National Library of Energy BETA

Sample records for biodiesel compressed natural

  1. Compressed natural gas (CNG) measurement

    SciTech Connect (OSTI)

    Husain, Z.D.; Goodson, F.D.

    1995-12-01

    The increased level of environmental awareness has raised concerns about pollution. One area of high attention is the internal combustion engine. The internal combustion engine in and of itself is not a major pollution threat. However, the vast number of motor vehicles in use release large quantities of pollutants. Recent technological advances in ignition and engine controls coupled with unleaded fuels and catalytic converters have reduced vehicular emissions significantly. Alternate fuels have the potential to produce even greater reductions in emissions. The Natural Gas Vehicle (NGV) has been a significant alternative to accomplish the goal of cleaner combustion. Of the many alternative fuels under investigation, compressed natural gas (CNG) has demonstrated the lowest levels of emission. The only vehicle certified by the State of California as an Ultra Low Emission Vehicle (ULEV) was powered by CNG. The California emissions tests of the ULEV-CNG vehicle revealed the following concentrations: Non-Methane Hydrocarbons 0.005 grams/mile Carbon Monoxide 0.300 grams/mile Nitrogen Oxides 0.040 grams/mile. Unfortunately, CNG vehicles will not gain significant popularity until compressed natural gas is readily available in convenient locations in urban areas and in proximity to the Interstate highway system. Approximately 150,000 gasoline filling stations exist in the United States while number of CNG stations is about 1000 and many of those CNG stations are limited to fleet service only. Discussion in this paper concentrates on CNG flow measurement for fuel dispensers. Since the regulatory changes and market demands affect the flow metering and dispenser station design those aspects are discussed. The CNG industry faces a number of challenges.

  2. Case Study - Compressed Natural Gas Refuse Fleets

    SciTech Connect (OSTI)

    Laughlin, M; Burnham, A.

    2014-02-01

    This case study explores the use of heavy-duty refuse trucks fueled by compressed natural gas highlighting three fleets from very different types of organizations.

  3. 2016 - LNG Export, Compressed Natural Gas (CNG), Re-Exports ...

    Energy Savers [EERE]

    - LNG Export, Compressed Natural Gas (CNG), Re-Exports & Long Term Natural Gas Applications 2016 - LNG Export, Compressed Natural Gas (CNG), Re-Exports & Long Term Natural Gas ...

  4. Defect Analysis of Vehicle Compressed Natural Gas Composite Cylinder...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Defect Analysis of Vehicle Compressed Natural Gas Composite Cylinder Defect Analysis of Vehicle Compressed Natural Gas Composite Cylinder These slides were presented at the Onboard ...

  5. NJ Compressed Natural Gas Refuse Trucks, Shuttle Buses and Infrastruct...

    Broader source: Energy.gov (indexed) [DOE]

    icon arravt051tifeinberg2011p.pdf More Documents & Publications NJ Compressed Natural Gas Refuse Trucks, Shuttle Buses and Infrastructure NJ Compressed Natural Gas Refuse ...

  6. Business Case for Compressed Natural Gas in Municipal Fleets...

    Open Energy Info (EERE)

    Business Case for Compressed Natural Gas in Municipal Fleets Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Business Case for Compressed Natural Gas in Municipal Fleets...

  7. Guidelines for Conversion of Diesel Buses to Compressed Natural...

    Open Energy Info (EERE)

    Conversion of Diesel Buses to Compressed Natural Gas Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Guidelines for Conversion of Diesel Buses to Compressed Natural Gas...

  8. NJ Compressed Natural Gas Refuse Trucks, Shuttle Buses and Infrastruct...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NJ Compressed Natural Gas Refuse Trucks, Shuttle Buses and Infrastructure NJ Compressed Natural Gas Refuse Trucks, Shuttle Buses and Infrastructure 2012 DOE Hydrogen and Fuel Cells ...

  9. Alternative Fuels Data Center: Compressed Natural Gas Fueling Stations

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Natural Gas Printable Version Share this resource Send a link to Alternative Fuels Data Center: Compressed Natural Gas Fueling Stations to someone by E-mail Share Alternative Fuels Data Center: Compressed Natural Gas Fueling Stations on Facebook Tweet about Alternative Fuels Data Center: Compressed Natural Gas Fueling Stations on Twitter Bookmark Alternative Fuels Data Center: Compressed Natural Gas Fueling Stations on Google Bookmark Alternative Fuels Data Center: Compressed Natural Gas Fueling

  10. 2014 - LNG Export, Compressed Natural Gas (CNG), Re-Exports ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2014 - LNG Export, Compressed Natural Gas (CNG), Re-Exports & Long Term Natural Gas Applications 2014 - LNG Export, Compressed Natural Gas (CNG), Re-Exports & Long Term Natural Gas ...

  11. 2015 - LNG Export, Compressed Natural Gas (CNG), Re-Exports ...

    Energy Savers [EERE]

    5 - LNG Export, Compressed Natural Gas (CNG), Re-Exports & Long Term Natural Gas Applications 2015 - LNG Export, Compressed Natural Gas (CNG), Re-Exports & Long Term Natural Gas...

  12. 2016 - LNG Export, Compressed Natural Gas (CNG), Re-Exports ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    6 - LNG Export, Compressed Natural Gas (CNG), Re-Exports & Long Term Natural Gas Applications 2016 - LNG Export, Compressed Natural Gas (CNG), Re-Exports & Long Term Natural Gas ...

  13. A computational investigation of diesel and biodiesel combustion and NOx formation in a light-duty compression ignition engine

    SciTech Connect (OSTI)

    Wang, Zihan; Srinivasan, Kalyan K.; Krishnan, Sundar R.; Som, Sibendu

    2012-04-24

    Diesel and biodiesel combustion in a multi-cylinder light duty diesel engine were simulated during a closed cycle (from IVC to EVO), using a commercial computational fluid dynamics (CFD) code, CONVERGE, coupled with detailed chemical kinetics. The computational domain was constructed based on engine geometry and compression ratio measurements. A skeletal n-heptane-based diesel mechanism developed by researchers at Chalmers University of Technology and a reduced biodiesel mechanism derived and validated by Luo and co-workers were applied to model the combustion chemistry. The biodiesel mechanism contains 89 species and 364 reactions and uses methyl decanoate, methyl-9- decenoate, and n-heptane as the surrogate fuel mixture. The Kelvin-Helmholtz and Rayleigh-Taylor (KH-RT) spray breakup model for diesel and biodiesel was calibrated to account for the differences in physical properties of the fuels which result in variations in atomization and spray development characteristics. The simulations were able to capture the experimentally observed pressure and apparent heat release rate trends for both the fuels over a range of engine loads (BMEPs from 2.5 to 10 bar) and fuel injection timings (from 0° BTDC to 10° BTDC), thus validating the overall modeling approach as well as the chemical kinetic models of diesel and biodiesel surrogates. Moreover, quantitative NOx predictions for diesel combustion and qualitative NOx predictions for biodiesel combustion were obtained with the CFD simulations and the in-cylinder temperature trends were correlated to the NOx trends."

  14. Price of Compressed Houlton ME Natural Gas Imports from Canada...

    U.S. Energy Information Administration (EIA) Indexed Site

    Houlton ME Natural Gas Imports from Canada (Dollars per Thousand Cubic Feet) Price of Compressed Houlton ME Natural Gas Imports from Canada (Dollars per Thousand Cubic Feet) Year ...

  15. Business Case for Compressed Natural Gas in Municipal Fleets | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Business Case for Compressed Natural Gas in Municipal Fleets Business Case for Compressed Natural Gas in Municipal Fleets This report describes how NREL used the CNG Vehicle and Infrastructure Cash-Flow Evaluation (VICE) model to establish guidance for fleets making decisions about using compressed natural gas. 47919.pdf (1.06 MB) More Documents & Publications QER - Comment of American Gas Association 3 Fuel Cell Buses in U.S. Transit Fleets: Summary of Experiences and Current

  16. Compressed Natural Gas and Hydrogen Fuels Workshop | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Compressed Natural Gas and Hydrogen Fuels Workshop Compressed Natural Gas and Hydrogen Fuels Workshop Fuel experts from China, India, and the United States shared lessons learned about deploying CNG- and hydrogen-fueled vehicles in public transit fleets and the consumer sector at the Compressed Natural Gas and Hydrogen Fuels: Lessons Learned for the Safe Deployment of Vehicles workshop. The U.S. Department of Energy (DOE) and the U.S. Department of Transportation (DOT) hosted the workshop on

  17. Workshop Notes from ""Compressed Natural Gas and Hydrogen Fuels...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen Fuels: Lessons Learned for the Safe Deployment of Vehicles"" Workshop, December 10-11, 2009 Workshop Notes from ""Compressed Natural Gas and Hydrogen Fuels: Lessons ...

  18. Compressed Houlton, ME Natural Gas Imports from Canada (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Houlton, ME Natural Gas Imports from Canada (Million Cubic Feet) Compressed Houlton, ME Natural Gas Imports from Canada (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug ...

  19. Development and Validation of a Reduced Mechanism for Biodiesel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    a Reduced Mechanism for Biodiesel Surrogates for Compression Ignition Engine Applications Development and Validation of a Reduced Mechanism for Biodiesel Surrogates for ...

  20. Costs Associated With Compressed Natural Gas Vehicle Fueling Infrastructure

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Costs Associated With Compressed Natural Gas Vehicle Fueling Infrastructure Factors to consider in the implementation of fueling stations and equipment Margaret Smith, New West Technologies (DOE HQ Technical Support) John Gonzales, National Renewable Energy Laboratory This document has been peer reviewed by the natural gas industry. September 2014 2 Introduction This document is designed to help fleets understand the cost factors associated with fueling infrastructure for compressed natural gas

  1. Portal, ND Compressed Natural Gas Exports to Canada (Dollars...

    U.S. Energy Information Administration (EIA) Indexed Site

    Dollars per Thousand Cubic Feet) Portal, ND Compressed Natural Gas Exports to Canada (Dollars per Thousand Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2015 ...

  2. Portal, ND Compressed Natural Gas Exports to Canada (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Million Cubic Feet) Portal, ND Compressed Natural Gas Exports to Canada (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2015 0 2 - No Data Reported; -- ...

  3. Calais, ME Compressed Natural Gas Exports to Canada (Dollars...

    U.S. Energy Information Administration (EIA) Indexed Site

    Dollars per Thousand Cubic Feet) Calais, ME Compressed Natural Gas Exports to Canada (Dollars per Thousand Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 ...

  4. Calais, ME Compressed Natural Gas Exports to Canada (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Million Cubic Feet) Calais, ME Compressed Natural Gas Exports to Canada (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1 24 19 15 3 8 23 22 2014 32 ...

  5. Business Case for Compressed Natural Gas in Municipal Fleets

    SciTech Connect (OSTI)

    Johnson, C.

    2010-06-01

    This report describes how NREL used the CNG Vehicle and Infrastructure Cash-Flow Evaluation (VICE) model to establish guidance for fleets making decisions about using compressed natural gas.

  6. Defect Analysis of Vehicle Compressed Natural Gas Composite Cylinder

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Defect Analysis of Vehicle Compressed Natural Gas Composite Cylinder A China Paper on Type 4 Cylinder, translated and presented by J. P. Hsu, PhD, Smart Chemistry Reason for Defect ...

  7. Workshop Notes from "Compressed Natural Gas and Hydrogen Fuels...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    exchange information among experts from China, India, and the U.S. on compressed natural ... It should be noted that in 2008, there were about 490,000 CNG vehicles in China. China ...

  8. New Report Compares Performance of Compressed Natural Gas Refuse...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A new report that compares the performance of compressed natural gas (CNG) refuse haulers ... The study reviews the fuel economy, range, cost and emissions of CNG garbage trucks. Free ...

  9. Regulated Emissions from Diesel and Compressed Natural Gas Transit Buses |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Emissions from Diesel and Compressed Natural Gas Transit Buses Regulated Emissions from Diesel and Compressed Natural Gas Transit Buses Poster presentaiton at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT). deer07_clark.pdf (100.8 KB) More Documents & Publications Evaluating Exhaust

  10. Defect Analysis of Vehicle Compressed Natural Gas Composite Cylinder |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Defect Analysis of Vehicle Compressed Natural Gas Composite Cylinder Defect Analysis of Vehicle Compressed Natural Gas Composite Cylinder These slides were presented at the Onboard Storage Tank Workshop on April 29, 2010. defectanalysis_naturalgas_ostw.pdf (2.31 MB) More Documents & Publications Safety analysis of in-use vehicle wrapping cylinder International Hydrogen Fuel and Pressure Vessel Forum 2010 Proceedings Type 4 Tank Testing, Certification and Field

  11. Costs Associated With Compressed Natural Gas Vehicle Fueling Infrastructure

    SciTech Connect (OSTI)

    Smith, M.; Gonzales, J.

    2014-09-01

    This document is designed to help fleets understand the cost factors associated with fueling infrastructure for compressed natural gas (CNG) vehicles. It provides estimated cost ranges for various sizes and types of CNG fueling stations and an overview of factors that contribute to the total cost of an installed station. The information presented is based on input from professionals in the natural gas industry who design, sell equipment for, and/or own and operate CNG stations.

  12. Biodiesel Basics

    SciTech Connect (OSTI)

    2014-07-01

    This fact sheet provides a brief introduction to biodiesel, including a discussion of biodiesel blends and specifications. It also covers how biodiesel compares to diesel fuel in terms of performance (including in cold weather) and whether there are adverse effects on engines or other systems. Finally, it discusses biodiesel fuel quality and standards, and compares biodiesel emissions to those of diesel fuel.

  13. Compressed natural gas vehicles motoring towards a green Beijing

    SciTech Connect (OSTI)

    Yang, Ming; Kraft-Oliver, T.; Guo Xiao Yan

    1996-12-31

    This paper first describes the state-of-the-art of compressed natural gas (CNG) technologies and evaluates the market prospects for CNG vehicles in Beijing. An analysis of the natural gas resource supply for fleet vehicles follows. The costs and benefits of establishing natural gas filling stations and promoting the development of vehicle technology are evaluated. The quantity of GHG reduction is calculated. The objective of the paper is to provide information of transfer niche of CNG vehicle and equipment production in Beijing. This paper argues that the development of CNG vehicles is a cost-effective strategy for mitigating both air pollution and GHG.

  14. SEP Success Story: State Energy Program Helping Arkansans Convert to Compressed Natural Gas

    Broader source: Energy.gov [DOE]

    The Arkansas Energy Office recently launched a Compressed Natural Gas Conversion Rebate Program, which provides incentives for fleets and individuals to purchase and/or convert their Arkansas-licensed vehicles to compressed natural gas. Learn more.

  15. Apparatus for dispensing compressed natural gas and liquified natural gas to natural gas powered vehicles

    SciTech Connect (OSTI)

    Bingham, Dennis A.; Clark, Michael L.; Wilding, Bruce M.; Palmer, Gary L.

    2007-05-29

    A fueling facility and method for dispensing liquid natural gas (LNG), compressed natural gas (CNG) or both on-demand. The fueling facility may include a source of LNG, such as cryogenic storage vessel. A low volume high pressure pump is coupled to the source of LNG to produce a stream of pressurized LNG. The stream of pressurized LNG may be selectively directed through an LNG flow path or to a CNG flow path which includes a vaporizer configured to produce CNG from the pressurized LNG. A portion of the CNG may be drawn from the CNG flow path and introduced into the CNG flow path to control the temperature of LNG flowing therethrough. Similarly, a portion of the LNG may be drawn from the LNG flow path and introduced into the CNG flow path to control the temperature of CNG flowing therethrough.

