewable energy systems. The ordinance defines renewable energy as "energy derived primarily from sources other than fossil fuels or nuclear fission." Renewable energy systems may be built in any zoning district within the county as long as certain siting requirements are met. Setbacks: Renewable energy systems must be set back at least 3 feet away

230

Voluntary Renewable Energy Portfolio Goal | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Voluntary Renewable Energy Portfolio Goal Voluntary Renewable Energy Portfolio Goal Voluntary Renewable Energy Portfolio Goal < Back Eligibility Investor-Owned Utility Savings Category Bioenergy Buying & Making Electricity Water Solar Wind Program Info State Virginia Program Type Renewables Portfolio Standard Provider Virginia State Corporation Commission As part of legislation to re-regulate the state's electricity industry, Virginia enacted a voluntary renewable energy portfolio goal in 2007. Legislation passed in 2009 (HB 1994) expanded the goal, encouraging investor-owned utilities to procure a percentage of the power sold in Virginia from eligible renewable energy sources. Legislation passed in 2012 (SB 413) allows investor-owned utilities to meet up to 20% of a renewable energy goal through certificated research and development activity expenses

231

San Antonio City Public Service (CPS Energy) - Renewables Portfolio Goal |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

San Antonio City Public Service (CPS Energy) - Renewables Portfolio San Antonio City Public Service (CPS Energy) - Renewables Portfolio Goal San Antonio City Public Service (CPS Energy) - Renewables Portfolio Goal < Back Eligibility Municipal Utility Savings Category Bioenergy Solar Buying & Making Electricity Wind Program Info State Texas Program Type Renewables Portfolio Standard In 2003 San Antonio's municipal electric utility, City Public Service (CPS Energy) established a goal of meeting 15% of its electrical peak demand with renewable energy by 2020 under its Strategic Energy Plan. In June 2008 the utility announced plans to increase the overall renewables target to 20% by 2020 with at least 100 megawatts (MW) from non-wind renewable energy sources. As of November 2012, the utility had 11% of their peak electric

232

National Bioenergy Center, Biochemical Platform Integration Project: Quarterly Update, Winter 2011-2012 (Newsletter)  

DOE Green Energy (OSTI)

Winter 2011-2012 issue of the National Bioenergy Center Biochemical Platform Integration Project quarterly update. Issue topics: 34th Symposium on Biotechnology for Fuels and Chemicals; feasibility of NIR spectroscopy-based rapid feedstock reactive screening; demonstrating integrated pilot-scale biomass conversion. The Biochemical Process Integration Task focuses on integrating the processing steps in enzyme-based lignocellulose conversion technology. This project supports the U.S. Department of Energy's efforts to foster development, demonstration, and deployment of 'biochemical platform' biorefineries that economically produce ethanol or other fuels, as well as commodity sugars and a variety of other chemical products, from renewable lignocellulosic biomass.

Not Available

2012-04-01T23:59:59.000Z

233

Bioenergy market competition for biomass: A system dynamics review of current policies  

SciTech Connect

There is growing interest in the United States and abroad to increase the use of biomass as an energy source due to environmental and energy security benefits. In the United States, the biofuel and biopower industries are regulated by different policies and different agencies and have different drivers, which impact the maximum price the industries are willing to pay for biomass. This article describes a dynamic computer simulation model that analyzes future behavior of bioenergy feedstock markets based on varying policy and technical options. The model simulates the long-term dynamics of these markets by treating advanced biomass feedstocks as a commodity and projecting the total demand of each industry, as well as the market price over time. The model is used for an analysis of the United States bioenergy feedstock market that projects supply, demand, and market price given three independent buyers: domestic biopower, domestic biofuels, and foreign exports. With base-case assumptions, the biofuels industry is able to dominate the market and meet the federal Renewable Fuel Standard (RFS) targets for advanced biofuels. Further analyses suggest that United States bioenergy studies should include estimates of export demand for biomass in their projections, and that GHG-limiting policy would partially shield both industries from export dominance.

Jacob J. Jacobson; Robert Jeffers

2013-07-01T23:59:59.000Z

234

The Joint BioEnergy Institute (JBEI): Developing New Biofuels by Overcoming Biomass Recalcitrance  

E-Print Network (OSTI)

010-9086-2 The Joint BioEnergy Institute (JBEI): DevelopingThe mission of the Joint BioEnergy Institute is to advanceJ. D. Keasling Joint BioEnergy Institute, 5885 Hollis St. ,

Scheller, Henrik Vibe; Singh, Seema; Blanch, Harvey; Keasling, Jay D.

2010-01-01T23:59:59.000Z

235

Sustainable use of California biomass resources can help meet state and national bioenergy targets  

E-Print Network (OSTI)

fuel resources. Bio- mass Bioenergy 27:613 20. Parker N,Strategic assessment of bioenergy development in the west:as Feedstock for a Bioenergy and Bioprod- ucts Industry: The

Jenkins, Bryan M; Williams, Robert B; Gildart, Martha C; Kaffka, Stephen R.; Hartsough, Bruce; Dempster, Peter G

2009-01-01T23:59:59.000Z

236

Switchgrass for Forage and Bioenergy: I. Effects of Nitrogen Rate and Harvest System  

E-Print Network (OSTI)

biofuel systems. Biomass and Bioenergy 30:198-206. Muir JP,systems. Biomass and Bioenergy 19: 281-286. Sanderson MA,whether for forage or bioenergy) is defining how crop

Kering, Maru K; Biermacher, Jon T; Cook, Billy J; Guretzky, John A

2009-01-01T23:59:59.000Z

237

High-solids enrichment of thermophilic microbial communities and their enzymes on bioenergy feedstocks  

E-Print Network (OSTI)

and their enzymes on bioenergy feedstocks Amitha P. ReddyVanderGheynst 1,2* Joint BioEnergy Institute, Emeryville, CA2009. The water footprint of bioenergy. Proceedings of the

Reddy, A. P.

2012-01-01T23:59:59.000Z

238

Renewable Energy  

U.S. Energy Information Administration (EIA)

Renewable energy sources including biomass, hydropower, geothermal, wind, and solar provide 8% of the energy used in the United States.

239

Joining : BioEnergy Science Center  

NLE Websites -- All DOE Office Websites (Extended Search)

Inventions Inventions The effective translation of BESC research results into applications testing and potential deployment is an implicit part of reaching DOE's bioenergy goals. The BESC member institutions recognize that a common strategy is important to the success of BESC. To promote the commercialization of new technologies, our plan is to: Maintain a single portal for information about available technologies. This web site features inventions and commercial opportunities in addition to the information content related to the research program Provide a single point of contact for the licensing of new BESC inventions on behalf of our team (contact speckrr@ornl.gov) Periodically Host a "BioEnergy Nexus" venture forum Provide opportunity for research institutions and private companies

240

Advanced Bioenergy LLC | Open Energy Information  

Open Energy Info (EERE)

Bioenergy LLC Bioenergy LLC Place Minneapolis, Minnesota Zip 55305 Product Developer of the 378.5m litre pa bioethanol plant in Fairmount. Coordinates 44.979035°, -93.264929° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.979035,"lon":-93.264929,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "bioenergy lightsource renewables" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Bioenergy Assessment Toolkit | Open Energy Information  

Open Energy Info (EERE)

Bioenergy Assessment Toolkit Bioenergy Assessment Toolkit Jump to: navigation, search Stage 3 LEDS Home Introduction to Framework Assess current country plans, policies, practices, and capacities Develop_BAU Stage 4: Prioritizing and Planning for Actions Begin execution of implementation plans 1.0. Organizing the LEDS Process 1.1. Institutional Structure for LEDS 1.2. Workplan to Develop the LEDS 1.3. Roles and responsibilities to develop LEDS 2.1. Assess current country plans, policies, practices, and capacities 2.2. Compile lessons learned and good practices from ongoing and previous sustainable development efforts in the country 2.3. Assess public and private sector capacity to support initiatives 2.4. Assess and improve the national GHG inventory and other economic and resource data as needed for LEDS development

242

Local Option - Building Permit Fee Waivers for Renewable Energy Projects  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Local Option - Building Permit Fee Waivers for Renewable Energy Local Option - Building Permit Fee Waivers for Renewable Energy Projects (Connecticut) Local Option - Building Permit Fee Waivers for Renewable Energy Projects (Connecticut) < Back Eligibility Agricultural Commercial Construction Fed. Government General Public/Consumer Industrial Installer/Contractor Institutional Local Government Low-Income Residential Multi-Family Residential Nonprofit Residential Schools State Government Tribal Government Savings Category Bioenergy Alternative Fuel Vehicles Hydrogen & Fuel Cells Water Buying & Making Electricity Solar Home Weatherization Wind Program Info State Connecticut Program Type Solar/Wind Permitting Standards Provider Department of Energy and Environmental Protection As of July 2011, Connecticut authorizes municipalities to pass a local

243

Xcel Energy - Renewable Development Fund Grants | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

- Renewable Development Fund Grants - Renewable Development Fund Grants Xcel Energy - Renewable Development Fund Grants < Back Eligibility Agricultural Commercial Fed. Government Industrial Institutional Local Government Nonprofit Residential Schools State Government Tribal Government Utility Savings Category Bioenergy Commercial Heating & Cooling Manufacturing Buying & Making Electricity Alternative Fuel Vehicles Hydrogen & Fuel Cells Water Solar Wind Maximum Rebate Varies by RFP details Program Info Start Date 1999 State Minnesota Program Type Utility Grant Program Rebate Amount Varies Provider Xcel Energy '''''Note: Xcel is not currently accepting proposals for this program. The most recent application deadline was April 1, 2013. See the program web site for information regarding future solicitations. '''''

244

Community Renewable Energy Feasibility Fund Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Community Renewable Energy Feasibility Fund Program Community Renewable Energy Feasibility Fund Program Community Renewable Energy Feasibility Fund Program < Back Eligibility Commercial Institutional Local Government Nonprofit Schools State Government Tribal Government Savings Category Bioenergy Biofuels Alternative Fuel Vehicles Commercial Heating & Cooling Manufacturing Buying & Making Electricity Water Heating & Cooling Solar Heating Home Weatherization Water Heating Wind Maximum Rebate $50,000 Program Info Funding Source The Oregon Department of Justice settled claims with Reliant Energy, and dedicated $1 million of the settlement funds to establish the CREFF under the Oregon Department of Energy. State Oregon Program Type State Grant Program Rebate Amount Varies by project Provider Oregon Department of Energy

245

Bioenergy Technologies FY14 Budget At-a-Glance  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

BIOENERGY TECHNOLOGIES AT-A-GLANCE Bioenergy Technologies supports targeted research, development, demonstration, and deployment (RDD&D) activities to progress sustainable, nationwide production of advanced biofuels that will displace a share of petroleum-derived fuels, mitigate climate change, create American jobs, and increase U.S. energy security. What We Do Bioenergy Technologies employs an integrated, cross- cutting RDD&D strategy to develop commercially viable biomass utilization technologies. The office makes strategic investments in the following areas:  Feedstock Infrastructure advances a sustainable, secure, reliable, and affordable biomass feedstock supply for the U.S. bioenergy industry.  Conversion R&D identifies and develops viable

246

BioEnergy Solutions BES | Open Energy Information  

Open Energy Info (EERE)

California Zip 93309 Product Bakersfield-based firm installing and operating biogas plants for farmers and food producers. References BioEnergy Solutions (BES)1...

247

Department of Energy Offers Abengoa Bioenergy a Conditional Commitment...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

The Abengoa Bioenergy project is expected to convert approximately 300,000 tons of corn stover (stalks and leaves) into approximately 23 million gallons of ethanol per year...

248

Focus Area 1 - Biomass Formation and Modification : BioEnergy...  

NLE Websites -- All DOE Office Websites (Extended Search)

Formation and Modification BESC biomass formation and modification research involves working directly with two potential bioenergy crops (switchgrass and Populus) to develop...

249

USDA and DOE Fund 10 Research Projects to Accelerate Bioenergy...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

to spur research into improving the efficiency and cost-effectiveness of growing biofuel and bioenergy crops. The investments are part of a broader effort by the Obama...

250

Thailand-Key Results and Policy Recommendations for Future Bioenergy...  

Open Energy Info (EERE)

013 Country Thailand UN Region South-Eastern Asia References Thailand-Key Results and Policy Recommendations for Future Bioenergy Development1 Abstract "The Government of...

251

The Carbon Footprint of Bioenergy Sorghum Production in Central Texas: Production Implications on Greenhouse Gas Emissions, Carbon Cycling, and Life Cycle Analysis  

E-Print Network (OSTI)

Enhanced interest in biofuel production has renewed interest in bioenergy crop production within the United States. Agricultures role in biofuel production is critical because it has the potential to supply renewable energy while minimizing greenhouse gas (GHG) emissions. However, agronomic management practices influence direct and indirect GHG emissions, and both can have a significant impact on biofuel production efficiency. Our overall objective was to determine the carbon (C) footprint of bioenergy sorghum (Sorghum bicolor L.) production in central Texas. Specifically, we determined the impacts of crop rotation, nitrogen (N) fertilization, and residue return on direct and indirect GHG emissions, theoretical biofuel yield, C pools, and life cycle GHG emissions from bioenergy sorghum production in 2010 and 2011. An experiment established in 2008 near College Station, TX to quantify the impacts of crop management practices on bioenergy sorghum yield and soil properties was utilized, and included two crop rotations (sorghum-sorghum or corn-sorghum), two fertilization levels (0 or 280 kg N ha^(-1) annually), and two residue return rates (0 or 50% biomass residue returned) to assess management impacts on sorghum production, C cycling, and life cycle GHGs. Corn production was poor under moderate drought conditions, while bioenergy sorghum produced relatively large yields under both moderate and severe drought conditions. Nitrogen addition increased crop yields, and rotated sorghum had higher yield than monoculture sorghum. Fluxes of CO_(2) and N_(2)O were higher than those reported in literature and highest soil fluxes were frequently observed following precipitation events during the growing season. Residue return increased cumulative CO_(2) emissions and N fertilization increased N_(2)O emissions. Residue return also increased soil microbial biomass-C, an important indicator of soil quality. Continuous sorghum significantly increased soil organic C (SOC) concentrations near the soil surface and at two depths below 30 cm. Analysis of change in SOC across time to estimate net CO_(2) emissions to the atmosphere revealed bioenergy sorghum production accrued high amounts of SOC annually. Most treatments accrued more than 4 Mg C ha^(-1) yr^(-1) from 2008 to 2012, which indicated great potential for C sequestration and offsetting GHG emissions. Life cycle GHG emissions (as g CO_(2)-eq MJ^(-1)) were all negative due to high SOC increases each year and indicated all bioenergy sorghum production treatments sequestered atmospheric CO_(2) per unit of theoretical energy provided. Despite its relatively low production efficiency, rotated sorghum with N addition and residue return was selected as the ideal bioenergy sorghum production scenario due to a number of sustainability factors. Bioenergy sorghum may offer great benefit as a high-yielding biofuel feedstock with minimal impacts to net GHG emissions.

Storlien, Joseph Orgean

2013-08-01T23:59:59.000Z

252

DOE and USDA Announce More than $10 Million in Bioenergy Plant...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

USDA and DOE Partnership Seeks to Develop Better Plants for Bioenergy USDA and DOE Fund 10 Research Projects to Accelerate Bioenergy Crop Production and Spur Economic Impact...

253

Property Tax Exemption for Renewable Energy Systems | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Renewable Energy Systems Renewable Energy Systems Property Tax Exemption for Renewable Energy Systems < Back Eligibility Commercial Industrial Residential Savings Category Bioenergy Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Solar Heating & Cooling Commercial Heating & Cooling Heating Water Heating Wind Program Info Start Date 10/01/2008 State New Jersey Program Type Property Tax Incentive Rebate Amount 100% of value added by renewable system In October 2008, New Jersey enacted legislation exempting renewable energy systems used to meet on-site electricity, heating, cooling, or general energy needs from local property taxes. (There is not a state component to property taxes in New Jersey). Eligible renewable energy systems* include solar PV, wind, fuel cells, sustainable biomass, geothermal electric,

254

Efficiency Maine Trust - Renewable Resource Fund | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Efficiency Maine Trust - Renewable Resource Fund Efficiency Maine Trust - Renewable Resource Fund Efficiency Maine Trust - Renewable Resource Fund < Back Eligibility Institutional Nonprofit Residential Rural Electric Cooperative Schools Savings Category Bioenergy Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Solar Wind Program Info State Maine Program Type Public Benefits Fund Maine's public benefits fund for renewable energy was established as part of the state's electric-industry restructuring legislation, enacted in May 1997. The law directed the Maine Public Utilities Commission (PUC) to develop a voluntary program allowing customers to contribute to a fund that supports renewable-energy projects. This fund was originally known as the Renewable Resource Fund (now it is part of Efficiency Maine Trust).

255

Rhode Island Renewable Energy Fund (RIREF) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rhode Island Renewable Energy Fund (RIREF) Rhode Island Renewable Energy Fund (RIREF) Rhode Island Renewable Energy Fund (RIREF) < Back Eligibility Commercial Industrial Institutional Residential Utility Savings Category Bioenergy Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Heating & Cooling Commercial Heating & Cooling Solar Heating Water Heating Wind Program Info State Rhode Island Program Type Public Benefits Fund Provider Rhode Island Economic Development Corporation Rhode Island's Public Utilities Restructuring Act of 1996 created the nation's first public benefits fund (PBF) for renewable energy and demand-side management (DSM). The Rhode Island Renewable Energy Fund's (RIREF) renewable-energy component is administered by the Rhode Island Economic Development Corporation (RIEDC), and the fund's demand-side

256

Long Island Power Authority - Renewable Electricity Goal | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Renewable Electricity Goal Renewable Electricity Goal Long Island Power Authority - Renewable Electricity Goal < Back Eligibility Municipal Utility Savings Category Bioenergy Biofuels Alternative Fuel Vehicles Hydrogen & Fuel Cells Water Buying & Making Electricity Solar Wind Program Info State New York Program Type Renewables Portfolio Standard Provider Long Island Power Authority As a municipal utility, the Long Island Power Authority (LIPA) is not obligated to comply with the [http://www.dsireusa.org/library/includes/incentive2.cfm?Incentive_Code=N... New York Renewable Portfolio Standard (RPS)]. The LIPA Board of Trustees has nevertheless decided to make their own renewable energy commitment mirroring the requirements for New York's investor owned utilities. The initiative is outlined in LIPA's 2004-2013 Energy Plan, approved in June

257

Selecting Metrics for Sustainable Bioenergy Feedstocks  

SciTech Connect

Key decisions about land-use practices and dynamics in biofuel systems affect the long-term sustainability of biofuels. Choices about what crops are grown and how are they planted, fertilized, and harvested determine the effects of biofuels on native plant diversity, competition with food crops, and water and air quality. Those decisions also affect economic viability since the distance that biofuels must be transported has a large effect on the market cost of biofuels. The components of a landscape approach include environmental and socioeconomic conditions and the bioenergy features [type of fuel, plants species, management practices (e.g., fertilizer and pesticide applications), type and location of production facilities] and ecological and biogeochemical feedbacks. Significantly, while water (availability and quality) emerges as one of the most limiting factors to sustainability of bioenergy feedstocks, the linkage between water and bioenergy choices for land use and management on medium and large scales is poorly quantified. Metrics that quantify environmental and socioeconomic changes in land use and landscape dynamics provide a way to measure and communicate the influence of alternative bioenergy choices on water quality and other components of the environment. Cultivation of switchgrass could have both positive and negative environmental effects, depending on where it is planted and what vegetation it replaces. Among the most important environmental effects are changes in the flow regimes of streams (peak storm flows, base flows during the growing season) and changes in stream water quality (sediment, nutrients, and pesticides). Unfortunately, there have been few controlled studies that provide sufficient data to evaluate the hydrological and water quality impacts of conversion to switchgrass. In particular, there is a need for experimental studies that use the small watershed approach to evaluate the effects of growing a perennial plant as a biomass crop. Small watershed studies have been used for several decades to identify effects of vegetation type, disturbance, and land use and agriculture practices on hydrology and water quality. An ideal experimental design to determine the effects of conversion to switchgrass on surface water hydrology and quality would involve (1) small catchment (5-20 ha) drained by a perennial or ephemeral stream, (2) crop treatments including conversion from row crops to switchgrass; pasture to switchgrass (other likely scenarios); controls (no change in vegetation), (3) treatments to compare different levels of fertilization and pesticide application, (4) riparian treatments to compare riparian buffers with alternative cover types, and a treatment with no buffer, and (5) 3-4 replicates of each treatment or BACI (before-after, control-intervention) design for unreplicated treatments (ideally with several years of measurements prior to the imposition of treatments for BACI design). Hydrologic measurements would include soil moisture patterns with depth and over time; nitrogen and phosphorus chemistry; soil solution chemistry - major anions and cations, inorganic and organic forms of carbon, nitrogen and phosphorus; precipitation amount and chemical deposition; stream discharge; and streamwater chemistry. These water quality metrics would need to be put into context of the other environmental and social conditions that are altered by growth of bioenergy feedstocks. These conditions include farm profits and yield of food and fuel, carbon storage and release, and a variety of ecosystem services such as enhanced biodiversity and pollinator services. Innovations in landscape design for bioenergy feedstocks take into account environmental and socioeconomic dynamics and consequences with consideration of alternative bioenergy regimes and policies. The ideal design would be scale-sensitive so that economic, social, and environmental constraints can be measured via metrics applicable at relevant scales. To develop a landscape design, land managers must consider (1) what are the environmental im

Dale, Virginia H [ORNL; Kline, Keith L [ORNL; Mulholland, Patrick J [ORNL; Downing, Mark [ORNL; Graham, Robin Lambert [ORNL; Wright, Lynn L [ORNL

2009-01-01T23:59:59.000Z

258

Background Information : BioEnergy Science Center  

NLE Websites -- All DOE Office Websites (Extended Search)

Vocabulary Words Addressed renewable, energy, environment, solar, pollution, biofuel, emission, fossil fuel, carbon cycle, hydrogen, internal combustion engines, lignin,...

