National Library of Energy BETA

Sample records for bioactive glass scaffolds

  1. Bioactive Glass Scaffolds for Bone Regeneration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bioactive Glass Scaffolds for Bone Regeneration Bioactive Glass Scaffolds for Bone Regeneration Print Wednesday, 28 September 2011 00:00 Natural materials are renowned for their unique combination of outstanding mechanical properties and exquisite microstructure. For example, bone, cork, and wood are porous biological materials with high specific stiffness (stiffness per unit weight) and specific strength. The outstanding mechanical properties of these materials are attributed to their

  2. Bioactive Glass Scaffolds for Bone Regeneration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bioactive Glass Scaffolds for Bone Regeneration Print Natural materials are renowned for their unique combination of outstanding mechanical properties and exquisite microstructure. For example, bone, cork, and wood are porous biological materials with high specific stiffness (stiffness per unit weight) and specific strength. The outstanding mechanical properties of these materials are attributed to their anisotropic structures, which have optimized strength-to-density and stiffness-to-density

  3. Bioactive Glass Scaffolds for Bone Regeneration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bioactive Glass Scaffolds for Bone Regeneration Print Natural materials are renowned for their unique combination of outstanding mechanical properties and exquisite microstructure. For example, bone, cork, and wood are porous biological materials with high specific stiffness (stiffness per unit weight) and specific strength. The outstanding mechanical properties of these materials are attributed to their anisotropic structures, which have optimized strength-to-density and stiffness-to-density

  4. Bioactive Glass Scaffolds for Bone Regeneration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bioactive Glass Scaffolds for Bone Regeneration Print Natural materials are renowned for their unique combination of outstanding mechanical properties and exquisite microstructure. For example, bone, cork, and wood are porous biological materials with high specific stiffness (stiffness per unit weight) and specific strength. The outstanding mechanical properties of these materials are attributed to their anisotropic structures, which have optimized strength-to-density and stiffness-to-density

  5. Bioactive Glass Scaffolds for Bone Regeneration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bioactive Glass Scaffolds for Bone Regeneration Print Natural materials are renowned for their unique combination of outstanding mechanical properties and exquisite microstructure. For example, bone, cork, and wood are porous biological materials with high specific stiffness (stiffness per unit weight) and specific strength. The outstanding mechanical properties of these materials are attributed to their anisotropic structures, which have optimized strength-to-density and stiffness-to-density

  6. Bioactive Glass Scaffolds for Bone Regeneration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bioactive Glass Scaffolds for Bone Regeneration Print Natural materials are renowned for their unique combination of outstanding mechanical properties and exquisite microstructure. For example, bone, cork, and wood are porous biological materials with high specific stiffness (stiffness per unit weight) and specific strength. The outstanding mechanical properties of these materials are attributed to their anisotropic structures, which have optimized strength-to-density and stiffness-to-density

  7. Bioactive Glass Scaffolds for Bone Regeneration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bioactive Glass Scaffolds for Bone Regeneration Print Natural materials are renowned for their unique combination of outstanding mechanical properties and exquisite microstructure. For example, bone, cork, and wood are porous biological materials with high specific stiffness (stiffness per unit weight) and specific strength. The outstanding mechanical properties of these materials are attributed to their anisotropic structures, which have optimized strength-to-density and stiffness-to-density

  8. Bioactive Glass Scaffolds for Bone Regeneration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bioactive Glass Scaffolds for Bone Regeneration Print Natural materials are renowned for their unique combination of outstanding mechanical properties and exquisite microstructure. For example, bone, cork, and wood are porous biological materials with high specific stiffness (stiffness per unit weight) and specific strength. The outstanding mechanical properties of these materials are attributed to their anisotropic structures, which have optimized strength-to-density and stiffness-to-density

  9. Bioactive Glass Scaffolds for Bone Regeneration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    with cortical and trabecular bone and literature values of porous glass and hydroxyapatite scaffolds. Each style of point corresponds to a different literature value....

  10. Bioactive Glass Scaffolds for Bone Regeneration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    have been used for the fabrication of glass scaffolds, including polymer foam replication, sol-gel, and freeze-casting; however, the low compressive strength of these...

  11. Bioactive Glass Scaffolds for Bone Regeneration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of ions from bioactive glasses reportedly activates the expression of osteogenic genes and stimulates bone growth, or angiogenesis. The ease and efficiency with which...

  12. Bioactive Glass Scaffolds for Bone Regeneration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... with high mechanical strength, for example, is important for a broad range of emerging applications, including filters, catalyst support, and tissue engineering scaffolds. ...

  13. Development of highly porous scaffolds based on bioactive silicates for dental tissue engineering

    SciTech Connect (OSTI)

    Goudouri, O.M.; Theodosoglou, E.; Kontonasaki, E.; Will, J.; Chrissafis, K.; Koidis, P.; Paraskevopoulos, K.M.; Boccaccini, A.R.

    2014-01-01

    Graphical abstract: - Highlights: • Synthesis of an Mg-based glass-ceramic via the sol–gel technique. • The heat treatment of the glass-ceramic promoted the crystallization of akermanite. • Akermanite scaffolds coated with gelatin were successfully fabricated. • An HCAp layer was developed on the surface of all scaffolds after 9 days in SBF. - Abstract: Various scaffolding materials, ceramics and especially Mg-based ceramic materials, including akermanite (Ca{sub 2}MgSi{sub 2}O{sub 7}) and diopside (CaMgSi{sub 2}O{sub 6}), have attracted interest for dental tissue regeneration because of their improved mechanical properties and controllable biodegradation. The aim of the present work was the synthesis of an Mg-based glass-ceramic, which would be used for the construction of workable akermanite scaffolds. The characterization of the synthesized material was performed by Fourier Transform Infrared Spectroscopy (FTIR) X-Ray Diffractometry (XRD) and Scanning Electron Microscopy (SEM). Finally, the apatite forming ability of the scaffolds was assessed by immersion in simulated body fluid. The scaffolds were fabricated by the foam replica technique and were subsequently coated with gelatin to provide a functional surface for increased cell attachment. Finally, SEM microphotographs and FTIR spectra of the scaffolds after immersion in SBF solution indicated the inorganic bioactive character of the scaffolds suitable for the intended applications in dental tissue engineering.

  14. Bioactive Glass Scaffolds for Bone Regeneration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    necessary to promote bone regeneration while substituting for, at least temporarily, the tissue by maintaining these loads in vivo. Porous metallic implants used for replacement...

  15. Bioactive Glass Scaffolds for Bone Regeneration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    at least temporarily, the tissue by maintaining these loads in vivo. Porous metallic implants used for replacement in fractures have well-documented fixation problems, and unlike...

  16. Bioactive Glass Scaffolds for Bone Regeneration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    tomography (left and top right) and a corresponding scanning electron microscopy image (bottom right). Scientists are developing new materials and structures inspired by...

  17. Bioactive glass coatings with hydroxyapatite and Bioglass (registered) particles on Ti-based implants. 1. Processing

    SciTech Connect (OSTI)

    Gomez-Vega, J.M.; Saiz, E.; Tomsia, A.P.; Marshall, G.W.; Marshall, S.J.

    1999-06-01

    Silicate-based glasses with thermal expansion coefficients that match those of Ti6Al4V were prepared and used to coat Ti6Al4V by a simple enameling technique. Bioglass (BG) (registered) or hydroxyapatite (HA) particles were embedded on the coatings in order to enhance their bioactivity. HA particles were partially embedded during heating and remained firmly embedded on the coating after cooling. There was no apparent reaction at the glass/HA interface at the temperatures used in this work (800-840 degrees C). In contrast, BG particles softened and some infiltration into the glass coating took place during heat treatment. In this case, particles with sizes over 45 (mu)m were required, otherwise the particles became hollow due to the infiltration and crystallization of the glass surface. The concentration of the particles on the coating was limited to 20% of surface coverage. Concentrations above this value resulted in cracked coatings due to excessive induced stress. Cracks did not prop agate along the interfaces when coatings were subjected to Vickers indentation tests, indicating that the particle/glass and glass/metal interfaces exhibited strong bonds. Enameling, producing excellent glass/metal adhesion with well-attached bioactive particles on the surface, is a promising method of forming reliable and lasting implants which can endure substantial chemical and mechanical stresses.

  18. Glass

    Broader source: Energy.gov [DOE]

    Glass production requires considerable energy to sustain the very high temperatures needed to melt the glass batch. The U.S. glass industry has worked cooperatively with AMO to develop a range of resources for improving energy efficiency and reducing emissions.

  19. Development of high strength hydroxyapatite for bone tissue regeneration using nanobioactive glass composites

    SciTech Connect (OSTI)

    Shrivastava, Pragya; Dalai, Sridhar; Vijayalakshmi, S.; Sudera, Prerna; Sivam, Santosh Param; Sharma, Pratibha

    2013-02-05

    With an increasing demand of biocompatible bone substitutes for the treatment of bone diseases and bone tissue regeneration, bioactive glass composites are being tested to improvise the osteoconductive as well as osteoinductive properties. Nanobioactive glass (nBG) composites, having composition of SiO{sub 2} 70 mol%, CaO 26 mol % and P{sub 2}O{sub 5} 4 mol% were prepared by Freeze drying method using PEG-PPG-PEG co-polymer. Polymer addition improves the mechanical strength and porosity of the scaffold of nBG. Nano Bioactive glass composites upon implantation undergo specific reactions leading to the formation of crystalline hydroxyapatite (HA). This is tested in vitro using Simulated Body Fluid (SBF). This high strength hydroxyapatite (HA) layer acts as osteoconductive in cellular environment, by acting as mineral base of bones, onto which new bone cells proliferate leading to new bone formation. Strength of the nBG composites as well as HA is in the range of cortical and cancellous bone, thus proving significant for bone tissue regeneration substitutes.

  20. Bioactivation of particles

    DOE Patents [OSTI]

    Pinaud, Fabien (Berkeley, CA); King, David (San Francisco, CA); Weiss, Shimon (Los Angeles, CA)

    2011-08-16

    Particles are bioactivated by attaching bioactivation peptides to the particle surface. The bioactivation peptides are peptide-based compounds that impart one or more biologically important functions to the particles. Each bioactivation peptide includes a molecular or surface recognition part that binds with the surface of the particle and one or more functional parts. The surface recognition part includes an amino-end and a carboxy-end and is composed of one or more hydrophobic spacers and one or more binding clusters. The functional part(s) is attached to the surface recognition part at the amino-end and/or said carboxy-end.

  1. ALSNews Vol. 324

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4 ALSNews Vol. 324 Print Wednesday, 28 September 2011 00:00 Bioactive Glass Scaffolds for Bone Regeneration Natural materials are renowned for their unique combination of...

  2. Calcium silicate ceramic scaffolds toughened with hydroxyapatite whiskers for bone tissue engineering

    SciTech Connect (OSTI)

    Feng, Pei; Wei, Pingpin; Li, Pengjian; Gao, Chengde; Shuai, Cijun; Peng, Shuping

    2014-11-15

    Calcium silicate possessed excellent biocompatibility, bioactivity and degradability, while the high brittleness limited its application in load-bearing sites. Hydroxyapatite whiskers ranging from 0 to 30 wt.% were incorporated into the calcium silicate matrix to improve the strength and fracture resistance. Porous scaffolds were fabricated by selective laser sintering. The effects of hydroxyapatite whiskers on the mechanical properties and toughening mechanisms were investigated. The results showed that the scaffolds had a uniform and continuous inner network with the pore size ranging between 0.5 mm and 0.8 mm. The mechanical properties were enhanced with increasing hydroxyapatite whiskers, reached a maximum at 20 wt.% (compressive strength: 27.28 MPa, compressive Young's modulus: 156.2 MPa, flexural strength: 15.64 MPa and fracture toughness: 1.43 MPa·m{sup 1/2}) and then decreased by addition of more hydroxyapatite whiskers. The improvement of mechanical properties was due to whisker pull-out, crack deflection and crack bridging. Moreover, the degradation rate decreased with the increase of hydroxyapatite whisker content. A layer of bone-like apatite was formed on the scaffold surfaces after being soaked in simulated body fluid. Human osteoblast-like MG-63 cells spread well on the scaffolds and proliferated with increasing culture time. These findings suggested that the calcium silicate scaffolds reinforced with hydroxyapatite whiskers showed great potential for bone regeneration and tissue engineering applications. - Highlights: • HA whiskers were incorporated into CS to improve the properties. • The scaffolds were successfully fabricated by SLS. • Toughening mechanisms was whisker pull-out, crack deflection and bridging. • The scaffolds showed excellent apatite forming ability.

  3. Insights into Methyltransferase Specificity and Bioactivity of...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Insights into Methyltransferase Specificity and Bioactivity of Derivatives of the Antibiotic Plantazolicin Citation Details In-Document Search Title: Insights into ...

  4. Cell–scaffold interaction within engineered tissue

    SciTech Connect (OSTI)

    Chen, Haiping; Liu, Yuanyuan Jiang, Zhenglong; Chen, Weihua; Yu, Yongzhe; Hu, Qingxi

    2014-05-01

    The structure of a tissue engineering scaffold plays an important role in modulating tissue growth. A novel gelatin–chitosan (Gel–Cs) scaffold with a unique structure produced by three-dimensional printing (3DP) technology combining with vacuum freeze-drying has been developed for tissue-engineering applications. The scaffold composed of overall construction, micro-pore, surface morphology, and effective mechanical property. Such a structure meets the essential design criteria of an ideal engineered scaffold. The favorable cell–matrix interaction supports the active biocompatibility of the structure. The structure is capable of supporting cell attachment and proliferation. Cells seeded into this structure tend to maintain phenotypic shape and secreted large amounts of extracellular matrix (ECM) and the cell growth decreased the mechanical properties of scaffold. This novel biodegradable scaffold has potential applications for tissue engineering based upon its unique structure, which acts to support cell growth. - Highlights: • The scaffold is not only for providing a surface for cell residence but also for determining cell phenotype and retaining structural integrity. • The mechanical property of scaffold can be affected by activities of cell. • The scaffold provides a microenvironment for cell attachment, growth, and migration.

  5. Unidirectional Scaffold-Strand Arrangement in DNA Origami

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Unidirectional Scaffold-Strand Arrangement in DNA Origami Authors: Han, D., Jiang, S., Samanta, A., Liu, Y., and Yan, H. Title: Unidirectional Scaffold-Strand Arrangement in DNA...

  6. Glass and Glass Products (2010 MECS) | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Glass and Glass Products (2010 MECS) Glass and Glass Products (2010 MECS) Manufacturing Energy and Carbon Footprint for Glass Sector (NAICS 3272, 327993) Energy use data source: 2010 EIA MECS (with adjustments) Footprint Last Revised: February 2014 View footprints for other sectors here. Manufacturing Energy and Carbon Footprint PDF icon Glass and Glass Products More Documents & Publications MECS 2006 - Glass Textiles

  7. ITP Glass: Glass Industry Technology Roadmap; April 2002 | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Glass Industry Technology Roadmap; April 2002 ITP Glass: Glass Industry Technology Roadmap; April 2002 PDF icon glass2002roadmap.pdf More Documents & Publications ITP Glass: Glass Industry of the Future: Energy and Environmental Profile of the U.S. Glass Industry; April, 2002 ITP Glass: Industrial Glass Bandwidth Analysis Final Report, August 2007 ITP Glass: A Clear Vision for a Bright Future

  8. Glass-silicon column

    DOE Patents [OSTI]

    Yu, Conrad M.

    2003-12-30

    A glass-silicon column that can operate in temperature variations between room temperature and about 450.degree. C. The glass-silicon column includes large area glass, such as a thin Corning 7740 boron-silicate glass bonded to a silicon wafer, with an electrode embedded in or mounted on glass of the column, and with a self alignment silicon post/glass hole structure. The glass/silicon components are bonded, for example be anodic bonding. In one embodiment, the column includes two outer layers of silicon each bonded to an inner layer of glass, with an electrode imbedded between the layers of glass, and with at least one self alignment hole and post arrangement. The electrode functions as a column heater, and one glass/silicon component is provided with a number of flow channels adjacent the bonded surfaces.

  9. ITP Glass: Industrial Glass Bandwidth Analysis Final Report,...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Industrial Glass Bandwidth Analysis Final Report, August 2007 ITP Glass: Industrial Glass Bandwidth Analysis Final Report, August 2007 industrialbandwidth.pdf More Documents &...

  10. GlassForm

    Energy Science and Technology Software Center (OSTI)

    2011-09-16

    GlassForm is a software tool for generating preliminary waste glass formulas for a given waste stream. The software is useful because it reduces the number of verification melts required to develop a suitable additive composition. The software includes property models that calculate glass properties of interest from the chemical composition of the waste glass. The software includes property models for glass viscosity, electrical conductivity, glass transition temperature, and leach resistance as measured by the 7-daymore » product consistency test (PCT).« less

  11. ITP Glass: Glass Industry of the Future: Energy and Environmental...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    April, 2002 PDF icon glass2002profile.pdf More Documents & Publications ITP Glass: Industrial Glass Bandwidth Analysis Final Report, August 2007 ITP Glass: A Clear Vision for a...

  12. Oxynitride glass production procedure

    DOE Patents [OSTI]

    Weidner, Jerry R. (Idaho Falls, ID); Schuetz, Stanley T. (Idaho Falls, ID); O'Brien, Michael H. (Idaho Falls, ID)

    1991-01-01

    The invention is a process for the preparation of high quality oxynitride glasses without resorting to high pressures. Nitrogen-containing compounds such as Si.sub.3 N.sub.4 are first encapsulated in a low melting temperature glass. Particles of the encapsulated nitrogen-containing compound are mixed with other oxide glass-formers and melted in an atmosphere of flowing nitrogen and in the presence of buffering gas to form the oxynitride glass. Glasses containing up to 15 at % nitrogen have been prepared by this method.

  13. Radiation coloration resistant glass

    DOE Patents [OSTI]

    Tomozawa, Minoru; Watson, E. Bruce; Acocella, John

    1986-01-01

    A radiation coloration resistant glass is disclosed which is used in a radiation environment sufficient to cause coloration in most forms of glass. The coloration resistant glass includes higher proportions by weight of water and has been found to be extremely resistant to color change when exposed to such radiation levels. The coloration resistant glass is free of cerium oxide and has more than about 0.5% by weight water content. Even when exposed to gamma radiation of more than 10.sup.7 rad, the coloration resistant glass does not lose transparency.

  14. Radiation coloration resistant glass

    DOE Patents [OSTI]

    Tomozawa, M.; Watson, E.B.; Acocella, J.

    1986-11-04

    A radiation coloration resistant glass is disclosed which is used in a radiation environment sufficient to cause coloration in most forms of glass. The coloration resistant glass includes higher proportions by weight of water and has been found to be extremely resistant to color change when exposed to such radiation levels. The coloration resistant glass is free of cerium oxide and has more than about 0.5% by weight water content. Even when exposed to gamma radiation of more than 10[sup 7] rad, the coloration resistant glass does not lose transparency. 3 figs.

  15. Diamond turning of glass

    SciTech Connect (OSTI)

    Blackley, W.S.; Scattergood, R.O.

    1988-12-01

    A new research initiative will be undertaken to investigate the critical cutting depth concepts for single point diamond turning of brittle, amorphous materials. Inorganic glasses and a brittle, thermoset polymer (organic glass) are the principal candidate materials. Interrupted cutting tests similar to those done in earlier research are Ge and Si crystals will be made to obtain critical depth values as a function of machining parameters. The results will provide systematic data with which to assess machining performance on glasses and amorphous materials

  16. HLW Glass Waste Loadings

    Office of Environmental Management (EM)

    HLW Glass Waste Loadings Ian L. Pegg Vitreous State Laboratory The Catholic University of ... (JHCM) technology Factors affecting waste loadings Waste loading requirements ...

  17. ALSNews Vol. 324

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ALSNews Vol. 324 Print Bioactive Glass Scaffolds for Bone Regeneration Natural materials are renowned for their unique combination of outstanding mechanical properties and exquisite microstructure. Researchers at Beamline 8.3.2 have created bioactive glass scaffolds that mirror nature's efficient materials and may provide a means for previously problematic bone regeneration in large, load-bearing limbs. Read more... Contact: Q. Fu Direct Imaging of Antiferromagnetic Vortex States Despite

  18. ALSNews Vol. 324

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ALSNews Vol. 324 Print Bioactive Glass Scaffolds for Bone Regeneration Natural materials are renowned for their unique combination of outstanding mechanical properties and exquisite microstructure. Researchers at Beamline 8.3.2 have created bioactive glass scaffolds that mirror nature's efficient materials and may provide a means for previously problematic bone regeneration in large, load-bearing limbs. Read more... Contact: Q. Fu Direct Imaging of Antiferromagnetic Vortex States Despite

  19. Protein Scaffolding for Small Molecule Catalysts

    SciTech Connect (OSTI)

    Baker, David

    2014-09-14

    We aim to design hybrid catalysts for energy production and storage that combine the high specificity, affinity, and tunability of proteins with the potent chemical reactivities of small organometallic molecules. The widely used Rosetta and RosettaDesign methodologies will be extended to model novel protein / small molecule catalysts in which one or many small molecule active centers are supported and coordinated by protein scaffolding. The promise of such hybrid molecular systems will be demonstrated with the nickel-phosphine hydrogenase of DuBois et. al.We will enhance the hydrogenase activity of the catalyst by designing protein scaffolds that incorporate proton relays and systematically modulate the local environment of the catalyticcenter. In collaboration with DuBois and Shaw, the designs will be experimentally synthesized and characterized.

  20. Glass Property Models and Constraints for Estimating the Glass...

    Office of Scientific and Technical Information (OSTI)

    glass formulation and melter testing data have suggested that significant increases in waste loading in HLW and LAW glasses are possible over current system planning estimates....

  1. Fabrication of polylactide nanocomposite scaffolds for bone tissue engineering applications

    SciTech Connect (OSTI)

    Mkhabela, Vuyiswa J.; Ray, Suprakas Sinha

    2015-05-22

    Highly porous three-dimensional polylactide (PLA) scaffolds were obtained from PLA incorporated with different amounts of chitosan-modified montmorillonite (CS-MMT), through solvent casting and particulate leaching method. The processed scaffolds were tested in vitro for their possible application in bone tissue engineering. Scaffolds were characterized by Focused Ion Beam Scanning Electron Microscopy (FIB SEM), Fourier Transform Infra-Red (FTIR), and X-Ray Diffraction (XRD) to study their structure and intermolecular interactions. Bioresorbability tests in simulated body fluid (pH 7.4) were conducted to assess the response of the scaffolds in a simulated physiological condition. The FIB SEM images of the scaffolds showed a porous architecture with gradual change in morphology with increasing CS-MMT concentration. FTIR analysis revealed the presence of both PLA and CS-MMT particles on the surface of the scaffolds. XRD showed that the crystalline unit cell type was the same for all the scaffolds, and crystallinity decreased with an increase in CS-MMT concentration. The scaffolds were found to be bioresorbable, with rapid bioresorbability on the scaffolds with a high CS-MMT concentration.

  2. Versa Glass | Open Energy Information

    Open Energy Info (EERE)

    search Name: Versa Glass Place: Columbus, Ohio Zip: 43220 Product: Versa is manufacturing a new technology privacy glass in Ohio that is LEED and has cleantech properties...

  3. Glass electrolyte composition

    DOE Patents [OSTI]

    Kucera, Gene H.; Roche, Michael F.

    1985-01-01

    An ionically conductive glass is disclosed for use as electrolyte in a high temperature electrochemical cell, particularly a cell with sodium anode and sulfur cathode. The glass includes the constituents Na.sub.2 O, ZrO.sub.2, Al.sub.2 O.sub.3 and SiO.sub.2 in selected proportions to be a single phase solid solution substantially free of crystalline regions and undissolved constituents. Other advantageous properties are an ionic conductivity in excess of 2.times.10.sup.-3 (ohm-cm).sup.-1 at 300.degree. C. and a glass transition temperature in excess of 500.degree. C.

  4. EXELFS of Metallic Glasses

    SciTech Connect (OSTI)

    Ito, Y.; Alamgir, F.M.; Schwarz, R.B.; Jain, H.; Williams, D.B.

    1999-11-30

    The feasibility of using extended energy-loss fine structure (EXELFS) obtained from {approximately}1 nm regions of metallic glasses to study their short-range order has been examined. Ionization edges of the metallic glasses in the electron energy-loss spectrum (EELS) have been obtained from PdNiP bulk metallic glass and Ni{sub 2}P polycrystalline powder in a transmission electron microscope. The complexity of EXELFS analysis of L- and M-ionization edges of heavy elements (Z>22, i.e. Ni and Pd) is addressed by theoretical calculations using an ab initio computer code, and its results are compared with the experimental data.

  5. Glass electrolyte composition

    DOE Patents [OSTI]

    Kucera, G.H.; Roche, M.F.

    1985-01-08

    An ionically conductive glass is disclosed for use as electrolyte in a high temperature electrochemical cell, particularly a cell with sodium anode and sulfur cathode. The glass includes the constituents Na/sub 2/O, ZrO/sub 2/, Al/sub 2/O/sub 3/ and SiO/sub 2/ in selected proportions to be a single phase solid solution substantially free of crystalline regions and undissolved constituents. Other advantageous properties are an ionic conductivity in excess of 2 x 10/sup -3/ (ohm-cm)/sup -1/ at 300/sup 0/C and a glass transition temperature in excess of 500/sup 0/C.

  6. Porous ceramic scaffolds with complex architectures

    SciTech Connect (OSTI)

    Saiz, Eduardo; Munch, Etienne; Franco, Jaime; Deville, Sylvain; Hunger, Phillip; Saiz, Eduardo; Tomsia, Antoni P.

    2008-03-15

    This work compares two novel techniques for the fabrication of ceramic scaffolds for bone tissue engineering with complex porosity: robocasting and freeze casting. Both techniques are based on the preparation of concentrated ceramic suspensions with suitable properties for the process. In robocasting, the computer-guided deposition of the suspensions is used to build porous materials with designed three dimensional (3-D) geometries and microstructures. Freeze casting uses ice crystals as a template to form porous lamellar ceramic materials. Preliminary results on the compressive strengths of the materials are also reported.

  7. Super ionic conductive glass

    DOE Patents [OSTI]

    Susman, Sherman (Park Forest, IL); Volin, Kenneth J. (Fort Collins, CO)

    1984-01-01

    An ionically conducting glass for use as a solid electrolyte in a power or secondary cell containing an alkali metal-containing anode and a cathode separated by an alkali metal ion conducting glass having an ionic transference number of unity and the general formula: A.sub.1+x D.sub.2-x/3 Si.sub.x P.sub.3-x O.sub.12-2x/3, wherein A is a network modifier for the glass and is an alkali metal of the anode, D is an intermediate for the glass and is selected from the class consisting of Zr, Ti, Ge, Al, Sb, Be, and Zn and X is in the range of from 2.25 to 3.0. Of the alkali metals, Na and Li are preferred and of the intermediate, Zr, Ti and Ge are preferred.

  8. Baseline LAW Glass Formulation Testing

    SciTech Connect (OSTI)

    Kruger, Albert A.; Mooers, Cavin; Bazemore, Gina; Pegg, Ian L.; Hight, Kenneth; Lai, Shan Tao; Buechele, Andrew; Rielley, Elizabeth; Gan, Hao; Muller, Isabelle S.; Cecil, Richard

    2013-06-13

    The major objective of the baseline glass formulation work was to develop and select glass formulations that are compliant with contractual and processing requirements for each of the LAW waste streams. Other objectives of the work included preparation and characterization of glasses with respect to the properties of interest, optimization of sulfate loading in the glasses, evaluation of ability to achieve waste loading limits, testing to demonstrate compatibility of glass melts with melter materials of construction, development of glass formulations to support ILAW qualification activities, and identification of glass formulation issues with respect to contract specifications and processing requirements.

  9. Method for making a bio-compatible scaffold

    DOE Patents [OSTI]

    Cesarano, III, Joseph (Albuquerque, NM); Stuecker, John N. (Albuquerque, NM); Dellinger, Jennifer G. (Champaigne, IL); Jamison, Russell D. (Urbana, IL)

    2006-01-31

    A method for forming a three-dimensional, biocompatible, porous scaffold structure using a solid freeform fabrication technique (referred to herein as robocasting) that can be used as a medical implant into a living organism, such as a human or other mammal. Imaging technology and analysis is first used to determine the three-dimensional design required for the medical implant, such as a bone implant or graft, fashioned as a three-dimensional, biocompatible scaffold structure. The robocasting technique is used to either directly produce the three-dimensional, porous scaffold structure or to produce an over-sized three-dimensional, porous scaffold lattice which can be machined to produce the designed three-dimensional, porous scaffold structure for implantation.

  10. Bioactivation of myelotoxic xenobiotics by human neutrophil myeloperoxidase

    SciTech Connect (OSTI)

    Roy, R.R.

    1989-01-01

    Many environmental pollutants and drugs are toxic to the bone marrow. Some of these xenobiotics may initiate toxicity after undergoing bioactivation to free radicals and/or other reactive electrophiles. Peroxidases are a group of enzymes that catalyze the one-electron oxidative bioactivation of a variety of xenobiotics in vitro. Myeloperoxidase (MPO) is a peroxidative enzyme found in very high concentration in the neutrophils of human bone marrow. In this study, human MPO was evaluated to determine its ability to catalyze the in vitro bioactivation of known bone marrow toxicants that contain the aromatic hydroxyl (Ar-OH), aromatic amine (Ar-N-R{sub 2}), or heterocyclic tertiary amine ({double bond}N-R) moieties. The formation of free radical metabolites during the MPO-catalyzed bioactivation of hydroquinone and catechol (benzene metabolites), mitoxantrone and ametantrone (antitumor drugs), and chlorpromazine and promazine (antipsychotic drugs) was demonstrated by EPR spectroscopy. The reactivity of the products formed during the MPO catalyzed bioactivation of ({sup 14}C)hydroquinone and ({sup 14}C)catechol was shown by their covalent binding to protein and DNA in vitro. The covalently binding metabolite in each case is postulated to be the quinone form of the xenobiotic. In addition, both GSH and NADH were oxidized by the reactive intermediate(s) formed during the MPO-catalyzed bioactivation of many of the bone marrow toxicants tested. It was also shown that p,p-biphenol stimulated the MPO catalyzed bioactivation of both hydroquinone and catechol, while p-cresol stimulated the MPO-catalyzed bioactivation of catechol.

  11. Insights into Methyltransferase Specificity and Bioactivity of Derivatives

    Office of Scientific and Technical Information (OSTI)

    of the Antibiotic Plantazolicin (Journal Article) | SciTech Connect SciTech Connect Search Results Journal Article: Insights into Methyltransferase Specificity and Bioactivity of Derivatives of the Antibiotic Plantazolicin Citation Details In-Document Search Title: Insights into Methyltransferase Specificity and Bioactivity of Derivatives of the Antibiotic Plantazolicin Authors: Hao, Yue ; Blair, Patricia M. ; Sharma, Abhishek ; Mitchell, Douglas A. ; Nair, Satish K. [1] + Show Author

  12. Bilayer membrane interactions with nanofabricated scaffolds

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Collier, Patrick C.

    2015-07-29

    Membrane function is facilitated by lateral organization within the lipid bilayer, including phase-separation of lipids into more ordered domains (lipid rafts) and anchoring of the membrane to a cytoskeleton. These features have proven difficult to reproduce in model membrane systems such as black lipid membranes, unilamellar vesicles and supported bilayers. However, advances in micro/nanofabrication have resulted in more realistic synthetic models of membrane-cytoskeleton interactions that can help uncover the design rules responsible for biological membrane formation and organization. This review will focus on describing micro-/nanostructured scaffolds that can emulate the connections of a cellular membrane to an underlying “cytoskeleton”. Thismore » includes molecular-based scaffolds anchored to a solid substrate through surface chemistry, solid-state supports modified by material deposition, lithography and etching, the creation of micro/nanoporous arrays, integration with microfluidics, and droplet-based bilayers at interfaces.Model systems such as these are increasing our understanding of structure and organization in cell membranes, and how they result in the emergence of functionality at the nanoscale.« less

  13. DWPF GLASS BEADS AND GLASS FRIT TRANSPORT DEMONSTRATION

    SciTech Connect (OSTI)

    Adamson, D; Bradley Pickenheim, B

    2008-11-24

    DWPF is considering replacing irregularly shaped glass frit with spherical glass beads in the Slurry Mix Evaporator (SME) process to decrease the yield stress of the melter feed (a non-Newtonian Bingham Plastic). Pilot-scale testing was conducted on spherical glass beads and glass frit to determine how well the glass beads would transfer when compared to the glass frit. Process Engineering Development designed and constructed the test apparatus to aid in the understanding and impacts that spherical glass beads may have on the existing DWPF Frit Transfer System. Testing was conducted to determine if the lines would plug with the glass beads and the glass frit slurry and what is required to unplug the lines. The flow loop consisted of vertical and horizontal runs of clear PVC piping, similar in geometry to the existing system. Two different batches of glass slurry were tested: a batch of 50 wt% spherical glass beads and a batch of 50 wt% glass frit in process water. No chemicals such as formic acid was used in slurry, only water and glass formers. The glass beads used for this testing were commercially available borosilicate glass of mesh size -100+200. The glass frit was Frit 418 obtained from DWPF and is nominally -45+200 mesh. The spherical glass beads did not have a negative impact on the frit transfer system. The transferring of the spherical glass beads was much easier than the glass frit. It was difficult to create a plug with glass bead slurry in the pilot transfer system. When a small plug occurred from setting overnight with the spherical glass beads, the plug was easy to displace using only the pump. In the case of creating a man made plug in a vertical line, by filling the line with spherical glass beads and allowing the slurry to settle for days, the plug was easy to remove by using flush water. The glass frit proved to be much more difficult to transfer when compared to the spherical glass beads. The glass frit impacted the transfer system to the point that the test apparatus had to be disassembled to dislodge the plugs created in the system.

  14. Taiwan Glass Industry Corp | Open Energy Information

    Open Energy Info (EERE)

    Taiwan Glass Industry Corp Place: Taipei, Taiwan Zip: 10566 Product: Engaged in the manufacturing, processing and selling of various types of glass. References: Taiwan Glass...

  15. Xinyi Glass Holdings Limited | Open Energy Information

    Open Energy Info (EERE)

    in the produciton of float glass, automobile glass, construction glass and curtain wall. Coordinates: 23.046499, 113.735817 Show Map Loading map... "minzoom":false,"mappi...

  16. Glass strengthening and patterning methods

    DOE Patents [OSTI]

    Harper, David C; Wereszczak, Andrew A; Duty, Chad E

    2015-01-27

    High intensity plasma-arc heat sources, such as a plasma-arc lamp, are used to irradiate glass, glass ceramics and/or ceramic materials to strengthen the glass. The same high intensity plasma-arc heat source may also be used to form a permanent pattern on the glass surface--the pattern being raised above the glass surface and integral with the glass (formed of the same material) by use of, for example, a screen-printed ink composition having been irradiated by the heat source.

  17. Glass Property Models and Constraints for Estimating the Glass...

    Office of Scientific and Technical Information (OSTI)

    waste loading in HLW and LAW glasses are possible over current system planning estimates. ... be used to estimate the likely HLW and LAW glass volumes that would result if the ...

  18. Construction of Heterometallic Clusters in a small peptide scaffold...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in a small peptide scaffold as NiFe-hydrogenase models: Development of a Synthetic Methodology Authors: Dutta, A., Hamilton, G. A., Hartnett, H. E., Jones, A. K. Title:...

  19. Barstow heliostat mirror glass characterization

    SciTech Connect (OSTI)

    Lind, M.A.; Buckwalter, C.Q.

    1980-09-01

    The technical analysis performed on the special run of low iron float glass procured from the Ford Glass Division for the ten megawatt solar thermal/electric pilot power plant to be constructed at Barstow, California is discussed. The topics that are addressed include the optical properties and the relative durability of the glass. Two optical parameters, solar transmittance and optical flatness, were measured as referenced in the specification and found to be better than the stated tolerances. The average solar transmittance exceeded 0.890 transmittance units. The glass also exhibited optical angular flatness deviations less than +-1.0 mrad as required. Both qualitative and quantitative accelerated weathering tests were performed on the glass in order to compare its durability to other soda lime float glass and alternate composition glasses of interest to the solar community. In both the quantitative leaching experiments and the more qualitative room temperature and elevated temperature water vapor exposure experiments the heliostat glass exhibited the same characteristics as the other soda-lime silicate float glasses. As a final test for mirroring compatability, selected samples of the production run of the glass were sent to four different commercial manufacturers for mirror coating. None of the manufacturers reported any difficulty silvering the glass. Based on the tests performed, the glass meets or exceeds all optical specifications for the Barstow heliostat field.

  20. A Suite of Engineered GFP Molecules for Oligomeric Scaffolding (Journal

    Office of Scientific and Technical Information (OSTI)

    Article) | SciTech Connect A Suite of Engineered GFP Molecules for Oligomeric Scaffolding Citation Details In-Document Search Title: A Suite of Engineered GFP Molecules for Oligomeric Scaffolding Authors: Leibly, David J. ; Arbing, Mark A. ; Pashkov, Inna ; DeVore, Natasha ; Waldo, Geoffrey S. ; Terwilliger, Thomas C. ; Yeates, Todd O. [1] ; LANL) [2] + Show Author Affiliations UCLA ( Publication Date: 2015-11-30 OSTI Identifier: 1227481 Resource Type: Journal Article Resource Relation:

  1. MECS 2006 - Glass | Department of Energy

    Office of Environmental Management (EM)

    Glass MECS 2006 - Glass Manufacturing Energy and Carbon Footprint for Glass (NAICS 3272, 327993) Sector with Total Energy Input, October 2012 (MECS 2006) All available footprints and supporting documents Manufacturing Energy and Carbon Footprint PDF icon Glass More Documents & Publications Glass and Glass Products

  2. Profiles in garbage glass containers

    SciTech Connect (OSTI)

    Miller, C.

    1997-09-01

    Glass containers are made from sand, limestone, soda ash, cullet (crushed bottles), and various additives, including those used to color brown, green, or blue bottles. Sixty percent of the glass used in the US is clear (flint) and one-fourth is brown (amber). Almost half of the green bottles are imported wind and beer bottles. Other glass products include flat glass such as windows; fiberglass insulation; and glassware. These products use different manufacturing processes and different additives than container glass. This profile covers only container glass. Glass bottles are commonly collected in curb-side programs. Losses due to breakage and the abrasiveness of glass during collection and processing offset their low collection and processing costs. Breakage solutions include installation of interior baffles or nets in the collection trucks, special glass-only truck compartments, and limiting the number of times glass is transferred after collection before final processing. Ten states require deposits on glass bottles for beer and soft drinks and related items.

