National Library of Energy BETA

Sample records for biodiesel waste vegetable

  1. Creating Biodiesel & Mitigating Waste

    K-12 Energy Lesson Plans and Activities Web site (EERE)

    Safety practices for handling the materials involved in producing biodiesel fuel cannot be overemphasized, especially if students attempt to synthesize biodiesel outside of class.

  2. Earthship BioDiesel | Open Energy Information

    Open Energy Info (EERE)

    Earthship BioDiesel Jump to: navigation, search Name: Earthship BioDiesel Place: Taos, New Mexico Zip: 87571 Product: Supplier and retailer of biodiesel made from Waste Vegetable...

  3. Alternative Fuels Data Center: Biodiesel Fuels Education in Alabama

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Through AIDB's Project Green, students are producing biodiesel from waste vegetable oil, ... identifying sources of waste vegetable oil and collecting it from restaurants, ...

  4. The Biofuel Project: Creating Bio-diesel

    K-12 Energy Lesson Plans and Activities Web site (EERE)

    This activity introduces students to alternative fuels and gives them an opportunity to produce their own biodiesel fuel. The text of the exercise gives students a brief background in the environmental benefits of using biodiesel as a diesel substitute. The lab portion of this exercise demonstrates the basic chemistry involved in making biodiesel from vegetable oils and waste oils.

  5. Biodiesel Basics (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-06-01

    This fact sheet provides a brief introduction to biodiesel, including a discussion of biodiesel blends, which blends are best for which vehicles, where to buy biodiesel, how biodiesel compares to diesel fuel in terms of performance, how biodiesel performs in cold weather, whether biodiesel use will plug vehicle filters, how long-term biodiesel use may affect engines, biodiesel fuel standards, and whether biodiesel burns cleaner than diesel fuel. The fact sheet also dismisses the use of vegetable oil as a motor fuel.

  6. Vegetation Cover Analysis of Hazardous Waste Sites in Utah and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vegetation Cover Analysis of Hazardous Waste Sites in Utah and Arizona Using Hyperspectral Remote Sensing Vegetation Cover Analysis of Hazardous Waste Sites in Utah and Arizona ...

  7. Transesterification of waste vegetable oil under pulse sonication using ethanol, methanol and ethanol–methanol mixtures

    SciTech Connect (OSTI)

    Martinez-Guerra, Edith; Gude, Veera Gnaneswar

    2014-12-15

    Highlights: • Pulse sonication effect on transesterification of waste vegetable oil was studied. • Effects of ethanol, methanol, and alcohol mixtures on FAMEs yield were evaluated. • Effect of ultrasonic intensity, power density, and its output rates were evaluated. • Alcohol mixtures resulted in higher biodiesel yields due to better solubility. - Abstract: This study reports on the effects of direct pulse sonication and the type of alcohol (methanol and ethanol) on the transesterification reaction of waste vegetable oil without any external heating or mechanical mixing. Biodiesel yields and optimum process conditions for the transesterification reaction involving ethanol, methanol, and ethanol–methanol mixtures were evaluated. The effects of ultrasonic power densities (by varying sample volumes), power output rates (in W), and ultrasonic intensities (by varying the reactor size) were studied for transesterification reaction with ethanol, methanol and ethanol–methanol (50%-50%) mixtures. The optimum process conditions for ethanol or methanol based transesterification reaction of waste vegetable oil were determined as: 9:1 alcohol to oil ratio, 1% wt. catalyst amount, 1–2 min reaction time at a power output rate between 75 and 150 W. It was shown that the transesterification reactions using ethanol–methanol mixtures resulted in biodiesel yields as high as >99% at lower power density and ultrasound intensity when compared to ethanol or methanol based transesterification reactions.

  8. Biodiesel research progress 1992-1997

    SciTech Connect (OSTI)

    Tyson, K.S.

    1998-04-01

    The US Department of Energy (DOE) Office of Fuels Development began evaluating the potential of various alternative fuels, including biodiesel, as replacement fuels for traditional transportation fuels. Biodiesel is derived from a variety of biological materials from waste vegetable grease to soybean oil. This alkyl ester could be used as a replacement, blend, or additive to diesel fuel. This document is a comprehensive summary of relevant biodiesel and biodiesel-related research, development demonstration, and commercialization projects completed and/or started in the US between 1992 and 1997. It was designed for use as a reference tool to the evaluating biodiesel`s potential as a clean-burning alternative motor fuel. It encompasses, federally, academically, and privately funded projects. Research projects are presented under the following topical sections: Production; Fuel characteristics; Engine data; Regulatory and legislative activities; Commercialization activities; Economics and environment; and Outreach and education.

  9. Biodiesel Fuel Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biodiesel Fuel Basics Biodiesel Fuel Basics July 30, 2013 - 2:43pm Addthis Biodiesel is a domestically produced, renewable fuel that can be manufactured from vegetable oils, animal fats, or recycled restaurant greases. What Is Biodiesel? Biodiesel is a liquid fuel produced from renewable sources such as new and used vegetable oils and animal fats and is a cleaner-burning replacement for petroleum-based diesel fuel. It is nontoxic and biodegradable. Like petroleum-derived diesel, biodiesel is

  10. Messiah College Biodiesel Fuel Generation Project Final Technical Report

    SciTech Connect (OSTI)

    Zummo, Michael M; Munson, J; Derr, A; Zemple, T; Bray, S; Studer, B; Miller, J; Beckler, J; Hahn, A; Martinez, P; Herndon, B; Lee, T; Newswanger, T; Wassall, M

    2012-03-30

    Many obvious and significant concerns arise when considering the concept of small-scale biodiesel production. Does the fuel produced meet the stringent requirements set by the commercial biodiesel industry? Is the process safe? How are small-scale producers collecting and transporting waste vegetable oil? How is waste from the biodiesel production process handled by small-scale producers? These concerns and many others were the focus of the research preformed in the Messiah College Biodiesel Fuel Generation project over the last three years. This project was a unique research program in which undergraduate engineering students at Messiah College set out to research the feasibility of small-biodiesel production for application on a campus of approximately 3000 students. This Department of Energy (DOE) funded research program developed out of almost a decade of small-scale biodiesel research and development work performed by students at Messiah College. Over the course of the last three years the research team focused on four key areas related to small-scale biodiesel production: Quality Testing and Assurance, Process and Processor Research, Process and Processor Development, and Community Education. The objectives for the Messiah College Biodiesel Fuel Generation Project included the following: 1. Preparing a laboratory facility for the development and optimization of processors and processes, ASTM quality assurance, and performance testing of biodiesel fuels. 2. Developing scalable processor and process designs suitable for ASTM certifiable small-scale biodiesel production, with the goals of cost reduction and increased quality. 3. Conduct research into biodiesel process improvement and cost optimization using various biodiesel feedstocks and production ingredients.

  11. Table 3. U.S. Inputs to biodiesel production

    U.S. Energy Information Administration (EIA) Indexed Site

    U.S. Inputs to biodiesel production" "million pounds" ,"Feedstock inputs" ,"Vegetable ... Administration, Form EIA-22M ""Monthly Biodiesel Production Survey""" "U.S. Energy ...

  12. Biodiesel Performance, Costs, and Use

    Reports and Publications (EIA)

    2004-01-01

    Biodiesel fuel for diesel engines is produced from vegetable oil or animal fat by the chemical process of esterification. This paper presents a brief history of diesel engine technology and an overview of biodiesel, including performance characteristics, economics, and potential demand. The performance and economics of biodiesel are compared with those of petroleum diesel.

  13. Straight Vegetable Oil as a Diesel Fuel?

    SciTech Connect (OSTI)

    2014-01-01

    Biodiesel, a renewable fuel produced from animal fats or vegetable oils, is popular among many vehicle owners and fleet managers seeking to reduce emissions and support U.S. energy security. Questions sometimes arise about the viability of fueling vehicles with straight vegetable oil (SVO), or waste oils from cooking and other processes, without intermediate processing. But SVO and waste oils differ from biodiesel (and conventional diesel) in some important ways and are generally not considered acceptable vehicle fuels for large-scale or long-term use.

  14. Biodiesel Offers a Renewable Alternative

    Broader source: Energy.gov [DOE]

    Biodiesel is a renewable fuel made of vegetable oils or animal fats. It can be produced from new oils such as soy or used vegetable oils like restaurant grease.

  15. Biodiesel Basics

    SciTech Connect (OSTI)

    2014-07-01

    This fact sheet provides a brief introduction to biodiesel, including a discussion of biodiesel blends and specifications. It also covers how biodiesel compares to diesel fuel in terms of performance (including in cold weather) and whether there are adverse effects on engines or other systems. Finally, it discusses biodiesel fuel quality and standards, and compares biodiesel emissions to those of diesel fuel.

  16. Biodiesel Basics (Fact Sheet), Clean Cities, Energy Efficiency...

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    ... Can I use straight vegeta- ble oil in my diesel engine? No, straight vegetable oil is not biodiesel and is not a legal motor fuel. It doesn't meet biodiesel fuel specifications or ...

  17. Biodiesel Blends

    SciTech Connect (OSTI)

    Not Available

    2005-04-01

    A 2-page fact sheet discussing general biodiesel blends and the improvement in engine performance and emissions.

  18. Biodiesel Basics (Spanish Version); Clean Cities, Energy Efficiency & Renewable Energy (EERE)

    SciTech Connect (OSTI)

    2015-08-01

    This Spanish-language fact sheet provides a brief introduction to biodiesel, including a discussion of biodiesel blends, which blends are best for which vehicles, where to buy biodiesel, how biodiesel compares to diesel fuel in terms of performance, how biodiesel performs in cold weather, whether biodiesel use will plug vehicle filters, how long-term biodiesel use may affect engines, biodiesel fuel standards, and whether biodiesel burns cleaner than diesel fuel. The fact sheet also dismisses the use of vegetable oil as a motor fuel.

  19. Biodiesel | Open Energy Information

    Open Energy Info (EERE)

    Biodiesel Jump to: navigation, search TODO: Add description List of Biodiesel Incentives Retrieved from "http:en.openei.orgwindex.php?titleBiodiesel&oldid267146" Feedback...

  20. Monthly Biodiesel Production Report

    U.S. Energy Information Administration (EIA) Indexed Site

    U.S. Biodiesel production capacity and production million gallons Period Annual Production ... B100 is the industry designation for pure biodiesel; a biodiesel blend contains both pure ...

  1. VEGETATION COVER ANALYSIS OF HAZARDOUS WASTE SITES IN UTAH AND ARIZONA USING HYPERSPECTRAL REMOTE SENSING

    SciTech Connect (OSTI)

    Serrato, M.; Jungho, I.; Jensen, J.; Jensen, R.; Gladden, J.; Waugh, J.

    2012-01-17

    Remote sensing technology can provide a cost-effective tool for monitoring hazardous waste sites. This study investigated the usability of HyMap airborne hyperspectral remote sensing data (126 bands at 2.3 x 2.3 m spatial resolution) to characterize the vegetation at U.S. Department of Energy uranium processing sites near Monticello, Utah and Monument Valley, Arizona. Grass and shrub species were mixed on an engineered disposal cell cover at the Monticello site while shrub species were dominant in the phytoremediation plantings at the Monument Valley site. The specific objectives of this study were to: (1) estimate leaf-area-index (LAI) of the vegetation using three different methods (i.e., vegetation indices, red-edge positioning (REP), and machine learning regression trees), and (2) map the vegetation cover using machine learning decision trees based on either the scaled reflectance data or mixture tuned matched filtering (MTMF)-derived metrics and vegetation indices. Regression trees resulted in the best calibration performance of LAI estimation (R{sup 2} > 0.80). The use of REPs failed to accurately predict LAI (R{sup 2} < 0.2). The use of the MTMF-derived metrics (matched filter scores and infeasibility) and a range of vegetation indices in decision trees improved the vegetation mapping when compared to the decision tree classification using just the scaled reflectance. Results suggest that hyperspectral imagery are useful for characterizing biophysical characteristics (LAI) and vegetation cover on capped hazardous waste sites. However, it is believed that the vegetation mapping would benefit from the use of 1 higher spatial resolution hyperspectral data due to the small size of many of the vegetation patches (< 1m) found on the sites.

  2. Straight Vegetable Oil as a Diesel Fuel? (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-05-01

    Discusses the use of straight vegetable oil as a diesel fuel and the use of biodiesel as a transportation fuel.

  3. ?Aceite Vegetal Puro Como Combustible Diesel? (Straight Vegetable Oil as a Diesel Fuel? Spanish Version) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-06-01

    Discusses the use of straight vegetable oil as a diesel fuel and the use of biodiesel as a transportation fuel.

  4. Maryland Biodiesel | Open Energy Information

    Open Energy Info (EERE)

    Biodiesel Jump to: navigation, search Name: Maryland Biodiesel Place: Berlin, Maryland Product: Maryland Biodiesel operates the 3.7m liter biodiesel plant in Berlin, Maryland....

  5. CLV Biodiesel | Open Energy Information

    Open Energy Info (EERE)

    CLV Biodiesel Jump to: navigation, search Name: CLV Biodiesel Place: Colider, Mato Grosso, Brazil Product: Biodiesel producer References: CLV Biodiesel1 This article is a stub....

  6. Better Biodiesel | Open Energy Information

    Open Energy Info (EERE)

    Biodiesel Jump to: navigation, search Name: Better Biodiesel Place: Orem, Utah Zip: 84057 Product: Biodiesel producer References: Better Biodiesel1 This article is a stub. You...

  7. Upstate Biodiesel | Open Energy Information

    Open Energy Info (EERE)

    Biodiesel Jump to: navigation, search Name: Upstate Biodiesel Place: New York Product: Biodiesel producer. References: Upstate Biodiesel1 This article is a stub. You can help...

  8. Crescent Biodiesel | Open Energy Information

    Open Energy Info (EERE)

    Biodiesel Jump to: navigation, search Name: Crescent Biodiesel Place: Brazil Product: Brazilian biodiesel producer. References: Crescent Biodiesel1 This article is a stub. You...

  9. AZ Biodiesel | Open Energy Information

    Open Energy Info (EERE)

    AZ Biodiesel Jump to: navigation, search Name: AZ Biodiesel Place: Chandler, Arizona Zip: 85225 Product: AZ Biodiesel is a biodiesel producer that announced plans in July 2008 to...

  10. Brown Grease to Biodiesel Demonstration Project Report (Technical...

    Office of Scientific and Technical Information (OSTI)

    ... Country of Publication: United States Language: English Subject: 09 BIOMASS FUELS Brown Grease; Trap Waste; Biodiesel; Biofuel; Wastewater; Anaerobic Digestion Word Cloud More Like ...

  11. Monthly Biodiesel Production Report

    U.S. Energy Information Administration (EIA) Indexed Site

    Biodiesel (B100) production by Petroleum Administration for Defense District (PADD) ... Source: U.S. Energy Information Administration, Form EIA-22M "Monthly Biodiesel Production ...

  12. Vegetation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vegetation 250 o 250 N A Community _ Loblolly Pine D Bottomland Hardwood I!!!I Carolina Bay Wetland _ Bottomland HardwodlPine W Streams ~ Roads A/; Rails [2] SRS Bays Will Hydric Soils 500 Meters Soils Soil Series and Phase D DoA D DoB DRm rn Uo Figure 24-1. Plant COll/llll/lzities and soils associated with the Cypress Bay Set-Aside Area. sc 24-5 Set-Aside 24: Cypress Bay

  13. Biodiesel Progress: ASTM Specifications and 2nd Generation Biodiesel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Progress: ASTM Specifications and 2nd Generation Biodiesel Biodiesel Progress: ASTM Specifications and 2nd Generation Biodiesel Presentation given at the 2007 Diesel ...

  14. ABS Biodiesel | Open Energy Information

    Open Energy Info (EERE)

    Biodiesel Jump to: navigation, search Name: ABS Biodiesel Place: United Kingdom Product: UK-based biodiesel producer developing a plant in Avonmouth, near Bristol. References: ABS...

  15. Soyminas Biodiesel | Open Energy Information

    Open Energy Info (EERE)

    Soyminas Biodiesel Jump to: navigation, search Name: Soyminas Biodiesel Place: DIST. INDUSTRIAL, Brazil Zip: 37980-000 Product: Brazilian biodiesel producer located in Minas...

  16. Home Biodiesel | Open Energy Information

    Open Energy Info (EERE)

    Home Biodiesel Jump to: navigation, search Name: Home Biodiesel Place: Marysville, California Zip: 95901 Product: Manufacturer of small scale biodiesel equipment. Coordinates:...

  17. Brasil Biodiesel | Open Energy Information

    Open Energy Info (EERE)

    Biodiesel Jump to: navigation, search Name: Brasil Biodiesel Place: Piaui, Brazil Product: Brazilian holding which develops biodiesel projects. Coordinates: -6.83956,...

  18. Taua Biodiesel | Open Energy Information

    Open Energy Info (EERE)

    Taua Biodiesel Jump to: navigation, search Name: Taua Biodiesel Place: Brazil Product: Biodiesel producer currently developing a 36m-litre plant in the Brazilian state of Mato...

  19. Biodiesel Triangulo | Open Energy Information

    Open Energy Info (EERE)

    Triangulo Jump to: navigation, search Name: Biodiesel Triangulo Place: Iturama, MG, Brazil Product: Brazilian biodiesel producer located in Minas Gerais will develop two biodiesel...

  20. Vegetation Cover Analysis of Hazardous Waste Sites in Utah and Arizona Using Hyperspectral Remote Sensing

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Remote Sens. 2012, 4, 327-353; doi:10.3390/rs4020327 Remote Sensing ISSN 2072-4292 www.mdpi.com/journal/remotesensing Article Vegetation Cover Analysis of Hazardous Waste Sites in Utah and Arizona Using Hyperspectral Remote Sensing Jungho Im 1, *, John R. Jensen 2 , Ryan R. Jensen 3 , John Gladden 4 , Jody Waugh 5 and Mike Serrato 4 1 Department of Environmental Resources Engineering, College of Environmental Science and Forestry, State University of New York, Syracuse, NY 13210, USA 2

  1. Quality Assessment of Biodiesel and Biodiesel Blends | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Quality Assessment of Biodiesel and Biodiesel Blends Quality Assessment of Biodiesel and Biodiesel Blends The results of a quality survey of B20 fuel in the United States were ...

  2. Alternative Fuels Data Center: Biodiesel

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Biodiesel Printable Version Share this resource Send a link to Alternative Fuels Data Center: Biodiesel to someone by E-mail Share Alternative Fuels Data Center: Biodiesel on Facebook Tweet about Alternative Fuels Data Center: Biodiesel on Twitter Bookmark Alternative Fuels Data Center: Biodiesel on Google Bookmark Alternative Fuels Data Center: Biodiesel on Delicious Rank Alternative Fuels Data Center: Biodiesel on Digg Find More places to share Alternative Fuels Data Center: Biodiesel on

  3. Buffalo Biodiesel Inc | Open Energy Information

    Open Energy Info (EERE)

    Biodiesel Inc Jump to: navigation, search Name: Buffalo Biodiesel Inc Place: New York Product: Buffalo Biodiesel is a biodiesel producer that buys recycled and virgin oil to...

  4. V Fuels Biodiesel Limited | Open Energy Information

    Open Energy Info (EERE)

    Biodiesel Limited Jump to: navigation, search Name: V-Fuels Biodiesel Limited Place: United Kingdom Product: UK-based biodiesel producers. References: V-Fuels Biodiesel Limited1...

  5. Monthly Biodiesel Production Report

    U.S. Energy Information Administration (EIA) Indexed Site

    U.S. Biodiesel production, sales, and stocks million gallons Period B100 production Sales of B100 Sales of B100 included in biodiesel blends Ending stocks of B100 B100 stock change ...

  6. Monthly Biodiesel Production Report

    U.S. Energy Information Administration (EIA) Indexed Site

    U.S. Inputs to biodiesel production million pounds Period Canola oil Corn oil Cottonseed ... Source: U.S. Energy Information Administration, Form EIA-22M "Monthly Biodiesel Production ...

  7. Geotechnical, Hydrogeologic and Vegetation Data Package for 200-UW-1 Waste Site Engineered Surface Barrier Design

    SciTech Connect (OSTI)

    Ward, Andy L.

    2007-11-26

    Fluor Hanford (FH) is designing and assessing the performance of engineered barriers for final closure of 200-UW-1 waste sites. Engineered barriers must minimize the intrusion and water, plants and animals into the underlying waste to provide protection for human health and the environment. The Pacific Northwest National Laboratory (PNNL) developed Subsurface Transport Over Multiple Phases (STOMP) simulator is being used to optimize the performance of candidate barriers. Simulating barrier performance involves computation of mass and energy transfer within a soil-atmosphere-vegetation continuum and requires a variety of input parameters, some of which are more readily available than others. Required input includes parameter values for the geotechnical, physical, hydraulic, and thermal properties of the materials comprising the barrier and the structural fill on which it will be constructed as well as parameters to allow simulation of plant effects. This report provides a data package of the required parameters as well as the technical basis, rationale and methodology used to obtain the parameter values.

  8. Mississippi State Biodiesel Production Project

    SciTech Connect (OSTI)

    Rafael Hernandez; Todd French; Sandun Fernando; Tingyu Li; Dwane Braasch; Juan Silva; Brian Baldwin

    2008-03-20

    Biodiesel is a renewable fuel conventionally generated from vegetable oils and animal fats that conforms to ASTM D6751. Depending on the free fatty acid content of the feedstock, biodiesel is produced via transesterification, esterification, or a combination of these processes. Currently the cost of the feedstock accounts for more than 80% of biodiesel production cost. The main goal of this project was to evaluate and develop non-conventional feedstocks and novel processes for producing biodiesel. One of the most novel and promising feedstocks evaluated involves the use of readily available microorganisms as a lipid source. Municipal wastewater treatment facilities (MWWTF) in the USA produce (dry basis) of microbial sludge annually. This sludge is composed of a variety of organisms, which consume organic matter in wastewater. The content of phospholipids in these cells have been estimated at 24% to 25% of dry mass. Since phospholipids can be transesterified they could serve as a ready source of biodiesel. Examination of the various transesterification methods shows that in situ conversion of lipids to FAMEs provides the highest overall yield of biodiesel. If one assumes a 7.0% overall yield of FAMEs from dry sewage sludge on a weight basis, the cost per gallon of extracted lipid would be $3.11. Since the lipid is converted to FAMEs, also known as biodiesel, in the in Situ extraction process, the product can be used as is for renewable fuel. As transesterification efficiency increases the cost per gallon drops quickly, hitting $2.01 at 15.0% overall yield. An overall yield of 10.0% is required to obtain biodiesel at $2.50 per gallon, allowing it to compete with soybean oil in the marketplace. Twelve plant species with potential for oil production were tested at Mississippi State, MS. Of the species tested, canola, rapeseed and birdseed rape appear to have potential in Mississippi as winter annual crops because of yield. Two perennial crops were investigated, Chinese

  9. Northern Biodiesel | Open Energy Information

    Open Energy Info (EERE)

    Northern Biodiesel Place: Ontario, New York Product: Biodiesel producer. Coordinates: 34.06457, -117.647809 Show Map Loading map... "minzoom":false,"mappingservice":"googlemap...

  10. Fleet Biodiesel | Open Energy Information

    Open Energy Info (EERE)

    Biodiesel Jump to: navigation, search Name: Fleet Biodiesel Address: 7710 Balboa Ave Place: San Diego, California Zip: 92111 Region: Southern CA Area Sector: Biofuels Product:...

  11. Infinifuel Biodiesel | Open Energy Information

    Open Energy Info (EERE)

    Infinifuel Biodiesel Jump to: navigation, search Name: Infinifuel Biodiesel Place: Dayton, Nevada Zip: 89403 Sector: Geothermal energy Product: A Nevada-based firm developing the...

  12. Biodiesel Garware | Open Energy Information

    Open Energy Info (EERE)

    Garware Jump to: navigation, search Name: Biodiesel Garware Place: Maharashtra, India Product: Maharashtra-based biodiesel production facility which aims to attract joint venture...

  13. Washington Biodiesel | Open Energy Information

    Open Energy Info (EERE)

    Logo: Washington Biodiesel Name: Washington Biodiesel Address: 3401 Fremont Avenue N. Place: Seattle, Washington Zip: 98103 Region: Pacific Northwest Area Sector: Biofuels...

  14. General Biodiesel | Open Energy Information

    Open Energy Info (EERE)

    Biodiesel Jump to: navigation, search Name: General Biodiesel Address: 4034 West Marginal Way Place: Seattle, Washington Zip: 98106 Region: Pacific Northwest Area Sector: Biofuels...

  15. Harmonization of Biodiesel Specifications

    SciTech Connect (OSTI)

    Alleman, T. L.

    2008-02-01

    Worldwide biodiesel production has grown dramatically over the last several years. Biodiesel standards vary across countries and regions, and there is a call for harmonization. For harmonization to become a reality, standards have to be adapted to cover all feedstocks. Additionally, all feedstocks cannot meet all specifications, so harmonization will require standards to either tighten or relax. For harmonization to succeed, the biodiesel market must be expanded with the alignment of test methods and specification limits, not contracted.

  16. Studies Highlight Biodiesel's Benefits

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Golden, Colo., July 6, 1998 Two new studies highlight the benefits of biodiesel in reducing overall air pollution and in helping to reduce the United States' dependence on ...

  17. Southeast BioDiesel | Open Energy Information

    Open Energy Info (EERE)

    BioDiesel Jump to: navigation, search Name: Southeast BioDiesel Place: Charleston, South Carolina Product: Biodiesel producer based in South Carolina References: Southeast...

  18. Wuhan Airui Biodiesel | Open Energy Information

    Open Energy Info (EERE)

    Airui Biodiesel Jump to: navigation, search Name: Wuhan Airui Biodiesel Place: Wuhan, Hubei Province, China Zip: 430070 Product: Airui is a biodiesel processing, R&D, technology...

  19. North American Biodiesel | Open Energy Information

    Open Energy Info (EERE)

    North American Biodiesel Place: Menmonee Falls, Wisconsin Product: Biodiesel producer currently developing a biodiesel plant in Butler, Wisconsin and with plans to develop another...

  20. Green River Biodiesel Incorporated | Open Energy Information

    Open Energy Info (EERE)

    River Biodiesel Incorporated Jump to: navigation, search Name: Green River Biodiesel Incorporated Place: Houston, Texas Zip: 77056 Product: Biodiesel project developer and...

  1. Biodiesel Aragon SL | Open Energy Information

    Open Energy Info (EERE)

    Aragon SL Jump to: navigation, search Name: Biodiesel Aragon SL Place: Altorricon, Spain Product: Spanish-based biodiesel project developer. References: Biodiesel Aragon SL1 This...

  2. Big Biodiesel LLC | Open Energy Information

    Open Energy Info (EERE)

    Biodiesel LLC Jump to: navigation, search Name: Big Biodiesel LLC Place: Pulaski, Tennessee Zip: 38478 Product: Biodiesel plant developer in Pulaski, Tennessee. References: Big...

  3. Wyoming Biodiesel Co | Open Energy Information

    Open Energy Info (EERE)

    Co Jump to: navigation, search Name: Wyoming Biodiesel Co Place: Wyoming Product: Wyoming-based biodiesel project developer. References: Wyoming Biodiesel Co1 This article is a...

  4. Brownfield Biodiesel LLC | Open Energy Information

    Open Energy Info (EERE)

    Brownfield Biodiesel LLC Jump to: navigation, search Name: Brownfield Biodiesel LLC Place: Ralls, Texas Zip: 79357 Product: Biodiesel producer in Ralls, Texas. Coordinates:...

  5. Rix Biodiesel Limited | Open Energy Information

    Open Energy Info (EERE)

    Rix Biodiesel Limited Jump to: navigation, search Name: Rix Biodiesel Limited Place: Hull, United Kingdom Zip: HU8 7JR Product: Manufacture, blends and resells biodiesel....

  6. National Trail Biodiesel | Open Energy Information

    Open Energy Info (EERE)

    Trail Biodiesel Jump to: navigation, search Name: National Trail Biodiesel Place: Newton, Illinois Zip: 62448 Product: Owner of a planned 30m gallon per year biodiesel plant in...

  7. Pacific Biodiesel Inc | Open Energy Information

    Open Energy Info (EERE)

    Biodiesel Inc Jump to: navigation, search Name: Pacific Biodiesel Inc Place: Kahului, Hawaii Zip: 96732 Product: Hawaii-based biodiesel plant designer, producer and distributor in...

  8. Heartland biodiesel LLC | Open Energy Information

    Open Energy Info (EERE)

    biodiesel LLC Jump to: navigation, search Name: Heartland biodiesel LLC Place: Rock Port, Missouri Product: Biodiesel producer which is currently developing a 113m liter plant in...

  9. Midwest Biodiesel Producers LLC | Open Energy Information

    Open Energy Info (EERE)

    Biodiesel Producers LLC Jump to: navigation, search Name: Midwest Biodiesel Producers LLC Place: Alexandria, South Dakota Zip: 57311 Product: South Dakota-based biodiesel producer....

  10. Northwest Biodiesel Network | Open Energy Information

    Open Energy Info (EERE)

    Biodiesel Network Jump to: navigation, search Logo: Northwest Biodiesel Network Name: Northwest Biodiesel Network Address: 6532 Phinney Ave N Place: Seattle, Washington Zip: 98103...

  11. EOP Biodiesel AG | Open Energy Information

    Open Energy Info (EERE)

    EOP Biodiesel AG Jump to: navigation, search Name: EOP Biodiesel AG Place: Falkenhagen, Germany Zip: 16928 Product: German producer of biodiesel from rapeseed. References: EOP...

  12. Heartland Biodiesel Inc | Open Energy Information

    Open Energy Info (EERE)

    Heartland Biodiesel Inc Jump to: navigation, search Name: Heartland Biodiesel Inc Place: Herrin, Illinois Product: Biodiesel producer currently developing a 7.5m plant in Marion,...

  13. Biodiesel International Corporation | Open Energy Information

    Open Energy Info (EERE)

    Corporation Jump to: navigation, search Name: Biodiesel International Corporation Place: Texas Product: Texas-based biodiesel production company and biodiesel production equipment...

  14. San Francisco Biodiesel | Open Energy Information

    Open Energy Info (EERE)

    Biodiesel Jump to: navigation, search Name: San Francisco Biodiesel Place: San Francisco, California Zip: 94103 Product: Biodiesel producer based in California. The company is a...

  15. Silicon Valley Biodiesel Inc | Open Energy Information

    Open Energy Info (EERE)

    Biodiesel Inc Jump to: navigation, search Name: Silicon Valley Biodiesel Inc. Place: Sunnyvale, California Zip: CA 94086 Product: Manufactures biodiesel for the local diesel fuel...

  16. East Fork Biodiesel LLC | Open Energy Information

    Open Energy Info (EERE)

    Fork Biodiesel LLC Jump to: navigation, search Name: East Fork Biodiesel, LLC Place: Algona, Iowa Sector: Renewable Energy Product: Biodiesel producer and co-developer, with...

  17. Allegro Biodiesel Corporation | Open Energy Information

    Open Energy Info (EERE)

    Allegro Biodiesel Corporation Jump to: navigation, search Name: Allegro Biodiesel Corporation Place: Los Angeles, California Zip: 90045 Product: Allegro Biodiesel Corporation...

  18. General Biodiesel Incorporated | Open Energy Information

    Open Energy Info (EERE)

    Biodiesel Incorporated Jump to: navigation, search Name: General Biodiesel Incorporated Place: Seattle, Washington Zip: 98136 Product: General BioDiesel", Inc. specializes in...

  19. Bay Biodiesel LLC | Open Energy Information

    Open Energy Info (EERE)

    Biodiesel LLC Jump to: navigation, search Name: Bay Biodiesel LLC Place: Martinez, California Zip: 94553 Product: Biodiesel producers in Martinez, California. References: Bay...

  20. Blue Sun Biodiesel | Open Energy Information

    Open Energy Info (EERE)

    Sun Biodiesel Jump to: navigation, search Name: Blue Sun Biodiesel Place: Fort Collins, Colorado Zip: 80525 Product: Privately held Blue Sun Biodiesel is a breakthrough agriculture...

  1. Biodiesel + SCR Retrofit Testing | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    + SCR Retrofit Testing Biodiesel + SCR Retrofit Testing This work retrofitted an in-use ... More Documents & Publications DPF Performance with Biodiesel Blends Impact of Biodiesel on ...

  2. Biodiesel Research Update | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research Update Biodiesel Research Update 2004 Diesel Engine Emissions Reduction (DEER) ... Recent Research to Address Technical Barriers to Increased Use of Biodiesel Biodiesel ASTM ...

  3. Alternative Fuels Data Center: Biodiesel Fueling Stations

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    More Biodiesel Data | All Maps & Data Case Studies Missouri High School Students Get Hands-On Training With Biodiesel New Hampshire Railway Makes Tracks With Biodiesel Idaho ...

  4. Radionuclide Concentration in Soils and Vegetation at Low-Level Radioactive Waste Disposal Area G during 2005

    SciTech Connect (OSTI)

    P.R. Fresquez; M.W. McNaughton; M.J. Winch

    2005-10-01

    Soil samples were collected at 15 locations and unwashed overstory and understory vegetation samples were collected from up to nine locations within and around the perimeter of Area G, the primary disposal facility for low-level radioactive solid waste at Los Alamos National Laboratory (LANL). Soil and plant samples were also collected from the proposed expansion area west of Area G for the purpose of gaining preoperational baseline data. Soil and plant samples were analyzed for radionuclides that have shown a history of detection in past years; these included {sup 3}H, {sup 238}Pu, {sup 239,240}Pu, {sup 241}Am, {sup 234}U, {sup 235}U, and {sup 238}U for soils and {sup 3}H, {sup 238}Pu, and {sup 239,240}Pu for plants. As in previous years, the highest levels of {sup 3}H in soils and vegetation were detected at the south portion of Area G near the {sup 3}H shafts; whereas, the highest concentrations of the Pu isotopes were detected in the northern and northeastern portions near the pads for transuranic waste. All concentrations of radionuclides in soils and vegetation, however, were still very low (pCi range) and far below LANL screening levels and regulatory standards.

  5. Los Alamos National Laboratory considers the use of biodiesel.

    SciTech Connect (OSTI)

    Matlin, M. K.

    2002-01-01

    A new EPA-approved alternative fuel, called biodiesel, may soon be used at Los Alamos National Laboratory in everything from diesel trucks to laboratory equipment. Biodiesel transforms vegetable oils into a renewable, cleaner energy source that can be used in any machinery that uses diesel fuel. For the past couple years, the Laboratory has been exploring the possibility of switching over to soybean-based biodiesel. This change could lead to many health and environmental benefits, as well as help reduce the nation's dependence on foreign oil. Biodiesel is a clean, renewable diesel fuel substitute made from soybean and other vegetable oil crops, as well as from recycled cooking oils. A chemical process breaks down the vegetable oil into a usable form. Vegetable oil has a chain of about 18 carbons and ordinary diesel has about 12 or 13 carbons. The process breaks the carbon chains of the vegetable oil and separates out the glycerin (a fatty substance used in creams and soaps). The co-product of glycerin can be used by pharmaceutical and cosmetic companies, as well as many other markets. Once the chains are shortened and the glycerin is removed from the oil, the remaining liquid is similar to petroleum diesel fuel. It can be burned in pure form or in a blend of any proportion with petroleum diesel. To be considered an alternative fuel source by the EPA, the blend must be at least 20 percent biodiesel (B20). According to the U.S. Department of Energy (DOE), biodiesel is America's fastest growing alternative fuel.

