Powered by Deep Web Technologies
Note: This page contains sample records for the topic "bioenergy institute jbei" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

The Joint BioEnergy Institute (JBEI): Developing New Biofuels by Overcoming Biomass Recalcitrance  

E-Print Network [OSTI]

Bioenerg. Res. (010-9086-2 The Joint BioEnergy Institute (JBEI): DevelopingThe mission of the Joint BioEnergy Institute is to advance

Scheller, Henrik Vibe; Singh, Seema; Blanch, Harvey; Keasling, Jay D.

2010-01-01T23:59:59.000Z

2

The Joint BioEnergy Institute (JBEI): Developing New Biofuels by Overcoming Biomass Recalcitrance  

E-Print Network [OSTI]

JD (2009) Producing biofuels using polyketide synthases.JBEI): Developing New Biofuels by Overcoming Biomassthe next-generation of biofuelsó liquid fuels derived from

Scheller, Henrik Vibe; Singh, Seema; Blanch, Harvey; Keasling, Jay D.

2010-01-01T23:59:59.000Z

3

Addressing the Need for Alternative Transportation Fuels: The Joint BioEnergy Institute  

E-Print Network [OSTI]

Fuels: The Joint BioEnergy Institute Harvey W. Blanch Ü,á,ß,∂, * Ü Joint BioEnergy Institute, á Department of Chemicalbiomass monomers. The Joint BioEnergy Institute (JBEI) is a

Blanch, Harvey

2010-01-01T23:59:59.000Z

4

Sandia National Laboratories: JBEI Researchers Splice Corn Gene...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

this goal has been taken by researchers with the U.S. Department of Energy's Joint BioEnergy Institute (JBEI), a DOE Bioenergy Research Center led by the Lawrence Berkeley...

5

Addressing the Need for Alternative Transportation Fuels: The Joint BioEnergy Institute  

SciTech Connect (OSTI)

Today, carbon-rich fossil fuels, primarily oil, coal, and natural gas, provide 85% of the energy consumed in the U.S. As world demand increases, oil reserves may become rapidly depleted. Fossil fuel use increases CO{sub 2} emissions and raises the risk of global warming. The high energy content of liquid hydrocarbon fuels makes them the preferred energy source for all modes of transportation. In the U.S. alone, transportation consumes >13.8 million barrels of oil per day and generates 0.5 gigatons of carbon per year. This release of greenhouse gases has spurred research into alternative, nonfossil energy sources. Among the options (nuclear, concentrated solar thermal, geothermal, hydroelectric, wind, solar, and biomass), only biomass has the potential to provide a high-energy-content transportation fuel. Biomass is a renewable resource that can be converted into carbon-neutral transporation fuels. Currently, biofuels such as ethanol are produced largely from grains, but there is a large, untapped resource (estimated at more than a billion tons per year) of plant biomass that could be utilized as a renewable, domestic source of liquid fuels. Well-established processes convert the starch content of the grain into sugars that can be fermented to ethanol. The energy efficiency of starch-based biofuels is however not optimal, while plant cell walls (lignocellulose) represent a huge untapped source of energy. Plant-derived biomass contains cellulose, which is more difficult to convert to sugars; hemicellulose, which contains a diversity of carbohydrates that have to be efficiently degraded by microorganisms to fuels; and lignin, which is recalcitrant to degradation and prevents cost-effective fermentation. The development of cost-effective and energy-efficient processes to transform lignocellulosic biomass into fuels is hampered by significant roadblocks, including the lack of specifically developed energy crops, the difficulty in separating biomass components, low activity of enzymes used to deconstruct biomass, and the inhibitory effect of fuels and processing byproducts on organisms responsible for producing fuels from biomass monomers. The Joint BioEnergy Institute (JBEI) is a U.S. Department of Energy (DOE) Bioenergy Research Center that will address these roadblocks in biofuels production. JBEI draws on the expertise and capabilities of three national laboratories (Lawrence Berkeley National Laboratory (LBNL), Sandia National Laboratories (SNL), and Lawrence Livermore National Laboratory (LLNL)), two leading U.S. universities (University of California campuses at Berkeley (UCB) and Davis (UCD)), and a foundation (Carnegie Institute for Science, Stanford) to develop the scientific and technological base needed to convert the energy stored in lignocellulose into transportation fuels and commodity chemicals. Established scientists from the participating organizations are leading teams of researchers to solve the key scientific problems and develop the tools and infrastructure that will enable other researchers and companies to rapidly develop new biofuels and scale production to meet U.S. transportation needs and to develop and rapidly transition new technologies to the commercial sector. JBEI's biomass-to-biofuels research approach is based in three interrelated scientific divisions and a technologies division. The Feedstocks Division will develop improved plant energy crops to serve as the raw materials for biofuels. The Deconstruction Division will investigate the conversion of this lignocellulosic plant material to sugar and aromatics. The Fuels Synthesis Division will create microbes that can efficiently convert sugar and aromatics into ethanol and other biofuels. JBEI's cross-cutting Technologies Division will develop and optimize a set of enabling technologies including high-throughput, chipbased, and omics platforms; tools for synthetic biology; multi-scale imaging facilities; and integrated data analysis to support and integrate JBEI's scientific program.

Blanch, Harvey; Adams, Paul; Andrews-Cramer, Katherine; Frommer, Wolf; Simmons, Blake; Keasling, Jay

2008-01-18T23:59:59.000Z

6

Sandia National Laboratories: JBEI  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErik Spoerke SSLS ExhibitIowa State University Sandia and PartnersIsaoJBEI

7

Sandia National Laboratories: JBEI Research Receives Strong Industry...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

EnergyBiofuelsJBEI Research Receives Strong Industry Interest in DOE Technology Transfer Call JBEI Research Receives Strong Industry Interest in DOE Technology Transfer...

8

Bioenergy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Bioenergy Bioenergy Research into alternative forms of energy, especially energy security, is one of the major national security imperatives of this century. Get Expertise Babetta...

9

Bioenergy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Bioenergy Los Alamos developing next-generation of biofuels from renewable resources Read caption + Los Alamos scientists used genetic engineering to develop magnetic algae, thus...

10

Addressing the Need for Alternative Transportation Fuels: The Joint BioEnergy Institute  

E-Print Network [OSTI]

concentrations of ethanol and other fuel products. JBEI willwood of trees. Most ethanol for fuel use today is producedor proposed fuel molecules: ethanol, butanol, isopentanol,

Blanch, Harvey

2010-01-01T23:59:59.000Z

11

Addressing the Need for Alternative Transportation Fuels: The Joint BioEnergy Institute  

E-Print Network [OSTI]

transporation fuels. Currently, biofuels such as ethanol areefficiency of starch-based biofuels is however not optimal,address these roadblocks in biofuels production. JBEI draws

Blanch, Harvey

2010-01-01T23:59:59.000Z

12

Bioenergy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to someone6 M. Babzien, I.ProgramBig Sol BigNaturalPotentialBioenergy

13

Bioenergy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAboutScienceCareers Apply for aCould WorkVehicles,000Bioenergy Los Alamos

14

Small-Scale Bioenergy Alternatives for Industry, Farm, and Institutions : A User`s Perspective.  

SciTech Connect (OSTI)

This report presents research on biomass as an energy source. Topics include: bioenergy development and application; bioenergy combustion technology; and bioenergy from agricultural, forest, and urban resources. There are a total of 57 individual reports included. Individual reports are processed separately for the databases.

Folk, Richard [ed.] [Idaho Univ., Moscow, ID (United States). Dept. of Forest Products

1991-12-31T23:59:59.000Z

15

RESEARCH Open Access A comparative study of ethanol production using  

E-Print Network [OSTI]

bioenergy research centers (Great Lakes Bioenergy Research Center (GLBRC), Joint BioEnergy Institute (JBEI Engineering and Materials Science, Department of Energy (DOE) Great Lakes Bioenergy Research Center (GLBRC

California at Riverside, University of

16

Sandia Heuristic Intelligent  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sandia's National Solar Thermal Test Facility (NSTTF). Sandia participation in the Joint Bioenergy Institute (JBEI) is focused on developing and demonstrating fungible biofuels...

17

Bioenergy and Bioproducts BIOENERGY PROGRAM  

E-Print Network [OSTI]

Bioenergy and Bioproducts BIOENERGY PROGRAM Texas AgriLife Research, a part of the Texas A&M University System, is a national leader in bioenergy and bioproducts research, development

18

NETWORK OF EXCELLENCE The CAP & Bioenergy  

E-Print Network [OSTI]

a campaign to inform farmers about markets for energy crops. #12;BIOENERGY NETWORK OF EXCELLENCE BAPBIOENERGY NETWORK OF EXCELLENCE The CAP & Bioenergy Driver or Barrier? IEA Bioenergy ExCo58://www.ieabioenergy.com/DocSet.aspx?id=5331 #12;BIOENERGY NETWORK OF EXCELLENCE IIIEE ? · A (relatively) small institute in a large University

19

Hawaii Bioenergy Master Plan Economic Impacts  

E-Print Network [OSTI]

Hawaii Bioenergy Master Plan Economic Impacts Prepared for The Hawaii Natural Energy Institute: averaging $49/barrel. Although there are several avenues by which a local bioenergy industry could develop mandate implementation, amongst other federal and state-level incentives, was to prompt a local bioenergy

20

U.S. Department of Energy's Bioenergy Research Centers An Overview of the Science  

SciTech Connect (OSTI)

Alternative fuels from renewable cellulosic biomass - plant stalks, trunks, stems, and leaves - are expected to significantly reduce U.S. dependence on imported oil while enhancing national energy security and decreasing the environmental impacts of energy use. Ethanol and other advanced biofuels from cellulosic biomass are renewable alternatives that could increase domestic production of transportation fuels, revitalize rural economies, and reduce carbon dioxide and pollutant emissions. According to U.S. Secretary of Energy Steven Chu, 'Developing the next generation of biofuels is key to our effort to end our dependence on foreign oil and address the climate crisis while creating millions of new jobs that can't be outsourced.' Although cellulosic ethanol production has been demonstrated on a pilot level, developing a cost-effective, commercial-scale cellulosic biofuel industry will require transformational science to significantly streamline current production processes. Woodchips, grasses, cornstalks, and other cellulosic biomass are widely abundant but more difficult to break down into sugars than corn grain - the primary source of U.S. ethanol fuel production today. Biological research is key to accelerating the deconstruction of cellulosic biomass into sugars that can be converted to biofuels. The Department of Energy (DOE) Office of Science continues to play a major role in inspiring, supporting, and guiding the biotechnology revolution over the past 30 years. The DOE Genomic Science program is advancing a new generation of research focused on achieving whole-systems understanding of biology. This program is bringing together scientists in diverse fields to understand the complex biology underlying solutions to DOE missions in energy production, environmental remediation, and climate change science. For more information on the Genomic Science program, see p. 26. To focus the most advanced biotechnology-based resources on the biological challenges of biofuel production, DOE established three Bioenergy Research Centers (BRCs) in September 2007. Each center is pursuing the basic research underlying a range of high-risk, high-return biological solutions for bioenergy applications. Advances resulting from the BRCs are providing the knowledge needed to develop new biobased products, methods, and tools that the emerging biofuel industry can use (see sidebar, Bridging the Gap from Fundamental Biology to Industrial Innovation for Bioenergy, p. 6). The DOE BRCs have developed automated, high-throughput analysis pipelines that will accelerate scientific discovery for biology-based biofuel research. The three centers, which were selected through a scientific peer-review process, are based in geographically diverse locations - the Southeast, the Midwest, and the West Coast - with partners across the nation (see U.S. map, DOE Bioenergy Research Centers and Partners, on back cover). DOE's Lawrence Berkeley National Laboratory leads the DOE Joint BioEnergy Institute (JBEI) in California; DOE's Oak Ridge National Laboratory leads the BioEnergy Science Center (BESC) in Tennessee; and the University of Wisconsin-Madison leads the Great Lakes Bioenergy Research Center (GLBRC). Each center represents a multidisciplinary partnership with expertise spanning the physical and biological sciences, including genomics, microbial and plant biology, analytical chemistry, computational biology and bioinformatics, and engineering. Institutional partners include DOE national laboratories, universities, private companies, and nonprofit organizations.

None

2010-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "bioenergy institute jbei" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

High-solids enrichment of thermophilic microbial communities and their enzymes on bioenergy feedstocks  

E-Print Network [OSTI]

and their enzymes on bioenergy feedstocks Amitha P. ReddyVanderGheynst 1,2* Joint BioEnergy Institute, Emeryville, CA2009. The water footprint of bioenergy. Proceedings of the

Reddy, A. P.

2012-01-01T23:59:59.000Z

22

U.S, Department of Energy's Bioenergy Research Centers An Overview of the Science  

SciTech Connect (OSTI)

Alternative fuels from renewable cellulosic biomass--plant stalks, trunks, stems, and leaves--are expected to significantly reduce U.S. dependence on imported oil while enhancing national energy security and decreasing the environmental impacts of energy use. Ethanol and other advanced biofuels from cellulosic biomass are renewable alternatives that could increase domestic production of transportation fuels, revitalize rural economies, and reduce carbon dioxide and pollutant emissions. According to U.S. Secretary of Energy Steven Chu, 'Developing the next generation of biofuels is key to our effort to end our dependence on foreign oil and address the climate crisis while creating millions of new jobs that can't be outsourced'. In the United States, the Energy Independence and Security Act (EISA) of 2007 is an important driver for the sustainable development of renewable biofuels. As part of EISA, the Renewable Fuel Standard mandates that 36 billion gallons of biofuels are to be produced annually by 2022, of which 16 billion gallons are expected to come from cellulosic feedstocks. Although cellulosic ethanol production has been demonstrated on a pilot level, developing a cost-effective, commercial-scale cellulosic biofuel industry will require transformational science to significantly streamline current production processes. Woodchips, grasses, cornstalks, and other cellulosic biomass are widely abundant but more difficult to break down into sugars than corn grain--the primary source of U.S. ethanol fuel production today. Biological research is key to accelerating the deconstruction of cellulosic biomass into sugars that can be converted to biofuels. The Department of Energy (DOE) Office of Science continues to play a major role in inspiring, supporting, and guiding the biotechnology revolution over the past 25 years. The DOE Genomic Science Program is advancing a new generation of research focused on achieving whole-systems understanding for biology. This program is bringing together scientists in diverse fields to understand the complex biology underlying solutions to DOE missions in energy production, environmental remediation, and climate change science. New interdisciplinary research communities are emerging, as are knowledgebases and scientific and computational resources critical to advancing large-scale, genome-based biology. To focus the most advanced biotechnology-based resources on the biological challenges of biofuel production, DOE established three Bioenergy Research Centers (BRCs) in September 2007. Each center is pursuing the basic research underlying a range of high-risk, high-return biological solutions for bioenergy applications. Advances resulting from the BRCs will provide the knowledge needed to develop new biobased products, methods, and tools that the emerging biofuel industry can use. The scientific rationale for these centers and for other fundamental genomic research critical to the biofuel industry was established at a DOE workshop involving members of the research community (see sidebar, Biofuel Research Plan, below). The DOE BRCs have developed automated, high-throughput analysis pipelines that will accelerate scientific discovery for biology-based biofuel research. The three centers, which were selected through a scientific peer-review process, are based in geographically diverse locations--the Southeast, the Midwest, and the West Coast--with partners across the nation. DOE's Oak Ridge National Laboratory leads the BioEnergy Science Center (BESC) in Tennessee; the University of Wisconsin-Madison leads the Great Lakes Bioenergy Research Center (GLBRC); and DOE's Lawrence Berkeley National Laboratory leads the DOE Joint BioEnergy Institute (JBEI) in California. Each center represents a multidisciplinary partnership with expertise spanning the physical and biological sciences, including genomics, microbial and plant biology, analytical chemistry, computational biology and bioinformatics, and engineering. Institutional partners include DOE national laboratories, universities, private companies,

None

2009-07-01T23:59:59.000Z

23

Bioenergy Walkthrough  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top Five EEREDepartmentFebruary 4, 2014 BioenergyDepartment

24

Hawaii Bioenergy Master Plan Land and Water Resources  

E-Print Network [OSTI]

Hawaii Bioenergy Master Plan Land and Water Resources Submitted to Hawaii Natural Energy Institute, SLH 2007, Part III, "The primary objective of the bioenergy master plan shall be to develop a Hawaii of any bioenergy crops in Hawaii is the availability of the land and water necessary to produce

25

Bioenergy Production Pathways and Value-Chain Components  

E-Print Network [OSTI]

Bioenergy Production Pathways and Value-Chain Components Prepared for the U.S. Department of Energy on Life Cycle Analyses of Bioenergy Systems Prepared by Hawai`i Natural Energy Institute School of Ocean or reflect those of the United States Government or any agency thereof. #12;Bioenergy Production Pathways

26

Sorghum Program BIOENERGY PROGRAM  

E-Print Network [OSTI]

Sorghum Program BIOENERGY PROGRAM Sorghums are important nongrain lignocellulosic feedstocks Biomass Switch Grass Forage Sorghum Bioenergy Sorghum Biomass per acre per year that can be converted (DT

27

Bioenergy with Carbon Capture and Sequestration WorkshopBioenergy...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Bioenergy with Carbon Capture and Sequestration WorkshopBioenergy with Carbon Capture and Sequestration (BECCS) Workshop Bioenergy with Carbon Capture and Sequestration...

28

In Search of Spatial Opportunities for Sustainable Bioenergy...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Search of Spatial Opportunities for Sustainable Bioenergy Production Apr 17 2014 03:30 PM - 04:30 PM Yetta Jager, National Institute for Mathematical and Biological Syntheses ,...

29

The BioEnergy Science Center (BESC) is a U.S. Department of Energy Bioenergy Research Center supported by the Office of Biological and Environmental Research in the DOE Office of Science Pseudo-lignin Chemistry and Its Impact  

E-Print Network [OSTI]

The BioEnergy Science Center (BESC) is a U.S. Department of Energy Bioenergy Research Center and Biochemistry, BioEnergy Science Center Georgia Institute of Technology, Atlanta, GA *Presenter: arthur by the DOE office of Biological and Environmental Research through the BioEnergy Science Center (BESC). 10 ¬Ķm

Das, Suman

30

Hawaii Bioenergy Master Plan Bioenergy Technology  

E-Print Network [OSTI]

technology assessment was conducted as part of the Hawaii Bioenergy Master Plan mandated by Act 253 collected in preparing this task and include: 1. The State should continue a bioenergy technology assessment-oil production X Y Charcoal production X X Y Bio-oil production for fuels X X Y Combustion X Y Renewable diesel

31

Pyrolysis Research: Bioenergy Testing and Analysis Laboratory BIOENERGY PROGRAM  

E-Print Network [OSTI]

Pyrolysis Research: Bioenergy Testing and Analysis Laboratory BIOENERGY PROGRAM Pyrolysis research is conducted at Texas A&M University at the Bioenergy Testing and Analysis Laboratory. Our researchers create

32

Bioenergy: America's Energy Future  

SciTech Connect (OSTI)

Bioenergy: America's Energy Future is a short documentary film showcasing examples of bioenergy innovations across the biomass supply chain and the United States. The film highlights a few stories of individuals and companies who are passionate about achieving the promise of biofuels and addressing the challenges of developing a thriving bioeconomy. This outreach product supports media initiatives to expand the public's understanding of the bioenergy industry and sustainable transportation and was developed by the U.S. Department of Energy Bioenergy Technologies Office (BETO), Oak Ridge National Laboratory, Green Focus Films, and BCS, Incorporated.

Nelson, Bruce; Volz, Sara; Male, Johnathan; Wolfson, Johnathan; Pray, Todd; Mayfield, Stephen; Atherton, Scott; Weaver, Brandon

2014-07-31T23:59:59.000Z

33

Streamlining Bioenergy Feedstock Engineering  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Streamlining Bioenergy Feedstock Engineering The DOE Biomass Program's feedstock research and development tools enable collaboration and sharing of feedstock development knowledge...

34

Bioenergy: America's Energy Future  

ScienceCinema (OSTI)

Bioenergy: America's Energy Future is a short documentary film showcasing examples of bioenergy innovations across the biomass supply chain and the United States. The film highlights a few stories of individuals and companies who are passionate about achieving the promise of biofuels and addressing the challenges of developing a thriving bioeconomy. This outreach product supports media initiatives to expand the public's understanding of the bioenergy industry and sustainable transportation and was developed by the U.S. Department of Energy Bioenergy Technologies Office (BETO), Oak Ridge National Laboratory, Green Focus Films, and BCS, Incorporated.

Nelson, Bruce; Volz, Sara; Male, Johnathan; Wolfson, Johnathan; Pray, Todd; Mayfield, Stephen; Atherton, Scott; Weaver, Brandon

2014-08-12T23:59:59.000Z

35

FIELD TO FUEL Bioenergy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

TO FUEL Bioenergy Wheat straw, corn stover, prairie grasses, wood chips, and logging residues - all are left over mate- rial from various agricultural and industrial operations....

36

Bioenergy Impact on Wisconsin's Workforce  

Broader source: Energy.gov [DOE]

Troy Runge, Wisconsin Bioenergy Initiative, presents on bioenergy's impact on Wisconsin's workforce development for the Biomass/Clean Cities States webinar.

37

Breakthrough: Using Microbes to Make Advanced Biofuels  

ScienceCinema (OSTI)

Jay Keasling, Berkeley Lab's Associate Director for Bioscience and the CEO of DOE's Joint BioEnergy Institute (JBEI), explains how special strains of microbes can convert the biomass of non-food crops and agricultural waste into fuels for cars, trucks and jet planes. Keasling's research team at JBEI has developed E.coli that can digest switchgrass and convert the plant sugars into gasoline, diesel or jet fuel, not unlike the process by which beer is brewed.

Keasling, Jay

2013-05-29T23:59:59.000Z

38

Breakthrough: Using Microbes to Make Advanced Biofuels  

SciTech Connect (OSTI)

Jay Keasling, Berkeley Lab's Associate Director for Bioscience and the CEO of DOE's Joint BioEnergy Institute (JBEI), explains how special strains of microbes can convert the biomass of non-food crops and agricultural waste into fuels for cars, trucks and jet planes. Keasling's research team at JBEI has developed E.coli that can digest switchgrass and convert the plant sugars into gasoline, diesel or jet fuel, not unlike the process by which beer is brewed.

Keasling, Jay

2012-01-01T23:59:59.000Z

39

Gasification Research BIOENERGY PROGRAM  

E-Print Network [OSTI]

Gasification Research BIOENERGY PROGRAM Description Researchers inthe@tamu.edu Skid-mounted gasifier: 1.8 tons-per-day pilot unit Gasification of cotton gin trash The new Texas A

40

Hawaii Bioenergy Master Plan Business Partnering  

E-Print Network [OSTI]

Hawaii Bioenergy Master Plan Business Partnering Steven Chiang, Director Agribusiness Incubator a productive bioenergy industry, successful partnering amongst industry "players" is essential. This section of the Hawaii Bioenergy Master Plan specifically evaluates facilitating the bioenergy industry through

Note: This page contains sample records for the topic "bioenergy institute jbei" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Biofuel and Bioenergy implementation scenarios  

E-Print Network [OSTI]

and bioenergy markets are modelled with the aim to conduct quantitative analyses on the production and costsBiofuel and Bioenergy implementation scenarios Final report of VIEWLS WP5, modelling studies #12;Biofuel and Bioenergy implementation scenarios Final report of VIEWLS WP5, modelling studies By André

42

Bioenergy | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehiclesTankless orA BRIEFApril 2015CommerceDepartment ofBioenergy Bioenergy

43

Bioenergy Science Center KnowledgeBase  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The challenge of converting cellulosic biomass to sugars is the dominant obstacle to cost effective production of biofuels in s capable of significant enough quantities to displace U. S. consumption of fossil transportation fuels. The BioEnergy Science Center (BESC) tackles this challenge of biomass recalcitrance by closely linking (1) plant research to make cell walls easier to deconstruct, and (2) microbial research to develop multi-talented biocatalysts tailor-made to produce biofuels in a single step. [from the 2011 BESC factsheet] The BioEnergy Science Center (BESC) is a multi-institutional, multidisciplinary research (biological, chemical, physical and computational sciences, mathematics and engineering) organization focused on the fundamental understanding and elimination of biomass recalcitrance. The BESC Knowledgebase and its associated tools is a discovery platform for bioenergy research. It consists of a collection of metadata, data, and computational tools for data analysis, integration, comparison and visualization for plants and microbes in the center.The BESC Knowledgebase (KB) and BESC Laboratory Information Management System (LIMS) enable bioenergy researchers to perform systemic research. [http://bobcat.ornl.gov/besc/index.jsp

Syed, M.H.; Karpinets, T.V.; Parang, M.; Leuze, M.R.; Park, B.H.; Hyatt, D.; Brown, S.D.; Moulton, S. Galloway, M.D.; Uberbacher E.C.

44

Communicating about bioenergy sustainability  

SciTech Connect (OSTI)

Defining and measuring sustainability of bioenergy systems are difficult because the systems are complex, the science is in early stages of development, and there is a need to generalize what are inherently context-specific enterprises. These challenges, and the fact that decisions are being made now, create a need for improved communications among scientists as well as between scientists and decision makers. In order for scientists to provide information that is useful to decision makers, they need to come to an agreement on how to measure and report potential risks and benefits of diverse energy alternatives, including problems and opportunities in various bioenergy production pathways. Scientists also need to develop approaches that contribute information relevant to policy and decision making. The need for clear communication is especially important at this time when there is a plethora of scientific papers and reports, and it is difficult for the public or decision makers to assess the merits of each analysis. We propose three communication guidelines for scientists whose work can contribute to decision making: (1) relationships between the question and the analytical approach should be clearly defined and make common sense; (2) the information should be presented in a manner that nonscientists can understand; and (3) the implications of methods, assumptions and limitations should be clear. The scientists job is to analyze information in order to build a better understanding of environmental, cultural and socioeconomic aspects of the sustainability of energy alternatives. The scientific process requires transparency, debate, review, and collaboration across disciplines and time. This paper serves as an introduction to the papers in the special issue on Sustainability of Bioenergy Systems: Cradle to Grave because scientific communication is essential to developing more sustainable energy systems. Together these four papers provide a framework under which the effects of bioenergy can be assessed and compared to other energy alternatives in order to foster sustainability.

Dale, Virginia H [ORNL] [ORNL; Kline, Keith L [ORNL] [ORNL; Perla, Dr. Donna [US Environmental Protection Agency] [US Environmental Protection Agency; Lucier, Dr. Al [National Council on Air and Stream Improvement] [National Council on Air and Stream Improvement

2013-01-01T23:59:59.000Z

45

Bioenergy Success Stories  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsBSCmemo.pdf BSCmemo.pdf BSCmemo.pdfBetter BuildingsBetterBiodieselBioenergy

46

Bioenergy Technologies Office: Publications  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsBSCmemo.pdf BSCmemo.pdf BSCmemo.pdfBetterBIOENERGY TECHNOLOGIES OFFICEInformation

47

Agave Transcriptomes and microbiomes for bioenergy research  

E-Print Network [OSTI]

as a biofuel feedstock. GCB Bioenergy 3, 68Ė78, (2011). [2]in Agave tequilana. GCB Bioenergy 3, 25Ė36, (2011). [4]and microbiomes for bioenergy research Stephen Gross 1,2 ,

Gross, Stephen

2013-01-01T23:59:59.000Z

48

BRAZILIAN'S BIOENERGY SUCCESS POWERED BY THE SUN  

E-Print Network [OSTI]

BRAZILIAN'S BIOENERGY SUCCESS POWERED BY THE SUN Caroline Rayol Resources and Bioenergy Project : Market opening 2003 : Flex-fuel car 2004 : Biodiesel Production and Use National Program 2006

Canet, Léonie

49

Bioenergy Knowledge Discovery Framework Recognized at National...  

Energy Savers [EERE]

Knowledge Discovery Framework (KDF) is bringing together the bioenergy community through Web-based tools, and was presented by Bioenergy KDF team members from Oak Ridge National...

50

2012 Bioenergy Action Plan Prepared by the Bioenergy Interagency Working Group  

E-Print Network [OSTI]

2012 Bioenergy Action Plan Prepared by the Bioenergy Interagency Working Group AUGUST 2012 Edmund G. Brown Jr., Governor #12;Bioenergy Interagency Working Group Julia Levin, Chair, Bioenergy Interagency and the California Energy Commission with input from the Bioenergy Interagency Working Group. This report

51

Bioenergy technology balancing energy output with environmental  

E-Print Network [OSTI]

E2.3 Bioenergy technology ­ balancing energy output with environmental benefitsbenefits John standards #12;Is it right to grow bioenergy? Or How much bioenergy production is right? #12;Historical bioenergy Farmers historically used 25% land for horse feed #12;Energy crops are `solar panels' Solar energy

Levi, Ran

52

National Bioenergy Center Biochemical Platform Integration Project  

SciTech Connect (OSTI)

April through June 2008 update on activities of the National Bioenergy Center's Biochemical Platform Integration Project.

Not Available

2008-07-01T23:59:59.000Z

53

Sandia National Laboratories: JBEI  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErik Spoerke SSLS ExhibitIowa State University Sandia and PartnersIsaoJBEIJBEI

54

BioEnergy Science Center (BESC) | Clean Energy | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Organizations Redefining The Frontiers of Bioenergy Home | Science & Discovery | Clean Energy | Facilities and Centers | BioEnergy Science Center BioEnergy Science Center |...

