Sample records for bioenergy crop production

  1. Global Simulation of Bioenergy Crop Productivity: Analytical Framework and Case Study for Switchgrass

    SciTech Connect (OSTI)

    Kang, Shujiang [ORNL; Kline, Keith L [ORNL; Nair, S. Surendran [University of Tennessee, Knoxville (UTK); Nichols, Dr Jeff A [ORNL; Post, Wilfred M [ORNL; Brandt, Craig C [ORNL; Wullschleger, Stan D [ORNL; Wei, Yaxing [ORNL; Singh, Nagendra [ORNL

    2013-01-01T23:59:59.000Z

    A global energy crop productivity model that provides geospatially explicit quantitative details on biomass potential and factors affecting sustainability would be useful, but does not exist now. This study describes a modeling platform capable of meeting many challenges associated with global-scale agro-ecosystem modeling. We designed an analytical framework for bioenergy crops consisting of six major components: (i) standardized natural resources datasets, (ii) global field-trial data and crop management practices, (iii) simulation units and management scenarios, (iv) model calibration and validation, (v) high-performance computing (HPC) simulation, and (vi) simulation output processing and analysis. The HPC-Environmental Policy Integrated Climate (HPC-EPIC) model simulated a perennial bioenergy crop, switchgrass (Panicum virgatum L.), estimating feedstock production potentials and effects across the globe. This modeling platform can assess soil C sequestration, net greenhouse gas (GHG) emissions, nonpoint source pollution (e.g., nutrient and pesticide loss), and energy exchange with the atmosphere. It can be expanded to include additional bioenergy crops (e.g., miscanthus, energy cane, and agave) and food crops under different management scenarios. The platform and switchgrass field-trial dataset are available to support global analysis of biomass feedstock production potential and corresponding metrics of sustainability.

  2. Global Simulation of Bioenergy Crop Productivity: Analytical framework and Case Study for Switchgrass

    SciTech Connect (OSTI)

    Nair, S. Surendran [University of Tennessee, Knoxville (UTK)] [University of Tennessee, Knoxville (UTK); Nichols, Jeff A. {Cyber Sciences} [ORNL; Post, Wilfred M [ORNL] [ORNL; Wang, Dali [ORNL] [ORNL; Wullschleger, Stan D [ORNL] [ORNL; Kline, Keith L [ORNL] [ORNL; Wei, Yaxing [ORNL] [ORNL; Singh, Nagendra [ORNL] [ORNL; Kang, Shujiang [ORNL] [ORNL

    2014-01-01T23:59:59.000Z

    Contemporary global assessments of the deployment potential and sustainability aspects of biofuel crops lack quantitative details. This paper describes an analytical framework capable of meeting the challenges associated with global scale agro-ecosystem modeling. We designed a modeling platform for bioenergy crops, consisting of five major components: (i) standardized global natural resources and management data sets, (ii) global simulation unit and management scenarios, (iii) model calibration and validation, (iv) high-performance computing (HPC) modeling, and (v) simulation output processing and analysis. A case study with the HPC- Environmental Policy Integrated Climate model (HPC-EPIC) to simulate a perennial bioenergy crop, switchgrass (Panicum virgatum L.) and global biomass feedstock analysis on grassland demonstrates the application of this platform. The results illustrate biomass feedstock variability of switchgrass and provide insights on how the modeling platform can be expanded to better assess sustainable production criteria and other biomass crops. Feedstock potentials on global grasslands and within different countries are also shown. Future efforts involve developing databases of productivity, implementing global simulations for other bioenergy crops (e.g. miscanthus, energycane and agave), and assessing environmental impacts under various management regimes. We anticipated this platform will provide an exemplary tool and assessment data for international communities to conduct global analysis of biofuel biomass feedstocks and sustainability.

  3. BIOENERGY PROGRAM Agronomics is the science of soil management and the production of field crops. Key ele-

    E-Print Network [OSTI]

    Processing To meet United States Department of Energy projections, 110, 000 truckloads per day of feedstocksAgronomics BIOENERGY PROGRAM Agronomics is the science of soil management and the production of field crops. Key ele- ments of a production and delivery system include high-tonnage feedstocks, proven

  4. An integrated biogeochemical and economic analysis of bioenergy crops in the Midwestern United States

    E-Print Network [OSTI]

    Jain, Atul K.

    -specific economic analysis of breakeven prices of bioenergy crop production to assess the biophysical and economicAn integrated biogeochemical and economic analysis of bioenergy crops in the Midwestern United potential of biofuel production in the Midwestern United States. The bioenergy crops considered

  5. ABSTRACT: Bioenergy Harvesting Technologies to Supply Crop Residues...

    Energy Savers [EERE]

    ABSTRACT: Bioenergy Harvesting Technologies to Supply Crop Residues In a Densified Large Square Bale Format ABSTRACT: Bioenergy Harvesting Technologies to Supply Crop Residues In a...

  6. Functional Genomics of Drought Tolerance in Bioenergy Crops

    SciTech Connect (OSTI)

    Yin, Hengfu [ORNL; Chen, Rick [ORNL; Yang, Jun [ORNL; Weston, David [ORNL; Chen, Jay [ORNL; Muchero, Wellington [ORNL; Ye, Ning [ORNL; Tschaplinski, Timothy J [ORNL; Wullschleger, Stan D [ORNL; Cheng, Zong-Ming [ORNL; Tuskan, Gerald A [ORNL; Yang, Xiaohan [ORNL

    2014-01-01T23:59:59.000Z

    With the predicted trends in climate change, drought will increasingly impose a grand challenge to biomass production. Most of the bioenergy crops have some degree of drought susceptibility with low water-use efficiency (WUE). It is imperative to improve drought tolerance and WUE in bioenergy crops for sustainable biomass production in arid and semi-arid regions with minimal water input. Genetics and functional genomics can play a critical role in generating knowledge to inform and aid genetic improvement of drought tolerance in bioenergy crops. The molecular aspect of drought response has been extensively investigated in model plants like Arabidopsis, yet our understanding of the molecular mechanisms underlying drought tolerance in bioenergy crops are limited. Crops exhibit various responses to drought stress depending on species and genotype. A rational strategy for studying drought tolerance in bioenergy crops is to translate the knowledge from model plants and pinpoint the unique features associated with individual species and genotypes. In this review, we summarize the general knowledge about drought responsive pathways in plants, with a focus on the identification of commonality and specialty in drought responsive mechanisms among different species and/or genotypes. We describe the genomic resources developed for bioenergy crops and discuss genetic and epigenetic regulation of drought responses. We also examine comparative and evolutionary genomics to leverage the ever-increasing genomics resources and provide new insights beyond what has been known from studies on individual species. Finally, we outline future exploration of drought tolerance using the emerging new technologies.

  7. Development of Genomic and Genetic Tools for Foxtail Millet, and Use of These Tools in the Improvement of Biomass Production for Bioenergy Crops

    SciTech Connect (OSTI)

    Doust, Andrew, N.

    2011-11-11T23:59:59.000Z

    The overall aim of this research was to develop genomic and genetic tools in foxtail millet that will be useful in improving biomass production in bioenergy crops such as switchgrass, napier grass, and pearl millet. A variety of approaches have been implemented, and our lab has been primarily involved in genome analysis and quantitative genetic analysis. Our progress in these activities has been substantially helped by the genomic sequence of foxtail millet produced by the Joint Genome Institute (Bennetzen et al., in prep). In particular, the annotation and analysis of candidate genes for architecture, biomass production and flowering has led to new insights into the control of branching and flowering time, and has shown how closely related flowering time is to vegetative architectural development and biomass accumulation. The differences in genetic control identified at high and low density plantings have direct relevance to the breeding of bioenergy grasses that are tolerant of high planting densities. The developmental analyses have shown how plant architecture changes over time and may indicate which genes may best be manipulated at various times during development to obtain required biomass characteristics. This data contributes to the overall aim of significantly improving genetic and genomic tools in foxtail millet that can be directed to improvement of bioenergy grasses such as switchgrass, where it is important to maximize vegetative growth for greatest biomass production.

  8. The Future of Bioenergy Feedstock Production

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Future of Bioenergy Feedstock Production Cornell University June, 2013 John Ferrell Feedstock Technology Lead Bioenergy Technologies Office US Department of Energy 2...

  9. Evaluating environmental consequences of producing herbaceous crops for bioenergy

    SciTech Connect (OSTI)

    McLaughlin, S.B.

    1995-12-31T23:59:59.000Z

    The environmental costs and benefits of producing bioenergy crops can be measured both in kterms of the relative effects on soil, water, and wildlife habitat quality of replacing alternate cropping systems with the designated bioenergy system, and in terms of the quality and amount of energy that is produced per unit of energy expended. While many forms of herbaceous and woody energy crops will likely contribute to future biofuels systems, The Dept. of Energy`s Biofuels Feedstock Development Program (BFDP), has chosen to focus its primary herbaceous crops research emphasis on a perennial grass species, switchgrass (Panicum virgatum), as a bioenergy candidate. This choice was based on its high yields, high nutrient use efficiency, and wide geographic distribution, and also on its poistive environmental attributes. The latter include its positive effects on soil quality and stabiity, its cover value for wildlife, and the lower inputs of enerty, water, and agrochemicals required per unit of energy produced. A comparison of the energy budgets for corn, which is the primary current source of bioethanol, and switchgrass reveals that the efficiency of energy production for a perennial grass system can exceed that for an energy intensive annual row crop by as much as 15 times. In additions reductions in CO{sub 2} emission, tied to the energetic efficiency of producing transportation fuels, are very efficient with grasses. Calculated carbon sequestration rates may exceed those of annual crops by as much as 20--30 times, due in part to carbon storage in the soil. These differences have major implications for both the rate and efficiency with which fossil energy sources can be replaced with cleaner burning biofuels.

  10. Purpose-designed Crop Plants for Biofuels BIOENERGY PROGRAM

    E-Print Network [OSTI]

    Purpose-designed Crop Plants for Biofuels BIOENERGY PROGRAM The Texas AgriLife Research Center for the biofuels industry. This program recognizes that the ideal combination of traits required for an economically and energetically sustainable biofuels industry does not yet exist in a single plant spe- cies

  11. DEVELOPMENT OF GENOMIC AND GENETIC TOOLS FOR FOXTAIL MILLET, AND USE OF THESE TOOLS IN THE IMPROVEMENT OF BIOMASS PRODUCTION FOR BIOENERGY CROPS

    SciTech Connect (OSTI)

    Chen, Xinlu; Zale, Janice; Chen, Feng

    2013-01-22T23:59:59.000Z

    Foxtail millet (Setaria italica L.) is a warm-season, C4 annual crop commonly grown for grain and forage worldwide. It has a relatively short generation time, yet produces hundreds of seeds per inflorescence. The crop is inbred and it has a small-size genome (~500 Mb). These features make foxtail millet an attractive grass model, especially for bioenergy crops. While a number of genomic tools have been established for foxtail millet, including a fully sequenced genome and molecular markers, the objectives of this project were to develop a tissue culture system, determine the best explant(s) for tissue culture, optimize transient gene expression, and establish a stable transformation system for foxtail millet cultivar Yugu1. In optimizing a tissue culture medium for the induction of calli and somatic embryos from immature inflorescences and mature seed explants, Murashige and Skoog medium containing 2.5 mg l-1 2,4-dichlorophenoxyacetic acid and 0.6 mg l-1 6- benzylaminopurine was determined to be optimal for callus induction of foxtail millet. The efficiency of callus induction from explants of immature inflorescences was significantly higher at 76% compared to that of callus induction from mature seed explants at 68%. The calli induced from this medium were regenerated into plants at high frequency (~100%) using 0.2 mg l-1 kinetin in the regeneration media. For performing transient gene expression, immature embryos were first isolated from inflorescences. Transient expression of the GUS reporter gene in immature embryos was significantly increased after sonication, a vacuum treatment, centrifugation and the addition of L-cysteine and dithiothreitol, which led to the efficiency of transient expression at levels greater than 70% after Agrobacterium inoculation. Inoculation with Agrobacterium was also tested with germinated seeds. The radicals of germinated seeds were pierced with needles and dipped into Agrobacterium solution. This method achieved a 10% transient expression efficiency. Throughout these analyses, using plasmids with the hygromycin selectable marker, it was determined that 1.5 mg l-1 hygromycin was the optimal dose for genetic transformation of foxtail millet. In contrast, the nptII selectable marker appeared to yield many escapes. Three methods of transformation were employed in an attempt to produce stable transformants. An in planta transformation experiment, similar to the floral dip method used in Arabidopsis, which utilized a red fluorescent protein pporRFP from coral Porites porites and the hygromycin selectable marker, was tested using immature inflorescences. Although several plants were PCR positive using endpoint and Real-Time PCR and there was transient expression using pporRFP and GUS reporters, no plants were positive on Southern blot. Dipping in Agrobacterium may damage the anther or the pistil because seed production was significantly reduced. Agrobacterium transformation using embryogenic calli was also tested. Although hundreds of plants were regenerated from selection, none were positive using PCR. The third method was to wound germinated seeds with an Agrobacterium coated needle, but none of the plants were PCR positive. Although the Yugu1 genotype was recalcitrant to genetic transformation, several avenues of future research should be considered for foxtail millet. Calli from different foxtail millet genotypes should be screened and selected for regeneration potential, and some genotypes may be more amenable to transformation. Additional selectable markers should also be tested as hygromycin appears to be too stringent and there are too many escapes with nptII. This project has provided training for the following personnel: Dr. Xinlu Chen (postdoc), Xiaomei Liu (postdoc), Jayashree Desai (postdoc) and Kyle Berk (Undergraduate researcher). Conference presentations and peer-reviewed journal articles partly supported by this grant includes the following: 1. Baxter H., Equi R., Chen X, Berk K. and Zale J. Establishing Efficient in vitro Protocols For Foxtail Millet (Setaria italica L. cv. Yu

  12. Achieving Water-Sustainable Bioenergy Production

    Broader source: Energy.gov [DOE]

    Breakout Session 3-A: Growing a Water-Smart BioeconomyAchieving Water-Sustainable Bioenergy ProductionMay Wu, Principal Environmental System Analyst in the Energy Systems Division, Argonne...

  13. Bioenergy Research at BNL: Increasing Productivity Using

    E-Print Network [OSTI]

    Homes, Christopher C.

    Bioenergy Research at BNL: Increasing Productivity Using Biological Interactions Lee Newman With D consequences: ­ Price of corn has doubled ­ Farmers are planting more corn for ethanol · Increase alternative

  14. Review of Sorghum Production Practices: Applications for Bioenergy

    SciTech Connect (OSTI)

    Turhollow Jr, Anthony F [ORNL; Webb, Erin [ORNL; Downing, Mark [ORNL

    2010-06-01T23:59:59.000Z

    Sorghum has great potential as an annual energy crop. While primarily grown for its grain, sorghum can also be grown for animal feed and sugar. Sorghum is morphologically diverse, with grain sorghum being of relatively short stature and grown for grain, while forage and sweet sorghums are tall and grown primarily for their biomass. Under water-limited conditions sorghum is reliably more productive than corn. While a relatively minor crop in the United States (about 2% of planted cropland), sorghum is important in Africa and parts of Asia. While sorghum is a relatively efficient user of water, it biomass potential is limited by available moisture. The following exhaustive literature review of sorghum production practices was developed by researchers at Oak Ridge National Laboratory to document the current state of knowledge regarding sorghum production and, based on this, suggest areas of research needed to develop sorghum as a commercial bioenergy feedstock. This work began as part of the China Biofuels Project sponsored by the DOE Energy Efficiency and Renewable Energy Program to communicate technical information regarding bioenergy feedstocks to government and industry partners in China, but will be utilized in a variety of programs in which evaluation of sorghum for bioenergy is needed. This report can also be used as a basis for data (yield, water use, etc.) for US and international bioenergy feedstock supply modeling efforts.

  15. Short-Rotation Crops for Bioenergy: Proceedings of IEA, Bioenergy, Task 17 Meeting in Auburn, Alabama, USA, September 6-9, 1999

    SciTech Connect (OSTI)

    Wright, L.L.

    2001-01-30T23:59:59.000Z

    These proceedings are the results of the third meeting of Task 17 (Short-Rotation Crops for Bioenergy) within the framework of International Energy Agency (IEA), Bioenergy. (Minutes from the meeting can be seen at page 91.) The meeting was held in Auburn, Alabama, USA, September 6--9, 1999. The meeting was held soon after President Clinton of the United States signed Executive Order No.13134: DEVELOPING AND PROMOTING BIOBASED PRODUCTS AND BIOENERGY on August 12, 1999. Executive orders in the US are official documents, through which the President of the US manages the operation of the Federal Government. This order outlines the administration's goal of tripling the use of biomass products and bioenergy in the US by the year 2010. During the time of this meeting, it was also known from sources in Europe that the European Union (EU) commission was working on draft instructions to its member countries on how to increase the use of renewable energy from six to twelve percent in Europe within 10 years. The objectives of Task 17 support the goals of member countries for bioenergy production and use. These objectives are as follows: to stimulate the full-scale implementation of energy crops in the participating countries; to strengthen the contacts and co-operation between participating countries, scientists, biomass producers, machine developers, entrepreneurs, and end users to select the most urgent research and development areas and suggest projects of co-operation; to inform Ex-Co- members; and to deliver proceedings from the meetings.

  16. Bioenergy

    SciTech Connect (OSTI)

    None

    2014-11-20T23:59:59.000Z

    Scientists and engineers at Idaho National Laboratory are working with partners throughout the bioenergy industry in preprocessing and characterization to ensure optimum feedstock quality. This elite team understands that addressing feedstock variability is a critical component in the biofuel production process.

  17. Bioenergy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bioenergy Bioenergy Research into alternative forms of energy, especially energy security, is one of the major national security imperatives of this century. Get Expertise Babetta...

  18. Bioenergy Production Pathways and Value-Chain Components

    E-Print Network [OSTI]

    Bioenergy Production Pathways and Value-Chain Components Prepared for the U.S. Department of Energy on Life Cycle Analyses of Bioenergy Systems Prepared by Hawai`i Natural Energy Institute School of Ocean or reflect those of the United States Government or any agency thereof. #12;Bioenergy Production Pathways

  19. Effect of crop residue harvest on long-term crop yield, soil erosion, and carbon balance: tradeoffs for a sustainable bioenergy feedstock

    SciTech Connect (OSTI)

    Gregg, Jay S.; Izaurralde, Roberto C.

    2010-08-26T23:59:59.000Z

    Agricultural residues are a potential feedstock for bioenergy production, if residue harvest can be done sustainably. The relationship between crop residue harvest, soil erosion, crop yield and carbon balance was modeled with the Erosion Productivity Impact Calculator/ Environment Policy Integrated Climate (EPIC) using a factorial design. Four crop rotations (winter wheat [Triticum aestivum (L.)] sunflower [Helianthus annuus]; spring wheat [Triticum aestivum (L.)] canola [Brassica napus]; corn [Zea mays L.] soybean [Glycine max (L.) Merr.]; and cotton [Gossypium hirsutum] peanut [Arachis hypogaea]) were simulated at four US locations each, under different topographies (0-10% slope), and management practices [crop residue removal rates (0-75%), conservation practices (no till, contour cropping, strip cropping, terracing)].

  20. Bioenergy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bioenergy Los Alamos developing next-generation of biofuels from renewable resources Read caption + Los Alamos scientists used genetic engineering to develop magnetic algae, thus...

  1. Evaluating the potential use of winter cover crops in cornsoybean systems for sustainable co-production of food and fuel

    E-Print Network [OSTI]

    Minnesota, University of

    in displacement of grain crops with dedicated bioenergy crops such as switch grass, miscanthus, and hybrid poplar. Meeting the ambitious goals that have been set for bioenergy production without impacting food production, specifically that by displacing food production it will lead to higher food prices, increased incidence

  2. NETWORK OF EXCELLENCE The CAP & Bioenergy

    E-Print Network [OSTI]

    -cultural Research Energy for SD Products & Services SD & Buildings Education Outreach #12;BIOENERGY NETWORK residues, waste streams and energy crops. Heat, electricity and biofuels for transport. Suggests

  3. Promoting Sustainable Bioenergy Production and Trade Issue Paper No. 17

    E-Print Network [OSTI]

    Promoting Sustainable Bioenergy Production and Trade Issue Paper No. 17 June 2009 l ICTSD Programme School of Agriculture, Policy and Development University of Reading EU Support for Biofuels and Bioenergy on Agricultural Trade and Sustainable Development By Professor Alan Swinbank School of Agriculture, Policy

  4. Three Essays on Bioenergy Production in the United States

    E-Print Network [OSTI]

    Wlodarz, Marta

    2013-12-02T23:59:59.000Z

    This dissertation examines future prospects of bioenergy production in the United States. The analysis examines three issues on liquid fuel and cellulosic ethanol. First, the amount that costs need to decrease in order to make cellulosic ethanol...

  5. Sustainable Bioenergy | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sustainable Bioenergy Sustainable Bioenergy Argonne's research in bioenergy includes topics associated with feedstock production and biomass conversion. Argonne scientists also...

  6. Feedstock Production Datasets from the Bioenergy Knowledge Discovery Framework

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Bioenergy Knowledge Discovery Framework invites users to discover the power of bioenergy through an interface that provides extensive access to research data and literature, GIS mapping tools, and collaborative networks. The Bioenergy KDF supports efforts to develop a robust and sustainable bioenergy industry. The KDF facilitates informed decision making by providing a means to synthesize, analyze, and visualize vast amounts of information in a relevant and succinct manner. It harnesses Web 2.0 and social networking technologies to build a collective knowledge system that can better examine the economic and environmental impacts of development options for biomass feedstock production, biorefineries, and related infrastructure. [copied from https://www.bioenergykdf.net/content/about] Holdings include datasets, models, and maps and the collections are growing due to both DOE contributions and data uploads from individuals.

  7. Biofuel Production Datasets from DOE's Bioenergy Knowledge Discovery Framework (KDF)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Bioenergy Knowledge Discovery Framework invites users to discover the power of bioenergy through an interface that provides extensive access to research data and literature, GIS mapping tools, and collaborative networks. The Bioenergy KDF supports efforts to develop a robust and sustainable bioenergy industry. The KDF facilitates informed decision making by providing a means to synthesize, analyze, and visualize vast amounts of information in a relevant and succinct manner. It harnesses Web 2.0 and social networking technologies to build a collective knowledge system that can better examine the economic and environmental impacts of development options for biomass feedstock production, biorefineries, and related infrastructure. [copied from https://www.bioenergykdf.net/content/about]

    Holdings include datasets, models, and maps and the collections arel growing due to both DOE contributions and data uploads from individuals.

  8. Production of bioenergy and biochemicals from industrial and

    E-Print Network [OSTI]

    Angenent, Lars T.

    and agricultural wastewater, includ- ing methanogenic anaerobic digestion, biological hydro- gen production on wastewater treatment from pollution control to resource exploitation. Many bioprocesses can provide bioenergy. Recovery of energy and valuable materials might reduce the cost of wastewater treatment, and somewhat

  9. Age-Dependent Demographic Rates of the Bioenergy Crop Miscanthus 3 giganteus

    E-Print Network [OSTI]

    Sims, Gerald K.

    - generation biofuels, or from the biomass crops, referred to as second-generation biofuels, cellulosic renewable energy production (Genovesi 2011; Raghu et al. 2006). Biofuels, produced from crops, are a source biofuels or bioen- ergy crops (Jessup 2009). Because of their high yields and cellulose content, perennial

  10. Forest Products Supply Chain --Availability of Woody Biomass in Indiana for Bioenergy Production

    E-Print Network [OSTI]

    Forest Products Supply Chain -- Availability of Woody Biomass in Indiana for Bioenergy Production or wood waste biomass Map Indiana's wood waste for each potential bioenergy supply chain Develop break-even analyses for transportation logistics of wood waste biomass Isaac S. Slaven Abstract: The purpose

  11. Plant Science 200: Modern Crop Production Instructor

    E-Print Network [OSTI]

    Chen, Kuang-Yu

    classification, soil conservation and tillage. Crop classification and morphology (distinguish among the grains Crop Production Introduction Crop Importance Soil Survey/Soil Conservation Crop Classification /Sustainable Agriculture #12;References on Reserve in Chang Library: Forages: An Introduction to Grassland

  12. Golbal Economic and Environmental Impacts of Increased Bioenergy Production

    SciTech Connect (OSTI)

    Wallace Tyner

    2012-05-30T23:59:59.000Z

    The project had three main objectives: to build and incorporate an explicit biomass energy sector within the GTAP analytical framework and data base; to provide an analysis of the impact of renewable fuel standards and other policies in the U.S. and E.U, as well as alternative biofuel policies in other parts of the world, on changes in production, prices, consumption, trade and poverty; and to evaluate environmental impacts of alternative policies for bioenergy development. Progress and outputs related to each objective are reported.

  13. Watershed Scale Evaluation of the Sustainability and Productivity...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biomass Crop Production: Watershed Scale Evaluation of the Sustainability and Productivity of Dedicated Energy Crop and Woody Biomass Operations DOE Bioenergy Technologies...

  14. Bioenergy Potential of the United States Constrained by Satellite Observations of Existing Productivity

    E-Print Network [OSTI]

    Montana, University of

    liters ethanol, which implies an even larger increase in biomass demand (primary energy), from roughly 2 billion liters of ethanol (secondary bioenergy) in 2009, approximately half of the world's total ethanol ethanol production of 136 billion liters by 2022.2 Yet, these bioenergy targets are largely derived from

  15. Carbon and nitrogen dynamics in bioenergy ecosystems: 2. Potential greenhouse gas emissions and global

    E-Print Network [OSTI]

    Zhuang, Qianlai

    Carbon and nitrogen dynamics in bioenergy ecosystems: 2. Potential greenhouse gas emissions) from bioenergy ecosystems with a biogeochemical model AgTEM, assuming maize (Zea mays L.), switchgrass ha?1 yr?1 . Among all three bioenergy crops, Miscanthus is the most biofuel productive and the least

  16. Sustainable bioenergy production from marginal lands in the US Midwest

    SciTech Connect (OSTI)

    Gelfand, Ilya; Sahajpal, Ritvik; Zhang, Xuesong; Izaurralde, Roberto C.; Gross, Katherine L.; Robertson, G. P.

    2013-01-24T23:59:59.000Z

    Long-term measurements of global warming impact coupled with spatially explicit modeling suggests that both climate benefits and the production potential of cellulosic crops grown on marginal lands of the US North Central region are substantial but will be insufficient to meet long-term biofuel needs.

  17. Effects of Biochar Recycling on Switchgrass Growth and Soil and Water Quality in Bioenergy Production Systems

    E-Print Network [OSTI]

    Husmoen, Derek Howard

    2012-07-16T23:59:59.000Z

    Intensive biomass production in emerging bioenergy systems could increase nonpoint-source sediment and nutrient losses and impair surface and groundwater quality. Recycling biochar, a charcoal byproduct from pyrolysis of biomass, provides potential...

  18. Integrated Photo-Bioelectrochemical System for Contaminants Removal and Bioenergy Production

    E-Print Network [OSTI]

    Berges, John A.

    cycling. INTRODUCTION Municipal wastewater treatment plants play a critical role in environmental represents an important, electricity-demanding step in most municipal wastewater treatment facilities fuel cells (MFCs)3 with algal bioreactors4 for wastewater treatment and bioenergy production. MFCs

  19. Hawaii Bioenergy Master Plan Business Partnering

    E-Print Network [OSTI]

    Hawaii Bioenergy Master Plan Business Partnering Steven Chiang, Director Agribusiness Incubator a productive bioenergy industry, successful partnering amongst industry "players" is essential. This section of the Hawaii Bioenergy Master Plan specifically evaluates facilitating the bioenergy industry through

  20. Introduction The bioenergy industry is pursuing low-input crops to be

    E-Print Network [OSTI]

    Liskiewicz, Maciej

    - leading threat to biodiversity. Most of our worst invasive plant species were intentionally introduced across the Southeast to support the growing bioeconomy. Successful development of renewable power biomass crops. These cellulosic crops share many traits with invasive plants (e.g., drought tolerant, fast

  1. Essays on Economic and Environmental Analysis of Taiwanese Bioenergy Production on Set-Aside Land

    E-Print Network [OSTI]

    Kung, Chih-Chun

    2012-02-14T23:59:59.000Z

    . This dissertation examines Taiwans potential for bioenergy production using feedstocks grown on set-aside land and discusses the consequent effects on Taiwans energy security plus benefits and greenhouse gas (GHG) emissions. The Taiwan Agricultural Sector Model...

  2. Essays on Economic and Environmental Analysis of Taiwanese Bioenergy Production on Set-Aside Land

    E-Print Network [OSTI]

    Kung, Chih-Chun

    2012-02-14T23:59:59.000Z

    . This dissertation examines Taiwans potential for bioenergy production using feedstocks grown on set-aside land and discusses the consequent effects on Taiwans energy security plus benefits and greenhouse gas (GHG) emissions. The Taiwan Agricultural Sector Model...

  3. The Center for BioEnergy Sustainability (CBES) at Oak Ridge National Laboratory (ORNL)

    E-Print Network [OSTI]

    , renovation and management effects on pasture productivity and quality under rotational grazing, and promoting Sustainable Bioenergy Practices Jackson's program focuses on structure and function of managed, semi cropping systems. Projects include comparing grass species' C-sequestration ability, ecosystem provisioning

  4. Higher U.S. Crop Prices Trigger Little Area Expansion so Marginal Land for Biofuel Crops Is Limited

    SciTech Connect (OSTI)

    Swinton, S.; Babcock, Bruce; James, Laura; Bandaru, Varaprasad

    2011-06-12T23:59:59.000Z

    By expanding energy biomass production on marginal lands that are not currently used for crops, food price increases and indirect climate change effects can be mitigated. Studies of the availability of marginal lands for dedicated bioenergy crops have focused on biophysical land traits, ignoring the human role in decisions to convert marginal land to bioenergy crops. Recent history offers insights about farmer willingness to put non-crop land into crop production. The 2006-09 leap in field crop prices and the attendant 64% gain in typical profitability led to only a 2% increase in crop planted area, mostly in the prairie states

  5. PETRO: Higher Productivity Crops for Biofuels

    SciTech Connect (OSTI)

    None

    2012-01-01T23:59:59.000Z

    PETRO Project: The 10 projects that comprise ARPA-Es PETRO Project, short for Plants Engineered to Replace Oil, aim to develop non-food crops that directly produce transportation fuel. These crops can help supply the transportation sector with agriculturally derived fuels that are cost-competitive with petroleum and do not affect U.S. food supply. PETRO aims to redirect the processes for energy and carbon dioxide (CO2) capture in plants toward fuel production. This would create dedicated energy crops that serve as a domestic alternative to petroleum-based fuels and deliver more energy per acre with less processing prior to the pump.

  6. Hawaii Bioenergy Master Plan Bioenergy Technology

    E-Print Network [OSTI]

    technology assessment was conducted as part of the Hawaii Bioenergy Master Plan mandated by Act 253 collected in preparing this task and include: 1. The State should continue a bioenergy technology assessment-oil production X Y Charcoal production X X Y Bio-oil production for fuels X X Y Combustion X Y Renewable diesel

  7. Feedstock Logistics of a Mobile Pyrolysis System and Assessment of Soil Loss Due to Biomass Removal for Bioenergy Production

    E-Print Network [OSTI]

    Bumguardner, Marisa

    2012-10-19T23:59:59.000Z

    The purpose of this study was to assess feedstock logistics for a mobile pyrolysis system and to quantify the amount of soil loss caused by harvesting agricultural feedstocks for bioenergy production. The analysis of feedstock logistics...

  8. Three Essays on Bioenergy Production in the United States

    E-Print Network [OSTI]

    Wlodarz, Marta

    2013-12-02T23:59:59.000Z

    competitive, considering both production and market penetration costs. Second, the potential effect of mandate relaxations and carbon market related payments on liquid fuel production potential. Third, the effects of ignoring or considering asset fixity...

  9. Vision for Bioenergy and Biobased Products in the United States

    Broader source: Energy.gov [DOE]

    Establish far-reaching goals to increase the role of biobased energy and products in our nations economy

  10. Assessment of the sustainability of bioenergy production from algal feedstock

    E-Print Network [OSTI]

    Aitken, Douglas

    2014-06-30T23:59:59.000Z

    Growing concerns regarding the impact of fossil fuel use upon the environment and the cost of production have led to a growth in the interest of obtaining energy from biomass. 1st and 2nd generation biomass types, however, ...

  11. USDA and DOE Fund 10 Research Projects to Accelerate Bioenergy Crop

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group current C3E AmbassadorsUS-EU-Japan Working Group onProduction and Spur

  12. Interactions among bioenergy feedstock choices, landscape dynamics, and land use

    SciTech Connect (OSTI)

    Dale, Virginia H [ORNL; Kline, Keith L [ORNL; Wright, Lynn L [ORNL; Perlack, Robert D [ORNL; Downing, Mark [ORNL; Graham, Robin Lambert [ORNL

    2011-01-01T23:59:59.000Z

    Landscape implications of bioenergy feedstock choices are significant and depend on land-use practices and their environmental impacts. Although land-use changes and carbon emissions associated with bioenergy feedstock production are dynamic and complicated, lignocellulosic feedstocks may offer opportunities that enhance sustainability when compared to other transportation fuel alternatives. For bioenergy sustainability, major drivers and concerns revolve around energy security, food production, land productivity, soil carbon and erosion, greenhouse gas emissions, biodiversity, air quality, and water quantity and quality. The many implications of bioenergy feedstock choices require several indicators at multiple scales to provide a more complete accounting of effects. Ultimately, the long-term sustainability of bioenergy feedstock resources (as well as food supplies) throughout the world depends on land-use practices and landscape dynamics. Land-management decisions often invoke trade-offs among potential environmental effects and social and economic factors as well as future opportunities for resource use. The hypothesis being addressed in this paper is that sustainability of bioenergy feedstock production can be achieved via appropriately designed crop residue and perennial lignocellulosic systems. We find that decision makers need scientific advancements and adequate data that both provide quantitative and qualitative measures of the effects of bioenergy feedstock choices at different spatial and temporal scales and allow fair comparisons among available options for renewable liquid fuels.

  13. The 2008 Farm Bill What's In It For Specialty Crops

    E-Print Network [OSTI]

    Promote diversification of rural areas through biobased energy Enhance efficiency of bioenergy Show 21st Century Challenges, The Farm Bill, and Purdue Agriculture Sonny Ramaswamy Grand challenges. Agricultural Competitiveness Improving crop and animal agriculture; enhancing farm productivity and income

  14. Bioenergy: America's Energy Future

    ScienceCinema (OSTI)

    Nelson, Bruce; Volz, Sara; Male, Johnathan; Wolfson, Johnathan; Pray, Todd; Mayfield, Stephen; Atherton, Scott; Weaver, Brandon

    2014-08-12T23:59:59.000Z

    Bioenergy: America's Energy Future is a short documentary film showcasing examples of bioenergy innovations across the biomass supply chain and the United States. The film highlights a few stories of individuals and companies who are passionate about achieving the promise of biofuels and addressing the challenges of developing a thriving bioeconomy. This outreach product supports media initiatives to expand the public's understanding of the bioenergy industry and sustainable transportation and was developed by the U.S. Department of Energy Bioenergy Technologies Office (BETO), Oak Ridge National Laboratory, Green Focus Films, and BCS, Incorporated.

  15. Bioenergy: America's Energy Future

    SciTech Connect (OSTI)

    Nelson, Bruce; Volz, Sara; Male, Johnathan; Wolfson, Johnathan; Pray, Todd; Mayfield, Stephen; Atherton, Scott; Weaver, Brandon

    2014-07-31T23:59:59.000Z

    Bioenergy: America's Energy Future is a short documentary film showcasing examples of bioenergy innovations across the biomass supply chain and the United States. The film highlights a few stories of individuals and companies who are passionate about achieving the promise of biofuels and addressing the challenges of developing a thriving bioeconomy. This outreach product supports media initiatives to expand the public's understanding of the bioenergy industry and sustainable transportation and was developed by the U.S. Department of Energy Bioenergy Technologies Office (BETO), Oak Ridge National Laboratory, Green Focus Films, and BCS, Incorporated.

  16. Bioenergy Feedstock Development Program Status Report

    SciTech Connect (OSTI)

    Kszos, L.A.

