National Library of Energy BETA

Sample records for bioenergy biofuels biomass

  1. The Joint BioEnergy Institute (JBEI): Developing New Biofuels by Overcoming Biomass Recalcitrance

    E-Print Network [OSTI]

    Scheller, Henrik Vibe; Singh, Seema; Blanch, Harvey; Keasling, Jay D.

    2010-01-01

    New Biofuels by Overcoming Biomass Recalcitrance Henrik Vibeenergy stored in plant biomass. The papers in this volumefeedstocks development and biomass deconstruction. Keywords

  2. Biofuel and Bioenergy implementation scenarios

    E-Print Network [OSTI]

    Biofuel and Bioenergy implementation scenarios Final report of VIEWLS WP5, modelling studies #12;Biofuel and Bioenergy implementation scenarios Final report of VIEWLS WP5, modelling studies By André of this project are to provide structured and clear data on the availability and performance of biofuels

  3. The Joint BioEnergy Institute (JBEI): Developing New Biofuels by Overcoming Biomass Recalcitrance

    E-Print Network [OSTI]

    Scheller, Henrik Vibe; Singh, Seema; Blanch, Harvey; Keasling, Jay D.

    2010-01-01

    JD (2009) Producing biofuels using polyketide synthases.JBEI): Developing New Biofuels by Overcoming Biomassthe next-generation of biofuels— liquid fuels derived from

  4. Biomass Basics: The Facts About Bioenergy

    SciTech Connect (OSTI)

    2015-04-01

    Biomass Basics: The Facts About Bioenergy. This document provides general information about bioenergy and its creation and potential uses.

  5. Biomass for Bioenergy: an overview of

    E-Print Network [OSTI]

    Pennycook, Steve

    Biomass for Bioenergy: an overview of research at ORNL Environmental Science Division Climate. Kline (presenter) Virginia Dale, Laurence Eaton, Matt Langholtz, and others, ORNL #12;Biomass&TChemical and molecular science Plasma and fusion energy science Biomass #12;Lighter weight vehicles Bioenergy research

  6. Biofuel Enduse Datasets from the Bioenergy Knowledge Discovery Framework (KDF)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Bioenergy Knowledge Discovery Framework invites users to discover the power of bioenergy through an interface that provides extensive access to research data and literature, GIS mapping tools, and collaborative networks. The Bioenergy KDF supports efforts to develop a robust and sustainable bioenergy industry. The KDF facilitates informed decision making by providing a means to synthesize, analyze, and visualize vast amounts of information in a relevant and succinct manner. It harnesses Web 2.0 and social networking technologies to build a collective knowledge system that can better examine the economic and environmental impacts of development options for biomass feedstock production, biorefineries, and related infrastructure. [copied from https://www.bioenergykdf.net/content/about]

    Holdings include datasets, models, and maps. This is a very new resource, but the collections will grow due to both DOE contributions and individualsĆ data uploads. Currently the Biofuel Enduse collection includes 133 items. Most of these are categorized as literature, but 36 are listed as datasets and ten as models.

  7. Purpose-designed Crop Plants for Biofuels BIOENERGY PROGRAM

    E-Print Network [OSTI]

    Purpose-designed Crop Plants for Biofuels BIOENERGY PROGRAM The Texas AgriLife Research Center for the biofuels industry. This program recognizes that the ideal combination of traits required for an economically and energetically sustainable biofuels industry does not yet exist in a single plant spe- cies

  8. Office of the Biomass Program Educational Opportunities in Bioenergy...

    Broader source: Energy.gov (indexed) [DOE]

    Biomass Program at the Educational Opportunities in Bioenergy webinar. obpeducationalopportunitieswebinar.pdf More Documents & Publications Webinar: Using the New Bioenergy KDF...

  9. Biomass Scenario Model Scenario Library: Definitions, Construction...

    Office of Scientific and Technical Information (OSTI)

    S. 09 BIOMASS FUELS; 59 BASIC BIOLOGICAL SCIENCES; 29 ENERGY PLANNING, POLICY AND ECONOMY BIOMASS; BIOFUEL; BSM; SYSTEM DYNAMICS; BIOFUEL INCENTIVES; SCENARIOS; Bioenergy;...

  10. Biomass Basics: The Facts About Bioenergy

    Broader source: Energy.gov [DOE]

    DOE is focusing on new and better ways to make liquid transportation fuels, or “biofuels,” like ethanol, biodiesel, and renewable gasoline. DOE is also investigating the potential of producing power and a range of products from biomass.

  11. Switchgrass is a promising, high-yielding crop for California biofuel

    E-Print Network [OSTI]

    2011-01-01

    both as forage and as a biofuel crop, switchgrass may bepanic grass grown as a biofuel in southern England. Bioresfor switchgrass for biofuel systems. Biomass Bioenergy 30:

  12. Drought-tolerant Biofuel Crops could be a Critical Hedge for Biorefineries

    E-Print Network [OSTI]

    Morrow, III, William R.

    2013-01-01

    Criteria for Sustainable Biofuel Production, Version 2.0.sustainability concepts in biofuel supply chain management:of switchgrass-for-biofuel systems. Biomass & Bioenergy,

  13. SEE ALSO SIDEBARS: RECOURCES SOLARRESOURCES BIOMASS & BIOFUELS

    E-Print Network [OSTI]

    Kammen, Daniel M.

    373 SEE ALSO SIDEBARS: RECOURCES · SOLARRESOURCES · BIOMASS & BIOFUELS Engineered and Artificial, and the production of liquid biofuels for transportation is growing rapidly. However, both traditional biomass energy and crop-based biofuels technologies have negative environmental and social impacts. The overall research

  14. BIOENERGY/BIOFUELS/BIOCHEMICALS Chromatographic determination of 1, 4-b-xylooligosaccharides

    E-Print Network [OSTI]

    California at Riverside, University of

    BIOENERGY/BIOFUELS/BIOCHEMICALS Chromatographic determination of 1, 4-b For the majority of lignocellulosic feedstocks for produc- tion of bioethanol and other biofuels, heteroxylans activity [22] or further hydrolyzed into fermentable sugars as platform molecules for biofuels [23

  15. Bioenergy market competition for biomass: A system dynamics review of current policies

    SciTech Connect (OSTI)

    Jacob J. Jacobson; Robert Jeffers

    2013-07-01

    There is growing interest in the United States and abroad to increase the use of biomass as an energy source due to environmental and energy security benefits. In the United States, the biofuel and biopower industries are regulated by different policies and different agencies and have different drivers, which impact the maximum price the industries are willing to pay for biomass. This article describes a dynamic computer simulation model that analyzes future behavior of bioenergy feedstock markets based on varying policy and technical options. The model simulates the long-term dynamics of these markets by treating advanced biomass feedstocks as a commodity and projecting the total demand of each industry, as well as the market price over time. The model is used for an analysis of the United States bioenergy feedstock market that projects supply, demand, and market price given three independent buyers: domestic biopower, domestic biofuels, and foreign exports. With base-case assumptions, the biofuels industry is able to dominate the market and meet the federal Renewable Fuel Standard (RFS) targets for advanced biofuels. Further analyses suggest that United States bioenergy studies should include estimates of export demand for biomass in their projections, and that GHG-limiting policy would partially shield both industries from export dominance.

  16. EIS-0407: Abengoa Biomass Bioenergy Project near Hugoton, Stevens...

    Broader source: Energy.gov (indexed) [DOE]

    6, 2011 EIS-0407: Record of Decision Issuance of a Loan Guarantee to Abengoa Bioenergy Biomass of Kansas, LLC for the Abengoa Biorefinery Project Near Hugoton, Stevens County,...

  17. Bird Communities and Biomass Yields in Potential Bioenergy Grasslands

    E-Print Network [OSTI]

    Turner, Monica G.

    richness and the density of total birds and SGCNs, suggesting that grassland bioenergy fields may be moreBird Communities and Biomass Yields in Potential Bioenergy Grasslands Peter J. Blank1 *, David W, Wisconsin, United States of America Abstract Demand for bioenergy is increasing, but the ecological

  18. Biomass and Bioenergy 31 (2007) 646655 Estimating biomass of individual pine trees using airborne lidar

    E-Print Network [OSTI]

    2007-01-01

    Biomass and Bioenergy 31 (2007) 646­655 Estimating biomass of individual pine trees using airborne biomass and bio-energy feedstocks. The overall goal of this study was to develop a method for assessing aboveground biomass and component biomass for individual trees using airborne lidar data in forest settings

  19. Biofuel Distribution Datasets from the Bioenergy Knowledge Discovery Framework

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Bioenergy Knowledge Discovery Framework invites users to discover the power of bioenergy through an interface that provides extensive access to research data and literature, GIS mapping tools, and collaborative networks. The Bioenergy KDF supports efforts to develop a robust and sustainable bioenergy industry. The KDF facilitates informed decision making by providing a means to synthesize, analyze, and visualize vast amounts of information in a relevant and succinct manner. It harnesses Web 2.0 and social networking technologies to build a collective knowledge system that can better examine the economic and environmental impacts of development options for biomass feedstock production, biorefineries, and related infrastructure. [copied from https://www.bioenergykdf.net/content/about] Holdings include datasets, models, and maps and the collections are growing due to both DOE contributions and individuals' data uploads.

  20. Biofuel Production Datasets from DOE's Bioenergy Knowledge Discovery Framework (KDF)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Bioenergy Knowledge Discovery Framework invites users to discover the power of bioenergy through an interface that provides extensive access to research data and literature, GIS mapping tools, and collaborative networks. The Bioenergy KDF supports efforts to develop a robust and sustainable bioenergy industry. The KDF facilitates informed decision making by providing a means to synthesize, analyze, and visualize vast amounts of information in a relevant and succinct manner. It harnesses Web 2.0 and social networking technologies to build a collective knowledge system that can better examine the economic and environmental impacts of development options for biomass feedstock production, biorefineries, and related infrastructure. [copied from https://www.bioenergykdf.net/content/about]

    Holdings include datasets, models, and maps and the collections arel growing due to both DOE contributions and data uploads from individuals.

  1. Vimmerstedt, L. J.; Bush, B. W. 09 BIOMASS FUELS BIOMASS; BIOFUEL...

    Office of Scientific and Technical Information (OSTI)

    Investment on the Growth of the Biofuels Industry Vimmerstedt, L. J.; Bush, B. W. 09 BIOMASS FUELS BIOMASS; BIOFUEL; DEMONSTRATION; DEPLOYMENT; LEARNING; POLICY; SYSTEM DYNAMICS;...

  2. International Market Opportunities in Bioenergy: Leveraging U...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Biomass 2014: Breakout Speaker Biographies Bioenergy Technologies Office Overview U.S. and Brazil Bilateral Collaboration on Biofuels...

  3. Hawai'i Bioenergy Master Plan Green Jobs, Biofuels Development, and

    E-Print Network [OSTI]

    Hawai'i Bioenergy Master Plan Green Jobs, Biofuels Development, and Hawaii's Labor Market associated with biofuels in Hawai'i. In particular, it discusses how a potential biofuels industry might policy makers and leaders consider how best to support biofuels. One major labor market question

  4. LANL capabilities towards bioenergy and biofuels programs

    SciTech Connect (OSTI)

    Olivares, Jose A; Park, Min S; Unkefer, Clifford J; Bradbury, Andrew M; Waldo, Geoffrey S

    2009-01-01

    LANL invented technology for increasing growth and productivity of photosysnthetic organisms, including algae and higher plants. The technology has been extensively tested at the greenhouse and field scale for crop plants. Initial bioreactor testing of its efficacy on algal growth has shown promising results. It increases algal growth rates even under optimwn nutrient supply and careful pH control with CO{sub 2} continuously available. The technology uses a small organic molecule, applied to the plant surfaces or added to the algal growth medium. CO{sub 2} concentration is necessary to optimize algal production in either ponds or reactors. LANL has successfully designed, built and demonstrated an effective, efficient technology using DOE funding. Such a system would be very valuable for capitalizing on local inexpensive sources of CO{sub 2} for algal production operations. Furthermore, our protein engineering team has a concept to produce highly stable carbonic anhydyrase (CA) enzyme, which could be very useful to assure maximum utilization of the CO{sub 2} supply. Stable CA could be used either imnlobilized on solid supports or engineered into the algal strain. The current technologies for harvesting the algae and obtaining the lipids do not meet the needs for rapid, low cost separations for high volumes of material. LANL has obtained proof of concept for the high volume flowing stream concentration of algae, algal lysis and separation of the lipid, protein and water fractions, using acoustic platforms. This capability is targeted toward developing biosynthetics, chiral syntheses, high throughput protein expression and purification, organic chemistry, recognition ligands, and stable isotopes geared toward Bioenergy applications. Areas of expertise include stable isotope chemistry, biomaterials, polymers, biopolymers, organocatalysis, advanced characterization methods, and chemistry of model compounds. The ultimate realization of the ability to design and synthesize materials that mimic or are inspired by natural systems will lead to entirely new applications in the bioenergy areas. In addition, there are new developments in this capability that involve development of catalytic methods for the production of carbon chains from the most abundant carbohydrate on the planet, glucose. These carbon chains will be useful in the production of high density fuels which defined characteristics. In addition, these methods/capabilities will be used to generate feedstocks for industrial processes. LANL is the second largest partner institution of the Department of Energy's Joint Genome Institute (DOE-JGI), and specializes in high throughput genome finishing and analysis in support of DOE missions in energy, bioremediation and carbon sequestration. This group is comprised of molecular biology labs and computational staff who together focus on the high-throughput DNA sequencing of whole microbial genomes, computational finishing and bioinformatics. The applications team focuses on the use of new sequencing technologies to address questions in environmental science. In addition to supporting the DOE mission, this group supports the Nation's national security mission by sequencing critical pathogens and near neighbors in support of relevent application areas.

  5. Impacts of land use change due to biofuel crops on carbon balance, bioenergy production, and agricultural

    E-Print Network [OSTI]

    Zhuang, Qianlai

    Impacts of land use change due to biofuel crops on carbon balance, bioenergy production that biofuel crops have much higher net pri- mary production (NPP) than soybean and wheat crops. When food). Global biofuel production has increased dramatically in the last decade, especially in United States

  6. Biomass and Biofuels: Technology and Economic Overview (Presentation)

    SciTech Connect (OSTI)

    Aden, A

    2007-05-23

    Presentation on biomass and biofuels technology and economics presented at Pacific Northwest National Laboratory, May 23, 2007.

  7. Microfluidic Glycosyl Hydrolase Screening for Biomass-to-Biofuel Conversion

    E-Print Network [OSTI]

    Singh, Anup

    Microfluidic Glycosyl Hydrolase Screening for Biomass-to-Biofuel Conversion Rajiv Bharadwaj such as cellulases and hemicellulases is a limiting and costly step in the conversion of biomass to biofuels. Lignocellulosic (LC) biomass is an abundant and potentially carbon-neutral resource for production of biofuels

  8. Consolidated Bio-Processing of Cellulosic Biomass for Efficient Biofuel Production Using Yeast Consortium

    E-Print Network [OSTI]

    Goyal, Garima

    2011-01-01

    Biomass for Efficient Biofuel Production Using YeastBiomass for Efficient Biofuel Production Using YeastConsortium for efficient biofuel production: A New Candidate

  9. Bioenergy

    SciTech Connect (OSTI)

    2014-11-20

    Scientists and engineers at Idaho National Laboratory are working with partners throughout the bioenergy industry in preprocessing and characterization to ensure optimum feedstock quality. This elite team understands that addressing feedstock variability is a critical component in the biofuel production process.

  10. Food Security and Nutrition NONE 09 BIOMASS FUELS; BIOFUELS;...

    Office of Scientific and Technical Information (OSTI)

    Level Panel of Experts on Food Security and Nutrition NONE 09 BIOMASS FUELS; BIOFUELS; PRODUCTION; AGRICULTURE; ENERGY POLICY; SOCIO-ECONOMIC FACTORS; SUSTAINABLE DEVELOPMENT;...

  11. 5th International Conference on Algal Biomass, Biofuels and Bioproduct...

    Broader source: Energy.gov (indexed) [DOE]

    Road San Diego, California 92109 The 5th International Conference on Algal Biomass, Biofuels and Bioproducts provides direct interaction for attending delegates with scientific...

  12. 5th International Conference on Algal Biomass, Biofuels and Bioproducts

    Office of Energy Efficiency and Renewable Energy (EERE)

    The 5th International Conference on Algal Biomass, Biofuels and Bioproducts provides direct interaction for attending delegates with scientific and technical leaders in this field.

  13. Making Photosynthetic Biofuel Renewable: Recovering Phosphorus from Residual Biomass J. M. Gifford and P. Westerhoff

    E-Print Network [OSTI]

    Hall, Sharon J.

    Making Photosynthetic Biofuel Renewable: Recovering Phosphorus from Residual Biomass J. M. Gifford to global warming. Biofuel from phototrophic microbes like algae and bacteria provides a viable substitute improves biofuel sustainability by refining phosphorus recycling. Biomass Production Residual Biomass

  14. Biomass Basics: The Facts About Bioenergy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    fuels A number of renewable resources like solar, wind, hydropower, geothermal, and biomass have the potential to transform the U.S. energy supply for the better. These energy...

  15. U.S. Billion-Ton Update: Biomass Supply for a Bioenergy and Bioproduct...

    Broader source: Energy.gov (indexed) [DOE]

    2005 report, "Biomass as a Feedstock for a Bioenergy and Bioproducts Industry: The Technical Feasibility of a Billion-Ton Annual Supply" billiontonupdate.pdf More Documents &...

  16. BioEnergy Landscape: From Photosynthesis to Fossil Fuels to Advanced Biofuels

    E-Print Network [OSTI]

    Kostic, Milivoje M.

    BioEnergy Landscape: From Photosynthesis to Fossil Fuels to Advanced Biofuels - Fundamentals for substitution of fossil fuels since they are natural extensions of fossil fuels, and the existing energy in transportation to replace fossil fuels. Energy is the cause for all processes across all space and time scales

  17. BIOENERGY AND BIOFUELS Domestic wastewater treatment using multi-electrode continuous

    E-Print Network [OSTI]

    BIOENERGY AND BIOFUELS Domestic wastewater treatment using multi-electrode continuous flow MFCs density was 148±8 mA/m2 (1,000 ), the maximum power density was 120 mW/m2 , and the overall COD removal % change in the COD concentration across the reactor (influent versus effluent) and the current density

  18. BIOENERGY AND BIOFUELS A multi-electrode continuous flow microbial fuel cell

    E-Print Network [OSTI]

    BIOENERGY AND BIOFUELS A multi-electrode continuous flow microbial fuel cell with separator this separator with the cathode. The maximum power density was 975 mW/m2 , with an overall chemical oxygen demand densities, the recovery of elec- trons as current [coulombic efficiency (CE)], and energy recovery while

  19. BIOENERGY AND BIOFUELS Anodic biofilms in microbial fuel cells harbor low numbers

    E-Print Network [OSTI]

    BIOENERGY AND BIOFUELS Anodic biofilms in microbial fuel cells harbor low numbers of higher a higher-power density (17.4 mW/m2 ) than the mixed culture, although voltage generation was variable. Our; Kiely et al. 2010; Parameswaran et al. 2009a, b). In general, power densities for acetic acid

  20. Obama Administration Announces New Funding for Biomass Research...

    Energy Savers [EERE]

    up to 35 million over three years to support research and development in advanced biofuels, bioenergy and high-value biobased products. The projects funded through the Biomass...

  1. Bioenergy: America's Energy Future

    ScienceCinema (OSTI)

    Nelson, Bruce; Volz, Sara; Male, Johnathan; Wolfson, Johnathan; Pray, Todd; Mayfield, Stephen; Atherton, Scott; Weaver, Brandon

    2014-08-12

    Bioenergy: America's Energy Future is a short documentary film showcasing examples of bioenergy innovations across the biomass supply chain and the United States. The film highlights a few stories of individuals and companies who are passionate about achieving the promise of biofuels and addressing the challenges of developing a thriving bioeconomy. This outreach product supports media initiatives to expand the public's understanding of the bioenergy industry and sustainable transportation and was developed by the U.S. Department of Energy Bioenergy Technologies Office (BETO), Oak Ridge National Laboratory, Green Focus Films, and BCS, Incorporated.

  2. Bioenergy: America's Energy Future

    SciTech Connect (OSTI)

    Nelson, Bruce; Volz, Sara; Male, Johnathan; Wolfson, Johnathan; Pray, Todd; Mayfield, Stephen; Atherton, Scott; Weaver, Brandon

    2014-07-31

    Bioenergy: America's Energy Future is a short documentary film showcasing examples of bioenergy innovations across the biomass supply chain and the United States. The film highlights a few stories of individuals and companies who are passionate about achieving the promise of biofuels and addressing the challenges of developing a thriving bioeconomy. This outreach product supports media initiatives to expand the public's understanding of the bioenergy industry and sustainable transportation and was developed by the U.S. Department of Energy Bioenergy Technologies Office (BETO), Oak Ridge National Laboratory, Green Focus Films, and BCS, Incorporated.

  3. Current Challenges in Commercially Producing Biofuels from Lignocellulosic Biomass

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Balan, Venkatesh

    2014-01-01

    Biofuels that are produced from biobased materials are a good alternative to petroleum based fuels. They offer several benefits to society and the environment. Producing second generation biofuels is even more challenging than producing first generation biofuels due the complexity of the biomass and issues related to producing, harvesting, and transporting less dense biomass to centralized biorefineries. In addition to this logistic challenge, other challenges with respect to processing steps in converting biomass to liquid transportation fuel like pretreatment, hydrolysis, microbial fermentation, and fuel separation still exist and are discussed in this review. The possible coproducts that could be producedmore »in the biorefinery and their importance to reduce the processing cost of biofuel are discussed. About $1 billion was spent in the year 2012 by the government agencies in US to meet the mandate to replace 30% existing liquid transportation fuels by 2022 which is 36?billion gallons/year. Other countries in the world have set their own targets to replace petroleum fuel by biofuels. Because of the challenges listed in this review and lack of government policies to create the demand for biofuels, it may take more time for the lignocellulosic biofuels to hit the market place than previously projected.« less

  4. IEA Bioenergy Task 42 on Biorefineries: Co-production of fuels, chemicals, power and materials from biomass

    E-Print Network [OSTI]

    : national bioenergy production, non-energetic biomass use, bioenergy related policy goals, national oil1 IEA Bioenergy Task 42 on Biorefineries: Co-production of fuels, chemicals, power and materials developed by the members of IEA Bioenergy Task 42 on Biorefinery: Co-production of Fuels, Chemicals, Power

  5. Biomass Program Outreach and Communication The Bioenergy Feedstock Information Network (BFIN)

    E-Print Network [OSTI]

    + Biomass Program Outreach and Communication The Bioenergy Feedstock Information Network (BFIN) About ten years ago ORNL launched BFIN providing a gateway to a wealth of biomass feedstock information by ORNL. Regional partnership workshops The Regional Biomass Energy Feedstock Partnership is comprised

  6. Seizing our Bioenergy Opportunities in a Changing Energy Landscape

    Office of Energy Efficiency and Renewable Energy (EERE)

    At the Bioenergy Technologies Office, we’re working with public and private partners to develop an industry of advanced biofuels and bioproducts from non-food biomass sources that is commercially...

  7. MODEL BASED BIOMASS SYSTEM DESIGN OF FEEDSTOCK SUPPLY SYSTEMS FOR BIOENERGY PRODUCTION

    SciTech Connect (OSTI)

    David J. Muth, Jr.; Jacob J. Jacobson; Kenneth M. Bryden

    2013-08-01

    Engineering feedstock supply systems that deliver affordable, high-quality biomass remains a challenge for the emerging bioenergy industry. Cellulosic biomass is geographically distributed and has diverse physical and chemical properties. Because of this feedstock supply systems that deliver cellulosic biomass resources to biorefineries require integration of a broad set of engineered unit operations. These unit operations include harvest and collection, storage, preprocessing, and transportation processes. Design decisions for each feedstock supply system unit operation impact the engineering design and performance of the other system elements. These interdependencies are further complicated by spatial and temporal variances such as climate conditions and biomass characteristics. This paper develops an integrated model that couples a SQL-based data management engine and systems dynamics models to design and evaluate biomass feedstock supply systems. The integrated model, called the Biomass Logistics Model (BLM), includes a suite of databases that provide 1) engineering performance data for hundreds of equipment systems, 2) spatially explicit labor cost datasets, and 3) local tax and regulation data. The BLM analytic engine is built in the systems dynamics software package PowersimTM. The BLM is designed to work with thermochemical and biochemical based biofuel conversion platforms and accommodates a range of cellulosic biomass types (i.e., herbaceous residues, short- rotation woody and herbaceous energy crops, woody residues, algae, etc.). The BLM simulates the flow of biomass through the entire supply chain, tracking changes in feedstock characteristics (i.e., moisture content, dry matter, ash content, and dry bulk density) as influenced by the various operations in the supply chain. By accounting for all of the equipment that comes into contact with biomass from the point of harvest to the throat of the conversion facility and the change in characteristics, the BLM evaluates economic performance of the engineered system, as well as determining energy consumption and green house gas performance of the design. This paper presents a BLM case study delivering corn stover to produce cellulosic ethanol. The case study utilizes the BLM to model the performance of several feedstock supply system designs. The case study also explores the impact of temporal variations in climate conditions to test the sensitivity of the engineering designs. Results from the case study show that under certain conditions corn stover can be delivered to the cellulosic ethanol biorefinery for $35/dry ton.

  8. Bioenergy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bioenergy Bioenergy Research into alternative forms of energy, especially energy security, is one of the major national security imperatives of this century. Get Expertise Babetta...

  9. Bioenergy `96: Partnerships to develop and apply biomass technologies. Volume I and II

    SciTech Connect (OSTI)

    1996-12-31

    The conference proceedings consist of two volumes of papers detailing numerous issues related to biomass energy production and use. An author and keyword index are provided in the proceedings. A total of 143 papers were selected for the database. Papers were selected from the following areas from Volume 1: feedstock production, harvest, storage, and delivery; the DOE biomass power program; technical, economic, and policy barriers and incentives; new developments in biomass combustion; advancements in biomass gasification; liquid fuels production and use; and case studies of bioenergy projects. From Volume 2, subtopics selected included: bioenergy systems for distributed generation; assessment and use of biomass wastes; non-technical barriers to bioenergy implementation; improving commercial viability through integrated systems; and anaerobic digestion.

  10. Bioproducts to Enable Biofuels Workshop

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Bioenergy Technologies Office (BETO) is hosting the one-day Bioproducts to Enable Biofuels Workshop on July 16, 2015, in Westminster, Colorado. BETO is seeking to collect information from key industry, university, and national laboratory stakeholders, regarding the challenges associated with the coproduction of biomass derived chemicals and products alongside biofuels.

  11. State Bioenergy Primer: Information and Resources for States on Issues, Opportunities, and Options for Advancing Bioenergy

    SciTech Connect (OSTI)

    Byrnett, D. S.; Mulholland, D.; Zinsmeister, E.; Doris, E.; Milbrandt, A.; Robichaud. R.; Stanley, R.; Vimmerstedt, L.

    2009-09-01

    One renewable energy option that states frequently consider to meet their clean energy goals is the use of biomass resources to develop bioenergy. Bioenergy includes bioheat, biopower, biofuels, and bioproducts. This document provides an overview of biomass feedstocks, basic information about biomass conversion technologies, and a discussion of benefits and challenges of bioenergy options. The Primer includes a step-wise framework, resources, and tools for determining the availability of feedstocks, assessing potential markets for biomass, and identifying opportunities for action at the state level. Each chapter contains a list of selected resources and tools that states can use to explore topics in further detail.

  12. Making Biofuel Renewable: Sustainable Phosphorus Recovery from Microbial Biomass McKay Gifford and Paul Westerhoff

    E-Print Network [OSTI]

    Hall, Sharon J.

    Making Biofuel Renewable: Sustainable Phosphorus Recovery from Microbial Biomass McKay Gifford, BioresourceTechnology, 102(2), 1697-1703. Biomass Composition Biofuel Processing Anion Exchange Microwave depletion indicate that future energy must come from biofuel. Biodiesel from photosynthetic microorganisms

  13. Direct conversion of algal biomass to biofuel

    DOE Patents [OSTI]

    Deng, Shuguang; Patil, Prafulla D; Gude, Veera Gnaneswar

    2014-10-14

    A method and system for providing direct conversion of algal biomass. Optionally, the method and system can be used to directly convert dry algal biomass to biodiesels under microwave irradiation by combining the reaction and combining steps. Alternatively, wet algae can be directly processed and converted to fatty acid methyl esters, which have the major components of biodiesels, by reacting with methanol at predetermined pressure and temperature ranges.

  14. Forest Products Supply Chain --Availability of Woody Biomass in Indiana for Bioenergy Production

    E-Print Network [OSTI]

    Cooperative Development Center has recently sponsored a study in wood residue for wood pellet production or wood waste biomass · Map Indiana's wood waste for each potential bioenergy supply chain · Develop break-even analyses for transportation logistics of wood waste biomass Isaac S. Slaven Abstract: The purpose

  15. U.S. Billion-Ton Update: Biomass Supply for a Bioenergy and Bioproducts Industry

    SciTech Connect (OSTI)

    Downing, Mark; Eaton, Laurence M; Graham, Robin Lambert; Langholtz, Matthew H; Perlack, Robert D; Turhollow Jr, Anthony F; Stokes, Bryce; Brandt, Craig C

    2011-08-01

    The report, Biomass as Feedstock for a Bioenergy and Bioproducts Industry: The Technical Feasibility of a Billion-Ton Annual Supply (generally referred to as the Billion-Ton Study or 2005 BTS), was an estimate of 'potential' biomass based on numerous assumptions about current and future inventory, production capacity, availability, and technology. The analysis was made to determine if conterminous U.S. agriculture and forestry resources had the capability to produce at least one billion dry tons of sustainable biomass annually to displace 30% or more of the nation's present petroleum consumption. An effort was made to use conservative estimates to assure confidence in having sufficient supply to reach the goal. The potential biomass was projected to be reasonably available around mid-century when large-scale biorefineries are likely to exist. The study emphasized primary sources of forest- and agriculture-derived biomass, such as logging residues, fuel treatment thinnings, crop residues, and perennially grown grasses and trees. These primary sources have the greatest potential to supply large, reliable, and sustainable quantities of biomass. While the primary sources were emphasized, estimates of secondary residue and tertiary waste resources of biomass were also provided. The original Billion-Ton Resource Assessment, published in 2005, was divided into two parts-forest-derived resources and agriculture-derived resources. The forest resources included residues produced during the harvesting of merchantable timber, forest residues, and small-diameter trees that could become available through initiatives to reduce fire hazards and improve forest health; forest residues from land conversion; fuelwood extracted from forests; residues generated at primary forest product processing mills; and urban wood wastes, municipal solid wastes (MSW), and construction and demolition (C&D) debris. For these forest resources, only residues, wastes, and small-diameter trees were considered. The 2005 BTS did not attempt to include any wood that would normally be used for higher-valued products (e.g., pulpwood) that could potentially shift to bioenergy applications. This would have required a separate economic analysis, which was not part of the 2005 BTS. The agriculture resources in the 2005 BTS included grains used for biofuels production; crop residues derived primarily from corn, wheat, and small grains; and animal manures and other residues. The cropland resource analysis also included estimates of perennial energy crops (e.g., herbaceous grasses, such as switchgrass, woody crops like hybrid poplar, as well as willow grown under short rotations and more intensive management than conventional plantation forests). Woody crops were included under cropland resources because it was assumed that they would be grown on a combination of cropland and pasture rather than forestland. In the 2005 BTS, current resource availability was estimated at 278 million dry tons annually from forestlands and slightly more than 194 million dry tons annually from croplands. These annual quantities increase to about 370 million dry tons from forestlands and to nearly 1 billion dry tons from croplands under scenario conditions of high-yield growth and large-scale plantings of perennial grasses and woody tree crops. This high-yield scenario reflects a mid-century timescale ({approx}2040-2050). Under conditions of lower-yield growth, estimated resource potential was projected to be about 320 and 580 million dry tons for forest and cropland biomass, respectively. As noted earlier, the 2005 BTS emphasized the primary resources (agricultural and forestry residues and energy crops) because they represent nearly 80% of the long-term resource potential. Since publication of the BTS in April 2005, there have been some rather dramatic changes in energy markets. In fact, just prior to the actual publication of the BTS, world oil prices started to increase as a result of a burgeoning worldwide demand and concerns about long-term supplies. By the end of the summer, oil pri

  16. Biofuels - Biomass Feedstock - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O OLaura|Bilayer Graphene GetsBiodiesel -Biofuel

  17. Estimating the variable cost for high-volume and long-haul transportation of densified biomass and biofuel

    SciTech Connect (OSTI)

    Jacob J. Jacobson; Erin Searcy; Md. S. Roni; Sandra D. Eksioglu

    2014-06-01

    This article analyzes rail transportation costs of products that have similar physical properties as densified biomass and biofuel. The results of this cost analysis are useful to understand the relationship and quantify the impact of a number of factors on rail transportation costs of denisfied biomass and biofuel. These results will be beneficial and help evaluate the economic feasibility of high-volume and long-haul transportation of biomass and biofuel. High-volume and long-haul rail transportation of biomass is a viable transportation option for biofuel plants, and for coal plants which consider biomass co-firing. Using rail optimizes costs, and optimizes greenhouse gas (GHG) emissions due to transportation. Increasing bioenergy production would consequently result in lower GHG emissions due to displacing fossil fuels. To estimate rail transportation costs we use the carload waybill data, provided by Department of Transportation’s Surface Transportation Board for products such as grain and liquid type commodities for 2009 and 2011. We used regression analysis to quantify the relationship between variable transportation unit cost ($/ton) and car type, shipment size, rail movement type, commodity type, etc. The results indicate that: (a) transportation costs for liquid is $2.26/ton–$5.45/ton higher than grain type commodity; (b) transportation costs in 2011 were $1.68/ton–$5.59/ton higher than 2009; (c) transportation costs for single car shipments are $3.6/ton–$6.68/ton higher than transportation costs for multiple car shipments of grains; (d) transportation costs for multiple car shipments are $8.9/ton and $17.15/ton higher than transportation costs for unit train shipments of grains.

  18. BIOENERGIZEME INFOGRAPHIC CHALLENGE: Bioenergy: Creating Biofuels from Biomass

    Office of Energy Efficiency and Renewable Energy (EERE)

    This infographic was created by students from North Caddo Magnet High School in Vivian, LA, as part of the U.S. Department of Energy-BioenergizeME Infographic Challenge. The BioenergizeME...

  19. A Landscape Design for Bioenergy Cropping Options Need for a Landscape Design

    E-Print Network [OSTI]

    . Several technological pathways connect the various biomass sources to diverse forms of bioenergy (fuels this approach addresses the questions of biofuel selection and deployment. These objectives are being addressed

  20. High-biomass sorghums for biomass biofuel production 

    E-Print Network [OSTI]

    Packer, Daniel

    2011-05-09

    photoperiod-sensitive (PS) hybrids within the Ma1/Ma5/Ma6 hybrid production system. High-biomass sorghums are PS and the Ma1/Ma5/Ma6 hybrid production system produces PS hybrids with PI parents by manipulating alleles at the Ma1, Ma5 and Ma6 sorghum maturity...

  1. HARNESSING PLANT BIOMASS FOR BIOFUELS AND BIOMATERIALS Plant surface lipid biosynthetic pathways and their utility for

    E-Print Network [OSTI]

    Kunst, Ljerka

    HARNESSING PLANT BIOMASS FOR BIOFUELS AND BIOMATERIALS Plant surface lipid biosynthetic pathways and their utility for metabolic engineering of waxes and hydrocarbon biofuels Reinhard Jetter1,2,* and Ljerka Kunst1 biosynthetic pathways can be used in metabolic engineering of plants for the production of hydrocarbon biofuels

  2. Methods for the economical production of biofuel from biomass

    DOE Patents [OSTI]

    Hawkins, Andrew C; Glassner, David A; Buelter, Thomas; Wade, James; Meinhold, Peter; Peters, Matthew W; Gruber, Patrick R; Evanko, William A; Aristidou, Aristos A; Landwehr, Marco

    2013-04-30

    Methods for producing a biofuel are provided. Also provided are biocatalysts that convert a feedstock to a biofuel.