55

implementing bioenergy applied research & development  

E-Print Network [OSTI]

's biomass gasification technology that will reduce UNBC's fossil fuel consumption by up to 85%. #12;1 2 for the University community about bioenergy, energy conservation, climate change, waste reduction, recycling

Northern British Columbia, University of

56

New and emerging bioenergy technologies  

E-Print Network [OSTI]

Rohstoffe e.V. Germany Consultant Charles Butcher Science Journalist Ris√ł Energy Report 2 #12;1. Preface 3 2 or fisheries. Examples of bioenergy resources are fuel wood, bagasse, organic waste, biogas and bioethanol

57

HAWAII NATURAL ENERGY INSTITUTEwww.hnei.hawaii.edu Bioenergy Research  

E-Print Network [OSTI]

HAWAII NATURAL ENERGY INSTITUTEwww.hnei.hawaii.edu Bioenergy Research Hawaii Natural Energy Development Pathways for Bioenergy Systems Crops Intermediate Products Conversion Technologies Bioenergy.hnei.hawaii.edu Research and the Bioenergy Industry Value Chain Feedstock Production Feedstock Logistics Conversion

58

Perennial Grass Breeding Program BIOENERGY PROGRAM  

E-Print Network [OSTI]

Perennial Grass Breeding Program BIOENERGY PROGRAM One Texas AgriLife Research initiative for bioenergy is the perennial grass breeding program. Results are outlined here. Pearl Millet-Napiergrass P

59

Moderne bioenergi -et nyt dansk vkstomrde?  

E-Print Network [OSTI]

Moderne bioenergi - et nyt dansk v√¶kstomr√•de? 11. december 2003 Marriott Hotel, K√łbenhavn #12;Moderne bioenergi - et nyt dansk v√¶kstomr√•de? Velkomst og introduktion J√łrgen Kjems, administrerende direkt√łr, Ris√ł #12;Program 13.40-14.00 Perspektiver for moderne bioenergi Hans Larsen, Ris√ł 14

60

Bioenergy Business Partner Information Gathering Form  

E-Print Network [OSTI]

Bioenergy Business Partner Information Gathering Form Fax completed form to the Agribusiness.hnei.hawaii.edu/bmpp/stakeholders.asp Partners are organizations that perform, intend to perform, or should perform bioenergy processes and/or requirements. Please tell us about your organization and the role it plays in bioenergy production in Hawaii

Note: This page contains sample records for the topic "bioenergy institute jbei" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Hawaii Bioenergy Master Plan Stakeholder Comment  

E-Print Network [OSTI]

Hawaii Bioenergy Master Plan Volume III Stakeholder Comment Prepared for State of Hawaii Department of Ocean Earth Sciences and Technology December 2009 #12;i Hawaii Bioenergy Master Plan Volume III Stakeholder Comment Comments on the Draft Hawaii Bioenergy Master Plan were solicited by posting the document

62

"Bioenergy Research within SLU" Symposium Program  

E-Print Network [OSTI]

1 "Bioenergy Research within SLU" Symposium Program Tuesday, 25 September 2012 09:00 - 09 School Bioenergy Martin Weih Department of Crop Production Ecology, SLU Uppsala 09:45 ­ 10:00 Swedish funding for bioenergy research 2007-2010 Pär Aronsson Research Officer, Faculty of Natural Resources

63

NREL National Bioenergy Center Overview  

SciTech Connect (OSTI)

The demand for clean, sustainable, secure energy is growing... and the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) is answering the call. NREL's National bioenergy Center is pioneering biofuels research and development and accelerating the pace these technologies move into the marketplace.

None

2012-01-01T23:59:59.000Z

64

Geospatial Science and Technology for Bioenergy Modeling the Sustainability of the National Bioenergy Infrastructure  

E-Print Network [OSTI]

Geospatial Science and Technology for Bioenergy Modeling the Sustainability of the National. The bioenergy supply chain, from crop to customer, is a spatiotemporal process, and geospatial science provides. This includes geospatially integrated modeling to assess feedstock production, feedstock transportation

65

Bioenergy News | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top Five EEREDepartmentFebruary 4, 2014 Bioenergy Technologies Office (BETO)

66

Nutrient use efficiency in bioenergy cropping systems: Critical research questions  

E-Print Network [OSTI]

x giganteus. Biomass Bioenergy 12:21-24. Christian, D.G. ,for-biofuels systems. Biomass Bioenergy Gentry, L.E. , F.E.cynosuroides. Biomass Bioenergy 12:419-428. Brejda, J.J.

Brouder, Sylvie; Volenec, Jeffrey J; Turco, Ronald; Smith, Douglas R; Ejeta, Gebisa

2009-01-01T23:59:59.000Z

67

Production of bioenergy and biochemicals from industrial and  

E-Print Network [OSTI]

Production of bioenergy and biochemicals from industrial and agricultural wastewater Largus T biological processing strat- egies that produce bioenergy or biochemicals while treating industrial on wastewater treatment from pollution control to resource exploitation. Many bioprocesses can provide bioenergy

Angenent, Lars T.

68

STAFFREPORT Prepared for the Bioenergy Interagency Working Group  

E-Print Network [OSTI]

STAFFREPORT Prepared for the Bioenergy Interagency Working Group: Air Resources Board 2010 2009 PROGRESS TO PLAN BIOENERGY ACTION PLAN FOR CALIFORNIA CALIFORNIA ENERGY COMMISSION #12, and et. al. 2010. 2009 Progress to Plan Bioenergy Action Plan for California. California Energy

69

Biomass and Bioenergy 31 (2007) 638645 Forest bioenergy system to reduce the hazard of wildfires  

E-Print Network [OSTI]

Biomass and Bioenergy 31 (2007) 638­645 Forest bioenergy system to reduce the hazard of wildfires for bioenergy. The start-up project is in the Nutrioso area of the Alpine Ranger District, Apache. The outlet for the wood fuel pellets is the growing market for house and business heating, and co

70

Bioenergy & Clean Cities | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Bioenergy Technologies Office and the Clean Cities program regularly conduct a joint Web conference for state energy office representatives and Clean Cities coordinators. The...

71

Office of the Biomass Program Educational Opportunities in Bioenergy...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Office of the Biomass Program Educational Opportunities in Bioenergy Intro Webinar Office of the Biomass Program Educational Opportunities in Bioenergy Intro Webinar Introduction...

72

EIS-0407: Abengoa Biomass Bioenergy Project near Hugoton, Stevens...  

Broader source: Energy.gov (indexed) [DOE]

07: Abengoa Biomass Bioenergy Project near Hugoton, Stevens County, KS EIS-0407: Abengoa Biomass Bioenergy Project near Hugoton, Stevens County, KS August 20, 2010 EIS-0407: Final...

73

ABSTRACT: Bioenergy Harvesting Technologies to Supply Crop Residues...  

Energy Savers [EERE]

ABSTRACT: Bioenergy Harvesting Technologies to Supply Crop Residues In a Densified Large Square Bale Format ABSTRACT: Bioenergy Harvesting Technologies to Supply Crop Residues In a...

74

Breakthrough in Bioenergy: American Process Sells First RIN-qualified...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Breakthrough in Bioenergy: American Process Sells First RIN-qualified Cellulosic Ethanol Shipment Breakthrough in Bioenergy: American Process Sells First RIN-qualified Cellulosic...

75

Indicators for assessing socioeconomic sustainability of bioenergy systems: A short list of practical measures.  

SciTech Connect (OSTI)

Indicators are needed to assess both socioeconomic and environmental sustainability of bioenergy systems. Effective indicators can help to identify and quantify the sustainability attributes of bioenergy options. We identify 16 socioeconomic indicators that fall into the categories of social well-being, energy security, trade, profitability, resource conservation, and social acceptability. The suite of indicators is predicated on the existence of basic institutional frameworks to provide governance, legal, regulatory and enforcement services. Indicators were selected to be practical, sensitive to stresses, unambiguous, anticipatory, predictive, calibrated with known variability, and sufficient when considered collectively. The utility of each indicator, methods for its measurement, and applications appropriate for the context of particular bioenergy systems are described along with future research needs. Together, this suite of indicators is hypothesized to reflect major socioeconomic effects of the full supply chain for bioenergy, including feedstock production and logistics, conversion to biofuels, biofuel logistics and biofuel end uses. Ten of those 16 indicators are proposed to be the minimum list of practical measures of socioeconomic aspects of bioenergy sustainability. Coupled with locally-prioritized environmental indicators, we propose that these socioeconomic indicators can provide a basis to quantify and evaluate sustainability of bioenergy systems across many regions in which they will be deployed.

Davis, Maggie R [ORNL; Downing, Mark [ORNL; Dale, Virginia H [ORNL; Efroymson, Rebecca Ann [ORNL; Hilliard, Michael R [ORNL; Kline, Keith L [ORNL; Langholtz, Matthew H [ORNL; Leiby, Paul Newsome [ORNL; Oladosu, Gbadebo A [ORNL

2013-01-01T23:59:59.000Z

76

Bioenergy News | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsBSCmemo.pdf BSCmemo.pdf BSCmemo.pdfBetter BuildingsBetterBiodieselBioenergy News

77

Smithfield Bioenergy | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g Grant ofRichardtonManagement,SmartestEnergy Ltd Jump to:CreekBioenergy

78

Boosting Bioenergy | ornl.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to someone6 M.Extracellular PolysaccharidesTalks andBoosting Bioenergy

79

Bioenergy Research | Clean Energy | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAboutScienceCareers Apply for aCould WorkVehicles,000Bioenergy Los

80

Hawaii Bioenergy Master Plan Potential Environmental Impacts of  

E-Print Network [OSTI]

Hawaii Bioenergy Master Plan Potential Environmental Impacts of Bioenergy Development in Hawaii of the potential environmental impacts associated with bioenergy development in Hawaii was conducted as part of the Hawaii Bioenergy Master Plan mandated by Act 253 of the Hawaii State Legislature in 2007. This effort

Note: This page contains sample records for the topic "bioenergy institute jbei" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Addressing the Need for Alternative Transportation Fuels: The Joint BioEnergy  

E-Print Network [OSTI]

). Fossil fuel use increases CO2 emissions and raises the risk of global warming. The high energy contentAddressing the Need for Alternative Transportation Fuels: The Joint BioEnergy Institute Harvey W 94720, Sandia National Laboratories, Albuquerque, New Mexico 87185, **Department of Plant Biology

Knowles, David William

82

Switchgrass for Forage and Bioenergy: II. Effects of P and K fertilization  

E-Print Network [OSTI]

systems. Biomass and Bioenergy 30:198-206. Fixen, PE. 2007.and persistence under bioenergy harvest systems in thebiomass yields for bioenergy purposes have typically been

Guretzky, John A; Kering, Maru K; Biermacher, Jon T; Cook, Billy J

2009-01-01T23:59:59.000Z

83

Webinar: Using the New Bioenergy KDF for Data Discovery and Research...  

Energy Savers [EERE]

Using the New Bioenergy KDF for Data Discovery and Research Webinar: Using the New Bioenergy KDF for Data Discovery and Research Webinar Slides about the new Bioenergy KDF...

84

Bioenergy  

Broader source: Energy.gov [DOE]

Learn how the Energy Department is working to sustainably transform the nation's abundant renewable resources into biomass energy.

85

Sorghum bioenergy genotypes, genes and pathways  

E-Print Network [OSTI]

and this plant is a potentially important bioenergy crop for Texas. The diversity of the twelve high biomass sorghum genotypes was analyzed using 50 simple sequence repeats (SSR) markers with genome coverage. The accumulation of biomass during sorghum development...

Plews, Ian Kenneth

2009-05-15T23:59:59.000Z

86

Ris Energy Report 2 Bioenergy conversion  

E-Print Network [OSTI]

6.3 Ris√ł Energy Report 2 Bioenergy conversion There is a wide range of technologies to derive operate automatically and are in many regions an economic alternative, e.g. Austria and Finland

87

BIOENERGI ER BLEVET MODERNE 4DECEMBER 2003  

E-Print Network [OSTI]

at bruge biomasse til energi. Opfyring med brænde og opvarmning med halmfyr eller biogas er kendte, biogas og bioethanol. Bioenergi er den eneste vedvarende energikilde, der findes i fast, flydende og

88

Bioenergy Research at BNL: Increasing Productivity Using  

E-Print Network [OSTI]

Bioenergy Research at BNL: Increasing Productivity Using Biological Interactions Lee Newman With D consequences: ­ Price of corn has doubled ­ Farmers are planting more corn for ethanol · Increase alternative

Homes, Christopher C.

89

Bioenergy in Energy Transformation and Climate Management  

SciTech Connect (OSTI)

Unlike fossil fuels, biomass is a renewable resource that can sequester carbon during growth, be converted to energy, and then re-grown. Biomass is also a flexible fuel that can service many end-uses. This paper explores the importance of bioenergy to potential future energy transformation and climate change management. Using a model comparison of fifteen models, we characterize and analyze future dependence on, and the value of, bioenergy in achieving potential long-run climate objectivesóreducing radiative forcing to 3.7 and 2.8 W/m2 in 2100 (approximately 550 and 450 ppm carbon dioxide equivalent atmospheric concentrations). Model scenarios project, by 2050, bioenergy growth of 2 to 10% per annum reaching 5 to 35 percent of global primary energy, and by 2100, bioenergy becoming 15 to 50 percent of global primary energy. Non-OECD regions are projected to be the dominant suppliers of biomass, as well as consumers, with up to 35 percent of regional electricity from biopower by 2050, and up to 70 percent of regional liquid fuels from biofuels by 2050. Bioenergy is found to be valuable to many models with significant implications for mitigation costs and world consumption. The availability of bioenergy, in particular biomass with carbon dioxide capture and storage (BECCS), notably affects the cost-effective global emissions trajectory for climate management by accommodating prolonged near-term use of fossil fuels. We also find that models cost-effectively trade-off land carbon and nitrous oxide emissions for the long-run climate change management benefits of bioenergy. Overall, further evaluation of the viability of global large-scale bioenergy is merited.

Rose, Steven K.; Kriegler, Elmar; Bibas, Ruben; Calvin, Katherine V.; Popp, Alexander; van Vuuren, Detlef; Weyant, John

2014-04-01T23:59:59.000Z

90

Bioenergy Technologies Office May Monthly News Blast  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top Five EEREDepartmentFebruary 4, 2014 Bioenergy TechnologiesBioenergy4

91

Online Toolkit Fosters Bioenergy Innovation | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

bioenergy in the U.S., but it also underscores the fact that as renewable power and fuels markets rapidly evolve, the emerging bioenergy industry faces many complex issues. The...

92

REPORT from 1st Annual World Congress of BIOENERGY ,  

E-Print Network [OSTI]

REPORT from 1st Annual World Congress of BIOENERGY , DALIAN, CHINA Dr. Efstratios Kalogirou Earth of SYNERGIA (WTERT Greece) participated in the successful 1st Annual World Congress of BIOENERGY, held between

93

Draft Bioenergy Master Plan for the State of Hawaii  

E-Print Network [OSTI]

Draft Bioenergy Master Plan for the State of Hawaii Prepared for the U.S. Department of Energy DRAFT Hawaii Bioenergy Master Plan Volume I Prepared for State of Hawaii Department of Business

94

Bioenergy Technologies Office Multi-Year Program Plan: May 2013...  

Energy Savers [EERE]

Bioenergy Technologies Office Multi-Year Program Plan: May 2013 Update Bioenergy Technologies Office Multi-Year Program Plan: May 2013 Update This is the May 2013 Update to the...

95

Biomass as Feedstock for a Bioenergy and Bioproducts Industry...  

Energy Savers [EERE]

Industry Biomass Program Peer Review Sustainability Platform Bioenergy Technologies Office: Association of Fish and Wildlife Agencies Agricultural Conservation Committee Meeting...

96

Hawaii Bioenergy Master Plan Financial Incentives And Barriers; And  

E-Print Network [OSTI]

Hawaii Bioenergy Master Plan Financial Incentives And Barriers; And Other Funding Sources Prepared Summary The goal of this section of the Hawaii Bioenergy Master Plan is to identify and evaluate financial incentives and barriers at points along the bioenergy industry value chain (feedstock production, feedstock

97

Bioenergy Review Mapping Work Resource efficiency science programme  

E-Print Network [OSTI]

Bioenergy Review ­ Mapping Work Resource efficiency science programme Science report: SC070001/SR2 #12;ii Science Report ­ Bioenergy Review ­ Mapping Work The Environment Agency is the leading public, biomass, bioenergy, waste, wood-fuel, land, land-take, mapping, 2010, GIS Research Contractor: Forest

98

Special issue: bioenergy Don-Hee Park Sang Yup Lee  

E-Print Network [OSTI]

EDITORIAL Special issue: bioenergy Don-Hee Park ¬∑ Sang Yup Lee Published online: 11 December 2011 √? of the world. The 2011 international symposium on bioenergy Korea was held on 17¬≠18 March 2011. This special, but not limited to, bio- mass cultivation, biomass pretreatment, and biomass conversion in the field of bioenergy

99

Hawaii Bioenergy Master Plan State, County, and Federal  

E-Print Network [OSTI]

Hawaii Bioenergy Master Plan State, County, and Federal Plans, Policies, Statutes, and Regulations, Policies, Statutes, and Regulations was prepared as part of the Hawaii Bioenergy Master Plan project based on information available as of April 28, 2009. #12;ii Hawaii Bioenergy Master Plan State, County and Federal

100

Renewable Technologies and Environmental Injustice: Subsidizing Bioenergy, Promoting Inequity  

E-Print Network [OSTI]

Renewable Technologies and Environmental Injustice: Subsidizing Bioenergy, Promoting Inequity-giganteus biomass, this article shows that bioenergy projects are (1) not clean, given overwhelming particulate biomass in- cineration? No. Despite bioenergy threats to climate change,3,4 and despite the World Bank

Shrader-Frechette, Kristin

Note: This page contains sample records for the topic "bioenergy institute jbei" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Bioenergy and land-use competition in Northeast Brazil  

E-Print Network [OSTI]

Bioenergy and land-use competition in Northeast Brazil Christian Azar Department of Physical policies are warranted if use of degraded lands for bioenergy plantations is desired. 1. Introduction There are two main categories of bioenergy: residues and dedicated plantations. In this paper, we exclusively

102

Nitrogen use in switchgrass grown for bioenergy across the USA  

E-Print Network [OSTI]

Nitrogen use in switchgrass grown for bioenergy across the USA V.N. Owens a , D.R. Viands b , H Available online 17 August 2013 Keywords: Nitrogen removal Switchgrass Bioenergy Nitrogen use efficiency as a forage, conservation, and bioenergy crop [1e5]. It offers a number of distinct benefits including broad

Pawlowski, Wojtek

103

Hawaii Bioenergy Master Plan Marc. M. Siah & Associates, Inc.  

E-Print Network [OSTI]

Hawaii Bioenergy Master Plan Permitting Marc. M. Siah & Associates, Inc. Manfred J. Zapka, Ph.D., P including biofuels. Stakeholders in Hawaii's bioenergy industry, however, have identified Hawaii of promising bioenergy projects in the state. To meet its clean energy goals, Hawaii cannot afford

104

IEA Bioenergy task 40 Country report for the Netherlands  

E-Print Network [OSTI]

1 IEA Bioenergy task 40 ­ Country report for the Netherlands Update 2006 Martin Junginger Marc de-energy trade #12;IEA Bioenergy task 40 Country report for the Netherlands ­update 2006 i IEA Bioenergy Task 40 ­ Country report for the Netherlands Update 2006 Martin Junginger Marc de Wit André Faaij This study

105

DEVELOPING STATE POLICIES SUPPORTIVE OF BIOENERGY DEVELOPMENT  

SciTech Connect (OSTI)

Working within the context of the Southern States Biobased Alliance (SSBA) and with officials in each state, the Southern States Energy Board (SSEB) is identifying bioenergy-related policies and programs within each state to determine their impact on the development, deployment or use of bioenergy. In addition, SSEB will determine which policies have impacted industry's efforts to develop, deploy or use biobased technologies or products. As a result, SSEB will work with the Southern States Biobased Alliance to determine how policy changes might address any negative impacts or enhance positive impacts. In addition to analysis of domestic policies and programs, this project will include the development of a U.S.-Brazil Biodiesel Pilot Project. The purpose of this effort is to promote and facilitate the commercialization of biodiesel and bioenergy production and demand in Brazil.

Kathryn Baskin

2004-07-28T23:59:59.000Z

106

DEVELOPING STATE POLICIES SUPPORTIVE OF BIOENERGY DEVELOPMENT  

SciTech Connect (OSTI)

Working within the context of the Southern States Biobased Alliance (SSBA) and with officials in each state, the Southern States Energy Board (SSEB) is identifying bioenergy-related policies and programs within each state to determine their impact on the development, deployment or use of bioenergy. In addition, SSEB will determine which policies have impacted industry's efforts to develop, deploy or use biobased technologies or products. As a result, SSEB will work with the Southern States Biobased Alliance to determine how policy changes might address any negative impacts or enhance positive impacts. In addition to analysis of domestic policies and programs, this project will include the development of a U.S.-Brazil Biodiesel Pilot Project. The purpose of this effort is to promote and facilitate the commercialization of biodiesel and bioenergy production and demand in Brazil.

Kathryn Baskin

2005-04-30T23:59:59.000Z

107

DEVELOPING STATE POLICIES SUPPORTIVE OF BIOENERGY DEVELOPMENT  

SciTech Connect (OSTI)

Working within the context of the Southern States Biobased Alliance (SSBA) and with officials in each state, the Southern States Energy Board (SSEB) is identifying bioenergy-related policies and programs within each state to determine their impact on the development, deployment or use of bioenergy. In addition, SSEB will determine which policies have impacted industry's efforts to develop, deploy or use biobased technologies or products. As a result, SSEB will work with the Southern States Biobased Alliance to determine how policy changes might address any negative impacts or enhance positive impacts. In addition to analysis of domestic policies and programs, this project will include the development of a U.S.-Brazil Biodiesel Pilot Project. The purpose of this effort is to promote and facilitate the commercialization of biodiesel and bioenergy production and demand in Brazil.

Kathryn Baskin

2004-10-31T23:59:59.000Z

108

DEVELOPING STATE POLICIES SUPPORTIVE OF BIOENERGY DEVELOPMENT  

SciTech Connect (OSTI)

Working within the context of the Southern States Biobased Alliance (SSBA) and with officials in each state, the Southern States Energy Board (SSEB) is identifying bioenergy-related policies and programs within each state to determine their impact on the development, deployment or use of bioenergy. In addition, SSEB will determine which policies have impacted industry's efforts to develop, deploy or use biobased technologies or products. As a result, SSEB will work with the Southern States Biobased Alliance to determine how policy changes might address any negative impacts or enhance positive impacts.

Kathryn Baskin

2003-10-31T23:59:59.000Z

109

Pacific Rim Summit on Industrial Biotechnology & Bioenergy  

Broader source: Energy.gov [DOE]

The ninth annual Pacific Rim Summit on Industrial Biotechnology and Bioenergy will be held from December 7Ė9, 2014, in San Diego, California, at the Westin Gaslamp Quarter. Bringing together representatives from various countries all around the Pacific Rim, this event will focus on the growth of the industrial biotechnology and bioenergy sectors in North America and the Asia-Pacific region. Glenn Doyle, BETO's Deployment & Demonstration Technology Manager, will be moderating and speaking at a session on entitled "Utilizing Strategic Partnerships to Grow Your Business" on December 9.

110

DEVELOPING STATE POLICIES SUPPORTIVE OF BIOENERGY DEVELOPMENT  

SciTech Connect (OSTI)

Working within the context of the Southern States Biobased Alliance (SSBA) and with officials in each state, the Southern States Energy Board (SSEB) is identifying bioenergy-related policies and programs within each state to determine their impact on the development, deployment or use of bioenergy. In addition, SSEB will determine which policies have impacted industry's efforts to develop, deploy or use biobased technologies or products. As a result, SSEB will work with the Southern States Biobased Alliance to determine how policy changes might address any negative impacts or enhance positive impacts.

Kathryn Baskin

2002-07-31T23:59:59.000Z

111

DEVELOPING STATE POLICIES SUPPORTIVE OF BIOENERGY DEVELOPMENT  

SciTech Connect (OSTI)

Working within the context of the Southern States Biobased Alliance (SSBA) and with officials in each state, the Southern States Energy Board (SSEB) is identifying bioenergy-related policies and programs within each state to determine their impact on the development, deployment or use of bioenergy. In addition, SSEB will determine which policies have impacted industry's efforts to develop, deploy or use biobased technologies or products. As a result, SSEB will work with the Southern States Biobased Alliance to determine how policy changes might address any negative impacts or enhance positive impacts.

Kathryn Baskin

2002-11-01T23:59:59.000Z

112

Bioenergy Technologies Office | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top Five EEREDepartmentFebruary 4, 2014 BioenergyDepartment ofPyrolysis |Bioenergy

113

Webinar: Landscape Design for Sustainable Bioenergy Systems  

Broader source: Energy.gov [DOE]

The Energy Departmentís Bioenergy Technologies Office will present a live informational webcast on the Landscape Design for Sustainable Bioenergy Systems Funding Opportunity (DE-FOA-0001179) on November 3, 2014, 1:30 p.m.Ė3:00 p.m. Eastern Standard Time. This FOA seeks interdisciplinary projects that apply landscape design approaches to integrate cellulosic feedstock production into existing agricultural and forestry systems while maintaining or enhancing environmental and socio-economic sustainability including ecosystem services and food, feed, and fiber production. For the purposes of this FOA, cellulosic feedstock production refers to dedicated annual and perennial energy crops, use of agricultural and forestry residues, or a combination of these options.

114

Bioenergy Technologies Office April Monthly News Blast  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top Five EEREDepartmentFebruary 4, 2014 Bioenergy Technologies OfficeApril 2014

115

Bioenergy Technologies Office Coloring and Activity Book  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top Five EEREDepartmentFebruary 4, 2014 Bioenergy Technologies OfficeApril 2014

116

Bioenergy for Sustainable Development | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top Five EEREDepartmentFebruary 4, 2014 BioenergyDepartmentfor Sustainable

117

Bioenergy Technologies Office Overview | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsBSCmemo.pdf BSCmemo.pdf BSCmemo.pdfBetterBIOENERGY TECHNOLOGIES OFFICE FYOverview

118

Bioenergy Technologies Office Solicitations | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsBSCmemo.pdf BSCmemo.pdf BSCmemo.pdfBetterBIOENERGY TECHNOLOGIES OFFICE

119

Bioenergy Upcoming Events | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsBSCmemo.pdf BSCmemo.pdf BSCmemo.pdfBetterBIOENERGY TECHNOLOGIES

120

Bioenergy Success Stories | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energyon ArmedWaste andAccess toSustainable Transportation ¬Ľ Bioenergy Success Stories

Note: This page contains sample records for the topic "bioenergy institute jbei" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Bioenergy crop productivity and potential climate change mitigation from marginal lands in the United States: An  

E-Print Network [OSTI]

Bioenergy crop productivity and potential climate change mitigation from marginal lands bioenergy crops grown on marginal lands in the United States. Two broadly tested cellulosic crops June 2014 Introduction Bioenergy, an important renewable energy produced from biological materials

Zhuang, Qianlai

122

Sustainable use of California biomass resources can help meet state and national bioenergy targets  

E-Print Network [OSTI]

fuel resources. Bio- mass Bioenergy 27:613 20. Parker N,Strategic assessment of bioenergy development in the west:as Feedstock for a Bioenergy and Bioprod- ucts Industry: The

Jenkins, Bryan M; Williams, Robert B; Gildart, Martha C; Kaffka, Stephen R.; Hartsough, Bruce; Dempster, Peter G

2009-01-01T23:59:59.000Z

123

Switchgrass for Forage and Bioenergy: I. Effects of Nitrogen Rate and Harvest System  

E-Print Network [OSTI]

biofuel systems. Biomass and Bioenergy 30:198-206. Muir JP,systems. Biomass and Bioenergy 19: 281-286. Sanderson MA,whether for forage or bioenergy) is defining how crop

Kering, Maru K; Biermacher, Jon T; Cook, Billy J; Guretzky, John A

2009-01-01T23:59:59.000Z

124

Dear Participant, Welcome to the symposium `Bioenergy Research within SLU' on Tuesday, September 25, at  

E-Print Network [OSTI]

Dear Participant, Welcome to the symposium `Bioenergy Research within SLU' on Tuesday, September 25 on the web page of the Research school Bioenergy (http://www.slu.se/sv/forskarskolor/bioenergy/) on Monday

125

Bioenergy Technologies Office R&D Pathways: Fast Pyrolysis and...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Bioenergy Technologies Office R&D Pathways: Fast Pyrolysis and Hydroprocessing In fast pyrolysis and hydrotreating, biomass is rapidly heated in a fluidized bed to create...

126

Bioenergy Technologies Office R&D Pathways: Algal Lipid Upgrading...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Algal Biofuels Algal Lipid Extraction and Upgrading to Hydrocarbons Technology Pathway Bioenergy Technologies Office Conversion R&D Pathway: Whole Algae Hydrothermal Liquefaction...

127

Bioenergy Technologies Office Conversion R&D Pathway: Whole Algae...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Whole Algae Hydrothermal Liquefaction Bioenergy Technologies Office Conversion R&D Pathway: Whole Algae Hydrothermal Liquefaction Whole algae hydrothermal liquefaction is one of...

128

About the Bioenergy Technologies Office: Growing America's Energy...  

Energy Savers [EERE]

making affordable, abundant, and high-quality biomass materials accessible for use as bioenergy feedstocks. Feedstock logistics R&D is focused on reducing costs and improving...

129

Thailand-Key Results and Policy Recommendations for Future Bioenergy...  

Open Energy Info (EERE)

biofuel feedstock crops. How the Thai Government manages the potential pressures that the bioenergy sector will exert on its natural resources and agricultural markets and the...

130

Bioenergy Technologies Office Conversion R&D Pathway: Syngas...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Syngas Upgrading to Hydrocarbon Fuels Bioenergy Technologies Office Conversion R&D Pathway: Syngas Upgrading to Hydrocarbon Fuels Syngas upgrading to hydrocarbon fuels is one of...