    2001-02-09T23:59:59.000Z

    The U.S. Department of Energy's (DOE's) Bioenergy Feedstock Development Program (BFDP) at Oak Ridge National Laboratory (ORNL) is a mission-oriented program of research and analysis whose goal is to develop and demonstrate cropping systems for producing large quantities of low-cost, high-quality biomass feedstocks for use as liquid biofuels, biomass electric power, and/or bioproducts. The program specifically supports the missions and goals of DOE's Office of Fuels Development and DOE's Office of Power Technologies. ORNL has provided technical leadership and field management for the BFDP since DOE began energy crop research in 1978. The major components of the BFDP include energy crop selection and breeding; crop management research; environmental assessment and monitoring; crop production and supply logistics operational research; integrated resource analysis and assessment; and communications and outreach. Research into feedstock supply logistics has recently been added and will become an integral component of the program.

  17. affect crop production: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Haseeb 93 Organic and inorganic fertilization with and without microbial inoculants in peat-based substrate and hydroponic crop production. Open Access Theses and Dissertations...

  18. Feedstock Logistics of a Mobile Pyrolysis System and Assessment of Soil Loss Due to Biomass Removal for Bioenergy Production

    E-Print Network [OSTI]

    Bumguardner, Marisa

    2012-10-19T23:59:59.000Z

    in surface runoff caused by sorghum residue removal for bioenergy production in the Oso Creek Watershed in Nueces County. The model simulated the removal of 25, 50, 75, and 100 percent residue removal. The WEPS model was used to quantify wind erosion soil...

  19. Minimizing invasive potential of Miscanthus 3 giganteus grown for bioenergy: identifying

    E-Print Network [OSTI]

    Sims, Gerald K.

    proportion of energy to be derived from biofuels (Robertson et al. 2008). Dedicated bioenergy crops are hence with grain-based biofuels. By cultivating bioenergy crops on marginal lands unfit for food crops, it may, USA Summary 1. Many species prioritized for bioenergy crop development possess traits associated

  20. Webinar: Landscape Design for Sustainable Bioenergy Systems

    Broader source: Energy.gov [DOE]

    The Energy Departments Bioenergy Technologies Office will present a live informational webcast on the Landscape Design for Sustainable Bioenergy Systems Funding Opportunity (DE-FOA-0001179) on November 3, 2014, 1:30 p.m.3:00 p.m. Eastern Standard Time. This FOA seeks interdisciplinary projects that apply landscape design approaches to integrate cellulosic feedstock production into existing agricultural and forestry systems while maintaining or enhancing environmental and socio-economic sustainability including ecosystem services and food, feed, and fiber production. For the purposes of this FOA, cellulosic feedstock production refers to dedicated annual and perennial energy crops, use of agricultural and forestry residues, or a combination of these options.

  1. Water footprint assessment of crop production in Shaanxi, China

    E-Print Network [OSTI]

    Vellekoop, Michel

    #12;i Water footprint assessment of crop production in Shaanxi, China Bachelor Thesis Civil, Yangling, China Keywords: Agricultural crops, water footprint, Shaanxi province, CROPWAT #12;ii #12;iii ABSTRACT The water footprint, introduced by professor A.Y. Hoekstra, is an indicator of freshwater use

  2. Chengci Chen, Ph.D. Professor of Agronomy (Cropping Systems)

    E-Print Network [OSTI]

    Dyer, Bill

    of Agriculture Promotion and Tenure Committee member, 2010-2011, 2013-present Western Society of Crop ScienceChengci Chen, Ph.D. Professor of Agronomy (Cropping Systems) Central Agricultural Research Center and oilseed bioenergy feedstock productions; nutrient management, water quality and water use efficiency

  3. MODEL BASED BIOMASS SYSTEM DESIGN OF FEEDSTOCK SUPPLY SYSTEMS FOR BIOENERGY PRODUCTION

    SciTech Connect (OSTI)

    David J. Muth, Jr.; Jacob J. Jacobson; Kenneth M. Bryden

    2013-08-01T23:59:59.000Z

    Engineering feedstock supply systems that deliver affordable, high-quality biomass remains a challenge for the emerging bioenergy industry. Cellulosic biomass is geographically distributed and has diverse physical and chemical properties. Because of this feedstock supply systems that deliver cellulosic biomass resources to biorefineries require integration of a broad set of engineered unit operations. These unit operations include harvest and collection, storage, preprocessing, and transportation processes. Design decisions for each feedstock supply system unit operation impact the engineering design and performance of the other system elements. These interdependencies are further complicated by spatial and temporal variances such as climate conditions and biomass characteristics. This paper develops an integrated model that couples a SQL-based data management engine and systems dynamics models to design and evaluate biomass feedstock supply systems. The integrated model, called the Biomass Logistics Model (BLM), includes a suite of databases that provide 1) engineering performance data for hundreds of equipment systems, 2) spatially explicit labor cost datasets, and 3) local tax and regulation data. The BLM analytic engine is built in the systems dynamics software package PowersimTM. The BLM is designed to work with thermochemical and biochemical based biofuel conversion platforms and accommodates a range of cellulosic biomass types (i.e., herbaceous residues, short- rotation woody and herbaceous energy crops, woody residues, algae, etc.). The BLM simulates the flow of biomass through the entire supply chain, tracking changes in feedstock characteristics (i.e., moisture content, dry matter, ash content, and dry bulk density) as influenced by the various operations in the supply chain. By accounting for all of the equipment that comes into contact with biomass from the point of harvest to the throat of the conversion facility and the change in characteristics, the BLM evaluates economic performance of the engineered system, as well as determining energy consumption and green house gas performance of the design. This paper presents a BLM case study delivering corn stover to produce cellulosic ethanol. The case study utilizes the BLM to model the performance of several feedstock supply system designs. The case study also explores the impact of temporal variations in climate conditions to test the sensitivity of the engineering designs. Results from the case study show that under certain conditions corn stover can be delivered to the cellulosic ethanol biorefinery for $35/dry ton.

  4. Improving Biomass Yields: High Biomass, Low Input Dedicated Energy Crops to Enable a Full Scale Bioenergy Industry

    SciTech Connect (OSTI)

    None

    2010-01-01T23:59:59.000Z

    Broad Funding Opportunity Announcement Project: Ceres is developing bigger and better grasses for use in biofuels. The bigger the grass yield, the more biomass, and more biomass means more biofuel per acre. Using biotechnology, Ceres is developing grasses that will grow bigger with less fertilizer than current grass varieties. Hardier, higher-yielding grass also requires less land to grow and can be planted in areas where other crops cant grow instead of in prime agricultural land. Ceres is conducting multi-year trials in Arizona, Texas, Tennessee, and Georgia which have already resulted in grass yields with as much as 50% more biomass than yields from current grass varieties.

  5. Bioenergy technology balancing energy output with environmental

    E-Print Network [OSTI]

    Levi, Ran

    E2.3 Bioenergy technology balancing energy output with environmental benefitsbenefits John bioenergy Farmers historically used 25% land for horse feed #12;Energy crops are `solar panels' Solar energy 50 #12;Same climate data (A1F1 scenario for 2050 - 2080) but the genotype is one which is less

  6. Estimated Costs of Crop Production in Iowa 2001

    E-Print Network [OSTI]

    Duffy, Michael D.

    Estimated Costs of Crop Production in Iowa 2001 The estimated costs of corn, corn silage. They include the annual Iowa Farm Business Association record summaries, production and costs data from and a survey of selected agriculture cooperatives around the state. These costs estimates are representative

  7. Estimated Costs of Crop Production in Iowa 2000

    E-Print Network [OSTI]

    Duffy, Michael D.

    Estimated Costs of Crop Production in Iowa 2000 The estimated costs of corn, corn silage. They include the annual Iowa Farm Business Association record summaries, production and costs data from and a survey of selected agriculture cooperatives around the state. These costs estimates are representative

  8. Estimated Costs of Crop Production in Iowa 2005

    E-Print Network [OSTI]

    Duffy, Michael D.

    Estimated Costs of Crop Production in Iowa 2005 The estimated costs of corn, corn silage. They include the annual Iowa Farm Business Association record summaries, production and costs data from and a survey of selected agricultural cooperatives and other input suppliers around the state. These costs

  9. Estimated Costs of Crop Production in Iowa 2002

    E-Print Network [OSTI]

    Duffy, Michael D.

    Estimated Costs of Crop Production in Iowa 2002 The estimated costs of corn, corn silage. They include the annual Iowa Farm Business Association record summaries, production and costs data from and a survey of selected agricultural cooperatives and other input suppliers around the state. These costs

  10. Estimated Costs of Crop Production in Iowa 2006

    E-Print Network [OSTI]

    Duffy, Michael D.

    Estimated Costs of Crop Production in Iowa 2006 The estimated costs of corn, corn silage. They include the annual Iowa Farm Business Association record summaries, production and costs data from and a survey of selected agricultural cooperatives and other input suppliers around the state. These costs

  11. Sorghum bioenergy genotypes, genes and pathways

    E-Print Network [OSTI]

    Plews, Ian Kenneth

    2009-05-15T23:59:59.000Z

    and this plant is a potentially important bioenergy crop for Texas. The diversity of the twelve high biomass sorghum genotypes was analyzed using 50 simple sequence repeats (SSR) markers with genome coverage. The accumulation of biomass during sorghum development...

  12. Sorghum bioenergy genotypes, genes and pathways

    E-Print Network [OSTI]

    Plews, Ian Kenneth

    2009-05-15T23:59:59.000Z

    and this plant is a potentially important bioenergy crop for Texas. The diversity of the twelve high biomass sorghum genotypes was analyzed using 50 simple sequence repeats (SSR) markers with genome coverage. The accumulation of biomass during sorghum development...

  13. Bioenergy Business Partner Information Gathering Form

    E-Print Network [OSTI]

    Bioenergy Business Partner Information Gathering Form Fax completed form to the Agribusiness.hnei.hawaii.edu/bmpp/stakeholders.asp Partners are organizations that perform, intend to perform, or should perform bioenergy processes and/or requirements. Please tell us about your organization and the role it plays in bioenergy production in Hawaii

  14. Climate impacts on agriculture: Implications for crop production

    SciTech Connect (OSTI)

    Hatfield, Jerry L.; Boote, Kenneth J.; Kimball, B. A.; Ziska, Lewis A.; Izaurralde, Roberto C.; Ort, Don; Thomson, Allison M.; Wolfe, David W.

    2011-04-19T23:59:59.000Z

    Changes in temperature, CO2, and precipitation under the scenarios of climate change for the next 30 years present a challenge to crop production. This review focuses on the impact of temperature, CO2, and ozone on agronomic crops and the implications for crop production. Understanding these implications for agricultural crops is critical for developing cropping systems resilient to stresses induced by climate change. There is variation among crops in their response to CO2, temperature, and precipitation changes and, with the regional differences in predicted climate, a situation is created in which the responses will be further complicated. For example, the temperature effects on soybean could potentially cause yield reductions of 2.4% in the South but an increase of 1.7% in the Midwest. The frequency of years when temperatures exceed thresholds for damage during critical growth stages is likely to increase for some crops and regions. The increase in CO2 contributes significantly to enhanced plant growth and improved water use efficiency; however, there may be a downscaling of these positive impacts due to higher temperatures plants will experience during their growth cycle. A challenge is to understand the interactions of the changing climatic parameters because of the interactions among temperature, CO2, and precipitation on plant growth and development and also on the biotic stresses of weeds, insects, and diseases. Agronomists will have to consider the variations in temperature and precipitation as part of the production system if they are to ensure the food security required by an ever increasing population.

  15. Greenhouse gas budgets of crop production current

    E-Print Network [OSTI]

    Levi, Ran

    production and distribution 16 2.7.2 Emissions associated with other agrochemicals 17 2.7.3 On-farm energy

  16. Evaluating ecosystem processes in willow short rotation coppice bioenergy plantations

    E-Print Network [OSTI]

    cultivation of biomass for biofuels (trans- port fuels) and bioenergy (heat and power) has pro- voked much of the northern hemisphere, how- ever, a small, but growing proportion of biomass crops consist of tree species generation bioenergy crop in Europe, with the area cultivated expected to increase greatly by 2050 (Rowe et

  17. Non-Traditional Soil Additives: Can They Improve Crop Production?

    E-Print Network [OSTI]

    Mukhtar, Saqib

    or no nutrient content. Unlike fertilizers, additives are commonly not mar- keted with, nor are they required these materials to the soil will enhance crop production by improving water and/or nutrient availability such as evaporated sea water or sulfates, which may be com- bined with organic extracts of materials such as kelp

  18. Bioenergy crop productivity and potential climate change mitigation from marginal lands in the United States: An

    E-Print Network [OSTI]

    Zhuang, Qianlai

    Champaign, Urbana, IL 61801, USA Abstract Growing biomass feedstocks from marginal lands is becoming an increasingly

  19. affecting lilium crops: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    number and the course Weiblen, George D 299 Improvements of switchgrass as a bioenergy crop. InGenetic Improvement of Bioenergy Crops. Edited by Vermerris W CiteSeer...

  20. Bioenergy and Bioproducts BIOENERGY PROGRAM

    E-Print Network [OSTI]

    as an ethanol and bioproduct feedstock· Wide hybridization of energy crops to custom tailor composition

  1. The Carbon Balance of Bioenergy Production in Wisconsin Keith R. Cronin

    E-Print Network [OSTI]

    Wisconsin at Madison, University of

    of the GREET model. Finally, I am grateful to the Wisconsin Focus on Energy program for funding this research potentially supply Wisconsin with a domestic energy source and supplement income for Wisconsin producers from the National Agricultural Statistics Service (NASS) and crop enterprise budgets, produced

  2. CONTENT ANR @ MSU AgBioResearch Michigan Dry Bean Crop Protection Products

    E-Print Network [OSTI]

    SKIP TO CONTENT ANR @ MSU AgBioResearch Home Bean Info Beet Info Directions History InfoVideos Links Michigan Dry Bean Crop Protection Products Common Chemical Name Brand Name Company Crop Use Seed

  3. Invasive plant species as potential bioenergy producers and carbon contributors.

    SciTech Connect (OSTI)

    Young, S.; Gopalakrishnan, G.; Keshwani, D. (Energy Systems); (Univ. of Nebraska)

    2011-03-01T23:59:59.000Z

    Current cellulosic bioenergy sources in the United States are being investigated in an effort to reduce dependence on foreign oil and the associated risks to national security and climate change (Koh and Ghazoul 2008; Demirbas 2007; Berndes et al. 2003). Multiple sources of renewable plant-based material have been identified and include agricultural and forestry residues, municipal solid waste, industrial waste, and specifically grown bioenergy crops (Demirbas et al. 2009; Gronowska et al. 2009). These sources are most commonly converted to energy through direct burning, conversion to gas, or conversion to ethanol. Annual crops, such as corn (Zea Mays L.) and sorghum grain, can be converted to ethanol through fermentation, while soybean and canola are transformed into fatty acid methyl esters (biodiesel) by reaction with an alcohol (Demirbas 2007). Perennial grasses are one of the more viable sources for bioenergy due to their continuous growth habit, noncrop status, and multiple use products (Lewandowski el al. 2003). In addition, a few perennial grass species have very high water and nutrient use efficiencies producing large quantities of biomass on an annual basis (Dohleman et al. 2009; Grantz and Vu 2009).

  4. Bioenergy Walkthrough

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube platform isEnergyMeeting | DepartmentBioenergy Technologies OfficeOVERVIEW

  5. Bioenergy Reports

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWP TWPAlumniComplexMaterial Science |MaterialsNaturalBioenergy

  6. Production Practices for Irrigated Crops on the High Plains.

    E-Print Network [OSTI]

    Bonnen, C. A.; McArthur, W. C.; Magee, A. C.; Hughes, W.F.

    1953-01-01T23:59:59.000Z

    was snapped and the re- mainder was machine-stripped. th lint yields averaging nearly a bale per acre (Table and 24.0 hours, respectively, of off-farm labor were cotton snapping on sandy and on heavy soils. From hour of labor was used to cover... approximately half rl acreage with a stripper. hough machine operations on dry-land and on irrigated CULLIJI~ are similar for seedbed preparation, planting and culti- vating, nearly twice as much labor was needed for production of the irrigated crop...

  7. Bioenergy with Carbon Capture and Sequestration WorkshopBioenergy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bioenergy with Carbon Capture and Sequestration WorkshopBioenergy with Carbon Capture and Sequestration (BECCS) Workshop Bioenergy with Carbon Capture and Sequestration...

  8. Grazing Strategies for Beef Production Escalating energy costs and alternative cropping systems for biofuels production have

    E-Print Network [OSTI]

    Grazing Strategies for Beef Production Escalating energy costs and alternative cropping systems with pasture-feedlot manage- ment alternatives. Assess economic implications of beef production using an array character- istics of beef that may provide an alternative lean-to-fat composition for consum- ers. http

  9. Developing a Portfolio of Sustainable Bioenergy Feedstock Production Systems for the US Midwest: A Research and Demonstration Project

    E-Print Network [OSTI]

    Debinski, Diane M.

    a growing portion of our bioenergy feedstocks. While such second generation feedstocks show numerous on fossil fuels. In response, the demand for feedstocks for liquid biofuels will continue to grow

  10. Developing a Portfolio of Sustainable Bioenergy Feedstock Production Systems for the US Midwest: A Research and Demonstration Project

    E-Print Network [OSTI]

    Jager, Henriette I.

    a growing portion of our bioenergy feedstocks. While such "second generation" feedstocks show numerous on fossil fuels. In response, the demand for feedstocks for liquid biofuels will continue to grow

  11. Sorghum Program BIOENERGY PROGRAM

    E-Print Network [OSTI]

    feedstocks include high-tonnage sorghums, sugarcane, energy cane, forest prod- ucts, sweet sorghum, switchgrass, crop residues, oilseed crops, microalgae, municipal solid waste, and urban waste. Lignocellulosic accumulation (510 tons/acre) Energy Canes (Perennial) Subtropical production High water demand High biomass

  12. Fact Sheet No. 0.710 Crop Series|Production Quick Facts

    E-Print Network [OSTI]

    StateUniversity Extension.8/14. www.ext.colostate.edu Since GM crops were introduced in the U.S. in the mid-1990s, they have the technology for developing GM crops and describes GM crops currently on the market in the U.S. What are GM technology are not allowed in organic production. Which GM crops are currently grown in the U.S.? Although

  13. Communicating about bioenergy sustainability

    SciTech Connect (OSTI)

    Dale, Virginia H [ORNL] [ORNL; Kline, Keith L [ORNL] [ORNL; Perla, Dr. Donna [US Environmental Protection Agency] [US Environmental Protection Agency; Lucier, Dr. Al [National Council on Air and Stream Improvement] [National Council on Air and Stream Improvement

    2013-01-01T23:59:59.000Z

    Defining and measuring sustainability of bioenergy systems are difficult because the systems are complex, the science is in early stages of development, and there is a need to generalize what are inherently context-specific enterprises. These challenges, and the fact that decisions are being made now, create a need for improved communications among scientists as well as between scientists and decision makers. In order for scientists to provide information that is useful to decision makers, they need to come to an agreement on how to measure and report potential risks and benefits of diverse energy alternatives, including problems and opportunities in various bioenergy production pathways. Scientists also need to develop approaches that contribute information relevant to policy and decision making. The need for clear communication is especially important at this time when there is a plethora of scientific papers and reports, and it is difficult for the public or decision makers to assess the merits of each analysis. We propose three communication guidelines for scientists whose work can contribute to decision making: (1) relationships between the question and the analytical approach should be clearly defined and make common sense; (2) the information should be presented in a manner that nonscientists can understand; and (3) the implications of methods, assumptions and limitations should be clear. The scientists job is to analyze information in order to build a better understanding of environmental, cultural and socioeconomic aspects of the sustainability of energy alternatives. The scientific process requires transparency, debate, review, and collaboration across disciplines and time. This paper serves as an introduction to the papers in the special issue on Sustainability of Bioenergy Systems: Cradle to Grave because scientific communication is essential to developing more sustainable energy systems. Together these four papers provide a framework under which the effects of bioenergy can be assessed and compared to other energy alternatives in order to foster sustainability.

  14. The impact of mineral fertilizers on the carbon footprint of crop production

    E-Print Network [OSTI]

    Brentrup, Frank

    2009-01-01T23:59:59.000Z

    the GHG emissions (carbon footprint) of crop production inMaterials and methods carbon footprint calculation basedLCA) principles A carbon footprint is the total set of

  15. The Carbon Footprint of Bioenergy Sorghum Production in Central Texas: Production Implications on Greenhouse Gas Emissions, Carbon Cycling, and Life Cycle Analysis

    E-Print Network [OSTI]

    Storlien, Joseph Orgean

    2013-06-13T23:59:59.000Z

    , and included two crop rotations (sorghum-sorghum or corn-sorghum), two fertilization levels (0 or 280 kg N ha^(-1) annually), and two residue return rates (0 or 50% biomass residue returned) to assess management impacts on sorghum production, C cycling...

  16. Optimizing Feedstock Logistics and Assessment of Hydrologic Impacts for Sustainable Bio-Energy Production

    E-Print Network [OSTI]

    Ha, Mi-Ae 1979-

    2012-12-11T23:59:59.000Z

    effective system to convert biomass from agricultural feedstocks to bio-crude oil. Mobile pyrolysis units could be moved to the feedstock production fields thereby greatly simplifying feedstock logistics. In the North Central (NC) region of the U...

  17. SUBSURFACE DRIP IRRIGATION SYSTEMS FOR SPECIALTY CROP PRODUCTION IN NORTH DAKOTA

    E-Print Network [OSTI]

    Steele, Dean D.

    SUBSURFACE DRIP IRRIGATION SYSTEMS FOR SPECIALTY CROP PRODUCTION IN NORTH DAKOTA D.D.Steele, R.G.Greenland, B. L. Gregor ABSTRACT. Subsurface drip irrigation (SDI) systems offer advantages over other types of irrigation systems for specialty crop production, including water savings, improved trafficability

  18. Characterization of the bacterial metagenome in an industrial algae bioenergy production system

    SciTech Connect (OSTI)

    Huang, Shi [Chinese Academy of Sciences; Fulbright, Scott P [Colorado State University; Zeng, Xiaowei [Chinese Academy of Sciences; Yates, Tracy [Solix Biofuels; Wardle, Greg [Solix Biofuels; Chisholm, Stephen T [Colorado State University; Xu, Jian [Chinese Academy of Sciences; Lammers, Peter [New Mexico State University

    2011-03-16T23:59:59.000Z

    Cultivation of oleaginous microalgae for fuel generally requires growth of the intended species to the maximum extent supported by available light. The presence of undesired competitors, pathogens and grazers in cultivation systems will create competition for nitrate, phosphate, sulfate, iron and other micronutrients in the growth medium and potentially decrease microalgal triglyceride production by limiting microalgal health or cell density. Pathogenic bacteria may also directly impact the metabolism or survival of individual microalgal cells. Conversely, symbiotic bacteria that enhance microalgal growth may also be present in the system. Finally, the use of agricultural and municipal wastes as nutrient inputs for microalgal production systems may lead to the introduction and proliferation of human pathogens or interfere with the growth of bacteria with beneficial effects on system performance. These considerations underscore the need to understand bacterial community dynamics in microalgal production systems in order to assess microbiome effects on microalgal productivity and pathogen risks. Here we focus on the bacterial component of microalgal production systems and describe a pipeline for metagenomic characterization of bacterial diversity in industrial cultures of an oleaginous alga, Nannochloropsis salina. Environmental DNA was isolated from 12 marine algal cultures grown at Solix Biofuels, a region of the 16S rRNA gene was amplified by PCR, and 16S amplicons were sequenced using a 454 automated pyrosequencer. The approximately 70,000 sequences that passed quality control clustered into 53,950 unique sequences. The majority of sequences belonged to thirteen phyla. At the genus level, sequences from all samples represented 169 different genera. About 52.94% of all sequences could not be identified at the genus level and were classified at the next highest possible resolution level. Of all sequences, 79.92% corresponded to 169 genera and 70 other taxa. We apply a principal component analysis across the initial sample set to draw correlations between sample variables and changes in microbiome populations.

  19. Land-use transition for bioenergy and climate stabilization: model comparison of drivers, impacts and interactions with other land use based mitigation options

    SciTech Connect (OSTI)

    Popp, Alexander; Rose, Steven K.; Calvin, Katherine V.; Van Vuuren, Detlef; Dietrich, Jan P.; Wise, Marshall A.; Stehfest, Eike; Humpenoder, Florian; Kyle, G. Page; Van Vliet, Jasper; Bauer, Nico; Lotze-Campen, Hermann; Klein, David; Kriegler, Elmar

    2014-04-01T23:59:59.000Z

    This study is a model comparison assessing the drivers and impacts of bioenergy production on the global land system and the interaction with other land use based mitigation options in the context of the EMF 27 project. We compare and evaluate results from three integrated assessment models (GCAM, IMAGE, and ReMIND/MAgPIE). All three models project that dedicated bioenergy crops and biomass residues are a potentially important and cost-effective component of the energy system. But bioenergy deployment levels and feedstock composition vary notably across models as do the implications for land-use and greenhouse gas emissions and the interaction with other land use based mitigation measures. Despite numerous model differences, we identify a few that are likely contributing to differences in land-use and emissions attributable to energy crop deployment.

  20. Bioenergy 2015 Press Room

    Broader source: Energy.gov [DOE]

    This U.S. Department of Energy Bioenergy 2015 online press room provides contacts, information, and resources to members of the media who cover Bioenergy 2015 conference-related news.

  1. National Bioenergy Day 2014

    Broader source: Energy.gov [DOE]

    Bioenergy, the use of agricultural waste and forestry byproducts to generate heat and energy, will be celebrated during the second annual National Bioenergy Day on October 22, 2014. This is an...

  2. An Integrative Modeling Framework to Evaluate the Productivity and Sustainability of Biofuel Crop Production Systems

    SciTech Connect (OSTI)

    Zhang, Xuesong; Izaurralde, Roberto C.; Manowitz, David H.; West, T. O.; Post, W. M.; Thomson, Allison M.; Bandaru, V. P.; Nichols, J.; Williams, J.R.

    2010-09-08T23:59:59.000Z

    The potential expansion of biofuel production raises food, energy, and environmental challenges that require careful assessment of the impact of biofuel production on greenhouse gas (GHG) emissions, soil erosion, nutrient loading, and water quality. In this study, we describe a spatially-explicit integrative modeling framework (SEIMF) to understand and quantify the environmental impacts of different biomass cropping systems. This SEIMF consists of three major components: 1) a geographic information system (GIS)-based data analysis system to define spatial modeling units with resolution of 56 m to address spatial variability, 2) the biophysical and biogeochemical model EPIC (Environmental Policy Integrated Climate) applied in a spatially-explicit way to predict biomass yield, GHG emissions, and other environmental impacts of different biofuel crops production systems, and 3) an evolutionary multi-objective optimization algorithm for exploring the trade-offs between biofuel energy production and unintended ecosystem-service responses. Simple examples illustrate the major functions of the SEIMF when applied to a 9-county Regional Intensive Modeling Area (RIMA) in SW Michigan to 1) simulate biofuel crop production, 2) compare impacts of management practices and local ecosystem settings, and 3) optimize the spatial configuration of different biofuel production systems by balancing energy production and other ecosystem-service variables. Potential applications of the SEIMF to support life cycle analysis and provide information on biodiversity evaluation and marginal-land identification are also discussed. The SEIMF developed in this study is expected to provide a useful tool for scientists and decision makers to understand sustainability issues associated with the production of biofuels at local, regional, and national scales.

  3. An integrative modeling framework to evaluate the productivity and sustainability of biofuel crop production systems

    SciTech Connect (OSTI)

    Zhang, X [University of Maryland; Izaurralde, R. C. [University of Maryland; Manowitz, D. [University of Maryland; West, T. O. [University of Maryland; Thomson, A. M. [University of Maryland; Post, Wilfred M [ORNL; Bandaru, Vara Prasad [ORNL; Nichols, Jeff [ORNL; Williams, J. [AgriLIFE, Temple, TX

    2010-10-01T23:59:59.000Z

    The potential expansion of biofuel production raises food, energy, and environmental challenges that require careful assessment of the impact of biofuel production on greenhouse gas (GHG) emissions, soil erosion, nutrient loading, and water quality. In this study, we describe a spatially explicit integrative modeling framework (SEIMF) to understand and quantify the environmental impacts of different biomass cropping systems. This SEIMF consists of three major components: (1) a geographic information system (GIS)-based data analysis system to define spatial modeling units with resolution of 56 m to address spatial variability, (2) the biophysical and biogeochemical model Environmental Policy Integrated Climate (EPIC) applied in a spatially-explicit way to predict biomass yield, GHG emissions, and other environmental impacts of different biofuel crops production systems, and (3) an evolutionary multiobjective optimization algorithm for exploring the trade-offs between biofuel energy production and unintended ecosystem-service responses. Simple examples illustrate the major functions of the SEIMF when applied to a nine-county Regional Intensive Modeling Area (RIMA) in SW Michigan to (1) simulate biofuel crop production, (2) compare impacts of management practices and local ecosystem settings, and (3) optimize the spatial configuration of different biofuel production systems by balancing energy production and other ecosystem-service variables. Potential applications of the SEIMF to support life cycle analysis and provide information on biodiversity evaluation and marginal-land identification are also discussed. The SEIMF developed in this study is expected to provide a useful tool for scientists and decision makers to understand sustainability issues associated with the production of biofuels at local, regional, and national scales.

  4. Bioenergy to Biodiversity: Downscaling scenarios of land use change

    E-Print Network [OSTI]

    MacKenzie, Ian

    2009-11-26T23:59:59.000Z

    Bioenergy crops are a key component of Scotlands strategy to meet 2050 carbon emissions targets. The introduction of these crops could have large scale impacts on the biodiversity of lowland farmland. These impacts depend on the change in land use...

  5. Sustainable Agricultural Residue Removal for Bioenergy: A Spatially Comprehensive National Assessment

    SciTech Connect (OSTI)

    D. Muth, Jr.; K. M. Bryden; R. G. Nelson

    2013-02-01T23:59:59.000Z

    This study provides a spatially comprehensive assessment of sustainable agricultural residue removal potential across the United States. Earlier assessments determining the quantity of agricultural residue that could be sustainably removed for bioenergy production at the regional and national scale faced a number of computational limitations. These limitations included the number of environmental factors, the number of land management scenarios, and the spatial fidelity and spatial extent of the assessment. This study utilizes integrated multi-factor environmental process modeling and high fidelity land use datasets to perform a spatially comprehensive assessment of sustainably removable agricultural residues across the conterminous United States. Soil type represents the base spatial unit for this study and is modeled using a national soil survey database at the 10 100 m scale. Current crop rotation practices are identified by processing land cover data available from the USDA National Agricultural Statistics Service Cropland Data Layer database. Land management and residue removal scenarios are identified for each unique crop rotation and crop management zone. Estimates of county averages and state totals of sustainably available agricultural residues are provided. The results of the assessment show that in 2011 over 150 million metric tons of agricultural residues could have been sustainably removed across the United States. Projecting crop yields and land management practices to 2030, the assessment determines that over 207 million metric tons of agricultural residues will be able to be sustainably removed for bioenergy production at that time.

  6. Streamlining Bioenergy Feedstock Engineering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Streamlining Bioenergy Feedstock Engineering The DOE Biomass Program's feedstock research and development tools enable collaboration and sharing of feedstock development knowledge...

  7. Impacts of increased bioenergy demand on global food markets: an AgMIP economic model intercomparison

    SciTech Connect (OSTI)

    Lotze-Campen, Hermann; von Lampe, Martin; Kyle, G. Page; Fujimori, Shinichiro; Havlik, Petr; van Meijl, Hans; Hasegawa, Tomoko; Popp, Alexander; Schmitz, Christoph; Tabeau, Andrzej; Valin, Hugo; Willenbockel, Dirk; Wise, Marshall A.

    2014-01-01T23:59:59.000Z

    Integrated Assessment studies have shown that meeting ambitious greenhouse gas mitigation targets will require substantial amounts of bioenergy as part of the future energy mix. In the course of the Agricultural Model Comparison and Improvement Project (AgMIP), five global agro-economic models were used to analyze a future scenario with global demand for ligno-cellulosic bioenergy rising to about 100 ExaJoule in 2050. From this exercise a tentative conclusion can be drawn that ambitious climate change mitigation need not drive up global food prices much, if the extra land required for bioenergy production is accessible or if the feedstock, e.g. from forests, does not directly compete for agricultural land. Agricultural price effects across models by the year 2050 from high bioenergy demand in an RCP2.6-type scenario appear to be much smaller (+5% average across models) than from direct climate impacts on crop yields in an RCP8.5-type scenario (+25% average across models). However, potential future scarcities of water and nutrients, policy-induced restrictions on agricultural land expansion, as well as potential welfare losses have not been specifically looked at in this exercise.

  8. Development and Deployment of a Short Rotation Woody Crops Harvesting...

    Office of Scientific and Technical Information (OSTI)

    SRC Woody Crop Header Re-direct Destination: Demand for bioenergy sourced from woody biomass is projected to increase; however, the expansion and rapid deployment of short...

  9. Bioenergy Impact on Wisconsin's Workforce

    Broader source: Energy.gov [DOE]

    Troy Runge, Wisconsin Bioenergy Initiative, presents on bioenergy's impact on Wisconsin's workforce development for the Biomass/Clean Cities States webinar.

  10. Development Of Sustainable Biobased Products And Bioenergy In Cooperation With The Midwest Consortium For Sustainable Biobased Products And Energy

    SciTech Connect (OSTI)

    Michael Ladisch; Randy Woodson

    2009-03-18T23:59:59.000Z

    Collaborative efforts of Midwest Consortium have been put forth to add value to distiller's grains by further processing them into fermentable sugars, ethanol, and a protein rich co-product consistent with a pathway to a biorenewables industry (Schell et al, 2008). These studies were recently published in the enclosed special edition (Volume 99, Issue 12) of Bioresource Technology journal. Part of them have demonstrated the utilization of distillers grains as additional feedstock for increased ethanol production in the current dry grind process (Kim et al., 2008a, b; Dien et al.,2008, Ladisch et al., 2008a, b). Results showed that both liquid hot water (LHW) pretreatment and ammonia fiber expansion (AFEX) were effective for enhancing digestibility of distiller's grains. Enzymatic digestion of distiller's grains resulted in more than 90% glucose yield under standard assay conditions, although the yield tends to drop as the concentration of dry solids increases. Simulated process mass balances estimated that hydrolysis and fermentation of distillers grains can increase the ethanol yield by 14% in the current dry milling process (Kim et al., 2008c). Resulting co-products from the modified process are richer in protein and oil contents than conventional distiller's grains, as determined both experimentally and computationally. Other research topics in the special edition include water solubilization of DDGS by transesterification reaction with phosphite esters (Oshel el al., 2008) to improve reactivity of the DDGS to enzymes, hydrolysis of soluble oligomers derived from DDGS using functionalized mesoporous solid catalysts (Bootsma et al., 2008), and ABE (acetone, butanol, ethanol) production from DDGS by solventogenic Clostridia (Ezeji and Blaschek, 2008). Economic analysis of a modified dry milling process, where the fiber and residual starch is extracted and fermented to produce more ethanol from the distillers grains while producing highly concentrated protein co-product, has shown that the process is economically viable resulting in an increase in net present value (Perkis et al., 2008). According to the study, the revenue is expected to increase further with improved amino acid profile of the protein rich co-products and lower cost of cellulase enzyme mixture. Also, Kim and Dale (2008) discuss using life cycle analysis to enhance the environmental performance of the corn based ethanol. On the second phase of the research, concerted efforts were directed on assessing compositional variability of dry milling co-products collected from 4 different dry grind ethanol plants has been measured and its effect on enzymatic digestibility and fermentability. Fermentation utilized a recombinant glucose/xylose co-fermenting yeast (Saccharomyces cerevisiae 424A (LNH-ST)). No significant compositional variability among the samples was found. Simultaneous saccharification and glucose/xylose co-fermentation of the pretreated distillers grains at solids and cellulase loadings of 150 g dry solids per liter and 6.4 mg protein per g dry substrate, respectively, yielded 74-801% of theoretical maximum ethanol concentration using recombinant Saccharomyces cerevisiae 424A (LNH-ST). The paper summarizing the results from the second phase of the Midwest Consortium is currently submitted to Bioresource Technology journal. The copy of the paper submitted is enclosed.