259

Renewable Energy Tax Credit | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Renewable Energy Tax Credit Renewable Energy Tax Credit Renewable Energy Tax Credit < Back Eligibility Agricultural Commercial Industrial Savings Category Bioenergy Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Heating & Cooling Commercial Heating & Cooling Solar Heating Water Heating Wind Maximum Rebate Not specified Program Info Start Date 01/01/2001 Expiration Date 12/31/2014 State North Dakota Program Type Corporate Tax Credit Rebate Amount 15% (3% per year for five years) North Dakota offers a corporate income tax credit for the cost of acquiring and installing a geothermal, solar, biomass or wind-energy system in a building or on property owned or leased by the taxpayer in North Dakota. For systems installed after December 31, 2000, and before January 1, 2015,

260

Renewable Development Fund (RDF) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » Renewable Development Fund (RDF) Renewable Development Fund (RDF) < Back Eligibility Agricultural Commercial Fed. Government General Public/Consumer Industrial Institutional Local Government Nonprofit Residential Schools State Government Tribal Government Utility Savings Category Bioenergy Commercial Heating & Cooling Manufacturing Buying & Making Electricity Alternative Fuel Vehicles Hydrogen & Fuel Cells Water Solar Wind Program Info State Minnesota Program Type Public Benefits Fund Provider Xcel Energy Xcel Energy's Renewable Development Fund (RDF) was created in 1999 pursuant to the 1994 Radioactive Waste Management Facility Authorization Law (Minn. Stat. § 116C.779). Originally, Xcel Energy was required to donate to the fund $500,000 annually for each dry cask containing spent nuclear fuel

Note: This page contains sample records for the topic "bioenergy lightsource renewables" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Renewable Energy Grant Programs | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Renewable Energy Grant Programs Renewable Energy Grant Programs Renewable Energy Grant Programs < Back Eligibility Agricultural Commercial Fed. Government Industrial Institutional Local Government Nonprofit Schools State Government Savings Category Bioenergy Buying & Making Electricity Solar Heating & Cooling Water Heating Wind Maximum Rebate 2013 RFP Biomass: $500,000 Biogas: $500,000 Geothermal Technologies: $200,000 Solar PV: $100,000 Solar Thermal: $100,000 Wind: $100,000 All technologies: 40% of eligible project costs Program Info Funding Source Focus On Energy Program Start Date 2012 State Wisconsin Program Type State Grant Program Rebate Amount 10-40% of eligible project costs Minimum award of $5,000 '''''Note: This program is no longer accepting applications. See the program web site for information regarding future solicitations. '''''

262

13September 2011 Lignocellulosic Biofuels from New Bioenergy Crops  

E-Print Network (OSTI)

13September 2011 2010 Lignocellulosic Biofuels from New Bioenergy Crops Federal Initiative- tonnage bioenergy crop on a commercial scale and convert it into an advanced biofuel (gasoline) in a pilot the biofuels production goals of the United States while helping to alleviate constraints on food and feed

263

Frontline BioEnergy LLC | Open Energy Information  

Open Energy Info (EERE)

Frontline BioEnergy LLC Frontline BioEnergy LLC Jump to: navigation, search Name Frontline BioEnergy LLC Place Ames, Iowa Zip 50010 Sector Bioenergy, Biomass Product Frontline BioEnergy Inc develops and installs gasification systems and individual equipment to convert biomass into valuable products. Coordinates 30.053389°, -94.742269° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.053389,"lon":-94.742269,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

264

Center for BioEnergy Sustainability | Open Energy Information  

Open Energy Info (EERE)

Sustainability Sustainability Jump to: navigation, search Logo: Center for BioEnergy Sustainability Name Center for BioEnergy Sustainability Agency/Company /Organization Oak Ridge National Laboratory Sector Energy Focus Area Biomass Topics Resource assessment Resource Type Dataset, Maps Website http://www.ornl.gov/sci/besd/c References Center for BioEnergy Sustainability[1] Abstract The Center for BioEnergy Sustainability, or CBES, is a Center at Oak Ridge National Laboratory with a focus on dealing with the environmental impacts and the ultimate sustainability of biomass production for conversion to biofuels and bio-based products. The Center for BioEnergy Sustainability, or CBES, is a Center at Oak Ridge National Laboratory with a focus on "dealing with the environmental impacts

265

Department of Energy Offers Abengoa Bioenergy a Conditional Commitment for  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Abengoa Bioenergy a Conditional Abengoa Bioenergy a Conditional Commitment for a $133.9 Million Loan Guarantee Department of Energy Offers Abengoa Bioenergy a Conditional Commitment for a $133.9 Million Loan Guarantee August 19, 2011 - 11:15am Addthis Groundbreaking Cellulosic Ethanol Project Expected to Create Over 300 Jobs and Build Nation's Capacity for Cellulosic Ethanol Production Washington D.C. - U.S. Energy Secretary Steven Chu today announced the offer of a conditional commitment for a $133.9 million loan guarantee to Abengoa Bioenergy Biomass of Kansas LLC (ABBK) to support the development of a commercial-scale cellulosic ethanol plant. ABBK's parent company and project sponsor, Abengoa Bioenergy US Holding, Inc., estimates the project will create approximately 300 construction jobs and 65 permanent

266

Indicators to support environmental sustainability of bioenergy systems  

SciTech Connect

Indicators are needed to assess environmental sustainability of bioenergy systems. Effective indicators will help in the quantification of benefits and costs of bioenergy options and resource uses. We identify 19 measurable indicators for soil quality, water quality and quantity, greenhouse gases, biodiversity, air quality, and productivity, building on existing knowledge and on national and international programs that are seeking ways to assess sustainable bioenergy. Together, this suite of indicators is hypothesized to reflect major environmental effects of diverse feedstocks, management practices, and post-production processes. The importance of each indicator is identified. Future research relating to this indicator suite is discussed, including field testing, target establishment, and application to particular bioenergy systems. Coupled with such efforts, we envision that this indicator suite can serve as a basis for the practical evaluation of environmental sustainability in a variety of bioenergy systems.

Dale, Virginia H [ORNL; Baskaran, Latha Malar [ORNL; Downing, Mark [ORNL; Eaton, Laurence M [ORNL; McBride, Allen [ORNL; Efroymson, Rebecca Ann [ORNL; Garten Jr, Charles T [ORNL; Kline, Keith L [ORNL; Jager, Yetta [ORNL; Mulholland, Patrick J [ORNL; Parish, Esther S [ORNL; Schweizer, Peter E [ORNL; Storey, John Morse [ORNL

2011-01-01T23:59:59.000Z

267

Renewable Polymers  

Science Conference Proceedings (OSTI)

... the amounts of natural resources and energy they consume and the wastes they produce. However, the adoption of renewable polymeric materials ...

2012-10-02T23:59:59.000Z

268

Renewable Energy  

Energy.gov (U.S. Department of Energy (DOE))

Learn how the Energy Department's investments in clean, renewable energy technologies -- including wind, solar and geothermal sources -- are helping strengthen the American economy.

269

Summary of the July 2009 Forum Center for BioEnergy Sustainability (CEBS)  

E-Print Network (OSTI)

Summary of the July 2009 Forum Center for BioEnergy Sustainability (CEBS) "BioEnergy ­ Climate the study fire a strong candidate for research possibilities. The "BioEnergy ­ Climate Coupling;bioenergy development on the earths climate. Some of the fundamental processes were illustrated through

270

ii The upfront carbon debt of bioenergy Contents Executive Summary........................................................................................................2  

E-Print Network (OSTI)

2 Bioenergy in the climate policy framework................................................................6 2.1 Reporting and accounting systems..................................................................6

Prepared Giuliana Zanchi; Naomi Pena; Neil Bird

2010-01-01T23:59:59.000Z

271

National Bioenergy Center Biochemical Platform Integration Project: Quarterly Update #20, July-September 2008  

SciTech Connect

July to September, 2008 edition of the National Bioenergy Center's Biochemical Platform Integration Project quarterly newsletter.

Schell, D. J.

2008-12-01T23:59:59.000Z

272

National Bioenergy Center Biochemical Platform Integration Project: Quarterly Update #22, January - March 2009  

Science Conference Proceedings (OSTI)

January to March, 2009 edition of the National Bioenergy Center's Biochemical Platform Integration Project quarterly newsletter.

Not Available

2009-04-01T23:59:59.000Z

273

National Bioenergy Center Biochemical Platform Integration Project: Quarterly Update #24, July-September 2009  

DOE Green Energy (OSTI)

July to September, 2009 edition of the National Bioenergy Center's Biochemical Platform Integration Project quarterly newsletter.

Schell, D.

2009-10-01T23:59:59.000Z

274

National Bioenergy Center Biochemical Platform Integration Project: Quarterly Update #25, October - December 2009  

DOE Green Energy (OSTI)

October to December, 2009 edition of the National Bioenergy Center's Biochemical Platform Integration Project quarterly newsletter.

Schell, D.

2010-01-01T23:59:59.000Z

275

National Bioenergy Center Sugar Platform Integration Project: Quarterly Update #15, April - June 2007  

DOE Green Energy (OSTI)

July quarterly update for the National Bioenergy Center's Biochemical Processing Platform Integration Project.

Schell, D.

2007-07-01T23:59:59.000Z

276

National Bioenergy Center Biochemical Platform Integration Project: Quarterly Update #23, April-June 2009  

DOE Green Energy (OSTI)

April to June, 2009 edition of the National Bioenergy Center's Biochemical Platform Integration Project quarterly newsletter.

Schell, D.

2009-08-01T23:59:59.000Z

277

Industrial Relations : BioEnergy Science Center  

NLE Websites -- All DOE Office Websites (Extended Search)

Overview Overview The effective translation of BESC research results into applications testing and potential deployment is an implicit part of reaching DOE's bioenergy goals. The BESC member institutions recognize that a common strategy is important to the success of BESC. To promote the commercialization of new technologies, our plan is to: Maintain a single portal for information about available technologies. This web site will feature inventions and commercial opportunities in additoin to the information content related to the research program Provide a single point of contact for the licensing of new BESC inventions on behalf of our team (contact: Renae Speck) Provide opportunity for research institutions and private companies to become "BESC Affiliates"

278

U.S, Department of Energy's Bioenergy Research Centers An Overview of the Science  

SciTech Connect

Alternative fuels from renewable cellulosic biomass--plant stalks, trunks, stems, and leaves--are expected to significantly reduce U.S. dependence on imported oil while enhancing national energy security and decreasing the environmental impacts of energy use. Ethanol and other advanced biofuels from cellulosic biomass are renewable alternatives that could increase domestic production of transportation fuels, revitalize rural economies, and reduce carbon dioxide and pollutant emissions. According to U.S. Secretary of Energy Steven Chu, 'Developing the next generation of biofuels is key to our effort to end our dependence on foreign oil and address the climate crisis while creating millions of new jobs that can't be outsourced'. In the United States, the Energy Independence and Security Act (EISA) of 2007 is an important driver for the sustainable development of renewable biofuels. As part of EISA, the Renewable Fuel Standard mandates that 36 billion gallons of biofuels are to be produced annually by 2022, of which 16 billion gallons are expected to come from cellulosic feedstocks. Although cellulosic ethanol production has been demonstrated on a pilot level, developing a cost-effective, commercial-scale cellulosic biofuel industry will require transformational science to significantly streamline current production processes. Woodchips, grasses, cornstalks, and other cellulosic biomass are widely abundant but more difficult to break down into sugars than corn grain--the primary source of U.S. ethanol fuel production today. Biological research is key to accelerating the deconstruction of cellulosic biomass into sugars that can be converted to biofuels. The Department of Energy (DOE) Office of Science continues to play a major role in inspiring, supporting, and guiding the biotechnology revolution over the past 25 years. The DOE Genomic Science Program is advancing a new generation of research focused on achieving whole-systems understanding for biology. This program is bringing together scientists in diverse fields to understand the complex biology underlying solutions to DOE missions in energy production, environmental remediation, and climate change science. New interdisciplinary research communities are emerging, as are knowledgebases and scientific and computational resources critical to advancing large-scale, genome-based biology. To focus the most advanced biotechnology-based resources on the biological challenges of biofuel production, DOE established three Bioenergy Research Centers (BRCs) in September 2007. Each center is pursuing the basic research underlying a range of high-risk, high-return biological solutions for bioenergy applications. Advances resulting from the BRCs will provide the knowledge needed to develop new biobased products, methods, and tools that the emerging biofuel industry can use. The scientific rationale for these centers and for other fundamental genomic research critical to the biofuel industry was established at a DOE workshop involving members of the research community (see sidebar, Biofuel Research Plan, below). The DOE BRCs have developed automated, high-throughput analysis pipelines that will accelerate scientific discovery for biology-based biofuel research. The three centers, which were selected through a scientific peer-review process, are based in geographically diverse locations--the Southeast, the Midwest, and the West Coast--with partners across the nation. DOE's Oak Ridge National Laboratory leads the BioEnergy Science Center (BESC) in Tennessee; the University of Wisconsin-Madison leads the Great Lakes Bioenergy Research Center (GLBRC); and DOE's Lawrence Berkeley National Laboratory leads the DOE Joint BioEnergy Institute (JBEI) in California. Each center represents a multidisciplinary partnership with expertise spanning the physical and biological sciences, including genomics, microbial and plant biology, analytical chemistry, computational biology and bioinformatics, and engineering. Institutional partners include DOE national laboratories, universities, private companies,

None

2009-07-01T23:59:59.000Z

279

U.S, Department of Energy's Bioenergy Research Centers An Overview of the Science  

Science Conference Proceedings (OSTI)

Alternative fuels from renewable cellulosic biomass--plant stalks, trunks, stems, and leaves--are expected to significantly reduce U.S. dependence on imported oil while enhancing national energy security and decreasing the environmental impacts of energy use. Ethanol and other advanced biofuels from cellulosic biomass are renewable alternatives that could increase domestic production of transportation fuels, revitalize rural economies, and reduce carbon dioxide and pollutant emissions. According to U.S. Secretary of Energy Steven Chu, 'Developing the next generation of biofuels is key to our effort to end our dependence on foreign oil and address the climate crisis while creating millions of new jobs that can't be outsourced'. In the United States, the Energy Independence and Security Act (EISA) of 2007 is an important driver for the sustainable development of renewable biofuels. As part of EISA, the Renewable Fuel Standard mandates that 36 billion gallons of biofuels are to be produced annually by 2022, of which 16 billion gallons are expected to come from cellulosic feedstocks. Although cellulosic ethanol production has been demonstrated on a pilot level, developing a cost-effective, commercial-scale cellulosic biofuel industry will require transformational science to significantly streamline current production processes. Woodchips, grasses, cornstalks, and other cellulosic biomass are widely abundant but more difficult to break down into sugars than corn grain--the primary source of U.S. ethanol fuel production today. Biological research is key to accelerating the deconstruction of cellulosic biomass into sugars that can be converted to biofuels. The Department of Energy (DOE) Office of Science continues to play a major role in inspiring, supporting, and guiding the biotechnology revolution over the past 25 years. The DOE Genomic Science Program is advancing a new generation of research focused on achieving whole-systems understanding for biology. This program is bringing together scientists in diverse fields to understand the complex biology underlying solutions to DOE missions in energy production, environmental remediation, and climate change science. New interdisciplinary research communities are emerging, as are knowledgebases and scientific and computational resources critical to advancing large-scale, genome-based biology. To focus the most advanced biotechnology-based resources on the biological challenges of biofuel production, DOE established three Bioenergy Research Centers (BRCs) in September 2007. Each center is pursuing the basic research underlying a range of high-risk, high-return biological solutions for bioenergy applications. Advances resulting from the BRCs will provide the knowledge needed to develop new biobased products, methods, and tools that the emerging biofuel industry can use. The scientific rationale for these centers and for other fundamental genomic research critical to the biofuel industry was established at a DOE workshop involving members of the research community (see sidebar, Biofuel Research Plan, below). The DOE BRCs have developed automated, high-throughput analysis pipelines that will accelerate scientific discovery for biology-based biofuel research. The three centers, which were selected through a scientific peer-review process, are based in geographically diverse locations--the Southeast, the Midwest, and the West Coast--with partners across the nation. DOE's Oak Ridge National Laboratory leads the BioEnergy Science Center (BESC) in Tennessee; the University of Wisconsin-Madison leads the Great Lakes Bioenergy Research Center (GLBRC); and DOE's Lawrence Berkeley National Laboratory leads the DOE Joint BioEnergy Institute (JBEI) in California. Each center represents a multidisciplinary partnership with expertise spanning the physical and biological sciences, including genomics, microbial and plant biology, analytical chemistry, computational biology and bioinformatics, and engineering. Institutional partners include DOE national laboratories, universities, private companies,

None

2009-07-01T23:59:59.000Z

280

Local Option - Property Tax Exemption for Renewable Energy Systems |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Local Option - Property Tax Exemption for Renewable Energy Systems Local Option - Property Tax Exemption for Renewable Energy Systems Local Option - Property Tax Exemption for Renewable Energy Systems < Back Eligibility Agricultural Commercial Industrial Residential Savings Category Bioenergy Solar Buying & Making Electricity Home Weatherization Water Heating & Cooling Commercial Heating & Cooling Heating Water Heating Wind Program Info State Rhode Island Program Type Property Tax Incentive Rebate Amount Varies (local option) Provider Rhode Island Office of Energy Resources Rhode Island allows cities and towns to exempt, by ordinance, renewable energy systems from property taxation. The term "renewable energy system" is not defined in the applicable statute (R.I. Gen. Laws § 44-3-21). Note that [http://dsireusa.org/incentives/incentive.cfm?Incentive_Code=RI02F&re=1&ee=1

Note: This page contains sample records for the topic "bioenergy lightsource renewables" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Renewable Energy and Energy Efficiency Portfolio Standard | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Renewable Energy and Energy Efficiency Portfolio Standard Renewable Energy and Energy Efficiency Portfolio Standard Renewable Energy and Energy Efficiency Portfolio Standard < Back Eligibility Investor-Owned Utility Municipal Utility Rural Electric Cooperative Savings Category Bioenergy Commercial Heating & Cooling Manufacturing Buying & Making Electricity Alternative Fuel Vehicles Hydrogen & Fuel Cells Solar Home Weatherization Water Heating & Cooling Heating Water Heating Wind Program Info State North Carolina Program Type Renewables Portfolio Standard Provider North Carolina Utilities Commission North Carolina's Renewable Energy and Energy Efficiency Portfolio Standard (REPS), established by [http://www.ncleg.net/Sessions/2007/Bills/Senate/PDF/S3v6.pdf Senate Bill 3] in August 2007, requires all investor-owned utilities in the state to

282

Renewable and Recycled Energy Objective | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Renewable and Recycled Energy Objective Renewable and Recycled Energy Objective Renewable and Recycled Energy Objective < Back Eligibility Investor-Owned Utility Municipal Utility Rural Electric Cooperative Savings Category Bioenergy Buying & Making Electricity Water Alternative Fuel Vehicles Hydrogen & Fuel Cells Solar Wind Program Info State North Dakota Program Type Renewables Portfolio Standard Provider North Dakota Public Service Commission In March 2007, the North Dakota enacted legislation (H.B. 1506) establishing an ''objective'' that 10% of all retail electricity sold in the state be obtained from renewable energy and recycled energy by 2015. The objective must be measured by qualifying megawatt-hours (MWh) delivered at retail, or by credits purchased and retired to offset non-qualifying

283

Property Tax Exemption for Residential Renewable Energy Equipment |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Property Tax Exemption for Residential Renewable Energy Equipment Property Tax Exemption for Residential Renewable Energy Equipment Property Tax Exemption for Residential Renewable Energy Equipment < Back Eligibility Residential Savings Category Bioenergy Solar Buying & Making Electricity Home Weatherization Water Heating & Cooling Commercial Heating & Cooling Heating Water Heating Wind Program Info State Colorado Program Type Property Tax Incentive Rebate Amount 100% exemption for renewable energy system property Most locally assessed renewable energy property meet the criteria to be classified as personal property under § 39-1-102 (11), C.R.S. For Colorado property taxation purposes, solar energy facilities property used to produce two (2) megawatts or less of AC electricity and wind energy facilities property used to produce two (2) megawatts or less of AC

284

Renewable Energy Property Tax Exemption | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Renewable Energy Property Tax Exemption Renewable Energy Property Tax Exemption Renewable Energy Property Tax Exemption < Back Eligibility Commercial Industrial Residential Savings Category Bioenergy Buying & Making Electricity Water Solar Wind Program Info Start Date 01/01/1999 (general) 01/01/2002 (non-electricity landfill gas) State Kansas Program Type Property Tax Incentive Rebate Amount 100% Provider Kansas Department of Revenue This statute exempts renewable energy equipment from property taxes. Renewable energy includes wind, solar thermal electric, photovoltaic, biomass, hydropower, geothermal, and landfill gas resources or technologies that are actually and regularly used predominantly to produce and generate electricity. In addition, beginning in the 2002 tax year all personal property used to collect, refine, and treat landfill gas or transport

285

Sales and Use Tax Exemption for Renewable Energy Property (Nebraska) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sales and Use Tax Exemption for Renewable Energy Property Sales and Use Tax Exemption for Renewable Energy Property (Nebraska) Sales and Use Tax Exemption for Renewable Energy Property (Nebraska) < Back Eligibility Industrial Installer/Contractor Utility Savings Category Bioenergy Buying & Making Electricity Water Solar Wind Program Info Start Date 06/04/2013 State Nebraska Program Type Sales Tax Incentive Rebate Amount 100% Provider Nebraska Department of Revenue Nebraska allows for a refund of the sales and use taxes paid for a renewable energy system used to produce electricity for sale. To qualify, the investment must be at least $20 million. The law describes eligible sources of renewable energy as including, but not being limited to, wind, solar, geothermal, hydroelectric, biomass, and transmutation of elements.