131

Bioenergy 2015: Opportunities in a Changing Energy Landscape...  

Broader source: Energy.gov (indexed) [DOE]

will discuss critical bioenergy issues such as the following: Impact of changing oil prices Vehiclefuels co-optimization Future of the Renewable Fuel Standard...

132

CHP and Bioenergy Systems for Landfills and Wastewater Treatment...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Systems for Landfills and Wastewater Treatment Plants CHP and Bioenergy Systems for Landfills and Wastewater Treatment Plants There are important issues to consider when selecting...

133

CHP and Bioenergy for Landfills and Wastewater Treatment Plants...  

Broader source: Energy.gov (indexed) [DOE]

for Landfills and Wastewater Treatment Plants: Market Opportunities CHP and Bioenergy for Landfills and Wastewater Treatment Plants: Market Opportunities This document explores...

134

GREET Bioenergy Life Cycle Analysis and Key Issues for Woody...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Systems, Argonne National Laboratory wangbiomass2014.pdf More Documents & Publications Resource Assessment and Land Use Change Bioenergy Technologies Office Multi-Year Program...

135

Bioenergy Technologies Office: Association of Fish and Wildlife...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Department of Energy Bioenergy Technologies Office Association of Fish & Wildlife Agencies Agricultural Conservation Committee Meeting March 29, 2013 Kristen Johnson Sustainability...

136

Bioenergy Technologies Office: Association of Fish and Wildlife...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Office: Association of Fish and Wildlife Agencies Agricultural Conservation Committee Meeting Bioenergy Technologies Office: Association of Fish and Wildlife Agencies Agricultural...

137

Essays on the economics of bioenergy and emissions trading.  

E-Print Network [OSTI]

??The three essays in this dissertation focus on the economics of bioenergy and emissions trading. Chapter Two analyzes the economic impacts of cellulosic feedstock productionÖ (more)

Moon, Jin-Young

2012-01-01T23:59:59.000Z

138

Sustainable Food & Bioenergy Systems Program-Sustainable Crop Production Option 2014-2015 Catalog  

E-Print Network [OSTI]

Sustainable Food & Bioenergy Systems Program- Sustainable Crop Production Option 2014-2015 Catalog SFBS 146 Intro to Sustainable Food & Bioenergy Systems ................................ S

Dyer, Bill

139

BIOENERGY AND BIOFUELS Performance of a pilot-scale continuous flow microbial  

E-Print Network [OSTI]

BIOENERGY AND BIOFUELS Performance of a pilot-scale continuous flow microbial electrolysis cell fed performance. Keywords Biohydrogen . Biomethane . Bioelectricity. Microbial electrolysis cell . Bioenergy

140

> ExplorACES projects attract potential students > Bioenergy grant fuels excitement  

E-Print Network [OSTI]

Inside: > ExplorACES projects attract potential students > Bioenergy grant fuels excitement. Our current technical emphases are in the areas of agricultural automation, bio-energy and bio

Gilbert, Matthew

Note: This page contains sample records for the topic "bioenergy institute jbei" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

E-Print Network 3.0 - analysing bioenergy demand Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

normally derived... of bioenergy resources are fuel wood, bagasse, organic waste, biogas and bioethanol. Bioenergy is the only... action on climate change have all served to...

142

E-Print Network 3.0 - assessing bioenergy options Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

origin, normally derived... of bioenergy resources are fuel wood, bagasse, organic waste, biogas and bioethanol. Bioenergy is the only... action on climate change have all served...

143

Sandia National Laboratories: Joint BioEnergy Institute  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErik Spoerke SSLS ExhibitIowa State University SandiaJim Speck

144

Updated 2-11-06 Research to Advance Grass Bioenergy  

E-Print Network [OSTI]

produced grass pellets at 2.8% ash content. Most clean wood products will have an ash content below 1 are possible, but combustion quality will never be able to match that of wood products. Overwintered the grass bioenergy industry. Current Status Grass pellet bioenergy appears to be an economically

Pawlowski, Wojtek

145

The Climate Impacts of Bioenergy Systems Depend on Market and  

E-Print Network [OSTI]

The Climate Impacts of Bioenergy Systems Depend on Market and Regulatory Policy Contexts D E R E K, and by sequestering atmospheric carbon. Which use mitigates the most emissions depends on market and regulatory the vehicle fleet and bioenergy use are fixed or free parameters constrain the policy questions an analysis

Kammen, Daniel M.

146

Canada Biomass-Bioenergy Report May 31, 2006  

E-Print Network [OSTI]

Canada Biomass-Bioenergy Report May 31, 2006 Doug Bradley President Climate Change Solutions National Team Leader- IEA Bioenergy Task 40- Biotrade 402 Third Avenue ·Ottawa, Ontario ·Canada K1S 2K7 of the ten provinces. Canada resembles the US in its market-oriented economic system, pattern of production

147

Evaluating ecosystem processes in willow short rotation coppice bioenergy plantations  

E-Print Network [OSTI]

Evaluating ecosystem processes in willow short rotation coppice bioenergy plantations R E B E C C and lit- ter decomposition varied between Short Rotation Coppice (SRC) willow bioenergy plantations., 2009). Willow (Salix spp) short rotation coppice (SRC) is one of the most widely planted second

148

A Virtual Visit to Bioenergy Research at the National Laboratories  

Office of Energy Efficiency and Renewable Energy (EERE)

For National Bioenergy Day on October 22, bioenergy facilities across the country are holding open houses to increase public awareness of bioenergy and its role in the clean energy landscape. By the same token, the Bioenergy Technologies Office (BETO) is offering this virtual open house of its national laboratoriesóthe facilities at the core of BETOís research and development. If you want to know how Energy Department bioenergy funding is making an impact, be sure to take a look at our national labsó47% of BETO funding this past year went to the national laboratories. Of that funding, about half went to the National Renewable Energy Laboratory. Pacific Northwest National Laboratory, Idaho National Laboratory, and Oak Ridge National Laboratory also received a large share.

149

Bioenergy Deployment Consortium (BDC) 2014 Fall Symposium  

Broader source: Energy.gov [DOE]

The 2014 BDC Fall Symposium will be held on October 21Ė22, 2014 in Fort Myers, Florida. The event will include a tour of the Algenol facility on Wednesday morning. The symposium will have panels for progress reports from current cellulosic bio-product companies, updates on government policy from several agencies, scale-up strategies,and lessons learned. POET-DSM will provide the after dinner success story. Neil Rossmeissl, Program Manager, Algal Program, Bioenergy Technologies Office, will be delivering the keynote address on expanding the bioeconomy.

150

Bioenergy Technologies Office Overview | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top Five EEREDepartmentFebruary 4, 2014 BioenergyDepartment of Energy May

151

Bioenergy Technologies Office: Plans, Implementation, and Results  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top Five EEREDepartmentFebruary 4, 2014 BioenergyDepartment ofPyrolysisAbout the

152

Bioenergy Upcoming Events | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top Five EEREDepartmentFebruary 4, 2014 BioenergyDepartment ofPyrolysisAbout

153

Bioenergy Upcoming Events | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top Five EEREDepartmentFebruary 4, 2014 BioenergyDepartment ofPyrolysisAboutMay

154

Advanced Bioenergy LLC | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWende NewSowitecAWS Ocean EnergyAdirondackBioenergy LLC Jump to:

155

Bioenergy Documentary | OpenEI Community  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin: Energy ResourcesJersey:form View source History ViewSystemsofBioenergy

156

Abengoa Bioenergy Biomass of Kansas, LLC  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartment of Energy 601Department ofEnergy PHEVAbengoa Bioenergy Biomass

157

INEOS New Planet BioEnergy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe U.S. Department of EnergyKickoff490INEOS New Planet BioEnergy

158

Bioenergy Geradora de Energia | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORT Americium/CuriumSunways JV Jump to:Bhoruka Power CorporationBioenergy

159

Sandia National Laboratories: DOE Bioenergy Technologies Office  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared0EnergySandia Involves Wind-FarmCoolDOE DOE InternationalBioenergy

160

Importance of bioenergy markets for the development of the global energy system  

E-Print Network [OSTI]

Importance of bioenergy markets for the development of the global energy system Nicklas Forsell, Bioenergy, TIAM-FR model, bioenergy markets, climate policies Overview Fossil fuels such as oil, coal international bioenergy markets are still in their infancy, international trade of biofuels, wood pellets

Paris-Sud XI, Université de

Note: This page contains sample records for the topic "bioenergy institute jbei" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Is bioenergy trade good for the environment? Jean-Marc Bourgeona  

E-Print Network [OSTI]

Is bioenergy trade good for the environment? Jean-Marc Bourgeona , Hélène Ollivierb a of bioenergy trade on greenhouse gas emissions using a two-good, three-factor model. Bioenergy emissions depending on regional comparative advantages. Keywords: bioenergy, intermediate product, North

Paris-Sud XI, Université de

162

Syllabus -Plants for Bioenergy Fall 2011 Instructors: Stacy Bonos and Zane R. Helsel  

E-Print Network [OSTI]

Syllabus - Plants for Bioenergy ­ Fall 2011 11:776:410 Instructors: Stacy Bonos and Zane R. Helsel Breeding) Bonos #12;Course Title: Plants for Bioenergy Instructors: Drs. Stacy Bonos and Zane R. Helsel of bioenergy and discuss various renewable energy sources from biomass. Agronomic and bioenergy traits

Chen, Kuang-Yu

163

2011 Bioenergy Action Plan Prepared by the California Energy Commission for the  

E-Print Network [OSTI]

2011 Bioenergy Action Plan Prepared by the California Energy Commission for the Bioenergy Commission Renewables Committee as part of the Preparation of the 2011 Bioenergy Action Plan ­ docket # 10 policy of the Energy Commission until the report is adopted. #12;i ACKNOWLEDGEMENTS The 2011 Bioenergy

164

Introduction The bioenergy industry is pursuing low-input crops to be  

E-Print Network [OSTI]

1 Introduction The bioenergy industry is pursuing low-input crops to be grown on marginal lands the unintentional introduction and spread of potentially invasive species. Background Information The bioenergy- generation bioenergy crops are grown specifically for biomass pro- duction. Therefore, bioenergy crops

Liskiewicz, Maciej

165

Ris Energy Report 2 Bioenergy is energy of biological and renewable origin,  

E-Print Network [OSTI]

2 Ris√ł Energy Report 2 Bioenergy is energy of biological and renewable origin, normally derived of bioenergy resources are fuel wood, bagasse, organic waste, biogas and bioethanol. Bioenergy is the only action on climate change have all served to increase interest in bioenergy. Technological advances

166

National Bioenergy Center Biochemical Platform Integration Project: Quarterly Update #23, April-June 2009  

SciTech Connect (OSTI)

April to June, 2009 edition of the National Bioenergy Center's Biochemical Platform Integration Project quarterly newsletter.

Schell, D.

2009-08-01T23:59:59.000Z

167

National Bioenergy Center Biochemical Platform Integration Project: Quarterly Update #24, July-September 2009  

SciTech Connect (OSTI)

July to September, 2009 edition of the National Bioenergy Center's Biochemical Platform Integration Project quarterly newsletter.

Schell, D.

2009-10-01T23:59:59.000Z

168

National Bioenergy Center Biochemical Platform Integration Project: Quarterly Update #22, January - March 2009  

SciTech Connect (OSTI)

January to March, 2009 edition of the National Bioenergy Center's Biochemical Platform Integration Project quarterly newsletter.

Not Available

2009-04-01T23:59:59.000Z

169

National Bioenergy Center Biochemical Platform Integration Project: Quarterly Update #20, July-September 2008  

SciTech Connect (OSTI)

July to September, 2008 edition of the National Bioenergy Center's Biochemical Platform Integration Project quarterly newsletter.

Schell, D. J.

2008-12-01T23:59:59.000Z

170

National Bioenergy Center Biochemical Platform Integration Project: Quarterly Update #25, October - December 2009  

SciTech Connect (OSTI)

October to December, 2009 edition of the National Bioenergy Center's Biochemical Platform Integration Project quarterly newsletter.

Schell, D.

2010-01-01T23:59:59.000Z

171

Net carbon fluxes at stand and landscape scales from wood bioenergy harvests in the US Northeast  

E-Print Network [OSTI]

Net carbon fluxes at stand and landscape scales from wood bioenergy harvests in the US Northeast gas emissions implications of wood biomass (`bioenergy') harvests are highly uncer- tain yet of great bioenergy is only one of many products. We used field data to formulate bioenergy harvest scenarios, applied

Vermont, University of

172

Bioenergy Sustainability at the Regional Scale  

SciTech Connect (OSTI)

To meet national goals for biofuels production, there are going to be large increases in acreage planted to dedicated biofuels crops. These acreages may be in perennial grasses, annual crops, short rotation woody crops, or other types of vegetation and may involve use of existing cropland, marginal lands, abandoned lands or conversion of forest land. The establishment of bioenergy crops will affect ecological processes and their interactions and thus have an influence on ecosystem services provided by the lands on which these crops are grown. The regional-scale effects of bioenergy choices on ecosystem services need special attention because they often have been neglected yet can affect the ecological, social and economic aspects of sustainability. A regional-scale perspective provides the opportunity to make more informed choices about crop selection and management, particularly with regard to water quality and quantity issues, and also about other aspects of ecological, social, and economic sustainability. We give special attention to cellulosic feedstocks because of the opportunities they provide. Adopting an adaptive management approach for biofuels feedstock production planning will be possible to a certain extent if there is adequate monitoring data on the effects of changes in land use. Effects on water resources are used as an example and existing understanding of water resource effects are analyzed in detail. Current results indicate that there may be water quality improvements coupled with some decreases in available water for downstream uses.

Kline, Keith L [ORNL; Dale, Virginia H [ORNL; Mulholland, Patrick J [ORNL; Lowrance, Richard [USDA-ARS Southeast Watershed Research Laboratory, Tifton, Georgia; Robertson, G. Phillip [W.K. Kellogg Biological Station and Great Lakes Bioenergy Research

2010-11-01T23:59:59.000Z

173

Microarray Transcriptomics Data from the BioEnergy Science Center (BESC)  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The BioEnergy Science Center (BESC) is a multi-institutional (18 partner), multidisciplinary research (biological, chemical, physical and computational sciences, mathematics and engineering) organization focused on the fundamental understanding and elimination of biomass recalcitrance. BESC's approach to improve accessibility to the sugars within biomass involves 1) designing plant cell walls for rapid deconstruction and 2) developing multitalented microbes for converting plant biomass into biofuels in a single step (consolidated bioprocessing). Addressing the roadblock of biomass recalcitrance will require a multiscale understanding of plant cell walls from biosynthesis to deconstruction pathways. This integrated understanding would generate models, theories and finally processes that will be used to understand and overcome biomass recalcitrance.

174

Bioenergy Feedstock Development Program Status Report  

SciTech Connect (OSTI)

The U.S. Department of Energy's (DOE's) Bioenergy Feedstock Development Program (BFDP) at Oak Ridge National Laboratory (ORNL) is a mission-oriented program of research and analysis whose goal is to develop and demonstrate cropping systems for producing large quantities of low-cost, high-quality biomass feedstocks for use as liquid biofuels, biomass electric power, and/or bioproducts. The program specifically supports the missions and goals of DOE's Office of Fuels Development and DOE's Office of Power Technologies. ORNL has provided technical leadership and field management for the BFDP since DOE began energy crop research in 1978. The major components of the BFDP include energy crop selection and breeding; crop management research; environmental assessment and monitoring; crop production and supply logistics operational research; integrated resource analysis and assessment; and communications and outreach. Research into feedstock supply logistics has recently been added and will become an integral component of the program.

Kszos, L.A.

2001-02-09T23:59:59.000Z

175

Department of Energy Offers Abengoa Bioenergy a Conditional Commitment...  

Office of Environmental Management (EM)

of a conditional commitment for a 133.9 million loan guarantee to Abengoa Bioenergy Biomass of Kansas LLC (ABBK) to support the development of a commercial-scale cellulosic...

176

Bioprocessing of Microalgae for Bioenergy and Recombinant Protein Production  

E-Print Network [OSTI]

This dissertation investigates harvesting of marine microalgae for bioenergy and production of two recombinant proteins for therapeutic applications in Chlamydomonas reinhardtii. The first study describes harvesting of marine microalgae...

Garzon Sanabria, Andrea J

2013-07-31T23:59:59.000Z

177

Three Essays on Bioenergy Production in the United States  

E-Print Network [OSTI]

This dissertation examines future prospects of bioenergy production in the United States. The analysis examines three issues on liquid fuel and cellulosic ethanol. First, the amount that costs need to decrease in order to make cellulosic ethanol...

Wlodarz, Marta

2013-12-02T23:59:59.000Z

178

Biofuel Distribution Datasets from the Bioenergy Knowledge Discovery Framework  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The Bioenergy Knowledge Discovery Framework invites users to discover the power of bioenergy through an interface that provides extensive access to research data and literature, GIS mapping tools, and collaborative networks. The Bioenergy KDF supports efforts to develop a robust and sustainable bioenergy industry. The KDF facilitates informed decision making by providing a means to synthesize, analyze, and visualize vast amounts of information in a relevant and succinct manner. It harnesses Web 2.0 and social networking technologies to build a collective knowledge system that can better examine the economic and environmental impacts of development options for biomass feedstock production, biorefineries, and related infrastructure. [copied from https://www.bioenergykdf.net/content/about] Holdings include datasets, models, and maps and the collections are growing due to both DOE contributions and individuals' data uploads.

179

Biofuel Production Datasets from DOE's Bioenergy Knowledge Discovery Framework (KDF)  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The Bioenergy Knowledge Discovery Framework invites users to discover the power of bioenergy through an interface that provides extensive access to research data and literature, GIS mapping tools, and collaborative networks. The Bioenergy KDF supports efforts to develop a robust and sustainable bioenergy industry. The KDF facilitates informed decision making by providing a means to synthesize, analyze, and visualize vast amounts of information in a relevant and succinct manner. It harnesses Web 2.0 and social networking technologies to build a collective knowledge system that can better examine the economic and environmental impacts of development options for biomass feedstock production, biorefineries, and related infrastructure. [copied from https://www.bioenergykdf.net/content/about]

Holdings include datasets, models, and maps and the collections arel growing due to both DOE contributions and data uploads from individuals.

180

Feedstock Production Datasets from the Bioenergy Knowledge Discovery Framework  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The Bioenergy Knowledge Discovery Framework invites users to discover the power of bioenergy through an interface that provides extensive access to research data and literature, GIS mapping tools, and collaborative networks. The Bioenergy KDF supports efforts to develop a robust and sustainable bioenergy industry. The KDF facilitates informed decision making by providing a means to synthesize, analyze, and visualize vast amounts of information in a relevant and succinct manner. It harnesses Web 2.0 and social networking technologies to build a collective knowledge system that can better examine the economic and environmental impacts of development options for biomass feedstock production, biorefineries, and related infrastructure. [copied from https://www.bioenergykdf.net/content/about] Holdings include datasets, models, and maps and the collections are growing due to both DOE contributions and data uploads from individuals.

Note: This page contains sample records for the topic "bioenergy institute jbei" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Feedstock Logistics Datasets from DOE's Bioenergy Knowledge Discovery Framework (KDF)  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The Bioenergy Knowledge Discovery Framework invites users to discover the power of bioenergy through an interface that provides extensive access to research data and literature, GIS mapping tools, and collaborative networks. The Bioenergy KDF supports efforts to develop a robust and sustainable bioenergy industry. The KDF facilitates informed decision making by providing a means to synthesize, analyze, and visualize vast amounts of information in a relevant and succinct manner. It harnesses Web 2.0 and social networking technologies to build a collective knowledge system that can better examine the economic and environmental impacts of development options for biomass feedstock production, biorefineries, and related infrastructure. Holdings include datasets, models, and maps. [from https://www.bioenergykdf.net/content/about

182

OSU Potential Bioenergy Mentors Version 2, 11/13/13  

E-Print Network [OSTI]

electrochemical technologies for bioenergy generation and waste/wastewater treatment. More of methane from wastewater treatment plant anaerobic digesters through the co interests are a good match for their projects. Biological Conversion

Tullos, Desiree

183

BioEnergy Research ISSN 1939-1234  

E-Print Network [OSTI]

1 23 BioEnergy Research ISSN 1939-1234 Volume 5 Number 2 Bioenerg. Res. (2012) 5:341-362 DOI 10, the EROI was adjusted using quality factors that were calculated according to the price of each input

184

Bioenergy Technologies FY14 Budget At-a-Glance  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top Five EEREDepartmentFebruary 4, 2014 Bioenergy Technologies Office BIOENERGY

185

Bioenergy Technologies Office FY 2015 Budget At-A-Glance  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top Five EEREDepartmentFebruary 4, 2014 Bioenergy TechnologiesBioenergy

186

Functional Genomics of Drought Tolerance in Bioenergy Crops  

SciTech Connect (OSTI)

With the predicted trends in climate change, drought will increasingly impose a grand challenge to biomass production. Most of the bioenergy crops have some degree of drought susceptibility with low water-use efficiency (WUE). It is imperative to improve drought tolerance and WUE in bioenergy crops for sustainable biomass production in arid and semi-arid regions with minimal water input. Genetics and functional genomics can play a critical role in generating knowledge to inform and aid genetic improvement of drought tolerance in bioenergy crops. The molecular aspect of drought response has been extensively investigated in model plants like Arabidopsis, yet our understanding of the molecular mechanisms underlying drought tolerance in bioenergy crops are limited. Crops exhibit various responses to drought stress depending on species and genotype. A rational strategy for studying drought tolerance in bioenergy crops is to translate the knowledge from model plants and pinpoint the unique features associated with individual species and genotypes. In this review, we summarize the general knowledge about drought responsive pathways in plants, with a focus on the identification of commonality and specialty in drought responsive mechanisms among different species and/or genotypes. We describe the genomic resources developed for bioenergy crops and discuss genetic and epigenetic regulation of drought responses. We also examine comparative and evolutionary genomics to leverage the ever-increasing genomics resources and provide new insights beyond what has been known from studies on individual species. Finally, we outline future exploration of drought tolerance using the emerging new technologies.

Yin, Hengfu [ORNL; Chen, Rick [ORNL; Yang, Jun [ORNL; Weston, David [ORNL; Chen, Jay [ORNL; Muchero, Wellington [ORNL; Ye, Ning [ORNL; Tschaplinski, Timothy J [ORNL; Wullschleger, Stan D [ORNL; Cheng, Zong-Ming [ORNL; Tuskan, Gerald A [ORNL; Yang, Xiaohan [ORNL

2014-01-01T23:59:59.000Z

187

Bioenergy and the importance of land use policy in a carbon-constrained world  

SciTech Connect (OSTI)

Policies aimed at limiting anthropogenic climate change would result in significant transformations of the energy and land-use systems. However, increasing the demand for bioenergy could have a tremendous impact on land use, and can result in land clearing and deforestation. Wise et al. (2009a,b) analyzed an idealized policy to limit the indirect land use change emissions from bioenergy. The policy, while effective, would be difficult, if not impossible, to implement in the real world. In this paper, we consider several different land use policies that deviate from this first-best, using the Joint Global Change Research Instituteís Global Change Assessment Model (GCAM). Specifically, these new frameworks are (1) a policy that focuses on just the above-ground or vegetative terrestrial carbon rather than the total carbon, (2) policies that focus exclusively on incentivizing and protecting forestland, and (3) policies that apply an economic penalty on the use of biomass as a proxy to limit indirect land use change emissions. For each policy, we examine its impact on land use, land-use change emissions, atmospheric CO2 concentrations, agricultural supply, and food prices.

Calvin, Katherine V.; Edmonds, James A.; Wise, Marshall A.

2010-06-01T23:59:59.000Z

188

Local and remote climate impacts from expansion of woody biomass for bioenergy feedstock in the Southeastern US  

E-Print Network [OSTI]

as a feedstock for a bioenergy and bioproducts industry: TheCooling the greenhouse with bioenergy. Nature, 353, 11Ė12.F. , and C. Azar, 2009: Bioenergy plantations or long- term

Murphy, L.N.

2014-01-01T23:59:59.000Z

189

Student Job (2 positions at Great Lakes Bioenergy Research Center (GLBRC))  

E-Print Network [OSTI]

Student Job (2 positions at Great Lakes Bioenergy Research Center (GLBRC)) Full-time summer job upon experience and qualifications. The Great Lakes Bioenergy Research Center (GLBRC) has openings

Liblit, Ben

190

Texas AgriLife Research with General Atomics Pilots Microalgae Ponds in Pecos BIOENERGY PROGRAM  

E-Print Network [OSTI]

Texas AgriLife Research with General Atomics Pilots Microalgae Ponds in Pecos BIOENERGY PROGRAM on the tank bottom will be opened. The Continued on back #12;http://AgBioenergy.tamu.edu concentrated algae

191

32 Robust og bredygtig bioenergi september 2012 Af Brian Vad Mathiesen, David  

E-Print Network [OSTI]

32 Robust og bæredygtig bioenergi · september 2012 Af Brian Vad Mathiesen, David Connolly, Henrik me- get el ind i transportsektoren som muligt. #12;Robust og bæredygtig bioenergi · september 2012 33

Schaltz, Erik

192

BIOENERGY/BIOFUELS/BIOCHEMICALS Chromatographic determination of 1, 4-b-xylooligosaccharides  

E-Print Network [OSTI]

BIOENERGY/BIOFUELS/BIOCHEMICALS Chromatographic determination of 1, 4-b. Li √Ā R. Kumar √Ā C. E. Wyman BioEnergy Science Center, Oak Ridge, TN 37831, USA 123 J Ind Microbiol

California at Riverside, University of

193

Research questions How could the conversion of marginal agricultural lands to bioenergy switchgrass  

E-Print Network [OSTI]

.R. and Schemske, D.W. 2010. Perennial biomass feedstocks enhance avian diversity. GCB Bioenergy 1080:1-12. Samson

Nebraska-Lincoln, University of

194

National Bioenergy Center Sugar Platform Integration Project: Quarterly Update #9, October-December 2005  

SciTech Connect (OSTI)

Volume 9 of a quarterly newsletter that describes the activities of the National Bioenergy Center's Sugar Platform Integration Project.

Schell, D. J.

2006-01-01T23:59:59.000Z

195

National Bioenergy Center Sugar Platform Integration Project: Quarterly Update #10, January-March 2006  

SciTech Connect (OSTI)

Volume 10 of a quarterly newsletter that describes the activities of the National Bioenergy Center's Sugar Platform Integration Project.

Not Available

2006-04-01T23:59:59.000Z

196

National Bioenergy Center Biochemical Platform Integration Project: Quarterly Update #13, October-December 2006  

SciTech Connect (OSTI)

Volume 13 of a quarterly newsletter that describes the activities of the National Bioenergy Center's Biochemical Processing Integration Task.

Schell, D. J.

2007-01-01T23:59:59.000Z

197

National Bioenergy Center Biochemical Platform Process Integration Project: Quarterly Update #18, January-March 2008  

SciTech Connect (OSTI)

January-March, 2008 edition of the quarterly update for the National Bioenergy Center's Biochemical Platform Integration Project.

Schell, D.

2008-04-01T23:59:59.000Z

198

National Bioenergy Center Sugar Platform Integration Project: Quarterly Update #12, July-September 2006  

SciTech Connect (OSTI)

Volume 12 of a quarterly newsletter that describes the activities of the National Bioenergy Center's Sugar Platform Integration Project.

Schell, D.

2006-10-01T23:59:59.000Z

199

National Bioenergy Center Biochemical Platform Integration Project: Quarterly Update #21, October - December 2008  

SciTech Connect (OSTI)

October to December, 2008 edition of the National Bioenergy Center?s Biochemical Platform Integration Project quarterly newsletter.

Schell, D.

2009-01-01T23:59:59.000Z

200

U.S. Billion-Ton Update: Biomass Supply for a Bioenergy and Bioproduct...  

Energy Savers [EERE]

WORKSHOP Biomass Program Peer Review Sustainability Platform Bioenergy Technologies Office: Association of Fish and Wildlife Agencies Agricultural Conservation Committee Meeting...

Note: This page contains sample records for the topic "bioenergy institute jbei" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

The Center for BioEnergy Sustainability (CBES) At Oak Ridge National Laboratory (ORNL)  

E-Print Network [OSTI]

­ ORNL Bioenergy Resource & Engineering Systems Matt has expertise in accounting for non-market amenitiesThe Center for BioEnergy Sustainability (CBES) At Oak Ridge National Laboratory (ORNL) is pleased of Short-rotation Pine for Bioenergy on Water Quality and Quantity Using a Watershed-scale Experiment

202

Available online at www.sciencedirect.com Biomass and Bioenergy 24 (2003) 269276  

E-Print Network [OSTI]

commercial markets are poor, there has been a great deal of success in utilizing bioenergy by designatingAvailable online at www.sciencedirect.com Biomass and Bioenergy 24 (2003) 269¬≠276 Flagsta 's wild√Ņre fuels treatments: prescriptions for community involvement and a source of bioenergy Allen

203

The Center for BioEnergy Sustainability (CBES) At Oak Ridge National Laboratory (ORNL)  

E-Print Network [OSTI]

The Center for BioEnergy Sustainability (CBES) At Oak Ridge National Laboratory (ORNL) is pleased of bioenergy crops as well as the impacts that the expansion of these crops over large areas may have on climate, water, nutrient, and biodiversity. The DOE Great Lakes Bioenergy Research Center (GLBRC) has been

204

Special issue: current status of bioenergy research Don-Hee Park Sang Yup Lee  

E-Print Network [OSTI]

EDITORIAL Special issue: current status of bioenergy research Don-Hee Park · Sang Yup Lee Published the world. The Bioenergy Korea Conference 2012 International Symposium was held on 24­25 April 2012 conversion in the field of bioenergy. Also, several papers on general enzyme technology and bioconversion

205

WHY STUDY FOREST OPERATIONS, BIOPRODUCTS AND BIOENERGY AT THE UNIVERSITY OF MAINE?  