  16. Compressed natural gas fueled vehicles: The Houston experience

    SciTech Connect (OSTI)

    Not Available

    1993-12-31

    The report describes the experience of the City of Houston in defining the compressed natural gas fueled vehicle research scope and issues. It details the ways in which the project met initial expectations, and how the project scope, focus, and duration were adjusted in response to unanticipated results. It provides examples of real world successes and failures in efforts to commercialize basic research in adapting a proven technology (natural gas) to a noncommercially proven application (vehicles). Phase one of the demonstration study investigates, develops, documents, and disseminates information regarding the economic, operational, and environmental implications of utilizing compressed natural gas (CNG) in various truck fueling applications. The four (4) truck classes investigated are light duty gasoline trucks, medium duty gasoline trucks, medium duty diesel trucks and heavy duty diesel trucks. The project researches aftermarket CNG conversions for the first three vehicle classes and original equipment manufactured (OEM) CNG vehicles for light duty gasoline and heavy duty diesel classes. In phase two of the demonstration project, critical issues are identified and assessed with respect to implementing use of CNG fueled vehicles in a large vehicle fleet. These issues include defining changes in local, state, and industry CNG fueled vehicle related codes and standards; addressing vehicle fuel storage limitations; using standardized vehicle emission testing procedures and results; and resolving CNG refueling infrastructure implementation issues and related cost factors. The report identifies which CNG vehicle fueling options were tried and failed and which were tried and succeeded, with and without modifications. The conclusions include a caution regarding overly optimistic assessments of CNG vehicle technology at the initiation of the project.

  17. Compressed natural gas and liquefied petroleum gas as alternative fuels

    SciTech Connect (OSTI)

    Moussavi, M.; Al-Turk, M. . Civil Engineering Dept.)

    1993-12-01

    The use of alternative fuels in the transportation industry has gained a strong support in recent years. In this paper an attempt was made to evaluate the use of liquefied petroleum gas (LPG) and compressed natural gas (NG) by 25 LPG-bifuel and 14 NG-bifuel vehicles that are operated by 33 transit systems throughout Nebraska. A set of performance measures such as average fuel efficiency in kilometers per liter, average fuel cost per kilometer, average oil consumption, and average operation and maintenance cost for alternatively fueled vehicles were calculated and compared with similar performance measures of gasoline powered vehicles. The results of the study showed that the average fuel efficiency of gasoline is greater than those of LPG and NG, and the average fuel costs (dollars per kilometer) for LPG and NG are smaller than those for gasoline for most of the vehicles under this study.

  18. EA-1976: Emera CNG, LLC Compressed Natural Gas Project, Florida

    Broader source: Energy.gov [DOE]

    This EA will evaluate the potential environmental impacts associated with a proposal by Emera CNG, LLC that would include Emera's CNG plant Emera’s CNG plant would include facilities to receive, dehydrate, and compress gas to fill pressure vessels with an open International Organization for Standardization (ISO) container frame mounted on trailers. Emera plans to truck the trailers a distance of a quarter mile from its proposed CNG facility to a berth at the Port of Palm Beach, where the trailers will be loaded onto a roll-on/roll-off ocean going carrier. Emera plans to receive natural gas at its planned compression facility from the Riviera Lateral, a pipeline owned and operated by Peninsula Pipeline Company. Although this would be the principal source of natural gas to Emera’s CNG facility for export, during periods of maintenance at Emera’s facility, or at the Port of Palm Beach, Emera may obtain CNG from other sources and/or export CNG from other general-use Florida port facilities. The proposed Emera facility will initially be capable of loading 8 million cubic feet per day (MMcf/day) of CNG into ISO containers and, after full build-out, would be capable to load up to 25 MMcf/day. For the initial phase of the project, Emera intends to send these CNG ISO containers from Florida to Freeport, Grand Bahama Island, where the trailers will be unloaded, the CNG decompressed, and injected into a pipeline for transport to electric generation plants owned and operated by Grand Bahama Power Company (GBPC). DOE is authorizing the exportation of CNG and is not providing funding or financial assistance for the Emera Project.

  19. Biodiesel Blends

    SciTech Connect (OSTI)

    Not Available

    2005-04-01

    A 2-page fact sheet discussing general biodiesel blends and the improvement in engine performance and emissions.

  20. Washington Metropolitan Area Transit Authority: Compressed Natural Gas Transit Bus Evaluation

    SciTech Connect (OSTI)

    Chandler, K.; Eberts, E.; Melendez, M.

    2006-04-01

    Evaluates compressed natural gas (CNG) powered transit buses at Washington Metropolitan Area Transit Authority (WMATA), providing a comparison between them and standard diesel transit buses.

  1. Modeling and Analysis of Natural Gas and Gasoline In A High Compression

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ratio High Efficiency ICRE | Department of Energy and Analysis of Natural Gas and Gasoline In A High Compression Ratio High Efficiency ICRE Modeling and Analysis of Natural Gas and Gasoline In A High Compression Ratio High Efficiency ICRE performance of a high compression ratio (32:1 to 74:1) high efficiency (50 to 60% BTE) ICRE operating on natural gas and gasoline p-02_fitzgerald.pdf (283.34 KB) More Documents & Publications A Natural Gas, High Compression Ratio, High Efficiency ICRE

  2. Performance and Emissions Characteristics of Bio-Diesel (B100)-Ignited Methane and Propane Combustion in a Four Cylinder Turbocharged Compression Ignition Engine

    SciTech Connect (OSTI)

    Shoemaker, N. T.; Gibson, C. M.; Polk, A. C.; Krishnan, S. R.; Srinivasan, K. K.

    2011-10-05

    Different combustion strategies and fuel sources are needed to deal with increasing fuel efficiency demands and emission restrictions. One possible strategy is dual fueling using readily available resources. Propane and natural gas are readily available with the current infrastructure and biodiesel is growing in popularity as a renewable fuel. This paper presents experimental results from dual fuel combustion of methane (as a surrogate for natural gas) and propane as primary fuels with biodiesel pilots in a 1.9 liter, turbocharged, 4 cylinder diesel engine at 1800 rev/min. Experiments were performed with different percentage energy substitutions (PES) of propane and methane and at different brake mean effective pressures (BMEP/bmep). Brake thermal efficiency (BTE) and emissions (NOx, HC, CO, CO2, O2 and smoke) were also measured. Maximum PES levels for B100-methane dual fuelling were limited to 70% at 2.5 bar bmep and 48% at 10 bar bmep, and corresponding values for B100-propane dual fuelling were 64% and 43%, respectively. Maximum PES was limited by misfire at 2.5 bar bmep and the onset of engine knock at 10 bar bmep. Dual fuel BTEs approached straight B100 values at 10 bar bmep while they were significantly lower than B100 values at 2.5 bar bmep. In general dual fuelling was beneficial in reducing NOx and smoke emissions by 33% and 50%, respectively from baseline B100 levels; however, both CO and THC emissions were significantly higher than baseline B100 levels at all PES and loads.

  3. Performance and Emissions Characteristics of Bio-Diesel (B100)-Ignited Methane and Propane Combustion in a Four Cylinder Turbocharged Compression Ignition Engine

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Shoemaker, N. T.; Gibson, C. M.; Polk, A. C.; Krishnan, S. R.; Srinivasan, K. K.

    2011-10-05

    Different combustion strategies and fuel sources are needed to deal with increasing fuel efficiency demands and emission restrictions. One possible strategy is dual fueling using readily available resources. Propane and natural gas are readily available with the current infrastructure and biodiesel is growing in popularity as a renewable fuel. This paper presents experimental results from dual fuel combustion of methane (as a surrogate for natural gas) and propane as primary fuels with biodiesel pilots in a 1.9 liter, turbocharged, 4 cylinder diesel engine at 1800 rev/min. Experiments were performed with different percentage energy substitutions (PES) of propane and methane andmore » at different brake mean effective pressures (BMEP/bmep). Brake thermal efficiency (BTE) and emissions (NOx, HC, CO, CO2, O2 and smoke) were also measured. Maximum PES levels for B100-methane dual fuelling were limited to 70% at 2.5 bar bmep and 48% at 10 bar bmep, and corresponding values for B100-propane dual fuelling were 64% and 43%, respectively. Maximum PES was limited by misfire at 2.5 bar bmep and the onset of engine knock at 10 bar bmep. Dual fuel BTEs approached straight B100 values at 10 bar bmep while they were significantly lower than B100 values at 2.5 bar bmep. In general dual fuelling was beneficial in reducing NOx and smoke emissions by 33% and 50%, respectively from baseline B100 levels; however, both CO and THC emissions were significantly higher than baseline B100 levels at all PES and loads.« less

  4. 2015 - LNG Export, Compressed Natural Gas (CNG), Re-Exports & Long Term

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Natural Gas Applications | Department of Energy 5 - LNG Export, Compressed Natural Gas (CNG), Re-Exports & Long Term Natural Gas Applications 2015 - LNG Export, Compressed Natural Gas (CNG), Re-Exports & Long Term Natural Gas Applications Please note: To view the complete docket listing, please click the 'Docket Index' link pertaining to a particular docket. Docket Indexes and Service Lists that are not listed can be obtained by contacting the Docket Room Manager at 202-586-9478 or

  5. 2016 - LNG Export, Compressed Natural Gas (CNG), Re-Exports & Long Term

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Natural Gas Applications | Department of Energy 6 - LNG Export, Compressed Natural Gas (CNG), Re-Exports & Long Term Natural Gas Applications 2016 - LNG Export, Compressed Natural Gas (CNG), Re-Exports & Long Term Natural Gas Applications Please note: To view the complete docket listing, please click the 'Docket Index' link pertaining to a particular docket. Docket Indexes and Service Lists that are not listed can be obtained by contacting the Docket Room Manager at 202-586-9478 or

  6. EA-1976: Emera CNG, LLC Compressed Natural Gas Project, Florida...

    Broader source: Energy.gov (indexed) [DOE]

    Emera's CNG plant facilities to receive, dehydrate, and compress gas to fill pressure vessels with an open International Organization for Standardization (ISO) container frame...

  7. Safety issues relating to the liquefied petroleum gas, compressed natural gas and liquefied natural gas

    SciTech Connect (OSTI)

    Petru, T.D.

    1995-12-31

    The Railroad Commission of Texas, LP-Gas Division, is statutorily responsible for the safety aspects of liquefied petroleum gas (LPG) most commonly known as LP-gas or propane, compressed natural gas (CNG) and liquefied natural gas (LNG). This presentation will address the safety issues relating to their use as alternative fuels. The paper discusses the safety of pressure vessels used for storage of the fuels at refueling facilities and the containers mounted in vehicles. Other topics include the lack of odorants in LNG, the use of protective clothing when handling cryogenic fluids, and where to obtain a copy of the safety regulations for handling these three fuels.

  8. Inspection of compressed natural gas cylinders on school buses

    SciTech Connect (OSTI)

    1995-07-01

    The US Department of Energy (DOE) is sponsoring compressed natural gas (CNF)-powered school bus demonstrations in various locations around the country. Early in 1994, two non-DOE-sponsored CNG pickup trucks equipped with composite-reinforced-aluminum fuel cylinders experienced cylinder ruptures during refueling. As reported by the Gas Research Institute (GRI): ...analysis of the cylinder ruptures on the pickup trucks revealed that they were due to acid-induced stress corrosion cracking (SCC) of the overwrap. The overwrap that GRI refers to is a resin-impregnated fiber that is wrapped around the outside of the gas cylinder for added strength. Because ensuring the safety of the CNG vehicles it sponsors is of paramount concern to DOE, the Department, through the National Renewable Energy Laboratory (NREL), conducted inspections of DOE-sponsored vehicles nationwide. The work had three objectives: inspection, documentation, and education. First, inspectors visited sites where CNG-powered school buses sponsored by DOE are based, and inspected the CNG cylinders for damage. Second, information learned during the inspections was collected for DOE. Third, the inspections found that the education and awareness of site personnel, in terms of cylinder damage detection, needed to be increased.

  9. ,"Compressed U.S. Natural Gas Imports from Canada (Million Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural Gas Imports from Canada (Million Cubic Feet)" "Sourcekey","NGMEPG0INCNUS-NCAMMCF" "Date","Compressed U.S. Natural Gas Imports from Canada (Million Cubic Feet)" ...

  10. ,"Compressed U.S. Natural Gas Exports to Canada (Million Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    U.S. Natural Gas Exports to Canada (Million Cubic Feet)" "Sourcekey","NGMEPG0ENCNUS-NCAMMCF" "Date","Compressed U.S. Natural Gas Exports to Canada (Million Cubic Feet)" ...

  11. Biodiesel Basics (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-06-01

    This fact sheet provides a brief introduction to biodiesel, including a discussion of biodiesel blends, which blends are best for which vehicles, where to buy biodiesel, how biodiesel compares to diesel fuel in terms of performance, how biodiesel performs in cold weather, whether biodiesel use will plug vehicle filters, how long-term biodiesel use may affect engines, biodiesel fuel standards, and whether biodiesel burns cleaner than diesel fuel. The fact sheet also dismisses the use of vegetable oil as a motor fuel.

  12. Biodiesel | Open Energy Information

    Open Energy Info (EERE)

    Biodiesel Jump to: navigation, search TODO: Add description List of Biodiesel Incentives Retrieved from "http:en.openei.orgwindex.php?titleBiodiesel&oldid267146" Feedback...

  13. Monthly Biodiesel Production Report

    U.S. Energy Information Administration (EIA) Indexed Site

    U.S. Biodiesel production capacity and production million gallons Period Annual Production ... B100 is the industry designation for pure biodiesel; a biodiesel blend contains both pure ...

  14. Energy Department Authorizes Emera CNG, LLC’s Application to Export Compressed Natural Gas

    Broader source: Energy.gov [DOE]

    The Energy Department announced today that it has issued a final authorization to Emera CNG, LLC (Emera) to export domestically produced compressed natural gas to countries that do not have a Free Trade Agreement with the United States.

  15. Workshop Agenda: Compressed Natural Gas and Hydrogen Fuels, Lesssons Learned for the Safe Deployment of Vehicles

    Broader source: Energy.gov [DOE]

    This agenda provides information about the Compressed Natural Gas and Hydrogen Fuels workshop hosted by the U.S. departments of Energy and Transportation on December 10-11, 2009 in Washington, D.C.

  16. Price of Compressed U.S. Natural Gas Exports to Canada (Dollars...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to Canada (Dollars per Thousand Cubic Feet) Price of Compressed U.S. Natural Gas Exports to Canada (Dollars per Thousand Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct...

  17. Maryland Biodiesel | Open Energy Information

    Open Energy Info (EERE)

    Biodiesel Jump to: navigation, search Name: Maryland Biodiesel Place: Berlin, Maryland Product: Maryland Biodiesel operates the 3.7m liter biodiesel plant in Berlin, Maryland....

  18. CLV Biodiesel | Open Energy Information

    Open Energy Info (EERE)

    CLV Biodiesel Jump to: navigation, search Name: CLV Biodiesel Place: Colider, Mato Grosso, Brazil Product: Biodiesel producer References: CLV Biodiesel1 This article is a stub....

  19. Better Biodiesel | Open Energy Information

    Open Energy Info (EERE)

    Biodiesel Jump to: navigation, search Name: Better Biodiesel Place: Orem, Utah Zip: 84057 Product: Biodiesel producer References: Better Biodiesel1 This article is a stub. You...

  20. Upstate Biodiesel | Open Energy Information

    Open Energy Info (EERE)

    Biodiesel Jump to: navigation, search Name: Upstate Biodiesel Place: New York Product: Biodiesel producer. References: Upstate Biodiesel1 This article is a stub. You can help...

  1. Crescent Biodiesel | Open Energy Information

    Open Energy Info (EERE)

    Biodiesel Jump to: navigation, search Name: Crescent Biodiesel Place: Brazil Product: Brazilian biodiesel producer. References: Crescent Biodiesel1 This article is a stub. You...

  2. AZ Biodiesel | Open Energy Information

    Open Energy Info (EERE)

    AZ Biodiesel Jump to: navigation, search Name: AZ Biodiesel Place: Chandler, Arizona Zip: 85225 Product: AZ Biodiesel is a biodiesel producer that announced plans in July 2008 to...