  3. Bioenergy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Read caption + Los Alamos scientists used genetic engineering to develop magnetic algae, thus making it much easier to harvest for biofuel production. Harvesting algae...

  4. Characterization of Extremophilic Bacteria for Potential in the Biofuel and Bioprocess Industries 

    E-Print Network [OSTI]

    Haynes, Abria R

    2014-04-18

    likely favored isolates in the library that possess biofuel/bioenergy relevant traits (e.g. hydrolysis of lignocellulosic biomass, utilization of hydrolysis products, and tolerance to inhibitory compounds released during hydrolysis). The phylogeny...

  5. Bioenergy and emerging biomass conversion technologies Hanne stergrd, Ris National Laboratory, Technical University of Denmark DTU, Denmark

    E-Print Network [OSTI]

    Bioenergy and emerging biomass conversion technologies Hanne Řstergĺrd, Risř National Laboratory in the Agricultural Outlook from OECD-FAO, these predictions may be misleading and biomass may increase more rapidly Biomass and waste Hydro Nuclear Gas Oil Coal Fig 1 Total primary energy supply3 · The transport sector

  6. Biomass as Feedstock for a Bioenergy and Bioproducts Industry...

    Broader source: Energy.gov (indexed) [DOE]

    land resources of the United States are capable of producing a sustainable supply of biomass sufficient to displace 30% or more of the country's present petroleum consumption....

  7. Evaluating ecosystem processes in willow short rotation coppice bioenergy plantations

    E-Print Network [OSTI]

    and alternative land-uses: arable and set-aside (agricultural land taken out of production). We deployed litter cultivation of biomass for biofuels (trans- port fuels) and bioenergy (heat and power) has pro- voked much of the northern hemisphere, how- ever, a small, but growing proportion of biomass crops consist of tree species

  8. "Trojan Horse" strategy for deconstruction of biomass for biofuels production.

    SciTech Connect (OSTI)

    Sinclair, Michael B.; Hadi, Masood Z.; Timlin, Jerilyn Ann; Thomson, James; Whalen, Maureen; Thilmony, Roger; Tran-Gyamfi, Mary; Simmons, Blake Alexander; Sapra, Rajat

    2008-08-01

    Production of renewable biofuels to displace fossil fuels currently consumed in the transportation sector is a pressing multi-agency national priority. Currently, nearly all fuel ethanol is produced from corn-derived starch. Dedicated 'energy crops' and agricultural waste are preferred long-term solutions for renewable, cheap, and globally available biofuels as they avoid some of the market pressures and secondary greenhouse gas emission challenges currently facing corn ethanol. These sources of lignocellulosic biomass are converted to fermentable sugars using a variety of chemical and thermochemical pretreatments, which disrupt cellulose and lignin cross-links, allowing exogenously added recombinant microbial enzymes to more efficiently hydrolyze the cellulose for 'deconstruction' into glucose. This process is plagued with inefficiencies, primarily due to the recalcitrance of cellulosic biomass, mass transfer issues during deconstruction, and low activity of recombinant deconstruction enzymes. Costs are also high due to the requirement for enzymes and reagents, and energy-intensive and cumbersome pretreatment steps. One potential solution to these problems is found in synthetic biology; they propose to engineer plants that self-produce a suite of cellulase enzymes targeted to the apoplast for cleaving the linkages between lignin and cellulosic fibers; the genes encoding the degradation enzymes, also known as cellulases, are obtained from extremophilic organisms that grow at high temperatures (60-100 C) and acidic pH levels (<5). These enzymes will remain inactive during the life cycle of the plant but become active during hydrothermal pretreatment i.e., elevated temperatures. Deconstruction can be integrated into a one-step process, thereby increasing efficiency (cellulose-cellulase mass-transfer rates) and reducing costs. The proposed disruptive technologies address biomass deconstruction processes by developing transgenic plants encoding a suite of enzymes used in cellulosic deconstruction. The unique aspects of this technology are the rationally engineered, highly productive extremophilic enzymes, targeted to specific cellular locations (apoplast) and their dormancy during normal plant proliferation, which become Trojan horses during pretreatment conditions. They have been leveraging established Sandia's enzyme-engineering and imaging capabilities. Their technical approach not only targets the recalcitrance and mass-transfer problem during biomass degradation but also eliminates the costs associated with industrial-scale production of microbial enzymes added during processing.

  9. #LabChat Q&A: Biofuels of the Future, Sept. 26 at 2 pm EDT

    Broader source: Energy.gov [DOE]

    Our biofuels experts can answer your questions about biofuels, bioenergy and the next generation of fuel.

  10. Bioenergy

    Broader source: Energy.gov [DOE]

    Learn how the Energy Department is working to sustainably transform the nation's abundant renewable resources into biomass energy.

  11. Biofuels Information Center

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    biofuels production facilities and infrastructure by providing essential biofuels data, tools, and information to all stakeholders * The Bioenergy Atlas tools provide interactive...

  12. Bioenergy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News PublicationsAudits & InspectionsBeryllium andSampler As AnEl biodiésel esBioenergy

  13. Biomass Basics: The Facts About Bioenergy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram:Y-12Power, IncBio Centers Announcementand FuelBiomass Basics: The Facts

  14. Biomass IBR Fact Sheet: Abengoa Bioenergy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram:Y-12Power, IncBio Centers Announcementand FuelBiomass Basics:Costs

  15. Biomass as Feedstock for a Bioenergy and Bioproducts Industry: The

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataEnergy Webinar:I DueBETO QuizResults in FirstJuneBiomass Resource

  16. Apparatus and method for converting biomass to feedstock for biofuel and biochemical manufacturing processes

    DOE Patents [OSTI]

    Kania, John; Qiao, Ming; Woods, Elizabeth M.; Cortright, Randy D.; Myren, Paul

    2015-12-15

    The present invention includes improved systems and methods for producing biomass-derived feedstocks for biofuel and biochemical manufacturing processes. The systems and methods use components that are capable of transferring relatively high concentrations of solid biomass utilizing pressure variations between vessels, and allows for the recovery and recycling of heterogeneous catalyst materials.

  17. Anaerobic Digestion of Algal Biomass Residues with Nutrient Recycle Microalgae are currently considered as a renewable source of liquid and gaseous biofuels and

    E-Print Network [OSTI]

    Collins, Gary S.

    are currently considered as a renewable source of liquid and gaseous biofuels and a practical technology of the most sustainable and promising of biofuel feedstock, demonstrating particularly high growth rates, and their entrained lipids, can offer several different types of biofuel and bioenergy production options including

  18. Biomass & Bioenergy, 2010, 34(7), 923-930, doi:10.1016/j.biombioe.2010.01.039. EEEnnneeerrrgggyyy rrreeeqqquuuiiirrreeemmmeeennnttt fffooorrr fffiiinnneee gggrrriiinnndddiiinnnggg ooofff tttooorrrrrreeefffiiieeeddd wwwooooooddd

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Biomass & Bioenergy, 2010, 34(7), 923-930, doi:10.1016/j.biombioe.2010.01.039. 1 EEEnnneeerrrgggyyy of biomass as a source of energy. Wood and biomass contain a lot of available energy. For example, the low heating value (LHV) of dry wood ranges between 4300 and 5400 kWh/t, depending on the species. Biomass can

  19. Sustainable use of California biomass resources can help meet state and national bioenergy targets

    E-Print Network [OSTI]

    Jenkins, Bryan M; Williams, Robert B; Gildart, Martha C; Kaffka, Stephen R.; Hartsough, Bruce; Dempster, Peter G

    2009-01-01

    cessing. Annually, biofuel production from these resourcesFeedstock potential of biofuel production and raised ques-part of a study of biofuel production in the western United

  20. Hawai'i Bioenergy Master Plan Green Jobs, Biofuels Development, and

    E-Print Network [OSTI]

    substituting for current imported oil sources, by 2030 the industry would employ a small (excluding agriculture from the view that investment in biofuels skills development will be at the leading edge of efforts wage. The growth of a biofuels industry in Hawai'i is likely to require some significant investment

  1. Sequencing of Multiple Clostridial Genomes Related to Biomass Conversion and Biofuel Production

    SciTech Connect (OSTI)

    Hemme, Christopher [University of Oklahoma; Mouttaki, Housna [University of Oklahoma; Lee, Yong-Jin [University of Oklahoma, Norman; Goodwin, Lynne A. [Los Alamos National Laboratory (LANL); Lucas, Susan [U.S. Department of Energy, Joint Genome Institute; Copeland, A [U.S. Department of Energy, Joint Genome Institute; Lapidus, Alla L. [U.S. Department of Energy, Joint Genome Institute; Glavina Del Rio, Tijana [U.S. Department of Energy, Joint Genome Institute; Tice, Hope [U.S. Department of Energy, Joint Genome Institute; Saunders, Elizabeth H [Los Alamos National Laboratory (LANL); Detter, J. Chris [U.S. Department of Energy, Joint Genome Institute; Han, Cliff [Los Alamos National Laboratory (LANL); Pitluck, Sam [U.S. Department of Energy, Joint Genome Institute; Land, Miriam L [ORNL; Hauser, Loren John [ORNL; Kyrpides, Nikos C [U.S. Department of Energy, Joint Genome Institute; Mikhailova, Natalia [U.S. Department of Energy, Joint Genome Institute; He, Zhili [University of Oklahoma; Wu, Liyou [University of Oklahoma, Norman; Van Nostrand, Joy [University of Oklahoma, Norman; Henrissat, Bernard [Universite d'Aix-Marseille I & II; HE, Qiang [ORNL; Lawson, Paul A. [University of Oklahoma, Norman; Tanner, Ralph S. [University of Oklahoma, Norman; Lynd, Lee R [Thayer School of Engineering at Dartmouth; Wiegel, Juergen [University of Georgia, Athens, GA; Fields, Dr. Matthew Wayne [Montana State University; Arkin, Adam [Lawrence Berkeley National Laboratory (LBNL); Schadt, Christopher Warren [ORNL; Stevenson, Bradley S. [University of Oklahoma, Norman; McInerney, Michael J. [University of Oklahoma, Norman; Yang, Yunfeng [ORNL; Dong, Hailiang [Miami University, Oxford, OH; Xing, Defeng [State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology; Ren, Nanqi [State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology; Wang, Aijie [State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology; Ding, Shi-You [National Energy Renewable Laboratory; Himmel, Michael E [National Renewable Energy Laboratory (NREL); Taghavi, Safiyh [Brookhaven National Laboratory (BNL)/U.S. Department of Energy; Van Der Lelie, Daniel [Brookhaven National Laboratory (BNL); Rubin, Edward M. [U.S. Department of Energy, Joint Genome Institute; Zhou, Jizhong [University of Oklahoma

    2010-01-01

    Modern methods to develop microbe-based biomass conversion processes require a system-level understanding of the microbes involved. Clostridium species have long been recognized as ideal candidates for processes involving biomass conversion and production of various biofuels and other industrial products. To expand the knowledge base for clostridial species relevant to current biofuel production efforts, we have sequenced the genomes of 20 species spanning multiple genera. The majority of species sequenced fall within the class III cellulosome-encoding Clostridium and the class V saccharolytic Thermoanaerobacteraceae. Species were chosen based on representation in the experimental literature as model organisms, ability to degrade cellulosic biomass either by free enzymes or by cellulosomes, ability to rapidly ferment hexose and pentose sugars to ethanol, and ability to ferment synthesis gas to ethanol. The sequenced strains significantly increase the number of noncommensal/nonpathogenic clostridial species and provide a key foundation for future studies of biomass conversion, cellulosome composition, and clostridial systems biology.

  2. BIOENERGY AND BIOFUELS Performance of a pilot-scale continuous flow microbial

    E-Print Network [OSTI]

    a maximum of 7.4 A/m3 by the planned end of the test (after 100 days). Gas production reached a maximum of 0.19±0.04 L/L/day, although most of the product gas was converted to methane (86±6%). In order to increase performance. Keywords Biohydrogen . Biomethane . Bioelectricity. Microbial electrolysis cell . Bioenergy

  3. Biomass from Cyanobacteria:Opportunities for the Proposed Algae Biotechnology and Biofuels

    E-Print Network [OSTI]

    Tullos, Desiree

    Biomass from Cyanobacteria:Opportunities for the Proposed Algae Biotechnology and Biofuels CLOSED DUE TO ALGAE BLOOM AND GENERAL ADVISORY REMAINS FOR HILLS CREEK RESERVOIR August 2, 2002 Larison. For the entire Reservoir, one should avoid high con centrations of blue-green algae both on the water surface

  4. Genomic Advances to Improve Biomass for Biofuels (LBNL Science at the Theater)

    ScienceCinema (OSTI)

    Rokhsar, Daniel

    2011-04-28

    Lawrence Berkeley National Lab bioscientist Daniel Rokhsar discusses genomic advances to improve biomass for biofuels. He presented his talk Feb. 11, 2008 in Berkeley, California as part of Berkeley Lab's community lecture series. Rokhsar works with the U.S. Department of Energy's Joint Genome Institute and Berkeley Lab's Genomics Division.

  5. A Review on Biomass Densification Systems to Develop Uniform Feedstock Commodities for Bioenergy Application

    SciTech Connect (OSTI)

    Jaya Shankar Tumuluru; Christopher T. Wright; J. Richard Hess; Kevin L. Kenney

    2011-11-01

    Developing uniformly formatted, densified feedstock from lignocellulosic biomass is of interest to achieve consistent physical properties like size and shape, bulk and unit density, and durability, which significantly influence storage, transportation and handling characteristics, and, by extension, feedstock cost and quality. A variety of densification systems are considered for producing a uniform format feedstock commodity for bioenergy applications, including (a) baler, (b) pellet mill, (c) cuber, (d) screw extruder, (e) briquette press, (f) roller press, (g) tablet press, and (g) agglomerator. Each of these systems has varying impacts on feedstock chemical and physical properties, and energy consumption. This review discusses the suitability of these densification systems for biomass feedstocks and the impact these systems have on specific energy consumption and end product quality. For example, a briquette press is more flexible in terms of feedstock variables where higher moisture content and larger particles are acceptable for making good quality briquettes; or among different densification systems, a screw press consumes the most energy because it not only compresses but also shears and mixes the material. Pretreatment options like preheating, grinding, steam explosion, torrefaction, and ammonia fiber explosion (AFEX) can also help to reduce specific energy consumption during densification and improve binding characteristics. Binding behavior can also be improved by adding natural binders, such as proteins, or commercial binders, such as lignosulphonates. The quality of the densified biomass for both domestic and international markets is evaluated using PFI (United States Standard) or CEN (European Standard).

  6. Biomass 2014 Poster Session

    Office of Energy Efficiency and Renewable Energy (EERE)

    The U.S. Department of Energy’s Bioenergy Technologies Office (BETO) invites students, researchers, public and private organizations, and members of the general public to submit poster abstracts for consideration for the annual Biomass Conference Poster Session. The Biomass 2014 conference theme focuses on topics that are advancing the growth of the bioeconomy, such as improvements in feedstock logistics; promising, innovative pathways for advanced biofuels; and market-enabling co-products.

  7. Our Commitment to Bioenergy Sustainability | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Our Commitment to Bioenergy Sustainability Our Commitment to Bioenergy Sustainability To enhance the benefits of bioenergy while mitigating concerns, the Biomass Program combines...

  8. Bioenergy in Energy Transformation and Climate Management

    SciTech Connect (OSTI)

    Rose, Steven K.; Kriegler, Elmar; Bibas, Ruben; Calvin, Katherine V.; Popp, Alexander; van Vuuren, Detlef; Weyant, John

    2014-04-01

    Unlike fossil fuels, biomass is a renewable resource that can sequester carbon during growth, be converted to energy, and then re-grown. Biomass is also a flexible fuel that can service many end-uses. This paper explores the importance of bioenergy to potential future energy transformation and climate change management. Using a model comparison of fifteen models, we characterize and analyze future dependence on, and the value of, bioenergy in achieving potential long-run climate objectives—reducing radiative forcing to 3.7 and 2.8 W/m2 in 2100 (approximately 550 and 450 ppm carbon dioxide equivalent atmospheric concentrations). Model scenarios project, by 2050, bioenergy growth of 2 to 10% per annum reaching 5 to 35 percent of global primary energy, and by 2100, bioenergy becoming 15 to 50 percent of global primary energy. Non-OECD regions are projected to be the dominant suppliers of biomass, as well as consumers, with up to 35 percent of regional electricity from biopower by 2050, and up to 70 percent of regional liquid fuels from biofuels by 2050. Bioenergy is found to be valuable to many models with significant implications for mitigation costs and world consumption. The availability of bioenergy, in particular biomass with carbon dioxide capture and storage (BECCS), notably affects the cost-effective global emissions trajectory for climate management by accommodating prolonged near-term use of fossil fuels. We also find that models cost-effectively trade-off land carbon and nitrous oxide emissions for the long-run climate change management benefits of bioenergy. Overall, further evaluation of the viability of global large-scale bioenergy is merited.

  9. Improving the Way We Harvest & Deliver Biofuels Crops | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Steven Thomas Feedstocks Technology Manager, Bioenergy Technologies Office VIDEOS ON BIOFUEL BASICS The basics of biofuels technology explained in Energy 101: Biofuels. Insight...

  10. RESOURCES BIOMASS & BIOFUELS MRS BULLETIN VOLUME 33 APRIL 2008 www.mrs.org/bulletin Harnessing Materials for Energy

    E-Print Network [OSTI]

    California at Riverside, University of

    381 RESOURCES · BIOMASS & BIOFUELS MRS BULLETIN · VOLUME 33 · APRIL 2008 · www.mrs.org/bulletin · Harnessing Materials for Energy What Is Cellulosic Biomass? Although ethanol is now made from the sugars for ethanol in terms of fuel use could be realized if the sugars from more recalcitrant cellulosic biomass

  11. Bioenergy Science Center KnowledgeBase

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Syed, M. H.; Karpinets, T. V.; Parang, M.; Leuze, M. R.; Park, B. H.; Hyatt, D.; Brown, S. D.; Moulton, S. Galloway, M.D.; Uberbacher, E. C.

    The challenge of converting cellulosic biomass to sugars is the dominant obstacle to cost effective production of biofuels in s capable of significant enough quantities to displace U. S. consumption of fossil transportation fuels. The BioEnergy Science Center (BESC) tackles this challenge of biomass recalcitrance by closely linking (1) plant research to make cell walls easier to deconstruct, and (2) microbial research to develop multi-talented biocatalysts tailor-made to produce biofuels in a single step. [from the 2011 BESC factsheet] The BioEnergy Science Center (BESC) is a multi-institutional, multidisciplinary research (biological, chemical, physical and computational sciences, mathematics and engineering) organization focused on the fundamental understanding and elimination of biomass recalcitrance. The BESC Knowledgebase and its associated tools is a discovery platform for bioenergy research. It consists of a collection of metadata, data, and computational tools for data analysis, integration, comparison and visualization for plants and microbes in the center.The BESC Knowledgebase (KB) and BESC Laboratory Information Management System (LIMS) enable bioenergy researchers to perform systemic research. [http://bobcat.ornl.gov/besc/index.jsp

  12. Bibliography, Bioenergy Technologies Office Multi-Year Program...

    Broader source: Energy.gov (indexed) [DOE]

    M. (2013). "Status of Advanced Biofuels Demonstration Facilities in 2012: A Report to IEA Bioenergy Task 39," http:demoplants.bioenergy2020.eufilesDemoplantsReportFinal.pd...

  13. NREL: Biomass Research - Discovering Drop-In Biofuels to Leverage...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    drop-in fuels that are compatible with existing engines and fuel distribution. Biomass feedstocks such as crop residues and algae are available on a scale that other renewable...

  14. Sustainable Bioenergy and the RSB

    Broader source: Energy.gov [DOE]

    Plenary V: Biofuels and Sustainability: Acknowledging Challenges and Confronting MisconceptionsSustainable Bioenergy and the RSBBarbara Bramble, Senior Director for International Wildlife...

  15. NREL SBV Pilot Bioenergy Technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    conversion technologies, biomass process and sustainability analysis, and feedstock logistics. Capabilities The NREL National Bioenergy Center develops, refines, and validates...

  16. Stakeholder Database from the Center for Bioenergy Sustainability (Learn who the experts are)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Center for BioEnergy Sustainability (CBES) is a leading resource for dealing with the environmental impacts and the ultimate sustainability of biomass production for conversion to biofuels and bio-based products. Its purpose is to use science and analysis to understand the sustainability (environmental, economic, and social) of current and potential future bioenergy production and distribution; to identify approaches to enhance bioenergy sustainability; and to serve as an independent source of the highest quality data and analysis for bioenergy stakeholders and decision makers. ... On the operational level, CBES is a focal point and business-development vehicle for ORNL’s capabilities related to bioenergy sustainability and socioeconomic analyses. As such, it complements the BioEnergy Science Center (BESC), also located at ORNL, which focuses on the problem of converting lignocellulosic biomass into reactive intermediaries necessary for the cellulosic biofuel industry. Together, these centers provide a strong integrating mechanism and business-development tool for ORNL's science and technology portfolio in bioenergy [taken and edited from http://web.ornl.gov/sci/ees/cbes/. The Stakeholder Database allows you to find experts in bioenergy by their particular type of expertise, their affiliations or locations, their specific research areas or research approaches, etc.

  17. Carbon Dioxide Emissions Associated with Bioenergy and Other...

    Open Energy Info (EERE)

    Climate Focus Area: Biomass, - Biomass Combustion, - Biomass Gasification, - Biomass Pyrolysis, - Biofuels, - Landfill Gas, - Waste to Energy, Greenhouse Gas Phase: Evaluate...

  18. Sandia Energy - "Bionic" Liquids from Lignin: Joint BioEnergy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    from Lignin: Joint BioEnergy Institute Results Pave the Way for Closed-Loop Biofuel Refineries Home Renewable Energy Energy Transportation Energy Biofuels Facilities Partnership...

  19. Dynamic analysis of policy drivers for bioenergy commodity markets

    SciTech Connect (OSTI)

    Robert F. Jeffers; Jacob J. Jacobson; Erin M. Searcy

    2001-01-01

    Biomass is increasingly being considered as a feedstock to provide a clean and renewable source of energy in the form of both liquid fuels and electric power. In the United States, the biofuels and biopower industries are regulated by different policies and have different drivers which impact the maximum price the industries are willing to pay for biomass. This article describes a dynamic computer simulation model that analyzes future behavior of bioenergy feedstock markets given policy and technical options. The model simulates the long-term dynamics of these markets by treating advanced biomass feedstocks as a commodity and projecting the total demand of each industry as well as the market price over time. The model is used for an analysis of the United States bioenergy feedstock market that projects supply, demand, and market price given three independent buyers: domestic biopower, domestic biofuels, and foreign exports. With base-case assumptions, the biofuels industry is able to dominate the market and meet the federal Renewable Fuel Standard (RFS) targets for advanced biofuels. Further analyses suggest that United States bioenergy studies should include estimates of export demand in their projections, and that GHG-limiting policy would partially shield both industries from exporter dominance.

  20. Algal Biofuels Research Laboratory (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-08-01

    This fact sheet provides information about Algal Biofuels Research Laboratory capabilities and applications at NREL's National Bioenergy Center.

  1. Genome-Enabled Advancement of Biomass to Biofuel Technology

    SciTech Connect (OSTI)

    Patrick O'Mullan, PhD

    2010-11-11

    Unlike Saccharomyces and even E. coli, the fundamental microbiology and biochemistry of Clostridium phytofermentans was largely unknown. The genus Clostridia is quite diverse and general methods to manipulate and characterize them often need to be developed. As anaerobes, they often don�t behave the way more classically studied microbes will in fermentation processes. The results from these studies have allowed: 1) A fundamental understanding of the fermentation cycle in C. phytofermentans 2) Requirements to maximize ethanol yield in a fermentation process 3) An understanding of the critical growth and nutritional parameters required to ferment biomass to ethanol 4) Identification of key targets or genes to modify in order increase or improve any of the key traits of C. phytofermentans 5) The development of a genetic system to transform and manipulate the microbe Without these achievements, an industrially significant process for biomass fermentation to ethanol would not be economically possible. The development of a fermentation process with economic return on investment can be successfully developed with the technical learning achieved

  2. Bioenergy Technologies Office R&D Pathways: Algal Lipid Upgrading...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Upgrading More Documents & Publications Algal Lipid Extraction and Upgrading to Hydrocarbons Technology Pathway Pathways for Algal Biofuels Bioenergy Technologies Office...

  3. Biofuels

    SciTech Connect (OSTI)

    Kalluri, Udaya

    2014-05-02

    Udaya Kalluri is part of a multidisciplinary scientific team working to unlock plants in order to create more potent biofuels without harsh processing.

  4. Biofuels

    ScienceCinema (OSTI)

    Kalluri, Udaya

    2014-05-23

    Udaya Kalluri is part of a multidisciplinary scientific team working to unlock plants in order to create more potent biofuels without harsh processing.

  5. Sustainable use of California biomass resources can help meet state and national bioenergy targets

    E-Print Network [OSTI]

    Jenkins, Bryan M; Williams, Robert B; Gildart, Martha C; Kaffka, Stephen R.; Hartsough, Bruce; Dempster, Peter G

    2009-01-01

    costs, remain ity of biomass energy production to supportand Exhibition on Biomass for Energy and Industry. Sevilla,California Biomass Collaborative/California Energy

  6. Consolidated Bio-Processing of Cellulosic Biomass for Efficient Biofuel Production Using Yeast Consortium

    E-Print Network [OSTI]

    Goyal, Garima

    2011-01-01

    for Efficient Biofuel Production Using Yeast Consortium Afor Efficient Biofuel Production Using Yeast Consortium byConsortium for efficient biofuel production: A New Candidate

  7. Advancing Commercialization of Algal Biofuels Through Increased Biomass Productivity and Technology Integration

    SciTech Connect (OSTI)

    Bai, Xuemei; Sabarsky, Martin

    2013-09-30

    Cellana is a leading developer of algae-based bioproducts, and its pre-commercial production of marine microalgae takes place at Cellana?s Kona Demonstration Facility (KDF) in Hawaii. KDF is housing more than 70 high-performing algal strains for different bioproducts, of which over 30 have been grown outside at scale. So far, Cellana has produced more than 10 metric tons of algal biomass for the development of biofuels, animal feed, and high-value nutraceuticals. Cellana?s ALDUO algal cultivation technology allows Cellana to grow non-extremophile algal strains at large scale with no contamination disruptions. Cellana?s research and production at KDF have addressed three major areas that are crucial for the commercialization of algal biofuels: yield improvement, cost reduction, and the overall economics. Commercially acceptable solutions have been developed and tested for major factors limiting areal productivity of algal biomass and lipids based on years of R&D work conducted at KDF. Improved biomass and lipid productivity were achieved through strain improvement, culture management strategies (e.g., alleviation of self-shading, de-oxygenation, and efficient CO2 delivery), and technical advancement in downstream harvesting technology. Cost reduction was achieved through optimized CO2 delivery system, flue gas utilization technology, and energy-efficient harvesting technology. Improved overall economics was achieved through a holistic approach by integration of high-value co-products in the process, in addition to yield improvements and cost reductions.

  8. Modeling Poplar Growth as a Short Rotation Woody Crop for Biofuels

    E-Print Network [OSTI]

    Hart, Quinn James

    2014-01-01

    a Short Rotation Woody Crop for Biofuels Q. J. Hart 1,? , O.for cellulosic derived biofuels. The ability to accuratelycrops for bioenergy and biofuels applications. In vitro

  9. Microarray Transcriptomics Data from the BioEnergy Science Center (BESC)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The BioEnergy Science Center (BESC) is a multi-institutional (18 partner), multidisciplinary research (biological, chemical, physical and computational sciences, mathematics and engineering) organization focused on the fundamental understanding and elimination of biomass recalcitrance. BESC's approach to improve accessibility to the sugars within biomass involves 1) designing plant cell walls for rapid deconstruction and 2) developing multitalented microbes for converting plant biomass into biofuels in a single step (consolidated bioprocessing). Addressing the roadblock of biomass recalcitrance will require a multiscale understanding of plant cell walls from biosynthesis to deconstruction pathways. This integrated understanding would generate models, theories and finally processes that will be used to understand and overcome biomass recalcitrance.

  10. Vertical Integration of Biomass Saccharification of Enzymes for Sustainable Cellulosic Biofuel Production in a Biorefinery

    SciTech Connect (OSTI)

    Manoj Kumar, PhD

    2011-05-09

    Lignocellulosic biomass is the most abundant, least expensive renewable natural biological resource for the production of biobased products and bioenergy is important for the sustainable development of human civilization in 21st century. For making the fermentable sugars from lignocellulosic biomass, a reduction in cellulase production cost, an improvement in cellulase performance, and an increase in sugar yields are all vital to reduce the processing costs of biorefineries. Improvements in specific cellulase activities for non-complexed cellulase mixtures can be implemented through cellulase engineering based on rational design or directed evolution for each cellulase component enzyme, as well as on the reconstitution of cellulase components. In this paper, we will provide DSM's efforts in cellulase research and developments and focus on limitations. Cellulase improvement strategies based on directed evolution using screening on relevant substrates, screening for higher thermal tolerance based on activity screening approaches such as continuous culture using insoluble cellulosic substrates as a powerful selection tool for enriching beneficial cellulase mutants from the large library. We will illustrate why and how thermostable cellulases are vital for economic delivery of bioproducts from cellulosic biomass using biochemical conversion approach.

  11. AGCO Biomass Solutions: Biomass 2014 Presentation

    Broader source: Energy.gov [DOE]

    Plenary IV: Advances in Bioenergy Feedstocks—From Field to Fuel AGCO Biomass Solutions: Biomass 2014 Presentation Glenn Farris, Marketing Manager Biomass, AGCO Corporation

  12. Biomass & Bioenergy, 2010, 34(5), 602-609, doi : 10.1016/j.biombioe.2010.01.002 MMMooodddeeelllllliiinnnggg aaannnhhhyyydddrrrooouuusss wwweeeiiiggghhhttt lllooossssss ooofff wwwooooooddd ccchhhiiipppsss ddduuurrriiinnnggg tttooorrrrrreeefffaaaccctttiiioo

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Biomass & Bioenergy, 2010, 34(5), 602-609, doi : 10.1016/j.biombioe.2010.01.002 1 treatment ; Torrefaction ; Wood chips ; Reaction kinetics ; Wood fuels I. Introduction Biomass, it becomes also crucial to enhance the use of biomass as a source of energy. To use biomass as a source

  13. Our Commitment to Bioenergy Sustainability

    Broader source: Energy.gov [DOE]

    To enhance the benefits of bioenergy while mitigating concerns, the Biomass Program combines advanced analysis with applied research to understand and address the potential environmental impacts of bioenergy production.

  14. Biofuels and Agriculture

    E-Print Network [OSTI]

    Pawlowski, Wojtek

    Biofuels and Agriculture Biofuels and Agriculture A Factsheet for Farmers American farmers have "biofuels" like ethanol and biodiesel mean that new markets are opening up. These can provide extra farm as growing markets for other biofuels like biodiesel. What are biofuels? Biofuels (short for "biomass fuels

  15. BETO Announces Notice of Intent (NOI) to Develop Pathways to Biofuels and Bioproducts

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Energy Department announces its intent to issue, on behalf of the Bioenergy Technologies Office (BETO), a funding opportunity announcement (FOA) entitled “MEGA-BIO: Bioproducts to Enable Biofuels.” This FOA supports BETO’s goal of meeting its 2022 cost target of $3/gallon gasoline equivalent for the production of hydrocarbon fuels from lignocellulosic biomass.

  16. Biomass Feedstocks

    Broader source: Energy.gov [DOE]

    A feedstock is defined as any renewable, biological material that can be used directly as a fuel, or converted to another form of fuel or energy product. Biomass feedstocks are the plant and algal materials used to derive fuels like ethanol, butanol, biodiesel, and other hydrocarbon fuels. Examples of biomass feedstocks include corn starch, sugarcane juice, crop residues such as corn stover and sugarcane bagasse, purpose-grown grass crops, and woody plants. The Bioenergy Technologies Office works in partnership with the U.S. Department of Agriculture (USDA), national laboratories, universities, industry, and other key stakeholders to identify and develop economically, environmentally, and socially sustainable feedstocks for the production of energy, including transportation fuels, electrical power and heat, and other bioproducts. Efforts in this area will ultimately support the development of technologies that can provide a large and sustainable cellulosic biomass feedstock supply of acceptable quality and at a reasonable cost for use by the developing U.S. advanced biofuel industry.

  17. Biofuels and Renewable Energy Page

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bioenergy Conventional Renewable Energy Wind Power Hydro Power Power System INL Home Biofuels and Renewable Energy Renewable energy resources are expected to play major role in...

  18. Sustainable use of California biomass resources can help meet state and national bioenergy targets

    E-Print Network [OSTI]

    Jenkins, Bryan M; Williams, Robert B; Gildart, Martha C; Kaffka, Stephen R.; Hartsough, Bruce; Dempster, Peter G

    2009-01-01

    gasification followed by Fischer-Tropsch synthesis. Biomethane is methane derived from anaerobic digestion of biomass. †

  19. The Future of Bioenergy Feedstock Production

    Office of Environmental Management (EM)

    2 Bioenergy Technologies Office background Feedstock assessment, production and logistics Biomass yield improvements Sustainable feedstock production Future...

  20. Ethanol Distribution, Dispensing, and Use: Analysis of a Portion of the Biomass-to-Biofuels Supply Chain Using System Dynamics

    SciTech Connect (OSTI)

    Vimmerstedt, L. J.; Bush, B.; Peterson, S.

    2012-05-01

    The Energy Independence and Security Act of 2007 targets use of 36 billion gallons of biofuels per year by 2022. Achieving this may require substantial changes to current transportation fuel systems for distribution, dispensing, and use in vehicles. The U.S. Department of Energy and the National Renewable Energy Laboratory designed a system dynamics approach to help focus government action by determining what supply chain changes would have the greatest potential to accelerate biofuels deployment. The National Renewable Energy Laboratory developed the Biomass Scenario Model, a system dynamics model which represents the primary system effects and dependencies in the biomass-to-biofuels supply chain. The model provides a framework for developing scenarios and conducting biofuels policy analysis. This paper focuses on the downstream portion of the supply chain-represented in the distribution logistics, dispensing station, and fuel utilization, and vehicle modules of the Biomass Scenario Model. This model initially focused on ethanol, but has since been expanded to include other biofuels. Some portions of this system are represented dynamically with major interactions and feedbacks, especially those related to a dispensing station owner's decision whether to offer ethanol fuel and a consumer's choice whether to purchase that fuel. Other portions of the system are modeled with little or no dynamics; the vehicle choices of consumers are represented as discrete scenarios. This paper explores conditions needed to sustain an ethanol fuel market and identifies implications of these findings for program and policy goals. A large, economically sustainable ethanol fuel market (or other biofuel market) requires low end-user fuel price relative to gasoline and sufficient producer payment, which are difficult to achieve simultaneously. Other requirements (different for ethanol vs. other biofuel markets) include the need for infrastructure for distribution and dispensing and widespread use of high ethanol blends in flexible-fuel vehicles.

  1. Biofuel Basics

    Broader source: Energy.gov [DOE]

    Biofuels are liquid or gaseous fuels produced from biomass. Most biofuels are used for transportation, but some are used as fuels to produce electricity. The expanded use of biofuels offers an array of benefits for our energy security, economic growth, and environment.

  2. Development of Genomic and Genetic Tools for Foxtail Millet, and Use of These Tools in the Improvement of Biomass Production for Bioenergy Crops

    SciTech Connect (OSTI)

    Doust, Andrew, N.