  3. Production of glass or glass-ceramic to metal seals with the application of pressure

    DOE Patents [OSTI]

    Kelly, M.D.; Kramer, D.P.

    1985-01-04

    In a process for preparing a glass or glass-ceramic to metal seal comprising contacting the glass with the metal and heat-treating the glass and metal under conditions whereby the glass to metal seal is effected and, optionally, the glass is converted to a glass-ceramic, an improvement comprises carrying out the heat-treating step using hot isostatic pressing.

  4. Production of glass or glass-ceramic to metal seals with the application of pressure

    DOE Patents [OSTI]

    Kelly, Michael D. (West Alexandria, OH); Kramer, Daniel P. (Dayton, OH)

    1987-11-10

    In a process for preparing a glass or glass-ceramic to metal seal comprising contacting the glass with the metal and heat-treating the glass and metal under conditions whereby the glass to metal seal is effected and, optionally, the glass is converted to a glass-ceramic, an improvement comprises carrying out the heat-treating step using hot isostatic pressing.

  5. Nanoparticle scaffolds for syngas-fed solid oxide fuel cells

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Boldrin, Paul; Ruiz-Trejo, Enrique; Yu, Jingwen; Gruar, Robert I.; Tighe, Christopher J.; Chang, Kee-Chul; Ilavsky, Jan; Darr, Jawwad A.; Brandon, Nigel

    2014-12-17

    Incorporation of nanoparticles into devices such as solid oxide fuel cells (SOFCs) may provide benefits such as higher surface areas or finer control over microstructure. However, their use with traditional fabrication techniques such as screen-printing is problematic. Here, we show that mixing larger commercial particles with nanoparticles allows traditional ink formulation and screen-printing to be used while still providing benefits of nanoparticles such as increased porosity and lower sintering temperatures. SOFC anodes were produced by impregnating ceria–gadolinia (CGO) scaffolds with nickel nitrate solution. The scaffolds were produced from inks containing a mixture of hydrothermally-synthesised nanoparticle CGO, commercial CGO and polymericmore » pore formers. The scaffolds were heat-treated at either 1000 or 1300 °C, and were mechanically stable. In situ ultra-small X-ray scattering (USAXS) shows that the nanoparticles begin sintering around 900–1000 °C. Analysis by USAXS and scanning electron microscopy (SEM) revealed that the low temperature heat-treated scaffolds possessed higher porosity. Impregnated scaffolds were used to produce symmetrical cells, with the lower temperature heat-treated scaffolds showing improved gas diffusion, but poorer charge transfer. Using these scaffolds, lower temperature heat-treated cells of Ni–CGO/200 μm YSZ/CGO-LSCF performed better at 700 °C (and below) in hydrogen, and performed better at all temperatures using syngas, with power densities of up to 0.15 W cm-2 at 800 °C. This approach has the potential to allow the use of a wider range of materials and finer control over microstructure.« less

  6. Nanoparticle scaffolds for syngas-fed solid oxide fuel cells

    SciTech Connect (OSTI)

    Boldrin, Paul; Ruiz-Trejo, Enrique; Yu, Jingwen; Gruar, Robert I.; Tighe, Christopher J.; Chang, Kee-Chul; Ilavsky, Jan; Darr, Jawwad A.; Brandon, Nigel

    2014-12-17

    Incorporation of nanoparticles into devices such as solid oxide fuel cells (SOFCs) may provide benefits such as higher surface areas or finer control over microstructure. However, their use with traditional fabrication techniques such as screen-printing is problematic. Here, we show that mixing larger commercial particles with nanoparticles allows traditional ink formulation and screen-printing to be used while still providing benefits of nanoparticles such as increased porosity and lower sintering temperatures. SOFC anodes were produced by impregnating ceriagadolinia (CGO) scaffolds with nickel nitrate solution. The scaffolds were produced from inks containing a mixture of hydrothermally-synthesised nanoparticle CGO, commercial CGO and polymeric pore formers. The scaffolds were heat-treated at either 1000 or 1300 C, and were mechanically stable. In situ ultra-small X-ray scattering (USAXS) shows that the nanoparticles begin sintering around 9001000 C. Analysis by USAXS and scanning electron microscopy (SEM) revealed that the low temperature heat-treated scaffolds possessed higher porosity. Impregnated scaffolds were used to produce symmetrical cells, with the lower temperature heat-treated scaffolds showing improved gas diffusion, but poorer charge transfer. Using these scaffolds, lower temperature heat-treated cells of NiCGO/200 ?m YSZ/CGO-LSCF performed better at 700 C (and below) in hydrogen, and performed better at all temperatures using syngas, with power densities of up to 0.15 W cm-2 at 800 C. This approach has the potential to allow the use of a wider range of materials and finer control over microstructure.

  7. ITP Glass: Glass Industry of the Future: Energy and Environmental Profile

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of the U.S. Glass Industry; April, 2002 | Department of Energy Glass Industry of the Future: Energy and Environmental Profile of the U.S. Glass Industry; April, 2002 ITP Glass: Glass Industry of the Future: Energy and Environmental Profile of the U.S. Glass Industry; April, 2002 PDF icon glass2002profile.pdf More Documents & Publications ITP Glass: Industrial Glass Bandwidth Analysis Final Report, August 2007 ITP Glass: A Clear Vision for a Bright Future ITP Glass: Glass Industry

  8. ITP Glass: Industrial Glass Bandwidth Analysis Final Report, August 2007

    Broader source: Energy.gov [DOE]

    A guide to determining places in the glass-making process where energy can be saved and means by which energy can be saved.

  9. Monolithic three-dimensional electrochemical energy storage system on aerogel or nanotube scaffold

    DOE Patents [OSTI]

    Farmer, Joseph C; Stadermann, Michael

    2013-11-12

    A monolithic three-dimensional electrochemical energy storage system is provided on an aerogel or nanotube scaffold. An anode, separator, cathode, and cathodic current collector are deposited on the aerogel or nanotube scaffold.

  10. Monolithic three-dimensional electrochemical energy storage system on aerogel or nanotube scaffold

    DOE Patents [OSTI]

    Farmer, Joseph Collin; Stadermann, Michael

    2014-07-15

    A monolithic three-dimensional electrochemical energy storage system is provided on an aerogel or nanotube scaffold. An anode, separator, cathode, and cathodic current collector are deposited on the aerogel or nanotube scaffold.

  11. Electronic structure of metallic glasses

    SciTech Connect (OSTI)

    Oelhafen, P.; Lapka, R.; Gubler, U.; Krieg, J.; DasGupta, A.; Guentherodt, H.J.; Mizoguchi, T.; Hague, C.; Kuebler, J.; Nagel, S.R.

    1981-01-01

    This paper is organized in six sections and deals with (1) the glassy transition metal alloys, their d-band structure, the d-band shifts on alloying and their relation to the alloy heat of formation (..delta..H) and the glass forming ability, (2) the glass to crystal phase transition viewed by valence band spectroscopy, (3) band structure calculations, (4) metallic glasses prepared by laser glazing, (5) glassy normal metal alloys, and (6) glassy hydrides.

  12. Compositional threshold for Nuclear Waste Glass Durability

    SciTech Connect (OSTI)

    Kruger, Albert A.; Farooqi, Rahmatullah; Hrma, Pavel R.

    2013-04-24

    Within the composition space of glasses, a distinct threshold appears to exist that separates "good" glasses, i.e., those which are sufficiently durable, from "bad" glasses of a low durability. The objective of our research is to clarify the origin of this threshold by exploring the relationship between glass composition, glass structure and chemical durability around the threshold region.

  13. Method for heating a glass sheet

    DOE Patents [OSTI]

    Boaz, Premakaran Tucker (Livonia, MI)

    1998-01-01

    A method for heating a glass sheet includes the steps of heating a glass sheet to a first predetermined temperature and applying microwave energy to the glass sheet to heat the glass sheet to at least a second predetermined temperature to allow the glass sheet to be formed.

  14. Method for heating a glass sheet

    DOE Patents [OSTI]

    Boaz, P.T.

    1998-07-21

    A method for heating a glass sheet includes the steps of heating a glass sheet to a first predetermined temperature and applying microwave energy to the glass sheet to heat the glass sheet to at least a second predetermined temperature to allow the glass sheet to be formed. 5 figs.

  15. Glass Property Models and Constraints for Estimating the Glass to be

    Office of Scientific and Technical Information (OSTI)

    Produced at Hanford by Implementing Current Advanced Glass Formulation Efforts (Technical Report) | SciTech Connect Glass Property Models and Constraints for Estimating the Glass to be Produced at Hanford by Implementing Current Advanced Glass Formulation Efforts Citation Details In-Document Search Title: Glass Property Models and Constraints for Estimating the Glass to be Produced at Hanford by Implementing Current Advanced Glass Formulation Efforts Recent glass formulation and melter

  16. POROUS WALL, HOLLOW GLASS MICROSPHERES

    SciTech Connect (OSTI)

    Sexton, W.

    2012-06-30

    Hollow Glass Microspheres (HGM) is not a new technology. All one has to do is go to the internet and Google{trademark} HGM. Anyone can buy HGM and they have a wide variety of uses. HGM are usually between 1 to 100 microns in diameter, although their size can range from 100 nanometers to 5 millimeters in diameter. HGM are used as lightweight filler in composite materials such as syntactic foam and lightweight concrete. In 1968 a patent was issued to W. Beck of the 3M{trademark} Company for 'Glass Bubbles Prepared by Reheating Solid Glass Particles'. In 1983 P. Howell was issued a patent for 'Glass Bubbles of Increased Collapse Strength' and in 1988 H. Marshall was issued a patent for 'Glass Microbubbles'. Now Google{trademark}, Porous Wall, Hollow Glass Microspheres (PW-HGMs), the key words here are Porous Wall. Almost every article has its beginning with the research done at the Savannah River National Laboratory (SRNL). The Savannah River Site (SRS) where SRNL is located has a long and successful history of working with hydrogen and its isotopes for national security, energy, waste management and environmental remediation applications. This includes more than 30 years of experience developing, processing, and implementing special ceramics, including glasses for a variety of Department of Energy (DOE) missions. In the case of glasses, SRS and SRNL have been involved in both the science and engineering of vitreous or glass based systems. As a part of this glass experience and expertise, SRNL has developed a number of niches in the glass arena, one of which is the development of porous glass systems for a variety of applications. These porous glass systems include sol gel glasses, which include both xerogels and aerogels, as well as phase separated glass compositions, that can be subsequently treated to produce another unique type of porosity within the glass forms. The porous glasses can increase the surface area compared to 'normal glasses of a 1 to 2 order of magnitude, which can result in unique properties in areas such as hydrogen storage, gas transport, gas separations and purifications, sensors, global warming applications, new drug delivery systems and so on. One of the most interesting porous glass products that SRNL has developed and patented is Porous Wall, Hollow Glass Microspheres (PW-HGMs) that are being studied for many different applications. The European Patent Office (EPO) just recently notified SRS that the continuation-in-part patent application for the PW-HGMs has been accepted. The original patent, which was granted by the EPO on June 2, 2010, was validated in France, Germany and the United Kingdom. The microspheres produced are generally in the range of 2 to 100 microns, with a 1 to 2 micron wall. What makes the SRNL microspheres unique from all others is that the team in Figure 1 has found a way to induce and control porosity through the thin walls on a scale of 100 to 3000 {angstrom}. This is what makes the SRNL HW-HGMs one-of-a-kind, and is responsible for many of their unique properties and potential for various applications, including those in tritium storage, gas separations, H-storage for vehicles, and even a variety of new medical applications in the areas of drug delivery and MRI contrast agents. SRNL Hollow Glass Microspheres, and subsequent, Porous Wall, Hollow Glass Microspheres are fabricated using a flame former apparatus. Figure 2 is a schematic of the apparatus.

  17. Scaffold architecture and fibrin gels promote meniscal cell proliferation

    SciTech Connect (OSTI)

    Pawelec, K. M. E-mail: jw626@cam.ac.uk; Best, S. M.; Cameron, R. E.; Wardale, R. J. E-mail: jw626@cam.ac.uk

    2015-01-01

    Stability of the knee relies on the meniscus, a complex connective tissue with poor healing ability. Current meniscal tissue engineering is inadequate, as the signals for increasing meniscal cell proliferation have not been established. In this study, collagen scaffold structure, isotropic or aligned, and fibrin gel addition were tested. Metabolic activity was promoted by fibrin addition. Cellular proliferation, however, was significantly increased by both aligned architectures and fibrin addition. None of the constructs impaired collagen type I production or triggered adverse inflammatory responses. It was demonstrated that both fibrin gel addition and optimized scaffold architecture effectively promote meniscal cell proliferation.

  18. Quinary metallic glass alloys

    DOE Patents [OSTI]

    Lin, X.; Johnson, W.L.

    1998-04-07

    At least quinary alloys form metallic glass upon cooling below the glass transition temperature at a rate less than 10{sup 3}K/s. Such alloys comprise zirconium and/or hafnium in the range of 45 to 65 atomic percent, titanium and/or niobium in the range of 4 to 7.5 atomic percent, and aluminum and/or zinc in the range of 5 to 15 atomic percent. The balance of the alloy compositions comprise copper, iron, and cobalt and/or nickel. The composition is constrained such that the atomic percentage of iron is less than 10 percent. Further, the ratio of copper to nickel and/or cobalt is in the range of from 1:2 to 2:1. The alloy composition formula is: (Zr,Hf){sub a}(Al,Zn){sub b}(Ti,Nb){sub c}(Cu{sub x}Fe{sub y}(Ni,Co){sub z}){sub d} wherein the constraints upon the formula are: a ranges from 45 to 65 atomic percent, b ranges from 5 to 15 atomic percent, c ranges from 4 to 7.5 atomic percent, d comprises the balance, d{hor_ellipsis}y is less than 10 atomic percent, and x/z ranges from 0.5 to 2.

  19. Quinary metallic glass alloys

    DOE Patents [OSTI]

    Lin, Xianghong (Pasadena, CA); Johnson, William L. (Pasadena, CA)

    1998-01-01

    At least quinary alloys form metallic glass upon cooling below the glass transition temperature at a rate less than 10.sup.3 K/s. Such alloys comprise zirconium and/or hafnium in the range of 45 to 65 atomic percent, titanium and/or niobium in the range of 4 to 7.5 atomic percent, and aluminum and/or zinc in the range of 5 to 15 atomic percent. The balance of the alloy compositions comprise copper, iron, and cobalt and/or nickel. The composition is constrained such that the atomic percentage of iron is less than 10 percent. Further, the ratio of copper to nickel and/or cobalt is in the range of from 1:2 to 2:1. The alloy composition formula is: (Zr,Hf).sub.a (Al,Zn).sub.b (Ti,Nb).sub.c (Cu.sub.x Fe.sub.y (Ni,Co).sub.z).sub.d wherein the constraints upon the formula are: a ranges from 45 to 65 atomic percent, b ranges from 5 to 15 atomic percent, c ranges from 4 to 7.5 atomic percent, d comprises the balance, d.multidot.y is less than 10 atomic percent, and x/z ranges from 0.5 to 2.

  20. Isuzu Glass Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Glass Co Ltd Jump to: navigation, search Name: Isuzu Glass Co Ltd Place: Osaka, Osaka, Japan Zip: 557-0063 Product: Japan-based manufacturer of glass products such as Fresnel lens...

  1. Method of determining glass durability

    DOE Patents [OSTI]

    Jantzen, Carol Maryanne (Aiken, SC); Pickett, John Butler (Aiken, SC); Brown, Kevin George (Augusta, GA); Edwards, Thomas Barry (Aiken, SC)

    1998-01-01

    A process for determining one or more leachate concentrations of one or more components of a glass composition in an aqueous solution of the glass composition by identifying the components of the glass composition, including associated oxides, determining a preliminary glass dissolution estimator, .DELTA.G.sub.p, based upon the free energies of hydration for the component reactant species, determining an accelerated glass dissolution function, .DELTA.G.sub.a, based upon the free energy associated with weak acid dissociation, .DELTA.G.sub.a.sup.WA, and accelerated matrix dissolution at high pH, .DELTA.G.sub.a.sup.SB associated with solution strong base formation, and determining a final hydration free energy, .DELTA.G.sub.f. This final hydration free energy is then used to determine leachate concentrations for elements of interest using a regression analysis and the formula log.sub.10 (N C.sub.i (g/L))=a.sub.i +b.sub.i .DELTA.G.sub.f. The present invention also includes a method to determine whether a particular glass to be produced will be homogeneous or phase separated. The present invention is also directed to methods of monitoring and controlling processes for making glass using these determinations to modify the feedstock materials until a desired glass durability and homogeneity is obtained.

  2. Refractory Glass Seals for SOFC

    SciTech Connect (OSTI)

    Chou, Y. S.; Stevenson, Jeffry W.

    2011-07-01

    One of the critical challenges facing planar solid oxide fuel cell (SOFC) technology is the need for reliable sealing technology. Seals must exhibit long-term stability and mechanical integrity in the high temperature SOFC environment during normal and transient operation. Several different approaches for sealing SOFC stacks are under development, including glass or glass-ceramic seals, metallic brazes, and compressive seals. Among glass seals, rigid glass-ceramics, self-healing glass, and composite glass approaches have been investigated under the SECA Core Technology Program. The U.S. Department of Energy's Pacific Northwest National Laboratory (PNNL) has developed the refractory glass approach in light of the fact that higher sealing temperatures (e.g., 930-1000 degrees C) may enhance the ultimate in-service bulk strength and electrical conductivity of contact materials, as well as the bonding strength between contact materials and adjacent SOFC components, such as interconnect coatings and electrodes. This report summarizes the thermal, chemical, mechanical, and electrical properties of the refractory sealing glass.

  3. Method of determining glass durability

    DOE Patents [OSTI]

    Jantzen, C.M.; Pickett, J.B.; Brown, K.G.; Edwards, T.B.

    1998-12-08

    A process is described for determining one or more leachate concentrations of one or more components of a glass composition in an aqueous solution of the glass composition by identifying the components of the glass composition, including associated oxides, determining a preliminary glass dissolution estimator, {Delta}G{sub p}, based upon the free energies of hydration for the component reactant species, determining an accelerated glass dissolution function, {Delta}G{sub a}, based upon the free energy associated with weak acid dissociation, {Delta}G{sub a}{sup WA}, and accelerated matrix dissolution at high pH, {Delta}G{sub a}{sup SB} associated with solution strong base formation, and determining a final hydration free energy, {Delta}G{sub f}. This final hydration free energy is then used to determine leachate concentrations for elements of interest using a regression analysis and the formula log{sub 10}(N C{sub i}(g/L))=a{sub i} + b{sub i}{Delta}G{sub f}. The present invention also includes a method to determine whether a particular glass to be produced will be homogeneous or phase separated. The present invention is also directed to methods of monitoring and controlling processes for making glass using these determinations to modify the feedstock materials until a desired glass durability and homogeneity is obtained. 4 figs.

  4. Glass Science Could Boost Hanford Cleanup | Department of Energy

    Energy Savers [EERE]

    Glass Science Could Boost Hanford Cleanup Glass Science Could Boost Hanford Cleanup October 29, 2015 - 12:30pm Addthis A canister filled with nonradioactive glass sits on display. A canister filled with nonradioactive glass sits on display. A sample of vitrified glass at EM's Office of River Protection. A sample of vitrified glass at EM's Office of River Protection. A glass scientist works with molten glass. A glass scientist works with molten glass. A canister filled with nonradioactive glass

  5. Glass Ceramic Formulation Data Package

    SciTech Connect (OSTI)

    Crum, Jarrod V.; Rodriguez, Carmen P.; McCloy, John S.; Vienna, John D.; Chung, Chul-Woo

    2012-06-17

    A glass ceramic waste form is being developed for treatment of secondary waste streams generated by aqueous reprocessing of commercial used nuclear fuel (Crum et al. 2012b). The waste stream contains a mixture of transition metals, alkali, alkaline earths, and lanthanides, several of which exceed the solubility limits of a single phase borosilicate glass (Crum et al. 2009; Caurant et al. 2007). A multi-phase glass ceramic waste form allows incorporation of insoluble components of the waste by designed crystallization into durable heat tolerant phases. The glass ceramic formulation and processing targets the formation of the following three stable crystalline phases: (1) powellite (XMoO4) where X can be (Ca, Sr, Ba, and/or Ln), (2) oxyapatite Yx,Z(10-x)Si6O26 where Y is alkaline earth, Z is Ln, and (3) lanthanide borosilicate (Ln5BSi2O13). These three phases incorporate the waste components that are above the solubility limit of a single-phase borosilicate glass. The glass ceramic is designed to be a single phase melt, just like a borosilicate glass, and then crystallize upon slow cooling to form the targeted phases. The slow cooling schedule is based on the centerline cooling profile of a 2 foot diameter canister such as the Hanford High-Level Waste canister. Up to this point, crucible testing has been used for glass ceramic development, with cold crucible induction melter (CCIM) targeted as the ultimate processing technology for the waste form. Idaho National Laboratory (INL) will conduct a scaled CCIM test in FY2012 with a glass ceramic to demonstrate the processing behavior. This Data Package documents the laboratory studies of the glass ceramic composition to support the CCIM test. Pacific Northwest National Laboratory (PNNL) measured melt viscosity, electrical conductivity, and crystallization behavior upon cooling to identify a processing window (temperature range) for melter operation and cooling profiles necessary to crystallize the targeted phases in the waste form.

  6. Lead phosphate glass compositions for optical components

    DOE Patents [OSTI]

    Sales, Brian C. (Oak Ridge, TN); Boatner, Lynn A. (Oak Ridge, TN)

    1987-01-01

    A lead phosphate glass to which has been added indium oxide or scandium oe to improve chemical durability and provide a lead phosphate glass with good optical properties.

  7. Nanofiber Scaffold for Cathode of Solid Oxide Fuel Cell

    SciTech Connect (OSTI)

    Mingjia Zhi; Nicholas Mariani; Randall Gemmen; Kirk Gerdes; Nianqiang Wu

    2010-10-01

    A high performance solid oxide fuel cell cathode using the yttria-stabilized zirconia (YSZ) nanofibers scaffold with the infiltrated La1-xSrxMnO3 (LSM) shows an enhanced catalytic activity toward oxygen reduction. Such a cathode offers a continuous path for charge transport and an increased number of triple-phase boundary sites.

  8. Glass ceramic seals to inconel

    DOE Patents [OSTI]

    McCollister, Howard L. (Albuquerque, NM); Reed, Scott T. (Albuquerque, NM)

    1983-11-08

    A glass ceramic composition prepared by subjecting a glass composition comprising, by weight, 65-80% SiO.sub.2, 8-16%, Li.sub.2 O, 2-8% , Al.sub.2 O.sub.3, 1-8% K.sub.2 O, 1-5% P.sub.2 O.sub.5 and 1.5-7% B.sub.2 O.sub.3, to the following processing steps of heating the glass composition to a temperature sufficient to crystallize lithium metasilicate therein, holding the glass composition at a temperature and for a time period sufficient to dissolve the lithium metasilicate therein thereby creating cristobalite nucleii, cooling the glass composition and maintaining the composition at a temperature and for a time period sufficient to recrystallize lithium metasilicate therein, and thermally treating the glass composition at a temperature and for a time period sufficient to cause growth of cristobalite and further crystallization of lithium metasilicate producing a glass ceramic composition having a specific thermal expansion coefficient and products containing said composition.

  9. ITP Glass: Industrial Glass Bandwidth Analysis Final Report, August 2007

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Industrial Glass Bandwidth Analysis Prepared by: David M. Rue James Servaites Dr. Warren Wolf Gas Technology Institute Energy Utilization Center August 2007 Industrial Glass Bandwidth Analysis FINAL REPORT Prepared by: David M. Rue James Servaites Dr. Warren Wolf (independent consultant) Gas Technology Institute 1700 S. Mount Prospect Rd Des Plaines, IL 60018 Prepared for: U.S. Department of Energy Contract No. DE-FC36-03GO13092 August 2007 Table of Contents Table of Figures

  10. Glass Furnace Model Version 2

    Energy Science and Technology Software Center (OSTI)

    2003-05-06

    GFM2.0 is a derivative of the GFM code with substantially altered and enhanced capabilities. Like its predecessor, it is a fully three-dimensional, furnace simulation model that provides a more accurate representation of the entire furnace, and specifically, the glass melting process, by coupling the combustion space directly to the glass batch and glass melt via rigorous radiation heat transport models for both the combustion space and the glass melt. No assumptions are made with regardmore » to interfacial parameters of heat, flux, temperature distribution, and batch coverage as must be done using other applicable codes available. These critical parameters are calculated. GFM2.0 contains a processor structured to facilitate use of the code, including the entry of teh furnace geometry and operating conditions, the execution of the program, and display of the computational results. Furnace simulations can therefore be created in a straightforward manner.« less

  11. Turning nuclear waste into glass

    SciTech Connect (OSTI)

    Pegg, Ian L.

    2015-02-15

    Vitrification has emerged as the treatment option of choice for the most dangerous radioactive waste. But dealing with the nuclear waste legacy of the Cold War will require state-of-the-art facilities and advanced glass formulations.

  12. BNFL Report Glass Formers Characterization

    SciTech Connect (OSTI)

    Schumacher, R.F.

    2000-07-27

    The objective of this task was to obtain powder property data on candidate glass former materials, sufficient to guide conceptual design and estimate the cost of glass former handling facilities as requested under Part B1 of BNFL Technical and Development Support. Twenty-nine glass forming materials were selected and obtained from vendors for the characterization of their physical properties, durability in caustic solution, and powder flow characteristics. A glass former was selected based on the characterization for each of the ten oxide classes required for Envelope A, B, and C mixtures. Three blends (A, B, and C) were prepared based on formulations provided by Vitreous State Laboratory and evaluated with the same methods employed for the glass formers. The properties obtained are presented in a series of attached Tables. It was determined that five of the ten glass formers, (kyanite, iron oxide, titania, zircon, and zinc oxide) have the potential to cause some level of solids f low problems. The problems might include arching or ratholing in the silo/hopper. In addition, all of the blends may require consideration for their handling.

  13. BNFL Report Glass Formers Characterization

    SciTech Connect (OSTI)

    Schumacher, R.F.

    2000-07-27

    The objective of this task was to obtain powder property data on candidate glass former materials, sufficient to guide conceptual design and estimate the cost of glass former handling facilities as requested under Part B1 of BNFL Technical and Development Support. Twenty-nine glass forming materials were selected and obtained from vendors for the characterization of their physical properties, durability in caustic solution, and powder flow characteristics. A glass former was selected based on the characterization for each of the ten oxide classes required for Envelope A, B, and C mixtures. Three blends (A, B, and C) were prepared based on formulations provided by Vitreous State Laboratory and evaluated with the same methods employed for the glass formers. The properties obtained are presented in a series of attached Tables. It was determined that five of the ten glass formers, (kyanite, iron oxide, titania, zircon, and zinc oxide) have the potential to cause some level of solids f low problems. In addition, all of the blends may require consideration for their handling. A number of engineering considerations and recommendations were prepared based on the experimental findings, experience, and other process considerations. Recommendations for future testing are included. In conjunction with future work, it is recommended that a professional consultant be engaged to guide and assist with testing and design input.

  14. Microgel particles for the delivery of bioactive materials

    DOE Patents [OSTI]

    Frechet, Jean M.; Murthy, Niren

    2006-06-06

    Novel microgels, microparticles and related polymeric materials capable of delivering bioactive materials to cells for use as vaccines or therapeutic agents. The materials are made using a crosslinker molecule that contains a linkage cleavable under mild acidic conditions. The crosslinker molecule is exemplified by a bisacryloyl acetal crosslinker. The new materials have the common characteristic of being able to degrade by acid hydrolysis under conditions commonly found within the endosomal or lysosomal compartments of cells thereby releasing their payload within the cell. The materials can also be used for the delivery of therapeutics to the acidic regions of tumors and sites of inflammation.

  15. Microgel particles for the delivery of bioactive materials

    DOE Patents [OSTI]

    Frechet, Jean M. J. (Oakland, CA); Murthy Niren (Atlanta, GA)

    2010-03-23

    Novel microgels, microparticles and related polymeric materials capable of delivering bioactive materials to cells for use as vaccines or therapeutic agents. The materials are made using a crosslinker molecule that contains a linkage cleavable under mild acidic conditions. The crosslinker molecule is exemplified by a bisacryloyl acetal crosslinker. The new materials have the common characteristic of being able to degrade by acid hydrolysis under conditions commonly found within the endosomal or lysosomal compartments of cells thereby releasing their payload within the cell. The materials can also be used for the delivery of therapeutics to the acidic regions of tumors and sites of inflammation.

  16. Glass Membrane For Controlled Diffusion Of Gases

    DOE Patents [OSTI]

    Shelby, James E. (Alfred Station, NY); Kenyon, Brian E. (Pittsburgh, PA)

    2001-05-15

    A glass structure for controlled permeability of gases includes a glass vessel. The glass vessel has walls and a hollow center for receiving a gas. The glass vessel contains a metal oxide dopant formed with at least one metal selected from the group consisting of transition metals and rare earth metals for controlling diffusion of the gas through the walls of the glass vessel. The vessel releases the gas through its walls upon exposure to a radiation source.

  17. Fabrication of glass microspheres with conducting surfaces

    DOE Patents [OSTI]

    Elsholz, W.E.

    1982-09-30

    A method for making hollow glass microspheres with conducting surfaces by adding a conducting vapor to a region of the glass fabrication furnace. As droplets or particles of glass forming material pass through multiple zones of different temperature in a glass fabrication furnace, and are transformed into hollow glass microspheres, the microspheres pass through a region of conducting vapor, forming a conducting coating on the surface of the microspheres.

  18. HIGH-LEVEL WASTE GLASS FORMULATION MODEL SENSITIVITY STUDY 2009 GLASS FORMULATION MODEL VERSUS 1996 GLASS FORMULATION MODEL

    SciTech Connect (OSTI)

    BELSHER JD; MEINERT FL

    2009-12-07

    This document presents the differences between two HLW glass formulation models (GFM): The 1996 GFM and 2009 GFM. A glass formulation model is a collection of glass property correlations and associated limits, as well as model validity and solubility constraints; it uses the pretreated HLW feed composition to predict the amount and composition of glass forming additives necessary to produce acceptable HLW glass. The 2009 GFM presented in this report was constructed as a nonlinear optimization calculation based on updated glass property data and solubility limits described in PNNL-18501 (2009). Key mission drivers such as the total mass of HLW glass and waste oxide loading are compared between the two glass formulation models. In addition, a sensitivity study was performed within the 2009 GFM to determine the effect of relaxing various constraints on the predicted mass of the HLW glass.

  19. Weihai Blue Star Glass Holding Co Ltd aka Shandong Lanxing Glass...

    Open Energy Info (EERE)

    aka Shandong Lanxing Glass Group Co Ltd Jump to: navigation, search Name: Weihai Blue Star Glass Holding Co Ltd (aka Shandong Lanxing Glass Group Co Ltd) Place: Weihai City,...

  20. HLW Glass Studies: Development of Crystal-Tolerant HLW Glasses

    SciTech Connect (OSTI)

    Matyas, Josef; Huckleberry, Adam R.; Rodriguez, Carmen P.; Lang, Jesse B.; Owen, Antionette T.; Kruger, Albert A.

    2012-04-02

    In our study, a series of lab-scale crucible tests were performed on designed glasses of different compositions to further investigate and simulate the effect of Cr, Ni, Fe, Al, Li, and RuO2 on the accumulation rate of spinel crystals in the glass discharge riser of the HLW melter. The experimental data were used to expand the compositional region covered by an empirical model developed previously (Maty et al. 2010b), improving its predictive performance. We also investigated the mechanism for agglomeration of particles and impact of agglomerates on accumulation rate. In addition, the TL was measured as a function of temperature and composition.

  1. Bengbu Sanxin Solar Photovoltaic Glass Co Ltd | Open Energy Informatio...

    Open Energy Info (EERE)

    Bengbu Sanxin Solar Photovoltaic Glass Co Ltd Jump to: navigation, search Name: Bengbu Sanxin Solar Photovoltaic Glass Co Ltd Place: Bengbu, Anhui Province, China Product: Glass...

  2. Engineered plant biomass particles coated with bioactive agents

    DOE Patents [OSTI]

    Dooley, James H; Lanning, David N

    2013-07-30

    Plant biomass particles coated with a bioactive agent such as a fertilizer or pesticide, characterized by a length dimension (L) aligned substantially parallel to a grain direction and defining a substantially uniform distance along the grain, a width dimension (W) normal to L and aligned cross grain, and a height dimension (H) normal to W and L. In particular, the L.times.H dimensions define a pair of substantially parallel side surfaces characterized by substantially intact longitudinally arrayed fibers, the W.times.H dimensions define a pair of substantially parallel end surfaces characterized by crosscut fibers and end checking between fibers, and the L.times.W dimensions define a pair of substantially parallel top and bottom surfaces.

  3. Energy-Efficient Glass Melting: Submerged Combustion

    SciTech Connect (OSTI)

    2004-01-01

    Oxy-gas-fired submerged combustion melter offers simpler, improved performance. For the last 100 years, the domestic glass industry has used the same basic equipment for melting glass on an industrial scale.

  4. Measurement and Control of Glass Feedstocks

    SciTech Connect (OSTI)

    2005-08-01

    Laser-induced breakdown spectroscopy (LIBS) promises a new way for glass manufacturers to significantly increase productivity. By measuring the chemical makeup in raw materials and recycled glass cullet, LIBS can quickly detect contaminants and batch non...

  5. Glass needs for a growing photovoltaics industry

    SciTech Connect (OSTI)

    Burrows, Keith; Fthenakis, Vasilis

    2014-10-18

    With the projected growth in photovoltaics, the demand for glass for the solar industry will far exceed the current supply, and thousands of new float-glass plants will have to be built to meet its needs over the next 20 years. Such expansion will provide an opportunity for the solar industry to obtain products better suited to their needs, such as low-iron glass and borosilicate glass at the lowest possible price. While there are no significant technological hurdles that would prevent the flat glass industry from meeting the solar industrys projected needs, to do so will require advance planning and substantial investments.

  6. Glass needs for a growing photovoltaics industry

    SciTech Connect (OSTI)

    Burrows, Keith; Fthenakis, Vasilis

    2015-01-01

    With the projected growth in photovoltaics, the demand for glass for the solar industry will far exceed the current supply, and thousands of new float-glass plants will have to be built to meet its needs over the next 20 years. Such expansion will provide an opportunity for the solar industry to obtain products better suited to their needs, such as low-iron glass and borosilicate glass at the lowest possible price. While there are no significant technological hurdles that would prevent the flat glass industry from meeting the solar industrys projected needs, to do so will require advance planning and substantial investments.

  7. Pressurized heat treatment of glass ceramic

    DOE Patents [OSTI]

    Kramer, D.P.

    1984-04-19

    A method of producing a glass-ceramic having a specified thermal expansion value is disclosed. The method includes the step of pressurizing the parent glass material to a predetermined pressure during heat treatment so that the glass-ceramic produced has a specified thermal expansion value. Preferably, the glass-ceramic material is isostatically pressed. A method for forming a strong glass-ceramic to metal seal is also disclosed in which the glass-ceramic is fabricated to have a thermal expansion value equal to that of the metal. The determination of the thermal expansion value of a parent glass material placed in a high-temperature environment is also used to determine the pressure in the environment.

  8. Recirculation bubbler for glass melter apparatus

    DOE Patents [OSTI]

    Guerrero, Hector (Evans, GA); Bickford, Dennis (Folly Beach, SC)

    2007-06-05

    A gas bubbler device provides enhanced recirculation of molten glass within a glass melter apparatus. The bubbler device includes a tube member disposed within a pool of molten glass contained in the melter. The tube member includes a lower opening through which the molten glass enters and upper slots disposed close to (above or below) the upper surface of the pool of molten glass and from which the glass exits. A gas (air) line is disposed within the tube member and extends longitudinally thereof. A gas bubble distribution device, which is located adjacent to the lower end of the tube member and is connected to the lower end of the gas line, releases gas through openings therein so as to produce gas bubbles of a desired size in the molten glass and in a distributed pattern across the tube member.

  9. Lid heater for glass melter

    DOE Patents [OSTI]

    Phillips, T.D.

    1993-12-14

    A glass melter having a lid electrode for heating the glass melt radiantly. The electrode comprises a series of INCONEL 690 tubes running above the melt across the melter interior and through the melter walls and having nickel cores inside the tubes beginning where the tubes leave the melter interior and nickel connectors to connect the tubes electrically in series. An applied voltage causes the tubes to generate heat of electrical resistance for melting frit injected onto the melt. The cores limit heat generated as the current passes through the walls of the melter. Nickel bus connection to the electrical power supply minimizes heat transfer away from the melter that would occur if standard copper or water-cooled copper connections were used between the supply and the INCONEL 690 heating tubes. 3 figures.

  10. Lid heater for glass melter

    DOE Patents [OSTI]

    Phillips, Terrance D. (617 Chestnut Ct., Aiken, SC 29803)

    1993-01-01

    A glass melter having a lid electrode for heating the glass melt radiantly. The electrode comprises a series of INCONEL 690 tubes running above the melt across the melter interior and through the melter walls and having nickel cores inside the tubes beginning where the tubes leave the melter interior and nickel connectors to connect the tubes electrically in series. An applied voltage causes the tubes to generate heat of electrical resistance for melting frit injected onto the melt. The cores limit heat generated as the current passes through the walls of the melter. Nickel bus connection to the electrical power supply minimizes heat transfer away from the melter that would occur if standard copper or water-cooled copper connections were used between the supply and the INCONEL 690 heating tubes.