  6. Effects of Biodiesel on NOx Emissions

    SciTech Connect (OSTI)

    McCormick, R.

    2005-06-01

    A presentation about the effects of biodiesel on nitrogen oxide emissions presented at the ARB Biodiesel Workshop June 8, 2005.

  7. Biodiesel R&D at NREL

    SciTech Connect (OSTI)

    McCormick, R.; Alleman, T.; Barnitt, R.; Clark, W.; Hayes, B.; Ireland, J.; Proc, K.; Ratcliff, M.; Thornton, M.; Whitacre, S.; Williams, A.

    2006-02-06

    Discusses NREL's biodiesel research priorities and some current research results, including those concerning biodiesel quality and stability.

  8. Monthly Biodiesel Production Report

    U.S. Energy Information Administration (EIA) Indexed Site

    Monthly Biodiesel Production Report With data for June 2016 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 August 2016 U.S. Energy Information Administration | Monthly Biodiesel Production Report This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or

  9. Emerald Biodiesel Holdings GmbH EBHG | Open Energy Information

    Open Energy Info (EERE)

    Biodiesel Holdings GmbH EBHG Jump to: navigation, search Name: Emerald Biodiesel Holdings GmbH (EBHG) Place: Germany Product: Biodiesel company Emerald Biodiesel Holdings is the...

  10. Biodiesel_Fuel_Management_Best_Practices_Report.pdf | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    BiodieselFuelManagementBestPracticesReport.pdf BiodieselFuelManagementBestPracticesReport.pdf BiodieselFuelManagementBestPracticesReport.pdf BiodieselFuelManagemen...

  11. Fast gas chromatographic separation of biodiesel.

    SciTech Connect (OSTI)

    Pauls, R. E.

    2011-05-01

    A high-speed gas chromatographic method has been developed to determine the FAME distribution of B100 biodiesel. The capillary column used in this work has dimensions of 20 m x 0.100 mm and is coated with a polyethylene glycol film. Analysis times are typically on the order of 4-5 min depending upon the composition of the B100. The application of this method to a variety of vegetable and animal derived B100 is demonstrated. Quantitative results obtained with this method were in close agreement with those obtained by a more conventional approach on a 100 m column. The method, coupled with solid-phase extraction, was also found suitable to determine the B100 content of biodiesel-diesel blends.

  12. Rooting Characteristics of Vegetation Near Areas 3 and 5 Radioactive Waste Management Sites at the Nevada Test Site--Part 1

    SciTech Connect (OSTI)

    D. J. Hansen

    2003-09-30

    The U.S. Department of Energy emplaced high-specific-activity low-level radioactive wastes and limited quantities of classified transuranic wastes in Greater Confinement Disposal (GCD) boreholes from 1984 to 1989. The boreholes are located at the Area 5 Radioactive Waste Management Site (RWMS) on the Nevada Test Site (NTS) in southern Nevada. The boreholes were backfilled with native alluvium soil. The surface of these boreholes and trenches is expected to be colonized by native vegetation in the future. Considering the long-term performance of the disposal facilities, bioturbation (the disruption of buried wastes by biota) is considered a primary release mechanism for radionuclides disposed in GCD boreholes as well as trenches at both Areas 3 and 5 RWMSs. This report provides information about rooting characteristics of vegetation near Areas 3 and 5 RWMSs. Data from this report are being used to resolve uncertainties involving parameterization of performance assessment models used to characterize the biotic mixing of soils and radionuclide transport processes by biota. The objectives of this study were to: (1) survey the prior ecological literature on the NTS and identify pertinent information about the vegetation, (2) conduct limited field studies to describe the current vegetation in the vicinity of Areas 3 and 5 RWMSs so as to correlate findings with more extensive vegetation data collected at Yucca Mountain and the NTS, ( 3 ) review prior performance assessment documents and evaluate model assumptions based on current ecological information, and (4) identify data deficiencies and make recommendations for correcting such deficiencies.

  13. Business management for biodiesel producers

    SciTech Connect (OSTI)

    Gerpen, Jon Van

    2004-07-01

    The material in this book is intended to provide the reader with information about the biodiesel and liquid fuels industry, biodiesel start-up issues, legal and regulatory issues, and operational concerns.

  14. Pacific Biodiesel: Renewable and Sustainable

    Broader source: Energy.gov [DOE]

    Presentation covers the Pacific Biodiesel topic and is given at the Spring 2011 Federal Utility Partnership Working Group (FUPWG) meeting.

  15. Alternative Fuels Data Center: Biodiesel Blends

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Blends to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Blends on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Blends on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Blends on Google Bookmark Alternative Fuels Data Center: Biodiesel Blends on Delicious Rank Alternative Fuels Data Center: Biodiesel Blends on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Blends on AddThis.com... More in this section... Biodiesel Basics

  16. Alternative Fuels Data Center: Biodiesel Related Links

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Biodiesel Printable Version Share this resource Send a link to Alternative Fuels Data Center: Biodiesel Related Links to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Related Links on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Related Links on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Related Links on Google Bookmark Alternative Fuels Data Center: Biodiesel Related Links on Delicious Rank Alternative Fuels Data Center: Biodiesel Related Links

  17. 2004 Biodiesel Handling and Use Guidelines (Revised)

    SciTech Connect (OSTI)

    Not Available

    2004-11-01

    This document is a guide for those who blend, distribute, and use biodiesel and biodiesel blends. It is intended to fleets and individual users, blenders, distributors, and those involved in related activities understand procedures for handling and using biodiesel.

  18. Mid States Biodiesel | Open Energy Information

    Open Energy Info (EERE)

    States Biodiesel Jump to: navigation, search Name: Mid-States Biodiesel Place: Hampton, Iowa Product: Iowa-based biodiesel producer. Coordinates: 37.027795, -76.345119 Show Map...

  19. Tri State Biodiesel LLC | Open Energy Information

    Open Energy Info (EERE)

    Biodiesel LLC Jump to: navigation, search Name: Tri-State Biodiesel LLC Place: New York, New York Zip: 10009 Product: A New York-based producer and retailer of biodiesel....

  20. Alternative Fuels Data Center: Biodiesel Benefits

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Benefits to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Benefits on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Benefits on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Benefits on Google Bookmark Alternative Fuels Data Center: Biodiesel Benefits on Delicious Rank Alternative Fuels Data Center: Biodiesel Benefits on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Benefits on AddThis.com... More in this section...

  1. Alternative Fuels Data Center: Biodiesel Fuel Basics

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fuel Basics to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Fuel Basics on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Fuel Basics on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Fuel Basics on Google Bookmark Alternative Fuels Data Center: Biodiesel Fuel Basics on Delicious Rank Alternative Fuels Data Center: Biodiesel Fuel Basics on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Fuel Basics on AddThis.com... More in

  2. Alternative Fuels Data Center: ASTM Biodiesel Specifications

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    ASTM Biodiesel Specifications to someone by E-mail Share Alternative Fuels Data Center: ASTM Biodiesel Specifications on Facebook Tweet about Alternative Fuels Data Center: ASTM Biodiesel Specifications on Twitter Bookmark Alternative Fuels Data Center: ASTM Biodiesel Specifications on Google Bookmark Alternative Fuels Data Center: ASTM Biodiesel Specifications on Delicious Rank Alternative Fuels Data Center: ASTM Biodiesel Specifications on Digg Find More places to share Alternative Fuels Data

  3. Alternative Fuels Data Center: Biodiesel Equipment Options

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Equipment Options to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Equipment Options on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Equipment Options on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Equipment Options on Google Bookmark Alternative Fuels Data Center: Biodiesel Equipment Options on Delicious Rank Alternative Fuels Data Center: Biodiesel Equipment Options on Digg Find More places to share Alternative Fuels Data Center: Biodiesel

  4. Acute aquatic toxicity and biodegradation potential of biodiesel fuels

    SciTech Connect (OSTI)

    Haws, R.A.; Zhang, X.; Marshall, E.A.; Reese, D.L.; Peterson, C.L.; Moeller, G.

    1995-12-31

    Recent studies on the biodegradation potential and aquatic toxicity of biodiesel fuels are reviewed. Biodegradation data were obtained using the shaker flask method observing the appearance of CO{sub 2} and by observing the disappearance of test substance with gas chromatography. Additional BOD{sub 5} and COD data were obtained. The results indicate the ready biodegradability of biodiesel fuels as well as the enhanced co-metabolic biodegradation of biodiesel and petroleum diesel fuel mixtures. The study examined reference diesel, neat soy oil, neat rape oil, and the methyl and ethyl esters of these vegetable oils as well as various fuel blends. Acute toxicity tests on biodiesel fuels and blends were performed using Oncorhynchus mykiss (Rainbow Trout) in a static non-renewal system and in a proportional dilution flow replacement system. The study is intended to develop data on the acute aquatic toxicity of biodiesel fuels and blends under US EPA Good Laboratory Practice Standards. The test procedure is designed from the guidelines outlined in Methods for Measuring the Acute Toxicity of Effluents and Receiving Waters to Freshwater and Marine Organisms and the Fish Acute Aquatic Toxicity Test guideline used to develop aquatic toxicity data for substances subject to environmental effects test regulations under TSCA. The acute aquatic toxicity is estimated by an LC50, a lethal concentration effecting mortality in 50% of the test population.

  5. Integrated Biodiesel Industries Ltd | Open Energy Information

    Open Energy Info (EERE)

    Industries Ltd Jump to: navigation, search Name: Integrated Biodiesel Industries Ltd Place: Sao Paulo, Sao Paulo, Brazil Zip: 01418-200 Product: Sao Paulo-based biodiesel producer....

  6. Atlantic Biodiesel Inc | Open Energy Information

    Open Energy Info (EERE)

    Biodiesel Inc Jump to: navigation, search Name: Atlantic Biodiesel, Inc. Place: Salem, New Hampshire Zip: 30790 Product: Privately-held corporation producing biodiesal in its...

  7. New York Biodiesel LLC | Open Energy Information

    Open Energy Info (EERE)

    LLC Jump to: navigation, search Name: New York Biodiesel LLC Place: Hamilton, Madison County, New York Product: Biodiesel producer using soybean oil as its feedstock References:...

  8. Biodiesel Technologies India Ltd | Open Energy Information

    Open Energy Info (EERE)

    India Ltd Jump to: navigation, search Name: Biodiesel Technologies India Ltd. Place: Kolkata, West Bengal, India Zip: 700045 Product: Kolkata based manufacturer of biodiesel...

  9. Northeast Biodiesel Company LLC | Open Energy Information

    Open Energy Info (EERE)

    Company LLC Jump to: navigation, search Name: Northeast Biodiesel Company, LLC Place: Massachusetts Zip: 1301 Product: Massachusetts-based biodiesel producer and project developer....

  10. Midwest Biodiesel Products | Open Energy Information

    Open Energy Info (EERE)

    Products Jump to: navigation, search Name: Midwest Biodiesel Products Place: Caseyville, Illinois Zip: 62232 Product: Midwest Biodiesel Products, Inc. is an Illinois based...

  11. Biodiesel Coalition of Texas | Open Energy Information

    Open Energy Info (EERE)

    Coalition of Texas Jump to: navigation, search Logo: Biodiesel Coalition of Texas Name: Biodiesel Coalition of Texas Address: 100 Congress Avenue Place: Austin, Texas Zip: 78701...

  12. Virginia Biodiesel Refinery | Open Energy Information

    Open Energy Info (EERE)

    Refinery Jump to: navigation, search Name: Virginia Biodiesel Refinery Place: West Point, Virginia Zip: 23180 Product: Biodiesel producer based in Virginia References: Virginia...

  13. Garden State Biodiesel | Open Energy Information

    Open Energy Info (EERE)

    Biodiesel Jump to: navigation, search Name: Garden State Biodiesel Place: Harrisonville, New Jersey Product: Biodiosel producer based in Harrisonville, New Jersey. Coordinates:...

  14. Springboard Biodiesel LLC | Open Energy Information

    Open Energy Info (EERE)

    Springboard Biodiesel LLC Jump to: navigation, search Name: Springboard Biodiesel LLC Place: Chico, California Zip: 95928 Product: Provider of products and technologies for the...

  15. Biodiesel Systems LLC | Open Energy Information

    Open Energy Info (EERE)

    Systems LLC Jump to: navigation, search Name: Biodiesel Systems, LLC Place: Madison, Wisconsin Zip: WI 53704 Product: The core business of Biodiesel Systems is plan, design,...

  16. Tellurian Biodiesel Inc | Open Energy Information

    Open Energy Info (EERE)

    Tellurian Biodiesel Inc Jump to: navigation, search Name: Tellurian Biodiesel, Inc. Place: San Francisco, California Zip: 94110 Product: String representation "Tellurian Biodi ......

  17. Biodiesel Basics (Fact Sheet), Vehicle Technologies Program ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biodiesel Basics (Fact Sheet), Vehicle Technologies Program (VTP) Biodiesel Basics (Fact Sheet), Vehicle Technologies Program (VTP) Fact sheet providing questions and answers on ...

  18. Monthly Biodiesel Production Report - Energy Information Administratio...

    U.S. Energy Information Administration (EIA) Indexed Site

    Monthly Biodiesel Production Report With Data for April 2016 | Release Date: June 30, 2016 ... Highlights Production - U.S. production of biodiesel was 119 million gallons in April ...

  19. Biodiesel's Enabling Characteristics in Attaining Low Temperature...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Discusses reasons and physical significance of cool-flame behavior of biodiesel on ... System-Response Issues Imposed by Biodiesel in a Medium-Duty Diesel Engine ...

  20. Biodiesel Industries Inc | Open Energy Information

    Open Energy Info (EERE)

    Barbara, California Zip: 93110 Product: Biodiesel producer and facility developer. References: Biodiesel Industries Inc1 This article is a stub. You can help OpenEI by expanding...

  1. Biodiesel Investment Group | Open Energy Information

    Open Energy Info (EERE)

    search Name: Biodiesel Investment Group Place: Dallas, Texas Zip: 75205 Sector: Biofuels Product: Biodiesel Investment Group is a subsidiary established by Earth Biofuels to...

  2. Alternative Fuels Data Center: Biodiesel Vehicle Emissions

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    ... Alternative Fuel Vehicles Beat the Heat, Fight the Freeze, and Conquer the Mountains New Hampshire Railway Makes Tracks With Biodiesel More Biodiesel Case Studies | All Case ...

  3. Costilla County Biodiesel Pilot Project

    SciTech Connect (OSTI)

    Doon, Ben; Quintana, Dan

    2011-08-25

    The Costilla County Biodiesel Pilot Project has demonstrated the compatibility of biodiesel technology and economics on a local scale. The project has been committed to making homegrown biodiesel a viable form of community economic development. The project has benefited by reducing risks by building the facility gradually and avoiding large initial outlays of money for facilities and technologies. A primary advantage of this type of community-scale biodiesel production is that it allows for a relatively independent, local solution to fuel production. Successfully using locally sourced feedstocks and putting the fuel into local use emphasizes the feasibility of different business models under the biodiesel tent and that there is more than just a one size fits all template for successful biodiesel production.

  4. Microsoft Word - Biodiesel.doc

    Gasoline and Diesel Fuel Update (EIA)

    9 1 April 2009 Short-Term Energy Outlook Supplement: Biodiesel Supply and Consumption in the Short-Term Energy Outlook 1 Introduction The historical biodiesel consumption data published in the EIA Monthly Energy Review (http://www.eia.doe.gov/emeu/mer/contents.html) March 2009 edition were revised to account for imports and exports. Table 10.4 of the Monthly Energy Review was expanded to display biodiesel imports, exports, stocks, stock change, and consumption. Similar revisions were made in the

  5. Snohomish County Biodiesel Project

    SciTech Connect (OSTI)

    Terrill Chang; Deanna Carveth

    2010-02-01

    Snohomish County in western Washington State began converting its vehicle fleet to use a blend of biodiesel and petroleum diesel in 2005. As prices for biodiesel rose due to increased demand for this cleaner-burning fuel, Snohomish County looked to its farmers to “grow” this fuel locally. Suitable seed crops that can be crushed to extract oil for use as biodiesel feedstock include canola, mustard, and camelina. The residue, or mash, has high value as an animal feed. County farmers began with 52 acres of canola and mustard crops in 2006, increasing to 250 acres and 356 tons in 2008. In 2009, this number decreased to about 150 acres and 300 tons due to increased price for mustard seed.

  6. DBD Deutsche Biodiesel GmbH | Open Energy Information

    Open Energy Info (EERE)

    DBD Deutsche Biodiesel GmbH Jump to: navigation, search Name: DBD Deutsche Biodiesel GmbH Place: Berlin, Germany Product: Developer of the DBD Regensberg biodiesel project....

  7. Biodiesel of Las Vegas Inc | Open Energy Information

    Open Energy Info (EERE)

    Biodiesel of Las Vegas Inc Jump to: navigation, search Name: Biodiesel of Las Vegas Inc Place: San Luis Obispo, California Zip: 93401 Product: Biodiesel producer. Headoffice is in...

  8. Big Daddy s Biodiesel Inc | Open Energy Information

    Open Energy Info (EERE)

    Daddy s Biodiesel Inc Jump to: navigation, search Name: Big Daddy's Biodiesel Inc Place: Hereford, Texas Zip: 79045 Product: Biodiesel producer in Hereford, Texas. References: Big...

  9. SeQuential Pacific Biodiesel LLC | Open Energy Information

    Open Energy Info (EERE)

    Pacific Biodiesel LLC Jump to: navigation, search Name: SeQuential-Pacific Biodiesel LLC Place: Oregon Sector: Biofuels Product: JV between SeQuential Biofuels, Pacific Biodiesel,...

  10. E85 and Biodiesel Deployment (Presentation)

    SciTech Connect (OSTI)

    Harrow, G.

    2007-09-18

    Presentation outlines industry trends and statistics revolving around the use and production of ethanol and biodiesel.

  11. Biodiesel and the Advanced Biofuel Market

    Broader source: Energy.gov [DOE]

    The Success of Advanced Biofuels Anne Steckel, Vice President of Federal Affairs, National Biodiesel Board

  12. BioDiesel One Ltd | Open Energy Information

    Open Energy Info (EERE)

    BioDiesel One Ltd Jump to: navigation, search Name: BioDiesel One, Ltd. Place: Southington, Connecticut Zip: 6489 Product: BioDiesel One plans to develop a biodiesel plant in...

  13. Stability of Biodiesel and Biodiesel Blends: Interim Report

    SciTech Connect (OSTI)

    McCormick, R. L.; Alleman, T. L.; Waynick, J. A.; Westbrook, S. R.; Porter, S.

    2006-04-01

    This is an interim report for a study of biodiesel oxidative stability. It describes characterization and accelerated stability test results for 19 B100 samples and six diesel fuels.

  14. Brown Grease to Biodiesel Demonstration Project Report

    SciTech Connect (OSTI)

    San Francisco Public Utilities Commission; URS Corporation; Biofuels, Blackgold; Carollo Engineers

    2013-01-30

    Municipal wastewater treatment facilities have typically been limited to the role of accepting wastewater, treating it to required levels, and disposing of its treatment residuals. However, a new view is emerging which includes wastewater treatment facilities as regional resource recovery centers. This view is a direct result of increasingly stringent regulations, concerns over energy use, carbon footprint, and worldwide depletion of fossil fuel resources. Resources in wastewater include chemical and thermal energy, as well as nutrients, and water. A waste stream such as residual grease, which concentrates in the drainage from restaurants (referred to as Trap Waste), is a good example of a resource with an energy content that can be recovered for beneficial reuse. If left in wastewater, grease accumulates inside of the wastewater collection system and can lead to increased corrosion and pipe blockages that can cause wastewater overflows. Also, grease in wastewater that arrives at the treatment facility can impair the operation of preliminary treatment equipment and is only partly removed in the primary treatment process. In addition, residual grease increases the demand in treatment materials such as oxygen in the secondary treatment process. When disposed of in landfills, grease is likely to undergo anaerobic decay prior to landfill capping, resulting in the atmospheric release of methane, a greenhouse gas (GHG). This research project was therefore conceptualized and implemented by the San Francisco Public Utilities Commission (SFPUC) to test the feasibility of energy recovery from Trap Waste in the form of Biodiesel or Methane gas. The research goals are given below: To validate technology performance; To determine the costs and benefits [including economic, socioeconomic, and GHG emissions reduction] associated with co-locating this type of operation at a municipal wastewater treatment plant (WWTP); To develop a business case or model for replication of the

  15. Process Intensification in Base-Catalyzed Biodiesel Production

    SciTech Connect (OSTI)

    McFarlane, Joanna; Birdwell Jr, Joseph F; Tsouris, Costas; Jennings, Hal L

    2008-01-01

    Biodiesel is considered a means to diversify our supply of transportation fuel, addressing the goal of reducing our dependence on oil. Recent interest has resulted in biodiesel manufacture becoming more widely undertaken by commercial enterprises that are interested in minimizing the cost of feedstock materials and waste production, as well as maximizing the efficiency of production. Various means to accelerate batch processing have been investigated. Oak Ridge National Laboratory has experience in developing process intensification methods for nuclear separations, and this paper will discuss how technologies developed for very different applications have been modified for continuous reaction/separation of biodiesel. In collaboration with an industrial partner, this work addresses the aspect of base-catalyzed biodiesel production that limits it to a slow batch process. In particular, we have found that interfacial mass transfer and phase separation control the transesterification process and have developed a continuous two-phase reactor for online production of a methyl ester and glycerol. Enhancing the mass transfer has additional benefits such as being able to use an alcohol-to-oil phase ratio closer to stoichiometric than in conventional processing, hence minimizing the amount of solvent that has to be recycled and reducing post-processing clean up costs. Various technical issues associated with the application of process intensification technology will be discussed, including scale-up from the laboratory to a pilot-scale undertaking.

  16. Biodiesel Energy Trading Limited | Open Energy Information

    Open Energy Info (EERE)

    Limited Jump to: navigation, search Name: Biodiesel Energy Trading Limited Place: London, United Kingdom Zip: W1J 8DY Product: London-based company focused on trading of biodiesel....

  17. Wyobraska Biodiesel LLC | Open Energy Information

    Open Energy Info (EERE)

    Wyobraska Biodiesel LLC Jump to: navigation, search Name: Wyobraska Biodiesel LLC Place: Scottsbluff, Nebraska Zip: 69361 Product: Wyobraska operates a 37.9mLpa (10m gallon)...

  18. GS Global Biodiesel JV | Open Energy Information

    Open Energy Info (EERE)

    Global Biodiesel JV Jump to: navigation, search Name: GS Global Biodiesel JV Place: Iowa Product: JV between GS AgriFuels and Global Ethanol set-up to develop a plant that will...

  19. Biodiesel Esla Campos | Open Energy Information

    Open Energy Info (EERE)

    Esla Campos Jump to: navigation, search Name: Biodiesel Esla Campos Place: Spain Product: Company formed to build and own a biodiesel plant at Cabreros del R-o in Spain....

  20. Red River Biodiesel Ltd | Open Energy Information

    Open Energy Info (EERE)

    Ltd Jump to: navigation, search Name: Red River Biodiesel, Ltd. Place: Houston, Texas Zip: 77006 Product: Red River operates a biodiesel plant in Houstion, Texas with a capacity of...

  1. Biodiesel is Working Hard in Kentucky

    SciTech Connect (OSTI)

    Not Available

    2004-04-01

    This 4-page Clean Cities fact sheet describes the use of biodiesel fuel in 6 school districts throughout Kentucky. It contains usage information for each school district, as well as contact information for local Clean Cities Coordinators and Biodiesel suppliers.

  2. Characterization of Biodiesel Oxidation and Oxidation Products

    SciTech Connect (OSTI)

    Not Available

    2005-08-01

    Features a literature review of 130 technical references pertaining to fatty oil and fatty ester stability chemistry in biodiesel fuels.

  3. Biodiesel Analytical Methods: August 2002--January 2004

    SciTech Connect (OSTI)

    Van Gerpen, J.; Shanks, B.; Pruszko, R.; Clements, D.; Knothe, G.

    2004-07-01

    Biodiesel is an alternative fuel for diesel engines that is receiving great attention worldwide. The material contained in this book is intended to provide the reader with information about biodiesel engines and fuels, analytical methods used to measure fuel properties, and specifications for biodiesel quality control.

  4. Creating Biodiesel & Mitigating Waste | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    exercise to set up: it requires primarily basic equipment commonly found in a high school chemistry laboratory. Interest sparked by this exercise may inspire students to become...

  5. A review of chromatographic characterization techniques for biodiesel and biodiesel blends.

    SciTech Connect (OSTI)

    Pauls, R. E.

    2011-05-01

    This review surveys chromatographic technology that has been applied to the characterization of biodiesel and its blends. Typically, biodiesel consists of fatty acid methyl esters produced by transesterification of plant or animal derived triacylglycerols. Primary attention is given to the determination of trace impurities in biodiesel, such as methanol, glycerol, mono-, di-, and triacylglycerols, and sterol glucosides. The determination of the fatty acid methyl esters, trace impurities in biodiesel, and the determination of the biodiesel content of commercial blends of biodiesel in conventional diesel are also addressed.

  6. Biodegradation of biodiesel fuels

    SciTech Connect (OSTI)

    Zhang, X.; Haws, R.; Wright, B.; Reese, D.; Moeller, G.; Peterson, C.

    1995-12-31

    Biodiesel fuel test substances Rape Ethyl Ester (REE), Rape Methyl Ester (RME), Neat Rape Oil (NR), Say Methyl Ester (SME), Soy Ethyl Ester (SEE), Neat Soy Oil (NS), and proportionate combinations of RME/diesel and REE/diesel were studied to test the biodegradability of the test substances in an aerobic aquatic environment using the EPA 560/6-82-003 Shake Flask Test Method. A concurrent analysis of Phillips D-2 Reference Diesel was also performed for comparison with a conventional fuel. The highest rates of percent CO{sub 2} evolution were seen in the esterified fuels, although no significant difference was noted between them. Ranges of percent CO{sub 2} evolution for esterified fuels were from 77% to 91%. The neat rape and neat soy oils exhibited 70% to 78% CO{sub 2} evolution. These rates were all significantly higher than those of the Phillips D-2 reference fuel which evolved from 7% to 26% of the organic carbon to CO{sub 2}. The test substances were examined for BOD{sub 5} and COD values as a relative measure of biodegradability. Water Accommodated Fraction (WAF) was experimentally derived and BOD{sub 5} and COD analyses were carried out with a diluted concentration at or below the WAF. The results of analysis at WAF were then converted to pure substance values. The pure substance BOD{sub 5} and COD values for test substances were then compared to a control substance, Phillips D-2 Reference fuel. No significant difference was noted for COD values between test substances and the control fuel. (p > 0.20). The D-2 control substance was significantly lower than all test substances for BCD, values at p << 0.01. RME was also significantly lower than REE (p < 0.05) and MS (p < 0.01) for BOD{sub 5} value.

  7. Life Cycle Inventory of Biodiesel and Petroleum Diesel for Use in an Urban Bus

    SciTech Connect (OSTI)

    Sheehan, John; Camobreco, Vince; Duffield, James; Graboski, Michael; Graboski, Michael; Shapouri, Housein

    1998-05-01

    This report presents the findings from a study of the life cycle inventories (LCIs) for petroleum diesel and biodiesel. An LCI is a comprehensive quantification of all the energy and environmental flows associated with a product from “cradle to grave.” It provides information on raw materials extracted from the environment; energy resources consumed; air, water, and solid waste emissions generated.

  8. GHP Biodiesel GmbH | Open Energy Information

    Open Energy Info (EERE)

    GHP Biodiesel GmbH Jump to: navigation, search Name: GHP Biodiesel GmbH Place: Germany Zip: HRA 13253 Product: A provider of a solution package for the establishment of biodiesel...

  9. Biodiesel Sued GmbH | Open Energy Information

    Open Energy Info (EERE)

    Sued GmbH Jump to: navigation, search Name: Biodiesel Sued GmbH Place: Stuttgart, Baden-Wrttemberg, Germany Zip: 70567 Product: Biodiesel Sued is biodiesel producer and...

  10. Marina Biodiesel GmbH Co KG | Open Energy Information

    Open Energy Info (EERE)

    Marina Biodiesel GmbH Co KG Jump to: navigation, search Name: Marina Biodiesel GmbH & Co.KG Place: Brunsbttel, Schleswig-Holstein, Germany Zip: 25541 Product: Marina Biodiesel...

  11. US BioDiesel Group | Open Energy Information

    Open Energy Info (EERE)

    BioDiesel Group Jump to: navigation, search Name: US BioDiesel Group Place: San Francisco, California Zip: 94111 Product: San Francisco-based developer of biodiesel production...

  12. JCN Neckermann Biodiesel GmbH | Open Energy Information

    Open Energy Info (EERE)

    JCN Neckermann Biodiesel GmbH Jump to: navigation, search Name: JCN Neckermann Biodiesel GmbH Place: Halle, Germany Zip: 6118 Product: Biodiesel producer with interests in four...

  13. Galveston Bay Biodiesel LP GBB | Open Energy Information

    Open Energy Info (EERE)

    Galveston Bay Biodiesel LP GBB Jump to: navigation, search Name: Galveston Bay Biodiesel LP (GBB) Place: Houston, Texas Product: Developer of a 75.8m litre per year biodiesel...

  14. Biodiesel Kyritz GmbH | Open Energy Information

    Open Energy Info (EERE)

    Kyritz GmbH Jump to: navigation, search Name: Biodiesel Kyritz GmbH Place: Nordhorn, Lower Saxony, Germany Zip: 48527 Product: Biodiesel Kyritz is a biodiesel producer and...

  15. Alternative Fuels Data Center: Diesel Vehicles Using Biodiesel

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Biodiesel Printable Version Share this resource Send a link to Alternative Fuels Data Center: Diesel Vehicles Using Biodiesel to someone by E-mail Share Alternative Fuels Data Center: Diesel Vehicles Using Biodiesel on Facebook Tweet about Alternative Fuels Data Center: Diesel Vehicles Using Biodiesel on Twitter Bookmark Alternative Fuels Data Center: Diesel Vehicles Using Biodiesel on Google Bookmark Alternative Fuels Data Center: Diesel Vehicles Using Biodiesel on Delicious Rank Alternative

  16. Alternative Fuels Data Center: Biodiesel Production and Distribution

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Biodiesel Production and Distribution to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Production and Distribution on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Production and Distribution on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Production and Distribution on Google Bookmark Alternative Fuels Data Center: Biodiesel Production and Distribution on Delicious Rank Alternative Fuels Data Center: Biodiesel Production and Distribution on Digg

  17. West Central Biodiesel Investors LLC | Open Energy Information

    Open Energy Info (EERE)

    Biodiesel Investors LLC Jump to: navigation, search Name: West Central Biodiesel Investors, LLC Place: Ralston, Iowa Zip: 51459 Product: Iowa-based body raising capital to support...

  18. The California Biodiesel Alliance CBA | Open Energy Information

    Open Energy Info (EERE)

    Biodiesel Alliance CBA Jump to: navigation, search Name: The California Biodiesel Alliance (CBA) Place: California Product: California-based non-profit corporation promoting...

  19. Planet Resource Recovery Inc formerly American Biodiesel Fuels...

    Open Energy Info (EERE)

    Planet Resource Recovery Inc formerly American Biodiesel Fuels Corp Jump to: navigation, search Name: Planet Resource Recovery, Inc. (formerly American Biodiesel Fuels Corp.)...

  20. Centre for Jatropha Promotion Biodiesel | Open Energy Information

    Open Energy Info (EERE)

    Jatropha Promotion Biodiesel Jump to: navigation, search Name: Centre for Jatropha Promotion & Biodiesel Place: Churu, Rajasthan, India Zip: 331001 Product: Indian-based non-profit...

  1. Biopar Producao de Biodiesel Parecis Ltda | Open Energy Information

    Open Energy Info (EERE)

    Biopar Producao de Biodiesel Parecis Ltda Jump to: navigation, search Name: Biopar Producao de Biodiesel Parecis Ltda Place: Nova Marilandia, Mato Grosso, Brazil Zip: 78415-000...

  2. EIA-22M, Monthly Biodiesel Production Survey Page 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    22M, Monthly Biodiesel Production Survey Page 1 Instructions for the EIA-22M Monthly Biodiesel, Biojet, Biokerosene, and Renewable Diesel Report General Information Questions If...

  3. American Biodiesel and Community Fuels | Open Energy Information

    Open Energy Info (EERE)

    Biodiesel and Community Fuels Jump to: navigation, search Name: American Biodiesel and Community Fuels Address: 336 Encinitas Blvd Place: Encinitas, California Zip: 92024 Region:...

  4. Biodiesel Effects on Diesel Particle Filter Performance: Milestone Report

    SciTech Connect (OSTI)

    Williams, A.; McCormick, R. L.; Hayes, R.; Ireland, J.

    2006-03-01

    Research results on the performance of biodiesel and biodiesel blends with ultra-low sulfur diesel (ULSD) and a diesel particle filter (DPF).

  5. Evaluation of Biodiesel Fuels from Supercritical Fluid Processing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biodiesel Fuels from Supercritical Fluid Processing with the Advanced Distillation Curve Method Evaluation of Biodiesel Fuels from Supercritical Fluid Processing with the Advanced ...

  6. Vehicle Technologies Office: Improving Biodiesel and Other Fuels...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Improving Biodiesel and Other Fuels' Quality Vehicle Technologies Office: Improving Biodiesel and Other Fuels' Quality For biofuels to succeed in the marketplace, they must be easy ...

  7. Biodiesel Quality in the United States | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Quality in the United States Biodiesel Quality in the United States Poster presentaltion ... More Documents & Publications Effect of Biodiesel Blends on NOx Emissions Diesel Injection ...

  8. Emission Performance of Modern Diesel Engines Fueled with Biodiesel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Performance of Modern Diesel Engines Fueled with Biodiesel Emission Performance of Modern Diesel Engines Fueled with Biodiesel This study presents full quantification of ...

  9. Comprehensive Assessment of the Emissions from the Use of Biodiesel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Comprehensive Assessment of the Emissions from the Use of Biodiesel in California Comprehensive Assessment of the Emissions from the Use of Biodiesel in California Overview of a ...

  10. Effect of Jatropha based Biodiesel, on Engine Hardware Reliability...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Jatropha based Biodiesel, on Engine Hardware Reliability, Emission and Performance Effect of Jatropha based Biodiesel, on Engine Hardware Reliability, Emission and Performance ...

  11. Impacts of Biodiesel on Emission Control Devices | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biodiesel on Emission Control Devices Impacts of Biodiesel on Emission Control Devices Presentation given at the 16th Directions in Engine-Efficiency and Emissions Research (DEER) ...

  12. Development and Validation of a Reduced Mechanism for Biodiesel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    a Reduced Mechanism for Biodiesel Surrogates for Compression Ignition Engine Applications Development and Validation of a Reduced Mechanism for Biodiesel Surrogates for ...

  13. Impact of Biodiesel on Ash Emissions and Lubricant Properties...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biodiesel on Ash Emissions and Lubricant Properties Affecting Fuel Economy and Engine Wear Impact of Biodiesel on Ash Emissions and Lubricant Properties Affecting Fuel Economy and ...

  14. Impacts of Rail Pressure and Biodiesel Composition on Soot Nanostructu...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Rail Pressure and Biodiesel Composition on Soot Nanostructure Impacts of Rail Pressure and Biodiesel Composition on Soot Nanostructure Fractal dimensions of particle aggregates and ...