  11. Production of Short-Rotation Woody Crops Grown with a Range of Nutrient and Water Availability: Establishment Report and First-Year Responses

    SciTech Connect (OSTI)

    D.R. Coyle; J. Blake; K. Britton; M.; Buford; R.G. Campbell; J. Cox; B. Cregg; D. Daniels; ,; M. Jacobson; K. Johnsen; T. McDonald; K. McLeod; E.; Nelson; D. Robison; R. Rummer; F. Sanchez; J.; Stanturf; B. Stokes; C. Trettin; J. Tuskan; L. Wright; ,; S. Wullschleger

    2003-12-31T23:59:59.000Z

    Coleman, M.D., et. al. 2003. Production of Short-Rotation Woody Crops Grown with a Range of Nutrient and Water Availability: Establishment Report and First-Year Responses. Report. USDA Forest Service, Savannah River, Aiken, SC. 26 pp. Abstract: Many researchers have studied the productivity potential of intensively managed forest plantations. However, we need to learn more about the effects of fundamental growth processes on forest productivity; especially the influence of aboveground and belowground resource acquisition and allocation. This report presents installation, establishment, and first-year results of four tree species (two cottonwood clones, sycamore, sweetgum, and loblolly pine) grown with fertilizer and irrigation treatments. At this early stage of development, irrigation and fertilization were additive only in cottonwood clone ST66 and sweetgum. Leaf area development was directly related to stem growth, but root production was not always consistent with shoot responses, suggesting that allocation of resources varies among treatments. We will evaluate the consequences of these early responses on resource availability in subsequent growing seasons. This information will be used to: (1) optimize fiber and bioenergy production; (2) understand carbon sequestration; and (3) develop innovative applications such as phytoremediation; municipal, industrial, and agricultural wastes management; and protection of soil, air, and water resources.

  12. New and emerging bioenergy technologies

    E-Print Network [OSTI]

    or fisheries. Examples of bioenergy resources are fuel wood, bagasse, organic waste, biogas and bioethanol

  13. Estimating crop net primary production using inventory data and MODIS-derived parameters

    SciTech Connect (OSTI)

    Bandaru, Varaprasad; West, Tristram O.; Ricciuto, Daniel M.; Izaurralde, Roberto C.

    2013-06-03T23:59:59.000Z

    National estimates of spatially-resolved cropland net primary production (NPP) are needed for diagnostic and prognostic modeling of carbon sources, sinks, and net carbon flux. Cropland NPP estimates that correspond with existing cropland cover maps are needed to drive biogeochemical models at the local scale and over national and continental extents. Existing satellite-based NPP products tend to underestimate NPP on croplands. A new Agricultural Inventory-based Light Use Efficiency (AgI-LUE) framework was developed to estimate individual crop biophysical parameters for use in estimating crop-specific NPP. The method is documented here and evaluated for corn and soybean crops in Iowa and Illinois in years 2006 and 2007. The method includes a crop-specific enhanced vegetation index (EVI) from the Moderate Resolution Imaging Spectroradiometer (MODIS), shortwave radiation data estimated using Mountain Climate Simulator (MTCLIM) algorithm and crop-specific LUE per county. The combined aforementioned variables were used to generate spatially-resolved, crop-specific NPP that correspond to the Cropland Data Layer (CDL) land cover product. The modeling framework represented well the gradient of NPP across Iowa and Illinois, and also well represented the difference in NPP between years 2006 and 2007. Average corn and soybean NPP from AgI-LUE was 980 g C m-2 yr-1 and 420 g C m-2 yr-1, respectively. This was 2.4 and 1.1 times higher, respectively, for corn and soybean compared to the MOD17A3 NPP product. Estimated gross primary productivity (GPP) derived from AgI-LUE were in close agreement with eddy flux tower estimates. The combination of new inputs and improved datasets enabled the development of spatially explicit and reliable NPP estimates for individual crops over large regional extents.

  14. Estimated Costs of Crop Production in Iowa -2011 File A1-20

    E-Print Network [OSTI]

    Duffy, Michael D.

    Estimated Costs of Crop Production in Iowa - 2011 File A1-20 T heestimatedcostsofcorn the annual Iowa Farm Business Association record summaries, production and costs data from the Departments of selected agricultural coop- eratives and other input suppliers around the state. These costs estimates

  15. Estimated Costs of Crop Production in Iowa -2010 File A1-20

    E-Print Network [OSTI]

    Duffy, Michael D.

    Estimated Costs of Crop Production in Iowa - 2010 File A1-20 T heestimatedcostsofcorn Farm Business Association record summaries, production and costs data from the De- partments. Thesecostsestimatesarerepresentativeofaveragecosts for farms in Iowa. Very large or small farms may have lower or higher fixed costs per acre. Due

  16. Estimated Costs of Crop Production in Iowa -2014 File A1-20

    E-Print Network [OSTI]

    Duffy, Michael D.

    Estimated Costs of Crop Production in Iowa - 2014 File A1-20 T he estimated costs of corn, corn. They include the annual Iowa Farm Busi- ness Association record summaries, production and costs data from, and a survey of selected agricultural cooperatives and other input suppliers around the state. These cost

  17. Estimated Costs of Crop Production in Iowa -2013 File A1-20

    E-Print Network [OSTI]

    Duffy, Michael D.

    Estimated Costs of Crop Production in Iowa - 2013 File A1-20 T he estimated costs of corn, corn. They include the annual Iowa Farm Busi- ness Association record summaries, production and costs data from and a survey of selected agricultural cooperatives and other input suppliers around the state. These cost

  18. Estimated Costs of Crop Production in Iowa -2012 File A1-20

    E-Print Network [OSTI]

    Duffy, Michael D.

    Estimated Costs of Crop Production in Iowa - 2012 File A1-20 T he estimated costs of corn, corn. They include the annual Iowa Farm Business Asso- ciation record summaries, production and costs data from and a survey of selected agricultural cooperatives and other input suppliers around the state. These costs

  19. Estimated Costs of Crop Production in Iowa -2007 File A1-20

    E-Print Network [OSTI]

    Duffy, Michael D.

    Estimated Costs of Crop Production in Iowa - 2007 File A1-20 T he estimated costs of corn, corn sources. They include the annual Iowa Farm Business Asso- ciation record summaries, production and costs the state. These costs estimates are representative of average costs for farms in Iowa. Very large or small

  20. Estimated Costs of Crop Production in Iowa -2009 File A1-20

    E-Print Network [OSTI]

    Duffy, Michael D.

    Estimated Costs of Crop Production in Iowa - 2009 File A1-20 T he estimated costs of corn, corn sources. They include the annual Iowa Farm Business Asso- ciation record summaries, production and costs the state. These costs estimates are representative of average costs for farms in Iowa. Very large or small

  1. Estimated Costs of Crop Production in Iowa -2008 File A1-20

    E-Print Network [OSTI]

    Duffy, Michael D.

    Estimated Costs of Crop Production in Iowa - 2008 File A1-20 T he estimated costs of corn, corn sources. They include the annual Iowa Farm Business Asso- ciation record summaries, production and costs the state. These costs estimates are representative of average costs for farms in Iowa. Very large or small

  2. An Integrated Modeling and Data Management Strategy for Cellulosic Biomass Production Decisions

    SciTech Connect (OSTI)

    David J. Muth Jr.; K. Mark Bryden; Joshua B. Koch

    2012-07-01T23:59:59.000Z

    Emerging cellulosic bioenergy markets can provide land managers with additional options for crop production decisions. Integrating dedicated bioenergy crops such as perennial grasses and short rotation woody species within the agricultural landscape can have positive impacts on several environmental processes including increased soil organic matter in degraded soils, reduced sediment loading in watersheds, lower green house gas (GHG) fluxes, and reduced nutrient loading in watersheds. Implementing this type of diverse bioenergy production system in a way that maximizes potential environmental benefits requires a dynamic integrated modeling and data management strategy. This paper presents a strategy for designing diverse bioenergy cropping systems within the existing row crop production landscape in the midwestern United States. The integrated model developed quantifies a wide range environmental processes including soil erosion from wind and water, soil organic matter changes, and soil GHG fluxes within a geospatial data management framework. This framework assembles and formats information from multiple spatial and temporal scales. The data assembled includes yield and productivity data from harvesting equipment at the 1m scale, surface topography data from LiDAR mapping at the less than 1m scale, soil data from US soil survey databases at the 10m to 100m scale, and climate data at the county scale. These models and data tools are assembled into an integrated computational environment that is used to determine sustainable removal rates for agricultural residues for bioenergy production at the sub-field scale under a wide range of land management practices. Using this integrated model, innovative management practices including cover cropping are then introduced and evaluated for their impact on bioenergy production and important environmental processes. The impacts of introducing dedicated energy crops onto high-risk landscape positions currently being manage in row crop production are also investigated.

  3. Opportunities for Energy Crop Production Based on Subfield Scale Distribution of Profitability

    SciTech Connect (OSTI)

    Ian Bonner; Kara Cafferty; David Muth Jr.; Mark Tomer

    2014-10-01T23:59:59.000Z

    Incorporation of dedicated herbaceous energy crops into row crop landscapes is a promising means to supply an expanding biofuel industry while increasing biomass yields, benefiting soil and water quality, and increasing biodiversity. Despite these positive traits energy crops remain largely unaccepted due to concerns over their practicality and cost of implementation. This paper presents a case study on Hardin County, Iowa to demonstrate how subfield decision making can be used to target candidate areas for conversion to energy crop production. The strategy presented integrates switchgrass (Panicum virgatum L.) into subfield landscape positions where corn (Zea mays L.) grain is modeled to operate at a net economic loss. The results of this analysis show that switchgrass integration has the potential to increase sustainable biomass production from 48 to 99% (depending on the rigor of conservation practices applied to corn stover collection) while also improving field level profitability. Candidate land area is highly sensitive to grain price (0.18 to 0.26 US$ kg-1) and dependent on the acceptable net profit for corn production (ranging from 0 to -1,000 US$ ha-1). This work presents the case that switchgrass can be economically implemented into row crop production landscapes when management decisions are applied at a subfield scale and compete against areas of the field operating at a negative net profit.

  4. Extension Bulletin E-3164 New January 2012 Biodiversity Services and Bioenergy Landscapes

    E-Print Network [OSTI]

    Landis, Doug

    Bioenergy Research Center, Michigan State University b Kellogg Biological Station (KBS) Land and Water Program, Michigan State University Extension Growing bioenergy crops will transform agricultural://water.usgs.gov/nawqa). At the same time, the footprint of agriculture has expanded to cover nearly 40 percent of the earth's ice

  5. Bioenergy & Clean Cities

    Broader source: Energy.gov [DOE]

    DOE's Bioenergy Technologies Officeand theClean Cities program regularly conduct a joint Web conference for state energy office representatives and Clean Cities coordinators. The Web conferences...

  6. Gasification Research BIOENERGY PROGRAM

    E-Print Network [OSTI]

    Gasification Research BIOENERGY PROGRAM Description Researchers inthe@tamu.edu Skid-mounted gasifier: 1.8 tons-per-day pilot unit Gasification of cotton gin trash The new Texas A

  7. DEVELOPING STATE POLICIES SUPPORTIVE OF BIOENERGY DEVELOPMENT

    SciTech Connect (OSTI)

    Kathryn Baskin

    2005-04-30T23:59:59.000Z

    Working within the context of the Southern States Biobased Alliance (SSBA) and with officials in each state, the Southern States Energy Board (SSEB) is identifying bioenergy-related policies and programs within each state to determine their impact on the development, deployment or use of bioenergy. In addition, SSEB will determine which policies have impacted industry's efforts to develop, deploy or use biobased technologies or products. As a result, SSEB will work with the Southern States Biobased Alliance to determine how policy changes might address any negative impacts or enhance positive impacts. In addition to analysis of domestic policies and programs, this project will include the development of a U.S.-Brazil Biodiesel Pilot Project. The purpose of this effort is to promote and facilitate the commercialization of biodiesel and bioenergy production and demand in Brazil.

  8. DEVELOPING STATE POLICIES SUPPORTIVE OF BIOENERGY DEVELOPMENT

    SciTech Connect (OSTI)

    Kathryn Baskin

    2004-10-31T23:59:59.000Z

    Working within the context of the Southern States Biobased Alliance (SSBA) and with officials in each state, the Southern States Energy Board (SSEB) is identifying bioenergy-related policies and programs within each state to determine their impact on the development, deployment or use of bioenergy. In addition, SSEB will determine which policies have impacted industry's efforts to develop, deploy or use biobased technologies or products. As a result, SSEB will work with the Southern States Biobased Alliance to determine how policy changes might address any negative impacts or enhance positive impacts. In addition to analysis of domestic policies and programs, this project will include the development of a U.S.-Brazil Biodiesel Pilot Project. The purpose of this effort is to promote and facilitate the commercialization of biodiesel and bioenergy production and demand in Brazil.

  9. DEVELOPING STATE POLICIES SUPPORTIVE OF BIOENERGY DEVELOPMENT

    SciTech Connect (OSTI)

    Kathryn Baskin

    2004-07-28T23:59:59.000Z

    Working within the context of the Southern States Biobased Alliance (SSBA) and with officials in each state, the Southern States Energy Board (SSEB) is identifying bioenergy-related policies and programs within each state to determine their impact on the development, deployment or use of bioenergy. In addition, SSEB will determine which policies have impacted industry's efforts to develop, deploy or use biobased technologies or products. As a result, SSEB will work with the Southern States Biobased Alliance to determine how policy changes might address any negative impacts or enhance positive impacts. In addition to analysis of domestic policies and programs, this project will include the development of a U.S.-Brazil Biodiesel Pilot Project. The purpose of this effort is to promote and facilitate the commercialization of biodiesel and bioenergy production and demand in Brazil.

  10. DEVELOPING STATE POLICIES SUPPORTIVE OF BIOENERGY DEVELOPMENT

    SciTech Connect (OSTI)

    Kathryn Baskin

    2005-01-31T23:59:59.000Z

    Working within the context of the Southern States Biobased Alliance (SSBA) and with officials in each state, the Southern States Energy Board (SSEB) is identifying bioenergy-related policies and programs within each state to determine their impact on the development, deployment or use of bioenergy. In addition, SSEB will determine which policies have impacted industry's efforts to develop, deploy or use biobased technologies or products. As a result, SSEB will work with the Southern States Biobased Alliance to determine how policy changes might address any negative impacts or enhance positive impacts. In addition to analysis of domestic policies and programs, this project will include the development of a U.S.-Brazil Biodiesel Pilot Project. The purpose of this effort is to promote and facilitate the commercialization of biodiesel and bioenergy production and demand in Brazil.

  11. Agronomy Journal Volume 104, Issue 2 2012 215 CropEconomics,Production&Management

    E-Print Network [OSTI]

    Maxwell, Bruce D.

    of energy input in wheat production (Hoeppner et al., 2006; Piringer and Steinberg, 2006). Introducing pea of produced grain annually (National Agricultural Statistical Ser- vice [USDA], 2010). The widely adopted Agricultural Statistical Service [USDA], 2010). Many benefits of pea and lentil, as rotational crops, have been

  12. Robotics in Crop Production Department of Agricultural and Biological Engineering, University of Illinois at

    E-Print Network [OSTI]

    Robotics in Crop Production Tony Grift Department of Agricultural and Biological Engineering such as harvesting of citrus fruits, grapes, and raisins. An important part of Automation is the use of robots. Robotics in agriculture is not a new concept; in controlled environments (green houses), it has a his- tory

  13. IEA Bioenergy Task 42 on Biorefineries: Co-production of fuels, chemicals, power and materials from biomass

    E-Print Network [OSTI]

    ........................................................................16 8. Bioethanol, biodiesel and biogas: production and capacity...........................17 9

  14. Environmental Life Cycle Comparison of Algae to Other Bioenergy

    E-Print Network [OSTI]

    Clarens, Andres

    Environmental Life Cycle Comparison of Algae to Other Bioenergy Feedstocks A N D R E S F . C L A R December 6, 2009. Accepted December 15, 2009. Algae are an attractive source of biomass energy since. In spite of these advantages, algae cultivation has not yet been compared with conventional crops from

  15. Benefits of supplementing an industrial waste anaerobic digester with energy crops for increased biogas production

    SciTech Connect (OSTI)

    Nges, Ivo Achu, E-mail: Nges.Ivo_Achu@biotek.lu.se [Department of Biotechnology, Lund University, P.O. Box 124, SE 221 00 Lund (Sweden); Escobar, Federico; Fu Xinmei; Bjoernsson, Lovisa [Department of Biotechnology, Lund University, P.O. Box 124, SE 221 00 Lund (Sweden)

    2012-01-15T23:59:59.000Z

    Highlights: Black-Right-Pointing-Pointer This study demonstrates the feasibility of co-digestion food industrial waste with energy crops. Black-Right-Pointing-Pointer Laboratory batch co-digestion led to improved methane yield and carbon to nitrogen ratio as compared to mono-digestion of industrial waste. Black-Right-Pointing-Pointer Co-digestion was also seen as a means of degrading energy crops with nutrients addition as crops are poor in nutrients. Black-Right-Pointing-Pointer Batch co-digestion methane yields were used to predict co-digestion methane yield in full scale operation. Black-Right-Pointing-Pointer It was concluded that co-digestion led an over all economically viable process and ensured a constant supply of feedstock. - Abstract: Currently, there is increasing competition for waste as feedstock for the growing number of biogas plants. This has led to fluctuation in feedstock supply and biogas plants being operated below maximum capacity. The feasibility of supplementing a protein/lipid-rich industrial waste (pig manure, slaughterhouse waste, food processing and poultry waste) mesophilic anaerobic digester with carbohydrate-rich energy crops (hemp, maize and triticale) was therefore studied in laboratory scale batch and continuous stirred tank reactors (CSTR) with a view to scale-up to a commercial biogas process. Co-digesting industrial waste and crops led to significant improvement in methane yield per ton of feedstock and carbon-to-nitrogen ratio as compared to digestion of the industrial waste alone. Biogas production from crops in combination with industrial waste also avoids the need for micronutrients normally required in crop digestion. The batch co-digestion methane yields were used to predict co-digestion methane yield in full scale operation. This was done based on the ratio of methane yields observed for laboratory batch and CSTR experiments compared to full scale CSTR digestion of industrial waste. The economy of crop-based biogas production is limited under Swedish conditions; therefore, adding crops to existing industrial waste digestion could be a viable alternative to ensure a constant/reliable supply of feedstock to the anaerobic digester.

  16. Faculty of Landscape Architecture, Horticulture and Crop Production Science

    E-Print Network [OSTI]

    and issues as well as prospects for sustainable agricultural produc- tion, with focus on small scale farming will have an understanding for the overall living conditions within a specific region.The programme gives credits - Environmental Economics and Management, 15 credits - Sustainable Production Systems in a Global

  17. DEVELOPING STATE POLICIES SUPPORTIVE OF BIOENERGY DEVELOPMENT

    SciTech Connect (OSTI)

    Kathryn Baskin

    2003-01-15T23:59:59.000Z

    Working within the context of the Southern States Biobased Alliance (SSBA) and with officials in each state, the Southern States Energy Board (SSEB) is identifying bioenergy-related policies and programs within each state to determine their impact on the development, deployment or use of bioenergy. In addition, SSEB will determine which policies have impacted industry's efforts to develop, deploy or use biobased technologies or products. As a result, SSEB will work with the Southern States Biobased Alliance to determine how policy changes might address any negative impacts or enhance positive impacts.

  18. DEVELOPING STATE POLICIES SUPPORTIVE OF BIOENERGY DEVELOPMENT

    SciTech Connect (OSTI)

    Kathryn Baskin

    2003-10-31T23:59:59.000Z

    Working within the context of the Southern States Biobased Alliance (SSBA) and with officials in each state, the Southern States Energy Board (SSEB) is identifying bioenergy-related policies and programs within each state to determine their impact on the development, deployment or use of bioenergy. In addition, SSEB will determine which policies have impacted industry's efforts to develop, deploy or use biobased technologies or products. As a result, SSEB will work with the Southern States Biobased Alliance to determine how policy changes might address any negative impacts or enhance positive impacts.

  19. DEVELOPING STATE POLICIES SUPPORTIVE OF BIOENERGY DEVELOPMENT

    SciTech Connect (OSTI)

    Kathryn Baskin

    2001-10-31T23:59:59.000Z

    Working within the context of the Southern States Biobased Alliance (SSBA) and with officials in each state, the Southern States Energy Board (SSEB) is identifying bioenergy-related policies and programs within each state to determine their impact on the development, deployment or use of bioenergy. In addition, SSEB will determine which policies have impacted industry's efforts to develop, deploy or use biobased technologies or products. As a result, SSEB will work with the Southern States Biobased Alliance to determine how policy changes might address any negative impacts or enhance positive impacts.

  20. DEVELOPING STATE POLICIES SUPPORTIVE OF BIOENERGY DEVELOPMENT

    SciTech Connect (OSTI)

    Kathryn Baskin

    2002-01-31T23:59:59.000Z

    Working within the context of the Southern States Biobased Alliance (SSBA) and with officials in each state, the Southern States Energy Board (SSEB) is identifying bioenergy-related policies and programs within each state to determine their impact on the development, deployment or use of bioenergy. In addition, SSEB will determine which policies have impacted industry's efforts to develop, deploy or use biobased technologies or products. As a result, SSEB will work with the Southern States Biobased Alliance to determine how policy changes might address any negative impacts or enhance positive impacts.

  1. DEVELOPING STATE POLICIES SUPPORTIVE OF BIOENERGY DEVELOPMENT

    SciTech Connect (OSTI)

    Kathryn Baskin

    2004-04-30T23:59:59.000Z

    Working within the context of the Southern States Biobased Alliance (SSBA) and with officials in each state, the Southern States Energy Board (SSEB) is identifying bioenergy-related policies and programs within each state to determine their impact on the development, deployment or use of bioenergy. In addition, SSEB will determine which policies have impacted industry's efforts to develop, deploy or use biobased technologies or products. As a result, SSEB will work with the Southern States Biobased Alliance to determine how policy changes might address any negative impacts or enhance positive impacts.

  2. DEVELOPING STATE POLICIES SUPPORTIVE OF BIOENERGY DEVELOPMENT

    SciTech Connect (OSTI)

    Kathryn Baskin

    2002-07-31T23:59:59.000Z

    Working within the context of the Southern States Biobased Alliance (SSBA) and with officials in each state, the Southern States Energy Board (SSEB) is identifying bioenergy-related policies and programs within each state to determine their impact on the development, deployment or use of bioenergy. In addition, SSEB will determine which policies have impacted industry's efforts to develop, deploy or use biobased technologies or products. As a result, SSEB will work with the Southern States Biobased Alliance to determine how policy changes might address any negative impacts or enhance positive impacts.

  3. DEVELOPING STATE POLICIES SUPPORTIVE OF BIOENERGY DEVELOPMENT

    SciTech Connect (OSTI)

    Kathryn Baskin

    2002-04-30T23:59:59.000Z

    Working within the context of the Southern States Biobased Alliance (SSBA) and with officials in each state, the Southern States Energy Board (SSEB) is identifying bioenergy-related policies and programs within each state to determine their impact on the development, deployment or use of bioenergy. In addition, SSEB will determine which policies have impacted industry's efforts to develop, deploy or use biobased technologies or products. As a result, SSEB will work with the Southern States Biobased Alliance to determine how policy changes might address any negative impacts or enhance positive impacts.

  4. DEVELOPING STATE POLICIES SUPPORTIVE OF BIOENERGY DEVELOPMENT

    SciTech Connect (OSTI)

    Kathryn Baskin

    2002-11-01T23:59:59.000Z

    Working within the context of the Southern States Biobased Alliance (SSBA) and with officials in each state, the Southern States Energy Board (SSEB) is identifying bioenergy-related policies and programs within each state to determine their impact on the development, deployment or use of bioenergy. In addition, SSEB will determine which policies have impacted industry's efforts to develop, deploy or use biobased technologies or products. As a result, SSEB will work with the Southern States Biobased Alliance to determine how policy changes might address any negative impacts or enhance positive impacts.

  5. DEVELOPING STATE POLICIES SUPPORTIVE OF BIOENERGY DEVELOPMENT

    SciTech Connect (OSTI)

    Kathryn Baskin

    2001-07-31T23:59:59.000Z

    Working within the context of the Southern States Biobased Alliance (SSBA) and with officials in each state, the Southern States Energy Board (SSEB) is identifying bioenergy-related policies and programs within each state to determine their impact on the development, deployment or use of bioenergy. In addition, SSEB will determine which policies have impacted industry's efforts to develop, deploy or use biobased technologies or products. As a result, SSEB will work with the Southern States Biobased Alliance to determine how policy changes might address any negative impacts or enhance positive impacts.

  6. DEVELOPING STATE POLICIES SUPPORTIVE OF BIOENERGY DEVELOPMENT

    SciTech Connect (OSTI)

    Kathryn Baskin

    2003-04-15T23:59:59.000Z

    Working within the context of the Southern States Biobased Alliance (SSBA) and with officials in each state, the Southern States Energy Board (SSEB) is identifying bioenergy-related policies and programs within each state to determine their impact on the development, deployment or use of bioenergy. In addition, SSEB will determine which policies have impacted industry's efforts to develop, deploy or use biobased technologies or products. As a result, SSEB will work with the Southern States Biobased Alliance to determine how policy changes might address any negative impacts or enhance positive impacts.

  7. Management of lignite fly ash for improving soil fertility and crop productivity

    SciTech Connect (OSTI)

    Ram, L.C.; Srivastava, N.K.; Jha, S.K.; Sinha, A.K.; Masto, R.E.; Selvi, V.A. [Central Fuel Research Institute, Dhanbad (India)

    2007-09-15T23:59:59.000Z

    Lignite fly ash (LFA), being alkaline and endowed with excellent pozzolanic properties, a silt loam texture, and plant nutrients, has the potential to improve soil quality and productivity. Long-term field trials with groundnut, maize, and sun hemp were carried out to study the effect of LFA on growth and yield. Before crop I was sown, LFA was applied at various doses with and without press mud (an organic waste from the sugar industry, used as an amendment and source of nutrients). LFA with and without press mud was also applied before crops III and V were cultivated. Chemical fertilizer, along with gypsum, humic acid, and bioferfertilizer, was applied in all treatments, including the control. With one-time and repeat applications of LFA (with and without press mud), yield increased significantly (7.0-89.0%) in relation to the control crop. The press mud enhanced the yield (3.0-15.0%) with different LFA applications. One-time and repeat application of LFA (alone and in combination with press mud) improved soil quality and the nutrient content of the produce. The highest dose of LFA (200 t/ha) with and without press mud showed the best residual effects (eco-friendly increases in the yield of succeeding crops). Some increase in trace- and heavy metal contents and in the level of gamma-emitters in soil and crop produce, but well within permissible limits, was observed. Thus, LFA can be used on a large scale to boost soil fertility and productivity with no adverse effects on the soil or crops, which may solve the problem of bulk disposal of fly ash in an eco-friendly manner.

  8. Bioenergy Key Publications

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The FutureCommentsEnergyand SustainedBio-OilBioenergy 2015 AgendaBioenergyKEY

  9. Bioenergy Technologies Office

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The FutureCommentsEnergyand SustainedBio-OilBioenergy 2015Bioenergy Pumps

  10. Switchgrass is a promising, high-yielding crop for California biofuel

    E-Print Network [OSTI]

    2011-01-01T23:59:59.000Z

    both as forage and as a biofuel crop, switchgrass may bepanic grass grown as a biofuel in southern England. Bioresfor switchgrass for biofuel systems. Biomass Bioenergy 30:

  11. Modeling Poplar Growth as a Short Rotation Woody Crop for Biofuels

    E-Print Network [OSTI]

    Hart, Quinn James

    2014-01-01T23:59:59.000Z

    a Short Rotation Woody Crop for Biofuels Q. J. Hart 1,? , O.for cellulosic derived biofuels. The ability to accuratelycrops for bioenergy and biofuels applications. In vitro

  12. Factors for Bioenergy Market Development

    SciTech Connect (OSTI)

    Roos, A.; Hektor, B.; Graham, R.L.; Rakos, C.

    1998-10-04T23:59:59.000Z

    Focusing on the development of the whole bioenergy market rather than isolated projects, this paper contributes to the identification of barriers and drivers behind bioenergy technology implementation. It presents a framework for the assessment of the potentials for bioenergy market growth to be used by decision makers in administration and industry. The conclusions are based on case studies of operating bioenergy markets in Austria, US and Sweden. Six important factors for bioenergy market growth have been identified: (1) Integration with other business, e.g. for biomass procurement, (2) Scale effects of bioenergy market, (3) Competition on bioenergy market, (4) Competition with other business, (5) National policy, (6) Local policy and local opinion. Different applications of the framework are discussed.

  13. Comparison of hydroponic crop production techniques in a recirculating fish culture system

    E-Print Network [OSTI]

    Wren, Steven Whitaker

    1984-01-01T23:59:59.000Z

    1984) Steven W. Wren, B. S. , Texas ASM University Chairman of Advisory Committee: Dr. William Clark Two methods of hydroponic vegetable crop production, gravel bed culture and the nutrient film technique, were tested to compare plant success..., and dissolved oxygen were monitored. Fish growth was satisfactory and no diseases were detected. Food conversion ratio for the tilapia was 1. 4. Plants in the gravel beds grew, flowered, and produced good quality fruit with no signs of nutritional deficiency...

  14. LANL capabilities towards bioenergy and biofuels programs

    SciTech Connect (OSTI)

    Olivares, Jose A [Los Alamos National Laboratory; Park, Min S [Los Alamos National Laboratory; Unkefer, Clifford J [Los Alamos National Laboratory; Bradbury, Andrew M [Los Alamos National Laboratory; Waldo, Geoffrey S [Los Alamos National Laboratory

    2009-01-01T23:59:59.000Z

    LANL invented technology for increasing growth and productivity of photosysnthetic organisms, including algae and higher plants. The technology has been extensively tested at the greenhouse and field scale for crop plants. Initial bioreactor testing of its efficacy on algal growth has shown promising results. It increases algal growth rates even under optimwn nutrient supply and careful pH control with CO{sub 2} continuously available. The technology uses a small organic molecule, applied to the plant surfaces or added to the algal growth medium. CO{sub 2} concentration is necessary to optimize algal production in either ponds or reactors. LANL has successfully designed, built and demonstrated an effective, efficient technology using DOE funding. Such a system would be very valuable for capitalizing on local inexpensive sources of CO{sub 2} for algal production operations. Furthermore, our protein engineering team has a concept to produce highly stable carbonic anhydyrase (CA) enzyme, which could be very useful to assure maximum utilization of the CO{sub 2} supply. Stable CA could be used either imnlobilized on solid supports or engineered into the algal strain. The current technologies for harvesting the algae and obtaining the lipids do not meet the needs for rapid, low cost separations for high volumes of material. LANL has obtained proof of concept for the high volume flowing stream concentration of algae, algal lysis and separation of the lipid, protein and water fractions, using acoustic platforms. This capability is targeted toward developing biosynthetics, chiral syntheses, high throughput protein expression and purification, organic chemistry, recognition ligands, and stable isotopes geared toward Bioenergy applications. Areas of expertise include stable isotope chemistry, biomaterials, polymers, biopolymers, organocatalysis, advanced characterization methods, and chemistry of model compounds. The ultimate realization of the ability to design and synthesize materials that mimic or are inspired by natural systems will lead to entirely new applications in the bioenergy areas. In addition, there are new developments in this capability that involve development of catalytic methods for the production of carbon chains from the most abundant carbohydrate on the planet, glucose. These carbon chains will be useful in the production of high density fuels which defined characteristics. In addition, these methods/capabilities will be used to generate feedstocks for industrial processes. LANL is the second largest partner institution of the Department of Energy's Joint Genome Institute (DOE-JGI), and specializes in high throughput genome finishing and analysis in support of DOE missions in energy, bioremediation and carbon sequestration. This group is comprised of molecular biology labs and computational staff who together focus on the high-throughput DNA sequencing of whole microbial genomes, computational finishing and bioinformatics. The applications team focuses on the use of new sequencing technologies to address questions in environmental science. In addition to supporting the DOE mission, this group supports the Nation's national security mission by sequencing critical pathogens and near neighbors in support of relevent application areas.

  15. 1973 projections of consumption, production, prices and crop values for Texas winter lettuce and early spring onions

    E-Print Network [OSTI]

    Furrh, Samuel Roger

    1970-01-01T23:59:59.000Z

    1973 PROJECTIONS OF CONSUMPTION, PRODUCTION, PRICES AND CROP VALUES FOR TEXAS WINTER LETTUCE AND EARLY SPRING ONIONS A Thesis by SAMUEL ROGER FURRH Submitted to the Graduate College of Texas A&M University in partial fulfillment... of the requirement for the degree of MASTER OF SCIENCE Augus t, l 9 70 Major Subject: Agricultural Economics 1973 PROJECTIONS OF CONSUMPTION, PRODUCTION, PRICES AND CROP VALUES FOR TEXAS WINTER LETTUCE AND EARLY SPRING ONIONS A Thesis SAMUEL ROGER FURRH Ap...

  16. Bioenergy Science Center KnowledgeBase

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Syed, M. H.; Karpinets, T. V.; Parang, M.; Leuze, M. R.; Park, B. H.; Hyatt, D.; Brown, S. D.; Moulton, S. Galloway, M.D.; Uberbacher, E. C.

    The challenge of converting cellulosic biomass to sugars is the dominant obstacle to cost effective production of biofuels in s capable of significant enough quantities to displace U. S. consumption of fossil transportation fuels. The BioEnergy Science Center (BESC) tackles this challenge of biomass recalcitrance by closely linking (1) plant research to make cell walls easier to deconstruct, and (2) microbial research to develop multi-talented biocatalysts tailor-made to produce biofuels in a single step. [from the 2011 BESC factsheet] The BioEnergy Science Center (BESC) is a multi-institutional, multidisciplinary research (biological, chemical, physical and computational sciences, mathematics and engineering) organization focused on the fundamental understanding and elimination of biomass recalcitrance. The BESC Knowledgebase and its associated tools is a discovery platform for bioenergy research. It consists of a collection of metadata, data, and computational tools for data analysis, integration, comparison and visualization for plants and microbes in the center.The BESC Knowledgebase (KB) and BESC Laboratory Information Management System (LIMS) enable bioenergy researchers to perform systemic research. [http://bobcat.ornl.gov/besc/index.jsp

  17. Bioenergy Success Stories

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataEnergyDepartmentWindConversion BiochemicalDepartment ofBioenergy News61

  18. Cost Methodology for Biomass Feedstocks: Herbaceous Crops and Agricultural Residues

    SciTech Connect (OSTI)

    Turhollow Jr, Anthony F [ORNL; Webb, Erin [ORNL; Sokhansanj, Shahabaddine [ORNL

    2009-12-01T23:59:59.000Z

    This report describes a set of procedures and assumptions used to estimate production and logistics costs of bioenergy feedstocks from herbaceous crops and agricultural residues. The engineering-economic analysis discussed here is based on methodologies developed by the American Society of Agricultural and Biological Engineers (ASABE) and the American Agricultural Economics Association (AAEA). An engineering-economic analysis approach was chosen due to lack of historical cost data for bioenergy feedstocks. Instead, costs are calculated using assumptions for equipment performance, input prices, and yield data derived from equipment manufacturers, research literature, and/or standards. Cost estimates account for fixed and variable costs. Several examples of this costing methodology used to estimate feedstock logistics costs are included at the end of this report.

  19. Improvements of switchgrass as a bioenergy crop. InGenetic Improvement of Bioenergy Crops. Edited

    E-Print Network [OSTI]

    S. Mclaughlin; J. Bouton; D. Bransby; B. Conger; W. Ocumpaugh; D. Parrish; C. Taliaferro; K. Vogel; S. Wullschleger

    from the renewable feedstocks. While energy prices in the United States are among the cheapest in the

  20. The Endurance Bioenergy Reactor | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Endurance Bioenergy Reactor Share Description Argonne biophysicist Dr. Philip Laible and Air Force Major Matt Michaud talks about he endurance bioenergy reactor-a device that...

  1. Chapter 9, Land and Bioenergy in Scientific Committee on Problems of the Environment (SCOPE), Bioenergy & Sustainability: bridging the gaps.