286

Renewable Energy Powers Renewable Energy Lab, Employees  

NLE Websites -- All DOE Office Websites (Extended Search)

Powers Renewable Energy Lab, Employees The U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) does more than just research renewable energy. It runs on...

287

Hawkeye Renewables formerly Midwest Renewables | Open Energy...  

Open Energy Info (EERE)

(formerly Midwest Renewables) Place Iowa Falls, Iowa Zip 50126 Product Midwest bioethanol producer References Hawkeye Renewables (formerly Midwest Renewables)1 LinkedIn...

288

Bioenergy Sustainability at the Regional Scale  

Science Conference Proceedings (OSTI)

To meet national goals for biofuels production, there are going to be large increases in acreage planted to dedicated biofuels crops. These acreages may be in perennial grasses, annual crops, short rotation woody crops, or other types of vegetation and may involve use of existing cropland, marginal lands, abandoned lands or conversion of forest land. The establishment of bioenergy crops will affect ecological processes and their interactions and thus have an influence on ecosystem services provided by the lands on which these crops are grown. The regional-scale effects of bioenergy choices on ecosystem services need special attention because they often have been neglected yet can affect the ecological, social and economic aspects of sustainability. A regional-scale perspective provides the opportunity to make more informed choices about crop selection and management, particularly with regard to water quality and quantity issues, and also about other aspects of ecological, social, and economic sustainability. We give special attention to cellulosic feedstocks because of the opportunities they provide. Adopting an adaptive management approach for biofuels feedstock production planning will be possible to a certain extent if there is adequate monitoring data on the effects of changes in land use. Effects on water resources are used as an example and existing understanding of water resource effects are analyzed in detail. Current results indicate that there may be water quality improvements coupled with some decreases in available water for downstream uses.

Kline, Keith L [ORNL; Dale, Virginia H [ORNL; Mulholland, Patrick J [ORNL; Lowrance, Richard [USDA-ARS Southeast Watershed Research Laboratory, Tifton, Georgia; Robertson, G. Phillip [W.K. Kellogg Biological Station and Great Lakes Bioenergy Research

2010-11-01T23:59:59.000Z

289

Sorghum bioenergy genotypes, genes and pathways  

E-Print Network (OSTI)

Sorghum (Sorghum bicolor [L.] Moench) is the fifth most economically important cereal grown worldwide and is a source of food, feed, fiber and fuel. Sorghum, a C4 grass and a close relative to sugarcane, is adapted to hot, dry adverse environments and this plant is a potentially important bioenergy crop for Texas. The diversity of the twelve high biomass sorghum genotypes was analyzed using 50 simple sequence repeats (SSR) markers with genome coverage. The accumulation of biomass during sorghum development was studied in BTx623, an elite grain sorghum genotype. Genetic similarity analysis showed that the twelve high biomass genotypes were quite diverse and different from most current grain sorghum genotypes. The ratio of leaf/stem biomass accumulation was higher early in the vegetative phase during rapid canopy development and lower later in this phase when stem growth rate increased. This resulted in an increasing ratio of stem to leaf dry weight during development. Numerous cellulose sythase genes have been putatively identified in the sorghum genome. The relative level of Ces5 RNA in leaves decreased during vegetative phase of development by ~32 fold. There was no change in the relative abundance of Ces5 RNA in stems. Also there was no change in the relative abundance of Ces3 RNA in either stem or leaves during the vegetative stage. The knowledge gained in this study may contribute to the development of sorghum bioenergy hybrids that accumulate more biomass and that are modified in composition to make them more amenable to biofuels production.

Plews, Ian Kenneth

2007-12-01T23:59:59.000Z

290

Bioenergy Technologies Office: Distribution Infrastructure and...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Publications Contact Us Distribution Infrastructure and End Use The expanded Renewable Fuel Standard (RFS2) created under the Energy Independence and Security Act (EISA) of 2007...

291

Bioenergy News and Blog | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

that assess the resource consumption and greenhouse gas emissions associated with biofuel production. | Photo courtesy of National Renewable Energy Laboratory Argonne National...

292

Urban Wood-Based Bio-Energy Systems in Seattle  

SciTech Connect

Seattle Steam Company provides thermal energy service (steam) to the majority of buildings and facilities in downtown Seattle, including major hospitals (Swedish and Virginia Mason) and The Northwest (Level I) Regional Trauma Center. Seattle Steam has been heating downtown businesses for 117 years, with an average length of service to its customers of 40 years. In 2008 and 2009 Seattle Steam developed a biomass-fueled renewable energy (bio-energy) system to replace one of its gas-fired boilers that will reduce greenhouse gases, pollutants and the amount of waste sent to landfills. This work in this sub-project included several distinct tasks associated with the biomass project development as follows: a. Engineering and Architecture: Engineering focused on development of system control strategies, development of manuals for start up and commissioning. b. Training: The project developer will train its current operating staff to operate equipment and facilities. c. Flue Gas Clean-Up Equipment Concept Design: The concept development of acid gas emissions control system strategies associated with the supply wood to the project. d. Fuel Supply Management Plan: Development of plans and specifications for the supply of wood. It will include potential fuel sampling analysis and development of contracts for delivery and management of fuel suppliers and handlers. e. Integrated Fuel Management System Development: Seattle Steam requires a biomass Fuel Management System to track and manage the delivery, testing, processing and invoicing of delivered fuel. This application will be web-based and accessed from a password-protected URL, restricting data access and privileges by user-level.

Stan Gent, Seattle Steam Company

2010-10-25T23:59:59.000Z

293

Renewable Energy Development Grant Program (Oregon) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Development Grant Program (Oregon) Development Grant Program (Oregon) Renewable Energy Development Grant Program (Oregon) < Back Eligibility Commercial Residential Savings Category Bioenergy Water Buying & Making Electricity Solar Home Weatherization Heating & Cooling Water Heating Wind Maximum Rebate Up to $250,000, or 35% of total project costs Program Info Funding Source tax credit auctions Start Date 1/1/2012 State Oregon Program Type State Grant Program Rebate Amount Varies by project Provider Program Coordinator '''''This program is not currently accepting applications. Applications under the most recent solicitation were due March 29, 2013.''''' The Oregon Department of Energy (ODOE) offers competitive grants to renewable energy projects as part of ODOE's Energy Incentives Program. ODOE

294

Renewable Energy Tax Credit (Corporate) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Corporate) Corporate) Renewable Energy Tax Credit (Corporate) < Back Eligibility Agricultural Commercial Industrial Savings Category Bioenergy Biofuels Alternative Fuel Vehicles Commercial Heating & Cooling Manufacturing Buying & Making Electricity Home Weatherization Commercial Weatherization Solar Lighting Windows, Doors, & Skylights Water Heating & Cooling Heating Swimming Pool Heaters Water Heating Wind Maximum Rebate 2.5 million per installation* Program Info State North Carolina Program Type Corporate Tax Credit Rebate Amount 35% North Carolina offers a tax credit equal to 35% of the cost of eligible renewable energy property constructed, purchased or leased by a taxpayer and placed into service in North Carolina during the taxable year. The credit has been amended several times since its original inception.

295

Local Option - Improvement Districts for Energy Efficiency and Renewable  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Local Option - Improvement Districts for Energy Efficiency and Local Option - Improvement Districts for Energy Efficiency and Renewable Energy Improvements Local Option - Improvement Districts for Energy Efficiency and Renewable Energy Improvements < Back Eligibility Agricultural Commercial Industrial Institutional Low-Income Residential Multi-Family Residential Residential Savings Category Home Weatherization Commercial Weatherization Sealing Your Home Heating & Cooling Commercial Heating & Cooling Cooling Design & Remodeling Windows, Doors, & Skylights Construction Heat Pumps Heating Appliances & Electronics Commercial Lighting Lighting Biofuels Alternative Fuel Vehicles Bioenergy Solar Hydrogen & Fuel Cells Buying & Making Electricity Water Water Heating Wind Program Info State Colorado Program Type PACE Financing

296

Renewable Hydrogen  

NLE Websites -- All DOE Office Websites (Extended Search)

national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. U.S. Dependence on...

297

Strategic Renewal  

NLE Websites -- All DOE Office Websites (Extended Search)

Renewal Renewal of the Advanced Photon Source Proposal for Approval to Proceed with Conceptual Design (CD-0) Submitted to the US Department of Energy Office of Basic Energy Sciences May 31, 2009 Advanced Photon Source A BS t R AC t This document proposes a coordinated upgrade of the accelerator, beamlines, and enabling technical infrastructure that will equip future users of the Advanced Photon Source (APS) to address key

298

Center for BioEnergy Sustainability (CBES) http://www.ornl.gov/sci/besd/cbes/ Bioenergy Sustainability and Land-Use Change Report  

E-Print Network (OSTI)

Center for BioEnergy Sustainability (CBES) http://www.ornl.gov/sci/besd/cbes/ 1 Bioenergy Sustainability and Land-Use Change Report Oak Ridge National Laboratory October 2010 Invited Talks and Presentations: October 17-20: Keith Kline gave a presentation on the Global Sustainable Bioenergy Project

299

Center for BioEnergy Sustainability (CBES) http://www.ornl.gov/cbes/ Bioenergy Sustainability and Land-Use Change Report  

E-Print Network (OSTI)

Center for BioEnergy Sustainability (CBES) http://www.ornl.gov/cbes/ 1 Bioenergy Sustainability Dale and Gregg Marland (ORNL) contributed to Chapter 4 on Grand Challenges in Energy Sustainability Torre Ugarte, D., in review. "Collaborators welcome: Global Sustainable Bioenergy Project (GSB

300

Center for BioEnergy Sustainability Achievements and Activities October 1, 2009 September 30, 2010 Center for BioEnergy Sustainability  

E-Print Network (OSTI)

Center for BioEnergy Sustainability ­ Achievements and Activities ­ October 1, 2009 ­ September 30, 2010 1 Center for BioEnergy Sustainability Oak Ridge National Laboratory (ORNL) Accomplishments on Bioenergy Sustainability" was held February 3-4, 2010, at ORNL. http

Note: This page contains sample records for the topic "bioenergy lightsource renewables" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Center for BioEnergy Sustainability (CBES) http://www.ornl.gov/cbes/ Bioenergy Sustainability and Land-Use Change Report  

E-Print Network (OSTI)

Center for BioEnergy Sustainability (CBES) http://www.ornl.gov/cbes/ 1 Bioenergy Sustainability Storey. 2011. Indicators to support environmental sustainability of bioenergy systems. Ecological KL, et al. Global Agro-ecosystem Model System for Analysis of Sustainable Biofuel Production Under

302

Center for BioEnergy Sustainability (CBES) http://www.ornl.gov/cbes/ Bioenergy Sustainability and Land-Use Change Report  

E-Print Network (OSTI)

Center for BioEnergy Sustainability (CBES) http://www.ornl.gov/cbes/ 1 Bioenergy Sustainability and Gregg Marland (ORNL) contributed to Chapter 4 on Grand Challenges in Energy Sustainability. Kline K, E Sustainable Bioenergy Project (GSB). GLP NEWS No. 7 (7-8). The article reviews recent collaborations among

303

Energy Department Selects Three Bioenergy Research Centers for $375 Million  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Three Bioenergy Research Centers for $375 Three Bioenergy Research Centers for $375 Million in Federal Funding Energy Department Selects Three Bioenergy Research Centers for $375 Million in Federal Funding June 26, 2007 - 2:08pm Addthis Basic Genomics Research Furthers President Bush's Plan to Reduce Gasoline Usage 20 Percent in Ten Year WASHINGTON, DC - U. S. Department of Energy (DOE) Secretary Samuel W. Bodman today announced that DOE will invest up to $375 million in three new Bioenergy Research Centers that will be located in Oak Ridge, Tennessee; Madison, Wisconsin; and near Berkeley, California. The Centers are intended to accelerate basic research in the development of cellulosic ethanol and other biofuels, advancing President Bush's Twenty in Ten Initiative, which seeks to reduce U.S. gasoline consumption by 20 percent

304

10 Questions for a Bioenergy Expert: Melinda Hamilton | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Bioenergy Expert: Melinda Hamilton Bioenergy Expert: Melinda Hamilton 10 Questions for a Bioenergy Expert: Melinda Hamilton February 15, 2011 - 4:43pm Addthis Melinda Hamilton | Photo courtesy of the Idaho National Laboratory Melinda Hamilton | Photo courtesy of the Idaho National Laboratory Niketa Kumar Niketa Kumar Public Affairs Specialist, Office of Public Affairs Meet Melinda Hamilton - she's a bioenergy expert and the Director of Education Programs at Idaho National Laboratory. She recently took some time to share what she's doing to help ramp-up U.S. competitiveness in science and technology, why Jane Goodall led her to a career in science and what can happen in a lab if you don't start with a good plan. Q: What sparked your interest to pursue a career in science? Melinda Hamilton: The answer is kind of corny, but the truth is when I was

305

Thailand-Key Results and Policy Recommendations for Future Bioenergy  

Open Energy Info (EERE)

and Policy Recommendations for Future Bioenergy and Policy Recommendations for Future Bioenergy Development Jump to: navigation, search Name Thailand-Key Results and Policy Recommendations for Future Bioenergy Development Agency/Company /Organization Food and Agriculture Organization of the United Nations Sector Land Focus Area Biomass, Agriculture Topics Co-benefits assessment, Policies/deployment programs, Background analysis Resource Type Lessons learned/best practices Website http://www.fao.org/docrep/013/ Country Thailand UN Region South-Eastern Asia References Thailand-Key Results and Policy Recommendations for Future Bioenergy Development[1] Abstract "The Government of Thailand, through its Alternative Energy Development Plan, has set a target to increase biofuel production to five billion

306

Press Releases: BioEnergy Science Center  

NLE Websites -- All DOE Office Websites (Extended Search)

Press Releases Press Releases Chu presents energy research, development vision to senators U.S. Energy Secretary Steven Chu testified at a U.S. Senate Energy and Natural Resources Committee hearing March 5. During his testimony, Chu presented his vision for energy research and development at the... Source: Checkbiotech (Trade), March 11, 2009 Keywords Matched: Oak Ridge National Country: Switzerland Region: SourceType: News Laboratory: ORNL Feed Source: Meltwater Chu presents energy research, development vision to senators: An example, Chu said, is the current biofuels research underway at the three BioEnergy Research Centers located at the Oak Ridge National Laboratory in Oak Ridge, Tenn.; the University of Wisconsin in Madison; and Lawrence Berkeley National Laboratory. March 10, 2009

307

Bioenergy Feedstock Development Program Status Report  

DOE Green Energy (OSTI)

The U.S. Department of Energy's (DOE's) Bioenergy Feedstock Development Program (BFDP) at Oak Ridge National Laboratory (ORNL) is a mission-oriented program of research and analysis whose goal is to develop and demonstrate cropping systems for producing large quantities of low-cost, high-quality biomass feedstocks for use as liquid biofuels, biomass electric power, and/or bioproducts. The program specifically supports the missions and goals of DOE's Office of Fuels Development and DOE's Office of Power Technologies. ORNL has provided technical leadership and field management for the BFDP since DOE began energy crop research in 1978. The major components of the BFDP include energy crop selection and breeding; crop management research; environmental assessment and monitoring; crop production and supply logistics operational research; integrated resource analysis and assessment; and communications and outreach. Research into feedstock supply logistics has recently been added and will become an integral component of the program.

Kszos, L.A.

2001-02-09T23:59:59.000Z

308

Renewable Energy Production Incentive | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Production Incentive Production Incentive Renewable Energy Production Incentive < Back Eligibility Agricultural Commercial Industrial Nonprofit Residential Savings Category Bioenergy Maximum Rebate None Program Info State Minnesota Program Type Performance-Based Incentive Rebate Amount 1.0¢-1.5¢/kWh Other undetermined incentive for on farm biogas ''not'' used to produce electricity Provider Minnesota Department of Commerce Supported by the state's Renewable Development Fund, Minnesota offers a payment of 1.5¢ per kilowatt-hour (kWh) for on-farm biogas facilities. Previously, this incentive also offered payments to wind and hydroelectric facilities, but no new incentives are being offered for these technologies. Hydro Facility Eligibility Generally, the incentive is available to hydro facilities located at the

309

Renewable Energy System Exemption | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

System Exemption System Exemption Renewable Energy System Exemption < Back Eligibility Agricultural Commercial Industrial Residential Savings Category Bioenergy Commercial Heating & Cooling Manufacturing Buying & Making Electricity Alternative Fuel Vehicles Hydrogen & Fuel Cells Solar Home Weatherization Water Heating & Cooling Swimming Pool Heaters Water Heating Heating Wind Maximum Rebate $50,000 or 70% of the assessed value of eligible property, whichever is greater Program Info State South Dakota Program Type Property Tax Incentive Rebate Amount $50,000 or 70% of the assessed value of eligible property, whichever is greater Provider S.D. Department of Revenue and Regulation In March 2010, South Dakota established a new property tax incentive that replaced two existing property tax incentives for renewable energy.