  15. A Reduced Mechanism for Biodiesel Surrogates with Low Temperature...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reduced Mechanism for Biodiesel Surrogates with Low Temperature Chemistry Title A Reduced Mechanism for Biodiesel Surrogates with Low Temperature Chemistry Publication Type...

  16. Seattle Biodiesel aka Seattle BioFuels | Open Energy Information

    Open Energy Info (EERE)

    Seattle Biodiesel aka Seattle BioFuels Jump to: navigation, search Name: Seattle Biodiesel (aka Seattle BioFuels) Place: Seattle, Washington Sector: Renewable Energy Product:...

  17. Biodiesel - Combustion Energy Frontier Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biodiesel Biodiesel Goals Develop accurate multi-scale models and experimental methods for quantitative combustion modeling of methyl esters and biodiesels at current and future engine conditions. Deliverables Obtain new experiment data of elementary reaction rates, ignition delay times, extinction limits, and speciation in broad temperature and pressure ranges. Develop quantum computational schemes for chemically accurate prediction of elementary reaction rates, activation energies, and bond

  18. Survey of the Quality and Stability of Biodiesel and Biodiesel Blends in the United States in 2004

    SciTech Connect (OSTI)

    McCormick, R. L.; Alleman, T. L.; Ratcliffe, M.; Moens, L.; Lawrence, R.

    2005-10-01

    Reports results gathered in 2004 from quality and stability surveys in the United States of biodiesel (B100) and 20% biodiesel (B20) in petroleum diesel.

  19. Blue Sun Biodiesel LLC | Open Energy Information

    Open Energy Info (EERE)

    Biodiesel LLC Jump to: navigation, search Logo: Blue Sun Energy, Inc. Name: Blue Sun Energy, Inc. Address: 14143 Denver West Parkway Place: Golden, Colorado Zip: 80401 Region:...

  20. Biodiesel Solutions Inc | Open Energy Information

    Open Energy Info (EERE)

    Solutions Inc Jump to: navigation, search Name: Biodiesel Solutions Inc Place: Sparks, Nevada Zip: 89431 Product: Designs and manufactures processing equipment and accessories to...

  1. Biodiesel Technologies Inc BT | Open Energy Information

    Open Energy Info (EERE)

    BT Jump to: navigation, search Name: Biodiesel Technologies Inc (BT) Place: Syracuse, New York Zip: 13066 Product: A technology oriented company which has developed a continuous...

  2. Biodiesel ASTM Update and Future Technical Needs

    Broader source: Energy.gov [DOE]

    Latest ASTM fuel specifications on biodiesel blends are summarized as well as future needs for improved fuel quality, process quality controls, and new performance testing procedures.

  3. WSF Biodiesel Demonstration Project Final Report

    SciTech Connect (OSTI)

    Washington State University; University of Idaho; The Glosten Associates, Inc.; Imperium Renewables, Inc.

    2009-04-30

    In 2004, WSF canceled a biodiesel fuel test because of “product quality issues” that caused the fuel purifiers to clog. The cancelation of this test and the poor results negatively impacted the use of biodiesel in marine application in the Pacific Northwest. In 2006, The U.S. Department of Energy awarded the Puget Sound Clean Air Agency a grant to manage a scientific study investigating appropriate fuel specifications for biodiesel, fuel handling procedures and to conduct a fuel test using biodiesel fuels in WSF operations. The Agency put together a project team comprised of experts in fields of biodiesel research and analysis, biodiesel production, marine engineering and WSF personnel. The team reviewed biodiesel technical papers, reviewed the 2004 fuel test results, designed a fuel test plan and provided technical assistance during the test. The research reviewed the available information on the 2004 fuel test and conducted mock laboratory experiments, but was not able to determine why the fuel filters clogged. The team then conducted a literature review and designed a fuel test plan. The team implemented a controlled introduction of biodiesel fuels to the test vessels while monitoring the environmental conditions on the vessels and checking fuel quality throughout the fuel distribution system. The fuel test was conducted on the same three vessels that participated in the canceled 2004 test using the same ferry routes. Each vessel used biodiesel produced from a different feedstock (i.e. soy, canola and yellow grease). The vessels all ran on ultra low sulfur diesel blended with biodiesel. The percentage of biodiesel was incrementally raised form from 5 to 20 percent. Once the vessels reached the 20 percent level, they continued at this blend ratio for the remainder of the test. Fuel samples were taken from the fuel manufacturer, during fueling operations and at several points onboard each vessel. WSF Engineers monitored the performance of the fuel systems and

  4. Alternative Fuels Data Center: Biodiesel Offers an Easy Alternative for

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fleets Biodiesel Offers an Easy Alternative for Fleets to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Offers an Easy Alternative for Fleets on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Offers an Easy Alternative for Fleets on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Offers an Easy Alternative for Fleets on Google Bookmark Alternative Fuels Data Center: Biodiesel Offers an Easy Alternative for Fleets on Delicious Rank Alternative Fuels

  5. Alternative Fuels Data Center: Biodiesel Codes, Standards, and Safety

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Codes, Standards, and Safety to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Codes, Standards, and Safety on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Codes, Standards, and Safety on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Codes, Standards, and Safety on Google Bookmark Alternative Fuels Data Center: Biodiesel Codes, Standards, and Safety on Delicious Rank Alternative Fuels Data Center: Biodiesel Codes, Standards, and Safety on Digg Find

  6. Alternative Fuels Data Center: Biodiesel Fueling Station Locations

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fueling Station Locations to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Fueling Station Locations on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Fueling Station Locations on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Fueling Station Locations on Google Bookmark Alternative Fuels Data Center: Biodiesel Fueling Station Locations on Delicious Rank Alternative Fuels Data Center: Biodiesel Fueling Station Locations on Digg Find More places to

  7. Alternative Fuels Data Center: Federal Laws and Incentives for Biodiesel

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Biodiesel Printable Version Share this resource Send a link to Alternative Fuels Data Center: Federal Laws and Incentives for Biodiesel to someone by E-mail Share Alternative Fuels Data Center: Federal Laws and Incentives for Biodiesel on Facebook Tweet about Alternative Fuels Data Center: Federal Laws and Incentives for Biodiesel on Twitter Bookmark Alternative Fuels Data Center: Federal Laws and Incentives for Biodiesel on Google Bookmark Alternative Fuels Data Center: Federal Laws and

  8. Biodiesel 2014: FAME and Misfortune?

    U.S. Energy Information Administration (EIA) Indexed Site

    Biodiesel 2014: FAME and Misfortune? William Woebkenberg - US Fuels Technical and Regulatory Affairs Mercedes-Benz Research & Development North America July10, 2014 Page 2 Daimler and Diesel: A Tradition over 75 Years in the Making Diesel passenger cars are a part of the Daimler heritage dating back to 1936, with the introduction of the 260D. There have been Mercedes-Benz diesel passenger cars in every decade since. Diesel is not just a powertrain option, it is tradition. Page 3 Diesel fuels

  9. Enterprise converting buses to biodiesel

    Broader source: Energy.gov [DOE]

    Rental car customers may be able to breathe a little easier during their next trip to the airport. Alamo Rent A Car, Enterprise Rent-A-Car, and National Car Rental, all brands operated by the subsidiaries of Enterprise Holdings, are converting their airport shuttle buses to run on biodiesel fuel. The move is a good one for the environment, and will ultimately reduce the company’s carbon emissions. “We are saving 420,000 gallons of petroleum diesel,”  says Lee Broughton, director of corporate identity and sustainability for Enterprise Holdings.    

  10. Recent Research to Address Technical Barriers to Increased Use of Biodiesel

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy 832.91 KB) More Documents & Publications Biodiesel ASTM Update and Future Technical Needs Biodiesel Research Update Biodiesel Progress: ASTM Specifications and 2nd Generation Biodiesel

  11. Empirical Study of the Stability of Biodiesel and Biodiesel Blends: Milestone Report

    SciTech Connect (OSTI)

    McCormick, R. L.; Westbrook, S. R.

    2007-05-01

    The objective of this work was to develop a database that supports specific proposals for a stability test and specification for biodiesel and biodiesel blends. B100 samples from 19 biodiesel producers were obtained in December of 2005 and January of 2006 and tested for stability. Eight of these samples were then selected for additional study, including long-term storage tests and blending at 5% and 20% with a number of ultra-low sulfur diesel fuels.

  12. Biodiesel and Other Renewable Diesel Fuels

    SciTech Connect (OSTI)

    Not Available

    2006-11-01

    Present federal tax incentives apply to certain types of biomass-derived diesel fuels, which in energy policy and tax laws are described either as renewable diesel or biodiesel. To understand the distinctions between these diesel types it is necessary to understand the technologies used to produce them and the properties of the resulting products. This fact sheet contains definitions of renewable and biodiesel and discusses the processes used to convert biomass to diesel fuel and the properties of biodiesel and renewable diesel fuels.

  13. Single-phase and two-phase anaerobic digestion of fruit and vegetable waste: Comparison of start-up, reactor stability and process performance

    SciTech Connect (OSTI)

    Ganesh, Rangaraj; Torrijos, Michel; Sousbie, Philippe; Lugardon, Aurelien; Steyer, Jean Philippe; Delgenes, Jean Philippe

    2014-05-01

    Highlights: Single-phase and two-phase systems were compared for fruit and vegetable waste digestion. Single-phase digestion produced a methane yield of 0.45 m{sup 3} CH{sub 4}/kg VS and 83% VS removal. Substrate solubilization was high in acidification conditions at 7.0 kg VS/m{sup 3} d and pH 5.56.2. Energy yield was lower by 33% for two-phase system compared to the single-phase system. Simple and straight-forward operation favored single phase process over two-phase process. - Abstract: Single-phase and two-phase digestion of fruit and vegetable waste were studied to compare reactor start-up, reactor stability and performance (methane yield, volatile solids reduction and energy yield). The single-phase reactor (SPR) was a conventional reactor operated at a low loading rate (maximum of 3.5 kg VS/m{sup 3} d), while the two-phase system consisted of an acidification reactor (TPAR) and a methanogenic reactor (TPMR). The TPAR was inoculated with methanogenic sludge similar to the SPR, but was operated with step-wise increase in the loading rate and with total recirculation of reactor solids to convert it into acidification sludge. Before each feeding, part of the sludge from TPAR was centrifuged, the centrifuge liquid (solubilized products) was fed to the TPMR and centrifuged solids were recycled back to the reactor. Single-phase digestion produced a methane yield of 0.45 m{sup 3} CH{sub 4}/kg VS fed and VS removal of 83%. The TPAR shifted to acidification mode at an OLR of 10.0 kg VS/m{sup 3} d and then achieved stable performance at 7.0 kg VS/m{sup 3} d and pH 5.56.2, with very high substrate solubilization rate and a methane yield of 0.30 m{sup 3} CH{sub 4}/kg COD fed. The two-phase process was capable of high VS reduction, but material and energy balance showed that the single-phase process was superior in terms of volumetric methane production and energy yield by 33%. The lower energy yield of the two-phase system was due to the loss of energy during

  14. Biodiesel Technologies Inc BTI | Open Energy Information

    Open Energy Info (EERE)

    BTI Jump to: navigation, search Name: Biodiesel Technologies Inc (BTI) Place: Lonodn, United Kingdom Zip: W4 5YA Product: Owns the license to a process enabling the continuous...

  15. Biodiesel Filling Stations UK | Open Energy Information

    Open Energy Info (EERE)

    Filling Stations UK Jump to: navigation, search Name: Biodiesel Filling Stations UK Place: United Kingdom Product: A website providing a list of places in the UK where people can...

  16. Physical properties of bio-diesel & Implications for use of bio-diesel in diesel engines

    SciTech Connect (OSTI)

    Chakravarthy, Veerathu K; McFarlane, Joanna; Daw, C Stuart; Ra, Youngchul; Griffin, Jelani K

    2008-01-01

    In this study we identify components of a typical biodiesel fuel and estimate both their individual and mixed thermo-physical and transport properties. We then use the estimated mixture properties in computational simulations to gauge the extent to which combustion is modified when biodiesel is substituted for conventional diesel fuel. Our simulation studies included both regular diesel combustion (DI) and premixed charge compression ignition (PCCI). Preliminary results indicate that biodiesel ignition is significantly delayed due to slower liquid evaporation, with the effects being more pronounced for DI than PCCI. The lower vapor pressure and higher liquid heat capacity of biodiesel are two key contributors to this slower rate of evaporation. Other physical properties are more similar between the two fuels, and their impacts are not clearly evident in the present study. Future studies of diesel combustion sensitivity to both physical and chemical properties of biodiesel are suggested.

  17. Categorical Exclusion 4565, Waste Management Construction Support

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and universal wastes); apply fabric and gravel to ground; transport equipment; transport materials; transport waste; remove vegetation; place barriers; place erosion controls;...

  18. Campa Biodiesel GmbH Co KG | Open Energy Information

    Open Energy Info (EERE)

    GmbH Co KG Jump to: navigation, search Name: Campa-Biodiesel GmbH & Co. KG Place: Ochsenfurt, Bavaria, Germany Zip: 97199 Product: Campa Biodiesel is a producer and marketer of...

  19. BullDog BioDiesel | Open Energy Information

    Open Energy Info (EERE)

    BullDog BioDiesel Jump to: navigation, search Name: BullDog BioDiesel Place: Ellenwood, Georgia Zip: 30294 Product: BullDog operates a 68.2mLpa (12m gallon) capacity,...

  20. DPF Performance with Biodiesel Blends | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Performance with Biodiesel Blends DPF Performance with Biodiesel Blends Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the U.S. DOE's EERE ...

  1. Table 2. U.S. Biodiesel production, sales, and stocks

    U.S. Energy Information Administration (EIA) Indexed Site

    U.S. Biodiesel production, sales, and stocks" "million gallons" "Period","B100 production",,"Sales of B100",,"Sales of B100 included in biodiesel blends",,"Ending stocks of ...

  2. Impact of Biodiesel Metals on the Performance and Durability...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Metals on the Performance and Durability of DOC and DPF Technologies Impact of Biodiesel ... and the Role of the DOC Impact of Biodiesel-Based Na on the Selective Catalytic ...

  3. GreenHunter Biodiesel Refinery Grand Opening | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    GreenHunter Biodiesel Refinery Grand Opening GreenHunter Biodiesel Refinery Grand Opening June 2, 2008 - 12:51pm Addthis Remarks as Prepared for (Acting) Deputy Secretary Kupfer ...

  4. Life cycle inventory of biodiesel and petroleum diesel for use...

    Office of Scientific and Technical Information (OSTI)

    Biodiesel is made by chemically combining any natural oil or fat with an alcohol such as ... European biodiesel is made predominantly from rapeseed oil (a cousin of canola oil). In ...

  5. Impact of Biodiesel on Fuel System Component Durability

    SciTech Connect (OSTI)

    Terry, B.

    2005-09-01

    A study of the effects of biodiesel blends on fuel system components and the physical characteristics of elastomer materials.

  6. Biodiesel Vehicle and Infrastructure Codes and Standards Citations (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2010-07-01

    This document lists codes and standards typically used for U.S. biodiesel vehicle and infrastructure projects.

  7. Biodiesel's Enabling Characteristics in Attaining Low Temperature Diesel Combustion

    Broader source: Energy.gov [DOE]

    Discusses reasons and physical significance of cool-flame behavior of biodiesel on improving low temperature diesel combustion

  8. Emission Performance of Modern Diesel Engines Fueled with Biodiesel

    Broader source: Energy.gov [DOE]

    This study presents full quantification of biodiesel's impact on emissions and fuel economy with the inclusion of DPF regeneration events.

  9. Acute aquatic toxicity of biodiesel fuels

    SciTech Connect (OSTI)

    Wright, B.; Haws, R.; Little, D.; Reese, D.; Peterson, C.; Moeller, G.

    1995-12-31

    This study develops data on the acute aquatic toxicity of selected biodiesel fuels which may become subject to environmental effects test regulations under the US Toxic Substances Control Act (TSCA). The test substances are Rape Methyl Ester (RME), Rape Ethyl Ester (REE), Methyl Soyate (MS), a biodiesel mixture of 20% REE and 80% Diesel, a biodiesel mixture of 50% REE and diesel, and a reference substance of Phillips D-2 Reference Diesel. The test procedure follows the Daphnid Acute Toxicity Test outlined in 40 CFR {section} 797.1300 of the TSCA regulations. Daphnia Magna are exposed to the test substance in a flow-through system consisting of a mixing chamber, a proportional diluter, and duplicate test chambers. Novel system modifications are described that accommodate the testing of oil-based test substances with Daphnia. The acute aquatic toxicity is estimated by an EC50, an effective concentration producing immobility in 50% of the test specimen.

  10. WI Biodiesel Blending Progream Final Report

    SciTech Connect (OSTI)

    Redmond, Maria E; Levy, Megan M

    2013-04-01

    The Wisconsin State Energy Office?¢????s (SEO) primary mission is to implement cost?¢???effective, reliable, balanced, and environmentally?¢???friendly clean energy projects. To support this mission the Wisconsin Biodiesel Blending Program was created to financially support the installation infrastructure necessary to directly sustain biodiesel blending and distribution at petroleum terminal facilities throughout Wisconsin. The SEO secured a federal directed award of $600,000 over 2.25 years. With these funds, the SEO supported the construction of inline biodiesel blending facilities at two petroleum terminals in Wisconsin. The Federal funding provided through the state provided a little less than half of the necessary investment to construct the terminals, with the balance put forth by the partners. Wisconsin is now home to two new biodiesel blending terminals. Fusion Renewables on Jones Island (in the City of Milwaukee) will offer a B100 blend to both bulk and retail customers. CITGO is currently providing a B5 blend to all customers at their Granville, WI terminal north of the City of Milwaukee.

  11. Biodiesel Production Technology: August 2002--January 2004

    SciTech Connect (OSTI)

    Van Gerpen, J.; Shanks,B.; Pruszko,R.; Clements, D.; Knothe, G.

    2004-07-01

    Biodiesel is an alternative fuel for diesel engines that is gaining attention in the United States after reaching a considerable level of success in Europe. The purpose of this book is to describe and explain the process and issues involved in producing this fuel.

  12. Biodiesel Handling and Use Guide | Open Energy Information

    Open Energy Info (EERE)

    Handling and Use Guide Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Biodiesel Handling and Use Guide AgencyCompany Organization: National Renewable Energy...

  13. Mid America Biodiesel LLC MAB | Open Energy Information

    Open Energy Info (EERE)

    LLC MAB Jump to: navigation, search Name: Mid-America Biodiesel, LLC (MAB) Place: Enfield, Illinois Zip: 62835-2328 Product: Illinois-based company producing biological products....

  14. Investigation and Optimization of Biodiesel Chemistry for HCCI...

    Office of Scientific and Technical Information (OSTI)

    IODINE NUMBER; NITROGEN; OPTIMIZATION; ORNL; OXYGEN; POWER RANGE; RESOLUTION HCCI; biofuels; biodiesel; statistics; optimization Word Cloud More Like This Full Text Conferences ...

  15. Investigation and Optimization of Biodiesel Chemistry for HCCI...

    Office of Scientific and Technical Information (OSTI)

    Country of Publication: United States Language: English Subject: 33 ADVANCED PROPULSION SYSTEMS HCCI; biofuels; biodiesel; statistics; optimization Word Cloud More Like This Full ...

  16. Washington: State Ferries Run Cleaner With Biodiesel | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Addthis Related Articles Auto and passenger ferries operated by the Washington State ... SEP Success Story: Washington State Becomes Largest Public Consumer of Biodiesel Auto and ...

  17. Effect of Biodiesel Blends on Diesel Particulate Filter Performance

    SciTech Connect (OSTI)

    Williams, A.; McCormick, R. L.; Hayes, R. R.; Ireland, J.; Fang, H. L.

    2006-11-01

    Presents results of tests of ultra-low sulfur diesel blended with soy-biodiesel at 5 percent using a Cummins ISB engine with a diesel particulate filter.

  18. Biodiesel Utilization: Update on Recent Analytical Techniques (Presentation)

    SciTech Connect (OSTI)

    Alleman, T. L.; Fouts, L.; Luecke, J.; Thornton, M.; McAlpin, C.

    2009-05-01

    To understand and increase the use of biodiesel, analytical methods need to be shared and compared to ensure that accurate data are gathered on this complex fuel.

  19. Biodiesel Handling and Use Guide: Fourth Edition (Revised)

    SciTech Connect (OSTI)

    Not Available

    2009-01-01

    Intended for those who blend, distribute, and use biodiesel and its blends, this guide contains procedures for handling and using these fuels.

  20. Coolidge Petrosun Optimum Biodiesel Plant | Open Energy Information

    Open Energy Info (EERE)

    Name: Coolidge PetrosunOptimum Biodiesel Plant Place: Coolidge, Arizona Sector: Biofuels Product: Joint venture between PetroSun Biofuels (a wholly-owned subsidiary of...

  1. Alternative Fuels Data Center: Alabama City Leads With Biodiesel...

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    ... GE Showcases Innovation in Alternative Fuel Vehicles July 15, 2015 Photo of a locomotive engine carrying passenger cars. New Hampshire Railway Makes Tracks With Biodiesel June 27, ...

  2. Alternative Fuels Data Center: Seattle Bakery Delivers With Biodiesel...

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    ... GE Showcases Innovation in Alternative Fuel Vehicles July 15, 2015 Photo of a locomotive engine carrying passenger cars. New Hampshire Railway Makes Tracks With Biodiesel June 27, ...

  3. Biodiesel Revs Up Its Applications | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biodiesel also generates fewer lifecycle smog-forming and greenhouse gas emissions than petroleum diesel, reducing air pollution and contributions to climate change. For all of ...

  4. Kinetic Modeling of Combustion Characteristics of Real Biodiesel Fuels

    SciTech Connect (OSTI)

    Naik, C V; Westbrook, C K

    2009-04-08

    Biodiesel fuels are of much interest today either for replacing or blending with conventional fuels for automotive applications. Predicting engine effects of using biodiesel fuel requires accurate understanding of the combustion characteristics of the fuel, which can be acquired through analysis using reliable detailed reaction mechanisms. Unlike gasoline or diesel that consists of hundreds of chemical compounds, biodiesel fuels contain only a limited number of compounds. Over 90% of the biodiesel fraction is composed of 5 unique long-chain C{sub 18} and C{sub 16} saturated and unsaturated methyl esters. This makes modeling of real biodiesel fuel possible without the need for a fuel surrogate. To this end, a detailed chemical kinetic mechanism has been developed for determining the combustion characteristics of a pure biodiesel (B100) fuel, applicable from low- to high-temperature oxidation regimes. This model has been built based on reaction rate rules established in previous studies at Lawrence Livermore National Laboratory. Computed results are compared with the few fundamental experimental data that exist for biodiesel fuel and its components. In addition, computed results have been compared with experimental data for other long-chain hydrocarbons that are similar in structure to the biodiesel components.

  5. Western Kentucky University Research Foundation Biodiesel Project

    SciTech Connect (OSTI)

    Pan, Wei-Ping; Cao, Yan

    2013-03-15

    Petroleum-based liquid hydrocarbons is exclusively major energy source in the transportation sector. Thus, it is the major CO{sub 2} source which is the associated with greenhouse effect. In the United States alone, petroleum consumption in the transportation sector approaches 13.8 million barrels per day (Mbbl/d). It is corresponding to a release of 0.53 gigatons of carbon per year (GtC/yr), which accounts for approximate 7.6 % of the current global release of CO{sub 2} from all of the fossil fuel usage (7 GtC/yr). For the long term, the conventional petroleum production is predicted to peak in as little as the next 10 years to as high as the next 50 years. Negative environmental consequences, the frequently roaring petroleum prices, increasing petroleum utilization and concerns about competitive supplies of petroleum have driven dramatic interest in producing alternative transportation fuels, such as electricity-based, hydrogen-based and bio-based transportation alternative fuels. Use of either of electricity-based or hydrogen-based alternative energy in the transportation sector is currently laden with technical and economical challenges. The current energy density of commercial batteries is 175 Wh/kg of battery. At a storage pressure of 680 atm, the lower heating value (LHV) of H{sub 2} is 1.32 kWh/liter. In contrast, the corresponding energy density for gasoline can reach as high as 8.88 kWh/liter. Furthermore, the convenience of using a liquid hydrocarbon fuel through the existing infrastructures is a big deterrent to replacement by both batteries and hydrogen. Biomass-derived ethanol and bio-diesel (biofuels) can be two promising and predominant U.S. alternative transportation fuels. Both their energy densities and physical properties are comparable to their relatives of petroleum-based gasoline and diesel, however, biofuels are significantly environmental-benign. Ethanol can be made from the sugar-based or starch-based biomass materials, which is easily

  6. Alternative Fuels Data Center: Missouri High School Students...

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Missouri High School Students Get Hands-On Training With Biodiesel See how students in Fenton, Missouri, are learning to convert waste vegetable oil into biodiesel and put it into ...

  7. Genomic Prospecting for Microbial Biodiesel Production

    SciTech Connect (OSTI)

    Lykidis, Athanasios; Lykidis, Athanasios; Ivanova, Natalia

    2008-03-20

    Biodiesel is defined as fatty acid mono-alkylesters and is produced from triacylglycerols. In the current article we provide an overview of the structure, diversity and regulation of the metabolic pathways leading to intracellular fatty acid and triacylglycerol accumulation in three types of organisms (bacteria, algae and fungi) of potential biotechnological interest and discuss possible intervention points to increase the cellular lipid content. The key steps that regulate carbon allocation and distribution in lipids include the formation of malonyl-CoA, the synthesis of fatty acids and their attachment onto the glycerol backbone, and the formation of triacylglycerols. The lipid biosynthetic genes and pathways are largely known for select model organisms. Comparative genomics allows the examination of these pathways in organisms of biotechnological interest and reveals the evolution of divergent and yet uncharacterized regulatory mechanisms. Utilization of microbial systems for triacylglycerol and fatty acid production is in its infancy; however, genomic information and technologies combined with synthetic biology concepts provide the opportunity to further exploit microbes for the competitive production of biodiesel.

  8. Vegetation | Open Energy Information

    Open Energy Info (EERE)

    Vegetation Jump to: navigation, search Retrieved from "http:en.openei.orgwindex.php?titleVegetation&oldid612270" Feedback Contact needs updating Image needs updating...

  9. List of Biodiesel Incentives | Open Energy Information

    Open Energy Info (EERE)

    Solid Waste Photovoltaics Small Hydroelectric Solar Thermal Electric Coal with CCS Natural Gas Wind Yes Alternatives Fuels Production Incentive (Mississippi)...

  10. Biodiesel of South Florida LLC | Open Energy Information

    Open Energy Info (EERE)

    of South Florida LLC Jump to: navigation, search Name: Biodiesel of South Florida, LLC Place: Miami, Florida Zip: 33176 Product: Florida-based wholesale marketer of soy-based...

  11. Impacts of Rail Pressure and Biodiesel Composition on Soot Nanostructure

    Broader source: Energy.gov [DOE]

    Fractal dimensions of particle aggregates and the fringe lengths and fringe tortuosity within the primary soot particles has been assessed as functions of load, rail pressure, and biodiesel content.

  12. Washington State Becomes Largest Public Consumer of Biodiesel

    Broader source: Energy.gov [DOE]

    With a $165,000 Recovery Act loan, the state of Washington is advancing its efforts toward clean energy and is now the largest public consumer of biodiesel in the country.

  13. Fact #662: February 14, 2011 World Biodiesel Production

    Broader source: Energy.gov [DOE]

    Europe has been the dominant region for biodiesel production with increased production each year since 2005. North America has been a distant second led by the United States until 2009. In 2009, U...

  14. Ashworths Products Ltd | Open Energy Information

    Open Energy Info (EERE)

    England, United Kingdom Product: Lancashire-based producer of biodiesel from waste animal and vegetable fats, most of which is used for energy production through co-firing....

  15. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The lab portion of this exercise demonstrates the basic chemistry involved in making biodiesel from vegetable oils and waste oils. http:energy.goveereeducationdownloads...

  16. Quantitative NMR Analysis of Partially Substituted Biodiesel Glycerols

    SciTech Connect (OSTI)

    Nagy, M.; Alleman, T. L.; Dyer, T.; Ragauskas, A. J.

    2009-01-01

    Phosphitylation of hydroxyl groups in biodiesel samples with 2-chloro-4,4,5,5-tetramethyl-1,3,2-dioxaphospholane followed by 31P-NMR analysis provides a rapid quantitative analytical technique for the determination of substitution patterns on partially esterified glycerols. The unique 31P-NMR chemical shift data was established with a series mono and di-substituted fatty acid esters of glycerol and then utilized to characterize an industrial sample of partially processed biodiesel.

  17. Biodiesel/Aquatic Species Project report, FY 1992

    SciTech Connect (OSTI)

    Brown, L.; Jarvis, E.; Dunahay, T.; Roessler, P.; Zeiler, K. ); Sprague, S. )

    1993-05-01

    The primary goal of the Biodiesel/Aquatic Species Project is to develop the technology for growing microalgae as a renewable biomass feedstock for the production of a diesel fuel substitute (biodiesel), thereby reducing the need for imported petroleum. Microalgae are of interest as a feedstock because of their high growth rates and tolerance to varying environmental conditions, and because the oils (lipids) they produce can be extracted and converted to substitute petroleum fuels such as biodiesel. Microalgae can be grown in arid and semi-arid regions with poor soil quality, and saline water from aquifers or the ocean can be used for growing microalgae. Biodiesel is an extremely attractive candidate to fulfill the need for a diesel fuel substitute. Biodiesel is a cleaner fuel than petroleum diesel; it is virtually free of sulfur, and emissions of hydrocarbons, carbon monoxide, and particulates during combustion are significantly reduced in comparison to emissions from petroleum diesel. Biodiesel provides essentially the same energy content and power output as petroleum-based diesel fuel.

  18. BioDiesel Content On-board monitoring | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    BioDiesel Content On-board monitoring BioDiesel Content On-board monitoring onboard fuel monitoring of fuel and biofuel qualities using an optical sensor for engine ...

  19. Biodiesel Effects on the Operation of U.S. Light Duty Tier 2...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Light Duty Tier 2 Engine and Aftertreatment Systems Biodiesel Effects on the Operation of ... More Documents & Publications Biodiesel Effects on the Operation of U.S. Light-Duty Tier 2 ...

  20. 100,000-Mile Evaluation of Transit Buses Operated on Biodiesel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Evaluation of Transit Buses Operated on Biodiesel Blends (B20) 100,000-Mile Evaluation of Transit Buses Operated on Biodiesel Blends (B20) Presentation given at DEER 2006, ...

  1. Biodiesel Effects on the Operation of U.S. Light-Duty Tier 2...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Light-Duty Tier 2 Engine and Aftertreatment Systems Biodiesel Effects on the Operation of ... More Documents & Publications Biodiesel Effects on the Operation of U.S. Light Duty Tier 2 ...

  2. Combining Biodiesel and EGR for Low-Temperature NOx and PM Reductions...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biodiesel and EGR for Low-Temperature NOx and PM Reductions Combining Biodiesel and EGR for Low-Temperature NOx and PM Reductions Poster presentation at the 2007 Diesel ...

  3. System-Response Issues Imposed by Biodiesel in a Medium-Duty...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    System-Response Issues Imposed by Biodiesel in a Medium-Duty Diesel Engine System-Response Issues Imposed by Biodiesel in a Medium-Duty Diesel Engine The objective of the current ...

  4. Impact of Biodiesel-based Na on the Selective Catalytic Reduction...

    Office of Scientific and Technical Information (OSTI)

    of Biodiesel-based Na on the Selective Catalytic Reduction of NOx by NH3 Over Cu-zeolite Catalysts Citation Details In-Document Search Title: Impact of Biodiesel-based Na on the ...

  5. Fact #700: November 7, 2011 Biodiesel Consumption is on the Rise for 2011

    Office of Energy Efficiency and Renewable Energy (EERE)

    The U.S. Energy Information Administration began tracking biodiesel consumption in 2001. For the first few years biodiesel consumption remained relatively low – well under one thousand barrels per...

  6. Alternative Fuels Data Center: St. Louis Airport Relies on Biodiesel and

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Natural Gas Vehicles St. Louis Airport Relies on Biodiesel and Natural Gas Vehicles to someone by E-mail Share Alternative Fuels Data Center: St. Louis Airport Relies on Biodiesel and Natural Gas Vehicles on Facebook Tweet about Alternative Fuels Data Center: St. Louis Airport Relies on Biodiesel and Natural Gas Vehicles on Twitter Bookmark Alternative Fuels Data Center: St. Louis Airport Relies on Biodiesel and Natural Gas Vehicles on Google Bookmark Alternative Fuels Data Center: St. Louis

  7. Matrix Optimization for the MALDI-TOF-MS Analysis of Trace Biodiesel Components (Poster)

    SciTech Connect (OSTI)

    McAlpin, C. R.; Voorhees, K. J.; Alleman, T. L.; McCormick, R. L.

    2009-01-01

    Trace biodiesel components that could reduce the fuel's operability in cold weather are analyzed using MALDI-TOF mass spectrometry.

  8. Biodiesel Vehicle and Infrastructure Codes and Standards Chart (Revised) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-02-01

    This chart shows the SDOs responsible for leading the support and development of key codes and standards for biodiesel.

  9. System-Response Issues Imposed by Biodiesel in a Medium-Duty Diesel Engine

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy System-Response Issues Imposed by Biodiesel in a Medium-Duty Diesel Engine System-Response Issues Imposed by Biodiesel in a Medium-Duty Diesel Engine The objective of the current research is to assess differences in NOx emissions between biodiesel and petroleum diesel fuels, resulting from fundamental issues and system-response issues. deer09_jacobs.pdf (775.62 KB) More Documents & Publications Biodiesel's Enabling Characteristics in Attaining Low Temperature

  10. Factors Affecting the Stability of Biodiesel Sold in the United States

    SciTech Connect (OSTI)

    McCormick, R. L.; Ratcliff, M.; Moens, L.; Lawrence, R.

    2006-01-01

    As part of a survey of biodiesel quality and stability in the United States, 27 biodiesel (B100) samples were collected from blenders and distributor nationwide. For this sample set, 85% met all of the requirements of the industry standard for biodiesel, ASTM D6751.

  11. Developing New Alternative Energy in Virginia: Bio-Diesel from Algae

    SciTech Connect (OSTI)

    Hatcher, Patrick

    2012-03-29

    . The positive economics of this process are influenced by the following: 1. the weight percent of dry algae in suspension that can be fed into the evaporator, 2. the alga species’ ability to produce a higher yield of biodiesel, 3. the isolation of valuable methoxylated by-products, 4. recycling and regeneration of methanol and TMAH, and 5. the market value of biodiesel, commercial agricultural fertilizer, and the three methoxylated by-products. The negative economics of the process are the following: 1. the cost of producing dried, ground algae, 2. the capital cost of the equipment required for feedstock mixing, reaction, separation and recovery of products, and reactant recycling, and 3. the electrical cost and other utilities. In this report, the economic factors and results are assembled to predict the commercialization cost and its viability. This direct conversion process and equipment discussed herein can be adapted for various feedstocks including: other algal species, vegetable oil, jatropha oil, peanut oil, sunflower oil, and other TAG containing raw materials as a renewable energy resource.