  3. A Natural Gas, High Compression Ratio, High Efficiency ICRE

    Broader source: Energy.gov [DOE]

    Using natural gas and gasoline modeling, indications are that a free piston-floating stroke engine configuration can realize engine efficiency greater than 60 percent.

  4. Method and apparatus for dispensing compressed natural gas and liquified natural gas to natural gas powered vehicles

    SciTech Connect (OSTI)

    Bingham, Dennis A.; Clark, Michael L.; Wilding, Bruce M.; Palmer, Gary L.

    2005-05-31

    A fueling facility and method for dispensing liquid natural gas (LNG), compressed natural gas (CNG) or both on-demand. The fueling facility may include a source of LNG, such as cryogenic storage vessel. A low volume high pressure pump is coupled to the source of LNG to produce a stream of pressurized LNG. The stream of pressurized LNG may be selectively directed through an LNG flow path or to a CNG flow path which includes a vaporizer configured to produce CNG from the pressurized LNG. A portion of the CNG may be drawn from the CNG flow path and introduced into the CNG flow path to control the temperature of LNG flowing therethrough. Similarly, a portion of the LNG may be drawn from the LNG flow path and introduced into the CNG flow path to control the temperature of CNG flowing therethrough.

  5. TECHNOLOGIES TO ENHANCE OPERATION OF THE EXISTING NATURAL GAS COMPRESSION INFRASTRUCTURE

    SciTech Connect (OSTI)

    Anthony J. Smalley; Ralph E. Harris; Gary D. Bourn

    2004-03-01

    This report documents work performed in Phase I of the project entitled: ''Technologies to Enhance Operation of the Existing Natural Gas Compression Infrastructure''. The project objective is to develop and substantiate methods for operating integral engine/compressors in gas pipeline service, which reduce fuel consumption, increase capacity, and enhance mechanical integrity. The report describes a number of potential enhancements to the existing natural gas compression infrastructure that have been identified and qualitatively demonstrated in tests on three different integral engine/compressors in natural gas transmission service.

  6. TECHNOLOGIES TO ENHANCE OPERATION OF THE EXISTING NATURAL GAS COMPRESSION INFRASTRUCTURE

    SciTech Connect (OSTI)

    Anthony J. Smalley; Ralph E. Harris; Gary D. Bourn

    2004-08-01

    This report documents work performed in Phase I of the project entitled: ''Technologies to Enhance Operation of the Existing Natural Gas Compression Infracture''. The project objective is to develop and substantiate methods for operating integral engine/compressors in gas pipeline service, which reduce fuel consumption, increase capacity, and enhance mechanical integrity. The report describes a number of potential enhancements to the existing natural gas compression infrastructure that have been identified and tested on four different integral engine/compressors in natural gas transmission service.

  7. Life cycle inventory of biodiesel and petroleum diesel for use...

    Office of Scientific and Technical Information (OSTI)

    Biodiesel is made by chemically combining any natural oil or fat with an alcohol such as ... European biodiesel is made predominantly from rapeseed oil (a cousin of canola oil). In ...

  8. State Energy Program Helping Arkansans Convert to Compressed Natural Gas

    Broader source: Energy.gov [DOE]

    As President Obama highlighted in his State of the Union speech last night, developing natural gas here at home is part of the solution to getting off foreign oil and putting Americans to work.

  9. Development of a Liquid to Compressed Natural Gas (LCNG) Fueling Station. Final Report

    SciTech Connect (OSTI)

    Moore, J. A.

    1999-06-30

    The program objective was the development of equipment and processes to produce compressed natural gas (CNG) from liquified natural gas (LNG) for heavy duty vehicular applications. The interest for this technology is a result of the increased use of alternative fuels for the reduction of emissions and dependency of foreign energy. Technology of the type developed under this program is critical for establishing natural gas as an economical alternative fuel.

  10. Workshop Notes from ""Compressed Natural Gas and Hydrogen Fuels: Lessons Learned for the Safe Deployment of Vehicles"" Workshop, December 10-11, 2009

    Broader source: Energy.gov [DOE]

    These notes provide information about the Compressed Natural Gas and Hydrogen Fuels workshop in December 2009.

  11. Natural Gas Compression Technology Improves Transport and Efficiencies, Lowers Operating Costs

    Broader source: Energy.gov [DOE]

    An award-winning compressor design that decreases the energy required to compress and transport natural gas, lowers operating costs, improves efficiencies and reduces the environmental footprint of well site operations has been developed by a Massachusetts-based company with support from the U.S. Department of Energy

  12. Alternative fuel trucks case studies: Running refuse haulers on compressed natural gas

    SciTech Connect (OSTI)

    Norton, P.; Kelly, K.

    1996-07-01

    This document details the experience of New York City`s compressed natural gas refuse haulers. These 35 ton vehicles have engines that displace 10 liters and provide 240 horsepower. Fuel economy, range, cost, maintenance, repair issues, and emissions are discussed. Photographs and figures illustrate the attributes of these alternative fuel vehicles.

  13. Creating Biodiesel & Mitigating Waste

    K-12 Energy Lesson Plans and Activities Web site (EERE)

    Safety practices for handling the materials involved in producing biodiesel fuel cannot be overemphasized, especially if students attempt to synthesize biodiesel outside of class.

  14. Monthly Biodiesel Production Report

    U.S. Energy Information Administration (EIA) Indexed Site

    Biodiesel (B100) production by Petroleum Administration for Defense District (PADD) ... Source: U.S. Energy Information Administration, Form EIA-22M "Monthly Biodiesel Production ...

  15. Building a Business Case for Compressed Natural Gas in Fleet Applications

    SciTech Connect (OSTI)

    Mitchell, G.

    2015-03-19

    Natural gas is a clean-burning, abundant, and domestically produced source of energy. Compressed natural gas (CNG) has recently garnered interest as a transportation fuel because of these attributes and because of its cost savings and price stability compared to conventional petroleum fuels. The National Renewable Energy Laboratory (NREL) developed the Vehicle Infrastructure and Cash-Flow Evaluation (VICE) model to help businesses and fleets evaluate the financial soundness of CNG vehicle and CNG fueling infrastructure projects.

  16. Biodiesel Progress: ASTM Specifications and 2nd Generation Biodiesel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Progress: ASTM Specifications and 2nd Generation Biodiesel Biodiesel Progress: ASTM Specifications and 2nd Generation Biodiesel Presentation given at the 2007 Diesel ...

  17. THE SLOW-MODE NATURE OF COMPRESSIBLE WAVE POWER IN SOLAR WIND TURBULENCE

    SciTech Connect (OSTI)

    Howes, G. G.; Klein, K. G.; TenBarge, J. M.; Bale, S. D.; Chen, C. H. K.; Salem, C. S.

    2012-07-01

    We use a large, statistical set of measurements from the Wind spacecraft at 1 AU, and supporting synthetic spacecraft data based on kinetic plasma theory, to show that the compressible component of inertial range solar wind turbulence is primarily in the kinetic slow mode. The zero-lag cross-correlation C({delta}n, {delta}B{sub ||}) between proton density fluctuations {delta}n and the field-aligned (compressible) component of the magnetic field {delta}B{sub ||} is negative and close to -1. The typical dependence of C({delta}n, {delta}B{sub ||}) on the ion plasma beta {beta}{sub i} is consistent with a spectrum of compressible wave energy that is almost entirely in the kinetic slow mode. This has important implications for both the nature of the density fluctuation spectrum and for the cascade of kinetic turbulence to short wavelengths, favoring evolution to the kinetic Alfven wave mode rather than the (fast) whistler mode.

  18. Physical properties of bio-diesel & Implications for use of bio-diesel in diesel engines

    SciTech Connect (OSTI)

    Chakravarthy, Veerathu K; McFarlane, Joanna; Daw, C Stuart; Ra, Youngchul; Griffin, Jelani K

    2008-01-01

    In this study we identify components of a typical biodiesel fuel and estimate both their individual and mixed thermo-physical and transport properties. We then use the estimated mixture properties in computational simulations to gauge the extent to which combustion is modified when biodiesel is substituted for conventional diesel fuel. Our simulation studies included both regular diesel combustion (DI) and premixed charge compression ignition (PCCI). Preliminary results indicate that biodiesel ignition is significantly delayed due to slower liquid evaporation, with the effects being more pronounced for DI than PCCI. The lower vapor pressure and higher liquid heat capacity of biodiesel are two key contributors to this slower rate of evaporation. Other physical properties are more similar between the two fuels, and their impacts are not clearly evident in the present study. Future studies of diesel combustion sensitivity to both physical and chemical properties of biodiesel are suggested.

  19. Alternative Fuels Data Center: St. Louis Airport Relies on Biodiesel and

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Natural Gas Vehicles St. Louis Airport Relies on Biodiesel and Natural Gas Vehicles to someone by E-mail Share Alternative Fuels Data Center: St. Louis Airport Relies on Biodiesel and Natural Gas Vehicles on Facebook Tweet about Alternative Fuels Data Center: St. Louis Airport Relies on Biodiesel and Natural Gas Vehicles on Twitter Bookmark Alternative Fuels Data Center: St. Louis Airport Relies on Biodiesel and Natural Gas Vehicles on Google Bookmark Alternative Fuels Data Center: St. Louis

  20. Comparative analysis of liquefied natural gas (LNG) and compressed natural gas (CNG) used by transit agencies in Texas. Research report

    SciTech Connect (OSTI)

    Lede, N.W.

    1997-09-01

    This study is a detailed comparative analysis of liquefied natural gas (LNG) and compressed natural gas (CNG). The study provides data on two alternative fuels used by transit agencies in Texas. First, we examine the `state-of-the- art` in alternative fuels to established a framework for the study. Efforts were made to examine selected characteristics of two types of natural gas demonstrations in terms of the following properties: energy source characteristics, vehicle performance and emissions, operations, maintenance, reliability, safety costs, and fuel availability. Where feasible, two alternative fuels were compared with conventional gasoline and diesel fuel. Environmental considerations relative to fuel distribution and use are analyzed, with a focus on examining flammability an other safety-related issues. The objectives of the study included: (1) assess the state-of-the-art and document relevant findings pertaining to alternative fuels; (2) analyze and synthesize existing databases on two natural gas alternatives: liquefied natural gas (LNG) and compressed natural gas (CNG): and (3) compare two alterative fuels used by transit properties in Texas, and address selected aspects of alternative fuels such as energy source characteristics, vehicle performance and emissions, safety, costs, maintenance and operations, environmental and related issues.

  1. ABS Biodiesel | Open Energy Information

    Open Energy Info (EERE)

    Biodiesel Jump to: navigation, search Name: ABS Biodiesel Place: United Kingdom Product: UK-based biodiesel producer developing a plant in Avonmouth, near Bristol. References: ABS...

  2. Soyminas Biodiesel | Open Energy Information

    Open Energy Info (EERE)

    Soyminas Biodiesel Jump to: navigation, search Name: Soyminas Biodiesel Place: DIST. INDUSTRIAL, Brazil Zip: 37980-000 Product: Brazilian biodiesel producer located in Minas...

  3. Home Biodiesel | Open Energy Information

    Open Energy Info (EERE)

    Home Biodiesel Jump to: navigation, search Name: Home Biodiesel Place: Marysville, California Zip: 95901 Product: Manufacturer of small scale biodiesel equipment. Coordinates:...

  4. Brasil Biodiesel | Open Energy Information

    Open Energy Info (EERE)

    Biodiesel Jump to: navigation, search Name: Brasil Biodiesel Place: Piaui, Brazil Product: Brazilian holding which develops biodiesel projects. Coordinates: -6.83956,...

  5. Taua Biodiesel | Open Energy Information

    Open Energy Info (EERE)

    Taua Biodiesel Jump to: navigation, search Name: Taua Biodiesel Place: Brazil Product: Biodiesel producer currently developing a 36m-litre plant in the Brazilian state of Mato...

  6. Biodiesel Triangulo | Open Energy Information

    Open Energy Info (EERE)

    Triangulo Jump to: navigation, search Name: Biodiesel Triangulo Place: Iturama, MG, Brazil Product: Brazilian biodiesel producer located in Minas Gerais will develop two biodiesel...

  7. Compressed Natural Gas and Liquefied Petroleum Gas Conversions: The National Renewable Energy Laboratory's Experience

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Compressed Natural Gas and Liquefied Petroleum Gas Conversions: The National Renewable Energy Laboratory's Experience N T Y A U E O F E N E R G D E P A R T M E N I T E D S T A T S O F A E R I C M Compressed Natural Gas and Liquefied Petroleum Gas Conversions: The National Renewable Energy Laboratory's Experience N T Y A U E O F E N E R G D E P A R T M E N I T E D S T A T S O F A E R I C M Robert C. Motta Kenneth J. Kelly William W. Warnock Executive Summary The National Renewable Energy

  8. TECHNOLOGIES TO ENHANCE OPERATION OF THE EXISTNG NATURAL GAS COMPRESSION INFRASTRUCTURE

    SciTech Connect (OSTI)

    Anthony J. Smalle; Ralph E. Harris; Gary D. Bourn

    2003-07-01

    This report documents work performed in the third quarter of the project entitled: ''Technologies to Enhance Operation of the Existing Natural Gas Compression Infrastructure''. The project objective is to develop and substantiate methods for operating integral engine/compressors in gas pipeline service, which reduce fuel consumption, increase capacity, and enhance mechanical integrity. The report describes the following work: first field test; test data analysis.

  9. TECHNOLOGIES TO ENHANCE OPERATION OF THE EXISTING NATURAL GAS COMPRESSION INFRASTRUCTURE

    SciTech Connect (OSTI)

    Anthony J. Smalley; Ralph E. Harris; Gary D. Bourn

    2003-10-01

    This report documents work performed in the fourth quarter of the project entitled: ''Technologies to Enhance Operation of the Existing Natural Gas Compression Infrastructure''. The project objective is to develop and substantiate methods for operating integral engine/compressors in gas pipeline service, which reduce fuel consumption, increase capacity, and enhance mechanical integrity. The report describes the following work: second field test; test data analysis for the first field test; operational optimization plans.

  10. TECHNOLOGIES TO ENHANCE OPERATION OF THE EXISTING NATURAL GAS COMPRESSION INFRASTRUCTURE

    SciTech Connect (OSTI)

    Anthony J. Smalley; Ralph E. Harris; Gary D. Bourn

    2004-01-01

    This report documents work performed in the fifth quarter of the project entitled: ''Technologies to Enhance Operation of the Existing Natural Gas Compression Infrastructure''. The project objective is to develop and substantiate methods for operating integral engine/compressors in gas pipeline service, which reduce fuel consumption, increase capacity, and enhance mechanical integrity. The report describes the following work: completion of analysis of data from first visit to second site; preparation for follow-up testing.

  11. Quality Assessment of Biodiesel and Biodiesel Blends | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Quality Assessment of Biodiesel and Biodiesel Blends Quality Assessment of Biodiesel and Biodiesel Blends The results of a quality survey of B20 fuel in the United States were ...

  12. Alternative Fuels Data Center: Biodiesel

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Biodiesel Printable Version Share this resource Send a link to Alternative Fuels Data Center: Biodiesel to someone by E-mail Share Alternative Fuels Data Center: Biodiesel on Facebook Tweet about Alternative Fuels Data Center: Biodiesel on Twitter Bookmark Alternative Fuels Data Center: Biodiesel on Google Bookmark Alternative Fuels Data Center: Biodiesel on Delicious Rank Alternative Fuels Data Center: Biodiesel on Digg Find More places to share Alternative Fuels Data Center: Biodiesel on

  13. Potential hazards of compressed air energy storage in depleted natural gas reservoirs.

    SciTech Connect (OSTI)

    Cooper, Paul W.; Grubelich, Mark Charles; Bauer, Stephen J.