E-Print Network [OSTI]

WHY STUDY FOREST OPERATIONS, BIOPRODUCTS AND BIOENERGY AT THE UNIVERSITY OF MAINE? e efficient-developed cluster of industrial forests and processing facilities for the production of bioproducts and bioenergy for research and field experience. UMaine's Forest Operations, Bioproducts and Bioenergy Program has been

Thomas, Andrew

206

Ris har udgivet en rapport om moderne bioenergi. Den slr fast, at  

E-Print Network [OSTI]

Ris√ł har udgivet en rapport om moderne bioenergi. Den sl√•r fast, at biomasse er en liges√• v√¶rdifuld teknologi, der skal til for at udnytte hele dens potentiale. RIS√?NYT N O 42003 MODERNE BIOENERGI HAR STORE MULIGHEDER Moderne bioenergi har store muligheder Af Hans Larsen, Jens Kossmann og Leif S√łnderberg Petersen

207

Bioenergy crop greenhouse gas mitigation potential under a range of management practices  

E-Print Network [OSTI]

Bioenergy crop greenhouse gas mitigation potential under a range of management practices T A R A W been proposed as viable bioenergy crops because of their potential to yield harvest- able biomass-senescence harvests are a more effective means than maximizing yield potential. Keywords: bioenergy, feedstocks, GHG

DeLucia, Evan H.

208

SLU, Spring 2012 Bioenergy and social sciences: economics and sociology, 5hp  

E-Print Network [OSTI]

SLU, Spring 2012 1/6 Bioenergy and social sciences: economics and sociology, 5hp PNS0083 Bioenergy and social sciences: economics and sociology, 5hp The course is given as part of the postgraduate research school "Bioenergy". The overall objective of the course is: 1. to enable the students

209

Concorso Tesi di Laurea e Concorso Tesi di Dottorato di Ricerca BioEnergy Italy 2014  

E-Print Network [OSTI]

Concorso Tesi di Laurea e Concorso Tesi di Dottorato di Ricerca BioEnergy Italy 2014 Bioenergie, Chimica Verde e Agricoltura Destinato ai laureati di qualsiasi Facoltà che hanno dell'uso delle bioenergie o della chimica verde in agricoltura I Concorsi - promossi da Cremona

Segatti, Antonio

210

IMproved Assessment of the Greenhouse gas balance of bioeNErgy pathways (IMAGINE)  

E-Print Network [OSTI]

IMproved Assessment of the Greenhouse gas balance of bioeNErgy pathways (IMAGINE) Evaluation - ENERBIO Livrable D4.1 : GHG balances of bioenergy pathways Mars 2012 Nathalie GAGNAIRE, Beno√ģt GABRIELLE sources by bioenergy mostly hinges on the uncertainty on the magnitude of nitrous oxide (N2O) emissions

Paris-Sud XI, Université de

211

Bacterial community structures are unique and resilient in full-scale bioenergy systems  

E-Print Network [OSTI]

Bacterial community structures are unique and resilient in full-scale bioenergy systems Jeffrey J digestion is the most successful bioenergy technology worldwide with, at its core, undefined microbialFrac | community function | digester | sludge The production of bioenergy from wastes is an essential com- ponent

Hammerton, James

212

Switchgrass for Bioenergy held at the University of NebraskaLincoln  

E-Print Network [OSTI]

Switchgrass for Bioenergy held at the University of Nebraska­Lincoln Agricultural Research. Cenusa bioenergy, a USDA-funded research initiative, is investigating the creation of a sustainable Diagnostic Clinics Switchgrass for Bioenergy training session was conducted during the UNL Extension Late

Farritor, Shane

213

Multi Criteria Analysis for bioenergy systems assessments Thomas Buchholz a,, Ewald Rametsteiner b  

E-Print Network [OSTI]

Multi Criteria Analysis for bioenergy systems assessments Thomas Buchholz a,√?, Ewald Rametsteiner b Available online 11 November 2008 Keywords: Multi Criteria Analysis Bioenergy Sustainability a b s t r a c t Sustainable bioenergy systems are, by definition, embedded in social, economic, and environmental contexts

Vermont, University of

214

The Center for BioEnergy Sustainability (CBES) at Oak Ridge National Laboratory (ORNL)  

E-Print Network [OSTI]

The Center for BioEnergy Sustainability (CBES) at Oak Ridge National Laboratory (ORNL) is pleased Studies Great Lakes Bioenergy Research Center University of Wisconsin-Madison. Co-Leader in Creating Sustainable Bioenergy Practices Jackson's program focuses on structure and function of managed, semi

215

The Pennsylvania State University www.BioEnergyBridge.psu.edu 1 BioEnergy Bridge  

E-Print Network [OSTI]

© The Pennsylvania State University www.BioEnergyBridge.psu.edu 1 Penn State BioEnergy# trichard@psu.edu rtw103@psu.edu www.bioenergy.psu.edu Biomass Energy Center #12;© The Pennsylvania State · The BioEnergy BridgeTM will address the full spectrum of challenges to our national priority of reducing

Lee, Dongwon

216

*** Draft: do not cite or distribute -COP7 Bioenergy Document: October 18, 2001 *** Address Correspondence to  

E-Print Network [OSTI]

*** Draft: do not cite or distribute - COP7 Bioenergy Document: October 18, 2001 *** Address;*** Draft: do not cite or distribute - COP7 Bioenergy Document: October 18, 2001 *** 10/23/01 Page 2 of 111 omasera@ate.oikos.unam.mx #12;*** Draft: do not cite or distribute - COP7 Bioenergy Document: October 18

Kammen, Daniel M.

217

Carbon and nitrogen dynamics in bioenergy ecosystems: 2. Potential greenhouse gas emissions and global  

E-Print Network [OSTI]

Carbon and nitrogen dynamics in bioenergy ecosystems: 2. Potential greenhouse gas emissions) from bioenergy ecosystems with a biogeochemical model AgTEM, assuming maize (Zea mays L.), switchgrass ha√?1 yr√?1 . Among all three bioenergy crops, Miscanthus is the most biofuel productive and the least

Zhuang, Qianlai

218

Minimizing invasive potential of Miscanthus 3 giganteus grown for bioenergy: identifying  

E-Print Network [OSTI]

proportion of energy to be derived from biofuels (Robertson et al. 2008). Dedicated bioenergy crops are hence with grain-based biofuels. By cultivating bioenergy crops on marginal lands unfit for food crops, it may, USA Summary 1. Many species prioritized for bioenergy crop development possess traits associated

Sims, Gerald K.

219

An integrated biogeochemical and economic analysis of bioenergy crops in the Midwestern United States  

E-Print Network [OSTI]

-specific economic analysis of breakeven prices of bioenergy crop production to assess the biophysical and economicAn integrated biogeochemical and economic analysis of bioenergy crops in the Midwestern United potential of biofuel production in the Midwestern United States. The bioenergy crops considered

Jain, Atul K.

220

Comparative Biogeochemical Cycles of Bioenergy Crops Reveal  

E-Print Network [OSTI]

80523, USA; 4 Energy Biosciences Institute, University of Illinois at Urbana- Champaign, Urbana,2,4 * 1 Institute of Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA; 2 Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801

DeLucia, Evan H.

Note: This page contains sample records for the topic "bioenergy institute jbei" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Sustainable Management of Carbon, Nutrients, and Agrichemicals through Cycling of Bioresources fom Bioenergy and Livestock Production and Municipalities  

E-Print Network [OSTI]

Bioenergy and Livestock Production and Municipalities Bioenergy and livestock industries and municipalities offer bioresources for sustained crop productivity and environmental quality. In the emerging bioenergy and a potential source of carbon· credits for bioenergy systems. Incorporation of the char by-product in soil can

222

Purpose-designed Crop Plants for Biofuels BIOENERGY PROGRAM  

E-Print Network [OSTI]

Purpose-designed Crop Plants for Biofuels BIOENERGY PROGRAM The Texas AgriLife Research Center for the biofuels industry. This program recognizes that the ideal combination of traits required for an economically and energetically sustainable biofuels industry does not yet exist in a single plant spe- cies

223

Environmental Life Cycle Comparison of Algae to Other Bioenergy  

E-Print Network [OSTI]

Environmental Life Cycle Comparison of Algae to Other Bioenergy Feedstocks A N D R E S F . C L A R December 6, 2009. Accepted December 15, 2009. Algae are an attractive source of biomass energy since. In spite of these advantages, algae cultivation has not yet been compared with conventional crops from

Clarens, Andres

224

Oilseeds for Biofuels and Biochemicals in Texas BIOENERGY PROGRAM  

E-Print Network [OSTI]

Oilseeds for Biofuels and Biochemicals in Texas BIOENERGY PROGRAM Description feedstocks (primarily soybean) with food and feed markets. The price of October 2009 Chicago soybean oil to be competitive in the domestic market. U.S. biodiesel manfacturers are closing, consolidating, or suspending

225

Review of Sorghum Production Practices: Applications for Bioenergy  

SciTech Connect (OSTI)

Sorghum has great potential as an annual energy crop. While primarily grown for its grain, sorghum can also be grown for animal feed and sugar. Sorghum is morphologically diverse, with grain sorghum being of relatively short stature and grown for grain, while forage and sweet sorghums are tall and grown primarily for their biomass. Under water-limited conditions sorghum is reliably more productive than corn. While a relatively minor crop in the United States (about 2% of planted cropland), sorghum is important in Africa and parts of Asia. While sorghum is a relatively efficient user of water, it biomass potential is limited by available moisture. The following exhaustive literature review of sorghum production practices was developed by researchers at Oak Ridge National Laboratory to document the current state of knowledge regarding sorghum production and, based on this, suggest areas of research needed to develop sorghum as a commercial bioenergy feedstock. This work began as part of the China Biofuels Project sponsored by the DOE Energy Efficiency and Renewable Energy Program to communicate technical information regarding bioenergy feedstocks to government and industry partners in China, but will be utilized in a variety of programs in which evaluation of sorghum for bioenergy is needed. This report can also be used as a basis for data (yield, water use, etc.) for US and international bioenergy feedstock supply modeling efforts.

Turhollow Jr, Anthony F [ORNL; Webb, Erin [ORNL; Downing, Mark [ORNL

2010-06-01T23:59:59.000Z

226

Bioenergy to Biodiversity: Downscaling scenarios of land use change†  

E-Print Network [OSTI]

Bioenergy crops are a key component of Scotlandís strategy to meet 2050 carbon emissions targets. The introduction of these crops could have large scale impacts on the biodiversity of lowland farmland. These impacts depend on the change in land use...

MacKenzie, Ian

2009-11-26T23:59:59.000Z

227

Biofuel Enduse Datasets from the Bioenergy Knowledge Discovery Framework (KDF)  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The Bioenergy Knowledge Discovery Framework invites users to discover the power of bioenergy through an interface that provides extensive access to research data and literature, GIS mapping tools, and collaborative networks. The Bioenergy KDF supports efforts to develop a robust and sustainable bioenergy industry. The KDF facilitates informed decision making by providing a means to synthesize, analyze, and visualize vast amounts of information in a relevant and succinct manner. It harnesses Web 2.0 and social networking technologies to build a collective knowledge system that can better examine the economic and environmental impacts of development options for biomass feedstock production, biorefineries, and related infrastructure. [copied from https://www.bioenergykdf.net/content/about]

Holdings include datasets, models, and maps. This is a very new resource, but the collections will grow due to both DOE contributions and individuals∆ data uploads. Currently the Biofuel Enduse collection includes 133 items. Most of these are categorized as literature, but 36 are listed as datasets and ten as models.

228

Bioenergy Technologies Office (BETO) Announces Renewable Carbon Fiber  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top Five EEREDepartmentFebruary 4, 2014 Bioenergy Technologies Office

229

Bioenergy Technologies Office: Association of Fish and Wildlife Agencies  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top Five EEREDepartmentFebruary 4, 2014 BioenergyDepartment ofPyrolysis

230

Bioenergy with Carbon Capture and Sequestration Workshop | Department of  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top Five EEREDepartmentFebruary 4, 2014 BioenergyDepartmentfor

231

Bioenergy Technologies Office FY 2016 Budget At-A-Glance  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsBSCmemo.pdf BSCmemo.pdf BSCmemo.pdfBetterBIOENERGY TECHNOLOGIES OFFICE FY 2016

232

Bioenergy with Carbon Capture and Sequestration Workshop | Department of  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energyon ArmedWaste andAccess toSustainable Transportation ¬Ľ Bioenergy

233

Dynamic analysis of policy drivers for bioenergy commodity markets  

SciTech Connect (OSTI)

Biomass is increasingly being considered as a feedstock to provide a clean and renewable source of energy in the form of both liquid fuels and electric power. In the United States, the biofuels and biopower industries are regulated by different policies and have different drivers which impact the maximum price the industries are willing to pay for biomass. This article describes a dynamic computer simulation model that analyzes future behavior of bioenergy feedstock markets given policy and technical options. The model simulates the long-term dynamics of these markets by treating advanced biomass feedstocks as a commodity and projecting the total demand of each industry as well as the market price over time. The model is used for an analysis of the United States bioenergy feedstock market that projects supply, demand, and market price given three independent buyers: domestic biopower, domestic biofuels, and foreign exports. With base-case assumptions, the biofuels industry is able to dominate the market and meet the federal Renewable Fuel Standard (RFS) targets for advanced biofuels. Further analyses suggest that United States bioenergy studies should include estimates of export demand in their projections, and that GHG-limiting policy would partially shield both industries from exporter dominance.

Robert F. Jeffers; Jacob J. Jacobson; Erin M. Searcy

2001-01-01T23:59:59.000Z

234

Invasive plant species as potential bioenergy producers and carbon contributors.  

SciTech Connect (OSTI)

Current cellulosic bioenergy sources in the United States are being investigated in an effort to reduce dependence on foreign oil and the associated risks to national security and climate change (Koh and Ghazoul 2008; Demirbas 2007; Berndes et al. 2003). Multiple sources of renewable plant-based material have been identified and include agricultural and forestry residues, municipal solid waste, industrial waste, and specifically grown bioenergy crops (Demirbas et al. 2009; Gronowska et al. 2009). These sources are most commonly converted to energy through direct burning, conversion to gas, or conversion to ethanol. Annual crops, such as corn (Zea Mays L.) and sorghum grain, can be converted to ethanol through fermentation, while soybean and canola are transformed into fatty acid methyl esters (biodiesel) by reaction with an alcohol (Demirbas 2007). Perennial grasses are one of the more viable sources for bioenergy due to their continuous growth habit, noncrop status, and multiple use products (Lewandowski el al. 2003). In addition, a few perennial grass species have very high water and nutrient use efficiencies producing large quantities of biomass on an annual basis (Dohleman et al. 2009; Grantz and Vu 2009).

Young, S.; Gopalakrishnan, G.; Keshwani, D. (Energy Systems); (Univ. of Nebraska)

2011-03-01T23:59:59.000Z

235

E-Print Network 3.0 - alaska bioenergy program Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

by technological advances in biomass con- version... and significant changes in energy markets. We even have a new term, "modern bioenergy", to cover those areas Source: Ris...

236

CARBON LIFE-CYCLE AND ECONOMIC ANALYSIS OF FOREST CARBON SEQUESTRATION AND WOODY BIOENERGY PRODUCTION.  

E-Print Network [OSTI]

??Sequestering carbon in standing biomass, using woody bioenergy, and using woody products are the three potential ways to utilize forests in reducing greenhouse gases (GHGs)Ö (more)

Shrestha, Prativa

2013-01-01T23:59:59.000Z

237

E-Print Network 3.0 - agency bioenergy agreement Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fossil Fuels 35 International Conference on Wood-based Bioenergy LIGNA+Hannover, Germany, 17-18 May 2007 Summary: International Energy Agency EuroStat...

238

Biomass IBR Fact Sheet: Renewable Energy Institute International  

Broader source: Energy.gov [DOE]

The Renewable Energy Institute International, in collaboration with Red Lion Bio-Energy and Pacific Renewable Fuels, is demonstrating a pilot, pre-commercial-scale integrated biorefinery for the production of high-quality, synthetic diesel fuels from agriculture and forest residues using advanced thermochemical and catalytic conversion technologies.

239

Biomass and Bioenergy 31 (2007) 646655 Estimating biomass of individual pine trees using airborne lidar  

E-Print Network [OSTI]

Biomass and Bioenergy 31 (2007) 646­655 Estimating biomass of individual pine trees using airborne biomass and bio-energy feedstocks. The overall goal of this study was to develop a method for assessing aboveground biomass and component biomass for individual trees using airborne lidar data in forest settings

240

RESEARCH Open Access Short and long-term carbon balance of bioenergy  

E-Print Network [OSTI]

bioenergy electricity production are offset by avoided fossil fuel electricity emissions. The carbon benefitRESEARCH Open Access Short and long-term carbon balance of bioenergy electricity production fueled Background: Forests store large amounts of carbon in forest biomass, and this carbon can be released

Note: This page contains sample records for the topic "bioenergy institute jbei" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

International Conference on Wood-based Bioenergy LIGNA+Hannover, Germany, 17-18 May 2007  

E-Print Network [OSTI]

International Conference on Wood-based Bioenergy LIGNA+Hannover, Germany, 17-18 May 2007 Photo: NTC Marketing Specialist and Sebastian Hetsch, Consultant Food and Agricultural Organization & UN Economic Commission for Europe Geneva, Switzerland #12;International Conference on Wood-based Bioenergy LIGNA

242

International Market Opportunities in Bioenergy: Leveraging U.S. Government Resources  

Broader source: Energy.gov [DOE]

Breakout Session 3CóFostering Technology Adoption III: International Market Opportunities in Bioenergy International Market Opportunities in Bioenergy: Leveraging U.S. Government Resources Cora Dickson, Senior International Trade Specialist, Office of Energy and Environmental Industries, International Trade Administration, U.S. Department of Commerce

243

USDA Projections of Bioenergy-Related Corn and Soyoil Use for 2010-2019  

E-Print Network [OSTI]

USDA Projections of Bioenergy-Related Corn and Soyoil Use for 2010-2019 Daniel M. O released long term projections for grain and energy markets at its 2010 Agricultural Outlook Forum, and the quantity of U.S. feedgrains and oilseeds to be used in bioenergy production processes, The USDA's long term

244

Stakeholder Database from the Center for Bioenergy Sustainability (Learn who the experts are)  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The Center for BioEnergy Sustainability (CBES) is a leading resource for dealing with the environmental impacts and the ultimate sustainability of biomass production for conversion to biofuels and bio-based products. Its purpose is to use science and analysis to understand the sustainability (environmental, economic, and social) of current and potential future bioenergy production and distribution; to identify approaches to enhance bioenergy sustainability; and to serve as an independent source of the highest quality data and analysis for bioenergy stakeholders and decision makers. ... On the operational level, CBES is a focal point and business-development vehicle for ORNLís capabilities related to bioenergy sustainability and socioeconomic analyses. As such, it complements the BioEnergy Science Center (BESC), also located at ORNL, which focuses on the problem of converting lignocellulosic biomass into reactive intermediaries necessary for the cellulosic biofuel industry. Together, these centers provide a strong integrating mechanism and business-development tool for ORNL's science and technology portfolio in bioenergy [taken and edited from http://web.ornl.gov/sci/ees/cbes/. The Stakeholder Database allows you to find experts in bioenergy by their particular type of expertise, their affiliations or locations, their specific research areas or research approaches, etc.

245

30 Robust og bredygtig bioenergi september 2012 Af Brian Vad Mathiesen, Henrik Lund,  

E-Print Network [OSTI]

30 Robust og b√¶redygtig bioenergi ¬∑ september 2012 Af Brian Vad Mathiesen, Henrik Lund, Frede K erstatte de fossile br√¶ndsler med biobr√¶ndsler og bioenergi, og/eller i hvor h√łj grad vi skal satse p√•

Pillai, Jayakrishnan Radhakrishna

246

Bioenergy Potential of the United States Constrained by Satellite Observations of Existing Productivity  

E-Print Network [OSTI]

liters ethanol, which implies an even larger increase in biomass demand (primary energy), from roughly 2 billion liters of ethanol (secondary bioenergy) in 2009, approximately half of the world's total ethanol ethanol production of 136 billion liters by 2022.2 Yet, these bioenergy targets are largely derived from

Montana, University of

247

Extension Bulletin E-3164 New January 2012 Biodiversity Services and Bioenergy Landscapes  

E-Print Network [OSTI]

Bioenergy Research Center, Michigan State University b Kellogg Biological Station (KBS) Land and Water Program, Michigan State University Extension Growing bioenergy crops will transform agricultural://water.usgs.gov/nawqa). At the same time, the footprint of agriculture has expanded to cover nearly 40 percent of the earth's ice

Landis, Doug

248

Forest Products Supply Chain --Availability of Woody Biomass in Indiana for Bioenergy Production  

E-Print Network [OSTI]

Forest Products Supply Chain -- Availability of Woody Biomass in Indiana for Bioenergy Production or wood waste biomass ∑ Map Indiana's wood waste for each potential bioenergy supply chain ∑ Develop break-even analyses for transportation logistics of wood waste biomass Isaac S. Slaven Abstract: The purpose

249

IEA-Renewable Energy Technologies, Bioenergy Agreement Task 37: Energy from Biogas and Landfill Gas  

E-Print Network [OSTI]

EFP-06 IEA- Renewable Energy Technologies, Bioenergy Agreement Task 37: Energy from Biogas-Bioenergy, Task 37- Energy from Biogas and Landfill Gas", via samarbejde, informationsudveksling, fælles analyser. biogas fra anaerob udrådning (AD) som en integreret gylle og affalds behandlings teknologi. Arbejdet

250

Sustainability criteria for bioenergy systems: results from an expert survey Thomas Buchholz*, Valerie A. Luzadis, Timothy A. Volk  

E-Print Network [OSTI]

Sustainability criteria for bioenergy systems: results from an expert survey Thomas Buchholz in revised form 10 April 2009 Accepted 24 April 2009 Available online 9 May 2009 Keywords: Bioenergy and concerns about regional and national security are driving the development and use of biomass for bioenergy

Vermont, University of

251

CO2 fluxes of transitional bioenergy crops: effect of land conversion during the first year of cultivation  

E-Print Network [OSTI]

CO2 fluxes of transitional bioenergy crops: effect of land conversion during the first year of Environmental Sciences, University of Toledo, Toledo, OH 43606, USA, wGreat Lakes Bioenergy Research Center be invoked in the first year by conversion of grasslands to biofuel crops. Keywords: bioenergy crops, carbon

Chen, Jiquan

252

Developing a Portfolio of Sustainable Bioenergy Feedstock Production Systems for the US Midwest: A Research and Demonstration Project  

E-Print Network [OSTI]

Developing a Portfolio of Sustainable Bioenergy Feedstock Production Systems for the US Midwest a growing portion of our bioenergy feedstocks. While such second generation feedstocks show numerous agroecosystems. A portfolio approach is needed. Potential systems to be included in the bioenergy feedstock

Debinski, Diane M.

253

Development of Genomic and Genetic Tools for Foxtail Millet, and Use of These Tools in the Improvement of Biomass Production for Bioenergy Crops  

SciTech Connect (OSTI)

The overall aim of this research was to develop genomic and genetic tools in foxtail millet that will be useful in improving biomass production in bioenergy crops such as switchgrass, napier grass, and pearl millet. A variety of approaches have been implemented, and our lab has been primarily involved in genome analysis and quantitative genetic analysis. Our progress in these activities has been substantially helped by the genomic sequence of foxtail millet produced by the Joint Genome Institute (Bennetzen et al., in prep). In particular, the annotation and analysis of candidate genes for architecture, biomass production and flowering has led to new insights into the control of branching and flowering time, and has shown how closely related flowering time is to vegetative architectural development and biomass accumulation. The differences in genetic control identified at high and low density plantings have direct relevance to the breeding of bioenergy grasses that are tolerant of high planting densities. The developmental analyses have shown how plant architecture changes over time and may indicate which genes may best be manipulated at various times during development to obtain required biomass characteristics. This data contributes to the overall aim of significantly improving genetic and genomic tools in foxtail millet that can be directed to improvement of bioenergy grasses such as switchgrass, where it is important to maximize vegetative growth for greatest biomass production.

Doust, Andrew, N.

2011-11-11T23:59:59.000Z

254

Golbal Economic and Environmental Impacts of Increased Bioenergy Production  

SciTech Connect (OSTI)

The project had three main objectives: to build and incorporate an explicit biomass energy sector within the GTAP analytical framework and data base; to provide an analysis of the impact of renewable fuel standards and other policies in the U.S. and E.U, as well as alternative biofuel policies in other parts of the world, on changes in production, prices, consumption, trade and poverty; and to evaluate environmental impacts of alternative policies for bioenergy development. Progress and outputs related to each objective are reported.

Wallace Tyner

2012-05-30T23:59:59.000Z

255

BioenergizeME Virtual Science Fair: Bioenergy Careers | Department of  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top Five EEREDepartment ofEnergyEnergyBetterMake FuelsEnergy Bioenergy

256

Microsoft PowerPoint - The DOE Bioenergy Technologies Office  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F S i DOE Tribal Leader ForumStatus of the U.S.What we haveBioenergy

257

Guangxi Funan Bioenergy Co Ltd | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio:Greer County is a county inAl., It is classified asFunan Bioenergy Co

258

Fact Sheet: Bioenergy Working Group | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecord ofESPCofConstructionofFYOxide EmissionEconomyEnergyShareEventsBioenergy

259

Roadmap for Bioenergy and Biobased Products in the United States  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l LPROJECTS IN7 Roadmap for Bioenergy and Biobased Products in the United

260

Bioenergy expert Ragauskas named fourteenth Governor's Chair | ornl.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAboutScienceCareers Apply for aCould WorkVehicles,000Bioenergy

Note: This page contains sample records for the topic "bioenergy institute jbei" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

BETO Announces Bioenergy Technologies Incubator FOA | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTie Ltd: Scope ChangeL-01-06Hot-Humid Climate: NewBioenergy Technologies

262

Bioenergy Sustainability: How to Define & Measure It  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTie Ltd: ScopeDepartment1, 2011 (BETO) Project Peer Review Bioenergy

263

To advance and share knowledge, discover solutions and promote opportunities in food and agriculture, bioenergy, health, the environment and human well-  

E-Print Network [OSTI]

and agriculture, bioenergy, health, the environment and human well- being. Vision: To lead in science, innovation

Sheridan, Jennifer

264

Research Note The removal of tree stumps and coarse roots from felling sites as a source of woody biomass for bioenergy generation  

E-Print Network [OSTI]

biomass for bioenergy generation is well established in parts of Europe, and interest has been expressed

265

Genomics:GTL Bioenergy Research Centers White Paper  

SciTech Connect (OSTI)

In his Advanced Energy Initiative announced in January 2006, President George W. Bush committed the nation to new efforts to develop alternative sources of energy to replace imported oil and fossil fuels. Developing cost-effective and energy-efficient methods of producing renewable alternative fuels such as cellulosic ethanol from biomass and solar-derived biofuels will require transformational breakthroughs in science and technology. Incremental improvements in current bioenergy production methods will not suffice. The Genomics:GTL Bioenergy Research Centers will be dedicated to fundamental research on microbe and plant systems with the goal of developing knowledge that will advance biotechnology-based strategies for biofuels production. The aim is to spur substantial progress toward cost-effective production of biologically based renewable energy sources. This document describes the rationale for the establishment of the centers and their objectives in light of the U.S. Department of Energy's mission and goals. Developing energy-efficient and cost-effective methods of producing alternative fuels such as cellulosic ethanol from biomass will require transformational breakthroughs in science and technology. Incremental improvements in current bioenergy-production methods will not suffice. The focus on microbes (for cellular mechanisms) and plants (for source biomass) fundamentally exploits capabilities well known to exist in the microbial world. Thus 'proof of concept' is not required, but considerable basic research into these capabilities remains an urgent priority. Several developments have converged in recent years to suggest that systems biology research into microbes and plants promises solutions that will overcome critical roadblocks on the path to cost-effective, large-scale production of cellulosic ethanol and other renewable energy from biomass. The ability to rapidly sequence the DNA of any organism is a critical part of these new capabilities, but it is only a first step. Other advances include the growing number of high-throughput techniques for protein production and characterization; a range of new instrumentation for observing proteins and other cell constituents; the rapid growth of commercially available reagents for protein production; a new generation of high-intensity light sources that provide precision imaging on the nanoscale and allow observation of molecular interactions in ultrafast time intervals; major advances in computational capability; and the continually increasing numbers of these instruments and technologies within the national laboratory infrastructure, at universities, and in private industry. All these developments expand our ability to elucidate mechanisms present in living cells, but much more remains to be done. The Centers are designed to accomplish GTL program objectives more rapidly, more effectively, and at reduced cost by concentrating appropriate technologies and scientific expertise, from genome sequence to an integrated systems understanding of the pathways and internal structures of microbes and plants most relevant to developing bioenergy compounds. The Centers will seek to understand the principles underlying the structural and functional design of selected microbial, plant, and molecular systems. This will be accomplished by building technological pathways linking the genome-determined components in an organism with bioenergy-relevant cellular systems that can be characterized sufficiently to generate realistic options for biofuel development. In addition, especially in addressing what are believed to be nearer-term approaches to renewable energy (e.g., producing cellulosic ethanol cost-effectively and energy-efficiently), the Center research team must understand in depth the current industrial-level roadblocks and bottlenecks (see section, GTL's Vision for Biological Energy Alternatives, below). For the Centers, and indeed the entire BER effort, to be successful, Center research must be integrated with individual investigator research, and coordination of activities,

Mansfield, Betty Kay [ORNL; Alton, Anita Jean [ORNL; Andrews, Shirley H [ORNL; Bownas, Jennifer Lynn [ORNL; Casey, Denise [ORNL; Martin, Sheryl A [ORNL; Mills, Marissa [ORNL; Nylander, Kim [ORNL; Wyrick, Judy M [ORNL; Drell, Dr. Daniel [Office of Science, Department of Energy; Weatherwax, Sharlene [U.S. Department of Energy; Carruthers, Julie [U.S. Department of Energy

2006-08-01T23:59:59.000Z

266

The European Forest Institute and the Finnish Forest Research Institute: The supply of woody biomass from the forests in the EU can be  

E-Print Network [OSTI]

Karelia in Eastern Finland showed that if the paying ability of a user of logging residues reduces 4, Finnish Forest Research Institute, tel. +358 50 391 3088, perttu.anttila @ metla.fi Final reports: http://ec.europa.eu/energy/renewables/studies/bioenergy

267

Impacts of herbaceous bioenergy crops on atmospheric volatile organic composition and potential consequences  

E-Print Network [OSTI]

mandate, and bioenergy is at the center of attention as a viable alternative for fossil fuels. However of atmospheric particulates, and interactions between plants and arthropods. Our data and projections indicate

DeLucia, Evan H.