  12. RTD Biodiesel (B20) Transit Bus Evaluation: Interim Review Summary

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    RTD Biodiesel (B20) Transit Bus Evaluation: Interim Review Summary K. Proc, R. Barnitt, and R.L. McCormick Technical Report NREL/TP-540-38364 August 2005 RTD Biodiesel (B20) Transit Bus Evaluation: Interim Review Summary K. Proc, R. Barnitt, and R.L. McCormick Prepared under Task No. FC05.9400 Technical Report NREL/TP-540-38364 August 2005 National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 * www.nrel.gov Operated for the U.S. Department of Energy

  13. Alabama Institute for Deaf and Blind Biodiesel Project Green

    SciTech Connect (OSTI)

    Edmiston, Jessica L

    2012-09-28

    Through extensive collaboration, Alabama Institute for Deaf and Blind (AIDB) is Alabama's first educational entity to initiate a biodiesel public education, student training and production program, Project Green. With state and national replication potential, Project Green benefits local businesses and city infrastructures within a 120-mile radius; provides alternative education to Alabama school systems and to schools for the deaf and blind in Appalachian States; trains students with sensory and/or multiple disabilities in the acquisition and production of biodiesel; and educates the external public on alternative fuels benefits.

  14. Converting campus waste into renewable energy – A case study for the University of Cincinnati

    SciTech Connect (OSTI)

    Tu, Qingshi; Zhu, Chao; McAvoy, Drew C.

    2015-05-15

    Highlights: • A case study to show the benefits of waste-to-energy projects at a university. • Evaluated the technical and economic feasibilities as well as GHG reduction. • A tool for other universities/communities to evaluate waste-to-energy projects. - Abstract: This paper evaluates the implementation of three waste-to-energy projects at the University of Cincinnati: waste cooking oil-to-biodiesel, waste paper-to-fuel pellets and food waste-to-biogas, respectively. The implementation of these waste-to-energy (WTE) projects would lead to the improvement of campus sustainability by minimizing waste management efforts and reducing GHG emissions via the displacement of fossil fuel usage. Technical and economic aspects of their implementation were assessed and the corresponding GHG reduction was estimated. Results showed that on-site implementation of these projects would: (1) divert 3682 L (974 gallons) of waste cooking oil to 3712 L (982 gallons) of biodiesel; (2) produce 138 tonnes of fuel pellets from 133 tonnes of waste paper (with the addition of 20.75 tonnes of plastics) to replace121 tonnes of coal; and (3) produce biogas that would be enough to replace 12,767 m{sup 3} natural gas every year from 146 tonnes of food waste. The economic analysis determined that the payback periods for the three projects would be 16 months for the biodiesel, 155 months for the fuel pellet, and 74 months for the biogas projects. The reduction of GHG emission from the implementation of the three WTE projects was determined to be 9.37 (biodiesel), 260.49 (fuel pellets), and 11.36 (biogas) tonnes of CO{sub 2}-eq per year, respectively.

  15. Coalition Cooperation Defines Roadmap for E85 and Biodiesel

    SciTech Connect (OSTI)

    Not Available

    2007-06-01

    This Clean Cities success story relates how Colorado's Colorado Biofuels Coalition was formed and provides guidance on forming other such coalitions. This Colorado's coalition sucessfully increase the number of fueling stations providing biofuels and has goals to the number even more. Plans also include assisting with financing infrastructure, making alternative fuels available to more fleets, and educating about E85 and biodiesel use.

  16. Detailed chemical kinetic oxidation mechanism for a biodiesel surrogate

    SciTech Connect (OSTI)

    Herbinet, Olivier; Pitz, William J.; Westbrook, Charles K.

    2008-08-15

    A detailed chemical kinetic mechanism has been developed and used to study the oxidation of methyl decanoate, a surrogate for biodiesel fuels. This model has been built by following the rules established by Curran and co-workers for the oxidation of n-heptane and it includes all the reactions known to be pertinent to both low and high temperatures. Computed results have been compared with methyl decanoate experiments in an engine and oxidation of rapeseed oil methyl esters in a jet-stirred reactor. An important feature of this mechanism is its ability to reproduce the early formation of carbon dioxide that is unique to biofuels and due to the presence of the ester group in the reactant. The model also predicts ignition delay times and OH profiles very close to observed values in shock tube experiments fueled by n-decane. These model capabilities indicate that large n-alkanes can be good surrogates for large methyl esters and biodiesel fuels to predict overall reactivity, but some kinetic details, including early CO{sub 2} production from biodiesel fuels, can be predicted only by a detailed kinetic mechanism for a true methyl ester fuel. The present methyl decanoate mechanism provides a realistic kinetic tool for simulation of biodiesel fuels. (author)

  17. Detailed chemical kinetic oxidation mechanism for a biodiesel surrogate

    SciTech Connect (OSTI)

    Herbinet, O; Pitz, W J; Westbrook, C K

    2007-09-17

    A detailed chemical kinetic mechanism has been developed and used to study the oxidation of methyl decanoate, a surrogate for biodiesel fuels. This model has been built by following the rules established by Curran et al. for the oxidation of n-heptane and it includes all the reactions known to be pertinent to both low and high temperatures. Computed results have been compared with methyl decanoate experiments in an engine and oxidation of rapeseed oil methyl esters in a jet stirred reactor. An important feature of this mechanism is its ability to reproduce the early formation of carbon dioxide that is unique to biofuels and due to the presence of the ester group in the reactant. The model also predicts ignition delay times and OH profiles very close to observed values in shock tube experiments fueled by n-decane. These model capabilities indicate that large n-alkanes can be good surrogates for large methyl esters and biodiesel fuels to predict overall reactivity, but some kinetic details, including early CO2 production from biodiesel fuels, can be predicted only by a detailed kinetic mechanism for a true methyl ester fuel. The present methyl decanoate mechanism provides a realistic kinetic tool for simulation of biodiesel fuels.

  18. Detailed chemical kinetic oxidation mechanism for a biodiesel surrogate

    SciTech Connect (OSTI)

    Herbinet, O; Pitz, W J; Westbrook, C K

    2007-09-20

    A detailed chemical kinetic mechanism has been developed and used to study the oxidation of methyl decanoate, a surrogate for biodiesel fuels. This model has been built by following the rules established by Curran et al. for the oxidation of n-heptane and it includes all the reactions known to be pertinent to both low and high temperatures. Computed results have been compared with methyl decanoate experiments in an engine and oxidation of rapeseed oil methyl esters in a jet stirred reactor. An important feature of this mechanism is its ability to reproduce the early formation of carbon dioxide that is unique to biofuels and due to the presence of the ester group in the reactant. The model also predicts ignition delay times and OH profiles very close to observed values in shock tube experiments fueled by n-decane. These model capabilities indicate that large n-alkanes can be good surrogates for large methyl esters and biodiesel fuels to predict overall reactivity, but some kinetic details, including early CO{sub 2} production from biodiesel fuels, can be predicted only by a detailed kinetic mechanism for a true methyl ester fuel. The present methyl decanoate mechanism provides a realistic kinetic tool for simulation of biodiesel fuels.

  19. Emissions from US waste collection vehicles

    SciTech Connect (OSTI)

    Maimoun, Mousa A.; Reinhart, Debra R.; Gammoh, Fatina T.; McCauley Bush, Pamela

    2013-05-15

    Highlights: ? Life-cycle emissions for alternative fuel technologies. ? Fuel consumption of alternative fuels for waste collection vehicles. ? Actual driving cycle of waste collection vehicles. ? Diesel-fueled waste collection vehicle emissions. - Abstract: This research is an in-depth environmental analysis of potential alternative fuel technologies for waste collection vehicles. Life-cycle emissions, cost, fuel and energy consumption were evaluated for a wide range of fossil and bio-fuel technologies. Emission factors were calculated for a typical waste collection driving cycle as well as constant speed. In brief, natural gas waste collection vehicles (compressed and liquid) fueled with North-American natural gas had 610% higher well-to-wheel (WTW) greenhouse gas (GHG) emissions relative to diesel-fueled vehicles; however the pump-to-wheel (PTW) GHG emissions of natural gas waste collection vehicles averaged 6% less than diesel-fueled vehicles. Landfill gas had about 80% lower WTW GHG emissions relative to diesel. Biodiesel waste collection vehicles had between 12% and 75% lower WTW GHG emissions relative to diesel depending on the fuel source and the blend. In 2011, natural gas waste collection vehicles had the lowest fuel cost per collection vehicle kilometer travel. Finally, the actual driving cycle of waste collection vehicles consists of repetitive stops and starts during waste collection; this generates more emissions than constant speed driving.

  20. Electrochemical method for producing a biodiesel mixture comprising fatty acid alkyl esters and glycerol

    DOE Patents [OSTI]

    Lin, YuPo J; St. Martin, Edward J

    2013-08-13

    The present invention relates to an integrated method and system for the simultaneous production of biodiesel from free fatty acids (via esterification) and from triglycerides (via transesterification) within the same reaction chamber. More specifically, one preferred embodiment of the invention relates to a method and system for the production of biodiesel using an electrodeionization stack, wherein an ion exchange resin matrix acts as a heterogeneous catalyst for simultaneous esterification and transesterification reactions between a feedstock and a lower alcohol to produce biodiesel, wherein the feedstock contains significant levels of free fatty acid. In addition, because of the use of a heterogeneous catalyst, the glycerol and biodiesel have much lower salt concentrations than raw biodiesel produced by conventional transesterification processes. The present invention makes it much easier to purify glycerol and biodiesel.

  1. Comprehensive Assessment of the Emissions from the Use of Biodiesel in

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    California | Department of Energy Comprehensive Assessment of the Emissions from the Use of Biodiesel in California Comprehensive Assessment of the Emissions from the Use of Biodiesel in California Overview of a comprehensive assessment of emissions from biodiesel use in California deer08_durbin.pdf (121.2 KB) More Documents & Publications Evaluation of the European PMP Methodologies Using Chassis Dynamometer and On-road Testing of Heavy-duty Vehicles Measuring "Real World"

  2. Effect of Jatropha based Biodiesel, on Engine Hardware Reliability, Emission and Performance

    Broader source: Energy.gov [DOE]

    Jatropha is a drought-resistant, non-edible plant that can be grown on marginal land and used in the production of biodiesel fuel.

  3. EERE Success Story—Washington: State Ferries Run Cleaner With Biodiesel

    Broader source: Energy.gov [DOE]

    Washington State Ferries now uses blended biodiesel to run its ferries, preventing the emission of more than 29,000 metric tons of carbon dioxide per year.

  4. Impact of Biodiesel-Based Na on the Selective Catalytic Reduction (SCR) of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NOx Using Cu-zeolite | Department of Energy Biodiesel-Based Na on the Selective Catalytic Reduction (SCR) of NOx Using Cu-zeolite Impact of Biodiesel-Based Na on the Selective Catalytic Reduction (SCR) of NOx Using Cu-zeolite Discusses the impact of Na in biodiesel on three emission control devices: the diesel particulate filter, diesel oxidation catalyst, and zeolyte-based SCR catalyst deer11_toops.pdf (1.75 MB) More Documents & Publications Impacts of Biodiesel on Emission Control

  5. Biodiesel Fuel Property Effects on Particulate Matter Reactivity

    SciTech Connect (OSTI)

    Williams, A.; Black, S.; McCormick, R. L.

    2010-06-01

    Controlling diesel particulate emissions to meet the 2007 U.S. standard requires the use of a diesel particulate filter (DPF). The reactivity of soot, or the carbon fraction of particulate matter, in the DPF and the kinetics of soot oxidation are important in achieving better control of aftertreatment devices. Studies showed that biodiesel in the fuel can increase soot reactivity. This study therefore investigated which biodiesel fuel properties impact reactivity. Three fuel properties of interest included fuel oxygen content and functionality, fuel aromatic content, and the presence of alkali metals. To determine fuel effects on soot reactivity, the performance of a catalyzed DPF was measured with different test fuels through engine testing and thermo-gravimetric analysis. Results showed no dependence on the aromatic content or the presence of alkali metals in the fuel. The presence and form of fuel oxygen was the dominant contributor to faster DPF regeneration times and soot reactivity.

  6. Biodiesel - Energy Explained, Your Guide To Understanding Energy - Energy

    U.S. Energy Information Administration (EIA) Indexed Site

    Information Administration Biodiesel Energy Explained - Home What Is Energy? Forms of Energy Sources of Energy Laws of Energy Units and Calculators Energy Conversion Calculators British Thermal Units (Btu) Degree-Days U.S. Energy Facts State and U.S. Territory Data Use of Energy In Industry For Transportation In Homes In Commercial Buildings Efficiency and Conservation Energy and the Environment Greenhouse Gases Effect on the Climate Where Greenhouse Gases Come From Outlook for Future

  7. Biodiesel and the Environment - Energy Explained, Your Guide To

    U.S. Energy Information Administration (EIA) Indexed Site

    Understanding Energy - Energy Information Administration Biodiesel & the Environment Energy Explained - Home What Is Energy? Forms of Energy Sources of Energy Laws of Energy Units and Calculators Energy Conversion Calculators British Thermal Units (Btu) Degree-Days U.S. Energy Facts State and U.S. Territory Data Use of Energy In Industry For Transportation In Homes In Commercial Buildings Efficiency and Conservation Energy and the Environment Greenhouse Gases Effect on the Climate Where

  8. Biofuels: Ethanol and Biodiesel - Energy Explained, Your Guide To

    U.S. Energy Information Administration (EIA) Indexed Site

    Understanding Energy - Energy Information Administration Biodiesel Energy Explained - Home What Is Energy? Forms of Energy Sources of Energy Laws of Energy Units and Calculators Energy Conversion Calculators British Thermal Units (Btu) Degree-Days U.S. Energy Facts State and U.S. Territory Data Use of Energy In Industry For Transportation In Homes In Commercial Buildings Efficiency and Conservation Energy and the Environment Greenhouse Gases Effect on the Climate Where Greenhouse Gases Come

  9. Producing Beneficial Materials from Biomass and Biodiesel Byproducts -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Innovation Portal Biomass and Biofuels Biomass and Biofuels Find More Like This Return to Search Producing Beneficial Materials from Biomass and Biodiesel Byproducts Lawrence Berkeley National Laboratory Contact LBL About This Technology Technology Marketing SummaryResearchers at Berkeley Lab have created a process to produce olefins from polyols that may be biomass derived. The team is also the first to introduce a method of producing high purity allyl alcohol at a large scale by

  10. Sky Vegetables | Open Energy Information

    Open Energy Info (EERE)

    Vegetables Jump to: navigation, search Name: Sky Vegetables Address: 45 Rosemary Street, Suite F Place: Needham, MA Zip: 02494 Sector: Solar Website: www.skyvegetables.comindex.ht...

  11. Biodiesel Clears the Air in Underground Mines, Clean Cities, Fact Sheet, June 2009

    SciTech Connect (OSTI)

    Not Available

    2009-06-01

    Mining companies are using biodiesel in their equipment to help clear the air of diesel particulate matter (DPM). This action improves air quality and protects miners' lungs. Though using biodiesel has some challenges in cold weather, tax incentives, and health benefits make it a viable option.

  12. Biodiesel Supply and Consumption in the Short-Term Energy Outlook

    Reports and Publications (EIA)

    2009-01-01

    The historical biodiesel consumption data published in the Energy Information Administration's Monthly Energy Review March 2009 edition were revised to account for imports and exports. Table 10.4 of the Monthly Energy Review was expanded to display biodiesel imports, exports, stocks, stock change, and consumption. Similar revisions were made in the April 2009 edition of the Short-Term Energy Outlook (STEO).

  13. Biodiesel Vehicle and Infrastructure Codes and Standards Chart (Revised) (Fact Sheet), NREL (National Renewable Energy Laboratory)

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Many standards development organizations (SDOs) are working to develop codes and standards needed for the utilization of alternative fuel vehicle technologies. This chart shows the SDOs responsible for leading the support and development of key codes and standards for biodiesel. Biodiesel Vehicle and Infrastructure Codes and Standards Chart Vehicles Storage Dispensing Infrastructure Engine Testing: Fuel Systems: Fuel Lubricants: Powertrain Systems: Containers: Dispensing Operations: Dispensing

  14. Measurement of biodiesel blend and conventional diesel spray structure using x-ray radiography.

    SciTech Connect (OSTI)

    Kastengren, A. L.; Powell, C. F.; Wang, Y. J.; IM, K. S.; Wang, J.

    2009-11-01

    The near-nozzle structure of several nonevaporating biodiesel-blend sprays has been studied using X-ray radiography. Radiography allows quantitative measurements of the fuel distribution in sprays to be made with high temporal and spatial resolution. Measurements have been made at different values of injection pressure, ambient density, and with two different nozzle geometries to understand the influences of these parameters on the spray structure of the biodiesel blend. These measurements have been compared with corresponding measurements of Viscor, a diesel calibration fluid, to demonstrate the fuel effects on the spray structure. Generally, the biodiesel-blend spray has a similar structure to the spray of Viscor. For the nonhydroground nozzle used in this study, the biodiesel-blend spray has a slightly slower penetration into the ambient gas than the Viscor spray. The cone angle of the biodiesel-blend spray is generally smaller than that of the Viscor spray, indicating that the biodiesel-blend spray is denser than the Viscor spray. For the hydroground nozzle, both fuels produce sprays with initially wide cone angles that transition to narrow sprays during the steady-state portion of the injection event. These variations in cone angle with time occur later for the biodiesel-blend spray than for the Viscor spray, indicating that the dynamics of the injector needle as it opens are somewhat different for the two fuels.

  15. Vegetable oil as fuel

    SciTech Connect (OSTI)

    Not Available

    1980-11-01

    A review is presented of various experiments undertaken over the past few years in the U.S. to test the performance of vegetable oils in diesel engines, mainly with a view to on-farm energy self-sufficiency. The USDA Northern Regional Research Center in Peoria, Illinois, is screening native U.S. plant species as potential fuel oil sources.

  16. A comparison of injector flow and spray characteristics of biodiesel with petrodiesel.

    SciTech Connect (OSTI)

    Som, S.; Longman, D. E; Ramirez, A. I.; Aggarwal, S. K.

    2010-12-01

    Performance and emission characteristics of compression ignition engines depend strongly on inner nozzle flow and spray behavior. These processes control the fuel air mixing, which in turn is critical for the combustion process. The differences in the physical properties of petrodiesel and biodiesel are expected to significantly alter the inner nozzle flow and spray structure and, thus, the performance and emission characteristics of the engine. In this study, the inner nozzle flow dynamics of these fuels are characterized by using the mixture-based cavitation model in FLUENT v6.3. Because of its lower vapor pressure, biodiesel was observed to cavitate less than petrodiesel. Higher viscosity of biodiesel resulted in loss of flow efficiency and reduction in injection velocity. Turbulence levels at the nozzle orifice exit were also lower for biodiesel. Using the recently developed KH-ACT model, which incorporates the effects of cavitation and turbulence in addition to aerodynamic breakup, the inner nozzle flow simulations are coupled with the spray simulations in a 'quasi-dynamic' fashion. Thus, the influence of inner nozzle flow differences on spray development of these fuels could be captured, in addition to the effects of their physical properties. Spray penetration was marginally higher for biodiesel, while cone angle was lower, which was attributed to its poor atomization characteristics. The computed liquid lengths of petrodiesel and biodiesel were compared with data from Sandia National Laboratories. Liquid lengths were higher for biodiesel due to its higher boiling temperature and heat of vaporization. Though the simulations captured this trend well, the liquid lengths were underpredicted, which was attributed to uncertainty about the properties of biodiesel used in the experiments. Parametric studies were performed to determine a single parameter that could be used to account for the observed differences in the fuel injection and spray behavior of

  17. Low-Temperature Biodiesel Research Reveals Potential Key to Successful Blend Performance (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-02-01

    Relatively low-cost solutions could improve reliability while making biodiesel blends an affordable option. While biodiesel has very low production costs and the potential to displace up to 10% of petroleum diesel, until now, issues with cold weather performance have prevented biodiesel blends from being widely adopted. Some biodiesel blends have exhibited unexplained low-temperature performance problems even at blend levels as low as 2% by volume. The most common low-temperature performance issue is vehicle stalling caused by fuel filter clogging, which prevents fuel from reaching the engine. Research at the National Renewable Energy Laboratory (NREL) reveals the properties responsible for these problems, clearing a path for the development of solutions and expanded use of energy-conserving and low-emissions alternative fuel. NREL researchers set out to study the unpredictable nature of biodiesel crystallization, the condition that impedes the flow of fuel in cold weather. Their research revealed for the first time that saturated monoglyceride impurities common to the biodiesel manufacturing process create crystals that can cause fuel filter clogging and other problems when cooling at slow rates. Biodiesel low-temperature operational problems are commonly referred to as 'precipitates above the cloud point (CP).' NREL's Advanced Biofuels team spiked distilled soy and animal fat-derived B100, as well as B20, B10, and B5 biodiesel blends with three saturated monoglycerides (SMGs) at concentration levels comparable to those of real-world fuels. Above a threshold or eutectic concentration, the SMGs (monomyristin, monopalmitin, and monostearin) were shown to significantly raise the biodiesel CP, and had an even greater impact on the final melting temperature. Researchers discovered that upon cooling, monoglyceride initially precipitates as a metastable crystal, but it transforms over time or upon slight heating into a more stable crystal with a much lower solubility and

  18. 100,000-Mile Evaluation of Transit Buses Operated on Biodiesel Blends (B20)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy 00,000-Mile Evaluation of Transit Buses Operated on Biodiesel Blends (B20) 100,000-Mile Evaluation of Transit Buses Operated on Biodiesel Blends (B20) Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and Fuel Partnership and 21st Century Truck Programs. 2006_deer_barnitt.pdf (575.91 KB) More Documents & Publications Recent Research to Address Technical Barriers to Increased Use of Biodiesel Impact

  19. Investigation and Optimization of Biodiesel Chemistry for HCCI Combustion

    SciTech Connect (OSTI)

    Bunting, Bruce G.; Bunce, Michael; Joyce, Blake; Crawford, Robert W.

    2014-06-23

    Over the past 5 years, ORNL has run 95 diesel range fuels in homogene-ous charge compression ignition (HCCI), including 40 bio-diesels and associated diesel fuels in their blending. The bio-diesel blends varied in oxygen content, iodine number, cetane, boiling point distribution, chemical composition, and some contained nitrogen. All fuels were run in an HCCI engine at 1800 rpm, in the power range of 2.5 to 4.5 bar IMEP, using intake air heating for combustion phasing control, and at a compression ratio of 10.6. The engine response to fuel variables has been analyzed statistically. Generally, the engine responded well to fuels with lower nitrogen and oxygen, lower cetane, and lower aromatics. Because of the wide range of fuels combined in the model, it provides only a broad overview of the engine response. It is recommended that data be truncated and re-modeled to obtain finer resolution of engine response to particular fuel variables.

  20. Greasecar Vegetable Fuel Systems | Open Energy Information

    Open Energy Info (EERE)

    Greasecar Vegetable Fuel Systems Jump to: navigation, search Name: Greasecar Vegetable Fuel Systems Place: Florence, Massachusetts Zip: 1062 Product: Manufacturer of vegetable fuel...

  1. Vegetation study in support of the design and optimization of vegetative soil covers, Sandia National Laboratories, Albuquerque, New Mexico.

    SciTech Connect (OSTI)

    Peace, Gerald L.; Goering, Timothy James (GRAM inc., Albuquerque, NM); Knight, Paul J. (Marron and Associates, Albuquerque, NM); Ashton, Thomas S. (Marron and Associates, Albuquerque, NM)

    2004-11-01

    A vegetation study was conducted in Technical Area 3 at Sandia National Laboratories, Albuquerque, New Mexico in 2003 to assist in the design and optimization of vegetative soil covers for hazardous, radioactive, and mixed waste landfills at Sandia National Laboratories/New Mexico and Kirtland Air Force Base. The objective of the study was to obtain site-specific, vegetative input parameters for the one-dimensional code UNSAT-H and to identify suitable, diverse native plant species for use on vegetative soil covers that will persist indefinitely as a climax ecological community with little or no maintenance. The identification and selection of appropriate native plant species is critical to the proper design and long-term performance of vegetative soil covers. Major emphasis was placed on the acquisition of representative, site-specific vegetation data. Vegetative input parameters measured in the field during this study include root depth, root length density, and percent bare area. Site-specific leaf area index was not obtained in the area because there was no suitable platform to measure leaf area during the 2003 growing season due to severe drought that has persisted in New Mexico since 1999. Regional LAI data was obtained from two unique desert biomes in New Mexico, Sevilletta Wildlife Refuge and Jornada Research Station.

  2. Effects of Biodiesel Operation on Light-Duty Tier 2 Engine and Emission Control Systems: Preprint

    SciTech Connect (OSTI)

    Tatur, M.; Nanjundaswamy, H.; Tomazic, D.; Thornton, M.

    2008-08-01

    This paper documents the impact of biodiesel blends on engine-out emissions as well as overall system performance in terms of emissions control system calibration and overall system efficiency.

  3. Laser-induced breakdown spectroscopy measurement in methane and biodiesel flames using an ungated detector

    SciTech Connect (OSTI)

    Eseller, Kemal E.; Yueh, Fang Y.; Singh, Jagdish P

    2008-11-01

    Laser-induced breakdown spectroscopy (LIBS) has been applied to measure the equivalence ratio of CH4/air flames using gated detection. In this work, we have developed an ungated, miniature LIBS-based sensor for studying CH4/air and biodiesel flames. We have used this sensor to characterize the biodiesel flame. LIBS spectra of biodiesel flames were recorded with different ethanol concentrations in the biodiesel and also at different axial locations within the flame. The sensor performance was evaluated with a CH4/air flame. LIBS signals of N, O, and H from a CH4/air flame were used to determine the equivalence ratio. A linear relationship between the intensity ratio of H and O lines and the calculated equivalence ratio were obtained with this sensor.

  4. Life-Cycle Assessment of the Use of Jatropha Biodiesel in Indian Locomotives (Revised)

    SciTech Connect (OSTI)

    Whitaker, M.; Heath, G.

    2009-03-01

    With India's transportation sector relying heavily on imported petroleum-based fuels, the Planning Commission of India and the Indian government recommended the increased use of blended biodiesel in transportation fleets, identifying Jatropha as a potentially important biomass feedstock. The Indian Oil Corporation and Indian Railways are collaborating to increase the use of biodiesel blends in Indian locomotives with blends of up to B20, aiming to reduce GHG emissions and decrease petroleum consumption. To help evaluate the potential for Jatropha-based biodiesel in achieving sustainability and energy security goals, this study examines the life cycle, net GHG emission, net energy ratio, and petroleum displacement impacts of integrating Jatropha-based biodiesel into locomotive operations in India. In addition, this study identifies the parameters that have the greatest impact on the sustainability of the system.

  5. Impact of Biodiesel-Based Na on the Selective Catalytic Reduction...

    Broader source: Energy.gov (indexed) [DOE]

    Discusses the impact of Na in biodiesel on three emission control devices: the diesel particulate filter, diesel oxidation catalyst, and zeolyte-based SCR catalyst deer11toops.pdf ...

  6. Impact of Biodiesel on the Near-term Performance and Long-term...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Impact of Biodiesel on the Near-term Performance and Long-term Durability of Advanced Aftertreatment Systems Compare SCR catalyst performance with ULSD and Soy B20 through engine ...

  7. Impacts of Biodiesel Fuel Blends Oil Dilution on Light-Duty Diesel Engine Operation

    SciTech Connect (OSTI)

    Thornton, M. J.; Alleman, T. L.; Luecke, J.; McCormick, R. L.

    2009-08-01

    Assesses oil dilution impacts on a diesel engine operating with a diesel particle filter, NOx storage, a selective catalytic reduction emission control system, and a soy-based 20% biodiesel fuel blend.

  8. A numerical study comparing the combustion and emission characteristics of biodiesel with petrodiesel.

    SciTech Connect (OSTI)

    Som, S.; Longman, D.

    2011-04-01

    Combustion and emission characteristics of compression ignition engines strongly depend upon inner-nozzle flow and spray behavior. These processes control the fuel-air mixing, which in turn is critical for the combustion process. Previous studies by us highlighted the differences in the physical and chemical properties of petrodiesel and biodiesel, which significantly altered the inner-nozzle flow and spray structure. The current study is another step in this direction to gain a fundamental understanding on the influence of fuel properties on the combustion and emission characteristics of the compression ignition engine. n-Heptane and methyl butanoate were selected as surrogates for diesel and biodiesel fuels, respectively, because the chemical kinetic pathways were well-understood. Liquid length and flame lift-off length for diesel and biodiesel fuels were validated against data available in the literature. Liquid lengths were always higher for biodiesel because of its higher heat of vaporization, which resulted in increased interplay between spray and combustion processes under all conditions investigated. Ambient air entrainment was also lower for biodiesel mainly because of slower atomization and breakup. The mechanism for flame stabilization is further analyzed by estimating the turbulent burning velocity for both of the fuels. This analysis revealed that neither flame propagation nor isolated ignition kernels upstream and detached from high-temperature regions can be the mechanism for flame stabilization. Flame propagation speeds were observed to be similar for both fuels. Biodiesel predicted lower soot concentrations, which were also reflected in reduced C{sub 2}H{sub 2} mole fractions. Although prompt NO{sub x} was higher for biodiesel, total NO{sub x} was lower because of reduced thermal NO{sub x}. The ignition delay and NO{sub x} emissions predicted by these simulations do not agree with trends reported in the literature; hence, this study highlights the

  9. Biodiesel Vehicle and Infrastructure Codes and Standards Citations (Brochure), NREL (National Renewable Energy Laboratory)

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Biodiesel Vehicle and Infrastructure Codes and Standards Citations This document lists codes and standards typically used for U.S. biodiesel vehicle and infrastructure projects. To determine which codes and standards apply to a specific project, identify the codes and standards currently in effect within the jurisdiction where the project will be located. Some jurisdictions also have unique ordinances or regulations that could apply. Learn about codes and standards basics at

  10. Continuous Production of Biodiesel Via an Intensified Reactive/Extractive Process

    SciTech Connect (OSTI)

    Tsouris, Costas; McFarlane, Joanna; Birdwell Jr, Joseph F; Jennings, Hal L

    2008-01-01

    Biodiesel is considered as a means to diversify our supply of transportation fuel, addressing the goal of reducing our dependence on oil. For a number of reasons ranging from production issues to end use, biodiesel represents only a small fraction of the transportation fuel used worldwide. This work addresses the aspect of biodiesel production that limits it to a slow batch process. Conventional production methods are batch in nature, based on the assumption that the rates of the key chemical reactions are slow. The hypothesis motivating this work is that the reaction kinetics for the transesterification of the reagent triglyceride is sufficiently fast, particularly in an excess of catalyst, and that interfacial mass transfer and phase separation control the process. If this is the case, an intensified two-phase reactor adapted from solvent extraction equipment may be utilized to greatly increase biodiesel production rates by increasing interphase transport and phase separation. To prove this idea, we are investigating two aspects: (1) determining the rate-limiting step in biodiesel production by evaluating the reaction kinetics, and (2) enhancing biodiesel production rates by using an intensified reactor. A centrifugal contactor combining interphase mass transfer, chemical reaction, and phase separation is employed for process intensification.

  11. A Numerical Investigation into the Anomalous Slight NOx Increase when Burning Biodiesel: A New (Old) Theory

    SciTech Connect (OSTI)

    Ban-Weiss, G A; Chen, J Y; Buchholz, B A; Dibble, R W

    2007-01-30

    Biodiesel is a notable alternative to petroleum derived diesel fuel because it comes from natural domestic sources and thus reduces dependence on diminishing petroleum fuel from foreign sources, it likely lowers lifecycle greenhouse gas emissions, and it lowers an engine's emission of most pollutants as compared to petroleum derived diesel. However, the use of biodiesel often slightly increases a diesel engine's emission of smog forming nitrogen oxides (NO{sub x}) relative to petroleum diesel. In this paper, previously proposed theories for this slight NOx increase are reviewed, including theories based on biodiesel's cetane number, which leads to differing amounts of charge preheating, and theories based on the fuel's bulk modulus, which affects injection timing. This paper proposes an additional theory for the slight NO{sub x} increase of biodiesel. Biodiesel typically contains more double bonded molecules than petroleum derived diesel. These double bonded molecules have a slightly higher adiabatic flame temperature, which leads to the increase in NOx production for biodiesel. Our theory was verified using numerical simulations to show a NOx increase, due to the double bonded molecules, that is consistent with observation. Further, the details of these numerical simulations show that NOx is predominantly due to the Zeldovich mechanism.

  12. Waste Guide

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Disposal Waste Disposal Trucks transport debris from Oak Ridge’s cleanup sites to the onsite CERCLA disposal area, the Environmental Management Waste Management Facility. Trucks transport debris from Oak Ridge's cleanup sites to the onsite CERCLA disposal area, the Environmental Management Waste Management Facility. The low-level radiological and hazardous wastes generated from Oak Ridge's cleanup projects are disposed in the Environmental Management Waste Management Facility (EMWMF). The

  13. Brown Grease to Biodiesel Demonstration Project Report (Technical...

    Office of Scientific and Technical Information (OSTI)

    Resources in wastewater include chemical and thermal energy, as well as nutrients, and water. A waste stream such as residual grease, which concentrates in the drainage from ...

  14. Estimating Waste Inventory and Waste Tank Characterization |...

    Office of Environmental Management (EM)

    Estimating Waste Inventory and Waste Tank Characterization Estimating Waste Inventory and Waste Tank Characterization Summary Notes from 28 May 2008 Generic Technical Issue ...

  15. Saturated Monoglyceride Polymorphism and Gel Formation of Biodiesel Blends

    SciTech Connect (OSTI)

    Chupka, Gina; Fouts, Lisa; McCormick, Robert

    2015-11-13

    Crystallization or gel formation of normal paraffins in diesel fuel under cold weather conditions leading to fuel filter clogging is a common problem. Cold weather operability of biodiesel (B100) and blends with diesel fuel presents additional complexity because of the presence of saturated monoglycerides (SMGs) and other relatively polar species. Currently, the cloud point measurement (a measure of when the first component crystallizes out of solution) is used to define the lowest temperature at which the fuel can be used without causing cold weather issues. While filter plugging issues have declined, there still remain intermittent unexpected problems above the cloud point for biodiesel blends. Development of a fundamental understanding of how minor components in biodiesel crystallize, gel, and transform is needed in order to prevent these unexpected issues. We have found that SMGs, a low level impurity present in B100 from the production process, can crystallize out of solution and undergo a solvent-mediated polymorphic phase transformation to a more stable, less soluble form. This causes them to persist at temperatures above the cloud point once they have some out of solution. Additionally, we have found that SMGs can cause other more soluble, lower melting point minor components in the B100 to co-crystallize and come out of solution. Monoolein, another minor component from the production process is an unsaturated monoglyceride with a much lower melting point and higher solubility than SMGs. It is able to form a co-crystal with the SMGs and is found together with the SMGs on plugged filters we have analyzed in our laboratory. An observation of isolated crystals in the lab led us to believe that the SMGs may also be forming a gel-like network with components of the B100 and diesel fuel. During filtration experiments, we have noted that in some cases a solid layer of crystals forms and blocks the filter completely, while in other cases this does not occur

  16. Tank Waste and Waste Processing | Department of Energy

    Office of Environmental Management (EM)

    Tank Waste and Waste Processing Tank Waste and Waste Processing Tank Waste and Waste Processing The Defense Waste Processing Facility set a record by producing 267 canisters filled ...