  11. Melter Glass Removal and Dismantlement

    SciTech Connect (OSTI)

    Richardson, BS

    2000-10-31

    The U.S. Department of Energy (DOE) has been using vitrification processes to convert high-level radioactive waste forms into a stable glass for disposal in waste repositories. Vitrification facilities at the Savannah River Site (SRS) and at the West Valley Demonstration Project (WVDP) are converting liquid high-level waste (HLW) by combining it with a glass-forming media to form a borosilicate glass, which will ensure safe long-term storage. Large, slurry fed melters, which are used for this process, were anticipated to have a finite life (on the order of two to three years) at which time they would have to be replaced using remote methods because of the high radiation fields. In actuality the melters useable life spans have, to date, exceeded original life-span estimates. Initial plans called for the removal of failed melters by placing the melter assembly into a container and storing the assembly in a concrete vault on the vitrification plant site pending size-reduction, segregation, containerization, and shipment to appropriate storage facilities. Separate facilities for the processing of the failed melters currently do not exist. Options for handling these melters include (1) locating a facility to conduct the size-reduction, characterization, and containerization as originally planned; (2) long-term storing or disposing of the complete melter assembly; and (3) attempting to refurbish the melter and to reuse the melter assembly. The focus of this report is to look at methods and issues pertinent to size-reduction and/or melter refurbishment in particular, removing the glass as a part of a refurbishment or to reduce contamination levels (thus allowing for disposal of a greater proportion of the melter as low level waste).

  12. Enhancement of neurite outgrowth in neuron cancer stem cells by growth on 3-D collagen scaffolds

    SciTech Connect (OSTI)

    Chen, Chih-Hao; Neurosurgery, Department of Surgery, Kaohsiung Veterans General Hospital, Taiwan, ROC; Department of Biomedical Engineering, I-Shou University, Taiwan, ROC ; Kuo, Shyh Ming; Liu, Guei-Sheung; Chen, Wan-Nan U.; Chuang, Chin-Wen; Liu, Li-Feng

    2012-11-09

    Highlights: Black-Right-Pointing-Pointer Neuron cancer stem cells (NCSCs) behave high multiply of growth on collagen scaffold. Black-Right-Pointing-Pointer Enhancement of NCSCs neurite outgrowth on porous collagen scaffold. Black-Right-Pointing-Pointer 3-D collagen culture of NCSCs shows an advance differentiation than 2-D culture. -- Abstract: Collagen is one component of the extracellular matrix that has been widely used for constructive remodeling to facilitate cell growth and differentiation. The 3-D distribution and growth of cells within the porous scaffold suggest a clinical significance for nerve tissue engineering. In the current study, we investigated proliferation and differentiation of neuron cancer stem cells (NCSCs) on a 3-D porous collagen scaffold that mimics the natural extracellular matrix. We first generated green fluorescence protein (GFP) expressing NCSCs using a lentiviral system to instantly monitor the transitions of morphological changes during growth on the 3-D scaffold. We found that proliferation of GFP-NCSCs increased, and a single cell mass rapidly grew with unrestricted expansion between days 3 and 9 in culture. Moreover, immunostaining with neuronal nuclei (NeuN) revealed that NCSCs grown on the 3-D collagen scaffold significantly enhanced neurite outgrowth. Our findings confirmed that the 80 {mu}m porous collagen scaffold could enhance attachment, viability and differentiation of the cancer neural stem cells. This result could provide a new application for nerve tissue engineering and nerve regeneration.

  13. Manufacturing laser glass by continuous melting

    SciTech Connect (OSTI)

    Campbell, J H; Suratwala, T; krenitsky, S; Takeuchi, K

    2000-07-01

    A novel, continuous melting process is being used to manufacture meter-sized plates of laser glass at a rate 20-times faster, 5-times cheaper, and with 2-3 times better optical quality than with previous one-at-a-time, ''discontinuous'' technology processes. This new technology for manufacturing laser glass, which is arguably the most difficult continuously-melted optical material ever produced, comes as a result of a $60 million, six-year joint R&D program between government and industry. The glasses manufactured by the new continuous melting process are Nd-doped phosphate-based glasses and are marketed under the product names LG-770 (Schott Glass Technologies) and LHG-8 (Hoya Corporation USA). With this advance in glass manufacturing technology, it is now possible to construct high-energy, high-peak-power lasers for use in fusion energy development, national defense, and basic physics research that would have been impractical to build using the old melting technology. The development of continuously melted laser glass required technological advances that have lead to improvements in the manufacture of other optical glass products as well. For example, advances in forming, annealing, and conditioning steps of the laser glass continuous melting process are now being used in manufacture of other large-size optical glasses.

  14. Method for heating, forming and tempering a glass sheet

    DOE Patents [OSTI]

    Boaz, P.T.; Sitzman, G.W.

    1998-10-27

    A method for heating, forming and tempering a glass sheet is disclosed including the steps of heating at least one glass sheet to at least a first predetermined temperature, applying microwave energy to the glass sheet to heat the glass sheet to at least a second predetermined temperature, forming the glass sheet to a predetermined configuration, and cooling an outer surface of the glass sheet to at least a third predetermined temperature to temper the glass sheet. 2 figs.

  15. Method for heating, forming and tempering a glass sheet

    DOE Patents [OSTI]

    Boaz, Premakaran Tucker (Livonia, MI); Sitzman, Gary W. (Walled Lake, MI)

    1998-01-01

    A method for heating, forming and tempering a glass sheet including the steps of heating at least one glass sheet to at least a first predetermined temperature, applying microwave energy to the glass sheet to heat the glass sheet to at least a second predetermined temperature, forming the glass sheet to a predetermined configuration, and cooling an outer surface of the glass sheet to at least a third predetermined temperature to temper the glass sheet.

  16. Process for preparing improved silvered glass mirrors

    DOE Patents [OSTI]

    Buckwalter, Jr., Charles Q. (Benton, WA)

    1981-01-01

    Glass mirrors having improved weathering properties are prepared by an improvement in the process for making the mirrors. The glass surface after it has been cleaned but before it is silvered, is contacted with a solution of lanthanide rare earths in addition to a sensitization solution of tin or palladium. The addition of the rare earths produces a mirror which has increased resistance to delamination of the silver from the glass surface in the presence of water.

  17. Process for preparing improved silvered glass mirrors

    DOE Patents [OSTI]

    Buckwalter, C.Q. Jr.

    1980-01-28

    Glass mirrors having improved weathering properties are prepared by an improvement in the process for making the mirrors. The glass surface after it has been cleaned but before it is silvered, is contacted with a solution of lanthanide rare earths in addition to a sensitization solution of tin or palladium. The addition of the rare earths produces a mirror which has increased resistance to delamination of the silver from the glass surface in the presence of water.

  18. Glass Property Data and Models for Estimating High-Level Waste Glass Volume

    SciTech Connect (OSTI)

    Vienna, John D.; Fluegel, Alexander; Kim, Dong-Sang; Hrma, Pavel R.

    2009-10-05

    This report describes recent efforts to develop glass property models that can be used to help estimate the volume of high-level waste (HLW) glass that will result from vitrification of Hanford tank waste. The compositions of acceptable and processable HLW glasses need to be optimized to minimize the waste-form volume and, hence, to save cost. A database of properties and associated compositions for simulated waste glasses was collected for developing property-composition models. This database, although not comprehensive, represents a large fraction of data on waste-glass compositions and properties that were available at the time of this report. Glass property-composition models were fit to subsets of the database for several key glass properties. These models apply to a significantly broader composition space than those previously publised. These models should be considered for interim use in calculating properties of Hanford waste glasses.

  19. Prestressed glass, aezoelectric electrical power source

    DOE Patents [OSTI]

    Newson, Melvin M.

    1976-01-01

    An electrical power source which comprises a body of prestressed glass having a piezoelectric transducer supported on the body in direct mechanical coupling therewith.

  20. Electrochemical cell with high conductivity glass electrolyte

    DOE Patents [OSTI]

    Nelson, Paul A. (Wheaton, IL); Bloom, Ira D. (Lisle, IL); Roche, Michael F. (Glen Ellyn, IL)

    1987-01-01

    A secondary electrochemical cell with sodium-sulfur or other molten reactants is provided with a ionically conductive glass electrolyte. The cell is contained within an electrically conductive housing with a first portion at negative potential and a second portion insulated therefrom at positive electrode potential. The glass electrolyte is formed into a plurality of elongated tubes and placed lengthwise within the housing. The positive electrode material, for instance sulfur, is sealed into the glass electrolyte tubes and is provided with an elongated axial current collector. The glass electrolyte tubes are protected by shield tubes or sheets that also define narrow annuli for wicking of the molten negative electrode material.

  1. Electrochemical cell with high conductivity glass electrolyte

    DOE Patents [OSTI]

    Nelson, P.A.; Bloom, I.D.; Roche, M.F.

    1986-04-17

    A secondary electrochemical cell with sodium-sulfur or other molten reactants is provided with an ionically conductive glass electrolyte. The cell is contained within an electrically conductive housing with a first portion at negative potential and a second portion insulated therefrom at positive electrode potential. The glass electrolyte is formed into a plurality of elongated tubes and placed lengthwise within the housing. The positive electrode material, for instance sulfur, is sealed into the glass electrolyte tubes and is provided with an elongated axial current collector. The glass electrolyte tubes are protected by shield tubes or sheets that also define narrow annuli for wicking of the molten negative electrode material.

  2. Electrochemical cell with high conductivity glass electrolyte

    DOE Patents [OSTI]

    Nelson, P.A.; Bloom, I.D.; Roche, M.F.

    1987-04-21

    A secondary electrochemical cell with sodium-sulfur or other molten reactants is provided with a ionically conductive glass electrolyte. The cell is contained within an electrically conductive housing with a first portion at negative potential and a second portion insulated therefrom at positive electrode potential. The glass electrolyte is formed into a plurality of elongated tubes and placed lengthwise within the housing. The positive electrode material, for instance sulfur, is sealed into the glass electrolyte tubes and is provided with an elongated axial current collector. The glass electrolyte tubes are protected by shield tubes or sheets that also define narrow annuli for wicking of the molten negative electrode material. 6 figs.

  3. Compliant Glass Seals for SOFC Stacks

    SciTech Connect (OSTI)

    Chou, Y. S.; Choi, Jung-Pyung; Xu, Wei; Stephens, Elizabeth V.; Koeppel, Brian J.; Stevenson, Jeffry W.; Lara-Curzio, Edgar

    2014-04-01

    This report summarizes results from experimental and modeling studies performed by participants in the Solid-State Energy Conversion Alliance (SECA) Core Technology Program, which indicate that compliant glass-based seals offer a number of potential advantages over conventional seals based on de-vitrifying glasses, including reduced stresses during stack operation and thermal cycling, and the ability to heal micro-damage induced during thermal cycling. The properties and composition of glasses developed and/or investigated in these studies are reported, along with results from long-term (up to 5,800h) evaluations of seals based on a compliant glass containing ceramic particles or ceramic fibers.

  4. Advances in Glass Chemistry - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    325 Building 400 AreaFast Flux Test Facility 618-10 ... Test Facility D and DR Reactors Effluent Treatment ... Structure of Rhenium-Containing Sodium Borosilicate Glass ...

  5. Looking Glass RSL-Andrews

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rosie the Riveter Through the Looking Glass RSL-Andrews mechanic channels the spirit of teamwork. NLV facility sees decrease in cat population. NSTec, lab develops new lens for subcrit experiments. See page 6. See pages 4-5. NFO Assists with N. Fifth Street Arterial Project Employees who use N. 5th Street at Losee Road to access the North Las Vegas Facility (NLVF) will have to find a new route to work. The city of North Las Vegas is in the final phase of obtaining Federal Highway Agency funds to

  6. SRNL POROUS WALL GLASS MICROSPHERES

    SciTech Connect (OSTI)

    Wicks, G; Leung Heung, L; Ray Schumacher, R

    2008-04-15

    The Savannah River National Laboratory (SRNL) has developed a new medium for storage of hydrogen and other gases. This involves fabrication of thin, Porous Walled, Hollow Glass Microspheres (PW-HGMs), with diameters generally in the range of 1 to several hundred microns. What is unique about the glass microballons is that porosity has been induced and controlled within the thin, one micron thick walls, on the scale of 10 to several thousand Angstroms. This porosity results in interesting properties including the ability to use these channels to fill the microballons with special absorbents and other materials, thus providing a contained environment even for reactive species. Gases can now enter the microspheres and be retained on the absorbents, resulting in solid-state and contained storage of even reactive species. Also, the porosity can be altered and controlled in various ways, and even used to filter mixed gas streams within a system. SRNL is involved in about a half dozen different programs involving these PW-HGMs and an overview of some of these activities and results emerging are presented.

  7. Control of radioactive waste-glass melters

    SciTech Connect (OSTI)

    Bickford, D.F. ); Hrma, P. ); Bowan, B.W. II )

    1990-01-01

    Slurries of simulated high level radioactive waste and glass formers have been isothermally reacted and analyzed to identify the sequence of the major chemical reactions in waste vitrification, their effect on glass production rate, and the development of leach resistance. Melting rates of waste batches have been increased by the addition of reducing agents (formic acid, sucrose) and nitrates. The rate increases are attributable in part to exothermic reactions which occur at critical stages in the vitrification process. Nitrates must be balanced by adequate reducing agents to avoid the formation of persistent foam, which would destabilize the melting process. The effect of foaming on waste glass production rates is analyzed, and melt rate limitations defined for waste-glass melters, based upon measurable thermophysical properties. Minimum melter residence times required to homogenize glass and assure glass quality are much smaller than those used in current practice. Thus, melter size can be reduced without adversely affecting glass quality. Physical chemistry and localized heat transfer of the waste-glass melting process are examined, to refine the available models for predicting and assuring glass production rate. It is concluded that the size of replacement melters and future waste processing facilities can be significantly decreased if minimum heat transfer requirements for effective melting are met by mechanical agitation. A new class of waste glass melters has been designed, and proof of concept tests completed on simulated High Level Radioactive Waste slurry. Melt rates have exceeded 155 kg m{sup {minus}2} h{sup {minus}1} with slurry feeds (32 lb ft{sup {minus}2} h{sup {minus}1}), and 229 kg kg m{sup {minus}2} h{sup {minus}1} with dry feed (47 lb ft{sup {minus}2} h{sup {minus}1}). This is about 8 times the melt rate possible in conventional waste- glass melters of the same size. 39 refs., 5 figs., 9 tabs.

  8. Sealing glasses for titanium and titanium alloys

    DOE Patents [OSTI]

    Brow, Richard K. (Albuquerque, NM); Watkins, Randall D. (Albuquerque, NM)

    1992-01-01

    Glass compositions containing CaO, Al.sub.2 O.sub.3, B.sub.2 O.sub.3, SrO and BaO of various combinations of mole % are provided. These compositions are capable of forming stable glass-to-metal seals with titanium and titanium alloys, for use in components such as seals for battery headers.

  9. Sealing glasses for titanium and titanium alloys

    DOE Patents [OSTI]

    Brow, R.K.; Watkins, R.D.

    1988-01-21

    Glass compositions containing CaO, Al/sub 2/O/sub 3/, B/sub 2/O/sub 3/, SrO and BaO of various combinations of mole % are provided. These compositions are capable of forming stable glass-to-metal seals with titanium and titanium alloys, for use in components such as seals for battery headers.

  10. Viscous Glass Sealants for SOFC Applications

    SciTech Connect (OSTI)

    Scott Misture

    2012-09-30

    Two series of silicate glasses that contain gallium as the primary critical component have been identified and optimized for viscous sealing of solid oxide fuel cells operating from 650 to 850°C. Both series of glass sealants crystallize partially upon heat treatment and yield multiphase microstructures that allow viscous flow at temperatures as low as 650°C. A fully amorphous sealant was also developed by isolating, synthesizing and testing a silicate glass of the same composition as the remnant glassy phase in one of the two glass series. Of ~40 glasses tested for longer than 500 hours, a set of 5 glasses has been further tested for up to 1000h in air, wet hydrogen, and against both yttria-stabilized zirconia and aluminized stainless steel. In some cases the testing times reached 2000h. The reactivity testing has provided new insight into the effects of Y, Zr, and Al on bulk and surface crystallization in boro-gallio-silicate glasses, and demonstrated that at least 5 of the newly-developed glasses are viable viscous sealants.

  11. Monitoring and analyzing waste glass compositions

    DOE Patents [OSTI]

    Schumacher, Ray F. (Aiken, SC)

    1994-01-01

    A device and method for determining the viscosity of a fluid, preferably molten glass. The apparatus and method uses the velocity of rising bubbles, preferably helium bubbles, within the molten glass to determine the viscosity of the molten glass. The bubbles are released from a tube positioned below the surface of the molten glass so that the bubbles pass successively between two sets of electrodes, one above the other, that are continuously monitoring the conductivity of the molten glass. The measured conductivity will change as a bubble passes between the electrodes enabling an accurate determination of when a bubble has passed between the electrodes. The velocity of rising bubbles can be determined from the time interval between a change in conductivity of the first electrode pair and the second, upper electrode pair. The velocity of the rise of the bubbles in the glass melt is used in conjunction with other physical characteristics, obtained by known methods, to determine the viscosity of the glass melt fluid and, hence, glass quality.

  12. Monitoring and analyzing waste glass compositions

    DOE Patents [OSTI]

    Schumacher, R.F.

    1994-03-01

    A device and method are described for determining the viscosity of a fluid, preferably molten glass. The apparatus and method use the velocity of rising bubbles, preferably helium bubbles, within the molten glass to determine the viscosity of the molten glass. The bubbles are released from a tube positioned below the surface of the molten glass so that the bubbles pass successively between two sets of electrodes, one above the other, that are continuously monitoring the conductivity of the molten glass. The measured conductivity will change as a bubble passes between the electrodes enabling an accurate determination of when a bubble has passed between the electrodes. The velocity of rising bubbles can be determined from the time interval between a change in conductivity of the first electrode pair and the second, upper electrode pair. The velocity of the rise of the bubbles in the glass melt is used in conjunction with other physical characteristics, obtained by known methods, to determine the viscosity of the glass melt fluid and, hence, glass quality. 2 figures.

  13. Low loss laser glass: Final report

    SciTech Connect (OSTI)

    Izumitani, T.; Toratani, H.; Meissner, H.E.

    1987-01-15

    The objective of this work was a process development on making a laser glass with loss coefficient of 10/sup -4/cm/sup -1/ at 1.05..mu... The key issues for making such a low loss glass will be to use pure raw materials, to reduce OH content and to prevent contamination from the melting environment. A sublimation method was tried to prepare pure P/sub 2/O/sub 5/ batch material. In an attempt to distinguish contributions to the overall loss, glasses were melted in furnaces which were controlled in moisture as well as contamination. Evaluation of glass samples at LLNL are expected to provide guidance on the importance of various process parameters. A new 0.5 liter furnace which almost completely prevents contamination by the furnace environment has been constructed to obtain useful information for making a low loss glass on a production scale.

  14. Glass heat pipe evacuated tube solar collector

    DOE Patents [OSTI]

    McConnell, Robert D. (Lakewood, CO); Vansant, James H. (Tracy, CA)

    1984-01-01

    A glass heat pipe is adapted for use as a solar energy absorber in an evacuated tube solar collector and for transferring the absorbed solar energy to a working fluid medium or heat sink for storage or practical use. A capillary wick is formed of granular glass particles fused together by heat on the inside surface of the heat pipe with a water glass binder solution to enhance capillary drive distribution of the thermal transfer fluid in the heat pipe throughout the entire inside surface of the evaporator portion of the heat pipe. Selective coatings are used on the heat pipe surface to maximize solar absorption and minimize energy radiation, and the glass wick can alternatively be fabricated with granular particles of black glass or obsidian.

  15. Titanium sealing glasses and seals formed therefrom

    DOE Patents [OSTI]

    Brow, R.K.; McCollister, H.L.; Phifer, C.C.; Day, D.E.

    1997-12-02

    Alkaline-earth lanthanoborate sealing-glass compositions containing CaO, La{sub 2}O{sub 3}, B{sub 2}O{sub 3}, TiO{sub 2} and Al{sub 2}O{sub 3} in various combinations of mole-% are provided. These sealing-glass compositions are useful for forming hermetic glass-to-metal seals with titanium and titanium alloys that have a high aqueous durability for component or device applications requiring exposure to moisture, water or body fluids. Particular applications of the titanium sealing-glass compositions include forming glass-to-metal seals for lithium batteries and implanted biomedical devices (e.g. batteries, pacemakers, defibrillators, pumps). 2 figs.

  16. Titanium sealing glasses and seals formed therefrom

    DOE Patents [OSTI]

    Brow, Richard K. (Albuquerque, NM); McCollister, Howard L. (Albuquerque, NM); Phifer, Carol C. (Albuquerque, NM); Day, Delbert E. (Rolla, MO)

    1997-01-01

    Alkaline-earth lanthanoborate sealing-glass compositions containing CaO, La.sub.2 O.sub.3, B.sub.2 O.sub.3, TiO.sub.2 and Al.sub.2 O.sub.3 in various combinations of mole-% are provided. These sealing-glass compositions are useful for forming hermetic glass-to-metal seals with titanium and titanium alloys that have a high aqueous durability for component or device applications requiring exposure to moisture, water or body fluids. Particular applications of the titanium sealing-glass compositions include forming glass-to-metal seals for lithium batteries and implanted biomedical devices (e.g. batteries, pacemakers, defibrillators, pumps).

  17. Gaseous Sulfate Solubility in Glass: Experimental Method

    SciTech Connect (OSTI)

    Bliss, Mary

    2013-11-30

    Sulfate solubility in glass is a key parameter in many commercial glasses and nuclear waste glasses. This report summarizes key publications specific to sulfate solubility experimental methods and the underlying physical chemistry calculations. The published methods and experimental data are used to verify the calculations in this report and are expanded to a range of current technical interest. The calculations and experimental methods described in this report will guide several experiments on sulfate solubility and saturation for the Hanford Waste Treatment Plant Enhanced Waste Glass Models effort. There are several tables of sulfate gas equilibrium values at high temperature to guide experimental gas mixing and to achieve desired SO3 levels. This report also describes the necessary equipment and best practices to perform sulfate saturation experiments for molten glasses. Results and findings will be published when experimental work is finished and this report is validated from the data obtained.

  18. Glass needs for a growing photovoltaics industry

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Burrows, Keith; Fthenakis, Vasilis

    2014-10-18

    With the projected growth in photovoltaics, the demand for glass for the solar industry will far exceed the current supply, and thousands of new float-glass plants will have to be built to meet its needs over the next 20 years. Such expansion will provide an opportunity for the solar industry to obtain products better suited to their needs, such as low-iron glass and borosilicate glass at the lowest possible price. While there are no significant technological hurdles that would prevent the flat glass industry from meeting the solar industry’s projected needs, to do so will require advance planning and substantialmore » investments.« less

  19. Method for heating and forming a glass sheet

    DOE Patents [OSTI]

    Boaz, Premakaran Tucker (Livonia, MI)

    1997-01-01

    A method for heating and forming a glass sheet includes the steps of heating a glass sheet to at least a first predetermined temperature, applying microwave energy to the glass sheet to heat the glass sheet to at least a second predetermined temperature, cooling an outer surface of the glass sheet to at least a third predetermined temperature and forming the glass sheet using forming rollers to a predetermined configuration.

  20. Method for heating and forming a glass sheet

    DOE Patents [OSTI]

    Boaz, P.T.

    1997-08-12

    A method for heating and forming a glass sheet includes the steps of heating a glass sheet to at least a first predetermined temperature, applying microwave energy to the glass sheet to heat the glass sheet to at least a second predetermined temperature, cooling an outer surface of the glass sheet to at least a third predetermined temperature and forming the glass sheet using forming rollers to a predetermined configuration. 5 figs.

  1. Functional glass slides for in vitro evaluation of interactions between osteosarcoma TE85 cells and mineral-binding ligands

    SciTech Connect (OSTI)

    Song, Jie; Chen, Julia; Klapperich, Catherine M.; Eng, Vincent; Bertozzi, Carolyn R.

    2004-07-20

    Primary amine-functionalized glass slides obtained through a multi-step plasma treatment were conjugated with anionic amino acids that are frequently found as mineral binding elements in acidic extracellular matrix components of natural bone. The modified glass surfaces were characterized by X-ray photoelectron spectroscopy (XPS) and contact angle measurements. Human osteosarcoma TE85 cells were cultured on these functionalized slides and analyses on both protein and gene expression levels were performed to probe the ''biocompatibility'' of the surface ligands. Cell attachment and proliferation on anionic surfaces were either better than or comparable to those of cells cultured on tissue culture polystyrene (TCPS). The modified glass surfaces promoted the expression of osteocalcin, alkaline phosphatase activity and ECM proteins such as fibronectin and vitronectin under differentiation culture conditions. Transcript analysis using gene chip microarrays confirmed that culturing TE85 cells on anionic surfaces did not activate apoptotic pathways. Collectively, these results suggest that the potential mineral-binding anionic ligands examined here do not exert significant adverse effects on the expression of important osteogenic markers of TE85 cells. This work paves the way for the incorporation of these ligands into 3-dimensional artificial bone-like scaffolds.

  2. Glass-like thermal conductivity in high efficiency thermoelectric...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Glass-like thermal conductivity in high efficiency thermoelectric materials Glass-like thermal conductivity in high efficiency thermoelectric materials Discusses strategies to...

  3. Magnetotellurics At Glass Mountain Area (Cumming And Mackie,...

    Open Energy Info (EERE)

    Magnetotellurics At Glass Mountain Area (Cumming And Mackie, 2007) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Magnetotellurics At Glass...

  4. China Glass Solar aka CG Solar formerly Weihai Bluestar Terra...

    Open Energy Info (EERE)

    Glass Solar aka CG Solar formerly Weihai Bluestar Terra Photovoltaic Co Ltd Jump to: navigation, search Name: China Glass Solar (aka CG Solar, formerly Weihai Bluestar Terra...

  5. Guangfeng Solar Glass Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Solar Glass Co Ltd Place: Zhangjiagang, Jiangsu Province, China Zip: 215600 Product: Chinese PV glass maker Coordinates: 31.950001, 120.449997 Show Map Loading map......

  6. Development Wells At Glass Buttes Area (DOE GTP) | Open Energy...

    Open Energy Info (EERE)

    Glass Buttes Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Development Wells At Glass Buttes Area (DOE GTP) Exploration Activity...

  7. Metal and Glass Manufacturers Reduce Costs by Increasing Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Metal and Glass Manufacturers Reduce Costs by Increasing Energy Efficiency in Process Heating Systems Metal and Glass Manufacturers Reduce Costs by Increasing Energy Efficiency in...

  8. Static Temperature Survey At Glass Buttes Area (DOE GTP) | Open...

    Open Energy Info (EERE)

    to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Static Temperature Survey At Glass Buttes Area (DOE GTP) Exploration Activity Details Location Glass...

  9. Pressure Temperature Log At Glass Buttes Area (DOE GTP) | Open...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Pressure Temperature Log At Glass Buttes Area (DOE GTP) Exploration Activity Details Location Glass...

  10. EA-1645: Sage Electrochromics SageGlass High Volume Manufacturing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    45: Sage Electrochromics SageGlass High Volume Manufacturing Facility in Fairbault, MN EA-1645: Sage Electrochromics SageGlass High Volume Manufacturing Facility in Fairbault, MN...

  11. Microsoft PowerPoint - ORP Glass Effort TWC HAB

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vit 101 & WTP Glass Formulations Name: Albert A. Kruger, Glass Scientist Date 12 March 2014 Hanford Advisory Board Tank Waste Committee Presentation Outline * Background, Hanford...

  12. Multispectral Imaging At Glass Buttes Area (DOE GTP) | Open Energy...

    Open Energy Info (EERE)

    Glass Buttes Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Multispectral Imaging At Glass Buttes Area (DOE GTP) Exploration...

  13. Aeromagnetic Survey At Glass Buttes Area (DOE GTP) | Open Energy...

    Open Energy Info (EERE)

    Glass Buttes Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Aeromagnetic Survey At Glass Buttes Area (DOE GTP) Exploration...

  14. Cuttings Analysis At Glass Buttes Area (DOE GTP) | Open Energy...

    Open Energy Info (EERE)

    Glass Buttes Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Cuttings Analysis At Glass Buttes Area (DOE GTP) Exploration Activity...

  15. Asahi Glass Co Ltd AGC | Open Energy Information

    Open Energy Info (EERE)

    Ltd AGC Jump to: navigation, search Name: Asahi Glass Co Ltd (AGC) Place: Tokyo, Tokyo, Japan Zip: 100-8405 Sector: Efficiency Product: Japanese glass manufacturer; produces cover...

  16. EA-1996: Glass Buttes Radio Station, Lake County, Oregon | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    6: Glass Buttes Radio Station, Lake County, Oregon EA-1996: Glass Buttes Radio Station, Lake County, Oregon SUMMARY The Bureau of Land Management (BLM), with DOE's Bonneville Power...

  17. Glass for sealing lithium cells

    DOE Patents [OSTI]

    Leedecke, C.J.

    1981-08-28

    Glass compositions resistant to corrosion by lithium cell electrolyte and having an expansion coefficient of 45 to 85 x 10/sup -70/C/sup -1/ have been made with SiO/sub 2/, 25 to 55% by weight; B/sub 2/O/sub 3/, 5 to 12%; Al/sub 2/O/sub 3/, 12 to 35%; CaO, 5 to 15%; MgO, 5 to 15%; SrO, 0 to 10%; and La/sub 2/O/sub 3/, 0 to 5%. Preferred compositions within that range contain 3 to 8% SrO and 0.5 to 2.5% La/sub 2/O/sub 3/.

  18. Solid oxide fuel cell having a glass composite seal

    DOE Patents [OSTI]

    De Rose, Anthony J.; Mukerjee, Subhasish; Haltiner, Jr., Karl Jacob

    2013-04-16

    A solid oxide fuel cell stack having a plurality of cassettes and a glass composite seal disposed between the sealing surfaces of adjacent cassettes, thereby joining the cassettes and providing a hermetic seal therebetween. The glass composite seal includes an alkaline earth aluminosilicate (AEAS) glass disposed about a viscous glass such that the AEAS glass retains the viscous glass in a predetermined position between the first and second sealing surfaces. The AEAS glass provides geometric stability to the glass composite seal to maintain the proper distance between the adjacent cassettes while the viscous glass provides for a compliant and self-healing seal. The glass composite seal may include fibers, powders, and/or beads of zirconium oxide, aluminum oxide, yttria-stabilized zirconia (YSZ), or mixtures thereof, to enhance the desirable properties of the glass composite seal.

  19. HGMS: Glasses and Nanocomposites for Hydrogen Storage.

    SciTech Connect (OSTI)

    Lipinska, Kris; Hemmers, Oliver

    2013-02-17

    The primary goal of this project is to fabricate and investigate different glass systems and glass-derived nanocrystalline composite materials. These glass-based, two-phased materials will contain nanocrystals that can attract hydrogen and be of potential interest as hydrogen storage media. The glass materials with intrinsic void spaces that are able to precipitate functional nanocrystals capable to attract hydrogen are of particular interest. Proposed previously, but never practically implemented, one of promising concepts for storing hydrogen are micro-containers built of glass and shaped into hollow microspheres. The project expanded this concept to the exploration of glass-derived nanocrystalline composites as potential hydrogen storage media. It is known that the most desirable materials for hydrogen storage do not interact chemically with hydrogen and possess a high surface area to host substantial amounts of hydrogen. Glasses are built of disordered networks with ample void spaces that make them permeable to hydrogen even at room temperature. Glass-derived nanocrystalline composites (two-phased materials), combination of glasses (networks with ample voids) and functional nanocrystals (capable to attract hydrogen), appear to be promising candidates for hydrogen storage media. Key advantages of glass materials include simplicity of preparation, flexibility of composition, chemical durability, non-toxicity and mechanical strength, as well as low production costs and environmental friendliness. This project encompasses a fundamental research into physics and chemistry of glasses and nanocrystalline composite materials, derived from glass. Studies are aimed to answer questions essential for considering glass-based materials and composites as potential hydrogen storage media. Of particular interest are two-phased materials that combine glasses with intrinsic voids spaces for physisorption of hydrogen and nanocrystals capable of chemisorption. This project does not directly address any hydrogen storage technical barriers or targets in terms of numbers. Specifically, hydrogen sorption and desorption tests or kinetics measurements were not part of the project scope. However, the insights gained from these studies could help to answer fundamental questions necessary for considering glass-based materials as hydrogen storage media and could be applied indirectly towards the DOE hydrogen storage technical targets such as system weight and volume, system cost and energy density. Such questions are: Can specific macro-crystals, proven to attract hydrogen when in a macroscopic form (bulk), be nucleated in glass matrices as nanocrystals to create two-phased materials? What are suitable compositions that enable to synthetize glass-based, two-phase materials with nanocrystals that can attract hydrogen via surface or bulk interactions? What are the limits of controlling the microstructure of these materials, especially limits for nanocrystals density and size? Finally, from a technological point of view, the fabrication of glass-derived nanocomposites that we explore is a very simple, fast and inexpensive process that does not require costly or specialized equipment which is an important factor for practical applications.

  20. Crystallization in high-level waste glass: A review of glass theory and noteworthy literature

    SciTech Connect (OSTI)

    Christian, J. H.

    2015-08-18

    There is a fundamental need to continue research aimed at understanding nepheline and spinel crystal formation in high-level waste (HLW) glass. Specifically, the formation of nepheline solids (K/NaAlSiO4) during slow cooling of HLW glass can reduce the chemical durability of the glass, which can cause a decrease in the overall durability of the glass waste form. The accumulation of spinel solids ((Fe, Ni, Mn, Zn)(Fe, Cr)2O4), while not detrimental to glass durability, can cause an array of processing problems inside HLW glass melters. In this review, the fundamental differences between glass and solid-crystals are explained using kinetic, thermodynamic, and viscosity arguments, and several highlights of glass-crystallization research, as it pertains to high-level waste vitrification, are described. In terms of mitigating spinel in the melter and both spinel and nepheline formation in the canister, the complexity of HLW glass and the intricate interplay between thermal, chemical, and kinetic factors further complicates this understanding. However, new experiments seeking to elucidate the contributing factors of crystal nucleation and growth in waste glass, and the compilation of data from older experiments, may go a long way towards helping to achieve higher waste loadings while developing more efficient processing strategies. Higher waste loadings and more efficient processing strategies will reduce the overall HLW Hanford Tank Waste Treatment and Immobilization Plant (WTP) vitrification facilities mission life.

  1. Crystallization in high-level waste glass: A review of glass theory and noteworthy literature

    SciTech Connect (OSTI)

    Christian, J. H.

    2015-08-01

    There is a fundamental need to continue research aimed at understanding nepheline and spinel crystal formation in high-level waste (HLW) glass. Specifically, the formation of nepheline solids (K/NaAlSiO?) during slow cooling of HLW glass can reduce the chemical durability of the glass, which can cause a decrease in the overall durability of the glass waste form. The accumulation of spinel solids ((Fe, Ni, Mn, Zn)(Fe,Cr)?O?), while not detrimental to glass durability, can cause an array of processing problems inside of HLW glass melters. In this review, the fundamental differences between glass and solid-crystals are explained using kinetic, thermodynamic, and viscosity arguments, and several highlights of glass-crystallization research, as it pertains to high-level waste vitrification, are described. In terms of mitigating spinel in the melter and both spinel and nepheline formation in the canister, the complexity of HLW glass and the intricate interplay between thermal, chemical, and kinetic factors further complicates this understanding. However, new experiments seeking to elucidate the contributing factors of crystal nucleation and growth in waste glass, and the compilation of data from older experiments, may go a long way towards helping to achieve higher waste loadings while developing more efficient processing strategies.

  2. Spin Glasses: Old and New Complexity

    SciTech Connect (OSTI)

    Stein, D. L.

    2011-09-22

    Spin glasses are disordered magnetic systems that exhibit a variety of properties that are characteristic of 'complex systems'. After a brief review of the systems themselves, I will discuss how spin glass concepts have found use in and, in some cases, further advanced areas such as computer science, biology, and other fields: what one might term 'old complexity'. I will then turn to a discussion of more recent concepts and ideas that have flowed from studies of spin glasses, and using these introduce a proposal for a kind of 'new complexity'.

  3. Novel lead-iron phosphate glass

    DOE Patents [OSTI]

    Boatner, L.A.; Sales, B.C.

    1989-07-11

    The invention described and claimed in the specification relates to the discovery that effective addition of Fe[sub 2]O[sub 3] to a lead phosphate glass results in a glass having enhanced chemical durability and physical stability, and consists essentially of the glass resulting from melting a mixture consisting essentially of, in weight percent, 40--66 percent PbO, 30--55 percent P[sub 2]O[sub 5] and an effective concentration up to 12 percent Fe[sub 2]O[sub 3].

  4. Stress in shaped glass evacuated collectors

    SciTech Connect (OSTI)

    Garrison, J.D.; Fischer-Cripps, A.

    1997-02-01

    Shaped glass evacuated collectors have the lower vacuum envelope formed with a CPC shape. The internal surface is silvered. This surface concentrates solar radiation onto an internal absorbing tube. The upper part of the vacuum envelope is a window to pass the solar radiation in to the absorbing tube. A computer program using analytical equations is used to design these collectors while keeping the glass tensile stress arising from evacuation below acceptable limits. A finite element computer program is used to test the accuracy of the stress calculated analytically. The calculations agree within about 1 MPa. Wind and thermal stresses in the glass are lower than the stresses caused by evacuation.

  5. Designing aluminum sealing glasses for manufacturability

    SciTech Connect (OSTI)

    Kovacic, L.; Crowder, S.V.; Brow, R.K.; Bencoe, D.N.

    1993-12-31

    Manufacturability issues involved in the development of new sealing glasses include tailoring glass compositions to meet material and component requirements and determining the optimum seal processing parameters. For each of these issues, statistical analysis can be used to shorten the time between concept and product in the development of what is essentially a new manufacturing technology. We use the development of our new family of phosphate-based glasses for aluminum/stainless steel and aluminum/CuBe hermetic sealing, the ALSG family, to illustrate the statistical approach.

  6. Community Geothermal Technology Program: Hawaii glass project. Final report

    SciTech Connect (OSTI)

    Miller, N.; Irwin, B.

    1988-01-20

    Objective was to develop a glass utilizing the silica waste material from geothermal energy production, and to supply local artists with this glass to make artistic objects. A glass composed of 93% indigenous Hawaiian materials was developed; 24 artists made 110 objects from this glass. A market was found for art objects made from this material.

  7. Properties of a solar alumina-borosilicate sheet glass

    SciTech Connect (OSTI)

    Coyle, R.T.; Lind, M.A.; Shelby, J.E.; Vitko, J.; Shoemaker, A.F.