268

Reproduced with pennission from Nature COMMENTARY Cooling the greenhouse with bioenergy  

E-Print Network [OSTI]

Reproduced with pennission from Nature COMMENTARY Cooling the greenhouse with bioenergy D. o. Hall combustionwould be once more. The technology for making markets, it is well-suited for energy ap- compensatedfor

269

Economic Impacts of Expanded Woody Biomass Utilization on the Bioenergy and Forest Products Industries in Florida  

E-Print Network [OSTI]

1 Economic Impacts of Expanded Woody Biomass Utilization on the Bioenergy and Forest Products as the starting point for implementation of the CGE model, which finds a solution where all markets

Florida, University of

270

Effects of Biochar Recycling on Switchgrass Growth and Soil and Water Quality in Bioenergy Production Systems  

E-Print Network [OSTI]

Intensive biomass production in emerging bioenergy systems could increase nonpoint-source sediment and nutrient losses and impair surface and groundwater quality. Recycling biochar, a charcoal byproduct from pyrolysis of biomass, provides potential...

Husmoen, Derek Howard

2012-07-16T23:59:59.000Z

271

Essays on Economic and Environmental Analysis of Taiwanese Bioenergy Production on Set-Aside Land  

E-Print Network [OSTI]

Domestic production of bioenergy by utilizing set-aside land in Taiwan can reduce Taiwanís reliance on expensive and politically insecure foreign fossil fuels while also reducing the combustion of fossil fuels, which emit substantial amounts...

Kung, Chih-Chun

2012-02-14T23:59:59.000Z

272

Effect of Harvest Dates on Biomass Accumulation and Composition in Bioenergy Sorghum  

E-Print Network [OSTI]

for use as a feedstock for ethanol production. Other factors such as water use efficiency, drought tolerance, yield potential, composition, and established production systems also make sorghum a logical choice as a feedstock for bioenergy production...

Borden, Dustin Ross

2012-02-14T23:59:59.000Z

273

Trade-offs of different land and bioenergy policies on the path to achieving climate targets.  

SciTech Connect (OSTI)

Many papers have shown that bioenergy and land-use are potentially important elements in a strategy to limit anthropogenic climate change. But, significant expansion of bioenergy production can have a large terrestrial footprint. In this paper, we test the implications for land use, the global energy system, carbon cycle, and carbon prices of meeting a specific climate target, using a single fossil fuel and industrial sector policy instrumentóthe carbon tax, but with five alternative bioenergy and land-use policy architectures. We find that the policies we examined have differing effects on the different segments of the economy. Comprehensive land policies can reduce land-use change emissions, increasing allowable emissions in the energy system, but have implications for the cost of food. Bioenergy taxes and constraints, on the other hand, have little effect on food prices, but can result in increased carbon and energy prices.

Calvin, Katherine V.; Wise, Marshall A.; Kyle, G. Page; Patel, Pralit L.; Clarke, Leon E.; Edmonds, James A.

2014-04-16T23:59:59.000Z

274

The Center for BioEnergy Sustainability (CBES) at Oak Ridge National Laboratory (ORNL)  

E-Print Network [OSTI]

The Center for BioEnergy Sustainability (CBES) at Oak Ridge National Laboratory (ORNL) is pleased to announce that we are holding our next Forum on October 20th, 2011 in the Ocoee Room (room 189) in Building

275

National Bioenergy Center--Biochemical Platform Integration Project: Quarterly Update, Fall 2010  

SciTech Connect (OSTI)

Fall 2010 edition of the National Bioenergy Center's Biochemical Platform Integration Project quarterly newsletter. Issue topics: rapid analysis models for compositional analysis of intermediate process streams; engineered arabinose-fermenting Zymomonas mobilis strain.

Schell, D.

2010-12-01T23:59:59.000Z

276

National Bioenergy Center Biochemical Platform Integration Project: Quarterly Update #26, January - March 2010  

SciTech Connect (OSTI)

January-March, 2010 edition of the National Bioenergy Center's Biochemical Platform Integration Project quarterly newsletter. Issue topics: understanding and improving sugar measurements in biomass hydrolysates; expansion of the NREL/DOE Biochemical Pilot Plant.

Schell, D.

2010-04-01T23:59:59.000Z

277

Integrated Photo-Bioelectrochemical System for Contaminants Removal and Bioenergy Production  

E-Print Network [OSTI]

cycling. INTRODUCTION Municipal wastewater treatment plants play a critical role in environmental represents an important, electricity-demanding step in most municipal wastewater treatment facilities fuel cells (MFCs)3 with algal bioreactors4 for wastewater treatment and bioenergy production. MFCs

Berges, John A.

278

Ris har udgivet en rapport om moderne bioenergi. Den slr fast, at biomasse er en  

E-Print Network [OSTI]

Ris√ł har udgivet en rapport om moderne bioenergi. Den sl√•r fast, at biomasse er en liges√• v√¶rdifuld eventyret med moderne bioenergi i hovedrollen. P√• Ris√ł skubber vi eventyret i gang ved at udvikle nye st√łrre skala, end man troede det muligt for bare f√• √•r siden. Andre perspektiver for bioenergien er

279

Bioenergy Technologies Office Multi-Year Program Plan: July 2014 Update |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top Five EEREDepartmentFebruary 4, 2014 Bioenergy TechnologiesBioenergy4Department

280

Advancing sustainable bioenergy: Evolving stakeholder interests and the relevance of research  

SciTech Connect (OSTI)

The sustainability of future bioenergy production rests on more than continual improvements in its environmental, economic, and social impacts. The emergence of new biomass feedstocks, an expanding array of conversion pathways, and expected increases in overall bioenergy production are connecting diverse technical, social, and policy communities. These stakeholder groups have different and potentially conflicting values and cultures, and therefore different goals and decision making processes. Our aim is to discuss the implications of this diversity for bioenergy researchers. The paper begins with a discussion of bioenergy stakeholder groups and their varied interests, and illustrates how this diversity complicates efforts to define and promote sustainable bioenergy production. We then discuss what this diversity means for research practice. Researchers, we note, should be aware of stakeholder values, information needs, and the factors affecting stakeholder decision making if the knowledge they generate is to reach its widest potential use. We point out how stakeholder participation in research can increase the relevance of its products, and argue that stakeholder values should inform research questions and the choice of analytical assumptions. Finally, we make the case that additional natural science and technical research alone will not advance sustainable bioenergy production, and that important research gaps relate to understanding stakeholder decision making and the need, from a broader social science perspective, to develop processes to identify and accommodate different value systems. While sustainability requires more than improved scientific and technical understanding, the need to understand stakeholder values and manage diversity presents important research opportunities.

Johnson, Timothy L [U.S. Environmental Protection Agency, Raleigh, North Carolina; Bielicki, Dr Jeffrey M [University of Minnesota; Dodder, Rebecca [U.S. Environmental Protection Agency; Hilliard, Michael R [ORNL; Kaplan, Ozge [U.S. Environmental Protection Agency; Miller, C. Andy [U.S. Environmental Protection Agency

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "bioenergy institute jbei" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

d. 11. dec. 2003 Moderne bioenergi -et nyt dansk vkstomrde 1 Har forbrnding og forgasning af biomasse en  

E-Print Network [OSTI]

d. 11. dec. 2003 Moderne bioenergi - et nyt dansk vækstområde 1 Har forbrænding og forgasning af biomasse en fremtid ? Charles Nielsen Elsam A/S #12;d. 11. dec. 2003 Moderne bioenergi - et nyt dansk vækstområde 2 JaJa #12;d. 11. dec. 2003 Moderne bioenergi - et nyt dansk vækstområde 3 Disposition

282

Purdue University is an Equal Opportunity/Equal Access institution. Purdue Agriculture  

E-Print Network [OSTI]

processing · Agricultural/trade policy and foreign market opportunities ISDA Strategic Plan Purdue University, quality, and delivery · Economics, markets and policy · Human nutrition, food safety, human health and Institutes · Intellectual communities ­ Aquaculture - Soybeans - Bioenergy ­ Epigenetics - Water - Plant

283

Opportunities and barriers for sustainable international bioenergy trade and strategies to overcome them -A report prepared by IEA Bioenergy Task 40  

E-Print Network [OSTI]

sustainable energy production. Stimulated by the renewable energy policies in several countries, rising oil-side, · On the longer-term, market support policies in the various countries, etc. should be designed to promote them - A report prepared by IEA Bioenergy Task 40 1 Opportunities and barriers for sustainable

284

Addressing the Need for Alternative Transportation Fuels: The Joint BioEnergy Institute  

E-Print Network [OSTI]

the U.S. As world demand increases, oil reserves may become2006) Trends in Oil Sup-ply and Demand, the Potential for

Blanch, Harvey

2010-01-01T23:59:59.000Z

285

IEA Bioenergy Task 40Sustainable International Bioenergy Trade:Securing Supply and Demand Country Report 2014óUnited States  

SciTech Connect (OSTI)

Logistical barrier are tied to feedstock harvesting, collection, storage and distribution. Current crop harvesting machinery is unable to selectively harvest preferred components of cellulosic biomass while maintaining acceptable levels of soil carbon and minimizing erosion. Actively managing biomass variability imposes additional functional requirements on biomass harvesting equipment. A physiological variation in biomass arises from differences in genetics, degree of crop maturity, geographical location, climatic events, and harvest methods. This variability presents significant cost and performance risks for bioenergy systems. Currently, processing standards and specifications for cellulosic feedstocks are not as well-developed as for mature commodities. Biomass that is stored with high moisture content or exposed to moisture during storage is susceptible to spoilage, rotting, spontaneous combustion, and odor problems. Appropriate storage methods and strategies are needed to better define storage requirements to preserve the volume and quality of harvested biomass over time and maintain its conversion yield. Raw herbaceous biomass is costly to collect, handle, and transport because of its low density and fibrous nature. Existing conventional, bale-based handling equipment and facilities cannot cost-effectively deliver and store high volumes of biomass, even with improved handling techniques. Current handling and transportation systems designed for moving woodchips can be inefficient for bioenergy processes due to the costs and challenges of transporting, storing, and drying high-moisture biomass. The infrastructure for feedstock logistics has not been defined for the potential variety of locations, climates, feedstocks, storage methods, processing alternatives, etc., which will occur at a national scale. When setting up biomass fuel supply chains, for large-scale biomass systems, logistics are a pivotal part in the system. Various studies have shown that long-distance international transport by ship is feasible in terms of energy use and transportation costs, but availability of suitable vessels and meteorological conditions (e.g., winter time in Scandinavia and Russia) need to be considered. However, local transportation by truck (both in biomass exporting and importing countries) may be a high-cost factor, which can influence the overall energy balance and total biomass costs.

J. Richard Hess; Patrick Lamers; Mohammad S. Roni; Jacob J. Jacobson; Brendi Heath

2015-01-01T23:59:59.000Z

286

Utilizing Bioenergy By-products in Beef Production Systems The newly expanded renewable fuels standard requires 36 billion gallons of renewable  

E-Print Network [OSTI]

Utilizing Bioenergy By-products in Beef Production Systems The newly expanded renewable fuels studies. Current research focuses on impacts of feeding by-prod- ucts of the bioenergy industry on Animal

287

Sustainable Energy Research Team publications Whittaker, C., Adams, P., McManus, M.C Securing a Bioenergy Supply: UK and US in  

E-Print Network [OSTI]

.C Securing a Bioenergy Supply: UK and US in Perspectives on Biofuels: Potential Benefits and Possible, G.P. McManus, M.C. and Mezzullo, W. G, 2011. Barriers to and drivers for UK bioenergy development

Martin, Ralph R.

288

Institutional INSTITUTIONAL DATA BOOK  

E-Print Network [OSTI]

that institutions provide for their learning and personal development. The University of Minnesota is an equal ORGANIZATIONAL STRUCTURE UMM Organizational Chart as of August 2009

Minnesota, University of

289

Factors contributing to carbon fluxes from bioenergy harvests in the U.S. Northeast: an analysis using  

E-Print Network [OSTI]

of fossil fuels for energy production (`bioenergy' such as combusting woodchips or pellets for electricity reductions and net fluxes immediately postharvest from whole-tree harvests (WTH), bioenergy harvests without products and C emissions from energy generation from harvested sites, including indirect emissions from

Vermont, University of

290

Bioenergy and emerging biomass conversion technologies Hanne stergrd, Ris National Laboratory, Technical University of Denmark DTU, Denmark  

E-Print Network [OSTI]

Bioenergy and emerging biomass conversion technologies Hanne √?sterg√•rd, Ris√ł National Laboratory in Denmark 8th May 2007 Background Bioenergy is an important topic to include in a foresight analysis of the world agricultural markets and Europe. In the recent Agricultural Outlook report from OECD-FAO1

291

POSITION: JBEI Postdoctoral Appointee JOB ID: 645831 MANAGER: Ben Wu  

E-Print Network [OSTI]

with applications in advanced biofuels, renewable energy, nanobiology, nanotoxicology, and biofuels. The Biomass techniques, such as systems and synthetic biology, to accelerate development of the nation's biofuels developing a focus on systems and synthetic biology as they relate to biofuel production. Applied research

Senes, Alessandro

292

Sandia National Laboratories: JBEI Research Receives Strong Industry  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive SolarEducationStation TechnologyWind and Water Power Program

293

Sandia National Laboratories: JBEI Updates Techno-Economic Modeling Tools  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive SolarEducationStation TechnologyWind and Water Power Programfor

294

Sandia National Laboratories: JBEI Researchers Splice Corn Gene into  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErik Spoerke SSLS ExhibitIowa State University Sandia and

295

Urban Wood-Based Bio-Energy Systems in Seattle  

SciTech Connect (OSTI)

Seattle Steam Company provides thermal energy service (steam) to the majority of buildings and facilities in downtown Seattle, including major hospitals (Swedish and Virginia Mason) and The Northwest (Level I) Regional Trauma Center. Seattle Steam has been heating downtown businesses for 117 years, with an average length of service to its customers of 40 years. In 2008 and 2009 Seattle Steam developed a biomass-fueled renewable energy (bio-energy) system to replace one of its gas-fired boilers that will reduce greenhouse gases, pollutants and the amount of waste sent to landfills. This work in this sub-project included several distinct tasks associated with the biomass project development as follows: a. Engineering and Architecture: Engineering focused on development of system control strategies, development of manuals for start up and commissioning. b. Training: The project developer will train its current operating staff to operate equipment and facilities. c. Flue Gas Clean-Up Equipment Concept Design: The concept development of acid gas emissions control system strategies associated with the supply wood to the project. d. Fuel Supply Management Plan: Development of plans and specifications for the supply of wood. It will include potential fuel sampling analysis and development of contracts for delivery and management of fuel suppliers and handlers. e. Integrated Fuel Management System Development: Seattle Steam requires a biomass Fuel Management System to track and manage the delivery, testing, processing and invoicing of delivered fuel. This application will be web-based and accessed from a password-protected URL, restricting data access and privileges by user-level.

Stan Gent, Seattle Steam Company

2010-10-25T23:59:59.000Z

296

Biomass Conversion Task IV 1987 program of work: International Energy Agency Bioenergy Agreement  

SciTech Connect (OSTI)

Biomass is a major, renewable energy resource through out the world, and extensive research is being conducted by many countries on bioenergy technologies. In an effort to improve communications and cooperation in the area of biomass energy, several nations have agreed to a cooperative program of work under the International Energy Agency's Bioenergy Agreement (IEA/BA). Three areas of major importance have been identified including Short Rotation Forestry, Conventional Forestry, and Biomass Conversion. This document describes the 1987 Program of Work for cooperative activities in the area of Biomass Conversion. The background of the cooperation and descriptions of specific conversion projects are presented. Details of activity funding are also provided. 3 tabs.

Stevens, D.J.

1986-12-01T23:59:59.000Z

297

Pacific Northwest and Alaska Bioenergy Program Year Book; 1992-1993 Yearbook with 1994 Activities.  

SciTech Connect (OSTI)

The U.S. Department of Energy administers five Regional Bioenergy Programs to encourage regionally specific application of biomass and municipal waste-to-energy technologies to local needs, opportunities and potentials. The Pacific Northwest and Alaska region has taken up a number of applied research and technology projects, and supported and guided its five participating state energy programs. This report describes the Pacific Northwest and Alaska Regional Bioenergy Program, and related projects of the state energy agencies, and summarizes the results of technical studies. It also considers future efforts of this regional program to meet its challenging assignment.

Pacific Northwest and Alaska Bioenergy Program (U.S.); United States. Bonneville Power Administration.

1994-04-01T23:59:59.000Z

298

Renewable Energy Institute International (REII): Cooperative Research and Development Final Report, CRADA Number CRD-10-387  

SciTech Connect (OSTI)

NREL will provide the Renewable Energy Institute with detailed on-site biomass gasifier syngas monitoring, using the NREL transportable Molecular Beam Mass Spectrometer. This information will be used to optimize the parameters of the gasifier operation, insuring the quality of the syngas made in the Red Lion Bioenergy gasifier and its compatibility with catalytic conversion to fuels.

Carpenter, D.

2014-11-01T23:59:59.000Z

299

National Bioenergy Center, Biochemical Platform Integration Project: Quarterly Update, Summer 2011 (Newsletter)  

SciTech Connect (OSTI)

Summer 2011 issue of the National Bioenergy Center Biochemical Platform Integration Project quarterly update. Issue topics: evaluating new analytical techniques for measuring soluble sugars in the liquid portion of biomass hydrolysates, and measurement of the fraction of insoluble solids in biomass slurries.

Not Available

2011-09-01T23:59:59.000Z

300

Climate implications of algae-based bioenergy systems Andres Clarens, PhD  

E-Print Network [OSTI]

Climate implications of algae-based bioenergy systems Andres Clarens, PhD Assistant Professor Civil of algae and other nonconventional feedstocks, are being developed. This talk will explore several systems priorities. This is an especially challenging problem for algae-based biofuels because production pathways

Walter, M.Todd

Note: This page contains sample records for the topic "bioenergy institute jbei" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Hawai'i Bioenergy Master Plan Green Jobs, Biofuels Development, and  

E-Print Network [OSTI]

Hawai'i Bioenergy Master Plan Green Jobs, Biofuels Development, and Hawaii's Labor Market affect the labor market, as well as possible requirements for the industry. While the labor market policy makers and leaders consider how best to support biofuels. One major labor market question

302

Biomass and Bioenergy 30 (2006) 316320 How to recover more value from small pine trees  

E-Print Network [OSTI]

Biomass and Bioenergy 30 (2006) 316­320 How to recover more value from small pine trees: Essential of residual biomass. To offset the cost of handling this low-value timber, additional marketing options States market for such products. However, less is known of the capability of essential oils extracted

303

Optimizing Feedstock Logistics and Assessment of Hydrologic Impacts for Sustainable Bio-Energy Production  

E-Print Network [OSTI]

builder was used to automate the GIS analysis. Network analysis was used to find the best route to move the mobile pyrolysis units to new locations and to identify the closest refinery to transport the bio-crude oil. To produce bioenergy from feedstocks...

Ha, Mi-Ae 1979-

2012-12-11T23:59:59.000Z

304

BIOENERGY AND BIOFUELS A multi-electrode continuous flow microbial fuel cell  

E-Print Network [OSTI]

BIOENERGY AND BIOFUELS A multi-electrode continuous flow microbial fuel cell with separator microbial fuel cells (MFCs) requires the development of compact reactors with multiple electro- des continuous flow treatment using actual wastewaters. Keywords Microbial fuel cell . Scaling up . Separator

305

Impacts of increased bioenergy demand on global food markets: an AgMIP economic model intercomparison  

SciTech Connect (OSTI)

Integrated Assessment studies have shown that meeting ambitious greenhouse gas mitigation targets will require substantial amounts of bioenergy as part of the future energy mix. In the course of the Agricultural Model Comparison and Improvement Project (AgMIP), five global agro-economic models were used to analyze a future scenario with global demand for ligno-cellulosic bioenergy rising to about 100 ExaJoule in 2050. From this exercise a tentative conclusion can be drawn that ambitious climate change mitigation need not drive up global food prices much, if the extra land required for bioenergy production is accessible or if the feedstock, e.g. from forests, does not directly compete for agricultural land. Agricultural price effects across models by the year 2050 from high bioenergy demand in an RCP2.6-type scenario appear to be much smaller (+5% average across models) than from direct climate impacts on crop yields in an RCP8.5-type scenario (+25% average across models). However, potential future scarcities of water and nutrients, policy-induced restrictions on agricultural land expansion, as well as potential welfare losses have not been specifically looked at in this exercise.

Lotze-Campen, Hermann; von Lampe, Martin; Kyle, G. Page; Fujimori, Shinichiro; Havlik, Petr; van Meijl, Hans; Hasegawa, Tomoko; Popp, Alexander; Schmitz, Christoph; Tabeau, Andrzej; Valin, Hugo; Willenbockel, Dirk; Wise, Marshall A.

2014-01-01T23:59:59.000Z

306

National Bioenergy Center Biochemical Platform Integration Project: Quarterly Update #28, Spring 2011  

SciTech Connect (OSTI)

Spring 2011 edition of the National Bioenergy Center's Biochemical Platform Integration Project quarterly newsletter. Issue topics: 33rd Symposium on Biotechnology for Fuels and Chemicals program sessions and special topic sessions; assessment of waste water treatment needs; and an update on new arabinose-to-ethanol fermenting Zymomonas mobilis strains.

Schell, D. J.

2011-04-01T23:59:59.000Z

307

National Bioenergy Center Biochemical Platform Integration Project: Quarterly Update #27, April - June 2010  

SciTech Connect (OSTI)

April-June, 2010 edition of the National Bioenergy Center's Biochemical Platform Integration Project quarterly newsletter. Issue topics: understanding performance of alternative process configurations for producing ethanol from biomass; investigating Karl Fischer Titration for measuring water content of pretreated biomass slurries.

Schell, D.

2010-07-01T23:59:59.000Z

308

National Bioenergy Center - Biochemical Platform Integration Project: Quarterly Update, Winter 2010  

SciTech Connect (OSTI)

Winter 2011 edition of the National Bioenergy Center's Biochemical Platform Integration Project quarterly newsletter. Issue topics: 33rd Symposium on Biotechnology for Fuels and Chemicals program topic areas; results from reactive membrane extraction of inhibitors from dilute-acid pretreated corn stover; list of 2010 task publications.

Schell, D.

2011-02-01T23:59:59.000Z

309

Reducing effluent discharge and recovering bioenergy in an osmotic microbial fuel cell treating domestic wastewater  

E-Print Network [OSTI]

domestic wastewater Zheng Ge, Qingyun Ping, Li Xiao, Zhen He Department of Civil Engineering and Mechanics cell is developed to treat domestic wastewater. Wastewater effluent can be greatly reduced due to osmotic water extraction. Bioenergy recovered from wastewater can potentially support pumping system

310

BIOENERGY AND BIOFUELS Domestic wastewater treatment using multi-electrode continuous  

E-Print Network [OSTI]

BIOENERGY AND BIOFUELS Domestic wastewater treatment using multi-electrode continuous flow MFCs Heidelberg 2012 Abstract Treatment of domestic wastewater using microbial fuel cells (MFCs) will require to large changes in the chemical oxygen demand (COD) concentration within the reactor. Domestic wastewater

311

State-of-the-Art of Fast Pyrolysis in IEA Bioenergy Member Countries  

SciTech Connect (OSTI)

Fast pyrolysis of biomass is becoming increasingly important in some member countries of the International Energy Agency(IEA). Six countries have joined the IEA Task 34 of the Bioenergy Activity: Canada, Finland, Germany, Netherlands, UK, and USA. The National Task Leaders give an overview of the current activities in their countries both on research, pilot and demonstration level.

Meier, Dietrich; van de Beld, Bert; Bridgwater, Anthony V.; Elliott, Douglas C.; Oasmaa, Anja; Preto, Fernando

2013-04-01T23:59:59.000Z

312

Climate impacts of bioenergy: Inclusion of carbon cycle and albedo dynamics in life cycle impact assessment  

SciTech Connect (OSTI)

Life cycle assessment (LCA) can be an invaluable tool for the structured environmental impact assessment of bioenergy product systems. However, the methodology's static temporal and spatial scope combined with its restriction to emission-based metrics in life cycle impact assessment (LCIA) inhibits its effectiveness at assessing climate change impacts that stem from dynamic land surface-atmosphere interactions inherent to all biomass-based product systems. In this paper, we focus on two dynamic issues related to anthropogenic land use that can significantly influence the climate impacts of bioenergy systems: i) temporary changes to the terrestrial carbon cycle; and ii) temporary changes in land surface albedo-and illustrate how they can be integrated within the LCA framework. In the context of active land use management for bioenergy, we discuss these dynamics and their relevancy and outline the methodological steps that would be required to derive case-specific biogenic CO{sub 2} and albedo change characterization factors for inclusion in LCIA. We demonstrate our concepts and metrics with application to a case study of transportation biofuel sourced from managed boreal forest biomass in northern Europe. We derive GWP indices for three land management cases of varying site productivities to illustrate the importance and need to consider case- or region-specific characterization factors for bioenergy product systems. Uncertainties and limitations of the proposed metrics are discussed. - Highlights: Black-Right-Pointing-Pointer A method for including temporary surface albedo and carbon cycle changes in Life Cycle Impact Assessment (LCIA) is elaborated. Black-Right-Pointing-Pointer Concepts are applied to a single bioenergy case whereby a range of feedstock productivities are shown to influence results. Black-Right-Pointing-Pointer Results imply that case- and site-specific characterization factors can be essential for a more informed impact assessment. Black-Right-Pointing-Pointer Uncertainties and limitations of the proposed methodologies are elaborated.

Bright, Ryan M., E-mail: ryan.m.bright@ntnu.no; Cherubini, Francesco; Stromman, Anders H.

2012-11-15T23:59:59.000Z

313

Developing a Portfolio of Sustainable Bioenergy Feedstock Production Systems for the US Midwest: A Research and Demonstration Project  

E-Print Network [OSTI]

a growing portion of our bioenergy feedstocks. While such "second generation" feedstocks show numerous on fossil fuels. In response, the demand for feedstocks for liquid biofuels will continue to grow

Jager, Henriette I.

314

Feedstock Logistics of a Mobile Pyrolysis System and Assessment of Soil Loss Due to Biomass Removal for Bioenergy Production  

E-Print Network [OSTI]

The purpose of this study was to assess feedstock logistics for a mobile pyrolysis system and to quantify the amount of soil loss caused by harvesting agricultural feedstocks for bioenergy production. The analysis of feedstock logistics...

Bumguardner, Marisa

2012-10-19T23:59:59.000Z

315

The Bioenergy Knowledge Discovery Framework (KDF) | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: AlternativeEnvironment,Institutes and1Telework Telework The Department'sBlog ¬ĽClean Energy

316

Sustainable Management of Biogeochemical Cycles in Soils Amended with Bio-Resources from Livestock, Bioenergy, and Urban Systems  

E-Print Network [OSTI]

iii SUSTAINABLE MANAGEMENT OF BIOGEOCHEMICAL CYCLES IN SOILS AMENDED WITH BIO-RESOURCES FROM LIVESTOCK, BIOENERGY, AND URBAN SYSTEMS A Dissertation by RONNIE WAYNE SCHNELL Submitted to the Office of Graduate Studies of Texas A...-RESOURCES FROM LIVESTOCK, BIOENERGY, AND URBAN SYSTEMS A Dissertation by RONNIE WAYNE SCHNELL Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY...