  17. On droplet combustion of biodiesel fuel mixed with diesel/alkanes in microgravity condition

    SciTech Connect (OSTI)

    Pan, Kuo-Long; Li, Je-Wei; Chen, Chien-Pei; Wang, Ching-Hua

    2009-10-15

    The burning characteristics of a biodiesel droplet mixed with diesel or alkanes such as dodecane and hexadecane were experimentally studied in a reduced-gravity environment so as to create a spherically symmetrical flame without the influence of natural convection due to buoyancy. Small droplets on the order of 500 {mu}m in diameter were initially injected via a piezoelectric technique onto the cross point intersected by two thin carbon fibers; these were prepared inside a combustion chamber that was housed in a drag shield, which was freely dropped onto a foam cushion. It was found that, for single component droplets, the tendency to form a rigid soot shell was relatively small for biodiesel fuel as compared to that exhibited by the other tested fuels. The soot created drifted away readily, showing a puffing phenomenon; this could be related to the distinct molecular structure of biodiesel leading to unique soot layers that were more vulnerable to oxidative reactivity as compared to the soot generated by diesel or alkanes. The addition of biodiesel to these more traditional fuels also presented better performance with respect to annihilating the soot shell, particularly for diesel. The burning rate generally follows that of multi-component fuels, by some means in terms of a lever rule, whereas the mixture of biodiesel and dodecane exhibits a somewhat nonlinear relation with the added fraction of dodecane. This might be related to the formation of a soot shell. (author)

  18. Driving to Great: Science and the Journey to Waste-Free Biodiesel...

    Office of Science (SC) Website

    the sweet spot - quickly and efficiently turning glycerol into a valuable commodity. Scientists funded by the U.S. Department of Energy are now finding new paths to that sweet spot ...

  19. Biodiesel from aquatic species. Project report: FY 1993

    SciTech Connect (OSTI)

    Brown, L.M.; Sprague, S.; Jarvis, E.E.; Dunahay, T.G.; Roessler, P.G.; Zeiler, K.G.

    1994-01-01

    Researchers in the Biodiesel/Aquatic Species Project focus on the use of microalgae as a feedstock for producing renewable, high-energy liquid fuels. The program`s basic premise is that microalgae, which have been called the most productive biochemical factories in the world, can produce up to 30 times more oil per unit of growth area than land plants. It is estimated that 150 to 400 barrels of oil per acre per year (0.06 to 0.16 million liters/hectar) could be produced with microalgal oil technology. Initial commercialization of this technology is envisioned for the desert Southwest because this area provides high solar radiation and offers flat land that has few competing uses (hence low land costs). Similarly, there are large saline aquifers with few competing uses in the region. This water source could provide a suitable, low-cost medium for the growth of many microalgae. The primary area of research during FY 1993 was the effort to genetically improve microalgae in order to control the timing and magnitude of lipid accumulation. Increased lipid content will have a direct effect on fuel price, and the control of lipid content is a major project goal. The paper describes progress on the following: culture collection; molecular biology of lipid biosynthesis; microalgal transformation; and environmental, safety, and health and quality assurance.

  20. Biodiesel production from multi feedstock as feed with direct ultrasound assisted

    SciTech Connect (OSTI)

    Widayat; Satriadi, H.; Nafiega, N. Favian; Dipo, Rheza; Okvitarini; Alimin, A. J.; Ali, Mas Fawzi Mohd

    2015-12-29

    The objective of this study was to optimize of ratio oil type, ratio oil to methanol and catalyst concentration. The optimization was used Central Composite Design (CCD). Biodiesel was produced with multi stock oil as feed and conducted in direct ultrasonic radiation. Biosonic equiped with ultrasonic generator with a frequency of 28 kHz. Biodiesel produced at a pressure of 1 atm, reaction time of 60 min and temperature 60 ° C. The optimum conditions of volume ratio for Palm and Coconut oil 4:1, KOH catalyst concentration 0.3% and methanol to oil mole ratio 7:1. Biodiesel yield was determined under this condition and obtained 81.105%.

  1. Modeling the Auto-Ignition of Biodiesel Blends with a Multi-Step Model

    SciTech Connect (OSTI)

    Toulson, Dr. Elisa; Allen, Casey M; Miller, Dennis J; McFarlane, Joanna; Schock, Harold; Lee, Tonghun

    2011-01-01

    There is growing interest in using biodiesel in place of or in blends with petrodiesel in diesel engines; however, biodiesel oxidation chemistry is complicated to directly model and existing surrogate kinetic models are very large, making them computationally expensive. The present study describes a method for predicting the ignition behavior of blends of n-heptane and methyl butanoate, fuels whose blends have been used in the past as a surrogate for biodiesel. The autoignition is predicted using a multistep (8-step) model in order to reduce computational time and make this a viable tool for implementation into engine simulation codes. A detailed reaction mechanism for n-heptane-methyl butanoate blends was used as a basis for validating the multistep model results. The ignition delay trends predicted by the multistep model for the n-heptane-methyl butanoate blends matched well with that of the detailed CHEMKIN model for the majority of conditions tested.

  2. UTILIZING WATER EMULSIFICATION TO REDUCE NOX AND PARTICULATE EMISSIONS ASSOCIATED WITH BIODIESEL

    SciTech Connect (OSTI)

    Kass, Michael D; Lewis Sr, Samuel Arthur; Lee, Doh-Won; Huff, Shean P; Storey, John Morse; Swartz, Matthew M; Wagner, Robert M

    2009-01-01

    A key barrier limiting extended utilization of biodiesel is higher NOx emissions compared to petrodiesel fuels. The reason for this effect is unclear, but various researchers have attributed this phenomena to the higher liquid bulk modulus associated with biodiesel and the additional heat released during the breaking of C-C double bonds in the methyl ester groups. In this study water was incorporated into neat biodiesel (B100) as an emulsion in an attempt to lower NOx and particulate matter (PM) emissions. A biodiesel emulsion containing 10wt% water was formulated and evaluated against an ultra-low sulfur petroleum diesel (ULSD) and neat biodiesel (B100) in a light-duty diesel engine operated at 1500RPM and at loads of 68Nm (50ft-lbs) and 102Nm (75ft-lbs). The influence of exhaust gas recirculation (EGR) was also examined. The incorporation of water was found to significantly lower the NOx emissions of B100, while maintaining fuel efficiency when operating at 0 and 27% EGR. The soot fraction of the particulates (as determined using an opacity meter) was much lower for the B100 and B100-water emulsion compared ULSD. In contrast, total PM mass (for the three fuel types) was unchanged for the 0% EGR condition but was significantly lower for the B100 and B100-emulsion during the 27% EGR condition compared to the ULSD fuel. Analysis of the emissions and heat release data indicate that water enhances air-fuel premixing to maintain fuel economy and lower soot formation. The exhaust chemistry of the biodiesel base fuels (B100 and water-emulsified B100) was found to be unique in that they contained measurable levels of methyl alkenoates, which were not found for the ULSD. These compounds were formed by the partial cracking of the methyl ester groups during combustion.

  3. NREL Survey Shows Dramatic Improvement in B100 Biodiesel Quality - News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Releases | NREL Survey Shows Dramatic Improvement in B100 Biodiesel Quality April 15, 2013 The latest national survey of 100% biodiesel (B100) "blend stock" samples by the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) found that 95% of the samples from 2011-12 met ASTM International fuel quality specifications. The ASTM standards serve as guidelines for industry and are designed to ensure quality at the pump for consumers - along with reliable operation of

  4. Storage Tanks and Dispensers for E85 and Bio-Diesel

    SciTech Connect (OSTI)

    Webster, Michael; Frederick, Justin

    2014-02-10

    Project objective is to improve the District's alternative fueling infrastructure by installing storage tanks and dispensers for E-85 and Bio-Diesel at the existing Blackwell Forest Preserve Alternative Fuel Station. The addition of E-85 and Bio-Diesel at this station will continue to reduce our dependency on foreign oil, while promoting the use of clean burning, domestically produced, renewable alternative fuels. In addition, this station will promote strong intergovernmental cooperation as other governmental agencies have expressed interest in utilizing this station.

  5. MAPSS Vegetation Modeling | Open Energy Information

    Open Energy Info (EERE)

    mdrmapss MAPSS Vegetation Modeling Screenshot References: MAPSS1 Applications "A landscape- to global-scale vegetation distribution model that was developed to simulate the...

  6. Biologists Re-Vegetate Historical

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Re-Vegetate Historical Disposal Area at the NNSS A large-scale re-vegetation effort is currently underway on the Nevada National Security Site (NNSS), completing the final stage of closure on a 92-acre disposal area that first began operation in the 1960s. In October 2011, NNSS work crews seeded major portions of the 92- acre disposal area, reintroducing native shrubs (10 species), grasses (3 species), and herbaceous flowering plants (3 species). Then in December, workers completed installation

  7. Vegetation Cover Analysis of Hazardous Waste Sites in Utah and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... cost element in the management of such systems. ... Remote sensing technology can provide a cost effective tool for this ... In Proceedings of 12th International Conference on ...

  8. The Waste Isolation Pilot Plant Hazardous Waste Facility Permit...

    Office of Environmental Management (EM)

    The Waste Isolation Pilot Plant Hazardous Waste Facility Permit, Waste Analysis Plan The Waste Isolation Pilot Plant Hazardous Waste Facility Permit, Waste Analysis Plan This ...

  9. Influence of corn oil recovery on life-cycle greenhouse gas emissions of corn ethanol and corn oil biodiesel

    SciTech Connect (OSTI)

    Wang, Zhichao; Dunn, Jennifer B.; Han, Jeongwoo; Wang, Michael

    2015-11-04

    Corn oil recovery and conversion to biodiesel has been widely adopted at corn ethanol plants recently. The US EPA has projected 2.6 billion liters of biodiesel will be produced from corn oil in 2022. Corn oil biodiesel may qualify for federal renewable identification number (RIN) credits under the Renewable Fuel Standard, as well as for low greenhouse gas (GHG) emission intensity credits under California’s Low Carbon Fuel Standard. Because multiple products [ethanol, biodiesel, and distiller’s grain with solubles (DGS)] are produced from one feedstock (corn), however, a careful co-product treatment approach is required to accurately estimate GHG intensities of both ethanol and corn oil biodiesel and to avoid double counting of benefits associated with corn oil biodiesel production. This study develops four co-product treatment methods: (1) displacement, (2) marginal, (3) hybrid allocation, and (4) process-level energy allocation. Life-cycle GHG emissions for corn oil biodiesel were more sensitive to the choice of co-product allocation method because significantly less corn oil biodiesel is produced than corn ethanol at a dry mill. Corn ethanol life-cycle GHG emissions with the displacement, marginal, and hybrid allocation approaches are similar (61, 62, and 59 g CO2e/MJ, respectively). Although corn ethanol and DGS share upstream farming and conversion burdens in both the hybrid and process-level energy allocation methods, DGS bears a higher burden in the latter because it has lower energy content per selling price as compared to corn ethanol. As a result, with the process-level allocation approach, ethanol’s life-cycle GHG emissions are lower at 46 g CO2e/MJ. Corn oil biodiesel life-cycle GHG emissions from the marginal, hybrid allocation, and process-level energy allocation methods were 14, 59, and 45 g CO2e/MJ, respectively. Sensitivity analyses were conducted to investigate the influence corn oil yield, soy biodiesel, and

  10. Influence of corn oil recovery on life-cycle greenhouse gas emissions of corn ethanol and corn oil biodiesel

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wang, Zhichao; Dunn, Jennifer B.; Han, Jeongwoo; Wang, Michael

    2015-11-04

    Corn oil recovery and conversion to biodiesel has been widely adopted at corn ethanol plants recently. The US EPA has projected 2.6 billion liters of biodiesel will be produced from corn oil in 2022. Corn oil biodiesel may qualify for federal renewable identification number (RIN) credits under the Renewable Fuel Standard, as well as for low greenhouse gas (GHG) emission intensity credits under California’s Low Carbon Fuel Standard. Because multiple products [ethanol, biodiesel, and distiller’s grain with solubles (DGS)] are produced from one feedstock (corn), however, a careful co-product treatment approach is required to accurately estimate GHG intensities of bothmore » ethanol and corn oil biodiesel and to avoid double counting of benefits associated with corn oil biodiesel production. This study develops four co-product treatment methods: (1) displacement, (2) marginal, (3) hybrid allocation, and (4) process-level energy allocation. Life-cycle GHG emissions for corn oil biodiesel were more sensitive to the choice of co-product allocation method because significantly less corn oil biodiesel is produced than corn ethanol at a dry mill. Corn ethanol life-cycle GHG emissions with the displacement, marginal, and hybrid allocation approaches are similar (61, 62, and 59 g CO2e/MJ, respectively). Although corn ethanol and DGS share upstream farming and conversion burdens in both the hybrid and process-level energy allocation methods, DGS bears a higher burden in the latter because it has lower energy content per selling price as compared to corn ethanol. As a result, with the process-level allocation approach, ethanol’s life-cycle GHG emissions are lower at 46 g CO2e/MJ. Corn oil biodiesel life-cycle GHG emissions from the marginal, hybrid allocation, and process-level energy allocation methods were 14, 59, and 45 g CO2e/MJ, respectively. Sensitivity analyses were conducted to investigate the influence corn oil yield, soy biodiesel, and defatted DGS displacement

  11. Production of FAME biodiesel in E. coli by direct methylation with an insect enzyme

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sherkhanov, Saken; Korman, Tyler P.; Clarke, Steven G.; Bowie, James U.

    2016-04-07

    Here, most biodiesel currently in use consists of fatty acid methyl esters (FAMEs) produced by transesterification of plant oils with methanol. To reduce competition with food supplies, it would be desirable to directly produce biodiesel in microorganisms. To date, the most effective pathway for the production of biodiesel in bacteria yields fatty acid ethyl esters (FAEEs) at up to ~1.5 g/L. A much simpler route to biodiesel produces FAMEs by direct S-adenosyl-L-methionine (SAM) dependent methylation of free fatty acids, but FAME production by this route has been limited to only ~16 mg/L. Here we employ an alternative, broad spectrum methyltransferase,more » Drosophila melanogaster Juvenile Hormone Acid O-Methyltransferase (DmJHAMT). By introducing DmJHAMT in E. coli engineered to produce medium chain fatty acids and overproduce SAM, we obtain medium chain FAMEs at titers of 0.56 g/L, a 35-fold increase over titers previously achieved. Although considerable improvements will be needed for viable bacterial production of FAMEs and FAEEs for biofuels, it may be easier to optimize and transport the FAME production pathway to other microorganisms because it involves fewer enzymes.« less

  12. Biomass Program 2007 Program Peer Review - Biodiesel and Other Technologies Summary

    SciTech Connect (OSTI)

    none,

    2009-10-28

    This document discloses the comments provided by a review panel at the U.S. Department of Energy Office of the Biomass Program Peer Review held on November 15-16, 2007 in Baltimore, MD and the Biodiesel and Other Technologies, held on August 14th and 15th in Golden, Colorado.

  13. Analysis of Biodiesel Blends Samples Collected in the United States in 2008 (Revised)

    SciTech Connect (OSTI)

    Alleman, T. L.; Fouts, L.; McCormick, R. L.

    2010-12-01

    NREL sampled and tested the quality of U.S. B20 (20% biodiesel, 80% petroleum diesel) in 2008; 32 samples from retail locations and fleets were tested against a proposed ASTM D7467 B6-B20 specification, now in effect.

  14. EECBG Success Story: Atlanta Suburb Greases the Path to Savings with Biodiesel

    Broader source: Energy.gov [DOE]

    Downtown Smyrna, Georgia is using $184,000 of the city’s $208,000 in Energy Efficiency and Conservation Block Grant funding to create space for two 55-gallon processors that will turn cooking oil into biodiesel. Learn more.

  15. SEP Success Story: Washington State Becomes Largest Public Consumer of Biodiesel

    Broader source: Energy.gov [DOE]

    Thanks to a $165,000 Recovery Act loan through the State Energy Program, Washington State Ferries run on a blended biodiesel fuel that will prevent over 65 million pounds of carbon dioxide from being emitted into the environment each year. Learn more.

  16. Permanent Closure of MFC Biodiesel Underground Storage Tank 99ANL00013

    SciTech Connect (OSTI)

    Kerry L. Nisson

    2012-10-01

    This closure package documents the site assessment and permanent closure of the Materials and Fuels Complex biodiesel underground storage tank 99ANL00013 in accordance with the regulatory requirements established in 40 CFR 280.71, “Technical Standards and Corrective Action Requirements for Owners and Operators of Underground Storage Tanks: Out-of-Service UST Systems and Closure.”

  17. Life Cycle Assessment Comparing the Use of Jatropha Biodiesel in the Indian Road and Rail Sectors

    SciTech Connect (OSTI)

    Whitaker, M.; Heath, G.

    2010-05-01

    This life cycle assessment of Jatropha biodiesel production and use evaluates the net greenhouse gas (GHG) emission (not considering land-use change), net energy value (NEV), and net petroleum consumption impacts of substituting Jatropha biodiesel for conventional petroleum diesel in India. Several blends of biodiesel with petroleum diesel are evaluated for the rail freight, rail passenger, road freight, and road-passenger transport sectors that currently rely heavily on petroleum diesel. For the base case, Jatropha cultivation, processing, and use conditions that were analyzed, the use of B20 results in a net reduction in GHG emissions and petroleum consumption of 14% and 17%, respectively, and a NEV increase of 58% compared with the use of 100% petroleum diesel. While the road-passenger transport sector provides the greatest sustainability benefits per 1000 gross tonne kilometers, the road freight sector eventually provides the greatest absolute benefits owing to substantially higher projected utilization by year 2020. Nevertheless, introduction of biodiesel to the rail sector might present the fewest logistic and capital expenditure challenges in the near term. Sensitivity analyses confirmed that the sustainability benefits are maintained under multiple plausible cultivation, processing, and distribution scenarios. However, the sustainability of any individual Jatropha plantation will depend on site-specific conditions.

  18. Operation of a solid oxide fuel cell on biodiesel with a partial oxidation reformer

    SciTech Connect (OSTI)

    Siefert, N, Shekhawat, D.; Gemmen, R.; Berry, D.

    2010-01-01

    The National Energy Technology Laboratory’s Office of Research & Development (NETL/ORD) has successfully demonstrated the operation of a solid oxide fuel cell (SOFC) using reformed biodiesel. The biodiesel for the project was produced and characterized by West Virginia State University (WVSU). This project had two main aspects: 1) demonstrate a catalyst formulation on monolith for biodiesel fuel reforming; and 2) establish SOFC stack test stand capabilities. Both aspects have been completed successfully. For the first aspect, in–house patented catalyst specifications were developed, fabricated and tested. Parametric reforming studies of biofuels provided data on fuel composition, catalyst degradation, syngas composition, and operating parameters required for successful reforming and integration with the SOFC test stand. For the second aspect, a stack test fixture (STF) for standardized testing, developed by Pacific Northwest National Laboratory (PNNL) and Lawrence Berkeley National Laboratory (LBNL) for the Solid Energy Conversion Alliance (SECA) Program, was engineered and constructed at NETL. To facilitate the demonstration of the STF, NETL employed H.C. Starck Ceramics GmbH & Co. (Germany) anode supported solid oxide cells. In addition, anode supported cells, SS441 end plates, and cell frames were transferred from PNNL to NETL. The stack assembly and conditioning procedures, including stack welding and sealing, contact paste application, binder burn-out, seal-setting, hot standby, and other stack assembly and conditioning methods were transferred to NETL. In the future, fuel cell stacks provided by SECA or other developers could be tested at the STF to validate SOFC performance on various fuels. The STF operated on hydrogen for over 1000 hrs before switching over to reformed biodiesel for 100 hrs of operation. Combining these first two aspects led to demonstrating the biodiesel syngas in the STF. A reformer was built and used to convert 0.5 ml/min of

  19. Preparation of Propylene Glycol Fatty Acid Ester or Other Glycol...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and more specifically uses methyl esters of vegetable oils that are referred to as "biodiesel" fuels. One particularly useful biodiesel is soybean oil biodiesel (methyl soyate)...

  20. Analysis of Coconut-Derived Biodiesel and Conventional Diesel Fuel Samples from the Philippines: Task 2 Final Report

    SciTech Connect (OSTI)

    Alleman, T. L.; McCormick, R. L.

    2006-01-01

    NREL tested Philippines coconut biodiesel samples of neat and blended fuels. Results show that the current fuel quality standards were met with very few exceptions. Additional testing is recommended.

  1. Development and Validation of a Reduced Reaction Mechanism for Biodiesel-Fueled Engine Simulations- SAE 2008-01-1378

    SciTech Connect (OSTI)

    Brakora, Jessica L; Ra, Youngchul; Reitz, Rolf; McFarlane, Joanna; Daw, C Stuart

    2008-01-01

    In the present study a skeletal chemical reaction mechanism for biodiesel surrogate fuel was developed and validated for multi-dimensional engine combustion simulations. The reduced mechanism was generated from an existing detailed methyl butanoate oxidation mechanism containing 264 species and 1219 reactions. The reduction process included flux analysis, ignition sensitivity analysis, and optimization of reaction rate constants under constant volume conditions. The current reduced mechanism consists of 41 species and 150 reactions and gives predictions in excellent agreement with those of the comprehensive mechanism. In order to validate the mechanism under biodiesel-fueled engine conditions, it was combined with another skeletal mechanism for n-heptane oxidation. This combined reaction mechanism, ERC-Bio, contains 53 species and 156 reactions, which can be used for diesel/biodiesel blend engine simulations. Biodiesel-fueled engine operation was successfully simulated using the ERC-Bio mechanism.

  2. The Waste Isolation Pilot Plant Hazardous Waste Facility Permit, Waste

    Office of Environmental Management (EM)

    Analysis Plan | Department of Energy The Waste Isolation Pilot Plant Hazardous Waste Facility Permit, Waste Analysis Plan The Waste Isolation Pilot Plant Hazardous Waste Facility Permit, Waste Analysis Plan This document was used to determine facts and conditions during the Department of Energy Accident Investigation Board's investigation into the radiological release event at the Waste Isolation Pilot Plant. Additional documents referenced and listed in the Phase 2 Radiological Release

  3. Turning Waste Into Fuel: How the INEOS Biorefinery Is Changing the Clean

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Game | Department of Energy Waste Into Fuel: How the INEOS Biorefinery Is Changing the Clean Energy Game Turning Waste Into Fuel: How the INEOS Biorefinery Is Changing the Clean Energy Game February 9, 2011 - 1:40pm Addthis Turning Waste Into Fuel: How the INEOS Biorefinery Is Changing the Clean Energy Game Paul Bryan Biomass Program Manager, Office of Energy Efficiency & Renewable Energy How does it work? Vegetative and agricultural waste reacts with oxygen to produce synthesis

  4. Final Technical Report on Development of an Economic and Efficient Biodiesel production Process (NC)

    SciTech Connect (OSTI)

    Tirla, Cornelia; Dooling, Thomas A.; Smith, Rachel B.; Shi, Xinyan; Shahbazi, Abolghasem

    2014-03-19

    The Biofuels Team at The University of North Carolina at Pembroke and North Carolina A&T State University carried out a joint research project aimed at developing an efficient process to produce biodiesel. In this project, the team developed and tested various types of homogeneous and heterogeneous catalysts which could replace the conventionally used soluble potassium hydroxide catalyst which, traditionally, must be separated and disposed of at the end of the process. As a result of this screening, the homogeneous catalyst choline hydroxide was identified as a potential replacement for the traditional catalyst used in this process, potassium hydroxide, due to its decreased corrosiveness and toxicity. A large number of heterogeneous catalysts were produced and tested in order to determine the scaffold, ion type and ion concentration which would produce optimum yield of biodiesel. The catalyst with 12% calcium on Zeolite β was identified as being highly effective and optimal reaction conditions were identified. Furthermore, a packed bed reactor utilizing this type of catalyst was designed, constructed and tested in order to further optimize the process. An economic analysis of the viability of the project showed that the cost of an independent farmer to produce the fuelstock required to produce biodiesel exceeds the cost of petroleum diesel under current conditions and that therefore without incentives, farmers would not be able to benefit economically from producing their own fuel. An educational website on biodiesel production and analysis was produced and a laboratory experiment demonstrating the production of biodiesel was developed and implemented into the Organic Chemistry II laboratory curriculum at UNCP. Five workshops for local farmers and agricultural agents were held in order to inform the broader community about the various fuelstock available, their cultivation and the process and advantages of biodiesel use and production. This project fits both

  5. Vegetation Change Analysis User's Manual

    SciTech Connect (OSTI)

    D. J. Hansen; W. K. Ostler

    2002-10-01

    Approximately 70 percent of all U.S. military training lands are located in arid and semi-arid areas. Training activities in such areas frequently adversely affect vegetation, damaging plants and reducing the resilience of vegetation to recover once disturbed. Fugitive dust resulting from a loss of vegetation creates additional problems for human health, increasing accidents due to decreased visibility, and increasing maintenance costs for roads, vehicles, and equipment. Diagnostic techniques are needed to identify thresholds of sustainable military use. A cooperative effort among U.S. Department of Energy, U.S. Department of Defense, and selected university scientists was undertaken to focus on developing new techniques for monitoring and mitigating military impacts in arid lands. This manual focuses on the development of new monitoring techniques that have been implemented at Fort Irwin, California. New mitigation techniques are described in a separate companion manual. This User's Manual is designed to address diagnostic capabilities needed to distinguish between various degrees of sustainable and nonsustainable impacts due to military training and testing and habitat-disturbing activities in desert ecosystems. Techniques described here focus on the use of high-resolution imagery and the application of image-processing techniques developed primarily for medical research. A discussion is provided about the measurement of plant biomass and shrub canopy cover in arid. lands using conventional methods. Both semiquantitative methods and quantitative methods are discussed and reference to current literature is provided. A background about the use of digital imagery to measure vegetation is presented.

  6. Impact of the Fuel Molecular Structure on the Oxidation Process of Real Diesel fuels According to Storage Conditions and Biodiesel Content

    Broader source: Energy.gov [DOE]

    Hydrocarbon profilers can provide a clear understanding of complex interactions between fuel chemistry, storage conditions, and quantity of biodiesel over time.

  7. Biodiesel Impact on Engine Lubricant Dilution During Active Regeneration of Aftertreatment Systems

    SciTech Connect (OSTI)

    He, X.; Williams, A.; Christensen, E.; Burton, J.; McCormick, R.

    2011-12-01

    Experiments were conducted with ultra low sulfur diesel (ULSD) and 20% biodiesel blends (B20) to compare lube oil dilution levels and lubricant properties for systems using late in-cylinder fuel injection for aftertreatment regeneration. Lube oil dilution was measured by gas chromatography (GC) following ASTM method D3524 to measure diesel content, by Fourier transform infrared (FTIR) spectrometry following a modified ASTM method D7371 to measure biodiesel content, and by a newly developed back-flush GC method that simultaneously measures both diesel and biodiesel. Heavy-duty (HD) engine testing was conducted on a 2008 6.7L Cummins ISB equipped with a diesel oxidation catalyst (DOC) and diesel particle filter (DPF). Stage one of engine testing consisted of 10 consecutive repeats of a forced DPF regeneration event. This continuous operation with late in-cylinder fuel injection served as a method to accelerate lube-oil dilution. Stage two consisted of 16 hours of normal engine operation over a transient test cycle, which created an opportunity for any accumulated fuel in the oil sump to evaporate. Light duty (LD) vehicle testing was conducted on a 2010 VW Jetta equipped with DOC, DPF and a NOx storage catalyst (NSC). Vehicle testing comprised approximately 4,000 miles of operation on a mileage-accumulation dynamometer (MAD) using the U.S. Environmental Protection Agency's Highway Fuel Economy Cycle because of the relatively low engine oil and exhaust temperatures, and high DPF regeneration frequency of this cycle relative to other cycles examined. Comparison of the lube oil dilution analysis methods suggests that D3524 does not measure dilution by biodiesel. The new back-flush GC method provided analysis for both diesel and biodiesel, in a shorter time and with lower detection limit. Thus all lube oil dilution results in this paper are based on this method. Analysis of the HD lube-oil samples showed only 1.5% to 1.6% fuel dilution for both fuels during continuous

  8. Methods and catalysts for making biodiesel from the transesterification and esterification of unrefined oils

    DOE Patents [OSTI]

    Yan, Shuli; Salley, Steven O.; Ng, K. Y. Simon

    2012-04-24

    A method of forming a biodiesel product and a heterogeneous catalyst system used to form said product that has a high tolerance for the presence of water and free fatty acids (FFA) in the oil feedstock is disclosed. This catalyst system may simultaneously catalyze both the esterification of FAA and the transesterification of triglycerides present in the oil feedstock. The catalyst system according to one aspect of the present disclosure represents a class of zinc and lanthanum oxide heterogeneous catalysts that include different ratios of zinc oxide to lanthanum oxides (Zn:La ratio) ranging from about 10:0 to 0:10. The Zn:La ratio in the catalyst is believed to have an effect on the number and reactivity of Lewis acid and base sites, as well as the transesterification of glycerides, the esterification of fatty acids, and the hydrolysis of glycerides and biodiesel.

  9. St. Louis Metro Biodiesel (B20) Transit Bus Evaluation: 12-Month Final Report

    SciTech Connect (OSTI)

    Barnitt, R.; McCormick, R. L.; Lammert, M.

    2008-07-01

    The St. Louis Metro Bodiesel Transit Bus Evaluation project is being conducted under a Cooperative Research and Development Agreement between NREL and the National Biodiesel Board to evaluate the extended in-use performance of buses operating on B20 fuel. The objective of this research project is to compare B20 and ultra-low sulfur diesel buses in terms of fuel economy, veicles maintenance, engine performance, component wear, and lube oil performance.

  10. Regulated Emissions from Biodiesel Tested in Heavy-Duty Engines Meeting 2004 Emission Standards

    SciTech Connect (OSTI)

    McCormick, R. L.; Tennant, C. J.; Hayes, R. R.; Black, S.; Ireland, J.; McDaniel, T.; Williams, A.; Frailey, M.; Sharp, C. A.

    2005-11-01

    Biodiesel produced from soybean oil, canola oil, yellow grease, and beef tallow was tested in two heavy-duty engines. The biodiesels were tested neat and as 20% by volume blends with a 15 ppm sulfur petroleum-derived diesel fuel. The test engines were the following: 2002 Cummins ISB and 2003 DDC Series 60. Both engines met the 2004 U.S. emission standard of 2.5 g/bhp-h NO{sub x}+HC (3.35 g/kW-h) and utilized exhaust gas recirculation (EGR). All emission tests employed the heavy-duty transient procedure as specified in the U.S. Code of Federal Regulations. Reduction in PM emissions and increase in NO{sub x} emissions were observed for all biodiesels in all engines, confirming observations made in older engines. On average PM was reduced by 25% and NO{sub x} increased by 3% for the two engines tested for a variety of B20 blends. These changes are slightly larger in magnitude, but in the same range as observed in older engines. The cetane improver 2-ethyl hexyl nitrate was shown to have no measurable effect on NO{sub x} emissions from B20 in these engines, in contrast to observations reported for older engines. The effect of intake air humidity on NO{sub x} emissions from the Cummins ISB was quantified. The CFR NO{sub x}/humidity correction factor was shown to be valid for an engine equipped with EGR, operating at 1700 m above sea level, and operating on conventional or biodiesel.

  11. Impact of Biodiesel Impurities on the Performance and Durability of DOC, DPF and SCR Technologies

    SciTech Connect (OSTI)

    Williams, A.; McCormick, R.; Luecke, J.; Brezny, R.; Geisselmann, A.; Voss, K.; Hallstrom, K.; Leustek, M.; Parsons, J.; Abi-Akar, H.

    2011-06-01

    It is estimated that operating continuously on a B20 fuel containing the current allowable ASTM specification limits for metal impurities in biodiesel could result in a doubling of ash exposure relative to lube-oil derived ash. The purpose of this study was to determine if a fuel containing metals at the ASTM limits could cause adverse impacts on the performance and durability of diesel emission control systems. An accelerated durability test method was developed to determine the potential impact of these biodiesel impurities. The test program included engine testing with multiple DPF substrate types as well as DOC and SCR catalysts. The results showed no significant degradation in the thermo-mechanical properties of cordierite, aluminum titanate, or silicon carbide DPFs after exposure to 150,000 mile equivalent biodiesel ash and thermal aging. However, exposure of a cordierite DPF to 435,000 mile equivalent aging resulted in a 69% decrease in the thermal shock resistance parameter. It is estimated that the additional ash from 150,000 miles of biodiesel use would also result in a moderate increases in exhaust backpressure for a DPF. A decrease in DOC activity was seen after exposure to 150,000 mile equivalent aging, resulting in higher HC slip and a reduction in NO{sub 2} formation. The metal-zeolite SCR catalyst experienced a slight loss in activity after exposure to 435,000 mile equivalent aging. This catalyst, placed downstream of the DPF, showed a 5% reduction in overall NOx conversion activity over the HDDT test cycle.

  12. Impact of Biodiesel on the Near-term Performance and Long-term Durability

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Advanced Aftertreatment Systems | Department of Energy on the Near-term Performance and Long-term Durability of Advanced Aftertreatment Systems Impact of Biodiesel on the Near-term Performance and Long-term Durability of Advanced Aftertreatment Systems Compare SCR catalyst performance with ULSD and Soy B20 through engine testing deer09_williams.pdf (1.02 MB) More Documents & Publications Vehicle Technologies Office Merit Review 2014: Biofuel Impacts on Aftertreatment Devices

  13. Waste Treatment Plant Overview

    Office of Environmental Management (EM)

    Waste Isolation Pilot Plant Waste Isolation Pilot Plant Waste Isolation Pilot Plant | June 2007 Salt Disposal Investigations Waste Isolation Pilot Plant | June 2007 Salt Disposal Investigations The mission of the Waste Isolation Pilot Plant site is to provide permanent, underground disposal of TRU and TRU-mixed wastes (wastes that also have hazardous chemical components). TRU waste consists of clothing, tools, and debris left from the research and production of nuclear weapons. TRU waste is

  14. Quality Parameters and Chemical Analysis for Biodiesel Produced in the United States in 2011

    SciTech Connect (OSTI)

    Alleman, T. L.; Fouts, L.; Chupka, G.

    2013-03-01

    Samples of biodiesel (B100) from producers and terminals in 2011were tested for critical properties: free and total glycerin, flash point, cloud point, oxidation stability, cold soak filterability, and metals. Failure rates for cold soak filterability and oxidation stability were below 5%. One sample failed flash point due to excess methanol. One sample failed oxidation stability and metal content. Overall, 95% of the samples from this survey met biodiesel quality specification ASTM D6751. In 2007, a sampling of B100 from production facilities showed that nearly 90% met D6751. In samples meeting D6751, calcium was found above the method detection limit in nearly half the samples. Feedstock analysis revealed half the biodiesel was produced from soy and half was from mixed feedstocks. The saturated fatty acid methyl ester concentration of the B100 was compared to the saturated monoglyceride concentration as a percent of total monoglyceride. The real-world correlation of these properties was very good. The results of liquid chromatograph measurement of monoglycerides were compared to ASTM D6751. Agreement between the two methods was good, particularly for total monoglycerides and unsaturated monoglycerides. Because only very low levels of saturated monoglycerides measured, the two methods had more variability, but the correlation was still acceptable.

  15. Impact of Biodiesel Impurities on the Performance and Durability of DOC, DPF and SCR Technologies: Preprint

    SciTech Connect (OSTI)

    Williams, A.; McCormick, R.; Luecke, J.; Brezny, R.; Geisselmann, A.; Voss, K.; Hallstrom, K.; Leustek, M.; Parsons, J.; Abi-Akar, H.