    SciTech Connect (OSTI)

    Woods J, Lynd LR [Imperial College London, UK; Laser, M [Dartmouth College; Batistella M, De Castro D [EMBRAPA Monitoramento por Satelite, Campinas, Brasil; Kline, Keith L [ORNL; Faaij, Andre [Energy Academy Europe, Netherlands

    2015-01-01T23:59:59.000Z

    In this chapter we address the questions of whether and how enough biomass could be produced to make a material contribution to global energy supply on a scale and timeline that is consistent with prominent low carbon energy scenarios. We assess whether bioenergy provision necessarily conflicts with priority ecosystem services including food security for the world s poor and vulnerable populations. In order to evaluate the potential land demand for bioenergy, we developed a set of three illustrative scenarios using specified growth rates for each bioenergy sub-sector. In these illustrative scenarios, bioenergy (traditional and modern) increases from 62 EJ/yr in 2010 to 100, 150 and 200 EJ/yr in 2050. Traditional bioenergy grows slowly, increasing by between 0.75% and 1% per year, from 40 EJ/yr in 2010 to 50 or 60 EJ/ yr in 2050, continuing as the dominant form of bioenergy until at least 2020. Across the three scenarios, total land demand is estimated to increase by between 52 and 200 Mha which can be compared with a range of potential land availability estimates from the literature of between 240 million hectares to over 1 billion hectares. Biomass feedstocks arise from combinations of residues and wastes, energy cropping and increased efficiency in supply chains for energy, food and materials. In addition, biomass has the unique capability of providing solid, liquid and gaseous forms of modern energy carriers that can be transformed into analogues to existing fuels. Because photosynthesis fixes carbon dioxide from the atmosphere, biomass supply chains can be configured to store at least some of the fixed carbon in forms or ways that it will not be reemitted to the atmosphere for considerable periods of time, so-called negative emissions pathways. These attributes provide opportunities for bioenergy policies to promote longterm and sustainable options for the supply of energy for the foreseeable future.

  2. Biofuel Distribution Datasets from the Bioenergy Knowledge Discovery Framework

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Bioenergy Knowledge Discovery Framework invites users to discover the power of bioenergy through an interface that provides extensive access to research data and literature, GIS mapping tools, and collaborative networks. The Bioenergy KDF supports efforts to develop a robust and sustainable bioenergy industry. The KDF facilitates informed decision making by providing a means to synthesize, analyze, and visualize vast amounts of information in a relevant and succinct manner. It harnesses Web 2.0 and social networking technologies to build a collective knowledge system that can better examine the economic and environmental impacts of development options for biomass feedstock production, biorefineries, and related infrastructure. [copied from https://www.bioenergykdf.net/content/about] Holdings include datasets, models, and maps and the collections are growing due to both DOE contributions and individuals' data uploads.

  3. Feedstock Logistics Datasets from DOE's Bioenergy Knowledge Discovery Framework (KDF)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Bioenergy Knowledge Discovery Framework invites users to discover the power of bioenergy through an interface that provides extensive access to research data and literature, GIS mapping tools, and collaborative networks. The Bioenergy KDF supports efforts to develop a robust and sustainable bioenergy industry. The KDF facilitates informed decision making by providing a means to synthesize, analyze, and visualize vast amounts of information in a relevant and succinct manner. It harnesses Web 2.0 and social networking technologies to build a collective knowledge system that can better examine the economic and environmental impacts of development options for biomass feedstock production, biorefineries, and related infrastructure. Holdings include datasets, models, and maps. [from https://www.bioenergykdf.net/content/about

  4. Climate Change Impacts for the Conterminous USA: An Integrated Assessment Part 5. Irrigated Agriculture and National Grain Crop Production

    SciTech Connect (OSTI)

    Thomson, Allison M.; Rosenberg, Norman J.; Izaurralde, Roberto C.; Brown, Robert A.

    2005-04-01T23:59:59.000Z

    Over the next century global warming will lead to changes in weather patterns, affecting many aspects of our environment. In the United States, the one sector of the economy most likely to be directly impacted by the changes in climate is agriculture. We have examined potential changes in dryland agriculture (Part 2) and in water resources necessary for crop production (Part 3). Here we assess to what extent, under a set of climate change scenarios, water supplies will be sufficient to meet the irrigation requirement of major grain crops in the U.S. In addition, we assess the overall impacts of changes in water supply on national grain production. We applied 12 climate change scenarios based on the predictions of General Circulation Models to a water resources model and a crop growth simulator for the conterminous United States. We calculate national production in current crop growing regions by applying irrigation where it is necessary and water is available. Irrigation declines under all climate change scenarios employed in this study. In certain regions and scenarios, precipitation declines so much that water supplies are too limited; in other regions it plentiful enough that little value is derived from irrigation. Total crop production is greater when irrigation is applied, but corn and soybean production declines under most scenarios. Winter wheat production responds significantly to elevated atmospheric CO2 and appears likely to increase under climate change.

  5. Biofuel and Bioenergy implementation scenarios

    E-Print Network [OSTI]

    Biofuel and Bioenergy implementation scenarios Final report of VIEWLS WP5, modelling studies #12;Biofuel and Bioenergy implementation scenarios Final report of VIEWLS WP5, modelling studies By Andr of this project are to provide structured and clear data on the availability and performance of biofuels

  6. NREL: Innovation Impact - Bioenergy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency Visit |Infrastructure The foundationBioenergy Menu Home

  7. RESEARCH Open Access Short and long-term carbon balance of bioenergy

    E-Print Network [OSTI]

    by offsetting fossil fuel electricity generation emissions, and potentially by avoided pyrogenic emissions dueRESEARCH Open Access Short and long-term carbon balance of bioenergy electricity production fueled bioenergy electricity production are offset by avoided fossil fuel electricity emissions. The carbon benefit

  8. Effect of Harvest Dates on Biomass Accumulation and Composition in Bioenergy Sorghum

    E-Print Network [OSTI]

    Borden, Dustin Ross

    2012-02-14T23:59:59.000Z

    for use as a feedstock for ethanol production. Other factors such as water use efficiency, drought tolerance, yield potential, composition, and established production systems also make sorghum a logical choice as a feedstock for bioenergy production...

  9. Vegetable Oil from Leaves and Stems: Vegetative Production of Oil in a C4 Crop

    SciTech Connect (OSTI)

    None

    2012-01-01T23:59:59.000Z

    PETRO Project: Arcadia Biosciences, in collaboration with the University of California-Davis, is developing plants that produce vegetable oil in their leaves and stems. Ordinarily, these oils are produced in seeds, but Arcadia Biosciences is turning parts of the plant that are not usually harvested into a source of concentrated energy. Vegetable oil is a concentrated source of energy that plants naturally produce and is easily separated after harvest. Arcadia Biosciences will isolate traits that control oil production in seeds and transfer them into leaves and stems so that all parts of the plants are oil-rich at harvest time. After demonstrating these traits in a fast-growing model plant, Arcadia Biosciences will incorporate them into a variety of dedicated biofuel crops that can be grown on land not typically suited for food production

  10. National Bioenergy Center Biochemical Platform Integration Project

    SciTech Connect (OSTI)

    Not Available

    2008-07-01T23:59:59.000Z

    April through June 2008 update on activities of the National Bioenergy Center's Biochemical Platform Integration Project.

  11. BIOENERGI ER BLEVET MODERNE 4DECEMBER 2003

    E-Print Network [OSTI]

    , biogas og bioethanol. Bioenergi er den eneste vedvarende energikilde, der findes i fast, flydende og

  12. Moderne bioenergi -et nyt dansk vkstomrde?

    E-Print Network [OSTI]

    ), organisk affald, biogas og bioethanol Bioenergi er den eneste vedvarende energikilde, der findes i fast

  13. Sustainable Forest Bioenergy Initiative

    SciTech Connect (OSTI)

    Breger, Dwayne; Rizzo, Rob

    2011-09-20T23:59:59.000Z

    In the states Electricity Restructuring Act of 1998, the Commonwealth of Massachusetts recognized the opportunity and strategic benefits to diversifying its electric generation capacity with renewable energy. Through this legislation, the Commonwealth established one of the nations first Renewable Energy Portfolio Standard (RPS) programs, mandating the increasing use of renewable resources in its energy mix. Bioenergy, meeting low emissions and advanced technology standards, was recognized as an eligible renewable energy technology. Stimulated by the states RPS program, several project development groups have been looking seriously at building large woody biomass generation units in western Massachusetts to utilize the woody biomass resource. As a direct result of this development, numerous stakeholders have raised concerns and have prompted the state to take a leadership position in pursuing a science based analysis of biomass impacts on forest and carbon emissions, and proceed through a rulemaking process to establish prudent policy to support biomass development which can contribute to the states carbon reduction commitments and maintain safeguards for forest sustainability. The Massachusetts Sustainable Forest Bioenergy Initiative (SFBI) was funded by the Department of Energy and started by the Department of Energy Resources before these contentious biomass issues were fully raised in the state, and continued throughout the substantive periods of this policy development. Thereby, while SFBI maintained its focus on the initially proposed Scope of Work, some aspects of this scope were expanded or realigned to meet the needs for groundbreaking research and policy development being advanced by DOER. SFBI provided DOER and the Commonwealth with a foundation of state specific information on biomass technology and the biomass industry and markets, the most comprehensive biomass fuel supply assessment for the region, the economic development impact associated with biomass usage, an understanding of forest management trends including harvesting and fuel processing methods, and the carbon profile of utilizing forest based woody biomass for the emerging biomass markets. Each of the tasks and subtasks have provided an increased level of understanding to support new directives, policies and adaptation of existing regulations within Massachusetts. The project has provided the essential information to allow state policymakers and regulators to address emerging markets, while ensuring forest sustainability and understanding the complex science on CO2 accounting and impacts as a result of biomass harvesting for power generation. The public at large and electricity ratepayers in Massachusetts will all benefit from the information garnered through this project. This is a result of the states interest to provide financial incentives to only biomass projects that demonstrate an acceptable carbon profile, an efficient use of the constrained supply of fuel, and the harvest of biomass to ensure forest sustainability. The goals of the Massachusetts Sustainable Forest Bioenergy Initiative as proposed in 2006 were identified as: increase the diversity of the Massachusetts energy mix through biomass; promote economic development in the rural economy through forest industry job creation; help fulfill the states energy and climate commitments under the Renewable Energy Portfolio Standard and Climate Protection Plan; assist the development of a biomass fuel supply infrastructure to support energy project demands; provide education and outreach to the public on the benefits and impacts of bioenergy; improve the theory and practice of sustainable forestry in the Commonwealth. Completed project activities summarized below will demonstrate the effectiveness of the project in meeting the above goals. In addition, as discussed above, Massachusetts DOER needed to make some modifications to its work plan and objectives during the term of this project due to changing public policy demands brought forth in the course of the public discours

  14. Abengoa Bioenergy Biomass of Kansas LLC | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Abengoa Bioenergy Biomass of Kansas LLC Abengoa Bioenergy Biomass of Kansas LLC Abengoa Bioenergy Biomass of Kansas LLC Location: Hugoton, KS Eligibility: 1705 Snapshot In...

  15. Atmospheric inversion of surface carbon flux with consideration of the spatial distribution of US crop production and consumption

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Chen, J. M.; Fung, J. W.; Mo, G.; Deng, F.; West, T. O.

    2015-01-01T23:59:59.000Z

    In order to improve quantification of the spatial distribution of carbon sinks and sources in the conterminous US, we conduct a nested global atmospheric inversion with detailed spatial information on crop production and consumption. County-level cropland net primary productivity, harvested biomass, soil carbon change, and human and livestock consumption data over the conterminous US are used for this purpose. Time-dependent Bayesian synthesis inversions are conducted based on CO2 observations at 210 stations to infer CO2 fluxes globally at monthly time steps with a nested focus on 30 regions in North America. Prior land surface carbon fluxes are first generated usingmorea biospheric model, and the inversions are constrained using prior fluxes with and without adjustments for crop production and consumption over the 20022007 period. After these adjustments, the inverted regional carbon sink in the US Midwest increases from 0.25 0.03 to 0.42 0.13 Pg C yr-1, whereas the large sink in the US southeast forest region is weakened from 0.41 0.12 to 0.29 0.12 Pg C yr-1. These adjustments also reduce the inverted sink in the west region from 0.066 0.04 to 0.040 0.02 Pg C yr-1 because of high crop consumption and respiration by humans and livestock. The general pattern of sink increases in crop production areas and sink decreases (or source increases) in crop consumption areas highlights the importance of considering the lateral carbon transfer in crop products in atmospheric inverse modeling, which provides a reliable atmospheric perspective of the overall carbon balance at the continental scale but is unreliable for separating fluxes from different ecosystems.less

  16. Atmospheric inversion of surface carbon flux with consideration of the spatial distribution of US crop production and consumption

    SciTech Connect (OSTI)

    Chen, J. M. [Nanjing Univ., Jiangsu (China); Univ. of Toronto, ON (Canada); Fung, J. W. [Univ. of Toronto, ON (Canada); Mo, G. [Univ. of Toronto, ON (Canada); Deng, F. [Univ. of Toronto, ON (Canada); West, T. O. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-01-01T23:59:59.000Z

    In order to improve quantification of the spatial distribution of carbon sinks and sources in the conterminous US, we conduct a nested global atmospheric inversion with detailed spatial information on crop production and consumption. County-level cropland net primary productivity, harvested biomass, soil carbon change, and human and livestock consumption data over the conterminous US are used for this purpose. Time-dependent Bayesian synthesis inversions are conducted based on CO? observations at 210 stations to infer CO? fluxes globally at monthly time steps with a nested focus on 30 regions in North America. Prior land surface carbon fluxes are first generated using a biospheric model, and the inversions are constrained using prior fluxes with and without adjustments for crop production and consumption over the 20022007 period. After these adjustments, the inverted regional carbon sink in the US Midwest increases from 0.25 0.03 to 0.42 0.13 Pg C yr?, whereas the large sink in the US southeast forest region is weakened from 0.41 0.12 to 0.29 0.12 Pg C yr?. These adjustments also reduce the inverted sink in the west region from 0.066 0.04 to 0.040 0.02 Pg C yr? because of high crop consumption and respiration by humans and livestock. The general pattern of sink increases in crop production areas and sink decreases (or source increases) in crop consumption areas highlights the importance of considering the lateral carbon transfer in crop products in atmospheric inverse modeling, which provides a reliable atmospheric perspective of the overall carbon balance at the continental scale but is unreliable for separating fluxes from different ecosystems.

  17. Bio-energy feedstock yields and their water quality benefits in Mississippi

    SciTech Connect (OSTI)

    Parajuli, Prem B.

    2011-08-10T23:59:59.000Z

    Cellulosic and agricultural bio-energy crops can, under careful management, be harvested as feedstock for bio-fuels production and provide environmental benefits. However, it is required to quantify their relative advantages in feedstock production and water quality. The primary objective of this research was to evaluate potential feedstock yield and water quality benefit scenarios of bioenergy crops: Miscanthus (Miscanthus-giganteus), Switchgrass (Panicum virgatum), Johnsongrass (Sorghum halepense), Alfalfa (Medicago sativa L.), Soybean {Glycine max (L.) Merr.}, and Corn (Lea mays) in the Upper Pearl River watershed (UPRW), Mississippi using a Soil and Water Assessment Tool (SWAT). The SWAT model was calibrated (January 1981 to December 1994) and validated (January 1995 to September 2008) using monthly measured stream flow data. The calibrated and validated model determined good to very good performance for stream flow prediction (R2 and E from 0.60 to 0.86). The RMSE values (from 14 m3 s-1 to 37 m3 s-1) were estimated at similar levels of errors during model calibration and validation. The long-term average annual potential feedstock yield as an alternative energy source was determined the greatest when growing Miscanthus grass (373,849 Mg) as followed by Alfalfa (206,077 Mg), Switchgrass (132,077 Mg), Johnsongrass (47,576 Mg), Soybean (37,814 Mg), and Corn (22,069 Mg) in the pastureland and cropland of the watershed. Model results determined that average annual sediment yield from the Miscanthus grass scenario determined the least (1.16 Mg/ha) and corn scenario the greatest (12.04 Mg/ha). The SWAT model simulated results suggested that growing Miscanthus grass in the UPRW would have the greatest potential feedstock yield and water quality benefits.

  18. USDA Projections of Bioenergy-Related Corn and Soyoil Use for 2010-2019

    E-Print Network [OSTI]

    biofuel policy and trends, and e) bioenergy impacts on U.S. grain prices are explained below. EconomicUSDA Projections of Bioenergy-Related Corn and Soyoil Use for 2010-2019 Daniel M. O through 2019 period included estimates of world and U.S. energy prices, ethanol and biodiesel production

  19. Bioenergy 2015 Call for Posters

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energys Bioenergy Technologies Office (BETO) invites students, researchers, public and private organizations, and members of the general public to submit abstracts that BETO will review and consider for inclusion in the poster session at BETOs eighth annual conference, Bioenergy 2015: Opportunities in a Changing Energy Landscape. The conference will be held June 2324, 2015, at the Walter E. Washington Convention Center in Washington, D.C.

  20. Assessing the Economic Viability of Bio-based Products for Missouri Value-added Crop Production

    SciTech Connect (OSTI)

    Nicholas Kalaitzandonakes

    2005-11-30T23:59:59.000Z

    While research and development on biobased products has continued strong over the years, parallel attention on the economics and management of such product innovation has been lacking. With the financial support of the Department of Energy, the Economics and Management of Agrobiotechnology Center at the University of Missouri-Columbia has launched a pilot graduate education program that seeks to fill the gap. Within this context, a multi-disciplinary research and teaching program has been structured with an emphasis on new product and innovation economics and management. More specifically, this pilot graduate education program has the following major objectives: (1) To provide students with a strong background in innovation economics, management, and strategy. (2) To diversify the students academic background with coursework in science and technology. (3) To familiarize the student with biobased policy initiatives through interaction with state and national level organizations and policymakers. (4) To facilitate active collaboration with industry involved in the development and production of biobased products. The pilot education program seeks to develop human capital and research output. Although the research is, initially, focused on issues related to the State of Missouri, the results are expected to have national implications for the economy, producers, consumers and environment.

  1. Factors contributing to carbon fluxes from bioenergy harvests in the U.S. Northeast: an analysis using

    E-Print Network [OSTI]

    Vermont, University of

    not statistically significant. Bioenergy harvests using WTH generated fewer wood products and resulted in more of fossil fuels for energy production (`bioenergy' such as combusting woodchips or pellets for electricity to the atmo- sphere) into and out of the forest system, as well as C transferred to wood products, the life

  2. Stakeholder Database from the Center for Bioenergy Sustainability (Learn who the experts are)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Center for BioEnergy Sustainability (CBES) is a leading resource for dealing with the environmental impacts and the ultimate sustainability of biomass production for conversion to biofuels and bio-based products. Its purpose is to use science and analysis to understand the sustainability (environmental, economic, and social) of current and potential future bioenergy production and distribution; to identify approaches to enhance bioenergy sustainability; and to serve as an independent source of the highest quality data and analysis for bioenergy stakeholders and decision makers. ... On the operational level, CBES is a focal point and business-development vehicle for ORNLs capabilities related to bioenergy sustainability and socioeconomic analyses. As such, it complements the BioEnergy Science Center (BESC), also located at ORNL, which focuses on the problem of converting lignocellulosic biomass into reactive intermediaries necessary for the cellulosic biofuel industry. Together, these centers provide a strong integrating mechanism and business-development tool for ORNL's science and technology portfolio in bioenergy [taken and edited from http://web.ornl.gov/sci/ees/cbes/. The Stakeholder Database allows you to find experts in bioenergy by their particular type of expertise, their affiliations or locations, their specific research areas or research approaches, etc.

  3. The Carbon Footprint of Bioenergy Sorghum Production in Central Texas: Production Implications on Greenhouse Gas Emissions, Carbon Cycling, and Life Cycle Analysis

    E-Print Network [OSTI]

    Storlien, Joseph Orgean

    2013-06-13T23:59:59.000Z

    (Perlack et al., 2005). The study estimated over one billion dry tons of biomass feedstocks could be harvested domestically for biofuels that could offset nearly 30% of the gasoline consumed as transportation fuel in the U.S. (Perlack et al., 2005... amount of feedstock nor the implications of producing and harvesting select biofuel feedstocks and potential issues associated with land-use change. One issue with large-scale biofuel production is whether high biomass feedstock yields can...

  4. Hawaii Bioenergy Master Plan Potential Environmental Impacts of

    E-Print Network [OSTI]

    Hawaii Bioenergy Master Plan Potential Environmental Impacts of Bioenergy Development in Hawaii of the potential environmental impacts associated with bioenergy development in Hawaii was conducted as part included the characterization of the general environmental impacts and issues associated with bioenergy

  5. Bioenergy Deployment Consortium (BDC) 2014 Fall Symposium

    Broader source: Energy.gov [DOE]

    The 2014 BDC Fall Symposium will be held on October 2122, 2014 in Fort Myers, Florida. The event will include a tour of the Algenol facility on Wednesday morning. The symposium will have panels for progress reports from current cellulosic bio-product companies, updates on government policy from several agencies, scale-up strategies,and lessons learned. POET-DSM will provide the after dinner success story. Neil Rossmeissl, Program Manager, Algal Program, Bioenergy Technologies Office, will be delivering the keynote address on expanding the bioeconomy.

  6. Switchgrass for Bioenergy held at the University of NebraskaLincoln

    E-Print Network [OSTI]

    Farritor, Shane

    * Pest Management * Soil and Water Management Held at a site developed exclu- sively for the clinics. Cenusa bioenergy, a USDA-funded research initiative, is investigating the creation of a sustainable at: In-FieldTrainingforAgribusinessProfessionals Know how. Know now. Crop Management Diagnostic

  7. Effects of Irrigating with Treated Oil and Gas Product Water on Crop Biomass and Soil Permeability

    SciTech Connect (OSTI)

    Terry Brown; Jeffrey Morris; Patrick Richards; Joel Mason

    2010-09-30T23:59:59.000Z

    Demonstrating effective treatment technologies and beneficial uses for oil and gas produced water is essential for producers who must meet environmental standards and deal with high costs associated with produced water management. Proven, effective produced-water treatment technologies coupled with comprehensive data regarding blending ratios for productive long-term irrigation will improve the state-of-knowledge surrounding produced-water management. Effective produced-water management scenarios such as cost-effective treatment and irrigation will discourage discharge practices that result in legal battles between stakeholder entities. The goal of this work is to determine the optimal blending ratio required for irrigating crops with CBNG and conventional oil and gas produced water treated by ion exchange (IX), reverse osmosis (RO), or electro-dialysis reversal (EDR) in order to maintain the long term physical integrity of soils and to achieve normal crop production. The soils treated with CBNG produced water were characterized with significantly lower SAR values compared to those impacted with conventional oil and gas produced water. The CBNG produced water treated with RO at the 100% treatment level was significantly different from the untreated produced water, while the 25%, 50% and 75% water treatment levels were not significantly different from the untreated water. Conventional oil and gas produced water treated with EDR and RO showed comparable SAR results for the water treatment technologies. There was no significant difference between the 100% treated produced water and the control (river water). The EDR water treatment resulted with differences at each level of treatment, which were similar to RO treated conventional oil and gas water. The 100% treated water had SAR values significantly lower than the 75% and 50% treatments, which were similar (not significantly different). The results of the greenhouse irrigation study found the differences in biomass production between each soil were significant for Western Wheatgrass and Alfafla. The Sheridan sandy loam soil resulted in the highest production for western wheatgrass and alfalfa while the X-ranch sandy loam had the lowest production rate for both plants. Plant production levels resulting from untreated CBNG produced water were significantly higher compared to untreated conventional oil and gas produced water. However, few differences were found between water treatments. The biomass produced from the greenhouse study was analyzed for elemental composition and for forage value. Elemental composition indentified several interesting findings. Some of the biomass was characterized with seemly high boron and sodium levels. High levels of boron found in some of the biomass was unexpected and may indicate that alfalfa and western wheatgrass plants may have been impacted by either soil or irrigation water containing high boron levels. Plants irrigated with water treated using EDR technology appeared to contain higher levels of boron with increased levels of treatment. Forage evaluations were conducted using near infrared reflectance spectroscopy. The data collected show small differences, generally less than 10%, between produced water treatments including the no treatment and 100% treatment conditions for each plant species studied. The forage value of alfalfa and western wheatgrass did not show significant tendencies dependent on soil, the amount of produced water treatment, or treatment technology.

  8. U.S. Billion-Ton Update: Biomass Supply for a Bioenergy and Bioproducts Industry

    SciTech Connect (OSTI)

    Downing, Mark [ORNL; Eaton, Laurence M [ORNL; Graham, Robin Lambert [ORNL; Langholtz, Matthew H [ORNL; Perlack, Robert D [ORNL; Turhollow Jr, Anthony F [ORNL; Stokes, Bryce [Navarro Research & Engineering; Brandt, Craig C [ORNL

    2011-08-01T23:59:59.000Z

    The report, Biomass as Feedstock for a Bioenergy and Bioproducts Industry: The Technical Feasibility of a Billion-Ton Annual Supply (generally referred to as the Billion-Ton Study or 2005 BTS), was an estimate of 'potential' biomass based on numerous assumptions about current and future inventory, production capacity, availability, and technology. The analysis was made to determine if conterminous U.S. agriculture and forestry resources had the capability to produce at least one billion dry tons of sustainable biomass annually to displace 30% or more of the nation's present petroleum consumption. An effort was made to use conservative estimates to assure confidence in having sufficient supply to reach the goal. The potential biomass was projected to be reasonably available around mid-century when large-scale biorefineries are likely to exist. The study emphasized primary sources of forest- and agriculture-derived biomass, such as logging residues, fuel treatment thinnings, crop residues, and perennially grown grasses and trees. These primary sources have the greatest potential to supply large, reliable, and sustainable quantities of biomass. While the primary sources were emphasized, estimates of secondary residue and tertiary waste resources of biomass were also provided. The original Billion-Ton Resource Assessment, published in 2005, was divided into two parts-forest-derived resources and agriculture-derived resources. The forest resources included residues produced during the harvesting of merchantable timber, forest residues, and small-diameter trees that could become available through initiatives to reduce fire hazards and improve forest health; forest residues from land conversion; fuelwood extracted from forests; residues generated at primary forest product processing mills; and urban wood wastes, municipal solid wastes (MSW), and construction and demolition (C&D) debris. For these forest resources, only residues, wastes, and small-diameter trees were considered. The 2005 BTS did not attempt to include any wood that would normally be used for higher-valued products (e.g., pulpwood) that could potentially shift to bioenergy applications. This would have required a separate economic analysis, which was not part of the 2005 BTS. The agriculture resources in the 2005 BTS included grains used for biofuels production; crop residues derived primarily from corn, wheat, and small grains; and animal manures and other residues. The cropland resource analysis also included estimates of perennial energy crops (e.g., herbaceous grasses, such as switchgrass, woody crops like hybrid poplar, as well as willow grown under short rotations and more intensive management than conventional plantation forests). Woody crops were included under cropland resources because it was assumed that they would be grown on a combination of cropland and pasture rather than forestland. In the 2005 BTS, current resource availability was estimated at 278 million dry tons annually from forestlands and slightly more than 194 million dry tons annually from croplands. These annual quantities increase to about 370 million dry tons from forestlands and to nearly 1 billion dry tons from croplands under scenario conditions of high-yield growth and large-scale plantings of perennial grasses and woody tree crops. This high-yield scenario reflects a mid-century timescale ({approx}2040-2050). Under conditions of lower-yield growth, estimated resource potential was projected to be about 320 and 580 million dry tons for forest and cropland biomass, respectively. As noted earlier, the 2005 BTS emphasized the primary resources (agricultural and forestry residues and energy crops) because they represent nearly 80% of the long-term resource potential. Since publication of the BTS in April 2005, there have been some rather dramatic changes in energy markets. In fact, just prior to the actual publication of the BTS, world oil prices started to increase as a result of a burgeoning worldwide demand and concerns about long-term supplies. By the end of the summer, oil pri

  9. Canada Biomass-Bioenergy Report May 31, 2006

    E-Print Network [OSTI]

    Canada Biomass-Bioenergy Report May 31, 2006 Doug Bradley President Climate Change Solutions;2 Table of Contents 1. Policy Setting 2. Biomass Volumes 2.1. Woody Biomass 2.1.1. Annual Residue Production 2.1.2. Pulp Chips 2.1.3. Existing Hog Fuel Piles 2.1.4. Forest Floor Biomass 2.2. Agricultural

  10. 1973 projections of consumption, production, prices and crop values for Texas winter lettuce and early spring onions

    E-Print Network [OSTI]

    Furrh, Samuel Roger

    1970-01-01T23:59:59.000Z

    ved as to style and content by Ch irman of Committee) / (Head of epartment) (Member n (Member) Mem r (Member) August, 1970 ABSTRACT 1973 Projections of Consumption, Production, Prices and Crop Values for Texas Winter Lettuce and Early Spring... On' ons. (August 1970) Samuel Roger Furrh, B. S. , Texas A&M University Directed by: Dr. Marshall R. Godwin The purpose of this study was to provide information to Texas winter lettuce and early spring oni. on producers that would aid them...

  11. An Economic Feasibility Study of Irrigated Crop Production in the Pecos Valley of Texas

    E-Print Network [OSTI]

    Condra, G. D.; Lacewell, R. D.; Hardin, D. C.; Lindsey, K.; Whitson, R. E.

    to the Coyanosa and St. Lawrence regions under alternative future scenarios for inflation rates, energy prices, crop prices, and interest rates. The Coyanosa model was also applied under most likely scenario conditions to analyze the effects of alternative levels...

  12. NREL National Bioenergy Center Overview

    SciTech Connect (OSTI)

    Foust, Thomas; Pienkos, Phil; Sluiter, Justin; Magrini, Kim; McMillan, Jim

    2014-07-28T23:59:59.000Z

    The demand for clean, sustainable, secure energy is growing... and the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) is answering the call. NREL's National Bioenergy Center is pioneering biofuels research and development and accelerating the pace these technologies move into the marketplace.

  13. NREL National Bioenergy Center Overview

    SciTech Connect (OSTI)

    None

    2012-01-01T23:59:59.000Z

    The demand for clean, sustainable, secure energy is growing... and the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) is answering the call. NREL's National bioenergy Center is pioneering biofuels research and development and accelerating the pace these technologies move into the marketplace.

  14. implementing bioenergy applied research & development

    E-Print Network [OSTI]

    Northern British Columbia, University of

    1 A Northern Centre for Renewable Energy implementing bioenergy applied research & development to develop local solutions to these challenges by integrating campus operations, education, and research will help the University meet its current and future energy needs, reduce or eliminate our greenhouse gas

  15. Bioenergy 2015: Attendee Networking Tool

    Broader source: Energy.gov [DOE]

    For the Bioenergy 2015 Conference, this tool offers a concise listing of participants' background, areas of expertise, areas of need, and business contact information. Users can sort the information by clicking on the arrows in the header rows. Users can also filter by keywords by typing them into the search field in order to find individuals with skill sets complementary to their own.

  16. Hardwoods for Woody Energy Crops in the Southeast United States:Two Centuries of Practitioner Experience

    SciTech Connect (OSTI)

    Kline, Keith L [ORNL; Coleman, Mark [USDA Forest Service

    2010-01-01T23:59:59.000Z

    This paper summarizes opinions from forest industry experts on the potential for hardwood tree species to serve as feedstock for bioenergy in the Southeast United States. Hardwoods are of interest for bioenergy because of desirable physical qualities, genetic research advances, and growth potential. Experts observe that high productivity rates in southeastern plantations are confined to limited site conditions or require costly inputs. Eastern cottonwood and American sycamore grow quickly on rich bottomlands where they compete with higher-value crops. These species are also prone to pests and disease. Sweetgum is frost hardy, has few pest or disease problems, and grows across a broad range of sites, yet growth rates are relatively low. Eucalypts require few inputs and offer high potential productivity, but are limited by frost to the lower coastal plain and Florida. More time and investment in silviculture, selection, and breeding will be needed to develop hardwoods as competitive biofuel feedstock species. Loblolly pine has robust site requirements, growth rates rivaling hardwoods and lower costs of production. Because of existing stands and know-how, the forestry community considers loblolly pine to be a prime candidate for plantation bioenergy in the Southeast. Further research is required to study naturally regenerated hardwood biomass resources.

  17. The role of short-rotation woody crops in sustainable development

    SciTech Connect (OSTI)

    Shepard, J.P. [National Council of the Paper Industry for Air and Stream Improvement, Medford, MA (United States); Tolbert, V.R. [Oak Ridge National Lab., TN (United States)

    1996-12-31T23:59:59.000Z

    One answer to increase wood production is by increasing management intensity on existing timberland, especially in plantation forests. Another is to convert land currently in agriculture to timberland. Short-rotation woody crops can be used in both cases. But, what are the environmental consequences? Short-rotation woody crops can provide a net improvement in environmental quality at both local and global scales. Conversion of agricultural land to short-rotation woody crops can provide the most environmental quality enhancement by reducing erosion, improving soil quality, decreasing runoff, improving groundwater quality, and providing better wildlife habitat. Forest products companies can use increased production from intensively managed short-rotation woody crop systems to offset decreased yield from the portion of their timberland that is managed less intensively, e.g. streamside management zones and other ecologically sensitive or unique areas. At the global scale, use of short-rotation woody crops for bioenergy is part of the solution to reduce greenhouse gases produced by burning fossil fuels. Incorporating short-rotation woody crops into the agricultural landscape also increases storage of carbon in the soil, thus reducing atmospheric concentrations. In addition, use of wood instead of alternatives such as steel, concrete, and plastics generally consumes less energy and produces less greenhouse gases. Cooperative research can be used to achieve energy, fiber, and environmental goals. This paper will highlight several examples of ongoing cooperative research projects that seek to enhance the environmental aspects of short-rotation woody crop systems. Government, industry, and academia are conducting research to study soil quality, use of mill residuals, nutrients in runoff and groundwater, and wildlife use of short-rotation woody crop systems in order to assure the role of short-rotation crops as a sustainable way of meeting society`s needs.

  18. Hawaii Bioenergy Master Plan Land and Water Resources

    E-Print Network [OSTI]

    production including selection of biomass feedstocks, modeling of crop water use; technologies including of biomass feedstocks, agricultural practices, and any other factors; and Estimate and document biofuel

  19. Advancing sustainable bioenergy: Evolving stakeholder interests and the relevance of research

    SciTech Connect (OSTI)

    Johnson, Timothy L [U.S. Environmental Protection Agency, Raleigh, North Carolina; Bielicki, Dr Jeffrey M [University of Minnesota; Dodder, Rebecca [U.S. Environmental Protection Agency; Hilliard, Michael R [ORNL; Kaplan, Ozge [U.S. Environmental Protection Agency; Miller, C. Andy [U.S. Environmental Protection Agency

    2013-01-01T23:59:59.000Z

    The sustainability of future bioenergy production rests on more than continual improvements in its environmental, economic, and social impacts. The emergence of new biomass feedstocks, an expanding array of conversion pathways, and expected increases in overall bioenergy production are connecting diverse technical, social, and policy communities. These stakeholder groups have different and potentially conflicting values and cultures, and therefore different goals and decision making processes. Our aim is to discuss the implications of this diversity for bioenergy researchers. The paper begins with a discussion of bioenergy stakeholder groups and their varied interests, and illustrates how this diversity complicates efforts to define and promote sustainable bioenergy production. We then discuss what this diversity means for research practice. Researchers, we note, should be aware of stakeholder values, information needs, and the factors affecting stakeholder decision making if the knowledge they generate is to reach its widest potential use. We point out how stakeholder participation in research can increase the relevance of its products, and argue that stakeholder values should inform research questions and the choice of analytical assumptions. Finally, we make the case that additional natural science and technical research alone will not advance sustainable bioenergy production, and that important research gaps relate to understanding stakeholder decision making and the need, from a broader social science perspective, to develop processes to identify and accommodate different value systems. While sustainability requires more than improved scientific and technical understanding, the need to understand stakeholder values and manage diversity presents important research opportunities.

  20. An Integrated Model for Assessment of Sustainable Agricultural Residue Removal Limits for Bioenergy Systems

    SciTech Connect (OSTI)

    D. Muth; K. M. Bryden

    2003-12-01T23:59:59.000Z

    Agricultural residues have been identified as a significant potential resource for bioenergy production, but serious questions remain about the sustainability of harvesting residues. Agricultural residues play an important role in limiting soil erosion from wind and water and in maintaining soil organic carbon. Because of this, multiple factors must be considered when assessing sustainable residue harvest limits. Validated and accepted modeling tools for assessing these impacts include the Revised Universal Soil Loss Equation Version 2 (RUSLE2), the Wind Erosion Prediction System (WEPS), and the Soil Conditioning Index. Currently, these models do not work together as a single integrated model. Rather, use of these models requires manual interaction and data transfer. As a result, it is currently not feasible to use these computational tools to perform detailed sustainable agricultural residue availability assessments across large spatial domains or to consider a broad range of land management practices. This paper presents an integrated modeling strategy that couples existing datasets with the RUSLE2 water erosion, WEPS wind erosion, and Soil Conditioning Index soil carbon modeling tools to create a single integrated residue removal modeling system. This enables the exploration of the detailed sustainable residue harvest scenarios needed to establish sustainable residue availability. Using this computational tool, an assessment study of residue availability for the state of Iowa was performed. This study included all soil types in the state of Iowa, four representative crop rotation schemes, variable crop yields, three tillage management methods, and five residue removal methods. The key conclusions of this study are that under current management practices and crop yields nearly 26.5 million Mg of agricultural residue are sustainably accessible in the state of Iowa, and that through the adoption of no till practices residue removal could sustainably approach 40 million Mg. However, when considering the economics and logistics of residue harvest, yields below 2.25 Mg ha-1 are generally considered to not be viable for a commercial bioenergy system. Applying this constraint, the total agricultural residue resource available in Iowa under current management practices is 19 million Mg. Previously published results have shown residue availability from 22 million Mg to over 50 million Mg in Iowa.