Schnell, Ronnie Wayne

2011-10-21T23:59:59.000Z

317

Bioenergy Pumps New Life into Pulp and Paper Mills | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top Five EEREDepartmentFebruary 4, 2014 Bioenergy Technologies Office

318

Bioenergy Technologies Office Conversion R&D Pathway: Syngas Upgrading to  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top Five EEREDepartmentFebruary 4, 2014 Bioenergy Technologies OfficeApril

319

Bioenergy Technologies Office Conversion R&D Pathway: Whole Algae  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top Five EEREDepartmentFebruary 4, 2014 Bioenergy Technologies

320

Bioenergy Technologies Office Multi-Year Program Plan: March 2015 Update --  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top Five EEREDepartmentFebruary 4, 2014 Bioenergy

Note: This page contains sample records for the topic "bioenergy institute jbei" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Bioenergy Technologies Office R&D Pathways: Fast Pyrolysis and  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top Five EEREDepartmentFebruary 4, 2014 BioenergyDepartment of

322

Bioenergy Technologies Office R&D Pathways: In-Situ Catalytic Fast  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top Five EEREDepartmentFebruary 4, 2014 BioenergyDepartment ofPyrolysis |

323

Bioenergy Technologies Office Multi-Year Program Plan: March 2015 Update |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsBSCmemo.pdf BSCmemo.pdf BSCmemo.pdfBetterBIOENERGY TECHNOLOGIES OFFICE FY

324

Biomass & Bioenergy, 2010, 34(7), 923-930, doi:10.1016/j.biombioe.2010.01.039. EEEnnneeerrrgggyyy rrreeeqqquuuiiirrreeemmmeeennnttt fffooorrr fffiiinnneee gggrrriiinnndddiiinnnggg ooofff tttooorrrrrreeefffiiieeeddd wwwooooooddd  

E-Print Network [OSTI]

Biomass & Bioenergy, 2010, 34(7), 923-930, doi:10.1016/j.biombioe.2010.01.039. 1 EEEnnneeerrrgggyyy,version1-3Aug2010 Author manuscript, published in "Biomass and Bioenergy 34, 7 (2010) 923-930" DOI : 10.1016/j.biombioe.2010.01.039 #12;Biomass & Bioenergy, 2010, 34(7), 923-930, doi:10.1016/j.biombioe.2010

Paris-Sud XI, Université de

325

Global Simulation of Bioenergy Crop Productivity: Analytical framework and Case Study for Switchgrass  

SciTech Connect (OSTI)

Contemporary global assessments of the deployment potential and sustainability aspects of biofuel crops lack quantitative details. This paper describes an analytical framework capable of meeting the challenges associated with global scale agro-ecosystem modeling. We designed a modeling platform for bioenergy crops, consisting of five major components: (i) standardized global natural resources and management data sets, (ii) global simulation unit and management scenarios, (iii) model calibration and validation, (iv) high-performance computing (HPC) modeling, and (v) simulation output processing and analysis. A case study with the HPC- Environmental Policy Integrated Climate model (HPC-EPIC) to simulate a perennial bioenergy crop, switchgrass (Panicum virgatum L.) and global biomass feedstock analysis on grassland demonstrates the application of this platform. The results illustrate biomass feedstock variability of switchgrass and provide insights on how the modeling platform can be expanded to better assess sustainable production criteria and other biomass crops. Feedstock potentials on global grasslands and within different countries are also shown. Future efforts involve developing databases of productivity, implementing global simulations for other bioenergy crops (e.g. miscanthus, energycane and agave), and assessing environmental impacts under various management regimes. We anticipated this platform will provide an exemplary tool and assessment data for international communities to conduct global analysis of biofuel biomass feedstocks and sustainability.

Nair, S. Surendran [University of Tennessee, Knoxville (UTK)] [University of Tennessee, Knoxville (UTK); Nichols, Jeff A. {Cyber Sciences} [ORNL; Post, Wilfred M [ORNL] [ORNL; Wang, Dali [ORNL] [ORNL; Wullschleger, Stan D [ORNL] [ORNL; Kline, Keith L [ORNL] [ORNL; Wei, Yaxing [ORNL] [ORNL; Singh, Nagendra [ORNL] [ORNL; Kang, Shujiang [ORNL] [ORNL

2014-01-01T23:59:59.000Z

326

Bioenergy market competition for biomass: A system dynamics review of current policies  

SciTech Connect (OSTI)

There is growing interest in the United States and abroad to increase the use of biomass as an energy source due to environmental and energy security benefits. In the United States, the biofuel and biopower industries are regulated by different policies and different agencies and have different drivers, which impact the maximum price the industries are willing to pay for biomass. This article describes a dynamic computer simulation model that analyzes future behavior of bioenergy feedstock markets based on varying policy and technical options. The model simulates the long-term dynamics of these markets by treating advanced biomass feedstocks as a commodity and projecting the total demand of each industry, as well as the market price over time. The model is used for an analysis of the United States bioenergy feedstock market that projects supply, demand, and market price given three independent buyers: domestic biopower, domestic biofuels, and foreign exports. With base-case assumptions, the biofuels industry is able to dominate the market and meet the federal Renewable Fuel Standard (RFS) targets for advanced biofuels. Further analyses suggest that United States bioenergy studies should include estimates of export demand for biomass in their projections, and that GHG-limiting policy would partially shield both industries from export dominance.

Jacob J. Jacobson; Robert Jeffers

2013-07-01T23:59:59.000Z

327

Global Simulation of Bioenergy Crop Productivity: Analytical Framework and Case Study for Switchgrass  

SciTech Connect (OSTI)

A global energy crop productivity model that provides geospatially explicit quantitative details on biomass potential and factors affecting sustainability would be useful, but does not exist now. This study describes a modeling platform capable of meeting many challenges associated with global-scale agro-ecosystem modeling. We designed an analytical framework for bioenergy crops consisting of six major components: (i) standardized natural resources datasets, (ii) global field-trial data and crop management practices, (iii) simulation units and management scenarios, (iv) model calibration and validation, (v) high-performance computing (HPC) simulation, and (vi) simulation output processing and analysis. The HPC-Environmental Policy Integrated Climate (HPC-EPIC) model simulated a perennial bioenergy crop, switchgrass (Panicum virgatum L.), estimating feedstock production potentials and effects across the globe. This modeling platform can assess soil C sequestration, net greenhouse gas (GHG) emissions, nonpoint source pollution (e.g., nutrient and pesticide loss), and energy exchange with the atmosphere. It can be expanded to include additional bioenergy crops (e.g., miscanthus, energy cane, and agave) and food crops under different management scenarios. The platform and switchgrass field-trial dataset are available to support global analysis of biomass feedstock production potential and corresponding metrics of sustainability.

Kang, Shujiang [ORNL; Kline, Keith L [ORNL; Nair, S. Surendran [University of Tennessee, Knoxville (UTK); Nichols, Dr Jeff A [ORNL; Post, Wilfred M [ORNL; Brandt, Craig C [ORNL; Wullschleger, Stan D [ORNL; Wei, Yaxing [ORNL; Singh, Nagendra [ORNL

2013-01-01T23:59:59.000Z

328

The Foundation for The Gator Nation An Equal Opportunity Institution  

E-Print Network [OSTI]

, corn, soybean); specialty and alternative crops for newly initiated and value added markets; bioenergy

Jawitz, James W.

329

Financial Institutions  

Broader source: Energy.gov [DOE]

A lending program begins with a financial institution that procures the funds they lend from a number of other sources.

330

MONTANA STATE UNIVERSITY DEPARTMENT OF LAND RESOURCES & ENVIRONMENTAL SCIENCES Degree Requirements for a B. S. in Sustainable Foods & Bioenergy Systems Agroecology Option 20142015 Catalog  

E-Print Network [OSTI]

Requirements for a B. S. in Sustainable Foods & Bioenergy Systems Agroecology Option 20142015 Catalog Name ENSC 110 Land Resources & Environmental Sciences 3 F SFBS 146 Intro Sust Food/Bioenergy Systems 3) Vegetable Production 3 F HORT 345 Organic Market Gardening 3 Su NASX 415 (even years) Native Food Systems 3

Maxwell, Bruce D.

331

Proceedings of the Bio-Energy '80 world congress and exposition  

SciTech Connect (OSTI)

Many countries are moving with increasing urgency to obtain larger fractions of their energy from biomass. Over 1800 leading experts from 70 countries met on April 21 to 24 in Atlanta to conduct a World Congress and Exposition on Bio-Energy. This summary presents highlights of the Congress and thoughts stimulated by the occasion. Topics addressed include a comparison of international programs, world and country regionalism in the development of energy supplies, fuel versus food or forest products, production of ethyl alcohol, possibilities for expanded production of terrestrial vegetation and marine flora, and valuable chemicals from biomass. Separate abstracts have been prepared for 164 papers for inclusion in the Energy Data Base.

None

1980-01-01T23:59:59.000Z

332

National Bioenergy Center, Biochemical Platform Integration Project: Quarterly Update, Winter 2011-2012 (Newsletter)  

SciTech Connect (OSTI)

Winter 2011-2012 issue of the National Bioenergy Center Biochemical Platform Integration Project quarterly update. Issue topics: 34th Symposium on Biotechnology for Fuels and Chemicals; feasibility of NIR spectroscopy-based rapid feedstock reactive screening; demonstrating integrated pilot-scale biomass conversion. The Biochemical Process Integration Task focuses on integrating the processing steps in enzyme-based lignocellulose conversion technology. This project supports the U.S. Department of Energy's efforts to foster development, demonstration, and deployment of 'biochemical platform' biorefineries that economically produce ethanol or other fuels, as well as commodity sugars and a variety of other chemical products, from renewable lignocellulosic biomass.

Not Available

2012-04-01T23:59:59.000Z

333

Bioenergy Technologies Office Multi-Year Program Plan: May 2013 Update |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top Five EEREDepartmentFebruary 4, 2014 BioenergyDepartment of Energy May 2013

334

Bioenergy Technologies Office Multi-Year Program Plan: November 2014 Update  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top Five EEREDepartmentFebruary 4, 2014 BioenergyDepartment of Energy May 2013|

335

Bioenergy Technologies Office R&D Pathways: Algal Lipid Upgrading |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top Five EEREDepartmentFebruary 4, 2014 BioenergyDepartment of Energy

336

Bioenergy Technologies Office R&D Pathways: Ex-Situ Catalytic Fast  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top Five EEREDepartmentFebruary 4, 2014 BioenergyDepartment of EnergyPyrolysis

337

Bioenergy Technologies FY14 Budget At-a-Glance | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsBSCmemo.pdf BSCmemo.pdf BSCmemo.pdfBetter BuildingsBetterBiodieselBioenergyFY14

338

Bioenergy Technologies Office FY 2016 Budget At-A-Glance | Department of  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energyon ArmedWaste andAccess toSustainable Transportation ¬Ľ Bioenergy SuccessEnergy

339

American Recovery and Reinvestment Act of 2009: Bioenergy Technologies Office Investments  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartment ofEnergy Natural Gas:Austin, TMOAB, Utah -Bioenergy Technologies

340

Assessing the potential of bioenergy. Final report, October 1, 1997--September 30, 1998  

SciTech Connect (OSTI)

As electricity restructuring proceeds, traditional concepts of how energy is produced, transported, and utilized are likely to change dramatically. Marketplace, policy, and regulatory changes will shape both the domestic and global energy industry, improving opportunities for clean, low-cost energy, competitively priced fuels, and environmentally responsible power systems. Many of these benefits may be obtained by commercial deployment of advanced biomass power conversion technologies. The United BioEnergy Commercialization Association represents the US biomass power industry. Its membership includes investor-owned and public utilities, independent power producers, state and regional bioenergy, equipment manufacturers, and biomass energy developers. To carry out its mission, UBECA has been carrying out the following activities: production of informational and educational materials on biomass energy and distribution of such materials at public forums; technical and market analyses of biomass energy fuels, conversion technologies, and market issues; monitoring of issues affecting the biomass energy community; and facilitating cooperation among members to leverage the funds available for biomass commercialization activities.

Kirschner, J.; Badin, J.

1998-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "bioenergy institute jbei" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

High-solids enrichment of thermophilic microbial communities and their enzymes on bioenergy feedstocks  

SciTech Connect (OSTI)

Thermophilic microbial communities that are active in a high-solids environment offer great potential for the discovery of industrially relevant enzymes that efficiently deconstruct bioenergy feedstocks. In this study, finished green waste compost was used as an inoculum source to enrich microbial communities and associated enzymes that hydrolyze cellulose and hemicellulose during thermophilic high-solids fermentation of the bioenergy feedstocks switchgrass and corn stover. Methods involving the disruption of enzyme and plant cell wall polysaccharide interactions were developed to recover xylanase and endoglucanase activity from deconstructed solids. Xylanase and endoglucanase activity increased by more than a factor of 5, upon four successive enrichments on switchgrass. Overall, the changes for switchgrass were more pronounced than for corn stover; solids reduction between the first and second enrichments increased by a factor of four for switchgrass while solids reduction remained relatively constant for corn stover. Amplicon pyrosequencing analysis of small-subunit ribosomal RNA genes recovered from enriched samples indicated rapid changes in the microbial communities between the first and second enrichment with the simplified communities achieved by the third enrichment. The results demonstrate a successful approach for enrichment of unique microbial communities and enzymes active in a thermophilic high-solids environment.

Reddy, A. P.; Allgaier, M.; Singer, S.W.; Hazen, T.C.; Simmons, B.A.; Hugenholtz, P.; VanderGheynst, J.S.

2011-04-01T23:59:59.000Z

342

Sustainable Agricultural Residue Removal for Bioenergy: A Spatially Comprehensive National Assessment  

SciTech Connect (OSTI)

This study provides a spatially comprehensive assessment of sustainable agricultural residue removal potential across the United States. Earlier assessments determining the quantity of agricultural residue that could be sustainably removed for bioenergy production at the regional and national scale faced a number of computational limitations. These limitations included the number of environmental factors, the number of land management scenarios, and the spatial fidelity and spatial extent of the assessment. This study utilizes integrated multi-factor environmental process modeling and high fidelity land use datasets to perform a spatially comprehensive assessment of sustainably removable agricultural residues across the conterminous United States. Soil type represents the base spatial unit for this study and is modeled using a national soil survey database at the 10 Ė 100 m scale. Current crop rotation practices are identified by processing land cover data available from the USDA National Agricultural Statistics Service Cropland Data Layer database. Land management and residue removal scenarios are identified for each unique crop rotation and crop management zone. Estimates of county averages and state totals of sustainably available agricultural residues are provided. The results of the assessment show that in 2011 over 150 million metric tons of agricultural residues could have been sustainably removed across the United States. Projecting crop yields and land management practices to 2030, the assessment determines that over 207 million metric tons of agricultural residues will be able to be sustainably removed for bioenergy production at that time.

D. Muth, Jr.; K. M. Bryden; R. G. Nelson

2013-02-01T23:59:59.000Z

343

www.biosciencemag.org October 2012 / Vol. 62 No. 10 BioScience 911 Global Bioenergy Capacity as  

E-Print Network [OSTI]

the maximum PBP to realistically range from 12% to 35% of 2009 global primary energy consumption, with yield% of the 2009 global primary energy consumption (GPEC09; Haberl et al. 2010, USEIA 2011). Reducing the range W. Running Virtually all global energy forecasts include an expectation that bioenergy

Montana, University of

344

Bioenergy News  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top Five EEREDepartment ofEnergyEnergyBetterMakeTransportation09946

345

Bioenergy Reports  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to someone6 M. Babzien, I.ProgramBig Sol

346

Hamilton Eye Institute Neuroscience Institute  

E-Print Network [OSTI]

Care Neonatology & Maternal Fetal Pediatric Heart Institute Steve J. Schwab, MD Musculoskeletal A New of Radiology · Mari Assumes Leadership of OB/GYN city attractioNs Levitt Shell Revived Feature Vision

Cui, Yan

347

Bio-energy feedstock yields and their water quality benefits in Mississippi  

SciTech Connect (OSTI)

Cellulosic and agricultural bio-energy crops can, under careful management, be harvested as feedstock for bio-fuels production and provide environmental benefits. However, it is required to quantify their relative advantages in feedstock production and water quality. The primary objective of this research was to evaluate potential feedstock yield and water quality benefit scenarios of bioenergy crops: Miscanthus (Miscanthus-giganteus), Switchgrass (Panicum virgatum), Johnsongrass (Sorghum halepense), Alfalfa (Medicago sativa L.), Soybean {Glycine max (L.) Merr.}, and Corn (Lea mays) in the Upper Pearl River watershed (UPRW), Mississippi using a Soil and Water Assessment Tool (SWAT). The SWAT model was calibrated (January 1981 to December 1994) and validated (January 1995 to September 2008) using monthly measured stream flow data. The calibrated and validated model determined good to very good performance for stream flow prediction (R2 and E from 0.60 to 0.86). The RMSE values (from 14 m3 s-1 to 37 m3 s-1) were estimated at similar levels of errors during model calibration and validation. The long-term average annual potential feedstock yield as an alternative energy source was determined the greatest when growing Miscanthus grass (373,849 Mg) as followed by Alfalfa (206,077 Mg), Switchgrass (132,077 Mg), Johnsongrass (47,576 Mg), Soybean (37,814 Mg), and Corn (22,069 Mg) in the pastureland and cropland of the watershed. Model results determined that average annual sediment yield from the Miscanthus grass scenario determined the least (1.16 Mg/ha) and corn scenario the greatest (12.04 Mg/ha). The SWAT model simulated results suggested that growing Miscanthus grass in the UPRW would have the greatest potential feedstock yield and water quality benefits.

Parajuli, Prem B.

2011-08-10T23:59:59.000Z

348

Geek-Up[10.01.10]-- Mapping Bioenergy and Magnetic Vector Potential, New Atmosphere-Monitoring Tools and "Sour" Gas Streams  

Broader source: Energy.gov [DOE]

Geeks, pay attention! We've got a BioEnergy Atlas, aerosols and climate, sour stuff, and 3D magnetic interactions in this edition of the Geek Up!

349

The Carbon Footprint of Bioenergy Sorghum Production in Central Texas: Production Implications on Greenhouse Gas Emissions, Carbon Cycling, and Life Cycle Analysis  

E-Print Network [OSTI]

Enhanced interest in biofuel production has renewed interest in bioenergy crop production within the United States. Agricultureís role in biofuel production is critical because it has the potential to supply renewable energy while minimizing...

Storlien, Joseph Orgean

2013-06-13T23:59:59.000Z

350

A Multi-Model Analysis of the Regional and Sectoral Roles of Bioenergy in Near- and Long-Term CO2 Emissions  

SciTech Connect (OSTI)

We study the near term and the longer term the contribution of bioenergy in different LIMITS scenarios as modeled by the participating models in the LIMITS project. With These scenarios have proven useful for exploring a range of outcomes for bioenergy use in response to both regionally diverse near term policies and the transition to a longer-term global mitigation policy and target. The use of several models has provided a source of heterogeneity in terms of incorporating uncertain assumptions about future socioeconomics and technology, as well as different paradigms for how the world may respond to policies. The results have also highlighted the heterogeneity and versatility of bioenergy itself, with different types of resources and applications in several energy sectors. In large part due to this versatility, the contribution of bioenergy to climate mitigation is a robust response across all models, despite their differences.

Calvin, Katherine V.; Wise, Marshall A.; Klein, David; McCollum, David; Tavoni, Massimo; van der Zwaan, Bob; Van Vuuren, Detlef

2013-11-01T23:59:59.000Z

351

Biomass & Bioenergy, 2010, 34(5), 602-609, doi : 10.1016/j.biombioe.2010.01.002 MMMooodddeeelllllliiinnnggg aaannnhhhyyydddrrrooouuusss wwweeeiiiggghhhttt lllooossssss ooofff wwwooooooddd ccchhhiiipppsss ddduuurrriiinnnggg tttooorrrrrreeefffaaaccctttiiioo  

E-Print Network [OSTI]

Biomass & Bioenergy, 2010, 34(5), 602-609, doi : 10.1016/j.biombioe.2010.01.002 1 : govin@emse.fr hal-00477323,version1-28Apr2010 Author manuscript, published in "Biomass and Bioenergy 34, 5 (2010) 602-609" DOI : 10.1016/j.biombioe.2010.01.002 #12;Biomass & Bioenergy, 2010, 34(5), 602

Paris-Sud XI, Université de

352

An Integrated Model for Assessment of Sustainable Agricultural Residue Removal Limits for Bioenergy Systems  

SciTech Connect (OSTI)

Agricultural residues have been identified as a significant potential resource for bioenergy production, but serious questions remain about the sustainability of harvesting residues. Agricultural residues play an important role in limiting soil erosion from wind and water and in maintaining soil organic carbon. Because of this, multiple factors must be considered when assessing sustainable residue harvest limits. Validated and accepted modeling tools for assessing these impacts include the Revised Universal Soil Loss Equation Version 2 (RUSLE2), the Wind Erosion Prediction System (WEPS), and the Soil Conditioning Index. Currently, these models do not work together as a single integrated model. Rather, use of these models requires manual interaction and data transfer. As a result, it is currently not feasible to use these computational tools to perform detailed sustainable agricultural residue availability assessments across large spatial domains or to consider a broad range of land management practices. This paper presents an integrated modeling strategy that couples existing datasets with the RUSLE2 water erosion, WEPS wind erosion, and Soil Conditioning Index soil carbon modeling tools to create a single integrated residue removal modeling system. This enables the exploration of the detailed sustainable residue harvest scenarios needed to establish sustainable residue availability. Using this computational tool, an assessment study of residue availability for the state of Iowa was performed. This study included all soil types in the state of Iowa, four representative crop rotation schemes, variable crop yields, three tillage management methods, and five residue removal methods. The key conclusions of this study are that under current management practices and crop yields nearly 26.5 million Mg of agricultural residue are sustainably accessible in the state of Iowa, and that through the adoption of no till practices residue removal could sustainably approach 40 million Mg. However, when considering the economics and logistics of residue harvest, yields below 2.25 Mg ha-1 are generally considered to not be viable for a commercial bioenergy system. Applying this constraint, the total agricultural residue resource available in Iowa under current management practices is 19 million Mg. Previously published results have shown residue availability from 22 million Mg to over 50 million Mg in Iowa.

D. Muth; K. M. Bryden

2003-12-01T23:59:59.000Z

353

2012 U.S. Department of Energy: Joint Genome Institute: Progress Report  

SciTech Connect (OSTI)

The mission of the U.S. Department of Energy Joint Genome Institute (DOE JGI) is to serve the diverse scientific community as a user facility, enabling the application of large-scale genomics and analysis of plants, microbes, and communities of microbes to address the DOE mission goals in bioenergy and the environment. The DOE JGI's sequencing efforts fall under the Eukaryote Super Program, which includes the Plant and Fungal Genomics Programs; and the Prokaryote Super Program, which includes the Microbial Genomics and Metagenomics Programs. In 2012, several projects made news for their contributions to energy and environment research.

Gilbert, David [DOE JGI Public Affairs Manager] [DOE JGI Public Affairs Manager

2013-01-01T23:59:59.000Z

354

Seaborg Institute  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmitted forHighlights Nuclear PhysicsDo you seeunseenScottScottInstitute

355

Advanced Studies Institute  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Engineering Institute Advanced Studies Institute Contact Institute Director Charles Farrar (505) 663-5330 Email UCSD EI Director Michael Todd (858) 534-5951 Professional Staff...

356

Biomass conversion Task 4 1988 program of work: International Energy Agency Bioenergy Agreement  

SciTech Connect (OSTI)

For biomass to meet its potential as an energy resource, conversion processes must be available which are both efficient and environmentally acceptable. Conversion can include direct production of heat and electricity as well as production of intermediate gaseous, liquid, and solid fuels. While many biomass conversion processes are commercially available at present, others are still in the conceptual stage. Additional research and development activities on these advanced concepts will be necessary to fully use biomass resources. Ongoing research on biomass conversion processes is being conducted by many nations throughout the world. In an effort to coordinate this research and improve information exchange, several countries have agreed to a cooperative effort through the International Energy Agency's Bioenergy Agreement (IEA/BA). Under this Agreement, Task IV deals specifically with biomass conversion topics. The cooperative activities consists of information exchange and coordination of national research programs on specific topics. The activities address biomass conversion in a systematic manner, dealing with the pretreatment of biomass prior to conversion, the subsequent conversion of the biomass to intermediate fuels or end-product energy, and then the environmental aspects of the conversion process. This document provides an outline of cooperative work to be performed in 1988. 1 fig., 2 tabs.

Stevens, D.J.

1987-12-01T23:59:59.000Z

357

A Review on Biomass Densification Systems to Develop Uniform Feedstock Commodities for Bioenergy Application  

SciTech Connect (OSTI)

Developing uniformly formatted, densified feedstock from lignocellulosic biomass is of interest to achieve consistent physical properties like size and shape, bulk and unit density, and durability, which significantly influence storage, transportation and handling characteristics, and, by extension, feedstock cost and quality. A variety of densification systems are considered for producing a uniform format feedstock commodity for bioenergy applications, including (a) baler, (b) pellet mill, (c) cuber, (d) screw extruder, (e) briquette press, (f) roller press, (g) tablet press, and (g) agglomerator. Each of these systems has varying impacts on feedstock chemical and physical properties, and energy consumption. This review discusses the suitability of these densification systems for biomass feedstocks and the impact these systems have on specific energy consumption and end product quality. For example, a briquette press is more flexible in terms of feedstock variables where higher moisture content and larger particles are acceptable for making good quality briquettes; or among different densification systems, a screw press consumes the most energy because it not only compresses but also shears and mixes the material. Pretreatment options like preheating, grinding, steam explosion, torrefaction, and ammonia fiber explosion (AFEX) can also help to reduce specific energy consumption during densification and improve binding characteristics. Binding behavior can also be improved by adding natural binders, such as proteins, or commercial binders, such as lignosulphonates. The quality of the densified biomass for both domestic and international markets is evaluated using PFI (United States Standard) or CEN (European Standard).

Jaya Shankar Tumuluru; Christopher T. Wright; J. Richard Hess; Kevin L. Kenney

2011-11-01T23:59:59.000Z

358

08-ERD-071 Final Report: New Molecular Probes and Catalysts for Bioenergy Research  

SciTech Connect (OSTI)

A major thrust in bioenergy research is to develop innovative methods for deconstructing plant cell wall polymers, such as cellulose and lignin, into simple monomers that can be biologically converted to ethanol and other fuels. Current techniques for monitoring a broad array of cell wall materials and specific degradation products are expensive and time consuming. To monitor various polymers and assay their breakdown products, molecular probes for detecting specific carbohydrates and lignins are urgently needed. These new probes would extend the limited biochemical techniques available, and enable realtime imaging of ultrastructural changes in plant cells. Furthermore, degradation of plant biomass could be greatly accelerated by the development of catalysts that can hydrolyze key cell wall polysaccharides and lignin. The objective of this project was to develop cheap and efficient DNA reagents (aptamers) used to detect and quantify polysaccharides, lignin, and relevant products of their breakdown. A practical goal of the research was to develop electrochemical aptamer biosensors, which could be integrated into microfluidic devices and used for high-throughput screening of enzymes or biological systems that degrade biomass. Several important model plant cell wall polymers and compounds were targeted for specific binding and purification of aptamers, which were then tested by microscopic imaging, circular dichroism, surface plasmon resonance, fluorescence anisotropy, and electrochemical biosensors. Using this approach, it was anticiated that we could provide a basis for more efficient and economically viable biofuels, and the technologies established could be used to design molecular tools that recognize targets sought in medicine or chemical and biological defense projects.

Thelen, M P; Rowe, A A; Siebers, A K; Jiao, Y

2011-03-07T23:59:59.000Z

359

Institute of Design Institute of Design  

E-Print Network [OSTI]

Institute of Design Institute of Design 350 N. LaSalle St. Chicago, IL 60610 312.595.4900 design The Institute of Design has continuously explored emerg- ing ideas about how design interacts with society languages and use of new media and material. The school was renamed the Institute of Design (ID) in 1944

Heller, Barbara

360

Analysis of Global Economic and Environmental Impacts of a Substantial Increase in Bioenergy Wallace E. Tyner (wtyner@purdue.edu), Thomas W. Hertel, Farzad Taheripour*, and Dileep K. Birur  

E-Print Network [OSTI]

Analysis of Global Economic and Environmental Impacts of a Substantial Increase in Bioenergy much insight into how alternative bioenergy production scenarios could change global agricultural markets and land-use, with repercussions for international trade. As the World Bank reports, nearly 70

Note: This page contains sample records for the topic "bioenergy institute jbei" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

LANDSCAPE MANAGEMENT FOR SUSTAINABLE SUPPLIES OF BIOENERGY FEEDSTOCK AND ENHANCED SOIL QUALITY  

SciTech Connect (OSTI)

Agriculture can simultaneously address global food, feed, fiber, and energy challenges provided our soil, water, and air resources are not compromised in doing so. As we embark on the 19th Triennial Conference of the International Soil and Tillage Research Organization (ISTRO), I am pleased to proclaim that our members are well poised to lead these endeavors because of our comprehensive understanding of soil, water, agricultural and bio-systems engineering processes. The concept of landscape management, as an approach for integrating multiple bioenergy feedstock sources, including biomass residuals, into current crop production systems, is used as the focal point to show how these ever-increasing global challenges can be met in a sustainable manner. Starting with the 2005 Billion Ton Study (BTS) goals, research and technology transfer activities leading to the 2011 U.S. Department of Energy (DOE) Revised Billion Ton Study (BT2) and development of a residue management tool to guide sustainable crop residue harvest will be reviewed. Multi-location USDA-Agricultural Research Service (ARS) Renewable Energy Assessment Project (REAP) team research and on-going partnerships between public and private sector groups will be shared to show the development of landscape management strategies that can simultaneously address the multiple factors that must be balanced to meet the global challenges. Effective landscape management strategies recognize the importance of natureís diversity and strive to emulate those conditions to sustain multiple critical ecosystem services. To illustrate those services, the soil quality impact of harvesting crop residues are presented to show how careful, comprehensive monitoring of soil, water and air resources must be an integral part of sustainable bioenergy feedstock production systems. Preliminary analyses suggest that to sustain soil resources within the U.S. Corn Belt, corn (Zea mays L.) stover should not be harvested if average grain yields are less than 11 Mg ha-1 (175 bu ac-1) unless more intensive landscape management practices are implemented. Furthermore, although non-irrigated corn grain yields east and west of the primary Corn Belt may not consistently achieve the 11 Mg ha-1 yield levels, corn can still be part of an overall landscape approach for sustainable feedstock production. Another option for producers with consistently high yields (> 12.6 Mg ha-1 or 200 bu ac-1) that may enable them to sustainably harvest even more stover is to decrease their tillage intensity which will reduce fuel use, preserve rhizosphere carbon, and/or help maintain soil structure and soil quality benefits often attributed to no-till production systems. In conclusion, I challenge all ISTRO scientists to critically ask if your research is contributing to improved soil and crop management strategies that effectively address the complexity associated with sustainable food, feed, fiber and fuel production throughout the world.