    2011-04-01

    An accelerated durability test method determined the potential impact of biodiesel ash impurities, including engine testing with multiple diesel particulate filter substrate types, as well as diesel oxidation catalyst and selective catalyst reduction catalysts. The results showed no significant degradation in the thermo-mechanical properties of a DPF after exposure to 150,000-mile equivalent biodiesel ash and thermal aging. However, exposure to 435,000-mile equivalent aging resulted in a 69% decrease in thermal shock resistance. A decrease in DOC activity was seen after exposure to 150,000-mile equivalent aging, resulting in higher hydrocarbon slip and a reduction in NO2 formation. The SCR catalyst experienced a slight loss in activity after exposure to 435,000-mile equivalent aging. The SCR catalyst, placed downstream of the DPF and exposed to B20 exhaust suffered a 5% reduction in overall NOx conversion activity over the HDDT test cycle. It is estimated that the additional ash from 150,000 miles of biodiesel use would also result in a moderate increases in exhaust backpressure for a DPF. The results of this study suggest that long-term operation with B20 at the current specification limits for alkali and alkaline earth metal impurities will adversely impact the performance of DOC, DPF and SCR systems.

  16. Investigation of Bio-Diesel Fueled Engines under Low-Temperature Combustion Strategies

    SciTech Connect (OSTI)

    Chia-fon F. Lee; Alan C. Hansen

    2010-09-30

    In accordance with meeting DOE technical targets this research was aimed at developing and optimizing new fuel injection technologies and strategies for the combustion of clean burning renewable fuels in diesel engines. In addition a simultaneous minimum 20% improvement in fuel economy was targeted with the aid of this novel advanced combustion system. Biodiesel and other renewable fuels have unique properties that can be leveraged to reduce emissions and increase engine efficiency. This research is an investigation into the combustion characteristics of biodiesel and its impacts on the performance of a Low Temperature Combustion (LTC) engine, which is a novel engine configuration that incorporates technologies and strategies for simultaneously reducing NOx and particulate emissions while increasing engine efficiency. Generating fundamental knowledge about the properties of biodiesel and blends with petroleum-derived diesel and their impact on in-cylinder fuel atomization and combustion processes was an important initial step to being able to optimize fuel injection strategies as well as introduce new technologies. With the benefit of this knowledge experiments were performed on both optical and metal LTC engines in which combustion and emissions could be observed and measured under realistic conditions. With the aid these experiments and detailed combustion models strategies were identified and applied in order to improve fuel economy and simultaneously reduce emissions.

  17. HLW Glass Waste Loadings

    Office of Environmental Management (EM)

    HLW Glass Waste Loadings Ian L. Pegg Vitreous State Laboratory The Catholic University of ... (JHCM) technology Factors affecting waste loadings Waste loading requirements ...

  18. Vegetation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    /::vI Streams ~Rails 'R Utility ROW Roads oTES Plants (2) [2] Other Set-Asides D Three Rivers Landfill D Hydric Soils 380 Soils Soil Series and Phase DBaB DBaC .Pk _TrB _TuE _TuF _VaC o 380 760 1140 Meters N A sc Figure 6-1. Plant cOllllllunities and soils associated with the Beech-Hardwood Forest Set-Aside Area. 6-5 Set-Aside 6: Beech-Hardwood Forest

  19. Vegetation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pine D Mixed PineHardwood D Upland Hardwood. IiiiI Carolina Bay Wetland m SRS Bays *. TES Plants (1) fVj Roads o Openwells N Site Boundary N A Soils &Ji I Seri es

  20. A COMBINED REACTION/PRODUCT RECOVERY PROCESS FOR THE CONTINUOUS PRODUCTION OF BIODIESEL

    SciTech Connect (OSTI)

    Birdwell, J.F., Jr.; McFarlane, J.; Schuh, D.L.; Tsouris, C; Day, J.N.; Hullette, J.N.

    2009-09-01

    Oak Ridge National Laboratory (ORNL) and Nu-Energie, LLC entered into a Cooperative Research And Development Agreement (CRADA) for the purpose of demonstrating and deploying a novel technology for the continuous synthesis and recovery of biodiesel from the transesterification of triglycerides. The focus of the work was the demonstration of a combination Couette reactor and centrifugal separator - an invention of ORNL researchers - that facilitates both product synthesis and recovery from reaction byproducts in the same apparatus. At present, transesterification of triglycerides to produce biodiesel is performed in batch-type reactors with an excess of a chemical catalyst, which is required to achieve high reactant conversions in reasonable reaction times (e.g., 1 hour). The need for long reactor residence times requires use of large reactors and ancillary equipment (e.g., feed and product tankage), and correspondingly large facilities, in order to obtain the economy of scale required to make the process economically viable. Hence, the goal of this CRADA was to demonstrate successful, extended operation of a laboratory-scale reactor/separator prototype to process typical industrial reactant materials, and to design, fabricate, and test a production-scale unit for deployment at the biodiesel production site. Because of its ease of operation, rapid attainment of steady state, high mass transfer and phase separation efficiencies, and compact size, a centrifugal contactor was chosen for intensification of the biodiesel production process. The unit was modified to increase the residence time from a few seconds to minutes*. For this application, liquid phases were introduced into the reactor as separate streams. One was composed of the methanol and base catalyst and the other was the soy oil used in the experiments. Following reaction in the mixing zone, the immiscible glycerine and methyl ester products were separated in the high speed rotor and collected from separate

  1. Waste Hoist

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Primary Hoist: 45-ton Rope-Guide Friction Hoist Completely enclosed (for contamination control), the waste hoist at WIPP is a modern friction hoist with rope guides. With a 45-ton capacity, it was the largest friction hoist in the world when it was built in 1986. Largest friction hoist in the world when it was built in 1985 Hoist deck footprint: approximately 3m wide x 5m long Hoist deck height: approximately 3m wide x 7m high Access height to the waste hoist deck is limited by a 4 m high door

  2. Waste Hoist

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Primary Hoist: 45-ton Rope-Guide Friction Hoist Largest friction hoist in the world when it was built in 1985 Completely enclosed (for contamination control), the waste hoist at WIPP is a modern friction hoist with rope guides (uses a balanced counterweight and tail ropes). With a 45-ton capacity, it was the largest friction hoist in the world when it was built in 1986. Hoist deck footprint: 2.87m wide x 4.67m long Hoist deck height: 2.87m wide x 7.46m high Access height to the waste hoist deck

  3. Waste processing air cleaning

    SciTech Connect (OSTI)

    Kriskovich, J.R.

    1998-07-27

    Waste processing and preparing waste to support waste processing relies heavily on ventilation. Ventilation is used at the Hanford Site on the waste storage tanks to provide confinement, cooling, and removal of flammable gases.

  4. Bioelectrochemical Integration of Waste Heat Recovery, Waste...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Waste-to-Energy Conversion, and Waste-to-Chemical Conversion with Industrial Gas and Chemical Manufacturing Processes Advancing a Novel Microbial Reverse Electrodialysis ...

  5. Bioelectrochemical Integration of Waste Heat Recovery, Waste...

    Broader source: Energy.gov (indexed) [DOE]

    Air Products and Chemicals, Inc. - Allentown, PA A microbial reverse electrodialysis technology ... Bio-Electrochemical Integration of Waste Heat Recovery, Waste-To-Energy Conversion, ...

  6. Fuel from Waste Helps Power Two Tribes | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Girls Club has taken on the job of making biodiesel. MBCI started small, but as demand for biodiesel goes up and efficiency improves, the production rate is expected to rise. ...

  7. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    biodiesel outside of class. http:energy.goveereeducationdownloadscreating-biodiesel-mitigating-waste Download Understanding Earth's Energy Sources In Part 1,...

  8. Delivery of Vegetable Oil Suspensions in a Shear Thinning Fluid for Enhanced Bioremediation

    SciTech Connect (OSTI)

    Zhong, Lirong; Truex, Michael J.; Kananizadeh, Negin; Li, Yusong; Lea, Alan S.; Yan, Xiulan

    2015-04-01

    In situ anaerobic biological processes are widely applied for dechlorination of chlorinated solvents in groundwater. A wide range of organic substrates have been tested and applied to support the dechlorination processes. Vegetable oils are a promising substrate and have been shown to induce effective dechlorination, have limited geochemical impacts, and good longevity. Distribution of vegetable oil in the subsurface, because it is a non-aqueous phase material, has typically been addressed by creating emulsified oil solutions. In this study, inexpensive waste vegetable oils were suspended in a xanthan gum solution, a shear-thinning fluid, as an alternative oil delivery mechanism. The stability, oil droplet size and distribution, and rheological behavior of the oil suspensions that are created in the xanthan solutions were studied in batch experiments. The injectability of the suspensions and oil distribution in porous medium were evaluated in column tests. Numerical modeling of the oil droplet transport and distribution in porous media was conducted to help interpret the column-test data. Batch studies showed that simple mixing of vegetable oil and xanthan solution produced stable suspensions of the oil as micron-size droplets. The mixture rheology retains shear-thinning properties that facilitate improved uniformity of substrate distribution in heterogeneous aquifers. Column tests demonstrated successful injection of the vegetable oil suspension into porous medium. This study provided evidence that vegetable oil suspensions in xanthan are a potential substrate to support in situ anaerobic bioremediation with favorable injection properties.

  9. Radionuclide release from low-level waste in field lysimeters

    SciTech Connect (OSTI)

    Oblath, S B

    1986-01-01

    A field program has been in operation for 8 years at the Savannah River Plant (SRP) to determine the leaching/migration behavior of low-level radioactive waste using lysimeters. The lysimeters are soil-filled caissons containing well characterized wastes, with each lysimeter serving as a model of a shallow land burial trench. Sampling and analysis of percolate water and vegetation from the lysimeters provide a determination of the release rates of the radionuclides from the waste/soil system. Vegetative uptake appears to be a major pathway for migration. Fractional release rates from the waste/soil system are less than 0.01% per year. Waste-to-soil leach rates up to 10% per year have been determined by coring several of the lysimeters. The leaching of solidified wasteforms under unsaturated field conditions has agreed well with static, immersion leaching of the same type waste in the laboratory. However, releases from the waste/soil system in the lysimeter may be greater than predicted based on leaching alone, due to complexation of the radionuclides by other components leached from the wastes to form mobile, anionic species.

  10. Low-level waste certification plan for the WSCF Laboratory Complex

    SciTech Connect (OSTI)

    Morrison, J.A.

    1994-09-19

    The solid, low-level waste certification plan for the Waste Sampling and Characterization Facility (WSCF) describes the organization and methodology for the certification of the solid low-level waste (LLW) that is transferred to the Hanford Site 200 Areas Storage and Disposal Facilities. This plan incorporates the applicable elements of waste reduction, including up-front minimization, and end product treatment to reduce the volume or toxicity of the waste. The plan also includes segregation of different waste types. This low-level waste certification plan applies only to waste generated in, or is the responsibility of the WSCF Laboratory Complex. The WSCF Laboratory Complex supports technical activities performed at the Hanford Site. Wet Chemical and radiochemical analyses are performed to support site operations, including environmental and effluent monitoring, chemical processing, RCRA and CERCLA analysis, and waste management activities. Environmental and effluent samples include liquid effluents, ground and surface waters, soils, animals, vegetation, and air filters.

  11. A computational investigation of diesel and biodiesel combustion and NOx formation in a light-duty compression ignition engine

    SciTech Connect (OSTI)

    Wang, Zihan; Srinivasan, Kalyan K.; Krishnan, Sundar R.; Som, Sibendu

    2012-04-24

    Diesel and biodiesel combustion in a multi-cylinder light duty diesel engine were simulated during a closed cycle (from IVC to EVO), using a commercial computational fluid dynamics (CFD) code, CONVERGE, coupled with detailed chemical kinetics. The computational domain was constructed based on engine geometry and compression ratio measurements. A skeletal n-heptane-based diesel mechanism developed by researchers at Chalmers University of Technology and a reduced biodiesel mechanism derived and validated by Luo and co-workers were applied to model the combustion chemistry. The biodiesel mechanism contains 89 species and 364 reactions and uses methyl decanoate, methyl-9- decenoate, and n-heptane as the surrogate fuel mixture. The Kelvin-Helmholtz and Rayleigh-Taylor (KH-RT) spray breakup model for diesel and biodiesel was calibrated to account for the differences in physical properties of the fuels which result in variations in atomization and spray development characteristics. The simulations were able to capture the experimentally observed pressure and apparent heat release rate trends for both the fuels over a range of engine loads (BMEPs from 2.5 to 10 bar) and fuel injection timings (from 0° BTDC to 10° BTDC), thus validating the overall modeling approach as well as the chemical kinetic models of diesel and biodiesel surrogates. Moreover, quantitative NOx predictions for diesel combustion and qualitative NOx predictions for biodiesel combustion were obtained with the CFD simulations and the in-cylinder temperature trends were correlated to the NOx trends."

  12. Plasticizers Derived from Vegetable Oils - Energy Innovation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vegetable Oils Battelle Memorial Institute Contact BMI About This Technology Technology Marketing SummaryThis technology addresses the known health issues of commonly used...

  13. Plasticizers Derived from Vegetable Oils - Energy Innovation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vegetable Oils Battelle Memorial Institute Contact BMI About This Technology Technology Marketing Summary This technology addresses the known health issues of commonly used...

  14. EM's Defense Waste Processing Facility Achieves Waste Cleanup...

    Office of Environmental Management (EM)

    Defense Waste Processing Facility Achieves Waste Cleanup Milestone EM's Defense Waste Processing Facility Achieves Waste Cleanup Milestone January 14, 2016 - 12:10pm Addthis The ...

  15. EM Tank Waste Subcommittee Report for SRS / Hanford Tank Waste...

    Office of Environmental Management (EM)

    Tank Waste Subcommittee Report for SRS Hanford Tank Waste Review EM Tank Waste Subcommittee Report for SRS Hanford Tank Waste Review Environmental Management Advisory Board EM ...

  16. Hanford Dangerous Waste Permit

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Integrated Disposal Facility Operating Unit #11 Aerial view of IDF looking south. Note semi-truck trailer for scale. There are risks to groundwater in the future from secondary waste, according to modeling. Secondary waste would have to be significantly mitigated before it could be disposed at IDF. Where did the waste come from? No waste is stored here yet. IDF will receive vitrified waste when the Waste Treatment Plant starts operating. It may also receive secondary waste resulting from

  17. WIPP WASTE MINIMIZATION PROGRAM DESCRIPTION

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... NMSW - New Mexico Special Waste MSW - Municipal Solid Waste C&D - Construction and ... Proposed waste streams that could generate hazardous wastes are reviewed regularly to ...

  18. Legacy Waste | Department of Energy

    Office of Environmental Management (EM)

    Services Legacy Waste Legacy Waste Legacy Waste The Environmental Management Los Alamos Field Office's (EM-LA) Solid Waste Stabilization and Disposition Project Team is ...

  19. Enhancement of CO2 and H2 Uptake for the Production of Biodiesel in Cupriavidus Necator

    SciTech Connect (OSTI)

    Sullivan, R. P.; Eckert, C. A.; Balzer, G. J.; Yu, J.; Maness, P. C.

    2012-01-01

    Cupriavidus necator fixes CO{sub 2} through the Calvin-Benson-Bassham (CBB) cycle using electrons and energy obtained from the oxidation of H{sub 2}. Producing biodiesel-equivalent electrofuel from renewable CO{sub 2} and H{sub 2} has immense potential, especially if the fuel is compatible with the existing fuel infrastructure. This research addressed enhanced substrate utilization by focusing on two strategies: (1) optimizing transcriptional regulations to afford over-expression of Ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO), the enzyme responsible for assimilation of CO{sub 2} into the CBB cycle; and (2) hydrogenase over-expression by introduction of additional copies of genes encoding a membrane-bound hydrogenase (MBH), a soluble hydrogenase (SH), and their maturation machinery to enhance oxidation of H{sub 2} to generate NAD(P)H and ATP required for CO{sub 2} fixation. Incorporation of these strategies into a single production strain resulted in 6-fold CO{sub 2} and 3-fold H{sub 2} uptake improvement, in vitro, with the overarching goal of providing abundant reducing equivalents towards the economic production of biodiesel in C. necator.

  20. Fundamental Study of the Oxidation Characteristics and Pollutant Emissions of Model Biodiesel Fuels

    SciTech Connect (OSTI)

    Feng, Q.; Wang, Y. L.; Egolfopoulos, Fokion N.; Tsotsis, T. T.

    2010-07-18

    In this study, the oxidation characteristics of biodiesel fuels are investigated with the goal of contributing toward the fundamental understanding of their combustion characteristics and evaluating the effect of using these alternative fuels on engine performance as well as on the environment. The focus of the study is on pure fatty acid methyl-esters (FAME,) that can serve as surrogate compounds for real biodiesels. The experiments are conducted in the stagnation-flow configuration, which allows for the systematic evaluation of fundamental combustion and emission characteristics. In this paper, the focus is primarily on the pollutant emission characteristics of two C{sub 4} FAMEs, namely, methyl-butanoate and methyl-crotonate, whose behavior is compared with that of n-butane and n-pentane. To provide insight into the mechanisms of pollutant formation for these fuels, the experimental data are compared with computed results using a model with consistent C1-C4 oxidation and NOx formation kinetics.

  1. Biodiesel Drives Florida Power & Light's EPAct Alternative Compliance Strategy; EPAct Alternative Fuel Transportation Program: Success Story (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-05-01

    This success story highlights how Florida Power & Light Company has successfully complied with the Energy Policy Act of 1992 (EPAct) through Alternative Compliance using biodiesel technologies and how it has become a biofuel leader, reducing petroleum use and pollutant emissions throughout Florida.

  2. Waste remediation

    SciTech Connect (OSTI)

    Halas, Nancy J.; Nordlander, Peter; Neumann, Oara

    2015-12-29

    A system including a steam generation system and a chamber. The steam generation system includes a complex and the steam generation system is configured to receive water, concentrate electromagnetic (EM) radiation received from an EM radiation source, apply the EM radiation to the complex, where the complex absorbs the EM radiation to generate heat, and transform, using the heat generated by the complex, the water to steam. The chamber is configured to receive the steam and an object, wherein the object is of medical waste, medical equipment, fabric, and fecal matter.

  3. Transuranic Waste Requirements

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1999-07-09

    The guide provides criteria for determining if a waste is to be managed in accordance with DOE M 435.1-1, Chapter III, Transuranic Waste Requirements.

  4. Radioactive Waste Management

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1984-02-06

    To establish policies and guidelines by which the Department of Energy (DOE) manages tis radioactive waste, waste byproducts, and radioactively contaminated surplus facilities.

  5. Salt Waste Processing Initiatives

    Office of Environmental Management (EM)

    Patricia Suggs Salt Processing Team Lead Assistant Manager for Waste Disposition Project Office of Environmental Management Savannah River Site Salt Waste Processing Initiatives 2 ...

  6. Hanford Tank Waste Retrieval,

    Office of Environmental Management (EM)

    Tank Waste Retrieval, Treatment, and Disposition Framework September 24, 2013 U.S. Department of Energy Washington, D.C. 20585 Hanford Tank Waste Retrieval, Treatment, and ...

  7. Tank Waste Strategy Update

    Office of Environmental Management (EM)

    Tank Waste Subcommittee www.em.doe.gov safety performance cleanup closure E M Environmental Management 1 Tank Waste Subcommittee Ken Picha Office of Environmental Management ...

  8. Waste Heat Recovery

    Office of Environmental Management (EM)

    - PRE-DECISIONAL - DRAFT 1 Waste Heat Recovery 1 Technology Assessment 2 Contents 3 1. ... 2 4 1.1. Introduction to Waste Heat Recovery ......

  9. Biodiesel Emissions Testing with a Modern Diesel Engine - Equipment Only: Cooperative Research and Development Final Report, CRADA Number CRD-10-399

    SciTech Connect (OSTI)

    Williams, A.

    2013-06-01

    To evaluate the emissions and performance impact of biodiesel in a modern diesel engine equipped with a diesel particulate filter. This testing is in support of the Non-Petroleum Based Fuels (NPBF) 2010 Annual Operating Plan (AOP).

  10. EIS-0442: Reauthorization of Permits, Maintenance, and Vegetation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    42: Reauthorization of Permits, Maintenance, and Vegetation Management on Western Area ... EIS-0442: Reauthorization of Permits, Maintenance, and Vegetation Management on Western ...

  11. FCC Pilot Plant Results with Vegetable Oil and Pyrolysis Oil...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    FCC Pilot Plant Results with Vegetable Oil and Pyrolysis Oil Feeds FCC Pilot Plant Results with Vegetable Oil and Pyrolysis Oil Feeds Breakout Session 2: Frontiers and Horizons ...

  12. EM Waste and Materials Disposition & Transportation | Department...

    Office of Environmental Management (EM)

    Waste and Materials Disposition & Transportation EM Waste and Materials Disposition & Transportation DOE's Radioactive Waste Management Priorities: Continue to manage waste ...

  13. Bonneville - Hood River Vegetation Management Environmental Assessment

    SciTech Connect (OSTI)

    N /A

    1998-08-01

    To maintain the reliability of its electrical system, BPA, in cooperation with the U.S. Forest Service, needs to expand the range of vegetation management options used to clear unwanted vegetation on about 20 miles of BPA transmission line right-of-way between Bonneville Dam and Hood River; Oregon, within the Columbia Gorge National Scenic Area (NSA). We propose to continue controlling undesirable vegetation using a program of Integrated Vegetation Management (IVM) which includes manual, biological and chemical treatment methods. BPA has prepared an Environmental Assessment (EA) (DOE/EA-1257) evaluating the proposed project. Based on the analysis in the EA, BPA has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment, within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, the preparation of an Environmental Impact Statement (EIS) is not required and BPA is issuing this FONSI.

  14. Hanford Site annual dangerous waste report: Volume 4, Waste Management Facility report, Radioactive mixed waste

    SciTech Connect (OSTI)

    1994-12-31

    This report contains information on radioactive mixed wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, handling method and containment vessel, waste number, waste designation and amount of waste.

  15. Hanford Site annual dangerous waste report: Volume 2, Generator dangerous waste report, radioactive mixed waste

    SciTech Connect (OSTI)

    1994-12-31

    This report contains information on radioactive mixed wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, waste number, waste designation, weight, and waste designation.

  16. Waste Isolation Pilot Plant

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Waste Isolation Pilot Plant AFFIDAVIT FOR SURVIVING RELATIVE STATE ) ) ss: COUNTY OF ) That I, , am the...

  17. Impact of Biodiesel on the Oxidation Kinetics and Morphology of Diesel Particulate

    SciTech Connect (OSTI)

    Strzelec, Andrea; Toops, Todd J; Daw, C Stuart

    2011-01-01

    We compare the oxidation characteristics of four different diesel particulates generated with a modern light-duty engine. The four particulates represent engine fueling with conventional ultra-low sulfur diesel (ULSD), biodiesel, and two intermediate blends of these fuels. The comparisons discussed here are based on complementary measurements implemented in a laboratory micro-reactor, including temperature programmed desorption and oxidation, pulsed isothermal oxidation, and BET surface area. From these measurements we have derived models that are consistent with the observed oxidation reactivity differences. When accessible surface area effects are properly accounted for, the oxidation kinetics of the fixed carbon components were found to consistently exhibit an Arrhenius activation energy of 113 6 kJ/mol. Release of volatile carbon from the as-collected particulate appears to follow a temperaturedependent rate law.

  18. Recent Advances in Detailed Chemical Kinetic Models for Large Hydrocarbon and Biodiesel Transportation Fuels

    SciTech Connect (OSTI)

    Westbrook, C K; Pitz, W J; Curran, H J; Herbinet, O; Mehl, M

    2009-03-30

    n-Hexadecane and 2,2,4,4,6,8,8-heptamethylnonane represent the primary reference fuels for diesel that are used to determine cetane number, a measure of the ignition property of diesel fuel. With the development of chemical kinetics models for these two primary reference fuels for diesel, a new capability is now available to model diesel fuel ignition. Also, we have developed chemical kinetic models for a whole series of large n-alkanes and a large iso-alkane to represent these chemical classes in fuel surrogates for conventional and future fuels. Methyl decanoate and methyl stearate are large methyl esters that are closely related to biodiesel fuels, and kinetic models for these molecules have also been developed. These chemical kinetic models are used to predict the effect of the fuel molecule size and structure on ignition characteristics under conditions found in internal combustion engines.

  19. Experimental and numerical assessment of on-road diesel and biodiesel emissions

    SciTech Connect (OSTI)

    West, B.H.; Storey, J.M.; Lewis, S.A.; Devault, G.L.; Green, J.B.; Sluder, C.S.; Hodgson, J.W.; Moore, B.L.

    1997-12-31

    The Federal Highway Administration`s TRAF-series of models use modal data to estimate fuel consumption and emissions for different traffic scenarios. A process for producing data-based modal models from road and dynamometer measurements has been developed and applied to a number of light-duty gasoline vehicles for the FHWA. The resulting models, or lookup tables, provide emissions and fuel consumption as functions of vehicle speed and acceleration. Surface plots of the data provide a valuable visual benchmark of the emissions characteristics of the vehicles. Due to the potential fuel savings in the light-duty sector via introduction of diesels, and the concomitant growing interest in diesel engine emissions, the measurement methodology has been extended under DOE sponsorship to include a diesel pickup truck running a variety of fuels, including number 2 diesel fuel, biodiesel, Fischer-Tropsch, and blends.

  20. Detailed chemical kinetic mechanism for the oxidation of biodiesel fuels blend surrogate

    SciTech Connect (OSTI)

    Herbinet, Olivier; Pitz, William J.; Westbrook, Charles K.

    2010-05-15

    Detailed chemical kinetic mechanisms were developed and used to study the oxidation of two large unsaturated esters: methyl-5-decenoate and methyl-9-decenoate. These models were built from a previous methyl decanoate mechanism and were compared with rapeseed oil methyl esters oxidation experiments in a jet-stirred reactor. A comparative study of the reactivity of these three oxygenated compounds was performed and the differences in the distribution of the products of the reaction were highlighted showing the influence of the presence and the position of a double bond in the chain. Blend surrogates, containing methyl decanoate, methyl-5-decenoate, methyl-9-decenoate and n-alkanes, were tested against rapeseed oil methyl esters and methyl palmitate/n-decane experiments. These surrogate models are realistic kinetic tools allowing the study of the combustion of biodiesel fuels in diesel and homogeneous charge compression ignition engines. (author)

  1. ZnO nanoparticle catalysts for use in biodiesel production and method of making

    DOE Patents [OSTI]

    Yan, Shuli; Salley, Steven O; Ng, K. Y. Simon

    2014-11-25

    A method of forming a biodiesel product and a heterogeneous catalyst system used to form said product that has a high tolerance for the presence of water and free fatty acids (FFA) in the oil feedstock is disclosed. This catalyst system may simultaneously catalyze both the esterification of FAA and the transesterification of triglycerides present in the oil feedstock. The catalyst system is comprised of a mixture of zinc oxide and a second metal oxide. The zinc oxide includes a mixture of amorphous zinc oxide and zinc oxide nanocrystals, the zinc nanocrystals having a mean grain size between about 20 and 80 nanometers with at least one of the nanocrystals including a mesopore having a diameter of about 5 to 15 nanometers. Preferably, the second metal oxide is a lanthanum oxide, the lanthanum oxide being selected as one from the group of La.sub.2CO.sub.5, LaOOH, and combinations or mixtures thereof.

  2. Supported catalyst systems and method of making biodiesel products using such catalysts

    DOE Patents [OSTI]

    Kim, Manhoe; Yan, Shuli; Salley, Steven O.; Ng, K. Y. Simon

    2015-10-20

    A heterogeneous catalyst system, a method of preparing the catalyst system and a method of forming a biodiesel product via transesterification reactions using the catalyst system is disclosed. The catalyst system according to one aspect of the present disclosure represents a class of supported mixed metal oxides that include at least calcium oxide and another metal oxide deposited on a lanthanum oxide or cerium oxide support. Preferably, the catalysts include CaO--CeO.sub.2ZLa.sub.2O.sub.3 or CaO--La.sub.2O.sub.3/CeO.sub.2. Optionally, the catalyst may further include additional metal oxides, such as CaO--La.sub.2O.sub.3--GdOxZLa.sub.2O.sub.3.

  3. Federal and State Ethanol and Biodiesel Requirements (released in AEO2007)

    Reports and Publications (EIA)

    2007-01-01

    The Energy Policy Act 2005 requires that the use of renewable motor fuels be increased from the 2004 level of just over 4 billion gallons to a minimum of 7.5 billion gallons in 2012, after which the requirement grows at a rate equal to the growth of the gasoline pool. The law does not require that every gallon of gasoline or diesel fuel be blended with renewable fuels. Refiners are free to use renewable fuels, such as ethanol and biodiesel, in geographic regions and fuel formulations that make the most sense, as long as they meet the overall standard. Conventional gasoline and diesel can be blended with renewables without any change to the petroleum components, although fuels used in areas with air quality problems are likely to require adjustment to the base gasoline or diesel fuel if they are to be blended with renewables.

  4. Detailed chemical kinetic mechanism for the oxidation of biodiesel fuels blend surrogate.

    SciTech Connect (OSTI)

    Herbinet, O; Pitz, W J; Westbrook, C K

    2009-07-21

    Detailed chemical kinetic mechanisms were developed and used to study the oxidation of two large unsaturated esters: methyl-5-decenoate and methyl-9-decenoate. These models were built from a previous methyl decanoate mechanism and were compared with rapeseed oil methyl esters oxidation experiments in a jet stirred reactor. A comparative study of the reactivity of these three oxygenated compounds was performed and the differences in the distribution of the products of the reaction were highlighted showing the influence of the presence and the position of a double bond in the chain. Blend surrogates, containing methyl decanoate, methyl-5-decenoate, methyl-9-decenoate and n-alkanes, were tested against rapeseed oil methyl esters and methyl palmitate/n-decane experiments. These surrogate models are realistic kinetic tools allowing the study of the combustion of biodiesel fuels in diesel and homogeneous charge compression ignition engines.

  5. Waste Package Lifting Calculation

    SciTech Connect (OSTI)

    H. Marr

    2000-05-11

    The objective of this calculation is to evaluate the structural response of the waste package during the horizontal and vertical lifting operations in order to support the waste package lifting feature design. The scope of this calculation includes the evaluation of the 21 PWR UCF (pressurized water reactor uncanistered fuel) waste package, naval waste package, 5 DHLW/DOE SNF (defense high-level waste/Department of Energy spent nuclear fuel)--short waste package, and 44 BWR (boiling water reactor) UCF waste package. Procedure AP-3.12Q, Revision 0, ICN 0, calculations, is used to develop and document this calculation.

  6. Infectious waste feed system

    DOE Patents [OSTI]

    Coulthard, E. James

    1994-01-01

    An infectious waste feed system for comminuting infectious waste and feeding the comminuted waste to a combustor automatically without the need for human intervention. The system includes a receptacle for accepting waste materials. Preferably, the receptacle includes a first and second compartment and a means for sealing the first and second compartments from the atmosphere. A shredder is disposed to comminute waste materials accepted in the receptacle to a predetermined size. A trough is disposed to receive the comminuted waste materials from the shredder. A feeding means is disposed within the trough and is movable in a first and second direction for feeding the comminuted waste materials to a combustor.

  7. Investigation of the Effects of Biodiesel-based Na on Emissions Control Components

    SciTech Connect (OSTI)

    Brookshear, D. William; Nguyen, Ke; Toops, Todd J; Bunting, Bruce G; Howe, Janet E

    2012-01-01

    A single-cylinder diesel engine was used to investigate the impact of biodiesel-based Na on emissions control components using specially blended 20% biodiesel fuel (B20). The emissions control components investigated were a diesel oxidation catalyst (DOC), a Cu-zeolite-based NH{sub 3}-SCR (selective catalytic reduction) catalyst, and a diesel particulate filter (DPF). Both light-duty vehicle, DOC-SCR-DPF, and heavy-duty vehicle, DOC-DPF-SCR, emissions control configurations were employed. The accelerated Na aging is achieved by introducing elevated Na levels in the fuel, to represent full useful life exposure, and periodically increasing the exhaust temperature to replicate DPF regeneration. To assess the validity of the implemented accelerated Na aging protocol, engine-aged lean NO{sub x} traps (LNTs), DOCs and DPFs are also evaluated. To fully characterize the impact on the catalytic activity the LNT, DOC and SCR catalysts were evaluated using a bench flow reactor. The evaluation of the aged DOC samples and LNT show little to no deactivation as a result of Na contamination. However, the SCR in the light-duty configuration (DOC-SCR-DPF) was severely affected by Na contamination, especially when NO was the only fed NO{sub x} source. In the heavy-duty configuration (DOC-DPF-SCR), no impact is observed in the SCR NO{sub x} reduction activity. Electron probe micro-analysis (EPMA) reveals that Na contamination on the LNT, DOC, and SCR samples is present throughout the length of the catalysts with a higher concentration on the washcoat surface. In both the long-term engine-aged DPF and the accelerated Na-aged DPFs, there is significant Na ash present in the upstream channels; however, in the engine-aged sample lube oil-based ash is the predominant constituent.

  8. Radioactive Waste Management Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1999-07-09

    This Manual further describes the requirements and establishes specific responsibilities for implementing DOE O 435.1, Radioactive Waste Management, for the management of DOE high-level waste, transuranic waste, low-level waste, and the radioactive component of mixed waste. Change 1 dated 6/19/01 removes the requirement that Headquarters is to be notified and the Office of Environment, Safety and Health consulted for exemptions for use of non-DOE treatment facilities. Certified 1-9-07.

  9. Hanford Dangerous Waste Permit

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Waste Treatment and Immobilization Plant (vit plant) Operating Unit #10 Aerial view of construction, July 2011 Where will the waste go? LAW canisters will go to shallow disposal at Hanford's Integrated Disposal Facility. HLW canisters will go to a For scale, here's the parking lot! Safe disposition of our nation's most dangerous waste relies on the vit plant's safe completion and ability to process waste for 20+ years. * Permitted for storage and treatment of Hanford's tank waste in unique

  10. Nuclear waste solidification

    DOE Patents [OSTI]

    Bjorklund, William J.

    1977-01-01

    High level liquid waste solidification is achieved on a continuous basis by atomizing the liquid waste and introducing the atomized liquid waste into a reaction chamber including a fluidized, heated inert bed to effect calcination of the atomized waste and removal of the calcined waste by overflow removal and by attrition and elutriation from the reaction chamber, and feeding additional inert bed particles to the fluidized bed to maintain the inert bed composition.

  11. Waste Isolation Pilot Plant Nitrate Salt Bearing Waste Container...

    Office of Environmental Management (EM)

    Nitrate Salt Bearing Waste Container Isolation Plan Waste Isolation Pilot Plant Nitrate Salt Bearing Waste Container Isolation Plan The purpose of this document is to provide the ...