    2011-09-01

    This report is a preliminary assessment of the ignition and explosion potential in a depleted hydrocarbon reservoir from air cycling associated with compressed air energy storage (CAES) in geologic media. The study identifies issues associated with this phenomenon as well as possible mitigating measures that should be considered. Compressed air energy storage (CAES) in geologic media has been proposed to help supplement renewable energy sources (e.g., wind and solar) by providing a means to store energy when excess energy is available, and to provide an energy source during non-productive or low productivity renewable energy time periods. Presently, salt caverns represent the only proven underground storage used for CAES. Depleted natural gas reservoirs represent another potential underground storage vessel for CAES because they have demonstrated their container function and may have the requisite porosity and permeability; however reservoirs have yet to be demonstrated as a functional/operational storage media for compressed air. Specifically, air introduced into a depleted natural gas reservoir presents a situation where an ignition and explosion potential may exist. This report presents the results of an initial study identifying issues associated with this phenomena as well as possible mitigating measures that should be considered.

  14. Heavy Alcohols as a Fuel Blending Agent for Compression Ignition...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Avoidance Characterization of Dual-Fuel Reactivity Controlled Compression Ignition (RCCI) Using Hydrated Ethanol and Diesel Fuel BiodieselFuelManagementBestPracticesReport.pdf

  15. TECHNOLOGIES TO ENHANCE THE OPERATION OF EXISTNG NATURAL GAS COMPRESSION INFRASTRUCTURE

    SciTech Connect (OSTI)

    Anthony J. Smalley; Ralph E. Harris; Gary D. Bourn; Danny M. Deffenbaugh

    2005-01-28

    This quarterly report documents work performed under Tasks 15, 16, and 18 through 23 of the project entitled: ''Technologies to Enhance the Operation of the Existing Natural Gas Compression Infrastructure''. The project objective is to develop and substantiate methods for operating integral engine/compressors in gas pipeline service, which reduce fuel consumption, increase capacity, and enhance mechanical integrity. The report first documents a survey test performed on an HBA-6 engine/compressor installed at Duke Energy's Bedford Compressor Station. This is one of several tests planned, which will emphasize identification and reduction of compressor losses. Additionally, this report presents a methodology for distinguishing losses in compressor attributable to valves, irreversibility in the compression process, and the attached piping (installation losses); it illustrates the methodology with data from the survey test. The report further presents the validation of the simulation model for the Air Balance tasks and outline of conceptual manifold designs.

  16. Ten Years of Compressed Natural Gas (CNG) Operations at SunLine Transit Agency: April 2003--December 2004

    SciTech Connect (OSTI)

    Chandler, K.

    2006-01-01

    This report focuses on the lesson learned at the SunLine Transit Agency after it converted in 1994 its entire operating transit bus fleet to compressed natural gas (CNG).

  17. Buffalo Biodiesel Inc | Open Energy Information

    Open Energy Info (EERE)

    Biodiesel Inc Jump to: navigation, search Name: Buffalo Biodiesel Inc Place: New York Product: Buffalo Biodiesel is a biodiesel producer that buys recycled and virgin oil to...

  18. V Fuels Biodiesel Limited | Open Energy Information

    Open Energy Info (EERE)

    Biodiesel Limited Jump to: navigation, search Name: V-Fuels Biodiesel Limited Place: United Kingdom Product: UK-based biodiesel producers. References: V-Fuels Biodiesel Limited1...

  19. ,"Compressed U.S. Natural Gas Exports (Million Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Compressed U.S. Natural Gas Exports (Million Cubic Feet)",1,"Monthly","6/2016" ,"Release Date:","08/31/2016" ,"Next Release Date:","09/30/2016" ,"Excel File

  20. ,"Compressed U.S. Natural Gas Exports to Canada (Million Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    to Canada (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Compressed U.S. Natural Gas Exports to Canada (Million Cubic Feet)",1,"Monthly","6/2016" ,"Release Date:","08/31/2016" ,"Next Release Date:","09/30/2016" ,"Excel File

  1. ,"Compressed U.S. Natural Gas Imports (Million Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Compressed U.S. Natural Gas Imports (Million Cubic Feet)",1,"Monthly","6/2016" ,"Release Date:","08/31/2016" ,"Next Release Date:","09/30/2016" ,"Excel File

  2. ,"Compressed U.S. Natural Gas Imports from Canada (Million Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    from Canada (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Compressed U.S. Natural Gas Imports from Canada (Million Cubic Feet)",1,"Monthly","6/2016" ,"Release Date:","08/31/2016" ,"Next Release Date:","09/30/2016" ,"Excel File

  3. Building a Business Case for Compressed Natural Gas in Fleet Applications

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Building a Business Case for Compressed Natural Gas in Fleet Applications George Mitchell National Renewable Energy Laboratory Technical Report NREL/TP-5400-63707 March 2015 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. Contract No. DE-AC36-08GO28308 National

  4. Compressed Natural Gas (CNG) Transit Bus Experience Survey: April 2009--April 2010

    SciTech Connect (OSTI)

    Adams, R.; Horne, D. B.

    2010-09-01

    This survey was commissioned by the U.S. Department of Energy (DOE) and the National Renewable Energy Laboratory (NREL) to collect and analyze experiential data and information from a cross-section of U.S. transit agencies with varying degrees of compressed natural gas (CNG) bus and station experience. This information will be used to assist DOE and NREL in determining areas of success and areas where further technical or other assistance might be required, and to assist them in focusing on areas judged by the CNG transit community as priority items.

  5. TECHNOLOGIES TO ENHANCE OPERATION OF THE EXISTING NATURAL GAS COMPRESSION INFRASTRUCTURE

    SciTech Connect (OSTI)

    Anthony J. Smalley; Ralph E. Harris; Gary D. Bourn

    2004-10-01

    This quarterly report documents work performed under Tasks 10 through 14 of the project entitled: Technologies to Enhance Operation of the Existing Natural Gas Compression Infrastructure. The project objective is to develop and substantiate methods for operating integral engine/compressors in gas pipeline service, which reduce fuel consumption, increase capacity, and enhance mechanical integrity. The report documents the second series of tests performed on a GMW10 engine/compressor after modifications to add high pressure Fuel and a Turbocharger. It also presents baseline testing for air balance investigations and initial simulation modeling of the air manifold for a Cooper GMVH6.

  6. TECHNOLOGIES TO ENHANCE OPERATION OF THE EXISTING NATURAL GAS COMPRESSION INFRASTRUCTURE

    SciTech Connect (OSTI)

    Anthony J. Smalley; Ralph E. Harris; Gary D. Bourn

    2004-07-01

    This quarterly report documents work performed in Phase I of the project entitled: ''Technologies to Enhance Operation of the Existing Natural Gas Compression Infrastructure''. The project objective is to develop and substantiate methods for operating integral engine/compressors in gas pipeline service, which reduce fuel consumption, increase capacity, and enhance mechanical integrity. The report documents the second series of tests performed on a turbocharged HBA-6T engine/compressor. It also presents baseline testing for air balance investigations and initial simulation modeling of the air manifold for a Cooper GMVH6.

  7. TECHNOLOGIES TO ENHANCE OPERATION OF THE EXISTING NATURAL GAS COMPRESSION INFRASTRUCTURE

    SciTech Connect (OSTI)

    Anthony J. Smalley; Ralph E. Harris

    2003-01-01

    This report documents work performed in the first quarter of the project entitled: ''Technologies to Enhance Operation of the Existing Natural Gas Compression Infrastructure''. The project objective is to develop and substantiate methods for operating integral engine/compressors in gas pipeline service, which reduce fuel consumption, increase capacity, and enhance mechanical integrity. The report describes the following work: preparation and submission of the Research Management Plan; preparation and submission of the Technology Status Assessment; attendance at the Project Kick-Off meeting at DOE-NETL; formation of the Industry Advisory Committee (IAC) for the project; preparation of the Test Plan; acquisition and assembly of the data acquisition system (DAS).

  8. TECHNOLOGIES TO ENHANCE OPERATION OF THE EXISTING NATURAL GAS COMPRESSION INFRASTRUCTURE

    SciTech Connect (OSTI)

    Anthony J. Smalley

    2003-04-01

    This report documents work performed in the second quarter of the project entitled: ''Technologies to Enhance Operation of the Existing Natural Gas Compression Infrastructure''. The project objective is to develop and substantiate methods for operating integral engine/compressors in gas pipeline service, which reduce fuel consumption, increase capacity, and enhance mechanical integrity. The report describes the following work: preparation and submission of the Technology Status Assessment; formation of the Industry Advisory Committee (IAC) for the project; attendance at the first IAC meeting; preparation of the Test Plan; completion of the data acquisition system (DAS); plans for the first field test.

  9. Monthly Biodiesel Production Report

    U.S. Energy Information Administration (EIA) Indexed Site

    U.S. Biodiesel production, sales, and stocks million gallons Period B100 production Sales of B100 Sales of B100 included in biodiesel blends Ending stocks of B100 B100 stock change ...

  10. Monthly Biodiesel Production Report

    U.S. Energy Information Administration (EIA) Indexed Site

    U.S. Inputs to biodiesel production million pounds Period Canola oil Corn oil Cottonseed ... Source: U.S. Energy Information Administration, Form EIA-22M "Monthly Biodiesel Production ...

  11. Evaluation of the Effects of Natural Gas Contaminants on Corrosion in Compressed Natural Gas Storage Systems - Phase II

    SciTech Connect (OSTI)

    Lyle, F.F. Jr.

    1988-01-01

    This report describes a research program that was conducted to define natural gas contaminant levels necessary to insure that internal corrosion of compressed natural gas (CNG) cylinders does not constitute a hazard over the lifetimes of the cylinders. A literature search was performed and companies in the natural gas transmission and distribution industries were contacted: to identify and determine the composition ranges of contaminants in natural gases; and to obtain information regarding corrosion damage of CNG cylinders and cylinder materials. Corrosion and stress corrosion cracking (SCC) tests were performed on the cylinder materials most widely used in CNG cylinders in the United States (4130X and 15B30 steels and 6061-T6 aluminum alloy). Tests were conducted in: natural gases from several producing wells and from an interstate pipeline; and in aqueous solutions saturated with varying concentrations of natural gas contaminants. Also, metallurgical analyses of nine (eight steel and one aluminum), used CNG cylinders were performed. Limiting concentrations of hydrogen sulfide (H{sub 2}S), carbon dioxide (CO{sub 2}), and other CNG contaminants necessary to prevent internal corrosion of CNG fuel and storage cylinders were defined. This knowledge will minimize potential hazards of using CNG as a vehicle fuel. It should also lead to reduced costs of CNG use, since it has been shown that reduction of contaminants to the very low levels currently specified by the U.S. Department of Transportation (DOT) and the Canadian Transport Commission (CTC) is not necessary. A gas-quality standard based on program results is recommended. The National Fire Protection Association (NFPA) has adopted the recommended gas-quality standard.

  12. Analysis of the University of Texas at Austin compressed natural gas demonstration bus. Interim research report

    SciTech Connect (OSTI)

    Wu, C.M.; Matthews, R.; Euritt, M.

    1994-06-01

    A demonstration compressed natural gas (CNG) bus has been operating on The University of Texas at Austin shuttle system since 1992. This CNG vehicle, provided by the Blue Bird Company, was an opportunity for the University to evaluate the effectiveness of a CNG bus for shuttle operations. Three basic operating comparisons were made: (1) fuel consumption, (2) tire wear, and (3) vehicle performance. The bus was equipped with a data logger, which was downloaded regularly, for trip reports. Tire wear was monitored regularly, and performance tests were conducted at the Natural Gas Vehicle Technology Center. Overall, the data suggest that fuel costs for the CNG bus are comparable to those for University diesel buses. This is a result of the lower fuel price for natural gas. Actual natural gas fuel consumption was higher for the CNG buses than for the diesel buses. Due to weight differences, tire wear was much less on the CNG buses. Finally, after installation of a closed-loop system, the CNG bus out-performed the diesel bus on acceleration, grade climbing ability, and speed.

  13. TECHNOLOGIES TO ENHANCE THE OPERATION OF EXISTING NATURAL GAS COMPRESSION INFRASTRUCTURE

    SciTech Connect (OSTI)

    Anthony J. Smalley; Ralph E. Harris; Gary D. Bourn; Danny M. Deffenbaugh

    2005-10-27

    This quarterly report documents work performed under Tasks 15, 16, and 18 through 23 of the project entitled: ''Technologies to Enhance the Operation of Existing Natural Gas Compression Infrastructure''. The project objective is to develop and substantiate methods for operating integral engine/compressors in gas pipeline service, which reduce fuel consumption, increase capacity, and enhance mechanical integrity. The report first summarizes key results from survey site tests performed on an HBA-6 installed at Duke Energy's Bedford compressor station, and on a TCVC10 engine/compressor installed at Dominion's Groveport Compressor Station. The report then presents results of design analysis performed on the Bedford HBA-6 to develop options and guide decisions for reducing pulsations and enhancing compressor system efficiency and capacity. The report further presents progress on modifying and testing the laboratory GMVH6 at SwRI for correcting air imbalance.

  14. TECHNOLOGIES TO ENHANCE THE OPERATION OF EXISTING NATURAL GAS COMPRESSION INFRASTRUCTURE

    SciTech Connect (OSTI)

    Anthony J. Smalley; Ralph E. Harris; Gary D. Bourn; Danny M. Deffenbaugh

    2005-07-27

    This quarterly report documents work performed under Tasks 15, 16, and 18 through 23 of the project entitled: ''Technologies to Enhance the Operation of Existing Natural Gas Compression Infrastructure''. The project objective is to develop and substantiate methods for operating integral engine/compressors in gas pipeline service, which reduce fuel consumption, increase capacity, and enhance mechanical integrity. The report first documents a survey site test performed on a TCVC10 engine/compressor installed at Dominion's Groveport Compressor Station. This test completes planned screening efforts designed to guide selection of one or more units for design analysis and testing with emphasis on identification and reduction of compressor losses. The report further presents the validation of the simulation model for the Air Balance tasks and outline of conceptual manifold designs.

  15. Northern Biodiesel | Open Energy Information

    Open Energy Info (EERE)

    Northern Biodiesel Place: Ontario, New York Product: Biodiesel producer. Coordinates: 34.06457, -117.647809 Show Map Loading map... "minzoom":false,"mappingservice":"googlemap...

  16. Fleet Biodiesel | Open Energy Information

    Open Energy Info (EERE)

    Biodiesel Jump to: navigation, search Name: Fleet Biodiesel Address: 7710 Balboa Ave Place: San Diego, California Zip: 92111 Region: Southern CA Area Sector: Biofuels Product:...

  17. Infinifuel Biodiesel | Open Energy Information

    Open Energy Info (EERE)

    Infinifuel Biodiesel Jump to: navigation, search Name: Infinifuel Biodiesel Place: Dayton, Nevada Zip: 89403 Sector: Geothermal energy Product: A Nevada-based firm developing the...

  18. Biodiesel Garware | Open Energy Information

    Open Energy Info (EERE)

    Garware Jump to: navigation, search Name: Biodiesel Garware Place: Maharashtra, India Product: Maharashtra-based biodiesel production facility which aims to attract joint venture...

  19. Washington Biodiesel | Open Energy Information

    Open Energy Info (EERE)

    Logo: Washington Biodiesel Name: Washington Biodiesel Address: 3401 Fremont Avenue N. Place: Seattle, Washington Zip: 98103 Region: Pacific Northwest Area Sector: Biofuels...

  20. General Biodiesel | Open Energy Information

    Open Energy Info (EERE)

    Biodiesel Jump to: navigation, search Name: General Biodiesel Address: 4034 West Marginal Way Place: Seattle, Washington Zip: 98106 Region: Pacific Northwest Area Sector: Biofuels...

  1. Harmonization of Biodiesel Specifications

    SciTech Connect (OSTI)

    Alleman, T. L.