    2011-11-11

    The overall aim of this research was to develop genomic and genetic tools in foxtail millet that will be useful in improving biomass production in bioenergy crops such as switchgrass, napier grass, and pearl millet. A variety of approaches have been implemented, and our lab has been primarily involved in genome analysis and quantitative genetic analysis. Our progress in these activities has been substantially helped by the genomic sequence of foxtail millet produced by the Joint Genome Institute (Bennetzen et al., in prep). In particular, the annotation and analysis of candidate genes for architecture, biomass production and flowering has led to new insights into the control of branching and flowering time, and has shown how closely related flowering time is to vegetative architectural development and biomass accumulation. The differences in genetic control identified at high and low density plantings have direct relevance to the breeding of bioenergy grasses that are tolerant of high planting densities. The developmental analyses have shown how plant architecture changes over time and may indicate which genes may best be manipulated at various times during development to obtain required biomass characteristics. This data contributes to the overall aim of significantly improving genetic and genomic tools in foxtail millet that can be directed to improvement of bioenergy grasses such as switchgrass, where it is important to maximize vegetative growth for greatest biomass production.

  3. %22Trojan Horse%22 strategy for deconstruction of biomass for biofuels production.

    SciTech Connect (OSTI)

    Simmons, Blake Alexander; Sinclair, Michael B.; Yu, Eizadora; Timlin, Jerilyn Ann; Hadi, Masood Z.; Tran-Gyamfi, Mary

    2011-02-01

    Production of renewable biofuels to displace fossil fuels currently consumed in the transportation sector is a pressing multiagency national priority (DOE/USDA/EERE). Currently, nearly all fuel ethanol is produced from corn-derived starch. Dedicated 'energy crops' and agricultural waste are preferred long-term solutions for renewable, cheap, and globally available biofuels as they avoid some of the market pressures and secondary greenhouse gas emission challenges currently facing corn ethanol. These sources of lignocellulosic biomass are converted to fermentable sugars using a variety of chemical and thermochemical pretreatments, which disrupt cellulose and lignin cross-links, allowing exogenously added recombinant microbial enzymes to more efficiently hydrolyze the cellulose for 'deconstruction' into glucose. This process is plagued with inefficiencies, primarily due to the recalcitrance of cellulosic biomass, mass transfer issues during deconstruction, and low activity of recombinant deconstruction enzymes. Costs are also high due to the requirement for enzymes and reagents, and energy-intensive cumbersome pretreatment steps. One potential solution to these problems is found in synthetic biology-engineered plants that self-produce a suite of cellulase enzymes. Deconstruction can then be integrated into a one-step process, thereby increasing efficiency (cellulose-cellulase mass-transfer rates) and reducing costs. The unique aspects of our approach are the rationally engineered enzymes which become Trojan horses during pretreatment conditions. During this study we rationally engineered Cazy enzymes and then integrated them into plant cells by multiple transformation techniques. The regenerated plants were assayed for first expression of these messages and then for the resulting proteins. The plants were then subjected to consolidated bioprocessing and characterized in detail. Our results and possible implications of this work on developing dedicated energy crops and their advantage in a consolidated bioprocessing system.

  4. Webinar: Using the New Bioenergy KDF for Data Discovery and Research

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    other advanced biofuels such as hydrocarbon fuels (renewable gasoline, diesel, jet fuel), algae-derived biofuels, and biobutanol. The Bioenergy Technologies Office forms...

  5. Promoting Sustainable Bioenergy Production and Trade Issue Paper No. 17

    E-Print Network [OSTI]

    Promoting Sustainable Bioenergy Production and Trade Issue Paper No. 17 June 2009 l ICTSD Programme and Development University of Reading EU Support for Biofuels and Bioenergy, Environmental Sustainability Criteria School of Agriculture, Policy and Development University of Reading EU Support for Biofuels and Bioenergy

  6. Geospatial Science and Technology for Bioenergy Modeling the Sustainability of the National Bioenergy Infrastructure

    E-Print Network [OSTI]

    Geospatial Science and Technology for Bioenergy Modeling the Sustainability of the National sensing, and geospatial data services. With High Performance Computing (HPC), global geospatial data: · Feasibility of sustainably producing biofuels · Reliability of biofuel production and distribution · Security

  7. Thermochemical Process Development Unit: Researching Fuels from Biomass, Bioenergy Technologies (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2009-01-01

    The Thermochemical Process Development Unit (TCPDU) at the National Renewable Energy Laboratory (NREL) is a unique facility dedicated to researching thermochemical processes to produce fuels from biomass.

  8. Development of Agave as a dedicated biomass source: production of biofuels from whole plants

    SciTech Connect (OSTI)

    Mielenz, Jonathan R; Mielenz, Jonathan R; Rodriguez Jr, Miguel; Thompson, Olivia A; Yang, Xiaohan; Yin, Hengfu

    2015-01-01

    Background: Agave species can grow well in semi-arid marginal agricultural lands around the world. Selected Agave species are used largely for alcoholic beverage production in Mexico. There are expanding research efforts to use the plentiful residues (bagasse) for ethanol production as the beverage manufacturing process only uses the juice from the central core of mature plants. Here we investigate the potential of over a dozen Agave species, including three from cold semi-arid regions of the United States, to produce biofuels using the whole plant. Results: Ethanol was readily produced by Saccharomyces cerevisiae from hydrolysate of ten whole Agaves with the use of a proper blend of biomass degrading enzymes that overcomes toxicity of most of the species tested. Unlike yeast fermentations, Clostridium beijerinckii produced butanol plus acetone from nine species tested. Butyric acid, a precursor of butanol, was also present due to incomplete conversion during the screening process. Since Agave contains high levels of free and poly-fructose which are readily destroyed by acidic pretreatment, a two step process was used developed to depolymerized poly-fructose while maintaining its fermentability. The hydrolysate from before and after dilute acid processing was used in C. beijerinckii acetone and butanol fermentations with selected Agave species. Conclusions: Results have shown Agave s potential to be a source of fermentable sugars beyond the existing beverage species to now include species previously unfermentable by yeast, including cold tolerant lines. This development may stimulate development of Agave as a dedicated feedstock for biofuels in semi-arid regions throughout the globe.

  9. Investigation of the Effect of In-Situ Catalyst on the Steam Hydrogasification of Biomass

    E-Print Network [OSTI]

    FAN, XIN

    2012-01-01

    fluidised bed biomass gasifier, Fuel, 2007, 86, 1417-1429.utilizing a down draft gasifier, Biomass and Bioenergy,fixed bed and fluidized bed gasifier, Biomass and Bioenergy,

  10. Goal Practice & Experience: Status Quo and Future for Industrial Scale Biomass Energy Development in China

    Broader source: Energy.gov [DOE]

    Breakout Session 3D—Fostering Technology Adoption III: International Market Opportunities in Bioenergy Goal Practice & Experience : Status Quo and Future for Industrial Scale Biomass Energy Development in China Huiyong Zhuang, Research Professor, National Energy Research Center of Liquid Biofuel, National Bio Energy Co., Ltd.

  11. UCSD Biomass to Power Economic Feasibility Study

    E-Print Network [OSTI]

    Cattolica, Robert

    2009-01-01

    Figure 1: West Biofuels Biomass Gasification to Power 1: West Biofuels Biomass Gasification to Power Process unlikely  that  a  biomass  gasification  power  plant 

  12. UCSD Biomass to Power Economic Feasibility Study

    E-Print Network [OSTI]

    Cattolica, Robert

    2009-01-01

    Figure 1: West Biofuels Biomass Gasification to Power involved  in  gasification  of  biomass  to  produce  fuel 1: West Biofuels Biomass Gasification to Power Process 

  13. UCSD Biomass to Power Economic Feasibility Study

    E-Print Network [OSTI]

    Cattolica, Robert

    2009-01-01

    Biofuels, LLC  UCSD Biomass to Power  Economic Feasibility Figure 1: West Biofuels Biomass Gasification to Power rates..……………………. ……31  UCSD Biomass to Power ? Feasibility 

  14. Biomass Boiler and Furnace Emissions and Safety Regulations in...

    Open Energy Info (EERE)

    Energy Focus Area: Biomass, - Biomass Combustion, - Biomass Gasification, - Biomass Pyrolysis, - Biofuels, Economic Development Phase: Determine Baseline, Evaluate Options,...

  15. American Recovery and Reinvestment Act of 2009: Bioenergy Technologies...

    Broader source: Energy.gov (indexed) [DOE]

    The Bioenergy Technologies Office rewarded about 178 million in American Recovery and Reinvestment Act of 2009 funds; the projects accelerate advanced biofuels RD&D, speed the...

  16. Bioenergy Technologies Office R&D Pathways: Algal Lipid Upgrading...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    & Publications Pathways for Algal Biofuels Algal Lipid Extraction and Upgrading to Hydrocarbons Technology Pathway Bioenergy Technologies Office Conversion R&D Pathway: Whole...

  17. U.S. Billion-Ton Update: Biomass Supply for a Bioenergy and Bioproducts Industry

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCEDInstallers/ContractorsPhotovoltaicsStateof Energy| Department ofAttacks2 DOE HydrogenBiomass

  18. Biomass 2012 Agenda

    Office of Energy Efficiency and Renewable Energy (EERE)

    Detailed agenda from the July 10-11, 2012, Biomass conference--Biomass 2012: Confronting Challenges, Creating Opportunities - Sustaining a Commitment to Bioenergy.

  19. Transforming Biomass - main page

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transforming Biomass to Bioenergy Feedstocks The DOE Biomass Program has shaped the vision of a national, commodity-scale feedstock supply system. Much progress has been made in...

  20. Bioenergy Feedstock Development Program Status Report

    SciTech Connect (OSTI)

    Kszos, L.A.

    2001-02-09

    The U.S. Department of Energy's (DOE's) Bioenergy Feedstock Development Program (BFDP) at Oak Ridge National Laboratory (ORNL) is a mission-oriented program of research and analysis whose goal is to develop and demonstrate cropping systems for producing large quantities of low-cost, high-quality biomass feedstocks for use as liquid biofuels, biomass electric power, and/or bioproducts. The program specifically supports the missions and goals of DOE's Office of Fuels Development and DOE's Office of Power Technologies. ORNL has provided technical leadership and field management for the BFDP since DOE began energy crop research in 1978. The major components of the BFDP include energy crop selection and breeding; crop management research; environmental assessment and monitoring; crop production and supply logistics operational research; integrated resource analysis and assessment; and communications and outreach. Research into feedstock supply logistics has recently been added and will become an integral component of the program.

  1. International Energy Agency Bioenergy 2015

    Broader source: Energy.gov [DOE]

    This year, Sweden is hosting the International Energy Agency Bioenergy Task 38 conference on climate change effects of biomass and bioenergy systems, bringing together several international experts with an interest in bioenergy for the two-day program. The aim of the conference is to provide cutting-edge knowledge about the climate effects of converting wood products into bioenergy , as well as methods to analyze these effects. Feedstocks and Algae Program Manager Alison Goss Eng will be representing the U.S. Department of Energy’s Bioenergy Technologies Office at the meeting.

  2. Review of Sorghum Production Practices: Applications for Bioenergy

    SciTech Connect (OSTI)

    Turhollow Jr, Anthony F; Webb, Erin; Downing, Mark

    2010-06-01

    Sorghum has great potential as an annual energy crop. While primarily grown for its grain, sorghum can also be grown for animal feed and sugar. Sorghum is morphologically diverse, with grain sorghum being of relatively short stature and grown for grain, while forage and sweet sorghums are tall and grown primarily for their biomass. Under water-limited conditions sorghum is reliably more productive than corn. While a relatively minor crop in the United States (about 2% of planted cropland), sorghum is important in Africa and parts of Asia. While sorghum is a relatively efficient user of water, it biomass potential is limited by available moisture. The following exhaustive literature review of sorghum production practices was developed by researchers at Oak Ridge National Laboratory to document the current state of knowledge regarding sorghum production and, based on this, suggest areas of research needed to develop sorghum as a commercial bioenergy feedstock. This work began as part of the China Biofuels Project sponsored by the DOE Energy Efficiency and Renewable Energy Program to communicate technical information regarding bioenergy feedstocks to government and industry partners in China, but will be utilized in a variety of programs in which evaluation of sorghum for bioenergy is needed. This report can also be used as a basis for data (yield, water use, etc.) for US and international bioenergy feedstock supply modeling efforts.

  3. Impact of Collection Equipment on Ash Variability of Baled Corn Stover Biomass for Bioenergy

    SciTech Connect (OSTI)

    William Smith; Jeffery Einerson; Kevin Kenney; Ian J. Bonner

    2014-09-01

    Cost-effective conversion of agricultural residues for renewable energy hinges not only on the material’s quality but also the biorefinery’s ability to reliably measure quality specifications. The ash content of biomass is one such specification, influencing pretreatment and disposal costs for the conversion facility and the overall value of a delivered lot of biomass. The biomass harvest process represents a primary pathway for accumulation of soil-derived ash within baled material. In this work, the influence of five collection techniques on the total ash content and variability of ash content within baled corn stover in southwest Kansas is discussed. The equipment tested included a mower for cutting the corn stover stubble, a basket rake, wheel rake, or shred flail to gather the stover, and a mixed or uniform in-feed baler for final collection. The results showed mean ash content to range from 11.5 to 28.2 % depending on operational choice. Resulting impacts on feedstock costs for a biochemical conversion process range from $5.38 to $22.30 Mg-1 based on the loss of convertible dry matter and ash disposal costs. Collection techniques that minimized soil contact (shred flail or nonmowed stubble) were shown to prevent excessive ash contamination, whereas more aggressive techniques (mowing and use of a wheel rake) caused greater soil disturbance and entrainment within the final baled material. Material sampling and testing were shown to become more difficult as within-bale ash variability increased, creating uncertainty around feedstock quality and the associated costs of ash mitigation.

  4. Strain selection, biomass to biofuel conversion, and resource colocation have strong impacts on the economic performance of algae cultivation sites

    SciTech Connect (OSTI)

    Venteris, Erik R.; Wigmosta, Mark S.; Coleman, Andre M.; Skaggs, Richard

    2014-09-16

    Decisions involving strain selection, biomass to biofuel technology, and the location of cultivation facilities can strongly influence the economic viability of an algae-based biofuel enterprise. In this contribution we summarize our past results in a new analysis to explore the relative economic impact of these design choices. We present strain-specific growth model results from two saline strains (Nannocloropsis salina, Arthrospira sp.), a fresh to brackish strain (Chlorella sp., DOE strain 1412), and a freshwater strain of the order Sphaeropleales. Biomass to biofuel conversion is compared between lipid extraction (LE) and hydrothermal liquefaction (HTL) technologies. National-scale models of water, CO2 (as flue gas), land acquisition, site leveling, construction of connecting roads, and transport of HTL oil to existing refineries are used in conjunction with estimates of fuel value (from HTL) to prioritize and select from 88,692 unit farms (UF, 405 ha in pond area), a number sufficient to produce 136E+9 L yr-1 of renewable diesel (36 billion gallons yr-1, BGY). Strain selection and choice of conversion technology have large economic impacts, with differences between combinations of strains and biomass to biofuel technologies being up to $10 million dollars yr-1 UF-1. Results based on the most productive species, HTL-based fuel conversion, and resource costs show that the economic potential between geographic locations within the selection can differ by up to $4 million yr-1 UF-1, with 2.0 BGY of production possible from the most cost-effective sites. The local spatial variability in site rank is extreme, with very high and low rank sites within 10s of km of each other. Colocation with flue gas sources has a strong influence on site rank, but the most costly resource component varies from site to site. The highest rank sites are located predominantly in Florida and Texas, but most states south of 37°N latitude contain promising locations. Keywords: algae, biofuels, resource assessment, geographic information systems, techno-economics

  5. Global Simulation of Bioenergy Crop Productivity: Analytical framework and Case Study for Switchgrass

    SciTech Connect (OSTI)

    Nair, S. Surendran [University of Tennessee, Knoxville (UTK)] [University of Tennessee, Knoxville (UTK); Nichols, Jeff A. {Cyber Sciences} [ORNL; Post, Wilfred M [ORNL] [ORNL; Wang, Dali [ORNL] [ORNL; Wullschleger, Stan D [ORNL] [ORNL; Kline, Keith L [ORNL] [ORNL; Wei, Yaxing [ORNL] [ORNL; Singh, Nagendra [ORNL] [ORNL; Kang, Shujiang [ORNL] [ORNL

    2014-01-01

    Contemporary global assessments of the deployment potential and sustainability aspects of biofuel crops lack quantitative details. This paper describes an analytical framework capable of meeting the challenges associated with global scale agro-ecosystem modeling. We designed a modeling platform for bioenergy crops, consisting of five major components: (i) standardized global natural resources and management data sets, (ii) global simulation unit and management scenarios, (iii) model calibration and validation, (iv) high-performance computing (HPC) modeling, and (v) simulation output processing and analysis. A case study with the HPC- Environmental Policy Integrated Climate model (HPC-EPIC) to simulate a perennial bioenergy crop, switchgrass (Panicum virgatum L.) and global biomass feedstock analysis on grassland demonstrates the application of this platform. The results illustrate biomass feedstock variability of switchgrass and provide insights on how the modeling platform can be expanded to better assess sustainable production criteria and other biomass crops. Feedstock potentials on global grasslands and within different countries are also shown. Future efforts involve developing databases of productivity, implementing global simulations for other bioenergy crops (e.g. miscanthus, energycane and agave), and assessing environmental impacts under various management regimes. We anticipated this platform will provide an exemplary tool and assessment data for international communities to conduct global analysis of biofuel biomass feedstocks and sustainability.

  6. Biofuel alternatives to ethanol: pumping the microbial well

    E-Print Network [OSTI]

    Fortman, J.L.

    2011-01-01

    Conversion of biomass to biofuels has been the subject ofdiesel transport fuels with biofuels by 2010 [4]. Owing tobelieved that future biofuels will, by necessity, originate

  7. National Algal Biofuels Technology Roadmap | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    National Algal Biofuels Technology Roadmap National Algal Biofuels Technology Roadmap The U.S. Department of Energy (DOE) Biomass Program's National Algal Biofuels Technology...

  8. future science group 5ISSN 1759-726910.4155/BFS.12.76 2013 Future Science Ltd Special FocuS: advanced FeedStockS For advanced bioFuelS

    E-Print Network [OSTI]

    -scale bioenergy production The success and sustainability of the biofuel industry is highly dependent upon production, especially for grassy biomass crops and agricultural residues [9,10]. The bulk densities of loose agricultural residue or prairie energy crops range from 50 to 100 kg dry matter m-3 , while the bulk densities

  9. Roundtable on Sustainable Biofuels Certification Readiness Study

    E-Print Network [OSTI]

    Roundtable on Sustainable Biofuels Certification Readiness Study: Hawai`i Biofuel Projects Prepared 12.1 Deliverable Bioenergy Analyses Prepared by Hawai`i Biofuel Foundation And NCSI Americas Inc agency thereof. #12;1 RSB Certification Readiness Study: Hawaii Biofuel Projects Prepared For Hawaii

  10. Roundtable on Sustainable Biofuels Certification Readiness Study

    E-Print Network [OSTI]

    Roundtable on Sustainable Biofuels Certification Readiness Study: Hawai`i Biofuel Projects Prepared 12.1 Deliverable (item 2) Bioenergy Analyses Prepared by Hawai`i Biofuel Foundation And NCSI Americas: Hawaii Biofuel Projects Prepared For Hawaii Natural Energy Institute School of Ocean Earth Sciences

  11. Value of Distributed Preprocessing of Biomass Feedstocks to a Bioenergy Industry

    SciTech Connect (OSTI)

    Christopher T Wright

    2006-07-01

    Biomass preprocessing is one of the primary operations in the feedstock assembly system and the front-end of a biorefinery. Its purpose is to chop, grind, or otherwise format the biomass into a suitable feedstock for conversion to ethanol and other bioproducts. Many variables such as equipment cost and efficiency, and feedstock moisture content, particle size, bulk density, compressibility, and flowability affect the location and implementation of this unit operation. Previous conceptual designs show this operation to be located at the front-end of the biorefinery. However, data are presented that show distributed preprocessing at the field-side or in a fixed preprocessing facility can provide significant cost benefits by producing a higher value feedstock with improved handling, transporting, and merchandising potential. In addition, data supporting the preferential deconstruction of feedstock materials due to their bio-composite structure identifies the potential for significant improvements in equipment efficiencies and compositional quality upgrades. Theses data are collected from full-scale low and high capacity hammermill grinders with various screen sizes. Multiple feedstock varieties with a range of moisture values were used in the preprocessing tests. The comparative values of the different grinding configurations, feedstock varieties, and moisture levels are assessed through post-grinding analysis of the different particle fractions separated with a medium-scale forage particle separator and a Rototap separator. The results show that distributed preprocessing produces a material that has bulk flowable properties and fractionation benefits that can improve the ease of transporting, handling and conveying the material to the biorefinery and improve the biochemical and thermochemical conversion processes.

  12. Roadmap for Bioenergy and Biobased Products in the United States

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    7 Roadmap for Bioenergy and Biobased Products in the United States Biomass Research and Development Technical Advisory Committee Biomass Research and Development Initiative October...

  13. Golbal Economic and Environmental Impacts of Increased Bioenergy Production

    SciTech Connect (OSTI)

    Wallace Tyner

    2012-05-30

    The project had three main objectives: to build and incorporate an explicit biomass energy sector within the GTAP analytical framework and data base; to provide an analysis of the impact of renewable fuel standards and other policies in the U.S. and E.U, as well as alternative biofuel policies in other parts of the world, on changes in production, prices, consumption, trade and poverty; and to evaluate environmental impacts of alternative policies for bioenergy development. Progress and outputs related to each objective are reported.

  14. EA-1850: Flambeau River BioFuels, Inc. Proposed Wood Biomass-to-Liquid Fuel Biorefinery, Park Falls, Wisconsin

    Broader source: Energy.gov [DOE]

    NOTE: This EA has been cancelled. This EA will evaluate the environmental impacts of a proposal to provide federal funding to Flambeau River Biofuels (FRB) to construct and operate a biomass-to-liquid biorefinery in Park Falls, Wisconsin, on property currently used by Flambeau Rivers Paper, LLC (FRP) for a pulp and paper mill and Johnson Timber Corporation's (JTC) Summit Lake Yard for timber storage. This project would design a biorefinery which would produce up to 1,150 barrels per day (bpd) of clean syncrude. The biorefinery would also supply steam to the FRP mill, meeting the majority of the mill's steam demand and reducing or eliminating the need for the existing biomass/coal-fired boiler. The biorefinery would also include a steam turbine generator that will produce "green" electrical power for use by the biorefinery or for sale to the electric utility.

  15. Feedstock Logistics of a Mobile Pyrolysis System and Assessment of Soil Loss Due to Biomass Removal for Bioenergy Production 

    E-Print Network [OSTI]

    Bumguardner, Marisa

    2012-10-19

    The purpose of this study was to assess feedstock logistics for a mobile pyrolysis system and to quantify the amount of soil loss caused by harvesting agricultural feedstocks for bioenergy production. The analysis of feedstock logistics...

  16. Fundamental & Applied Bioenergy | Clean Energy | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    have developed a microbial strain with an improved ability to convert wood products to biofuel as part of research within the DOE BioEnergy Science Center.Source: ORNL News article...

  17. Suite of Cellulase Enzyme Technologies for Biomass Conversion...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biomass and Biofuels Biomass and Biofuels Find More Like This Return to Search Suite of Cellulase Enzyme Technologies for Biomass Conversion National Renewable Energy Laboratory...

  18. Our Commitment to Bioenergy Sustainability

    SciTech Connect (OSTI)

    2011-07-01

    This fact sheet describes how the Biomass Program and its partners combine advanced analysis with applied research to understand and address the potential environmental, economic, and social impacts of bioenergy production.

  19. United Biofuels Private Limited | Open Energy Information

    Open Energy Info (EERE)

    United Biofuels Private Limited Jump to: navigation, search Name: United Biofuels Private Limited Place: Tamil Nadu, India Sector: Biomass Product: India-based owner and operator...

  20. U.S, Department of Energy's Bioenergy Research Centers An Overview of the Science

    SciTech Connect (OSTI)

    2009-07-01

    Alternative fuels from renewable cellulosic biomass--plant stalks, trunks, stems, and leaves--are expected to significantly reduce U.S. dependence on imported oil while enhancing national energy security and decreasing the environmental impacts of energy use. Ethanol and other advanced biofuels from cellulosic biomass are renewable alternatives that could increase domestic production of transportation fuels, revitalize rural economies, and reduce carbon dioxide and pollutant emissions. According to U.S. Secretary of Energy Steven Chu, 'Developing the next generation of biofuels is key to our effort to end our dependence on foreign oil and address the climate crisis while creating millions of new jobs that can't be outsourced'. In the United States, the Energy Independence and Security Act (EISA) of 2007 is an important driver for the sustainable development of renewable biofuels. As part of EISA, the Renewable Fuel Standard mandates that 36 billion gallons of biofuels are to be produced annually by 2022, of which 16 billion gallons are expected to come from cellulosic feedstocks. Although cellulosic ethanol production has been demonstrated on a pilot level, developing a cost-effective, commercial-scale cellulosic biofuel industry will require transformational science to significantly streamline current production processes. Woodchips, grasses, cornstalks, and other cellulosic biomass are widely abundant but more difficult to break down into sugars than corn grain--the primary source of U.S. ethanol fuel production today. Biological research is key to accelerating the deconstruction of cellulosic biomass into sugars that can be converted to biofuels. The Department of Energy (DOE) Office of Science continues to play a major role in inspiring, supporting, and guiding the biotechnology revolution over the past 25 years. The DOE Genomic Science Program is advancing a new generation of research focused on achieving whole-systems understanding for biology. This program is bringing together scientists in diverse fields to understand the complex biology underlying solutions to DOE missions in energy production, environmental remediation, and climate change science. New interdisciplinary research communities are emerging, as are knowledgebases and scientific and computational resources critical to advancing large-scale, genome-based biology. To focus the most advanced biotechnology-based resources on the biological challenges of biofuel production, DOE established three Bioenergy Research Centers (BRCs) in September 2007. Each center is pursuing the basic research underlying a range of high-risk, high-return biological solutions for bioenergy applications. Advances resulting from the BRCs will provide the knowledge needed to develop new biobased products, methods, and tools that the emerging biofuel industry can use. The scientific rationale for these centers and for other fundamental genomic research critical to the biofuel industry was established at a DOE workshop involving members of the research community (see sidebar, Biofuel Research Plan, below). The DOE BRCs have developed automated, high-throughput analysis pipelines that will accelerate scientific discovery for biology-based biofuel research. The three centers, which were selected through a scientific peer-review process, are based in geographically diverse locations--the Southeast, the Midwest, and the West Coast--with partners across the nation. DOE's Oak Ridge National Laboratory leads the BioEnergy Science Center (BESC) in Tennessee; the University of Wisconsin-Madison leads the Great Lakes Bioenergy Research Center (GLBRC); and DOE's Lawrence Berkeley National Laboratory leads the DOE Joint BioEnergy Institute (JBEI) in California. Each center represents a multidisciplinary partnership with expertise spanning the physical and biological sciences, including genomics, microbial and plant biology, analytical chemistry, computational biology and bioinformatics, and engineering. Institutional partners include DOE national laboratories, universities, private companies,

  1. Sorghum bioenergy genotypes, genes and pathways 

    E-Print Network [OSTI]

    Plews, Ian Kenneth

    2009-05-15

    and this plant is a potentially important bioenergy crop for Texas. The diversity of the twelve high biomass sorghum genotypes was analyzed using 50 simple sequence repeats (SSR) markers with genome coverage. The accumulation of biomass during sorghum development...

  2. Advanced Biofuels (and Bio-products) Process Demonstration Unit...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biofuels (and Bio-products) Process Demonstration Unit Todd Pray, PhD, MBA March 25, 2015 Biochemical Conversion Area DOE Bioenergy Technologies Office (BETO) Project Peer Review...

  3. Thermochemical Conversion: Using Heat and Catalysis to Make Biofuels...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Catalysis to Make Biofuels and Bioproducts The Bioenergy Technologies Office works with industry to develop pathways that use heat, pressure, and catalysis to convert domestic,...

  4. Algal Biofuels Strategy: Report on Workshop Results and Recent Work

    Broader source: Energy.gov [DOE]

    Breakout Session 3B—Integration of Supply Chains III: Algal Biofuels Strategy Algal Biofuels Strategy: Report on Workshop Results and Recent Work Roxanne Dempsey, Technology Manager, Bioenergy Technologies Office, U.S. Department of Energy

  5. U.S. Department of Energy's Bioenergy Research Centers An Overview of the Science

    SciTech Connect (OSTI)

    2010-07-01

    Alternative fuels from renewable cellulosic biomass - plant stalks, trunks, stems, and leaves - are expected to significantly reduce U.S. dependence on imported oil while enhancing national energy security and decreasing the environmental impacts of energy use. Ethanol and other advanced biofuels from cellulosic biomass are renewable alternatives that could increase domestic production of transportation fuels, revitalize rural economies, and reduce carbon dioxide and pollutant emissions. According to U.S. Secretary of Energy Steven Chu, 'Developing the next generation of biofuels is key to our effort to end our dependence on foreign oil and address the climate crisis while creating millions of new jobs that can't be outsourced.' Although cellulosic ethanol production has been demonstrated on a pilot level, developing a cost-effective, commercial-scale cellulosic biofuel industry will require transformational science to significantly streamline current production processes. Woodchips, grasses, cornstalks, and other cellulosic biomass are widely abundant but more difficult to break down into sugars than corn grain - the primary source of U.S. ethanol fuel production today. Biological research is key to accelerating the deconstruction of cellulosic biomass into sugars that can be converted to biofuels. The Department of Energy (DOE) Office of Science continues to play a major role in inspiring, supporting, and guiding the biotechnology revolution over the past 30 years. The DOE Genomic Science program is advancing a new generation of research focused on achieving whole-systems understanding of biology. This program is bringing together scientists in diverse fields to understand the complex biology underlying solutions to DOE missions in energy production, environmental remediation, and climate change science. For more information on the Genomic Science program, see p. 26. To focus the most advanced biotechnology-based resources on the biological challenges of biofuel production, DOE established three Bioenergy Research Centers (BRCs) in September 2007. Each center is pursuing the basic research underlying a range of high-risk, high-return biological solutions for bioenergy applications. Advances resulting from the BRCs are providing the knowledge needed to develop new biobased products, methods, and tools that the emerging biofuel industry can use (see sidebar, Bridging the Gap from Fundamental Biology to Industrial Innovation for Bioenergy, p. 6). The DOE BRCs have developed automated, high-throughput analysis pipelines that will accelerate scientific discovery for biology-based biofuel research. The three centers, which were selected through a scientific peer-review process, are based in geographically diverse locations - the Southeast, the Midwest, and the West Coast - with partners across the nation (see U.S. map, DOE Bioenergy Research Centers and Partners, on back cover). DOE's Lawrence Berkeley National Laboratory leads the DOE Joint BioEnergy Institute (JBEI) in California; DOE's Oak Ridge National Laboratory leads the BioEnergy Science Center (BESC) in Tennessee; and the University of Wisconsin-Madison leads the Great Lakes Bioenergy Research Center (GLBRC). Each center represents a multidisciplinary partnership with expertise spanning the physical and biological sciences, including genomics, microbial and plant biology, analytical chemistry, computational biology and bioinformatics, and engineering. Institutional partners include DOE national laboratories, universities, private companies, and nonprofit organizations.

  6. Reducing the negative human-health impacts of bioenergy crop emissions through region-specific crop selection

    E-Print Network [OSTI]

    Porter, WC; Rosenstiel, TN; Guenther, A; Lamarque, J-F; Barsanti, K

    2015-01-01

    of future total biomass energy production potentials arean attractive option for biomass-based energy production incharacteristics and energy balance Biomass Bioenergy 33 635–

  7. LIQUID BIO-FUEL PRODUCTION FROM NON-FOOD BIOMASS VIA HIGH TEMPERATURE STEAM ELECTROLYSIS

    SciTech Connect (OSTI)

    G. L. Hawkes; J. E. O'Brien; M. G. McKellar

    2011-11-01

    Bio-Syntrolysis is a hybrid energy process that enables production of synthetic liquid fuels that are compatible with the existing conventional liquid transportation fuels infrastructure. Using biomass as a renewable carbon source, and supplemental hydrogen from high-temperature steam electrolysis (HTSE), bio-syntrolysis has the potential to provide a significant alternative petroleum source that could reduce US dependence on imported oil. Combining hydrogen from HTSE with CO from an oxygen-blown biomass gasifier yields syngas to be used as a feedstock for synthesis of liquid transportation fuels via a Fischer-Tropsch process. Conversion of syngas to liquid hydrocarbon fuels, using a biomass-based carbon source, expands the application of renewable energy beyond the grid to include transportation fuels. It can also contribute to grid stability associated with non-dispatchable power generation. The use of supplemental hydrogen from HTSE enables greater than 90% utilization of the biomass carbon content which is about 2.5 times higher than carbon utilization associated with traditional cellulosic ethanol production. If the electrical power source needed for HTSE is based on nuclear or renewable energy, the process is carbon neutral. INL has demonstrated improved biomass processing prior to gasification. Recyclable biomass in the form of crop residue or energy crops would serve as the feedstock for this process. A process model of syngas production using high temperature electrolysis and biomass gasification is presented. Process heat from the biomass gasifier is used to heat steam for the hydrogen production via the high temperature steam electrolysis process. Oxygen produced form the electrolysis process is used to control the oxidation rate in the oxygen-blown biomass gasifier. Based on the gasifier temperature, 94% to 95% of the carbon in the biomass becomes carbon monoxide in the syngas (carbon monoxide and hydrogen). Assuming the thermal efficiency of the power cycle for electricity generation is 50%, (as expected from GEN IV nuclear reactors), the syngas production efficiency ranges from 70% to 73% as the gasifier temperature decreases from 1900 K to 1500 K. Parametric studies of system pressure, biomass moisture content and low temperature alkaline electrolysis are also presented.

  8. Biofuel Supply Chain Infrastructure Optimizing the Evolution of Cellulosic Biofuel

    E-Print Network [OSTI]

    Biofuel Supply Chain Infrastructure Optimizing the Evolution of Cellulosic Biofuel Center infrastructure. Cellulosic-based ad- vanced biofuel has a target of 21 billion gallons by 2022 and requires into a national economic model of biofuel sustainability. Cellulosic biomass relocates the demand

  9. Sustainable and efficient pathways for bioenergy recovery from low-value process streams via bioelectrochemical systems in biorefineries

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Borole, Abhijeet P.

    2015-01-01

    Conversion of biomass into bioenergy is possible via multiple pathways resulting in production of biofuels, bioproducts and biopower. Efficient and sustainable conversion of biomass, however, requires consideration of many environmental and societal parameters in order to minimize negative impacts. Integration of multiple conversion technologies and inclusion of upcoming alternatives such as bioelectrochemical systems can minimize these impacts and improve conservation of resources such as hydrogen, water and nutrients via recycle and reuse. This report outlines alternate pathways integrating microbial electrolysis in biorefinery schemes to improve energy efficiency while evaluating environmental sustainability parameters.

  10. NREL National Bioenergy Center Overview

    SciTech Connect (OSTI)

    Foust, Thomas; Pienkos, Phil; Sluiter, Justin; Magrini, Kim; McMillan, Jim

    2014-07-28

    The demand for clean, sustainable, secure energy is growing... and the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) is answering the call. NREL's National Bioenergy Center is pioneering biofuels research and development and accelerating the pace these technologies move into the marketplace.

  11. References: 1. Bridgwater, A. V. Biomass and Bioenergy 2012, 38, 68. 2. Pham, T. N.; Sooknoi, T.; Crossley, S. P.; Resasco D. E. ACS Catal. 2013 3, 2456. 3. Karimi, E.; Freitas Teixeira, I.; Passos Ribeiro, L.; Gomez, A.; Lago, R. M.; Penner, G.; Kycia, S

    E-Print Network [OSTI]

    References: 1. Bridgwater, A. V. Biomass and Bioenergy 2012, 38, 68. 2. Pham, T. N.; Sooknoi, T + RCOOH RCOR + CO2 + H2O An efficient route to increasing the energy density and pH of bio

  12. Research questions How could the conversion of marginal agricultural lands to bioenergy switchgrass

    E-Print Network [OSTI]

    Nebraska-Lincoln, University of

    .R. and Schemske, D.W. 2010. Perennial biomass feedstocks enhance avian diversity. GCB Bioenergy 1080:1-12. Samson

  13. Biomass Catalyst Characterization Laboratory (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-07-01

    This fact sheet provides information about Biomass Catalyst Characterization Laboratory (BCCL) capabilities and applications at NREL's National Bioenergy Center.