  12. Waste Shipment Approval - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    About Us Hanford Site Wide Programs Hanford Site Solid Waste Acceptance Program Acceptance Process Waste Shipment Approval About Us Hanford Site Solid Waste Acceptance Program What's New Acceptance Criteria Acceptance Process Becoming a new Hanford Customer Annual Waste Forecast and Funding Arrangements Waste Stream Approval Waste Shipment Approval Waste Receipt Quality Assurance Program Waste Specification Records Tools Points of Contact Waste Shipment Approval Email Email Page | Print Print

  13. Waste Processing | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Processing Waste Processing Workers process and repackage waste at the Transuranic Waste Processing Center’s Cask Processing Enclosure. Workers process and repackage waste at the Transuranic Waste Processing Center's Cask Processing Enclosure. Transuranic waste, or TRU, is one of several types of waste handled by Oak Ridge's EM program. This waste contains manmade elements heavier than uranium, hence the name "trans" or "beyond" uranium. Transuranic waste material

  14. Physical and chemical comparison of soot in hydrocarbon and biodiesel fuel diffusion flames: A study of model and commercial fuels

    SciTech Connect (OSTI)

    Matti Maricq, M.

    2011-01-15

    Data are presented to compare soot formation in both surrogate and practical fatty acid methyl ester biodiesel and petroleum fuel diffusion flames. The approach here uses differential mobility analysis to follow the size distributions and electrical charge of soot particles as they evolve in the flame, and laser ablation particle mass spectrometry to elucidate their composition. Qualitatively, these soot properties exhibit a remarkably similar development along the flames. The size distributions begin as a single mode of precursor nanoparticles, evolve through a bimodal phase marking the onset of aggregate formation, and end in a self preserving mode of fractal-like particles. Both biodiesel and hydrocarbon fuels yield a common soot composition dominated by C{sub x}H{sub y}{sup +} ions, stabilomer PAHs, and fullerenes in the positive ion mass spectrum, and C{sub x}{sup -} and C{sub 2x}H{sup -} in the negative ion spectrum. These ion intensities initially grow with height in the diffusion flames, but then decline during later stages, consistent with soot carbonization. There are important quantitative differences between fuels. The surrogate biodiesel fuel methyl butanoate substantially reduces soot levels, but soot formation and evolution in this flame are delayed relative to both soy and petroleum fuels. In contrast, soots from soy and hexadecane flames exhibit nearly quantitative agreement in their size distribution and composition profiles with height, suggesting similar soot precursor chemistry. (author)

  15. Screening of industrial wastewaters as feedstock for the microbial production of oils for biodiesel production and high-quality pigments

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Schneider, Teresa; Graeff-Honninger, Simone; French, William Todd; Hernandez, Rafael; Claupein, Wilhelm; Holmes, William E.; Merkt, Nikolaus

    2012-01-01

    The production of biodiesel has notably increased over the past decade. Currently, plant oil is the main feedstock for biodiesel production, but, due to concerns related to the competition with food production, alternative oil feedstocks have to be found. Oleaginous yeasts are known to produce high amounts of lipids, but no integrated process from microbial fermentation to final biodiesel production has reached commercial realization yet due to economic constraints. Therefore, growth and lipid production of red yeast Rhodotorula glutinis was tested on low-cost substrates, namely, wastewaters from potato, fruit juice, and lettuce processing. Additionally, the production of carotenoids as high-valuemore » by-products was examined. All evaluated wastewaters met the general criteria for microbial lipid production. However, no significant increase in lipid content was observed, probably due to lack of available carbon in wastewaters from fruit juice and lettuce processing, and excess of available nitrogen in potato processing wastewater, respectively. During growth on wastewaters from fruit juice and lettuce processing the carotenoid content increased significantly in the first 48 hours. The relations between carbon content, nitrogen content, and carotenoid production need to be further assessed. For economic viability, lipid and carotenoid production needs to be increased significantly. Lastly, the screening of feedstocks should be extended to other wastewaters.« less

  16. Radioactive Waste Management Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1999-07-09

    This Manual further describes the requirements and establishes specific responsibilities for implementing DOE O 435.1, Radioactive Waste Management, for the management of DOE high-level waste, transuranic waste, low-level waste, and the radioactive component of mixed waste. The purpose of the Manual is to catalog those procedural requirements and existing practices that ensure that all DOE elements and contractors continue to manage DOE's radioactive waste in a manner that is protective of worker and public health and safety, and the environment. Does not cancel other directives.

  17. Waste Isolation Pilot Plant

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2/25/16 WIPP Home Page About WIPP Contact Us Search About WIPP The nation's only deep geologic repository for nuclear waste The U.S. Department of Energy's (DOE) Waste Isolation Pilot Plant (WIPP) is a deep geologic repository for permanent disposal of a specific type of waste that is the byproduct of the nation's nuclear defense program. CH and RH Waste WIPP is the nation's only repository for the disposal of nuclear waste known as transuranic, or TRU, waste. It consists of clothing, tools,

  18. Waste management progress report

    SciTech Connect (OSTI)

    1997-06-01

    During the Cold War era, when DOE and its predecessor agencies produced nuclear weapons and components, and conducted nuclear research, a variety of wastes were generated (both radioactive and hazardous). DOE now has the task of managing these wastes so that they are not a threat to human health and the environment. This document is the Waste Management Progress Report for the U.S. Department of Energy dated June 1997. This progress report contains a radioactive and hazardous waste inventory and waste management program mission, a section describing progress toward mission completion, mid-year 1997 accomplishments, and the future outlook for waste management.

  19. Waste-to-Energy: Waste Management and Energy Production Opportunities...

    Office of Environmental Management (EM)

    Waste-to-Energy: Waste Management and Energy Production Opportunities Waste-to-Energy: Waste Management and Energy Production Opportunities July 24, 2014 9:00AM to 3:30PM EDT U.S. ...

  20. Waste Treatment and Immobilization Plant HLW Waste Vitrification Facility |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy HLW Waste Vitrification Facility Waste Treatment and Immobilization Plant HLW Waste Vitrification Facility Full Document and Summary Versions are available for download Waste Treatment and Immobilization Plant HLW Waste Vitrification Facility (742.54 KB) Summary - WTP HLW Waste Vitrification Facility (137.99 KB) More Documents & Publications Waste Treatment and Immobilization Plant (WTP) Analytical Laboratory (LAB), Balance of Facilities (BOF) and Low-Activity Waste

  1. Determination of biogas generation potential as a renewable energy source from supermarket wastes

    SciTech Connect (OSTI)

    Alkanok, Gizem; Demirel, Burak Onay, Turgut T.

    2014-01-15

    Highlights: Disposal of supermarket wastes in landfills may contribute to environmental pollution. High methane yields can be obtained from supermarket wastes by anaerobic co-digestion. Fruit and vegetable wastes or dairy products wastes could individually be handled by a two-stage anaerobic process. Buffering capacity, trace metal and C/N ratio are essential for digestion of supermarket wastes. - Abstract: Fruit, vegetable, flower waste (FVFW), dairy products waste (DPW), meat waste (MW) and sugar waste (SW) obtained from a supermarket chain were anaerobically digested, in order to recover methane as a source of renewable energy. Batch mesophilic anaerobic reactors were run at total solids (TS) ratios of 5%, 8% and 10%. The highest methane yield of 0.44 L CH{sub 4}/g VS{sub added} was obtained from anaerobic digestion of wastes (FVFW + DPW + MW + SW) at 10% TS, with 66.4% of methane (CH{sub 4}) composition in biogas. Anaerobic digestion of mixed wastes at 5% and 8% TS provided slightly lower methane yields of 0.41 and 0.40 L CH{sub 4}/g VS{sub added}, respectively. When the wastes were digested alone without co-substrate addition, the highest methane yield of 0.40 L CH{sub 4}/g VS{sub added} was obtained from FVFW at 5% TS. Generally, although the volatile solids (VS) conversion percentages seemed low during the experiments, higher methane yields could be obtained from anaerobic digestion of supermarket wastes. A suitable carbon/nitrogen (C/N) ratio, proper adjustment of the buffering capacity and the addition of essential trace nutrients (such as Ni) could improve VS conversion and biogas production yields significantly.

  2. Hanford Tank Waste Residuals

    Office of Environmental Management (EM)

    Hanford Tank Waste Residuals DOE HLW Corporate Board November 6, 2008 Chris Kemp, DOE ORP Bill Hewitt, YAHSGS LLC Hanford Tanks & Tank Waste * Single-Shell Tanks (SSTs) - 27 million ...

  3. Nuclear Waste Partnership, LLC

    Office of Environmental Management (EM)

    Nuclear Waste Partnership, LLC Waste Isolation Pilot Plant Report from the Department of Energy Voluntary Protection Program Onsite Review March 17-27, 2015 U.S. Department of ...

  4. Waste Specification Records - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Specification Records About Us Hanford Site Solid Waste Acceptance Program What's New Acceptance Criteria Acceptance Process Becoming a new Hanford Customer Annual Waste Forecast and Funding Arrangements Waste Stream Approval Waste Shipment Approval Waste Receipt Quality Assurance Program Waste Specification Records Tools Points of Contact Waste Specification Records Email Email Page | Print Print Page | Text Increase Font Size Decrease Font Size Waste Specification Records (WSRds) are the tool

  5. Solid waste handling

    SciTech Connect (OSTI)

    Parazin, R.J.

    1995-05-31

    This study presents estimates of the solid radioactive waste quantities that will be generated in the Separations, Low-Level Waste Vitrification and High-Level Waste Vitrification facilities, collectively called the Tank Waste Remediation System Treatment Complex, over the life of these facilities. This study then considers previous estimates from other 200 Area generators and compares alternative methods of handling (segregation, packaging, assaying, shipping, etc.).

  6. Waste Heat Recovery

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    - PRE-DECISIONAL - DRAFT 1 Waste Heat Recovery 1 Technology Assessment 2 Contents 3 1. Introduction to the Technology/System ............................................................................................... 2 4 1.1. Introduction to Waste Heat Recovery .......................................................................................... 2 5 1.2. Challenges and Barriers for Waste Heat Recovery ..................................................................... 13 6 1.3. Public

  7. Waste disposal package

    DOE Patents [OSTI]

    Smith, M.J.

    1985-06-19

    This is a claim for a waste disposal package including an inner or primary canister for containing hazardous and/or radioactive wastes. The primary canister is encapsulated by an outer or secondary barrier formed of a porous ceramic material to control ingress of water to the canister and the release rate of wastes upon breach on the canister. 4 figs.

  8. Municipal waste processing apparatus

    DOE Patents [OSTI]

    Mayberry, J.L.

    1988-04-13

    This invention relates to apparatus for processing municipal waste, and more particularly to vibrating mesh screen conveyor systems for removing grit, glass, and other noncombustible materials from dry municipal waste. Municipal waste must be properly processed and disposed of so that it does not create health risks to the community. Generally, municipal waste, which may be collected in garbage trucks, dumpsters, or the like, is deposited in processing areas such as landfills. Land and environmental controls imposed on landfill operators by governmental bodies have increased in recent years, however, making landfill disposal of solid waste materials more expensive. 6 figs.

  9. Radioactive Waste Management Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1999-07-09

    This Manual further describes the requirements and establishes specific responsibilities for implementing DOE O 435.1, Radioactive Waste Management, for the management of DOE high-level waste, transuranic waste, low-level waste, and the radioactive component of mixed waste. Change 1 dated 6/19/01 removes the requirement that Headquarters is to be notified and the Office of Environment, Safety and Health consulted for exemptions for use of non-DOE treatment facilities. Certified 1-9-07. Admin Chg 2, dated 6-8-11, supersedes DOE M 435.1-1 Chg 1.

  10. Lithium modified zeolite synthesis for conversion of biodiesel-derived glycerol to polyglycerol

    SciTech Connect (OSTI)

    Ayoub, Muhammad; Abdullah, Ahmad Zuhairi; Inayat, Abrar

    2014-10-24

    Basic zeolite has received significant attention in the catalysis community. These zeolites modified with alkaline are the potential replacement for existing zeolite catalysts due to its unique features with added advantages. The present paper covers the preparation of lithium modified zeolite Y (Li-ZeY) and its activity for solvent free conversion of biodiesel-derived glycerol to polyglycerol via etherification process. The modified zeolite was well characterized by X-ray diffraction (XRD), Scanning Electron Microscope (SEM) and Nitrogen Adsorption. The SEM images showed that there was no change in morphology of modified zeolite structure after lithium modification. XRD patterns showed that the structure of zeolite was sustained after lithium modification. The surface properties of parent and modified zeolite was also observed N{sub 2} adsortion-desorption technique and found some changes in surface area and pore size. In addition, the basic strength of prepared materials was measured by Hammet indicators and found that basic strength of Li-ZeY was highly improved. This modified zeolite was found highly thermal stable and active heterogamous basic catalyst for conversion of solvent free glycerol to polyglycerol. This reaction was conducted at different temperatures and 260 C was found most active temperature for this process for reaction time from 6 to 12 h over this basic catalyst in the absence of solvent.

  11. Mixed waste: Proceedings

    SciTech Connect (OSTI)

    Moghissi, A.A.; Blauvelt, R.K.; Benda, G.A.; Rothermich, N.E.

    1993-12-31

    This volume contains the peer-reviewed and edited versions of papers submitted for presentation a the Second International Mixed Waste Symposium. Following the tradition of the First International Mixed Waste Symposium, these proceedings were prepared in advance of the meeting for distribution to participants. The symposium was organized by the Mixed Waste Committee of the American Society of Mechanical Engineers. The topics discussed at the symposium include: stabilization technologies, alternative treatment technologies, regulatory issues, vitrification technologies, characterization of wastes, thermal technologies, laboratory and analytical issues, waste storage and disposal, organic treatment technologies, waste minimization, packaging and transportation, treatment of mercury contaminated wastes and bioprocessing, and environmental restoration. Individual abstracts are catalogued separately for the data base.

  12. IDAHO BIODIESEL INFRASTRUCTURE PROJECT DOE'S INITIATIVE ON COOPERATIVE PROGRAMS WITH STATES FOR RESEARCH, DEVELOPMENT AND DEMONSTRATION GRANT NO. DE-FC36-02GO12021. Final report

    SciTech Connect (OSTI)

    CROCKETT, JOHN

    2006-12-31

    The Idaho Energy Division issued a Request for Proposal (RFP) on March 14, 2006, inviting qualified licensed fuel wholesalers, fuel retailers, and vehicle fleet operators to provide proposals to construct and/or install infrastructure for biodiesel utilization in Idaho. The intent was to improve the ability of private and/or non-Federal public entities in Idaho to store, transport, or offer for sale biodiesel within the state. The RFP provided up $100,000 for co-funding the projects with a minimum 50% cash cost match. Four contracts were subsequetnly awarded that resulted in three new bidodiesel storage facilities immediately serving about 45 fueling stations from Sandpoint to Boise. The project also attracted considerable media attention and Idaho became more knowledgeable about biodiesel.

  13. Waste Stream Approval - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stream Approval About Us Hanford Site Solid Waste Acceptance Program What's New Acceptance Criteria Acceptance Process Becoming a new Hanford Customer Annual Waste Forecast and Funding Arrangements Waste Stream Approval Waste Shipment Approval Waste Receipt Quality Assurance Program Waste Specification Records Tools Points of Contact Waste Stream Approval Email Email Page | Print Print Page | Text Increase Font Size Decrease Font Size After funding approval is in place, the next step is to

  14. Laboratory Waste | Sample Preparation Laboratories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory Waste Sharps Broken Glass Containment Hazardous Waste All waste produced in the Sample Prep Labs should be appropriately disposed of at SLAC. You are prohibited to transport waste back to your home institution. Designated areas exist in the labs for sharps, broken glass, and hazardous waste. Sharps, broken glass, and hazardous waste must never be disposed of in the trash cans or sink drains. Containment Bottles, jars, and plastic bags are available for containing chemical waste. Place

  15. Vegetable oils as fuel alternatives - symposium overview

    SciTech Connect (OSTI)

    Pryde, E.H.

    1984-10-01

    Several encouraging statements can be made about the use of vegetable oil products as fuel as a result of the information presented in these symposium papers. Vegetable oil ester fuels have the greatest promise, but further engine endurance tests will be required. These can be carried out best by the engine manufacturers. Microemulsions appear to have promise, but more research and engine testing will be necessary before performance equivalent to the ester fuels can be developed. Such research effort can be justified because microemulsification is a rather uncomplicated physical process and might be adaptable to on-farm operations, which would be doubtful for the more involved transesterfication process. Although some answers have been provided by this symposium, others are still not available; engine testing is continuing throughout the world particularly in those countries that do not have access to petroleum. 9 references.

  16. Vegetation survey of PEN Branch wetlands

    SciTech Connect (OSTI)

    Not Available

    1991-01-01

    A survey was conducted of vegetation along Pen Branch Creek at Savannah River Site (SRS) in support of K-Reactor restart. Plants were identified to species by overstory, understory, shrub, and groundcover strata. Abundance was also characterized and richness and diversity calculated. Based on woody species basal area, the Pen Branch delta was the most impacted, followed by the sections between the reactor and the delta. Species richness for shrub and groundcover strata were also lowest in the delta. No endangered plant species were found. Three upland pine areas were also sampled. In support of K Reactor restart, this report summarizes a study of the wetland vegetation along Pen Branch. Reactor effluent enters Indian Grove Branch and then flows into Pen Branch and the Pen Branch Delta.

  17. Enterprise Assessments Operational Awareness Record, Waste Treatment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    waste system of the Waste Treatment and Immobilization Plant Low Activity Waste Facility. ... Operational Awareness Record, Waste Treatment and Immobilization Plant - December 2014 ...

  18. Solid Waste Management Plan. Revision 4

    SciTech Connect (OSTI)

    1995-04-26

    The waste types discussed in this Solid Waste Management Plan are Municipal Solid Waste, Hazardous Waste, Low-Level Mixed Waste, Low-Level Radioactive Waste, and Transuranic Waste. The plan describes for each type of solid waste, the existing waste management facilities, the issues, and the assumptions used to develop the current management plan.

  19. Transuranic (TRU) Waste | Department of Energy

    Office of Environmental Management (EM)

    Transuranic (TRU) Waste Transuranic (TRU) Waste Transuranic (TRU) Waste Defined by the WIPP Land Withdrawal Act as "waste containing more than 100 nanocuries of alpha-emitting ...

  20. Analysis of Coconut-Derived Biodiesel and Conventional Diesel Fuel Samples from the Philippines: Task 2 Final Report

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Analysis of Coconut-Derived Biodiesel and Conventional Diesel Fuel Samples from the Philippines Task 2 Final Report T.L. Alleman and R.L. McCormick Milestone Report NREL/MP-540-38643 January 2006 National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 * www.nrel.gov Operated for the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy by Midwest Research Institute * Battelle Contract No. DE-AC36-99-GO10337 Analysis of Coconut-

  1. Underground waste barrier structure

    DOE Patents [OSTI]

    Saha, Anuj J.; Grant, David C.

    1988-01-01

    Disclosed is an underground waste barrier structure that consists of waste material, a first container formed of activated carbonaceous material enclosing the waste material, a second container formed of zeolite enclosing the first container, and clay covering the second container. The underground waste barrier structure is constructed by forming a recessed area within the earth, lining the recessed area with a layer of clay, lining the clay with a layer of zeolite, lining the zeolite with a layer of activated carbonaceous material, placing the waste material within the lined recessed area, forming a ceiling over the waste material of a layer of activated carbonaceous material, a layer of zeolite, and a layer of clay, the layers in the ceiling cojoining with the respective layers forming the walls of the structure, and finally, covering the ceiling with earth.

  2. Waste from grocery stores

    SciTech Connect (OSTI)

    Lieb, K.

    1993-11-01

    The Community Recycling Center, Inc., (CRC, Champaign, Ill.), last year conducted a two-week audit of waste generated at two area grocery stores. The stores surveyed are part of a 10-store chain. For two of the Kirby Foods Stores, old corrugated containers (OCC) accounted for 39-45% of all waste. The summary drew correlations between the amount of OCC and the sum of food and garbage waste. The study suggested that one can reasonably estimate volumes of waste based on the amount of OCC because most things come in a box. Auditors set up a series of containers to make the collection process straightforward. Every day the containers were taken to local recycling centers and weighed. Approximate waste breakdowns for the two stores were as follows: 45% OCC; 35% food waste; 20% nonrecyclable or noncompostable items; and 10% other.

  3. Hanford Dangerous Waste Permit

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dangerous Waste Permit Suzanne Dahl and Jeff Lyon Nuclear Waste Program April 17, 2012 Tank-Related Units Why have permits? * To regulate dangerous waste treatment, storage, and disposal facilities: - Thermal treatment units - Landfills - Tank systems - Container storage - Containment buildings * To protect humans and the environment Parts of the Unit Permit * Fact Sheet * Unit description * Operations and processes * Permit conditions * Requirements or limitations to maintain safe operating

  4. Waste to Energy

    Broader source: Energy.gov (indexed) [DOE]

    pellets or logs from wood, plants, or paper So, what ... Waste to energy - gasification http:... George Roe Research Professor Alaska Center ...

  5. Waste inspection tomography (WIT)

    SciTech Connect (OSTI)

    Bernardi, R.T.

    1995-10-01

    Waste Inspection Tomography (WIT) provides mobile semi-trailer mounted nondestructive examination (NDE) and assay (NDA) for nuclear waste drum characterization. WIT uses various computed tomography (CT) methods for both NDE and NDA of nuclear waste drums. Low level waste (LLW), transuranic (TRU), and mixed radioactive waste can be inspected and characterized without opening the drums. With externally transmitted x-ray NDE techniques, WIT has the ability to identify high density waste materials like heavy metals, define drum contents in two- and three-dimensional space, quantify free liquid volumes through density and x-ray attenuation coefficient discrimination, and measure drum wall thickness. With waste emitting gamma-ray NDA techniques, WIT can locate gamma emitting radioactive sources in two- and three-dimensional space, identify gamma emitting, isotopic species, identify the external activity levels of emitting gamma-ray sources, correct for waste matrix attenuation, provide internal activity approximations, and provide the data needed for waste classification as LLW or TRU.

  6. Hanford Dangerous Waste Permit

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    * Removes water and volatile organics from tank waste. * Decreases the volume of water to create room in double-shell tanks, allowing them to accept waste from noncompliant single- shell tanks. * Treats up to 1 million gallons to free up about 500,000 gallons in the double-shell tanks in each campaign. * Near PUREX and most of the double-shell tanks in the 200 East Area. * Began operating in 1977. Where does the waste come from? Waste comes to the 242-A Evaporator from the double-shell tanks.

  7. Vitrification of waste

    DOE Patents [OSTI]

    Wicks, George G.

    1999-01-01

    A method for encapsulating and immobilizing waste for disposal. Waste, preferably, biologically, chemically and radioactively hazardous, and especially electronic wastes, such as circuit boards, are placed in a crucible and heated by microwaves to a temperature in the range of approximately 300.degree. C. to 800.degree. C. to incinerate organic materials, then heated further to a temperature in the range of approximately 1100.degree. C. to 1400.degree. C. at which temperature glass formers present in the waste will cause it to vitrify. Glass formers, such as borosilicate glass, quartz or fiberglass can be added at the start of the process to increase the silicate concentration sufficiently for vitrification.

  8. Vitrification of waste

    DOE Patents [OSTI]

    Wicks, G.G.

    1999-04-06

    A method is described for encapsulating and immobilizing waste for disposal. Waste, preferably, biologically, chemically and radioactively hazardous, and especially electronic wastes, such as circuit boards, are placed in a crucible and heated by microwaves to a temperature in the range of approximately 300 C to 800 C to incinerate organic materials, then heated further to a temperature in the range of approximately 1100 C to 1400 C at which temperature glass formers present in the waste will cause it to vitrify. Glass formers, such as borosilicate glass, quartz or fiberglass can be added at the start of the process to increase the silicate concentration sufficiently for vitrification.

  9. Pioneering Nuclear Waste Disposal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... agen- cies, scientific advisory panels, and concerned citizens. * As a ... It also prohibited the disposal of high-level radioactive waste and spent nuclear fuel. In 1996, ...

  10. WASTE PACKAGE TRANSPORTER DESIGN

    SciTech Connect (OSTI)

    D.C. Weddle; R. Novotny; J. Cron

    1998-09-23

    The purpose of this Design Analysis is to develop preliminary design of the waste package transporter used for waste package (WP) transport and related functions in the subsurface repository. This analysis refines the conceptual design that was started in Phase I of the Viability Assessment. This analysis supports the development of a reliable emplacement concept and a retrieval concept for license application design. The scope of this analysis includes the following activities: (1) Assess features of the transporter design and evaluate alternative design solutions for mechanical components. (2) Develop mechanical equipment details for the transporter. (3) Prepare a preliminary structural evaluation for the transporter. (4) Identify and recommend the equipment design for waste package transport and related functions. (5) Investigate transport equipment interface tolerances. This analysis supports the development of the waste package transporter for the transport, emplacement, and retrieval of packaged radioactive waste forms in the subsurface repository. Once the waste containers are closed and accepted, the packaged radioactive waste forms are termed waste packages (WP). This terminology was finalized as this analysis neared completion; therefore, the term disposal container is used in several references (i.e., the System Description Document (SDD)) (Ref. 5.6). In this analysis and the applicable reference documents, the term ''disposal container'' is synonymous with ''waste package''.

  11. Waste minimization assessment procedure

    SciTech Connect (OSTI)

    Kellythorne, L.L. )

    1993-01-01

    Perry Nuclear Power Plant began developing a waste minimization plan early in 1991. In March of 1991 the plan was documented following a similar format to that described in the EPA Waste Minimization Opportunity Assessment Manual. Initial implementation involved obtaining management's commitment to support a waste minimization effort. The primary assessment goal was to identify all hazardous waste streams and to evaluate those streams for minimization opportunities. As implementation of the plan proceeded, non-hazardous waste streams routinely generated in large volumes were also evaluated for minimization opportunities. The next step included collection of process and facility data which would be useful in helping the facility accomplish its assessment goals. This paper describes the resources that were used and which were most valuable in identifying both the hazardous and non-hazardous waste streams that existed on site. For each material identified as a waste stream, additional information regarding the materials use, manufacturer, EPA hazardous waste number and DOT hazard class was also gathered. Once waste streams were evaluated for potential source reduction, recycling, re-use, re-sale, or burning for heat recovery, with disposal as the last viable alternative.

  12. Norcal Waste Systems, Inc.

    SciTech Connect (OSTI)

    Not Available

    2002-12-01

    Fact sheet describes the LNG long-haul heavy-duty trucks at Norcal Waste Systems Inc.'s Sanitary Fill Company.

  13. Decomposition of carbohydrate wastes

    DOE Patents [OSTI]

    Appell, Herbert R.; Pantages, Peter

    1976-11-02

    Carbohydrate waste materials are decomposed to form a gaseous fuel product by contacting them with a transition metal catalyst at elevated temperature substantially in the absence of water.

  14. Transfer Lines to Connect Liquid Waste Facilities and Salt Waste...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... of tank waste at SRS. SWPF will separate the salt waste into a low-volume, high radioactivity fraction for vitrification in the Defense Waste Processing Facility (DWPF) and ...

  15. Secondary Waste Cast Stone Waste Form Qualification Testing Plan

    SciTech Connect (OSTI)

    Westsik, Joseph H.; Serne, R. Jeffrey

    2012-09-26

    The Hanford Tank Waste Treatment and Immobilization Plant (WTP) is being constructed to treat the 56 million gallons of radioactive waste stored in 177 underground tanks at the Hanford Site. The WTP includes a pretreatment facility to separate the wastes into high-level waste (HLW) and low-activity waste (LAW) fractions for vitrification and disposal. The LAW will be converted to glass for final disposal at the Integrated Disposal Facility (IDF). Cast Stone – a cementitious waste form, has been selected for solidification of this secondary waste stream after treatment in the ETF. The secondary-waste Cast Stone waste form must be acceptable for disposal in the IDF. This secondary waste Cast Stone waste form qualification testing plan outlines the testing of the waste form and immobilization process to demonstrate that the Cast Stone waste form can comply with the disposal requirements. Specifications for the secondary-waste Cast Stone waste form have not been established. For this testing plan, Cast Stone specifications are derived from specifications for the immobilized LAW glass in the WTP contract, the waste acceptance criteria for the IDF, and the waste acceptance criteria in the IDF Permit issued by the State of Washington. This testing plan outlines the testing needed to demonstrate that the waste form can comply with these waste form specifications and acceptance criteria. The testing program must also demonstrate that the immobilization process can be controlled to consistently provide an acceptable waste form product. This testing plan also outlines the testing needed to provide the technical basis for understanding the long-term performance of the waste form in the disposal environment. These waste form performance data are needed to support performance assessment analyses of the long-term environmental impact of the secondary-waste Cast Stone waste form in the IDF

  16. Report: EM Tank Waste Subcommittee Full Report for Waste Treatment...

    Office of Environmental Management (EM)

    Triay: As discussed during our September 15th public meeting, enclosed please find the Environmental Management Advisory Board EM Tank Waste Subcommittee Report for Waste Treatment ...

  17. Waste Treatment and Immobilation Plant HLW Waste Vitrification...

    Office of Environmental Management (EM)

    6 Technology Readiness Assessment for the Waste Treatment and Immobilization Plant (WTP) HLW Waste Vitrification Facility L. Holton D. Alexander C. Babel H. Sutter J. Young August ...

  18. Waste Isolation Pilot Plant Nitrate Salt Bearing Waste Container

    Office of Environmental Management (EM)

    Nitrate Salt Bearing Waste Container Isolation Plan Prepared in Response to New Mexico ... (DOE) and Nuclear Waste Partnership LLC (NWP), collectively referred to as the Permittees. ...

  19. Vegetation Description, Rare Plant Inventory, and Vegetation Monitoring for Craig Mountain, Idaho.

    SciTech Connect (OSTI)

    Mancuso, Michael; Moseley, Robert

    1994-12-01

    The Craig Mountain Wildlife Mitigation Area was purchased by Bonneville Power Administration (BPA) as partial mitigation for wildlife losses incurred with the inundation of Dworshak Reservoir on the North Fork Clearwater River. Upon completion of the National Environmental Protection Act (NEPA) process, it is proposed that title to mitigation lands will be given to the Idaho Department of Fish and Game (IDFG). Craig Mountain is located at the northern end of the Hells Canyon Ecosystem. It encompasses the plateau and steep canyon slopes extending from the confluence of the Snake and Salmon rivers, northward to near Waha, south of Lewiston, Idaho. The forested summit of Craig Mountain is characterized by gently rolling terrain. The highlands dramatically break into the canyons of the Snake and Salmon rivers at approximately the 4,700 foot contour. The highly dissected canyons are dominated by grassland slopes containing a mosaic of shrubfield, riparian, and woodland habitats. During the 1993 and 1994 field seasons, wildlife, habitat/vegetation, timber, and other resources were systematically inventoried at Craig Mountain to provide Fish and Game managers with information needed to draft an ecologically-based management plan. The results of the habitat/vegetation portion of the inventory are contained in this report. The responsibilities for the Craig Mountain project included: (1) vegetation data collection, and vegetation classification, to help produce a GIS-generated Craig Mountain vegetation map, (2) to determine the distribution and abundance of rare plants populations and make recommendations concerning their management, and (3) to establish a vegetation monitoring program to evaluate the effects of Fish and Game management actions, and to assess progress towards meeting habitat mitigation goals.

  20. Impact of rail pressure and biodiesel fueling on the particulate morphology and soot nanostructures from a common-rail turbocharged direct injection diesel engine

    SciTech Connect (OSTI)

    Ye, Peng; Vander Wal, Randy; Boehman, Andre L.; Toops, Todd J.; Daw, C. Stuart; Sun, Chenxi; Lapuerta, Magin; Agudelo, John

    2014-12-26

    The effect of rail pressure and biodiesel fueling on the morphology of exhaust particulate agglomerates and the nanostructure of primary particles (soot) was investigated with a common-rail turbocharged direct injection diesel engine. The engine was operated at steady state on a dynamometer running at moderate speed with both low (30%) and medium–high (60%) fixed loads, and exhaust particulate was sampled for analysis. Ultra-low sulfur diesel and its 20% v/v blends with soybean methyl ester biodiesel were used. Fuel injection occurred in a single event around top dead center at three different injection pressures. Exhaust particulate samples were characterized with TEM imaging, scanning mobility particle sizing, thermogravimetric analysis, Raman spectroscopy, and XRD analysis. Particulate morphology and oxidative reactivity were found to vary significantly with rail pressure and with biodiesel blend level. Higher biodiesel content led to increases in the primary particle size and oxidative reactivity but did not affect nanoscale disorder in the as-received samples. For particulates generated with higher injection pressures, the initial oxidative reactivity increased, but there was no detectable correlation with primary particle size or nanoscale disorder.

  1. Impact of rail pressure and biodiesel fueling on the particulate morphology and soot nanostructures from a common-rail turbocharged direct injection diesel engine

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ye, Peng; Vander Wal, Randy; Boehman, Andre L.; Toops, Todd J.; Daw, C. Stuart; Sun, Chenxi; Lapuerta, Magin; Agudelo, John

    2014-12-26

    The effect of rail pressure and biodiesel fueling on the morphology of exhaust particulate agglomerates and the nanostructure of primary particles (soot) was investigated with a common-rail turbocharged direct injection diesel engine. The engine was operated at steady state on a dynamometer running at moderate speed with both low (30%) and medium–high (60%) fixed loads, and exhaust particulate was sampled for analysis. Ultra-low sulfur diesel and its 20% v/v blends with soybean methyl ester biodiesel were used. Fuel injection occurred in a single event around top dead center at three different injection pressures. Exhaust particulate samples were characterized with TEMmore » imaging, scanning mobility particle sizing, thermogravimetric analysis, Raman spectroscopy, and XRD analysis. Particulate morphology and oxidative reactivity were found to vary significantly with rail pressure and with biodiesel blend level. Higher biodiesel content led to increases in the primary particle size and oxidative reactivity but did not affect nanoscale disorder in the as-received samples. For particulates generated with higher injection pressures, the initial oxidative reactivity increased, but there was no detectable correlation with primary particle size or nanoscale disorder.« less

  2. Impact of rail pressure and biodiesel fueling on the particulate morphology and soot nanostructures from a common-rail turbocharged direct injection diesel engine

    SciTech Connect (OSTI)

    Ye, Peng; Vander Wal, Randy; Boehman, Andre L.; Toops, Todd J.; Daw, C. Stuart; Sun, Chenxi; Lapuerta, Magin; Agudelo, John

    2014-12-26

    The effect of rail pressure and biodiesel fueling on the morphology of exhaust particulate agglomerates and the nanostructure of primary particles (soot) was investigated with a common-rail turbocharged direct injection diesel engine. The engine was operated at steady state on a dynamometer running at moderate speed with both low (30%) and mediumhigh (60%) fixed loads, and exhaust particulate was sampled for analysis. Ultra-low sulfur diesel and its 20% v/v blends with soybean methyl ester biodiesel were used. Fuel injection occurred in a single event around top dead center at three different injection pressures. Exhaust particulate samples were characterized with TEM imaging, scanning mobility particle sizing, thermogravimetric analysis, Raman spectroscopy, and XRD analysis. Particulate morphology and oxidative reactivity were found to vary significantly with rail pressure and with biodiesel blend level. Higher biodiesel content led to increases in the primary particle size and oxidative reactivity but did not affect nanoscale disorder in the as-received samples. For particulates generated with higher injection pressures, the initial oxidative reactivity increased, but there was no detectable correlation with primary particle size or nanoscale disorder.

  3. Heterogeneous waste processing

    DOE Patents [OSTI]

    Vanderberg, Laura A.; Sauer, Nancy N.; Brainard, James R.; Foreman, Trudi M.; Hanners, John L.

    2000-01-01

    A combination of treatment methods are provided for treatment of heterogeneous waste including: (1) treatment for any organic compounds present; (2) removal of metals from the waste; and, (3) bulk volume reduction, with at least two of the three treatment methods employed and all three treatment methods emplyed where suitable.