    2008-02-01

    Worldwide biodiesel production has grown dramatically over the last several years. Biodiesel standards vary across countries and regions, and there is a call for harmonization. For harmonization to become a reality, standards have to be adapted to cover all feedstocks. Additionally, all feedstocks cannot meet all specifications, so harmonization will require standards to either tighten or relax. For harmonization to succeed, the biodiesel market must be expanded with the alignment of test methods and specification limits, not contracted.

  2. Thermal Charging Study of Compressed Expanded Natural Graphite/Phase Change Material Composites

    SciTech Connect (OSTI)

    Mallow, Anne M; Abdelaziz, Omar; Graham, Samuel

    2016-01-01

    The thermal charging performance of phase change materials, specifically paraffin wax, combined with compressed expanded natural graphite foam is studied under constant heat flux and constant temperature conditions. By varying the heat flux between 0.39 W/cm2 and 1.55 W/cm2 or maintaining a boundary temperature of 60 C for four graphite foam bulk densities, the impact on the rate of thermal energy storage is discussed. Thermal charging experiments indicate that thermal conductivity of the composite is an insufficient metric to compare the influence of graphite foam on the rate of thermal energy storage of the PCM composite. By dividing the latent heat of the composite by the time to melt for various boundary conditions and graphite foam bulk densities, it is determined that bulk density selection is dependent on the applied boundary condition. A greater bulk density is advantageous for samples exposed to a constant temperature near the melting temperature as compared to constant heat flux conditions where a lower bulk density is adequate. Furthermore, the anisotropic nature of graphite foam bulk densities greater than 50 kg/m3 is shown to have an insignificant impact on the rate of thermal charging. These experimental results are used to validate a computational model for future use in the design of thermal batteries for waste heat recovery.

  3. Studies Highlight Biodiesel's Benefits

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Golden, Colo., July 6, 1998 Two new studies highlight the benefits of biodiesel in reducing overall air pollution and in helping to reduce the United States' dependence on ...

  4. TECHNOLOGIES TO ENHANCE THE OPERATION OF EXISTING NATURAL GAS COMPRESSION INFRASTRUCTURE

    SciTech Connect (OSTI)

    Anthony J. Smalley; Ralph E. Harris; Gary D. Bourn; Ford A. Phillips; Danny M. Deffenbaugh

    2006-05-31

    This project has documented and demonstrated the feasibility of technologies and operational choices for companies who operate the large installed fleet of integral engine compressors in pipeline service. Continued operations of this fleet is required to meet the projected growth of the U.S. gas market. Applying project results will meet the goals of the DOE-NETL Natural Gas Infrastructure program to enhance integrity, extend life, improve efficiency, and increase capacity, while managing NOx emissions. These benefits will translate into lower cost, more reliable gas transmission, and options for increasing deliverability from the existing infrastructure on high demand days. The power cylinders on large bore slow-speed integral engine/compressors do not in general combust equally. Variations in cylinder pressure between power cylinders occur cycle-to-cycle. These variations affect both individual cylinder performance and unit average performance. The magnitude of the variations in power cylinder combustion is dependent on a variety of parameters, including air/fuel ratio. Large variations in cylinder performance and peak firing pressure can lead to detonation and misfires, both of which can be damaging to the unit. Reducing the variation in combustion pressure, and moving the high and low performing cylinders closer to the mean is the goal of engine balancing. The benefit of improving the state of the engine ''balance'' is a small reduction in heat rate and a significant reduction in both crankshaft strain and emissions. A new method invented during the course of this project is combustion pressure ratio (CPR) balancing. This method is more effective than current methods because it naturally accounts for differences in compression pressure, which results from cylinder-to-cylinder differences in the amount of air flowing through the inlet ports and trapped at port closure. It also helps avoid compensation for low compression pressure by the addition of excess fuel

  5. Alternative Fuels Data Center: Biodiesel Fueling Stations

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    More Biodiesel Data | All Maps & Data Case Studies Missouri High School Students Get Hands-On Training With Biodiesel New Hampshire Railway Makes Tracks With Biodiesel Idaho ...

  6. Southeast BioDiesel | Open Energy Information

    Open Energy Info (EERE)

    BioDiesel Jump to: navigation, search Name: Southeast BioDiesel Place: Charleston, South Carolina Product: Biodiesel producer based in South Carolina References: Southeast...

  7. Wuhan Airui Biodiesel | Open Energy Information

    Open Energy Info (EERE)

    Airui Biodiesel Jump to: navigation, search Name: Wuhan Airui Biodiesel Place: Wuhan, Hubei Province, China Zip: 430070 Product: Airui is a biodiesel processing, R&D, technology...

  8. North American Biodiesel | Open Energy Information

    Open Energy Info (EERE)

    North American Biodiesel Place: Menmonee Falls, Wisconsin Product: Biodiesel producer currently developing a biodiesel plant in Butler, Wisconsin and with plans to develop another...

  9. Green River Biodiesel Incorporated | Open Energy Information

    Open Energy Info (EERE)

    River Biodiesel Incorporated Jump to: navigation, search Name: Green River Biodiesel Incorporated Place: Houston, Texas Zip: 77056 Product: Biodiesel project developer and...

  10. Biodiesel Aragon SL | Open Energy Information

    Open Energy Info (EERE)

    Aragon SL Jump to: navigation, search Name: Biodiesel Aragon SL Place: Altorricon, Spain Product: Spanish-based biodiesel project developer. References: Biodiesel Aragon SL1 This...

  11. Big Biodiesel LLC | Open Energy Information

    Open Energy Info (EERE)

    Biodiesel LLC Jump to: navigation, search Name: Big Biodiesel LLC Place: Pulaski, Tennessee Zip: 38478 Product: Biodiesel plant developer in Pulaski, Tennessee. References: Big...

  12. Wyoming Biodiesel Co | Open Energy Information

    Open Energy Info (EERE)

    Co Jump to: navigation, search Name: Wyoming Biodiesel Co Place: Wyoming Product: Wyoming-based biodiesel project developer. References: Wyoming Biodiesel Co1 This article is a...

  13. Brownfield Biodiesel LLC | Open Energy Information

    Open Energy Info (EERE)

    Brownfield Biodiesel LLC Jump to: navigation, search Name: Brownfield Biodiesel LLC Place: Ralls, Texas Zip: 79357 Product: Biodiesel producer in Ralls, Texas. Coordinates:...

  14. Rix Biodiesel Limited | Open Energy Information

    Open Energy Info (EERE)

    Rix Biodiesel Limited Jump to: navigation, search Name: Rix Biodiesel Limited Place: Hull, United Kingdom Zip: HU8 7JR Product: Manufacture, blends and resells biodiesel....

  15. National Trail Biodiesel | Open Energy Information

    Open Energy Info (EERE)

    Trail Biodiesel Jump to: navigation, search Name: National Trail Biodiesel Place: Newton, Illinois Zip: 62448 Product: Owner of a planned 30m gallon per year biodiesel plant in...

  16. Pacific Biodiesel Inc | Open Energy Information

    Open Energy Info (EERE)

    Biodiesel Inc Jump to: navigation, search Name: Pacific Biodiesel Inc Place: Kahului, Hawaii Zip: 96732 Product: Hawaii-based biodiesel plant designer, producer and distributor in...

  17. Heartland biodiesel LLC | Open Energy Information

    Open Energy Info (EERE)

    biodiesel LLC Jump to: navigation, search Name: Heartland biodiesel LLC Place: Rock Port, Missouri Product: Biodiesel producer which is currently developing a 113m liter plant in...

  18. Midwest Biodiesel Producers LLC | Open Energy Information

    Open Energy Info (EERE)

    Biodiesel Producers LLC Jump to: navigation, search Name: Midwest Biodiesel Producers LLC Place: Alexandria, South Dakota Zip: 57311 Product: South Dakota-based biodiesel producer....

  19. Northwest Biodiesel Network | Open Energy Information

    Open Energy Info (EERE)

    Biodiesel Network Jump to: navigation, search Logo: Northwest Biodiesel Network Name: Northwest Biodiesel Network Address: 6532 Phinney Ave N Place: Seattle, Washington Zip: 98103...

  20. EOP Biodiesel AG | Open Energy Information

    Open Energy Info (EERE)

    EOP Biodiesel AG Jump to: navigation, search Name: EOP Biodiesel AG Place: Falkenhagen, Germany Zip: 16928 Product: German producer of biodiesel from rapeseed. References: EOP...

  1. Heartland Biodiesel Inc | Open Energy Information

    Open Energy Info (EERE)

    Heartland Biodiesel Inc Jump to: navigation, search Name: Heartland Biodiesel Inc Place: Herrin, Illinois Product: Biodiesel producer currently developing a 7.5m plant in Marion,...

  2. Biodiesel International Corporation | Open Energy Information

    Open Energy Info (EERE)

    Corporation Jump to: navigation, search Name: Biodiesel International Corporation Place: Texas Product: Texas-based biodiesel production company and biodiesel production equipment...

  3. San Francisco Biodiesel | Open Energy Information

    Open Energy Info (EERE)

    Biodiesel Jump to: navigation, search Name: San Francisco Biodiesel Place: San Francisco, California Zip: 94103 Product: Biodiesel producer based in California. The company is a...

  4. Silicon Valley Biodiesel Inc | Open Energy Information

    Open Energy Info (EERE)

    Biodiesel Inc Jump to: navigation, search Name: Silicon Valley Biodiesel Inc. Place: Sunnyvale, California Zip: CA 94086 Product: Manufactures biodiesel for the local diesel fuel...

  5. East Fork Biodiesel LLC | Open Energy Information

    Open Energy Info (EERE)

    Fork Biodiesel LLC Jump to: navigation, search Name: East Fork Biodiesel, LLC Place: Algona, Iowa Sector: Renewable Energy Product: Biodiesel producer and co-developer, with...

  6. Allegro Biodiesel Corporation | Open Energy Information

    Open Energy Info (EERE)

    Allegro Biodiesel Corporation Jump to: navigation, search Name: Allegro Biodiesel Corporation Place: Los Angeles, California Zip: 90045 Product: Allegro Biodiesel Corporation...

  7. General Biodiesel Incorporated | Open Energy Information

    Open Energy Info (EERE)

    Biodiesel Incorporated Jump to: navigation, search Name: General Biodiesel Incorporated Place: Seattle, Washington Zip: 98136 Product: General BioDiesel", Inc. specializes in...

  8. Bay Biodiesel LLC | Open Energy Information

    Open Energy Info (EERE)

    Biodiesel LLC Jump to: navigation, search Name: Bay Biodiesel LLC Place: Martinez, California Zip: 94553 Product: Biodiesel producers in Martinez, California. References: Bay...

  9. Blue Sun Biodiesel | Open Energy Information

    Open Energy Info (EERE)

    Sun Biodiesel Jump to: navigation, search Name: Blue Sun Biodiesel Place: Fort Collins, Colorado Zip: 80525 Product: Privately held Blue Sun Biodiesel is a breakthrough agriculture...

  10. Biodiesel + SCR Retrofit Testing | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    + SCR Retrofit Testing Biodiesel + SCR Retrofit Testing This work retrofitted an in-use ... More Documents & Publications DPF Performance with Biodiesel Blends Impact of Biodiesel on ...

  11. Biodiesel Research Update | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research Update Biodiesel Research Update 2004 Diesel Engine Emissions Reduction (DEER) ... Recent Research to Address Technical Barriers to Increased Use of Biodiesel Biodiesel ASTM ...

  12. Compressed natural gas and liquefied petroleum gas conversions: The National Renewable Energy Laboratory`s experience

    SciTech Connect (OSTI)

    Motta, R.C.; Kelly, K.J.; Warnock, W.W.

    1996-04-01

    The National Renewable Energy Laboratory (NREL) contracted with conversion companies in six states to convert approximately 900 light-duty Federal fleet vehicles to operate on compressed natural gas (CNG) or liquefied petroleum gas (LPG). The contracts were initiated in order to help the Federal government meet the vehicle acquisition requirements of the Energy Policy Act of 1992 (EPACT) during a period of limited original equipment manufacturer (OEM) model availability. Approximately 90% of all conversions were performed on compact of full-size vans and pickups, and 90% of the conversions were to bi-fuel operation. With a positive response from the fleet managers, this program helped the Federal government meet the vehicle acquisition requirements of EPACT for fiscal years 1993 and 1994, despite limited OEM model availability. The conversions also helped to establish the infrastructure needed to support further growth in the use of alternative fuel vehicles. In conclusion, the program has been successful in helping the Federal government meet the vehicle acquisition requirements of EPACT, establishing infrastructure, increasing the displacement of imported oil, and evaluating the emissions performance of converted vehicles. With the relatively widespread availability of OEM vehicles in the 1996 model year, the program is now being phased out.

  13. TECHNOLOGIES TO ENHANCE OPERATION OF THE EXISTING NATURAL GAS COMPRESSION INFRASTRUCTURE

    SciTech Connect (OSTI)

    Anthony J. Smalley; Ralph E. Harris; Gary D. Bourn; Danny M. Deffenbaugh

    2005-01-01

    This quarterly report documents work performed under Tasks 10 through 14 of the project entitled: ''Technologies to Enhance Operation of the Existing Natural Gas Compression Infrastructure''. The project objective is to develop and substantiate methods for operating integral engine/compressors in gas pipeline service, which reduce fuel consumption, increase capacity, and enhance mechanical integrity. The report first documents tests performed on a KVG103 engine/compressor installed at Duke's Thomaston Compressor Station. This is the first series of tests performed on a four-stroke engine under this program. Additionally, this report presents results, which complete a comparison of performance before and after modification to install High Pressure Fuel Injection and a Turbocharger on a GMW10 at Williams Station 60. Quarterly Reports 7 and 8 already presented detailed data from tests before and after this modification, but the final quantitative comparison required some further analysis, which is presented in Section 5 of this report. The report further presents results of detailed geometrical measurements and flow bench testing performed on the cylinders and manifolds of the Laboratory Cooper GMVH6 engine being employed for two-stroke engine air balance investigations. These measurements are required to enhance the detailed accuracy in modeling the dynamic interaction of air manifold, exhaust manifold, and in-cylinder fuel-air balance.

  14. Emissions and performance evaluation of a dedicated compressed natural gas saturn

    SciTech Connect (OSTI)

    Hodgson, J.W.; Taylor, J.D.

    1997-07-01

    The use of compressed natural gas (CNG) as a transportation fuel has been identified as one strategy that can help ameliorate some problems, which include a growing dependence on imported oil (and all its ramifications) and the persistent contributions that mobile sources make to urban air pollution, associated with the use of conventional petroleum fuels. The attributes and limitations of CNG as a fuel for spark-ignition engines have been presented by others. The attributes are associated with its high octane rating, low cost relative to other alternative fuels, its availability, the absence of running and diurnal evaporative emissions, and its demonstrated potential for producing extremely low exhaust emissions-particularly if the volatile organic compounds (VOCs) emitted are expressed in terms of reactivity adjusted non-methane organic gases (RANMOG). The limitations associated with the use of CNG include its limited refueling infrastructure, the cost of refueling facilities, the cost of on-board fuel storage tanks, and its relatively low energy density. Because one impediment to CNG use is the cost associated with producing a CNG-powered vehicle, a study was initiated at the University of Tennessee under sponsorship by the Saturn Corporation to determine how a CNG vehicle (specifically, a 1991 Saturn SL1) could be engineered so it could be produced with a minimal impact on the production of the base vehicle. The present study was undertaken to further investigate the emissions reduction potential of the Saturn CNG vehicle. In the previous study the role of exhaust gas recirculation was not thoroughly investigated. Those involved in the study agreed that the NO{sub x} levels could be brought down well below California ULEV levels without increasing either the non-methane organic gases or the CO levels.

  15. Biodiesel R&D at NREL

    SciTech Connect (OSTI)

    McCormick, R.; Alleman, T.; Barnitt, R.; Clark, W.; Hayes, B.; Ireland, J.; Proc, K.; Ratcliff, M.; Thornton, M.; Whitacre, S.; Williams, A.