    1980-01-01

    Solar energy applications place unique requirements on sheet glass including very low solar absorption, outstanding stability of absorption in the outdoor environment, low cost, and elastic formability for making concentrating mirrors. The Solar Energy Research Institute and Corning Glass Works have developed a new solar sheet glass. In evaluations reported the new glass has shown outstanding chemical durability and optical and mechanical properties.

  8. Glass/polymer composites and methods of making

    DOE Patents [OSTI]

    Samuels, W.D.; Exarhos, G.J.

    1995-06-06

    The present invention relates to new glass/polymer composites and methods for making them. More specifically, the invention is glass/polymer composites having phases that are at the molecular level and thereby practicably indistinguishable. The invention further discloses making molecular phase glass/polymer composites by mixing a glass and a polymer in a compatible solvent.

  9. Glass/polymer composites and methods of making

    DOE Patents [OSTI]

    Samuels, W. D. (Richland, WA); Exarhos, Gregory J. (Richland, WA)

    1995-01-01

    The present invention relates to new glass/polymer composites and methods for making them. More specifically, the invention is glass/polymer composites having phases that are at the molecular level and thereby practicably indistinguishable. The invention further discloses making molecular phase glass/polymer composites by mixing a glass and a polymer in a compatible solvent.

  10. Preparation of fullerene/glass composites

    DOE Patents [OSTI]

    Mattes, B.R.; McBranch, D.W.; Robinson, J.M.; Koskelo, A.C.; Love, S.P.

    1995-05-30

    Synthesis of fullerene/glass composites is described. A direct method for preparing solid solutions of C{sub 60} in silicon dioxide (SiO{sub 2}) glass matrices by means of sol-gel chemistry is described. In order to produce highly concentrated fullerene-sol-gel-composites it is necessary to increase the solubility of these ``guests`` in a delivery solvent which is compatible with the starter sol (receiving solvent). Sonication results in aggregate disruption by treatment with high frequency sound waves, thereby accelerating the rate of hydrolysis of the alkoxide precursor, and the solution process for the C{sub 60}. Depending upon the preparative procedure, C{sub 60} dispersed within the glass matrix as microcrystalline domains, or dispersed as true molecular solutions of C{sub 60} in a solid glass matrix, is generated by the present method.

  11. Preparation of fullerene/glass composites

    DOE Patents [OSTI]

    Mattes, Benjamin R. (Santa Fe, NM); McBranch, Duncan W. (Santa Fe, NM); Robinson, Jeanne M. (Los Alamos, NM); Koskelo, Aaron C. (Los Alamos, NM); Love, Steven P. (Los Alamos, NM)

    1995-01-01

    Synthesis of fullerene/glass composites. A direct method for preparing solid solutions of C.sub.60 in silicon dioxide (SiO.sub.2) glass matrices by means of sol-gel chemistry is described. In order to produce highly concentrated fullerene-sol-gel-composites it is necessary to increase the solubility of these "guests" in a delivery solvent which is compatible with the starter sol (receiving solvent). Sonication results in aggregate disruption by treatment with high frequency sound waves, thereby accelerating the rate of hydrolysis of the alkoxide precursor, and the solution process for the C.sub.60. Depending upon the preparative procedure, C.sub.60 dispersed within the glass matrix as microcrystalline domains, or dispersed as true molecular solutions of C.sub.60 in a solid glass matrix, is generated by the present method.

  12. Glass Furnace Combustion and Melting Research Facility.

    SciTech Connect (OSTI)

    Connors, John J.; McConnell, John F.; Henry, Vincent I.; MacDonald, Blake A.; Gallagher, Robert J.; Field, William B.; Walsh, Peter M.; Simmons, Michael C.; Adams, Michael E.; Leadbetter, James M.; Tomasewski, Jack W.; Operacz, Walter J.; Houf, William G.; Davis, James W.; Marvin, Bart G.; Gunner, Bruce E.; Farrell, Rick G.; Bivins, David P.; Curtis, Warren; Harris, James E.

    2004-08-01

    The need for a Combustion and Melting Research Facility focused on the solution of glass manufacturing problems common to all segments of the glass industry was given high priority in the earliest version of the Glass Industry Technology Roadmap (Eisenhauer et al., 1997). Visteon Glass Systems and, later, PPG Industries proposed to meet this requirement, in partnership with the DOE/OIT Glass Program and Sandia National Laboratories, by designing and building a research furnace equipped with state-of-the-art diagnostics in the DOE Combustion Research Facility located at the Sandia site in Livermore, CA. Input on the configuration and objectives of the facility was sought from the entire industry by a variety of routes: (1) through a survey distributed to industry leaders by GMIC, (2) by conducting an open workshop following the OIT Glass Industry Project Review in September 1999, (3) from discussions with numerous glass engineers, scientists, and executives, and (4) during visits to glass manufacturing plants and research centers. The recommendations from industry were that the melting tank be made large enough to reproduce the essential processes and features of industrial furnaces yet flexible enough to be operated in as many as possible of the configurations found in industry as well as in ways never before attempted in practice. Realization of these objectives, while still providing access to the glass bath and combustion space for optical diagnostics and measurements using conventional probes, was the principal challenge in the development of the tank furnace design. The present report describes a facility having the requirements identified as important by members of the glass industry and equipped to do the work that the industry recommended should be the focus of research. The intent is that the laboratory would be available to U.S. glass manufacturers for collaboration with Sandia scientists and engineers on both precompetitive basic research and the solution of proprietary glass production problems. As a consequence of the substantial increase in scale and scope of the initial furnace concept in response to industry recommendations, constraints on funding of industrial programs by DOE, and reorientation of the Department's priorities, the OIT Glass Program is unable to provide the support for construction of such a facility. However, it is the present investigators' hope that a group of industry partners will emerge to carry the project forward, taking advantage of the detailed furnace design presented in this report. The engineering, including complete construction drawings, bill of materials, and equipment specifications, is complete. The project is ready to begin construction as soon as the quotations are updated. The design of the research melter closely follows the most advanced industrial practice, firing by natural gas with oxygen. The melting area is 13 ft x 6 ft, with a glass depth of 3 ft and an average height in the combustion space of 3 ft. The maximum pull rate is 25 tons/day, ranging from 100% batch to 100% cullet, continuously fed, with variable batch composition, particle size distribution, and raft configuration. The tank is equipped with bubblers to control glass circulation. The furnace can be fired in three modes: (1) using a single large burner mounted on the front wall, (2) by six burners in a staggered/opposed arrangement, three in each breast wall, and (3) by down-fired burners mounted in the crown in any combination with the front wall or breast-wall-mounted burners. Horizontal slots are provided between the tank blocks and tuck stones and between the breast wall and skewback blocks, running the entire length of the furnace on both sides, to permit access to the combustion space and the surface of the glass for optical measurements and sampling probes. Vertical slots in the breast walls provide additional access for measurements and sampling. The furnace and tank are to be fully instrumented with standard measuring equipment, such as flow meters, thermocouples, continuous gas composition

  13. Superhydrophilic Nanostructure for Antifogging Glass - Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Publication LBNL Commercial Analysis Report (103 KB) A glass slide was placed in a freezer (at -15C) and then exposed to humid air at room temperature. The uncoated...

  14. The Thermal Collector With Varied Glass Covers

    SciTech Connect (OSTI)

    Luminosu, I.; Pop, N.

    2010-08-04

    The thermal collector with varied glass covers represents an innovation realized in order to build a collector able to reach the desired temperature by collecting the solar radiation from the smallest surface, with the highest efficiency. In the case of the thermal collector with variable cover glasses, the number of the glass plates covering the absorber increases together with the length of the circulation pipe for the working fluid. The thermal collector with varied glass covers compared to the conventional collector better meet user requirements because: for the same temperature increase, has the collecting area smaller; for the same collection area, realizes the highest temperature increase and has the highest efficiency. This works is addressed to researchers in the solar energy and to engineers responsible with air-conditioning systems design or industrial and agricultural products drying.

  15. Tiny Glass Bubbles With Big Potential

    Broader source: Energy.gov [DOE]

    If these glass microspheres' walls could talk…They would explain how their tiny pores allow the potential for handling, storing and transporting a variety of materials, including drugs that have...

  16. High thermal expansion, sealing glass

    DOE Patents [OSTI]

    Brow, R.K.; Kovacic, L.

    1993-11-16

    A glass composition is described for hermetically sealing to high thermal expansion materials such as aluminum alloys, stainless steels, copper, and copper/beryllium alloys, which includes between about 10 and about 25 mole percent Na[sub 2]O, between about 10 and about 25 mole percent K[sub 2]O, between about 5 and about 15 mole percent Al[sub 2]O[sub 3], between about 35 and about 50 mole percent P[sub 2]O[sub 5] and between about 5 and about 15 mole percent of one of PbO, BaO, and mixtures thereof. The composition, which may also include between 0 and about 5 mole percent Fe[sub 2]O[sub 3] and between 0 and about 10 mole percent B[sub 2]O[sub 3], has a thermal expansion coefficient in a range of between about 160 and 210[times]10[sup [minus]7]/C and a dissolution rate in a range of between about 2[times]10[sup [minus]7] and 2[times]10[sup [minus]9]g/cm[sup 2]-min. This composition is suitable to hermetically seal to metallic electrical components which will be subjected to humid environments over an extended period of time.

  17. High thermal expansion, sealing glass

    DOE Patents [OSTI]

    Brow, Richard K. (Albuquerque, NM); Kovacic, Larry (Albuquerque, NM)

    1993-01-01

    A glass composition for hermetically sealing to high thermal expansion materials such as aluminum alloys, stainless steels, copper, and copper/beryllium alloys, which includes between about 10 and about 25 mole percent Na.sub.2 O, between about 10 and about 25 mole percent K.sub.2 O, between about 5 and about 15 mole percent Al.sub.2 O.sub.3, between about 35 and about 50 mole percent P.sub.2 O.sub.5 and between about 5 and about 15 mole percent of one of PbO, BaO, and mixtures thereof. The composition, which may also include between 0 and about 5 mole percent Fe.sub.2 O.sub.3 and between 0 and about 10 mole percent B.sub.2 O.sub.3, has a thermal expansion coefficient in a range of between about 160 and 210.times.10-7/.degree.C. and a dissolution rate in a range of between about 2.times.10.sup.- 7 and 2.times.10.sup.-9 g/cm.sup.2 -min. This composition is suitable to hermetically seal to metallic electrical components which will be subjected to humid environments over an extended period of time.

  18. Compositional Models of Glass/Melt Properties and their Use for Glass Formulation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Vienna, John D.; USA, Richland Washington

    2014-12-18

    Nuclear waste glasses must simultaneously meet a number of criteria related to their processability, product quality, and cost factors. The properties that must be controlled in glass formulation and waste vitrification plant operation tend to vary smoothly with composition allowing for glass property-composition models to be developed and used. Models have been fit to the key glass properties. The properties are transformed so that simple functions of composition (e.g., linear, polynomial, or component ratios) can be used as model forms. The model forms are fit to experimental data designed statistically to efficiently cover the composition space of interest. Examples ofmore »these models are found in literature. The glass property-composition models, their uncertainty definitions, property constraints, and optimality criteria are combined to formulate optimal glass compositions, control composition in vitrification plants, and to qualify waste glasses for disposal. An overview of current glass property-composition modeling techniques is summarized in this paper along with an example of how those models are applied to glass formulation and product qualification at the planned Hanford high-level waste vitrification plant.« less

  19. Compositional Models of Glass/Melt Properties and their Use for Glass Formulation

    SciTech Connect (OSTI)

    Vienna, John D. [Pacific Northwest National Laboratory; Richland Washington USA

    2014-12-18

    Nuclear waste glasses must simultaneously meet a number of criteria related to their processability, product quality, and cost factors. The properties that must be controlled in glass formulation and waste vitrification plant operation tend to vary smoothly with composition allowing for glass property-composition models to be developed and used. Models have been fit to the key glass properties. The properties are transformed so that simple functions of composition (e.g., linear, polynomial, or component ratios) can be used as model forms. The model forms are fit to experimental data designed statistically to efficiently cover the composition space of interest. Examples of these models are found in literature. The glass property-composition models, their uncertainty definitions, property constraints, and optimality criteria are combined to formulate optimal glass compositions, control composition in vitrification plants, and to qualify waste glasses for disposal. An overview of current glass property-composition modeling techniques is summarized in this paper along with an example of how those models are applied to glass formulation and product qualification at the planned Hanford high-level waste vitrification plant.

  20. THE COLOUR GLASS CONDENSATE: AN INTRODUCTION

    SciTech Connect (OSTI)

    IANCU,E.; LEONIDOV,A.; MCLERRAN,L.

    2001-08-06

    In these lectures, the authors develop the theory of the Colour Glass Condensate. This is the matter made of gluons in the high density environment characteristic of deep inelastic scattering or hadron-hadron collisions at very high energy. The lectures are self contained and comprehensive. They start with a phenomenological introduction, develop the theory of classical gluon fields appropriate for the Colour Glass, and end with a derivation and discussion of the renormalization group equations which determine this effective theory.

  1. High expansion, lithium corrosion resistant sealing glasses

    DOE Patents [OSTI]

    Brow, R.K.; Watkins, R.D.

    1991-06-04

    Glass compositions containing CaO, Al[sub 2]O[sub 3], B[sub 2]O[sub 3], SrO and BaO in various combinations of mole % are provided. These compositions are capable of forming stable glass-to-metal seals with pin materials of 446 Stainless Steel and Alloy-52 rather than molybdenum, for use in harsh chemical environments, specifically in lithium batteries.

  2. High expansion, lithium corrosion resistant sealing glasses

    DOE Patents [OSTI]

    Brow, Richard K. (Albuquerque, NM); Watkins, Randall D. (Albuquerque, NM)

    1991-01-01

    Glass compositions containing CaO, Al.sub.2 O.sub.3, B.sub.2 O.sub.3, SrO and BaO in various combinations of mole % are provided. These compositions are capable of forming stable glass-to-metal seals with pin materials of 446 Stainless Steel and Alloy-52 rather than molybdenum, for use in harsh chemical environments, specifically in lithium batteries.

  3. High-precision flexible fabrication of tissue engineering scaffolds using distinct polymers

    SciTech Connect (OSTI)

    Wei, Chuang; Cai, Lei; Sonawane, Bhushan; Wang, Shanfeng; Dong, Jingyan

    2012-01-01

    Three-dimensional porous structures using biodegradable materials with excellent biocompatibility are critically important for tissue engineering applications. We present a multi-nozzle-based versatile deposition approach to flexibly construct porous tissue engineering scaffolds using distinct polymeric biomaterials such as thermoplastic and photo-crosslinkable polymers. We first describe the development of the deposition system and fabrication of scaffolds from two types of biodegradable polymers using this system. The thermoplastic sample is semi-crystalline poly({var_epsilon}-caprolactone) (PCL) that can be processed at a temperature higher than its melting point and solidifies at room temperature. The photo-crosslinkable one is polypropylene fumarate (PPF) that has to be dissolved in a reactive solvent as a resin for being cured into solid structures. Besides the direct fabrication of thermoplastic PCL scaffolds, we specifically develop a layer molding approach for the fabrication of crosslinkable polymers, which traditionally can only be fabricated by stereolithography. In this approach, a thermoplastic supporting material (paraffin wax) is first deposited to make a mold for each specific layer, and then PPF is deposited on demand to fill the mold and cured by the UV light. The supporting material can be removed to produce a porous scaffold of crosslinked PPF. Both PCL and crosslinked PPF scaffolds fabricated using the developed system have been characterized in terms of compressive mechanical properties, morphology, pore size and porosity. Mouse MC3T3-E1 pre-osteoblastic cell studies on the fabricated scaffolds have been performed to demonstrate their capability of supporting cell proliferation and ingrowth, aiming for bone tissue engineering applications.

  4. Sealed glass coating of high temperature ceramic superconductors

    DOE Patents [OSTI]

    Wu, Weite (Tainan, TW); Chu, Cha Y. (Garnerville, NY); Goretta, Kenneth C. (Downers Grove, IL); Routbort, Jules L. (Darien, IL)

    1995-01-01

    A method and article of manufacture of a lead oxide based glass coating on a high temperature superconductor. The method includes preparing a dispersion of glass powders in a solution, applying the dispersion to the superconductor, drying the dispersion before applying another coating and heating the glass powder dispersion at temperatures below oxygen diffusion onset and above the glass melting point to form a continuous glass coating on the superconductor to establish compressive stresses which enhance the fracture strength of the superconductor.

  5. Engineering Glass Passivation Layers -Model Results

    SciTech Connect (OSTI)

    Skorski, Daniel C.; Ryan, Joseph V.; Strachan, Denis M.; Lepry, William C.

    2011-08-08

    The immobilization of radioactive waste into glass waste forms is a baseline process of nuclear waste management not only in the United States, but worldwide. The rate of radionuclide release from these glasses is a critical measure of the quality of the waste form. Over long-term tests and using extrapolations of ancient analogues, it has been shown that well designed glasses exhibit a dissolution rate that quickly decreases to a slow residual rate for the lifetime of the glass. The mechanistic cause of this decreased corrosion rate is a subject of debate, with one of the major theories suggesting that the decrease is caused by the formation of corrosion products in such a manner as to present a diffusion barrier on the surface of the glass. Although there is much evidence of this type of mechanism, there has been no attempt to engineer the effect to maximize the passivating qualities of the corrosion products. This study represents the first attempt to engineer the creation of passivating phases on the surface of glasses. Our approach utilizes interactions between the dissolving glass and elements from the disposal environment to create impermeable capping layers. By drawing from other corrosion studies in areas where passivation layers have been successfully engineered to protect the bulk material, we present here a report on mineral phases that are likely have a morphological tendency to encrust the surface of the glass. Our modeling has focused on using the AFCI glass system in a carbonate, sulfate, and phosphate rich environment. We evaluate the minerals predicted to form to determine the likelihood of the formation of a protective layer on the surface of the glass. We have also modeled individual ions in solutions vs. pH and the addition of aluminum and silicon. These results allow us to understand the pH and ion concentration dependence of mineral formation. We have determined that iron minerals are likely to form a complete incrustation layer and we plan to look more closely at Vivianite [Fe3(PO4)2-8(H2O)] and Siderite [FeCO3] in the next stage of the project.

  6. An Insulating Glass Knowledge Base

    SciTech Connect (OSTI)

    Michael L. Doll; Gerald Hendrickson; Gerard Lagos; Russell Pylkki; Chris Christensen; Charlie Cureija

    2005-08-01

    This report will discuss issues relevant to Insulating Glass (IG) durability performance by presenting the observations and developed conclusions in a logical sequential format. This concluding effort discusses Phase II activities and focuses on beginning to quantifying IG durability issues while continuing the approach presented in the Phase I activities (Appendix 1) which discuss a qualitative assessment of durability issues. Phase II developed a focus around two specific IG design classes previously presented in Phase I of this project. The typical box spacer and thermoplastic spacer design including their Failure Modes and Effect Analysis (FMEA) and Fault Tree diagrams were chosen to address two currently used IG design options with varying components and failure modes. The system failures occur due to failures of components or their interfaces. Efforts to begin quantifying the durability issues focused on the development and delivery of an included computer based IG durability simulation program. The focus/effort to deliver the foundation for a comprehensive IG durability simulation tool is necessary to address advancements needed to meet current and future building envelope energy performance goals. This need is based upon the current lack of IG field failure data and the lengthy field observation time necessary for this data collection. Ultimately, the simulation program is intended to be used by designers throughout the current and future industry supply chain. Its use is intended to advance IG durability as expectations grow around energy conservation and with the growth of embedded technologies as required to meet energy needs. In addition the tool has the immediate benefit of providing insight for research and improvement prioritization. Included in the simulation model presentation are elements and/or methods to address IG materials, design, process, quality, induced stress (environmental and other factors), validation, etc. In addition, acquired data is presented in support of project and model assumptions. Finally, current and suggested testing protocol and procedure for future model validation and IG physical testing are discussed.

  7. Glass science tutorial: Lecture No. 4, commercial glass melting and associated air emission issues

    SciTech Connect (OSTI)

    Kruger, A.A.

    1995-01-01

    This document serves as a manual for a workshop on commercial glass melting and associated air emission issues. Areas covered include: An overview of the glass industry; Furnace design and construction practices; Melting furnace operation; Energy input methods and controls; Air legislation and regulations; Soda lime emission mechanisms; and, Post furnace emission controls. Supporting papers are also included.

  8. Transport properties of lithium- lead-vanadium-telluride glass and glass ceramics

    SciTech Connect (OSTI)

    Sathish, M.; Eraiah, B.

    2014-04-24

    Glasses with the chemical composition 35Li{sub 2}O-(45-x)V{sub 2}O{sub 5?}20PbO-xTeO{sub 2} (where x = 2.5, 5, 7.5, 10, 15 mol %) have prepared by conventional melt quenching method. The electrical conductivity of Li{sup +} ion conducting lead vanadium telluride glass samples has been carried out both as a function of temperature and frequency in the temperature range 503K-563K and over frequencies 40 Hz to 10 MHz. The electronic conduction has been observed in the present systems. When these samples annealed around 400C for 2hour become the glass ceramic, which also shows increase tendency of conductivity. SEM confines glass and glass ceramic nature of the prepared samples.

  9. GLASS AND GLASS-DERIVATIVE SEALS FOR USE IN ENERGY-EFFICIENT FUEL CELLS AND LAMPS

    SciTech Connect (OSTI)

    Scott Misture; Arun Varshneya; Matthew Hall; Sylvia DeCarr; Steve Bancheri

    2004-08-15

    As the project approaches the end of the first year, the materials screening components of the work are ahead of schedule, while all other tasks are on schedule. For solid oxide fuel cells (SOFC), a series of 16 sealing glasses have been prepared and characterized. Traditional melting was used to prepare all of the glasses, and the sol-gel approach has been used to prepare some of the glasses as well as other compositions that might be viable because of the low processing temperatures afforded by the sol-gel method. The glass characterization included measurements of the viscosity and thermal expansion of the glasses, as well as the thermal expansion of the partly crystalline glass ceramics. In addition, the wetting and sintering behavior of all glasses has been measured, as well as the crystallization behavior. The time and temperature at which crystalline phases form from the glasses has been determined for all of the glasses. Each glass ceramic contains at least two crystalline phases, and most of the crystalline phases have been positively identified. Room temperature leak testing has been completed for all sealants, and experiments are in progress to determine the DC electrochemical degradation and degradation in wet hydrogen. The second component of the work, focused on seals for higher-temperature discharge lighting, has focused on determining the phase relations in the yttria--alumina--silica system at various silica levels. Again, traditional melting and sol-gel synthesis have been employed, and the sol-gel method was successful for preparing new phases that were discovered during the work. High temperature diffraction and annealing studies have clarified the phase relations for the samples studies, although additional work remains. Four new phases have been identified and synthesized in pure form, from which full structure solutions were obtained as well as the anisotropic thermal expansion for each phase. Functional testing of lamps are on on-going and will be analyzed during year 2 of the contract.

  10. Sealing glasses for titanium and titanium alloys

    DOE Patents [OSTI]

    Brow, Richard K. (Albuquerque, NM); McCollister, Howard L. (Albuquerque, NM); Phifer, Carol C. (Albuquerque, NM); Day, Delbert E. (Rolla, MO)

    1997-01-01

    Barium lanthanoborate sealing-glass compositions are provided comprising various combinations (in terms of mole-%) of boron oxide (B.sub.2 O.sub.3), barium oxide (BaO), lanthanum oxide (La.sub.2 O.sub.3), and at least one other oxide selected from the group consisting of aluminum oxide (Al.sub.2 O.sub.3), calcium oxide (CaO), lithium oxide (Li.sub.2 O), sodium oxide (Na.sub.2 O), silicon dioxide (SiO.sub.2), or titanium dioxide (TiO.sub.2). These sealing-glass compositions are useful for forming hermetic glass-to-metal seals with titanium and titanium alloys having an improved aqueous durability and favorable sealing characteristics. Examples of the sealing-glass compositions are provided having coefficients of thermal expansion about that of titanium or titanium alloys, and with sealing temperatures less than about 900.degree. C., and generally about 700.degree.-800.degree. C. The barium lanthanoborate sealing-glass compositions are useful for components and devices requiring prolonged exposure to moisture or water, and for implanted biomedical devices (e.g. batteries, pacemakers, defibrillators, pumps).

  11. Sealing glasses for titanium and titanium alloys

    DOE Patents [OSTI]

    Brow, R.K.; McCollister, H.L.; Phifer, C.C.; Day, D.E.

    1997-07-15

    Barium lanthanoborate sealing-glass compositions are provided comprising various combinations (in terms of mole-%) of boron oxide (B{sub 2}O{sub 3}), barium oxide (BaO), lanthanum oxide (La{sub 2}O{sub 3}), and at least one other oxide selected from the group consisting of aluminum oxide (Al{sub 2}O{sub 3}), calcium oxide (CaO), lithium oxide (Li{sub 2}O), sodium oxide (Na{sub 2}O), silicon dioxide (SiO{sub 2}), or titanium dioxide (TiO{sub 2}). These sealing-glass compositions are useful for forming hermetic glass-to-metal seals with titanium and titanium alloys having an improved aqueous durability and favorable sealing characteristics. Examples of the sealing-glass compositions are provided having coefficients of thermal expansion about that of titanium or titanium alloys, and with sealing temperatures less than about 900 C, and generally about 700--800 C. The barium lanthanoborate sealing-glass compositions are useful for components and devices requiring prolonged exposure to moisture or water, and for implanted biomedical devices (e.g. batteries, pacemakers, defibrillators, pumps). 1 fig.

  12. Vacuum fusion bonding of glass plates

    DOE Patents [OSTI]

    Swierkowski, Steve P. (Livermore, CA); Davidson, James C. (Livermore, CA); Balch, Joseph W. (Livermore, CA)

    2001-01-01

    An improved apparatus and method for vacuum fusion bonding of large, patterned glass plates. One or both glass plates are patterned with etched features such as microstructure capillaries and a vacuum pumpout moat, with one plate having at least one hole therethrough for communication with a vacuum pumpout fixture. High accuracy alignment of the plates is accomplished by a temporary clamping fixture until the start of the fusion bonding heat cycle. A complete, void-free fusion bond of seamless, full-strength quality is obtained through the plates; because the glass is heated well into its softening point and because of a large, distributed force that is developed that presses the two plates together from the difference in pressure between the furnace ambient (high pressure) and the channeling and microstructures in the plates (low pressure) due to the vacuum drawn. The apparatus and method may be used to fabricate microcapillary arrays for chemical electrophoresis; for example, any apparatus using a network of microfluidic channels embedded between plates of glass or similar moderate melting point substrates with a gradual softening point curve, or for assembly of glass-based substrates onto larger substrates, such as in flat panel display systems.

  13. Vacuum fusion bonding of glass plates

    DOE Patents [OSTI]

    Swierkowski, Steve P. (Livermore, CA); Davidson, James C. (Livermore, CA); Balch, Joseph W. (Livermore, CA)

    2000-01-01

    An improved apparatus and method for vacuum fusion bonding of large, patterned glass plates. One or both glass plates are patterned with etched features such as microstructure capillaries and a vacuum pumpout moat, with one plate having at least one hole therethrough for communication with a vacuum pumpout fixture. High accuracy alignment of the plates is accomplished by a temporary clamping fixture until the start of the fusion bonding heat cycle. A complete, void-free fusion bond of seamless, full-strength quality is obtained through the plates; because the glass is heated well into its softening point and because of a large, distributed force that is developed that presses the two plates together from the difference in pressure between the furnace ambient (high pressure) and the channeling and microstructures in the plates (low pressure) due to the vacuum drawn. The apparatus and method may be used to fabricate microcapillary arrays for chemical electrophoresis; for example, any apparatus using a network of microfluidic channels embedded between plates of glass or similar moderate melting point substrates with a gradual softening point curve, or for assembly of glass-based substrates onto larger substrates, such as in flat panel display systems.

  14. Measurement and Control of Glass Feedstocks

    SciTech Connect (OSTI)

    Arel Weisberg

    2007-04-26

    ERCo has developed a laser-based technology for rapid compositional measurements of batch, real-time sorting of cullet, and in-situ measurements of molten glass. This technology, termed LIBS (Laser Induced Breakdown Spectroscopy) can determine whether or not the batch was formulated accurately in order to control glass quality. It can also be used to determine if individual batch ingredients are within specifications. In the case of cullet feedstocks, the sensor can serve as part of a system to sort cullet by color and ensure that it is free of contaminants. In-situ compositional measurements of molten glass are achieved through immersing a LIBS probe directly into the melt in a glass furnace. This technology has been successfully demonstrated in ERCos LIBS laboratory for batch analysis, cullet sorting, and glass melt measurements. A commercial batch analyzer has been operating in a PPG fiberglass plant since August 2004. LIBS utilizes a highly concentrated laser pulse to rapidly vaporize and ionize nanograms of the material being studied. As this vapor cools, it radiates light at specific wavelengths corresponding to the elemental constituents (e.g. silicon, aluminum, iron) of the material. The strengths of the emissions correlate to the concentrations of each of the elemental constituents. By collecting the radiated light with a spectrometer capable of resolving and measuring these wavelengths, the elemental composition of the sample is found.

  15. Retention of Halogens in Waste Glass

    SciTech Connect (OSTI)

    Hrma, Pavel R.

    2010-05-01

    In spite of their potential roles as melting rate accelerators and foam breakers, halogens are generally viewed as troublesome components for glass processing. Of five halogens, F, Cl, Br, I, and At, all but At may occur in nuclear waste. A nuclear waste feed may contain up to 10 g of F, 4 g of Cl, and ?100 mg of Br and I per kg of glass. The main concern is halogen volatility, producing hazardous fumes and particulates, and the radioactive iodine 129 isotope of 1.7x10^7-year half life. Because F and Cl are soluble in oxide glasses and tend to precipitate on cooling, they can be retained in the waste glass in the form of dissolved constituents or as dispersed crystalline inclusions. This report compiles known halogen-retention data in both high-level waste (HLW) and low-activity waste (LAW) glasses. Because of its radioactivity, the main focus is on I. Available data on F and Cl were compiled for comparison. Though Br is present in nuclear wastes, it is usually ignored; no data on Br retention were found.

  16. Research and development of new ultraphosphate laser glasses

    SciTech Connect (OSTI)

    Izumitani, T.; Toratani, H.; Matsukawa, T.; Kanamori, C.; Miyade, H.

    1985-01-30

    Requirements for Zeus laser glass and HAP laser glass were small {sigma}, low water, low concentration quenching and high mechanical and thermal strength in the former and high {sigma}, low water, low concentration quenching and high mechanical, thermal shock resistance in the later. In order to get a high mechanical and thermal shock resistance, we introduced SiO{sub 2} into phosphate glass, because SiO{sub 2} gives a low expansion coefficient. In this report, we discuss the research and development of the laser glass. Chemical durability, water content, lasing properties, mechanical and thermo-mechanical properties, glass composition and glass structures are discussed.

  17. Glass/ceramic coatings for implants

    DOE Patents [OSTI]

    Tomsia, Antoni P. (Pinole, CA); Saiz, Eduardo (Berkeley, CA); Gomez-Vega, Jose M. (Nagoya, JP); Marshall, Sally J. (Larkspur, CA); Marshall, Grayson W. (Larkspur, CA)

    2011-09-06

    Glass coatings on metals including Ti, Ti6A14V and CrCo were prepared for use as implants. The composition of the glasses was tailored to match the thermal expansion of the substrate metal. By controlling the firing atmosphere, time, and temperature, it was possible to control the reactivity between the glass and the alloy and to fabricate coatings (25-150 .mu.m thick) with excellent adhesion to the substrate. The optimum firing temperatures ranged between 800 and 840.degree. C. at times up to 1 min in air or 15 min in N.sub.2. The same basic technique was used to create multilayered coatings with concentration gradients of hydroxyapatite (HA) particles and SiO.sub.2.

  18. Spectroscopic studies of silver boro tellurite glasses

    SciTech Connect (OSTI)

    Kumar, E. Ramesh Kumari, K. Rajani Rao, B. Appa Bhikshamaiah, G.

    2014-04-24

    The FTIR absorption and Raman scattering studies were used to obtain the structural information of AgI?Ag{sub 2}O?[(1?x)B{sub 2}O{sub 3}?xTeO{sub 2}] (x=0 to 1 mol% in steps of 0.2) glasses. The glassy nature of the compounds has been confirmed by X-ray diffraction. FTIR and Raman spectra were recorded for all samples at room temperature. FTIR spectra which provides the information about the change in bond structure of the glasses. Raman spectra provide the effect of TeO{sub 2} on SBT glass system is that as increasing the concentration of TeO{sub 2} the band intensity at 707 cm{sup ?1} increase.

  19. Opal photonic crystals infiltrated with chalcogenide glasses

    SciTech Connect (OSTI)

    Astratov, V. N.; Adawi, A. M.; Skolnick, M. S.; Tikhomirov, V. K.; Lyubin, V.; Lidzey, D. G.; Ariu, M.; Reynolds, A. L.

    2001-06-25

    Composite opal structures for nonlinear applications are obtained by infiltration with chalcogenide glasses As{sub 2}S{sub 3} and AsSe by precipitation from solution. Analysis of spatially resolved optical spectra reveals that the glass aggregates into submillimeter areas inside the opal. These areas exhibit large shifts in the optical stop bands by up to 80 nm, and by comparison with modelling are shown to have uniform glass filling factors of opal pores up to 40%. Characterization of the domain structure of the opals prior to infiltration by large area angle-resolved spectroscopy is an important step in the analysis of the properties of the infiltrated regions. {copyright} 2001 American Institute of Physics.

  20. Two glass transitions in miscible polymer blends?

    SciTech Connect (OSTI)

    Dudowicz, Jacek; Freed, Karl F.; Douglas, Jack F.

    2014-06-28

    In contrast to mixtures of two small molecule fluids, miscible binary polymer blends often exhibit two structural relaxation times and two glass transition temperatures. Qualitative explanations postulate phenomenological models of local concentration enhancements due to chain connectivity in ideal, fully miscible systems. We develop a quantitative theory that explains qualitative trends in the dynamics of real miscible polymer blends which are never ideal mixtures. The theory is a synthesis of the lattice cluster theory of blend thermodynamics, the generalized entropy theory for glass-formation in polymer materials, and the Kirkwood-Buff theory for concentration fluctuations in binary mixtures.

  1. Transistors using crystalline silicon devices on glass

    DOE Patents [OSTI]

    McCarthy, Anthony M. (Menlo Park, CA)

    1995-01-01

    A method for fabricating transistors using single-crystal silicon devices on glass. This method overcomes the potential damage that may be caused to the device during high voltage bonding and employs a metal layer which may be incorporated as part of the transistor. This is accomplished such that when the bonding of the silicon wafer or substrate to the glass substrate is performed, the voltage and current pass through areas where transistors will not be fabricated. After removal of the silicon substrate, further metal may be deposited to form electrical contact or add functionality to the devices. By this method both single and gate-all-around devices may be formed.

  2. PLUTONIUM SOLUBILITY IN HIGH-LEVEL WASTE ALKALI BOROSILICATE GLASS

    SciTech Connect (OSTI)

    Marra, J.; Crawford, C.; Fox, K.; Bibler, N.

    2011-01-04

    The solubility of plutonium in a Sludge Batch 6 (SB6) reference glass and the effect of incorporation of Pu in the glass on specific glass properties were evaluated. A Pu loading of 1 wt % in glass was studied. Prior to actual plutonium glass testing, surrogate testing (using Hf as a surrogate for Pu) was conducted to evaluate the homogeneity of significant quantities of Hf (Pu) in the glass, determine the most appropriate methods to evaluate homogeneity for Pu glass testing, and to evaluate the impact of Hf loading in the glass on select glass properties. Surrogate testing was conducted using Hf to represent between 0 and 1 wt % Pu in glass on an equivalent molar basis. A Pu loading of 1 wt % in glass translated to {approx}18 kg Pu per Defense Waste Processing Facility (DWPF) canister, or about 10X the current allowed limit per the Waste Acceptance Product Specifications (2500 g/m{sup 3} of glass or about 1700 g/canister) and about 30X the current allowable concentration based on the fissile material concentration limit referenced in the Yucca Mountain Project License Application (897 g/m{sup 3}3 of glass or about 600 g Pu/canister). Based on historical process throughput data, this level was considered to represent a reasonable upper bound for Pu loading based on the ability to provide Pu containing feed to the DWPF. The task elements included evaluating the distribution of Pu in the glass (e.g. homogeneity), evaluating crystallization within the glass, evaluating select glass properties (with surrogates), and evaluating durability using the Product Consistency Test -- Method A (PCT-A). The behavior of Pu in the melter was evaluated using paper studies and corresponding analyses of DWPF melter pour samples.The results of the testing indicated that at 1 wt % Pu in the glass, the Pu was homogeneously distributed and did not result in any formation of plutonium-containing crystalline phases as long as the glass was prepared under 'well-mixed' conditions. The incorporation of 1 wt % Pu in the glass did not adversely impact glass viscosity (as assessed using Hf surrogate) or glass durability. Finally, evaluation of DWPF glass pour samples that had Pu concentrations below the 897 g/m{sup 3} limit showed that Pu concentrations in the glass pour stream were close to targeted compositions in the melter feed indicating that Pu neither volatilized from the melt nor stratified in the melter when processed in the DWPF melter.

  3. Hubei Feilihua Quartz Glass Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Glass Co Ltd Place: Jingzhou, Hubei Province, China Zip: 434001 Product: China-based manufacture of glass fiber and quartz crucibles. Coordinates: 30.299219, 112.274071 Show...

  4. New Glass Vial Procedure | Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Crimp vials consist of 3 pieces: 1) a glass vial, 2) a rubber septum, and 3) an aluminum cap. The sample is introduced into the glass vial in an inert atmosphere glove box, the...

  5. Innovative Exploration Technologies Maui Hawaii & Glass Buttes, Oregon

    Broader source: Energy.gov [DOE]

    Innovative Exploration Technologies Maui Hawii & Glass Buttes, Oregon presentation at the April 2013 peer review meeting held in Denver, Colorado.

  6. DWPF Glass Melter Technology Manual: Volume 4

    SciTech Connect (OSTI)

    Iverson, D.C.