  14. Biomass Compositional Analysis Laboratory (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-07-01

    This fact sheet provides information about Biomass Compositional Analysis Laboratory (BCAL) capabilities and applications at NREL's National Bioenergy Center.

  15. ORNL supports the Department of Energy Biomass Program by bringing together teams from across

    E-Print Network [OSTI]

    Post, Wilfred M.

    /bioenergy/ of information related to the economic and environmental impact of biomass feedstocks, biorefineries

  16. BioFuels Atlas (Presentation)

    SciTech Connect (OSTI)

    Moriarty, K.

    2011-02-01

    Presentation for biennial merit review of Biofuels Atlas, a first-pass visualization tool that allows users to explore the potential of biomass-to-biofuels conversions at various locations and scales.

  17. Potential for Biofuels from Algae (Presentation)

    SciTech Connect (OSTI)

    Pienkos, P. T.

    2007-11-15

    Presentation on the potential for biofuels from algae presented at the 2007 Algae Biomass Summit in San Francisco, CA.

  18. Transportation Biofuels in the US A Preliminary Innovation Systems Analysis

    E-Print Network [OSTI]

    Eggert, Anthony

    2007-01-01

    that can be made from biomass feedstocks including butanol,biofuels rely upon biomass feedstocks, they will be subjectfrom domestically available biomass feedstocks under certain

  19. Transportation Biofuels in the USA Preliminary Innovation Systems Analysis

    E-Print Network [OSTI]

    Eggert, Anthony

    2007-01-01

    that can be made from biomass feedstocks including butanol,biofuels rely upon biomass feedstocks, they will be subjectfrom domestically available biomass feedstocks under certain

  20. Biofuels and bio-products derived from

    E-Print Network [OSTI]

    Ginzel, Matthew

    NEED Biofuels and bio- products derived from lignocellulosic biomass (plant materials) are part improve the energy and carbon efficiencies of biofuels production from a barrel of biomass using chemical and thermal catalytic mechanisms. The Center for Direct Catalytic Conversion of Biomass to Biofuels IMPACT

  1. Hawaii Bioenergy Master Plan Land and Water Resources

    E-Print Network [OSTI]

    production including selection of biomass feedstocks, modeling of crop water use; technologies including of biomass feedstocks, agricultural practices, and any other factors; and · Estimate and document biofuel

  2. Biomass 2013: Presentations | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3: Presentations Biomass 2013: Presentations This page displays the links to available presentations from Day One and Day Two of the Bioenergy Technologies Office's (BETO) Biomass...

  3. Converting Biomass to High-Value Feedstocks

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Converting Biomass to High-Value Feedstocks Advanced feedstocks play an important role in economically and efficiently converting biomass into bioenergy products. Advanced...

  4. Bioenergy Technologies Office R&D Pathways: Fast Pyrolysis and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fast Pyrolysis and Hydroprocessing Bioenergy Technologies Office R&D Pathways: Fast Pyrolysis and Hydroprocessing In fast pyrolysis and hydrotreating, biomass is rapidly heated in...

  5. 2015 Project Peer Review International SustainabilityandIEA Bioenergy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    20. Bioenergy Economics and Policies 21. Biomass Resources, Energy Access and Poverty Reduction http:bioenfapesp.orgscopebioenergyindex.phpproject-overview BETO Labs...

  6. Biomass as feedstock for a bioenergy and bioproducts industry: The technical feasibility of a billion-ton annual supply

    SciTech Connect (OSTI)

    Perlack, Robert D.; Wright, Lynn L.; Turhollow, Anthony F.; Graham, Robin L.; Stokes, Bryce J.; Erbach, Donald C.

    2005-04-01

    The purpose of this report is to determine whether the land resources of the United States are capable of producing a sustainable supply of biomass sufficient to displace 30% or more of the country's present petroleum consumption.

  7. Bioenergy expert Ragauskas named fourteenth Governor's Chair...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    is moving toward the development and commercialization of biomaterials from biomass feedstocks, largely to improve the cost of biofuel production," said Martin Keller, ORNL's...

  8. Great Lakes Bioenergy Research Center Technologies Available...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Biomass and Biofuels Building Energy Efficiency Electricity Transmission Energy Analysis Energy Storage Geothermal Hydrogen and Fuel Cell Hydropower, Wave and...

  9. Growing America's Energy Future: Bioenergy Technologies Office...

    Energy Savers [EERE]

    develop cost-competitive biofuels and bioproducts in the United States from non-food biomass resources. accomplishmentstwopager2014.pdf More Documents & Publications...

  10. Bioenergy Technologies Office (BETO) Announces Renewable Carbon...

    Energy Savers [EERE]

    Office of Energy Efficiency and Renewable Energy (EERE) is to develop and transform biomass resources into commercially viable, high-performance biofuels, bioproducts, and...

  11. Bioproducts to Enable Biofuels Workshop Agenda

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bioproducts to Enable Biofuels Workshop Department of Energy Bioenergy Technologies Office Westin, Westminster July 16th, 2015 Time Event Speaker 8:30 a.m. - 8:35 a.m. Welcome...

  12. BioFuels Atlas Presentation

    Office of Energy Efficiency and Renewable Energy (EERE)

    Kristi Moriarity's presentation on NREL's BioFuels Atlas from the May 12, 2011, Clean Cities and Biomass Program State webinar.

  13. Research Summary: Corrosion Considerations for Thermochemical Biomass Liquefaction Process Systems in Biofuel Production

    SciTech Connect (OSTI)

    Brady, Michael P; Keiser, James R; Leonard, Donovan N; Whitmer, Lysle; Thomson, Jeffery K

    2014-01-01

    Thermochemical liquifaction processing of biomass to produce bio-derived fuels (e.g. gasoline, jet fuel, diesel, home heating oil, etc.) is of great recent interest as a renewable energy source. Approaches under investigation include direct liquefaction, hydrothermal liquefaction, hydropyrolysis, fast pyrolysis, etc. to produce energy dense liquids that can be utilized as produced or further processed to provide products of higher value. An issue with bio-oils is that they tend to contain significant concentrations of organic compounds, which make the bio-oil acidic and a potential source of corrosion issues in in transport, storage, and use. Efforts devoted to modified/further processing of bio-oils to make them less corrosive are currently being widely pursued. Another aspect that must also be addressed is potential corrosion issues in the bio-oil liquefaction process equipment itself. Depending on the specific process, bio-oil liquefaction production temperatures can reach up to 400-600 C, and involve the presence of aggressive sulfur, and halide species from both the biomass used and/or process additives. Detailed knowledge of the corrosion resistance of candidate process equipment alloys in these bio-oil production environments is currently lacking. This paper summarizes our recent, ongoing efforts to assess the extent to which corrosion of bio-oil process equipment may be an issue, with the ultimate goal of providing the basis to select the lowest cost alloy grades capable of providing the long-term corrosion resistance needed for future bio-oil production plants.

  14. Current Challenges in Commercially Producing Biofuels from Lignocellul...

    Office of Scientific and Technical Information (OSTI)

    Current Challenges in Commercially Producing Biofuels from Lignocellulosic Biomass Citation Details In-Document Search Title: Current Challenges in Commercially Producing Biofuels...

  15. Land-Use Change and Bioenergy

    SciTech Connect (OSTI)

    None

    2011-07-01

    This publication describes the Biomass Program’s efforts to examine the intersection of land-use change and bioenergy production. It describes legislation requiring land-use change assessments, key data and modeling challenges, and the research needs to better assess and understand the impact of bioenergy policy on land-use decisions.

  16. AN OVERVIEW OF BIOFUELS PROCESS DEVELOPMENT IN SOUTH CAROLINA

    SciTech Connect (OSTI)

    Sherman, S.; French, T.

    2010-02-03

    The South Carolina Bio-Energy Research Collaborative is working together on the development and demonstration of technology options for the production of bio-fuels using renewable non-food crops and biomass resources that are available or could be made available in abundance in the southeastern United States. This collaboration consists of Arborgen LLC, Clemson University, Savannah River National Laboratory, and South Carolina State University, with support from Dyadic, Fagen Engineering, Renewed World Energies, and Spinx. Thus far, most work has centered on development of a fermentation-based process to convert switchgrass into ethanol, with the concomitant generation of a purified lignin stream. The process is not feed-specific, and the work scope has recently expanded to include sweet sorghum and wood. In parallel, the Collaborative is also working on developing an economical path to produce oils and fuels from algae. The Collaborative envisions an integrated bio-fuels process that can accept multiple feedstocks, shares common equipment, and that produces multiple product streams. The Collaborative is not the only group working on bio-energy in South Carolina, and other companies are involved in producing biomass derived energy products at an industrial scale.

  17. Biomass Research Program

    ScienceCinema (OSTI)

    Kenney, Kevin; Wright, Christopher; Shelton-Davis, Colleen

    2013-05-28

    INL's mission is to achieve DOE's vision of supplying high-quality raw biomass; preprocessing biomass into advanced bioenergy feedstocks; and delivering bioenergy commodities to biorefineries. You can learn more about research like this at the lab's facebook site http://www.facebook.com/idahonationallaboratory.

  18. Algal Biofuels: Long-Term Energy Benefits Drive U.S. Research...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications 2015 Peer Review Presentations-Algal Feedstocks Algae Biofuels Technology Bioenergy Technologies Office Fiscal Year 2014 Annual Report...

  19. 20 PLANET EARTH Autumn 2014 Bioenergy the name alone

    E-Print Network [OSTI]

    Brierley, Andrew

    speaking. But everything has a carbon footprint and some biofuels might not be so great if their carbon that the carbon footprint of bioenergy may be worse than some fossil fuels. But the truth is we didn't know that many of the assessments Called to account ­ bioenergy's carbon footprint #12;PLANET EARTH Autumn 2014

  20. BIOENERGI ER BLEVET MODERNE 4DECEMBER 2003

    E-Print Network [OSTI]

    at bruge biomasse til energi. Opfyring med brćnde og opvarmning med halmfyr eller biogas er kendte, biogas og bioethanol. Bioenergi er den eneste vedvarende energikilde, der findes i fast, flydende og

  1. Cellu-WHAT?-sic: Communicating the Biofuels Message to Local Stakeholders

    Broader source: Energy.gov [DOE]

    Breakout Session 3D—Building Market Confidence and Understanding III: Engaging Key Audiences in Bioenergy Cellu-WHAT?-sic: Communicating the Biofuels Message to Local Stakeholders Matt Merritt, Director, Public Relations, POET–DSM Advanced Biofuels

  2. Sandia's Biofuels Program

    SciTech Connect (OSTI)

    Simmons, Blake; Singh, Seema; Lane, Todd; Reichardt, Tom; Davis, Ryan

    2014-07-22

    Sandia's biofuels program is focused on developing next-generation, renewable fuel solutions derived from biomass. In this video, various Sandia researchers discuss the program and the tools they employ to tackle the technical challenges they face.

  3. Sandia's Biofuels Program

    ScienceCinema (OSTI)

    Simmons, Blake; Singh, Seema; Lane, Todd; Reichardt, Tom; Davis, Ryan

    2014-07-24

    Sandia's biofuels program is focused on developing next-generation, renewable fuel solutions derived from biomass. In this video, various Sandia researchers discuss the program and the tools they employ to tackle the technical challenges they face.

  4. A Bioenergy Ecosystem - ORNL Review Vol. 44, No. 3, 2011

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of the fabric of the project," Gilna says. "Ceres focuses on the development of biomass feedstocks, ArborGen develops wood-based biomass, and Mascoma is a multifaceted bioenergy...

  5. Sustainable Forest Bioenergy Initiative

    SciTech Connect (OSTI)

    Breger, Dwayne; Rizzo, Rob

    2011-09-20

    In the state’s Electricity Restructuring Act of 1998, the Commonwealth of Massachusetts recognized the opportunity and strategic benefits to diversifying its electric generation capacity with renewable energy. Through this legislation, the Commonwealth established one of the nation’s first Renewable Energy Portfolio Standard (RPS) programs, mandating the increasing use of renewable resources in its energy mix. Bioenergy, meeting low emissions and advanced technology standards, was recognized as an eligible renewable energy technology. Stimulated by the state’s RPS program, several project development groups have been looking seriously at building large woody biomass generation units in western Massachusetts to utilize the woody biomass resource. As a direct result of this development, numerous stakeholders have raised concerns and have prompted the state to take a leadership position in pursuing a science based analysis of biomass impacts on forest and carbon emissions, and proceed through a rulemaking process to establish prudent policy to support biomass development which can contribute to the state’s carbon reduction commitments and maintain safeguards for forest sustainability. The Massachusetts Sustainable Forest Bioenergy Initiative (SFBI) was funded by the Department of Energy and started by the Department of Energy Resources before these contentious biomass issues were fully raised in the state, and continued throughout the substantive periods of this policy development. Thereby, while SFBI maintained its focus on the initially proposed Scope of Work, some aspects of this scope were expanded or realigned to meet the needs for groundbreaking research and policy development being advanced by DOER. SFBI provided DOER and the Commonwealth with a foundation of state specific information on biomass technology and the biomass industry and markets, the most comprehensive biomass fuel supply assessment for the region, the economic development impact associated with biomass usage, an understanding of forest management trends including harvesting and fuel processing methods, and the carbon profile of utilizing forest based woody biomass for the emerging biomass markets. Each of the tasks and subtasks have provided an increased level of understanding to support new directives, policies and adaptation of existing regulations within Massachusetts. The project has provided the essential information to allow state policymakers and regulators to address emerging markets, while ensuring forest sustainability and understanding the complex science on CO2 accounting and impacts as a result of biomass harvesting for power generation. The public at large and electricity ratepayers in Massachusetts will all benefit from the information garnered through this project. This is a result of the state’s interest to provide financial incentives to only biomass projects that demonstrate an acceptable carbon profile, an efficient use of the constrained supply of fuel, and the harvest of biomass to ensure forest sustainability. The goals of the Massachusetts Sustainable Forest Bioenergy Initiative as proposed in 2006 were identified as: increase the diversity of the Massachusetts energy mix through biomass; promote economic development in the rural economy through forest industry job creation; help fulfill the state’s energy and climate commitments under the Renewable Energy Portfolio Standard and Climate Protection Plan; assist the development of a biomass fuel supply infrastructure to support energy project demands; provide education and outreach to the public on the benefits and impacts of bioenergy; improve the theory and practice of sustainable forestry in the Commonwealth. Completed project activities summarized below will demonstrate the effectiveness of the project in meeting the above goals. In addition, as discussed above, Massachusetts DOER needed to make some modifications to its work plan and objectives during the term of this project due to changing public policy demands brought forth in the course of the public discours

  6. Argonne National Laboratory Scientists Study Benefits of Bioenergy Crop Integration

    Broader source: Energy.gov [DOE]

    Scientists at Argonne National Laboratory (ANL), funded by the U.S. Department of Energy’s Bioenergy Technologies Office (BETO), are studying multifunctional landscapes and how they can benefit farmers, the environment, and the bioenergy industry nationwide. Their study, “Multifunctional landscapes: Site characterization and field-scale design to incorporate biomass production into an agricultural system,” is set to be published in September 2015 in the journal, Biomass and Bioenergy.

  7. Algal Biofuels Strategy Workshop- Fall Event

    Office of Energy Efficiency and Renewable Energy (EERE)

    The U.S. Department of Energy's (DOE) Bioenergy Technologies Office's (BETO's) Algae Program hosted the Algal Biofuels Strategy Workshop at Arizona State University on November 19-20, 2013, to discuss the research and development (R&D) needed to achieve affordable, scalable, and sustainable algae-based biofuels.

  8. Chemical and Structural Features of Plants That Contribute to Biomass Recalcitrance

    E-Print Network [OSTI]

    DeMartini, Jaclyn Diana

    2011-01-01

    to Identify Cellulosic Biomass, Pretreatments, and EnzymeFundamental Factors Affecting Biomass Enzymatic Reactivity.U.S. Billion-Ton Update: Biomass Supply for a Bioenergy and

  9. Transportation Biofuels in the USA Preliminary Innovation Systems Analysis

    E-Print Network [OSTI]

    Eggert, Anthony

    2007-01-01

    12): p. Koplow, D. , Biofuels – At What Cost? : GovernmentResulting from the Biomass to Biofuels Workshop Sponsored byN. , Growing Energy: How biofuels can help end America's oil

  10. Transportation Biofuels in the US A Preliminary Innovation Systems Analysis

    E-Print Network [OSTI]

    Eggert, Anthony

    2007-01-01

    12): p. Koplow, D. , Biofuels – At What Cost? : GovernmentResulting from the Biomass to Biofuels Workshop Sponsored byN. , Growing Energy: How biofuels can help end America's oil

  11. A Review of DOE Biofuels Program | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A Review of DOE Biofuels Program A Review of DOE Biofuels Program Presentation given by the Biomass Program's Zia Haq at NIST's 4th International Conference on Biofuels Standards...

  12. Bioenergy Demand in a Market Driven Forest Economy (U.S. South...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bioenergy Demand in a Market Driven Forest Economy (U.S. South) Bioenergy Demand in a Market Driven Forest Economy (U.S. South) Breakout Session 1A: Biomass Feedstocks for the...

  13. Sub-national TIMES model for analyzing regional future use of Biomass and Biofuels in France and

    E-Print Network [OSTI]

    Boyer, Edmond

    the green house gas emission (GHG) by 50% by 2050. To reach these targets, biomass is expected to play

  14. NETWORK OF EXCELLENCE The CAP & Bioenergy

    E-Print Network [OSTI]

    , Germany, and the UK. #12;BIOENERGY NETWORK OF EXCELLENCE This presentation · To provide insights residues, waste streams and energy crops. Heat, electricity and biofuels for transport. · Suggests in Europe ­ Reduce dependence on imported food ­ Introduce a degree of price stability for consumers

  15. Addressing Biomass Supply Chain Challenges With AFEX(tm) Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Addressing Biomass Supply Chain Challenges With AFEX(tm) Technology Addressing Biomass Supply Chain Challenges With AFEX(tm) Technology Plenary IV: Advances in Bioenergy...

  16. Accelerating Commercialization of Algal Biofuels Through Partnerships (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01

    This brochure describes National Renewable Energy Laboratory's (NREL's) algal biofuels research capabilities and partnership opportunities. NREL is accelerating algal biofuels commercialization through: (1) Advances in applied biology; (2) Algal strain development; (3) Development of fuel conversion pathways; (4) Techno-economic analysis; and (5) Development of high-throughput lipid analysis methodologies. NREL scientists and engineers are addressing challenges across the algal biofuels value chain, including algal biology, cultivation, harvesting and extraction, and fuel conversion. Through partnerships, NREL can share knowledge and capabilities in the following areas: (1) Algal Biology - A fundamental understanding of algal biology is key to developing cost-effective algal biofuels processes. NREL scientists are experts in the isolation and characterization of microalgal species. They are identifying genes and pathways involved in biofuel production. In addition, they have developed a high-throughput, non-destructive technique for assessing lipid production in microalgae. (2) Cultivation - NREL researchers study algal growth capabilities and perform compositional analysis of algal biomass. Laboratory-scale photobioreactors and 1-m2 open raceway ponds in an on-site greenhouse allow for year-round cultivation of algae under a variety of conditions. A bioenergy-focused algal strain collection is being established at NREL, and our laboratory houses a cryopreservation system for long-term maintenance of algal cultures and preservation of intellectual property. (3) Harvesting and Extraction - NREL is investigating cost-effective harvesting and extraction methods suitable for a variety of species and conditions. Areas of expertise include cell wall analysis and deconstruction and identification and utilization of co-products. (4) Fuel Conversion - NREL's excellent capabilities and facilities for biochemical and thermochemical conversion of biomass to biofuels are being applied to algal biofuels processes. Analysts are also testing algal fuel properties to measure energy content and ensure compatibility with existing fueling infrastructure. (5) Cross-Cutting Analysis - NREL scientists and engineers are conducting rigorous techno-economic analyses of algal biofuels processes. In addition, they are performing a full life cycle assessment of the entire algae-to-biofuels process.

  17. The New Horizons of Bioenergy

    ScienceCinema (OSTI)

    None

    2013-04-19

    At the Office of Energy Efficiency and Renewable Energy's "Biomass 2011" conference, Argonne researcher Seth Snyder spoke with DOE Biomass Program head, Paul Bryan. In this conversation, Snyder explains the process of biochemical conversion, and talks about Argonne's patented resin wafer technology. The resin wafer electrodeionization technology may help significantly reduce the cost of producing clean energy and of the chemicals and water used in industry. The separations technology can also process biomass-based feedstocks into biofuels and chemicals.

  18. National Geo-Database for Biofuel Simulations and Regional Analysis

    SciTech Connect (OSTI)

    Izaurralde, Roberto C.; Zhang, Xuesong; Sahajpal, Ritvik; Manowitz, David H.

    2012-04-01

    The goal of this project undertaken by GLBRC (Great Lakes Bioenergy Research Center) Area 4 (Sustainability) modelers is to develop a national capability to model feedstock supply, ethanol production, and biogeochemical impacts of cellulosic biofuels. The results of this project contribute to sustainability goals of the GLBRC; i.e. to contribute to developing a sustainable bioenergy economy: one that is profitable to farmers and refiners, acceptable to society, and environmentally sound. A sustainable bioenergy economy will also contribute, in a fundamental way, to meeting national objectives on energy security and climate mitigation. The specific objectives of this study are to: (1) develop a spatially explicit national geodatabase for conducting biofuel simulation studies; (2) model biomass productivity and associated environmental impacts of annual cellulosic feedstocks; (3) simulate production of perennial biomass feedstocks grown on marginal lands; and (4) locate possible sites for the establishment of cellulosic ethanol biorefineries. To address the first objective, we developed SENGBEM (Spatially Explicit National Geodatabase for Biofuel and Environmental Modeling), a 60-m resolution geodatabase of the conterminous USA containing data on: (1) climate, (2) soils, (3) topography, (4) hydrography, (5) land cover/ land use (LCLU), and (6) ancillary data (e.g., road networks, federal and state lands, national and state parks, etc.). A unique feature of SENGBEM is its 2008-2010 crop rotation data, a crucially important component for simulating productivity and biogeochemical cycles as well as land-use changes associated with biofuel cropping. We used the EPIC (Environmental Policy Integrated Climate) model to simulate biomass productivity and environmental impacts of annual and perennial cellulosic feedstocks across much of the USA on both croplands and marginal lands. We used data from LTER and eddy-covariance experiments within the study region to test the performance of EPIC and, when necessary, improve its parameterization. We investigated three scenarios. In the first, we simulated a historical (current) baseline scenario composed mainly of corn-, soybean-, and wheat-based rotations as grown existing croplands east of the Rocky Mountains in 30 states. In the second scenario, we simulated a modified baseline in which we harvested corn and wheat residues to supply feedstocks to potential cellulosic ethanol biorefineries distributed within the study area. In the third scenario, we simulated the productivity of perennial cropping systems such as switchgrass or perennial mixtures grown on either marginal or Conservation Reserve Program (CRP) lands. In all cases we evaluated the environmental impacts (e.g., soil carbon changes, soil erosion, nitrate leaching, etc.) associated with the practices. In summary, we have reported on the development of a spatially explicit national geodatabase to conduct biofuel simulation studies and provided initial simulation results on the potential of annual and perennial cropping systems to serve as feedstocks for the production of cellulosic ethanol. To accomplish this, we have employed sophisticated spatial analysis methods in combination with the process-based biogeochemical model EPIC. This work provided the opportunity to test the hypothesis that marginal lands can serve as sources of cellulosic feedstocks and thus contribute to avoid potential conflicts between bioenergy and food production systems. This work, we believe, opens the door for further analysis on the characteristics of cellulosic feedstocks as major contributors to the development of a sustainable bioenergy economy.

  19. TITLE AUTHORS SUBJECT SUBJECT RELATED DESCRIPTION PUBLISHER AVAILABILI...

    Office of Scientific and Technical Information (OSTI)

    MICROALGAE ALGAL BIOMASS HYDROCARBON BIOFUELS BIOMASS TECHNOLOGIES OFFICE NATIONAL RENEWABLE ENERGY LABORATORY PACIFIC NORTHWEST NATIONAL LABORATORY Bioenergy BIOMASS...

  20. Algal Lipid Extraction and Upgrading to Hydrocarbons Technology...

    Office of Scientific and Technical Information (OSTI)

    MICROALGAE; ALGAL BIOMASS; HYDROCARBON BIOFUELS; BIOMASS TECHNOLOGIES OFFICE; NATIONAL RENEWABLE ENERGY LABORATORY; PACIFIC NORTHWEST NATIONAL LABORATORY; Bioenergy BIOMASS...

  1. Trait diversity enhances yield in algal biofuel assemblages

    E-Print Network [OSTI]

    Shurin, JB; Mandal, S; Abbott, RL

    2014-01-01

    bioenergy production and competitive interactions, including minimum resource requirements, growth rates, asymptotic densitybioenergy crops. The species that achieved the fast- est growth reached the highest biomass density

  2. Bioenergy | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowaWisconsin:Pontiac Biomass Facility Jump to: navigation,Bioenergy Jump to:

  3. 1 Characterization of carbonaceous aerosols outflow from India and 2 Arabia: Biomass/biofuel burning and fossil fuel combustion

    E-Print Network [OSTI]

    Dickerson, Russell R.

    /biofuel burning and fossil fuel combustion 3 S. A. Guazzotti,1 D. T. Suess,1,2 K. R. Coffee,1,3 P. K. Quinn,4 T. S with potassium 17 (indicative of combustion sources), and mass concentration of submicrometer non-sea- 18 salt Peninsula, where dominance of fossil fuel combustion is suggested by 30 results from single

  4. Biomass Scenario Model Documentation: Data and References Lin...

    Office of Scientific and Technical Information (OSTI)

    Documentation: Data and References Lin, Y.; Newes, E.; Bush, B.; Peterson, S.; Stright, D. 09 BIOMASS FUELS BIOMASS SCENARIO MODEL; BSM; BIOMASS; BIOFUEL; MODEL; DATA; REFERENCES;...

  5. Support to Biofuels in Latin America and the Caribbean

    Broader source: Energy.gov [DOE]

    Breakout Session 3C—Fostering Technology Adoption III: International Market Opportunities in Bioenergy Support to Biofuels in Latin America and the Caribbean Arnaldo Vieira de Carvalho, Lead Energy Specialist, Inter-American Development Bank

  6. Public Attitudes and Elite Discourse in the Realm of Biofuels

    Broader source: Energy.gov [DOE]

    Breakout Session 3D—Building Market Confidence and Understanding III: Engaging Key Audiences in Bioenergy Public Attitudes and Elite Discourse in the Realm of Biofuels Ashlie B. Delshad, Assistant Professor of Political Science, West Chester University of Pennsylvania

  7. Optimizing the Design of Biomass Hydrogen Supply Chains Using Real-World Spatial Distributions: A Case Study Using California Rice Straw

    E-Print Network [OSTI]

    Parker, Nathan C

    2007-01-01

    2004). "Optimizing Forest Biomass Exploitation for Energyat a Regional Level." Biomass and Bioenergy, 26(1), 15-25.Energy Crop Feedstock." Biomass and Bioenergy, 18(4), 309-

  8. Optimizing the Design of Biomass Hydrogen Supply ChainsUsing Real-World Spatial Distributions: A Case Study Using California Rice Straw

    E-Print Network [OSTI]

    Parker, Nathan

    2007-01-01

    2004). "Optimizing Forest Biomass Exploitation for Energyat a Regional Level." Biomass and Bioenergy, 26(1), 15-25.Energy Crop Feedstock." Biomass and Bioenergy, 18(4), 309-

  9. Biomass crops can be used for biological disinfestation and remediation of soils and water

    E-Print Network [OSTI]

    Stapleton, James J; Banuelos, Gary

    2009-01-01

    and grasses (Gramineae) for bioethanol produc- tion. Theseof wide interest for bioethanol production. Editor’s note:Biofuel (biodiesel, bioethanol), bioenergy: Alternative

  10. USDA, DOE Announce Up to $25 Million in Funding for Biomass Research...

    Office of Environmental Management (EM)

    in funding for research and development of technologies and processes to produce biofuels, bioenergy, and high-value biobased products, subject to annual appropriations....

  11. Developing Switchgrass as a Bioenergy Crop

    SciTech Connect (OSTI)

    Bouton, J.; Bransby, D.; Conger, B.; McLaughlin, S.; Ocumpaugh, W.; Parrish, D.; Taliaferro, C.; Vogel, K.; Wullschleger, S.

    1998-11-08

    The utilization of energy crops produced on American farms as a source of renewable fuels is a concept with great relevance to current ecological and economic issues at both national and global scales. Development of a significant national capacity to utilize perennial forage crops, such as switchgrass (Panicum virgatum, L.) as biofuels could benefit our agricultural economy by providing an important new source of income for farmers. In addition energy production from perennial cropping systems, which are compatible with conventional fining practices, would help reduce degradation of agricultural soils, lower national dependence on foreign oil supplies, and reduce emissions of greenhouse gases and toxic pollutants to the atmosphere (McLaughlin 1998). Interestingly, on-farm energy production is a very old concept, extending back to 19th century America when both transpofiation and work on the farm were powered by approximately 27 million draft animals and fueled by 34 million hectares of grasslands (Vogel 1996). Today a new form of energy production is envisioned for some of this same acreage. The method of energy production is exactly the same - solar energy captured in photosynthesis, but the subsequent modes of energy conversion are vastly different, leading to the production of electricity, transportation fuels, and chemicals from the renewable feedstocks. While energy prices in the United States are among the cheapest in the world, the issues of high dependency on imported oil, the uncertainties of maintaining stable supplies of imported oil from finite reserves, and the environmental costs associated with mining, processing, and combusting fossil fuels have been important drivers in the search for cleaner burning fuels that can be produced and renewed from the landscape. At present biomass and bioenergy combine provide only about 4% of the total primary energy used in the U.S. (Overend 1997). By contrast, imported oil accounts for approximately 44% of the foreign trade deficit in the U.S. and about 45% of the total annual U.S. oil consumption of 34 quads (1 quad = 1015 Btu, Lynd et al. 1991). The 22 quads of oil consumed by transportation represents approximately 25% of all energy use in the US and excedes total oil imports to the US by about 50%. This oil has environmental and social costs, which go well beyond the purchase price of around $15 per barrel. Renewable energy from biomass has the potential to reduce dependency on fossil fhels, though not to totally replace them. Realizing this potential will require the simultaneous development of high yielding biomass production systems and bioconversion technologies that efficiently convert biomass energy into the forms of energy and chemicals usable by industry. The endpoint criterion for success is economic gain for both agricultural and industrial sectors at reduced environmental cost and reduced political risk. This paper reviews progress made in a program of research aimed at evaluating and developing a perennial forage crop, switchgrass as a regional bioenergy crop. We will highlight here aspects of research progress that most closely relate to the issues that will determine when and how extensively switchgrass is used in commercial bioenergy production.

  12. Biomass Basics Webinar

    Broader source: Energy.gov [DOE]

    The Bioenergy Technologies Office (BETO) is hosting a Biomass Basics Webinar on August 27, 2015, from 4:00-4:40pm EDT. This webinar will provide high school students and teachers with background...

  13. Biomass Indirect Liquefaction Strategy Workshop: Summary Report...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Strategy Workshop: Summary Report Biomass Indirect Liquefaction Strategy Workshop: Summary Report This report is based on the proceedings of the U.S. DOE's Bioenergy Technologies...

  14. Small-Scale Bioenergy Alternatives for Industry, Farm, and Institutions : A User`s Perspective.

    SciTech Connect (OSTI)

    Folk, Richard

    1991-12-31

    This report presents research on biomass as an energy source. Topics include: bioenergy development and application; bioenergy combustion technology; and bioenergy from agricultural, forest, and urban resources. There are a total of 57 individual reports included. Individual reports are processed separately for the databases.

  15. The Pennsylvania State University www.BioEnergyBridge.psu.edu 1 BioEnergy Bridge

    E-Print Network [OSTI]

    Lee, Dongwon

    © The Pennsylvania State University www.BioEnergyBridge.psu.edu 1 Penn State BioEnergy# trichard@psu.edu rtw103@psu.edu www.bioenergy.psu.edu Biomass Energy Center #12;© The Pennsylvania State · The BioEnergy BridgeTM will address the full spectrum of challenges to our national priority of reducing

  16. Process Design and Economics for the Conversion of Algal Biomass to Biofuels: Algal Biomass Fractionation to Lipid- and Carbohydrate-Derived Fuel Products

    SciTech Connect (OSTI)

    Davis, R.; Kinchin, C.; Markham, J.; Tan, E.; Laurens, L.; Sexton, D.; Knorr, D.; Schoen, P.; Lukas, J.

    2014-09-01

    Beginning in 2013, NREL began transitioning from the singular focus on ethanol to a broad slate of products and conversion pathways, ultimately to establish similar benchmarking and targeting efforts. One of these pathways is the conversion of algal biomass to fuels via extraction of lipids (and potentially other components), termed the 'algal lipid upgrading' or ALU pathway. This report describes in detail one potential ALU approach based on a biochemical processing strategy to selectively recover and convert select algal biomass components to fuels, namely carbohydrates to ethanol and lipids to a renewable diesel blendstock (RDB) product. The overarching process design converts algal biomass delivered from upstream cultivation and dewatering (outside the present scope) to ethanol, RDB, and minor coproducts, using dilute-acid pretreatment, fermentation, lipid extraction, and hydrotreating.

  17. Interactions of Lignin and Hemicellulose and Effects on Biomass Deconstruction

    E-Print Network [OSTI]

    Li, Hongjia

    2012-01-01

    pretreated for bioethanol production. Biotechnol Biofuels.woody biomass for bioethanol production. Bioresources. 2011;feedstocks for production of bioethanol and other biofuels,

  18. National Algal Biofuels Technology Roadmap

    SciTech Connect (OSTI)

    Ferrell, John; Sarisky-Reed, Valerie

    2010-05-01

    The framework for National Algal Biofuels Technology Roadmap was constructed at the Algal Biofuels Technology Roadmap Workshop, held December 9-10, 2008, at the University of Maryland-College Park. The Workshop was organized by the Biomass Program to discuss and identify the critical challenges currently hindering the development of a domestic, commercial-scale algal biofuels industry. This Roadmap presents information from a scientific, economic, and policy perspectives that can support and guide RD&D investment in algal biofuels. While addressing the potential economic and environmental benefits of using algal biomass for the production of liquid transportation fuels, the Roadmap describes the current status of algae RD&D. In doing so, it lays the groundwork for identifying challenges that likely need to be overcome for algal biomass to be used in the production of economically viable biofuels.

  19. GREET Bioenergy Life Cycle Analysis and Key Issues for Woody Feedstocks

    Broader source: Energy.gov [DOE]

    Breakout Session 2D—Building Market Confidence and Understanding II: Carbon Accounting and Woody Biofuels GREET Bioenergy Life Cycle Analysis and Key Issues for Woody Feedstocks Michael Wang, Senior Scientist, Energy Systems, Argonne National Laboratory

  20. Fig 1. First rotation biomass yield [Mg (oven dry) ha-1 ] of top 5 clones with biomass crop yield trials

    E-Print Network [OSTI]

    Minnesota, University of

    Fig 1. First rotation biomass yield [Mg (oven dry) ha-1 yr-1 ] of top 5 clones with biomass crop about growing SRWCs for bioenergy is that SRWCs may not produce sufficient biomass as a feasible (Fig 1) is well below the required amount of biomass necessary to sustain feasibility of bioenergy

  1. Forest Biomass Supply for BioForest Biomass Supply for Bio--productionproduction in the Southeastern United Statesin the Southeastern United States

    E-Print Network [OSTI]

    Gray, Matthew

    Forest Biomass Supply for BioForest Biomass Supply for BioBio--production and biomass utilizationsproduction and biomass utilizations Industrial sector: for heat and steam Utility sector: for electricity Forest biomass: Agricultural biomass: Transportation sector: for biofuels

  2. Webinar: Targeted Algal Biofuels and Bioproducts FOA

    Broader source: Energy.gov [DOE]

    The Energy Department’s Bioenergy Technologies Office will present a live informational webcast on the Targeted Algal Biomass and Bioproducts Funding Opportunity (DE-FOA-0001162) on October 8, 2014...