310

Tax Credit for Renewable Energy Equipment Manufacturers | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tax Credit for Renewable Energy Equipment Manufacturers Tax Credit for Renewable Energy Equipment Manufacturers Tax Credit for Renewable Energy Equipment Manufacturers < Back Eligibility Commercial Industrial Savings Category Bioenergy Solar Buying & Making Electricity Home Weatherization Water Heating & Cooling Swimming Pool Heaters Water Heating Commercial Heating & Cooling Heating Wind Maximum Rebate $20 million Program Info Expiration Date 1/1/2014 State Oregon Program Type Industry Recruitment/Support Rebate Amount 50% of eligible costs (10% per year for 5 years) Provider Oregon Business Development Department The Tax Credit for Renewable Energy Resource Equipment Manufacturing Facilities was enacted as a part of Oregon's Business Energy Tax Credit (BETC) in July 2007, with the passage of [http://www.leg.state.or.us/07reg/measpdf/hb3200.dir/hb3201.en.pdf HB

311

Renewable Energy Tax Credit (Personal) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Renewable Energy Tax Credit (Personal) Renewable Energy Tax Credit (Personal) Renewable Energy Tax Credit (Personal) < Back Eligibility Commercial Multi-Family Residential Residential Savings Category Bioenergy Biofuels Alternative Fuel Vehicles Commercial Heating & Cooling Manufacturing Buying & Making Electricity Home Weatherization Commercial Weatherization Solar Lighting Windows, Doors, & Skylights Water Heating & Cooling Heating Swimming Pool Heaters Water Heating Wind Maximum Rebate 1,400 - 10,500 (varies by technology); 2.5 million* for systems used for a business purpose Program Info Start Date 1/1/2009 State North Carolina Program Type Personal Tax Credit Rebate Amount 35% North Carolina offers a tax credit equal to 35% of the cost of eligible renewable energy property constructed, purchased or leased by a taxpayer

312

Renewable Energy Sales Tax Exemptions | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Renewable Energy Sales Tax Exemptions Renewable Energy Sales Tax Exemptions Renewable Energy Sales Tax Exemptions < Back Eligibility Commercial General Public/Consumer Industrial Residential Savings Category Bioenergy Solar Buying & Making Electricity Heating & Cooling Swimming Pool Heaters Water Heating Commercial Heating & Cooling Heating Wind Maximum Rebate None Program Info Start Date 1979 (certain biomass); 07/01/2011 (solar, wind, and anaerobic digesters) State Wisconsin Program Type Sales Tax Incentive Rebate Amount 100% exemption from sales and use tax for eligible purchases Provider Wisconsin Department of Revenue Wisconsin has two sales tax exemptions that apply to renewable energy. Legislation enacted in 1979 exempts wood sold as a fuel for residential use from the state sales and use tax (Wis. Stat. § 77.54(30)). Residential use

313

Renewable Energy Production Tax Credit (Personal) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Renewable Energy Production Tax Credit (Personal) Renewable Energy Production Tax Credit (Personal) Renewable Energy Production Tax Credit (Personal) < Back Eligibility Agricultural Commercial Industrial Savings Category Bioenergy Solar Buying & Making Electricity Wind Maximum Rebate Wind and biomass: First 400,000 MWh annually for 10 years (i.e. 4,000,000/year) Solar electric: First 200,000 MWh annually for 10 years (annual amount varies) Statewide cap: 2,000,000 MWh plus an additional 500,000 MWh for solar electric Program Info Start Date 1/1/2008 State New Mexico Program Type Personal Tax Credit Rebate Amount 0.01/kWh for wind and biomass 0.027/kWh (average) for solar (see below) Provider New Mexico Energy, Minerals and Natural Resources Department Enacted in 2002, the New Mexico Renewable Energy Production Tax Credit

314

Local Option - Financing Program for Renewable Energy and Energy Efficiency  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Financing Program for Renewable Energy and Energy Financing Program for Renewable Energy and Energy Efficiency Local Option - Financing Program for Renewable Energy and Energy Efficiency < Back Eligibility Commercial General Public/Consumer Residential Savings Category Bioenergy Commercial Heating & Cooling Manufacturing Buying & Making Electricity Alternative Fuel Vehicles Hydrogen & Fuel Cells Solar Home Weatherization Water Heating & Cooling Heating Water Heating Wind Program Info Start Date 8/26/2009 State North Carolina Program Type State Loan Program Rebate Amount Not specified North Carolina enacted legislation ([http://www.ncleg.net/Sessions/2009/Bills/House/PDF/H1389v7.pdf H.B. 1389]) in August 2009 that authorizes cities and counties to establish revolving loan programs to finance renewable energy and energy efficiency

315

General Renewable Energy-Productive Uses and Development Impact | Open  

Open Energy Info (EERE)

General Renewable Energy-Productive Uses and Development Impact General Renewable Energy-Productive Uses and Development Impact Jump to: navigation, search Tool Summary LAUNCH TOOL Name: General Renewable Energy-Productive Uses and Development Impact Agency/Company /Organization: World Bank Sector: Energy Topics: Implementation, Co-benefits assessment, - Energy Access Website: web.worldbank.org/WBSITE/EXTERNAL/TOPICS/EXTENERGY2/EXTRENENERGYTK/0,, References: General Renewable Energy-Productive Uses and Development Impact[1] Resources Productive Uses Productive Uses of Energy for Rural Development, R. Anil Cabraal, Douglas F. Barnes, and Sachin G. Agarwal, Annual Rev. Environ. Resour. 2005. 30:117-44. Millennium Development Goals: Status 2004, United Nations Energy and Gender Bioenergy-Based Productive Use Platforms for Rural Economic

316

Green Mountain Energy Renewable Rewards Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Mountain Energy Renewable Rewards Program Mountain Energy Renewable Rewards Program Green Mountain Energy Renewable Rewards Program < Back Eligibility Residential Savings Category Bioenergy Buying & Making Electricity Water Solar Wind Program Info State Texas Program Type Net Metering Provider Green Mountain Energy '''''Texas does not have statewide net metering as the term is generally understood. However, retail electricity providers in Texas are permitted, but not required, to compensate customers for electricity produced by distributed renewable energy generation systems and exported to the electric grid. The program described below operates in a fashion similar to net metering and has similar customer benefits up to a certain point.''''' Green Mountain Energy Company, a retail provider of green electricity,

317

Renewable Energy Documents from OSTI Collections, Office of Scientific and  

Office of Scientific and Technical Information (OSTI)

Renewable Energy Information from OSTI Collections Renewable Energy Information from OSTI Collections Find government research information related to renewable energy through OSTI collections. Find full text technical reports, citations, project summaries and more. OSTI makes R&D information rapidly available to researchers and the public so that discovery can be accelerated. Featured Documents from Information Bridge Bioenergy Research Centers An Overview of the Science Comparative Review of a Dozen National Energy Plans: Focus on Renewable and Efficient Energy DOE Annual Progress Report: Water Needs and Constraints for Hydrogen Pathways Ocean Energy Technology Overview: Federal Energy Management Program (FEMP) Solar Powering Your Community: A Guide for Local Governments, July 2009 Photovoltaic Systems Interconnected onto Network Distribution

318

Renewable Energy Production Tax Credit (Corporate) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Renewable Energy Production Tax Credit (Corporate) Renewable Energy Production Tax Credit (Corporate) Renewable Energy Production Tax Credit (Corporate) < Back Eligibility Commercial Industrial Savings Category Bioenergy Solar Buying & Making Electricity Wind Maximum Rebate Wind and biomass: First 400,000 MWh annually for 10 years (i.e. 4,000,000/year) Solar electric: First 200,000 MWh annually for 10 years (annual amount varies) Statewide cap: 2,000,000 MWh plus an additional 500,000 MWh for solar electric Program Info Start Date 7/1/2002 State New Mexico Program Type Corporate Tax Credit Rebate Amount 0.01/kWh for wind and biomass 0.027/kWh (average) for solar (see below) Provider New Mexico Energy, Minerals and Natural Resources Department Enacted in 2002, the New Mexico Renewable Energy Production Tax Credit

319

Renewable Energy Business Tax Incentives | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Renewable Energy Business Tax Incentives Renewable Energy Business Tax Incentives Renewable Energy Business Tax Incentives < Back Eligibility Commercial Industrial Savings Category Bioenergy Commercial Heating & Cooling Manufacturing Buying & Making Electricity Alternative Fuel Vehicles Hydrogen & Fuel Cells Water Solar Home Weatherization Heating & Cooling Swimming Pool Heaters Water Heating Wind Maximum Rebate No individual limit. The aggregate amount of tax credits that be approved state-wide is $70 million per taxable year. Program Info Start Date 1/1/2010 Expiration Date 12/31/2019 State Arizona Program Type Industry Recruitment/Support Rebate Amount Varies Provider Arizona Department of Commerce [http://www.azleg.gov/legtext/49leg/1r/bills/sb1403s.pdf SB 1403], signed in July of 2009, created tax incentives intended to draw renewable energy

320

Local Option - Property Tax Exemption for Renewable Energy Systems |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Property Tax Exemption for Renewable Energy Systems Property Tax Exemption for Renewable Energy Systems Local Option - Property Tax Exemption for Renewable Energy Systems < Back Eligibility Agricultural Commercial General Public/Consumer Industrial Residential Savings Category Bioenergy Buying & Making Electricity Solar Heating & Cooling Water Heating Wind Maximum Rebate Varies (local option) Program Info Start Date 8/3/2007 State Colorado Program Type Property Tax Incentive Rebate Amount Varies (local option) Colorado enacted legislation in April 2007 ([http://www.leg.state.co.us/clics/clics2007a/csl.nsf/fsbillcont3/31EEE26A... SB 145]) to authorize counties and municipalities to offer property or sales tax rebates or credits to residential and commercial property owners who install renewable energy systems on their property.

Note: This page contains sample records for the topic "bioenergy lightsource renewables" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

DOE Science Showcase - Renewable Energy Information from OSTI Collections |  

Office of Scientific and Technical Information (OSTI)

DOE Science Showcase - Renewable Energy Information from OSTI Collections DOE Science Showcase - Renewable Energy Information from OSTI Collections Find government research information related to renewable energy through OSTI collections. Find full text technical reports, citations, project summaries and more. OSTI makes R&D information rapidly available to researchers and the public so that discovery can be accelerated. Featured Documents from Information Bridge Bioenergy Research Centers An Overview of the Science Comparative Review of a Dozen National Energy Plans: Focus on Renewable and Efficient Energy DOE Annual Progress Report: Water Needs and Constraints for Hydrogen Pathways Ocean Energy Technology Overview: Federal Energy Management Program (FEMP) Solar Powering Your Community: A Guide for Local Governments, July

322

Renewable energy in commercial buildings  

E-Print Network (OSTI)

Dynamic life cycle assessment (LCA) of renewable energytechnologies, Renewable energy. [6] REN21 Renewable Energy Policy Network. 2005. Renewables

Scarpa, Massimiliano; Schiavon, Stefano; Zecchin, Roberto

2008-01-01T23:59:59.000Z

323

Brewing Renewable Diesel | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Brewing Renewable Diesel Brewing Renewable Diesel Discovery & Innovation Stories of Discovery & Innovation Brief Science Highlights SBIR/STTR Highlights Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5430 11.15.11 Brewing Renewable Diesel Researchers at a DOE Bioenergy Research Center use microbes to synthesize a drop-in replacement for standard diesel transportation fuel. Print Text Size: A A A Subscribe FeedbackShare Page Click to enlarge photo. Enlarge Photo Pamela Peralta-Yahya, Taek Soon Lee, and Mario Ouellet of the DOE Joint BioEnergy Institute team that used microbes to synthesize a bio-based drop-in substitute for diesel fuel. Photo by Roy Kaltschmidt, Berkeley Lab From left, Pamela Peralta-Yahya, Taek Soon Lee, and Mario Ouellet of the

324

Renewable Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Renewable Energy Renewable Energy The WIPP Site Holds Promise as an Ideal Source of Renewable Energy Encompassing 16 square miles of open Chihuahuan desert with abundant sunshine and minimal surface roughness, the WIPP site is ideal for either solar- or wind-generated electricity production, demonstration or testing. In fact, WIPP is striving to take advantage of its abundance of sunshine and wind. The Department of Energy's Office of Environmental Management has created what is being called the Energy Park Initiative (EPI). This initiative's goal is to convert DOE facilities into assets by focusing on providing solutions for renewable energy technologies. WIPP, which has always been a DOE leader in terms of safety, has set the additional goal of trying to become the first DOE site operating with 100 percent clean energy. A team, consisting of representatives from CBFO, WTS, Sandia National Laboratories, Los Alamos National Laboratory, New Mexico State University, Texas Tech, the Carlsbad community and area utilities, have come up with several potential solutions. Members of the team are continuing to look into these solutions.

325

Renewable Energy RFP  

NLE Websites -- All DOE Office Websites (Extended Search)

Request for Proposal October 15, 2003 Renewable Energy Today For a Cleaner Tomorrow Biomass Group, LLC - Renewable Energy Request for Proposal, October 15, 2003 Renewable Energy...

326

U.S. Department of Energy's Bioenergy Research Centers An Overview of the Science  

SciTech Connect

Alternative fuels from renewable cellulosic biomass - plant stalks, trunks, stems, and leaves - are expected to significantly reduce U.S. dependence on imported oil while enhancing national energy security and decreasing the environmental impacts of energy use. Ethanol and other advanced biofuels from cellulosic biomass are renewable alternatives that could increase domestic production of transportation fuels, revitalize rural economies, and reduce carbon dioxide and pollutant emissions. According to U.S. Secretary of Energy Steven Chu, 'Developing the next generation of biofuels is key to our effort to end our dependence on foreign oil and address the climate crisis while creating millions of new jobs that can't be outsourced.' Although cellulosic ethanol production has been demonstrated on a pilot level, developing a cost-effective, commercial-scale cellulosic biofuel industry will require transformational science to significantly streamline current production processes. Woodchips, grasses, cornstalks, and other cellulosic biomass are widely abundant but more difficult to break down into sugars than corn grain - the primary source of U.S. ethanol fuel production today. Biological research is key to accelerating the deconstruction of cellulosic biomass into sugars that can be converted to biofuels. The Department of Energy (DOE) Office of Science continues to play a major role in inspiring, supporting, and guiding the biotechnology revolution over the past 30 years. The DOE Genomic Science program is advancing a new generation of research focused on achieving whole-systems understanding of biology. This program is bringing together scientists in diverse fields to understand the complex biology underlying solutions to DOE missions in energy production, environmental remediation, and climate change science. For more information on the Genomic Science program, see p. 26. To focus the most advanced biotechnology-based resources on the biological challenges of biofuel production, DOE established three Bioenergy Research Centers (BRCs) in September 2007. Each center is pursuing the basic research underlying a range of high-risk, high-return biological solutions for bioenergy applications. Advances resulting from the BRCs are providing the knowledge needed to develop new biobased products, methods, and tools that the emerging biofuel industry can use (see sidebar, Bridging the Gap from Fundamental Biology to Industrial Innovation for Bioenergy, p. 6). The DOE BRCs have developed automated, high-throughput analysis pipelines that will accelerate scientific discovery for biology-based biofuel research. The three centers, which were selected through a scientific peer-review process, are based in geographically diverse locations - the Southeast, the Midwest, and the West Coast - with partners across the nation (see U.S. map, DOE Bioenergy Research Centers and Partners, on back cover). DOE's Lawrence Berkeley National Laboratory leads the DOE Joint BioEnergy Institute (JBEI) in California; DOE's Oak Ridge National Laboratory leads the BioEnergy Science Center (BESC) in Tennessee; and the University of Wisconsin-Madison leads the Great Lakes Bioenergy Research Center (GLBRC). Each center represents a multidisciplinary partnership with expertise spanning the physical and biological sciences, including genomics, microbial and plant biology, analytical chemistry, computational biology and bioinformatics, and engineering. Institutional partners include DOE national laboratories, universities, private companies, and nonprofit organizations.

2010-07-01T23:59:59.000Z

327

National Bioenergy Center Sugar Platform Integration Project: Quarterly Update No.5, October-December 2004  

DOE Green Energy (OSTI)

Fifth issue of a quarterly reporting to stakeholders on progress on the National Bioenergy Center Sugar Platform Integration Project.

Not Available

2005-02-01T23:59:59.000Z

328

National Bioenergy Center Sugar Platform Integration Project Quarterly Update: April/June 2004, No.3  

DOE Green Energy (OSTI)

Third issue of a quarterly reporting to stakeholders on progress on the National Bioenergy Center Sugar Platform Integration Project.

Not Available

2004-07-01T23:59:59.000Z

329

National Bioenergy Center Sugar Platform Integration Project: Quarterly Update No.6, January-March 2005  

DOE Green Energy (OSTI)

Sixth issue of a quarterly reporting to stakeholders on progress on the National Bioenergy Center Sugar Platform Integration Project

Not Available

2005-04-01T23:59:59.000Z

330

Biomass Program Outreach and Communication The Bioenergy Feedstock Information Network (BFIN)  

E-Print Network (OSTI)

after earmarks for bioenergy R&D by the Department of Energy has declined yearly for the last several

331

National Bioenergy Center Sugar Platform Integration Project: Quarterly Update, January/March 2004, No.2  

DOE Green Energy (OSTI)

Second issue of a quarterly reporting to stakeholders on progress on the National Bioenergy Center Sugar Platform Integration Project.

Not Available

2004-05-01T23:59:59.000Z

332

National Bioenergy Center Biochemical Platform Integration Project: Quarterly Update #13, October-December 2006  

DOE Green Energy (OSTI)

Volume 13 of a quarterly newsletter that describes the activities of the National Bioenergy Center's Biochemical Processing Integration Task.

Schell, D. J.

2007-01-01T23:59:59.000Z

333

National Bioenergy Center Sugar Platform Integration Project: Quarterly Update #7, April-June 2005  

DOE Green Energy (OSTI)

Volume 7 of a quarterly newsletter that describes the activities of the National Bioenergy Center's Sugar Platform Integration Project.

Not Available

2005-07-01T23:59:59.000Z

334

National Bioenergy Center Sugar Platform Integration Project: Quarterly Update, Issue No.1, October-December 2003  

DOE Green Energy (OSTI)

First issue of a quarterly reporting to stakeholders on progress on the National Bioenergy Center Sugar Platform Integration Project.

Not Available

2004-03-01T23:59:59.000Z

335

National Bioenergy Center Sugar Platform Integration Project: Quarterly Update, July/September 2004, No.4  

DOE Green Energy (OSTI)

Fourth issue of a quarterly reporting to stakeholders on progress on the National Bioenergy Center Sugar Platform Integration Project

Not Available

2004-10-01T23:59:59.000Z

336

National Bioenergy Center Sugar Platform Integration Project: Quarterly Update #11, April-June 2006  

DOE Green Energy (OSTI)

Volume 11 of a quarterly newsletter that describes the activities of the National Bioenergy Center's Sugar Platform Integration Project.

Schell, D.

2006-07-01T23:59:59.000Z

337

National Bioenergy Center Sugar Platform Integration Project: Quarterly Update #8, July-September 2005  

Science Conference Proceedings (OSTI)

Volume 8 of a quarterly newsletter that describes the activities of the National Bioenergy Center's Sugar Platform Integration Project.

Schell, D.

2005-10-01T23:59:59.000Z

338

National Bioenergy Center Biochemical Platform Integration Project: Quarterly Update #21, October - December 2008  

SciTech Connect

October to December, 2008 edition of the National Bioenergy Center?s Biochemical Platform Integration Project quarterly newsletter.

Schell, D.

2009-01-01T23:59:59.000Z

339

National Bioenergy Center Sugar Platform Integration Project: Quarterly Update #9, October-December 2005  

DOE Green Energy (OSTI)

Volume 9 of a quarterly newsletter that describes the activities of the National Bioenergy Center's Sugar Platform Integration Project.

Schell, D. J.

2006-01-01T23:59:59.000Z

340

National Bioenergy Center Sugar Platform Integration Project: Quarterly Update #10, January-March 2006  

DOE Green Energy (OSTI)

Volume 10 of a quarterly newsletter that describes the activities of the National Bioenergy Center's Sugar Platform Integration Project.

Not Available

2006-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "bioenergy lightsource renewables" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

National Bioenergy Center Biochemical Platform Integration Project: Quarterly Update #14, January - March 2007  

DOE Green Energy (OSTI)

Volume 14 of a quarterly newsletter that describes the activities of the National Bioenergy Center's Biochemical Processing Integration Task.

Schell, D.

2007-04-01T23:59:59.000Z

342

National Bioenergy Center Biochemical Platform Process Integration Project: Quarterly Update #18, January-March 2008  

DOE Green Energy (OSTI)

January-March, 2008 edition of the quarterly update for the National Bioenergy Center's Biochemical Platform Integration Project.

Schell, D.

2008-04-01T23:59:59.000Z

343

National Bioenergy Center Sugar Platform Integration Project: Quarterly Update #12, July-September 2006  

DOE Green Energy (OSTI)

Volume 12 of a quarterly newsletter that describes the activities of the National Bioenergy Center's Sugar Platform Integration Project.

Schell, D.

2006-10-01T23:59:59.000Z

344

National Bioenergy Center Biochemical Platform Integration Project: Quarterly Update #24, July-September 2009  

SciTech Connect

July to September, 2009 edition of the National Bioenergy Center's Biochemical Platform Integration Project quarterly newsletter.

Schell, D.

2009-10-01T23:59:59.000Z

345

The Center for BioEnergy Sustainability (CBES) at Oak Ridge National Laboratory (ORNL)  

E-Print Network (OSTI)

The Center for BioEnergy Sustainability (CBES) at Oak Ridge National Laboratory (ORNL) is pleased agent-based models to understand the impact of NIPF owner preferences and bioenergy policies on forested, and will be collaborating with Virginia Dale on landscape-scale computer modeling of forest- based bioenergy production

346

A Study on the Bioenergy Crop Production Function of Land Use in China  

Science Conference Proceedings (OSTI)

Based on the analysis of the bioenergy crop production function of land use, combined with the current situation of Chinese land use, this paper analyzes and discusses the cultivation of energy plants and the bioenergy crop production function of land ... Keywords: Land use, Bioenergy crop production function, farmers income

Zhang Kun; Duan Jiannan; Yang Jun; Li Ping

2011-03-01T23:59:59.000Z

347

A Watershed Perspective on Bioenergy Sustainability: A Workshop to be held at Oak Ridge National Laboratory  

E-Print Network (OSTI)

A Watershed Perspective on Bioenergy Sustainability: A Workshop to be held at Oak Ridge National-scale perspective of cellulosic bioenergy feedstock sustainability will be held at Oak Ridge National Laboratory bioenergy feedstock production (particularly hydrology and water quality). Overall goals for the workshop

348

Small-Scale Bioenergy Alternatives for Industry, Farm, and Institutions : A User`s Perspective.  

DOE Green Energy (OSTI)

This report presents research on biomass as an energy source. Topics include: bioenergy development and application; bioenergy combustion technology; and bioenergy from agricultural, forest, and urban resources. There are a total of 57 individual reports included. Individual reports are processed separately for the databases.

Folk, Richard [ed.] [Idaho Univ., Moscow, ID (United States). Dept. of Forest Products

1991-12-31T23:59:59.000Z

349

Summary of the October 2009 Forum Center for BioEnergy Sustainability (CEBS)  

E-Print Network (OSTI)

Summary of the October 2009 Forum Center for BioEnergy Sustainability (CEBS) "Social Dimensions of Sustainable Bioenergy Development" Amy Wolfe introduced Kathleen Halvorsen from Michigan Technological forest landowners, sustainability, and bioenergy. In the social-science landscape, there are has three

350

Feasibility Studies on Selected Bioenergy Concepts Producing Electricity, Heat, and Liquid Fuel  

E-Print Network (OSTI)

The IEA Bioenergy Techno-Economic Analysis Activity reported here, had the following objectives: . To assist companies working with technologies and products related to bioenergy . To promote bioenergy technologies, processes and applications, . To built and maintain a network for R&D organisations and industry.