  1. Biofuel Enduse Datasets from the Bioenergy Knowledge Discovery Framework (KDF)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Bioenergy Knowledge Discovery Framework invites users to discover the power of bioenergy through an interface that provides extensive access to research data and literature, GIS mapping tools, and collaborative networks. The Bioenergy KDF supports efforts to develop a robust and sustainable bioenergy industry. The KDF facilitates informed decision making by providing a means to synthesize, analyze, and visualize vast amounts of information in a relevant and succinct manner. It harnesses Web 2.0 and social networking technologies to build a collective knowledge system that can better examine the economic and environmental impacts of development options for biomass feedstock production, biorefineries, and related infrastructure. [copied from https://www.bioenergykdf.net/content/about]

    Holdings include datasets, models, and maps. This is a very new resource, but the collections will grow due to both DOE contributions and individuals data uploads. Currently the Biofuel Enduse collection includes 133 items. Most of these are categorized as literature, but 36 are listed as datasets and ten as models.

  2. CROP SCIENCE, VOL. 49, JULYAUGUST 2009 1523 Agricultural production in the United States and Europe

    E-Print Network [OSTI]

    Sims, Gerald K.

    and Europe has changed dramatically in the last 60 yr. One significant change has been replacement of manyKenzie et al., 1999; Tracy and Zhang, 2008). Weed Biomass and Species Composition as Affected was to evaluate how an integrated croplivestock system would influence weed biomass and weed species composition

  3. Ris Energy Report 2 Bioenergy is energy of biological and renewable origin,

    E-Print Network [OSTI]

    of bioenergy resources are fuel wood, bagasse, organic waste, biogas and bioethanol. Bioenergy is the only

  4. STAFFREPORT Prepared for the Bioenergy Interagency Working Group

    E-Print Network [OSTI]

    STAFFREPORT Prepared for the Bioenergy Interagency Working Group: Air Resources Board 2010 2009 PROGRESS TO PLAN BIOENERGY ACTION PLAN FOR CALIFORNIA CALIFORNIA ENERGY COMMISSION #12, and et. al. 2010. 2009 Progress to Plan Bioenergy Action Plan for California. California Energy

  5. Bird Communities and Biomass Yields in Potential Bioenergy Grasslands

    E-Print Network [OSTI]

    Turner, Monica G.

    providing bird habitat. Bioenergy grasslands promote agricultural multifunctionality and conservationBird Communities and Biomass Yields in Potential Bioenergy Grasslands Peter J. Blank1 *, David W, Wisconsin, United States of America Abstract Demand for bioenergy is increasing, but the ecological

  6. BioEnergy Blog | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department's Bioenergy Technologies Office engages with the U.S. Department of Agriculture on many projects, including guidance on the proper removal of corn stover...

  7. International Market Opportunities in Bioenergy: Leveraging U...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Biomass 2014: Breakout Speaker Biographies Bioenergy Technologies Office Overview U.S. and Brazil Bilateral Collaboration on Biofuels...

  8. Bioenergy Knowledge Discovery Framework Recognized at National...

    Broader source: Energy.gov (indexed) [DOE]

    research. In 2014, the Bioenergy KDF released new tools, including the Legislative Library, Biomass Scenario Model Tool, and DOE-Funded Content Page. This award is significant...

  9. Maintaining environmental quality while expanding biomass production: Sub-regional U.S. policy simulations

    SciTech Connect (OSTI)

    Egbendewe-Mondzozo, Aklesso; Swinton, S.; Izaurralde, Roberto C.; Manowitz, David H.; Zhang, Xuesong

    2013-03-01T23:59:59.000Z

    This paper evaluates environmental policy effects on ligno-cellulosic biomass production and environ- mental outcomes using an integrated bioeconomic optimization model. The environmental policy integrated climate (EPIC) model is used to simulate crop yields and environmental indicators in current and future potential bioenergy cropping systems based on weather, topographic and soil data. The crop yield and environmental outcome parameters from EPIC are combined with biomass transport costs and economic parameters in a representative farmer profit-maximizing mathematical optimization model. The model is used to predict the impact of alternative policies on biomass production and environmental outcomes. We find that without environmental policy, rising biomass prices initially trigger production of annual crop residues, resulting in increased greenhouse gas emissions, soil erosion, and nutrient losses to surface and ground water. At higher biomass prices, perennial bioenergy crops replace annual crop residues as biomass sources, resulting in lower environmental impacts. Simulations of three environmental policies namely a carbon price, a no-till area subsidy, and a fertilizer tax reveal that only the carbon price policy systematically mitigates environmental impacts. The fertilizer tax is ineffectual and too costly to farmers. The no-till subsidy is effective only at low biomass prices and is too costly to government.

  10. BioEnergy Science Center (BESC) | Clean Energy | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Media News and Awards Supporting Organizations Redefining The Frontiers of Bioenergy Home | Science & Discovery | Clean Energy | Facilities and Centers | BioEnergy...

  11. Bioenergy Technologies Office Multi-Year Program Plan: November...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bioenergy Technologies Office Multi-Year Program Plan: November 2014 Update Bioenergy Technologies Office Multi-Year Program Plan: November 2014 Update This Multi-Year Program Plan...

  12. Office of the Biomass Program Educational Opportunities in Bioenergy...

    Office of Environmental Management (EM)

    the New Bioenergy KDF for Data Discovery and Research Sustainability for the Global Biofuels Industry: Minimizing Risks and Maximizing Opportunities Bioenergy Technologies Office...

  13. Breakthrough in Bioenergy: American Process Sells First RIN-qualified...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Breakthrough in Bioenergy: American Process Sells First RIN-qualified Cellulosic Ethanol Shipment Breakthrough in Bioenergy: American Process Sells First RIN-qualified Cellulosic...

  14. analysing bioenergy demand: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    sorghum program that boasts about 40 6 Hawaii Bioenergy Master Plan Bioenergy Technology Renewable Energy Websites Summary: technology assessment was conducted as part of the...

  15. assessing bioenergy options: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    are reviewed Vermont, University of 9 Hawaii Bioenergy Master Plan Bioenergy Technology Renewable Energy Websites Summary: technology assessment was conducted as part of the...

  16. alaska bioenergy program: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and function of managed, semi 23 Hawaii Bioenergy Master Plan Bioenergy Technology Renewable Energy Websites Summary: technology assessment was conducted as part of the...

  17. agency bioenergy agreement: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Carolina; Sponsorad Epa 1994-01-01 13 Hawaii Bioenergy Master Plan Bioenergy Technology Renewable Energy Websites Summary: technology assessment was conducted as part of the...

  18. Washington, D.C. and Tennessee: Bioenergy Technologies Office...

    Energy Savers [EERE]

    National Bioenergy Day 2014 Project Overview Positive Impact The KDF supports the development of a sustainable bioenergy industry by providing unique value for researchers,...

  19. ABSTRACT: Bioenergy Harvesting Technologies to Supply Crop Residues In a

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015ofDepartmentDepartment of Energy ThisThistheSummary

  20. ABSTRACT: Bioenergy Harvesting Technologies to Supply Crop Residues In a

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube platform is always evolving,Response to Smart Grid RFI. November

  1. LANDSCAPE MANAGEMENT FOR SUSTAINABLE SUPPLIES OF BIOENERGY FEEDSTOCK AND ENHANCED SOIL QUALITY

    SciTech Connect (OSTI)

    Douglas L. Karlen; David J. Muth, Jr.

    2012-09-01T23:59:59.000Z

    Agriculture can simultaneously address global food, feed, fiber, and energy challenges provided our soil, water, and air resources are not compromised in doing so. As we embark on the 19th Triennial Conference of the International Soil and Tillage Research Organization (ISTRO), I am pleased to proclaim that our members are well poised to lead these endeavors because of our comprehensive understanding of soil, water, agricultural and bio-systems engineering processes. The concept of landscape management, as an approach for integrating multiple bioenergy feedstock sources, including biomass residuals, into current crop production systems, is used as the focal point to show how these ever-increasing global challenges can be met in a sustainable manner. Starting with the 2005 Billion Ton Study (BTS) goals, research and technology transfer activities leading to the 2011 U.S. Department of Energy (DOE) Revised Billion Ton Study (BT2) and development of a residue management tool to guide sustainable crop residue harvest will be reviewed. Multi-location USDA-Agricultural Research Service (ARS) Renewable Energy Assessment Project (REAP) team research and on-going partnerships between public and private sector groups will be shared to show the development of landscape management strategies that can simultaneously address the multiple factors that must be balanced to meet the global challenges. Effective landscape management strategies recognize the importance of natures diversity and strive to emulate those conditions to sustain multiple critical ecosystem services. To illustrate those services, the soil quality impact of harvesting crop residues are presented to show how careful, comprehensive monitoring of soil, water and air resources must be an integral part of sustainable bioenergy feedstock production systems. Preliminary analyses suggest that to sustain soil resources within the U.S. Corn Belt, corn (Zea mays L.) stover should not be harvested if average grain yields are less than 11 Mg ha-1 (175 bu ac-1) unless more intensive landscape management practices are implemented. Furthermore, although non-irrigated corn grain yields east and west of the primary Corn Belt may not consistently achieve the 11 Mg ha-1 yield levels, corn can still be part of an overall landscape approach for sustainable feedstock production. Another option for producers with consistently high yields (> 12.6 Mg ha-1 or 200 bu ac-1) that may enable them to sustainably harvest even more stover is to decrease their tillage intensity which will reduce fuel use, preserve rhizosphere carbon, and/or help maintain soil structure and soil quality benefits often attributed to no-till production systems. In conclusion, I challenge all ISTRO scientists to critically ask if your research is contributing to improved soil and crop management strategies that effectively address the complexity associated with sustainable food, feed, fiber and fuel production throughout the world.

  2. Pyrolysis for waste management: A life cycle assesment of biodegradable waste, bioenergy generation and biochar production in Glasgow and Clyde valley

    E-Print Network [OSTI]

    Ibarrola, Rodrigo

    2009-01-01T23:59:59.000Z

    Biochar production and waste treatment by pyrolysis represent an attractive solution to decrease carbon dioxide atmospheric concentrations and to enhance the enrichment of soils by treating in a more sustainable way the ...

  3. Trade-offs of different land and bioenergy policies on the path to achieving climate targets.

    SciTech Connect (OSTI)

    Calvin, Katherine V.; Wise, Marshall A.; Kyle, G. Page; Patel, Pralit L.; Clarke, Leon E.; Edmonds, James A.

    2014-04-16T23:59:59.000Z

    Many papers have shown that bioenergy and land-use are potentially important elements in a strategy to limit anthropogenic climate change. But, significant expansion of bioenergy production can have a large terrestrial footprint. In this paper, we test the implications for land use, the global energy system, carbon cycle, and carbon prices of meeting a specific climate target, using a single fossil fuel and industrial sector policy instrumentthe carbon tax, but with five alternative bioenergy and land-use policy architectures. We find that the policies we examined have differing effects on the different segments of the economy. Comprehensive land policies can reduce land-use change emissions, increasing allowable emissions in the energy system, but have implications for the cost of food. Bioenergy taxes and constraints, on the other hand, have little effect on food prices, but can result in increased carbon and energy prices.

  4. Bioenergy Knowledge Discovery Framework (KDF)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The FutureCommentsEnergyand SustainedBio-OilBioenergy 2015

  5. Osage Bioenergy | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLuOpenNorthOlympia GreenThesource History ViewOrmatOsage Bioenergy

  6. 16 September 2014 SENT TO LSU AGCENTER/LOUISIANA FOREST PRODUCTS DEVELOPMENT CENTER -FOREST SECTOR / FORESTY PRODUCTS INTEREST GROUP

    E-Print Network [OSTI]

    resources, the development and expansion of a biomass industry in the U.S. will require the use of bioenergy agricultural residues from harvesting activities should be used for bioenergy production, a little more than 63 into bioenergy. Respondents were asked if they would participate in a biomass-to-bioenergy market with an option

  7. Indicators for assessing socioeconomic sustainability of bioenergy systems: A short list of practical measures.

    SciTech Connect (OSTI)

    Davis, Maggie R [ORNL; Downing, Mark [ORNL; Dale, Virginia H [ORNL; Efroymson, Rebecca Ann [ORNL; Hilliard, Michael R [ORNL; Kline, Keith L [ORNL; Langholtz, Matthew H [ORNL; Leiby, Paul Newsome [ORNL; Oladosu, Gbadebo A [ORNL

    2013-01-01T23:59:59.000Z

    Indicators are needed to assess both socioeconomic and environmental sustainability of bioenergy systems. Effective indicators can help to identify and quantify the sustainability attributes of bioenergy options. We identify 16 socioeconomic indicators that fall into the categories of social well-being, energy security, trade, profitability, resource conservation, and social acceptability. The suite of indicators is predicated on the existence of basic institutional frameworks to provide governance, legal, regulatory and enforcement services. Indicators were selected to be practical, sensitive to stresses, unambiguous, anticipatory, predictive, calibrated with known variability, and sufficient when considered collectively. The utility of each indicator, methods for its measurement, and applications appropriate for the context of particular bioenergy systems are described along with future research needs. Together, this suite of indicators is hypothesized to reflect major socioeconomic effects of the full supply chain for bioenergy, including feedstock production and logistics, conversion to biofuels, biofuel logistics and biofuel end uses. Ten of those 16 indicators are proposed to be the minimum list of practical measures of socioeconomic aspects of bioenergy sustainability. Coupled with locally-prioritized environmental indicators, we propose that these socioeconomic indicators can provide a basis to quantify and evaluate sustainability of bioenergy systems across many regions in which they will be deployed.

  8. Bioenergy

    Broader source: Energy.gov [DOE]

    Learn how the Energy Department is working to sustainably transform the nation's abundant renewable resources into biomass energy.

  9. Bioenergy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced Materials Find Find More Like This ReturnBioactiveBSD

  10. Bioenergy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWP TWPAlumniComplexMaterial Science |MaterialsNatural

  11. Drought-tolerant Biofuel Crops could be a Critical Hedge for Biorefineries

    E-Print Network [OSTI]

    Morrow, III, William R.

    2013-01-01T23:59:59.000Z

    Criteria for Sustainable Biofuel Production, Version 2.0.sustainability concepts in biofuel supply chain management:of switchgrass-for-biofuel systems. Biomass & Bioenergy,

  12. Biomass crops can be used for biological disinfestation and remediation of soils and water

    E-Print Network [OSTI]

    Stapleton, James J; Banuelos, Gary

    2009-01-01T23:59:59.000Z

    and grasses (Gramineae) for bioethanol produc- tion. Theseof wide interest for bioethanol production. Editors note:Biofuel (biodiesel, bioethanol), bioenergy: Alternative

  13. Developing an Integrated Model Framework for the Assessment of Sustainable Agricultural Residue Removal Limits for Bioenergy Systems

    SciTech Connect (OSTI)

    David Muth, Jr.; Jared Abodeely; Richard Nelson; Douglas McCorkle; Joshua Koch; Kenneth Bryden

    2011-08-01T23:59:59.000Z

    Agricultural residues have significant potential as a feedstock for bioenergy production, but removing these residues can have negative impacts on soil health. Models and datasets that can support decisions about sustainable agricultural residue removal are available; however, no tools currently exist capable of simultaneously addressing all environmental factors that can limit availability of residue. The VE-Suite model integration framework has been used to couple a set of environmental process models to support agricultural residue removal decisions. The RUSLE2, WEPS, and Soil Conditioning Index models have been integrated. A disparate set of databases providing the soils, climate, and management practice data required to run these models have also been integrated. The integrated system has been demonstrated for two example cases. First, an assessment using high spatial fidelity crop yield data has been run for a single farm. This analysis shows the significant variance in sustainably accessible residue across a single farm and crop year. A second example is an aggregate assessment of agricultural residues available in the state of Iowa. This implementation of the integrated systems model demonstrates the capability to run a vast range of scenarios required to represent a large geographic region.

  14. Density derived estimates of standing crop and net primary production in the giant kelp Macrocystis pyrifera

    E-Print Network [OSTI]

    Reed, Daniel; Rassweiler, Andrew; Arkema, Katie

    2009-01-01T23:59:59.000Z

    1991) Production and standing stocks of the kelp Macrocystisproduction in the giant kelp Macrocystis pyrifera Danielproduction (NPP) in the giant kelp Macrocystis pyrifera off

  15. Webinar: Using the New Bioenergy KDF for Data Discovery and Research...

    Energy Savers [EERE]

    Using the New Bioenergy KDF for Data Discovery and Research Webinar: Using the New Bioenergy KDF for Data Discovery and Research Webinar Slides about the new Bioenergy KDF...

  16. Bioenergy with Carbon Capture and Sequestration Workshop

    Broader source: Energy.gov [DOE]

    The Office of Fossil Energy (FE) and the Bioenergy Technologies Office (BETO) in the Office of Energy Efficiency and Renewable Energy (EERE) at the U.S. Department of Energy (DOE) is hosting a...

  17. China-US Workshop on Biotechnology of Bioenergy Plants, Nov. 16-17, 2009, Knoxville, Tennessee, USA Page 1 CChhiinnaa--UUSS WWoorrkksshhoopp oonn BBiiootteecchhnnoollooggyy ooff BBiiooeenneerrggyy PPllaannttss

    E-Print Network [OSTI]

    Ginzel, Matthew

    China-US Workshop on Biotechnology of Bioenergy Plants, Nov. 16-17, 2009, Knoxville, Tennessee, USA://isse.utk.edu/jrceec/). The focus of this agreement is to promote research collaboration, academic exchange, student education) environmental sustainability of bioenergy production, (3) ecological foundations of water resources and quality

  18. Bioenergy: how much can we expect for 2050? This content has been downloaded from IOPscience. Please scroll down to see the full text.

    E-Print Network [OSTI]

    Montana, University of

    forage production to provide that amount of energy. Such a high level of bioenergy supply would roughly Hall, Princeton, NJ 08544, USA helmut.haberl@aau.at Abstract Estimates of global primary bioenergy has doubled in the last century. We estimate the maximum physical potential of the world's total land

  19. 2008 GRASS ENERGY CROPS INFORMATION SHEET #1 Introduction

    E-Print Network [OSTI]

    Pawlowski, Wojtek

    1 2008 GRASS ENERGY CROPS INFORMATION SHEET #1 Introduction The purpose of this information sheet are considering planting perennial grasses for energy uses, either on their own or rented land. The bioenergy-disciplinary renewable energy research effort supported by the New York Farm Viability Institute (NYFVI), Cornell

  20. Bioenergy in Energy Transformation and Climate Management

    SciTech Connect (OSTI)

    Rose, Steven K.; Kriegler, Elmar; Bibas, Ruben; Calvin, Katherine V.; Popp, Alexander; van Vuuren, Detlef; Weyant, John

    2014-04-01T23:59:59.000Z

    Unlike fossil fuels, biomass is a renewable resource that can sequester carbon during growth, be converted to energy, and then re-grown. Biomass is also a flexible fuel that can service many end-uses. This paper explores the importance of bioenergy to potential future energy transformation and climate change management. Using a model comparison of fifteen models, we characterize and analyze future dependence on, and the value of, bioenergy in achieving potential long-run climate objectivesreducing radiative forcing to 3.7 and 2.8 W/m2 in 2100 (approximately 550 and 450 ppm carbon dioxide equivalent atmospheric concentrations). Model scenarios project, by 2050, bioenergy growth of 2 to 10% per annum reaching 5 to 35 percent of global primary energy, and by 2100, bioenergy becoming 15 to 50 percent of global primary energy. Non-OECD regions are projected to be the dominant suppliers of biomass, as well as consumers, with up to 35 percent of regional electricity from biopower by 2050, and up to 70 percent of regional liquid fuels from biofuels by 2050. Bioenergy is found to be valuable to many models with significant implications for mitigation costs and world consumption. The availability of bioenergy, in particular biomass with carbon dioxide capture and storage (BECCS), notably affects the cost-effective global emissions trajectory for climate management by accommodating prolonged near-term use of fossil fuels. We also find that models cost-effectively trade-off land carbon and nitrous oxide emissions for the long-run climate change management benefits of bioenergy. Overall, further evaluation of the viability of global large-scale bioenergy is merited.

  1. Importance of bioenergy markets for the development of the global energy system

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    international bioenergy markets are still in their infancy, international trade of biofuels, wood pellets are the large resources potential and low production costs of biomass in export countries such as Brazil are not the same as the countries that could become important biomass users. The largest biomass production

  2. Ris Energy Report 2 Bioenergy resources: an introduction

    E-Print Network [OSTI]

    and renewable origin, normally in the form of purpose-grown energy crops or by-products from agriculture (partly woody) other fruits (wood alcohol) Sweepings from forest floor Grass Plant oil cake Plant oils

  3. Bioenergy with Carbon Capture and Sequestration WorkshopBioenergy with Carbon Capture and Sequestration (BECCS) Workshop

    Broader source: Energy.gov [DOE]

    The Office of Fossil Energy (FE) and the Bioenergy Technologies Office (BETO) in the Office of Energy Efficiency and Renewable Energy (EERE) at the U.S. Department of Energy (DOE) is hosting a Bioenergy with Carbon Capture and Sequestration (BECCS) Workshop on Monday, May 18, 2015 in Washington, DC.

  4. November 2005 Issue #2 2005 Soil Quality and Crop Production Systems

    E-Print Network [OSTI]

    Balser, Teri C.

    . It integrates soil physical, chemical, and biological properties and reflects the effects of management. Some an "unhealthy soil" could be nursed back to health with improved management. The quantification of soil quality or user group. Within an agricultural context a high quality soil would be productive and be sustainable

  5. Economics of biomass fuels for electricity production: a case study with crop residues

    E-Print Network [OSTI]

    Maung, Thein Aye

    2009-05-15T23:59:59.000Z

    Barriers.......................................................17 2.5.2 Overcoming Institutional Barriers ..........................................................19 2.6 Economics of Demand and Supply for Biomass Feedstocks............................21... Annual Real Fossil Fuel Prices, 1965 to 2006 .................................10 Figure 2.2 The Effect of an Externality on the Demand for Electricity...........................11 Figure 2.3 Biomass Feedstock Production Process...

  6. Subterranean clover as a cover crop and nitrogen source for minimum-tillage grain sorghum production

    E-Print Network [OSTI]

    Lemon, Robert

    1986-01-01T23:59:59.000Z

    analysis of variance for grain sorghum population densities, 1984. 24 Table 3. Mean squares from analysis of variance for grain sorghum population densities, 1985. 25 Table 4. Plant densities as affected by tillage and applied N. . 26 Table 5. Mean... by grain. Table 24. Effects of tillage and applied N on N removed by biomass Table 25. Total N removed in aboveground dry matter as affected by tillage and applied N. Table 26. Clover dry matter production, N concentration, and total N content...

  7. Draft Bioenergy Master Plan for the State of Hawaii

    E-Print Network [OSTI]

    Draft Bioenergy Master Plan for the State of Hawaii Prepared for the U.S. Department of Energy DRAFT Hawaii Bioenergy Master Plan Volume I Prepared for State of Hawaii Department of Business

  8. Bioenergy Technologies Office Multi-Year Program Plan: July 2014...

    Energy Savers [EERE]

    Bioenergy Technologies Office Multi-Year Program Plan: July 2014 Update Bioenergy Technologies Office Multi-Year Program Plan: July 2014 Update This Multi-Year Program Plan (MYPP)...

  9. Bioenergy Technologies Office Multi-Year Program Plan: May 2013...

    Energy Savers [EERE]

    Bioenergy Technologies Office Multi-Year Program Plan: May 2013 Update Bioenergy Technologies Office Multi-Year Program Plan: May 2013 Update This is the May 2013 Update to the...

  10. Bioenergy 2015: Opportunities in a Changing Energy Landscape

    Broader source: Energy.gov [DOE]

    On June 2324, 2015, the U.S. Department of Energy's (DOEs) Bioenergy Technologies Office (BETO) will host its eighth annual conferenceBioenergy 2015: Opportunities in a Changing Energy Landscape...

  11. Bioenergy 2015: Opportunities in a Changing Energy Landscape

    Broader source: Energy.gov [DOE]

    On June 2324, 2015, the U.S. Department of Energy's (DOEs) Bioenergy Technologies Office (BETO) will host its eighth annual conferenceBioenergy 2015: Opportunities in a Changing Energy Landscape.

  12. Perennial Grass Breeding Program BIOENERGY PROGRAM

    E-Print Network [OSTI]

    sterility) and biofuel (biomass, perenniality) traits into the only high-tonnage dedicated energy crop

  13. Biomass as Feedstock for a Bioenergy and Bioproducts Industry...

    Energy Savers [EERE]

    Industry Biomass Program Peer Review Sustainability Platform Bioenergy Technologies Office: Association of Fish and Wildlife Agencies Agricultural Conservation Committee Meeting...

  14. Special issue: bioenergy Don-Hee Park Sang Yup Lee

    E-Print Network [OSTI]

    . As the field of bioenergy is rapidly moving forward with rather traditional bioethanol and biodiesel to more

  15. Fuel from Tobacco and Arundo Donax: Synthetic Crop for Direct Drop-in Biofuel Production through Re-routing the Photorespiration Intermediates and Engineering Terpenoid Pathways

    SciTech Connect (OSTI)

    None

    2012-02-15T23:59:59.000Z

    PETRO Project: Biofuels offer renewable alternatives to petroleum-based fuels that reduce net greenhouse gas emissions to nearly zero. However, traditional biofuels production is limited not only by the small amount of solar energy that plants convert through photosynthesis into biological materials, but also by inefficient processes for converting these biological materials into fuels. Farm-ready, non-food crops are needed that produce fuels or fuel-like precursors at significantly lower costs with significantly higher productivity. To make biofuels cost-competitive with petroleum-based fuels, biofuels production costs must be cut in half.

  16. Addressing the Need for Alternative Transportation Fuels: The Joint BioEnergy

    E-Print Network [OSTI]

    Knowles, David William

    . Currently, biofuels such as ethanol are produced largely from grains, but there is a large, untapped of the grain into sugars that can be fermented to ethanol. The energy efficiency of starch-based biofuels of Energy (DOE) Bioenergy Research Center that will address these roadblocks in biofuels production. JBEI

  17. Climate implications of algae-based bioenergy systems Andres Clarens, PhD

    E-Print Network [OSTI]

    Walter, M.Todd

    Climate implications of algae-based bioenergy systems Andres Clarens, PhD Assistant Professor Civil of algae and other nonconventional feedstocks, are being developed. This talk will explore several systems priorities. This is an especially challenging problem for algae-based biofuels because production pathways

  18. State Bioenergy Primer: Information and Resources for States on Issues, Opportunities, and Options for Advancing Bioenergy

    SciTech Connect (OSTI)

    Byrnett, D. S.; Mulholland, D.; Zinsmeister, E.; Doris, E.; Milbrandt, A.; Robichaud. R.; Stanley, R.; Vimmerstedt, L.

    2009-09-01T23:59:59.000Z

    One renewable energy option that states frequently consider to meet their clean energy goals is the use of biomass resources to develop bioenergy. Bioenergy includes bioheat, biopower, biofuels, and bioproducts. This document provides an overview of biomass feedstocks, basic information about biomass conversion technologies, and a discussion of benefits and challenges of bioenergy options. The Primer includes a step-wise framework, resources, and tools for determining the availability of feedstocks, assessing potential markets for biomass, and identifying opportunities for action at the state level. Each chapter contains a list of selected resources and tools that states can use to explore topics in further detail.

  19. Bioenergy Review Mapping Work Resource efficiency science programme

    E-Print Network [OSTI]

    Bioenergy Review ­ Mapping Work Resource efficiency science programme Science report: SC070001/SR2 #12;ii Science Report ­ Bioenergy Review ­ Mapping Work The Environment Agency is the leading public, biomass, bioenergy, waste, wood-fuel, land, land-take, mapping, 2010, GIS Research Contractor: Forest

  20. Methyl halide and biogenic volatile organic compound fluxes from perennial bioenergy crops and annual arable crops

    E-Print Network [OSTI]

    Morrison, Eilidh Christina

    2013-11-28T23:59:59.000Z

    The depletion of fossil fuel resources, pollution concerns and the challenge of energy security are driving the search for renewable energy sources. The use of lignocellulosic plant biomass as an energy source is increasing ...

  1. Genomics:GTL Bioenergy Research Centers White Paper

    SciTech Connect (OSTI)

    Mansfield, Betty Kay [ORNL; Alton, Anita Jean [ORNL; Andrews, Shirley H [ORNL; Bownas, Jennifer Lynn [ORNL; Casey, Denise [ORNL; Martin, Sheryl A [ORNL; Mills, Marissa [ORNL; Nylander, Kim [ORNL; Wyrick, Judy M [ORNL; Drell, Dr. Daniel [Office of Science, Department of Energy; Weatherwax, Sharlene [U.S. Department of Energy; Carruthers, Julie [U.S. Department of Energy

    2006-08-01T23:59:59.000Z

    In his Advanced Energy Initiative announced in January 2006, President George W. Bush committed the nation to new efforts to develop alternative sources of energy to replace imported oil and fossil fuels. Developing cost-effective and energy-efficient methods of producing renewable alternative fuels such as cellulosic ethanol from biomass and solar-derived biofuels will require transformational breakthroughs in science and technology. Incremental improvements in current bioenergy production methods will not suffice. The Genomics:GTL Bioenergy Research Centers will be dedicated to fundamental research on microbe and plant systems with the goal of developing knowledge that will advance biotechnology-based strategies for biofuels production. The aim is to spur substantial progress toward cost-effective production of biologically based renewable energy sources. This document describes the rationale for the establishment of the centers and their objectives in light of the U.S. Department of Energy's mission and goals. Developing energy-efficient and cost-effective methods of producing alternative fuels such as cellulosic ethanol from biomass will require transformational breakthroughs in science and technology. Incremental improvements in current bioenergy-production methods will not suffice. The focus on microbes (for cellular mechanisms) and plants (for source biomass) fundamentally exploits capabilities well known to exist in the microbial world. Thus 'proof of concept' is not required, but considerable basic research into these capabilities remains an urgent priority. Several developments have converged in recent years to suggest that systems biology research into microbes and plants promises solutions that will overcome critical roadblocks on the path to cost-effective, large-scale production of cellulosic ethanol and other renewable energy from biomass. The ability to rapidly sequence the DNA of any organism is a critical part of these new capabilities, but it is only a first step. Other advances include the growing number of high-throughput techniques for protein production and characterization; a range of new instrumentation for observing proteins and other cell constituents; the rapid growth of commercially available reagents for protein production; a new generation of high-intensity light sources that provide precision imaging on the nanoscale and allow observation of molecular interactions in ultrafast time intervals; major advances in computational capability; and the continually increasing numbers of these instruments and technologies within the national laboratory infrastructure, at universities, and in private industry. All these developments expand our ability to elucidate mechanisms present in living cells, but much more remains to be done. The Centers are designed to accomplish GTL program objectives more rapidly, more effectively, and at reduced cost by concentrating appropriate technologies and scientific expertise, from genome sequence to an integrated systems understanding of the pathways and internal structures of microbes and plants most relevant to developing bioenergy compounds. The Centers will seek to understand the principles underlying the structural and functional design of selected microbial, plant, and molecular systems. This will be accomplished by building technological pathways linking the genome-determined components in an organism with bioenergy-relevant cellular systems that can be characterized sufficiently to generate realistic options for biofuel development. In addition, especially in addressing what are believed to be nearer-term approaches to renewable energy (e.g., producing cellulosic ethanol cost-effectively and energy-efficiently), the Center research team must understand in depth the current industrial-level roadblocks and bottlenecks (see section, GTL's Vision for Biological Energy Alternatives, below). For the Centers, and indeed the entire BER effort, to be successful, Center research must be integrated with individual investigator research, and coordination of activities,

  2. alternative cropping systems: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and environmental health is a key challenge for agricultural sustainability. Most crop production Sims, Gerald K. 33 Dryland Winter Wheat and Grain Sorghum Cropping...

  3. Pacific Rim Summit on Industrial Biotechnology & Bioenergy

    Broader source: Energy.gov [DOE]

    The ninth annual Pacific Rim Summit on Industrial Biotechnology and Bioenergy will be held from December 79, 2014, in San Diego, California, at the Westin Gaslamp Quarter. Bringing together representatives from various countries all around the Pacific Rim, this event will focus on the growth of the industrial biotechnology and bioenergy sectors in North America and the Asia-Pacific region. Glenn Doyle, BETO's Deployment & Demonstration Technology Manager, will be moderating and speaking at a session on entitled "Utilizing Strategic Partnerships to Grow Your Business" on December 9.

  4. Bioenergy 2015 Agenda | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The FutureCommentsEnergyand SustainedBio-OilBioenergy 2015 Agenda Bioenergy

  5. Farm-level simulation of alternative resource-conserving production systems for representative crop farms in the Northern Texas High Plains

    E-Print Network [OSTI]

    De Brey, Cristobal J.

    1991-01-01T23:59:59.000Z

    . 1988). The relative share of dryland farming has increased in recent years leaving land more, susceptible to wind and water erosion. Erosion concerns have increased over the 1980's. Resource-conserving production systems have, gained interest... cotton farms were assessed (Richardson et al. 1989). Conservation compliance scenarios analyzed by Richardson and others included high residue crop rotations and annual wind strips. FLlPSIM has also been used in combination with EPIC (Erosion...

  6. The Dynamics of Irrigated Perennial Crop Production With Applications to the Murray-Darling Basin of Australia

    E-Print Network [OSTI]

    Franklin, Bradley

    2013-01-01T23:59:59.000Z

    the annual crops, the lack of other water sources such asgroundwater, and the lack of inter-regional water trade inlarge water shocks combined with a lack of adaptation

  7. Climate impacts of bioenergy: Inclusion of carbon cycle and albedo dynamics in life cycle impact assessment

    SciTech Connect (OSTI)

    Bright, Ryan M., E-mail: ryan.m.bright@ntnu.no; Cherubini, Francesco; Stromman, Anders H.

    2012-11-15T23:59:59.000Z

    Life cycle assessment (LCA) can be an invaluable tool for the structured environmental impact assessment of bioenergy product systems. However, the methodology's static temporal and spatial scope combined with its restriction to emission-based metrics in life cycle impact assessment (LCIA) inhibits its effectiveness at assessing climate change impacts that stem from dynamic land surface-atmosphere interactions inherent to all biomass-based product systems. In this paper, we focus on two dynamic issues related to anthropogenic land use that can significantly influence the climate impacts of bioenergy systems: i) temporary changes to the terrestrial carbon cycle; and ii) temporary changes in land surface albedo-and illustrate how they can be integrated within the LCA framework. In the context of active land use management for bioenergy, we discuss these dynamics and their relevancy and outline the methodological steps that would be required to derive case-specific biogenic CO{sub 2} and albedo change characterization factors for inclusion in LCIA. We demonstrate our concepts and metrics with application to a case study of transportation biofuel sourced from managed boreal forest biomass in northern Europe. We derive GWP indices for three land management cases of varying site productivities to illustrate the importance and need to consider case- or region-specific characterization factors for bioenergy product systems. Uncertainties and limitations of the proposed metrics are discussed. - Highlights: Black-Right-Pointing-Pointer A method for including temporary surface albedo and carbon cycle changes in Life Cycle Impact Assessment (LCIA) is elaborated. Black-Right-Pointing-Pointer Concepts are applied to a single bioenergy case whereby a range of feedstock productivities are shown to influence results. Black-Right-Pointing-Pointer Results imply that case- and site-specific characterization factors can be essential for a more informed impact assessment. Black-Right-Pointing-Pointer Uncertainties and limitations of the proposed methodologies are elaborated.