  4. Radioactive waste disposal package

    DOE Patents [OSTI]

    Lampe, Robert F.

    1986-11-04

    A radioactive waste disposal package comprising a canister for containing vitrified radioactive waste material and a sealed outer shell encapsulating the canister. A solid block of filler material is supported in said shell and convertible into a liquid state for flow into the space between the canister and outer shell and subsequently hardened to form a solid, impervious layer occupying such space.

  5. Radioactive waste disposal package

    DOE Patents [OSTI]

    Lampe, Robert F. (Bethel Park, PA)

    1986-01-01

    A radioactive waste disposal package comprising a canister for containing vitrified radioactive waste material and a sealed outer shell encapsulating the canister. A solid block of filler material is supported in said shell and convertible into a liquid state for flow into the space between the canister and outer shell and subsequently hardened to form a solid, impervious layer occupying such space.

  6. Radioactive waste storage issues

    SciTech Connect (OSTI)

    Kunz, D.E.

    1994-08-15

    In the United States we generate greater than 500 million tons of toxic waste per year which pose a threat to human health and the environment. Some of the most toxic of these wastes are those that are radioactively contaminated. This thesis explores the need for permanent disposal facilities to isolate radioactive waste materials that are being stored temporarily, and therefore potentially unsafely, at generating facilities. Because of current controversies involving the interstate transfer of toxic waste, more states are restricting the flow of wastes into - their borders with the resultant outcome of requiring the management (storage and disposal) of wastes generated solely within a state`s boundary to remain there. The purpose of this project is to study nuclear waste storage issues and public perceptions of this important matter. Temporary storage at generating facilities is a cause for safety concerns and underscores, the need for the opening of permanent disposal sites. Political controversies and public concern are forcing states to look within their own borders to find solutions to this difficult problem. Permanent disposal or retrievable storage for radioactive waste may become a necessity in the near future in Colorado. Suitable areas that could support - a nuclear storage/disposal site need to be explored to make certain the health, safety and environment of our citizens now, and that of future generations, will be protected.

  7. Nuclear waste solutions

    DOE Patents [OSTI]

    Walker, Darrel D.; Ebra, Martha A.

    1987-01-01

    High efficiency removal of technetium values from a nuclear waste stream is achieved by addition to the waste stream of a precipitant contributing tetraphenylphosphonium cation, such that a substantial portion of the technetium values are precipitated as an insoluble pertechnetate salt.

  8. Improving medical waste disposal

    SciTech Connect (OSTI)

    O'Connor, L.

    1994-05-01

    This article describes the use of electron-beam irradiation, steam detoxification, and microwave disinfection systems rather than incineration to rid the waste stream of medical scraps. The topics of the article include biological waste stream sources and amounts, pyrolysis and oxidation, exhaust gas cleanup, superheated steam sterilization and detoxification.

  9. Waste Determination Equivalency - 12172

    SciTech Connect (OSTI)

    Freeman, Rebecca D.

    2012-07-01

    The Savannah River Site (SRS) is a Department of Energy (DOE) facility encompassing approximately 800 square kilometers near Aiken, South Carolina which began operations in the 1950's with the mission to produce nuclear materials. The SRS contains fifty-one tanks (2 stabilized, 49 yet to be closed) distributed between two liquid radioactive waste storage facilities at SRS containing carbon steel underground tanks with storage capacities ranging from 2,800,000 to 4,900,000 liters. Treatment of the liquid waste from these tanks is essential both to closing older tanks and to maintaining space needed to treat the waste that is eventually vitrified or disposed of onsite. Section 3116 of the Ronald W. Reagan National Defense Authorization Act of Fiscal Year 2005 (NDAA) provides the Secretary of Energy, in consultation with the Nuclear Regulatory Commission (NRC), a methodology to determine that certain waste resulting from prior reprocessing of spent nuclear fuel are not high-level radioactive waste if it can be demonstrated that the waste meets the criteria set forth in Section 3116(a) of the NDAA. The Secretary of Energy, in consultation with the NRC, signed a determination in January 2006, pursuant to Section 3116(a) of the NDAA, for salt waste disposal at the SRS Saltstone Disposal Facility. This determination is based, in part, on the Basis for Section 3116 Determination for Salt Waste Disposal at the Savannah River Site and supporting references, a document that describes the planned methods of liquid waste treatment and the resulting waste streams. The document provides descriptions of the proposed methods for processing salt waste, dividing them into 'Interim Salt Processing' and later processing through the Salt Waste Processing Facility (SWPF). Interim Salt Processing is separated into Deliquification, Dissolution, and Adjustment (DDA) and Actinide Removal Process/Caustic Side Solvent Extraction Unit (ARP/MCU). The Waste Determination was signed by the

  10. Overview of mixed waste issues

    SciTech Connect (OSTI)

    Piciulo, P.L.; Bowerman, B.S.; Kempf, C.R.; MacKenzie, D.R.; Siskind, B.

    1986-01-01

    Based on BNL's study it was concluded that there are LLWs which contain chemically hazardous components. Scintillation liquids may be considered an EPA listed hazardous waste and are, therefore, potential mixed wastes. Since November, 1985 no operating LLW disposal site will accept these wastes for disposal. Unless such wastes contain de minimis quantities of radionuclides, they cannot be disposed of at an EPA an EPA permitted site. Currently generators of LSC wastes can ship de minimis wastes to be burned at commercial facilities. Oil wastes will also eventually be an EPA listed waste and thus will have to be considered a potential radioactive mixed wasted unless NRC establishes de minimis levels of radionuclides below which oils can be managed as hazardous wastes. Regarding wastes containing lead metal there is some question as to the extent of the hazard posed by lead disposed in a LLW burial trench. Chromium-containing wastes would have to be tested to determine whether they are potential mixed wastes. There may be other wastes that are mixed wastes; the responsibility for determining this rests with the waste generator. It is believed that there are management options for handling potential mixed wastes but there is no regulatory guidance. BNL has identified and evaluated a variety of treatment options for the management of potential radioactive mixed wastes. The findings of that study showed that application of a management option with the purpose of addressing EPA concern can, at the same time, address stabilization and volume reduction concerns of NRC.

  11. Environmental waste disposal contracts awarded

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Environmental contracts awarded locally Environmental waste disposal contracts awarded locally Three small businesses with offices in Northern New Mexico awarded nuclear waste...

  12. Waste Specification Records - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Specification Records About Us Hanford Site Solid Waste Acceptance Program What's New Acceptance Criteria Acceptance Process Becoming a new Hanford Customer Annual Waste Forecast...

  13. High-Level Waste Inventory

    Office of Environmental Management (EM)

    Analysis of Alternatives for Disposition of the Idaho Calcined High-Level Waste Inventory ... of the Idaho Calcined High-Level Waste Inventory Volume 1- Summary Report April ...

  14. Enhanced Tank Waste Strategy Update

    Office of Environmental Management (EM)

    in the EM complex Radioactive tank waste stabilization, treatment, and disposal ... Programmatic support activities* 10% Radioactive tank waste stabilization, treatment and ...

  15. Vitrification of NORM wastes

    SciTech Connect (OSTI)

    Chapman, C.

    1994-05-01

    Vitrification of wastes is a relatively new application of none of man`s oldest manufacturing processes. During the past 25 years it has been developed and accepted internationally for immobilizing the most highly radioactive wastes from spent nuclear fuel. By the year 2005, there will be nine operating high-level radioactive vitrification plants. Many of the technical ``lessons learned`` from this international program can be applied to much less hazardous materials such as naturally occurring radioactive material (NORM). With the deployment of low capital and operating cost systems, vitrification should become a broadly applied process for treating a large variety of wastes. In many situations, the wastes can be transformed into marketable products. This paper will present a general description of waste vitrification, summarize some of its key advantages, provide some test data for a small sample of one NORM, and suggest how this process may be applied to NORM.

  16. AVLIS production plant waste management plan

    SciTech Connect (OSTI)

    Not Available

    1984-11-15

    Following the executive summary, this document contains the following: (1) waste management facilities design objectives; (2) AVLIS production plant wastes; (3) waste management design criteria; (4) waste management plan description; and (5) waste management plan implementation. 17 figures, 18 tables.

  17. Hanford Dangerous Waste Permit

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Double-Shell Tank System 204-AR Waste Unloading Facility Operating Unit #12 241-AP Tank Farm construction. See black pickup trucks for scale. The DSTs have limited capacity and are aging. Maintaining these tanks is important to ensure that waste is ready to supply the Waste Treatment Plant. The permit requires continuous leak detection to protect humans and the environment. 200 West & East * 28 tanks in 6 groups, or tank farms. * Capacity: 1 - 1.2 million gallons each. * The double-shell

  18. Hanford Dangerous Waste Permit

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    We don't expect any risk from this site. The permit ensures operation and closure of this facility do not harm humans or the environment. Liquid Effluent Retention Facility Effluent Treatment Facility Operating Unit #3 What happens to the waste it receives? LERF has three lined basins with a capacity of 88.5 million liters. ETF removes or destroys dangerous waste in liquid waste. It uses treatments such as filters, reverse osmosis, pH adjustment, and ultraviolet light. Water is treated, then

  19. Radioactive waste material disposal

    DOE Patents [OSTI]

    Forsberg, Charles W.; Beahm, Edward C.; Parker, George W.

    1995-01-01

    The invention is a process for direct conversion of solid radioactive waste, particularly spent nuclear fuel and its cladding, if any, into a solidified waste glass. A sacrificial metal oxide, dissolved in a glass bath, is used to oxidize elemental metal and any carbon values present in the waste as they are fed to the bath. Two different modes of operation are possible, depending on the sacrificial metal oxide employed. In the first mode, a regenerable sacrificial oxide, e.g., PbO, is employed, while the second mode features use of disposable oxides such as ferric oxide.

  20. Radioactive waste material disposal

    DOE Patents [OSTI]

    Forsberg, C.W.; Beahm, E.C.; Parker, G.W.

    1995-10-24

    The invention is a process for direct conversion of solid radioactive waste, particularly spent nuclear fuel and its cladding, if any, into a solidified waste glass. A sacrificial metal oxide, dissolved in a glass bath, is used to oxidize elemental metal and any carbon values present in the waste as they are fed to the bath. Two different modes of operation are possible, depending on the sacrificial metal oxide employed. In the first mode, a regenerable sacrificial oxide, e.g., PbO, is employed, while the second mode features use of disposable oxides such as ferric oxide. 3 figs.

  1. Detecting vegetation-precipitation feedbacks in mid-Holocene...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Detecting vegetation-precipitation ... information resources in energy science and technology. ... of upper and lower soil water contents, and their ...

  2. Detecting vegetation-precipitation feedbacks in mid-Holocene...

    Office of Scientific and Technical Information (OSTI)

    North Africa from two climate models Citation Details In-Document Search Title: Detecting vegetation-precipitation feedbacks in mid-Holocene North Africa from two ...

  3. Production of Oil in Vegetative Tissues - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Production of Oil in Vegetative Tissues Inventors: Christoph Benning, Changcheng Xu, ... University's technology increases the oil storage capacity in plants and could help ...

  4. Local Incentive-Based Policy for Vegetable-Agroforestry: alocally...

    Open Energy Info (EERE)

    Vegetable-Agroforestry: a locally-appropriate adaptation and mitigation action (LAAMA) to climate change Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Local...

  5. Emissions From Various Biodiesel Sources Compared to a Range of Diesel Fuels in DPF Equipped Diesel Engines

    SciTech Connect (OSTI)

    Williams, A.; Burton, J.; Christensen, E.; McCormick, R. L.; Tester, J.

    2011-01-01

    The purpose of this study was to measure the impact of various sources of petroleum-based and bio-based diesel fuels on regulated emissions and fuel economy in diesel particulate filter (DPF) equipped diesel engines. Two model year 2008 diesel engines were tested with nine fuels including a certification ultra-low sulfur diesel (ULSD), local ULSD, high aromatic ULSD, low aromatic ULSD, and twenty percent blends of biodiesel derived from algae, camelina, soy, tallow, and yellow grease. Regulated emissions were measured over the heavy duty diesel transient test cycle. Measurements were also made of DPF-out particle size distribution and total particle count from a 13-mode steady state test using a fast mobility particle sizer. Test engines were a 2008 Cummins ISB and a 2008 International Maxx Force 10, both equipped with actively regenerated DPFs. Fuel consumption was roughly 2% greater over the transient test cycle for the B20 blends versus certification ULSD in both engines, consistent with the slightly lower energy content of biodiesel. Unlike studies conducted on older model engines, these engines equipped with diesel oxidation catalysts and DPFs showed small or no measurable fuel effect on the tailpipe emissions of total hydrocarbons (THC), carbon monoxide (CO) and particulate matter (PM). No differences in particle size distribution or total particle count were seen in a comparison of certification ULSD and B20 soy, with the exception of engine idling conditions where B20 produced a small reduction in the number of nucleation mode particles. In the Cummins engine, B20 prepared from algae, camelina, soy, and tallow resulted in an approximately 2.5% increase in nitrogen oxides (NO{sub x}) compared to the base fuel. The International engine demonstrated a higher degree of variability for NO{sub x} emissions, and fuel effects could not be resolved (p > 0.05). The group of petroleum diesel test fuels produced a range of NO{sub x} emissions very similar to that

  6. Waste Isolation Pilot Plant Nitrate Salt Bearing Waste Container

    Office of Environmental Management (EM)

    | Department of Energy Isolation Pilot Plant Contractor Receives 86 Percent of Available Fee Waste Isolation Pilot Plant Contractor Receives 86 Percent of Available Fee April 27, 2016 - 12:20pm Addthis Nuclear Waste Partnership received about 86 percent of the available fee for the performance period as the Waste Isolation Pilot Plant management and operations contractor. Nuclear Waste Partnership received about 86 percent of the available fee for the performance period as the Waste

  7. Waste Isolation Pilot Plant Nitrate Salt Bearing Waste Container Isolation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Plan | Department of Energy Nitrate Salt Bearing Waste Container Isolation Plan Waste Isolation Pilot Plant Nitrate Salt Bearing Waste Container Isolation Plan The purpose of this document is to provide the Plan required by the New Mexico Environment Department Administrative Order 05-20001 issued on May 20, 2014 to the U. S. Department of Energy and Nuclear Waste Partnership LLC. The Order, at paragraph 22, requires the Permittees to submit a WIPP Nitrate Salt Bearing Waste Container

  8. Method for calcining radioactive wastes

    DOE Patents [OSTI]

    Bjorklund, William J.; McElroy, Jack L.; Mendel, John E.

    1979-01-01

    This invention relates to a method for the preparation of radioactive wastes in a low leachability form by calcining the radioactive waste on a fluidized bed of glass frit, removing the calcined waste to melter to form a homogeneous melt of the glass and the calcined waste, and then solidifying the melt to encapsulate the radioactive calcine in a glass matrix.

  9. Generating power with waste wood

    SciTech Connect (OSTI)

    Atkins, R.S.

    1995-02-01

    Among the biomass renewables, waste wood has great potential with environmental and economic benefits highlighting its resume. The topics of this article include alternate waste wood fuel streams; combustion benefits; waste wood comparisons; waste wood ash; pilot scale tests; full-scale test data; permitting difficulties; and future needs.

  10. Methane generation from waste materials

    SciTech Connect (OSTI)

    Samani, Zohrab A.; Hanson, Adrian T.; Macias-Corral, Maritza

    2010-03-23

    An organic solid waste digester for producing methane from solid waste, the digester comprising a reactor vessel for holding solid waste, a sprinkler system for distributing water, bacteria, and nutrients over and through the solid waste, and a drainage system for capturing leachate that is then recirculated through the sprinkler system.

  11. Contained recovery of oily waste

    DOE Patents [OSTI]

    Johnson, Jr., Lyle A.; Sudduth, Bruce C.

    1989-01-01

    A method is provided for recovering oily waste from oily waste accumulations underground comprising sweeping the oily waste accumulation with hot water to recover said oily waste, wherein said area treated is isolated from surrounding groundwater hydraulically. The hot water may be reinjected after the hot-water displacement or may be treated to conform to any discharge requirements.

  12. Ramona Band of Cahuilla Indians Eco-Tourism Facility

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    mover- 200Kw Caterpillar diesel generator, fired with B100 biodiesel, produced locally. ... metal, paper, plastic Grease to the Biodiesel manufacturer Composting of green waste ...

  13. Hanford Site Secondary Waste Roadmap

    SciTech Connect (OSTI)

    Westsik, Joseph H.

    2009-01-29

    Summary The U.S. Department of Energy (DOE) is making plans to dispose of 54 million gallons of radioactive tank wastes at the Hanford Site near Richland, Washington. The high-level wastes and low-activity wastes will be vitrified and placed in permanent disposal sites. Processing of the tank wastes will generate secondary wastes, including routine solid wastes and liquid process effluents, and these need to be processed and disposed of also. The Department of Energy Office of Waste Processing sponsored a meeting to develop a roadmap to outline the steps necessary to design the secondary waste forms. Representatives from DOE, the U.S. Environmental Protection Agency, the Washington State Department of Ecology, the Oregon Department of Energy, Nuclear Regulatory Commission, technical experts from the DOE national laboratories, academia, and private consultants convened in Richland, Washington, during the week of July 21-23, 2008, to participate in a workshop to identify the risks and uncertainties associated with the treatment and disposal of the secondary wastes and to develop a roadmap for addressing those risks and uncertainties. This report describes the results of the roadmap meeting in Richland. Processing of the tank wastes will generate secondary wastes, including routine solid wastes and liquid process effluents. The secondary waste roadmap workshop focused on the waste streams that contained the largest fractions of the 129I and 99Tc that the Integrated Disposal Facility risk assessment analyses were showing to have the largest contribution to the estimated IDF disposal impacts to groundwater. Thus, the roadmapping effort was to focus on the scrubber/off-gas treatment liquids with 99Tc to be sent to the Effluent Treatment Facility for treatment and solidification and the silver mordenite and carbon beds with the captured 129I to be packaged and sent to the IDF. At the highest level, the secondary waste roadmap includes elements addressing regulatory and

  14. UMC Construction Waste (4493)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    collect all Construction waste identified in 2006 and excess through plant sales, recycle through plant scrap metal recycle program, dispose in Y-12 on-site landfill, or ship to...

  15. Waste and Recycling

    ScienceCinema (OSTI)

    McCarthy, Kathy

    2013-05-28

    Nuclear engineer Dr. Kathy McCarthy talks about nuclear energy, the challenge of nuclear waste and the research aimed at solutions. For more information about nuclear energy research, visit http://www.facebook.com/idahonationallaboratory.

  16. Treatment of organic waste

    DOE Patents [OSTI]

    Grantham, LeRoy F.

    1979-01-01

    An organic waste containing at least one element selected from the group consisting of strontium, cesium, iodine and ruthenium is treated to achieve a substantial reduction in the volume of the waste and provide for fixation of the selected element in an inert salt. The method of treatment comprises introducing the organic waste and a source of oxygen into a molten salt bath maintained at an elevated temperature to produce solid and gaseous reaction products. The gaseous reaction products comprise carbon dioxide and water vapor, and the solid reaction products comprise the inorganic ash constituents of the organic waste and the selected element which is retained in the molten salt. The molten salt bath comprises one or more alkali metal carbonates, and may optionally include from 1 to about 25 wt.% of an alkali metal sulfate.

  17. Women of Waste Management

    Broader source: Energy.gov [DOE]

    PHOENIX - For the seventh year at the Waste Management Conference, EM contractor Fluor hosted a discussion on the expanding role of women in environmental management this month in a panel session attended by more than 250 people.

  18. Pioneering Nuclear Waste Disposal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    18 19 T he WIPP's first waste receipt, 11 years later than originally planned, was a ... Far from ending, however, the WIPP story has really just begun. For the next 35 years, the ...

  19. Pioneering Nuclear Waste Disposal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... The names below are those who were on the team on the day of first waste receipt. The U.S. ... Brannan, David Brewer, Danny Britain, Randy Britain, Stacey Brooks, Susan Brown, Barry ...

  20. Waste Isolation Pilot Plant

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Plans and Reports WIPP Recovery Plan The Waste Isolation Pilot Plant (WIPP) Recovery Plan outlines the necessary steps to resume limited waste disposal operations in the first quarter of calendar year 2016. WIPP operations were suspended following an underground truck fire and a radiological release in February 2014. The recovery plan was issued on Sept. 30, 2014. Key elements of the recovery plan include strengthening safety programs, regulatory compliance, decontamination of the underground,

  1. Waste Isolation Pilot Plant

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Protective Actions Actions to Protect Workers, Public and the Environment The February 14 radioactivity release was a watershed event for the Waste Isolation Pilot Plant (WIPP). It was the first accident of its kind in the 15-year operating history of the transuranic nuclear waste repository. No workers were underground when the release occurred. There were 11 workers on the night shift at the time of the release and two additional employees entered the site in response to the accident. These 13

  2. Defense Waste Management Programs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Waste Management Programs - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced

  3. Citrus Waste Biomass Program

    SciTech Connect (OSTI)

    Karel Grohman; Scott Stevenson

    2007-01-30

    Renewable Spirits is developing an innovative pilot plant bio-refinery to establish the commercial viability of ehtanol production utilizing a processing waste from citrus juice production. A novel process based on enzymatic hydrolysis of citrus processing waste and fermentation of resulting sugars to ethanol by yeasts was successfully developed in collaboration with a CRADA partner, USDA/ARS Citrus and Subtropical Products Laboratory. The process was also successfully scaled up from laboratory scale to 10,000 gal fermentor level.

  4. Contents TRU Waste Celebration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    9 September 2005 A publication for all members of the NNSA/NSO family Contents TRU Waste Celebration by Katherine Schwartz On July 28, 2005, Bechtel Nevada hosted a function to commemorate the dedication and hard work of every Joanne Norton of meeting the milestone of completion of characterization of all legacy waste drums stored at the NTS for 30 years." , assistant general manager for Environmental Management at BN, was equally pleased. making direct contact with it. the dedicated

  5. WIPP WASTE MINIMIZATION PROGRAM DESCRIPTION

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NOV 2 3 2015 New Mexico Environment Department 2905 Rodeo Park Drive East, Building 1 Santa Fe, New Mexico 87505-6303 Subject: Transm ittal of the Waste Isolation Pilot Plant Project 2015 Waste Minimization Report, Permit Number NM4890139088-TSDF Dear Mr. Kieling: The purpose of this letter is to provide you with the Waste Isolation Pilot Plant (WIPP) Project 2015 Waste Minimization Report. This report, required by and prepared in accordance with the WIPP Hazardous Waste Facility Permit Part 2,

  6. WIPP WASTE MINIMIZATION PROGRAM DESCRIPTION

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Carlsbad, New Mexico 8822 1 NOV 2 3 2011 Mr. John Kieling , Acting Bureau Chief Hazardous Waste Bureau New Mexico Environme nt Department 2905 Rodeo Park Drive East, Building 1 Santa Fe, New Mexico 87505-6303 Subject: Transmittal of the Waste Isolation Pilot Plant Annual Waste Minimization Report Dear Mr. Kieling: This letter provides the submittal of the Waste Isolation Pilot Plant Annual Waste Minimization Report. This report is required by and has bee n prepared in accordance with the WIPP

  7. Waste Disposal | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Disposal Waste Disposal Trucks transport debris from Oak Ridge’s cleanup sites to the onsite CERCLA disposal area, the Environmental Management Waste Management Facility. Trucks transport debris from Oak Ridge's cleanup sites to the onsite CERCLA disposal area, the Environmental Management Waste Management Facility. The low-level radiological and hazardous wastes generated from Oak Ridge's cleanup projects are disposed in the Environmental Management Waste Management Facility (EMWMF). The

  8. Waste Management | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Management Waste Management Nuclear Materials Disposition Nuclear Materials Disposition In fulfilling its mission, EM frequently manages and completes disposition of surplus nuclear materials and spent nuclear fuel. These are not waste. They are nuclear materials no longer needed for national security or other purposes, including spent nuclear fuel, special nuclear materials (as defined by the Atomic Energy Act) and other Nuclear Materials. Read more Tank Waste and Waste Processing Tank Waste

  9. Effect of Biodiesel Blending on the Speciation of Soluble Organic Fraction from a Light Duty Diesel Engine

    SciTech Connect (OSTI)

    Strzelec, Andrea; Storey, John Morse; Lewis Sr, Samuel Arthur; Daw, C Stuart; Foster, Prof. Dave; Rutland, Prof. Christopher J.

    2010-01-01

    Soy methyl ester (SME) biodiesel was volumetrically blended with 2007 certification ultra low sulfur diesel (ULSD) fuel and run in a 1.7L direct-injection common rail diesel engine at one speed-load point (1500rpm, 2.6bar BMEP). Engine fueling rate and injection timing were adjusted to maintain a constant load, while particulate samples were collected in a diesel particulate filter (DPF) and with a dilution tunnel sampling train. The samples collected at these two locations were found to contain different levels of soluble organic fraction (SOF) and the different hydrocarbon species in the SOF. This observation indicates that traditional SOF measurements, in light of the specific sampling procedure used, may not be appropriate to DPF applications.

  10. Preparation and characterization of magnetic CsH{sub 2}PW{sub 12}O{sub 40}/Fe–SiO{sub 2} nanocatalysts for biodiesel production

    SciTech Connect (OSTI)

    Feyzi, Mostafa; Nourozi, Leila; Zakarianezhad, Mohammad

    2014-12-15

    Graphical abstract: In this study, a series of magnetic CsH{sub 2}PW{sub 12}O{sub 40}/Fe–SiO{sub 2} nanocatalysts were prepared and tested for biodiesel production. The best operational conditions were CH3OH/oil = 12/1 at 60 °C with mechanical stirring, the biodiesel yield reaches to 81% in 4 h. Also notably, recovery of the catalyst can be achieved easily with the help of an external magnet with no need for expensive ultracentrifugation. - Highlights: • Effects of preparation conditions for biodiesel production were studied. • The CsH{sub 2}PW{sub 12}O{sub 40}/Fe–SiO{sub 2} catalyst is efficient catalyst for biodiesel production. • The reaction conditions were found methanol/oil = 12/1, T = 60 °C. - Abstract: The magnetic CsH{sub 2}PW{sub 12}O{sub 40}/Fe–SiO{sub 2} nanocatalysts were prepared via combination of sol–gel and impregnation methods. The effects of different H{sub 3}PW{sub 12}O{sub 40}/(Fe–SiO{sub 2}) weight percentage, loading of Cs as a promotor and calcination conditions on the catalytic performance has been studied. It was found that the catalyst with H{sub 3}PW{sub 12}O{sub 40}/Fe–SiO{sub 2} = 4 wt.% and Cs = 2 wt.% is an optimal catalyst for biodiesel production. The activity of optimal catalyst was studied in different operational conditions. The best operational conditions were CH{sub 3}OH/oil = 12/1 at 60 °C with mechanical stirring rate of 500 rpm and the biodiesel yield reaches to 81% in 4 h. Characterization of catalysts was carried out by using scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform-infrared spectroscopy (FT-IR), vibrating sample magnetometry (VSM), N{sub 2} adsorption–desorption measurements methods, Thermal gravimetric analysis (TGA) and differential scanning calorimetry (DSC)

  11. Vegetable Oil from Leaves and Stems: Vegetative Production of Oil in a C4 Crop

    SciTech Connect (OSTI)

    2012-01-01

    PETRO Project: Arcadia Biosciences, in collaboration with the University of California-Davis, is developing plants that produce vegetable oil in their leaves and stems. Ordinarily, these oils are produced in seeds, but Arcadia Biosciences is turning parts of the plant that are not usually harvested into a source of concentrated energy. Vegetable oil is a concentrated source of energy that plants naturally produce and is easily separated after harvest. Arcadia Biosciences will isolate traits that control oil production in seeds and transfer them into leaves and stems so that all parts of the plants are oil-rich at harvest time. After demonstrating these traits in a fast-growing model plant, Arcadia Biosciences will incorporate them into a variety of dedicated biofuel crops that can be grown on land not typically suited for food production

  12. Hanford Site annual dangerous waste report. Volume 1, Part 2, Generator dangerous waste report dangerous waste: Calendar Year 1993

    SciTech Connect (OSTI)

    Not Available

    1993-12-31

    This report contains information on hazardous wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, weight, waste description, and waste designation.

  13. Salt Waste Processing Facility Fact Sheet | Department of Energy

    Office of Environmental Management (EM)

    Waste Management Tank Waste and Waste Processing Salt Waste Processing Facility Fact Sheet Salt Waste Processing Facility Fact Sheet Nuclear material production operations at ...

  14. Progress report Idaho on-road test with vegetable oil as a diesel fuel

    SciTech Connect (OSTI)

    Reece, D.; Peterson, C.L.

    1993-12-31

    Biodiesel is among many biofuels being considered in the US for alternative fueled vehicles. The use of this fuel can reduce US dependence on imported oil and help improve air quality by reducing gaseous and particulate emissions. Researchers at the Department of Agricultural Engineering at the University of Idaho have pioneered rapeseed oil as a diesel fuel substitute. Although UI has conducted many laboratory and tractor tests using raw rapeseed oil and rape methyl ester (RME), these fuels have not been proven viable for on-road applications. A biodiesel demonstration project has been launched to show the use of biodiesel in on-road vehicles. Two diesel powered pickups are being tested on 20 percent biodiesel and 80 percent diesel. One is a Dodge 3/4-ton pickup powered by a Cummins 5.9 liter turbocharged and intercooled engine. This engine is direct injected and is being run on 20 percent RME and 80 percent diesel. The other pickup is a Ford, powered by a Navistar 7.3 liter, naturally aspirated engine. This engine has a precombustion chamber and is being operated on 20 percent raw rapeseed oil and 80 percent diesel. The engines themselves are unmodified, but modifications have been made to the vehicles for the convenience of the test. In order to give maximum vehicle range, fuel mixing is done on-board. Two tanks are provided, one for the diesel and one for the biodiesel. Electric fuel pumps supply fuel to a combining chamber for correct proportioning. The biodiesel fuel tanks are heated with a heat exchanger which utilizes engine coolant circulation.

  15. Idaho Waste Vitrification Facilities Project Vitrified Waste Interim Storage Facility

    SciTech Connect (OSTI)

    Bonnema, Bruce Edward

    2001-09-01

    This feasibility study report presents a draft design of the Vitrified Waste Interim Storage Facility (VWISF), which is one of three subprojects of the Idaho Waste Vitrification Facilities (IWVF) project. The primary goal of the IWVF project is to design and construct a treatment process system that will vitrify the sodium-bearing waste (SBW) to a final waste form. The project will consist of three subprojects that include the Waste Collection Tanks Facility, the Waste Vitrification Facility (WVF), and the VWISF. The Waste Collection Tanks Facility will provide for waste collection, feed mixing, and surge storage for SBW and newly generated liquid waste from ongoing operations at the Idaho Nuclear Technology and Engineering Center. The WVF will contain the vitrification process that will mix the waste with glass-forming chemicals or frit and turn the waste into glass. The VWISF will provide a shielded storage facility for the glass until the waste can be disposed at either the Waste Isolation Pilot Plant as mixed transuranic waste or at the future national geological repository as high-level waste glass, pending the outcome of a Waste Incidental to Reprocessing determination, which is currently in progress. A secondary goal is to provide a facility that can be easily modified later to accommodate storage of the vitrified high-level waste calcine. The objective of this study was to determine the feasibility of the VWISF, which would be constructed in compliance with applicable federal, state, and local laws. This project supports the Department of Energys Environmental Management missions of safely storing and treating radioactive wastes as well as meeting Federal Facility Compliance commitments made to the State of Idaho.

  16. Los Alamos exceeds waste shipping goal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    exceeds waste shipping goal Los Alamos exceeds waste shipping goal Los Alamos shipped more than 3,000 cubic meters of transuranic (TRU) and mixed low-level waste to the Waste Isolation Pilot Plant and other approved waste disposal facilities. July 8, 2013 A shipment carrying Los Alamos transuranic waste headed to the Waste Isolation Pilot Plant in southeastern New Mexico. A shipment carrying Los Alamos transuranic waste headed to the Waste Isolation Pilot Plant in southeastern New Mexico.

  17. Los Alamos exceeds waste shipping goal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Los Alamos exceeds waste shipping goal Los Alamos exceeds waste shipping goal Los Alamos shipped 1,074 cubic meters of transuranic (TRU) and mixed low-level waste to the Waste Isolation Pilot Plant and other approved waste disposal facilities. July 8, 2013 A shipment carrying Los Alamos transuranic waste heads down NM 502, bound for the Waste Isolation Pilot Plant in southeastern New Mexico. A shipment carrying Los Alamos transuranic waste heads down NM 502, bound for the Waste Isolation Pilot

  18. Los Alamos exceeds waste shipping goal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Los Alamos exceeds waste shipping goal Los Alamos exceeds waste shipping goal Los Alamos shipped 1,074 cubic meters of transuranic (TRU) and mixed low-level waste to the Waste Isolation Pilot Plant and other approved waste disposal facilities. July 8, 2013 A shipment carrying Los Alamos transuranic waste heads down NM 502, bound for the Waste Isolation Pilot Plant in southeastern New Mexico. A shipment carrying Los Alamos transuranic waste heads down NM 502, bound for the Waste Isolation Pilot

  19. Waste Isolation Pilot Plant | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Waste Isolation Pilot Plant Waste Isolation Pilot Plant Waste Isolation Pilot Plant | June 2007 Salt Disposal Investigations Waste Isolation Pilot Plant | June 2007 Salt Disposal Investigations The mission of the Waste Isolation Pilot Plant site is to provide permanent, underground disposal of TRU and TRU-mixed wastes (wastes that also have hazardous chemical components). TRU waste consists of clothing, tools, and debris left from the research and production of nuclear weapons. TRU waste is

  20. Waste Treatment Plant - 12508

    SciTech Connect (OSTI)

    Harp, Benton; Olds, Erik

    2012-07-01

    The Waste Treatment Plant (WTP) will immobilize millions of gallons of Hanford's tank waste into solid glass using a proven technology called vitrification. The vitrification process will turn the waste into a stable glass form that is safe for long-term storage. Our discussion of the WTP will include a description of the ongoing design and construction of this large, complex, first-of-a-kind project. The concept for the operation of the WTP is to separate high-level and low-activity waste fractions, and immobilize those fractions in glass using vitrification. The WTP includes four major nuclear facilities and various support facilities. Waste from the Tank Farms is first pumped to the Pretreatment Facility at the WTP through an underground pipe-in-pipe system. When construction is complete, the Pretreatment Facility will be 12 stories high, 540 feet long and 215 feet wide, making it the largest of the four major nuclear facilities that compose the WTP. The total size of this facility will be more than 490,000 square feet. More than 8.2 million craft hours are required to construct this facility. Currently, the Pretreatment Facility is 51 percent complete. At the Pretreatment Facility the waste is pumped to the interior waste feed receipt vessels. Each of these four vessels is 55-feet tall and has a 375,000 gallon capacity, which makes them the largest vessels inside the Pretreatment Facility. These vessels contain a series of internal pulse-jet mixers to keep incoming waste properly mixed. The vessels are inside the black-cell areas, completely enclosed behind thick steel-laced, high strength concrete walls. The black cells are designed to be maintenance free with no moving parts. Once hot operations commence the black-cell area will be inaccessible. Surrounded by black cells, is the 'hot cell canyon'. The hot cell contains all the moving and replaceable components to remove solids and extract liquids. In this area, there is ultrafiltration equipment, cesium