Yrj Solantausta; Tiina Koljonen; Erich Podesser; David Beckman; Ralph Overend

1999-01-01T23:59:59.000Z

351

NEW RENEWABLE FACILITIES PROGRAM  

E-Print Network (OSTI)

CALIFORNIA ENERGY COMMISSION NEW RENEWABLE FACILITIES PROGRAM GUIDEBOOK APRIL 2006 CEC-300 Director Heather Raitt Technical Director Renewable Energy Program Drake Johnson Office Manager Renewable Energy Office Valerie Hall Deputy Director Efficiency, Renewables, and Demand Analysis Division #12;These

352

Hawaii Bioenergy Master Plan Economic Impacts  

E-Print Network (OSTI)

Rights. #12;3 The Renewable Fuel Standard (RFS) sets minimum domestic use mandates for different biofuels to meet the overall mandate. U.S. biofuel use mandates grow in the future, likely leading to more ethanol.05 per gallon ­ 1-2% of the current wholesale price of ethanol ­ as of November 2012. What do RIN buyers

353

Renewable Energy 101 (Presentation)  

SciTech Connect

Presentation given at the 2012 Department of Homeland Security Renewable Energy Roundtable as an introduction to renewable technologies and applications.

Walker, A.

2012-03-01T23:59:59.000Z

354

Kai BioEnergy Corporation | Open Energy Information  

Open Energy Info (EERE)

Kai BioEnergy Corporation Kai BioEnergy Corporation Jump to: navigation, search Name Kai BioEnergy Corporation Place Del Mar, California Zip 92014 Sector Biofuels Product Developing technologies to produce biodiesel from algae Website http://www.kaibioenergy.com/ Coordinates 32.964294°, -117.265191° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.964294,"lon":-117.265191,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

355

Anhui Yineng Bioenergy Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Yineng Bioenergy Co Ltd Yineng Bioenergy Co Ltd Jump to: navigation, search Name Anhui Yineng Bioenergy Co Ltd Place Hefei, Anhui Province, China Product A Chinese bio-oil equipment manufacturer Coordinates 31.86141°, 117.27562° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":31.86141,"lon":117.27562,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

356

Carbon Dioxide Emissions Associated with Bioenergy and Other Biogenic  

Open Energy Info (EERE)

Carbon Dioxide Emissions Associated with Bioenergy and Other Biogenic Carbon Dioxide Emissions Associated with Bioenergy and Other Biogenic Sources Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Carbon Dioxide Emissions Associated with Bioenergy and Other Biogenic Sources Agency/Company /Organization: United States Environmental Protection Agency Sector: Energy, Climate Focus Area: Biomass, - Biomass Combustion, - Biomass Gasification, - Biomass Pyrolysis, - Biofuels, - Landfill Gas, - Waste to Energy, Greenhouse Gas Phase: Evaluate Options Resource Type: Publications, Guide/manual User Interface: Website Website: www.epa.gov/climatechange/emissions/biogenic_emissions.html Cost: Free References: EPA, 40 CFR Part 60[1] Tailoring Rule[2] Biogenic Emissions[3] The 'EPA Climate Change - Green House Gas Emissions - Carbon Dioxide

357

BESC Affiliate Program : BioEnergy Science Center  

NLE Websites -- All DOE Office Websites (Extended Search)

Affiliate Program Affiliate Program The BioEnergy Science Center has among its goals the effective, coordinated commercialization of appropriate technologies through formation of start-up ventures as well as licensing to corporate entities pursuing biofuels development. The effective translation of BESC research results into applications testing and potential deployment is an implicit part of reaching DOE's bioenergy goals. Toward this end, we are offering companies and universities the opportunity to become BESC Affiliates and receive the following benefits: An invitation to participate in all bio-energy related training, summer courses, symposia, and seminars hosted by or connected with BESC Notification of all publications resulting from BESC sponsored research, as well as timely information about BESC news

358

A Bioenergy Ecosystem - ORNL Review Vol. 44, No. 3, 2011  

NLE Websites -- All DOE Office Websites (Extended Search)

Search Magazine Search Magazine Go Features Next Article Previous Article Comments Home Clyde Thurman A Bioenergy Ecosystem BESC partnerships translate R&D into biofuels Paul Gilna, director of the BioEnergy Science Center at ORNL, is a man on a mission. In fact his entire organization is working under a Department of Energy mandate to focus the world's leading scientific minds and resources on revolutionizing bioenergy production. When the center was created in 2007, this innovative partnership of national laboratories, a private research foundation, universities and industries set out to break down the barriers to developing viable and affordable biofuel alternatives to petroleum-based fuels from plants that do not compete with food crops, such as switchgrass or poplar trees. Four years into a five-year mission, they

359

Borgford BioEnergy LLC | Open Energy Information  

Open Energy Info (EERE)

Borgford BioEnergy LLC Borgford BioEnergy LLC Jump to: navigation, search Name Borgford BioEnergy LLC Place Colville, Washington State Zip 99114 Sector Biomass Product Washington-based developer of biomass-to-energy projects. Coordinates 48.54657°, -117.904754° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":48.54657,"lon":-117.904754,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

360

Carbon Green BioEnergy LLC | Open Energy Information  

Open Energy Info (EERE)

BioEnergy LLC BioEnergy LLC Jump to: navigation, search Name Carbon Green BioEnergy LLC Place Chicago, Illinois Zip 60603 Sector Efficiency Product Chicago-based company dedicated to optimising biofuel production through management, energy efficiency, and operational improvements. Coordinates 41.88415°, -87.632409° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.88415,"lon":-87.632409,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "bioenergy lightsource renewables" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

LANL capabilities towards bioenergy and biofuels programs  

SciTech Connect

LANL invented technology for increasing growth and productivity of photosysnthetic organisms, including algae and higher plants. The technology has been extensively tested at the greenhouse and field scale for crop plants. Initial bioreactor testing of its efficacy on algal growth has shown promising results. It increases algal growth rates even under optimwn nutrient supply and careful pH control with CO{sub 2} continuously available. The technology uses a small organic molecule, applied to the plant surfaces or added to the algal growth medium. CO{sub 2} concentration is necessary to optimize algal production in either ponds or reactors. LANL has successfully designed, built and demonstrated an effective, efficient technology using DOE funding. Such a system would be very valuable for capitalizing on local inexpensive sources of CO{sub 2} for algal production operations. Furthermore, our protein engineering team has a concept to produce highly stable carbonic anhydyrase (CA) enzyme, which could be very useful to assure maximum utilization of the CO{sub 2} supply. Stable CA could be used either imnlobilized on solid supports or engineered into the algal strain. The current technologies for harvesting the algae and obtaining the lipids do not meet the needs for rapid, low cost separations for high volumes of material. LANL has obtained proof of concept for the high volume flowing stream concentration of algae, algal lysis and separation of the lipid, protein and water fractions, using acoustic platforms. This capability is targeted toward developing biosynthetics, chiral syntheses, high throughput protein expression and purification, organic chemistry, recognition ligands, and stable isotopes geared toward Bioenergy applications. Areas of expertise include stable isotope chemistry, biomaterials, polymers, biopolymers, organocatalysis, advanced characterization methods, and chemistry of model compounds. The ultimate realization of the ability to design and synthesize materials that mimic or are inspired by natural systems will lead to entirely new applications in the bioenergy areas. In addition, there are new developments in this capability that involve development of catalytic methods for the production of carbon chains from the most abundant carbohydrate on the planet, glucose. These carbon chains will be useful in the production of high density fuels which defined characteristics. In addition, these methods/capabilities will be used to generate feedstocks for industrial processes. LANL is the second largest partner institution of the Department of Energy's Joint Genome Institute (DOE-JGI), and specializes in high throughput genome finishing and analysis in support of DOE missions in energy, bioremediation and carbon sequestration. This group is comprised of molecular biology labs and computational staff who together focus on the high-throughput DNA sequencing of whole microbial genomes, computational finishing and bioinformatics. The applications team focuses on the use of new sequencing technologies to address questions in environmental science. In addition to supporting the DOE mission, this group supports the Nation's national security mission by sequencing critical pathogens and near neighbors in support of relevent application areas.

Olivares, Jose A [Los Alamos National Laboratory; Park, Min S [Los Alamos National Laboratory; Unkefer, Clifford J [Los Alamos National Laboratory; Bradbury, Andrew M [Los Alamos National Laboratory; Waldo, Geoffrey S [Los Alamos National Laboratory

2009-01-01T23:59:59.000Z

362

Los Alamos National Laboratory: Bioscience Division: Bioenergy &  

NLE Websites -- All DOE Office Websites (Extended Search)

Cliff Unkefer Cliff Unkefer Deputy Group Leader Kathy Elsberry Group Office Administrator Janet Friedman Group Office 505 667 0075 B Div People Scientists in B-8 Develop Strategies for Bioenergy, Bioremediation and Climate Change Research As part of the Bioscience mission to address issues in environmental stewardship, this group focuses on discovering the molecular principles that underpin biological diversity, specificity, response and function. This is achieved through research in environmental microbiology, microbial genomics, metabolomics, systematics and phylogeny and can be applied to the advancement of bioenergy technologies and bioremediation as well as to our understanding of carbon cycling. B-8 Teams Chemical Conversion Metabolomics Environmental Microbiology

363

National Bioenergy Center: Laying the Foundation for Biorefineries  

DOE Green Energy (OSTI)

A fact sheet explaining the National Bioenergy Center and its programs to stakeholders and visitors: An inclusive center without walls applying resources of the U.S. Department of Energy Laboratory System to advance technology for producing fuels, chemicals, materials, and power from biomass. National Bioenergy Center expertise, capabilities, facilities, and technologies can be made available to you through cooperative research and development agreements, work-for-others agreements, licenses, and other collaborative business arrangements. Please contact us about the research and development work you want to do.

Not Available

2005-08-01T23:59:59.000Z

364

Clean Renewable Energy Bonds (CREBs) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Clean Renewable Energy Bonds (CREBs) Clean Renewable Energy Bonds (CREBs) Clean Renewable Energy Bonds (CREBs) < Back Eligibility Local Government Municipal Utility Rural Electric Cooperative Schools State Government Tribal Government Savings Category Bioenergy Buying & Making Electricity Water Solar Wind Program Info Start Date 09/01/2010 (New CREBs Electric Cooperatives Solicitation) Expiration Date 11/01/2010 Program Type Federal Loan Program Rebate Amount Varies Provider U.S. Internal Revenue Service '''''Note: The IRS is not currently accepting applications for New CREB bond volume. The deadline for New CREB applications from electric cooperatives under IRS Announcement 2010-54 expired November 1, 2010. Bond volume for other eligible sectors (government entities and public power providers) was fully allocated in October 2009.

365

APS - Renewable Energy Incentive Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

APS - Renewable Energy Incentive Program APS - Renewable Energy Incentive Program APS - Renewable Energy Incentive Program < Back Eligibility Commercial Residential Savings Category Bioenergy Home Weatherization Commercial Weatherization Solar Lighting Windows, Doors, & Skylights Buying & Making Electricity Energy Sources Water Heating & Cooling Swimming Pool Heaters Water Heating Commercial Heating & Cooling Heating Wind Maximum Rebate Residential systems: $50,000 or 50% of system costs, whichever is less Commercial systems: $75, 000 or 40% of system costs, whichever is less Program Info Funding Source RES Surchage State Arizona Program Type Utility Rebate Program Rebate Amount Residential and Small Commercial PV (up to 25 kW): $0.10/watt-DC Residential Solar Water Heating: $0.40/kWh-displaced

366

Renewable Energy Property Tax Assessment | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Property Tax Assessment Property Tax Assessment Renewable Energy Property Tax Assessment < Back Eligibility Commercial Savings Category Bioenergy Buying & Making Electricity Solar Wind Program Info Start Date 1/1/2009 State Colorado Program Type Property Tax Incentive Rebate Amount Varies depending on rate set annually by the Division of Property Taxation Provider Department of Local Affairs '''Locally Assessed Renewable Energy Property''' Photovoltaic (PV) and wind energy facilities with a capacity of 2 megawatts (MW) AC or less are assessed locally for property taxes. Additionally, low impact hydro, geothermal, and biomass facilities with a capacity of 2 MW or less and which were placed in service prior to January 1, 2010 are also assessed locally for property taxes. In assigning value to renewable energy

367

Holy Cross Energy - WE CARE Renewable Energy Generation Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Holy Cross Energy - WE CARE Renewable Energy Generation Rebate Holy Cross Energy - WE CARE Renewable Energy Generation Rebate Program Holy Cross Energy - WE CARE Renewable Energy Generation Rebate Program < Back Eligibility Commercial Institutional Residential Savings Category Bioenergy Buying & Making Electricity Water Solar Heating & Cooling Water Heating Wind Maximum Rebate $9,000/installation, up to 50% of installed cost. Systems larger than 6 kW may receive a higher rebate. Solar Water Heating: $6,000, up to 50% of installed cost. Program Info State Colorado Program Type Utility Rebate Program Rebate Amount $1.50/watt DC ($1.00/W "hardware incentive", and $0.50/W "REC incentive") Systems larger than 6 kW may receive a different rebate amount. Solar Water Heating: $1,500 per panel Provider Holy Cross Energy

368

Renewable Energy Sales and Use Tax Exemption | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Renewable Energy Sales and Use Tax Exemption Renewable Energy Sales and Use Tax Exemption Renewable Energy Sales and Use Tax Exemption < Back Eligibility Commercial General Public/Consumer Residential Savings Category Bioenergy Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Solar Water Wind Program Info Start Date 7/1/2006 Expiration Date 6/30/2018 State District of Columbia Program Type Sales Tax Incentive Rebate Amount 100% exemption for solar photovoltaic systems 10 or less kilowatts; 75% exemption for other qualified systems Provider Washington State Department of Revenue In Washington State, there is a 75% exemption from tax for the sales of equipment used to generate electricity using fuel cells, wind, sun, biomass energy, tidal or wave energy, geothermal, anaerobic digestion or landfill

369

Renewable Energy Production Tax Credit | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » Renewable Energy Production Tax Credit Renewable Energy Production Tax Credit < Back Eligibility Commercial Savings Category Bioenergy Commercial Heating & Cooling Manufacturing Buying & Making Electricity Water Solar Wind Maximum Rebate No maximum specified for individual projects. Maximum of $1 million per corporation. Maximum of $5 million for state FY 2012-13 and $10 million for state for FY 2013-14 until FY 2016-2017. Program Info Start Date 7/1/2012 Expiration Date 6/30/2016 State Florida Program Type Corporate Tax Credit Rebate Amount $0.01/kWh Provider Florida Department of Revenue In June 2006, [http://archive.flsenate.gov/cgi-bin/View_Page.pl?File=sb0888er.html&Dire... S.B. 888] established a renewable energy production tax credit to encourage

370

UES - Renewable Energy Credit Purchase Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

UES - Renewable Energy Credit Purchase Program UES - Renewable Energy Credit Purchase Program UES - Renewable Energy Credit Purchase Program < Back Eligibility Commercial Residential Savings Category Bioenergy Home Weatherization Commercial Weatherization Solar Lighting Windows, Doors, & Skylights Buying & Making Electricity Energy Sources Water Heating & Cooling Swimming Pool Heaters Water Heating Commercial Heating & Cooling Heating Wind Maximum Rebate Up-front incentives can pay for no more than 50% of the cost Residential solar water heating and space heating: $1,750 Small commercial solar water heating and space heating: $200,000 Program Info Start Date 2004 State Arizona Program Type Utility Rebate Program Rebate Amount PV incentives may be de-rated based on expected performance Residential PV: Funding has been depleted

371

Local Option - Property Tax Exemption for Renewable Energy Systems  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Property Tax Exemption for Renewable Energy Systems Property Tax Exemption for Renewable Energy Systems (Connecticut) Local Option - Property Tax Exemption for Renewable Energy Systems (Connecticut) < Back Eligibility Agricultural Commercial Industrial Multi-Family Residential Residential Savings Category Bioenergy Commercial Heating & Cooling Manufacturing Buying & Making Electricity Alternative Fuel Vehicles Hydrogen & Fuel Cells Water Solar Heating & Cooling Water Heating Wind Program Info State Connecticut Program Type Property Tax Incentive Rebate Amount Local Option Provider Connecticut Office of Policy and Management Connecticut municipalities are authorized, but not required, to offer a property tax exemption lasting up to 15 years for qualifying cogeneration systems installed on or after July 1, 2007 (see Conn. Gen. Stat. § 12-81

372

First Energy Ohio - Renewable Energy Credit Procurements | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

First Energy Ohio - Renewable Energy Credit Procurements First Energy Ohio - Renewable Energy Credit Procurements First Energy Ohio - Renewable Energy Credit Procurements < Back Eligibility Commercial Savings Category Bioenergy Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Solar Wind Program Info Start Date 07/01/2010 State Ohio Program Type Performance-Based Incentive Provider Navigant Consulting '''''Note: FirstEnergy will periodically solicit proposals for long term contracts. The most recent application has a due date of October 22, 2012. Check the program web site for the most recent Requests for Proposals. ''''' As part of its [http://www.puco.ohio.gov/emplibrary/files/media/Publications/Fact_Sheets... Electric Security Plan], FirstEnergy will periodically solicit proposals

373

Public Benefits Funds for Renewables and Efficiency | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Public Benefits Funds for Renewables and Efficiency Public Benefits Funds for Renewables and Efficiency Public Benefits Funds for Renewables and Efficiency < Back Eligibility Commercial General Public/Consumer Industrial Institutional Residential Utility Savings Category Bioenergy Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Solar Home Weatherization Wind Program Info State California Program Type Public Benefits Fund Provider California Public Utilities Commission California's 1996 electric industry restructuring legislation ([http://www.leginfo.ca.gov/pub/95-96/bill/asm/ab_1851-1900/ab_1890_bill_9... AB 1890]) directed the state's three major investor-owned utilities (Southern California Edison, Pacific Gas and Electric Company, and San Diego Gas and Electric) to collect a "public goods charge" (PGC) on

374

New Jersey Renewable Energy Incentive Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

New Jersey Renewable Energy Incentive Program New Jersey Renewable Energy Incentive Program New Jersey Renewable Energy Incentive Program < Back Eligibility Commercial Fed. Government Industrial Institutional Local Government Multi-Family Residential Nonprofit Residential Schools State Government Tribal Government Savings Category Bioenergy Commercial Heating & Cooling Manufacturing Buying & Making Electricity Alternative Fuel Vehicles Hydrogen & Fuel Cells Maximum Rebate Biomass and Fuel Cells: 30% of installed costs (maximum for incentive schedule is $1.5 million) Biomass and Fuel Cells (w/CHP): 40% of installed costs (maximum for incentive schedule is $2.5 million) Wind: $51,200 for residential, $543,000 for other systems as determined by incentive schedule; also limited to 120% of estimated system performance at

375

Alliant Energy Interstate Power and Light - Business and Farm Renewable  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Alliant Energy Interstate Power and Light - Business and Farm Alliant Energy Interstate Power and Light - Business and Farm Renewable Energy Rebates Alliant Energy Interstate Power and Light - Business and Farm Renewable Energy Rebates < Back Eligibility Agricultural Commercial Industrial Savings Category Bioenergy Solar Buying & Making Electricity Wind Maximum Rebate Energy Efficient Wind: $35,000 Standard Wind: $30,000 Energy Efficient PV: $25,000 Standard PV: $20,000 Biomass: $500,000 Anaerobic Digester: $200,000 Program Info State Iowa Program Type Utility Rebate Program Rebate Amount Energy Efficient Wind: $0.75/kWh Standard Wind: $0.25/kWh Energy Efficient PV: $1/kWh Standard PV: $0.50/kWh Biomass: 50% of system cost Anaerobic Digester: 50% of system cost Provider Alliant Energy The Alliant Energy Renewable Cash-Back Rewards program offers rebates for

376

Renewable Electricity Production Tax Credit (PTC) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » Renewable Electricity Production Tax Credit (PTC) Renewable Electricity Production Tax Credit (PTC) < Back Eligibility Commercial Industrial Savings Category Bioenergy Buying & Making Electricity Water Home Weatherization Wind Program Info Program Type Corporate Tax Credit Rebate Amount 2.3¢/kWh for wind, geothermal, closed-loop biomass; 1.1¢/kWh for other eligible technologies. Generally applies to first 10 years of operation. Provider U.S. Internal Revenue Service '''''Note: The American Recovery and Reinvestment Act of 2009 allows taxpayers eligible for the federal renewable electricity production tax credit (PTC) to take the federal business energy investment tax credit (ITC) instead of taking the PTC for new installations.'''''