    2006-02-06

    Discusses NREL's biodiesel research priorities and some current research results, including those concerning biodiesel quality and stability.

  16. Effects of Biodiesel on NOx Emissions

    SciTech Connect (OSTI)

    McCormick, R.

    2005-06-01

    A presentation about the effects of biodiesel on nitrogen oxide emissions presented at the ARB Biodiesel Workshop June 8, 2005.

  17. Hazard analysis of compressed natural gas fueling systems and fueling procedures used at retail gasoline service stations. Final report

    SciTech Connect (OSTI)

    1995-04-28

    An evaluation of the hazards associated with operations of a typical compressed natural gas (CNG) fueling station is presented. The evaluation includes identification of a typical CNG fueling system; a comparison of the typical system with ANSI/NFPA (American National Standards Institute/National Fire Protection Association) Standard 52, Compressed Natural Gas (CNG) Vehicular Fuel System, requirements; a review of CNG industry safety experience as identified in current literature; hazard identification of potential internal (CNG system-specific causes) and external (interface of co-located causes) events leading to potential accidents; and an analysis of potential accident scenarios as determined from the hazard evaluation. The study considers CNG dispensing equipment and associated equipment, including the compressor station, storate vessels, and fill pressure sensing system.

  18. Round 1 Emissions Results from Compressed Natural Gas Vans and Gasoline Controls Operating in the U.S. Federal Fleet

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Round 1 Emissions Results from Compressed Natural Gas Vans and Gasoline Controls Operating in the U.S. Federal Fleet Kenneth J. Kelly, Brent K. Bailey, and Timothy C. Coburn National Renewable Energy Laboratory Leslie Eudy ManTech Environmental Technology, Inc. Peter Lissiuk Environmental Research and Development Corp. Presented at Society for Automotive Engineers International Spring Fuels and Lubricants Meeting Dearborn, MI May 6-8, 1996 The work described here was wholly funded by the U.S.

  19. Monthly Biodiesel Production Report

    U.S. Energy Information Administration (EIA) Indexed Site

    Monthly Biodiesel Production Report With data for June 2016 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 August 2016 U.S. Energy Information Administration | Monthly Biodiesel Production Report This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or

  20. Emerald Biodiesel Holdings GmbH EBHG | Open Energy Information

    Open Energy Info (EERE)

    Biodiesel Holdings GmbH EBHG Jump to: navigation, search Name: Emerald Biodiesel Holdings GmbH (EBHG) Place: Germany Product: Biodiesel company Emerald Biodiesel Holdings is the...

  1. Biodiesel_Fuel_Management_Best_Practices_Report.pdf | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    BiodieselFuelManagementBestPracticesReport.pdf BiodieselFuelManagementBestPracticesReport.pdf BiodieselFuelManagementBestPracticesReport.pdf BiodieselFuelManagemen...

  2. Business management for biodiesel producers

    SciTech Connect (OSTI)

    Gerpen, Jon Van

    2004-07-01

    The material in this book is intended to provide the reader with information about the biodiesel and liquid fuels industry, biodiesel start-up issues, legal and regulatory issues, and operational concerns.

  3. TECHNOLOGIES TO ENHANCE THE OPERATION OF EXISTING NATURAL GAS COMPRESSION INFRASTRUCTURE - MANIFOLD DESIGN FOR CONTROLLING ENGINE AIR BALANCE

    SciTech Connect (OSTI)

    Gary D. Bourn; Ford A. Phillips; Ralph E. Harris

    2005-12-01

    This document provides results and conclusions for Task 15.0--Detailed Analysis of Air Balance & Conceptual Design of Improved Air Manifolds in the ''Technologies to Enhance the Operation of Existing Natural Gas Compression Infrastructure'' project. SwRI{reg_sign} is conducting this project for DOE in conjunction with Pipeline Research Council International, Gas Machinery Research Council, El Paso Pipeline, Cooper Compression, and Southern Star, under DOE contract number DE-FC26-02NT41646. The objective of Task 15.0 was to investigate the perceived imbalance in airflow between power cylinders in two-stroke integral compressor engines and develop solutions via manifold redesign. The overall project objective is to develop and substantiate methods for operating integral engine/compressors in gas pipeline service, which reduce fuel consumption, increase capacity, and enhance mechanical integrity.

  4. Pacific Biodiesel: Renewable and Sustainable

    Broader source: Energy.gov [DOE]

    Presentation covers the Pacific Biodiesel topic and is given at the Spring 2011 Federal Utility Partnership Working Group (FUPWG) meeting.

  5. Development and Demonstration of Hydrogen and Compressed Natural Gas (H/CNG) Blend Transit Buses: October 15, 2002--September 30, 2004

    SciTech Connect (OSTI)

    Del Toro, A.; Frailey, M.; Lynch, F.; Munshi, S.; Wayne, S.

    2005-11-01

    The report covers literature and laboratory analyses to identify modification requirements of a Cummins Westport B Gas Plus engine for transit buses using a hydrogen/compressed natural fuel blend.

  6. Technology demonstration of dedicated compressed natural gas (CNG) original equipment manufacturer (OEM) vehicles at St. Bliss, Texas. Interim report, October 1992--May 1994

    SciTech Connect (OSTI)

    Alvarez, R.A.; Yost, D.M.

    1995-11-01

    Results are presented from a demonstration program conducted on the comparative evaluations of the combustion of compressed natural gas as an alternative fuel for gasoline. General Motors pick-up trucks were utilized in the study.

  7. Biodiesel Performance, Costs, and Use

    Reports and Publications (EIA)

    2004-01-01

    Biodiesel fuel for diesel engines is produced from vegetable oil or animal fat by the chemical process of esterification. This paper presents a brief history of diesel engine technology and an overview of biodiesel, including performance characteristics, economics, and potential demand. The performance and economics of biodiesel are compared with those of petroleum diesel.

  8. Alternative Fuels Data Center: Biodiesel Blends

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Blends to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Blends on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Blends on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Blends on Google Bookmark Alternative Fuels Data Center: Biodiesel Blends on Delicious Rank Alternative Fuels Data Center: Biodiesel Blends on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Blends on AddThis.com... More in this section... Biodiesel Basics

  9. Alternative Fuels Data Center: Biodiesel Related Links

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Biodiesel Printable Version Share this resource Send a link to Alternative Fuels Data Center: Biodiesel Related Links to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Related Links on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Related Links on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Related Links on Google Bookmark Alternative Fuels Data Center: Biodiesel Related Links on Delicious Rank Alternative Fuels Data Center: Biodiesel Related Links

  10. Technology demonstration of dedicated compressed natural gas (CNG) original equipment manufacturer (OEM) vehicles at Ft. Bliss, Texas. Interim report

    SciTech Connect (OSTI)

    Alvarez, R.A.; Yost, D.M.

    1995-11-01

    A technology demonstration program of dedicated compressed natural gas (CNG) original equipment manufacturer (OEM) vehicles was conducted at FL Bliss, Texas to demonstrate the use of CNG as an alternative fuel. The demonstration program at FL Bliss was the first Army initiative with CNG-fueled vehicles under the legislated Alternative Motor Fuels Act. This Department of Energy (DOE)-supported fleet demonstration consisted of 48 General Services Administration (GSA)-owned, Army-leased 1992 dedicated CNG General Motors (GM) 3/4-ton pickup trucks and four 1993 gasoline-powered Chevrolet 3/4-ton pickup trucks.

  11. Feasibility study of Northeast Thailand Gas Pipeline Project. Final report. Part 2. Compressed natural gas. Export trade information

    SciTech Connect (OSTI)

    Not Available

    1989-09-01

    The volume is the second part of a three part study submitted to the Petroleum Authority of Thailand. Part II analyzes the potential use of compressed natural gas (CNG) as a transportation fuel for high mileage vehicles traveling the highway system of Thailand. The study provides an initial estimate of buses and trucks that are potential candidates for converting to natural gas vehicles (NGV). CNG technology is briefly reviewed. The types of refueling stations that may be sited along the highway are discussed. The estimated capital investments and typical layouts are presented. The report also discusses the issues involved in implementing a CNG program in Thailand, such as safety, user acceptability and the government's role.

  12. Evaluation of Technical Feasibility of Homogeneous Charge Compression Ignition (HCCI) Engine Fueled with Hydrogen, Natural Gas, and DME

    SciTech Connect (OSTI)

    John Pratapas; Daniel Mather; Anton Kozlovsky

    2007-03-31

    The objective of the proposed project was to confirm the feasibility of using blends of hydrogen and natural gas to improve the performance, efficiency, controllability and emissions of a homogeneous charge compression ignition (HCCI) engine. The project team utilized both engine simulation and laboratory testing to evaluate and optimize how blends of hydrogen and natural gas fuel might improve control of HCCI combustion. GTI utilized a state-of-the art single-cylinder engine test platform for the experimental work in the project. The testing was designed to evaluate the feasibility of extending the limits of HCCI engine performance (i.e., stable combustion, high efficiency and low emissions) on natural gas by using blends of natural gas and hydrogen. Early in the project Ricardo provided technical support to GTI as we applied their engine performance simulation program, WAVE, to our HCCI research engine. Modeling support was later provided by Digital Engines, LLC to use their proprietary model to predict peak pressures and temperatures for varying operating parameters included in the Design of Experiments test plan. Digital Engines also provided testing support for the hydrogen and natural gas blends. Prof. David Foster of University of Wisconsin-Madison participated early in the project by providing technical guidance on HCCI engine test plans and modeling requirements. The main purpose of the testing was to quantify the effects of hydrogen addition to natural gas HCCI. Directly comparing straight natural gas with the hydrogen enhanced test points is difficult due to the complexity of HCCI combustion. With the same air flow rate and lambda, the hydrogen enriched fuel mass flow rate is lower than the straight natural gas mass flow rate. However, the energy flow rate is higher for the hydrogen enriched fuel due to hydrogen's significantly greater lower heating value, 120 mJ/kg for hydrogen compared to 45 mJ/kg for natural gas. With these caveats in mind, an

  13. Evaluation of Technical Feasibility of Homogeneous Charge Compression Ignition (HCCI) Engine Fueled with Hydrogen, Natural Gas, and DME

    SciTech Connect (OSTI)

    Pratapas, John; Mather, Daniel; Kozlovsky, Anton

    2013-03-31

    The objective of the proposed project was to confirm the feasibility of using blends of hydrogen and natural gas to improve the performance, efficiency, controllability and emissions of a homogeneous charge compression ignition (HCCI) engine. The project team utilized both engine simulation and laboratory testing to evaluate and optimize how blends of hydrogen and natural gas fuel might improve control of HCCI combustion. GTI utilized a state-of-the art single-cylinder engine test platform for the experimental work in the project. The testing was designed to evaluate the feasibility of extending the limits of HCCI engine performance (i.e., stable combustion, high efficiency and low emissions) on natural gas by using blends of natural gas and hydrogen. Early in the project Ricardo provided technical support to GTI as we applied their engine performance simulation program, WAVE, to our HCCI research engine. Modeling support was later provided by Digital Engines, LLC to use their proprietary model to predict peak pressures and temperatures for varying operating parameters included in the Design of Experiments test plan. Digital Engines also provided testing support for the hydrogen and natural gas blends. Prof. David Foster of University of Wisconsin-Madison participated early in the project by providing technical guidance on HCCI engine test plans and modeling requirements. The main purpose of the testing was to quantify the effects of hydrogen addition to natural gas HCCI. Directly comparing straight natural gas with the hydrogen enhanced test points is difficult due to the complexity of HCCI combustion. With the same air flow rate and lambda, the hydrogen enriched fuel mass flow rate is lower than the straight natural gas mass flow rate. However, the energy flow rate is higher for the hydrogen enriched fuel due to hydrogen’s significantly greater lower heating value, 120 mJ/kg for hydrogen compared to 45 mJ/kg for natural gas. With these caveats in mind, an

  14. Earthship BioDiesel | Open Energy Information

    Open Energy Info (EERE)

    Earthship BioDiesel Jump to: navigation, search Name: Earthship BioDiesel Place: Taos, New Mexico Zip: 87571 Product: Supplier and retailer of biodiesel made from Waste Vegetable...

  15. 2004 Biodiesel Handling and Use Guidelines (Revised)

    SciTech Connect (OSTI)

    Not Available

    2004-11-01

    This document is a guide for those who blend, distribute, and use biodiesel and biodiesel blends. It is intended to fleets and individual users, blenders, distributors, and those involved in related activities understand procedures for handling and using biodiesel.

  16. Mid States Biodiesel | Open Energy Information

    Open Energy Info (EERE)

    States Biodiesel Jump to: navigation, search Name: Mid-States Biodiesel Place: Hampton, Iowa Product: Iowa-based biodiesel producer. Coordinates: 37.027795, -76.345119 Show Map...

  17. Tri State Biodiesel LLC | Open Energy Information

    Open Energy Info (EERE)

    Biodiesel LLC Jump to: navigation, search Name: Tri-State Biodiesel LLC Place: New York, New York Zip: 10009 Product: A New York-based producer and retailer of biodiesel....

  18. Alternative Fuels Data Center: Biodiesel Benefits

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Benefits to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Benefits on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Benefits on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Benefits on Google Bookmark Alternative Fuels Data Center: Biodiesel Benefits on Delicious Rank Alternative Fuels Data Center: Biodiesel Benefits on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Benefits on AddThis.com... More in this section...

  19. Alternative Fuels Data Center: Biodiesel Fuel Basics

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fuel Basics to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Fuel Basics on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Fuel Basics on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Fuel Basics on Google Bookmark Alternative Fuels Data Center: Biodiesel Fuel Basics on Delicious Rank Alternative Fuels Data Center: Biodiesel Fuel Basics on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Fuel Basics on AddThis.com... More in

  20. Alternative Fuels Data Center: ASTM Biodiesel Specifications

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    ASTM Biodiesel Specifications to someone by E-mail Share Alternative Fuels Data Center: ASTM Biodiesel Specifications on Facebook Tweet about Alternative Fuels Data Center: ASTM Biodiesel Specifications on Twitter Bookmark Alternative Fuels Data Center: ASTM Biodiesel Specifications on Google Bookmark Alternative Fuels Data Center: ASTM Biodiesel Specifications on Delicious Rank Alternative Fuels Data Center: ASTM Biodiesel Specifications on Digg Find More places to share Alternative Fuels Data

  1. Alternative Fuels Data Center: Biodiesel Equipment Options

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Equipment Options to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Equipment Options on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Equipment Options on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Equipment Options on Google Bookmark Alternative Fuels Data Center: Biodiesel Equipment Options on Delicious Rank Alternative Fuels Data Center: Biodiesel Equipment Options on Digg Find More places to share Alternative Fuels Data Center: Biodiesel

  2. Biodiesel Fuel Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biodiesel Fuel Basics Biodiesel Fuel Basics July 30, 2013 - 2:43pm Addthis Biodiesel is a domestically produced, renewable fuel that can be manufactured from vegetable oils, animal fats, or recycled restaurant greases. What Is Biodiesel? Biodiesel is a liquid fuel produced from renewable sources such as new and used vegetable oils and animal fats and is a cleaner-burning replacement for petroleum-based diesel fuel. It is nontoxic and biodegradable. Like petroleum-derived diesel, biodiesel is

  3. Alternative Fuels Data Center: Biodiesel Vehicle Emissions

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    ... Alternative Fuel Vehicles Beat the Heat, Fight the Freeze, and Conquer the Mountains New Hampshire Railway Makes Tracks With Biodiesel More Biodiesel Case Studies | All Case ...

  4. Biodiesel Investment Group | Open Energy Information

    Open Energy Info (EERE)

    search Name: Biodiesel Investment Group Place: Dallas, Texas Zip: 75205 Sector: Biofuels Product: Biodiesel Investment Group is a subsidiary established by Earth Biofuels to...