Douglas L. Karlen; David J. Muth, Jr.

2012-09-01T23:59:59.000Z

362

U.S. Billion-Ton Update: Biomass Supply for a Bioenergy and Bioproducts Industry  

SciTech Connect (OSTI)

The report, Biomass as Feedstock for a Bioenergy and Bioproducts Industry: The Technical Feasibility of a Billion-Ton Annual Supply (generally referred to as the Billion-Ton Study or 2005 BTS), was an estimate of 'potential' biomass based on numerous assumptions about current and future inventory, production capacity, availability, and technology. The analysis was made to determine if conterminous U.S. agriculture and forestry resources had the capability to produce at least one billion dry tons of sustainable biomass annually to displace 30% or more of the nation's present petroleum consumption. An effort was made to use conservative estimates to assure confidence in having sufficient supply to reach the goal. The potential biomass was projected to be reasonably available around mid-century when large-scale biorefineries are likely to exist. The study emphasized primary sources of forest- and agriculture-derived biomass, such as logging residues, fuel treatment thinnings, crop residues, and perennially grown grasses and trees. These primary sources have the greatest potential to supply large, reliable, and sustainable quantities of biomass. While the primary sources were emphasized, estimates of secondary residue and tertiary waste resources of biomass were also provided. The original Billion-Ton Resource Assessment, published in 2005, was divided into two parts-forest-derived resources and agriculture-derived resources. The forest resources included residues produced during the harvesting of merchantable timber, forest residues, and small-diameter trees that could become available through initiatives to reduce fire hazards and improve forest health; forest residues from land conversion; fuelwood extracted from forests; residues generated at primary forest product processing mills; and urban wood wastes, municipal solid wastes (MSW), and construction and demolition (C&D) debris. For these forest resources, only residues, wastes, and small-diameter trees were considered. The 2005 BTS did not attempt to include any wood that would normally be used for higher-valued products (e.g., pulpwood) that could potentially shift to bioenergy applications. This would have required a separate economic analysis, which was not part of the 2005 BTS. The agriculture resources in the 2005 BTS included grains used for biofuels production; crop residues derived primarily from corn, wheat, and small grains; and animal manures and other residues. The cropland resource analysis also included estimates of perennial energy crops (e.g., herbaceous grasses, such as switchgrass, woody crops like hybrid poplar, as well as willow grown under short rotations and more intensive management than conventional plantation forests). Woody crops were included under cropland resources because it was assumed that they would be grown on a combination of cropland and pasture rather than forestland. In the 2005 BTS, current resource availability was estimated at 278 million dry tons annually from forestlands and slightly more than 194 million dry tons annually from croplands. These annual quantities increase to about 370 million dry tons from forestlands and to nearly 1 billion dry tons from croplands under scenario conditions of high-yield growth and large-scale plantings of perennial grasses and woody tree crops. This high-yield scenario reflects a mid-century timescale ({approx}2040-2050). Under conditions of lower-yield growth, estimated resource potential was projected to be about 320 and 580 million dry tons for forest and cropland biomass, respectively. As noted earlier, the 2005 BTS emphasized the primary resources (agricultural and forestry residues and energy crops) because they represent nearly 80% of the long-term resource potential. Since publication of the BTS in April 2005, there have been some rather dramatic changes in energy markets. In fact, just prior to the actual publication of the BTS, world oil prices started to increase as a result of a burgeoning worldwide demand and concerns about long-term supplies. By the end of the summer, oil pri

Downing, Mark [ORNL; Eaton, Laurence M [ORNL; Graham, Robin Lambert [ORNL; Langholtz, Matthew H [ORNL; Perlack, Robert D [ORNL; Turhollow Jr, Anthony F [ORNL; Stokes, Bryce [Navarro Research & Engineering; Brandt, Craig C [ORNL

2011-08-01T23:59:59.000Z

363

Land-use transition for bioenergy and climate stabilization: model comparison of drivers, impacts and interactions with other land use based mitigation options  

SciTech Connect (OSTI)

This study is a model comparison assessing the drivers and impacts of bioenergy production on the global land system and the interaction with other land use based mitigation options in the context of the EMF 27 project. We compare and evaluate results from three integrated assessment models (GCAM, IMAGE, and ReMIND/MAgPIE). All three models project that dedicated bioenergy crops and biomass residues are a potentially important and cost-effective component of the energy system. But bioenergy deployment levels and feedstock composition vary notably across models as do the implications for land-use and greenhouse gas emissions and the interaction with other land use based mitigation measures. Despite numerous model differences, we identify a few that are likely contributing to differences in land-use and emissions attributable to energy crop deployment.

Popp, Alexander; Rose, Steven K.; Calvin, Katherine V.; Van Vuuren, Detlef; Dietrich, Jan P.; Wise, Marshall A.; Stehfest, Eike; Humpenoder, Florian; Kyle, G. Page; Van Vliet, Jasper; Bauer, Nico; Lotze-Campen, Hermann; Klein, David; Kriegler, Elmar

2014-04-01T23:59:59.000Z

364

Boyce Thompson Institute for Plant Research  

E-Print Network [OSTI]

are directly relevant to bioenergy, underscoring BTI's commitment to being part of the solution to this complex continued apace in 2008. We welcomed a new Education/Outreach Coordinator whose efforts are summarized

Pawlowski, Wojtek

365

Institute of Design Institute of Design  

E-Print Network [OSTI]

Institute of Design Institute of Design 350 N. LaSalle St. Chicago, IL 60610 312.595.4900 main 312.595.4906 graduate study information 312.595.4901 fax design@id.iit.edu www.id.iit.edu Dean: Patrick F. Whitney The Institute of Design (ID) is defined by a legacy of experimentation joined with unique academic programs

Heller, Barbara

366

MODEL BASED BIOMASS SYSTEM DESIGN OF FEEDSTOCK SUPPLY SYSTEMS FOR BIOENERGY PRODUCTION  

SciTech Connect (OSTI)

Engineering feedstock supply systems that deliver affordable, high-quality biomass remains a challenge for the emerging bioenergy industry. Cellulosic biomass is geographically distributed and has diverse physical and chemical properties. Because of this feedstock supply systems that deliver cellulosic biomass resources to biorefineries require integration of a broad set of engineered unit operations. These unit operations include harvest and collection, storage, preprocessing, and transportation processes. Design decisions for each feedstock supply system unit operation impact the engineering design and performance of the other system elements. These interdependencies are further complicated by spatial and temporal variances such as climate conditions and biomass characteristics. This paper develops an integrated model that couples a SQL-based data management engine and systems dynamics models to design and evaluate biomass feedstock supply systems. The integrated model, called the Biomass Logistics Model (BLM), includes a suite of databases that provide 1) engineering performance data for hundreds of equipment systems, 2) spatially explicit labor cost datasets, and 3) local tax and regulation data. The BLM analytic engine is built in the systems dynamics software package PowersimTM. The BLM is designed to work with thermochemical and biochemical based biofuel conversion platforms and accommodates a range of cellulosic biomass types (i.e., herbaceous residues, short- rotation woody and herbaceous energy crops, woody residues, algae, etc.). The BLM simulates the flow of biomass through the entire supply chain, tracking changes in feedstock characteristics (i.e., moisture content, dry matter, ash content, and dry bulk density) as influenced by the various operations in the supply chain. By accounting for all of the equipment that comes into contact with biomass from the point of harvest to the throat of the conversion facility and the change in characteristics, the BLM evaluates economic performance of the engineered system, as well as determining energy consumption and green house gas performance of the design. This paper presents a BLM case study delivering corn stover to produce cellulosic ethanol. The case study utilizes the BLM to model the performance of several feedstock supply system designs. The case study also explores the impact of temporal variations in climate conditions to test the sensitivity of the engineering designs. Results from the case study show that under certain conditions corn stover can be delivered to the cellulosic ethanol biorefinery for $35/dry ton.

David J. Muth, Jr.; Jacob J. Jacobson; Kenneth M. Bryden

2013-08-01T23:59:59.000Z

367

Abstract Bioenergy is a critical part of renewable energy solution to today's energy crisis that threatens world economic growth. Corn ethanol has been growing rapidly  

E-Print Network [OSTI]

127 Abstract Bioenergy is a critical part of renewable energy solution to today's energy crisis prices and is harsh on soil fertility. Lignocellulosic ethanol on the other hand uses abundant as energy crops on poor lands that are otherwise vacant. However, lignocellu- losic biomass is notoriously

Gu, Tingyue

368

Bioenergy: how much can we expect for 2050? This content has been downloaded from IOPscience. Please scroll down to see the full text.  

E-Print Network [OSTI]

and the necessity to reduce global GHG emissions to a level consistent with limiting global warming to 2 C motivate to the journal homepage for more Home Search Collections Journals About Contact us My IOPscience #12;IOP forage production to provide that amount of energy. Such a high level of bioenergy supply would roughly

Montana, University of

369

Monthly Highlights from Rutgers New Jersey Agricultural Experiment Station November 2009 Finding Conservation and Using Bio-Energy on Urban Fringe Farms  

E-Print Network [OSTI]

methods for conducting on-farm energy audits. While utility companies and consultants have tools little about monitoring energy use on farms. While conservation is where farmers and the university make Conservation and Using Bio-Energy on Urban Fringe Farms Zane Helsel, Ph.D., Extension Specialist in Agriculture

Goodman, Robert M.

370

Petroleum Institute Scholarly Publications  

E-Print Network [OSTI]

Abu Dhabi The Petroleum Institute Scholarly Publications January 1st ­ December 31st 2007 #12;The Petroleum Institute Scholarly Publications January 1st ­ December 31st 2007 v #12;- 2 - Scholarly Publications 2007 | The Petroleum Institute #12;- 3 - Scholarly Publications 2007 | The Petroleum Institute

371

Petroleum Institute Scholarly Publications  

E-Print Network [OSTI]

Abu Dhabi The Petroleum Institute Scholarly Publications 2010 #12;#12;The Petroleum Institute Belhaj Petroleum Engineering Sadoon Morad Petroleum Geosciences Sivakumar Sivasubramaniam College of Arts departments within the Petroleum Institute. Names in bold show Petroleum Institute faculty who are attached

372

The Center for BioEnergy Sustainability (CBES) at Oak Ridge National Laboratory (ORNL)  

E-Print Network [OSTI]

for Integrated Biomass Supply Systems" Guest Speaker: Timothy G. Rials, Professor and Director Center UTIA's research and development program on the use of forest and agricultural biomass for alternative, Institute of Agriculture. He joined the university after 13 years with the U.S. Forest Service, Southern

373

DIABETES, OBESITY AND METABOLISM INSTITUTE  

E-Print Network [OSTI]

DIABETES, OBESITY AND METABOLISM INSTITUTE AT NORTHWESTERN MEDICINE THE INSTITUTES AT NORTHWESTERN MEDICINE #12;THE INSTITUTES AT NORTHWESTERN MEDICINE DIABETES, OBESITY AND METABOLISM INSTITUTE AT NORTHWESTERN MEDICINE "As we launch the Diabetes, Obesity and Metabolism Institute at Northwestern Medicine, I

Engman, David M.

374

U.S. Billion-Ton Update: Biomass Supply for a Bioenergy and Bioproducts  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: AlternativeEnvironment,Institutes and1Telework TeleworkTime-BasedTopTribalTurkeyof

375

Boyce Thompson Institute for Plant Research TABLE OF CONTENTS  

E-Print Network [OSTI]

. Bioenergy is sometimes viewed as a magic bullet that can solve our energy problems, but it is not. Bioenergy represents only one piece of an energy pie that includes other renewable resources such as wind, solar an example for others to help find creative solutions to our energy problems. I invite you to read more

Pawlowski, Wojtek

376

Institute for Materials Science  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Institute for Material Science Who we are and what we do 2:23 Institute for Materials Science: Alexander V. Balatsky IMS is an interdisciplinary research and educational center...

377

Petroleum Institute Scholarly Publications  

E-Print Network [OSTI]

Abu Dhabi The Petroleum Institute Scholarly Publications 2008 #12.. AAkkgguunn Petroleum Engineering SS.. MMoorraadd Petroleum Geosciences RR.. NNuunnnn &&SS indicate Petroleum Institute faculty who are attached to the program shown. Every effort has been made

378

OIL & GAS INSTITUTE Introduction  

E-Print Network [OSTI]

OIL & GAS INSTITUTE CONTENTS Introduction Asset Integrity Underpinning Capabilities 2 4 4 6 8 9 10 COMPETITIVENESS UNIVERSITY of STRATHCLYDE OIL & GAS INSTITUTE OIL & GAS EXPERTISE AND PARTNERSHIPS #12;1 The launch of the Strathclyde Oil & Gas Institute represents an important step forward for the University

Mottram, Nigel

379

The Institute of Petroleum  

E-Print Network [OSTI]

The Institute of Petroleum Engineering The Institute of Petroleum Engineering (IPE) is a world leading, specialised centre in research, training and teaching, with the largest petroleum engineering and teaching. Our vision is to be the international institute of choice for research and teaching in petroleum

Painter, Kevin

380

The National Cancer Institute,  

E-Print Network [OSTI]

The National Cancer Institute, International Cancer Information Center Bldg. 82, Rm 123 Bethesda, MD 20892 The National Cancer Institute (NCI) is part of the Federal Government. NCI coordinates the government's cancer research program. It is the largest of the 17 biomedical research institutes and centers

Note: This page contains sample records for the topic "bioenergy institute jbei" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

INSTITUTE OF BIOMEDICAL ENGINEERING  

E-Print Network [OSTI]

INSTITUTE OF BIOMEDICAL ENGINEERING Innovation,Translation, Impact University College London Gower Street London WC1E 6BT UK www.ibme.ucl.ac.uk DesignbyHype!hype.co.uk UCL Institute of Biomedical Engineering #12;Innovating MedTech The Institute of Biomedical Engineering (IBME) provides a much-needed focus

Saunders, Mark

382

Institutional Change for Sustainability | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Institutional Change for Sustainability Institutional Change for Sustainability Institutional Change Continuous Improvement Cycle Institutional Change Continuous Improvement Cycle...

383

Achieving the Security, Environmental, and Economic Potential of Bioenergy. Final Technical Report  

SciTech Connect (OSTI)

A group of business, government, environmental and academic leaders convened in a dialogue by the Aspen Institute proposed a series of actions to promote the widespread commercialization of both corn and cellulosic ethanol to improve energy security, the environment, and the economy. Co-chaired by Booz Allen Hamilton Vice President and former CIA Director R. James Woolsey and former Congressman Tom Ewing (R. IL), they developed a series of recommendations involving improved crop yields, processing of biomass into ethanol, manufacture of more cars that can burn either ethanol or gasoline, and the provision of ethanol pumps at more filling stations. Their report, "A High Growth Strategy for Ethanol, includes a discussion of the potential of ethanol, the group's recommendations, and a series of discussion papers commissioned for the dialogue.

Riggs, John A

2006-06-07T23:59:59.000Z

384

Developing an Integrated Model Framework for the Assessment of Sustainable Agricultural Residue Removal Limits for Bioenergy Systems  

SciTech Connect (OSTI)

Agricultural residues have significant potential as a feedstock for bioenergy production, but removing these residues can have negative impacts on soil health. Models and datasets that can support decisions about sustainable agricultural residue removal are available; however, no tools currently exist capable of simultaneously addressing all environmental factors that can limit availability of residue. The VE-Suite model integration framework has been used to couple a set of environmental process models to support agricultural residue removal decisions. The RUSLE2, WEPS, and Soil Conditioning Index models have been integrated. A disparate set of databases providing the soils, climate, and management practice data required to run these models have also been integrated. The integrated system has been demonstrated for two example cases. First, an assessment using high spatial fidelity crop yield data has been run for a single farm. This analysis shows the significant variance in sustainably accessible residue across a single farm and crop year. A second example is an aggregate assessment of agricultural residues available in the state of Iowa. This implementation of the integrated systems model demonstrates the capability to run a vast range of scenarios required to represent a large geographic region.

David Muth, Jr.; Jared Abodeely; Richard Nelson; Douglas McCorkle; Joshua Koch; Kenneth Bryden

2011-08-01T23:59:59.000Z

385

Environmental assessment of the atlas bio-energy waste wood fluidized bed gasification power plant. Final report  

SciTech Connect (OSTI)

The Atlas Bio-Energy Corporation is proposing to develop and operate a 3 MW power plant in Brooklyn, New York that will produce electricity by gasification of waste wood and combustion of the produced low-Btu gas in a conventional package steam boiler coupled to a steam-electric generator. The objectives of this project were to assist Atlas in addressing the environmental permit requirements for the proposed power plant and to evaluate the environmental and economic impacts of the project compared to more conventional small power plants. The project`s goal was to help promote the commercialization of biomass gasification as an environmentally acceptable and economically attractive alternative to conventional wood combustion. The specific components of this research included: (1) Development of a permitting strategy plan; (2) Characterization of New York City waste wood; (3) Characterization of fluidized bed gasifier/boiler emissions; (4) Performance of an environmental impact analysis; (5) Preparation of an economic evaluation; and (6) Discussion of operational and maintenance concerns. The project is being performed in two phases. Phase I, which is the subject of this report, involves the environmental permitting and environmental/economic assessment of the project. Pending NYSERDA participation, Phase II will include development and implementation of a demonstration program to evaluate the environmental and economic impacts of the full-scale gasification project.

Holzman, M.I.

1995-08-01T23:59:59.000Z

386

INSTITUTE OF COMPUTER SCIENCE  

E-Print Network [OSTI]

Institute of Computer Science, Academy of Sciences of the Czech Republic. Pod vod∆renskou v 2, 182 07 Prague 8, Czech Republic. phone: (+420)266052083†...

387

INSTITUTE OF COMPUTER SCIENCE  

E-Print Network [OSTI]

Institute of Computer Science, Academy of Sciences of the Czech Republic. Pod vodrenskou v 2, 182 07 Prague 8, Czech Republic. phone: (+4202) 6884244†...

388

INSTITUTE COLLOQUIA AND SEMINARS  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

National Laboratory, Berkeley, California Production of Transactinide Elements in Cold Fusion Reactions at LBNL February 20 Mr. Thomas Henry, Cyclotron Institute, Texas A&M...

389

Commitment Institutional Change Principle  

Broader source: Energy.gov [DOE]

Commitment can be a crucial element that helps Federal agencies inject and emphasize sustainability in their organizational culture. Institutions and people change when they have made definite...

390

Edison Electric Institute Update  

Broader source: Energy.gov [DOE]

Presentationógiven at the Fall 2011 Federal Utility Partnership Working Group (FUPWG) meetingódiscusses the Edison Electric Institute (EEI) and the current electricity landscape.

391

Michigan Institute Science and  

E-Print Network [OSTI]

Michigan Institute for Plasma Science and Engineering Seminar Onset of Fast Magnetic Reconnection's magnetosphere, and solar flares. These observations place strong constraints on theory, which must explain

Shyy, Wei

392

Michigan Institute Plasma Science  

E-Print Network [OSTI]

Michigan Institute Plasma Science and Engineering Seminar Neutral Atom Imaging of the Terrestrial re- search includes ion heating in the solar corona, electric double layers, magne- tosphere neutral

Shyy, Wei

393

Institute for Mineral and Energy Resources  

E-Print Network [OSTI]

and sustainable use and development of the world's mineral and energy resources for the benefit of society; · Advance the science and technology needed to lower the cost and enhance cleaner energy generation, storage and energy systems; bioenergy generation, conversion and storage; control of sound and vibration; physical

394

DOE Joint Genome Institute 2008 Progress Report  

E-Print Network [OSTI]

CSP), and requests from DOE Bioenergy Re- search Centers. In recognition of the programmatic importance of plantplant genomes sequenced by the 4. Foxtail Millet The second-largest CSPCSP), is an organism of tremendous economic and ecological importance and a key representative of the conifers, an ancient lineage of plants

Gilbert, David

2009-01-01T23:59:59.000Z

395

National Institutes of Health National Institute of Mental Health  

E-Print Network [OSTI]

National Institutes of Health National Institute of Mental Health Department of Health and HumanNational Institute of Mental Health Division of Intramural Research Programs http://intramural.nimh.nih.gov/ [NIMH of Fellowship Training] National Institutes of Health National Institute of Mental Health Department of Health

Baker, Chris I.

396

Use of Institutional Controls  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The Policy ensures that the Department of Energy will use institutional controls in the management of resources, facilities and properties under its control, and in implementing its programmatic responsibilities. Certified 1-28-11.

2003-04-09T23:59:59.000Z

397

Critical Materials Institute  

ScienceCinema (OSTI)

Ames Laboratory Director Alex King talks about the goals of the Critical Materials Institute in diversifying the supply of critical materials, developing substitute materials, developing tools and techniques for recycling critical materials, and forecasting materials needs to avoid future shortages.

Alex King

2013-06-05T23:59:59.000Z

398

Petroleum Institute Scholarly Publications  

E-Print Network [OSTI]

Abu Dhabi The Petroleum Institute Scholarly Publications 2009 #12 Mechanical Engineering HHaaddii BBeellhhaajj Petroleum Engineering SSaaddoooonn MMoorraadd Petroleum LLaannggiillllee Advanced University Placement Editors' notes: Names in bold in citations indicate Petroleum

399

INSTITUTE COLLOQUIA AND SEMINARS  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

April 16 M. Sanchez-Vega and V. E. Jacob, Cyclotron Institute, Texas A&M University Test of the Unitarity of the CKM Matrix via Superallowed + decay. April 23 Dr. Subrata...

400

Institutional Change Process for Sustainability  

Broader source: Energy.gov [DOE]

For establishing institutional change in a Federal agency to achieve sustainability or other energy efficiency goals, follow the five-step institutional change process. In accordance with the...

Note: This page contains sample records for the topic "bioenergy institute jbei" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Strategies for Achieving Institutional Change  

Broader source: Energy.gov [DOE]

Many strategiesóincluding those derived from Institutional Change PrinciplesĖmay be used to effect institutional change in support of energy and sustainability objectives.

402

Bibliography of University of California Institute of Marine Resources Publication Series 1954 - 1990  

E-Print Network [OSTI]

of marine microalgae. Report to Solar Energy Researchdesert microalgae. Final Report to Solar Energy Researchby microalgae. Final report to the Bio-Energy Council. May

2006-01-01T23:59:59.000Z

403

INSTITUTE ON ASSETS & SOCIAL POLICY  

E-Print Network [OSTI]

INSTITUTE ON ASSETS & SOCIAL POLICY LIVING LONGER ON LESS IN MASSACHUSETTS: THE NEW ECONOMIC (IN)SECURITY OF SENIORS Tatjana Meschede Laura Sullivan Thomas Shapiro #12;About the Institute on Assets and Social Policy The Institute on Assets and Social Policy (IASP), a research institute at the Heller School for Social Policy

Snider, Barry B.

404

Measuring and moderating the water resource impact of biofuel production and trade  

E-Print Network [OSTI]

price †volatility, †energy †security, †and †climate † change †have †led †many †governments †to †institute †policies †promoting †bioenergy

Fingerman, Kevin Robert

2012-01-01T23:59:59.000Z

405

ENERGY INSTITUTE WILLOWCREEK  

E-Print Network [OSTI]

WISCONSIN ENERGY INSTITUTE WILLOWCREEK 1918 MARSH UNIVERSITY BAY LAKE MENDOTA CLASS OF LOT #65 LOT. TEACHER SCIENCES EDUCATIONAL BAYLISS DAVIS GRAINGER CHADBOURNE HALL HALL BARNARD MUSIC HALLLAW HALL NORTH EDUCATION HALL SCIENCE RADIO & ENGR. LABWATER SCIENCE OF LIMNOLOGY HASLER LAB RAMPS PARKING MADISON CITY

Liblit, Ben

406

Michigan Institute Science and  

E-Print Network [OSTI]

. Kaita's present research interests focus on plasma-surface interactions and the use of liquid metalsMichigan Institute for Plasma Science and Engineering Seminar Up Against the Wall: Liquid Lithium for the Chamber Technology Challenge in Fusion Energy Dr. Robert Kaita Princeton Plasma Physics Laboratory 3:00 pm

Shyy, Wei

407

Cancer Research Beckman Institute  

E-Print Network [OSTI]

Cancer Research Beckman Institute FOR ADVANCED SCIENCE AND TECHNOLOGY #12;T The medical and scientific worlds have known for many years that in order to truly understand and treat cancer, the fight has and cancerous tumors have to first be visualized at the smallest scales possible, and then treated in the most

Illinois at Urbana-Champaign, University of

408

Institute for ADVANCED STUDY  

E-Print Network [OSTI]

to the Institute's Trustees, dated June 6, 1930. Newark, New Jersey. It is fiindamental in our purpose, and our energetic objects in the Universe? To answer these questions, astronomers and astrophysicists use paper, Adassadnisetts HYMAN BASS Adrain Professor of Mathematics, Cohimbia University Neiv York, New York RICHARD B

409

Michigan Institute Science and  

E-Print Network [OSTI]

Michigan Institute for Plasma Science and Engineering Seminar Universal Magnetic Structures Prof. Mark Moldwin Dept. of Atmospheric, Oceanic and Space Sciences University of Michigan Thursday, 19 Nov and provide examples on how thinking about discrete structures can add to our understanding of the solar

Shyy, Wei

410

ORNL Bioenergy technologies  

ScienceCinema (OSTI)

ORNL researchers discuss breakthroughs in biomass conversion, feedstocks, logistics and sustainability

Davison, Brian; Narula, Chaintanya; Langholtz, Matt; Dale, Virginia

2014-07-15T23:59:59.000Z

411

ORNL Bioenergy technologies  

SciTech Connect (OSTI)

ORNL researchers discuss breakthroughs in biomass conversion, feedstocks, logistics and sustainability

Davison, Brian; Narula, Chaintanya; Langholtz, Matt; Dale, Virginia

2014-07-02T23:59:59.000Z

412

Bioenergy Frequently Asked Questions  

Broader source: Energy.gov [DOE]

Advanced biofuels will help to provide benefits that are of strategic importance to the United States, including economic growth, energy security, environmental quality, and technology leadership....

413

BioEnergy Blog  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top Five EEREDepartment ofEnergyEnergyBetter PlantsBeyondBigBio-85271

414

NREL: Innovation Impact - Bioenergy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory | National NuclearoverAcquisition

415

Bioenergy | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarre BiomassTHIS PAGE IS UNDER CONSTRUCTION

416

International Bioenergy Trade  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergy Health andofIan KalinResearch, Development,CoP)

417

Bioenergy | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformationCenterResearch HighlightsToolsBESEnergy Department to

418

Bioenergy Technologies Office  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTie Ltd: ScopeDepartment1, 2011 (BETO) Project Peer Review

419

Bioenergy for Sustainable Development  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTie Ltd: ScopeDepartment1, 2011 (BETO) Projectdried to

420

Streamlining Bioenergy Feedstock Engineering  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmittedStatus TomAbout ¬Ľ Staff125,849| OSTI, US About BPA Newsroom

Note: This page contains sample records for the topic "bioenergy institute jbei" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Transportation Institutional Plan  

SciTech Connect (OSTI)

This Institutional Plan is divided into three chapters. Chapter 1 provides background information, discusses the purposes of the Plan and the policy guidance for establishing the transportation system, and describes the projected system and the plans for its integrated development. Chapter 2 discusses the major participants who must interact to build the system. Chapter 3 suggests mechanisms for interaction that will foster wide participation in program planning and implementation and provides a framework for managing and resolving the issues related to development and operation of the transportation system. A list of acronyms and a glossary are included for the reader's convenience. Also included in this Plan are four appendices. Of particular importance is Appendix A, which includes detailed discussion of specific transportation issues. Appendices B, C, and D provide supporting material to assist the reader in understanding the roles of the involved institutions.

Not Available

1986-08-01T23:59:59.000Z

422

Effect of crop residue harvest on long-term crop yield, soil erosion, and carbon balance: tradeoffs for a sustainable bioenergy feedstock  

SciTech Connect (OSTI)

Agricultural residues are a potential feedstock for bioenergy production, if residue harvest can be done sustainably. The relationship between crop residue harvest, soil erosion, crop yield and carbon balance was modeled with the Erosion Productivity Impact Calculator/ Environment Policy Integrated Climate (EPIC) using a factorial design. Four crop rotations (winter wheat [Triticum aestivum (L.)] Ė sunflower [Helianthus annuus]; spring wheat [Triticum aestivum (L.)] Ė canola [Brassica napus]; corn [Zea mays L.] Ė soybean [Glycine max (L.) Merr.]; and cotton [Gossypium hirsutum] Ė peanut [Arachis hypogaea]) were simulated at four US locations each, under different topographies (0-10% slope), and management practices [crop residue removal rates (0-75%), conservation practices (no till, contour cropping, strip cropping, terracing)].

Gregg, Jay S.; Izaurralde, Roberto C.

2010-08-26T23:59:59.000Z

423

Renewable Energy for Development STOCKHOLM ENVIRONMENT INSTITUTE -NEWSLETTER OF THE ENERGY. ENVIRONMENT & DEVELOPMENT PROGRAMME  

E-Print Network [OSTI]

bioenergy tech- agricultural production. effort is called for to address these con- nologies be ernised bioenergy technologies can com- tion, especially with food production and launched in the near- a sense of the long-term market potential. biomass energy options have good pro- tations (Johansson et al

424

California's Energy Future - The View to 2050  

E-Print Network [OSTI]

of Illinois), the Joint BioEnergy Institute, and UC Davisíof certified imported bioenergy, and proximity to meet end-in the context of bioenergy potential in the U.S. and

2011-01-01T23:59:59.000Z

425

Sustainable Development Research Institute fonds  

E-Print Network [OSTI]

Sustainable Development Research Institute fonds Compiled by Erwin Wodarczak and Melanie Hardbattle Projects series Sous-fonds Description o "Women and Sustainable Development: Canadian Perspectives (UBC Library catalogue) #12;Fonds Description Sustainable Development Research Institute fonds. ≠ 1985

Handy, Todd C.