377

Grid-Connected Renewables Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Grid-Connected Renewables Program Grid-Connected Renewables Program Grid-Connected Renewables Program < Back Eligibility Commercial Industrial Institutional Local Government Nonprofit Schools State Government Savings Category Bioenergy Wind Buying & Making Electricity Maximum Rebate Not specified Program Info Funding Source New Jersey Societal Benefits Charge (public benefits fund) State New Jersey Program Type Performance-Based Incentive Rebate Amount Varies by project; solicitation lists recommended incentive levels 10-20% may be requested as an up-front grant Provider State of New Jersey Board of Public Utilities Note: The deadline for the most recent solicitation has passed and the information in this summary is specific to this closed program solicitation. The New Jersey Office of Clean Energy 2013-2014 Budget

378

Renewable Energy Production Tax Credit (Corporate) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Corporate) Corporate) Renewable Energy Production Tax Credit (Corporate) < Back Eligibility Commercial Savings Category Bioenergy Solar Buying & Making Electricity Wind Maximum Rebate 2 million per year Program Info Start Date 12/31/2010 Expiration Date 12/31/2020 State Arizona Program Type Corporate Tax Credit Rebate Amount Wind and Biomass: 0.01/kWh, paid for 10 years Solar: Varies by year (see below), paid for 10 years Provider Arizona Department of Revenue '''''Note: this tax credit is only available for systems installed on or after December 31, 2010, and before January 1, 2021.''''' [http://www.azleg.gov/FormatDocument.asp?inDoc=/legtext/49leg/2r/bills/sb... Senate Bill 1254] of 2010 created a tax credit for electricity produced by certain renewable resources. Qualified renewable energy systems installed

379

Assessment of Farmland Hosting Renewable Energy Systems | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Assessment of Farmland Hosting Renewable Energy Systems Assessment of Farmland Hosting Renewable Energy Systems Assessment of Farmland Hosting Renewable Energy Systems < Back Eligibility Agricultural Savings Category Bioenergy Solar Buying & Making Electricity Heating & Cooling Commercial Heating & Cooling Heating Water Heating Wind Program Info Start Date 07/01/2010 State New Jersey Program Type Property Tax Incentive Rebate Amount Varies In New Jersey, under the Farmland Assessment Act, farmland actively devoted to an agricultural or horticultural use is assessed at its productivity value. This practice generally results in a lower tax burden for farmland owners compared to residential or commercial land owners. In January 2010 New Jersey enacted legislation ([http://www.njleg.state.nj.us/2008/Bills/PL09/213_.PDF S.B. 1538]), which

380

Commercial and Industrial Renewable Energy Grants | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Renewable Energy Grants Renewable Energy Grants Commercial and Industrial Renewable Energy Grants < Back Eligibility Agricultural Commercial Fed. Government Industrial Institutional Local Government Multi-Family Residential Nonprofit Schools State Government Savings Category Bioenergy Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Solar Home Weatherization Heating & Cooling Commercial Heating & Cooling Heating Water Heating Wind Maximum Rebate No maximum Program Info Funding Source RPS alternative compliance payments State New Hampshire Program Type State Grant Program Rebate Amount Minimum $100,000 Provider New Hampshire Public Utilities Commission '''''Note: The deadline for the most-recent round of funding under this program, which offered a total of $1.8 million in grants, was June 7, 2013.

Note: This page contains sample records for the topic "bioenergy lightsource renewables" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Type: Renewal  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1 INCITE Awards 1 INCITE Awards Type: Renewal Title: -Ab Initio Dynamical Simulations for the Prediction of Bulk Properties‖ Principal Investigator: Theresa Windus, Iowa State University Co-Investigators: Brett Bode, Iowa State University Graham Fletcher, Argonne National Laboratory Mark Gordon, Iowa State University Monica Lamm, Iowa State University Michael Schmidt, Iowa State University Scientific Discipline: Chemistry: Physical INCITE Allocation: 10,000,000 processor hours Site: Argonne National Laboratory Machine (Allocation): IBM Blue Gene/P (10,000,000 processor hours) Research Summary: This project uses high-quality electronic structure theory, statistical mechanical methods, and

382

Renewable Project Overview  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Project Overview Project Overview Federal Utility Partnership Working Group 5/6/09 Chandra Shah, NREL 303-384-7557, chandra.shah@nrel.gov National Renewable Energy Laboratory Innovation for Our Energy Future Presentation Overview Federal and utility renewable requirements Power Purchase Agreements (PPA) Western Area Power Administration Federal Renewable Program UESC and renewables * Participating in utility renewable programs - Opportunity Announcement process Renewable projects implemented using appropriations National Renewable Energy Laboratory Innovation for Our Energy Future Biomass Resource

383

Renewable Energy Systems Exemption | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Systems Exemption Systems Exemption Renewable Energy Systems Exemption < Back Eligibility Agricultural Commercial Industrial Multi-Family Residential Residential Savings Category Bioenergy Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Heating & Cooling Commercial Heating & Cooling Solar Heating Home Weatherization Water Swimming Pool Heaters Water Heating Wind Maximum Rebate Based on investment of $20,000 for single family, and on investment of $100,000 for multi-family, non-residential. Program Info State Montana Program Type Property Tax Incentive Rebate Amount 100% for 10 years. Provider Montana Department of Revenue Montana's property tax exemption for recognized non-fossil forms of energy generation or low emission wood or biomass combustion devices may be

384

Hawaii Bioenergy Master Plan Potential Environmental Impacts of  

E-Print Network (OSTI)

market conditions. This analysis will give transparency to the potential indirect and direct greenhouse gas (GHG) emissions and energy self-sufficiency offered to Hawaii by bioenergy development been developed based on stakeholder input and information collected in the preparation of this study. 1

385

Canada Biomass-Bioenergy Report May 31, 2006  

E-Print Network (OSTI)

Canada Biomass-Bioenergy Report May 31, 2006 Doug Bradley President Climate Change Solutions;2 Table of Contents 1. Policy Setting 2. Biomass Volumes 2.1. Woody Biomass 2.1.1. Annual Residue Production 2.1.2. Pulp Chips 2.1.3. Existing Hog Fuel Piles 2.1.4. Forest Floor Biomass 2.2. Agricultural

386

Lignocellulosic Biofuels from New Bioenergy Crops Federal Initiative Accomplishments  

E-Print Network (OSTI)

Lignocellulosic Biofuels from New Bioenergy Crops Federal Initiative Accomplishments 2009 Lead lignocellulosic "drop-in" biofuels. "Drop-in" means they are compatible with the existing petroleum refining and distribution infrastructure. With this project Texas can become a leader in biofuels production

387

Purpose-designed Crop Plants for Biofuels BIOENERGY PROGRAM  

E-Print Network (OSTI)

Purpose-designed Crop Plants for Biofuels BIOENERGY PROGRAM The Texas AgriLife Research Center for the biofuels industry. This program recognizes that the ideal combination of traits required for an economically and energetically sustainable biofuels industry does not yet exist in a single plant spe- cies

388

Bioenergy and land-use competition in Northeast Brazil  

E-Print Network (OSTI)

Bioenergy and land-use competition in Northeast Brazil Christian Azar Department of Physical of Brazil on "good" versus "bad" lands is investigated. It is shown that the value of the higher yields) lands. The focus of the analysis is on the Northeast of Brazil (NE), where the prospects for dedicated

389

Biofuel Enduse Datasets from the Bioenergy Knowledge Discovery Framework (KDF)  

DOE Data Explorer (OSTI)

The Bioenergy Knowledge Discovery Framework invites users to discover the power of bioenergy through an interface that provides extensive access to research data and literature, GIS mapping tools, and collaborative networks. The Bioenergy KDF supports efforts to develop a robust and sustainable bioenergy industry. The KDF facilitates informed decision making by providing a means to synthesize, analyze, and visualize vast amounts of information in a relevant and succinct manner. It harnesses Web 2.0 and social networking technologies to build a collective knowledge system that can better examine the economic and environmental impacts of development options for biomass feedstock production, biorefineries, and related infrastructure. [copied from https://www.bioenergykdf.net/content/about]

Holdings include datasets, models, and maps. This is a very new resource, but the collections will grow due to both DOE contributions and individuals data uploads. Currently the Biofuel Enduse collection includes 133 items. Most of these are categorized as literature, but 36 are listed as datasets and ten as models.

390

Business plan model for bio-energy companies  

Science Conference Proceedings (OSTI)

A solid business plan is an important tool for managing any business. It forms up the foundation of the business as well as discusses how important challenges should be solved. Rather often also third parties like financing institutions are interested ... Keywords: bio-energy, business plan, industrial experiences, planning

Pasi Ojala

2011-02-01T23:59:59.000Z

391

Renewable Energy and Energy Efficiency Project Financing | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and Energy Efficiency Project Financing and Energy Efficiency Project Financing Renewable Energy and Energy Efficiency Project Financing < Back Eligibility Commercial Industrial Institutional Nonprofit Schools Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Cooling Appliances & Electronics Construction Design & Remodeling Other Heat Pumps Commercial Lighting Lighting Water Heating Windows, Doors, & Skylights Bioenergy Manufacturing Buying & Making Electricity Solar Alternative Fuel Vehicles Hydrogen & Fuel Cells Energy Sources Wind Program Info Start Date 01/01/2010 State Illinois Program Type State Bond Program Rebate Amount Varies by project Provider Illinois Finance Authority The Illinois Finance Authority (IFA) is a state conduit issuer of

392

Guide to Purchasing Green Power: Renewable Electricity, Renewable...  

NLE Websites -- All DOE Office Websites (Extended Search)

Guide to Purchasing Green Power: Renewable Electricity, Renewable Energy Certificates and On-Site Renewable Generation Title Guide to Purchasing Green Power: Renewable Electricity,...

393

DOE Tribal Renewable Energy Series Webinar: Renewable Energy...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tribal Renewable Energy Series Webinar: Renewable Energy Market Update DOE Tribal Renewable Energy Series Webinar: Renewable Energy Market Update January 29, 2014 11:00AM EST...

394

Industrial Applications of Renewable Resources  

Science Conference Proceedings (OSTI)

Archive of Industrial Applications of Renewable Resources Industrial Applications of Renewable Resources Cincinnati, Ohio, USA Industrial Applications of Renewable Resources ...

395

PPC Renewables | Open Energy Information  

Open Energy Info (EERE)

Twitter icon PPC Renewables Jump to: navigation, search Name PPC Renewables Place Greece Sector Renewable Energy Product The renewables division of Public Power Corp. of...

396

Stanford Synchrotron Radiation Lightsource  

NLE Websites -- All DOE Office Websites (Extended Search)

SSRL Discoveries Point to Better Batteries SSRL Discoveries Point to Better Batteries SSRL Science Summary - October 2012 Figure A single reconstructed slice and a volume rendering of the tomography sequence. Energy storage materials, such as batteries, are of increasing importance in the modern world. They support the storage and distribution of electricity generated by different mechanisms, enabling the use of green power sources when the resource itself is unavailable (for example, solar energy at night or wind energy on a calm day). Such devices also provide energy portability for consumer electronics and zero-emission options for transportation, in either hybrid or fully-electric vehicles. Many impressive battery technologies exist today, but the understanding of their operation is somewhat limited, which makes it very challenging to improve

397

Stanford Synchrotron Radiation Lightsource  

NLE Websites -- All DOE Office Websites (Extended Search)

X-rays Illuminate Frustrated Materials X-rays Illuminate Frustrated Materials SSRL Science Summary - August 2012 Figure 1. Two sets of Cu spin orientations on a hexagon from the honeycomb lattice; either the "green" or "blue" set of spins describe the magnetic arrangement at a given time, illustrating that there is no preferred spin orientation; i.e the spins are "frustrated". Credit: Satoru Nakatsuji, University of Tokyo The electronic, spin, and ionic structures of closely packed atoms in solids are strongly co-dependent and interactions of these three lattices, whether innate or due to subtle manipulation, can cause exotic properties to emerge. The strong coupling among these lattices can also suppress a physical property through "frustration," the term for an incompatibility of

398

Stanford Synchrotron Radiation Lightsource  

NLE Websites -- All DOE Office Websites (Extended Search)

Illuminating the Multiconfigurational Ground State of Elemental and Illuminating the Multiconfigurational Ground State of Elemental and Intermetallic Compounds of Uranium and Plutonium SSRL Science Summary - October 2012 Figure Resonant x-ray emission spectra of actinide metals: Spectra show the emitted photon intensity as a function of the incident photon beam energy, EI, and the transfer energy, ET. Upper panel shows a sharp resonance dominated by a single uranium valence configuration. Bottom panel shows the broader resonance for the ground-state phase of elemental plutonium that is made up of differing amounts of three resonances = three valences. The structural, electronic, and magnetic properties of U and Pu elements and intermetallics remain poorly understood despite decades of effort, and currently represent an important scientific frontier toward understanding

399

Stanford Synchrotron Radiation Lightsource  

NLE Websites -- All DOE Office Websites (Extended Search)

Access to High Technology User Facilities at DOE National Laboratories Access to High Technology User Facilities at DOE National Laboratories In recognition of the nation's expanding need to engage businesses and universities in the areas of commercial and basic science research, the Department of Energy has developed two special types of agreements for use at all DOE National Laboratories with approved designated user facilities, see http://www.gc.doe.gov/1002.htm. User Agreements All user experiments must be run under the terms of a User Agreement executed by the appropriate institutional officer(s) at your institution and their counterpart at Stanford University. A single User Agreement covers all experimenters from that institution (User Institution = "user"). Collaborators who are not coming to SSRL do not require a User Agreement.

400

Stanford Synchrotron Radiation Lightsource  

NLE Websites -- All DOE Office Websites (Extended Search)

Using X-rays to Find an Evolutionary Step in the Origin of Oxygenic Using X-rays to Find an Evolutionary Step in the Origin of Oxygenic Photosynthesis July 2013 SSRL Science Summary by Manuel Gnida, SLAC Office of Communications Figure The evolution of oxygenic photosynthesis approximately 2.3 to 2.4 billion years ago revolutionized life on Earth. For most modern-day terrestrial life, oxygen has become indispensable. At the heart of oxygenic photosynthesis is the production of oxygen from water - a process mediated by the water-splitting manganese cluster of Photosystem II. Little is known about how oxygenic photosynthesis originally evolved, although some have hypothesized a manganese-oxidizing photosystem as a precursor step. Researchers from the California Institute of Technology, SSRL, and the Massachusetts Institute of Technology have now found geological

Note: This page contains sample records for the topic "bioenergy lightsource renewables" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Stanford Synchrotron Radiation Lightsource  

NLE Websites -- All DOE Office Websites (Extended Search)

Element-Specific and Real-Time Observation of CO-Ru Chemisorption Bond Element-Specific and Real-Time Observation of CO-Ru Chemisorption Bond Breaking with Soft X-ray Spectroscopy March 2013 SSRL Science Summary by Lori Ann White, SLAC Office of Communications Figure An international collaboration of scientists, including several from SSRL, has taken advantage of the broad range of photon science capabilities available at the lab to investigate a proposal that adsorption and desorption of a molecule to a surface - both fundamental processes of interfacial chemistry - proceed through a transient "precursor" state in which the molecule is weakly bound to the surface. Their research focused on carbon monoxide adsorption/desorption on metal surfaces; although a large number of spectroscopic studies have been devoted to this reaction,

402

Stanford Synchrotron Radiation Lightsource  

NLE Websites -- All DOE Office Websites (Extended Search)

Watching Ions Hop in Superionic Nanomaterials Watching Ions Hop in Superionic Nanomaterials March 2013 SSRL Science Summary by Lori Ann White, SLAC Office of Communications Figure For the first time, ultrafast x-ray scattering and spectroscopic measurements carried out at SSRL, the Advanced Light Source (ALS) and the Advanced Photon Source (APS) captured the atomic-level dynamics of a superionic nanocrystal as it transformed. Superionic materials are multi-component solids which can simultaneously display characteristics of both a solid and a liquid: Above a critical temperature associated with a structural phase transition, one atomic species in the material exhibits liquid-like ionic conductivities and dynamic disorder within the rigid crystalline structure of the other. Applications such as electrochemical storage materials and resistive

403

Stanford Synchrotron Radiation Lightsource  

NLE Websites -- All DOE Office Websites (Extended Search)

The Long-sought Structure of α-Catenin Defines Its Functions for Cell-cell The Long-sought Structure of α-Catenin Defines Its Functions for Cell-cell Interactions June 2013 SSRL Science Summary by Manuel Gnida, SLAC Office of Communications Figure Full-length α-catenin crystal structure reveals its dimeric asymmetric arrangement. The individual domains are colored individually (dimerization domain in yellow, vinculin binding domain in green, M-fragment in cyan, and the F-actin binding domain in magenta). A: View onto the vinculin binding domains. B: View onto the dimerization domains. Cell-cell interactions play an important role in the development, architecture, maintenance, and function of tissues in all higher organisms. Cells use specialized protein complexes to bind each other. These complexes define the attachment sites known as adherens junctions and consist of

404

Stanford Synchrotron Radiation Lightsource  

NLE Websites -- All DOE Office Websites (Extended Search)

Nanoscale Examination of Microdamage in Sheep Cortical Bone Nanoscale Examination of Microdamage in Sheep Cortical Bone April 2013 SSRL Science Summary by Lori Ann White, SLAC Office of Communications Figure Lead-uranyl acetate staining of damage morphologies in notched bone samples. (A, B) Staining of lacunae and canaliculi in the compressive region seen in 20 of the 23 samples; (C, D) Cross hatching damage around notch tip in the tensile region observed in 10 of 23 samples; (E, F) Crack propagating from notch tip in the tensile region in a single sample. Staining appears white due to high attenuation of lead-uranyl acetate, with bone tissue appearing grey and voids black. Scale bar: A,C,E = 50 μm; B,D,F = 5 μm. Sample created in the longitudinal plane of the bone.] An important factor contributing to bone fractures is the accumulation of

405

Stanford Synchrotron Radiation Lightsource  

NLE Websites -- All DOE Office Websites (Extended Search)

Small-Angle X-ray Scattering Small-Angle X-ray Scattering Read Self-Assembled Nanoparticle Superlattices X-ray Reflectivity X-ray reflectometry is a technique for investigating the near-surface structure of many materials. It probes the electron density with a depth resolution of less than one nm for depths of up to several hundred nm. The method involves measuring the reflected X-ray intensity as a function of X-ray incidence angle (typically small angles are used). The method is used for studies of thin films and multilayers of metals, semiconductors and polymers. It can accurately determine films thickness, density, average roughness, and the roughness correlation function. Grazing Incidence X-ray Scattering and Diffraction on Thin Films Grazing incidence X-ray scattering or diffraction (GIXS) refers to a method

406

Stanford Synchrotron Radiation Lightsource  

NLE Websites -- All DOE Office Websites (Extended Search)

this problem is to explore the phases next to superconductivity on the temperature-doping phase diagram. The pseudogap phase above Tc has been a particular stumbling block because...

407

Stanford Synchrotron Radiation Lightsource  

NLE Websites -- All DOE Office Websites (Extended Search)

and redox reactions, and tying this complex delithiation behavior to a combination of kinetic limitations due to macroscopic defects in the crystals and thermodynamic effects....

408

Stanford Synchrotron Radiation Lightsource  

NLE Websites -- All DOE Office Websites (Extended Search)

through a gating mechanism of conformational changes. If this proves correct, the tight sequestering of RNA and likely conformational change needed for replication and...

409

Stanford Synchrotron Radiation Lightsource  

NLE Websites -- All DOE Office Websites (Extended Search)

charge for LHe use during scheduled beam time. Orders for gases and cryogenics (including overhead and sales tax) will be charged to your user account. Prior to your scheduled...

410

Stanford Synchrotron Radiation Lightsource  

NLE Websites -- All DOE Office Websites (Extended Search)

telecommunications and manufacturing. Close window SSRL Scientists About SSRL Directory | History | Organization | Video Plus Sign Overview As one of the pioneering...

411

Stanford Synchrotron Radiation Lightsource  

NLE Websites -- All DOE Office Websites (Extended Search)

access? Scheduling Information Shifts Requested: 3 6 Samples: Sample Concentrations: EnergiesEdges: Crystal Orientation for Si(220): phi0 phi90 no preference Temperature...

412

Stanford Synchrotron Radiation Lightsource  

NLE Websites -- All DOE Office Websites (Extended Search)

access? Scheduling Information Shifts Requested: 3 6 Samples: Sample Concentrations: EnergiesEdgesTechnique(XRF, XAS, XRD): Crystal Orientation for Si(220): phi0 phi90 or...

413

Stanford Synchrotron Radiation Lightsource  

NLE Websites -- All DOE Office Websites (Extended Search)

Berkeley National Laboratory. His research focuses mainly on the behavior of technetium in nuclear waste and nuclear wasteforms. In addition, his research examines...

414

Stanford Synchrotron Radiation Lightsource  

NLE Websites -- All DOE Office Websites (Extended Search)

Laboratory SLAC National Accelerator Laboratory, Menlo Park, CA Operated by Stanford University for the U.S. Department of Energy Office of Science Content Owner: Lisa Dunn |...

415

Stanford Synchrotron Radiation Lightsource  

NLE Websites -- All DOE Office Websites (Extended Search)

StateCountyCity Research Area: (hold Ctrl to select multiple options) Biological & Life Sciences Medical Applications Chemistry Materials Science Physics Polymers Earth Sciences...

416

Stanford Synchrotron Radiation Lightsource  

NLE Websites -- All DOE Office Websites (Extended Search)

in the September 10 online edition of the Proceedings of the National Academy of Sciences. These findings will likely facilitate further elucidation of FDTS's mechanism and...

417

Stanford Synchrotron Radiation Lightsource  

NLE Websites -- All DOE Office Websites (Extended Search)

protein synthesis. Researchers from The Scripps Research Institute, Florida State University and the University of Texas Houston have established an essential role for an...

418

Stanford Synchrotron Radiation Lightsource  

NLE Websites -- All DOE Office Websites (Extended Search)

Beam Line 10-2 in parallel with magnetic resonance imaging (MRI) at Wayne State University to map and quantify iron and calcium on the same slices of human brain, thus...