  8. Addressing the Need for Alternative Transportation Fuels: The Joint BioEnergy Institute

    SciTech Connect (OSTI)

    Blanch, Harvey; Adams, Paul; Andrews-Cramer, Katherine; Frommer, Wolf; Simmons, Blake; Keasling, Jay

    2008-01-18T23:59:59.000Z

    Today, carbon-rich fossil fuels, primarily oil, coal, and natural gas, provide 85% of the energy consumed in the U.S. As world demand increases, oil reserves may become rapidly depleted. Fossil fuel use increases CO{sub 2} emissions and raises the risk of global warming. The high energy content of liquid hydrocarbon fuels makes them the preferred energy source for all modes of transportation. In the U.S. alone, transportation consumes >13.8 million barrels of oil per day and generates 0.5 gigatons of carbon per year. This release of greenhouse gases has spurred research into alternative, nonfossil energy sources. Among the options (nuclear, concentrated solar thermal, geothermal, hydroelectric, wind, solar, and biomass), only biomass has the potential to provide a high-energy-content transportation fuel. Biomass is a renewable resource that can be converted into carbon-neutral transporation fuels. Currently, biofuels such as ethanol are produced largely from grains, but there is a large, untapped resource (estimated at more than a billion tons per year) of plant biomass that could be utilized as a renewable, domestic source of liquid fuels. Well-established processes convert the starch content of the grain into sugars that can be fermented to ethanol. The energy efficiency of starch-based biofuels is however not optimal, while plant cell walls (lignocellulose) represent a huge untapped source of energy. Plant-derived biomass contains cellulose, which is more difficult to convert to sugars; hemicellulose, which contains a diversity of carbohydrates that have to be efficiently degraded by microorganisms to fuels; and lignin, which is recalcitrant to degradation and prevents cost-effective fermentation. The development of cost-effective and energy-efficient processes to transform lignocellulosic biomass into fuels is hampered by significant roadblocks, including the lack of specifically developed energy crops, the difficulty in separating biomass components, low activity of enzymes used to deconstruct biomass, and the inhibitory effect of fuels and processing byproducts on organisms responsible for producing fuels from biomass monomers. The Joint BioEnergy Institute (JBEI) is a U.S. Department of Energy (DOE) Bioenergy Research Center that will address these roadblocks in biofuels production. JBEI draws on the expertise and capabilities of three national laboratories (Lawrence Berkeley National Laboratory (LBNL), Sandia National Laboratories (SNL), and Lawrence Livermore National Laboratory (LLNL)), two leading U.S. universities (University of California campuses at Berkeley (UCB) and Davis (UCD)), and a foundation (Carnegie Institute for Science, Stanford) to develop the scientific and technological base needed to convert the energy stored in lignocellulose into transportation fuels and commodity chemicals. Established scientists from the participating organizations are leading teams of researchers to solve the key scientific problems and develop the tools and infrastructure that will enable other researchers and companies to rapidly develop new biofuels and scale production to meet U.S. transportation needs and to develop and rapidly transition new technologies to the commercial sector. JBEI's biomass-to-biofuels research approach is based in three interrelated scientific divisions and a technologies division. The Feedstocks Division will develop improved plant energy crops to serve as the raw materials for biofuels. The Deconstruction Division will investigate the conversion of this lignocellulosic plant material to sugar and aromatics. The Fuels Synthesis Division will create microbes that can efficiently convert sugar and aromatics into ethanol and other biofuels. JBEI's cross-cutting Technologies Division will develop and optimize a set of enabling technologies including high-throughput, chipbased, and omics platforms; tools for synthetic biology; multi-scale imaging facilities; and integrated data analysis to support and integrate JBEI's scientific program.

  9. IEA Bioenergy Task 40Sustainable International Bioenergy Trade:Securing Supply and Demand Country Report 2014United States

    SciTech Connect (OSTI)

    J. Richard Hess; Patrick Lamers; Mohammad S. Roni; Jacob J. Jacobson; Brendi Heath

    2015-01-01T23:59:59.000Z

    Logistical barrier are tied to feedstock harvesting, collection, storage and distribution. Current crop harvesting machinery is unable to selectively harvest preferred components of cellulosic biomass while maintaining acceptable levels of soil carbon and minimizing erosion. Actively managing biomass variability imposes additional functional requirements on biomass harvesting equipment. A physiological variation in biomass arises from differences in genetics, degree of crop maturity, geographical location, climatic events, and harvest methods. This variability presents significant cost and performance risks for bioenergy systems. Currently, processing standards and specifications for cellulosic feedstocks are not as well-developed as for mature commodities. Biomass that is stored with high moisture content or exposed to moisture during storage is susceptible to spoilage, rotting, spontaneous combustion, and odor problems. Appropriate storage methods and strategies are needed to better define storage requirements to preserve the volume and quality of harvested biomass over time and maintain its conversion yield. Raw herbaceous biomass is costly to collect, handle, and transport because of its low density and fibrous nature. Existing conventional, bale-based handling equipment and facilities cannot cost-effectively deliver and store high volumes of biomass, even with improved handling techniques. Current handling and transportation systems designed for moving woodchips can be inefficient for bioenergy processes due to the costs and challenges of transporting, storing, and drying high-moisture biomass. The infrastructure for feedstock logistics has not been defined for the potential variety of locations, climates, feedstocks, storage methods, processing alternatives, etc., which will occur at a national scale. When setting up biomass fuel supply chains, for large-scale biomass systems, logistics are a pivotal part in the system. Various studies have shown that long-distance international transport by ship is feasible in terms of energy use and transportation costs, but availability of suitable vessels and meteorological conditions (e.g., winter time in Scandinavia and Russia) need to be considered. However, local transportation by truck (both in biomass exporting and importing countries) may be a high-cost factor, which can influence the overall energy balance and total biomass costs.

  10. 26 September 2014 SENT TO LSU AGCENTER/LOUISIANA FOREST PRODUCTS DEVELOPMENT CENTER -FOREST SECTOR / FORESTY PRODUCTS INTEREST GROUP

    E-Print Network [OSTI]

    / FORESTY PRODUCTS INTEREST GROUP 1 9.8.14 NFR BioEnergy Announces $312 Million Energy Project In South PLAQUEMINE, La. -- Today, Gov. Bobby Jindal and Chief Operating Officer Frank Randazzo of NFR BioEnergy mills. NFR BioEnergy will convert sugar cane waste, known as bagasse, into hardened energy pellets

  11. Determine metrics and set targets for soil quality on agriculture residue and energy crop pathways

    SciTech Connect (OSTI)

    Ian Bonner; David Muth

    2013-09-01T23:59:59.000Z

    There are three objectives for this project: 1) support OBP in meeting MYPP stated performance goals for the Sustainability Platform, 2) develop integrated feedstock production system designs that increase total productivity of the land, decrease delivered feedstock cost to the conversion facilities, and increase environmental performance of the production system, and 3) deliver to the bioenergy community robust datasets and flexible analysis tools for establishing sustainable and viable use of agricultural residues and dedicated energy crops. The key project outcome to date has been the development and deployment of a sustainable agricultural residue removal decision support framework. The modeling framework has been used to produce a revised national assessment of sustainable residue removal potential. The national assessment datasets are being used to update national resource assessment supply curves using POLYSIS. The residue removal modeling framework has also been enhanced to support high fidelity sub-field scale sustainable removal analyses. The framework has been deployed through a web application and a mobile application. The mobile application is being used extensively in the field with industry, research, and USDA NRCS partners to support and validate sustainable residue removal decisions. The results detailed in this report have set targets for increasing soil sustainability by focusing on primary soil quality indicators (total organic carbon and erosion) in two agricultural residue management pathways and a dedicated energy crop pathway. The two residue pathway targets were set to, 1) increase residue removal by 50% while maintaining soil quality, and 2) increase soil quality by 5% as measured by Soil Management Assessment Framework indicators. The energy crop pathway was set to increase soil quality by 10% using these same indicators. To demonstrate the feasibility and impact of each of these targets, seven case studies spanning the US are presented. The analysis has shown that the feedstock production systems are capable of simultaneously increasing productivity and soil sustainability.

  12. Miscanthus: A Review of European Experience with a Novel Energy Crop

    SciTech Connect (OSTI)

    Scurlock, J.M.O.

    1999-02-01T23:59:59.000Z

    Miscanthus is a tall perennial grass which has been evaluated in Europe over the past 5-10 years as a new bioenergy crop. The sustained European interest in miscanthus suggests that this novel energy crop deserves serious investigation as a possible candidate biofuel crop for the US alongside switchgrass. To date, no agronomic trials or trial results for miscanthus are known from the conterminous US, so its performance under US conditions is virtually unknown. Speculating from European data, under typical agricultural practices over large areas, an average of about 8t/ha (3t/acre dry weight) may be expected at harvest time. As with most of the new bioenergy crops, there seems to be a steep ''learning curve.'' Establishment costs appear to be fairly high at present (a wide range is reported from different European countries), although these may be expected to fall as improved management techniques are developed.

  13. Bioenergy Technologies Office Multi-Year Program Plan: July 2014...

    Broader source: Energy.gov (indexed) [DOE]

    July 2014 Update -- Sections Bioenergy Technologies Office Multi-Year Program Plan: July 2014 Update -- Sections This Multi-Year Program Plan (MYPP) sets forth the goals and...

  14. In Search of Spatial Opportunities for Sustainable Bioenergy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Institute for Mathematical and Biological Syntheses , ORNL Center for Bioenergy Sustainability Seminar Building 1505, Ocoee Room (189) CONTACT : Email: Jennifer Smith...

  15. GREET Bioenergy Life Cycle Analysis and Key Issues for Woody...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Systems, Argonne National Laboratory wangbiomass2014.pdf More Documents & Publications Resource Assessment and Land Use Change Bioenergy Technologies Office Multi-Year Program...

  16. Bioenergy Technologies Office: Association of Fish and Wildlife...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Bioenergy Technologies Office Association of Fish & Wildlife Agencies Agricultural Conservation Committee Meeting March 29, 2013 Kristen Johnson Sustainability...

  17. Bioenergy Technologies Office: Association of Fish and Wildlife...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Office: Association of Fish and Wildlife Agencies Agricultural Conservation Committee Meeting Bioenergy Technologies Office: Association of Fish and Wildlife Agencies Agricultural...

  18. EIS-0407: Abengoa Biomass Bioenergy Project near Hugoton, Stevens...

    Broader source: Energy.gov (indexed) [DOE]

    6, 2011 EIS-0407: Record of Decision Issuance of a Loan Guarantee to Abengoa Bioenergy Biomass of Kansas, LLC for the Abengoa Biorefinery Project Near Hugoton, Stevens County,...

  19. ORNL researchers contribute to major UN bioenergy and sustainability...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Communications 865.574.4399 ORNL researchers contribute to major bioenergy and sustainability report ORNL researchers Keith Kline and Virginia Dale contributed to a major...

  20. CHP and Bioenergy for Landfills and Wastewater Treatment Plants...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Landfills and Wastewater Treatment Plants: Market Opportunities CHP and Bioenergy for Landfills and Wastewater Treatment Plants: Market Opportunities This document explores...

  1. Bioenergy Technologies Office R&D Pathways: Algal Lipid Upgrading...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Algal Biofuels Algal Lipid Extraction and Upgrading to Hydrocarbons Technology Pathway Bioenergy Technologies Office Conversion R&D Pathway: Whole Algae Hydrothermal Liquefaction...

  2. Bioenergy Technologies Office Conversion R&D Pathway: Whole Algae...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Whole Algae Hydrothermal Liquefaction Bioenergy Technologies Office Conversion R&D Pathway: Whole Algae Hydrothermal Liquefaction Whole algae hydrothermal liquefaction is one of...

  3. Sandia Energy - "Bionic" Liquids from Lignin: Joint BioEnergy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Liquids from Lignin: Joint BioEnergy Institute Results Pave the Way for Closed-Loop Biofuel Refineries Home Renewable Energy Energy Transportation Energy Biofuels Facilities...

  4. Carbon Offsets for Forestry and Bioenergy: Researching Opportunities...

    Open Energy Info (EERE)

    Researching Opportunities for Poor Rural Communities Jump to: navigation, search Name Carbon Offsets for Forestry and Bioenergy: Researching Opportunities for Poor Rural...

  5. Bioenergy Technologies Office Conversion R&D Pathway: Syngas...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Syngas Upgrading to Hydrocarbon Fuels Bioenergy Technologies Office Conversion R&D Pathway: Syngas Upgrading to Hydrocarbon Fuels Syngas upgrading to hydrocarbon fuels is one of...

  6. CHP and Bioenergy Systems for Landfills and Wastewater Treatment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    following CHP technologies: Reciprocating Engine, Microturbine, Combustion Turbines, Stirling Engine, and Fuel Cell. CHP and Bioenergy Systems for Landfills and Wastewater...

  7. International Symposium on Bioenergy Date: January 5-7, 2010

    E-Print Network [OSTI]

    Ginzel, Matthew

    , Biomethanation, Bioethanol, Gene Prospecting, Energy Cropping (Speakers: Rintu Banerjee, Saikat Chakraborty for lignocellulosic bioethanol production 11:30 12:00: Speaker: Ravikumar Rao, PRAJ Industries Ltd. Title: Lignocellulose to Bioethanol Technology The Praj Matrix Experience 12:00 13.00: Panel Discussion

  8. Cassava, a potential biofuel crop in China

    E-Print Network [OSTI]

    Jansson, C.

    2010-01-01T23:59:59.000Z

    18-673389 Keywords: cassava; bioethanol; biofuel; metabolicRecently, cassava-derived bioethanol production has beenbenefits compared to other bioethanol- producing crops in

  9. BIOENERGY AND BIOFUELS Performance of a pilot-scale continuous flow microbial

    E-Print Network [OSTI]

    BIOENERGY AND BIOFUELS Performance of a pilot-scale continuous flow microbial electrolysis cell fed performance. Keywords Biohydrogen . Biomethane . Bioelectricity. Microbial electrolysis cell . Bioenergy

  10. animal manure-based bioenergy: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    sorghum program that boasts about 40 3 Hawaii Bioenergy Master Plan Bioenergy Technology Renewable Energy Websites Summary: technology assessment was conducted as part of the...

  11. Biomass and Bioenergy 31 (2007) 638645 Forest bioenergy system to reduce the hazard of wildfires

    E-Print Network [OSTI]

    2007-01-01T23:59:59.000Z

    Contract'' for utilization in small power plants (o3 MW), and a wood-heating pellet manufacturing facility. The outlet for the wood fuel pellets is the growing market for house and business heating, and co for bioenergy. The start-up project is in the Nutrioso area of the Alpine Ranger District, Apache

  12. 2012 Bioenergy Action Plan Prepared by the Bioenergy Interagency Working Group

    E-Print Network [OSTI]

    and the California Energy Commission with input from the Bioenergy Interagency Working Group. This report to Governor Edmund G. Brown Karen Ross Secretary, Department of Food and Agriculture Matthew Rodriquez, California Energy Commission Ken Pimlott Director, Department of Forestry and Fire Protection Caroll

  13. 20 PLANET EARTH Autumn 2014 Bioenergy the name alone

    E-Print Network [OSTI]

    Brierley, Andrew

    speaking. But everything has a carbon footprint and some biofuels might not be so great if their carbon that the carbon footprint of bioenergy may be worse than some fossil fuels. But the truth is we didn't know that many of the assessments Called to account ­ bioenergy's carbon footprint #12;PLANET EARTH Autumn 2014

  14. Bioenergy 2015 Speaker Biographies | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The FutureCommentsEnergyand SustainedBio-OilBioenergy 2015 Agenda

  15. Bioenergy Technologies Office Overview | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The FutureCommentsEnergyand SustainedBio-OilBioenergyMicroalgal--

  16. Emergence BioEnergy | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A PotentialJump to: navigation,ElectrosolarElmhurst MutualEmergence BioEnergy

  17. Orchid Bioenergy Group Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLuOpenNorthOlympia GreenThe communityOrchid Bioenergy Group Ltd

  18. Bioenergy Technologies Office | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613PortsmouthBartlesville Energy ResearchAchieving Them. ABeyondBioenergy Technologies

  19. Solarvest BioEnergy | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt LtdShawangunk, NewSingapore JumpSolarezo JumpSolarvest BioEnergy Jump to:

  20. Bioenergy: America's Energy Future | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced Materials Find Find More Like ThisBioenergy

  1. BioEnergy Blog | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube platform isEnergyMeeting | Department of Energy BigNews » BioEnergy

  2. Bioenergy Upcoming Events | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube platform isEnergyMeeting | DepartmentBioenergy Technologies Office HOMEMay

  3. Bioenergy Upcoming Events | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube platform isEnergyMeeting | DepartmentBioenergy Technologies Office

  4. Fundamental & Applied Bioenergy | Clean Energy | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.Newof Energy ForrestalPrincetonF2:Bioenergy SHARE Fundamental

  5. Environmental and economic evaluation of bioenergy in Ontario, Canada

    SciTech Connect (OSTI)

    Yimin Zhang; Shiva Habibi; Heather L. MacLean [University of Toronto, Toronto, ON (Canada)

    2007-08-15T23:59:59.000Z

    We examined life cycle environmental and economic implications of two near-term scenarios for converting cellulosic biomass to energy, generating electricity from cofiring biomass in existing coal power plants, and producing ethanol from biomass in stand-alone facilities in Ontario, Canada. The study inventories near-term biomass supply in the province, quantifies environmental metrics associated with the use of agricultural residues for producing electricity and ethanol, determines the incremental costs of switching from fossil fuels to biomass, and compares the cost-effectiveness of greenhouse gas (GHG) and air pollutant emissions abatement achieved through the use of the bioenergy. Implementing a biomass cofiring rate of 10% in existing coal-fired power plants would reduce annual GHG emissions by 2.3 million metric tons (t) of CO{sub 2} equivalent (7% of the province's coal power plant emissions). The substitution of gasoline with ethanol/gasoline blends would reduce annual provincial light-duty vehicle fleet emissions between 1.3 and 2.5 million t of CO{sub 2} equivalent (3.5-7% of fleet emissions). If biomass sources other than agricultural residues were used, additional emissions reductions could be realized. At current crude oil prices ($70/barrel) and levels of technology development of the bioenergy alternatives, the biomass electricity cofiring scenario analyzed is more cost-effective for mitigating GHG emissions ($22/t of CO{sub 2} equivalent for a 10% cofiring rate) than the stand-alone ethanol production scenario ($92/t of CO{sub 2} equivalent). 67 refs., 5 figs., 7 tabs.

  6. A Virtual Visit to Bioenergy Research at the National Laboratories

    Office of Energy Efficiency and Renewable Energy (EERE)

    For National Bioenergy Day on October 22, bioenergy facilities across the country are holding open houses to increase public awareness of bioenergy and its role in the clean energy landscape. By the same token, the Bioenergy Technologies Office (BETO) is offering this virtual open house of its national laboratoriesthe facilities at the core of BETOs research and development. If you want to know how Energy Department bioenergy funding is making an impact, be sure to take a look at our national labs47% of BETO funding this past year went to the national laboratories. Of that funding, about half went to the National Renewable Energy Laboratory. Pacific Northwest National Laboratory, Idaho National Laboratory, and Oak Ridge National Laboratory also received a large share.

  7. Proceedings of the Bio-Energy '80 world congress and exposition

    SciTech Connect (OSTI)

    None

    1980-01-01T23:59:59.000Z

    Many countries are moving with increasing urgency to obtain larger fractions of their energy from biomass. Over 1800 leading experts from 70 countries met on April 21 to 24 in Atlanta to conduct a World Congress and Exposition on Bio-Energy. This summary presents highlights of the Congress and thoughts stimulated by the occasion. Topics addressed include a comparison of international programs, world and country regionalism in the development of energy supplies, fuel versus food or forest products, production of ethyl alcohol, possibilities for expanded production of terrestrial vegetation and marine flora, and valuable chemicals from biomass. Separate abstracts have been prepared for 164 papers for inclusion in the Energy Data Base.

  8. 2011 Bioenergy Action Plan Prepared by the California Energy Commission for the

    E-Print Network [OSTI]

    2011 Bioenergy Action Plan Prepared by the California Energy Commission for the Bioenergy Commission Renewables Committee as part of the Preparation of the 2011 Bioenergy Action Plan ­ docket # 10 policy of the Energy Commission until the report is adopted. #12;i ACKNOWLEDGEMENTS The 2011 Bioenergy

  9. National Bioenergy Center Biochemical Platform Integration Project: Quarterly Update #22, January - March 2009

    SciTech Connect (OSTI)

    Not Available

    2009-04-01T23:59:59.000Z

    January to March, 2009 edition of the National Bioenergy Center's Biochemical Platform Integration Project quarterly newsletter.

  10. Special issue: current status of bioenergy research Don-Hee Park Sang Yup Lee

    E-Print Network [OSTI]

    processes are presented. As the field of bioenergy is rapidly growing from traditional forms of bioethanol

  11. National Bioenergy Center Biochemical Platform Integration Project: Quarterly Update #25, October - December 2009

    SciTech Connect (OSTI)

    Schell, D.

    2010-01-01T23:59:59.000Z

    October to December, 2009 edition of the National Bioenergy Center's Biochemical Platform Integration Project quarterly newsletter.

  12. National Bioenergy Center Biochemical Platform Integration Project: Quarterly Update #20, July-September 2008

    SciTech Connect (OSTI)

    Schell, D. J.

    2008-12-01T23:59:59.000Z

    July to September, 2008 edition of the National Bioenergy Center's Biochemical Platform Integration Project quarterly newsletter.

  13. National Bioenergy Center Biochemical Platform Integration Project: Quarterly Update #24, July-September 2009

    SciTech Connect (OSTI)

    Schell, D.

    2009-10-01T23:59:59.000Z

    July to September, 2009 edition of the National Bioenergy Center's Biochemical Platform Integration Project quarterly newsletter.

  14. National Bioenergy Center Sugar Platform Integration Project: Quarterly Update #15, April - June 2007

    SciTech Connect (OSTI)

    Schell, D.

    2007-07-01T23:59:59.000Z

    July quarterly update for the National Bioenergy Center's Biochemical Processing Platform Integration Project.

  15. National Bioenergy Center Biochemical Platform Integration Project: Quarterly Update #23, April-June 2009

    SciTech Connect (OSTI)

    Schell, D.

    2009-08-01T23:59:59.000Z

    April to June, 2009 edition of the National Bioenergy Center's Biochemical Platform Integration Project quarterly newsletter.

  16. U.S. Department of Energy's Bioenergy Research Centers An Overview of the Science

    SciTech Connect (OSTI)

    None

    2010-07-01T23:59:59.000Z

    Alternative fuels from renewable cellulosic biomass - plant stalks, trunks, stems, and leaves - are expected to significantly reduce U.S. dependence on imported oil while enhancing national energy security and decreasing the environmental impacts of energy use. Ethanol and other advanced biofuels from cellulosic biomass are renewable alternatives that could increase domestic production of transportation fuels, revitalize rural economies, and reduce carbon dioxide and pollutant emissions. According to U.S. Secretary of Energy Steven Chu, 'Developing the next generation of biofuels is key to our effort to end our dependence on foreign oil and address the climate crisis while creating millions of new jobs that can't be outsourced.' Although cellulosic ethanol production has been demonstrated on a pilot level, developing a cost-effective, commercial-scale cellulosic biofuel industry will require transformational science to significantly streamline current production processes. Woodchips, grasses, cornstalks, and other cellulosic biomass are widely abundant but more difficult to break down into sugars than corn grain - the primary source of U.S. ethanol fuel production today. Biological research is key to accelerating the deconstruction of cellulosic biomass into sugars that can be converted to biofuels. The Department of Energy (DOE) Office of Science continues to play a major role in inspiring, supporting, and guiding the biotechnology revolution over the past 30 years. The DOE Genomic Science program is advancing a new generation of research focused on achieving whole-systems understanding of biology. This program is bringing together scientists in diverse fields to understand the complex biology underlying solutions to DOE missions in energy production, environmental remediation, and climate change science. For more information on the Genomic Science program, see p. 26. To focus the most advanced biotechnology-based resources on the biological challenges of biofuel production, DOE established three Bioenergy Research Centers (BRCs) in September 2007. Each center is pursuing the basic research underlying a range of high-risk, high-return biological solutions for bioenergy applications. Advances resulting from the BRCs are providing the knowledge needed to develop new biobased products, methods, and tools that the emerging biofuel industry can use (see sidebar, Bridging the Gap from Fundamental Biology to Industrial Innovation for Bioenergy, p. 6). The DOE BRCs have developed automated, high-throughput analysis pipelines that will accelerate scientific discovery for biology-based biofuel research. The three centers, which were selected through a scientific peer-review process, are based in geographically diverse locations - the Southeast, the Midwest, and the West Coast - with partners across the nation (see U.S. map, DOE Bioenergy Research Centers and Partners, on back cover). DOE's Lawrence Berkeley National Laboratory leads the DOE Joint BioEnergy Institute (JBEI) in California; DOE's Oak Ridge National Laboratory leads the BioEnergy Science Center (BESC) in Tennessee; and the University of Wisconsin-Madison leads the Great Lakes Bioenergy Research Center (GLBRC). Each center represents a multidisciplinary partnership with expertise spanning the physical and biological sciences, including genomics, microbial and plant biology, analytical chemistry, computational biology and bioinformatics, and engineering. Institutional partners include DOE national laboratories, universities, private companies, and nonprofit organizations.

  17. Risk in agriculture : a study of crop yield distributions and crop insurance

    E-Print Network [OSTI]

    Gayam, Narsi Reddy

    2006-01-01T23:59:59.000Z

    Agriculture is a business fraught with risk. Crop production depends on climatic, geographical, biological, political, and economic factors, which introduce risks that are quantifiable given the appropriate mathematical ...

  18. Reducing the impact of model scale on simulated, gridded switchgrass yields

    E-Print Network [OSTI]

    Vittorio, A.V. Di

    2014-01-01T23:59:59.000Z

    potential productivity of bioenergy crops is expanding significantly in response to government mandates for annual increases in renewable energy

  19. Climate and Transportation Solutions: Findings from the 2009 Asilomar Conference on Transportation and Energy Policy

    E-Print Network [OSTI]

    Sperling, Daniel; Cannon, James S.

    2010-01-01T23:59:59.000Z

    price elasticity of yield Tariffs and trade barriers Assumed annual increases in crop yields; productivity of new land; bioenergy-

  20. age productivity spatial: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chen, Yong 25 Spatial Distribution and Quantification of Forest Treatment Residues for Bioenergy Production. Open Access Theses and Dissertations Summary: ??The availability and...

  1. Design Case Summary: Production of Mixed Alcohols from Municipal...

    Office of Environmental Management (EM)

    Mixed Alcohols from Municipal Solid Waste via Gasification Design Case Summary: Production of Mixed Alcohols from Municipal Solid Waste via Gasification The Bioenergy Technologies...

  2. STATEMENT OF CONSIDERATIONS REQUEST BY ABENGOA BIOENERGY CORPORATION...

    Broader source: Energy.gov (indexed) [DOE]

    ABENGOA BIOENERGY CORPORATION FOR AN ADVANCE WAIVER OF DOMESTIC AND FOREIGN PATENT RIGHTS UNDER A DOE COOPERATIVE AGREEMENT INITIALLY IDENTIFIED AS GOV WORKS NO. 04-03- CA-79759...

  3. Seizing our Bioenergy Opportunities in a Changing Energy Landscape

    Office of Energy Efficiency and Renewable Energy (EERE)

    At the Bioenergy Technologies Office, were working with public and private partners to develop an industry of advanced biofuels and bioproducts from non-food biomass sources that is commercially...

  4. Bioenergy Technologies Office R&D Pathways: Fast Pyrolysis and...

    Broader source: Energy.gov (indexed) [DOE]

    in a fluidized bed to create bio-oils, which can then be used to create hydrocarbon biofuel blendstocks. Bioenergy Technologies Office R&D Pathways: Fast Pyrolysis and...

  5. OSU Potential Bioenergy Mentors Version 2, 11/13/13

    E-Print Network [OSTI]

    Tullos, Desiree

    electrochemical technologies for bioenergy generation and waste/wastewater treatment. More of methane from wastewater treatment plant anaerobic digesters through the co interests are a good match for their projects. Biological Conversion

  6. Bioenergy 2015: Opportunities in a Changing Energy Landscape...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2015: Opportunities in a Changing Energy Landscape June 23-24, 2015 Bioenergy 2015 Logo Walter E. Washington Convention Center 801 Mt. Vernon Place, NW Washington, DC 20001 On...

  7. BioEnergy Research ISSN 1939-1234

    E-Print Network [OSTI]

    1 23 BioEnergy Research ISSN 1939-1234 Volume 5 Number 2 Bioenerg. Res. (2012) 5:341-362 DOI 10, the EROI was adjusted using quality factors that were calculated according to the price of each input

  8. Opportunities and barriers for sustainable international bioenergy trade and strategies to overcome them -A report prepared by IEA Bioenergy Task 40

    E-Print Network [OSTI]

    Opportunities and barriers for sustainable international bioenergy trade and strategies to overcome them - A report prepared by IEA Bioenergy Task 40 1 Opportunities and barriers for sustainable international bioenergy trade and strategies to overcome them Martin Junginger, André Faaij, Peter

  9. Industrial Crops and Products 43 (2013) 802811 Contents lists available at SciVerse ScienceDirect

    E-Print Network [OSTI]

    Khan, Saad A.

    2013-01-01T23:59:59.000Z

    copolymers (Lee, 1996) to replace petro-derived plastics (Yu et al., 1999). Of the various biodegradable Accepted 10 August 2012 Keywords: Biodegradable plastics Polyhydroxyalkanoate (PHA) Sucrose Two-stage batch (ATCC 29714) for production of polyhydroxybutyrate (PHB), a biodegradable plastic, was explored

  10. Modeling the profitability of power production from short-rotation woody crops in Sub-Saharan Africa

    E-Print Network [OSTI]

    Vermont, University of

    is a prerequisite to enable economic development and reduce poverty. Renewable sources such as wood-fueled power% and 41% of total costs, respectively. Plantation productivity, carbon credit sales as well as land, fuel to electricity it is difficult to attain the Millennium Development Goals on poverty reduction and environmental

  11. Addressing the Need for Alternative Transportation Fuels: The Joint BioEnergy Institute

    E-Print Network [OSTI]

    Blanch, Harvey

    2010-01-01T23:59:59.000Z

    energy-efficient processes to transform lignocellulosic biomass into fuelsenergy crops, can provide much larger amounts of biomass for production of transportation fuels.a high-energy-content transportation fuel. Biomass is a

  12. The effect of stone retention walls on soil productivity and crop performance on selected hillside farms in southern Honduras

    E-Print Network [OSTI]

    Thompson, Marc Ellery

    1992-01-01T23:59:59.000Z

    resulted in a serious loss of forest resources, exploitation of marginal lands, and increasing soil loss due to erosion. A comparison of data on actual land use and availability found that the amount of land This thesis follows the style of the Soil... resource base by deforestation and soil erosion; iv) distortive, relatively low prices for cereal grains and high costs for factors of production such as fertilizer; and v) inadequate levels of human capital, characterized by low literacy rates...

  13. Savannah River BioEnergy Integration Center Savannah River BioEnergy Integration Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol HomeFacebook Twitter Principal Investigators PostdoctoralSasha BioEnergy

  14. Development and Deployment of a Short Rotation Woody Crops Harvesting System Based on a Case New Holland Forage Harvester and SRC Woody Crop Header

    SciTech Connect (OSTI)

    Eisenbies, Mark [SUNY ESF; Volk, Timothy [SUNY ESF

    2014-10-03T23:59:59.000Z

    Demand for bioenergy sourced from woody biomass is projected to increase; however, the expansion and rapid deployment of short rotation woody crop systems in the United States has been constrained by high production costs and sluggish market acceptance due to problems with quality and consistency from first-generation harvesting systems. The objective of this study was to evaluate the effect of crop conditions on the performance of a single-pass, cut and chip harvester based on a standard New Holland FR-9000 series forage harvester with a dedicated 130FB short rotation coppice header, and the quality of chipped material. A time motion analysis was conducted to track the movement of machine and chipped material through the system for 153 separate loads over 10 days on a 54-ha harvest. Harvester performance was regulated by either ground conditions, or standing biomass on 153 loads. Material capacities increased linearly with standing biomass up to 40 Mgwet ha-1 and plateaued between 70 and 90 Mgwet hr-1. Moisture contents ranged from 39 to 51% with the majority of samples between 43 and 45%. Loads produced in freezing weather (average temperature over 10 hours preceding load production) had 4% more chips greater than 25.4 mm (P < 0.0119). Over 1.5 Mgdry ha-1 of potentially harvested material (6-9% of a load) was left on site, of which half was commercially undesirable meristematic pieces. The New Holland harvesting system is a reliable and predictable platform for harvesting material over a wide range of standing biomass; performance was consistent overall in 14 willow cultivars.

  15. National Bioenergy Center, Biochemical Platform Integration Project: Quarterly Update, Winter 2011-2012 (Newsletter)

    SciTech Connect (OSTI)

    Not Available

    2012-04-01T23:59:59.000Z

    Winter 2011-2012 issue of the National Bioenergy Center Biochemical Platform Integration Project quarterly update. Issue topics: 34th Symposium on Biotechnology for Fuels and Chemicals; feasibility of NIR spectroscopy-based rapid feedstock reactive screening; demonstrating integrated pilot-scale biomass conversion. The Biochemical Process Integration Task focuses on integrating the processing steps in enzyme-based lignocellulose conversion technology. This project supports the U.S. Department of Energy's efforts to foster development, demonstration, and deployment of 'biochemical platform' biorefineries that economically produce ethanol or other fuels, as well as commodity sugars and a variety of other chemical products, from renewable lignocellulosic biomass.

  16. Perennial grasslands enhance biodiversity and multiple ecosystem services in bioenergy landscapes

    E-Print Network [OSTI]

    Landis, Doug

    of ecosystem functions, promoting the creation of multifunctional agricultural landscapes. We foundPerennial grasslands enhance biodiversity and multiple ecosystem services in bioenergy landscapes, Michigan State University, East Lansing, MI 48824; b Great Lakes Bioenergy Research Center, US Department

  17. Modelling the UK perennial energy crop market

    E-Print Network [OSTI]

    Alexander, Peter Mark William

    2014-11-27T23:59:59.000Z

    Biomass produced from perennial energy crops, Miscanthus and willow or poplar grown as short-rotation coppice, is expected to contribute to UK renewable energy targets and reduce the carbon intensity of energy production. ...

  18. National Bioenergy Center Biochemical Platform Integration Project: Quarterly Update #13, October-December 2006

    SciTech Connect (OSTI)

    Schell, D. J.

    2007-01-01T23:59:59.000Z

    Volume 13 of a quarterly newsletter that describes the activities of the National Bioenergy Center's Biochemical Processing Integration Task.

  19. National Bioenergy Center Sugar Platform Integration Project: Quarterly Update #10, January-March 2006

    SciTech Connect (OSTI)

    Not Available

    2006-04-01T23:59:59.000Z

    Volume 10 of a quarterly newsletter that describes the activities of the National Bioenergy Center's Sugar Platform Integration Project.

  20. National Bioenergy Center Sugar Platform Integration Project: Quarterly Update #9, October-December 2005

    SciTech Connect (OSTI)

    Schell, D. J.

    2006-01-01T23:59:59.000Z

    Volume 9 of a quarterly newsletter that describes the activities of the National Bioenergy Center's Sugar Platform Integration Project.

  1. National Bioenergy Center Sugar Platform Integration Project: Quarterly Update #12, July-September 2006

    SciTech Connect (OSTI)

    Schell, D.

    2006-10-01T23:59:59.000Z

    Volume 12 of a quarterly newsletter that describes the activities of the National Bioenergy Center's Sugar Platform Integration Project.

  2. U.S. Billion-Ton Update: Biomass Supply for a Bioenergy and Bioproduct...

    Energy Savers [EERE]

    WORKSHOP Biomass Program Peer Review Sustainability Platform Bioenergy Technologies Office: Association of Fish and Wildlife Agencies Agricultural Conservation Committee Meeting...

  3. National Bioenergy Center Biochemical Platform Process Integration Project: Quarterly Update #18, January-March 2008

    SciTech Connect (OSTI)

    Schell, D.

    2008-04-01T23:59:59.000Z

    January-March, 2008 edition of the quarterly update for the National Bioenergy Center's Biochemical Platform Integration Project.

  4. National Bioenergy Center Biochemical Platform Integration Project: Quarterly Update #21, October - December 2008

    SciTech Connect (OSTI)

    Schell, D.

    2009-01-01T23:59:59.000Z

    October to December, 2008 edition of the National Bioenergy Center?s Biochemical Platform Integration Project quarterly newsletter.