    1993-12-31

    This document details information about the design of a glass melter to be used at the Defense Waste Processing Facility located at the Savannah River Plant. Information contained in this document consists solely of a machine drawing and parts list and purchase orders with specifications of equipment used in the development of the melter.

  7. DWPF Glass Melter Technology Manual: Volume 3

    SciTech Connect (OSTI)

    Iverson, D.C.

    1993-12-31

    This document details information about the design of a glass melter to be used at the Defense Waste Processing Facility located at the Savannah River Site. Topics discussed include: Information collected during testing, equipment, materials, design basis, feed tubes, and an evaluation of the performance of various components. Information is conveyed using many diagrams and photographs.

  8. HIGH ALUMINUM HLW GLASSES FOR HANFORDS WTP

    SciTech Connect (OSTI)

    KRUGER AA; JOSEPH I; BOWMAN BW; GAN H; KOT W; MATLACK KS; PEGG IL

    2009-08-19

    The world's largest radioactive waste vitrification facility is now under construction at the United State Department of Energy's (DOE's) Hanford site. The Hanford Tank Waste Treatment and Immobilization Plant (WTP) is designed to treat nearly 53 million gallons of mixed hazardous and radioactive waste now residing in 177 underground storage tanks. This multi-decade processing campaign will be one of the most complex ever undertaken because of the wide chemical and physical variability of the waste compositions generated during the cold war era that are stored at Hanford. The DOE Office of River Protection (ORP) has initiated a program to improve the long-term operating efficiency of the WTP vitrification plants with the objective of reducing the overall cost of tank waste treatment and disposal and shortening the duration of plant operations. Due to the size, complexity and duration of the WTP mission, the lifecycle operating and waste disposal costs are substantial. As a result, gains in High Level Waste (HLW) and Low Activity Waste (LAW) waste loadings, as well as increases in glass production rate, which can reduce mission duration and glass volumes for disposal, can yield substantial overall cost savings. EnergySolutions and its long-term research partner, the Vitreous State Laboratory (VSL) of the Catholic University of America, have been involved in a multi-year ORP program directed at optimizing various aspects of the HLW and LAW vitrification flow sheets. A number of Hanford HLW streams contain high concentrations of aluminum, which is challenging with respect to both waste loading and processing rate. Therefore, a key focus area of the ORP vitrification process optimization program at EnergySolutions and VSL has been development of HLW glass compositions that can accommodate high Al{sub 2}O{sub 3} concentrations while maintaining high processing rates in the Joule Heated Ceramic Melters (JHCMs) used for waste vitrification at the WTP. This paper, reviews the achievements of this program with emphasis on the recent enhancements in Al{sub 2}O{sub 3} loadings in HLW glass and its processing characteristics. Glass formulation development included crucible-scale preparation and characterization of glass samples to assess compliance with all melt processing and product quality requirements, followed by small-scale screening tests to estimate processing rates. These results were used to down-select formulations for subsequent engineering-scale melter testing. Finally, further testing was performed on the DM1200 vitrification system installed at VSL, which is a one-third scale (1.20 m{sup 2}) pilot melter for the WTP HLW melters and which is fitted with a fully prototypical off-gas treatment system. These tests employed glass formulations with high waste loadings and Al{sub 2}O{sub 3} contents of {approx}25 wt%, which represents a near-doubling of the present WTP baseline maximum Al{sub 2}O{sub 3} loading. In addition, these formulations were processed successfully at glass production rates that exceeded the present requirements for WTP HLW vitrification by up to 88%. The higher aluminum loading in the HLW glass has an added benefit in that the aluminum leaching requirements in pretreatment are reduced, thus allowing less sodium addition in pretreatment, which in turn reduces the amount of LAW glass to be produced at the WTP. The impact of the results from this ORP program in reducing the overall cost and schedule for the Hanford waste treatment mission will be discussed.

  9. Glass Dielectrics for DC Bus Capacitors | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Dielectrics for DC Bus Capacitors Glass Dielectrics for DC Bus Capacitors 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon ape010_lanagan_2011_p.pdf More Documents & Publications Glass Ceramic Dielectrics for DC Bus Capacitors Glass Ceramic

  10. Energy efficient residential new construction: market transformation. Spectral selective glass. Final project report

    SciTech Connect (OSTI)

    Hammon, Robert

    2000-12-18

    This final report describes the following tasks associated with this project: cost and availability of spectrally selective glass (SSG); window labeling problem and field verification of glass; availability of SSG replacement glass and tempered glass; HVAC load reduction due to spectrally selective glass; and comsumer appreciation of spectrally selective glass. Also included in the report are four attachments: builder and HVAC subcontractor presentation, sample advertisements, spectrally selective glass demonstration model, and invitation to SCE Glass mini trade-show.

  11. Blocking effect of crystalglass interface in lanthanum doped barium strontium titanate glassceramics

    SciTech Connect (OSTI)

    Wang, Xiangrong; Zhang, Yong; Baturin, Ivan; Liang, Tongxiang

    2013-10-15

    Graphical abstract: The blocking effect of the crystalglass interface on the carrier transport behavior in the lanthanum doped barium strontium titanate glassceramics: preparation and characterization. - Highlights: La{sub 2}O{sub 3} addition promotes the crystallization of the major crystalline phase. The Z? and M? peaks exist a significant mismatch for 0.5 mol% La{sub 2}O{sub 3} addition. The Z? and M? peaks separate obviously for 1.0 mol% La{sub 2}O{sub 3} addition. Crystallite impedance decreases while crystalglass interface impedance increases. La{sub 2}O{sub 3} addition increases blocking factor of the crystalglass interface. - Abstract: The microstructures and dielectric properties in La{sub 2}O{sub 3}-doped barium strontium titanate glassceramics have been investigated by scanning electron microscopy (SEM) and impedance spectroscopy. SEM analysis indicated that La{sub 2}O{sub 3} additive decreases the average crystallite size. Impedance spectroscopy revealed that the positions of Z? and M? peaks are close for undoped samples. When La{sub 2}O{sub 3} concentration is 0.5 mol%, the Z? and M? peaks show a significant mismatch. Furthermore, these peaks separate obviously for 1.0 mol% La{sub 2}O{sub 3} addition. With increasing La{sub 2}O{sub 3} concentration, the contribution of the crystallite impedance becomes smaller, while the contribution of the crystalglass interface impedance becomes larger. More interestingly, it was found that La{sub 2}O{sub 3} additive increases blocking factor of the crystalglass interface in the temperature range of 250450 C. This may be attributed to a decrease of activation energy of the crystallite and an increase of the crystalglass interface area.

  12. Energy Efficient Glass Melting - The Next Generation Melter

    SciTech Connect (OSTI)

    David Rue

    2008-03-01

    The objective of this project is to demonstrate a high intensity glass melter, based on the submerged combustion melting technology. This melter will serve as the melting and homogenization section of a segmented, lower-capital cost, energy-efficient Next Generation Glass Melting System (NGMS). After this project, the melter will be ready to move toward commercial trials for some glasses needing little refining (fiberglass, etc.). For other glasses, a second project Phase or glass industry research is anticipated to develop the fining stage of the NGMS process.

  13. Rapid process for producing transparent, monolithic porous glass

    DOE Patents [OSTI]

    Coronado, Paul R. (Livermore, CA)

    2006-02-14

    A process for making transparent porous glass monoliths from gels. The glass is produced much faster and in much larger sizes than present technology for making porous glass. The process reduces the cost of making large porous glass monoliths because: 1) the process does not require solvent exchange nor additives to the gel to increase the drying rates, 2) only moderate temperatures and pressures are used so relatively inexpensive equipment is needed, an 3) net-shape glass monoliths are possible using this process. The process depends on the use of temperature to control the partial pressure of the gel solvent in a closed vessel, resulting in controlled shrinking during drying.

  14. Sealed glass coating of high temperature ceramic superconductors

    DOE Patents [OSTI]

    Wu, W.; Chu, C.Y.; Goretta, K.C.; Routbort, J.L.

    1995-05-02

    A method and article of manufacture of a lead oxide based glass coating on a high temperature superconductor is disclosed. The method includes preparing a dispersion of glass powders in a solution, applying the dispersion to the superconductor, drying the dispersion before applying another coating and heating the glass powder dispersion at temperatures below oxygen diffusion onset and above the glass melting point to form a continuous glass coating on the superconductor to establish compressive stresses which enhance the fracture strength of the superconductor. 8 figs.

  15. DEVELOPMENT OF GLASS MATRICES FOR HLW RADIOACTIVE WASTES

    SciTech Connect (OSTI)

    Jantzen, C.

    2010-03-18

    Vitrification is currently the most widely used technology for the treatment of high level radioactive wastes (HLW) throughout the world. Most of the nations that have generated HLW are immobilizing in either borosilicate glass or phosphate glass. One of the primary reasons that glass has become the most widely used immobilization media is the relative simplicity of the vitrification process, e.g. melt waste plus glass forming frit additives and cast. A second reason that glass has become widely used for HLW is that the short range order (SRO) and medium range order (MRO) found in glass atomistically bonds the radionuclides and governs the melt properties such as viscosity, resistivity, sulphate solubility. The molecular structure of glass controls contaminant/radionuclide release by establishing the distribution of ion exchange sites, hydrolysis sites, and the access of water to those sites. The molecular structure is flexible and hence accounts for the flexibility of glass formulations to waste variability. Nuclear waste glasses melt between 1050-1150 C which minimizes the volatility of radioactive components such as Tc{sup 99}, Cs{sup 137}, and I{sup 129}. Nuclear waste glasses have good long term stability including irradiation resistance. Process control models based on the molecular structure of glass have been mechanistically derived and have been demonstrated to be accurate enough to control the world's largest HLW Joule heated ceramic melter in the US since 1996 at 95% confidence.

  16. System and method for glass processing and temperature sensing

    DOE Patents [OSTI]

    Shepard, Chester L.; Cannon, Bret D.; Khaleel, Mohammad A.

    2004-09-28

    Techniques for measuring the temperature at various locations through the thickness of glass products and to control the glass processing operation with the sensed temperature information are disclosed. Fluorescence emission of iron or cerium in glass is excited and imaged onto segmented detectors. Spatially resolved temperature data are obtained through correlation of the detected photoluminescence signal with location within the glass. In one form the detected photoluminescence is compared to detected scattered excitation light to determine temperature. Stress information is obtained from the time history of the temperature profile data and used to evaluate the quality of processed glass. A heating or cooling rate of the glass is also controlled to maintain a predetermined desired temperature profile in the glass.

  17. Ammonia-treated phosphate glasses useful for sealing to metals

    DOE Patents [OSTI]

    Brow, R.K.; Day, D.E.

    1991-09-03

    A method of improving surface-dependent properties of phosphate glass such as durability and wear resistance without significantly affecting its thermal expansion coefficient is provided which comprises annealing the glass in a dry ammonia atmosphere at temperatures approximating the transition temperature of the glass. The ammonia annealing treatment of the present invention is carried out for a time sufficient to allow incorporation of a thin layer of nitrogen into the surface of the phosphate glass, and the treatment improves the durability of the glass without the reduction in the thermal expansion coefficient that has restricted the effectiveness of prior ammonia treatments. The improved phosphate glass resulting from this method is superior in wear resistance, yet maintains suitable thermal expansion properties so that it may be used effectively in a variety of applications requiring hermetic glass-metal seals.

  18. Low melting high lithia glass compositions and methods

    DOE Patents [OSTI]

    Jantzen, Carol M.; Pickett, John B.; Cicero-Herman, Connie A.; Marra, James C.

    2003-09-23

    The invention relates to methods of vitrifying waste and for lowering the melting point of glass forming systems by including lithia formers in the glass forming composition in significant amounts, typically from about 0.16 wt % to about 11 wt %, based on the total glass forming oxides. The lithia is typically included as a replacement for alkali oxide glass formers that would normally be present in a particular glass forming system. Replacement can occur on a mole percent or weight percent basis, and typically results in a composition wherein lithia forms about 10 wt % to about 100 wt % of the alkali oxide glass formers present in the composition. The present invention also relates to the high lithia glass compositions formed by these methods. The invention is useful for stabilization of numerous types of waste materials, including aqueous waste uranium oxides The decrease in melting point achieved by the present invention desirably prevents volatilization of hazardous or radioactive species during vitrification.

  19. Transistors using crystalline silicon devices on glass

    DOE Patents [OSTI]

    McCarthy, A.M.

    1995-05-09

    A method is disclosed for fabricating transistors using single-crystal silicon devices on glass. This method overcomes the potential damage that may be caused to the device during high voltage bonding and employs a metal layer which may be incorporated as part of the transistor. This is accomplished such that when the bonding of the silicon wafer or substrate to the glass substrate is performed, the voltage and current pass through areas where transistors will not be fabricated. After removal of the silicon substrate, further metal may be deposited to form electrical contact or add functionality to the devices. By this method both single and gate-all-around devices may be formed. 13 figs.

  20. Glass ceramic toughened with tetragonal zirconia

    DOE Patents [OSTI]

    Keefer, K.D.

    1984-02-10

    A phase transformation-toughened glass ceramic and a process for making it are disclosed. A mixture of particulate network-forming oxide, network-modifying oxide, and zirconium oxide is heated to yield a homogeneous melt, and this melt is then heat treated to precipitate an appreciable quantity of tetragonal zirconia, which is retained at ambient temperature to form a phase transformation-toughened glass ceramic. Nuclearing agents and stabilizing agents may be added to the mixture to facilitate processing and improve the ceramic's properties. Preferably, the mixture is first melted at a temperature from 1200 to 1700/sup 0/C and is then heat-treated at a temperature within the range of 800 to 1200/sup 0/C in order to precipitate tetragonal ZrO/sub 2/. The composition, as well as the length and temperature of the heat treatment, must be carefully controlled to prevent solution of the precipitated tetragonal zirconia and subsequent conversion to the monoclinic phase.

  1. Chemical segregation in metallic glass nanowires

    SciTech Connect (OSTI)

    Zhang, Qi; Li, Mo; Li, Qi-Kai

    2014-11-21

    Nanowires made of metallic glass have been actively pursued recently due to the superb and unique properties over those of the crystalline materials. The amorphous nanowires are synthesized either at high temperature or via mechanical disruption using focused ion beam. These processes have potential to cause significant changes in structure and chemical concentration, as well as formation of defect or imperfection, but little is known to date about the possibilities and mechanisms. Here, we report chemical segregation to surfaces and its mechanisms in metallic glass nanowires made of binary Cu and Zr elements from molecular dynamics simulation. Strong concentration deviation are found in the nanowires under the conditions similar to these in experiment via focused ion beam processing, hot imprinting, and casting by rapid cooling from liquid state. Our analysis indicates that non-uniform internal stress distribution is a major cause for the chemical segregation, especially at low temperatures. Extension is discussed for this observation to multicomponent metallic glass nanowires as well as the potential applications and side effects of the composition modulation. The finding also points to the possibility of the mechanical-chemical process that may occur in different settings such as fracture, cavitation, and foams where strong internal stress is present in small length scales.

  2. Sink property of metallic glass free surfaces

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Shao, Lin; Fu, Engang; Price, Lloyd; Chen, Di; Chen, Tianyi; Wang, Yongqiang; Xie, Guoqiang; Lucca, Don A.

    2015-03-16

    When heated to a temperature close to glass transition temperature, metallic glasses (MGs) begin to crystallize. Under deformation or particle irradiation, crystallization occurs at even lower temperatures. Hence, phase instability represents an application limit for MGs. Here, we report that MG membranes of a few nanometers thickness exhibit properties different from their bulk MG counterparts. The study uses in situ transmission electron microscopy with concurrent heavy ion irradiation and annealing to observe crystallization behaviors of MGs. For relatively thick membranes, ion irradiations introduce excessive free volumes and thus induce nanocrystal formation at a temperature linearly decreasing with increasing ion fluences.more » For ultra-thin membranes, however, the critical temperature to initiate crystallization is about 100 K higher than the bulk glass transition temperature. Molecular dynamics simulations indicate that this effect is due to the sink property of the surfaces which can effectively remove excessive free volumes. These findings suggest that nanostructured MGs having a higher surface to volume ratio are expected to have higher crystallization resistance, which could pave new paths for materials applications in harsh environments requiring higher stabilities.« less

  3. Phosphate glass useful in high power lasers

    DOE Patents [OSTI]

    Hayden, Joseph S. (South Abington Township, Lackawana County, PA); Sapak, David L. (Avoca, PA); Ward, Julia M. (Hollidaysburg, PA)

    1990-01-01

    A low- or no-silica phosphate glass useful as a laser medium and having a high thermal conductivity, K.sub.90.degree. C. >0.8 W/mK, and a low coefficient of thermal expansion, .alpha..sub.20.degree.-40.degree. C. <80.times.10.sup.-7 /.degree.C., consists essentially of (on a batch composition basis): the amounts of Li.sub.2 O and Na.sub.2 O providing an average alkali metal ionic radius sufficiently low whereby said glass has K.sub.90.degree. C. >0.8 W/mK and .alpha..sub.20.degree.-40.degree. C. <80.times.10.sup.-7 /.degree.C., and wherein, when the batch composition is melted in contact with a silica-containing surface, the final glass composition contains at most about 3.5 mole % of additional silica derived from such contact during melting. The Nd.sub.2 O.sub.3 can be replaced by other lasing species.

  4. Sink property of metallic glass free surfaces

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Shao, Lin; Fu, Engang; Price, Lloyd; Chen, Di; Chen, Tianyi; Wang, Yongqiang; Xie, Guoqiang; Lucca, Don A.

    2015-03-16

    When heated to a temperature close to glass transition temperature, metallic glasses (MGs) begin to crystallize. Under deformation or particle irradiation, crystallization occurs at even lower temperatures. Hence, phase instability represents an application limit for MGs. Here, we report that MG membranes of a few nanometers thickness exhibit properties different from their bulk MG counterparts. The study uses in situ transmission electron microscopy with concurrent heavy ion irradiation and annealing to observe crystallization behaviors of MGs. For relatively thick membranes, ion irradiations introduce excessive free volumes and thus induce nanocrystal formation at a temperature linearly decreasing with increasing ion fluences.moreFor ultra-thin membranes, however, the critical temperature to initiate crystallization is about 100 K higher than the bulk glass transition temperature. Molecular dynamics simulations indicate that this effect is due to the sink property of the surfaces which can effectively remove excessive free volumes. These findings suggest that nanostructured MGs having a higher surface to volume ratio are expected to have higher crystallization resistance, which could pave new paths for materials applications in harsh environments requiring higher stabilities.less

  5. Sink property of metallic glass free surfaces

    SciTech Connect (OSTI)

    Shao, Lin; Fu, Engang; Price, Lloyd; Chen, Di; Chen, Tianyi; Wang, Yongqiang; Xie, Guoqiang; Lucca, Don A.

    2015-03-16

    When heated to a temperature close to glass transition temperature, metallic glasses (MGs) begin to crystallize. Under deformation or particle irradiation, crystallization occurs at even lower temperatures. Hence, phase instability represents an application limit for MGs. Here, we report that MG membranes of a few nanometers thickness exhibit properties different from their bulk MG counterparts. The study uses in situ transmission electron microscopy with concurrent heavy ion irradiation and annealing to observe crystallization behaviors of MGs. For relatively thick membranes, ion irradiations introduce excessive free volumes and thus induce nanocrystal formation at a temperature linearly decreasing with increasing ion fluences. For ultra-thin membranes, however, the critical temperature to initiate crystallization is about 100 K higher than the bulk glass transition temperature. Molecular dynamics simulations indicate that this effect is due to the sink property of the surfaces which can effectively remove excessive free volumes. These findings suggest that nanostructured MGs having a higher surface to volume ratio are expected to have higher crystallization resistance, which could pave new paths for materials applications in harsh environments requiring higher stabilities.

  6. High-Intensity Plasma Glass Melter Final Technical Report

    SciTech Connect (OSTI)

    Gonterman, J. Ronald; Weinstein, Michael A.

    2006-10-27

    The purpose of this project was to demonstrate the energy efficiency and reduced emissions that can be obtained with a dual torch DC plasma transferred arc-melting system. Plasmelt Glass Technologies, LLC was formed to solicit and execute the project, which utilize a full-scale test melter system. The system is similar to the one that was originally constructed by Johns Manville, but Plasmelt has added significant improvements to the torch design and melter system that has extended the original JM short torch lives. The original JM design has been shown to achieve melt rates 5 to 10 times faster than conventional gas or electric melting, with improved energy efficiency and reduced emissions. This project began on 7/28/2003 and ended 7/27/06. A laboratory scale melter was designed, constructed, and operated to conduct multiple experimental melting trials on various glass compositions. Glass quality was assessed. Although the melter design is generic and equally applicable to all sectors within the glass industry, the development of this melter has focused primarily on fiberglass with additional exploratory melting trials of frits, specialty, and minerals-melting applications. Throughput, energy efficiency, and glass quality have been shown to be heavily dependent on the selected glass composition. During this project, Plasmelt completed the proof-of-concept work in our Boulder, CO Lab to show the technical feasibility of this transferred-arc plasma melter. Late in the project, the work was focused on developing the processes and evaluating the economic viability of plasma melting aimed at the specific glasses of interest to specific client companies. Post project work is on going with client companies to address broader non-glass materials such as refractories and industrial minerals. Exploratory melting trials have been conducted on several glasses of commercial interest including: C-glass, E-glass, S-Glass, AR-Glass, B-glass, Lighting Glass, NE-Glass, and various frits. Exploratory melts of non-glassy materials, such as wollastonite, zirconium silicate, and alumino-silicate melts were successfully done indicating that plasma melting has potential application beyond glass. Experimental results were generated that show the high quality of plasma-melted fiberglass compositions, such as E-glass, can result in good fiberizing performance. Fiberizing performance and tensile strength data were achieved during the project to support this conclusion. High seed counts are a feature of the current lab scale melter and must be dealt with via other means, since fining work was outside the scope of this project.

  7. EMPIRICAL MODEL FOR FORMULATION OF CRYSTAL-TOLERANT HLW GLASSES

    SciTech Connect (OSTI)

    KRUGER AA; MATYAS J; HUCKLEBERRY AR; VIENNA JD; RODRIGUEZ CA

    2012-03-07

    Historically, high-level waste (HLW) glasses have been formulated with a low liquideus temperature (T{sub L}), or temperature at which the equilibrium fraction of spinel crystals in the melt is below 1 vol % (T{sub 0.01}), nominally below 1050 C. These constraints cannot prevent the accumulation of large spinel crystals in considerably cooler regions ({approx} 850 C) of the glass discharge riser during melter idling and significantly limit the waste loading, which is reflected in a high volume of waste glass, and would result in high capital, production, and disposal costs. A developed empirical model predicts crystal accumulation in the riser of the melter as a function of concentration of spinel-forming components in glass, and thereby provides guidance in formulating crystal-tolerant glasses that would allow high waste loadings by keeping the spinel crystals small and therefore suspended in the glass.

  8. Laser stimulated emission cross sections of Nd glasses

    SciTech Connect (OSTI)

    Tucker, A.W.; Birnbaum, M.; Fincher, C.L.

    1982-01-01

    A laser-comparison method was used to determine the emission cross sections at 1060 nm of Nd glasses used in laser fusion systems. The values obtained for two phosphate glasses (LHG-8) and (Q-88) were 4.0 +- 0.8 x 10/sup -20/ cm/sup 2/ and 1.7 +- 0.5 x 10/sup -20/ cm/sup 2/ for a silicate glass (LG-650).

  9. Electrostatic transfer of epitaxial graphene to glass. (Conference) |

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect Electrostatic transfer of epitaxial graphene to glass. Citation Details In-Document Search Title: Electrostatic transfer of epitaxial graphene to glass. We report on a scalable electrostatic process to transfer epitaxial graphene to arbitrary glass substrates, including Pyrex and Zerodur. This transfer process could enable wafer-level integration of graphene with structured and electronically-active substrates such as MEMS and CMOS. We will describe the electrostatic transfer

  10. Method for forming glass-to-metal seals

    DOE Patents [OSTI]

    Kramer, D.P.; Massey, R.T.

    1985-08-26

    Disclosed is a method for forming a glass-to-metal seal in which the glass has a higher melting point than the metal. The molten glass is vacuum injection molded onto the metal, thus melting a very thin layer of the surface of the metal long enough to form a seal, but not long enough to cause a distortion in the shape of the metal component.

  11. Method for forming glass-to-metal seals

    DOE Patents [OSTI]

    Kramer, Daniel P. (Dayton, OH); Massey, Richard T. (Hamilton, OH)

    1986-01-01

    A method for forming a glass-to-metal seal in which the glass has a higher melting point than the metal. The molten glass is vacuum injection molded onto the metal, thus melting a very thin layer of the surface of the metal long enough to form a seal, but not long enough to cause a distortion in the shape of the metal component.

  12. Advanced Manufacture of Second-Surface, Silvered Glass Reflectors for

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High-Performance, Low-Cost CSP Collector Systems | Department of Energy Manufacture of Second-Surface, Silvered Glass Reflectors for High-Performance, Low-Cost CSP Collector Systems Advanced Manufacture of Second-Surface, Silvered Glass Reflectors for High-Performance, Low-Cost CSP Collector Systems Advanced Manufacture of Second-Surface, Silvered Glass Reflectors for High-Performance, Low-Cost CSP Collector Systems PDF icon csp_review_meeting_042313_angel.pdf More Documents &

  13. Formulation and Characterization of Waste Glasses with Varying Processing Temperature

    SciTech Connect (OSTI)

    Kim, Dong-Sang; Schweiger, M. J.; Rodriguez, Carmen P.; Lepry, William C.; Lang, Jesse B.; Crum, Jarrod V.; Vienna, John D.; Johnson, Fabienne; Marra, James C.; Peeler, David K.

    2011-10-17

    This report documents the preliminary results of glass formulation and characterization accomplished within the finished scope of the EM-31 technology development tasks for WP-4 and WP-5, including WP-4.1.2: Glass Formulation for Next Generation Melter, WP-5.1.2.3: Systematic Glass Studies, and WP-5.1.2.4: Glass Formulation for Specific Wastes. This report also presents the suggested studies for eventual restart of these tasks. The initial glass formulation efforts for the cold crucible induction melter (CCIM), operating at {approx}1200 C, with selected HLW (AZ-101) and LAW (AN-105) successfully developed glasses with significant increase of waste loading compared to that is likely to be achieved based on expected reference WTP formulations. Three glasses formulated for AZ-101HLW and one glass for AN-105 LAW were selected for the initial CCIM demonstration melter tests. Melter tests were not performed within the finished scope of the WP-4.1.2 task. Glass formulations for CCIM were expanded to cover additional HLWs that have high potential to successfully demonstrate the unique advantages of the CCIM technologies based on projected composition of Hanford wastes. However, only the preliminary scoping tests were completed with selected wastes within the finished scope. Advanced glass formulations for the reference WTP melter, operating at {approx}1200 C, were initiated with selected specific wastes to determine the estimated maximum waste loading. The incomplete results from these initial formulation efforts are summarized. For systematic glass studies, a test matrix of 32 high-aluminum glasses was completed based on a new method developed in this study.

  14. Using sputter coated glass to stabilize microstrip gas chambers

    DOE Patents [OSTI]

    Gong, Wen G. (Albany, CA)

    1997-01-01

    By sputter coating a thin-layer of low-resistive, electronically-conductive glass on various substrates (including quartz and ceramics, thin-film Pestov glass), microstrip gas chambers (MSGC) of high gain stability, low leakage current, and a high rate capability can be fabricated. This design can make the choice of substrate less important, save the cost of ion-implantation, and use less glass material.

  15. Phosphate glass useful in high power lasers

    DOE Patents [OSTI]

    Hayden, J.S.; Sapak, D.L.; Ward, J.M.

    1990-05-29

    A low- or no-silica phosphate glass useful as a laser medium and having a high thermal conductivity, K[sub 90 C] > 0.8 W/mK, and a low coefficient of thermal expansion, [alpha][sub 20--40 C] < 80[times]10[sup [minus]7]/C, consists essentially of (on a batch composition basis Mole %): P[sub 2]O[sub 5], 45-70; Li[sub 2]O, 15-35; Na[sub 2]O, 0-10; Al[sub 2]O[sub 3], 10-15; Nd[sub 2]O[sub 3], 0.01-6; La[sub 2]O[sub 3], 0-6; SiO[sub 2], 0-8; B[sub 2]O[sub 3], 0-8; MgO, 0-18; CaO, 0-15; SrO, 0-9; BaO, 0-9; ZnO, 0-15; the amounts of Li[sub 2]O and Na[sub 2]O providing an average alkali metal ionic radius sufficiently low whereby said glass has K[sub 90 C] > 0.8 W/mK and [alpha][sub 20--40 C] < 80[times]10[sup [minus]7]/C, and wherein, when the batch composition is melted in contact with a silica-containing surface, the final glass composition contains at most about 3.5 mole % of additional silica derived from such contact during melting. The Nd[sub 2]O[sub 3] can be replaced by other lasing species. 3 figs.

  16. Shenzhen Sanxin Glass Technology Co Ltd SGT | Open Energy Information

    Open Energy Info (EERE)

    (SGT) Place: Shenzhen, Guangdong Province, China Product: Glass manufacturer for energy-saving curtain wall, and electronics. Coordinates: 22.546789, 114.112556 Show Map...

  17. Piezooptic coefficients of four neodymium-doped laser glasses

    SciTech Connect (OSTI)

    Waxler, R.M.; Feldman, A.

    1980-08-01

    The stress-induced birefringence was measured for the phosphate glasses Q-88, LG-812, E-181, and LHG-10. (AIP)

  18. Economic manufacturing of bulk metallic glass compositions by microalloying

    DOE Patents [OSTI]

    Liu, Chain T.

    2003-05-13

    A method of making a bulk metallic glass composition includes the steps of:a. providing a starting material suitable for making a bulk metallic glass composition, for example, BAM-11; b. adding at least one impurity-mitigating dopant, for example, Pb, Si, B, Sn, P, to the starting material to form a doped starting material; and c. converting the doped starting material to a bulk metallic glass composition so that the impurity-mitigating dopant reacts with impurities in the starting material to neutralize deleterious effects of the impurities on the formation of the bulk metallic glass composition.

  19. Ancient Glass in Swedish Hillforts May Shed Light on Immobilizing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EM Lead Foreign Affairs Specialist Ana Han and EM International Programs Technical Advisor Rosa Elmetti manage EM's International Program. The ancient glass, which has many of the ...

  20. Glass fiber composition. [for use as thermal insulation

    DOE Patents [OSTI]

    Wolf, G.A.; Kupfer, M.J.

    1980-12-19

    The invention relates to a glass fiber composition useful for thermal insulation having a low melting temperature and high chemical durability.

  1. Time-Domain Electromagnetics At Glass Mountain Area (Cumming...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Time-Domain Electromagnetics At Glass Mountain Area (Cumming And Mackie, 2007) Exploration...

  2. Method of processing ``BPS`` glass ceramic and seals made therewith

    DOE Patents [OSTI]

    Reed, S.T.; Stone, R.G.; McCollister, H.L.; Wengert, P.R.

    1998-10-13

    A glass ceramic composition, a glass ceramic-to-metal seal, and more specifically a hermetic glass ceramic-to-metal seal prepared by subjecting a glass composition comprising, by weight percent, SiO{sub 2} (65--80%), LiO{sub 2} (8--16%), Al{sub 2}O{sub 3} (2--8%), K{sub 2}O (1--8%), P{sub 2}O{sub 5} (1--5%), B{sub 2}O{sub 3} (0.5--7%), and ZnO (0--5%) to the following processing steps: (1) heating the glass composition in a belt furnace to a temperature sufficient to melt the glass and crystallize lithium phosphate, (2) holding at a temperature and for a time sufficient to create cristobalite nuclei, (3) cooling at a controlled rate and to a temperature to cause crystallization of lithium silicates and growth of cristobalite, and (4) still further cooling in stages to ambient temperature. This process produces a glass ceramic whose high coefficient of thermal expansion (up to 200{times}10{sup {minus}7} in/in/C) permits the fabrication of glass ceramic-to-metal seals, and particularly hermetic glass ceramic seals to nickel-based and stainless steel alloys and copper. 5 figs.

  3. Metal and Glass Manufacturers Reduce Costs by Increasing Energy...

    Broader source: Energy.gov (indexed) [DOE]

    products made from these materials. Faced with regulatory and competitive pressures to control emissions and reduce operating costs, metal and glass manufacturers are...

  4. Welding/sealing glass-enclosed space in a vacuum

    DOE Patents [OSTI]

    Tracy, C. Edwin (Golden, CO); Benson, David K. (Golden, CO)

    1996-01-01

    A method of welding and sealing the edges of two juxtaposed glass sheets together to seal a vacuum space between the sheets comprises the steps of positioning a radiation absorbant material, such as FeO, VO.sub.2, or NiO, between the radiation transmissive glass sheets adjacent the edges and then irradiating the absorbant material, preferably with a laser beam, through at least one of the glass sheets. Heat produced by the absorbed radiation in the absorbant material melts glass in the portions of both glass sheets that are adjacent the absorbant material, and the melted glass from both sheets flows together to create the weld when the melted glass cools and hardens. The absorbant material can be dissolved and diffused into the melted glass to the extent that it no longer absorbs enough energy to keep the glass melted, thus, with appropriate proportioning of absorbant material to source energy power and welding heat needed, the process can be made self-stopping.

  5. Welding/sealing glass-enclosed space in a vacuum

    DOE Patents [OSTI]

    Tracy, C.E.; Benson, D.K.

    1996-02-06

    A method of welding and sealing the edges of two juxtaposed glass sheets together to seal a vacuum space between the sheets comprises the steps of positioning a radiation absorbent material, such as FeO, VO{sub 2}, or NiO, between the radiation transmissive glass sheets adjacent the edges and then irradiating the absorbent material, preferably with a laser beam, through at least one of the glass sheets. Heat produced by the absorbed radiation in the absorbent material melts glass in the portions of both glass sheets that are adjacent the absorbent material, and the melted glass from both sheets flows together to create the weld when the melted glass cools and hardens. The absorbent material can be dissolved and diffused into the melted glass to the extent that it no longer absorbs enough energy to keep the glass melted, thus, with appropriate proportioning of absorbent material to source energy power and welding heat needed, the process can be made self-stopping. 8 figs.

  6. Alkali-lead-iron phosphate glass and associated method

    DOE Patents [OSTI]

    Boatner, Lynn A. (Oak Ridge, TN); Sales, Brian C. (Knoxville, TN); Franco, Sofia C. S. (Santafe de Bogota, CO)

    1994-01-01

    A glass composition and method of preparation utilizes a mixture consisting of phosphorus oxide within the range of about 40 to 49 molar percent, lead oxide within the range of about 10 to 25 molar percent, iron oxide within the range of about 10 to 17 molar percent and an alkali oxide within the range of about 23 to 30 molar percent. The glass resulting from the melting and subsequent solidifying of the mixture possesses a high degree of durability and a coefficient of thermal expansion as high as that of any of a number of metals. Such features render this glass highly desirable in glass-to-metal seal applications.

  7. Alkali-lead-iron phosphate glass and associated method

    DOE Patents [OSTI]

    Boatner, L.A.; Sales, B.C.; Franco, S.C.S.

    1994-03-29

    A glass composition and method of preparation utilizes a mixture consisting of phosphorus oxide within the range of about 40 to 49 molar percent, lead oxide within the range of about 10 to 25 molar percent, iron oxide within the range of about 10 to 17 molar percent and an alkali oxide within the range of about 23 to 30 molar percent. The glass resulting from the melting and subsequent solidifying of the mixture possesses a high degree of durability and a coefficient of thermal expansion as high as that of any of a number of metals. Such features render this glass highly desirable in glass-to-metal seal applications. 6 figures.

  8. Method of processing "BPS" glass ceramic and seals made therewith

    DOE Patents [OSTI]

    Reed, Scott T. (Albuquerque, NM); Stone, Ronald G. (Albuquerque, NM); McCollister, Howard L. (Albuquerque, NM); Wengert, deceased, Paul R. (late of Albuquerque, NM)

    1998-01-01

    A glass ceramic composition, a glass ceramic-to-metal seal, and more specifically a hermetic glass ceramic-to-metal seal prepared by subjecting a glass composition comprising, by weight percent, SiO.sub.2 (65-80%), LiO.sub.2 (8-16%), Al.sub.2 O.sub.3 (2-8%), K.sub.2 O (1-8%), P.sub.2 O.sub.5 (1-5%), B.sub.2 O.sub.3 (0.5-7%), and ZnO (0-5%) to the following processing steps: 1) heating the glass composition in a belt furnace to a temperature sufficient to melt the glass and crystallize lithium phosphate, 2) holding at a temperature and for a time sufficient to create cristobalite nuclei, 3) cooling at a controlled rate and to a temperature to cause crystallization of lithium silicates and growth of cristobalite, and 4) still further cooling in stages to ambient temperature. This process produces a glass ceramic whose high coefficient of thermal expansion (up to 200.times.10.sup.-7 in/in/.degree.C.) permits the fabrication of glass ceramic-to-metal seals, and particularly hermetic glass ceramic seals to nickel-based and stainless steel alloys and copper.

  9. Fabrication of anatase precipitated glass-ceramics possessing high transparency

    SciTech Connect (OSTI)

    Masai, Hirokazu; Toda, Tatsuya; Takahashi, Yoshihiro; Fujiwara, Takumi

    2009-04-13

    Transparent anatase precipitated glass-ceramics were fabricated using ZnO as a component. The particle size of precipitated anatase is several nanometers enough to possess high transparency. The preparation of the Bi-free transparent TiO{sub 2} glass-ceramic was attained by substitution of two different kinds of oxides for bismuth oxide. It is also noteworthy that we have demonstrated the crystallization of metastable anatase in the glass-ceramics as a main phase. The present bulk anatase glass-ceramics will open up an application field for a TiO{sub 2}-containing photocatalyst.

  10. Thermal Gradient Holes At Glass Mountain Area (Cumming And Mackie...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Glass Mountain Area (Cumming And Mackie, 2007) Exploration Activity...

  11. Advanced Manufacture of Second-Surface, Silvered Glass Reflectors...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Manufacture of Second-Surface, Silvered Glass Reflectors for High-Performance, Low-Cost CSP Collector Systems PDF icon cspreviewmeeting042313angel.pdf More Documents & ...