419

Stanford Synchrotron Radiation Lightsource  

NLE Websites -- All DOE Office Websites (Extended Search)

Office of Biological and Environmental Research (FWP 10094) and Office of Basic Energy Sciences. Primary Citation J. R. Bargar, K. H. Williams, K. M. Campbell, P. E. Long,...

420

Stanford Synchrotron Radiation Lightsource  

NLE Websites -- All DOE Office Websites (Extended Search)

VoluntaryAssoc DOEBES DOEBER DOD DVA NASA NIST USDA OtherUS Govt StateCountyCity Research Area: (hold Ctrl to select multiple options) Biological & Life Sciences Medical...

Note: This page contains sample records for the topic "bioenergy lightsource renewables" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Stanford Synchrotron Radiation Lightsource  

NLE Websites -- All DOE Office Websites (Extended Search)

Institute of Science David Baker, University of Washington Ian Wilson, The Scripps Research Institute 2575 Sand Hill Road, MS: 99, Menlo Park, California, 94025, USA Tel:...

422

Stanford Synchrotron Radiation Lightsource  

NLE Websites -- All DOE Office Websites (Extended Search)

of in vitro evolution allows the generation of model systems and the study of basic principles of complex natural evolution. This in vitro directed evolution method has...

423

Stanford Synchrotron Radiation Lightsource  

NLE Websites -- All DOE Office Websites (Extended Search)

supported by the Northeastern Center for Chemical Energy Storage, an Energy Frontier Research Center funded by the U.S. Department of Energy, scientists from Lawrence Berkeley...

424

Stanford Synchrotron Radiation Lightsource  

NLE Websites -- All DOE Office Websites (Extended Search)

investigation was funded by the U.S. Department of Energy, Office of Basic Energy Sciences (DOE-BES) Chemical and Geosciences Programs, the National Science Foundation (NSF)...

425

Stanford Synchrotron Radiation Lightsource  

NLE Websites -- All DOE Office Websites (Extended Search)

prokaryotic GlnRS species exists. A group led by Edward Snell of the Hauptman-Woodward Medical Research Institute has recently used data from SSRL to develop a model of the...

426

Stanford Synchrotron Radiation Lightsource  

NLE Websites -- All DOE Office Websites (Extended Search)

Water-Rock Reactions Produce Hydrogen Gas at Temperatures within the Limits of Life June 2013 SSRL Science Summary by Manuel Gnida, SLAC Office of Communications and Lisa E....

427

Stanford Synchrotron Radiation Lightsource  

NLE Websites -- All DOE Office Websites (Extended Search)

Fischer-Tropsch Catalyst Nanoscale Chemistry under Realistic Working Conditions SSRL Science Summary - November 2012 Figure Snapshot of 3D elemental mapping (see Rock on Fire)...

428

Stanford Synchrotron Radiation Lightsource  

NLE Websites -- All DOE Office Websites (Extended Search)

Correlation between Nitrogen-dopant Bond Type and Electronic Effects in Single-layer Graphene February 2013 SSRL Science Summary by Lori Ann White, SLAC Office of Communications...

429

Stanford Synchrotron Radiation Lightsource  

NLE Websites -- All DOE Office Websites (Extended Search)

the Excel spreadsheet Download and save the Excel spreadsheet to your computer. You can enter data about your planned shipment of radioactive materials to SLAC. The Excel file is...

430

Stanford Synchrotron Radiation Lightsource  

NLE Websites -- All DOE Office Websites (Extended Search)

Botulinum Neurotoxin is Bio-shielded by NTNHA in a Handshake Complex Botulinum Neurotoxin is Bio-shielded by NTNHA in a Handshake Complex SSRL Science Summary - October 2012 Figure A single reconstructed slice and a volume rendering of the tomography sequence. Botulinum neurotoxins (BoNTs) invade motor neurons at their junctions with muscular tissue, where the toxins disable the release of the neurotransmitter acetylcholine and subsequently paralyze the affected muscles. Accidental BoNT poisoning primarily occurs through ingestion of food products contaminated by Clostridium botulinum, the bacterium that produces BoNTs. However, BoNTs by themselves are fragile and sensitive to low pH environments and digestive proteases. So how do they survive the harsh environment of the host's gastrointestinal tract? Researchers at Sanford-Burnham Research Institute and the Medical School of

431

Stanford Synchrotron Radiation Lightsource  

NLE Websites -- All DOE Office Websites (Extended Search)

Structural Basis of Wnt Recognition by Frizzled Structural Basis of Wnt Recognition by Frizzled SSRL Science Summary - September 2012 Figure 1. XWnt8 has an unusual two-domain structure. Wnts are a family of signaling proteins that regulate the development and growth of an organism, as well as tissue regeneration and wound healing. Misregulated Wnt signaling is associated with the development of many types of cancers, including colon cancer, breast cancer and melanoma, and degenerative diseases like multiple sclerosis, Alzheimer's and Type 2 diabetes. Understanding of how Wnt proteins bind and activate Frizzled receptors is important for the development of effective anti-Wnt and anti-Frizzled drugs for the treatment of Wnt-related disease. To understand how Wnts function, a team of researchers from Stanford

432

Managing R&D Risk in Renewable Energy  

E-Print Network (OSTI)

of a New Generation of Bioenergy Crops: Implications forand 2007. Both the DOE and USDA have bioenergy R&D programs.At the USDA, bioenergy R&D between 2002 and 2007 was carried

Rausser, Gordon C.; Papineau, Maya

2008-01-01T23:59:59.000Z

433

NEW RENEWABLE FACILITIES PROGRAM  

E-Print Network (OSTI)

CALIFORNIA ENERGY COMMISSION ` NEW RENEWABLE FACILITIES PROGRAM GUIDEBOOK March 2007 CEC-300 Executive Director Heather Raitt Technical Director RENEWABLE ENERGY OFFICE CALIFORNIA ENERGY COMMISSION Jeffrey D. Byron B.B. Executive Director Heather Raitt Technical Director RENEWABLE ENERGY OFFICE Mark

434

Center for BioEnergy Sustainability (CBES) http://www.ornl.gov/sci/besd/cbes/ Bioenergy Sustainability and Land-Use Change Report  

E-Print Network (OSTI)

Center for BioEnergy Sustainability (CBES) http://www.ornl.gov/sci/besd/cbes/ 1 Bioenergy Sustainability and Land-Use Change Report Oak Ridge National Laboratory December 2010 Publication: Dale, VH, R and Environmental Change, pages 52-55, published by the Institute for a Secure and Sustainable Environment

435

Indian Renewable Energy Status Report: Background Report for DIREC 2010  

SciTech Connect

India has great potential to accelerate use of endowed renewable resources in powering its growing economy with a secure and affordable energy supply. The Government of India recognizes that development of local, renewable resources will be critical to ensure that India is able to meet both economic and environmental objectives and has supported the development of renewable energy through several policy actions. This paper describes the status of renewable energy in India as of DIREC 2010. It begins by describing the institutional framework guiding energy development in India, the main policy drivers impacting energy, and the major policy actions India has taken that impact renewable energy deployment. The paper presents estimates of potential for wind, solar, small hydro, and bioenergy and the deployment of each of these technologies to date in India. The potential for India to meet both large-scale generation needs and provide access to remote, unelectrified populations are covered. Finally, the enabling environment required to facilitate rapid scale of renewables is discussed, including issues of technology transfer and the status of financing in India.

Arora, D. S.; Busche, S.; Cowlin, S.; Engelmeier, T.; Jaritz, J.; Milbrandt, A.; Wang, S.

2010-10-01T23:59:59.000Z

436

Renewable Energy Loan Programs  

NLE Websites -- All DOE Office Websites (Extended Search)

Renewable Energy Loan Programs Title Renewable Energy Loan Programs Publication Type Case Study Year of Publication 2002 Authors Bolinger, Mark, and Kevin Porter Secondary Title...

437

Renewable Energy Innovations  

NLE Websites -- All DOE Office Websites (Extended Search)

applying our expertise in chemical and materials science to provide innovations in renewable energy generation, storage, and use. 4 08 FACT SHEET Renewable Energy Innovations 4...

438

EIA Energy Kids - Renewable  

U.S. Energy Information Administration (EIA)

Renewable energy sources including biomass, hydropower, geothermal, wind, and solar provide 8% of the energy used in the United States. Most renewable energy goes to ...

439

Ethanol Facts : BioEnergy Science Center  

NLE Websites -- All DOE Office Websites (Extended Search)

Ethanol Facts Ethanol Facts In 2005, the U.S. produced about 4 billion gallons of ethanol from corn grain, equaling approximately 2% of the 140 billion gallons of gasoline consumed. Ethanol is widely used as a fuel additive. The oxygen contained in ethanol improves gasoline combustibility. The Energy Policy Act of 2005 has established a renewable fuels standard which requires using 7.5 billion gallons of ethanol by 2012. E85 (85% ethanol and 15% gasoline blend) can be used as a substitute for gasoline in vehicles that have been modified to use E85. Energy content of E85 is 70% that of gasoline, so about 1.4 gallons of E85 are needed to displace one gallon of gasoline. Starch in corn grain is readily degraded into glucose sugar molecules that are fermented to ethanol. The complex structural

440

Our Affiliates : BioEnergy Science Center  

NLE Websites -- All DOE Office Websites (Extended Search)

Meet Our Affiliates Meet Our Affiliates DSM logo The purpose of DSM is to create brighter lives for people today and generations to come. DSM is now driving advances in alternative and renewable energy, such as pioneering the development of biomass-based chemicals and materials. We are involved in wind and solar power, the creation of second generation biofuels, and the production of lighter, more fuel-efficient cars, planes and trains. We are also combining our knowledge in the area of materials with advances in health and nutrition. Elanco logo Elanco is a global, innovation-driven company that develops and markets products to improve animal health and protein production in more than 75 countries. Elanco is a division of Eli Lilly and Company, a leading global pharmaceutical corporation. Elanco is committed to protein

Note: This page contains sample records for the topic "bioenergy lightsource renewables" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

World Renewable Energy Congress 2011 Sweden  

E-Print Network (OSTI)

An environmental optimization model for bioenergy plant sizes and locations for the case of wood-derived SNG in Switzerland

Bioenergy Technology (be; Bernhard Steubing; Isabel Ballmer; Lda Gerber; Franois Marchal; Rainer Zah; Christian Ludwig

2011-01-01T23:59:59.000Z

442

Office of Energy Efficiency & Renewable Energy | Department of...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Geothermal Wind Water Transportation Transportation Home Vehicles Bioenergy Hydrogen & Fuel Cells About Us About Us Home News & Blog News & Blog Home Bioenergy Buildings...

443

Great Lakes Bioenergy Research Center's Video Channel on Vimeo  

DOE Data Explorer (OSTI)

The Great Lakes Bioenergy Research Center (GLBRC) is one of three bioenergy science centers funded by the Office of Biological and Environmental Research in the Office of Science. The centers pursue research supporting high-risk, high-return biological solutions for bioenergy applications. GLBRC's mission is to perform basic research that generates technology to convert cellulosic biomass to ethanol and other advanced biofuels. The Vimeo channel for GLBRC has 22 videos as of May 2012.

444

BioEnergy International LLC | Open Energy Information  

Open Energy Info (EERE)

BioEnergy International LLC BioEnergy International LLC Address 1 Pinehill Drive Place Quincy, Massachusetts Zip 02169 Sector Biofuels Product Development and commercialization of next generation biorefineries Website http://www.bioenergyllc.com/ Coordinates 42.228468°, -71.027593° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.228468,"lon":-71.027593,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

445

Contact Information - Industrial : BioEnergy Science Center  

NLE Websites -- All DOE Office Websites (Extended Search)

BESC Industry Contact Information BESC Industry Contact Information To learn more about BESC's industry program please contact Renae Speck, Director of Technology Transfer and Partnerships for BESC, (865-576-4680), Renae Speck). Renae Speck Renae Speck, PhD spends fifty percent of her time as a Senior Commercialization Manager in the Office of Technology Transfer in the Partnership Directorate and fifty percent of her time as the Manager of Technology Transfer and Partnerships for the BioEnergy Science Center. As a Senior Commercialization Manager, Renae is responsible for portfolio management and commercialization of intellectual property created by researchers and staff in the Biological and Environmental Sciences Divisions as well as any intellectual property created by Oak Ridge National Laboratory staff that is funded by the BioEnergy Science Center

446

Comparison of Arabinoxylan Structure in Bioenergy and Model Grasses  

NLE Websites -- All DOE Office Websites (Extended Search)

Arabinoxylan Arabinoxylan Structure in Bioenergy and Model Grasses Ameya R. Kulkarni, 1 Sivakumar Pattathil, 1 Michael G. Hahn, 1,2 William S. York, 1,3 and Malcolm A. O'Neill 1 1 Complex Carbohydrate Research Center and US Department of Energy BioEnergy Science Center, 2 Department of Plant Biology, and 3 Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA Abstract Heteroxylans were solubilized from the alcohol-insoluble residue of switchgrass, rice, Brachypodium, Miscanthus, foxtail millet, and poplar with 1 M KOH. A combination of enzymatic, chemical, nu- clear magnetic resonance (NMR), mass spectroscopic, and immu- nological techniques indicated that grass arabinoxylans have comparable structures and contain no discernible amount of the reducing end sequence present in dicot glucuronoxylan. Our data suggest that rice, Brachypodium, and foxtail

447

National Bioenergy Center Biochemical Platform Integration Project: Quarterly Update #16, July-September 2007  

DOE Green Energy (OSTI)

This quarterly update contains information on the National Bioenergy Center Biochemical Platform Integration Project, R&D progress and related activities.

Schell, D.

2007-10-01T23:59:59.000Z

448

IMproved Assessment of the Greenhouse gas balance of bioeNErgy pathways (IMAGINE)  

E-Print Network (OSTI)

IMproved Assessment of the Greenhouse gas balance of bioeNErgy pathways (IMAGINE) Evaluation. Abstract The potential greenhouse gas (GHG) savings resulting from the displacement of fossil energy

449

National Bioenergy Center Biochemical Platform Process Integration Project: Quarterly Update #18, January-March 2008  

SciTech Connect

January-March, 2008 edition of the quarterly update for the National Bioenergy Center's Biochemical Platform Integration Project.

Schell, D.

2008-04-01T23:59:59.000Z

450

National Bioenergy Center Sugar Platform Integration Project: Quarterly Update #12, July-September 2006  

SciTech Connect

Volume 12 of a quarterly newsletter that describes the activities of the National Bioenergy Center's Sugar Platform Integration Project.

Schell, D.

2006-10-01T23:59:59.000Z

451

National Renewable Energy Laboratory  

E-Print Network (OSTI)

National Renewable Energy Laboratory Innovation for Our Energy Future ponsorship Format Reversed Color:White rtical Format Reversed-A ertical Format Reversed-B National Renewable Energy Laboratory National Renewable Energy Laboratory Innovation for Our Energy Future National Renewable Energy Laboratory

452

Alternative/Renewable Energy  

Science Conference Proceedings (OSTI)

Alternative/Renewable Energy. Building Integration with Smart Grid. Building Integration with Smart Grid Project. Embedded ...

2010-10-05T23:59:59.000Z

453

Renewable Energy Project Bond Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Project Bond Program Project Bond Program Renewable Energy Project Bond Program < Back Eligibility Commercial Savings Category Bioenergy Commercial Heating & Cooling Manufacturing Buying & Making Electricity Alternative Fuel Vehicles Hydrogen & Fuel Cells Water Solar Wind Program Info State Idaho Program Type State Bond Program Provider Idaho Energy Resources Authority Legislation enacted in Idaho in April 2005 ([http://legislature.idaho.gov/legislation/2005/S1192.html Senate Bill 1192]) allows independent (non-utility) developers of renewable energy projects in the state to request financing from the Idaho Energy Resources Authority, a state bonding authority created in March 2005 by the Environment, Energy and Technology Energy Resources Authority Act (House Bill 106). The authority was created to finance the construction of

454

Renewable Energy Production Tax Credits (Corporate) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Credits (Corporate) Credits (Corporate) Renewable Energy Production Tax Credits (Corporate) < Back Eligibility Agricultural Commercial Industrial Institutional Rural Electric Cooperative Schools Savings Category Bioenergy Alternative Fuel Vehicles Hydrogen & Fuel Cells Solar Buying & Making Electricity Wind Maximum Rebate 1.5¢/kWh (IA Code § 476C) Program Info Start Date 06/15/2005 State Iowa Program Type Corporate Tax Credit Rebate Amount 1.5¢/kWh (IA Code § 476C) or 1.0¢/kWh (IA Code § 476B) for 10 years after facility begins producing energy Provider Iowa Utilities Board In June 2005, Iowa enacted legislation creating two separate production tax credit programs for energy generated by eligible wind and renewable energy facilities. An eligible facility can qualify for only one of the two

455

Renewable Energy Systems Sales Tax Exemption | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sales Tax Exemption Sales Tax Exemption Renewable Energy Systems Sales Tax Exemption < Back Eligibility Agricultural Commercial General Public/Consumer Residential Savings Category Bioenergy Commercial Heating & Cooling Manufacturing Buying & Making Electricity Alternative Fuel Vehicles Hydrogen & Fuel Cells Solar Heating & Cooling Water Heating Wind Program Info Start Date 1999 State Vermont Program Type Sales Tax Incentive Rebate Amount 100% of sales tax for purchase Provider Vermont Department of Taxes Vermont's sales tax exemption for renewable-energy systems, originally enacted as part of the Miscellaneous Tax Reduction Act of 1999 (H. 0548), initially applied only to net-metered systems. The exemption now generally applies to systems up to 250 kilowatts (kW) in capacity that generate

456

Renewable Energy Production Tax Credit (Personal) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Credit (Personal) Credit (Personal) Renewable Energy Production Tax Credit (Personal) < Back Eligibility Agricultural Commercial Industrial Institutional Residential Rural Electric Cooperative Schools Savings Category Bioenergy Alternative Fuel Vehicles Hydrogen & Fuel Cells Solar Buying & Making Electricity Wind Maximum Rebate 1.5¢/kWh (IA Code § 476C) Program Info Start Date 06/15/2005 State Iowa Program Type Personal Tax Credit Rebate Amount 1.5¢/kWh (IA Code § 476C) or 1.0¢/kWh (IA Code § 476B) for 10 years after facility begins producing energy Provider Iowa Utilities Board In June 2005, Iowa enacted legislation creating two separate production tax credit programs for energy generated by eligible wind and renewable energy facilities. An eligible facility can qualify for only one of the two

457

Renewable Energy Facility Sales and Use Tax Reimbursement (South Dakota) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Facility Sales and Use Tax Reimbursement (South Energy Facility Sales and Use Tax Reimbursement (South Dakota) Renewable Energy Facility Sales and Use Tax Reimbursement (South Dakota) < Back Eligibility Agricultural Commercial Industrial Installer/Contractor Savings Category Wind Buying & Making Electricity Bioenergy Commercial Heating & Cooling Manufacturing Water Alternative Fuel Vehicles Hydrogen & Fuel Cells Solar Home Weatherization Program Info Start Date 04/01/2013 State South Dakota Program Type Sales Tax Incentive Rebate Amount Up to 100% of the tax paid on project costs Provider South Dakota Governor's Office of Economic Development South Dakota allows for a reinvestment payment up to the total amount of sales and use taxes paid for certain new or expanded renewable energy systems, equipment upgrades to existing systems, and manufacturing

458

Renewable Energy Evaluation Tools  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

RENEWABLE ENERGY RENEWABLE ENERGY EVALUATION TOOLS Andy Walker, PhD PE Principal Engineer, NREL Renewable Energy Round Table May 2, 2012 2 TECHNICAL ASSESSMENT AND SCREENING TOOLS WE USE IN OUR PROJECTS Campus/Base Assessments INFRASTRUCTURE BUILDINGS ASSESSMENT RENEWABLE SUPPLY SIDE VEHICLES & TOOLS Campus/Base Assessments INFRASTRUCTURE BUILDINGS ASSESSMENT RENEWABLE SUPPLY SIDE VEHICLES & TOOLS 9 9 Renewable Energy Technologies Photovoltaics Daylighting Biomass Heat/Power Concentrating Solar Heat/Power Solar Vent Air Preheat Solar Water Heating Wind Power Ground Source Heat Pump Landfill Gas 10 10 Renewable Energy Resources Geographical Information System (GIS) Datasets * NREL Datasets (http://www.nrel.gov/gis/) - solar radiation 10x10 km grid

459

Challenges for deploying dedicated, large-scale, bioenergy systems in the USA  

E-Print Network (OSTI)

In the next quarter-century, global demand for energy is expected to increase more than 25%, while some analysts are predicting that output of petroleum will soon peak. This reality of increasing demand in the face of diminishing fossil supplies is spurring interest in renewable energy sources. An array of biomass-for-bioenergy resources has been proposed, with perennial, lignocellulosic feedstocks showing the greatest potential. Assessment of potential biomass energy resources is difficult, however, as uncertainties over available land and crop yields swing reported estimates from 35 to 1135 EJ/year. In the USA, it has been suggested that more than 1 billion tonnes (910 million Mg) of biomass could be sustainably harvested, but these estimates are dependent on continued gains in plant productivity, nutrient use efficiency and soil and water conservation. Variables of population growth and increased standards of living will also affect the availability of land for these energy-producing endeavours. Several biofuel sources have been identified to include waste streams, microalgae and woody biomass plantations. With herbaceousbased systems, much effort is currently being given to corn and other starch or grain crops that can be readily converted to ethanol. While these crops may serve to jumpstart the biofuel