  5. Integrated Biodiesel Industries Ltd | Open Energy Information

    Open Energy Info (EERE)

    Industries Ltd Jump to: navigation, search Name: Integrated Biodiesel Industries Ltd Place: Sao Paulo, Sao Paulo, Brazil Zip: 01418-200 Product: Sao Paulo-based biodiesel producer....

  6. Atlantic Biodiesel Inc | Open Energy Information

    Open Energy Info (EERE)

    Biodiesel Inc Jump to: navigation, search Name: Atlantic Biodiesel, Inc. Place: Salem, New Hampshire Zip: 30790 Product: Privately-held corporation producing biodiesal in its...

  7. New York Biodiesel LLC | Open Energy Information

    Open Energy Info (EERE)

    LLC Jump to: navigation, search Name: New York Biodiesel LLC Place: Hamilton, Madison County, New York Product: Biodiesel producer using soybean oil as its feedstock References:...

  8. Biodiesel Technologies India Ltd | Open Energy Information

    Open Energy Info (EERE)

    India Ltd Jump to: navigation, search Name: Biodiesel Technologies India Ltd. Place: Kolkata, West Bengal, India Zip: 700045 Product: Kolkata based manufacturer of biodiesel...

  9. Northeast Biodiesel Company LLC | Open Energy Information

    Open Energy Info (EERE)

    Company LLC Jump to: navigation, search Name: Northeast Biodiesel Company, LLC Place: Massachusetts Zip: 1301 Product: Massachusetts-based biodiesel producer and project developer....

  10. Midwest Biodiesel Products | Open Energy Information

    Open Energy Info (EERE)

    Products Jump to: navigation, search Name: Midwest Biodiesel Products Place: Caseyville, Illinois Zip: 62232 Product: Midwest Biodiesel Products, Inc. is an Illinois based...

  11. Biodiesel Coalition of Texas | Open Energy Information

    Open Energy Info (EERE)

    Coalition of Texas Jump to: navigation, search Logo: Biodiesel Coalition of Texas Name: Biodiesel Coalition of Texas Address: 100 Congress Avenue Place: Austin, Texas Zip: 78701...

  12. Virginia Biodiesel Refinery | Open Energy Information

    Open Energy Info (EERE)

    Refinery Jump to: navigation, search Name: Virginia Biodiesel Refinery Place: West Point, Virginia Zip: 23180 Product: Biodiesel producer based in Virginia References: Virginia...

  13. Garden State Biodiesel | Open Energy Information

    Open Energy Info (EERE)

    Biodiesel Jump to: navigation, search Name: Garden State Biodiesel Place: Harrisonville, New Jersey Product: Biodiosel producer based in Harrisonville, New Jersey. Coordinates:...

  14. Springboard Biodiesel LLC | Open Energy Information

    Open Energy Info (EERE)

    Springboard Biodiesel LLC Jump to: navigation, search Name: Springboard Biodiesel LLC Place: Chico, California Zip: 95928 Product: Provider of products and technologies for the...

  15. Biodiesel Systems LLC | Open Energy Information

    Open Energy Info (EERE)

    Systems LLC Jump to: navigation, search Name: Biodiesel Systems, LLC Place: Madison, Wisconsin Zip: WI 53704 Product: The core business of Biodiesel Systems is plan, design,...

  16. Tellurian Biodiesel Inc | Open Energy Information

    Open Energy Info (EERE)

    Tellurian Biodiesel Inc Jump to: navigation, search Name: Tellurian Biodiesel, Inc. Place: San Francisco, California Zip: 94110 Product: String representation "Tellurian Biodi ......

  17. Biodiesel Industries Inc | Open Energy Information

    Open Energy Info (EERE)

    Barbara, California Zip: 93110 Product: Biodiesel producer and facility developer. References: Biodiesel Industries Inc1 This article is a stub. You can help OpenEI by expanding...

  18. Biodiesel Basics (Fact Sheet), Vehicle Technologies Program ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biodiesel Basics (Fact Sheet), Vehicle Technologies Program (VTP) Biodiesel Basics (Fact Sheet), Vehicle Technologies Program (VTP) Fact sheet providing questions and answers on ...

  19. Monthly Biodiesel Production Report - Energy Information Administratio...

    U.S. Energy Information Administration (EIA) Indexed Site

    Monthly Biodiesel Production Report With Data for April 2016 | Release Date: June 30, 2016 ... Highlights Production - U.S. production of biodiesel was 119 million gallons in April ...

  20. Biodiesel's Enabling Characteristics in Attaining Low Temperature...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Discusses reasons and physical significance of cool-flame behavior of biodiesel on ... System-Response Issues Imposed by Biodiesel in a Medium-Duty Diesel Engine ...

  1. Costilla County Biodiesel Pilot Project

    SciTech Connect (OSTI)

    Doon, Ben; Quintana, Dan

    2011-08-25

    The Costilla County Biodiesel Pilot Project has demonstrated the compatibility of biodiesel technology and economics on a local scale. The project has been committed to making homegrown biodiesel a viable form of community economic development. The project has benefited by reducing risks by building the facility gradually and avoiding large initial outlays of money for facilities and technologies. A primary advantage of this type of community-scale biodiesel production is that it allows for a relatively independent, local solution to fuel production. Successfully using locally sourced feedstocks and putting the fuel into local use emphasizes the feasibility of different business models under the biodiesel tent and that there is more than just a one size fits all template for successful biodiesel production.

  2. Microsoft Word - Biodiesel.doc

    Gasoline and Diesel Fuel Update (EIA)

    9 1 April 2009 Short-Term Energy Outlook Supplement: Biodiesel Supply and Consumption in the Short-Term Energy Outlook 1 Introduction The historical biodiesel consumption data published in the EIA Monthly Energy Review (http://www.eia.doe.gov/emeu/mer/contents.html) March 2009 edition were revised to account for imports and exports. Table 10.4 of the Monthly Energy Review was expanded to display biodiesel imports, exports, stocks, stock change, and consumption. Similar revisions were made in the

  3. Snohomish County Biodiesel Project

    SciTech Connect (OSTI)

    Terrill Chang; Deanna Carveth

    2010-02-01

    Snohomish County in western Washington State began converting its vehicle fleet to use a blend of biodiesel and petroleum diesel in 2005. As prices for biodiesel rose due to increased demand for this cleaner-burning fuel, Snohomish County looked to its farmers to “grow” this fuel locally. Suitable seed crops that can be crushed to extract oil for use as biodiesel feedstock include canola, mustard, and camelina. The residue, or mash, has high value as an animal feed. County farmers began with 52 acres of canola and mustard crops in 2006, increasing to 250 acres and 356 tons in 2008. In 2009, this number decreased to about 150 acres and 300 tons due to increased price for mustard seed.

  4. Response of a store with tunable natural frequencies in compressible cavity flow

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wagner, Justin L.; Casper, Katya Marie; Beresh, Steven J.; Hunter, Patrick S.; Spillers, Russell Wayne; Henfling, John F.

    2015-01-07

    Fluid-structure interactions that occur during aircraft internal store carriage were experimentally explored at Mach 0.94 and 1.47 using a generic, aerodynamic store installed in a rectangular cavity having a length-to-depth ratio of 7. Similar to previous studies using a cylindrical store, the aerodynamic store responded to the cavity flow at its natural structural frequencies, and it exhibited a directionally dependent response to cavity resonance. Moreover, cavity tones excited the store in the streamwise and wall-normal directions consistently, whereas the spanwise response was much more limited.

  5. DBD Deutsche Biodiesel GmbH | Open Energy Information

    Open Energy Info (EERE)

    DBD Deutsche Biodiesel GmbH Jump to: navigation, search Name: DBD Deutsche Biodiesel GmbH Place: Berlin, Germany Product: Developer of the DBD Regensberg biodiesel project....

  6. Biodiesel of Las Vegas Inc | Open Energy Information

    Open Energy Info (EERE)

    Biodiesel of Las Vegas Inc Jump to: navigation, search Name: Biodiesel of Las Vegas Inc Place: San Luis Obispo, California Zip: 93401 Product: Biodiesel producer. Headoffice is in...

  7. Big Daddy s Biodiesel Inc | Open Energy Information

    Open Energy Info (EERE)

    Daddy s Biodiesel Inc Jump to: navigation, search Name: Big Daddy's Biodiesel Inc Place: Hereford, Texas Zip: 79045 Product: Biodiesel producer in Hereford, Texas. References: Big...

  8. SeQuential Pacific Biodiesel LLC | Open Energy Information

    Open Energy Info (EERE)

    Pacific Biodiesel LLC Jump to: navigation, search Name: SeQuential-Pacific Biodiesel LLC Place: Oregon Sector: Biofuels Product: JV between SeQuential Biofuels, Pacific Biodiesel,...

  9. E85 and Biodiesel Deployment (Presentation)

    SciTech Connect (OSTI)

    Harrow, G.

    2007-09-18

    Presentation outlines industry trends and statistics revolving around the use and production of ethanol and biodiesel.

  10. Biodiesel and the Advanced Biofuel Market

    Broader source: Energy.gov [DOE]

    The Success of Advanced Biofuels Anne Steckel, Vice President of Federal Affairs, National Biodiesel Board

  11. Compressed Air

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lighting Compressed Air ESUE Motors Federal Agriculture Compressed Air Compressed Air Roadmap The Bonneville Power Administration created the roadmap to help utilities find energy...

  12. A numerical study comparing the combustion and emission characteristics of biodiesel with petrodiesel.

    SciTech Connect (OSTI)

    Som, S.; Longman, D.

    2011-04-01

    Combustion and emission characteristics of compression ignition engines strongly depend upon inner-nozzle flow and spray behavior. These processes control the fuel-air mixing, which in turn is critical for the combustion process. Previous studies by us highlighted the differences in the physical and chemical properties of petrodiesel and biodiesel, which significantly altered the inner-nozzle flow and spray structure. The current study is another step in this direction to gain a fundamental understanding on the influence of fuel properties on the combustion and emission characteristics of the compression ignition engine. n-Heptane and methyl butanoate were selected as surrogates for diesel and biodiesel fuels, respectively, because the chemical kinetic pathways were well-understood. Liquid length and flame lift-off length for diesel and biodiesel fuels were validated against data available in the literature. Liquid lengths were always higher for biodiesel because of its higher heat of vaporization, which resulted in increased interplay between spray and combustion processes under all conditions investigated. Ambient air entrainment was also lower for biodiesel mainly because of slower atomization and breakup. The mechanism for flame stabilization is further analyzed by estimating the turbulent burning velocity for both of the fuels. This analysis revealed that neither flame propagation nor isolated ignition kernels upstream and detached from high-temperature regions can be the mechanism for flame stabilization. Flame propagation speeds were observed to be similar for both fuels. Biodiesel predicted lower soot concentrations, which were also reflected in reduced C{sub 2}H{sub 2} mole fractions. Although prompt NO{sub x} was higher for biodiesel, total NO{sub x} was lower because of reduced thermal NO{sub x}. The ignition delay and NO{sub x} emissions predicted by these simulations do not agree with trends reported in the literature; hence, this study highlights the

  13. BioDiesel One Ltd | Open Energy Information

    Open Energy Info (EERE)

    BioDiesel One Ltd Jump to: navigation, search Name: BioDiesel One, Ltd. Place: Southington, Connecticut Zip: 6489 Product: BioDiesel One plans to develop a biodiesel plant in...

  14. A comparison of injector flow and spray characteristics of biodiesel with petrodiesel.

    SciTech Connect (OSTI)

    Som, S.; Longman, D. E; Ramirez, A. I.; Aggarwal, S. K.

    2010-12-01

    Performance and emission characteristics of compression ignition engines depend strongly on inner nozzle flow and spray behavior. These processes control the fuel air mixing, which in turn is critical for the combustion process. The differences in the physical properties of petrodiesel and biodiesel are expected to significantly alter the inner nozzle flow and spray structure and, thus, the performance and emission characteristics of the engine. In this study, the inner nozzle flow dynamics of these fuels are characterized by using the mixture-based cavitation model in FLUENT v6.3. Because of its lower vapor pressure, biodiesel was observed to cavitate less than petrodiesel. Higher viscosity of biodiesel resulted in loss of flow efficiency and reduction in injection velocity. Turbulence levels at the nozzle orifice exit were also lower for biodiesel. Using the recently developed KH-ACT model, which incorporates the effects of cavitation and turbulence in addition to aerodynamic breakup, the inner nozzle flow simulations are coupled with the spray simulations in a 'quasi-dynamic' fashion. Thus, the influence of inner nozzle flow differences on spray development of these fuels could be captured, in addition to the effects of their physical properties. Spray penetration was marginally higher for biodiesel, while cone angle was lower, which was attributed to its poor atomization characteristics. The computed liquid lengths of petrodiesel and biodiesel were compared with data from Sandia National Laboratories. Liquid lengths were higher for biodiesel due to its higher boiling temperature and heat of vaporization. Though the simulations captured this trend well, the liquid lengths were underpredicted, which was attributed to uncertainty about the properties of biodiesel used in the experiments. Parametric studies were performed to determine a single parameter that could be used to account for the observed differences in the fuel injection and spray behavior of

  15. Stability of Biodiesel and Biodiesel Blends: Interim Report

    SciTech Connect (OSTI)

    McCormick, R. L.; Alleman, T. L.; Waynick, J. A.; Westbrook, S. R.; Porter, S.

    2006-04-01

    This is an interim report for a study of biodiesel oxidative stability. It describes characterization and accelerated stability test results for 19 B100 samples and six diesel fuels.

  16. Biodiesel Offers a Renewable Alternative

    Broader source: Energy.gov [DOE]

    Biodiesel is a renewable fuel made of vegetable oils or animal fats. It can be produced from new oils such as soy or used vegetable oils like restaurant grease.

  17. Development and Demonstration of Hydrogen and Compressed Natural Gas (H/CNG) Blend Transit Buses: October 15, 2002-September 30, 2004

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Development and Demonstration of Hydrogen and Compressed Natural Gas (H/CNG) Blend Transit Buses October 15, 2002 - September 30, 2004 A. Del Toro SunLine Services Group Thousand Palms, California M. Frailey National Renewable Energy Laboratory Golden, Colorado F. Lynch Hydrogen Components Inc. Littleton, Colorado S. Munshi Westport Innovations Inc. Vancouver, British Columbia, Canada S. Wayne West Virginia University Morgantown, West Virginia Technical Report NREL/TP-540-38707 November 2005

  18. Red River Biodiesel Ltd | Open Energy Information

    Open Energy Info (EERE)

    Ltd Jump to: navigation, search Name: Red River Biodiesel, Ltd. Place: Houston, Texas Zip: 77006 Product: Red River operates a biodiesel plant in Houstion, Texas with a capacity of...

  19. Biodiesel is Working Hard in Kentucky

    SciTech Connect (OSTI)

    Not Available

    2004-04-01

    This 4-page Clean Cities fact sheet describes the use of biodiesel fuel in 6 school districts throughout Kentucky. It contains usage information for each school district, as well as contact information for local Clean Cities Coordinators and Biodiesel suppliers.

  20. Biodiesel Energy Trading Limited | Open Energy Information

    Open Energy Info (EERE)

    Limited Jump to: navigation, search Name: Biodiesel Energy Trading Limited Place: London, United Kingdom Zip: W1J 8DY Product: London-based company focused on trading of biodiesel....

  1. Wyobraska Biodiesel LLC | Open Energy Information

    Open Energy Info (EERE)

    Wyobraska Biodiesel LLC Jump to: navigation, search Name: Wyobraska Biodiesel LLC Place: Scottsbluff, Nebraska Zip: 69361 Product: Wyobraska operates a 37.9mLpa (10m gallon)...

  2. GS Global Biodiesel JV | Open Energy Information

    Open Energy Info (EERE)

    Global Biodiesel JV Jump to: navigation, search Name: GS Global Biodiesel JV Place: Iowa Product: JV between GS AgriFuels and Global Ethanol set-up to develop a plant that will...