  12. Thermal Predictions of the Cooling of Waste Glass Canisters

    SciTech Connect (OSTI)

    Donna Post Guillen

    2014-11-01

    Radioactive liquid waste from five decades of weapons production is slated for vitrification at the Hanford site. The waste will be mixed with glass forming additives and heated to a high temperature, then poured into canisters within a pour cave where the glass will cool and solidify into a stable waste form for disposal. Computer simulations were performed to predict the heat rejected from the canisters and the temperatures within the glass during cooling. Four different waste glass compositions with different thermophysical properties were evaluated. Canister centerline temperatures and the total amount of heat transfer from the canisters to the surrounding air are reported.

  13. Glass Coating Makes Solar Panels More Efficient | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Glass Coating Makes Solar Panels More Efficient Glass Coating Makes Solar Panels More Efficient May 13, 2015 - 9:20am Addthis The new technology repels water and reduces the sunlight reflected off a glass surface. | Photo courtesy of Flickr user h080. The new technology repels water and reduces the sunlight reflected off a glass surface. | Photo courtesy of Flickr user h080. Pat Adams Pat Adams Digital Content Specialist, Office of Public Affairs Have you ever treated your windshield with Rain-X

  14. Dongguan CSG Solar Glass Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Guangdong Province, China Product: Chinese manufacturer of PV glass. Coordinates: 23.046499, 113.735817 Show Map Loading map... "minzoom":false,"mappingservice":"google...

  15. Melter Pours 10 Millionth Pound of Glass | Department of Energy

    Office of Environmental Management (EM)

    Melter Pours 10 Millionth Pound of Glass Melter Pours 10 Millionth Pound of Glass March 30, 2015 - 12:00pm Addthis A melter at the Defense Waste Processing Facility recently poured its 10 millionth pound of glass. A melter at the Defense Waste Processing Facility recently poured its 10 millionth pound of glass. AIKEN, S.C. - The "heart" of the Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS) is pumping at a record pace. A melter installed in DWPF recently

  16. Molten Glass for Thermal Storage: Advanced Molten Glass for Heat Transfer and Thermal Energy Storage

    SciTech Connect (OSTI)

    2012-01-01

    HEATS Project: Halotechnics is developing a high-temperature thermal energy storage system using a new thermal-storage and heat-transfer material: earth-abundant and low-melting-point molten glass. Heat storage materials are critical to the energy storage process. In solar thermal storage systems, heat can be stored in these materials during the day and released at nightwhen the sun is not outto drive a turbine and produce electricity. In nuclear storage systems, heat can be stored in these materials at night and released to produce electricity during daytime peak-demand hours. Halotechnics new thermal storage material targets a price that is potentially cheaper than the molten salt used in most commercial solar thermal storage systems today. It is also extremely stable at temperatures up to 1200Chundreds of degrees hotter than the highest temperature molten salt can handle. Being able to function at high temperatures will significantly increase the efficiency of turning heat into electricity. Halotechnics is developing a scalable system to pump, heat, store, and discharge the molten glass. The company is leveraging technology used in the modern glass industry, which has decades of experience handling molten glass.

  17. Differentiation within autologous fibrin scaffolds of porcine dermal cells with the mesenchymal stem cell phenotype

    SciTech Connect (OSTI)

    Puente, Pilar de la

    2013-02-01

    Porcine mesenchymal stem cells (pMSCs) are an attractive source of cells for tissue engineering because their properties are similar to those of human stem cells. pMSCs can be found in different tissues but their dermal origin has not been studied in depth. Additionally, MSCs differentiation in monolayer cultures requires subcultured cells, and these cells are at risk of dedifferentiation when implanting them into living tissue. Following this, we attempted to characterize the MSCs phenotype of porcine dermal cells and to evaluate their cellular proliferation and differentiation in autologous fibrin scaffolds (AFSs). Dermal biopsies and blood samples were obtained from 12 pigs. Dermal cells were characterized by flow cytometry. Frozen autologous plasma was used to prepare AFSs. pMSC differentiation was studied in standard structures (monolayers and pellets) and in AFSs. The pMSCs expressed the CD90 and CD29 markers of the mesenchymal lineage. AFSs afforded adipogenic, osteogenic and chondrogenic differentiation. The porcine dermis can be proposed to be a good source of MSCs with adequate proliferative capacity and a suitable expression of markers. The pMSCs also showed optimal proliferation and differentiation in AFSs, such that these might serve as a promising autologous and implantable material for use in tissue engineering. -- Highlights: ► Low fibrinogen concentration provides a suitable matrix for cell migration and differentiation. ► Autologous fibrin scaffolds is a promising technique in tissue engineering. ► Dermal cells are an easily accessible mesenchymal stem cell source. ► Fibrin scaffolds afforded adipogenic, osteogenic and chondrogenic differentiation.

  18. Main chain acid-degradable polymers for the delivery of bioactive materials

    DOE Patents [OSTI]

    Frechet, Jean M. J.; Standley, Stephany M.; Jain, Rachna; Lee, Cameron C.

    2012-03-20

    Novel main chain acid degradable polymer backbones and drug delivery systems comprised of materials capable of delivering bioactive materials to cells for use as vaccines or other therapeutic agents are described. The polymers are synthesized using monomers that contain acid-degradable linkages cleavable under mild acidic conditions. The main chain of the resulting polymers readily degrade into many small molecules at low pH, but remain relatively stable and intact at physiological pH. The new materials have the common characteristic of being able to degrade by acid hydrolysis under conditions commonly found within the endosomal or lysosomal compartments of cells thereby releasing their payload within the cell. The materials can also be used for the delivery of therapeutics to the acidic regions of tumors and other sites of inflammation.

  19. Glass ceramic toughened with tetragonal zirconia

    DOE Patents [OSTI]

    Keefer, Keith D. (Albuquerque, NM); Michalske, Terry A. (Sandia Park, NM)

    1986-01-01

    A phase transformation-toughened glass ceramic and a process for making it are disclosed. A mixture of particulate network-forming oxide, network-modifying oxide, and zirconium oxide is heated to yield a homogeneous melt, and this melt is then heat-treated to precipitate an appreciable quantity of tetragonal zirconia, which is retained at ambient temperature to form a phase transformation-toughened glass ceramic. Nucleating agents and stabilizing agents may be added to the mixture to facilitate processing and improve the ceramic's properties. Preferably, the mixture is first melted at a temperature from 1200.degree. to 1700.degree. C. and is then heat-treated at a temperature within the range of 800.degree. to 1200.degree. C. in order to precipitate tetragonal ZrO.sub.2. The composition, as well as the length and temperature of the heat-treatment, must be carefully controlled to prevent solution of the precipitated tetragonal zirconia and subsequent conversion to the monoclinic phase.

  20. Reduction of Glass Surface Reflectance by Ion Beam Surface Modification

    SciTech Connect (OSTI)

    Mark Spitzer

    2011-03-11

    This is the final report for DOE contract DE-EE0000590. The purpose of this work was to determine the feasibility of the reduction of the reflection from the front of solar photovoltaic modules. Reflection accounts for a power loss of approximately 4%. A solar module having an area of one square meter with an energy conversion efficiency of 18% generates approximately 180 watts. If reflection loss can be eliminated, the power output can be increased to 187 watts. Since conventional thin-film anti-reflection coatings do not have sufficient environmental stability, we investigated the feasibility of ion beam modification of the glass surface to obtain reduction of reflectance. Our findings are generally applicable to all solar modules that use glass encapsulation, as well as commercial float glass used in windows and other applications. Ion implantation of argon, fluorine, and xenon into commercial low-iron soda lime float glass, standard float glass, and borosilicate glass was studied by implantation, annealing, and measurement of reflectance. The three ions all affected reflectance. The most significant change was obtained by argon implantation into both low-iron and standard soda-lime glass. In this way samples were formed with reflectance lower than can be obtained with a single-layer coatings of magnesium fluoride. Integrated reflectance was reduced from 4% to 1% in low-iron soda lime glass typical of the glass used in solar modules. The reduction of reflectance of borosilicate glass was not as large; however borosilicate glass is not typically used in flat plate solar modules. Unlike conventional semiconductor ion implantation doping, glass reflectance reduction was found to be tolerant to large variations in implant dose, meaning that the process does not require high dopant uniformity. Additionally, glass implantation does not require mass analysis. Simple, high current ion implantation equipment can be developed for this process; however, before the process can be employed on full scale solar modules, equipment must be developed for ion implanting large sheets of glass. A cost analysis shows that the process can be economical. Our finding is that the reduction of reflectance by ion beam surface modification is technically and economically feasible. The public will benefit directly from this work by the improvement of photovoltaic module efficiency, and indirectly by the greater understanding of the modification of glass surfaces by ion beams.

  1. Optical Basicity and Nepheline Crystallization in High Alumina Glasses

    SciTech Connect (OSTI)

    Rodriguez, Carmen P.; McCloy, John S.; Schweiger, M. J.; Crum, Jarrod V.; Winschell, Abigail E.

    2011-02-25

    The purpose of this study was to find compositions that increase waste loading of high-alumina wastes beyond what is currently acceptable while avoiding crystallization of nepheline (NaAlSiO4) on slow cooling. Nepheline crystallization has been shown to have a large impact on the chemical durability of high-level waste glasses. It was hypothesized that there would be some composition regions where high-alumina would not result in nepheline crystal production, compositions not currently allowed by the nepheline discriminator. Optical basicity (OB) and the nepheline discriminator (ND) are two ways of describing a given complex glass composition. This report presents the theoretical and experimental basis for these models. They are being studied together in a quadrant system as metrics to explore nepheline crystallization and chemical durability as a function of waste glass composition. These metrics were calculated for glasses with existing data and also for theoretical glasses to explore nepheline formation in Quadrant IV (passes OB metric but fails ND metric), where glasses are presumed to have good chemical durability. Several of these compositions were chosen, and glasses were made to fill poorly represented regions in Quadrant IV. To evaluate nepheline formation and chemical durability of these glasses, quantitative X-ray diffraction (XRD) analysis and the Product Consistency Test were conducted. A large amount of quantitative XRD data is collected here, both from new glasses and from glasses of previous studies that had not previously performed quantitative XRD on the phase assemblage. Appendix A critically discusses a large dataset to be considered for future quantitative studies on nepheline formation in glass. Appendix B provides a theoretical justification for choice of the oxide coefficients used to compute the OB criterion for nepheline formation.

  2. Initial Examination of Low Velocity Sphere Impact of Glass Ceramics

    SciTech Connect (OSTI)

    Morrissey, Timothy G; Fox, Ethan E; Wereszczak, Andrew A; Ferber, Mattison K

    2012-06-01

    This report summarizes US Army TARDEC sponsored work at Oak Ridge National Laboratory (ORNL) involving low velocity (< 30 m/s or < 65 mph) sphere impact testing of two materials from the lithium aluminosilicate family reinforced with different amounts of ceramic particulate, i.e., glass-ceramic materials, SCHOTT Resistan{trademark}-G1 and SCHOTT Resistan{trademark}-L. Both materials are provided by SCHOTT Glass (Duryea, PA). This work is a follow-up to similar sphere impact studies completed by the authors on PPG's Starphire{reg_sign} soda-lime silicate glass and SCHOTT BOROFLOAT{reg_sign} borosilicate glass. A gas gun or a sphere-drop test setup was used to produce controlled velocity delivery of silicon nitride (Si{sub 3}N{sub 4}) spheres against the glass ceramic tile targets. Minimum impact velocities to initiate fracture in the glass-ceramics were measured and interpreted in context to the kinetic energy of impact and the elastic property mismatch between sphere and target material. Quasistatic spherical indentation was also performed on both glass ceramics and their contact damage responses were compared to those of soda-lime silicate and borosilicate glasses. Lastly, variability of contact damage response was assessed by performing spherical indentation testing across the area of an entire glass ceramic tile. The primary observations from this low velocity (< 30 m/s or < 65 mph) testing were: (1) Resistan{trademark}-L glass ceramic required the highest velocity of sphere impact for damage to initiate. Starphire{reg_sign} soda-lime silicate glass was second best, then Resistan{trademark}-G1 glass ceramic, and then BOROFLOAT{reg_sign} borosilicate glass. (2) Glass-ceramic Resistan{trademark}-L also required the largest force to initiate ring crack from quasi-static indentation. That ranking was followed, in descending order, by Starphire{reg_sign} soda-lime silicate glass, Resistan{trademark}-G1 glass ceramic, and BOROFLOAT{reg_sign} borosilicate glass. (3) Spheres with a lower elastic modulus require less force to initiate fracture in Resistan{trademark}-G1 from quasi-static spherical indentation. This indicates that friction is affecting ring crack initiation in Resistan{trademark}-G1. Friction also affected ring crack initiation in Starphire{reg_sign} soda-lime silicate and BOROFLOAT{reg_sign} borosilicate glasses. Among these three materials, friction was the most pronounced (largest slope in the RCIF-elastic modulus graph) in the Starphire{reg_sign} and least pronounced in the BOROFLOAT{reg_sign}. The reason for this is not understood, but differences in deformation behavior under high contact stresses could be a cause or contributor to this. (4) The force necessary to initiate contact-induced fracture is higher under dynamic conditions than it is under quasi-static conditions in Resistan{trademark}-L and Resistan{trademark}-G1 glass ceramics. This is a trend observed too in Starphire{reg_sign} and BOROFLOAT{reg_sign}. (5) There is a subtle indication there was intra-tile differences in spherical indentation-induced ring crack initiation forces. This is not a material property nor is it exclusive to glass-ceramic Resistan{trademark}-G1 glass ceramic, rather, it is a statistical mechanical response to an accumulated history of processing and handling of that specific tile.

  3. Solubility effects in waste-glass/demineralized-water systems

    SciTech Connect (OSTI)

    Fullam, H.T.

    1981-06-01

    Aqueous systems involving demineralized water and four glass compositions (including standins for actinides and fission products) at temperatures of up to 150/sup 0/C were studied. Two methods were used to measure the solubility of glass components in demineralized water. One method involved approaching equilibrium from subsaturation, while the second method involved approaching equilibrium from supersaturation. The aqueous solutions were analyzed by induction-coupled plasma spectrometry (ICP). Uranium was determined using a Scintrex U-A3 uranium analyzer and zinc and cesium were determined by atomic absorption. The system that results when a waste glass is contacted with demineralized water is a complex one. The two methods used to determine the solubility limits gave very different results, with the supersaturation method yielding much higher solution concentrations than the subsaturation method for most of the elements present in the waste glasses. The results show that it is impossible to assign solubility limits to the various glass components without thoroughly describing the glass-water systems. This includes not only defining the glass type and solution temperature, but also the glass surface area-to-water volume ratio (S/V) of the system and the complete thermal history of the system. 21 figures, 22 tables. (DLC)

  4. Integrated Disposal Facility FY 2012 Glass Testing Summary Report

    SciTech Connect (OSTI)

    Pierce, Eric M.; Kerisit, Sebastien N.; Krogstad, Eirik J.; Burton, Sarah D.; Bjornstad, Bruce N.; Freedman, Vicky L.; Cantrell, Kirk J.; Snyder, Michelle MV; Crum, Jarrod V.; Westsik, Joseph H.

    2013-03-29

    PNNL is conducting work to provide the technical basis for estimating radionuclide release from the engineered portion of the disposal facility for Hanford immobilized low-activity waste (ILAW). Before the ILAW can be disposed, DOE must conduct a performance assessment (PA) for the Integrated Disposal Facility (IDF) that describes the long-term impacts of the disposal facility on public health and environmental resources. As part of the ILAW glass testing program, PNNL is implementing a strategy, consisting of experimentation and modeling, to provide the technical basis for estimating radionuclide release from the glass waste form in support of future IDF PAs. Key activities in FY12 include upgrading the STOMP/eSTOMP codes to do near-field modeling, geochemical modeling of PCT tests to determine the reaction network to be used in the STOMP codes, conducting PUF tests on selected glasses to simulate and accelerate glass weathering, developing a Monte Carlo simulation tool to predict the characteristics of the weathered glass reaction layer as a function of glass composition, and characterizing glasses and soil samples exhumed from an 8-year lysimeter test. The purpose of this report is to summarize the progress made in fiscal year (FY) 2012 and the first quarter of FY 2013 toward implementing the strategy with the goal of developing an understanding of the long-term corrosion behavior of LAW glasses.

  5. Assessment, development, and testing of glass for blast environments.

    SciTech Connect (OSTI)

    Glass, Sarah Jill

    2003-06-01

    Glass can have lethal effects including fatalities and injuries when it breaks and then flies through the air under blast loading (''the glass problem''). One goal of this program was to assess the glass problem and solutions being pursued to mitigate it. One solution to the problem is the development of new glass technology that allows the strength and fragmentation to be controlled or selected depending on the blast performance specifications. For example the glass could be weak and fail, or it could be strong and survive, but it must perform reliably. Also, once it fails it should produce fragments of a controlled size. Under certain circumstances it may be beneficial to have very small fragments, in others it may be beneficial to have large fragments that stay together. The second goal of this program was to evaluate the performance (strength, reliability, and fragmentation) of Engineered Stress Profile (ESP) glass under different loading conditions. These included pseudo-static strength and pressure tests and free-field blast tests. The ultimate goal was to provide engineers and architects with a glass whose behavior under blast loading is less lethal. A near-term benefit is a new approach for improving the reliability of glass and modifying its fracture behavior.

  6. The recycling of the coal fly ash in glass production

    SciTech Connect (OSTI)

    Erol, M.M.; Kucukbayrak, S.; Ersoy-Mericboyu, A.

    2006-09-15

    The recycling of fly ash obtained from the combustion of coal in thermal power plant has been studied. Coal fly ash was vitrified by melting at 1773 K for 5 hours without any additives. The properties of glasses produced from coal fly ash were investigated by means of Differential Thermal Analysis (DTA), X-ray Diffraction (XRD) and Scanning Electron Microscopy (SEM) techniques. DTA study indicated that there was only one endothermic peak at 1003 K corresponding to the glass transition temperature. XRD analysis showed the amorphous state of the glass sample produced from coal fly ash. SEM investigations revealed that the coal fly ash based glass sample had smooth surface. The mechanical, physical and chemical properties of the glass sample were also determined. Recycling of coal fly ash by using vitrification technique resulted to a glass material that had good mechanical, physical and chemical properties. Toxicity characteristic leaching procedure (TCLP) results showed that the heavy metals of Pb, Cr, Zn and Mn were successfully immobilized into the glass. It can be said that glass sample obtained by the recycling of coal fly ash can be taken as a non-hazardous material. Overall, results indicated that the vitrification technique is an effective way for the stabilization and recycling of coal fly ash.

  7. Photocatalytic activity of glass ceramics containing Nasicon-type crystals

    SciTech Connect (OSTI)

    Fu, Jie

    2013-01-15

    Graphical abstract: Display Omitted Highlights: ? Glass ceramics containing Nasicon-type crystals were prepared. ? The glass ceramics showed photocatalytic activity under UV irradiation. ? Higher activity was observed in the MgTi{sub 4}(PO{sub 4}){sub 6}- and CaTi{sub 4}(PO{sub 4}){sub 6}-containing glass ceramics. -- Abstract: Glass ceramics were prepared by heat-treating MOTiO{sub 2}P{sub 2}O{sub 5} (M = Mg, Ca, Sr and Ba) and R{sub 2}OTiO{sub 2}P{sub 2}O{sub 5}SiO{sub 2} (R = Li, Na and K) glasses, and their photocatalytic activity was investigated. The crystalline phases precipitated in the glasses were only Nasicon-type crystals, MTi{sub 4}(PO{sub 4}){sub 6} or RTi{sub 2}(PO{sub 4}){sub 3}. Decomposition experiments of both methylene blue (MB) and acetaldehyde showed that the glass ceramics exhibited effective photocatalytic activity. The activity did not depend on the radius of the M{sup 2+} or R{sup +} ion, and higher activity was observed in the MgTi{sub 4}(PO{sub 4}){sub 6} and CaTi{sub 4}(PO{sub 4}){sub 6} precipitated glass ceramics.

  8. Glass Development for Treatment of LANL Evaporator Bottoms Waste

    SciTech Connect (OSTI)

    DE Smith; GF Piepel; GW Veazey; JD Vienna; ML Elliott; RK Nakaoka; RP Thimpke

    1998-11-20

    Vitrification is an attractive treatment option for meeting the stabilization and final disposal requirements of many plutonium (Pu) bearing materials and wastes at the Los Alamos National Laboratory (LANL) TA-55 facility, Rocky Flats Environmental Technology Site (RFETS), Hanford, and other Department of Energy (DOE) sites. The Environmental Protection Agency (EPA) has declared that vitrification is the "best demonstrated available technology" for high- level radioactive wastes (HLW) (Federal Register 1990) and has produced a handbook of vitriilcation technologies for treatment of hazardous and radioactive waste (US EPA, 1992). This technology has been demonstrated to convert Pu-containing materials (Kormanos, 1997) into durable (Lutze, 1988) and accountable (Forsberg, 1995) waste. forms with reduced need for safeguarding (McCulhun, 1996). The composition of the Evaporator Bottoms Waste (EVB) at LANL, like that of many other I%-bearing materials, varies widely and is generally unpredictable. The goal of this study is to optimize the composition of glass for EVB waste at LANL, and present the basic techniques and tools for developing optimized glass compositions for other Pu-bearing materials in the complex. This report outlines an approach for glass formulation with fixed property restrictions, using glass property-composition databases. This approach is applicable to waste glass formulation for many variable waste streams and vitrification technologies.. Also reported are the preliminary property data for simulated evaporator bottom glasses, including glass viscosity and glass leach resistance using the Toxicity Characteristic Leaching Procedure (TCLP).

  9. Recent advances in phosphate laser glasses for high power applications

    SciTech Connect (OSTI)

    Campbell, J.H.

    1996-05-14

    Recent advances in Nd-doped phosphate laser glasses for high-peak-power and high-average-power applications are reviewed. Compositional studies have progressed to the point that glasses can be tailored to have specific properties for specific applications. Non-radiative relaxation effects can be accurately modeled and empirical expressions have been developed to evaluate both intrinsic (structural) and extrinsic (contamination induced) relaxation effects. Losses due to surface scattering and bulk glass absorption have been carefully measured and can be accurately predicted. Improvements in processing have lead to high damage threshold (e.g. Pt inclusion free) and high thermal shock resistant glasses with improved edge claddings. High optical quality pieces up to 79 x 45 x 4cm{sup 3} have been made and methods for continuous melting laser glass are under development.

  10. Iron Phosphate Glasses: An Alternative for Vitrifying Certain Nuclear Wastes

    SciTech Connect (OSTI)

    Delbert E. Day; Chandra S. Ray; Cheol-Woon Kim

    2004-12-28

    Vitrification of nuclear waste in a glass is currently the preferred process for waste disposal. DOE currently approves only borosilicate (BS) type glasses for such purposes. However, many nuclear wastes, presently awaiting disposal, have complex and diverse chemical compositions, and often contain components that are poorly soluble or chemically incompatible in BS glasses. Such problematic wastes can be pre-processed and/or diluted to compensate for their incompatibility with a BS glass matrix, but both of these solutions increases the wasteform volume and the overall cost for vitrification. Direct vitrification using alternative glasses that utilize the major components already present in the waste is preferable, since it avoids pre-treating or diluting the waste, and, thus, minimizes the wasteform volume and overall cost.

  11. Removal Rate Model for Magnetorheological Finishing of Glass

    SciTech Connect (OSTI)

    DeGroote, J.E.; Marino, A.E.; WIlson, J.P.; Bishop, A.L.; Lambropoulos, J.C.; Jacobs, S.D.

    2007-11-14

    Magnetorheological finishing (MRF) is a deterministic subaperture polishing process. The process uses a magntorheological (MR) fluid that consists of micrometer-sized, spherical, magnetic carbonyl iron (CI) particles, nonmagnetic polishing abrasives, water, and stabilizers. Material removal occurs when the CI and nonmagnetic polishing abrasives shear material off the surface being polished. We introduce a new MRF material removal rate model for glass. This model contains terms for the near surface mechanical properties of glass, drag force, polishing abrasive size and concentration, chemical durability of the glass, MR fluid pH, and the glass composition. We introduce quantitative chemical predictors for the first time, to the best of our knowledge, into an MRF removal rate model. We validate individual terms in our model separately and then combine all of the terms to show the whole MRF material removal model compared with experimental data. All of our experimental data were obtained using nanodiamond MR fluids and a set of six optical glasses.

  12. Glass capable of ionic conduction and method of preparation

    DOE Patents [OSTI]

    Susman, S.; Delbecq, C.J.; Volin, K.J.; Boehm, L.

    1984-02-21

    Sulfide glasses capable of conducting alkali metal ions are prepared from a nonmetal glass former such as GeS[sub 2], B[sub 2]S[sub 3] and SiS[sub 2] in mixture with a glass modifier such as Na[sub 2]S or another alkali metal sulfide. A molten mixture of the constituents is rapidly quenched to below the glass transition temperature by contact with a metal mold. The rapid quench is sufficient to prevent crystallization and permit solidification as an amorphous solid mixture. An oxygen-free atmosphere is maintained over the mixture to prevent oxidation. A new glass system of (1-X) Na[sub 2]O:XB[sub 2]S[sub 3] is disclosed. 4 figs.

  13. Glass capable of ionic conduction and method of preparation

    DOE Patents [OSTI]

    Susman, S.; Boehm, L.; Volin, K.J.; Delbecq, C.J.

    1982-05-06

    Sulfide glasses capable of conducting alkali metal ions are prepared from a nonmetal glass former such as GeS/sub 2/, B/sub 2/S/sub 2/ and SiS/sub 2/ in mixture with a glass modifier such as Na/sub 2/S or another alkali metal sulfide. A molten mixture of the constituents is rapidly quenched to below the glass transition temperature by contact with a metal mold. The rapid quench is sufficient to prevent crystallization and permit solidification as an amorphous solid mixture. An oxygen-free atmosphere is maintained over the mixture to prevent oxidation. A new glass system of (1 - X) Na/sub 2/O:XB/sub 2/S/sub 3/ is disclosed.

  14. Glass capable of ionic conduction and method of preparation

    DOE Patents [OSTI]

    Susman, Sherman (Park Forest, IL); Boehm, Leah (Jerusalem, IL); Volin, Kenneth J. (Fort Collins, CO); Delbacq, Charles J. (Downers Grove, IL)

    1985-01-01

    Sulfide glasses capable of conducting alkali metal ions are prepared from a nonmetal glass former such as GeS.sub.2, B.sub.2 S.sub.3 and SiS.sub.2 in mixture with a glass modifier such as Na.sub.2 S or another alkali metal sulfide. A molten mixture of the constituents is rapidly quenched to below the glass transition temperature by contact with a metal mold. The rapid quench is sufficient to prevent crystallization and permit solidification as an amorphous solid mixture. An oxygen-free atmosphere is maintained over the mixture to prevent oxidation. A new glass system of (1-X) Na.sub.2 O:XB.sub.2 S.sub.3 is disclosed.

  15. Glass capable of ionic conduction and method of preparation

    DOE Patents [OSTI]

    Susman, Sherman (Park Forest, IL); Delbecq, Charles J. (Downers Grove, IL); Volin, Kenneth J. (Fort Collins, CO); Boehm, Leah (Jerusalem, IL)

    1984-01-01

    Sulfide glasses capable of conducting alkali metal ions are prepared from a nonmetal glass former such as GeS.sub.2, B.sub.2 S.sub.3 and SiS.sub.2 in mixture with a glass modifier such as Na.sub.2 S or another alkali metal sulfide. A molten mixture of the constituents is rapidly quenched to below the glass transition temperature by contact with a metal mold. The rapid quench is sufficient to prevent crystallization and permit solidification as an amorphous solid mixture. An oxygen-free atmosphere is maintained over the mixture to prevent oxidation. A new glass system of (1-X) Na.sub.2 O:XB.sub.2 S.sub.3 is disclosed.

  16. Elimination of platinum inclusions in phosphate laser glasses

    SciTech Connect (OSTI)

    Campbell, J.H.; Wallerstein, E.P. ); Hayden, J.S.; Sapak, D.L.; Warrington, D.E.; Marker, A.J. III ); Toratani, H.; Meissner, H.; Nakajima, S.; Izumitani, T. )

    1989-05-26

    Results from small-scale glass melting experiments aimed at reducing the density of platinum particles in phosphate laser glasses are discussed. The platinum particles originate from the crucibles used to melt the laser glass and can cause optical damage in glasses used in high-peak-power lasers; this problem was particularly acute in the LLNL 120 kJ, 100 TW Nova laser. The melting experiments examine the effects of (i) N{sub 2}, O{sub 2}, and Cl{sub 2} gas atmospheres; (ii) temperature and temperature gradients; (iii) processing time; and (iv) platinum alloys on the formation and dissolution of platinum inclusions in LHG-8 and LG-750 phosphate laser glasses. Results show that most platinum inclusions originate early in the melt cycle, with thermal gradients within the melter being one of the major causes. By using oxidizing gas conditions (O{sub 2}, Cl{sub 2}, or O{sub 2} + Cl{sub 2}), the platinum inclusions can be dissolved into the glass during the course of the melt cycle. The dissolution rate of platinum under oxidizing conditions has been measured, and a model is used to quantify the description of the dissolution process. The effect of ionic platinum on the transmission spectra of the laser glasses produced under various oxidizing conditions has also been measured. Results from the above laboratory-scale melting experiments have been incorporated into proprietary laser-glass melting processes. The laser glasses prepared under these conditions have an average of less than 0.1 platinum inclusions/liter, which represents a 1000-fold reduction over the previously available phosphate laser glasses. 52 refs., 56 figs., 15 tabs.

  17. Effects of Nanodiamond Abrasive Friability in Experimental MR Fluids with Phosphate Laser Glass LHG-8 and Other Optical Glasses

    SciTech Connect (OSTI)

    DeGroote, J.E.; Marino, A.E.; Wilson, J.P.; Spencer, K.E.; Jacobs, S.D.

    2005-09-22

    Research is currently being conducted to better understand the role that nanodiamond abrasives play in the removal process of Magnetorheological Finishing (MRF). The following presents removal rate data for a set of six optical glasses that were spotted (not polished out) with four different MR fluids, as well as texturing/smoothing data for phosphate laser glass LHG-8.

  18. Gas Sampling At Glass Buttes Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    Gas Sampling At Glass Buttes Area (DOE GTP) (Redirected from Water-Gas Samples At Glass Buttes Area (DOE GTP)) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home...

  19. Gas Sampling At Glass Buttes Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    Gas Sampling At Glass Buttes Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Gas Sampling At Glass Buttes Area (DOE GTP)...

  20. Ground Gravity Survey At Glass Buttes Area (DOE GTP) | Open Energy...

    Open Energy Info (EERE)

    Ground Gravity Survey At Glass Buttes Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Gravity Survey At Glass Buttes Area...

  1. Flow Test At Glass Buttes Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Glass Buttes Area (DOE GTP) Exploration Activity Details Location Glass Buttes Area...

  2. FMI Log At Glass Buttes Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    Glass Buttes Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: FMI Log At Glass Buttes Area (DOE GTP) Exploration Activity Details...

  3. LiDAR At Glass Buttes Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    Glass Buttes Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: LiDAR At Glass Buttes Area (DOE GTP) Exploration Activity Details...

  4. Slim Holes At Glass Buttes Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    Glass Buttes Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Slim Holes At Glass Buttes Area (DOE GTP) Exploration Activity...

  5. Field Mapping At Glass Buttes Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    Glass Buttes Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Field Mapping At Glass Buttes Area (DOE GTP) Exploration Activity...

  6. Development of a glass polymer composite sewer pipe from waste glass. Final report

    SciTech Connect (OSTI)

    Rayfiel, R.; Kukacka, L.E.

    1980-02-01

    A range of polymer-aggregate composites for applications in industry which appear to be economically attractive and contribute to energy conservation were developed at BNL. Waste glass is the aggregate in one such material, which is called glass-polymer-composite (GPC). This report assays the economics and durability of GPC in piping for storm drains and sewers. The properties of the pipe are compared statistically with the requirements of industrial specifications. These establish the raw materials requirements. The capital and operating costs for producing pipe are then estimated. Using published sales values for competing materials, the return on investment is calculated for two cases. The ultimate energy requirement of the raw materials in GPC is compared with the corresponding requirement for vitrified clay pipe. The strengths of GPC, reinforced concrete, vitrified clay and asbestos cement pipe are compared after extended exposure to various media. The status of process and product development is reviewed and recommendations are made for future work.

  7. Precision diamond grinding of ceramics and glass

    SciTech Connect (OSTI)

    Smith, S.; Paul, H.; Scattergood, R.O.

    1988-12-01

    A new research initiative will be undertaken to investigate the effect of machine parameters and material properties on precision diamond grinding of ceramics and glass. The critical grinding depth to initiate the plastic flow-to-brittle fracture regime will be directly measured using plunge-grind tests. This information will be correlated with machine parameters such as wheel bonding and diamond grain size. Multiaxis grinding tests will then be made to provide data more closely coupled with production technology. One important aspect of the material property studies involves measuring fracture toughness at the very short crack sizes commensurate with grinding damage. Short crack toughness value`s can be much less than the long-crack toughness values measured in conventional fracture tests.

  8. Thermally efficient melting for glass making

    DOE Patents [OSTI]

    Chen, Michael S. K. (Zionsville, PA); Painter, Corning F. (Allentown, PA); Pastore, Steven P. (Allentown, PA); Roth, Gary (Trexlertown, PA); Winchester, David C. (Allentown, PA)

    1991-01-01

    The present invention is an integrated process for the production of glass utilizing combustion heat to melt glassmaking materials in a glassmaking furnace. The fuel combusted to produce heat sufficient to melt the glassmaking materials is combusted with oxygen-enriched oxidant to reduce heat losses from the offgas of the glassmaking furnace. The process further reduces heat losses by quenching hot offgas from the glassmaking furnace with a process stream to retain the heat recovered from quench in the glassmaking process with subsequent additional heat recovery by heat exchange of the fuel to the glassmaking furnace, as well as the glassmaking materials, such as batch and cullet. The process includes recovery of a commercially pure carbon dioxide product by separatory means from the cooled, residual offgas from the glassmaking furnace.

  9. Phosphate glass useful in high energy lasers

    DOE Patents [OSTI]

    Hayden, Yuiko T. (Clarks Summit, PA); Payne, Stephen A. (Castro Valley, CA); Hayden, Joseph S. (Clarks Summit, PA); Campbell, John H. (Livermore, CA); Aston, Mary Kay (Moscow, PA); Elder, Melanie L. (Dublin, CA)

    1996-01-01

    In a high energy laser system utilizing phosphate laser glass components to amplify the laser beam, the laser system requires a generated laser beam having an emission bandwidth of less than 26 nm and the laser glass components consist essentially of (on an oxide composition basis) in mole percent: P{sub 2}O{sub 5}, 50--75; Al{sub 2}O{sub 3}, {gt}0--10; K{sub 2}O, {gt}0--30; MgO, 0--30; CaO, 0--30; Li{sub 2}O, 0--20; Na{sub 2}O, 0--20; Rb{sub 2}O, 0--20; Cs{sub 2}O, 0--20; BeO, 0--20; SrO, 0--20; BaO, 0--20; ZnO, 0--20; PbO, 0--20; B{sub 2}O{sub 3}, 0--10; Y{sub 2}O{sub 3}, 0--10; La{sub 2}O{sub 3}, 0--8; Ln{sub 2}O{sub 3}, 0.01--8; wherein the sum of MgO and CaO is >0--30; the sum of Li{sub 2}O, Na{sub 2}O, Rb{sub 2}O, and Cs{sub 2}O is 0--20; the sum of BeO, SrO, BaO, ZnO, and PbO is 0--20; the sum of B{sub 2}O{sub 3} and Y{sub 2}O{sub 3} is 0--10; and Ln{sub 2}O{sub 3} represents the sum of the oxides of active lasing lanthanides of atomic number 58--71. 21 figs.

  10. Phosphate glass useful in high energy lasers

    DOE Patents [OSTI]

    Hayden, Y.T.; Payne, S.A.; Hayden, J.S.; Campbell, J.H.; Aston, M.K.; Elder, M.L.

    1996-06-11

    In a high energy laser system utilizing phosphate laser glass components to amplify the laser beam, the laser system requires a generated laser beam having an emission bandwidth of less than 26 nm and the laser glass components consist essentially of (on an oxide composition basis) in mole percent: P{sub 2}O{sub 5}, 50--75; Al{sub 2}O{sub 3}, {gt}0--10; K{sub 2}O, {gt}0--30; MgO, 0--30; CaO, 0--30; Li{sub 2}O, 0--20; Na{sub 2}O, 0--20; Rb{sub 2}O, 0--20; Cs{sub 2}O, 0--20; BeO, 0--20; SrO, 0--20; BaO, 0--20; ZnO, 0--20; PbO, 0--20; B{sub 2}O{sub 3}, 0--10; Y{sub 2}O{sub 3}, 0--10; La{sub 2}O{sub 3}, 0--8; Ln{sub 2}O{sub 3}, 0.01--8; wherein the sum of MgO and CaO is >0--30; the sum of Li{sub 2}O, Na{sub 2}O, Rb{sub 2}O, and Cs{sub 2}O is 0--20; the sum of BeO, SrO, BaO, ZnO, and PbO is 0--20; the sum of B{sub 2}O{sub 3} and Y{sub 2}O{sub 3} is 0--10; and Ln{sub 2}O{sub 3} represents the sum of the oxides of active lasing lanthanides of atomic number 58--71. 21 figs.