  3. Oil To Biofuels Case Study Objectives

    E-Print Network [OSTI]

    Auerbach, Scott M.

    Oil To Biofuels Case Study Objectives - Critically evaluate the nature of certain societal", and the consequences of various sources. - How could this diagram be modified through the use of biofuels? Research. - What are biomass and biofuels? How are they used, what are their benefits and negative consequences

  4. Mascoma Announces Major Cellulosic Biofuel Technology Breakthrough

    E-Print Network [OSTI]

    Mascoma Announces Major Cellulosic Biofuel Technology Breakthrough Lebanon, NH - May 7, 2009 bioprocessing, or CBP, a low-cost processing strategy for production of biofuels from cellulosic biomass. CBP much, much closer to billions of gallons of low cost cellulosic biofuels," said Michigan State

  5. Legislating Biofuels in the United States

    E-Print Network [OSTI]

    Legislating Biofuels in the United States Wendy Clark National Renewable Energy Laboratory Golden, Colorado, USA 2008 SAE Biofuels Specifications and Performance Symposium July 7-9, 2008, Paris NREL PR-540 Legislate Biofuels? · Plentiful U.S. biomass resources: energy crops, agricultural and forestry residues

  6. Biomass as Feedstock for a Bioenergy and Bioproducts Industry: The Technical Feasibility of a Billion-Ton Annual Supply, April 2005

    SciTech Connect (OSTI)

    2005-04-01

    The purpose of this report is to determine whether the land resources of the United States are capable of producing a sustainable supply of biomass sufficient to displace 30 percent or more of the country’s present petroleum consumption – the goal set by the Biomass R&D Technical Advisory Committee in their vision for biomass technologies. Accomplishing this goal would require approximately 1 billion dry tons of biomass feedstock per year.

  7. Seventh Annual Biofuels Science and Sustainability Tour

    Office of Energy Efficiency and Renewable Energy (EERE)

    The U.S. Department of Energy’s Bioenergy Technologies Office Senior Executive Advisor Harry Baumes and Feedstocks Technology Manager Mark Elless were among Congressional, federal agency, White House, and gubernatorial staff who participated in the 7th Annual Biofuels Science and Sustainability Tour. From Aug. 17–19, 2015, the tour visited several bioenergy farms, facilities, research centers, and end users across the state of Iowa. The tour provided participants with the opportunity to experience the bioenergy industry hands-on in an interactive manner.

  8. SYNTHESIS Industrial-strength ecology: trade-offs and opportunities in algal biofuel production

    E-Print Network [OSTI]

    for biofuel productivity and resilience. We argue that a community engineering approach that manages and productive biofuel ecosystems. We review evidence for trade-offs, challenges and opportunities in algal biofuel cultivation with a goal of guiding research towards intensifying bioenergy production using

  9. Life-cycle energy and GHG emissions of forest biomass harvest and transport for biofuel production in Michigan

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhang, Fengli; Johnson, Dana M.; Wang, Jinjiang

    2015-04-01

    High dependence on imported oil has increased U.S. strategic vulnerability and prompted more research in the area of renewable energy production. Ethanol production from renewable woody biomass, which could be a substitute for gasoline, has seen increased interest. This study analysed energy use and greenhouse gas emission impacts on the forest biomass supply chain activities within the State of Michigan. A life-cycle assessment of harvesting and transportation stages was completed utilizing peer-reviewed literature. Results for forest-delivered ethanol were compared with those for petroleum gasoline using data specific to the U.S. The analysis from a woody biomass feedstock supply perspective uncoveredmore »that ethanol production is more environmentally friendly (about 62% less greenhouse gas emissions) compared with petroleum based fossil fuel production. Sensitivity analysis was conducted with key inputs associated with harvesting and transportation operations. The results showed that research focused on improving biomass recovery efficiency and truck fuel economy further reduced GHG emissions and energy consumption.« less

  10. Life-cycle energy and GHG emissions of forest biomass harvest and transport for biofuel production in Michigan

    SciTech Connect (OSTI)

    Zhang, Fengli; Johnson, Dana M.; Wang, Jinjiang

    2015-04-01

    High dependence on imported oil has increased U.S. strategic vulnerability and prompted more research in the area of renewable energy production. Ethanol production from renewable woody biomass, which could be a substitute for gasoline, has seen increased interest. This study analysed energy use and greenhouse gas emission impacts on the forest biomass supply chain activities within the State of Michigan. A life-cycle assessment of harvesting and transportation stages was completed utilizing peer-reviewed literature. Results for forest-delivered ethanol were compared with those for petroleum gasoline using data specific to the U.S. The analysis from a woody biomass feedstock supply perspective uncovered that ethanol production is more environmentally friendly (about 62% less greenhouse gas emissions) compared with petroleum based fossil fuel production. Sensitivity analysis was conducted with key inputs associated with harvesting and transportation operations. The results showed that research focused on improving biomass recovery efficiency and truck fuel economy further reduced GHG emissions and energy consumption.

  11. Spatial Modeling of Geographic Patterns in Biodiversity and Biofuel Production

    E-Print Network [OSTI]

    Spatial Modeling of Geographic Patterns in Biodiversity and Biofuel Production How can the US for increasing biofuel production have already come under fire because of real and perceived threats.S. will be to ensure that bioenergy supplies meet sustainable production standards that include consideration

  12. EERC Center for Biomass Utilization 2005

    SciTech Connect (OSTI)

    Zygarlicke, C.J.; Schmidt, D.D.; Olson, E.S.; Leroux, K.M.; Wocken, C.A.; Aulich, T.A.; WIlliams, K.D.

    2008-07-28

    Biomass utilization is one solution to our nation’s addiction to oil and fossil fuels. What is needed now is applied fundamental research that will cause economic technology development for the utilization of the diverse biomass resources in the United States. This Energy & Environmental Research Center (EERC) applied fundamental research project contributes to the development of economical biomass utilization for energy, transportation fuels, and marketable chemicals using biorefinery methods that include thermochemical and fermentation processes. The fundamental and basic applied research supports the broad scientific objectives of the U.S. Department of Energy (DOE) Biomass Program, especially in the area of developing alternative renewable biofuels, sustainable bioenergy, technologies that reduce greenhouse gas emissions, and environmental remediation. Its deliverables include 1) identifying and understanding environmental consequences of energy production from biomass, including the impacts on greenhouse gas production, carbon emission abatement, and utilization of waste biomass residues and 2) developing biology-based solutions that address DOE and national needs related to waste cleanup, hydrogen production from renewable biomass, biological and chemical processes for energy and fuel production, and environmental stewardship. This project serves the public purpose of encouraging good environmental stewardship by developing biomass-refining technologies that can dramatically increase domestic energy production to counter current trends of rising dependence upon petroleum imports. Decreasing the nation’s reliance on foreign oil and energy will enhance national security, the economy of rural communities, and future competitiveness. Although renewable energy has many forms, such as wind and solar, biomass is the only renewable energy source that can be governed through agricultural methods and that has an energy density that can realistically compete with, or even replace, petroleum and other fossil fuels in the near future. It is a primary domestic, sustainable, renewable energy resource that can supply liquid transportation fuels, chemicals, and energy that are currently produced from fossil sources, and it is a sustainable resource for a hydrogen-based economy in the future.

  13. Algal Biofuels Strategy Workshop – Spring Event

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy’s Bioenergy Technologies Office’s (BETO’s) Algae Program hosted an algal biofuel strategy workshop on March 26–27, 2014, in Charleston, South Carolina. The workshop objective was to convene stakeholders to engage in discussion on strategies over the next 5 to 10 years to achieve affordable, scalable, and sustainable algal biofuels.

  14. Exploring the Utilization of Complex Algal Communities to Address Algal Pond Crash and Increase Annual Biomass Production for Algal Biofuels

    SciTech Connect (OSTI)

    Hamilton, Cyd E.

    2014-03-25

    This white paper briefly reviews the research literature exploring complex algal communities as a means of increasing algal biomass production via increased tolerance, resilience, and resistance to a variety of abiotic and biotic perturbations occurring within harvesting timescales. This paper identifies what data are available and whether more research utilizing complex communities is needed to explore the potential of complex algal community stability (CACS) approach as a plausible means to increase biomass yields regardless of ecological context and resulting in decreased algal-based fuel prices by reducing operations costs. By reviewing the literature for what we do and do not know, in terms of CACS methodologies, this report will provide guidance for future research addressing pond crash phenomena.

  15. PNNL Aviation Biofuels

    SciTech Connect (OSTI)

    Plaza, John; Holladay, John; Hallen, Rich

    2014-10-23

    Commercial airplanes really don’t have the option to move away from liquid fuels. Because of this, biofuels present an opportunity to create new clean energy jobs by developing technologies that deliver stable, long term fuel options. The Department of Energy’s Pacific Northwest National Laboratory is working with industrial partners on processes to convert biomass to aviation fuels.

  16. How Wood Chip Size Affects Pretreatment Effectiveness of Woody Biomass for Biological Processing

    E-Print Network [OSTI]

    Tam, Jerry

    2013-01-01

    Klass, D.L. , 1998. Biomass for Renewable Energy, Fuels andof woody biomass size reduction for energy production. In:of woody biomass for biofuel production: Energy efficiency,

  17. Biomass crops can be used for biological disinfestation and remediation of soils and water

    E-Print Network [OSTI]

    Stapleton, James J; Banuelos, Gary

    2009-01-01

    liquid biofuels from biomass: The writings on the walls. Newreduced feed intake. Biomass crop sustainability flexibilityMC, et al. 2009. Cali- fornia biomass resources, potentials,

  18. Correlations between Optical, Chemical and Physical Properties of Biomass Burn Aerosols

    E-Print Network [OSTI]

    2008-01-01

    laboratory measurements of biomass-burning emissions: 1.tar balls: Particles from biomass and biofuel burning, J.Eleuterio (2005), A review of biomass burning emissions part

  19. Hawaii Bioenergy Master Plan Economic Impacts

    E-Print Network [OSTI]

    and costs. Thus further study of biofuels for electricity generation and alternative liquid fuel products, from biomass combustion for electricity to biomass for liquid fuel, this study focuses on sugarcane for motor fuel was made effective and a 20% by 2020 Alternative Fuel Standard (AFS) was adopted in 2006, 3

  20. Student Travel to Pan-Am Congress of Plants & Biofuels in Merida, Mexico

    SciTech Connect (OSTI)

    Kimberly, Kimnach

    2014-04-01

    Department of Energy – Final Technical Report Grant Title: Student Travel to Pan-Am Congress of Plants & Biofuels in Merida, Mexico Award #: DE-FG02-08ER64612 Award Amount: $15,000.00 Award period: 6/15/2008 to 6/14/2009 ______________________________________________________________________________ The Pan American Congress on Plants and BioEnergy convened in Mérida, Mexico, June 22 to 25, 2008. The program was organized by Steve Long (University of Illinois) and Nick Carpita (Purdue University), along with co-organizers Marcos Buckeridge (University of Săo Paulo, Brazil) and Federico Sánchez (Universidad Nacional Autónoma de México). More than 200 scientists from over a dozen nations around the world gathered to discuss key issues surrounding the development of biofuel feedstocks and to report on their research in this area. This three day conference had invited speakers surrounding developing renewable and sustainable energy resources which are typically propelled by three important drivers – security, cost and environmental impact. The first day of the conference was delegated to governmental policy makers and designers of national research and plant biologists, agronomists, microbiologists, economists and ecologists in relation to bioenergy security in the Western Hemisphere that is sustainable and ecologically and economically sound. Speakers from countries that have already made themselves energy independent shared solutions to improve efficiency that is being researched. Venture capitalist and industry leaders also spoke on their commitment to economic success in a new green agroindustry. Days two and three explored bioenergy crops and introduced the participants to the breadth of the agricultural landscape, the underlying biology of bioenergy plants and new ideas to enhance biomass yield and quality of the energy crops of the future. These presentations educated the participants in an effort to develop energy strategies in countries across the world that become energy independent while developing economic growth and clean, reliable and affordable energy. Presenters educated student on reducing net greenhouse gas emissions, improving fuel efficiencies, indigenous energy alternative such as ethanol and improving bioenergy crop plants. Sessions surrounding developing bioenergy crop plants were held relating to the growth and development, cell wall synthesis and architecture to improve the next generation of energy plants. This grant was used to supplement registration and provide lodging support for graduate students, post-doctorals, and early career scientists attending the congress. Among these awardees partially funded by DOE and other agencies were 18 individuals, including nine graduate students, two post-doctorals, and seven early career scientists. The PIs on the grant worked closely with the Minority Affairs and International committees of ASPB to identify appropriate travel awardees; among the 18 awardees, nine were female, and two were African-American. Submitted & Certified by: Kimberly Kimnach

  1. Bioenergy Reports

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biological Barriers to Cellulosic Ethanol - A Joint Research Agenda, Jun 2006 (8.9 MB) Roadmap for Agricultural Biomass Feedstock Supply in the United States, Nov 2003 (3.5 MB)...

  2. A Path Forward for Low Carbon Power from Biomass

    E-Print Network [OSTI]

    Cuellar, Amanda

    The two major pathways for energy utilization from biomass are conversion to a liquid fuel (i.e., biofuels) or conversion to electricity (i.e., biopower). In the United States (US), biomass policy has focused on biofuels. ...

  3. National Algal Biofuels Technology Roadmap

    E-Print Network [OSTI]

    National Algal Biofuels Technology Roadmap MAY 2010 BIOMASS PROGRAM #12;#12;U.S. DOE 2010. National Ferrell Office of Energy Efficiency and Renewable Energy Office of the Biomass Program (202)586-5340 john.ferrell@ee.doe)586-5340 valerie.sarisky-reed@ee.doe.gov Roadmap Editors: Daniel Fishman,1 Rajita Majumdar,1 Joanne Morello,2 Ron

  4. Bioenergy & Biofuels Projects | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematics And StatisticsProgram ManagerCorridor6 Audit Report: WR-B-00-06B lBig Energy

  5. Integrating and Piloting Lignocellulose Biomass Conversion Technology (Presentation)

    SciTech Connect (OSTI)

    Schell, D. J.

    2009-06-15

    Presentation on NREL's integrated biomass conversion capabilities. Presented at the 2009 Advanced Biofuels Workshop in Denver, CO, Cellulosic Ethanol session.

  6. Feedstock Supply and Logistics: Biomass as a Commodity

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    technology. Photos: AGCO, Auburn University (top); INL (bottom) Feedstock Supply and Logistics: Biomass as a Commodity Providing biomass for conversion into high-quality biofuels,...

  7. Center for BioEnergy Sustainability http://www.ornl.gov/cbes/ Bioenergy, Sustainability, and Land-Use Change Report

    E-Print Network [OSTI]

    Pennycook, Steve

    versus coal. March 23-27 ­ Several ORNL researchers participated in the Department of Energy's BioEnergy Technologies Office (BETO) 2015 Project Peer Review in Alexandria, Virginia. The following presentations were Durability Relationships for Improved Low-Cost Clean Cookstoves by Tim Theiss Increasing Biofuel Deployment

  8. Bioenergy 2015 Press Room

    Broader source: Energy.gov [DOE]

    This U.S. Department of Energy Bioenergy 2015 online press room provides contacts, information, and resources to members of the media who cover Bioenergy 2015 conference-related news.

  9. NREL: Biomass Research - NREL Cyanobacteria Ramps Up Photosynthesis...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    passed it to other photosynthetic microbes and green plants. Photosynthesis powers biomass growth in plants and algae, which are potential feedstocks for bioenergy production....

  10. Addressing Biomass Supply Chain Challenges With AFEX™ Technology

    Broader source: Energy.gov [DOE]

    Plenary IV: Advances in Bioenergy Feedstocks—From Field to Fuel Addressing Biomass Supply Chain Challenges With AFEX™ Technology Allen Julian, Chief Business Officer, MBI

  11. DOE Announces Webinars on Natural Gas for Biomass Technologies...

    Broader source: Energy.gov (indexed) [DOE]

    slides, and transcripts. Upcoming Webinars February 6: Live Webinar on Natural Gas for Biomass Technologies Webinar Sponsor: EERE's Bioenergy Technologies Office The Energy...

  12. COMPUTATIONAL RESOURCES FOR BIOFUEL FEEDSTOCK SPECIES

    SciTech Connect (OSTI)

    Buell, Carol Robin [Michigan State University; Childs, Kevin L [Michigan State University

    2013-05-07

    While current production of ethanol as a biofuel relies on starch and sugar inputs, it is anticipated that sustainable production of ethanol for biofuel use will utilize lignocellulosic feedstocks. Candidate plant species to be used for lignocellulosic ethanol production include a large number of species within the Grass, Pine and Birch plant families. For these biofuel feedstock species, there are variable amounts of genome sequence resources available, ranging from complete genome sequences (e.g. sorghum, poplar) to transcriptome data sets (e.g. switchgrass, pine). These data sets are not only dispersed in location but also disparate in content. It will be essential to leverage and improve these genomic data sets for the improvement of biofuel feedstock production. The objectives of this project were to provide computational tools and resources for data-mining genome sequence/annotation and large-scale functional genomic datasets available for biofuel feedstock species. We have created a Bioenergy Feedstock Genomics Resource that provides a web-based portal or �clearing house� for genomic data for plant species relevant to biofuel feedstock production. Sequence data from a total of 54 plant species are included in the Bioenergy Feedstock Genomics Resource including model plant species that permit leveraging of knowledge across taxa to biofuel feedstock species.We have generated additional computational analyses of these data, including uniform annotation, to facilitate genomic approaches to improved biofuel feedstock production. These data have been centralized in the publicly available Bioenergy Feedstock Genomics Resource (http://bfgr.plantbiology.msu.edu/).

  13. USDA, DOE to Invest up to $18.4 million for Biomass Research...

    Energy Savers [EERE]

    More Documents & Publications DOE and USDA Select Projects for more than 24 Million in Biomass Research and Development Grants USDA Biofuels R&D Growing Energy - How Biofuels...

  14. YEAR 2 BIOMASS UTILIZATION

    SciTech Connect (OSTI)

    Christopher J. Zygarlicke

    2004-11-01

    This Energy & Environmental Research Center (EERC) Year 2 Biomass Utilization Final Technical Report summarizes multiple projects in biopower or bioenergy, transportation biofuels, and bioproducts. A prototype of a novel advanced power system, termed the high-temperature air furnace (HITAF), was tested for performance while converting biomass and coal blends to energy. Three biomass fuels--wood residue or hog fuel, corn stover, and switchgrass--and Wyoming subbituminous coal were acquired for combustion tests in the 3-million-Btu/hr system. Blend levels were 20% biomass--80% coal on a heat basis. Hog fuel was prepared for the upcoming combustion test by air-drying and processing through a hammer mill and screen. A K-Tron biomass feeder capable of operating in both gravimetric and volumetric modes was selected as the HITAF feed system. Two oxide dispersion-strengthened (ODS) alloys that would be used in the HITAF high-temperature heat exchanger were tested for slag corrosion rates. An alumina layer formed on one particular alloy, which was more corrosion-resistant than a chromia layer that formed on the other alloy. Research activities were completed in the development of an atmospheric pressure, fluidized-bed pyrolysis-type system called the controlled spontaneous reactor (CSR), which is used to process and condition biomass. Tree trimmings were physically and chemically altered by the CSR process, resulting in a fuel that was very suitable for feeding into a coal combustion or gasification system with little or no feed system modifications required. Experimental procedures were successful for producing hydrogen from biomass using the bacteria Thermotoga, a deep-ocean thermal vent organism. Analytical procedures for hydrogen were evaluated, a gas chromatography (GC) method was derived for measuring hydrogen yields, and adaptation culturing and protocols for mutagenesis were initiated to better develop strains that can use biomass cellulose. Fly ash derived from cofiring coal with waste paper, sunflower hulls, and wood waste showed a broad spectrum of chemical and physical characteristics, according to American Society for Testing and Materials (ASTM) C618 procedures. Higher-than-normal levels of magnesium, sodium, and potassium oxide were observed for the biomass-coal fly ash, which may impact utilization in cement replacement in concrete under ASTM requirements. Other niche markets for biomass-derived fly ash were explored. Research was conducted to develop/optimize a catalytic partial oxidation-based concept for a simple, low-cost fuel processor (reformer). Work progressed to evaluate the effects of temperature and denaturant on ethanol catalytic partial oxidation. A catalyst was isolated that had a yield of 24 mole percent, with catalyst coking limited to less than 15% over a period of 2 hours. In biodiesel research, conversion of vegetable oils to biodiesel using an alternative alkaline catalyst was demonstrated without the need for subsequent water washing. In work related to biorefinery technologies, a continuous-flow reactor was used to react ethanol with lactic acid prepared from an ammonium lactate concentrate produced in fermentations conducted at the EERC. Good yields of ester were obtained even though the concentration of lactic acid in the feed was low with respect to the amount of water present. Esterification gave lower yields of ester, owing to the lowered lactic acid content of the feed. All lactic acid fermentation from amylose hydrolysate test trials was completed. Management activities included a decision to extend several projects to December 31, 2003, because of delays in receiving biomass feedstocks for testing and acquisition of commercial matching funds. In strategic studies, methods for producing acetate esters for high-value fibers, fuel additives, solvents, and chemical intermediates were discussed with several commercial entities. Commercial industries have an interest in efficient biomass gasification designs but are waiting for economic incentives. Utility, biorefinery, pulp and paper, or o

  15. "In terms of the long-term outlook for biomass and biofuels, the largest proportion of Business Insights industry survey respondents

    E-Print Network [OSTI]

    production and consumption expansion will depend heavily on incentives frameworks in order to stimulate and hydrogen and production, storage and consumption issues. What impact will biofuels production have fuel production by 2017. A further 25% of respondents thought that biofuels would account for 2

  16. Hawaii Bioenergy Master Plan Bioenergy Technology

    E-Print Network [OSTI]

    technology assessment was conducted as part of the Hawaii Bioenergy Master Plan mandated by Act 253 collected in preparing this task and include: 1. The State should continue a bioenergy technology assessment-oil production X Y Charcoal production X X Y Bio-oil production for fuels X X Y Combustion X Y Renewable diesel

  17. Bioenergy Toolkit | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowaWisconsin:Pontiac Biomass Facility Jump to: navigation, searchBioenergy

  18. Bioenergy 2015 Agenda

    Office of Environmental Management (EM)

    price forecasts and potential impacts on the bioeconomy, and impacts of international biofuels policies. Moderator: Jim Lane, Editor and Publisher, Biofuels Digest Matt Carr,...

  19. "Title","Creator/Author","Publication Date","OSTI Identifier...

    Office of Scientific and Technical Information (OSTI)

    BIOMASS FUELS; 59 BASIC BIOLOGICAL SCIENCES; 29 ENERGY PLANNING, POLICY AND ECONOMY BIOMASS; BIOFUEL; BSM; SYSTEM DYNAMICS; BIOFUEL INCENTIVES; SCENARIOS; Bioenergy;...

  20. TITLE AUTHORS SUBJECT SUBJECT RELATED DESCRIPTION PUBLISHER AVAILABILI...

    Office of Scientific and Technical Information (OSTI)

    L Bush B Peterson S BIOMASS FUELS BASIC BIOLOGICAL SCIENCES ENERGY PLANNING POLICY AND ECONOMY BIOMASS BIOFUEL BSM SYSTEM DYNAMICS BIOFUEL INCENTIVES SCENARIOS Bioenergy Energy...

  1. Biomass for energy and materials Local technologies -

    E-Print Network [OSTI]

    - holds Industry Agricult. Pretreatment of biomass and waste CO2 Gasification Combustion MicrobialBiomass for energy and materials Local technologies - in a global perspective Erik Steen Jensen Bioenergy and biomass Biosystems Department Risř National Laboratory Denmark #12;Biomass - a local resource

  2. Agave Transcriptomes and microbiomes for bioenergy research

    E-Print Network [OSTI]

    Gross, Stephen

    2013-01-01

    other bioenergy feedstocks Dataset Viridiplantae 46% densityof Agave species as a bioenergy feedstocks. density Abstract

  3. Opportunities and barriers for sustainable international bioenergy trade and strategies to overcome them -A report prepared by IEA Bioenergy Task 40

    E-Print Network [OSTI]

    them - A report prepared by IEA Bioenergy Task 40 1 Opportunities and barriers for sustainable Ryckmans, Martijn Wagener, Arnaldo Walter, Jeremy Woods. For more information of IEA Bioenergy Task 40 recommends to the IEA, UNCTAD, WTO and national trade organisation to include (new) biomass types

  4. Biofuel impacts on water.

    SciTech Connect (OSTI)

    Tidwell, Vincent Carroll; Malczynski, Leonard A.; Sun, Amy Cha-Tien

    2011-01-01

    Sandia National Laboratories and General Motors Global Energy Systems team conducted a joint biofuels systems analysis project from March to November 2008. The purpose of this study was to assess the feasibility, implications, limitations, and enablers of large-scale production of biofuels. 90 billion gallons of ethanol (the energy equivalent of approximately 60 billion gallons of gasoline) per year by 2030 was chosen as the book-end target to understand an aggressive deployment. Since previous studies have addressed the potential of biomass but not the supply chain rollout needed to achieve large production targets, the focus of this study was on a comprehensive systems understanding the evolution of the full supply chain and key interdependencies over time. The supply chain components examined in this study included agricultural land use changes, production of biomass feedstocks, storage and transportation of these feedstocks, construction of conversion plants, conversion of feedstocks to ethanol at these plants, transportation of ethanol and blending with gasoline, and distribution to retail outlets. To support this analysis, we developed a 'Seed to Station' system dynamics model (Biofuels Deployment Model - BDM) to explore the feasibility of meeting specified ethanol production targets. The focus of this report is water and its linkage to broad scale biofuel deployment.

  5. "Frontiers in Bioenergy Symposium" co-hosted by C3Bio and IACT...

    Office of Science (SC) Website

    Page May 24-25, 2010 :: The Center for Direct Catalytic Conversion of Biomass to Biofuels (Purdue University) and the Institute for Atom-efficient Chemical Transformations...

  6. From the Lab to Your Gas Tank: 4 Bioenergy Testing Facilities...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    a combustible product. Processing and converting a biomass feedstock into a useable biofuel or bioproduct after the feedstock has been delivered to a biorefinery can be complex...

  7. U.S.-France Science & Technology Workshop on Bioenergy | U.S...

    Office of Science (SC) Website

    Page On October 1 - 2, 2015 the Center for Direct Catalytic Conversion of Biomass to Biofuels (C3Bio) at Purdue University and Purdue's Global Engineering Program...

  8. Overview of Governor's Biofuels Coalition and Updates

    Broader source: Energy.gov [DOE]

    At the August 7, 2008 quarterly joint Web conference of DOE's Biomass and Clean Cities programs, Stacey Simms (Colorado Governor's Energy Office) provided an update on Biofuels in Colorado.

  9. World Biofuels Study

    SciTech Connect (OSTI)

    Alfstad,T.

    2008-10-01

    This report forms part of a project entitled 'World Biofuels Study'. The objective is to study world biofuel markets and to examine the possible contribution that biofuel imports could make to help meet the Renewable Fuel Standard (RFS) of the Energy Independence and Security Act of 2007 (EISA). The study was sponsored by the Biomass Program of the Assistant Secretary for Energy Efficiency and Renewable Energy (EERE), U.S. Department of Energy. It is a collaborative effort among the Office of Policy and International Affairs (PI), Department of Energy and Oak Ridge National Laboratory (ORNL), National Renewable Energy Laboratory (NREL) and Brookhaven National Laboratory (BNL). The project consisted of three main components: (1) Assessment of the resource potential for biofuel feedstocks such as sugarcane, grains, soybean, palm oil and lignocellulosic crops and development of supply curves (ORNL). (2) Assessment of the cost and performance of biofuel production technologies (NREL). (3) Scenario-based analysis of world biofuel markets using the ETP global energy model with data developed in the first parts of the study (BNL). This report covers the modeling and analysis part of the project conducted by BNL in cooperation with PI. The Energy Technology Perspectives (ETP) energy system model was used as the analytical tool for this study. ETP is a 15 region global model designed using the MARKAL framework. MARKAL-based models are partial equilibrium models that incorporate a description of the physical energy system and provide a bottom-up approach to study the entire energy system. ETP was updated for this study with biomass resource data and biofuel production technology cost and performance data developed by ORNL and NREL under Tasks 1 and 2 of this project. Many countries around the world are embarking on ambitious biofuel policies through renewable fuel standards and economic incentives. As a result, the global biofuel demand is expected to grow very rapidly over the next two decades, provided policymakers stay the course with their policy goals. This project relied on a scenario-based analysis to study global biofuel markets. Scenarios were designed to evaluate the impact of different policy proposals and market conditions. World biofuel supply for selected scenarios is shown in Figure 1. The reference case total biofuel production increases from 12 billion gallons of ethanol equivalent in 2005 to 54 billion gallons in 2020 and 83 billion gallons in 2030. The scenarios analyzed show volumes ranging from 46 to 64 billion gallons in 2020, and from about 72 to about 100 billion gallons in 2030. The highest production worldwide occurs in the scenario with high feedstock availability combined with high oil prices and more rapid improvements in cellulosic biofuel conversion technologies. The lowest global production is found in the scenario with low feedstock availability, low oil prices and slower technology progress.

  10. UCSD Biomass to Power Economic Feasibility Study

    E-Print Network [OSTI]

    Cattolica, Robert

    2009-01-01

    Figure 1: West Biofuels Biomass Gasification to Power process will utilize  gasification technology provided by is  pioneering the gasification technology that has been 

  11. Bioenergy 2015 Press Kit

    Broader source: Energy.gov [DOE]

    This U.S. Department of Energy Bioenergy 2015 Press Kit provides contacts and resources to media who cover conference-related news.

  12. Improving biofuel feedstocks by modifying xylan biosynthesis (2013 DOE JGI Genomics of Energy and Environment 8th Annual User Meeting)

    SciTech Connect (OSTI)

    Lau, Jane [JBEI

    2013-03-01

    Jane Lau of the Joint BioEnergy Institute on "Improving biofuel feedstocks by modifying xylan biosynthesis" at the 8th Annual Genomics of Energy & Environment Meeting on March 28, 2013 in Walnut Creek, Calif.

  13. D o s s i e r Second and Third Generation Biofuels: Towards Sustainbility and Competitiveness

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    D o s s i e r Second and Third Generation Biofuels: Towards Sustainbility and Competitiveness the Hemicellulosic Fraction of Biomass into Biofuel F. Ben Chaabane and R. Marchal IFP Energies nouvelles the Hemicellulosic Fraction of Biomass into Biofuel -- Hemicelluloses are polymers composed mainly of C5 sugars

  14. Biotests for hazard assessment of biofuel fermentation Sebastian Heger,a

    E-Print Network [OSTI]

    Angenent, Lars T.

    ecotoxicological investigation of a biomass-to-biofuel production process with respect to the generation and biofuel production streams should be conducted very early in the biofuel life cycle in parallelBiotests for hazard assessment of biofuel fermentation Sebastian Heger,a Kerstin Bluhm,a Matthew T

  15. Size Reduction and Densification of Lignocellulosic Biomass Feedstock for Biopower, Bioproducts, and

    E-Print Network [OSTI]

    consumption and bulk density for com- pression of biomass. INTRODUCTION Global interest in bioenergy has and inherent energy density of the biomass feedstock, allowing optimization of transportation, storage perform size reduction and densifi- cation of huge volumes of biomass for commercial bioenergy

  16. Bioenergy Technologies Office R&D Pathways: Ex-Situ Catalytic...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ex-Situ Catalytic Fast Pyrolysis Bioenergy Technologies Office R&D Pathways: Ex-Situ Catalytic Fast Pyrolysis In ex-situ catalytic fast pyrolysis, biomass is heated with catalysts...

  17. Bioenergy Demand in a Market Driven Forest Economy (U.S. South)

    Broader source: Energy.gov [DOE]

    Breakout Session 1A: Biomass Feedstocks for the Bioeconomy Bioenergy Demand in a Market Driven Forest Economy (U.S. South) Robert C. Abt, Professor of Natural Resource Economics and Management, North Carolina State University

  18. 08-ERD-071 Final Report: New Molecular Probes and Catalysts for Bioenergy Research

    SciTech Connect (OSTI)

    Thelen, M P; Rowe, A A; Siebers, A K; Jiao, Y

    2011-03-07

    A major thrust in bioenergy research is to develop innovative methods for deconstructing plant cell wall polymers, such as cellulose and lignin, into simple monomers that can be biologically converted to ethanol and other fuels. Current techniques for monitoring a broad array of cell wall materials and specific degradation products are expensive and time consuming. To monitor various polymers and assay their breakdown products, molecular probes for detecting specific carbohydrates and lignins are urgently needed. These new probes would extend the limited biochemical techniques available, and enable realtime imaging of ultrastructural changes in plant cells. Furthermore, degradation of plant biomass could be greatly accelerated by the development of catalysts that can hydrolyze key cell wall polysaccharides and lignin. The objective of this project was to develop cheap and efficient DNA reagents (aptamers) used to detect and quantify polysaccharides, lignin, and relevant products of their breakdown. A practical goal of the research was to develop electrochemical aptamer biosensors, which could be integrated into microfluidic devices and used for high-throughput screening of enzymes or biological systems that degrade biomass. Several important model plant cell wall polymers and compounds were targeted for specific binding and purification of aptamers, which were then tested by microscopic imaging, circular dichroism, surface plasmon resonance, fluorescence anisotropy, and electrochemical biosensors. Using this approach, it was anticiated that we could provide a basis for more efficient and economically viable biofuels, and the technologies established could be used to design molecular tools that recognize targets sought in medicine or chemical and biological defense projects.

  19. Biomass Processing Photolibrary

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Research related to bioenergy is a major focus in the U.S. as science agencies, universities, and commercial labs seek to create new energy-efficient fuels. The Biomass Processing Project is one of the funded projects of the joint USDA-DOE Biomass Research and Development Initiative. The Biomass Processing Photolibrary has numerous images, but there are no accompanying abstracts to explain what you are seeing. The project website, however, makes available the full text of presentations and publications and also includes an exhaustive biomass glossary that is being developed into an ASAE Standard.

  20. Chapter 9, Land and Bioenergy in Scientific Committee on Problems of the Environment (SCOPE), Bioenergy & Sustainability: bridging the gaps.

    SciTech Connect (OSTI)

    Woods J, Lynd LR; Laser, M; Batistella M, De Castro D; Kline, Keith L; Faaij, Andre

    2015-01-01

    In this chapter we address the questions of whether and how enough biomass could be produced to make a material contribution to global energy supply on a scale and timeline that is consistent with prominent low carbon energy scenarios. We assess whether bioenergy provision necessarily conflicts with priority ecosystem services including food security for the world s poor and vulnerable populations. In order to evaluate the potential land demand for bioenergy, we developed a set of three illustrative scenarios using specified growth rates for each bioenergy sub-sector. In these illustrative scenarios, bioenergy (traditional and modern) increases from 62 EJ/yr in 2010 to 100, 150 and 200 EJ/yr in 2050. Traditional bioenergy grows slowly, increasing by between 0.75% and 1% per year, from 40 EJ/yr in 2010 to 50 or 60 EJ/ yr in 2050, continuing as the dominant form of bioenergy until at least 2020. Across the three scenarios, total land demand is estimated to increase by between 52 and 200 Mha which can be compared with a range of potential land availability estimates from the literature of between 240 million hectares to over 1 billion hectares. Biomass feedstocks arise from combinations of residues and wastes, energy cropping and increased efficiency in supply chains for energy, food and materials. In addition, biomass has the unique capability of providing solid, liquid and gaseous forms of modern energy carriers that can be transformed into analogues to existing fuels. Because photosynthesis fixes carbon dioxide from the atmosphere, biomass supply chains can be configured to store at least some of the fixed carbon in forms or ways that it will not be reemitted to the atmosphere for considerable periods of time, so-called negative emissions pathways. These attributes provide opportunities for bioenergy policies to promote longterm and sustainable options for the supply of energy for the foreseeable future.