  3. Biodiesel Esla Campos | Open Energy Information

    Open Energy Info (EERE)

    Esla Campos Jump to: navigation, search Name: Biodiesel Esla Campos Place: Spain Product: Company formed to build and own a biodiesel plant at Cabreros del R-o in Spain....

  4. Characterization of Biodiesel Oxidation and Oxidation Products

    SciTech Connect (OSTI)

    Not Available

    2005-08-01

    Features a literature review of 130 technical references pertaining to fatty oil and fatty ester stability chemistry in biodiesel fuels.

  5. The Biofuel Project: Creating Bio-diesel

    K-12 Energy Lesson Plans and Activities Web site (EERE)

    This activity introduces students to alternative fuels and gives them an opportunity to produce their own biodiesel fuel. The text of the exercise gives students a brief background in the environmental benefits of using biodiesel as a diesel substitute. The lab portion of this exercise demonstrates the basic chemistry involved in making biodiesel from vegetable oils and waste oils.

  6. Biodiesel Analytical Methods: August 2002--January 2004

    SciTech Connect (OSTI)

    Van Gerpen, J.; Shanks, B.; Pruszko, R.; Clements, D.; Knothe, G.

    2004-07-01

    Biodiesel is an alternative fuel for diesel engines that is receiving great attention worldwide. The material contained in this book is intended to provide the reader with information about biodiesel engines and fuels, analytical methods used to measure fuel properties, and specifications for biodiesel quality control.

  7. Natural Fuel Energy Inc | Open Energy Information

    Open Energy Info (EERE)

    Fuel Energy Inc Jump to: navigation, search Name: Natural Fuel & Energy Inc Place: Boston, Massachusetts Zip: 2100 Product: Boston - based biodiesel producer that operates a...

  8. Western Kentucky University Research Foundation Biodiesel Project

    SciTech Connect (OSTI)

    Pan, Wei-Ping; Cao, Yan

    2013-03-15

    fermented to create ethanol. In the United States almost all starch ethanol is mainly manufactured from corn grains. The technology for manufacturing corn ethanol can be considered mature as of the late 1980s. In 2005, 14.3 % of the U.S. corn harvest was processed to produce 1.48 x10{sup 10} liters of ethanol, energetically equivalent to 1.72 % of U.S. gasoline usage. Soybean oil is extracted from 1.5 % of the U.S. soybean harvest to produce 2.56 x 10{sup 8} liters of bio-diesel, which was 0.09 % of U.S. diesel usage. However, reaching maximum rates of bio-fuel supply from corn and soybeans is unlikely because these crops are presently major contributors to human food supplies through livestock feed and direct consumption. Moreover, there currently arguments on that the conversion of many types of many natural landscapes to grow corn for feedstock is likely to create substantial carbon emissions that will exacerbate globe warming. On the other hand, there is a large underutilized resource of cellulose biomass from trees, grasses, and nonedible parts of crops that could serve as a feedstock. One of the potentially significant new bio-fuels is so called "cellulosic ethanol", which is dependent on break-down by microbes or enzymes. Because of technological limitations (the wider variety of molecular structures in cellulose and hemicellulose requires a wider variety of microorganisms to break them down) and other cost hurdles (such as lower kinetics), cellulosic ethanol can currently remain in lab scales. Considering farm yields, commodity and fuel prices, farm energy and agrichemical inputs, production plant efficiencies, byproduct production, greenhouse gas (GHG) emissions, and other environmental effects, a life-cycle evaluation of competitive indicated that corn ethanol yields 25 % more energy than the energy invested in its production, whereas soybean bio-diesel yields 93 % more. Relative to the fossil fuels they displace, greenhouse gas emissions are reduced 12 % by the

  9. A review of chromatographic characterization techniques for biodiesel and biodiesel blends.

    SciTech Connect (OSTI)

    Pauls, R. E.

    2011-05-01

    This review surveys chromatographic technology that has been applied to the characterization of biodiesel and its blends. Typically, biodiesel consists of fatty acid methyl esters produced by transesterification of plant or animal derived triacylglycerols. Primary attention is given to the determination of trace impurities in biodiesel, such as methanol, glycerol, mono-, di-, and triacylglycerols, and sterol glucosides. The determination of the fatty acid methyl esters, trace impurities in biodiesel, and the determination of the biodiesel content of commercial blends of biodiesel in conventional diesel are also addressed.

  10. Biodegradation of biodiesel fuels

    SciTech Connect (OSTI)

    Zhang, X.; Haws, R.; Wright, B.; Reese, D.; Moeller, G.; Peterson, C.

    1995-12-31

    Biodiesel fuel test substances Rape Ethyl Ester (REE), Rape Methyl Ester (RME), Neat Rape Oil (NR), Say Methyl Ester (SME), Soy Ethyl Ester (SEE), Neat Soy Oil (NS), and proportionate combinations of RME/diesel and REE/diesel were studied to test the biodegradability of the test substances in an aerobic aquatic environment using the EPA 560/6-82-003 Shake Flask Test Method. A concurrent analysis of Phillips D-2 Reference Diesel was also performed for comparison with a conventional fuel. The highest rates of percent CO{sub 2} evolution were seen in the esterified fuels, although no significant difference was noted between them. Ranges of percent CO{sub 2} evolution for esterified fuels were from 77% to 91%. The neat rape and neat soy oils exhibited 70% to 78% CO{sub 2} evolution. These rates were all significantly higher than those of the Phillips D-2 reference fuel which evolved from 7% to 26% of the organic carbon to CO{sub 2}. The test substances were examined for BOD{sub 5} and COD values as a relative measure of biodegradability. Water Accommodated Fraction (WAF) was experimentally derived and BOD{sub 5} and COD analyses were carried out with a diluted concentration at or below the WAF. The results of analysis at WAF were then converted to pure substance values. The pure substance BOD{sub 5} and COD values for test substances were then compared to a control substance, Phillips D-2 Reference fuel. No significant difference was noted for COD values between test substances and the control fuel. (p > 0.20). The D-2 control substance was significantly lower than all test substances for BCD, values at p << 0.01. RME was also significantly lower than REE (p < 0.05) and MS (p < 0.01) for BOD{sub 5} value.

  11. Mississippi State Biodiesel Production Project

    SciTech Connect (OSTI)

    Rafael Hernandez; Todd French; Sandun Fernando; Tingyu Li; Dwane Braasch; Juan Silva; Brian Baldwin

    2008-03-20

    Biodiesel is a renewable fuel conventionally generated from vegetable oils and animal fats that conforms to ASTM D6751. Depending on the free fatty acid content of the feedstock, biodiesel is produced via transesterification, esterification, or a combination of these processes. Currently the cost of the feedstock accounts for more than 80% of biodiesel production cost. The main goal of this project was to evaluate and develop non-conventional feedstocks and novel processes for producing biodiesel. One of the most novel and promising feedstocks evaluated involves the use of readily available microorganisms as a lipid source. Municipal wastewater treatment facilities (MWWTF) in the USA produce (dry basis) of microbial sludge annually. This sludge is composed of a variety of organisms, which consume organic matter in wastewater. The content of phospholipids in these cells have been estimated at 24% to 25% of dry mass. Since phospholipids can be transesterified they could serve as a ready source of biodiesel. Examination of the various transesterification methods shows that in situ conversion of lipids to FAMEs provides the highest overall yield of biodiesel. If one assumes a 7.0% overall yield of FAMEs from dry sewage sludge on a weight basis, the cost per gallon of extracted lipid would be $3.11. Since the lipid is converted to FAMEs, also known as biodiesel, in the in Situ extraction process, the product can be used as is for renewable fuel. As transesterification efficiency increases the cost per gallon drops quickly, hitting $2.01 at 15.0% overall yield. An overall yield of 10.0% is required to obtain biodiesel at $2.50 per gallon, allowing it to compete with soybean oil in the marketplace. Twelve plant species with potential for oil production were tested at Mississippi State, MS. Of the species tested, canola, rapeseed and birdseed rape appear to have potential in Mississippi as winter annual crops because of yield. Two perennial crops were investigated, Chinese

  12. Low-Temperature Biodiesel Research Reveals Potential Key to Successful Blend Performance (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-02-01

    Relatively low-cost solutions could improve reliability while making biodiesel blends an affordable option. While biodiesel has very low production costs and the potential to displace up to 10% of petroleum diesel, until now, issues with cold weather performance have prevented biodiesel blends from being widely adopted. Some biodiesel blends have exhibited unexplained low-temperature performance problems even at blend levels as low as 2% by volume. The most common low-temperature performance issue is vehicle stalling caused by fuel filter clogging, which prevents fuel from reaching the engine. Research at the National Renewable Energy Laboratory (NREL) reveals the properties responsible for these problems, clearing a path for the development of solutions and expanded use of energy-conserving and low-emissions alternative fuel. NREL researchers set out to study the unpredictable nature of biodiesel crystallization, the condition that impedes the flow of fuel in cold weather. Their research revealed for the first time that saturated monoglyceride impurities common to the biodiesel manufacturing process create crystals that can cause fuel filter clogging and other problems when cooling at slow rates. Biodiesel low-temperature operational problems are commonly referred to as 'precipitates above the cloud point (CP).' NREL's Advanced Biofuels team spiked distilled soy and animal fat-derived B100, as well as B20, B10, and B5 biodiesel blends with three saturated monoglycerides (SMGs) at concentration levels comparable to those of real-world fuels. Above a threshold or eutectic concentration, the SMGs (monomyristin, monopalmitin, and monostearin) were shown to significantly raise the biodiesel CP, and had an even greater impact on the final melting temperature. Researchers discovered that upon cooling, monoglyceride initially precipitates as a metastable crystal, but it transforms over time or upon slight heating into a more stable crystal with a much lower solubility and

  13. GHP Biodiesel GmbH | Open Energy Information

    Open Energy Info (EERE)

    GHP Biodiesel GmbH Jump to: navigation, search Name: GHP Biodiesel GmbH Place: Germany Zip: HRA 13253 Product: A provider of a solution package for the establishment of biodiesel...

  14. Biodiesel Sued GmbH | Open Energy Information

    Open Energy Info (EERE)

    Sued GmbH Jump to: navigation, search Name: Biodiesel Sued GmbH Place: Stuttgart, Baden-Wrttemberg, Germany Zip: 70567 Product: Biodiesel Sued is biodiesel producer and...

  15. Marina Biodiesel GmbH Co KG | Open Energy Information

    Open Energy Info (EERE)

    Marina Biodiesel GmbH Co KG Jump to: navigation, search Name: Marina Biodiesel GmbH & Co.KG Place: Brunsbttel, Schleswig-Holstein, Germany Zip: 25541 Product: Marina Biodiesel...

  16. US BioDiesel Group | Open Energy Information

    Open Energy Info (EERE)

    BioDiesel Group Jump to: navigation, search Name: US BioDiesel Group Place: San Francisco, California Zip: 94111 Product: San Francisco-based developer of biodiesel production...

  17. JCN Neckermann Biodiesel GmbH | Open Energy Information

    Open Energy Info (EERE)

    JCN Neckermann Biodiesel GmbH Jump to: navigation, search Name: JCN Neckermann Biodiesel GmbH Place: Halle, Germany Zip: 6118 Product: Biodiesel producer with interests in four...

  18. Galveston Bay Biodiesel LP GBB | Open Energy Information

    Open Energy Info (EERE)

    Galveston Bay Biodiesel LP GBB Jump to: navigation, search Name: Galveston Bay Biodiesel LP (GBB) Place: Houston, Texas Product: Developer of a 75.8m litre per year biodiesel...

  19. Biodiesel Kyritz GmbH | Open Energy Information

    Open Energy Info (EERE)

    Kyritz GmbH Jump to: navigation, search Name: Biodiesel Kyritz GmbH Place: Nordhorn, Lower Saxony, Germany Zip: 48527 Product: Biodiesel Kyritz is a biodiesel producer and...

  20. Alternative Fuels Data Center: Diesel Vehicles Using Biodiesel

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Biodiesel Printable Version Share this resource Send a link to Alternative Fuels Data Center: Diesel Vehicles Using Biodiesel to someone by E-mail Share Alternative Fuels Data Center: Diesel Vehicles Using Biodiesel on Facebook Tweet about Alternative Fuels Data Center: Diesel Vehicles Using Biodiesel on Twitter Bookmark Alternative Fuels Data Center: Diesel Vehicles Using Biodiesel on Google Bookmark Alternative Fuels Data Center: Diesel Vehicles Using Biodiesel on Delicious Rank Alternative

  1. Alternative Fuels Data Center: Biodiesel Production and Distribution

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Biodiesel Production and Distribution to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Production and Distribution on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Production and Distribution on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Production and Distribution on Google Bookmark Alternative Fuels Data Center: Biodiesel Production and Distribution on Delicious Rank Alternative Fuels Data Center: Biodiesel Production and Distribution on Digg

  2. Efficiency Considerations of Diesel Premixed Charge Compression Ignition

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combustion | Department of Energy Considerations of Diesel Premixed Charge Compression Ignition Combustion Efficiency Considerations of Diesel Premixed Charge Compression Ignition Combustion Poster presented at the 16th Directions in Engine-Efficiency and Emissions Research (DEER) Conference in Detroit, MI, September 27-30, 2010. p-06_jacobs.pdf (226.27 KB) More Documents & Publications Biodiesel's Enabling Characteristics in Attaining Low Temperature Diesel Combustion System-Response

  3. Seattle Biodiesel aka Seattle BioFuels | Open Energy Information

    Open Energy Info (EERE)

    Seattle Biodiesel aka Seattle BioFuels Jump to: navigation, search Name: Seattle Biodiesel (aka Seattle BioFuels) Place: Seattle, Washington Sector: Renewable Energy Product:...

  4. Biodiesel Effects on Diesel Particle Filter Performance: Milestone Report

    SciTech Connect (OSTI)

    Williams, A.; McCormick, R. L.; Hayes, R.; Ireland, J.

    2006-03-01

    Research results on the performance of biodiesel and biodiesel blends with ultra-low sulfur diesel (ULSD) and a diesel particle filter (DPF).

  5. West Central Biodiesel Investors LLC | Open Energy Information

    Open Energy Info (EERE)

    Biodiesel Investors LLC Jump to: navigation, search Name: West Central Biodiesel Investors, LLC Place: Ralston, Iowa Zip: 51459 Product: Iowa-based body raising capital to support...

  6. The California Biodiesel Alliance CBA | Open Energy Information

    Open Energy Info (EERE)

    Biodiesel Alliance CBA Jump to: navigation, search Name: The California Biodiesel Alliance (CBA) Place: California Product: California-based non-profit corporation promoting...

  7. Planet Resource Recovery Inc formerly American Biodiesel Fuels...

    Open Energy Info (EERE)

    Planet Resource Recovery Inc formerly American Biodiesel Fuels Corp Jump to: navigation, search Name: Planet Resource Recovery, Inc. (formerly American Biodiesel Fuels Corp.)...

  8. Centre for Jatropha Promotion Biodiesel | Open Energy Information

    Open Energy Info (EERE)

    Jatropha Promotion Biodiesel Jump to: navigation, search Name: Centre for Jatropha Promotion & Biodiesel Place: Churu, Rajasthan, India Zip: 331001 Product: Indian-based non-profit...

  9. Biopar Producao de Biodiesel Parecis Ltda | Open Energy Information

    Open Energy Info (EERE)

    Biopar Producao de Biodiesel Parecis Ltda Jump to: navigation, search Name: Biopar Producao de Biodiesel Parecis Ltda Place: Nova Marilandia, Mato Grosso, Brazil Zip: 78415-000...

  10. EIA-22M, Monthly Biodiesel Production Survey Page 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    22M, Monthly Biodiesel Production Survey Page 1 Instructions for the EIA-22M Monthly Biodiesel, Biojet, Biokerosene, and Renewable Diesel Report General Information Questions If...