  11. Low Velocity Sphere Impact of a Borosilicate Glass

    SciTech Connect (OSTI)

    Morrissey, Timothy G; Ferber, Mattison K; Wereszczak, Andrew A; Fox, Ethan E

    2012-05-01

    This report summarizes US Army TARDEC sponsored work at Oak Ridge National Laboratory (ORNL) involving low velocity (< 30 m/s or < 65 mph) ball impact testing of Borofloat borosilicate glass, and is a follow-up to a similar study completed by the authors on Starphire soda-lime silicate glass last year. The response of the borosilicate glass to impact testing at different angles was also studied. The Borofloat glass was supplied by the US Army Research Laboratory and its tin-side was impacted or indented. The intent was to better understand low velocity impact response in the Borofloat. Seven sphere materials were used whose densities bracket that of rock: borosilicate glass, soda-lime silicate glass, silicon nitride, aluminum oxide, zirconium oxide, carbon steel, and a chrome steel. A gas gun or a ball-drop test setup was used to produce controlled velocity delivery of the spheres against the glass tile targets. Minimum impact velocities to initiate fracture in the Borofloat were measured and interpreted in context to the kinetic energy of impact and the elastic property mismatch between the seven sphere-Borofloat-target combinations. The primary observations from this low velocity (< 30 m/s or < 65 mph) testing were: (1) BS glass responded similarly to soda-lime silicate glass when spherically indented but quite differently under sphere impact conditions; (2) Frictional effects contributed to fracture initiation in BS glass when it spherically indented. This effect was also observed with soda-lime silicate glass; (3) The force necessary to initiate fracture in BS glass under spherical impact decreases with increasing elastic modulus of the sphere material. This trend is opposite to what was observed with soda-lime silicate glass. Friction cannot explain this trend and the authors do not have a legitimate explanation for it yet; (4) The force necessary to initiate contact-induced fracture is higher under dynamic conditions than under quasi-static conditions. That difference decreases with increasing elastic modulus mismatch between the sphere material and borosilicate This trend was opposite in soda-lime silicate glass; (5) Fracture in borosilicate glass occurs at lower velocities (i.e., easier) at 24{sup o} than at 0{sup o} (orthogonal) and 46{sup o} of impact for the same probability of failure. Though not analyzed yet, this suggests that a convolution of kinetic energy and friction is contributing to that trend; (6) There is a subtle indication there was intra-tile differences in spherical indentation RCIF. This likely is not a material property nor exclusive to borosilicate glass, rather, it is a statistical response of a combination of local, surface-located flaw and imposed tensile stress. Understanding of the surface flaw population and flaw positioning can likely enable prediction of spherical indentation RCIF; and (7) Contact-induced fracture did not initiate in the Borofloat BS for impact kinetic energies up to {approx} 20 mJ. For kinetic energies between {approx} 20-150 mJ, fracture sometimes initiated. Contact-induced fracture would always occur for impact energies > 150 mJ. The energy values, and their boundaries, were much lower for BS glass than they were for soda-lime silicate glass.

  12. Enabling Tool for Innovative Glass Applications - Final Report

    SciTech Connect (OSTI)

    James M. Gillis

    2005-11-16

    The use of abrasive waterjet (AWJ) cutting systems in the industrial sector has been limited to applications that are difficult to machine using conventional methods. A major factor for this limited use is the high cost of the garnet abrasive currently used. Initial studies indicated that glass can be processed to produce particles with the desired characteristics at a fraction of the existing price of garnet. Inexpensive abrasive waterjet cutting systems would allow a wider array of glass products to be produced while eliminating many existing design limitations. Availability of low-cost abrasive waterjet cutting media would open new markets for glass applications by making glass a more versatile material. A fundamental goal of this project was to scale up and refine the circuit that was established in the initial phase of this project, which using waste glass as a feed stream, could economically produce glass particles displaying high angularity, sharp edges and a low aspect ratio which would prove suitable for use in abrasive waterjet (AWJ) cutting systems. Using commercial scale equipment, demonstration runs were conducted at various manufacturers facilities to further establish that waste glass is a viable source for the production of an inexpensive AWJ media for use in cutting glass and a variety of other materials. The glass abrasive produced was used to demonstrate that processed waste glass could serve as a less costly alternative to garnet in many AWJ cutting applications. Studies indicated that glass can be processed to produce particles with the desired characteristics at less than 1% of the existing price of garnet. The waste stream resulting from the use of the glass abrasive in an AWJ system was in turn used as a source for inexpensive fillers in various polymers. The reduced energy requirements needed to produce glass abrasives and lower cost associated with the use of waste glass over garnet, as well as the environmental benefits associated with the recycling of glass waste streams were the primary objectives of this project. The use of the glass abrasive produced in this study did not result in feed rates as high as was expected when used as the media in the cutting of plate glass products. Furthermore, the process and equipment refinements that have been implemented at the PPG and Donnelly facilities since this project was initiated have also served to reduce their energy requirements and in turn the cost associated with the production of sidelites and foiled prisms using conventional means. In addition, further improvements would have to be realized in the cutting of these harder materials before the use of an AWJ system could be viewed as an economically viable means of establishing the perimeter of either product. The possibility of tempering to increase the hardness of the glass media may be one means of achieving this goal.

  13. Soldering of Thin Film-Metallized Glass Substrates

    SciTech Connect (OSTI)

    Hosking, F.M.; Hernandez, C.L.; Glass, S.J.

    1999-03-31

    The ability to produce reliable electrical and structural interconnections between glass and metals by soldering was investigated. Soldering generally requires premetallization of the glass. As a solderable surface finish over soda-lime-silicate glass, two thin films coatings, Cr-Pd-Au and NiCr-Sn, were evaluated. Solder nettability and joint strengths were determined. Test samples were processed with Sn60-Pb40 solder alloy at a reflow temperature of 210 C. Glass-to-cold rolled steel single lap samples yielded an average shear strength of 12 MPa. Solder fill was good. Control of the Au thickness was critical in minimizing the formation of AuSn{sub 4} intermetallic in the joint, with a resulting joint shear strength of 15 MPa. Similar glass-to-glass specimens with the Cr-Pd-Au finish failed at 16.5 MPa. The NiCr-Sn thin film gave even higher shear strengths of 20-22.5 MPa, with failures primarily in the glass.

  14. Low melting high lithia glass compositions and methods

    DOE Patents [OSTI]

    Jantzen, Carol M. (Aiken, SC); Pickett, John B. (Aiken, SC); Cicero-Herman, Connie A. (Aiken, SC); Marra, James C. (Aiken, SC)

    2000-01-01

    The invention relates to methods of vitrifying waste and for lowering the melting point of glass forming systems by including lithia formers in the glass forming composition in significant amounts, typically from about 0.16 wt % to about 11 wt %, based on the total glass forming oxides. The lithia is typically included as a replacement for alkali oxide glass formers that would normally be present in a particular glass forming system. Replacement can occur on a mole percent or weight percent basis, and typically results in a composition wherein lithia forms about 10 wt % to about 100 wt % of the alkali oxide glass formers present in the composition. The present invention also relates to the high lithia glass compositions formed by these methods. The invention is useful for stabilization of numerous types of waste materials, including aqueous waste streams, sludge solids, mixtures of aqueous supernate and sludge solids, combinations of spent filter aids from waste water treatment and waste sludges, supernate alone, incinerator ash, incinerator offgas blowdown, or combinations thereof, geological mine tailings and sludges, asbestos, inorganic filter media, cement waste forms in need of remediation, spent or partially spent ion exchange resins or zeolites, contaminated soils, lead paint, etc. The decrease in melting point achieved by the present invention desirably prevents volatilization of hazardous or radioactive species during vitrification.

  15. Low melting high lithia glass compositions and methods

    DOE Patents [OSTI]

    Jantzen, Carol M.; Pickett, John B.; Cicero-Herman, Connie A.; Marra, James C.

    2004-11-02

    The invention relates to methods of vitrifying waste and for lowering the melting point of glass forming systems by including lithia formers in the glass forming composition in significant amounts, typically from about 0.16 wt % to about 11 wt %, based on the total glass forming oxides. The lithia is typically included as a replacement for alkali oxide glass formers that would normally be present in a particular glass forming system. Replacement can occur on a mole percent or weight percent basis, and typically results in a composition wherein lithia forms about 10 wt % to about 100 wt % of the alkali oxide glass formers present in the composition. The present invention also relates to the high lithia glass compositions formed by these methods. The invention is useful for stabilization of numerous types of waste materials, including aqueous waste streams, sludge solids, mixtures of aqueous supernate and sludge solids, combinations of spent filter aids from waste water treatment and waste sludges, supernate alone, incinerator ash, incinerator offgas blowdown, or combinations thereof, geological mine tailings and sludges, asbestos, inorganic filter media, cement waste forms in need of remediation, spent or partially spent ion exchange resins or zeolites, contaminated soils, lead paint, etc. The decrease in melting point achieved by the present invention desirably prevents volatilization of hazardous or radioactive species during vitrification.

  16. Low melting high lithia glass compositions and methods

    DOE Patents [OSTI]

    Jantzen, Carol M.; Pickett, John B.; Cicero-Herman, Connie A.; Marra, James C.

    2003-10-07

    The invention relates to methods of vitrifying waste and for lowering the melting point of glass forming systems by including lithia formers in the glass forming composition in significant amounts, typically from about 0.16 wt % to about 11 wt %, based on the total glass forming oxides. The lithia is typically included as a replacement for alkali oxide glass formers that would normally be present in a particular glass forming system. Replacement can occur on a mole percent or weight percent basis, and typically results in a composition wherein lithia forms about 10 wt % to about 100 wt % of the alkali oxide glass formers present in the composition. The present invention also relates to the high lithia glass compositions formed by these methods. The invention is useful for stabilization of numerous types of waste materials, including aqueous waste streams, sludge solids, mixtures of aqueous supernate and sludge solids, combinations of spent filter aids from waste water treatment and waste sludges, supernate alone, incinerator ash, incinerator offgas blowdown, or combinations thereof, geological mine tailings and sludges, asbestos, inorganic filter media, cement waste forms in need of remediation, spent or partially spent ion exchange resins or zeolites, contaminated soils, lead paint, etc. The decrease in melting point achieved by the present invention desirably prevents volatilization of hazardous or radioactive species during vitrification.

  17. Tamper-indicating device having a glass body

    DOE Patents [OSTI]

    Johnston, Roger G. (Los Alamos, NM); Garcia, Anthony R. E. (Espanola, NM)

    2003-04-29

    A tamper-indicating device is described. The device has a first glass body member and a second glass body member that are attached to each other through a hasp. The glass body members of the device can be tempered. The body members can be configured with hollow volumes into which powders, microparticles, liquids, gels, or combinations thereof are sealed. The choice, the amount, and the location of these materials can produce a visible, band pattern to provide each body member with a unique fingerprint identifier, which makes it extremely difficult to repair or replace once it is damaged in order to avoid tamper detection.

  18. Specific heat loading in Nd:glass lasers

    SciTech Connect (OSTI)

    Krupke, W.F.

    1985-08-07

    The specific thermal load parameter, chi, for xenon flashlamp-pumped Nd:glass gain media is written as a function of neodymium concentration, pump pulse duration, and energy extraction efficiency. The currently available data on radiative and nonradiative decay probabilities of several commercial Nd:glasses are used to calculate and graph specific thermal load parameter values. By factoring these results into performance scaling relationships for zig-zag and disk lasers, specific Nd:glasses can be selected for optimized laser performance.

  19. Ultrafast pulsed laser utilizing broad bandwidth laser glass

    DOE Patents [OSTI]

    Payne, S.A.; Hayden, J.S.

    1997-09-02

    An ultrafast laser uses a Nd-doped phosphate laser glass characterized by a particularly broad emission bandwidth to generate the shortest possible output pulses. The laser glass is composed primarily of P{sub 2}O{sub 5}, Al{sub 2}O{sub 3} and MgO, and possesses physical and thermal properties that are compatible with standard melting and manufacturing methods. The broad bandwidth laser glass can be used in modelocked oscillators as well as in amplifier modules. 7 figs.

  20. Process for direct conversion of reactive metals to glass

    DOE Patents [OSTI]

    Rajan, John B.; Kumar, Romesh; Vissers, Donald R.

    1990-01-01

    Radioactive alkali metal is introduced into a cyclone reactor in droplet form by an aspirating gas. In the cyclone metal reactor the aspirated alkali metal is contacted with silica powder introduced in an air stream to form in one step a glass. The sides of the cyclone reactor are preheated to ensure that the initial glass formed coats the side of the reactor forming a protective coating against the reactants which are maintained in excess of 1000.degree. C. to ensure the formation of glass in a single step.

  1. Reference commercial high-level waste glass and canister definition.

    SciTech Connect (OSTI)

    Slate, S.C.; Ross, W.A.; Partain, W.L.

    1981-09-01

    This report presents technical data and performance characteristics of a high-level waste glass and canister intended for use in the design of a complete waste encapsulation package suitable for disposal in a geologic repository. The borosilicate glass contained in the stainless steel canister represents the probable type of high-level waste product that will be produced in a commercial nuclear-fuel reprocessing plant. Development history is summarized for high-level liquid waste compositions, waste glass composition and characteristics, and canister design. The decay histories of the fission products and actinides (plus daughters) calculated by the ORIGEN-II code are presented.

  2. Ceramic-glass-metal seal by microwave heating

    DOE Patents [OSTI]

    Meek, Thomas T. (Los Alamos, NM); Blake, Rodger D. (Santa Fe, NM)

    1985-01-01

    A method for producing a ceramic-glass-metal seal by microwaving mixes a slurry of glass sealing material and coupling agent and applies same to ceramic and metal workpieces. The slurry and workpieces are then insulated and microwaved at a power, time and frequency sufficient to cause a liquid phase reaction in the slurry. The reaction of the glass sealing material forms a chemically different seal than that which would be formed by conventional heating because it is formed by diffusion rather than by wetting of the reactants.

  3. Ceramic-glass-metal seal by microwave heating

    DOE Patents [OSTI]

    Meek, T.T.; Blake, R.D.

    1983-10-04

    A method for producing a ceramic-glass-metal seal by microwaving, mixes a slurry of glass sealing material and coupling agent and applies same to ceramic and metal workpieces. The slurry and workpieces are then insulated and microwaved at a power, time and frequency sufficient to cause a liquid-phase reaction in the slurry. The reaction of the glass sealing material forms a chemically different seal than that which would be formed by conventional heating because it is formed by diffusion rather than by wetting of the reactants.

  4. Ceramic-glass-ceramic seal by microwave heating

    DOE Patents [OSTI]

    Meek, Thomas T. (Los Alamos, NM); Blake, Rodger D. (Santa Fe, NM)

    1985-01-01

    A method for producing a ceramic-glass-ceramic seal by microwaving, mixes a slurry of glass sealing material and coupling agent and applies same to ceramic workpieces. The slurry and workpieces are placed together, insulated and then microwaved at a power, time and frequency sufficient to cause a liquid phase reaction in the slurry. The reaction of the glass sealing material forms a chemically different seal than that which would be formed by conventional heating because it is formed by a diffusion rather than by wetting of the reactants.

  5. Ceramic-glass-ceramic seal by microwave heating

    DOE Patents [OSTI]

    Meek, T.T.; Blake, R.D.

    1983-10-04

    A method for producing a ceramic-glass-ceramic seal by microwaving, mixes a slurry of glass sealing material and coupling agent and applies same to ceramic workpieces. The slurry and workpieces are placed together, insulated and then microwaved at a power, time and frequency sufficient to cause a liquid phase reaction in the slurry. The reaction of the glass sealing material forms a chemically different seal than that which would be formed by conventional heating because it is formed by a diffusion rather than by wetting of the reactants.

  6. Application of Argonne's Glass Furnace Model to longhorn glass corporation oxy-fuel furnace for the production of amber glass.

    SciTech Connect (OSTI)

    Golchert, B.; Shell, J.; Jones, S.; Energy Systems; Shell Glass Consulting; Anheuser-Busch Packaging Group

    2006-09-06

    The objective of this project is to apply the Argonne National Laboratory's Glass Furnace Model (GFM) to the Longhorn oxy-fuel furnace to improve energy efficiency and to investigate the transport of gases released from the batch/melt into the exhaust. The model will make preliminary estimates of the local concentrations of water, carbon dioxide, elemental oxygen, and other subspecies in the entire combustion space as well as the concentration of these species in the furnace exhaust gas. This information, along with the computed temperature distribution in the combustion space may give indications on possible locations of crown corrosion. An investigation into the optimization of the furnace will be performed by varying several key parameters such as the burner firing pattern, exhaust number/size, and the boost usage (amount and distribution). Results from these parametric studies will be analyzed to determine more efficient methods of operating the furnace that reduce crown corrosion. Finally, computed results from the GFM will be qualitatively correlated to measured values, thus augmenting the validation of the GFM.

  7. Glass Buttes Exploration and Drilling: 2010 Geothermal Technologies Program Peer Review Presentation, Walsh, et al, Ormat

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Zemach, Ezra

    2010-01-01

    Glass Buttes Exploration and Drilling: 2010 Geothermal Technologies Program Peer Review Presentation, Walsh, et al, Ormat

  8. Glass Buttes Exploration and Drilling: 2010 Geothermal Technologies Program Peer Review Presentation, Walsh, et al, Ormat

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Zemach, Ezra

    Glass Buttes Exploration and Drilling: 2010 Geothermal Technologies Program Peer Review Presentation, Walsh, et al, Ormat

  9. Glasses having a low non-linear refractive index for laser applications

    DOE Patents [OSTI]

    Faulstich, Marga; Jahn, Walter; Krolla, Georg; Neuroth, Norbert

    1980-01-01

    Glass composition ranges are described which permit the introduction of laser activators into fluorphosphate glass with exceptionally high fluorine content while forming glasses of high crystallization stability and permitting the realization of large melt volumes. The high fluorine content imparts to the glasses an exceptionally low nonlinear refractive index n.sub.2 down to O,4 .times.10.sup.-13 esu.

  10. Material Removal Rate for Magnetorheological Finishing (MRF) of Optical Glasses with Nanodiamond MR Fluid

    SciTech Connect (OSTI)

    DeGroote, J.E.; Marino, A.E.; Wilson, J.P.; Bishop, A.L.; Jacobs, S.D.

    2007-07-13

    We present a material removal rate model for MRF of optical glasses using nanodiamond MR fluid. The new model incorporates terms for drag force, polishing particle properties, chemical durability and glass composition into an existing model that contains only terms for the glass mechanical properties. Experimental results for six optical glasses are given that support this model.

  11. Alkaline resistant phosphate glasses and method of preparation and use thereof

    DOE Patents [OSTI]

    Brow, Richard K. (Rolla, MO); Reis, Signo T. (Rolla, MO); Velez, Mariano (Rolla, MO); Day, Delbert E. (Rolla, MO)

    2010-01-26

    A substantially alkaline resistant calcium-iron-phosphate (CFP) glass and methods of making and using thereof. In one application, the CFP glass is drawn into a fiber and dispersed in cement to produce glass fiber reinforced concrete (GFRC) articles having the high compressive strength of concrete with the high impact, flexural and tensile strength associated with glass fibers.

  12. Preparation of Bi-Sr-Ca-Cu-O superconductors from oxide-glass precursors

    DOE Patents [OSTI]

    Hinks, David G. (Lemont, IL); Capone, II, Donald W. (Northbridge, MA)

    1992-01-01

    A superconductor and precursor therefor from oxide mixtures of Ca, Sr, Bi and Cu. Glass precursors quenched to elevated temperatures result in glass free of crystalline precipitates having enhanced mechanical properties. Superconductors are formed from the glass precursors by heating in the presence of oxygen to a temperature below the melting point of the glass.

  13. Research Needs: Glass Solar Reflectance and Vinyl Siding

    SciTech Connect (OSTI)

    Hart, Robert; Curcija, Charlie; Arasteh, Dariush; Goudey, Howdy; Kohler, Christian; Selkowitz, Stephen

    2011-07-07

    The subject of glass solar reflectance and its contribution to permanent vinyl siding distortion has not been extensively studied, and some phenomena are not yet well understood. This white paper presents what is known regarding the issue and identifies where more research is needed. Three primary topics are discussed: environmental factors that control the transfer of heat to and from the siding surface; vinyl siding properties that may affect heat build-up and permanent distortion; and factors that determine the properties of reflected solar radiation from glass surfaces, including insulating window glass. Further research is needed to fully characterize the conditions associated with siding distortion, the scope of the problem, physical properties of vinyl siding, insulating window glass reflection characteristics, and possible mitigation or prevention strategies.

  14. Composite polymer-glass edge cladding for laser disks

    DOE Patents [OSTI]

    Powell, Howard T. (Livermore, CA); Riley, Michael O. (San Ramon, CA); Wolfe, Charles R. (Palo Alto, CA); Lyon, Richard E. (Livermore, CA); Campbell, John H. (Livermore, CA); Jessop, Edward S. (Tracy, CA); Murray, James E. (Livermore, CA)

    1989-01-01

    Large neodymium glass laser disks for disk amplifiers such as those used in the Nova laser require an edge cladding which absorbs at 1 micrometer. This cladding prevents edge reflections from causing parasitic oscillations which would otherwise deplete the gain. Nova now utilizes volume-absorbing monolithic-glass claddings which are fused at high temperature to the disks. These perform quite well but are expensive to produce. Absorbing glass strips are adhesively bonded to the edges of polygonal disks using a bonding agent whose index of refraction matches that of both the laser and absorbing glass. Optical finishing occurs after the strips are attached. Laser disks constructed with such claddings have shown identical gain performance to the previous Nova disks and have been tested for hundreds of shots without significant degradation.

  15. Structure of RheniumContaining Sodium Borosilicate Glass

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    not problem- atic in evaporation and drying processes but does creates trouble in high temperature molten glass pro- cessing from either liquid or dried feed. 2 Other sources of 99...

  16. Composite polymer: Glass edge cladding for laser disks

    DOE Patents [OSTI]

    Powell, H.T.; Wolfe, C.A.; Campbell, J.H.; Murray, J.E.; Riley, M.O.; Lyon, R.E.; Jessop, E.S.

    1987-11-02

    Large neodymium glass laser disks for disk amplifiers such as those used in the Nova laser require an edge cladding which absorbs at 1 micrometer. This cladding prevents edge reflections from causing parasitic oscillations which would otherwise deplete the gain. Nova now utilizes volume-absorbing monolithic-glass claddings which are fused at high temperature to the disks. These perform quite well but are expensive to produce. Absorbing glass strips are adhesively bonded to the edges of polygonal disks using a bonding agent whose index of refraction matches that of both the laser and absorbing glass. Optical finishing occurs after the strips are attached. Laser disks constructed with such claddings have shown identical gain performance to the previous Nova disks and have been tested for hundreds of shots without significant degradation. 18 figs.

  17. Energy-Efficient Glass Melting - Next Generation Melter

    SciTech Connect (OSTI)

    2006-08-01

    This factsheet describes an R&D project focused on an oxy-gas-fired submerged combustion melter for glass industry that offers decreased operating and capital costs, decreased energy use, simple design, and high reliability.

  18. RETENTION OF SULFATE IN HIGH LEVEL RADIOACTIVE WASTE GLASS

    SciTech Connect (OSTI)

    Fox, K.

    2010-09-07

    High level radioactive wastes are being vitrified at the Savannah River Site for long term disposal. Many of the wastes contain sulfate at concentrations that can be difficult to retain in borosilicate glass. This study involves efforts to optimize the composition of a glass frit for combination with the waste to improve sulfate retention while meeting other process and product performance constraints. The fabrication and characterization of several series of simulated waste glasses are described. The experiments are detailed chronologically, to provide insight into part of the engineering studies used in developing frit compositions for an operating high level waste vitrification facility. The results lead to the recommendation of a specific frit composition and a concentration limit for sulfate in the glass for the next batch of sludge to be processed at Savannah River.

  19. Low-temperature mechanical properties of glass/epoxy laminates

    SciTech Connect (OSTI)

    Reed, R. P. [Cryogenic Materials, Inc., Boulder, CO 80305 (United States); Madhukar, M.; Thaicharoenporn, B. [Magnet Development Laboratory, Knoxville, TN 37996 (United States); Martovetsky, N. N. [US-ITER Project, Oak Ridge National Laboratory, Oak Ridge, TN 37830 (United States)

    2014-01-27

    Selected mechanical properties of glass/epoxy laminate candidates for use in the electrical turn and ground insulation of the ITER Central solenoid (CS) modules were measured. Short-beam shear and flexural tests have been conducted on various E-glass cloth weaves/epoxy laminates at 295 and 77 K. Types of glass weave include 1581, 7500, 7781, and 38050, which represent both satin and plain weaves. The epoxy, planned for use for vacuum-pressure impregnation of the CS module, consists of an anhydride-cured bisphenol F resin system. Inter-laminar shear strength, flexural elastic modulus, and flexural strength have been measured. The data indicate that these properties are dependent on the volume percent of glass. Short-beam shear strength was measured as a function of the span-to-thickness ratio for all laminates at 77 K. Comprehensive fractography was conducted to obtain the failure mode of each short-beam shear test sample.

  20. Hollow porous-wall glass microspheres for hydrogen storage

    DOE Patents [OSTI]

    Heung, Leung K. (Aiken, SC); Schumacher, Ray F. (Aiken, SC); Wicks, George G. (Aiken, SC)

    2010-02-23

    A porous wall hollow glass microsphere is provided having a diameter range of between 1 to 200 microns, a density of between 1.0 to 2.0 gm/cc, a porous-wall structure having wall openings defining an average pore size of between 10 to 1000 angstroms, and which contains therein a hydrogen storage material. The porous-wall structure facilitates the introduction of a hydrogen storage material into the interior of the porous wall hollow glass microsphere. In this manner, the resulting hollow glass microsphere can provide a membrane for the selective transport of hydrogen through the porous walls of the microsphere, the small pore size preventing gaseous or liquid contaminants from entering the interior of the hollow glass microsphere.

  1. ITP Glass: A Clear Vision for a Bright Future

    Broader source: Energy.gov [DOE]

    This document presents perspectives on the glass industry's past, present and future, with special attention to competitive challenges now facing the industry and technological responses that will reinforce its continuing contribution...

  2. Lithium Loaded Glass Fiber Neutron Detector Tests

    SciTech Connect (OSTI)

    Ely, James H.; Erikson, Luke E.; Kouzes, Richard T.; Lintereur, Azaree T.; Stromswold, David C.

    2009-11-12

    Radiation portal monitors used for interdiction of illicit materials at borders include highly sensitive neutron detection systems. The main reason for having neutron detection capability is to detect fission neutrons from plutonium. The currently deployed radiation portal monitors (RPMs) from Ludlum and Science Applications International Corporation (SAIC) use neutron detectors based upon 3He-filled gas proportional counters, which are the most common large neutron detector. There is a declining supply of 3He in the world and, thus, methods to reduce the use of this gas in RPMs with minimal changes to the current system designs and sensitivity to cargo-borne neutrons are being investigated. Four technologies have been identified as being currently commercially available, potential alternative neutron detectors to replace the use of 3He in RPMs. Reported here are the results of tests of the lithium-loaded glass fibers option. This testing measured the neutron detection efficiency and gamma ray rejection capabilities of a small system manufactured by Nucsafe (Oak Ridge, TN).

  3. THERMAL ANALYSIS OF WASTE GLASS MELTER FEEDS

    SciTech Connect (OSTI)

    KRUGER AA; HRMA PR; POKORNY R; PIERCE DA

    2011-10-21

    Melter feeds for high-level nuclear waste (HLW) typically contain a large number of constituents that evolve gas on heating, Multiple gas-evolving reactions are both successive and simultaneous, and include the release of chemically bonded water, reactions of nitrates with organics, and reactions of molten salts with solid silica. Consequently, when a sample of a HLW feed is subjected to thermogravimetric analysis (TGA), the rate of change of the sample mass reveals multiple overlapping peaks. In this study, a melter feed, formulated for a simulated high-alumina HLW to be vitrified in the Waste Treatment and Immobilization Plant, currently under construction at the Hanford Site in Washington State, USA, was subjected to TGA. In addition, a modified melter feed was prepared as an all-nitrate version of the baseline feed to test the effect of sucrose addition on the gas-evolving reactions. Activation energies for major reactions were determined using the Kissinger method. The ultimate aim of TGA studies is to obtain a kinetic model of the gas-evolving reactions for use in mathematical modeling of the cold cap as an element of the overall model of the waste-glass melter. In this study, we focused on computing the kinetic parameters of individual reactions without identifying their actual chemistry, The rough provisional model presented is based on the first-order kinetics.

  4. Phosphate glass useful in high energy lasers

    DOE Patents [OSTI]

    Hayden, Yuiko T. (Clarks Summit, PA); Guesto-Barnak, Donna (Dupont, PA)

    1992-01-01

    A low-or no-silica, low- or no-alkali phosphate glass useful as a laser amplifier in a multiple pass, high energy laser system having a high thermal conductivity, K.sub.90.degree. C. >0.85 W/mK, a low coefficient of thermal expansion, .alpha..sub.20.degree.-300.degree. C. <80.times.10.sup.-7 /.degree.C., low emission cross section, .sigma.<2.5.times.10.sup.-20 cm.sup.2, and a high fluorescence lifetime, .tau.>325 .mu.secs at 3 wt. % Nd doping, consisting essentially of (on an oxide composition basis): wherein Ln.sub.2 O.sub.3 is the sum of lanthanide oxides; .SIGMA.R.sub.2 O is <5, R being Li, Na, K, Cs, and Rb; the sum of Al.sub.2 O.sub.3 and MgO is <24 unless .SIGMA.R.sub.2 O is 0, then the sum of Al.sub.2 O.sub.3 and MgO is <42; and the ratio of MgO to B.sub.2 O.sub.3 is 0.48-4.20.

  5. Open-cell glass crystalline porous material

    DOE Patents [OSTI]

    Anshits, Alexander G.; Sharonova, Olga M.; Vereshchagina, Tatiana A.; Zykova, Irina D.; Revenko, Yurii A.; Tretyakov, Alexander A.; Aloy, Albert S.; Lubtsev, Rem I.; Knecht, Dieter A.; Tranter, Troy J.; Macheret, Yevgeny

    2003-12-23

    An open-cell glass crystalline porous material made from hollow microspheres which are cenospheres obtained from fly ash, having an open-cell porosity of up to 90 vol. % is produced. The cenospheres are separated into fractions based on one or more of grain size, density, magnetic or non-magnetic, and perforated or non-perforated. Selected fractions are molded and agglomerated by sintering with a binder at a temperature below the softening temperature, or without a binder at a temperature about, or above, the softening temperature but below the temperature of liquidity. The porous material produced has an apparent density of 0.3-0.6 g/cm.sup.3, a compressive strength in the range of 1.2-3.5 MPa, and two types of openings: through-flow wall pores in the cenospheres of 0.1-30 micrometers, and interglobular voids between the cenospheres of 20-100 micrometers. The porous material of the invention has properties useful as porous matrices for immobilization of liquid radioactive waste, heat-resistant traps and filters, supports for catalysts, adsorbents and ion-exchangers.

  6. Open-cell glass crystalline porous material

    DOE Patents [OSTI]

    Anshits, Alexander G. (Krasnoyarsk, RU); Sharonova, Olga M. (Krasnoyarsk, RU); Vereshchagina, Tatiana A. (Krasnoyarsk, RU); Zykova, Irina D. (Krasnoyarsk, RU); Revenko, Yurii A. (Zheleznogorsk, RU); Tretyakov, Alexander A. (Zheleznogorsk, RU); Aloy, Albert S. (Saint-Petersburg, RU); Lubtsev, Rem I. (Saint-Petersburg, RU); Knecht, Dieter A. (Idaho Falls, ID); Tranter, Troy J. (Idaho Falls, ID); Macheret, Yevgeny (Idaho Falls, ID)

    2002-01-01

    An open-cell glass crystalline porous material made from hollow microspheres which are cenospheres obtained from fly ash, having an open-cell porosity of up to 90 vol. % is produced. The cenospheres are separated into fractions based on one or more of grain size, density, magnetic or non-magnetic, and perforated or non-perforated. Selected fractions are molded and agglomerated by sintering with a binder at a temperature below the softening temperature, or without a binder at a temperature about, or above, the softening temperature but below the temperature of liquidity. The porous material produced has an apparent density of 0.3-0.6 g/cm.sup.3, a compressive strength in the range of 1.2-3.5 MPa, and two types of openings: through-flow wall pores in the cenospheres of 0.1-30 micrometers, and interglobular voids between the cenospheres of 20-100 micrometers. The porous material of the invention has properties useful as porous matrices for immobilization of liquid radioactive waste, heat-resistant traps and filters, supports for catalysts, adsorbents and ion-exchangers.

  7. Final Report. Baseline LAW Glass Formulation Testing, VSL-03R3460-1, Rev. 0

    SciTech Connect (OSTI)

    Muller, Isabelle S.; Pegg, Ian L.; Gan, Hao; Buechele, Andrew; Rielley, Elizabeth; Bazemore, Gina; Cecil, Richard; Hight, Kenneth; Mooers, Cavin; Lai, Shan-Tao T.; Kruger, Albert A.

    2015-06-18

    The major objective of the baseline glass formulation work was to develop and select glass formulations that are compliant with contractual and processing requirements for each of the LAW waste streams. Other objectives of the work included preparation and characterization of glasses with respect to the properties of interest, optimization of sulfate loading in the glasses, evaluation of ability to achieve waste loading limits, testing to demonstrate compatibility of glass melts with melter materials of construction, development of glass formulations to support ILAW qualification activities, and identification of glass formulation issues with respect to contract specifications and processing requirements.

  8. California: Energy-Efficient Glass Saves Energy Costs, Increases Personal

    Broader source: Energy.gov (indexed) [DOE]

    Comfort | Department of Energy From 2010 to 2011, EERE invested in Soladigm, Inc., an energy-efficient buildings materials company, as one of 14 selections for projects focused on advancing windows and envelope component technologies to enhance energy savings and performance. Now known as View, Inc., the company is deploying its patented View Dynamic Glass. Currently used in windows at the W Hotel in San Francisco, this smart glass material constantly adjusts its tint, lightening and

  9. Metallic glass composition. [That does not embrittle upon annealing

    DOE Patents [OSTI]

    Kroeger, D.M.; Koch, C.C.

    1984-09-14

    This patent pertains to a metallic glass alloy that is either iron-based or nickel-based or based on a mixture of iron and nickel, containing lesser amounts of elements selected from the group boron, silicon, carbon and phosphorous to which is added an amount of a ductility-enhancing element selected from the group cerium, lanthanum, praseodymium and neodymium sufficient to increase ductility of the metallic glass upon annealing.

  10. From spin induced ferroelectricity to dipolar glasses: Spinel chromites and

    Office of Scientific and Technical Information (OSTI)

    mixed delafossites (Journal Article) | SciTech Connect From spin induced ferroelectricity to dipolar glasses: Spinel chromites and mixed delafossites Citation Details In-Document Search Title: From spin induced ferroelectricity to dipolar glasses: Spinel chromites and mixed delafossites Magnetoelectric multiferroics showing coupling between polarization and magnetic order are attracting much attention. For instance, they could be used in memory devices. Metal-transition oxides are provided

  11. Graded-Refractive-Index Glass-based Antireflective Coatings:

    Office of Scientific and Technical Information (OSTI)

    Broadband/Omnidirectional Light Harvesting and Self-Cleaning Characteristics (Journal Article) | SciTech Connect Graded-Refractive-Index Glass-based Antireflective Coatings: Broadband/Omnidirectional Light Harvesting and Self-Cleaning Characteristics Citation Details In-Document Search Title: Graded-Refractive-Index Glass-based Antireflective Coatings: Broadband/Omnidirectional Light Harvesting and Self-Cleaning Characteristics Authors: Aytug, Tolga [1] ; Lupini, Andrew R [1] ; Jellison Jr,

  12. Innovative Exploration Technologies Maui Hawaii & Glass Buttes, Oregon

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Innovative Exploration Technologies Maui Hawaii & Glass Buttes, Oregon Kyle Snyder Ezra Zemach Ormat Nevada Inc. Project Officer: Ava Coy Total Project Funding: Maui-$4.9M, GB- $4.4M April 23rd, 2013 This presentation does not contain any proprietary confidential, or otherwise restricted information. Ulupalakua, Maui Glass Buttes, Oregon 2 | US DOE Geothermal Program eere.energy.gov Maui Overview * Timeline * Project start date 10/29/2009 * Project end date Q3 2013 * Well sites permitting:

  13. Communication: The simplified generalized entropy theory of glass-formation

    Office of Scientific and Technical Information (OSTI)

    in polymer melts (Journal Article) | SciTech Connect Communication: The simplified generalized entropy theory of glass-formation in polymer melts Citation Details In-Document Search This content will become publicly available on August 4, 2016 Title: Communication: The simplified generalized entropy theory of glass-formation in polymer melts Authors: Freed, Karl F. [1] + Show Author Affiliations James Franck Institute and Department of Chemistry, University of Chicago, Chicago, Illinois

  14. Advanced Glass Materials for Thermal Energy Storage | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Glass Materials for Thermal Energy Storage Advanced Glass Materials for Thermal Energy Storage This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 23-25, 2013 near Phoenix, Arizona. PDF icon csp_review_meeting_042513_raade.pdf More Documents & Publications Advance Patent Waiver W(A)2010-020 CX-007701: Categorical Exclusion Determination Low-Cost Light Weigh Thin Film Solar Concentrators

  15. Lithiated Glass Scintillating-Particle Neutron Detector - Energy Innovation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Portal Energy Analysis Energy Analysis Advanced Materials Advanced Materials Find More Like This Return to Search Lithiated Glass Scintillating-Particle Neutron Detector Oak Ridge National Laboratory Contact ORNL About This Technology Publications: PDF Document Publication 11-G00209_ID1215.pdf (452 KB) Technology Marketing SummaryA unique neutron detector developed at ORNL features a matrix material that uses scintillating particles, suspended in glass, to detect neutron radiation. The

  16. Glass-like thermal conductivity in high efficiency thermoelectric materials

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Glass-like thermal conductivity in high efficiency thermoelectric materials Glass-like thermal conductivity in high efficiency thermoelectric materials Discusses strategies to design thermoelectric materials with extremely low lattice thermal conductivity through modifications of the phonon band structure and phonon relaxation time. PDF icon toberer.pdf More Documents & Publications NSF/DOE Thermoelectrics Partnership: Thermoelectrics for Automotive Waste Heat

  17. Archeological Applications of XAFS: Prehistorical Paintings And Medieval Glasses

    SciTech Connect (OSTI)

    Farges, F.; Chalmin, E.; Vignaud, C.; Pallot-Frossard, I.; Susini, J.; Bargar, J.; Brown, G.E., Jr.; Menu, M.; /SLAC, SSRL

    2006-10-27

    High-resolution manganese and iron K-edges XANES spectra were collected on several samples of archeological interest: prehistorical paintings and medieval glasses. XANES spectra were collected at the ID21 facility (ESRF, Grenoble, France) using a micro-beam device and at the 11-2 beamline (SSRL, Stanford, USA) using a submillimetric beam. The medieval glasses studied are from gothic glass windows from Normandy (XIVth century). The aim of this study is to help understand the chemical durability of these materials, exposed to weathering since the XIVth century. They are used as analogues of weathered glasses used to dump metallic wastes. These glasses show surficial enrichment in manganese, due to its oxidation from II (glass) to III/IV (surface), which precipitates as amorphous oxy-hydroxides. Similarly, iron is oxidized on the surface and forms ferrihydrite-type aggregates. The prehistorical paintings are from Lascaux and Ekain (Basque country). We choose in that study the black ones, rich in manganese to search for potential evidences of some 'savoir-faire' that the Paleolithic men could have used to realize their paint in rock art, as shown earlier for Fe-bearing pigments. A large number of highly valuable samples, micrometric scaled, were extracted from these frescoes and show large variation in the mineralogical nature of the black pigments used, from an amorphous psilomelane-type to a well-crystallized pyrolusite. Correlation with the crystals morphology helps understanding the know-how of these early artists.