426

BEEKEEPING INSTITUTE Young Harris College  

E-Print Network [OSTI]

2008 BEEKEEPING INSTITUTE May 15-17 Young Harris College Young Harris, Georgia #12;Young Harris, section comb honey, mead, and beekeeping gadgets. We urge students to participate in the Institute Honey

Delaplane, Keith S.

427

PRITZKER INSTITUTE FOR BIOMEDICAL SCIENCE  

E-Print Network [OSTI]

PRITZKER INSTITUTE FOR BIOMEDICAL SCIENCE AND ENGINEERING Strategic Plan Summary #12;Pritzker Institute for Biomedical Science and Engineering for Strategic Plan Summary | 1 PRITZKER INSTITUTE FOR BIOMEDICAL SCIENCE AND ENGINEERING STRATEGIC PLAN SUMMARY 1. Grow the student body · Provide financial

Heller, Barbara

428

Careers | Critical Materials Institute  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to someone6Energy,MUSEUM DISPLAYCareers The Critical Materials Institute

429

INSTITUTE COLLOQUIA AND SEMINARS  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun withconfinementEtching. | EMSL Bubblesstructure21 Friday,JISEA INSTITUTE

430

INSTITUTE COLLOQUIA AND SEMINARS  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun withconfinementEtching. | EMSL Bubblesstructure216-March 31,INSTITUTE

431

INSTITUTE OF PHYSICS PUBLISHING  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun withconfinementEtching. | EMSL Bubblesstructure216-March 31,INSTITUTE4

432

INSTITUTE OF PHYSICS PUBLISHING  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun withconfinementEtching. | EMSL Bubblesstructure216-March 31,INSTITUTE46

433

Tokyo Institute of Technology Tokyo Institute of Technology  

E-Print Network [OSTI]

Tokyo Institute of Technology 2004 #12; Tokyo Institute of Technology k O(n-k/2) (Efron et al 1996) 2O(B) (Shimodaira 2002, 2004) O(B) #12; Tokyo Institute of Technology of Technology 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 23 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 23 4 5 1 2 3 4 5

Shimodaira, Hidetoshi

434

Cyclotron Institute Upgrade Project  

SciTech Connect (OSTI)

The Cyclotron Institute at Texas A&M University has upgraded its accelerator facilities to extend research capabilities with both stable and radioactive beams. The upgrade is divided into three major tasks: (1) re-commission the K-150 (88Ē) cyclotron, couple it to existing beam lines to provide intense stable beams into the K-500 experimental areas and use it as a driver to produce radioactive beams; (2) develop light ion and heavy ion guides for stopping radioactive ions created with the K-150 beams; and (3) transport 1+ ions from the ion guides into a charge-breeding electron-cyclotron-resonance ion source (CB-ECR) to produce highly-charged radioactive ions for acceleration in the K-500 cyclotron. When completed, the upgraded facility will provide high-quality re-accelerated secondary beams in a unique energy range in the world.

Clark, Henry [Texas A& M University; Yennello, Sherry [Texas A& M University; Tribble, Robert [Texas A& M University

2014-08-26T23:59:59.000Z

435

Minority Educational Institutions Student Partnership Program...  

Broader source: Energy.gov (indexed) [DOE]

Minority Educational Institutions Student Partnership Program (MEISPP) Internship Spotlight Minority Educational Institutions Student Partnership Program (MEISPP) Internship...

436

IFI TECHNICAL REPORTS Institute of Computer Science,  

E-Print Network [OSTI]

version) Alexander Gre√?1 and Gabriel Zachmann2 1 Institute of Computer Science II 2 Institute of Computer

Behnke, Sven

437

Joint Genome Institute's Automation Approach and History  

E-Print Network [OSTI]

Joint Genome Instituteís Automation Approach and Historythroughput environment; Ė automation does not necessarilyissues ďIslands of AutomationĒ Ė modular instruments with

Roberts, Simon

2006-01-01T23:59:59.000Z

438

Continuous Change Institutional Change Principle  

Broader source: Energy.gov [DOE]

Because it takes time to establish institutional change, Federal agencies need multiyear plans that continuously work to achieve, reinforce, and improve significant and persistent sustainability...

439

Networks, Local Institutions and Agriculture  

E-Print Network [OSTI]

Working Paper Series Agriculture for Development Paper No.Institutions and Agriculture. Chris Udry Yale UniversityMay 2009 Conference on ďAgriculture for Development in Sub-

Udry, Chris

2009-01-01T23:59:59.000Z

440

Institutional Scholarship Awards: The Role of Student and Institutional Characteristics  

E-Print Network [OSTI]

. With this action, most private institutions shifted their awarding of scholarships to a system based on family (Hauptman, 1990). This practice was carried on into the 20th century largely by the private elite colleges method for determining financial need, many of the elite private institutions banded together in 1954

Heller, Don

Note: This page contains sample records for the topic "bioenergy institute jbei" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Integrative Bioengineering Institute  

SciTech Connect (OSTI)

Microfabrication enables many exciting experimental possibilities for medicine and biology that are not attainable through traditional methods. However, in order for microfabricated devices to have an impact they must not only provide a robust solution to a current unmet need, but also be simple enough to seamlessly integrate into standard protocols. Broad dissemination of bioMEMS has been stymied by the common aim of replacing established and well accepted protocols with equally or more complex devices, methods, or materials. The marriage of a complex, difficult to fabricate bioMEMS device with a highly variable biological system is rarely successful. Instead, the design philosophy of my lab aims to leverage a beneficial microscale phenomena (e.g. fast diffusion at the microscale) within a bioMEMS device and adapt to established methods (e.g. multiwell plate cell culture) and demonstrate a new paradigm for the field (adapt instead of replace). In order for the field of bioMEMS to mature beyond novel proof-of-concept demonstrations, researchers must focus on developing systems leveraging these phenomena and integrating into standard labs, which have largely been ignored. Towards this aim, the Integrative Bioengineering Institute has been established.

Eddington, David; Magin,L,Richard; Hetling, John; Cho, Michael

2009-01-09T23:59:59.000Z

442

April 19, 2011 Smithsonian Institution  

E-Print Network [OSTI]

-fuel and hybrid vehicles. The Smithsonian fulfilled the renewable energy goal by purchasing green power from windApril 19, 2011 Smithsonian Institution 2010 Scorecard on Sustainability and Energy Performance Below is the Smithsonian Institution's fiscal year 2010 scorecard on sustainability and energy

Mathis, Wayne N.

443

WANGER INSTITUTE FOR SUSTAINABLE ENERGY  

E-Print Network [OSTI]

WANGER INSTITUTE FOR SUSTAINABLE ENERGY RESEARCH (WISER) Strategic Plan Summary #12;WISER Strategic Plan Summary | 1 WANGER INSTITUTE FOR SUSTAINABLE ENERGY RESEARCH (WISER) STRATEGIC PLAN SUMMARY 1 by developing and supporting undergraduate research in energy and sustainability related areas. ∑ Develop co

Heller, Barbara

444

Michigan Institute for Plasma Sci-  

E-Print Network [OSTI]

This talk will focus on the achievements of the Drexel Plasma Institute in direct application of plasmasMichigan Institute for Plasma Sci- ence and Engi- neering Seminar Plasma Medicine: Mechanisms of Direct Non-Thermal Plasma Interaction with Living Tissue Prof. Alexander Fridman Drexel University

Shyy, Wei

445

DEPARTMENTOFHEALTHANDHUMANSERVICES National Institutes of Health  

E-Print Network [OSTI]

DEPARTMENTOFHEALTHANDHUMANSERVICES National Institutes of Health Office of Extramural Research 9000 Institutes of Health (NIH), part of the Department of Health and Human Services (DHHS), is the principal health research agency of the U.S. Federal Government. The Office of Extramural Research (OER) provides

Baker, Chris I.

446

INSTITUTE ON ASSETS & SOCIAL POLICY  

E-Print Network [OSTI]

INSTITUTE ON ASSETS & SOCIAL POLICY Tatjana Meschede Thomas M. Shapiro Laura Sullivan Jennifer Wheary LIVING LONGER ON LESS REPORT #3 #12;DevelopeD by: The Institute on Assets and Social Policy The Heller School for Social Policy and Management Brandeis University in collaboration with: Dmos | www

Snider, Barry B.

447

Determine Institutional Change Sustainability Goals  

Broader source: Energy.gov [DOE]

The first step in the institutional change process is defining your Federal agency's sustainability goals. That is, decide what outcomes are desired (or required) over what period of time. Behavioral, organizational, and institutional changes typically are means to achieve desired energy, resource, or greenhouse gas emission outcomes. They are not ends in and of themselves.

448

Joint Seminar Risk Management Institute &  

E-Print Network [OSTI]

Joint Seminar Risk Management Institute & Department of Decision Sciences Details of Seminar Date and statistics is leading to a greatly broadened theory of regression which draws on tools of convex analysis with factor analysis in finance and economics. Risk Management Institute Joint Seminar #12;

Chaudhuri, Sanjay

449

Can Radiative Forcing Be Limited to 2.6 Wm?2 Without Negative Emissions From Bioenergy AND CO2 Capture and Storage?  

SciTech Connect (OSTI)

Combining bioenergy and carbon dioxide (CO2) capture and storage (CCS) technologies (BECCS) has the potential to remove CO2 from the atmosphere while producing useful energy. BECCS has played a central role in scenarios that reduce climate forcing to low levels such as 2.6Wm-2. In this paper we consider whether BECCS is essential to limiting radiative forcing (RF) to 2.6Wm-2 by 2100 using the Global Change Assessment Model, a closely coupled model of biogeophysical and human Earth systems. We show that BECCS can potentially reduce the cost of limiting RF to 2.6Wm-2 by 2100 but that a variety of technology combinations that do not include BECCS can also achieve this goal, under appropriate emissions mitigation policies. We note that with appropriate supporting land-use policies terrestrial sequestration could deliver carbon storage ranging from 200 to 700 PgCO2-equiavalent over the 21st century. We explore substantial delays in participation by some geopolitical regions. We find that the value of BECCS is substantially higher under delay and that delay results in higher transient RF and climate change. However, when major regions postponed mitigation indefinitely, it was impossible to return RF to 2.6Wm-2 by 2100. Neither finite land resources nor finite potential geologic storage capacity represented a meaningful technical limit on the ability of BECCS to contribute to emissions mitigation in the numerical experiments reported in this paper.

Edmonds, James A.; Luckow, Patrick W.; Calvin, Katherine V.; Wise, Marshall A.; Dooley, James J.; Kyle, G. Page; Kim, Son H.; Patel, Pralit L.; Clarke, Leon E.

2013-05-01T23:59:59.000Z

450

Agricultural Research and the Role of the National Institute of  

E-Print Network [OSTI]

for a change in support of agriculture? ∑ A science-friendly President and administration ∑ Secretary will address: 1. Climate Change 2. Bio-energy 3. Food safety 4. Nutrition 5. International food security #12;Just coincidentally, these areas are also Sec. Vilsack's stated priorities... 1. Climate Change 2. Bio

451

Georgia Institute of Technology For more information contact  

E-Print Network [OSTI]

, 2007) -- We feel it at the pump. Fuel prices are at record highs and so is the demand for alternative Biofuels, the Georgia Research Alliance and one of the U.S. Department of Energy's new BioEnergy Research in the United States, but concerns exist about the future price and availability of corn as a food crop if it

Nair, Sankar

452

Institutional computing (IC) information session  

SciTech Connect (OSTI)

The LANL Institutional Computing Program (IC) will host an information session about the current state of unclassified Institutional Computing at Los Alamos, exciting plans for the future, and the current call for proposals for science and engineering projects requiring computing. Program representatives will give short presentations and field questions about the call for proposals and future planned machines, and discuss technical support available to existing and future projects. Los Alamos has started making a serious institutional investment in open computing available to our science projects, and that investment is expected to increase even more.

Koch, Kenneth R [Los Alamos National Laboratory; Lally, Bryan R [Los Alamos National Laboratory

2011-01-19T23:59:59.000Z

453

November 6, 2012 A Strategic Vision for the Institute of Forest Resources  

E-Print Network [OSTI]

/human interactions, environmental service markets, biodiversity); 3) technology (remote sensing, bioproducts health including wildfire risks and fuel abatement Development of environmental service markets Biomass utilization for bioenergy and other bioproducts Watershed protection and sustainable management

Anderson, Richard

454

Community Development Financial Institutions Fund  

Broader source: Energy.gov [DOE]

The U.S. Department of Treasury is accepting applications on the Community Development Financial Institutions (CDFI) Fund, which has opened the fiscal year 2015 funding round for the CDFI Program...

455

Great Cities Institute Comparative Urbanisms  

E-Print Network [OSTI]

Great Cities Institute Comparative Urbanisms Seminar Series Governance and Social Innovation those "socially innovative strategies" undertaken by citizens in different European cities, identity, governance and social innovation. Her upcoming publications include "Multilevel Governance

Illinois at Chicago, University of

456

Multiple Motivations Institutional Change Principle  

Broader source: Energy.gov [DOE]

The multiple motivations principle suggests that a portfolio approachórather than a single strategyómay be required to achieve change. Research demonstrates that people and institutions adopt new...

457

Assessment of Research Quality Institute for Biodiversity  

E-Print Network [OSTI]

Assessment of Research Quality Institute for Biodiversity and Ecosystem Dynamics January 2007 Faculty of Science #12;Evaluation report Institute for Biodiversity and Ecosystem Dynamics Universiteit of the Universiteit van Amsterdam, the Institute for Biodiversity and Ecosystem Dynamics (IBED) was one

van Rooij, Robert

458

The Institutes of Technology [as amended by Institutes of Technology,] (Amendment, Act, 1963.  

E-Print Network [OSTI]

The Institutes of Technology Act, 1961 [as amended by Institutes of Technology,] (Amendment, Act, 1963.] Indian Institute of Technology, Powai, Bombay ­ 400 076 #12;THE INSTITUTES OF TECHNOLOGY ACT. THE SCHEDULE #12;THE INSTITUTES OF TECHNOLOGY, ACT, 1961 No. 59 of 1961 [as amended by Institutes of Technology

Sivalingam, Krishna M.

459

DOE - Office of Legacy Management -- Massachusetts Institute...  

Office of Legacy Management (LM)

Massachusetts Institute of Technology Hood Building - MA 01 FUSRAP Considered Sites Site: MASSACHUSETTS INSTITUTE OF TECHNOLOGY, HOOD BUILDING (MA.01 ) Eliminated from further...

460

Minority Educational Institution Student Partnership Program...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Minority Educational Institution Student Partnership Program (MEISPP) Minority Educational Institution Student Partnership Program (MEISPP) December 14, 2012 8:00PM EST to March...

Note: This page contains sample records for the topic "bioenergy institute jbei" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Environmental Justice Activities: Community Leaders' Institute...  

Office of Environmental Management (EM)

Activities: Community Leaders' Institute, West Columbia, South Carolina Environmental Justice Activities: Community Leaders' Institute, West Columbia, South Carolina July 13, 2012...

462

Energy Department - Electric Power Research Institute Cooperation...  

Office of Environmental Management (EM)

- Electric Power Research Institute Cooperation to Increase Energy Efficiency Energy Department - Electric Power Research Institute Cooperation to Increase Energy Efficiency March...

463

Measure and Evaluate Institutional Change for Sustainability...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Measure and Evaluate Institutional Change for Sustainability Measure and Evaluate Institutional Change for Sustainability Graphic showing 5 gears. They progress from Determine Goal...

464

The Okanagan Institute for Biodiversity, Resilience, and  

E-Print Network [OSTI]

2013-2014 The Okanagan Institute for Biodiversity, Resilience, and Ecosystem Services (formerly name ­ The Okanagan Institute for Biodiversity, Resilience, and Ecosystem Services (BRAES) ­ to better

Pulfrey, David L.

465

Pastoral Institutions, Organizations & Resilience to Climate Change  

E-Print Network [OSTI]

within these limits? 3. What are the institutions that permit, facilitate or enforce these practices? #12

466

INSTITUTE FOR PUBLIC HEALTH AND MEDICINE AT  

E-Print Network [OSTI]

· Program for Maternal and Child Health · Chronic Disease Care and Outcomes Program · Health EconomicsINSTITUTE FOR PUBLIC HEALTH AND MEDICINE AT NORTHWESTERN MEDICINE CENTER FOR HEALTHCARE STUDIES THE INSTITUTES AT NORTHWESTERN MEDICINE #12;THE INSTITUTES AT NORTHWESTERN MEDICINE INSTITUTE FOR PUBLIC HEALTH

Engman, David M.

467

Institutes and Centers.DIS 1 Weizmann Institute of Science  

E-Print Network [OSTI]

Center for the Biology of Aging Prof Head, The Carl and Micaela Einhorn-Dominic Center for Brain Research and Immunological Disorders Prof Head, The Murray H. & Meyer Grodetsky Center for Research of High Brain Functions Center for Brain Imaging Prof Head, The Willner Family Center for Vascular Biology Prof #12;Institutes

Shapiro, Ehud

468

Institut fr Afrikanistik Global and European Studies Institute  

E-Print Network [OSTI]

in Kamerun, Addis Abeba in √?thiopien und Dar es Salaam in Tansania an. Ziel des Programms F√ľr BA-Studierende an der University of Dar es Salaam, Tansania ¬∑ Dreimonatige Studienstipendien f√ľr MA-Studierende und of Dar es Salaam, Tansania, ¬∑ Dreimonatige Praktika bei afrikanischen Unternehmen. #12;Institut f√ľr

Sch√ľler, Axel

469

Max-Planck-Institut fr molekulare Genetik  

E-Print Network [OSTI]

R K F L #12;Max-Planck-Institut f√ľr molekulare Genetik EBSV06 The Model Variables #12;MaxMax-Planck-Institut f√ľr molekulare Genetik EBSV06 Martin Vingron Max-Planck-Institut f√ľr molekulare;Max-Planck-Institut f√ľr molekulare Genetik EBSV06 Amino Acid Replacement #12;Max-Planck-Institut f√ľr

Spang, Rainer

470

May 31, 2013 Smithsonian Institution  

E-Print Network [OSTI]

for improvement; in fiscal year 2012 the Smithsonian continued to work on reducing energy intensity and greeningMay 31, 2013 Smithsonian Institution 2012 Scorecard on Sustainability and Energy Performance In October 2009 President Obama issued Executive Order 13514 ­ Federal Leadership in Environmental, Energy

Mathis, Wayne N.

471

June 19, 2012 Smithsonian Institution  

E-Print Network [OSTI]

the Smithsonian continued to work on reducing energy intensity and greening the buildings. In September 2011June 19, 2012 Smithsonian Institution 2011 Scorecard on Sustainability and Energy Performance In October 2009 President Obama issued Executive Order 13514 ­ Federal Leadership in Environmental, Energy

Mathis, Wayne N.

472

Bowling Green State University Institutional  

E-Print Network [OSTI]

Bowling Green State University Institutional Animal Care and Use Committee Policy/Procedure Manual animal research at Bowling Green State University. Reading over the first three policies will provide #12;309A University Hall Bowling Green, OH 43403-0183 Phone 419-372-7716 Fax 419-372-6916 email hsrb

Moore, Paul A.

473

Institute of Technology Swiss Federal  

E-Print Network [OSTI]

Zurich Institute of Technology Swiss Federal Mathematics Applied Seminar for High Order Finite#12;nement near vertices Numerical Example: Energy Convergence for " = 10 3 and " = 10 6 eps3.eps 60. error in energy degrees of fredom Energy convergence on L-shaped domain:, s = 0.5, e = 0.001 L=0 L=2 L=4

Arnold, Anton

474

Institute of Mathematical Statistics COLLECTIONS  

E-Print Network [OSTI]

and Applications: A Festschrift in honor of Morris L. Eaton Galin Jones and Xiaotong Shen, Editors Institute¬łoaita . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 A CB (corporate bond) pricing probabilities and recovery rates model for de- riving default . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 iii #12;Preface Morris L. ("Joe") Eaton is one of the preeminent theoretical statisticians

Jones, Galin

475

Harvard Institute for International Development  

E-Print Network [OSTI]

The Progress of Policy Reform and Variations in Performance at the Sub-National Level in India Nirupam Bajpai; trade and exchange rate policy; industrial policy; foreign investment policy and so on, India's stateHarvard Institute for International Development HARVARD UNIVERSITY The Progress of Policy Reform

476

Princeton Environmental Institute PRINCETON UNIVERSITY  

E-Print Network [OSTI]

Princeton Environmental Institute PRINCETON UNIVERSITY Energy Systems Analysis Group Compressed Air Energy Storage: Theory, Resources, And Applications For Wind Power 8 April 2008 Samir Succar and Robert H. Vann Generous financial support from BP and the William & Flora Hewlett Foundation #12;Compressed Air

477

Smithsonian Institution 2013 Strategic Sustainability  

E-Print Network [OSTI]

Smithsonian Institution 2013 Strategic Sustainability Performance Plan Office of Facilities for learning and teaching. The Smithsonian has been, and must be, sustainable for generations to come sustainability planning and performance. Therefore we include them in this plan, for example in the number

Mathis, Wayne N.

478

DANISH METEOROLOGICAL INSTITUTE ----------SCIENTIFIC REPORT ----------  

E-Print Network [OSTI]

Environmental Problems, Kola Science Center, Apatity, 184200, Russia 6 Geophysical Institute, Department for a peer-reviewed publication. In this project, to understand the factors driving climate and ecosystem changes in the Arctic regions we considered sources, correlation and trends for different anthropogenic

479

Michigan Institute for Plasma Sci-  

E-Print Network [OSTI]

Michigan Institute for Plasma Sci- ence and Engi- neering Seminar Turbulent Plasmas in Astrophysics of turbulent fluc- tuations in the solar wind. While magnetohydrodynamics remains the appro- priate theory the labora- tory, to study naturally turbulent plasmas such as the solar wind and in more distant

Shyy, Wei

480

INSTITUTIONAL ARRANGEMENTS FOR ENVIRONMENTAL MONITORING  

E-Print Network [OSTI]

participation processes to the circumstances, of investing considerable time in designing a fair and integrated in the design of institutional arrangements for monitoring. It stresses the importance of tailoring the challenges encountered would be beneficial to guide future monitoring initiatives. #12;iv A mis padres

Note: This page contains sample records for the topic "bioenergy institute jbei" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

BEEKEEPING INSTITUTE Young Harris College  

E-Print Network [OSTI]

2007 BEEKEEPING INSTITUTE May 17-19 Young Harris College Young Harris, Georgia #12;Young Harris in photography, art, candles, cut- comb honey, mead, and beekeeping gadgets. We urge students to participate for Observation Hives, Tom Webster 10:00 BREAK 10:30 Spring and Summer Management, One Perspective, Dan Harris

Delaplane, Keith S.

482

INSTITUTE FOR CHEMICAL RESEARCH The Institute for Chemical Research was established in  

E-Print Network [OSTI]

. www.zinbun.kyoto-u.ac.jp/e/ INSTITUTE FOR FRONTIER MEDICAL SCIENCES The Institute for Frontier Medical, the institute endeavors to nurture the next generation of regenerative medicine scientists. It also performs government. www.frontier.kyoto-u.ac.jp/eng INSTITUTE OFADVANCED ENERGY The Institute of Advanced Energy

Takada, Shoji

483

Institution Name Institution Name Address Place Zip Notes Website Region  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Powerstories on climate compatible development Jump to: navigation,CSU Institute

484

E-Print Network 3.0 - agricultural outlook conference Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Institute for Applied Mathematics and Computational Science Collection: Mathematics 27 Bioenergy and emerging biomass conversion technologies Hanne stergrd, Ris National...

485

Institutional  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFunInfrared Land Surface Emissivity inFermilabWhich1theInstant

486

The Pfizer Institute for Pharmaceutical Materials Science The Pfizer Institute for Pharmaceutical  

E-Print Network [OSTI]

and exacting process and the pharmaceutical industry strives to increase efficiency and productivityThe Pfizer Institute for Pharmaceutical Materials Science The Pfizer Institute for Pharmaceutical Materials Science #12;The Pfizer Institute for Pharmaceutical Materials Science Modelling and Experimental

Lasenby, Joan

487

From ideals to institutions : institutional entrepreneurship in Mexican small business finance  

E-Print Network [OSTI]

Through a combination of in-depth research and unique loan-level data, this dissertation explores the mechanisms of intentional institutional change. It argues that current accounts of institutions and institutional change ...

Canales, Rodrigo (Rodrigo J.)

2008-01-01T23:59:59.000Z

488

Bioenergy with Carbon Capture and Sequestration WorkshopBioenergy with  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTie Ltd: ScopeDepartment1, 2011 (BETO) Projectdried toCarbon Capture and

489

University of Delaware Energy Institute  

SciTech Connect (OSTI)

The main goal of this project funded through this DOE grant is to help in the establishment of the University of Delaware Energy Institute (UDEI) which is designed to be a long-term, on-going project. The broad mission of UDEI is to develop collaborative programs encouraging research activities in the new and emerging energy technologies and to partner with industry and government in meeting the challenges posed by the nation√ʬ?¬?s pressing energy needs.

Klein, Michael T

2012-09-30T23:59:59.000Z

490

Commercial & Institutional Green Building Performance  

E-Print Network [OSTI]

Buildings Voluntary Green Building Programs: ē LEED www.usgbc.org ē Living Building Challenge living-future.org/lbc ē Green Globes www.greenglobes.com ē WELL Buildings wellbuildinginstitute.com ē ENERGY STAR energystar.gov ESL-KT-14...The North Central Branch Texas Public Works Association Commercial & Institutional Green Building Performance 11.19.2014 ESL-KT-14-11-26 CATEE 2014: Clean Air Through Efficiency Conference, Dallas, Texas Nov. 18-20 Q&A Your Presenters: Chris...

Harrison, S.; Mundell,C.; Meline, K.; Kraatz,J.

2014-01-01T23:59:59.000Z

491

National Heart, Lung, and Blood Institute  

E-Print Network [OSTI]

National Heart, Lung, and Blood Institute A T - A - G L A N C E : Asthma A sthma is a chronic Heart, Lung, and Blood Institute (NHLBI) Web site at www.nhlbi.nih.gov (under Health Information

Bandettini, Peter A.

492

Korean institutional investors and real estate investments  

E-Print Network [OSTI]

Korean institutional investors comprise one of the major investor groups in the financial market. Given their characteristics and constraints, asset allocation of such institutional investors is dominated by 'traditional ...

Nam, Sangwook, S.M. Massachusetts Institute of Technology

2014-01-01T23:59:59.000Z

493

Max-Planck-Institut fur Mathematik  

E-Print Network [OSTI]

Universal Approximation in Embodied Systems by Guido Mont¬īufar, Nihat Ay, and Keyan Ghazi-Zahedi Preprint no Planck Institute for Mathematics in the Sciences montufar@mis.mpg.de Nihat Ay Max Planck Institute

494

Water Resources Research Institute Annual Technical Report  

E-Print Network [OSTI]

Water Resources Research Institute Annual Technical Report FY 1999 Introduction ABSTRACT The FY 1999 Oregon Water Resources Research Institute (OWRRI) program included four research projects funded Coastal Lakes: Water Quality Status and Management Implications Based on Nutrient Loading OWRRI sponsored

495

Water Resources Institute Annual Technical Report  

E-Print Network [OSTI]

departments of Natural Resources, Commerce, and Agriculture, Trade & Consumer Protection pool limited stateWater Resources Institute Annual Technical Report FY 2009 Water Resources Institute Annual and federal resources to support a coordinated, comprehensive and multidisciplinary response to the state

496

Water Resources Institute Annual Technical Report  

E-Print Network [OSTI]

& Consumer Protection pool limited state and federal resources to support a coordinated, comprehensiveWater Resources Institute Annual Technical Report FY 2012 Water Resources Institute Annual and the state departments of Natural Resources, Safety & Professional Services, and Agriculture, Trade

497

Water Resources Institute Annual Technical Report  

E-Print Network [OSTI]

limited state and federal resources to support a coordinated, comprehensive and multidisciplinary responseWater Resources Institute Annual Technical Report FY 2010 Water Resources Institute Annual and the state departments of Natural Resources, Commerce, and Agriculture, Trade & Consumer Protection pool

498

Water Resources Institute Annual Technical Report  

E-Print Network [OSTI]

& Consumer Protection pool limited state and federal resources to support a coordinated, comprehensiveWater Resources Institute Annual Technical Report FY 2011 Water Resources Institute Annual and the state departments of Natural Resources, Safety & Professional Services, and Agriculture, Trade

499

The New Horizons of Bioenergy  

ScienceCinema (OSTI)

At the Office of Energy Efficiency and Renewable Energy's "Biomass 2011" conference, Argonne researcher Seth Snyder spoke with DOE Biomass Program head, Paul Bryan. In this conversation, Snyder explains the process of biochemical conversion, and talks about Argonne's patented resin wafer technology. The resin wafer electrodeionization technology may help significantly reduce the cost of producing clean energy and of the chemicals and water used in industry. The separations technology can also process biomass-based feedstocks into biofuels and chemicals.

None

2013-04-19T23:59:59.000Z

500

BioEnergy Supply Chain  

Broader source: Energy.gov [DOE]

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Donec eget tincidunt massa, sed sagittis nisl. Nullam feugiat vehicula dignissim. Donec id diam eu justo aliquet luctus vitae id nulla....