John H. Fike; David J. Parrish; Jeffrey Alwang; John S. Cundiff

2007-01-01T23:59:59.000Z

460

Supergen Biomass and Bioenergy Consortium Theme 6 Resource Assessment  

E-Print Network (OSTI)

as ethanol and biodiesel) dispensed through existing petroleum retail stations. Alternative and renewable ................................................................................................................................................... 23 Biodiesel/Renewable Diesel (BiomassBased Diesels (85 percent ethanol and 15 percent gasoline) or any blend level in between. Biodiesel also is being

Note: This page contains sample records for the topic "bioenergy lightsource renewables" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Commercial-Scale Renewable-Energy Grants (Rhode Island) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commercial-Scale Renewable-Energy Grants (Rhode Island) Commercial-Scale Renewable-Energy Grants (Rhode Island) Commercial-Scale Renewable-Energy Grants (Rhode Island) < Back Eligibility Commercial Institutional Local Government Low-Income Residential Nonprofit Savings Category Biofuels Alternative Fuel Vehicles Bioenergy Commercial Heating & Cooling Manufacturing Buying & Making Electricity Hydrogen & Fuel Cells Solar Home Weatherization Water Maximum Rebate $75,000 Program Info Funding Source Rhode Island Renewable Energy Fund (RIREF); Alternative Compliance Payments (ACPs) Start Date 01/01/2013 Expiration Date 12/31/2013 State Rhode Island Program Type State Grant Program Rebate Amount 20% of project funding Provider Rhode Island Economic Development Corporation The Rhode Island Economic Development Corporation (RIEDC) provides

462

Sales and Use Tax Exemption for Renewable Energy Equipment | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Renewable Energy Equipment Renewable Energy Equipment Sales and Use Tax Exemption for Renewable Energy Equipment < Back Eligibility Agricultural Commercial General Public/Consumer Industrial Institutional Local Government Nonprofit Residential Retail Supplier State Government Savings Category Bioenergy Buying & Making Electricity Solar Heating & Cooling Commercial Heating & Cooling Heating Water Heating Wind Program Info Start Date 7/1/2009 State Colorado Program Type Sales Tax Incentive Rebate Amount 100% Provider Colorado Department of Revenue Colorado exempts from the state's sales and use tax all sales, storage, and use of components used in the production of alternating current electricity from a renewable energy source. Effective July 1, 2009, through July 1, 2017, all sales, storage, and use of components used in solar thermal

463

Local Option - Sales and Use Tax Exemption for Renewable Energy Systems |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sales and Use Tax Exemption for Renewable Energy Sales and Use Tax Exemption for Renewable Energy Systems Local Option - Sales and Use Tax Exemption for Renewable Energy Systems < Back Eligibility Agricultural Commercial General Public/Consumer Industrial Residential Savings Category Bioenergy Buying & Making Electricity Solar Heating & Cooling Water Heating Wind Maximum Rebate Varies (local option) Program Info Start Date 8/3/2007 State Colorado Program Type Sales Tax Incentive Rebate Amount Varies (local option) Colorado enacted legislation in April 2007 ([http://www.leg.state.co.us/clics/clics2007a/csl.nsf/fsbillcont3/31EEE26A... SB 145]) to authorize counties and municipalities to offer property or sales tax rebates or credits to residential and commercial property owners who install renewable energy systems on their property.

464

Property:RenewableFuelStandard/RenewableBiofuel | Open Energy Information  

Open Energy Info (EERE)

RenewableBiofuel RenewableBiofuel Jump to: navigation, search This is a property of type Number. Pages using the property "RenewableFuelStandard/RenewableBiofuel" Showing 15 pages using this property. R Renewable Fuel Standard Schedule + 12.6 + Renewable Fuel Standard Schedule + 15 + Renewable Fuel Standard Schedule + 13.2 + Renewable Fuel Standard Schedule + 15 + Renewable Fuel Standard Schedule + 13.8 + Renewable Fuel Standard Schedule + 15 + Renewable Fuel Standard Schedule + 14.4 + Renewable Fuel Standard Schedule + 9 + Renewable Fuel Standard Schedule + 15 + Renewable Fuel Standard Schedule + 15 + Renewable Fuel Standard Schedule + 10.5 + Renewable Fuel Standard Schedule + 15 + Renewable Fuel Standard Schedule + 15 + Renewable Fuel Standard Schedule + 12 +

465

Community Renewable Energy Deployment Success Stories: Financing...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Community Renewable Energy Deployment Success Stories: Financing Renewable Energy Projects Webinar Community Renewable Energy Deployment Success Stories: Financing Renewable Energy...

466

Role of Renewable Energy Certificates in Developing New Renewable...  

NLE Websites -- All DOE Office Websites (Extended Search)

Renewable Energy Certificates in Developing New Renewable Energy Projects Edward Holt Ed Holt & Associates, Inc. Jenny Sumner and Lori Bird National Renewable Energy Laboratory...

467

Bioenergy Sustainability at the Regional Scale2 In press with Ecology and Society as an Insight Article5  

E-Print Network (OSTI)

1 Bioenergy Sustainability at the Regional Scale2 3 4 In press with Ecology and Society Mulholland1 , G. Philip Robertson3 8 9 10 1 Center for Bioenergy Sustainability, Environmental Sciences by the UT-Battelle, LLC, for DOE under contract DE-AC05-00OR22725.32 33 #12;Bioenergy Sustainability

468

A spreadsheet-based model for teaching the agronomic, economic, and environmental aspects of bioenergy cropping systems  

Science Conference Proceedings (OSTI)

In order to assess and compare the economic and environmental sustainability of newly emerging bioenergy cropping systems, students need a comprehensive computer-based tool for cataloging attributes of various proposed bioenergy feedstock crops. We have ... Keywords: Bioenergy, Biofuel crop, Teaching model

Kurt D. Thelen; Juan Gao; John Hoben; Leilei Qian; Christopher Saffron; Katherine Withers

2012-07-01T23:59:59.000Z

469

Renewable energy annual 1996  

DOE Green Energy (OSTI)

This report presents summary data on renewable energy consumption, the status of each of the primary renewable technologies, a profile of each of the associated industries, an analysis of topical issues related to renewable energy, and information on renewable energy projects worldwide. It is the second in a series of annual reports on renewable energy. The renewable energy resources included in the report are biomass (wood and ethanol); municipal solid waste, including waste-to-energy and landfill gas; geothermal; wind; and solar energy, including solar thermal and photovoltaic. The report also includes various appendices and a glossary.

NONE

1997-03-01T23:59:59.000Z

470

Alaska's renewable energy potential.  

SciTech Connect

This paper delivers a brief survey of renewable energy technologies applicable to Alaska's climate, latitude, geography, and geology. We first identify Alaska's natural renewable energy resources and which renewable energy technologies would be most productive. e survey the current state of renewable energy technologies and research efforts within the U.S. and, where appropriate, internationally. We also present information on the current state of Alaska's renewable energy assets, incentives, and commercial enterprises. Finally, we escribe places where research efforts at Sandia National Laboratories could assist the state of Alaska with its renewable energy technology investment efforts.

Not Available

2009-02-01T23:59:59.000Z

471

An integrated model for assessment of sustainable agricultural residue removal limits for bioenergy systems  

Science Conference Proceedings (OSTI)

Agricultural residues have been identified as a significant potential resource for bioenergy production, but serious questions remain about the sustainability of harvesting residues. Agricultural residues play an important role in limiting soil erosion ... Keywords: Agricultural residues, Bioenergy, Model integration, Soil erosion, Soil organic carbon

D. J. Muth, Jr.; K. M. Bryden

2013-01-01T23:59:59.000Z

472

Forest Products Supply Chain --Availability of Woody Biomass in Indiana for Bioenergy Production  

E-Print Network (OSTI)

Forest Products Supply Chain -- Availability of Woody Biomass in Indiana for Bioenergy Production or wood waste biomass · Map Indiana's wood waste for each potential bioenergy supply chain · Develop break-even analyses for transportation logistics of wood waste biomass Isaac S. Slaven Abstract: The purpose

473

Center for BioEnergy Sustainability (CBES) Summary of the April 2010 Forum  

E-Print Network (OSTI)

Center for BioEnergy Sustainability (CBES) Summary of the April 2010 Forum The Global Sustainable on behalf of the organizing committeei of the Global Sustainable Bioenergy (GSB) Project and Dr. Lee R, Lynd and industrial revolutions. Today, a sustainability revolution is needed because society is changing from

474

Stakeholder Database from the Center for Bioenergy Sustainability (Learn who the experts are)  

DOE Data Explorer (OSTI)

The Center for BioEnergy Sustainability (CBES) is a leading resource for dealing with the environmental impacts and the ultimate sustainability of biomass production for conversion to biofuels and bio-based products. Its purpose is to use science and analysis to understand the sustainability (environmental, economic, and social) of current and potential future bioenergy production and distribution; to identify approaches to enhance bioenergy sustainability; and to serve as an independent source of the highest quality data and analysis for bioenergy stakeholders and decision makers. ... On the operational level, CBES is a focal point and business-development vehicle for ORNLs capabilities related to bioenergy sustainability and socioeconomic analyses. As such, it complements the BioEnergy Science Center (BESC), also located at ORNL, which focuses on the problem of converting lignocellulosic biomass into reactive intermediaries necessary for the cellulosic biofuel industry. Together, these centers provide a strong integrating mechanism and business-development tool for ORNL's science and technology portfolio in bioenergy [taken and edited from http://web.ornl.gov/sci/ees/cbes/. The Stakeholder Database allows you to find experts in bioenergy by their particular type of expertise, their affiliations or locations, their specific research areas or research approaches, etc.

475

Biomass and Bioenergy 31 (2007) 646655 Estimating biomass of individual pine trees using airborne lidar  

E-Print Network (OSTI)

Biomass and Bioenergy 31 (2007) 646­655 Estimating biomass of individual pine trees using airborne biomass and bio-energy feedstocks. The overall goal of this study was to develop a method for assessing aboveground biomass and component biomass for individual trees using airborne lidar data in forest settings

476

Reconsidering Municipal Solid Waste as a Renewable Energy Feedstock For many years, opposition to the use of municipal solid waste (MSW) as an energy resource has been nearly universal among  

E-Print Network (OSTI)

used in that year,2 depending on conversion efficiency.3 Alternatively, Fulcrum BioEnergy estimates reaction.22 · Gasification -- MSW is heated in a chamber with a small amount of oxygen present for conversion into renewable fuels or other biobased products.23 Gasification is economically viable at a small

Columbia University

477

Photon Science for Renewable Energy  

E-Print Network (OSTI)

Photon Science for renewable Energy at Light-Sourceour planet. The quest for renewable, nonpolluting sources ofa global revolution in renewable and carbon- neutral energy

Hussain, Zahid

2010-01-01T23:59:59.000Z

478

Energy Basics: Renewable Energy Technologies  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Wind Renewable Energy Technologies Renewable energy...

479

Renewable Energy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Renewable Energy October 7, 2013 - 9:16am Addthis Renewable energy increases energy security, creates jobs, and powers our clean energy economy. Renewable energy increases...

480

Beyond Diesel - Renewable Diesel  

DOE Green Energy (OSTI)

CTTS fact sheet describing NREL's new Renewable Fuels and Lubricants (ReFUEL) Research Laboratory, which will be used to facilitate increased renewable diesel use in heavy-duty vehicles.

Not Available

2002-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "bioenergy lightsource renewables" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Renewable Electricity Futures (Presentation)  

Science Conference Proceedings (OSTI)

This presentation summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050.

Mai, T.

2012-11-01T23:59:59.000Z

482

Renewable Electricity Futures (Presentation)  

SciTech Connect

This presentation summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050.

Mai, T.

2013-04-01T23:59:59.000Z

483

Renewable Electricity Futures (Presentation)  

DOE Green Energy (OSTI)

This presentation summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050.

Hand, M. M.

2012-09-01T23:59:59.000Z

484

Renewable Electricity Futures (Presentation)  

SciTech Connect

This presentation library summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050.

Mai, T.

2012-10-01T23:59:59.000Z

485

Evaluating environmental consequences of producing herbaceous crops for bioenergy  

SciTech Connect

The environmental costs and benefits of producing bioenergy crops can be measured both in kterms of the relative effects on soil, water, and wildlife habitat quality of replacing alternate cropping systems with the designated bioenergy system, and in terms of the quality and amount of energy that is produced per unit of energy expended. While many forms of herbaceous and woody energy crops will likely contribute to future biofuels systems, The Dept. of Energy`s Biofuels Feedstock Development Program (BFDP), has chosen to focus its primary herbaceous crops research emphasis on a perennial grass species, switchgrass (Panicum virgatum), as a bioenergy candidate. This choice was based on its high yields, high nutrient use efficiency, and wide geographic distribution, and also on its poistive environmental attributes. The latter include its positive effects on soil quality and stabiity, its cover value for wildlife, and the lower inputs of enerty, water, and agrochemicals required per unit of energy produced. A comparison of the energy budgets for corn, which is the primary current source of bioethanol, and switchgrass reveals that the efficiency of energy production for a perennial grass system can exceed that for an energy intensive annual row crop by as much as 15 times. In additions reductions in CO{sub 2} emission, tied to the energetic efficiency of producing transportation fuels, are very efficient with grasses. Calculated carbon sequestration rates may exceed those of annual crops by as much as 20--30 times, due in part to carbon storage in the soil. These differences have major implications for both the rate and efficiency with which fossil energy sources can be replaced with cleaner burning biofuels.

McLaughlin, S.B.

1995-12-31T23:59:59.000Z

486

National Renewable Energy Laboratory  

National Renewable Energy Laboratory Technology Transfer Marine Corps Taps NREL to Help Replace Aging Steam Plant with Efficient Biomass Cogeneration

487

Renewable Fuels Module  

Annual Energy Outlook 2012 (EIA)

The RFM has seven submodules representing various renewable energy sources, biomass, geothermal, conventional hydroelectricity, landfill gas, solar thermal, solar photovoltaics,...

488

Renewable Fuels Module This  

Gasoline and Diesel Fuel Update (EIA)

The RFM has seven submodules representing various renewable energy sources: biomass, geothermal, conventional hydroelectricity, landfill gas, solar thermal, solar photovoltaics,...

489

Renewable Energy Engineering  

E-Print Network (OSTI)

MSc in Renewable Energy Engineering School of Engineering www.cranfield.ac.uk/soe/renewableenergy #12;Postgraduate study Cranfield University 2 School of Engineering MSc in Renewable Energy Engineering Renewable Energy Engineering MSc in Climate change, growing world populations and limited fossil

490

Renewable Energy Technology Guide  

Science Conference Proceedings (OSTI)

First published in 2000 as the Renewable Energy Technical Assessment GuideTAG-RE, the Electric Power Research Institute's (EPRI's) annual Renewable Energy Technology Guide provides a consistent basis for evaluating the economic feasibility of renewable generation technologies. These technologies include wind, solar photovoltaic (PV), solar thermal, biomass, municipal solid waste, geothermal, and emerging ocean energy conversion technologies.

2011-12-22T23:59:59.000Z

491

Energy Efficiency & Renewable Energy  

E-Print Network (OSTI)

Energy Efficiency & Renewable Energy 2009 WIND TECHNOLOGIES MARKET REPORT AUGUST 2010 #12;2009 Wind Associates) Suzanne Tegen (National Renewable Energy Laboratory) Table of Contents Acknowledgments' Association); Ed DeMeo (Renewable Energy Consulting Services, Inc.); Mike O'Sullivan (NextEra Energy Resources

492

Renewable energy and telecommunications  

E-Print Network (OSTI)

Renewable energy and telecommunications Case study: Energy Systems Week When AK Erlang first used fossil fuels and switch to renewable energy sources. But the unlikely convergence of the two fields lay to be able to deal with. "If we integrate renewable energies, such as wind power, in the electricity grid

493

Guide to Purchasing Green Power: Renewable Electricity, Renewable Energy Certificates, and On-Site Renewable Generation  

Energy.gov (U.S. Department of Energy (DOE))

Guide describes the details of purchasing green power. Discussion covers topics like renewable electricity, renewable energy certificates, and on-site renewable generation.

494

COMMISSION GUIDEBOOK RENEWABLE ENERGY PROGRAM  

E-Print Network (OSTI)

COMMISSION GUIDEBOOK RENEWABLE ENERGY PROGRAM OVERALL PROGRAM GUIDEBOOK Fourth Edition Manager Renewable Energy Office G. William Pennington Acting Deputy Director Efficiency and Renewable of how the Energy Commission's Renewable Energy Program is administered and outlines terms

495

2008 NORTHEAST RENEWABLE ENERGY CONFERENCE  

E-Print Network (OSTI)

2008 NORTHEAST RENEWABLE ENERGY CONFERENCE Penn Stater Conference Center State College, Pennsylvania AUGUST 26 - 28, 2008 Renewable Energy ­ It's on everyone's mind. The 2008 Northeast Renewable renewable energy and energy efficiency research, demonstrations, and university

Andrews, Anne M.

496

Renewable Energy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Renewable Energy Renewable Energy Calibration Facilities Ecosystem Management Team Environmental Justice Environmental Management System NEPA Long-Term Surveillance - Operations...

497

Renewable energy annual 1995  

DOE Green Energy (OSTI)

The Renewable Energy Annual 1995 is the first in an expected series of annual reports the Energy Information Administration (EIA) intends to publish to provide a comprehensive assessment of renewable energy. This report presents the following information on the history, status, and prospects of renewable energy data: estimates of renewable resources; characterizations of renewable energy technologies; descriptions of industry infrastructures for individual technologies; evaluations of current market status; and assessments of near-term prospects for market growth. An international section is included, as well as two feature articles that discuss issues of importance for renewable energy as a whole. The report also contains a number of technical appendices and a glossary. The renewable energy sources included are biomass (wood), municipal solid waste, biomass-derived liquid fuels, geothermal, wind, and solar and photovoltaic.

NONE

1995-12-01T23:59:59.000Z

498

The RENEWABLES PORTFOLIO STANDARD RENEWABLES PORTFOLIO STANDARD  

Energy.gov (U.S. Department of Energy (DOE))

The broader goal of the RPS is to achieve various benefits associated with renewable energy. These benefits relate to the environment, resource diversity, technology advancement, and in-state...

499

Pacific Northwest and Alaska Regional Bioenergy Program : Five Year Report, 1985-1990.  

DOE Green Energy (OSTI)

This five-year report describes activities of the Pacific Northwest and Alaska Regional Bioenergy Program between 1985 and 1990. Begun in 1979, this Regional Bioenergy Program became the model for the nation's four other regional bioenergy programs in 1983. Within the time span of this report, the Pacific Northwest and Alaska Regional Bioenergy Program has undertaken a number of applied research and technology projects, and supported and guided the work of its five participating state energy programs. During this period, the Regional Bioenergy Program has brought together public- and private-sector organizations to promote the use of local biomass and municipal-waste energy resources and technologies. This report claims information on the mission, goals and accomplishments of the Regional Bioenergy Program. It describes the biomass projects conducted by the individual states of the region, and summarizes the results of the programs technical studies. Publications from both the state and regional projects are listed. The report goes on to consider future efforts of the Regional Bioenergy Program under its challenging assignment. Research activities include: forest residue estimates; Landsat biomass mapping; woody biomass plantations; industrial wood-fuel market; residential space heating with wood; materials recovery of residues; co-firing wood chips with coal; biomass fuel characterization; wood-boosted geothermal power plants; wood gasification; municipal solid wastes to energy; woodstove study; slash burning; forest depletion; and technology transfer. 9 figs., 6 tabs.

Pacific Northwest and Alaska Bioenergy Program (U.S.)

1991-02-01T23:59:59.000Z

500

Pacific Northwest and Alaska Regional Bioenergy Program : Five Year Report, 1985-1990.  

SciTech Connect

This five-year report describes activities of the Pacific Northwest and Alaska Regional Bioenergy Program between 1985 and 1990. Begun in 1979, this Regional Bioenergy Program became the model for the nation's four other regional bioenergy programs in 1983. Within the time span of this report, the Pacific Northwest and Alaska Regional Bioenergy Program has undertaken a number of applied research and technology projects, and supported and guided the work of its five participating state energy programs. During this period, the Regional Bioenergy Program has brought together public- and private-sector organizations to promote the use of local biomass and municipal-waste energy resources and technologies. This report claims information on the mission, goals and accomplishments of the Regional Bioenergy Program. It describes the biomass projects conducted by the individual states of the region, and summarizes the results of the programs technical studies. Publications from both the state and regional projects are listed. The report goes on to consider future efforts of the Regional Bioenergy Program under its challenging assignment. Research activities include: forest residue estimates; Landsat biomass mapping; woody biomass plantations; industrial wood-fuel market; residential space heating with wood; materials recovery of residues; co-firing wood chips with coal; biomass fuel characterization; wood-boosted geothermal power plants; wood gasification; municipal solid wastes to energy; woodstove study; slash burning; forest depletion; and technology transfer. 9 figs., 6 tabs.

Pacific Northwest and Alaska Bioenergy Program (U.S.)

1991-02-01T23:59:59.000Z