  5. Research questions How could the conversion of marginal agricultural lands to bioenergy switchgrass

    E-Print Network [OSTI]

    Nebraska-Lincoln, University of

    .R. and Schemske, D.W. 2010. Perennial biomass feedstocks enhance avian diversity. GCB Bioenergy 1080:1-12. Samson

  6. A national research & development strategy for biomass crop feedstocks

    SciTech Connect (OSTI)

    Wright, L.L.; Cushman, J.H.

    1997-07-01T23:59:59.000Z

    Planning was initiated in 1996 with the objective of reevaluating current biomass feedstock research and development strategies to: (1) assure that by 2005, one or more commercial lignocellulosic to ethanol projects will be able to acquire a dependable supply of biomass crop feedstocks; (2) assure that recently initiated demonstrations of crops to electricity will be successful and; (3) assure that the research base needed to support future biomass industry expansion is being developed. Multiple trends and analyses indicate that biomass energy research and development strategies must take into account the fact that competition for land will define the upper limits of available biomass energy crop supplies and will largely dictate the price of those supplies. Only crop production and utilization strategies which contribute profit to the farmer or landowner and to energy producers will be used commercially for biomass energy production. Strategies for developing biomass {open_quotes}energy{close_quotes} crop supplies must take into consideration all of the methods by which biomass crops will enter biomass energy markets. The lignocellulosic materials derived from crops can be available as primary residues or crop by-products; secondary residues or processing by-products; co-products (at both the crop production and processing stages); or, as dedicated energy crops. Basic research and development (R&D) leading to yield improvement continues to be recommended as a major long-term focus for dedicated energy crops. Many additional near term topics need attention, some of which are also applicable to by-products and co-products. Switchgrass R&D should be expanded and developed with greater collaboration of USDA and state extension groups. Woody crop research should continue with significant cost-share from industries developing the crops for other commercial products. Co-product options need more investigation.

  7. International Conference on Wood-based Bioenergy LIGNA+Hannover, Germany, 17-18 May 2007

    E-Print Network [OSTI]

    International Conference on Wood-based Bioenergy LIGNA+Hannover, Germany, 17-18 May 2007 Photo: NTC+Hannover, Germany, 17-18 May 2007 Photo: NTC Photo: Stora Enso Photo: Stora Enso Topics I. Background for bioenergy;International Conference on Wood-based Bioenergy LIGNA+Hannover, Germany, 17-18 May 2007 Photo: NTC Photo: Stora

  8. *** Draft: do not cite or distribute -COP7 Bioenergy Document: October 18, 2001 *** Address Correspondence to

    E-Print Network [OSTI]

    Kammen, Daniel M.

    *** Draft: do not cite or distribute - COP7 Bioenergy Document: October 18, 2001 *** Address;*** Draft: do not cite or distribute - COP7 Bioenergy Document: October 18, 2001 *** 10/23/01 Page 2 of 111 omasera@ate.oikos.unam.mx #12;*** Draft: do not cite or distribute - COP7 Bioenergy Document: October 18

  9. Ris har udgivet en rapport om moderne bioenergi. Den slr fast, at

    E-Print Network [OSTI]

    Risø har udgivet en rapport om moderne bioenergi. Den slår fast, at biomasse er en ligeså værdifuld teknologi, der skal til for at udnytte hele dens potentiale. RIS?NYT N O 42003 MODERNE BIOENERGI HAR STORE MULIGHEDER Moderne bioenergi har store muligheder Af Hans Larsen, Jens Kossmann og Leif Sønderberg Petersen

  10. SLU, Spring 2012 Bioenergy and social sciences: economics and sociology, 5hp

    E-Print Network [OSTI]

    SLU, Spring 2012 1/6 Bioenergy and social sciences: economics and sociology, 5hp PNS0083 Bioenergy and social sciences: economics and sociology, 5hp The course is given as part of the postgraduate research school "Bioenergy". The overall objective of the course is: 1. to enable the students

  11. Multi Criteria Analysis for bioenergy systems assessments Thomas Buchholz a,, Ewald Rametsteiner b

    E-Print Network [OSTI]

    Vermont, University of

    Multi Criteria Analysis for bioenergy systems assessments Thomas Buchholz a,?, Ewald Rametsteiner b Available online 11 November 2008 Keywords: Multi Criteria Analysis Bioenergy Sustainability a b s t r a c t Sustainable bioenergy systems are, by definition, embedded in social, economic, and environmental contexts

  12. Concorso Tesi di Laurea e Concorso Tesi di Dottorato di Ricerca BioEnergy Italy 2014

    E-Print Network [OSTI]

    Segatti, Antonio

    Concorso Tesi di Laurea e Concorso Tesi di Dottorato di Ricerca BioEnergy Italy 2014 Bioenergie, Chimica Verde e Agricoltura Destinato ai laureati di qualsiasi Facoltà che hanno dell'uso delle bioenergie o della chimica verde in agricoltura I Concorsi - promossi da Cremona

  13. Small-Scale Bioenergy Alternatives for Industry, Farm, and Institutions : A User`s Perspective.

    SciTech Connect (OSTI)

    Folk, Richard [ed.] [Idaho Univ., Moscow, ID (United States). Dept. of Forest Products

    1991-12-31T23:59:59.000Z

    This report presents research on biomass as an energy source. Topics include: bioenergy development and application; bioenergy combustion technology; and bioenergy from agricultural, forest, and urban resources. There are a total of 57 individual reports included. Individual reports are processed separately for the databases.

  14. Dear Participant, Welcome to the symposium `Bioenergy Research within SLU' on Tuesday, September 25, at

    E-Print Network [OSTI]

    Dear Participant, Welcome to the symposium `Bioenergy Research within SLU' on Tuesday, September 25 on the web page of the Research school Bioenergy (http://www.slu.se/sv/forskarskolor/bioenergy/) on Monday the arrival hall. · Journey time: about 30 minutes · Cost: about SEK 460. Ask the driver for a fixed price

  15. Microbiological and nutritional aspects of pendulous crop in turkey poults

    E-Print Network [OSTI]

    Wheeler, Harry Ogden

    1959-01-01T23:59:59.000Z

    with pendulous crop-------------- 39 2. "Milking" of turkey poult with, pendulous crop? - ---------- --- 40 3* Turkey poult after draining the crop, amount of fluid drained is shown in the 1 liter graduated cylinder? --------- ? ? - ---- 41 4. Blood alcohol... levels of poults on glucose monohydrate, starch and practiced type diets (4-week average)------ - ------- ? ------42 5. Weekly blood alcohols on turkey poults-? ----? --- -? *---43 JE vitro alcohol production by organism isolated from crop of turkey...

  16. U.S, Department of Energy's Bioenergy Research Centers An Overview of the Science

    SciTech Connect (OSTI)

    None

    2009-07-01T23:59:59.000Z

    Alternative fuels from renewable cellulosic biomass--plant stalks, trunks, stems, and leaves--are expected to significantly reduce U.S. dependence on imported oil while enhancing national energy security and decreasing the environmental impacts of energy use. Ethanol and other advanced biofuels from cellulosic biomass are renewable alternatives that could increase domestic production of transportation fuels, revitalize rural economies, and reduce carbon dioxide and pollutant emissions. According to U.S. Secretary of Energy Steven Chu, 'Developing the next generation of biofuels is key to our effort to end our dependence on foreign oil and address the climate crisis while creating millions of new jobs that can't be outsourced'. In the United States, the Energy Independence and Security Act (EISA) of 2007 is an important driver for the sustainable development of renewable biofuels. As part of EISA, the Renewable Fuel Standard mandates that 36 billion gallons of biofuels are to be produced annually by 2022, of which 16 billion gallons are expected to come from cellulosic feedstocks. Although cellulosic ethanol production has been demonstrated on a pilot level, developing a cost-effective, commercial-scale cellulosic biofuel industry will require transformational science to significantly streamline current production processes. Woodchips, grasses, cornstalks, and other cellulosic biomass are widely abundant but more difficult to break down into sugars than corn grain--the primary source of U.S. ethanol fuel production today. Biological research is key to accelerating the deconstruction of cellulosic biomass into sugars that can be converted to biofuels. The Department of Energy (DOE) Office of Science continues to play a major role in inspiring, supporting, and guiding the biotechnology revolution over the past 25 years. The DOE Genomic Science Program is advancing a new generation of research focused on achieving whole-systems understanding for biology. This program is bringing together scientists in diverse fields to understand the complex biology underlying solutions to DOE missions in energy production, environmental remediation, and climate change science. New interdisciplinary research communities are emerging, as are knowledgebases and scientific and computational resources critical to advancing large-scale, genome-based biology. To focus the most advanced biotechnology-based resources on the biological challenges of biofuel production, DOE established three Bioenergy Research Centers (BRCs) in September 2007. Each center is pursuing the basic research underlying a range of high-risk, high-return biological solutions for bioenergy applications. Advances resulting from the BRCs will provide the knowledge needed to develop new biobased products, methods, and tools that the emerging biofuel industry can use. The scientific rationale for these centers and for other fundamental genomic research critical to the biofuel industry was established at a DOE workshop involving members of the research community (see sidebar, Biofuel Research Plan, below). The DOE BRCs have developed automated, high-throughput analysis pipelines that will accelerate scientific discovery for biology-based biofuel research. The three centers, which were selected through a scientific peer-review process, are based in geographically diverse locations--the Southeast, the Midwest, and the West Coast--with partners across the nation. DOE's Oak Ridge National Laboratory leads the BioEnergy Science Center (BESC) in Tennessee; the University of Wisconsin-Madison leads the Great Lakes Bioenergy Research Center (GLBRC); and DOE's Lawrence Berkeley National Laboratory leads the DOE Joint BioEnergy Institute (JBEI) in California. Each center represents a multidisciplinary partnership with expertise spanning the physical and biological sciences, including genomics, microbial and plant biology, analytical chemistry, computational biology and bioinformatics, and engineering. Institutional partners include DOE national laboratories, universities, private companies,

  17. Bioenergy Feedstock Library and Least-Cost Formulation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The FutureCommentsEnergyand SustainedBio-OilBioenergy 2015 AgendaBioenergy

  18. Bioenergy Sustainability: How to Define & Measure It

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The FutureCommentsEnergyand SustainedBio-OilBioenergy 2015Bioenergy Pumps New

  19. Bioenergy Technologies Office (BETO) Announces Renewable Carbon Fiber

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The FutureCommentsEnergyand SustainedBio-OilBioenergy 2015Bioenergy

  20. alley cropping system: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Markus 460 Organic and inorganic fertilization with and without microbial inoculants in peat-based substrate and hydroponic crop production. Open Access Theses and Dissertations...

  1. alley cropping: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Markus 400 Organic and inorganic fertilization with and without microbial inoculants in peat-based substrate and hydroponic crop production. Open Access Theses and Dissertations...

  2. alley cropping systems: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Markus 460 Organic and inorganic fertilization with and without microbial inoculants in peat-based substrate and hydroponic crop production. Open Access Theses and Dissertations...

  3. aestivum cropping system: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Markus 455 Organic and inorganic fertilization with and without microbial inoculants in peat-based substrate and hydroponic crop production. Open Access Theses and Dissertations...

  4. Wind Turbines Benefit Crops

    ScienceCinema (OSTI)

    Takle, Gene

    2013-03-01T23:59:59.000Z

    Ames Laboratory associate scientist Gene Takle talks about research into the effect of wind turbines on nearby crops. Preliminary results show the turbines may have a positive effect by cooling and drying the crops and assisting with carbon dioxide uptake.

  5. Wind Turbines Benefit Crops

    SciTech Connect (OSTI)

    Takle, Gene

    2010-01-01T23:59:59.000Z

    Ames Laboratory associate scientist Gene Takle talks about research into the effect of wind turbines on nearby crops. Preliminary results show the turbines may have a positive effect by cooling and drying the crops and assisting with carbon dioxide uptake.

  6. Microbially derived crop protection products

    E-Print Network [OSTI]

    Torok, Tamas

    2010-01-01T23:59:59.000Z

    Date 6/10/2010 CRADA FinalReport CRADA No. BG0022201 LBNL Report Number Parties:directly related to the CRADA? "Microbial Diversity-Based

  7. Advantages and limitations of exergy indicators to assess sustainability of bioenergy and biobased materials

    SciTech Connect (OSTI)

    Maes, Dries, E-mail: Dries.Maes@uhasselt.be; Van Passel, Steven, E-mail: Steven.Vanpassel@uhasselt.be

    2014-02-15T23:59:59.000Z

    Innovative bioenergy projects show a growing diversity in biomass pathways, transformation technologies and end-products, leading to complex new processes. Existing energy-based indicators are not designed to include multiple impacts and are too constrained to assess the sustainability of these processes. Alternatively, indicators based on exergy, a measure of qualitative energy, could allow a more holistic view. Exergy is increasingly applied in analyses of both technical and biological processes. But sustainability assessments including exergy calculations, are not very common and are not generally applicable to all types of impact. Hence it is important to frame the use of exergy for inclusion in a sustainability assessment. This paper reviews the potentials and the limitations of exergy calculations, and presents solutions for coherent aggregation with other metrics. The resulting approach is illustrated in a case study. Within the context of sustainability assessment of bioenergy, exergy is a suitable metric for the impacts that require an ecocentric interpretation, and it allows aggregation on a physical basis. The use of exergy is limited to a measurement of material and energy exchanges with the sun, biosphere and lithosphere. Exchanges involving services or human choices are to be measured in different metrics. This combination provides a more inclusive and objective sustainability assessment, especially compared to standard energy- or carbon-based indicators. Future applications of this approach in different situations are required to clarify the potential of exergy-based indicators in a sustainability context. -- Highlights: Innovative bioenergy projects require more advanced sustainability assessments to incorporate all environmental impacts. Exergy-based indicators provide solutions for objective and robust measurements. The use of exergy in a sustainability assessment is limited to material exchanges, excluding exchanges with society. The combination of exergy-based indicators with other indicators is very appropriate. But this is only rarely applied.

  8. R E V I E W Bioenergy crop models: descriptions, data requirements,

    E-Print Network [OSTI]

    Dietze, Michael

    of bioethanol has prompted a worldwide interest in determining how much lignocellulosic biomass can be grown

  9. A Landscape Design for Bioenergy Cropping Options Need for a Landscape Design

    E-Print Network [OSTI]

    this approach addresses the questions of biofuel selection and deployment. These objectives are being addressed) with advanced non-linear watershed simulation tool (i.e., SWAT). The SOM linked to SWAT is being used to test

  10. USDA and DOE Fund 10 Research Projects to Accelerate Bioenergy Crop

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2, 2015 -Helicopter AccidentSeptember 2009JulyUS-ChinaDepartment

  11. ABSTRACT: Bioenergy Harvesting Technologies to Supply Crop Residues In a Densified Large Square Bale Format

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of1 A Strategic Framework for SMRA View from the-1Assessment

  12. CROP & SOIL SCIENCES Soybean Breeding

    E-Print Network [OSTI]

    Arnold, Jonathan

    CROP & SOIL SCIENCES Soybean Breeding Committee Membership Dr. Joseph Bouton - committee chair Dr. Brian Schwartz Department of Crop & Soil Sciences Department of Crop & Soil Sciences University & Soil Sciences Department of Crop & Soil Sciences University of Georgia University of Georgia Center

  13. CROP & SOIL SCIENCES Forage Breeding

    E-Print Network [OSTI]

    Arnold, Jonathan

    CROP & SOIL SCIENCES Forage Breeding Committee Membership Dr. Joseph Bouton - committee chair Dr. Brian Schwartz Department of Crop & Soil Sciences Department of Crop & Soil Sciences University & Soil Sciences Department of Crop & Soil Sciences University of Georgia University of Georgia Center

  14. Bioenergy Technologies Office Releases Symbiosis Biofeedstock...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    mutualism and discussed the potential benefits of using native, mutualistic systems to address biofeedstock production incorporating classic and novel technologies...

  15. Hawaii Bioenergy Master Plan Marc. M. Siah & Associates, Inc.

    E-Print Network [OSTI]

    energy future require an expeditious and broad implementation of clean and renewable energy applications of promising bioenergy projects in the state. To meet its clean energy goals, Hawaii cannot afford the perception that investment and green energy initiatives are hindered by a lack of support from State

  16. Review of Bioenergy Research A report for BBSRC Strategy Board

    E-Print Network [OSTI]

    Edinburgh, University of

    as part of a multi-faceted low-carbon solution for the UK's future energy supply. There are powerful, longReview of Bioenergy Research A report for BBSRC Strategy Board March 2006 [ BBSRC, 2006] 1 #12 Summary ________________________________________________________ 4 CHAPTER 1: DRIVERS FOR RENEWABLE ENERGY

  17. Hawaii Bioenergy Master Plan Financial Incentives And Barriers; And

    E-Print Network [OSTI]

    at levels sufficient to contribute a significant renewable energy resource to the State of HawaiHawaii Bioenergy Master Plan Financial Incentives And Barriers; And Other Funding Sources Prepared for: Hawai`i Natural Energy Institute University of Hawai`i at Manoa 1680 East West Road, POST 109

  18. Bioprocessing of Microalgae for Bioenergy and Recombinant Protein Production

    E-Print Network [OSTI]

    Garzon Sanabria, Andrea J

    2013-07-31T23:59:59.000Z

    strain, N. oculata. Data for C. vulgaris was taken from Henderson et. al., (2008c). ............................................................................................................. 55 3.1. Removal efficiency of N. salina cells (~ 1...., 2012; Henderson et al., 2008b; Henderson et al., 2008c; Schlesinger et al., 2012b; Sukenik and 18 Shelef, 1984; Uduman et al., 2010a). Optimal flocculant dosage for efficient flocculation of marine microalgae (> 90 %) was mainly affected by cell...

  19. Vision for Bioenergy and Biobased Products in the United States

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    16 The Clean Air Act mandated that the Environmental Protection Agency establish emission standards for NO x and other pollutants. Currently, CO 2 emissions are not regulated...

  20. Roadmap for Bioenergy and Biobased Products in the United States

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    dependence on fossil fuels and to secure future energy supply. Biomass resources are a sustainable and environmentally friendly feedstock that can contribute significantly to a...

  1. In Search of Spatial Opportunities for Sustainable Bioenergy Production |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm)HydrogenRFP » Important TrinityEnergy the

  2. Roadmap for Bioenergy and Biobased Products in the United States |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin ofEnergy at Waste-to-Energy usingofRetrofittingFundA l i c e L i p p e rDepartment

  3. The Future of Bioenergy Feedstock Production | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideoStrategic| DepartmentDepartmentTheEnergy TheClean TechTheMODELCellThe

  4. Study site in Son La Province, Vietnam investigating appropriate soil-water-plant management practices for sustainable crop and livestock production (CRP project

    E-Print Network [OSTI]

    Richner, Heinz

    Study site in Son La Province, Vietnam investigating appropriate soil-water-plant management Schmitter). To Our Readers The Soil and Water Management and Crop Nutrition (SWMCN) Section and the SWMCN-2013 programme with other FAO Divisions through result-based activities relating to soil and water management

  5. Bioenergy Success Stories | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    developing sustainable, cost-competitive biofuels, bioproducts, and biopower translate into clean, affordable fuels for the cars and trucks of today and tomorrow, and products and...

  6. Report Explains How Bioenergy Supports Global Sustainability...

    Office of Environmental Management (EM)

    productivity and environmental health, and provides a vision for sustainably reducing poverty and reliance on dwindling fossil resources. BETO funding supports researchers from...

  7. Assessing the potential of bioenergy. Final report, October 1, 1997--September 30, 1998

    SciTech Connect (OSTI)

    Kirschner, J.; Badin, J.

    1998-12-31T23:59:59.000Z

    As electricity restructuring proceeds, traditional concepts of how energy is produced, transported, and utilized are likely to change dramatically. Marketplace, policy, and regulatory changes will shape both the domestic and global energy industry, improving opportunities for clean, low-cost energy, competitively priced fuels, and environmentally responsible power systems. Many of these benefits may be obtained by commercial deployment of advanced biomass power conversion technologies. The United BioEnergy Commercialization Association represents the US biomass power industry. Its membership includes investor-owned and public utilities, independent power producers, state and regional bioenergy, equipment manufacturers, and biomass energy developers. To carry out its mission, UBECA has been carrying out the following activities: production of informational and educational materials on biomass energy and distribution of such materials at public forums; technical and market analyses of biomass energy fuels, conversion technologies, and market issues; monitoring of issues affecting the biomass energy community; and facilitating cooperation among members to leverage the funds available for biomass commercialization activities.

  8. Ris-R-1146(EN) Power Production from Radioactively

    E-Print Network [OSTI]

    and utilisation of the removed biomass in safe energy production is being investigated in a Belarussian- sible adverse health effects in connection with the much needed bio-energy production. This report

  9. Field Description Source Who is providing this information? Please provide Name, telephone number, affiliation, email so that we may contact you if clarification is needed

    E-Print Network [OSTI]

    descriptive name for this model Crop What biostock crops or other inputs into the bioenergy conversion/are the bioenergy product(s) produced in this model? (e.g., biodiesel, ethanol, etc.) Byproduct What, if any.) that are NOT used for bioenergy REPEAT FOR EACH DIFFERENT PARTNER IN THE MODEL: START Partner/Location Please list

  10. 10 Questions for a Bioenergy Expert: Melinda Hamilton

    Broader source: Energy.gov [DOE]

    Meet Melinda Hamilton shes a bioenergy expert and the Director of Education Programs at Idaho National Laboratory. She recently took some time to share what shes doing to help ramp-up U.S. competitiveness in science and technology, why Jane Goodall led her to a career in science and what can happen in a lab if you dont start with a good plan.

  11. Bioenergy Technologies Office FY 2016 Budget At-A-Glance

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataEnergyDepartmentWindConversion BiochemicalDepartmentBIOENERGY

  12. Dynamic analysis of policy drivers for bioenergy commodity markets

    SciTech Connect (OSTI)

    Robert F. Jeffers; Jacob J. Jacobson; Erin M. Searcy

    2001-01-01T23:59:59.000Z

    Biomass is increasingly being considered as a feedstock to provide a clean and renewable source of energy in the form of both liquid fuels and electric power. In the United States, the biofuels and biopower industries are regulated by different policies and have different drivers which impact the maximum price the industries are willing to pay for biomass. This article describes a dynamic computer simulation model that analyzes future behavior of bioenergy feedstock markets given policy and technical options. The model simulates the long-term dynamics of these markets by treating advanced biomass feedstocks as a commodity and projecting the total demand of each industry as well as the market price over time. The model is used for an analysis of the United States bioenergy feedstock market that projects supply, demand, and market price given three independent buyers: domestic biopower, domestic biofuels, and foreign exports. With base-case assumptions, the biofuels industry is able to dominate the market and meet the federal Renewable Fuel Standard (RFS) targets for advanced biofuels. Further analyses suggest that United States bioenergy studies should include estimates of export demand in their projections, and that GHG-limiting policy would partially shield both industries from exporter dominance.

  13. "Bioenergy Research within SLU" Symposium Program

    E-Print Network [OSTI]

    , SLU Uppsala 13:45 14:00 Forest refine ( Efficient forest biomass supply chain management for Biorefineries) & INFRES (Innovative and effective technology and logistics for forest residual biomass supply Department of Forest Products, SLU Uppsala #12;2 12:00 13:15 Lunch break 13:15 - 13:30 Activities

  14. Sandia Energy - Joint BioEnergy Institute Oxime-NIMS Work Featured...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    BioEnergy Institute Oxime-NIMS Work Featured on the Cover of ACS Chemical Biology Home Renewable Energy Energy Transportation Energy Biofuels Facilities Capabilities JBEI News News...

  15. The Effects of Nitrogen Fertilization on Bioenergy Sorghum Yield and Quality

    E-Print Network [OSTI]

    Zilahi-Sebess, Szilvia

    2012-07-16T23:59:59.000Z

    Forage sorghum (Sorghum bicolor L. Moench) is one of the prospective crops that may be used to produce biofuels in the future. Therefore, it is of interest to find management practices that improve both the production of biomass yield and quality...

  16. USDA and DOE Fund 10 Research Projects to Accelerate Bioenergy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    extreme environments. Researchers will rely on the most advanced techniques of modern genomics to develop breeding and other strategies to improve the crops. The research will be...

  17. Woody energy crops in the southeastern United States: Two centuries of practitioner experience

    SciTech Connect (OSTI)

    Kline, Keith L [ORNL; Coleman, Mark [USDA Forest Service

    2010-01-01T23:59:59.000Z

    Forest industry experts were consulted on the potential for hardwood tree species to serve as feedstock for bioenergy in the southeastern United States. Hardwoods are of interest for bioenergy because of desirable physical qualities, genetic research advances, and growth potential. Yet little data is available regarding potential productivity and costs. This paper describes required operations and provides a realistic estimate of the costs of producing bioenergy feedstock based on commercial experiences. Forestry practitioners reported that high productivity rates in southeastern hardwood plantations are confined to narrow site conditions or require costly inputs. Eastern cottonwood and American sycamore grow quickly on rich bottomlands, but are also prone to pests and disease. Sweetgum is frost hardy, has few pest or disease problems, and grows across a broad range of sites, yet growth rates are relatively low. Eucalypts require fewer inputs than do other species and offer high potential productivity but are limited by frost to the lower Coastal Plain and Florida. Further research is required to study naturally regenerated hardwood biomass resources. Loblolly pine has robust site requirements, growth rates rivaling hardwoods, and lower costs of production. More time and investment in silviculture, selection, and breeding will be needed to develop hardwoods as competitive biofuel feedstock species. Because of existing stands and fully developed operations, the forestry community considers loblolly pine to be a prime candidate for plantation bioenergy in the Southeast.

  18. Renewable Technologies and Environmental Injustice: Subsidizing Bioenergy, Promoting Inequity

    E-Print Network [OSTI]

    Shrader-Frechette, Kristin

    subsidize biomass-crop growing/incineration, touting it as clean, renewable, and helping to alleviate the U.S., biomass-incineration is the largest single source of ``renewable energy'' and thus satisfies government renewable-energy credits and sub- sidies.4 Developed nations offer biomass-crop, biomass- boiler

  19. 30 Robust og bredygtig bioenergi september 2012 Af Brian Vad Mathiesen, Henrik Lund,

    E-Print Network [OSTI]

    Pillai, Jayakrishnan Radhakrishna

    30 Robust og bæredygtig bioenergi · september 2012 Af Brian Vad Mathiesen, Henrik Lund, Frede K erstatte de fossile brændsler med biobrændsler og bioenergi, og/eller i hvor høj grad vi skal satse på

  20. IEA-Renewable Energy Technologies, Bioenergy Agreement Task 37: Energy from Biogas and Landfill Gas

    E-Print Network [OSTI]

    EFP-06 IEA- Renewable Energy Technologies, Bioenergy Agreement Task 37: Energy from Biogas-Bioenergy, Task 37- Energy from Biogas and Landfill Gas", via samarbejde, informationsudveksling, flles analyser. biogas fra anaerob udrdning (AD) som en integreret gylle og affalds behandlings teknologi. Arbejdet

  1. Biomass and Bioenergy 31 (2007) 646655 Estimating biomass of individual pine trees using airborne lidar

    E-Print Network [OSTI]

    2007-01-01T23:59:59.000Z

    Biomass and Bioenergy 31 (2007) 646655 Estimating biomass of individual pine trees using airborne biomass and bio-energy feedstocks. The overall goal of this study was to develop a method for assessing aboveground biomass and component biomass for individual trees using airborne lidar data in forest settings

  2. Reducing effluent discharge and recovering bioenergy in an osmotic microbial fuel cell treating domestic wastewater

    E-Print Network [OSTI]

    to osmotic water extraction. Bioenergy recovered from wastewater can potentially support pumping system osmosis into an MFC for simultaneous wastewater treatment, bioenergy recovery, and water extraction and water extraction [9]. An MFC using an FO membrane as a separator between its anode and cathode is called

  3. Net carbon fluxes at stand and landscape scales from wood bioenergy harvests in the US Northeast

    E-Print Network [OSTI]

    Vermont, University of

    gas emissions implications of wood biomass (`bioenergy') harvests are highly uncer- tain yet of great') on long-term green- house gas emissions are uncertain (McKechnie et al., 2011), yet demand for wood (C) emitted from wood bioenergy may eventually be re-sequestered through regeneration and increased

  4. International Market Opportunities in Bioenergy: Leveraging U.S. Government Resources

    Broader source: Energy.gov [DOE]

    Breakout Session 3CFostering Technology Adoption III: International Market Opportunities in Bioenergy International Market Opportunities in Bioenergy: Leveraging U.S. Government Resources Cora Dickson, Senior International Trade Specialist, Office of Energy and Environmental Industries, International Trade Administration, U.S. Department of Commerce

  5. Bioenergy Technologies Office Judges Washington State University Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The FutureCommentsEnergyand SustainedBio-OilBioenergyMicroalgal biomass

  6. Bioenergy Technologies Office New Directions | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The FutureCommentsEnergyand SustainedBio-OilBioenergyMicroalgal-- Sections

  7. DOE's Bioenergy Technologies Office Supports Military-Grade Biofuels |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsNovember 13, 2014ContributingDOE ContractDepartment of Energy DOE's Bioenergy

  8. Carbon Green BioEnergy LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomassSustainableCSL GasPermitsGreen BioEnergy LLC Jump to: navigation, search

  9. The Bioenergy Knowledge Discovery Framework (KDF) | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently AskedEnergyIssuesEnergy Solar Decathlon2001 Power PlantAPRIL 1,TheThe Bioenergy

  10. Bioenergy expert Ragauskas named fourteenth Governor's Chair | ornl.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced Materials Find Find More Like ThisBioenergy Technologies

  11. Bioenergy Technologies FY14 Budget At-a-Glance

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube platform isEnergyMeeting | Department ofTransportation Fuels BIOENERGY

  12. Biomass Basics: The Facts About Bioenergy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube platform isEnergyMeeting | DepartmentBioenergyUS0 ConferenceBiomass

  13. Biomass IBR Fact Sheet: Abengoa Bioenergy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube platform isEnergyMeeting | DepartmentBioenergyUS0IBR Fact Sheet: Abengoa

  14. Western BioEnergy Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlin BaxinUmweltVillageGraphWellton-Mohawk IrrWestWestNewWestern BioEnergy

  15. G K Bioenergy Pvt Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump1946865°, -86.0529604°Wisconsin:FyreStorm Inc Jump to:K.Bioenergy Pvt.

  16. CROP & SOIL SCIENCES Irrigation Specialist

    E-Print Network [OSTI]

    Arnold, Jonathan

    CROP & SOIL SCIENCES Irrigation Specialist Committee Membership Dr. John Beasley - committee chair Dr. Jared Whitaker Department of Crop & Soil Sciences Department of Crop & Soil Sciences University: (229) 386-7308 Fax: (912) 681-0376 Dr. Robert Carrow Dr. Mark Risse Department of Crop & Soil Sciences

  17. CROP & SOIL SCIENCES Quantitative Genomics

    E-Print Network [OSTI]

    Arnold, Jonathan

    CROP & SOIL SCIENCES Quantitative Genomics Committee Membership Dr. Scott Jackson - committee chair Dr. Peng-Wah Chee Department of Crop & Soil Sciences Department of Crop & Soil Sciences University of Horticulture Department of Crop & Soil Sciences University of Georgia University of Georgia 2360 Rainwater Rd

  18. 08-ERD-071 Final Report: New Molecular Probes and Catalysts for Bioenergy Research

    SciTech Connect (OSTI)

    Thelen, M P; Rowe, A A; Siebers, A K; Jiao, Y

    2011-03-07T23:59:59.000Z

    A major thrust in bioenergy research is to develop innovative methods for deconstructing plant cell wall polymers, such as cellulose and lignin, into simple monomers that can be biologically converted to ethanol and other fuels. Current techniques for monitoring a broad array of cell wall materials and specific degradation products are expensive and time consuming. To monitor various polymers and assay their breakdown products, molecular probes for detecting specific carbohydrates and lignins are urgently needed. These new probes would extend the limited biochemical techniques available, and enable realtime imaging of ultrastructural changes in plant cells. Furthermore, degradation of plant biomass could be greatly accelerated by the development of catalysts that can hydrolyze key cell wall polysaccharides and lignin. The objective of this project was to develop cheap and efficient DNA reagents (aptamers) used to detect and quantify polysaccharides, lignin, and relevant products of their breakdown. A practical goal of the research was to develop electrochemical aptamer biosensors, which could be integrated into microfluidic devices and used for high-throughput screening of enzymes or biological systems that degrade biomass. Several important model plant cell wall polymers and compounds were targeted for specific binding and purification of aptamers, which were then tested by microscopic imaging, circular dichroism, surface plasmon resonance, fluorescence anisotropy, and electrochemical biosensors. Using this approach, it was anticiated that we could provide a basis for more efficient and economically viable biofuels, and the technologies established could be used to design molecular tools that recognize targets sought in medicine or chemical and biological defense projects.

  19. annual chilean crops: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    from the ground to their faucet. Sloggett (1979) estimated that 23 percent of the on-farm energy use for crop production in the U.S. was for onfarm pumping. The energy required to...

  20. Pacific Northwest and Alaska Regional Bioenergy Program : Five Year Report, 1985-1990.

    SciTech Connect (OSTI)

    Pacific Northwest and Alaska Bioenergy Program (U.S.)

    1991-02-01T23:59:59.000Z

    This five-year report describes activities of the Pacific Northwest and Alaska Regional Bioenergy Program between 1985 and 1990. Begun in 1979, this Regional Bioenergy Program became the model for the nation's four other regional bioenergy programs in 1983. Within the time span of this report, the Pacific Northwest and Alaska Regional Bioenergy Program has undertaken a number of applied research and technology projects, and supported and guided the work of its five participating state energy programs. During this period, the Regional Bioenergy Program has brought together public- and private-sector organizations to promote the use of local biomass and municipal-waste energy resources and technologies. This report claims information on the mission, goals and accomplishments of the Regional Bioenergy Program. It describes the biomass projects conducted by the individual states of the region, and summarizes the results of the programs technical studies. Publications from both the state and regional projects are listed. The report goes on to consider future efforts of the Regional Bioenergy Program under its challenging assignment. Research activities include: forest residue estimates; Landsat biomass mapping; woody biomass plantations; industrial wood-fuel market; residential space heating with wood; materials recovery of residues; co-firing wood chips with coal; biomass fuel characterization; wood-boosted geothermal power plants; wood gasification; municipal solid wastes to energy; woodstove study; slash burning; forest depletion; and technology transfer. 9 figs., 6 tabs.

  1. Biomass-Derived Energy Products and Co-Products Market

    E-Print Network [OSTI]

    -EE0003507 Under Task 4.1: Bioenergy Analyses June 2013 HAWAI`I NATURAL ENERGY INSTITUTE School of Ocean`i Natural Energy Institute School of Ocean and Earth Science and Technology University of Hawai`i June 2013Biomass-Derived Energy Products and Co-Products Market This report identifies the bio-fuels and co

  2. Greenhouse Gas Mitigation Through Energy Crops in the U.S. With Implications for Asian-Pacific Countries

    E-Print Network [OSTI]

    McCarl, Bruce A.

    into energy crop production will most likely carry this price through increased purchasing cost and all energy the production of energy crops and other agricultural mitigation strategies. This analysis estimates the economicGreenhouse Gas Mitigation Through Energy Crops in the U.S. With Implications for Asian

  3. Smarter Cropping: Internet program helps farmers make decisions about crops

    E-Print Network [OSTI]

    Wythe, Kathy

    2009-01-01T23:59:59.000Z

    Story by Kathy Wythe tx H2O | pg. 26 Smarter Cropping Internet program helps farmers make decisions about crops Along the coastal plains of Texas, farmers and crop managers are using the Internet to make more informed decisions about growing...

  4. Crop Insurance Terms and Definitions

    E-Print Network [OSTI]

    Stokes, Kenneth; Waller, Mark L.; Outlaw, Joe; Barnaby, G. A. Art

    2008-10-17T23:59:59.000Z

    This publication is a glossary of terms used by the crop insurance industry. There are definitions for terms used in crop insurance documents and for terms pertaining to coverage levels, farming, reports, units and parties to contracts....

  5. Biomass Energy Crops: Massachusetts' Potential

    E-Print Network [OSTI]

    Schweik, Charles M.

    Biomass Energy Crops: Massachusetts' Potential Prepared for: Massachusetts Division of Energy;#12;Executive Summary In Massachusetts, biomass energy has typically meant wood chips derived from the region's extensive forest cover. Yet nationally, biomass energy from dedicated energy crops and from crop residues

  6. National Bioenergy Center Biochemical Platform Integration Project: Quarterly Update #26, January - March 2010

    SciTech Connect (OSTI)

    Schell, D.