  1. Functional Genomics of Drought Tolerance in Bioenergy Crops

    SciTech Connect (OSTI)

    Yin, Hengfu [ORNL; Chen, Rick [ORNL; Yang, Jun [ORNL; Weston, David [ORNL; Chen, Jay [ORNL; Muchero, Wellington [ORNL; Ye, Ning [ORNL; Tschaplinski, Timothy J [ORNL; Wullschleger, Stan D [ORNL; Cheng, Zong-Ming [ORNL; Tuskan, Gerald A [ORNL; Yang, Xiaohan [ORNL

    2014-01-01

    With the predicted trends in climate change, drought will increasingly impose a grand challenge to biomass production. Most of the bioenergy crops have some degree of drought susceptibility with low water-use efficiency (WUE). It is imperative to improve drought tolerance and WUE in bioenergy crops for sustainable biomass production in arid and semi-arid regions with minimal water input. Genetics and functional genomics can play a critical role in generating knowledge to inform and aid genetic improvement of drought tolerance in bioenergy crops. The molecular aspect of drought response has been extensively investigated in model plants like Arabidopsis, yet our understanding of the molecular mechanisms underlying drought tolerance in bioenergy crops are limited. Crops exhibit various responses to drought stress depending on species and genotype. A rational strategy for studying drought tolerance in bioenergy crops is to translate the knowledge from model plants and pinpoint the unique features associated with individual species and genotypes. In this review, we summarize the general knowledge about drought responsive pathways in plants, with a focus on the identification of commonality and specialty in drought responsive mechanisms among different species and/or genotypes. We describe the genomic resources developed for bioenergy crops and discuss genetic and epigenetic regulation of drought responses. We also examine comparative and evolutionary genomics to leverage the ever-increasing genomics resources and provide new insights beyond what has been known from studies on individual species. Finally, we outline future exploration of drought tolerance using the emerging new technologies.

  2. Biofuels in Oregon and Washington

    E-Print Network [OSTI]

    's Office of Energy Efficiency and Renewable Energy, Office of Biomass Programs Prepared by Pacific within the Office of Energy Efficiency and Renewable Energy, particularly Mr. Zia Haq, for co- fundingPNNL-17351 Biofuels in Oregon and Washington A Business Case Analysis of Opportunities

  3. Biofuels: Microbially Generated Methane and

    E-Print Network [OSTI]

    Wood, Thomas K.

    ) and methane (CH4) from renewable biomass has the potential to con- tribute to reducing dependence on fossilBiofuels: Microbially Generated Methane and Hydrogen Michael J McAnulty, Pennsylvania State, USA James G Ferry, Pennsylvania State University, University Park, Pennsylvania, USA The production

  4. National Advanced Biofuels Consortium (NABC), Biofuels for Advancing America (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-06-01

    Introduction to the National Advanced Biofuels Consortium, a collaboration between 17 national laboratory, university, and industry partners that is conducting cutting-edge research to develop infrastructure-compatible, sustainable, biomass-based hydrocarbon fuels.

  5. Feedstock Logistics Datasets from DOE's Bioenergy Knowledge Discovery Framework (KDF)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Bioenergy Knowledge Discovery Framework invites users to discover the power of bioenergy through an interface that provides extensive access to research data and literature, GIS mapping tools, and collaborative networks. The Bioenergy KDF supports efforts to develop a robust and sustainable bioenergy industry. The KDF facilitates informed decision making by providing a means to synthesize, analyze, and visualize vast amounts of information in a relevant and succinct manner. It harnesses Web 2.0 and social networking technologies to build a collective knowledge system that can better examine the economic and environmental impacts of development options for biomass feedstock production, biorefineries, and related infrastructure. Holdings include datasets, models, and maps. [from https://www.bioenergykdf.net/content/about

  6. Feedstock Production Datasets from the Bioenergy Knowledge Discovery Framework

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Bioenergy Knowledge Discovery Framework invites users to discover the power of bioenergy through an interface that provides extensive access to research data and literature, GIS mapping tools, and collaborative networks. The Bioenergy KDF supports efforts to develop a robust and sustainable bioenergy industry. The KDF facilitates informed decision making by providing a means to synthesize, analyze, and visualize vast amounts of information in a relevant and succinct manner. It harnesses Web 2.0 and social networking technologies to build a collective knowledge system that can better examine the economic and environmental impacts of development options for biomass feedstock production, biorefineries, and related infrastructure. [copied from https://www.bioenergykdf.net/content/about] Holdings include datasets, models, and maps and the collections are growing due to both DOE contributions and data uploads from individuals.

  7. Lifecycle Analyses of Biofuels

    E-Print Network [OSTI]

    Delucchi, Mark

    2006-01-01

    08 Lifecycle Analyses of Biofuels Draft Report (May be citedLIFECYCLE ANALYSES OF BIOFUELS Draft manuscript (may belifecycle analysis (LCA) of biofuels for transportation has

  8. Whole Algae Hydrothermal Liquefaction Technology Pathway Biddy...

    Office of Scientific and Technical Information (OSTI)

    MICROALGAL-DERIVED BIOFUEL; HYDROCARBON FUEL; BIOMASS TECHNOLOGIES OFFICE; NATIONAL RENEWABLE ENERGY LABORATORY; PACIFIC NORTHWEST NATIONAL LABORATORY; Bioenergy MICROALGAE;...

  9. TITLE AUTHORS SUBJECT SUBJECT RELATED DESCRIPTION PUBLISHER AVAILABILI...

    Office of Scientific and Technical Information (OSTI)

    MICROALGAL DERIVED BIOFUEL HYDROCARBON FUEL BIOMASS TECHNOLOGIES OFFICE NATIONAL RENEWABLE ENERGY LABORATORY PACIFIC NORTHWEST NATIONAL LABORATORY Bioenergy MICROALGAE...

  10. Environmental Life Cycle Comparison of Algae to Other Bioenergy

    E-Print Network [OSTI]

    Clarens, Andres

    Environmental Life Cycle Comparison of Algae to Other Bioenergy Feedstocks A N D R E S F . C L A R December 6, 2009. Accepted December 15, 2009. Algae are an attractive source of biomass energy since. In spite of these advantages, algae cultivation has not yet been compared with conventional crops from

  11. HAWAII NATURAL ENERGY INSTITUTEwww.hnei.hawaii.edu Bioenergy Research

    E-Print Network [OSTI]

    Starch Fiber Oil Hydrolysis Transesterification Combustion Gasification Pyrolysis Ethanol Biodiesel Production - CTAHR Gasification & Contaminant Removal - HNEI Technology Assessment Fuel Fit for Purpose, banagrass, Eucalyptus, and Leucaena. Biomass and Bioenergy. 33 pp. 247-254. Chillingworth, M. and S.Q. Turn

  12. Biomass Program Recovery Act Factsheet

    SciTech Connect (OSTI)

    2010-03-01

    The Biomass Program has awarded about $718 million in American Recovery and Reinvestment Act (Recovery Act) funds. The projects the Program is supporting are intended to: Accelerate advanced biofuels research, development, and demonstration; Speed the deployment and commercialization of advanced biofuels and bioproducts; Further the U.S. bioindustry through market transformation and creating or saving a range of jobs.

  13. Brazil’s Biofuels Scenario: What are the Main Drivers Which will Shape Investments in the Long Term?

    Broader source: Energy.gov [DOE]

    Breakout Session 3C—Fostering Technology Adoption III: International Market Opportunities in Bioenergy Brazil’s Biofuels Scenario: What are the Main Drivers Which will Shape Investments in the Long Term? Artur Milanez, Manager of Biofuels Department, Brazilian Development Bank

  14. Bioenergy & Clean Cities

    Broader source: Energy.gov [DOE]

    DOE's Bioenergy Technologies Office and the Clean Cities program regularly conduct a joint Web conference for state energy office representatives and Clean Cities coordinators. The Web conferences...

  15. Bioenergy 2015 Confirmed Speakers

    Office of Energy Efficiency and Renewable Energy (EERE)

    A list of confirmed speakers for Bioenergy 2015: Opportunities in a Changing Energy Landscape, which will be held on June 23–24, 2015, at the Walter E. Washington Convention Center in Washington, D.C.

  16. Mobility chains analysis of technologies for passenger cars and light duty vehicles fueled with biofuels : application of the Greet model to project the role of biomass in America's energy future (RBAEF) project.

    SciTech Connect (OSTI)

    Wu, M.; Wu, Y.; Wang, M; Energy Systems

    2008-01-31

    The Role of Biomass in America's Energy Future (RBAEF) is a multi-institution, multiple-sponsor research project. The primary focus of the project is to analyze and assess the potential of transportation fuels derived from cellulosic biomass in the years 2015 to 2030. For this project, researchers at Dartmouth College and Princeton University designed and simulated an advanced fermentation process to produce fuel ethanol/protein, a thermochemical process to produce Fischer-Tropsch diesel (FTD) and dimethyl ether (DME), and a combined heat and power plant to co-produce steam and electricity using the ASPEN Plus{trademark} model. With support from the U.S. Department of Energy (DOE), Argonne National Laboratory (ANL) conducted, for the RBAEF project, a mobility chains or well-to-wheels (WTW) analysis using the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model developed at ANL. The mobility chains analysis was intended to estimate the energy consumption and emissions associated with the use of different production biofuels in light-duty vehicle technologies.

  17. Climate implications of algae-based bioenergy systems Andres Clarens, PhD

    E-Print Network [OSTI]

    Walter, M.Todd

    Climate implications of algae-based bioenergy systems Andres Clarens, PhD Assistant Professor Civil of algae and other nonconventional feedstocks, are being developed. This talk will explore several systems priorities. This is an especially challenging problem for algae-based biofuels because production pathways

  18. BETO Ranks High in Biofuels Digest's Top 125 in the Advanced...

    Office of Environmental Management (EM)

    person in the bioeconomy. BETO partners with the U.S. Department of Agriculture on Biomass Research and Development. Each year, Biofuels Digest, a widely read online...

  19. "Title","Creator/Author","Publication Date","OSTI Identifier...

    Office of Scientific and Technical Information (OSTI)

    Office of Energy Efficiency and Renewable Energy Bioenergy Technologies Office","09 BIOMASS FUELS BIOFUELS CONVERSION; ADVANCED BIOFUELS COSTS; HYDROTHERMAL LIQUEFACTION REACTOR...

  20. Bioenergy Frequently Asked Questions

    Office of Energy Efficiency and Renewable Energy (EERE)

    Advanced biofuels will help to provide benefits that are of strategic importance to the United States, including economic growth, energy security, environmental quality, and technology leadership....

  1. Bioenergy 2015 Agenda

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Dr. Robert Graham, Chief Executive Officer and Chairman, Ensyn Corporation 2-C: Biogas and Beyond: Challenges and Opportunities for Advanced Biofuels from Wet-Waste...

  2. The Biofuels Revolution: Understanding the Social, Cultural and Economic Impacts of Biofuels Development on Rural Communities

    SciTech Connect (OSTI)

    Dr. Theresa L. Selfa; Dr. Richard Goe; Dr. Laszlo Kulcsar; Dr. Gerad Middendorf; Dr. Carmen Bain

    2013-02-11

    The aim of this research was an in-depth analysis of the impacts of biofuels industry and ethanol plants on six rural communities in the Midwestern states of Kansas and Iowa. The goal was to provide a better understanding of the social, cultural, and economic implications of biofuels development, and to contribute to more informed policy development regarding bioenergy.Specific project objectives were: 1. To understand how the growth of biofuel production has affected and will affect Midwestern farmers and rural communities in terms of economic, demographic, and socio-cultural impacts; 2. To determine how state agencies, groundwater management districts, local governments and policy makers evaluate or manage bioenergy development in relation to competing demands for economic growth, diminishing water resources, and social considerations; 3. To determine the factors that influence the water management practices of agricultural producers in Kansas and Iowa (e.g. geographic setting, water management institutions, competing water-use demands as well as producersâ?? attitudes, beliefs, and values) and how these influences relate to bioenergy feedstock production and biofuel processing; 4. To determine the relative importance of social-cultural, environmental and/or economic factors in the promotion of biofuels development and expansion in rural communities; The research objectives were met through the completion of six detailed case studies of rural communities that are current or planned locations for ethanol biorefineries. Of the six case studies, two will be conducted on rural communities in Iowa and four will be conducted on rural communities in Kansas. A â??multi-methodâ?ť or â??mixed methodâ?ť research methodology was employed for each case study.

  3. Method for producing bio-fuel that integrates heat from carbon-carbon bond-forming reactions to drive biomass gasification reactions

    DOE Patents [OSTI]

    Cortright, Randy D. (Madison, WI); Dumesic, James A. (Verona, WI)

    2011-01-18

    A low-temperature catalytic process for converting biomass (preferably glycerol recovered from the fabrication of bio-diesel) to synthesis gas (i.e., H.sub.2/CO gas mixture) in an endothermic gasification reaction is described. The synthesis gas is used in exothermic carbon-carbon bond-forming reactions, such as Fischer-Tropsch, methanol, or dimethylether syntheses. The heat from the exothermic carbon-carbon bond-forming reaction is integrated with the endothermic gasification reaction, thus providing an energy-efficient route for producing fuels and chemicals from renewable biomass resources.

  4. Method for producing bio-fuel that integrates heat from carbon-carbon bond-forming reactions to drive biomass gasification reactions

    DOE Patents [OSTI]

    Cortright, Randy D. (Madison, WI); Dumesic, James A. (Verona, WI)

    2012-04-10

    A low-temperature catalytic process for converting biomass (preferably glycerol recovered from the fabrication of bio-diesel) to synthesis gas (i.e., H.sub.2/CO gas mixture) in an endothermic gasification reaction is described. The synthesis gas is used in exothermic carbon-carbon bond-forming reactions, such as Fischer-Tropsch, methanol, or dimethylether syntheses. The heat from the exothermic carbon-carbon bond-forming reaction is integrated with the endothermic gasification reaction, thus providing an energy-efficient route for producing fuels and chemicals from renewable biomass resources.

  5. Method for producing bio-fuel that integrates heat from carbon-carbon bond-forming reactions to drive biomass gasification reactions

    DOE Patents [OSTI]

    Cortright, Randy D.; Dumesic, James A.

    2013-04-02

    A low-temperature catalytic process for converting biomass (preferably glycerol recovered from the fabrication of bio-diesel) to synthesis gas (i.e., H.sub.2/CO gas mixture) in an endothermic gasification reaction is described. The synthesis gas is used in exothermic carbon-carbon bond-forming reactions, such as Fischer-Tropsch, methanol, or dimethylether syntheses. The heat from the exothermic carbon-carbon bond-forming reaction is integrated with the endothermic gasification reaction, thus providing an energy-efficient route for producing fuels and chemicals from renewable biomass resources.

  6. Abengoa Bioenergy Biomass of Kansas, LLC

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing ToolInternationalReportOffice |4-01r2.pdfATVM GuidanceDepartment of

  7. Biomass Basics: The Facts About Bioenergy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based Fuels Researchof Energy|Make FuelsBioindustryWBSBiomass 2014Basics:

  8. Biomass IBR Fact Sheet: Abengoa Bioenergy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based Fuels Researchof Energy|Make6, 2015 Feedstock Supply and

  9. NREL: Biomass Research - National Bioenergy Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJessework usesof EnergyY-12 NationalNO FEARIntegrated Biorefinery

  10. Microsoft PowerPoint - Quinault Indian Nation Biomass Renewable...

    Office of Environmental Management (EM)

    high grade bio-fuel feedstock such as Nile Fiber in support of determining biomass pellet mixture components * Development of operational processes and economic viability in...

  11. Simulating and evaluating best management practices for integrated landscape management scenarios in biofuel feedstock production

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ha, Miae; Wu, May

    2015-09-08

    Sound crop and land management strategies can maintain land productivity and improve the environmental sustainability of agricultural crop and feedstock production. With this study, it evaluates a strategy of incorporating landscape design and management concepts into bioenergy feedstock production. It examines the effect of land conversion and agricultural best management practices (BMPs) on water quality (nutrients and suspended sediments) and hydrology. The strategy was applied to the watershed of the South Fork Iowa River in Iowa, where the focus was on converting low-productivity land to provide cellulosic biomass and implementing riparian buffers. The Soil and Water Assessment Tool (SWAT) wasmore »employed to simulate the impact at watershed and sub-basin scales. The study compared the representation of buffers by using trapping efficiency and area ratio methods in SWAT. Landscape design and management scenarios were developed to quantify water quality under (i) current land use, (ii) partial land conversion to switchgrass, and (iii) riparian buffer implementation. Results show that implementation of vegetative barriers and riparian buffer can trap the loss of total nitrogen, total phosphorus, and sediment significantly. The effect increases with the increase of buffer area coverage. Implementing riparian buffer at 30 m width is able to produce 4 million liters of biofuels. When low-productivity land (15.2% of total watershed land area) is converted to grow switchgrass, suspended sediment, total nitrogen, total phosphorus, and nitrate loadings are reduced by 69.3%, 55.5%, 46.1%, and 13.4%, respectively. The results highlight the significant role of lower-productivity land and buffers in cellulosic biomass and provide insights into the design of an integrated landscape with a conservation buffer for future bioenergy feedstock production.« less

  12. Technical Feasibility Study on Biofuels Production from Pyrolysis of Nannochloropsis oculata and Algal Bio-oil Upgrading 

    E-Print Network [OSTI]

    Maguyon, Monet

    2013-12-02

    Increasing environmental concerns over greenhouse gas emissions, depleting petroleum reserves and rising oil prices has stimulated interest on biofuels production from biomass sources. This study explored on biofuels production from pyrolysis...

  13. Biofuels: A Solution for Climate Change

    SciTech Connect (OSTI)

    Woodward, S.

    1999-10-04

    Our lives are linked to weather and climate, and to energy use. Since the late 1970s, the U.S. Department of Energy (DOE) has invested in research and technology related to global climate change. DOE's Office Fuels Development (OFD) manages the National Biofuels Program and is the lead technical advisor on the development of biofuels technologies in the United States. Together with industry and other stakeholders, the program seeks to establish a major biofuels industry. Its goals are to develop and commercialize technologies for producing sustainable, domestic, environmentally beneficial, and economically viable fuels from dedicated biomass feedstocks.

  14. National Bioenergy Center, Biochemical Platform Integration Project: Quarterly Update, Summer 2011 (Newsletter)

    SciTech Connect (OSTI)

    Not Available

    2011-09-01

    Summer 2011 issue of the National Bioenergy Center Biochemical Platform Integration Project quarterly update. Issue topics: evaluating new analytical techniques for measuring soluble sugars in the liquid portion of biomass hydrolysates, and measurement of the fraction of insoluble solids in biomass slurries.

  15. Synthesis of three advanced biofuels from ionic liquid-pretreated switchgrass using engineered Escherichia coli

    E-Print Network [OSTI]

    Bokinsky, Gregory

    One approach to reducing the costs of advanced biofuel production from cellulosic biomass is to engineer a single microorganism to both digest plant biomass and produce hydrocarbons that have the properties of petrochemical ...

  16. Thermochemical Conversion: Using Heat and Catalysts to Make Biofuels and Bioproducts

    SciTech Connect (OSTI)

    2013-07-29

    This fact sheet discusses the Bioenergy Technologies Office's thermochemical conversion critical technology goal. And, how through the application of heat, robust thermochemical processes can efficiently convert a broad range of biomass.

  17. The Effects of Timber as a Biofuel on the Occupancy and Habitat Suitability of the

    E-Print Network [OSTI]

    Gray, Matthew

    Residues ­ Timber Residues Introduction *Perlack et al., Biomass as Feedstock for a Bioenergy Model for Northern Long-Eared Bats in Missouri: ­ Mature forests for roosting/foraging (SI1) ­ Density

  18. MSU biofuels research fills need for new sources July 28, 2006 --By Carol Flaherty

    E-Print Network [OSTI]

    Maxwell, Bruce D.

    MSU biofuels research fills need for new sources July 28, 2006 -- By Carol Flaherty The words are becoming familiar, even if the products aren't: biofuel, biobased, biodiesel, bioethanol. All refer to fuel collaborators are investigating Montana's potential for producing biofuels using "biomass," which refers to all

  19. Atmospheric Environment 41 (2007) 73897400 Fire and biofuel contributions to annual mean aerosol mass

    E-Print Network [OSTI]

    Jacob, Daniel J.

    2007-01-01

    Atmospheric Environment 41 (2007) 7389­7400 Fire and biofuel contributions to annual mean aerosol estimate the contributions from biomass burning (summer wildfires, other fires, residential biofuel, and industrial biofuel) to seasonal and annual aerosol concentrations in the United States. Our approach

  20. Assessments of biofuel sustainability: air pollution and health impacts

    E-Print Network [OSTI]

    Tsao, Chi-Chung

    2012-01-01

    H. N. ; Braga, A. L. F. , Air pollution from biomass burningY. , Increased estimates of air-pollution emissions from10. Tsao, C. -C. , Air pollution emissions from biofuels

  1. Second Generation Biofuels: High-Efficiency Microalgae for Biodiesel Production

    E-Print Network [OSTI]

    Kudela, Raphael M.

    range of feedstocks for the production of biodiesel, bioethanol, biomethane and biohydrogen. Biodiesel production systems using microalgae. Keywords Algae . Carbon sequestration . Biofuel . Biogas . Biohydrogen . Biomethane . Bioreactor. Lipid . Oil . Raceway pond . Triacylglycerides . Review Abbreviations BTL biomass

  2. Biofuels Digest | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowaWisconsin:Pontiac Biomass Facility Jump to: navigation,BioenergyDigest Jump

  3. Biofuels Overview CLIMATETECHBOOK

    E-Print Network [OSTI]

    Page | 1 May 2009 Biofuels Overview CLIMATETECHBOOK What are Biofuels? A biofuel is defined as any dependence on petroleum-based fuels, biofuels are gaining increasing attention as one possible solution. Biofuels offer a way to produce transportation fuels from renewable sources or waste materials and to help

  4. ORNL Bioenergy technologies

    SciTech Connect (OSTI)

    Davison, Brian; Narula, Chaintanya; Langholtz, Matt; Dale, Virginia

    2014-07-02

    ORNL researchers discuss breakthroughs in biomass conversion, feedstocks, logistics and sustainability

  5. ORNL Bioenergy technologies

    ScienceCinema (OSTI)

    Davison, Brian; Narula, Chaintanya; Langholtz, Matt; Dale, Virginia

    2014-07-15

    ORNL researchers discuss breakthroughs in biomass conversion, feedstocks, logistics and sustainability

  6. 2007 Biomass Program Overview

    SciTech Connect (OSTI)

    none,

    2009-10-27

    The Biomass Program is actively working with public and private partners to meet production and technology needs. With the corn ethanol market growing steadily, researchers are unlocking the potential of non-food biomass sources, such as switchgrass and forest and agricultural residues. In this way, the Program is helping to ensure that cost-effective technologies will be ready to support production goals for advanced biofuels.

  7. Acting Biomass Program Manager Dr. Valerie Reed to Host Live...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Acting Biomass Program Manager Dr. Valerie Reed to Host Live Twitter Q&A on Advanced Biofuels Acting Biomass Program Manager Dr. Valerie Reed to Host Live Twitter Q&A on Advanced...

  8. Biofuels and Transportation

    E-Print Network [OSTI]

    Minnesota, University of

    Biofuels and Transportation Impacts and Uncertainties Some Observations of a Reformed Ethanol and Logistics Symposium 3 Topics · Why Biofuels · Ethanol Economics · Ethanol Transportation Equipment Biofuels? · National Security · Reduce Imports of oil · Peak Oil · Replace Fossil Resources

  9. Lifecycle Analyses of Biofuels

    E-Print Network [OSTI]

    Delucchi, Mark

    2006-01-01

    Balances for a Range of Biofuel Options, Project Number8. F UELCYCLE EMISSIONS FOR BIOFUEL VEHICLES IN DIFFERENTch. and LEM % ch. For a few biofuel lifecycles there can be

  10. DOE Thermochemical Users Facility A Proving Ground for Biomass Technology

    SciTech Connect (OSTI)

    None

    2003-11-01

    The National Bioenergy Center at the National Renewable Energy Laboratory (NREL) provides a state-of-the-art Thermochemical Users Facility (TCUF) for converting renewable, biomass feedstocks into a variety of products.

  11. Feedstock Supply and Logistics: Biomass as a Commodity

    SciTech Connect (OSTI)

    2013-05-06

    The Bioenergy Technologies Office and its partners are developing the technologies and systems needed to sustainably and economically deliver a broad range of biomass in formats that enable their efficient use as feedstocks for biorefineries.

  12. Biomass Scenario Model

    SciTech Connect (OSTI)

    2015-09-01

    The Biomass Scenario Model (BSM) is a unique, carefully validated, state-of-the-art dynamic model of the domestic biofuels supply chain which explicitly focuses on policy issues, their feasibility, and potential side effects. It integrates resource availability, physical/technological/economic constraints, behavior, and policy. The model uses a system dynamics simulation (not optimization) to model dynamic interactions across the supply chain.

  13. Bioenergy 2015 Agenda | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bioenergy 2015 Agenda Bioenergy 2015 Agenda Working agenda for Bioenergy 2015: Opportunities in a Changing Energy Landscape. The conference will be held on June 23-24, 2015, at the...

  14. Algal Biofuels Strategy Proceedings from the March 26–27, 2014, Workshop Charleston, South Carolina

    SciTech Connect (OSTI)

    none,

    2014-06-01

    This report is based on the proceedings of the U.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy’s Bioenergy Technologies Office’s Algal Biofuel Strategy Workshop on March 26–27, 2014, in Charleston, South Carolina. The workshop objective was to convene stakeholders to engage in discussion on strategies over the next 5 to 10 years to achieve affordable, scalable, and sustainable algal biofuels.

  15. F.O. Licht's 17th Annual World Ethanol & Biofuels Conference

    Broader source: Energy.gov [DOE]

    The F.O. Licht's 17th Annual World Ethanol & Biofuels Conference will be held on November 3–6, 2014, in Budapest, Hungary. Valerie Reed, Deputy Director of the Bioenergy Technolgies Office will be serving on two panels: "Maintaining Next Generation Investments in the Years Ahead" on November 4 and "Putting Together a Constant Supply of Feedstocks for Advanced and Cellulosic Biofuels, Biochemicals and Aviation Fuels" on November 5.

  16. Breaking the Biological Barriers to Cellulosic Ethanol: A Joint Research Agenda. A Research Roadmap Resulting from the Biomass to Biofuels Workshop

    SciTech Connect (OSTI)

    2006-06-30

    A robust fusion of the agricultural, industrial biotechnology, and energy industries can create a new strategic national capability for energy independence and climate protection. In his State of the Union Address (*Bush 2006), President George W. Bush outlined the Advanced Energy Initiative, which seeks to reduce our national dependence on imported oil by accelerating the development of domestic,renewable alternatives to gasoline and diesel fuels. The president has set a national goal of developing cleaner, cheaper, and more reliable alternative energy sources to substantially replace oil imports in the coming years.Fuels derived from cellulosic biomass—the fibrous, woody, and generally inedible portions of plant matter—offer one such alternative to conventional energy sources that can dramatically impact national economic growth, national energy security, and environmental goals. Cellulosic biomass is an attractive energy feedstock because it is an abundant, domestic, renewable source that can be converted to liquid transportation fuels.These fuels can be used readily by current-generation vehicles and distributed through the existing transportation-fuel infrastructure.

  17. Strategic Perspectives on Biofuels

    Office of Energy Efficiency and Renewable Energy (EERE)

    Plenary V: Biofuels and Sustainability: Acknowledging Challenges and Confronting MisconceptionsQuantitative Analysis of Biofuel Sustainability, Including Land Use Change GHG EmissionsLee R. Lynd,...

  18. Algal Biofuels Strategy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Algal Biofuels Strategy Report on Workshop Results and Recent Work Roxanne Dempsey Technology Manager 2 Algal Biofuels Strategy Session Agenda-Report on Workshop Results and Recent...

  19. Increasing Feedstock Production for Biofuels: Economic Drivers, Environmental Implications, and the Role of Research

    SciTech Connect (OSTI)

    none,

    2009-10-27

    The Biomass Research and Development Board (Board) commissioned an economic analysis of feedstocks to produce biofuels. The Board seeks to inform investments in research and development needed to expand biofuel production. This analysis focuses on feedstocks; other interagency teams have projects underway for other parts of the biofuel sector (e.g., logistics). The analysis encompasses feedstocks for both conventional and advanced biofuels from agriculture and forestry sources.

  20. National Biofuels Action Plan, October 2008

    SciTech Connect (OSTI)

    none,

    2008-10-01

    To help industry achieve the aggressive national goals, Federal agencies will need to continue to enhance their collaboration. The Biomass Research and Development (R&D) Board was created by Congress in the Biomass Research and Development Act of 2000. The National Biofuels Action Plan outlines areas where interagency cooperation will help to evolve bio-based fuel production technologies from promising ideas to competitive solutions.

  1. Key Publications | Department of Energy

    Office of Environmental Management (EM)

    renewable and abundant biomass resources into cost competitive, high performance biofuels, bioproducts, and biopower. Biomass Basics: The Facts About Bioenergy An explanation...

  2. Bioenergy 2015 Agenda | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Agenda Bioenergy 2015 Agenda Below is an agenda overview of the Bioenergy 2015 schedule of events. A more detailed agenda with session descriptions and speakers (as they become...

  3. Growing America's Energy Future: Bioenergy Technologies Office...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    made possible by 50 million in cost-shared DOE funding. Bioenergy Successes 2014 BIOENERGY TECHNOLOGIES OFFICE Completed Feedstock Logistics Projects Demonstrate...

  4. Breakthrough: Using Microbes to Make Advanced Biofuels

    SciTech Connect (OSTI)

    Keasling, Jay

    2012-01-01

    Jay Keasling, Berkeley Lab's Associate Director for Bioscience and the CEO of DOE's Joint BioEnergy Institute (JBEI), explains how special strains of microbes can convert the biomass of non-food crops and agricultural waste into fuels for cars, trucks and jet planes. Keasling's research team at JBEI has developed E.coli that can digest switchgrass and convert the plant sugars into gasoline, diesel or jet fuel, not unlike the process by which beer is brewed.

  5. Breakthrough: Using Microbes to Make Advanced Biofuels

    ScienceCinema (OSTI)

    Keasling, Jay

    2013-05-29

    Jay Keasling, Berkeley Lab's Associate Director for Bioscience and the CEO of DOE's Joint BioEnergy Institute (JBEI), explains how special strains of microbes can convert the biomass of non-food crops and agricultural waste into fuels for cars, trucks and jet planes. Keasling's research team at JBEI has developed E.coli that can digest switchgrass and convert the plant sugars into gasoline, diesel or jet fuel, not unlike the process by which beer is brewed.

  6. Biofuels: 1995 project summaries

    SciTech Connect (OSTI)

    NONE

    1996-01-01

    Domestic transportation fuels are derived primarily from petroleum and account for about two-thirds of the petroleum consumption in the United States. In 1994, more than 40% of our petroleum was imported. That percentage is likely to increase, as the Middle East has about 75% of the world`s oil reserves, but the United States has only about 5%. Because we rely so heavily on oil (and because we currently have no suitable substitutes for petroleum-based transportation fuels), we are strategically and economically vulnerable to disruptions in the fuel supply. Additionally, we must consider the effects of petroleum use on the environment. The Biofuels Systems Division (BSD) is part of the U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EE). The day-to-day research activities, which address these issues, are managed by the National Renewable Energy Laboratory in Golden, Colorado, and Oak Ridge National Laboratory in Oak Ridge, Tennessee. BSD focuses its research on biofuels-liquid and gaseous fuels made from renewable domestic crops-and aggressively pursues new methods for domestically producing, recovering, and converting the feedstocks to produce the fuels economically. The biomass resources include forage grasses, oil seeds, short-rotation woody crops, agricultural and forestry residues, algae, and certain industrial and municipal waste streams. The resulting fuels include ethanol, methanol, biodiesel, and ethers.

  7. Ecological objectives can be achieved with wood-derived bioenergy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Dale, Virginia H.; Kline, Keith L.; Marland, Gregg; Miner, Reid A.

    2015-08-01

    Renewable, biomass-based energy options can reduce the climate impacts of fossil fuels. However, calculating the effects of wood-derived bioenergy on greenhouse gases (GHGs), and thus on climate, is complicated (Miner et al. 2015). To clarify concerns and options about bioenergy, in November 2014, the US Environmental Protection Agency (EPA) produced a second draft of its Framework for Assessing Biogenic CO2 Emissions fromStationary Sources (http://1.usa.gov/1dikgHq), which considers the latest scientific information and input from stakeholders. In addition, the EPA is expected to make decisions soon about the use of woody biomass under the Clean Power Plan, which sets targets for carbonmore »pollution from power plants.« less

  8. Engineering Cellulase Enzymes for Bioenergy

    E-Print Network [OSTI]

    Atreya, Meera Elizabeth

    2015-01-01

    25. Becker, D. et al. Engineering of a glycosidase Family 7Engineering Cellulase Enzymes for Bioenergy By MeeraSummer 2015 Abstract Engineering Cellulase Enzymes for

  9. Integrated Biorefineries: Biofuels, Biopower, and Bioproducts

    SciTech Connect (OSTI)

    2013-05-06

    This fact sheet describes integrated biorefineries and the Program's work with them. A crucial step in developing the U.S. bioindustry is to establish integrated biorefineries capable of efficiently converting a broad range of biomass feedstocks into affordable biofuels, biopower, and other bioproducts.

  10. Biomass Resource Allocation among Competing End Uses

    SciTech Connect (OSTI)

    Newes, E.; Bush, B.; Inman, D.; Lin, Y.; Mai, T.; Martinez, A.; Mulcahy, D.; Short, W.; Simpkins, T.; Uriarte, C.; Peck, C.

    2012-05-01

    The Biomass Scenario Model (BSM) is a system dynamics model developed by the U.S. Department of Energy as a tool to better understand the interaction of complex policies and their potential effects on the biofuels industry in the United States. However, it does not currently have the capability to account for allocation of biomass resources among the various end uses, which limits its utilization in analysis of policies that target biomass uses outside the biofuels industry. This report provides a more holistic understanding of the dynamics surrounding the allocation of biomass among uses that include traditional use, wood pellet exports, bio-based products and bioproducts, biopower, and biofuels by (1) highlighting the methods used in existing models' treatments of competition for biomass resources; (2) identifying coverage and gaps in industry data regarding the competing end uses; and (3) exploring options for developing models of biomass allocation that could be integrated with the BSM to actively exchange and incorporate relevant information.

  11. An Insect Herbivore Microbiome with High Plant Biomass-Degrading Capacity

    SciTech Connect (OSTI)

    Suen, Garret; Barry, Kerrie; Goodwin, Lynne; Scott, Jarrod; Aylward, Frank; Adams, Sandra; Pinto-Tomas, Adrian; Foster, Clifton; Pauly, Markus; Weimer, Paul; Bouffard, Pascal; Li, Lewyn; Osterberger, Jolene; Harkins, Timothy; Slater, Steven; Donohue, Timothy; Currie, Cameron; Tringe, Susannah G.

    2010-09-23

    Herbivores can gain indirect access to recalcitrant carbon present in plant cell walls through symbiotic associations with lignocellulolytic microbes. A paradigmatic example is the leaf-cutter ant (Tribe: Attini), which uses fresh leaves to cultivate a fungus for food in specialized gardens. Using a combination of sugar composition analyses, metagenomics, and whole-genome sequencing, we reveal that the fungus garden microbiome of leaf-cutter ants is composed of a diverse community of bacteria with high plant biomass-degrading capacity. Comparison of this microbiome?s predicted carbohydrate-degrading enzyme profile with other metagenomes shows closest similarity to the bovine rumen, indicating evolutionary convergence of plant biomass degrading potential between two important herbivorous animals. Genomic and physiological characterization of two dominant bacteria in the fungus garden microbiome provides evidence of their capacity to degrade cellulose. Given the recent interest in cellulosic biofuels, understanding how large-scale and rapid plant biomass degradation occurs in a highly evolved insect herbivore is of particular relevance for bioenergy.

  12. Webtrends Archives by Fiscal Year — Bioenergy

    Office of Energy Efficiency and Renewable Energy (EERE)

    From the EERE Web Statistics Archive: Bioenergy Technologies Office, Webtrends archives by fiscal year.

  13. Imagine Tomorrow: Student Competition Leads to Innovative Biofuel Ideas

    Office of Energy Efficiency and Renewable Energy (EERE)

    For this year’s Imagine Tomorrow competition, the Bioenergy Technologies Office will select a student team to present their idea and project at the Biomass 2014 conference in July. Learn more about the competition, which will take place this weekend at Washington State University.

  14. Bioenergy Success Stories

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataEnergy Webinar:I DueBETO Quiz -TechnologiesRubricToolkit61 Bioenergy

  15. Environmental and economic evaluation of bioenergy in Ontario, Canada

    SciTech Connect (OSTI)

    Yimin Zhang; Shiva Habibi; Heather L. MacLean [University of Toronto, Toronto, ON (Canada)

    2007-08-15

    We examined life cycle environmental and economic implications of two near-term scenarios for converting cellulosic biomass to energy, generating electricity from cofiring biomass in existing coal power plants, and producing ethanol from biomass in stand-alone facilities in Ontario, Canada. The study inventories near-term biomass supply in the province, quantifies environmental metrics associated with the use of agricultural residues for producing electricity and ethanol, determines the incremental costs of switching from fossil fuels to biomass, and compares the cost-effectiveness of greenhouse gas (GHG) and air pollutant emissions abatement achieved through the use of the bioenergy. Implementing a biomass cofiring rate of 10% in existing coal-fired power plants would reduce annual GHG emissions by 2.3 million metric tons (t) of CO{sub 2} equivalent (7% of the province's coal power plant emissions). The substitution of gasoline with ethanol/gasoline blends would reduce annual provincial light-duty vehicle fleet emissions between 1.3 and 2.5 million t of CO{sub 2} equivalent (3.5-7% of fleet emissions). If biomass sources other than agricultural residues were used, additional emissions reductions could be realized. At current crude oil prices ($70/barrel) and levels of technology development of the bioenergy alternatives, the biomass electricity cofiring scenario analyzed is more cost-effective for mitigating GHG emissions ($22/t of CO{sub 2} equivalent for a 10% cofiring rate) than the stand-alone ethanol production scenario ($92/t of CO{sub 2} equivalent). 67 refs., 5 figs., 7 tabs.

  16. Comments on: BioFuels and BioEnergy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News PublicationsAuditsCluster Compatibility Mode ClusterProteinReactions | Argonne

  17. BioFuels and BioEnergy - SRSCRO

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory of raregovAboutRecovery ActTools toBadging, BadgeBecomingReactions in thebio

  18. DOE's Bioenergy Technologies Office Supports Military-Grade Biofuels |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataEnergy Webinar:IAbout Us| Department of Energy DOEDepartment of

  19. Sunflower as a biofuels crop: An analysis of lignocellulosic chemical properties

    E-Print Network [OSTI]

    Burke, John M.

    densities and phenotyped for biomass-related traits and wood biochemistry. In most environments, H location and planting density, thus demonstrating the need to select for these traits in the envi- ronment, Biomass and Bioenergy (2013), http://dx.doi.org/10.1016/j.biombioe.2013.06.009 0961-9534/$ e see front

  20. Sustainable Management of Biogeochemical Cycles in Soils Amended with Bio-Resources from Livestock, Bioenergy, and Urban Systems 

    E-Print Network [OSTI]

    Schnell, Ronnie Wayne

    2011-10-21

    without sacrificing crop productivity. Alum treatment of bioresources prior to land application effectively reduced runoff loss of dissolved P to levels observed for control soil. For situations in which large, volume-based bioresource rates are top... biomass and residues used for bioenergy production. Recycling byproducts of bioenergy production may be necessary to maintain levels of C and nutrients in soil (Anex et al., 2007; Johnson et al., 2004). In addition to benefiting crop growth...

  1. Bamboo: An Overlooked Biomass Resource?

    SciTech Connect (OSTI)

    Scurlock, J.M.O.

    2000-02-01

    Bamboo is the common term applied to a broad group (1250 species) of large woody grasses, ranging from 10 cm to 40 m in height. Already in everyday use by about 2.5 billion people, mostly for fiber and food within Asia, bamboo may have potential as a bioenergy or fiber crop for niche markets, although some reports of its high productivity seem to be exaggerated. Literature on bamboo productivity is scarce, with most reports coming from various parts of Asia. There is little evidence overall that bamboo is significantly more productive than many other candidate bioenergy crops, but it shares a number of desirable fuel characteristics with certain other bioenergy feedstocks, such as low ash content and alkali index. Its heating value is lower than many woody biomass feedstocks but higher than most agricultural residues, grasses and straws. Although non-fuel applications of bamboo biomass may be actually more profitable than energy recovery, there may also be potential for co-productio n of bioenergy together with other bamboo processing. A significant drawback is the difficulty of selective breeding, given the lack of knowledge of flowering physiology. Further research is also required on propagation techniques, establishment and stand management, and mechanized harvesting needs to be developed.

  2. IEA Bioenergy Task 40Sustainable International Bioenergy Trade:Securing Supply and Demand Country Report 2014—United States

    SciTech Connect (OSTI)

    Hess, J. Richard; Lamers, Patrick; Roni, Mohammad S.; Jacobson, Jacob J.; Heath, Brendi

    2015-01-01

    Logistical barrier are tied to feedstock harvesting, collection, storage and distribution. Current crop harvesting machinery is unable to selectively harvest preferred components of cellulosic biomass while maintaining acceptable levels of soil carbon and minimizing erosion. Actively managing biomass variability imposes additional functional requirements on biomass harvesting equipment. A physiological variation in biomass arises from differences in genetics, degree of crop maturity, geographical location, climatic events, and harvest methods. This variability presents significant cost and performance risks for bioenergy systems. Currently, processing standards and specifications for cellulosic feedstocks are not as well-developed as for mature commodities. Biomass that is stored with high moisture content or exposed to moisture during storage is susceptible to spoilage, rotting, spontaneous combustion, and odor problems. Appropriate storage methods and strategies are needed to better define storage requirements to preserve the volume and quality of harvested biomass over time and maintain its conversion yield. Raw herbaceous biomass is costly to collect, handle, and transport because of its low density and fibrous nature. Existing conventional, bale-based handling equipment and facilities cannot cost-effectively deliver and store high volumes of biomass, even with improved handling techniques. Current handling and transportation systems designed for moving woodchips can be inefficient for bioenergy processes due to the costs and challenges of transporting, storing, and drying high-moisture biomass. The infrastructure for feedstock logistics has not been defined for the potential variety of locations, climates, feedstocks, storage methods, processing alternatives, etc., which will occur at a national scale. When setting up biomass fuel supply chains, for large-scale biomass systems, logistics are a pivotal part in the system. Various studies have shown that long-distance international transport by ship is feasible in terms of energy use and transportation costs, but availability of suitable vessels and meteorological conditions (e.g., winter time in Scandinavia and Russia) need to be considered. However, local transportation by truck (both in biomass exporting and importing countries) may be a high-cost factor, which can influence the overall energy balance and total biomass costs.

  3. Market Drivers for Biofuels | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Market Drivers for Biofuels Market Drivers for Biofuels This presentation, entitled "Market Drivers for Biofuels," was given at the Third Annual MSW to Biofuels Summit in February,...

  4. Biofuels: Review of Policies and Impacts

    E-Print Network [OSTI]

    Janda, Karel; Kristoufek, Ladislav; Zilberman, David

    2011-01-01

    standards for biofuel production make little economic sense.to biofuels. While the biofuel production and consumptionand further increases in biofuel production are driven pri-

  5. of Biofuels Sustainable Feedstocks

    E-Print Network [OSTI]

    The Next Generation of Biofuels Sustainable Feedstocks Cost-Competitive Options #12;Photos courtesy the evolutionary code for an entirely new generation of biofuels capable of transforming the American automobile biofuels at a cost competitive with that of gasoline. Equally important, they are using crops

  6. Bioenergy 2015 Call for Posters

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy’s Bioenergy Technologies Office (BETO) invites students, researchers, public and private organizations, and members of the general public to submit abstracts that BETO will review and consider for inclusion in the poster session at BETO’s eighth annual conference, Bioenergy 2015: Opportunities in a Changing Energy Landscape. The conference will be held June 23–24, 2015, at the Walter E. Washington Convention Center in Washington, D.C.

  7. Review on Biomass Torrefaction Process and Product Properties and Design of Moving Bed Torrefaction System Model Development

    SciTech Connect (OSTI)

    Jaya Shankar Tumuluru; Christopher T. Wright; Shahab Sokhansanj

    2011-08-01

    A Review on Torrefaction Process and Design of Moving Bed Torrefaction System for Biomass Processing Jaya Shankar Tumuluru1, Shahab Sokhansanj2 and Christopher T. Wright1 Idaho National Laboratory Biofuels and Renewable Energy Technologies Department Idaho Falls, Idaho 83415 Oak Ridge National Laboratory Bioenergy Resource and Engineering Systems Group Oak Ridge, TN 37831 Abstract Torrefaction is currently developing as an important preprocessing step to improve the quality of biomass in terms of physical properties, and proximate and ultimate composition. Torrefaction is a slow heating of biomass in an inert or reduced environment to a maximum temperature of 300 C. Torrefaction can also be defined as a group of products resulting from the partially controlled and isothermal pyrolysis of biomass occurring in a temperature range of 200-230 C and 270-280 C. Thus, the process can also be called a mild pyrolysis as it occurs at the lower temperature range of the pyrolysis process. At the end of the torrefaction process, a solid uniform product with lower moisture content and higher energy content than raw biomass is produced. Most of the smoke-producing compounds and other volatiles are removed during torrefaction, which produces a final product that will have a lower mass but a higher heating value. There is a lack of literature on the design aspects of torrefaction reactor and a design sheet for estimating the dimensions of the torrefier based on capacity. This study includes (a) conducting a detailed review on the torrefaction of biomass in terms of understanding the process, product properties, off-gas compositions, and methods used, and (b) to design a moving bed torrefier, taking into account the basic fundamental heat and mass transfer calculations. Specific objectives include calculating the dimensions like diameter and height of the moving packed bed torrefier for different capacities ranging from 25-1000 kg/hr, designing the heat loads and gas flow rates, and developing an interactive excel sheet where the user can define design specifications.

  8. Biomass Feedstock and Conversion Supply System Design and Analysis

    SciTech Connect (OSTI)

    Jacob J. Jacobson; Mohammad S. Roni; Patrick Lamers; Kara G. Cafferty

    2014-09-01

    Idaho National Laboratory (INL) supports the U.S. Department of Energy’s bioenergy research program. As part of the research program INL investigates the feedstock logistics economics and sustainability of these fuels. A series of reports were published between 2000 and 2013 to demonstrate the feedstock logistics cost. Those reports were tailored to specific feedstock and conversion process. Although those reports are different in terms of conversion, some of the process in the feedstock logistic are same for each conversion process. As a result, each report has similar information. A single report can be designed that could bring all commonality occurred in the feedstock logistics process while discussing the feedstock logistics cost for different conversion process. Therefore, this report is designed in such a way that it can capture different feedstock logistics cost while eliminating the need of writing a conversion specific design report. Previous work established the current costs based on conventional equipment and processes. The 2012 programmatic target was to demonstrate a delivered biomass logistics cost of $55/dry ton for woody biomass delivered to fast pyrolysis conversion facility. The goal was achieved by applying field and process demonstration unit-scale data from harvest, collection, storage, preprocessing, handling, and transportation operations into INL’s biomass logistics model. The goal of the 2017 Design Case is to enable expansion of biofuels production beyond highly productive resource areas by breaking the reliance of cost-competitive biofuel production on a single, low-cost feedstock. The 2017 programmatic target is to supply feedstock to the conversion facility that meets the in-feed conversion process quality specifications at a total logistics cost of $80/dry T. The $80/dry T. target encompasses total delivered feedstock cost, including both grower payment and logistics costs, while meeting all conversion in-feed quality targets. The 2012 $55/dry T. programmatic target included only logistics costs with a limited focus on biomass quantity, quality and did not include a grower payment. The 2017 Design Case explores two approaches to addressing the logistics challenge: one is an agronomic solution based on blending and integrated landscape management and the second is a logistics solution based on distributed biomass preprocessing depots. The concept behind blended feedstocks and integrated landscape management is to gain access to more regional feedstock at lower access fees (i.e., grower payment) and to reduce preprocessing costs by blending high quality feedstocks with marginal quality feedstocks. Blending has been used in the grain industry for a long time; however, the concept of blended feedstocks in the biofuel industry is a relatively new concept. The blended feedstock strategy relies on the availability of multiple feedstock sources that are blended using a least-cost formulation within an economical supply radius, which, in turn, decreases the grower payment by reducing the amount of any single biomass. This report will introduce the concepts of blending and integrated landscape management and justify their importance in meeting the 2017 programmatic goals.

  9. Characterization and Manipulation of Lipid Catabolism in Eukaryotic Microalgae /

    E-Print Network [OSTI]

    Trentacoste, Emily Margaret

    2014-01-01

    liquefaction of microalgae. Biomass and Bioenergy 17: 33-39.microalgae for biofuel production: State of the art review and future prospects. Biomassmicroalgae for biofuel production: State of the art review and future prospects. Biomass

  10. Responses of High Biomass Rice (Oryza sativa L.) to Various Abiotic Stresses 

    E-Print Network [OSTI]

    Kondhia, Aditi Nitinkumar

    2011-10-21

    Rice produces a lot of biomass which is an important trait in increasing grain yield and it is a potential feedstock for bioenergy production. High biomass rice is important to meet the growing demands of grains and biomass for food, fodder and bio...

  11. Instrumentation and Evaluation of a Pilot Scale Fluidized Bed Biomass Gasification System 

    E-Print Network [OSTI]

    Maglinao, Amado L

    2009-12-04

    DAQ. ...................................................... 11 Table 2 Bulk density and loading factor ........................................................ 18 Table 3 Sample gasification data readings ..................................................... 22 Table 4 Properties of the three... BED BIOMASS GASIFICATION SYSTEM OVERVIEW The conversion of biomass into energy (also called bioenergy) encompasses wide range of different types and sources of biomass, conversion options and end-use applications. These can be done through either...

  12. Biomass Program Partners Fact Sheet

    SciTech Connect (OSTI)

    None

    2009-10-27

    Meeting ambitious national targets for biofuels requires a radically accelerated level of technology research and infrastructure development. To expedite progress, the U.S. Department of Energy’s Biomass Program is forging collaborative partnerships with industry, academia, state governments, and diverse stakeholder groups.

  13. Biomass and Biofuels Technologies - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News PublicationsAudits & InspectionsBeryllium andSamplerBiologicalTechnology Marketing

  14. NREL: Biomass Research - Microalgal Biofuels Capabilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines light on771/6/14 Contact:News ReleasesChemical and CatalystMicroalgal

  15. Advancing sustainable bioenergy: Evolving stakeholder interests and the relevance of research

    SciTech Connect (OSTI)

    Johnson, Timothy L [U.S. Environmental Protection Agency, Raleigh, North Carolina; Bielicki, Dr Jeffrey M [University of Minnesota; Dodder, Rebecca [U.S. Environmental Protection Agency; Hilliard, Michael R [ORNL; Kaplan, Ozge [U.S. Environmental Protection Agency; Miller, C. Andy [U.S. Environmental Protection Agency

    2013-01-01

    The sustainability of future bioenergy production rests on more than continual improvements in its environmental, economic, and social impacts. The emergence of new biomass feedstocks, an expanding array of conversion pathways, and expected increases in overall bioenergy production are connecting diverse technical, social, and policy communities. These stakeholder groups have different and potentially conflicting values and cultures, and therefore different goals and decision making processes. Our aim is to discuss the implications of this diversity for bioenergy researchers. The paper begins with a discussion of bioenergy stakeholder groups and their varied interests, and illustrates how this diversity complicates efforts to define and promote sustainable bioenergy production. We then discuss what this diversity means for research practice. Researchers, we note, should be aware of stakeholder values, information needs, and the factors affecting stakeholder decision making if the knowledge they generate is to reach its widest potential use. We point out how stakeholder participation in research can increase the relevance of its products, and argue that stakeholder values should inform research questions and the choice of analytical assumptions. Finally, we make the case that additional natural science and technical research alone will not advance sustainable bioenergy production, and that important research gaps relate to understanding stakeholder decision making and the need, from a broader social science perspective, to develop processes to identify and accommodate different value systems. While sustainability requires more than improved scientific and technical understanding, the need to understand stakeholder values and manage diversity presents important research opportunities.

  16. Biomass-Derived Energy Products and Co-Products Market

    E-Print Network [OSTI]

    Biomass-Derived Energy Products and Co-Products Market This report identifies the bio-fuels and co & Earth Science & Technology ­ University of Hawai`i at Manoa #12;Biomass-Derived Energy Products and Co agency thereof. #12;Biomass Derived Energy Products and Co- Products Market and Off-take Study Hawaii

  17. Agriculture, Land Use, Energy and Carbon Emission Impacts of Global Biofuel Mandates to Mid-Century

    SciTech Connect (OSTI)

    Wise, Marshall A.; Dooley, James J.; Luckow, Patrick; Calvin, Katherine V.; Kyle, G. Page

    2014-02-01

    Three potential future scenarios of expanded global biofuel production are presented here utilizing the GCAM integrated assessment model. These scenarios span a range that encompasses on the low end a continuation of existing biofuel production policies to two scenarios that would require an expansion of current targets as well as an extension of biofuels targets to other regions of the world. Conventional oil use is reduced by 4-8% in the expanded biofuel scenarios, which results in a decrease of in CO2 emissions on the order of 1-2 GtCO2/year by mid-century from the global transportation sector. The regional distribution of crop production is relatively unaffected, but the biofuels targets do result in a marked increase in the production of conventional crops used for energy. Producer prices of sugar and corn reach levels about 12% and 7% above year 2005 levels, while the increased competition for land causes the price of food crops such as wheat, although not used for bioenergy in this study, to increase by 1 to 2%. The amount of land devoted to growing all food crops and dedicated bioenergy crops is increased by about 10% by 2050 in the High biofuel case, with concurrent decreases in other uses of land such as forest and pasture. In both of the expanded biofuels cases studied, there is an increase in net cumulative carbon emissions for the first couple of decades due to these induced land use changes. However, the difference in net cumulative emissions from the biofuels expansion decline by about 2035 as the reductions in energy system emissions exceed further increases in emissions from land use change. Even in the absence of a policy that would limit emissions from land use change, the differences in net cumulative emissions from the biofuels scenarios reach zero by 2050, and are decreasing further over time in both cases.

  18. Bioenergy with Carbon Capture and Sequestration Workshop

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy’s (DOE’s) Office of Fossil Energy (FE) and Bioenergy Technologies Office (BETO) co-hosted the Bioenergy with Carbon Capture and Sequestration (BECCS) Workshop on...

  19. Biofuel Energy Corporation | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowaWisconsin:Pontiac Biomass Facility Jump to: navigation,Bioenergy

  20. Biofuels of Colorado LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowaWisconsin:Pontiac Biomass Facility Jump to: navigation,BioenergyDigest

  1. Bioenergy Knowledge Discovery Framework (KDF) Fact Sheet

    SciTech Connect (OSTI)

    2013-07-29

    The Bioenergy Knowledge Discovery Framework (KDF) is an online collaboration and geospatial analysis tool that allows researchers, policymakers, and investors to explore and engage the latest bioenergy research. This publication describes how the KDF harnesses Web 2.0 and social networking technologies to build a collective knowledge system that facilitates collaborative production, integration, and analysis of bioenergy-related information.

  2. Pacific Northwest and Alaska Bioenergy Program Year Book; 1992-1993 Yearbook with 1994 Activities.

    SciTech Connect (OSTI)

    Pacific Northwest and Alaska Bioenergy Program; United States. Bonneville Power Administration.

    1994-04-01

    The U.S. Department of Energy administers five Regional Bioenergy Programs to encourage regionally specific application of biomass and municipal waste-to-energy technologies to local needs, opportunities and potentials. The Pacific Northwest and Alaska region has taken up a number of applied research and technology projects, and supported and guided its five participating state energy programs. This report describes the Pacific Northwest and Alaska Regional Bioenergy Program, and related projects of the state energy agencies, and summarizes the results of technical studies. It also considers future efforts of this regional program to meet its challenging assignment.

  3. Georgia Biofuel Directory A directory of Georgia industries that use biofuels.

    E-Print Network [OSTI]

    Georgia Biofuel Directory · A directory of Georgia industries that use biofuels. · Completed in May _________________________________________________________________ 3 Biofuels_____________________________________________________________________ 4 Biofuel Use in Georgia that Burn Self-Generated Biofuels as of May 2003__ 4 Chart 1.0 Biofuel Use from Contacted

  4. Abstract Bioenergy is a critical part of renewable energy solution to today's energy crisis that threatens world economic growth. Corn ethanol has been growing rapidly

    E-Print Network [OSTI]

    Gu, Tingyue

    .1 Introduction An integrated approach using different forms of renewable energy such as wind, solar, and biomass127 Abstract Bioenergy is a critical part of renewable energy solution to today's energy crisis as energy crops on poor lands that are otherwise vacant. However, lignocellu- losic biomass is notoriously

  5. Application of Buckmaster Electrolyte Ion Leakage Test to Woody Biofuel Feedstocks

    SciTech Connect (OSTI)

    Broderick, Thomas F; Dooley, James H

    2014-08-28

    In an earlier ASABE paper, Buckmaster reported that ion conductivity of biomass leachate in aqueous solution was directly correlated with activity access to plant nutrients within the biomass materials for subsequent biological or chemical processing. The Buckmaster test involves placing a sample of the particles in a beaker of constant-temperature deionized water and monitoring the change in electrical conductivity over time. We adapted the Buckmaster method to a range of woody biomass and other cellulosic bioenergy feedstocks. Our experimental results suggest differences of electrolyte leakage between differently processed woody biomass particles may be an indicator of their utility for conversion in bioenergy processes. This simple assay appears to be particularly useful to compare different biomass comminution techniques and particle sizes for biochemical preprocessing.

  6. Hydrothermal processing of high-lipid biomass to fuels

    E-Print Network [OSTI]

    Johnson, Michael C., Ph. D. Massachusetts Institute of Technology

    2012-01-01

    High-lipid algae are potential sources of biofuels. Lipids in this biomass provide a straightforward chemical route to hydrocarbon-based high energy-density fuels needed for diesel and jet engines. However, current schemes ...

  7. Acting Biomass Program Manager Dr. Valerie Reed to Host Live...

    Broader source: Energy.gov (indexed) [DOE]

    December 16th, the Energy Department (@energy) will be hosting a live Twitter Q&A on biofuels with Dr. Valerie Reed, Acting Manager of the Biomass Program. Dr. Reed holds a Ph. D....

  8. Forest Carbon and Biomass Energy – LCA Issues and Challenges

    Office of Energy Efficiency and Renewable Energy (EERE)

    Breakout Session 2D—Building Market Confidence and Understanding II: Carbon Accounting and Woody Biofuels Forest Carbon and Biomass Energy – LCA Issues and Challenges Reid Miner, Vice President, NCASI

  9. Invasive plant species as potential bioenergy producers and carbon contributors.

    SciTech Connect (OSTI)

    Young, S.; Gopalakrishnan, G.; Keshwani, D.

    2011-03-01

    Current cellulosic bioenergy sources in the United States are being investigated in an effort to reduce dependence on foreign oil and the associated risks to national security and climate change (Koh and Ghazoul 2008; Demirbas 2007; Berndes et al. 2003). Multiple sources of renewable plant-based material have been identified and include agricultural and forestry residues, municipal solid waste, industrial waste, and specifically grown bioenergy crops (Demirbas et al. 2009; Gronowska et al. 2009). These sources are most commonly converted to energy through direct burning, conversion to gas, or conversion to ethanol. Annual crops, such as corn (Zea Mays L.) and sorghum grain, can be converted to ethanol through fermentation, while soybean and canola are transformed into fatty acid methyl esters (biodiesel) by reaction with an alcohol (Demirbas 2007). Perennial grasses are one of the more viable sources for bioenergy due to their continuous growth habit, noncrop status, and multiple use products (Lewandowski el al. 2003). In addition, a few perennial grass species have very high water and nutrient use efficiencies producing large quantities of biomass on an annual basis (Dohleman et al. 2009; Grantz and Vu 2009).

  10. Biofuels Market Opportunities

    Broader source: Energy.gov [DOE]

    Breakout Session 2C—Fostering Technology Adoption II: Expanding the Pathway to Market Biofuels Market Opportunities John Eichberger, Vice President Government Relations, National Association of Convenience Stores

  11. Microsoft Word - 1.6.1.2.J.ML.2_Qrt 2 Joule Final.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    technology will be capable of handling the variability experienced within raw biomass feedstocks. DOE has identified eight biofuel conversion pathways that the Bioenergy...

  12. Densification Workshop

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Densification Challenge Secretary of Energy Steven Chu named "densification of biomass" as one of the key research challenges facing biofuels (Chu 2011). The IEA report, Bioenergy...

  13. Sandia Energy - EC Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    generation (235) jbei - Joint BioEnergy Institute (207) Lignocellulosic biomass deconstruction (502) National Algal Biofuels Technology Roadmap (242) Pure Purification (222...

  14. U.S. Departments of Agriculture and Energy Announce Funding for...

    Office of Environmental Management (EM)

    over three to four years that will support research and development in advanced biofuels, bioenergy and high-value biobased products. The projects funded through the Biomass...

  15. Alternative Transportation Technologies: Hydrogen, Biofuels,...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen, Biofuels, Advanced Efficiency, and Plug-in Hybrid Electric Vehicles Alternative Transportation Technologies: Hydrogen, Biofuels, Advanced Efficiency, and Plug-in...

  16. SciTech Connect: "biofuels"

    Office of Scientific and Technical Information (OSTI)

    biofuels" Find + Advanced Search Term Search Semantic Search Advanced Search All Fields: "biofuels" Semantic Semantic Term Title: Full Text: Bibliographic Data: Creator ...

  17. New membranes could speed the biofuels conversion process and reduce cost

    SciTech Connect (OSTI)

    Hu, Michael

    2014-07-23

    ORNL researchers have developed a new class of membranes that could enable faster, more cost efficient biofuels production. These membranes are tunable at the nanopore level and have potential uses in separating water from fuel and acid from bio-oils. The membrane materials technology just won an R&D 100 award. ORNL and NREL are partnering, with support from the DOE Bioenergy Technologies Office, to determine the best uses of these membranes to speed the biofuels conversion process. Development of the membranes was funded by DOE BETO and ORNL's Laboratory Directed Research and Development Program.

  18. New membranes could speed the biofuels conversion process and reduce cost

    ScienceCinema (OSTI)

    Hu, Michael

    2014-08-06

    ORNL researchers have developed a new class of membranes that could enable faster, more cost efficient biofuels production. These membranes are tunable at the nanopore level and have potential uses in separating water from fuel and acid from bio-oils. The membrane materials technology just won an R&D 100 award. ORNL and NREL are partnering, with support from the DOE Bioenergy Technologies Office, to determine the best uses of these membranes to speed the biofuels conversion process. Development of the membranes was funded by DOE BETO and ORNL's Laboratory Directed Research and Development Program.

  19. Biomass Indirect Liquefaction Strategy Workshop Summary Report

    SciTech Connect (OSTI)

    none,

    2014-07-01

    This report is based on the proceedings of the U.S. Department of Energy Bioenergy Technologies Office Biomass Indirect Liquefaction Strategy Workshop. The workshop, held March 20–21, 2014, in Golden, Colorado, discussed and detailed the research and development needs for biomass indirect liquefaction. Discussions focused on pathways that convert biomass-based syngas (or any carbon monoxide, hydrogen gaseous stream) to liquid intermediates (alcohols or acids) and further synthesize those intermediates to liquid hydrocarbons that are compatible as either a refinery feed or neat fuel.

  20. Assessing the potential of bioenergy. Final report, October 1, 1997--September 30, 1998

    SciTech Connect (OSTI)

    Kirschner, J.; Badin, J.

    1998-12-31

    As electricity restructuring proceeds, traditional concepts of how energy is produced, transported, and utilized are likely to change dramatically. Marketplace, policy, and regulatory changes will shape both the domestic and global energy industry, improving opportunities for clean, low-cost energy, competitively priced fuels, and environmentally responsible power systems. Many of these benefits may be obtained by commercial deployment of advanced biomass power conversion technologies. The United BioEnergy Commercialization Association represents the US biomass power industry. Its membership includes investor-owned and public utilities, independent power producers, state and regional bioenergy, equipment manufacturers, and biomass energy developers. To carry out its mission, UBECA has been carrying out the following activities: production of informational and educational materials on biomass energy and distribution of such materials at public forums; technical and market analyses of biomass energy fuels, conversion technologies, and market issues; monitoring of issues affecting the biomass energy community; and facilitating cooperation among members to leverage the funds available for biomass commercialization activities.

  1. Biomass Feedstock Composition and Property Database

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Office of Energy Efficiency and Renewable Energy's Biomass Program works with industry, academia and national laboratory partners on a balanced portfolio of research in biomass feedstocks and conversion technologies. Through research, development, and demonstration efforts geared at the development of integrated biorefineries, the Biomass Program is helping transform the nation's renewable and abundant biomass resources into cost competitive, high performance biofuels, bioproducts, and biopower.(From the Biomass Program's home page at http://www1.eere.energy.gov/biomass/) The Biomass Feedstock Composition and Property Database allows the user to choose from more than 150 types of biomass samples. The specialized interface then guides the user through choices within the sample (such as "Ash" as a choice in the "Hardwood" sample and displays tables based on choice of composition properties, structure properties, elemental properties, extractive properties, etc.

  2. Bioenergy 2015: Attendee Networking Tool

    Broader source: Energy.gov [DOE]

    For the Bioenergy 2015 Conference, this tool offers a concise listing of participants' background, areas of expertise, areas of need, and business contact information. Users can sort the information by clicking on the arrows in the header rows. Users can also filter by keywords by typing them into the search field in order to find individuals with skill sets complementary to their own.

  3. Algal Biofuels Fact Sheet

    SciTech Connect (OSTI)

    2009-10-27

    This fact sheet provides information on algal biofuels, which are generating considerable interest around the world. They may represent a sustainable pathway for helping to meet the U.S. biofuel production targets set by the Energy Independence and Security Act of 2007.

  4. Supply Chain Sustainability Analysis of Indirect Liquefaction of Blended Biomass to Produce High Octane Gasoline

    SciTech Connect (OSTI)

    Cai, Hao; Canter, Christina E.; Dunn, Jennifer B.; Tan, Eric; Biddy, Mary; Talmadge, Michael; Hartley, Damon S.; Snowden-Swan, Lesley

    2015-09-01

    The Department of Energy’s (DOE) Bioenergy Technologies Office (BETO) aims at developing and deploying technologies to transform renewable biomass resources into commercially viable, high-performance biofuels, bioproducts and biopower through public and private partnerships (DOE, 2015). BETO also performs a supply chain sustainability analysis (SCSA). This report describes the SCSA of the production of renewable high octane gasoline (HOG) via indirect liquefaction (IDL) of lignocellulosic biomass. This SCSA was developed for the 2017 design case for feedstock logistics (INL, 2014) and for the 2022 target case for HOG production via IDL (Tan et al., 2015). The design includes advancements that are likely and targeted to be achieved by 2017 for the feedstock logistics and 2022 for the IDL conversion process. The 2017 design case for feedstock logistics demonstrated a delivered feedstock cost of $80 per dry U.S. short ton by the year 2017 (INL, 2014). The 2022 design case for the conversion process, as modeled in Tan et al. (2015), uses the feedstock 2017 design case blend of biomass feedstocks consisting of pulpwood, wood residue, switchgrass, and construction and demolition waste (C&D) with performance properties consistent with a sole woody feedstock type (e.g., pine or poplar). The HOG SCSA case considers the 2017 feedstock design case (the blend) as well as individual feedstock cases separately as alternative scenarios when the feedstock blend ratio varies as a result of a change in feedstock availability. These scenarios could be viewed as bounding SCSA results because of distinctive requirements for energy and chemical inputs for the production and logistics of different components of the blend feedstocks.

  5. About the Bioenergy Technologies Office: Growing America's Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    You are here Home About the Bioenergy Technologies Office: Growing America's Energy Future About the Bioenergy Technologies Office: Growing America's Energy Future The U.S....

  6. ORNL researchers contribute to major UN bioenergy and sustainability...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ORNL researchers contribute to major bioenergy and sustainability report ORNL researchers Keith Kline and Virginia Dale contributed to a major United Nations report on bioenergy...

  7. Bioenergy Technologies Office: Association of Fish and Wildlife...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bioenergy Technologies Office: Association of Fish and Wildlife Agencies Agricultural Conservation Committee Meeting Bioenergy Technologies Office: Association of Fish and Wildlife...

  8. Engineering The recent interest in bioenergy has motivated a closer

    E-Print Network [OSTI]

    Chemical Engineering The recent interest in bioenergy has motivated a closer look at microorganisms could facilitate other important biotransformations related to bioenergy applications. Our laboratory

  9. Biofuels: Review of Policies and Impacts

    E-Print Network [OSTI]

    Janda, Karel; Kristoufek, Ladislav; Zilberman, David

    2011-01-01

    the biofuel production and consumption exhibited signi?cantBiofuels The biofuels production and consumption is closelysystem of the fuel production and consumption beginning with

  10. Bioproducts and Biofuels - Growing Together! | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bioproducts and Biofuels - Growing Together Bioproducts and Biofuels - Growing Together Breakout Session 2B-Integration of Supply Chains II: Bioproducts-Enabling Biofuels and...

  11. Advanced Cellulosic Biofuels | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cellulosic Biofuels Advanced Cellulosic Biofuels Breakout Session 2-B: NewEmerging Pathways Advanced Cellulosic Biofuels Dr. Robert Graham, Chief Executive Officer and Chairman,...

  12. Fungible and Compatible Biofuels | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fungible and Compatible Biofuels Fungible and Compatible Biofuels The purpose of this study is to summarize the various barriers to more widespread distribution of biofuels through...

  13. On mitigating emissions leakage under biofuel policies

    E-Print Network [OSTI]

    Rajagopal, D; Rajagopal, D

    2015-01-01

    that are applicable to biofuel policies and beyond. Thisso marginal land for biofuel crops is limited. EnergyIndirect emissions of biofuel policies Figure 1 provides a

  14. ON THE INDIRECT EFFECT OF BIOFUEL

    E-Print Network [OSTI]

    Zilberman, D; Barrows, G; Hochman, G; Rajagopal, D

    2013-01-01

    and H. de Gorter. 2011. Biofuel Policies and Carbon Leakage.Environmental Impact of Biofuel Policies. Energy Policy.sions and Uncertainty for Biofuel Policies. Energy Policy.

  15. Cassava, a potential biofuel crop in China

    E-Print Network [OSTI]

    Jansson, C.