    2010-04-01T23:59:59.000Z

    January-March, 2010 edition of the National Bioenergy Center's Biochemical Platform Integration Project quarterly newsletter. Issue topics: understanding and improving sugar measurements in biomass hydrolysates; expansion of the NREL/DOE Biochemical Pilot Plant.

  7. National Bioenergy Center--Biochemical Platform Integration Project: Quarterly Update, Fall 2010

    SciTech Connect (OSTI)

    Schell, D.

    2010-12-01T23:59:59.000Z

    Fall 2010 edition of the National Bioenergy Center's Biochemical Platform Integration Project quarterly newsletter. Issue topics: rapid analysis models for compositional analysis of intermediate process streams; engineered arabinose-fermenting Zymomonas mobilis strain.

  8. Effect of Harvest Dates on Biomass Accumulation and Composition in Bioenergy Sorghum

    E-Print Network [OSTI]

    Borden, Dustin Ross

    2012-02-14T23:59:59.000Z

    followed by dedicated bioenergy sorghums (that are full photo-period sensitive), allowing for a more constant supply of feedstock to processing plants. Sweet sorghums would also allow the end user to obtain biomass when needed, however these types...

  9. Bioenergy Technologies Office R&D Pathways: In-Situ Catalytic...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    heating biomass with a catalyst to create bio-oils, which can be used to produce biofuel blendstocks. Bioenergy Technologies Office R&D Pathways: In-Situ Catalytic Fast...

  10. Bioenergy Technologies Office R&D Pathways: Ex-Situ Catalytic...

    Broader source: Energy.gov (indexed) [DOE]

    biomass is heated with catalysts to create bio-oils, which are then used to produce biofuel blendstocks. Bioenergy Technologies Office R&D Pathways: Ex-Situ Catalytic Fast...

  11. The Center for BioEnergy Sustainability (CBES) at Oak Ridge National Laboratory (ORNL)

    E-Print Network [OSTI]

    The Center for BioEnergy Sustainability (CBES) at Oak Ridge National Laboratory (ORNL) is pleased of Ethanol on Fuel Price Behavior and the Viability of Cellulosic Biofuels" presented by Jacob La

  12. Nanoplankton contributions to phytoplankton standing crop and primary productivity in the central equatorial Pacific (Sept./Oct. 1975; Feb./Mar. 1976)

    E-Print Network [OSTI]

    Stockwell, Dean Alan

    1982-01-01T23:59:59.000Z

    of Hasle (1959, 1976), Allen (1961), Semina ( 1968, 1969, 1971, and 1972), and Venrick et al. (1973) have attempted to describe species composition, as well as characterize distributional patterns of the phytoplankton communities found within the DOMES... spatially 24 and temporally. In oceanic waters coccolithophorids, naked flagel- lates, and monads tend to dominate the plankton (Hasle 1959; Hulburt 1970). Here, nanoplankton are generally reported to be more abundant and more productive than net...

  13. Nanoplankton contributions to phytoplankton standing crop and primary productivity in the central equatorial Pacific (Sept./Oct. 1975; Feb./Mar. 1976)

    E-Print Network [OSTI]

    Stockwell, Dean Alan

    1982-01-01T23:59:59.000Z

    of Hasle (1959, 1976), Allen (1961), Semina ( 1968, 1969, 1971, and 1972), and Venrick et al. (1973) have attempted to describe species composition, as well as characterize distributional patterns of the phytoplankton communities found within the DOMES... spatially 24 and temporally. In oceanic waters coccolithophorids, naked flagel- lates, and monads tend to dominate the plankton (Hasle 1959; Hulburt 1970). Here, nanoplankton are generally reported to be more abundant and more productive than net...

  14. Insects Attacking Vegetable Crops.

    E-Print Network [OSTI]

    Newton, Weldon H.; Deer, James A.; Hamman, Philip J.; Wolfenbarger, Dan A.; Harding, James A.; Schuster, Michael F.

    1964-01-01T23:59:59.000Z

    of economic importance. Worms cause consider- able damage to grain sorghum heads, but they are cannibalistic and usually only one larva reaches full growth in each head as well as in each corn ear. BLACK CUTWORM, Agrotis ipsilon (Hufnagel) Cutworms.... They frequently do considerable damage to corn ears, similar to that caused by corn ear- worms. These worms also feed as "budworms" in grain sorghum and corn whorls. Unfolding leaves from whorls of such attacked crops are per- forated with holes. Like...

  15. Insects Attacking Vegetable Crops.

    E-Print Network [OSTI]

    Newton, Weldon H.; Deer, James A.; Hamman, Philip J.; Wolfenbarger, Dan A.; Harding, James A.; Schuster, Michael F.

    1964-01-01T23:59:59.000Z

    THAT SUCK THE JUICES FROM FOLIAGE, FRUITS, STEMS AND ROOTS, CAUSING DISCOLORATION, STUNTING AND OTHER DAMAGE APHIDS Aphids are small, sluggish, soft-bodied insects often called plant lice. A number of species attack various crops, sucking plant sap..., peppers or dark brown with black leg joints, eyes and and tomatoes. cornicles. Aphids build up very rapidly and leave copious quantities of honeydew on leaves. Adults POPLAR PETIOLE GALL APHID, Pemphigus and nymphs suck juices from leaves, sapping...

  16. Variable Crop Share Leases.

    E-Print Network [OSTI]

    Sartin, Marvin; Sammons, Ray

    1980-01-01T23:59:59.000Z

    )OC lAL45.7 173 1. 1224 Texas Agricultural Extension Service The Texas A&M University System Daniel C. Pfannstiel,Director colleg e Station, Texas / f , ' '~ :';,; ,,: ''': ~ " k , -~. _Variable _Crop Share _Leases ... Marvin... Sartin and Ray Sammons* Renting or leasing farmland is part of many modern farming operations and increases average farm size in U. S. agriculture. Economies of size are vitally import ant to farm operations as they strive to cope with the continuous...

  17. A Review on Biomass Densification Systems to Develop Uniform Feedstock Commodities for Bioenergy Application

    SciTech Connect (OSTI)

    Jaya Shankar Tumuluru; Christopher T. Wright; J. Richard Hess; Kevin L. Kenney

    2011-11-01T23:59:59.000Z

    Developing uniformly formatted, densified feedstock from lignocellulosic biomass is of interest to achieve consistent physical properties like size and shape, bulk and unit density, and durability, which significantly influence storage, transportation and handling characteristics, and, by extension, feedstock cost and quality. A variety of densification systems are considered for producing a uniform format feedstock commodity for bioenergy applications, including (a) baler, (b) pellet mill, (c) cuber, (d) screw extruder, (e) briquette press, (f) roller press, (g) tablet press, and (g) agglomerator. Each of these systems has varying impacts on feedstock chemical and physical properties, and energy consumption. This review discusses the suitability of these densification systems for biomass feedstocks and the impact these systems have on specific energy consumption and end product quality. For example, a briquette press is more flexible in terms of feedstock variables where higher moisture content and larger particles are acceptable for making good quality briquettes; or among different densification systems, a screw press consumes the most energy because it not only compresses but also shears and mixes the material. Pretreatment options like preheating, grinding, steam explosion, torrefaction, and ammonia fiber explosion (AFEX) can also help to reduce specific energy consumption during densification and improve binding characteristics. Binding behavior can also be improved by adding natural binders, such as proteins, or commercial binders, such as lignosulphonates. The quality of the densified biomass for both domestic and international markets is evaluated using PFI (United States Standard) or CEN (European Standard).

  18. d. 11. dec. 2003 Moderne bioenergi -et nyt dansk vkstomrde 1 Har forbrnding og forgasning af biomasse en

    E-Print Network [OSTI]

    d. 11. dec. 2003 Moderne bioenergi - et nyt dansk vækstområde 1 Har forbrænding og forgasning af biomasse en fremtid ? Charles Nielsen Elsam A/S #12;d. 11. dec. 2003 Moderne bioenergi - et nyt dansk vækstområde 2 JaJa #12;d. 11. dec. 2003 Moderne bioenergi - et nyt dansk vækstområde 3 Disposition

  19. Forage Crops in Northwest Texas.

    E-Print Network [OSTI]

    Conner, A. B. (Arthur Benjamin)

    1908-01-01T23:59:59.000Z

    ...................... Preparing. Seeding and Cultivating the Land 18 I I Harvesting the Crop; Yield per Acre ............................ 18 I ! FORAGE CROPS AT AMARILLO ....................................... 18... are the disk harrow, the spike-toothed harrow, tne sled-cultivator. and the ordinary large shovel cultivator. In some portions of this territory from ten to twelve successive crops of sorghum have been grown on the same land; this, however, is not a common...

  20. Crops sought as high chemical energy source

    SciTech Connect (OSTI)

    Rawls, R.

    1983-08-29T23:59:59.000Z

    The U.S. Dept of Agriculture's Agricultural Research Service is searching for native plants that are not now being grown as commercial crops but that could be grown profitably to produce easily extractable, high-energy organic products. Usually these products are hydrocarbons or whole plant oils; protein content and plant fiber content are also considered. One such plant being investigated is smooth sumac, a woody perennial that is native to North America and is a particularly good source of polyphenols, resins and oils.

  1. Waste to Wisdom: Utilizing forest residues for the production of bioenergy and biobased products

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your DensityEnergy U.S.-China Electric Vehicle and03/02Report |toVEHICLEofConservationDepartment ofBalanceWaste

  2. Novel enabling technologies of gene isolation and plant transformation for improved crop protection

    SciTech Connect (OSTI)

    Torok, Tamas

    2013-02-04T23:59:59.000Z

    Meeting the needs of agricultural producers requires the continued development of improved transgenic crop protection products. The completed project focused on developing novel enabling technologies of gene discovery and plant transformation to facilitate the generation of such products.

  3. Regional Uptake and Release of Crop Carbon in the United States

    SciTech Connect (OSTI)

    West, Tristram O.; Bandaru, Varaprasad; Brandt, Craig C.; Schuh, A.E.; Ogle, S.M.

    2011-08-03T23:59:59.000Z

    Carbon fixed by agricultural crops in the US creates regional CO2 sinks where it is harvested and regional CO2 sources where it is released back to the atmosphere. The quantity and location of these fluxes differ depending on the annual supply and demand of crop commodities. Data on the harvest of crop biomass, storage, import and export, and on the use of biomass for food, feed, fiber, and fuel were compiled to estimate an annual crop carbon budget for 2000 to 2008. Net sources of CO2 associated with the consumption of crop commodities occurred in the Eastern Uplands, Southern Seaboard, and Fruitful Rim regions. Net sinks associated with the production of crop commodities occurred in the Heartland, Northern Crescent, Northern Great Plains, and Mississippi Portal regions. The national crop carbon budget was balanced to within 0.7 to 6.6% yr-1 during the period of this analysis.

  4. Urban Wood-Based Bio-Energy Systems in Seattle

    SciTech Connect (OSTI)

    Stan Gent, Seattle Steam Company

    2010-10-25T23:59:59.000Z

    Seattle Steam Company provides thermal energy service (steam) to the majority of buildings and facilities in downtown Seattle, including major hospitals (Swedish and Virginia Mason) and The Northwest (Level I) Regional Trauma Center. Seattle Steam has been heating downtown businesses for 117 years, with an average length of service to its customers of 40 years. In 2008 and 2009 Seattle Steam developed a biomass-fueled renewable energy (bio-energy) system to replace one of its gas-fired boilers that will reduce greenhouse gases, pollutants and the amount of waste sent to landfills. This work in this sub-project included several distinct tasks associated with the biomass project development as follows: a. Engineering and Architecture: Engineering focused on development of system control strategies, development of manuals for start up and commissioning. b. Training: The project developer will train its current operating staff to operate equipment and facilities. c. Flue Gas Clean-Up Equipment Concept Design: The concept development of acid gas emissions control system strategies associated with the supply wood to the project. d. Fuel Supply Management Plan: Development of plans and specifications for the supply of wood. It will include potential fuel sampling analysis and development of contracts for delivery and management of fuel suppliers and handlers. e. Integrated Fuel Management System Development: Seattle Steam requires a biomass Fuel Management System to track and manage the delivery, testing, processing and invoicing of delivered fuel. This application will be web-based and accessed from a password-protected URL, restricting data access and privileges by user-level.

  5. Role of Bioenergy in the Kyoto Protocol, in the EU-ETS and in future Climate Agreements

    E-Print Network [OSTI]

    of bioenergy use through: Internal emission reductions within the Greenhouse Gas capped sectors Offsetting/CDM CDM project pipeline: > 1000 projects of which: Registered projects: 334 Expected CERs (from RISOE Distribution of projects Bioenergy #12;The EU-ETS and biomass (1) In January 2005 the European

  6. Bioenergy Watershed Restoration in Regions of the West: What are the Environmental/Community Issues?

    SciTech Connect (OSTI)

    Graham, R.L.; Huff, D.D.; Kaufmann, M.R.; Shepperd, W.D.; Sheehan, J.

    1999-07-01T23:59:59.000Z

    Throughout the western mountainous regions, wildfire risks are elevated due to both fire suppression activities which have changed the forest structure making it more susceptible to stand-killing fires and the expansion of human structures (houses, light commercial) into these same forests, By providing a market for currently noncommercial but flammable materials (small trees, tops, and branches), new and existing bioenergy industries could be a key factor in reducing the regional forest fuel loads. Although bioenergy would appear to be an ideal answer to the problem in many ways, the situation is complicated and numerous issues need resolution. A public fearful of logging in these regions needs assurance that harvesting for bioenergy is an environmentally and socially responsible solution to the current fuel build up in these forests. This is especially important given that biomass harvesting cannot pay its own way under current energy market conditions and would have to be supported in some fashion.

  7. Pacific Northwest and Alaska Bioenergy Program Year Book; 1992-1993 Yearbook with 1994 Activities.

    SciTech Connect (OSTI)

    Pacific Northwest and Alaska Bioenergy Program (U.S.); United States. Bonneville Power Administration.

    1994-04-01T23:59:59.000Z

    The U.S. Department of Energy administers five Regional Bioenergy Programs to encourage regionally specific application of biomass and municipal waste-to-energy technologies to local needs, opportunities and potentials. The Pacific Northwest and Alaska region has taken up a number of applied research and technology projects, and supported and guided its five participating state energy programs. This report describes the Pacific Northwest and Alaska Regional Bioenergy Program, and related projects of the state energy agencies, and summarizes the results of technical studies. It also considers future efforts of this regional program to meet its challenging assignment.

  8. Bioenergy Pumps New Life into Pulp and Paper Mills | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The FutureCommentsEnergyand SustainedBio-OilBioenergy 2015Bioenergy Pumps New

  9. Three Essays On Agricultural and Forestry Offsets In Climate Change Mitigation

    E-Print Network [OSTI]

    Feng, Siyi

    2012-07-16T23:59:59.000Z

    major crops. The implementation of climate change mitigation strategies, such as the expansion of bioenergy production, causes demand for the agricultural sector to increase substantially. The new demand would cause noticeable leakage effect if crop...

  10. The Environmental Impacts of Subsidized Crop Insurance

    E-Print Network [OSTI]

    LaFrance, Jeffrey T.; Shimshack, J. P.; Wu, S. Y.

    2001-01-01T23:59:59.000Z

    May 1996): 428-438. Environmental Impacts of Subsidized CropPaper No. 912 THE ENVIRONMENTAL IMPACTS OF SUBSIDIZED CROPsuch copies. The Environmental Impacts of Subsidized Crop

  11. Texas Crop Profile: Onions

    E-Print Network [OSTI]

    Hall, Kent D.; Holloway, Rodney L.; Smith, Dudley

    2000-04-12T23:59:59.000Z

    This profile of onion production in Texas gives an overview of basic commodity information; discusses insect, disease and weed pests; and covers cultural and chemical control methods....

  12. Irrigation Systems for Forage Crops.

    E-Print Network [OSTI]

    Henggeler, Joseph C.

    1988-01-01T23:59:59.000Z

    TDDe Z TA24S.7 8873 NO.1611 1?1611 ' Texas Agricultural Extension Service l'BRARY FEB 0 1 1989 texas A&M University Irrigation Systems for Forage Crops Texas Agricultural Extension Service ? Zerle L. Carpenter, Director ? The Texas A...&M University System ? College Station, Texas (Blank Pa,ge -In. O-riIIJIal BuIIetinl . 1?? .. , * ): . Irrigation Systems for Forage Crops Joseph C. Henggeler* Several types of irrigation systems can be chosen for irrigating forage crops for grazing...

  13. Among the abiotic stresses that limit plant growth, drought is the most complex and devastating on a global scale. Drought is an increasingly important constraint of crop productivity and

    E-Print Network [OSTI]

    and stability worldwide due to climate change. With continuing yield losses due to an expected water scarcity, crops with greater ability to adapt to reduced water use are needed to cope with increasingly severe drought conditions. Drought, due to insufficient or unpredictable rainfall, has been identified as a bean

  14. Biomass and Bioenergy 30 (2006) 316320 How to recover more value from small pine trees

    E-Print Network [OSTI]

    2006-01-01T23:59:59.000Z

    . Preliminary results support the proposition there is an available, large supply of biomass with highBiomass and Bioenergy 30 (2006) 316320 How to recover more value from small pine trees: Essential USDA Forest Service, Rocky Mountain Research Station, 2500 South Pine Knoll Drive, Flagstaff, AZ 86001

  15. National Bioenergy Center Biochemical Platform Integration Project: Quarterly Update #27, April - June 2010

    SciTech Connect (OSTI)

    Schell, D.

    2010-07-01T23:59:59.000Z

    April-June, 2010 edition of the National Bioenergy Center's Biochemical Platform Integration Project quarterly newsletter. Issue topics: understanding performance of alternative process configurations for producing ethanol from biomass; investigating Karl Fischer Titration for measuring water content of pretreated biomass slurries.

  16. National Bioenergy Center, Biochemical Platform Integration Project: Quarterly Update, Summer 2011 (Newsletter)

    SciTech Connect (OSTI)

    Not Available

    2011-09-01T23:59:59.000Z

    Summer 2011 issue of the National Bioenergy Center Biochemical Platform Integration Project quarterly update. Issue topics: evaluating new analytical techniques for measuring soluble sugars in the liquid portion of biomass hydrolysates, and measurement of the fraction of insoluble solids in biomass slurries.

  17. BIOENERGY AND BIOFUELS A multi-electrode continuous flow microbial fuel cell

    E-Print Network [OSTI]

    BIOENERGY AND BIOFUELS A multi-electrode continuous flow microbial fuel cell with separator microbial fuel cells (MFCs) requires the development of compact reactors with multiple electro- des continuous flow treatment using actual wastewaters. Keywords Microbial fuel cell . Scaling up . Separator

  18. National Bioenergy Center Biochemical Platform Integration Project: Quarterly Update #28, Spring 2011

    SciTech Connect (OSTI)

    Schell, D. J.

    2011-04-01T23:59:59.000Z

    Spring 2011 edition of the National Bioenergy Center's Biochemical Platform Integration Project quarterly newsletter. Issue topics: 33rd Symposium on Biotechnology for Fuels and Chemicals program sessions and special topic sessions; assessment of waste water treatment needs; and an update on new arabinose-to-ethanol fermenting Zymomonas mobilis strains.

  19. National Bioenergy Center - Biochemical Platform Integration Project: Quarterly Update, Winter 2010

    SciTech Connect (OSTI)

    Schell, D.

    2011-02-01T23:59:59.000Z

    Winter 2011 edition of the National Bioenergy Center's Biochemical Platform Integration Project quarterly newsletter. Issue topics: 33rd Symposium on Biotechnology for Fuels and Chemicals program topic areas; results from reactive membrane extraction of inhibitors from dilute-acid pretreated corn stover; list of 2010 task publications.

  20. The Pennsylvania State University www.BioEnergyBridge.psu.edu 1 BioEnergy Bridge

    E-Print Network [OSTI]

    Lee, Dongwon

    and Fermentation Facilities · TechnoEconomic Analysis · Life Cycle Assessment · Sustainability Analysis · Engine engine testing Services · Field Trials · Onsite Saccharification and Fermentation Facilities · TechnoEconomic# trichard@psu.edu rtw103@psu.edu www.bioenergy.psu.edu Biomass Energy Center #12;© The Pennsylvania State

  1. Hawai'i Bioenergy Master Plan Green Jobs, Biofuels Development, and

    E-Print Network [OSTI]

    Hawai'i Bioenergy Master Plan Green Jobs, Biofuels Development, and Hawaii's Labor Market associated with biofuels in Hawai'i. In particular, it discusses how a potential biofuels industry might policy makers and leaders consider how best to support biofuels. One major labor market question

  2. Texas AgriLife Research with General Atomics Pilots Microalgae Ponds in Pecos BIOENERGY PROGRAM

    E-Print Network [OSTI]

    Texas AgriLife Research with General Atomics Pilots Microalgae Ponds in Pecos BIOENERGY PROGRAM systems for microalgae capable of producing biofuels. Diesel and jet fuels are critical to our nation from renewable sources by 2020. Energy and financial analysts acknowledge that the world has entered

  3. Assistant Professor Cropping Systems Specialist

    E-Print Network [OSTI]

    Veiga, Pedro Manuel Barbosa

    Assistant Professor Cropping Systems Specialist Department of Plant and Soil Sciences POSITION DESCRIPTION The Department of Plant and Soil Sciences, Oklahoma State University is seeking, implementing, and evaluating educational programs to meet the needs of producers for improving existing

  4. Cover Crops for the Garden

    E-Print Network [OSTI]

    2008-01-01T23:59:59.000Z

    matter for your soil or compost pile. Organic matter is thatin the spring or made into compost, cover crops will act asgathered up and added to your compost pile. The first method

  5. THE POTENTIAL FOR MICRO-ALGAE AND OTHER "MICRO-CROPS" TO PRODUCE

    E-Print Network [OSTI]

    Edwards, Paul N.

    THE POTENTIAL FOR MICRO-ALGAE AND OTHER "MICRO-CROPS" TO PRODUCE SUSTAINABLE BIOFUELS A REVIEW INTRODUCTION Biofuel derived from algae and other micro-crops has been proposed as an environmentally benign transportation fuel. Algae can be cultivated on low productivity lands using low quality water. Interest in algae

  6. Implications of Three Biofuel Crops for Beneficial Arthropods in Agricultural Landscapes

    E-Print Network [OSTI]

    Landis, Doug

    Implications of Three Biofuel Crops for Beneficial Arthropods in Agricultural Landscapes Mary A Science+Business Media, LLC. 2010 Abstract Production of biofuel feedstocks in agricultural landscapes and generalist natural enemies in three model biofuel crops: corn, switch- grass, and mixed prairie, we tested

  7. Global Environmental Change 12 (2002) 197202 Increased crop damage in the US from excess precipitation

    E-Print Network [OSTI]

    2002-01-01T23:59:59.000Z

    Global Environmental Change 12 (2002) 197202 Increased crop damage in the US from excess Laboratory, 1 Cyclotron Road, MS 90-4000, Berkeley, CA 94720, USA d Environmental Defense, 18 Tremont Street and worldwide have caused great damage to crop production. If the frequency of these weather extremes were

  8. CROP & SOIL SCIENCES Extension Peanut Agronomist

    E-Print Network [OSTI]

    Arnold, Jonathan

    CROP & SOIL SCIENCES Extension Peanut Agronomist Committee Membership Dr. J. Michael Moore - committee chair Dr. Clint Waltz Department of Crop & Soil Sciences Department of Crop & Soil Sciences-7300 Fax: (229) 386-7308 Fax: (770) 412-4734 Dr. Eric Prostko Dr. Guy Collins Department of Crop & Soil

  9. CROP & SOIL SCIENCES Cotton Physiologist Tifton campus

    E-Print Network [OSTI]

    Arnold, Jonathan

    CROP & SOIL SCIENCES Cotton Physiologist Tifton campus Committee Membership Dr. Stanley Culpepper - committee chair Dr. John Beasley Department of Crop & Soil Sciences Department of Crop & Soil Sciences & Soil Sciences Department of Crop & Soil Sciences University of Georgia-SE District University

  10. CROP & SOIL SCIENCES Water Policy and Management

    E-Print Network [OSTI]

    Arnold, Jonathan

    CROP & SOIL SCIENCES Water Policy and Management Committee Membership Dr. David Radcliffe - committee chair Dr. George Vellidis Department of Crop & Soil Sciences Department of Crop & Soil Sciences & Soil Sciences Department of Crop & Soil Sciences University of Georgia University of Georgia Stripling

  11. FIELD CROPS 2012 Weeds: Corn 5-53

    E-Print Network [OSTI]

    Liskiewicz, Maciej

    in Delmarva corn production. To be successful in controlling weeds in corn, the weed control program must this record to plan your weed control program. Cultural control. Several aspects of cultural weed control should be considered in planning a corn weed control program. These include weed-free seed, cover crops

  12. Thailand-Key Results and Policy Recommendations for Future Bioenergy...

    Open Energy Info (EERE)

    through its Alternative Energy Development Plan, has set a target to increase biofuel production to five billion litres by 2022. The Thai Government sees this expansion as...

  13. Section One, Bioenergy Technologies Office Multi-Year Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    carbon emissions from energy production and consumption Reduce dependence on foreign oil Promote the use of diverse, domestically produced, and sustainable energy...

  14. About the Bioenergy Technologies Office: Growing America's Energy...

    Office of Environmental Management (EM)

    used to test new biochemical conversion technologies to create biofuels. Photo Credit: LBNL sugar biobased product Biomass sugar undergoing fermentation to produce a biobased...

  15. Climate change effects on winter chill for fruit crops in Germany

    E-Print Network [OSTI]

    Luedeling, Eike; Blanke, Michael; Gebauer, Jens

    2009-01-01T23:59:59.000Z

    chill for fruit crops in Germany Abstract To quantify thechange on fruit production in Germany, this study aimed atof typical winter chill in Germany around 2010, as well as

  16. Effects of Oilseed Meals on the Germination, Growth, and Survival of Crop and Weed Species

    E-Print Network [OSTI]

    Rothlisberger, Katie Lynn

    2012-02-14T23:59:59.000Z

    Oilseed crops are being widely evaluated for potential biodiesel production. Seed meal (SM) remaining after extracting oil may have use as a bioherbicide or organic fertilizer. Brassicaceae SM often contains glucosinolates that can hydrolyze...

  17. Crop yield estimation model for Iowa using remote sensing and surface parameters

    E-Print Network [OSTI]

    Singh, Ramesh P.

    and prediction using piecewise linear regression method with breakpoint. Crop production environment consists of inherent sources of heterogeneity and their non-linear behavior. A non-linear Quasi-Newton multi

  18. Projecting net incomes for Texas crop producers: an application of probabilistic forecasting

    E-Print Network [OSTI]

    Eggerman, Christopher Ryan

    2006-10-30T23:59:59.000Z

    unexplained by OLS equations between Texas and U.S. variables. Deterministic and probabilistic NFI projections for Texas crops were compared under the January 2005 and January 2006 FAPRI Baseline projections. With production costs increasing considerably...

  19. HAWAII NATURAL ENERGY INSTITUTEwww.hnei.hawaii.edu Bioenergy Research

    E-Print Network [OSTI]

    , contaminant removal/control for gas quality improvement, H2 production Biochemical syngas fermentation #12;http://www.hnei.hawaii.edu Bio-Conversion of Syngas into Biopolyester & Bio-Oil Res

  20. Interdisciplinary Pest Management Potentials of Cover Cropping Systems

    E-Print Network [OSTI]

    Bachie, Oli Gurmu

    2011-01-01T23:59:59.000Z

    Cover Crops: Cowpea, Sunn Hemp, and Velvetbean. HottscienceCover Crops: Cowpea, Sunn Hemp, and Velvetbean. Hottsciencethan grasses using sun hemp mulches. While cover cropping

  1. A History of Small Grain Crops in Texas: Wheat, Oats, Barley, Rye 1582-1976.

    E-Print Network [OSTI]

    Atkins, Irvin Milburn

    1980-01-01T23:59:59.000Z

    that the production in Texas increased from 41,729 in 1850 to 2,500,000 bushels in 1880. The Texas Almanac (1 10) records that Denton and Wilbarger Counties each produced 2 million bushels in * 1904. Farther south in Central Texas, settlement and crop...) records that Denton and Wilbarger Counties each produced 2 million bushels in * 1904. Farther south in Central Texas, settlement and crop production also were rapidly expanding (Tyler, 1 16). The Tennessee Colony settled at Nashville, below Waco...

  2. Bioenergy Technologies FY14 Budget At-a-Glance | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataEnergyDepartmentWindConversion BiochemicalDepartment ofBioenergy

  3. Bioenergy market competition for biomass: A system dynamics review of current policies

    SciTech Connect (OSTI)

    Jacob J. Jacobson; Robert Jeffers

    2013-07-01T23:59:59.000Z

    There is growing interest in the United States and abroad to increase the use of biomass as an energy source due to environmental and energy security benefits. In the United States, the biofuel and biopower industries are regulated by different policies and different agencies and have different drivers, which impact the maximum price the industries are willing to pay for biomass. This article describes a dynamic computer simulation model that analyzes future behavior of bioenergy feedstock markets based on varying policy and technical options. The model simulates the long-term dynamics of these markets by treating advanced biomass feedstocks as a commodity and projecting the total demand of each industry, as well as the market price over time. The model is used for an analysis of the United States bioenergy feedstock market that projects supply, demand, and market price given three independent buyers: domestic biopower, domestic biofuels, and foreign exports. With base-case assumptions, the biofuels industry is able to dominate the market and meet the federal Renewable Fuel Standard (RFS) targets for advanced biofuels. Further analyses suggest that United States bioenergy studies should include estimates of export demand for biomass in their projections, and that GHG-limiting policy would partially shield both industries from export dominance.

  4. Engineering Enzymes in Energy Crops: Conditionally Activated Enzymes Expressed in Cellulosic Energy Crops

    SciTech Connect (OSTI)

    None

    2010-01-15T23:59:59.000Z

    Broad Funding Opportunity Announcement Project: Enzymes are required to break plant biomass down into the fermentable sugars that are used to create biofuel. Currently, costly enzymes must be added to the biofuel production process. Engineering crops to already contain these enzymes will reduce costs and produce biomass that is more easily digested. In fact, enzyme costs alone account for $0.50-$0.75/gallon of the cost of a biomass-derived biofuel like ethanol. Agrivida is genetically engineering plants to contain high concentrations of enzymes that break down cell walls. These enzymes can be switched on after harvest so they wont damage the plant while its growing.

  5. Economic Analysis of Voluntary Carbon Offset Market and Bioenergy Policies

    E-Print Network [OSTI]

    Shiva, Layla

    2014-08-27T23:59:59.000Z

    baseline. This finding is similar to the study on the voluntary opt-in component of the sulfur dioxide emission trading program in (Montero 2000). This study favors a low baseline, which allows payments for non- additional production raises the costs...

  6. Vegetable Crops Hotline index 2005 MANAGEMENT TIPS

    E-Print Network [OSTI]

    Ginzel, Matthew

    Labeled for Row Middle Use in Vegetable Crops 446 Kudzu Turning Over New Leaves in Indiana Counties 447

  7. CropIrri: A DECISION SUPPORT SYSTEM FOR CROP IRRIGATION MANAGEMENT

    E-Print Network [OSTI]

    CropIrri: A DECISION SUPPORT SYSTEM FOR CROP IRRIGATION MANAGEMENT Yi Zhang1 , Liping Feng1,* 1: A field crop irrigation management decision-making system (CropIrri) was developed based on the soil water of optimal irrigation methods and irrigation decision support system have obtained important achievements (J

  8. CROP & SOIL SCIENCES Small Grain Breeding

    E-Print Network [OSTI]

    Arnold, Jonathan

    CROP & SOIL SCIENCES Small Grain Breeding Committee Membership Dr. Paul Raymer - committee chair Dr. Scott Jackson Department of Crop & Soil Sciences Department of Crop & Soil Sciences University & Soil Sciences Department of Horticulture University of Georgia University of Georgia 2360 Rainwater Rd

  9. Regional Focus on GM Crop Regulation

    E-Print Network [OSTI]

    Church, George M.

    Regional Focus on GM Crop Regulation THE RECENT MEDIA COVERAGE OF THE DEVEL- opments in Brazil for com- mercial genetically modified (GM) crops in both the scientific and regulatory arena. The release of GM crops in these coun- tries might result in the unintentional entry of GM seeds into neighboring

  10. alternative agricultural crops: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    crops in new areas; (6) growing crops for new uses; (7) growing crops with new management techniques; (8) selling crops in new markets. Ernest Small 1999-01-01 2 ASSESSMENT...

  11. Production

    Broader source: Energy.gov [DOE]

    Algae production R&D focuses on exploring resource use and availability, algal biomass development and improvements, characterizing algal biomass components, and the ecology and engineering of...

  12. Texas Alfalfa Production

    E-Print Network [OSTI]

    Stichler, Charles

    1997-05-05T23:59:59.000Z

    With proper management, alfalfa will produce forage with the highest protein and total digestible nutrient of any hay crop. To aid in alfalfa production, this publication provides information on pre-plant factors, planting and stand establishment...

  13. Economic Impacts of Expanded Woody Biomass Utilization on the Bioenergy and Forest Products Industries in Florida

    E-Print Network [OSTI]

    Florida, University of

    , etc.), and use of biomass fuels as a substitute to fossil fuels (coal, natural gas, oil) for electric by the Florida legislature in 2008 (HB 7135). The study focused on use of woody biomass fuels for electric power for Planning (IMPLAN) Professional software and associated databases (MIG, Inc.) provided regional information

  14. Optimizing Feedstock Logistics and Assessment of Hydrologic Impacts for Sustainable Bio-Energy Production

    E-Print Network [OSTI]

    Ha, Mi-Ae 1979-

    2012-12-11T23:59:59.000Z

    Assessment Tool (SWAT). The SWAT model was calibrated and validated for streamflow and sediment yields in the Spoon River basin in IL using observed data from the USGS. The modeling results indicated that as residue removal rates increased, evapotranspiration...

  15. HAWAII NATURAL ENERGY INSTITUTEwww.hnei.hawaii.edu Bioenergy Products from Fiber

    E-Print Network [OSTI]

    Pathways #12;HAWAII NATURAL ENERGY INSTITUTEwww.hnei.hawaii.edu Biomass Resources in Hawaii Manure Bagasse for transportation, greater power generation efficiency, greater number of potential end uses ­ Gasification quality standards (e.g. ash chemistry) to meet requirements of pyrolysis and gasification technologies

  16. Effects of Biochar Recycling on Switchgrass Growth and Soil and Water Quality in Bioenergy Production Systems

    E-Print Network [OSTI]

    Husmoen, Derek Howard

    2012-07-16T23:59:59.000Z

    the logistics for recycling biochar to fields from which the biomass feedstocks are harvested. The contribution of biochar recycling from mobile pyrolysis systems to ecological services provided by agriculture, including sustained soil, water...

  17. Pathways Toward Sustainable Bioenergy Feedstock Production in the Mississippi River Watershed

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in235-1 Termoelectrica U.SPRESSHeavy-dutyDepartmentPath toPathways Toward

  18. Abstract: Design and Demonstration of an Advanced Agricultural Feedstock Supply System for Lignocellulosic Bioenergy Production

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of1 A Strategic26-OPAMATTENDEEES:ofDepartmentAbsorption Heat Pump

  19. Evaluating Crop-Share Leases.

    E-Print Network [OSTI]

    Sartin, Marvin; Brints, Norman

    1979-01-01T23:59:59.000Z

    -SHARE LEASES Marvin Sartin and Norman Brints* There are many approaches for evaluating a crop-share lease. The easiest and most commonly used method relies on history and tradition. Throughout most of Texas, share leases have tra ditionally been one...-third for grain and one-fourth for cotton. While such agreements continue, the economic factors governing farming operations have changed, thus creating a need for reexamin ing terms of share leases. An accepted approach to evaluating sharing arrangements...

  20. Syllabus -Plants for Bioenergy Fall 2011 Instructors: Stacy Bonos and Zane R. Helsel

    E-Print Network [OSTI]

    Chen, Kuang-Yu

    (Quiz on fiber crops) Specca Oct 19 Manure waste Westendorf Oct 24 Yard/Municipal Wastes/ Food and Spent Oil Specca Oct 26 Row Crop Residues, moldy hay, bagasse Helsel Oct 31 Anaerobic Digestion Fennel Post assessment Specca/Brennan Sep 19 US energy portfolio biomass inventories (USDOE Billion Ton Report) Helsel