    2010-01-01

    Cassava, a potential biofuel crop in China Christer Janssoncassava; bioethanol; biofuel; metabolic engineering; Chinathe potentials of cassava in the biofuel sector and point to

  16. ON THE INDIRECT EFFECT OF BIOFUEL

    E-Print Network [OSTI]

    Zilberman, D; Barrows, G; Hochman, G; Rajagopal, D

    2013-01-01

    chain. Assume that biofuel production includes two stages:the ILUC of biofuel production in the LCA assessment. Theof their output to biofuel production. For simplicity, we

  17. Sandia Energy - Biomass

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II) byMultidayAlumni >ScientificAppliedBiofuels Home AnalysisBiomass Home

  18. Analysis of Global Economic and Environmental Impacts of a Substantial Increase in Bioenergy Wallace E. Tyner (wtyner@purdue.edu), Thomas W. Hertel, Farzad Taheripour*, and Dileep K. Birur

    E-Print Network [OSTI]

    Analysis of Global Economic and Environmental Impacts of a Substantial Increase in Bioenergy have profound global economic, environmental, and social consequences. Current studies do not provide of biofuels and lack of comprehensive studies on global impacts have opened up several research avenues. Since

  19. Achieving Water-Sustainable Bioenergy Production | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Production Breakout Session 3-A: Growing a Water-Smart Bioeconomy Achieving Water-Sustainable Bioenergy Production May Wu, Principal Environmental System Analyst in the...

  20. Bioenergy Technologies Office Releases Symbiosis Biofeedstock...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    this information to inform future commercial production of microbial mutualistic microbes, and identifying issues specific to utilizing mutualists in bioenergy crop...

  1. Bioenergy Technologies Office Program Management Review

    Broader source: Energy.gov [DOE]

    The Bioenergy Technologies Office will be hosting its biennial Program Management Peer Review on June 25, 2015 at the Walter E. Washington Convention Center.

  2. Bioenergy Knowledge Discovery Framework Recognized at National...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    50 papers with wide-ranging topics in the field of geospatial information systems. The paper explains how the Bioenergy Knowledge Discovery Framework (KDF) is bringing together...

  3. Engineering microbes to produce biofuels

    SciTech Connect (OSTI)

    Wackett, LP

    2011-06-01

    The current biofuels landscape is chaotic. It is controlled by the rules imposed by economic forces and driven by the necessity of finding new sources of energy, particularly motor fuels. The need is bringing forth great creativity in uncovering new candidate fuel molecules that can be made via metabolic engineering. These next generation fuels include long-chain alcohols, terpenoid hydrocarbons, and diesel-length alkanes. Renewable fuels contain carbon derived from carbon dioxide. The carbon dioxide is derived directly by a photosynthetic fuel-producing organism(s) or via intermediary biomass polymers that were previously derived from carbon dioxide. To use the latter economically, biomass depolymerization processes must improve and this is a very active area of research. There are competitive approaches with some groups using enzyme based methods and others using chemical catalysts. With the former, feedstock and end-product toxicity loom as major problems. Advances chiefly rest on the ability to manipulate biological systems. Computational and modular construction approaches are key. For example, novel metabolic networks have been constructed to make long-chain alcohols and hydrocarbons that have superior fuel properties over ethanol. A particularly exciting approach is to implement a direct utilization of solar energy to make a usable fuel. A number of approaches use the components of current biological systems, but re-engineer them for more direct, efficient production of fuels.

  4. Nutrient use efficiency in bioenergy cropping systems: Critical research questions

    E-Print Network [OSTI]

    Brouder, Sylvie; Volenec, Jeffrey J; Turco, Ronald; Smith, Douglas R; Ejeta, Gebisa

    2009-01-01

    2 O release from agro- biofuel production negates the globalconsidered suitable for biofuel production bringing highlyrelease from agro-biofuel production may negate any expected

  5. ABENGOA BIOENERGY | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram:Y-12 Beta-3 Racetracks25 AMOSystem forAAPGABENGOA BIOENERGY ABENGOA

  6. Multiphase Flow Modeling of Biofuel Production Processes

    SciTech Connect (OSTI)

    D. Gaston; D. P. Guillen; J. Tester

    2011-06-01

    As part of the Idaho National Laboratory's (INL's) Secure Energy Initiative, the INL is performing research in areas that are vital to ensuring clean, secure energy supplies for the future. The INL Hybrid Energy Systems Testing (HYTEST) Laboratory is being established to develop and test hybrid energy systems with the principal objective to safeguard U.S. Energy Security by reducing dependence on foreign petroleum. HYTEST involves producing liquid fuels in a Hybrid Energy System (HES) by integrating carbon-based (i.e., bio-mass, oil-shale, etc.) with non-carbon based energy sources (i.e., wind energy, hydro, geothermal, nuclear, etc.). Advances in process development, control and modeling are the unifying vision for HES. This paper describes new modeling tools and methodologies to simulate advanced energy processes. Needs are emerging that require advanced computational modeling of multiphase reacting systems in the energy arena, driven by the 2007 Energy Independence and Security Act, which requires production of 36 billion gal/yr of biofuels by 2022, with 21 billion gal of this as advanced biofuels. Advanced biofuels derived from microalgal biomass have the potential to help achieve the 21 billion gal mandate, as well as reduce greenhouse gas emissions. Production of biofuels from microalgae is receiving considerable interest due to their potentially high oil yields (around 600 gal/acre). Microalgae have a high lipid content (up to 50%) and grow 10 to 100 times faster than terrestrial plants. The use of environmentally friendly alternatives to solvents and reagents commonly employed in reaction and phase separation processes is being explored. This is accomplished through the use of hydrothermal technologies, which are chemical and physical transformations in high-temperature (200-600 C), high-pressure (5-40 MPa) liquid or supercritical water. Figure 1 shows a simplified diagram of the production of biofuels from algae. Hydrothermal processing has significant advantages over other biomass processing methods with respect to separations. These 'green' alternatives employ a hybrid medium that, when operated supercritically, offers the prospect of tunable physicochemical properties. Solubility can be rapidly altered and phases partitioned selectively to precipitate or dissolve certain components by altering temperature or pressure in the near-critical region. The ability to tune the solvation properties of water in the highly compressible near-critical region facilitates partitioning of products or by-products into separate phases to separate and purify products. Since most challenges related to lipid extraction are associated with the industrial scale-up of integrated extraction systems, the new modeling capability offers the prospect of addressing previously untenable scaling issues.

  7. Aspects of Applied Biology 112, 2011 Biomass and Energy Crops IV

    E-Print Network [OSTI]

    Thomas, David D.

    Aspects of Applied Biology 112, 2011 Biomass and Energy Crops IV 147 By JACOB M JUNGERS, JARED J Program (CRP), may provide acreage and economic incentives for cellulosic energy production. Improving, biomass yields, bioenergy Introduction The United States'Energy Independence and SecurityAct of 2007 (EISA

  8. BioenergizeME Office Hours Webinar: Biomass Basics

    Broader source: Energy.gov [DOE]

    Many students haven’t thought much about biomass as an option for generating electricity, transportation fuels, and other products. The Biomass Basics Webinar provides general information about bioenergy, its creation, and its potential uses, and is designed to assist teams competing in the 2016 BioenergizeME Infographic Challenge. This challenge, hosted by the U.S. Department of Energy’s Bioenergy Technologies Office (BETO), is a competition for high school students to learn about bioenergy, create infographics to present what they have learned, and share their infographics on social media. This webinar is part of the BioenergizeME Office Hours webinar series developed by BETO in conjunction with the 2016 BioenergizeME Infographic Challenge.

  9. IMPROVED BIOMASS UTILIZATION THROUGH REMOTE FLOW SENSING

    SciTech Connect (OSTI)

    Washington University- St. Louis:; ,; Muthanna Al-Dahhan; E-mail: muthanna@wustl.edu; ,; Rajneesh Varma; Khursheed Karim; Mehul Vesvikar; Rebecca Hoffman; ,; Oak Ridge National Laboratory:; ,; David Depaoli,; Email: depaolidw@ornl.gov; ,; Thomas Klasson; Alan L. Wintenberg; Charles W Alexander; Lloyd Clonts; ,; Iowa Energy Center; ,; ,; Norm Olson; Email: nolson@energy.iastate.edu

    2007-03-26

    The growth of the livestock industry provides a valuable source of affordable, sustainable, and renewable bioenergy, while also requiring the safe disposal of the large quantities of animal wastes (manure) generated at dairy, swine, and poultry farms. If these biomass resources are mishandled and underutilized, major environmental problems will be created, such as surface and ground water contamination, odors, dust, ammonia leaching, and methane emission. Anaerobic digestion of animal wastes, in which microorganisms break down organic materials in the absence of oxygen, is one of the most promising waste treatment technologies. This process produces biogas typically containing {approx}65% methane and {approx}35% carbon dioxide. The production of biogas through anaerobic digestion from animal wastes, landfills, and municipal waste water treatment plants represents a large source of renewable and sustainable bio-fuel. Such bio-fuel can be combusted directly, used in internal combustion engines, converted into methanol, or partially oxidized to produce synthesis gas (a mixture of hydrogen and carbon monoxide) that can be converted to clean liquid fuels and chemicals via Fischer-Tropsch synthesis. Different design and mixing configurations of anaerobic digesters for treating cow manure have been utilized commercially and/or tested on a laboratory scale. These digesters include mechanically mixed, gas recirculation mixed, and slurry recirculation mixed designs, as well as covered lagoon digesters. Mixing is an important parameter for successful performance of anaerobic digesters. It enhances substrate contact with the microbial community; improves pH, temperature and substrate/microorganism uniformity; prevents stratification and scum accumulation; facilitates the removal of biogas from the digester; reduces or eliminates the formation of inactive zones (dead zones); prevents settling of biomass and inert solids; and aids in particle size reduction. Unfortunately, information and findings in the literature on the effect of mixing on anaerobic digestion are contradictory. One reason is the lack of measurement techniques for opaque systems such as digesters. Better understanding of the mixing and hydrodynamics of digesters will result in appropriate design, configuration selection, scale-up, and performance, which will ultimately enable avoiding digester failures. Accordingly, this project sought to advance the fundamental knowledge and understanding of the design, scale up, operation, and performance of cow manure anaerobic digesters with high solids loading. The project systematically studied parameters affecting cow manure anaerobic digestion performance, in different configurations and sizes by implementing computer automated radioactive particle tracking (CARPT), computed tomography (CT), and computational fluid dynamics (CFD), and by developing novel multiple-particle CARPT (MP-CARPT) and dual source CT (DSCT) techniques. The accomplishments of the project were achieved in a collaborative effort among Washington University, the Oak Ridge National Laboratory, and the Iowa Energy Center teams. The following investigations and achievements were accomplished: Systematic studies of anaerobic digesters performance and kinetics using various configurations, modes of mixing, and scales (laboratory, pilot plant, and commercial sizes) were conducted and are discussed in Chapter 2. It was found that mixing significantly affected the performance of the pilot plant scale digester ({approx}97 liter). The detailed mixing and hydrodynamics were investigated using computer automated radioactive particle tracking (CARPT) techniques, and are discussed in Chapter 3. A novel multiple particle tracking technique (MP-CARPT) technique that can track simultaneously up to 8 particles was developed, tested, validated, and implemented. Phase distribution was investigated using gamma ray computer tomography (CT) techniques, which are discussed in Chapter 4. A novel dual source CT (DSCT) technique was developed to measure the phase distribution of dyn

  10. The Effects of Nitrogen Fertilization on Bioenergy Sorghum Yield and Quality 

    E-Print Network [OSTI]

    Zilahi-Sebess, Szilvia

    2012-07-16

    Sorghum: its uses and origins, and current place in the US economy???? 3 Sorghum as a potential biofuel crop???...................................................... 4 Ethanol production and ethanol yield?????????????????????.. 5... yield against applied nitrogen rate by harvest???? ................................................... 36 5 Regression of tissue nitrogen concentration of the above ground sorghum biomass against applied nitrogen rate by year and location...

  11. Conversion Technologies for Advanced Biofuels - Carbohydrates...

    Energy Savers [EERE]

    More Documents & Publications Conversion Technologies for Advanced Biofuels - Carbohydrates Production Advanced Conversion Roadmap Workshop Innovative Topics for Advanced Biofuels...

  12. DOE Thermochemical Users Facility: A Proving Ground for Biomass Technology

    SciTech Connect (OSTI)

    Not Available

    2003-10-01

    The National Bioenergy Center at the U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL) provides a state-of-the-art Thermochemical Users Facility (TCUF) for converting renewable, biomass feedstocks into a variety of products, including electricity, high-value chemicals, and transportation fuels.

  13. Proceedings of the Bio-Energy '80 world congress and exposition

    SciTech Connect (OSTI)

    1980-01-01

    Many countries are moving with increasing urgency to obtain larger fractions of their energy from biomass. Over 1800 leading experts from 70 countries met on April 21 to 24 in Atlanta to conduct a World Congress and Exposition on Bio-Energy. This summary presents highlights of the Congress and thoughts stimulated by the occasion. Topics addressed include a comparison of international programs, world and country regionalism in the development of energy supplies, fuel versus food or forest products, production of ethyl alcohol, possibilities for expanded production of terrestrial vegetation and marine flora, and valuable chemicals from biomass. Separate abstracts have been prepared for 164 papers for inclusion in the Energy Data Base.

  14. Bioenergy with Carbon Capture and Sequestration Workshop

    Broader source: Energy.gov [DOE]

    The Office of Fossil Energy (FE) and the Bioenergy Technologies Office (BETO) in the Office of Energy Efficiency and Renewable Energy (EERE) at the U.S. Department of Energy (DOE) is hosting a Bioenergy with Carbon Capture and Sequestration (BECCS) Workshop on Monday, May 18, 2015 in Washington, DC.

  15. Social Aspects of Bioenergy Sustainability Workshop Report

    SciTech Connect (OSTI)

    Luchner, Sarah; Johnson, Kristen; Lindauer, Alicia; McKinnon, Taryn; Broad, Max

    2013-05-30

    The Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy Bioenergy Technologies Office held a workshop on “Social Aspects of Bioenergy” on April 24, 2012, in Washington, D.C., and convened a webinar on this topic on May 8, 2012. The findings and recommendations from the workshop and webinar are compiled in this report.

  16. Hawaii Bioenergy Master Plan Stakeholder Comment

    E-Print Network [OSTI]

    Hawaii Bioenergy Master Plan Volume III Stakeholder Comment Prepared for State of Hawaii Department of Business, Economic Development and Tourism By University of Hawaii Hawaii Natural Energy Institute School of Ocean Earth Sciences and Technology December 2009 #12;i Hawaii Bioenergy Master Plan Volume III

  17. BETO Announces Bioenergy Technologies Incubator FOA

    Broader source: Energy.gov [DOE]

    The Office of Energy Efficiency and Renewable Energy (EERE) has released a new $10 million funding opportunity announcement (FOA) to support innovative technologies and solutions that could help achieve bioenergy development goals, but are not significantly represented in the Bioenergy Technology Office's (BETOĂ's) existing multi-year program plans or current research and development portfolio.

  18. Hawaii Bioenergy Master Plan Potential Environmental Impacts of

    E-Print Network [OSTI]

    Hawaii Bioenergy Master Plan Potential Environmental Impacts of Bioenergy Development in Hawaii of the potential environmental impacts associated with bioenergy development in Hawaii was conducted as part of the Hawaii Bioenergy Master Plan mandated by Act 253 of the Hawaii State Legislature in 2007. This effort

  19. GLOBAL BIOFUELS OUTLOOK MAELLE SOARES PINTO

    E-Print Network [OSTI]

    GLOBAL BIOFUELS OUTLOOK 2010-2020 MAELLE SOARES PINTO DIRECTOR BIOFUELS EUROPE & AFRICA WORLD BIOFUELS MARKETS, ROTTERDAM MARCH 23, 2011 #12;Presentation Overview · Global Outlook ­ Biofuels Mandates in 2010 ­ Total Biofuels Supply and Demand ­ Regional Supply and Demand Outlook to 2020 ­ Biofuels

  20. Enzymatically based cellulosic ethanol production technology was selected as a key area for biomass

    E-Print Network [OSTI]

    California at Riverside, University of

    Enzymatically based cellulosic ethanol production technology was selected as a key area for biomass crisis' of the 1970s. Although biological conversion of cellulosic biomass to fuels and chemicals through classical mutagenesis and strain Biofuels (2011) 2(4), 421­450 Enzymatic hydrolysis of cellulosic biomass

  1. Metabolomics of Clostridial Biofuel Production

    SciTech Connect (OSTI)

    Rabinowitz, Joshua D; Aristilde, Ludmilla; Amador-Noguez, Daniel

    2015-09-08

    Members of the genus Clostridium collectively have the ideal set of the metabolic capabilities for fermentative biofuel production: cellulose degradation, hydrogen production, and solvent excretion. No single organism, however, can effectively convert cellulose into biofuels. Here we developed, using metabolomics and isotope tracers, basic science knowledge of Clostridial metabolism of utility for future efforts to engineer such an organism. In glucose fermentation carried out by the biofuel producer Clostridium acetobutylicum, we observed a remarkably ordered series of metabolite concentration changes as the fermentation progressed from acidogenesis to solventogenesis. In general, high-energy compounds decreased while low-energy species increased during solventogenesis. These changes in metabolite concentrations were accompanied by large changes in intracellular metabolic fluxes, with pyruvate directed towards acetyl-CoA and solvents instead of oxaloacetate and amino acids. Thus, the solventogenic transition involves global remodeling of metabolism to redirect resources from biomass production into solvent production. In contrast to C. acetobutylicum, which is an avid fermenter, C. cellulolyticum metabolizes glucose only slowly. We find that glycolytic intermediate concentrations are radically different from fast fermenting organisms. Associated thermodynamic and isotope tracer analysis revealed that the full glycolytic pathway in C. cellulolyticum is reversible. This arises from changes in cofactor utilization for phosphofructokinase and an alternative pathway from phosphoenolpyruvate to pyruvate. The net effect is to increase the high-energy phosphate bond yield of glycolysis by 150% (from 2 to 5) at the expense of lower net flux. Thus, C. cellulolyticum prioritizes glycolytic energy efficiency over speed. Degradation of cellulose results in other sugars in addition to glucose. Simultaneous feeding of stable isotope-labeled glucose and unlabeled pentose sugars (xylose or arabinose) to C. acetobutylicum revealed that, as expected, glucose was preferred, with the pentose sugar selectively assimilated into the pentose phosphate pathway (PPP). Simultaneous feeding of xylose and arabinose revealed an unexpected hierarchy among these pentose sugars, with arabinose utilized preferentially over xylose. Pentose catabolism occurred via the phosphoketolase pathway (PKP), an alternative route of pentose catabolism that directly converts xylulose-5-phosphate into acetyl-phosphate and glyceraldehyde-3-phosphate. Taken collectively, these findings reveal two hierarchies in Clostridial pentose metabolism: xylose is subordinate to arabinose, and the PPP is used less than the PKP. Thus, in addition to massively expanding the available data on Clostridial metabolism, we identified three key regulatory points suitable for targeting in future bioengineering efforts: phosphofructokinase for enhancing fermentation, the pyruvate-oxaloacetate node for controlling solventogenesis, and the phosphoketolase reaction for driving pentose catabolism.

  2. Energy 101: Biofuels

    Office of Energy Efficiency and Renewable Energy (EERE)

    Biomass is an organic renewable energy source that includes materials such as agriculture and forest residues, energy crops, and algae.

  3. Energy 101: Biofuels

    Office of Energy Efficiency and Renewable Energy (EERE)

    Learn how biomass is converted into clean, renewable transportation fuels to power our cars, trucks, planes, and trains.

  4. Bioproducts and Biofuels – Growing Together!

    Broader source: Energy.gov [DOE]

    Breakout Session 2B—Integration of Supply Chains II: Bioproducts—Enabling Biofuels and Growing the Bioeconomy Bioproducts and Biofuels – Growing Together! Andrew Held, Senior Director, Deployment and Engineering, Virent, Inc.

  5. Transportation Biofuels in the US A Preliminary Innovation Systems Analysis

    E-Print Network [OSTI]

    Eggert, Anthony

    2007-01-01

    a greater focus on specific biofuel production technologies.differences for certain biofuel feedstocks as well as policy24 Biofuel

  6. Transportation Biofuels in the USA Preliminary Innovation Systems Analysis

    E-Print Network [OSTI]

    Eggert, Anthony

    2007-01-01

    a greater focus on specific biofuel production technologies.differences for certain biofuel feedstocks as well as policy24 Biofuel

  7. Biofuel alternatives to ethanol: pumping the microbial well

    E-Print Network [OSTI]

    Fortman, J.L.

    2011-01-01

    Biofuel alternatives to ethanol: pumping the microbialtechnologies that enable biofuel production. Decades of workstrategy for producing biofuel. Although ethanol currently

  8. Genetic resources for advanced biofuel production described with the Gene Ontology

    SciTech Connect (OSTI)

    Torto-Alalibo, Trudy; Purwantini, Endang; Lomax, Jane; Setubal, Joao C.; Mukhopadhyay, Biswarup; Tyler, Brett M.

    2014-10-10

    Dramatic increases in research in the area of microbial biofuel production coupled with high-throughput data generation on bioenergy-related microbes has led to a deluge of information in the scientific literature and in databases. Consolidating this information and making it easily accessible requires a unified vocabulary.The Gene Ontology (GO) fulfills that requirement, as it is a well-developed structured vocabulary that describes the activities and locations of gene products in a consistent manner across all kingdoms of life. The Microbial ENergy processes Gene Ontology (http://www.mengo.biochem.vt.edu) project is extending the GO to include new terms to describe microbial processes of interest to bioenergy production. Our effort has added over 600 bioenergy related terms to the Gene Ontology. These terms will aid in the comprehensive annotation of gene products from diverse energy-related microbial genomes. An area of microbial energy research that has received a lot of attention is microbial production of advanced biofuels. These include alcohols such as butanol, isopropanol, isobutanol, and fuels derived from fatty acids, isoprenoids, and polyhydroxyalkanoates. These fuels are superior to first generation biofuels (ethanol and biodiesel esterified from vegetable oil or animal fat), can be generated from non-food feedstock sources, can be used as supplements or substitutes for gasoline, diesel and jet fuels, and can be stored and distributed using existing infrastructure. We review the roles of genes associated with synthesis of advanced biofuels, and at the same time introduce the use of the GO to describe the functions of these genes in a standardized way.

  9. Biomass and Bioenergy 31 (2007) 638645 Forest bioenergy system to reduce the hazard of wildfires

    E-Print Network [OSTI]

    2007-01-01

    Contract'' for utilization in small power plants (o3 MW), and a wood-heating pellet manufacturing facility. The outlet for the wood fuel pellets is the growing market for house and business heating, and co

  10. Canada Biomass-Bioenergy Report May 31, 2006

    E-Print Network [OSTI]

    .2.2. Bio-oil 3.2.3. Wood Pellets 4. Imports and Exports 4.1. Ethanol 4.2. Bio-oil 4.3. Wood Pellets 5 Ocean. Canada is blessed with considerable natural resources including oil and gas, coal, hydro. In 2000, 39% of Canada's primary energy was from petroleum, 28% from natural gas and 13% from coal. 11

  11. EIS-0407: Abengoa Biomass Bioenergy Project near Hugoton, Stevens County,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based|Department of5Department oftoStatement |Scoping EIS-0403:-SA-01:KS |

  12. Abengoa Bioenergy Biomass of Kansas, LLC | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram:Y-12 Beta-3AUDIT REPORT: OAS-L-13-11 AUDIT REPORT: OAS-L-13-11

  13. Office of the Biomass Program Educational Opportunities in Bioenergy Intro

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuelsof EnergyApril 2014DepartmentCouncil

  14. Biofuel Boundaries: Estimating the Medium-Term Supply Potential of Domestic Biofuels

    E-Print Network [OSTI]

    Jones, Andrew; O'Hare, Michael; Farrell, Alexander

    2007-01-01

    Biofuel Boundaries: Estimating the Medium-Term SupplyAugust 22, 2007 Biofuel Boundaries: Estimating the Medium-significant amount of liquid biofuel (equivalent to 30-100%

  15. Biofuel Boundaries: Estimating the Medium-Term Supply Potential of Domestic Biofuels

    E-Print Network [OSTI]

    Jones, Andrew; O'Hare, Michael; Farrell, Alexander

    2007-01-01

    sizable increases in biofuel production need not result ina reasonable level of biofuel production that avoids pushing26 Appendix A - Biofuel Production

  16. CEE Bioenergie | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar Energy LLC JumpBiossenceBrunswick, Maine:IAEAT JumpCEE Bioenergie Jump to:

  17. Alterra Bioenergy | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar Energy LLC Jump to: navigation, search Name: Alliance'Novel'Bioenergy Jump

  18. Sustainable Bioenergy | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking With Livermore NationalSurprisingSustainabilitySustainable Bioenergy

  19. The Ecological Impact of Biofuels

    E-Print Network [OSTI]

    Kammen, Daniel M.

    The Ecological Impact of Biofuels Joseph E. Fargione,1 Richard J. Plevin,2 and Jason D. Hill3 1 land-use change Abstract The ecological impact of biofuels is mediated through their effects on land, air, and water. In 2008, about 33.3 million ha were used to produce food- based biofuels

  20. Danielle Goldtooth Paper #6 -Biofuels

    E-Print Network [OSTI]

    Lega, Joceline

    Jon Kroc Danielle Goldtooth IS 195A Paper #6 - Biofuels Green Dreams In the modern era science has. Biofuels are increasingly becoming viable alternatives to gasoline, diesel, and other non-renewable fuels." There are still many issues that must be dealt with before the production of biofuels is energy-efficient enough

  1. Using System Dynamics to Model the Transition to Biofuels in the United States: Preprint

    SciTech Connect (OSTI)

    Bush, B.; Duffy, M.; Sandor, D.; Peterson, S.

    2008-06-01

    Transitioning to a biofuels industry that is expected to displace about 30% of current U.S. gasoline consumption requires a robust biomass-to-biofuels system-of-systems that operates in concert with the existing markets. This paper discusses employing a system dynamics approach to investigate potential market penetration scenarios for cellulosic ethanol and to help government decision makers focus on areas with greatest potential.

  2. Biomass 2013: Welcome

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    - Comment on posts at Facebook.comBioenergyKDF The Bioenergy KDF is an online, GIS-based framework (funded by BETO) that facilitates informed decision making by providing...

  3. Biofuels in Oregon and Washington: A Business Case Analysis of Opportunities and Challenges

    SciTech Connect (OSTI)

    Stiles, Dennis L.; Jones, Susan A.; Orth, Rick J.; Saffell, Bernard F.; Zhu, Yunhua

    2008-02-28

    The purpose of this report is to assemble the information needed to estimate the significance of the opportunity for producing biofuels in the region as well as the associated challenges. The report reviews the current state of the industry, the biomass resources that are available within current production practices, and the biofuels production technology that is available within the marketplace. The report also identifys the areas in which alternative approaches or strategies, or technologoical advances, might offer an opportunity to expand the Nortwest biofuels industry beyond its current state.

  4. Part 4: Conclusion "Growing biofuel crops is a considerably long-term investment. We need to frame the food vs.

    E-Print Network [OSTI]

    ." and the following outcomes - "(1) Strategic partnerships for the research, development, testing, and deployment of renewable biofuels technologies and production of biomass crops; (2) Evaluation of Hawaii's potential/or crops, conversion of biomass to useable fuels, distribution infrastructure, and end user markets. Each

  5. EA-1940: Proposed Federal Loan Guarantee for Montana Advanced Biofuels

    Broader source: Energy.gov [DOE]

    Montana Advanced Biofuels (MAB) submitted an application to DOE for a Federal loan guarantee to support construction of a multi-feedstock biorefinery that would produce approximately 115 million gallons per year of ethanol in Great Falls, Montana. The biorefinery would utilize renewable biomass in the form of barley and wheat to produce ethanol and other by-products, including wheat gluten, barley bran, and barley meal. NOTE: The EA is cancelled because the applicant withdrew from the program.

  6. BioEnergy Blog | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    D.C. for their Winning Bioenergy Infographic A team of five freshmen from Williamsburg High School for Architecture and Design in Brooklyn, New York-designed an infographic on the...

  7. GCAM Bioenergy and Land Use Modeling

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Leon Clarke. 2013. "Can radiative forcing be limited to 2.6 Wm-2 without negative emissions from bioenergy and CO2 capture and storage?" Climatic Change. Special Issue on...

  8. Lifecycle Analyses of Biofuels

    E-Print Network [OSTI]

    Delucchi, Mark

    2006-01-01

    processes (e.g. , oil recovery, coal mining, natural gascoal, or biomass. Based on primary survey data at energy- mining and recovery

  9. Chapter 18: Understanding the Developing Cellulosic Biofuels Industry through Dynamic Modeling

    SciTech Connect (OSTI)

    Newes, E.; Inman, D.; Bush, B.

    2011-01-01

    The purpose of this chapter is to discuss a system dynamics model called the Biomass Scenario Model (BSM), which is being developed by the U.S. Department of Energy as a tool to better understand the interaction of complex policies and their potential effects on the burgeoning cellulosic biofuels industry in the United States. The model has also recently been expanded to include advanced conversion technologies and biofuels (i.e., conversion pathways that yield biomass-based gasoline, diesel, jet fuel, and butanol), but we focus on cellulosic ethanol conversion pathways here. The BSM uses a system dynamics modeling approach (Bush et al., 2008) built on the STELLA software platform.

  10. Biofuel policy must evaluate environmental, food security and energy goals to maximize net benefits

    E-Print Network [OSTI]

    Sexton, Steven E; Rajagapol, Deepak; Hochman, Gal; Zilberman, David D; Roland-Holst, David

    2009-01-01

    10, 2008). Wiebe K. 2008. Biofuels: Implications for naturalcountries. Sustainable Biofuels and Human Securitydistribution implications of biofuels. Sustainable Biofuels

  11. Biomass pretreatment

    DOE Patents [OSTI]

    Hennessey, Susan Marie; Friend, Julie; Elander, Richard T; Tucker, III, Melvin P

    2013-05-21

    A method is provided for producing an improved pretreated biomass product for use in saccharification followed by fermentation to produce a target chemical that includes removal of saccharification and or fermentation inhibitors from the pretreated biomass product. Specifically, the pretreated biomass product derived from using the present method has fewer inhibitors of saccharification and/or fermentation without a loss in sugar content.

  12. Biomass Energy Data Book, 2011, Edition 4

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Wright, L.; Boundy, B.; Diegel, S. W.; Davis, S. C.

    The Biomass Energy Data Book is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Biomass Program in the Energy Efficiency and Renewable Energy (EERE) program of the Department of Energy (DOE). Designed for use as a convenient reference, the book represents an assembly and display of statistics and information that characterize the biomass industry, from the production of biomass feedstocks to their end use, including discussions on sustainability. This is the fourth edition of the Biomass Energy Data Book which is only available online in electronic format. There are five main sections to this book. The first section is an introduction which provides an overview of biomass resources and consumption. Following the introduction to biomass, is a section on biofuels which covers ethanol, biodiesel and bio-oil. The biopower section focuses on the use of biomass for electrical power generation and heating. The fourth section is on the developing area of biorefineries, and the fifth section covers feedstocks that are produced and used in the biomass industry. The sources used represent the latest available data. There are also four appendices which include frequently needed conversion factors, a table of selected biomass feedstock characteristics, and discussions on sustainability.

  13. Biomass Energy Data Book: Edition 4

    SciTech Connect (OSTI)

    Boundy, Robert Gary; Diegel, Susan W; Wright, Lynn L; Davis, Stacy Cagle

    2011-12-01

    The Biomass Energy Data Book is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Biomass Program in the Energy Efficiency and Renewable Energy (EERE) program of the Department of Energy (DOE). Designed for use as a convenient reference, the book represents an assembly and display of statistics and information that characterize the biomass industry, from the production of biomass feedstocks to their end use, including discussions on sustainability. This is the fourth edition of the Biomass Energy Data Book which is only available online in electronic format. There are five main sections to this book. The first section is an introduction which provides an overview of biomass resources and consumption. Following the introduction to biomass, is a section on biofuels which covers ethanol, biodiesel and bio-oil. The biopower section focuses on the use of biomass for electrical power generation and heating. The fourth section is on the developing area of biorefineries, and the fifth section covers feedstocks that are produced and used in the biomass industry. The sources used represent the latest available data. There are also two appendices which include frequently needed conversion factors, a table of selected biomass feedstock characteristics, and discussions on sustainability. A glossary of terms and a list of acronyms are also included for the reader's convenience.

  14. Biomass Energy Data Book: Edition 1

    SciTech Connect (OSTI)

    Wright, Lynn L; Boundy, Robert Gary; Perlack, Robert D; Davis, Stacy Cagle; Saulsbury, Bo

    2006-09-01

    The Biomass Energy Data Book is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Office of the Biomass Program and the Office of Planning, Budget and Analysis in the Department of Energy's Energy Efficiency and Renewable Energy (EERE) program. Designed for use as a desk-top reference, the book represents an assembly and display of statistics and information that characterize the biomass industry, from the production of biomass feedstocks to their end use. This is the first edition of the Biomass Energy Data Book and is currently only available online in electronic format. There are five main sections to this book. The first section is an introduction which provides an overview of biomass resources and consumption. Following the introduction to biomass is a section on biofuels which covers ethanol, biodiesel and BioOil. The biopower section focuses on the use of biomass for electrical power generation and heating. The fourth section is about the developing area of biorefineries, and the fifth section covers feedstocks that are produced and used in the biomass industry. The sources used represent the latest available data. There are also three appendices which include measures of conversions, biomass characteristics and assumptions for selected tables and figures. A glossary of terms and a list of acronyms are also included for the reader's convenience.

  15. Biomass Energy Data Book: Edition 2

    SciTech Connect (OSTI)

    Wright, Lynn L; Boundy, Robert Gary; Badger, Philip C; Perlack, Robert D; Davis, Stacy Cagle

    2009-12-01

    The Biomass Energy Data Book is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Biomass Program in the Energy Efficiency and Renewable Energy (EERE) program of the Department of Energy (DOE). Designed for use as a convenient reference, the book represents an assembly and display of statistics and information that characterize the biomass industry, from the production of biomass feedstocks to their end use, including discussions on sustainability. This is the second edition of the Biomass Energy Data Book which is only available online in electronic format. There are five main sections to this book. The first section is an introduction which provides an overview of biomass resources and consumption. Following the introduction to biomass, is a section on biofuels which covers ethanol, biodiesel and bio-oil. The biopower section focuses on the use of biomass for electrical power generation and heating. The fourth section is on the developing area of biorefineries, and the fifth section covers feedstocks that are produced and used in the biomass industry. The sources used represent the latest available data. There are also four appendices which include frequently needed conversion factors, a table of selected biomass feedstock characteristics, assumptions for selected tables and figures, and discussions on sustainability. A glossary of terms and a list of acronyms are also included for the reader's convenience.

  16. Measurements and predictions of the radiation characteristics of biofuel-producing microorganisms

    E-Print Network [OSTI]

    Heng, Ri-Liang

    2015-01-01

    Biofuel Production frommicroalgal biofuel production [1]. . . . . . . . . . . . . .2 ?xation and biofuel production”, Journal of Quantitative

  17. Using Biofuel Tracers to Study Alternative Combustion Regimes

    E-Print Network [OSTI]

    Mack, John Hunter; Flowers, Daniel L.; Buchholz, Bruce A.; Dibble, Robert W.

    2006-01-01

    Section B (NIMB) Using Biofuel Tracers to Study Alternativeinjection. We investigate biofuel HCCI combustion, and use

  18. Sustainability Indicators for Bioenergy Systems and Applicability

    E-Print Network [OSTI]

    Pennycook, Steve

    (BSI) Cramer Commission Roundtable on Sustainable Biofuels (RSB) Rainforest Alliance Balanced Scorecard Green, da Atividade Agropecuaria (IB) Roundtable on Sustainable Palm Oil (RSPO) Renewable Fuel Standard (RFS

  19. Bioenergy Success Stories | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    2013 California: Advanced 'Drop-In' Biofuels Power the Navy's Green Strike Group EERE's investment allowed Solezyme to increase its algal oil production by a factor of 10,...

  20. Bioenergy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O OLaura|Bilayer Graphene GetsBiodiesel - SSC