  18. Letter report on PCT/Monolith glass ceramic corrosion tests

    SciTech Connect (OSTI)

    Crawford, Charles L.

    2015-09-24

    The Savannah River National Laboratory (SRNL) is collaborating with personnel from Pacific Northwest National Laboratory (PNNL) to study advanced waste form glass ceramics for immobilization of waste from Used Nuclear Fuel (UNF) separations processes. The glass ceramic waste forms take advantage of both crystalline and glassy phases where troublesome elements (e.g., low solubility in glass or very long-lived) partition to highly durable ceramic phases with the remainder of elements residing in the glassy phase. The ceramic phases are tailored to create certain minerals or unique crystalline structures that can host the radionuclides by binding them in their specific crystalline network while not adversely impacting the residual glass network (Crum et al., 2011). Glass ceramics have been demonstrated using a scaled melter test performed in a pilot scale (1/4 scale) cold crucible induction melter (CCIM) (Crum et al., 2014; Maio et al., 2015). This report summarizes recent results from both Phase I and Phase II bench scale tests involving crucible fabrication and corrosion testing of glass ceramics using the Product Consistency Test (PCT). Preliminary results from both Phase I and Phase II bench scale tests involving statistically designed matrices have previously been reported (Crawford, 2013; Crawford, 2014).

  19. Phosphate glasses for radioactive, hazardous and mixed waste immobilization

    DOE Patents [OSTI]

    Cao, Hui (Middle Island, NY); Adams, Jay W. (Stony Brook, NY); Kalb, Paul D. (Wading River, NY)

    1999-03-09

    Lead-free phosphate glass compositions are provided which can be used to immobilize low level and/or high level radioactive wastes in monolithic waste forms. The glass composition may also be used without waste contained therein. Lead-free phosphate glass compositions prepared at about 900.degree. C. include mixtures from about 1 mole % to about 6 mole %.iron (III) oxide, from about 1 mole % to about 6 mole % aluminum oxide, from about 15 mole % to about 20 mole % sodium oxide or potassium oxide, and from about 30 mole % to about 60 mole % phosphate. The invention also provides phosphate, lead-free glass ceramic glass compositions which are prepared from about 400.degree. C. to about 450.degree. C. and which includes from about 3 mole % to about 6 mole % sodium oxide, from about 20 mole % to about 50 mole % tin oxide, from about 30 mole % to about 70 mole % phosphate, from about 3 mole % to about 6 mole % aluminum oxide, from about 3 mole % to about 8 mole % silicon oxide, from about 0.5 mole % to about 2 mole % iron (III) oxide and from about 3 mole % to about 6 mole % potassium oxide. Method of making lead-free phosphate glasses are also provided.

  20. Phosphate glasses for radioactive, hazardous and mixed waste immobilization

    DOE Patents [OSTI]

    Cao, Hui (Middle Island, NY); Adams, Jay W. (Stony Brook, NY); Kalb, Paul D. (Wading River, NY)

    1998-11-24

    Lead-free phosphate glass compositions are provided which can be used to immobilize low level and/or high level radioactive wastes in monolithic waste forms. The glass composition may also be used without waste contained therein. Lead-free phosphate glass compositions prepared at about 900.degree. C. include mixtures from about 1 mole % to about 6 mole % iron (III) oxide, from about 1 mole % to about 6 mole % aluminum oxide, from about 15 mole % to about 20 mole % sodium oxide or potassium oxide, and from about 30 mole % to about 60 mole % phosphate. The invention also provides phosphate, lead-free glass ceramic glass compositions which are prepared from about 400.degree. C. to about 450.degree. C. and which includes from about 3 mole % to about 6 mole % sodium oxide, from about 20 mole % to about 50 mole % tin oxide, from about 30 mole % to about 70 mole % phosphate, from about 3 mole % to about 6 mole % aluminum oxide, from about 3 mole % to about 8 mole % silicon oxide, from about 0.5 mole % to about 2 mole % iron (III) oxide and from about 3 mole % to about 6 mole % potassium oxide. Method of making lead-free phosphate glasses are also provided.

  1. Phosphate glasses for radioactive, hazardous and mixed waste immobilization

    DOE Patents [OSTI]

    Cao, H.; Adams, J.W.; Kalb, P.D.

    1999-03-09

    Lead-free phosphate glass compositions are provided which can be used to immobilize low level and/or high level radioactive wastes in monolithic waste forms. The glass composition may also be used without waste contained therein. Lead-free phosphate glass compositions prepared at about 900 C include mixtures from about 1 mole % to about 6 mole % iron (III) oxide, from about 1 mole % to about 6 mole % aluminum oxide, from about 15 mole % to about 20 mole % sodium oxide or potassium oxide, and from about 30 mole % to about 60 mole % phosphate. The invention also provides phosphate, lead-free glass ceramic glass compositions which are prepared from about 400 C to about 450 C and which includes from about 3 mole % to about 6 mole % sodium oxide, from about 20 mole % to about 50 mole % tin oxide, from about 30 mole % to about 70 mole % phosphate, from about 3 mole % to about 6 mole % aluminum oxide, from about 3 mole % to about 8 mole % silicon oxide, from about 0.5 mole % to about 2 mole % iron (III) oxide and from about 3 mole % to about 6 mole % potassium oxide. Method of making lead-free phosphate glasses are also provided. 8 figs.

  2. Phosphate glasses for radioactive, hazardous and mixed waste immobilization

    DOE Patents [OSTI]

    Cao, H.; Adams, J.W.; Kalb, P.D.

    1998-11-24

    Lead-free phosphate glass compositions are provided which can be used to immobilize low level and/or high level radioactive wastes in monolithic waste forms. The glass composition may also be used without waste contained therein. Lead-free phosphate glass compositions prepared at about 900 C include mixtures from about 1--6 mole % iron (III) oxide, from about 1--6 mole % aluminum oxide, from about 15--20 mole % sodium oxide or potassium oxide, and from about 30--60 mole % phosphate. The invention also provides phosphate, lead-free glass ceramic glass compositions which are prepared from about 400 C to about 450 C and which includes from about 3--6 mole % sodium oxide, from about 20--50 mole % tin oxide, from about 30--70 mole % phosphate, from about 3--6 mole % aluminum oxide, from about 3--8 mole % silicon oxide, from about 0.5--2 mole % iron (III) oxide and from about 3--6 mole % potassium oxide. Method of making lead-free phosphate glasses are also provided. 8 figs.

  3. GRADIENT INDEX SPHERES BY THE SEQUENTIAL ACCRETION OF GLASS POWDERS

    SciTech Connect (OSTI)

    MARIANO VELEZ

    2008-06-15

    The Department of Energy is seeking a method for fabricating mm-scale spheres having a refractive index that varies smoothly and continuously from the center to its surface [1]. The fabrication procedure must allow the creation of a range of index profiles. The spheres are to be optically transparent and have a refractive index differential greater than 0.2. The sphere materials can be either organic or inorganic and the fabrication technique must be capable of scaling to low cost production. Mo-Sci Corporation proposed to develop optical quality gradient refractive index (GRIN) glass spheres of millimeter scale (1 to 2 mm diameter) by the sequential accretion and consolidation of glass powders. Other techniques were also tested to make GRIN spheres as the powder-accretion method produced non-concentric layers and poor optical quality glass spheres. Potential ways to make the GRIN spheres were (1) by "coating" glass spheres (1 to 2 mm diameter) with molten glass in a two step process; and (2) by coating glass spheres with polymer layers.

  4. Ruthenium Behavior at Phase Separation of Borosilicate Glass-12259

    SciTech Connect (OSTI)

    Enokida, Youichi [Graduate School of Engineering, Nagoya University, Nagoya, 463-8603 (Japan); Sawada, Kayo [EcoTopia Science Institute, Nagoya University, Nagoya, 463-8603 (Japan)

    2012-07-01

    The Rokkasho reprocessing plant (RRP) located in Aomori, Japan, vitrifies high level waste (HLW) into a borosilicate glass. The HLW is generated from the reprocessing of spent fuel and contains ruthenium (Ru) and other platinum group metals (PGMs). Based on the recent consequences after a huge earthquake that occurred in Japan, a hypothetical blackout was postulated for the RRP to address additional safety analysis requirements. During a prolonged blackout, the borosilicate glass could phase separate due to cooling of the glass in the melter. The Ru present in the glass matrix could migrate into separate phases and impact the durability of the borosilicate glass. The durability of the glass is important for quality assurance and performance assessment of the vitrified HLW. A fundamental study was performed at an independent university to understand the impact of a prolonged blackout. Simulated HLW glasses were prepared for the RRP, and the Ru behavior in phase separated glasses was studied. The simulated HLW glasses contained nonradioactive elements and PGMs. The glass compositions were then altered to enhance the formation of the phase-separated glasses when subjected to thermal treatment at 700 deg. C for 24 hours. The synthesized simulated glasses contained 1.1 % Ru by weight as ruthenium dioxide (RuO{sub 2}). A portion of the RuO{sub 2} formed needle-shaped crystals in the glass specimens. After the thermal treatment, the glass specimen had separated into two phases. One of the two phases was a B{sub 2}O{sub 3} rich phase, and the other phase was a SiO{sub 2} rich phase. The majority of the chemical species in the B{sub 2}O{sub 3} rich phase was leached away with the Material Characterization Center-3 (MCC-3) protocol standardized by the Pacific Northwest National Laboratory using an aqueous low-concentrated nitric acid solution, but the leaching of the Ru fraction was very limited; less than 1% of the original Ru content. The Ru leaching was much less than those of the other elements, and the needle-shaped crystals of RuO{sub 2} were observed in the B{sub 2}O{sub 3} rich phase in the specimen after the leaching test. Another experiment was performed using another glass specimen which had been prepared with the same frits, but used reagent RuO{sub 2} of granular shape at lower content (0.0073% by weight as RuO{sub 2}). The leached fractions of elements for the latter specimen increased to almost the same fraction (more than 10% of the original Ru content) as observed for boron and sodium, when the phase separated glass was leached using the MMC-3 protocol with non-acidic de-ionized water. Based on the results of this study, it was concluded that needle-shaped RuO{sub 2} crystals are contained in the B{sub 2}O{sub 3}-rich phase after phase separation of the borosilicate glass after a hypothetical blackout. The leaching fraction for the needle-shaped RuO{sub 2} present in the phase separated glass is much lower than those for boron or sodium. Ruthenium behavior has been studied for a hypothetical loss of cooling in the liquid fed ceramic melter for high level waste by taking into account the phase separation of borosilicate glass. The needle-shaped crystal of ruthenium dioxide after bi-nodal-type phase separation of the borosilicate glass at 700 deg. C migrated into the B{sub 2}O{sub 3} rich phase, but remained without dissolution by an acidic aqueous solution. Additionally, granular ruthenium dioxide can be a morphological form of ruthenium after bimodal-type phase separation of the vitrified high level waste with borosilicate glass media. After the phase separation of the borosilicate glass, the crystal shape of the ruthenium dioxide is either needle-shaped or granular, and the leachable fraction of ruthenium is relatively much lower than those of major components (boron and sodium) in the vitrified borosilicate glass. The fraction of leached ruthenium increased to almost the same fraction as observed for boron and sodium when the phase-separated glass was leached with ultrapure water. (authors)

  5. Glass Stronger than Steel | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Glass Stronger than Steel Stories of Discovery & Innovation Glass Stronger than Steel Enlarge Photo Image courtesy of R. Ritchie and M. Demetriou Highly magnified image shows a sharp crack introduced into palladium-based metallic glass and the extensive plastic shielding, marked by the white shear lines extending out from the crack, prevent the crack from opening the glass any further. Inset is a magnified view of the shear lines (arrow) developed during plastic sliding. 03.28.11 Glass

  6. In-situ study of crystallization kinetics in ternary bulk metallic glass

    Office of Scientific and Technical Information (OSTI)

    alloys with different glass forming abilities (Journal Article) | DOE PAGES In-situ study of crystallization kinetics in ternary bulk metallic glass alloys with different glass forming abilities « Prev Next » Title: In-situ study of crystallization kinetics in ternary bulk metallic glass alloys with different glass forming abilities Authors: Lan, Si [1] ; Wei, Xiaoya [1] ; Zhou, Jie [2] ; Lu, Zhaoping [2] ; Wu, Xuelian [1] ; Feygenson, Mikhail [3] ; Neuefeind, Jörg [3] ; Wang, Xun-Li [1]

  7. Evaluation Of Glass Density To Support The Estimation Of Fissile Mass Loadings From Iron Concentrations In SB8 Glasses

    SciTech Connect (OSTI)

    Edwards, T. B.; Peeler, D. K.; Kot, W. K.; Gan, H.; Pegg, I. L.

    2013-04-30

    The Department of Energy Savannah River (DOE-SR) has provided direction to Savannah River Remediation (SRR) to maintain fissile concentration in glass below 897 g/m{sup 3}. In support of that guidance, the Savannah River National Laboratory (SRNL) provided a technical basis and a supporting Microsoft Excel spreadsheet for the evaluation of fissile loading in Sludge Batch 5 (SB5), Sludge Batch 6 (SB6), Sludge Batch 7a (SB7a), and Sludge Batch 7b (SB7b) glass based on the iron (Fe) concentration in glass as determined by the measurements from the Slurry Mix Evaporator (SME) acceptability analysis. SRR has since requested that the necessary density information be provided to allow SRR to update the Excel spreadsheet so that it may be used to maintain fissile concentration in glass below 897 g/m{sup 3} during the processing of Sludge Batch 8 (SB8). One of the primary inputs into the fissile loading spreadsheet includes an upper bound for the density of SB8-based glasses. Thus, these bounding density values are to be used to assess the fissile concentration in this glass system. It should be noted that no changes are needed to the underlying structure of the Excel-based spreadsheet to support fissile assessments for SB8. However, SRR should update the other key inputs to the spreadsheet that are based on fissile and Fe concentrations reported from the SB8 Waste Acceptance Product Specification (WAPS) sample.

  8. Final Report on Actinide Glass Scintillators for Fast Neutron Detection

    SciTech Connect (OSTI)

    Bliss, Mary; Stave, Jean A.

    2012-10-01

    This is the final report of an experimental investigation of actinide glass scintillators for fast-neutron detection. It covers work performed during FY2012. This supplements a previous report, PNNL-20854 Initial Characterization of Thorium-loaded Glasses for Fast Neutron Detection (October 2011). The work in FY2012 was done with funding remaining from FY2011. As noted in PNNL-20854, the glasses tested prior to July 2011 were erroneously identified as scintillators. The decision was then made to start from scratch with a literature survey and some test melts with a non-radioactive glass composition that could later be fabricated with select actinides, most likely thorium. The normal stand-in for thorium in radioactive waste glasses is cerium in the same oxidation state. Since cerium in the 3+ state is used as the light emitter in many scintillating glasses, the next most common substitute was used: hafnium. Three hafnium glasses were melted. Two melts were colored amber and a third was clear. It barely scintillated when exposed to alpha particles. The uses and applications for a scintillating fast neutron detector are important enough that the search for such a material should not be totally abandoned. This current effort focused on actinides that have very high neutron capture energy releases but low neutron capture cross sections. This results in very long counting times and poor signal to noise when working with sealed sources. These materials are best for high flux applications and access to neutron generators or reactors would enable better test scenarios. The total energy of the neutron capture reaction is not the only factor to focus on in isotope selection. Many neutron capture reactions result in energetic gamma rays that require large volumes or high densities to detect. If the scintillator is to separate neutrons from gamma rays, the capture reactions should produce heavy particles and few gamma rays. This would improve the detection of a signal for fast neutron capture.

  9. Enzyme entrapped nanoporous scaffolds formed through flow induced gelation in microfluidic filter device for sensitive biosensing of organophosphorus compounds

    SciTech Connect (OSTI)

    Lu, Donglai; Shao, Guocheng; Du, Dan; Wang, Jun; Wang, Limin; Wang, Wanjun; Lin, Yuehe

    2011-02-01

    A novel and versatile processing method was developed for the formation of gel scaffolds with in-situ AChE-AuNPs immobilization for biosensing of organophosphorus compounds. The biosensor designed by our new approach shows high sensitivity, selectivity and reactivation efficiency. This flow induced immobilziation technique opens up new pathways for designing simple, fast, biocompatible, and cost-effective process for enhanced sensor performance and on-site testing of a variety of toxic organophosphorus compounds.

  10. Radiolabeled Peptide Scaffolds for PET/SPECT - Optical in Vivo Imaging of Carbohydrate-Lectin Interactions

    SciTech Connect (OSTI)

    Deutscher, Susan

    2014-09-30

    The objective of this research is to develop phage display-selected peptides into radio- and fluoresecently- labeled scaffolds for the multimodal imaging of carbohydrate-lectin interactions. While numerous protein and receptor systems are being explored for the development of targeted imaging agents, the targeting and analysis of carbohydrate-lectin complexes in vivo remains relatively unexplored. Antibodies, nanoparticles, and peptides are being developed that target carbohydrate-lectin complexes in living systems. However, antibodies and nanoparticles often suffer from slow clearance and toxicity problems. Peptides are attractive alternative vehicles for the specific delivery of radionuclides or fluorophores to sites of interest in vivo, although, because of their size, uptake and retention may be less than antibodies. We have selected high affinity peptides that bind a specific carbohydrate-lectin complex involved in cell-cell adhesion and cross-linking using bacteriophage (phage) display technologies (1,2). These peptides have allowed us to probe the role of these antigens in cell adhesion. Fluorescent versions of the peptides have been developed for optical imaging and radiolabeled versions have been used in single photon emission computed tomography (SPECT) and positron emission tomography (PET) in vivo imaging (3-6). A benefit in employing the radiolabeled peptides in SPECT and PET is that these imaging modalities are widely used in living systems and offer deep tissue sensitivity. Radiolabeled peptides, however, often exhibit poor stability and high kidney uptake in vivo. Conversely, optical imaging is sensitive and offers good spatial resolution, but is not useful for deep tissue penetration and is semi-quantitative. Thus, multimodality imaging that relies on the strengths of both radio- and optical- imaging is a current focus for development of new in vivo imaging agents. We propose a novel means to improve the efficacy of radiolabeled and fluorescently labeled peptides, including our lectin/carbohydrate- targeting peptides, by displaying the targeting epitopes on small ~29 amino acid cyclic plant protein scaffolds known as cyclotides. Cyclotides are extremely stable molecules with long serum half-lives and low kidney uptake (7). More than one copy of the peptide can be engineered into the cyclotide loops, thus increasing the avidity of the peptide construct for its target.

  11. HAM-5 functions as a MAP kinase scaffold during cell fusion in Neurospora crassa

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Jonkers, Wilfried; Leeder, Abigail C.; Ansong, Charles; Wang, Yuexi; Yang, Feng; Starr, Trevor L.; Camp, II, David G.; Smith, Richard D.; Glass, N. Louise; Heitman, Joseph

    2014-11-20

    Cell fusion in genetically identical Neurospora crassa germlings and in hyphae is a highly regulated process involving the activation of a conserved MAP kinase cascade that includes NRC1, MEK2 and MAK2. During chemotrophic growth in germlings, the MAP kinase cascade members localize to conidial anastomosis tube (CAT) tips every 4 minutes, perfectly out of phase with another protein that is recruited to the tip: SOFT, a protein of unknown biochemical function. How this oscillation process is initiated, maintained and what proteins regulate the MAP kinase cascade is currently unclear. A global phosphoproteomics approach using an allele of mak-2 (mak-2Q100G) thatmore » can be specifically inhibited by the ATP analog 1NM-PP1 was utilized to identify MAK2 kinase targets in germlings that were potentially involved in this process. One such putative target was HAM5, a protein of unknown biochemical function. Previously, Δham-5 mutants were shown to be deficient for hyphal fusion. Here we show that HAM5-GFP co-localized with NRC1, MEK2 and MAK2 and oscillated with identical dynamics from the cytoplasm to CAT tips during chemotropic interactions. In the Δmak-2 strain, HAM5-GFP localized to punctate complexes that did not oscillate, but still localized to the germling tip, suggesting that MAK2 activity influences HAM5 function/localization. However, MAK2-GFP showed only cytoplasmic and nuclear localization in a Δham-5 strain and did not localize to puncta, as observed in wild type germlings. Via co-immunoprecipitation experiments, HAM5 was shown to physically interact with MAK2, MEK2 and NRC1, suggesting that it functions as a scaffold/transport hub for the MAP kinase cascade members during oscillation and chemotropic interactions during both germling and hyphal fusion in N. crassa. The identification of HAM5 as a scaffold-like protein will help to link the activation of MAK2 to upstream factors and other proteins involved in this intriguing process of fungal communication.« less

  12. Integrated Disposal Facility FY2010 Glass Testing Summary Report

    SciTech Connect (OSTI)

    Pierce, Eric M.; Bacon, Diana H.; Kerisit, Sebastien N.; Windisch, Charles F.; Cantrell, Kirk J.; Valenta, Michelle M.; Burton, Sarah D.; Serne, R Jeffrey; Mattigod, Shas V.

    2010-09-30

    Pacific Northwest National Laboratory was contracted by Washington River Protection Solutions, LLC to provide the technical basis for estimating radionuclide release from the engineered portion of the disposal facility (e.g., source term). Vitrifying the low-activity waste at Hanford is expected to generate over 1.6 105 m3 of glass (Puigh 1999). The volume of immobilized low-activity waste (ILAW) at Hanford is the largest in the DOE complex and is one of the largest inventories (approximately 0.89 1018 Bq total activity) of long-lived radionuclides, principally 99Tc (t1/2 = 2.1 105), planned for disposal in a low-level waste (LLW) facility. Before the ILAW can be disposed, DOE must conduct a performance assessement (PA) for the Integrated Disposal Facility (IDF) that describes the long-term impacts of the disposal facility on public health and environmental resources. As part of the ILAW glass testing program PNNL is implementing a strategy, consisting of experimentation and modeling, in order to provide the technical basis for estimating radionuclide release from the glass waste form in support of future IDF PAs. The purpose of this report is to summarize the progress made in fiscal year (FY) 2010 toward implementing the strategy with the goal of developing an understanding of the long-term corrosion behavior of low-activity waste glasses. The emphasis in FY2010 was the completing an evaluation of the most sensitive kinetic rate law parameters used to predict glass weathering, documented in Bacon and Pierce (2010), and transitioning from the use of the Subsurface Transport Over Reactive Multi-phases to Subsurface Transport Over Multiple Phases computer code for near-field calculations. The FY2010 activities also consisted of developing a Monte Carlo and Geochemical Modeling framework that links glass composition to alteration phase formation by 1) determining the structure of unreacted and reacted glasses for use as input information into Monte Carlo calculations, 2) compiling the solution data and alteration phases identified from accelerated weathering tests conducted with ILAW glass by PNNL and Viteous State Laboratory/Catholic University of America as well as other literature sources for use in geochemical modeling calculations, and 3) conducting several initial calculations on glasses that contain the four major components of ILAW-Al2O3, B2O3, Na2O, and SiO2.

  13. Phosphate glass useful in high energy lasers

    DOE Patents [OSTI]

    Hayden, Y.T.; Guesto-Barnak, D.

    1992-12-22

    Disclosed is a low-or no-silica, low- or no-alkali phosphate glass useful as a laser amplifier in a multiple pass, high energy laser system having a high thermal conductivity, K[sub 90 C] >0.85 W/mK, a low coefficient of thermal expansion, [alpha][sub 20-300 C] <80[times]10[sup [minus]7]/C, low emission cross section, [sigma]<2.5[times]10[sup [minus]20] cm[sup 2], and a high fluorescence lifetime, [tau]>325 [mu]secs at 3 wt. % Nd doping, consisting essentially of (on an oxide composition basis): (Mole %) P[sub 2]O[sub 5], (52-72); Al[sub 2]O[sub 3], (0-<20); B[sub 2]O[sub 3], (>0-25); ZnO, (0-31); Li[sub 2]O, (0-5); K[sub 2]O, (0-5); Na[sub 2]O, (0-5); Cs[sub 2]O, (0-5); Rb[sub 2]O, (0-5); MgO, (>0-<30); CaO, (0-20); BaO, (0-20); SrO, (0-<20); Sb[sub 2]O[sub 3], (0-<1); As[sub 2]O[sub 3], (0-<1); Nb[sub 2]O[sub 5], (0-<1); Ln[sub 2]O[sub 3], (up to 6.5); PbO, (0-<5); and SiO[sub 2], (0-3); wherein Ln[sub 2]O[sub 3] is the sum of lanthanide oxides; [Sigma]R[sub 2]O is <5, R being Li, Na, K, Cs, and Rb; the sum of Al[sub 2]O[sub 3] and MgO is <24 unless [Sigma]R[sub 2]O is 0, then the sum of Al[sub 2]O[sub 3] and MgO is <42; and the ratio of MgO to B[sub 2]O[sub 3] is 0.48-4.20. 7 figs.

  14. Vacuum fusion bonded glass plates having microstructures thereon

    DOE Patents [OSTI]

    Swierkowski, Steve P. (Livermore, CA); Davidson, James C. (Livermore, CA); Balch, Joseph W. (Livermore, CA)

    2001-01-01

    An improved apparatus and method for vacuum fusion bonding of large, patterned glass plates. One or both glass plates are patterned with etched features such as microstructure capillaries and a vacuum pumpout moat, with one plate having at least one hole therethrough for communication with a vacuum pumpout fixture. High accuracy alignment of the plates is accomplished by a temporary clamping fixture until the start of the fusion bonding heat cycle. A complete, void-free fusion bond of seamless, full-strength quality is obtained through the plates; because the glass is heated well into its softening point and because of a large, distributed force that is developed that presses the two plates together from the difference in pressure between the furnace ambient (high pressure) and the channeling and microstructures in the plates (low pressure) due to the vacuum drawn. The apparatus and method may be used to fabricate microcapillary arrays for chemical electrophoresis; for example, any apparatus using a network of microfluidic channels embedded between plates of glass or similar moderate melting point substrates with a gradual softening point curve, or for assembly of glass-based substrates onto larger substrates, such as in flat panel display systems.

  15. Apparatus and process to enhance the uniform formation of hollow glass microspheres

    DOE Patents [OSTI]

    Schumacher, Ray F

    2013-10-01

    A process and apparatus is provided for enhancing the formation of a uniform population of hollow glass microspheres. A burner head is used which directs incoming glass particles away from the cooler perimeter of the flame cone of the gas burner and distributes the glass particles in a uniform manner throughout the more evenly heated portions of the flame zone. As a result, as the glass particles are softened and expand by a released nucleating gas so as to form a hollow glass microsphere, the resulting hollow glass microspheres have a more uniform size and property distribution as a result of experiencing a more homogenous heat treatment process.

  16. RNA regulatory networks diversified through curvature of the PUF protein scaffold

    SciTech Connect (OSTI)

    Wilinski, Daniel; Qiu, Chen; Lapointe, Christopher P.; Nevil, Markus; Campbell, Zachary T.; Tanaka Hall, Traci M.; Wickens, Marvin

    2015-09-14

    Proteins bind and control mRNAs, directing their localization, translation and stability. Members of the PUF family of RNA-binding proteins control multiple mRNAs in a single cell, and play key roles in development, stem cell maintenance and memory formation. Here we identified the mRNA targets of a S. cerevisiae PUF protein, Puf5p, by ultraviolet-crosslinking-affinity purification and high-throughput sequencing (HITS-CLIP). The binding sites recognized by Puf5p are diverse, with variable spacer lengths between two specific sequences. Each length of site correlates with a distinct biological function. Crystal structures of Puf5pRNA complexes reveal that the protein scaffold presents an exceptionally flat and extended interaction surface relative to other PUF proteins. In complexes with RNAs of different lengths, the protein is unchanged. A single PUF protein repeat is sufficient to induce broadening of specificity. Changes in protein architecture, such as alterations in curvature, may lead to evolution of mRNA regulatory networks.

  17. Co-repressor activity of scaffold attachment factor B1 requires sumoylation

    SciTech Connect (OSTI)

    Garee, Jason P.; Meyer, Rene; Systems Biology of Signal Transduction, German Cancer Research Center , INF 280, 69120 Heidelberg ; Oesterreich, Steffi

    2011-05-20

    Highlights: {yields} SAFB1 is sumoylated to two lysine residues K231 and K294. {yields} SAFB1 sumoylation is regulated by PIAS1 and SENP1. {yields} Sumoylation of SAFB1 regulates its transcriptional repressor activity. {yields} Mutation of sumoylation sites leads to decreased SAFB1 binding to HDAC3. -- Abstract: Sumoylation is an emerging modification associated with a variety of cellular processes including the regulation of transcriptional activities of nuclear receptors and their coregulators. As SUMO modifications are often associated with transcriptional repression, we examined if sumoylation was involved in modulation of the transcriptional repressive activity of scaffold attachment factor B1. Here we show that SAFB1 is modified by both the SUMO1 and SUMO2/3 family of proteins, on lysine's K231 and K294. Further, we demonstrate that SAFB1 can interact with PIAS1, a SUMO E3 ligase which mediates SAFB1 sumoylation. Additionally, SENP1 was identified as the enzyme desumoylating SAFB1. Mutation of the SAFB1 sumoylation sites lead to a loss of transcriptional repression, at least in part due to decreased interaction with HDAC3, a known transcriptional repressor and SAFB1 binding partner. In summary, the transcriptional repressor SAFB1 is modified by both SUMO1 and SUMO2/3, and this modification is necessary for its full repressive activity.

  18. RNA regulatory networks diversified through curvature of the PUF protein scaffold

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wilinski, Daniel; Qiu, Chen; Lapointe, Christopher P.; Nevil, Markus; Campbell, Zachary T.; Tanaka Hall, Traci M.; Wickens, Marvin

    2015-09-14

    Proteins bind and control mRNAs, directing their localization, translation and stability. Members of the PUF family of RNA-binding proteins control multiple mRNAs in a single cell, and play key roles in development, stem cell maintenance and memory formation. Here we identified the mRNA targets of a S. cerevisiae PUF protein, Puf5p, by ultraviolet-crosslinking-affinity purification and high-throughput sequencing (HITS-CLIP). The binding sites recognized by Puf5p are diverse, with variable spacer lengths between two specific sequences. Each length of site correlates with a distinct biological function. Crystal structures of Puf5p–RNA complexes reveal that the protein scaffold presents an exceptionally flat and extendedmore » interaction surface relative to other PUF proteins. In complexes with RNAs of different lengths, the protein is unchanged. A single PUF protein repeat is sufficient to induce broadening of specificity. Changes in protein architecture, such as alterations in curvature, may lead to evolution of mRNA regulatory networks.« less

  19. Improved Alumina Loading in High-Level Waste Glasses

    SciTech Connect (OSTI)

    Kim, D.; Vienna, J.D. [Pacific Northwest National Laboratory, Richland, WA (United States); Peeler, D.K.; Fox, K.M. [Savannah River National Laboratory, Aiken, SC (United States); Aloy, A.; Trofimenko, A.V. [V.G. Khlopin Radium Institute, St. Petersburg (Russian Federation); Gerdes, K.D. [EM-21, Office of Waste Processing, U.S. Department of Energy, Washington, DC (United States)

    2008-07-01

    Recent tank retrieval, blending, and treatment strategies at both the Savannah River Site (SRS) and Hanford have identified increased amounts of high-Al{sub 2}O{sub 3} waste streams that are scheduled to be processed through their respective high-level waste (HLW) vitrification facilities. It is well known that the addition of small amounts of Al{sub 2}O{sub 3} to borosilicate glasses generally enhances the durability of the waste glasses. However, at higher Al{sub 2}O{sub 3} concentrations nepheline (NaAlSiO{sub 4}) formation can result in a severe deterioration of the chemical durability of the slowly cooled glass near the center of the canister. Additionally, higher concentrations of Al{sub 2}O{sub 3} generally increase the liquidus temperature of the melt and decrease the processing rate. Pacific Northwest National Laboratory (PNNL), Savannah River National Laboratory (SRNL), and Khlopin Radium Institute (KRI) are jointly performing laboratory and scaled-melter tests, through US Department of Energy, EM-21 Office of Waste Processing program, to develop glass formulations with increased Al{sub 2}O{sub 3} concentrations. These glasses are formulated for specific DOE waste compositions at Hanford and Savannah River Site. The objectives are to avoid nepheline formation while maintaining or meeting waste loading and/or waste throughput expectations as well as satisfying critical process and product performance related constraints such as viscosity, liquidus temperature, and glass durability. This paper summarizes the results of recent tests of simulated Hanford HLW glasses containing up to 26 wt% Al{sub 2}O{sub 3} in glass. In summary: Glasses with Al{sub 2}O{sub 3} loading ranging from 25 to 27 wt% were formulated and tested at a crucible scale. Successful glass formulations with up to 26 wt% Al{sub 2}O{sub 3} that do not precipitate nepheline during CCC treatment and had spinel crystals 1 vol% or less after 24 hr heat treatment at 950 deg. C were obtained. The selected glass, HAL-17 with 26 wt% Al{sub 2}O{sub 3}, had viscosity and electrical conductivity within the boundaries for adequate processing in the Joule heated melters operated at 1150 deg. C. This HAL-17 glass was successfully processed using small-scale (SMK) and larger scale (EP-5) melters. There was no indication of spinel settling during processing. The product glass samples from these melter tests contained 1 to 4 vol% spinel crystals that are likely formed during cooling. The PCT tests on the product glasses are underway. The present study demonstrated that it is possible to formulate the glasses with up to 26 wt% Al{sub 2}O{sub 3} that satisfy the property requirements and is processable with Joule-heated melters operated at 1150 deg. C. The 'nepheline discriminator' for HAL-17 glass is 0.45, which supports that claim that the current rule ('nepheline discriminator' < 0.62) is too restrictive. Considering that the cost of HLW treatment is highly dependent on loading of waste in glass, this result provides a potential for significant cost saving for Hanford. The maximum Al{sub 2}O{sub 3} loading that can be achieved will also depend on concentrations of other components in wastes. For example, the loading of waste used in this study was also limited by the spinel crystallization after 950 deg. C 24 hr heat treatment, which suggests that the concentrations of spinel-forming components such as Fe{sub 2}O{sub 3}, Cr{sub 2}O{sub 3}, NiO, ZnO, and MnO would be critical in addition to Al{sub 2}O{sub 3} for the maximum Al{sub 2}O{sub 3} loading achievable. The observed glass production rate per unit melter surface area of 0.75 MT/(d.m{sup 2}) for SMK test is comparable to the design capacity of WTP HLW melters at 0.8 MT/(d.m{sup 2}). However, the test with EP-5 melter achieved 0.38 MT/(d.m{sup 2}), which is roughly a half of the WTP design capacity. This result may imply that the glass with 26 wt% Al{sub 2}O{sub 3} may not achieve the WTP design production rate. However, this hypothesis is not conclusive because of unknown effects of melter size and operation

  20. Final Report - Glass Formulation Development and DM10 Melter Testing with ORP LAW Glasses, VSL-09R1510-2, Rev. 0, dated 6/12/09

    SciTech Connect (OSTI)

    Kruger, Albert A.; Pegg, I. L.; Matlack, K. S.; Joseph, I.; Muller, I. S.; Gong, W.

    2013-11-13

    The principal objective of the work described in this Final Report is to extend the glass formulation methodology developed in the earlier work by development of acceptable glass compositions for four LAW compositions specified by ORP that cover the range of sulfate to sodium and potassium to sodium ratios expected in Hanford LAW. The glass formulations were designed to exclude titanium and iron as glass former additives, while tin and vanadium as glass former additives were evaluated for beneficial effects in increasing waste loading in the glasses. This was accomplished through a combination of crucible-scale tests and tests on the DM10 melter system. This melter is the most efficient melter platform for screening glass compositions over a wide range of sulfate concentrations and therefore was selected for the present tests. The current tests provide information on melter processing characteristics and off-gas data, including sulfur incorporation and partitioning.

  1. Method of forming crystalline silicon devices on glass

    DOE Patents [OSTI]

    McCarthy, A.M.

    1995-03-21

    A method is disclosed for fabricating single-crystal silicon microelectronic components on a silicon substrate and transferring same to a glass substrate. This is achieved by utilizing conventional silicon processing techniques for fabricating components of electronic circuits and devices on bulk silicon, wherein a bulk silicon surface is prepared with epitaxial layers prior to the conventional processing. The silicon substrate is bonded to a glass substrate and the bulk silicon is removed leaving the components intact on the glass substrate surface. Subsequent standard processing completes the device and circuit manufacturing. This invention is useful in applications requiring a transparent or insulating substrate, particularly for display manufacturing. Other applications include sensors, actuators, optoelectronics, radiation hard electronics, and high temperature electronics. 7 figures.

  2. Method of forming crystalline silicon devices on glass

    DOE Patents [OSTI]

    McCarthy, Anthony M. (Menlo Park, CA)

    1995-01-01

    A method for fabricating single-crystal silicon microelectronic components on a silicon substrate and transferring same to a glass substrate. This is achieved by utilizing conventional silicon processing techniques for fabricating components of electronic circuits and devices on bulk silicon, wherein a bulk silicon surface is prepared with epitaxial layers prior to the conventional processing. The silicon substrate is bonded to a glass substrate and the bulk silicon is removed leaving the components intact on the glass substrate surface. Subsequent standard processing completes the device and circuit manufacturing. This invention is useful in applications requiring a transparent or insulating substrate, particularly for display manufacturing. Other applications include sensors, actuators, optoelectronics, radiation hard electronics, and high temperature electronics.

  3. Lowering critical cooling rate for forming bulk metallic glass

    SciTech Connect (OSTI)

    Shen, T.D.; Schwarz, R.B. [MS G755, MST-8, Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    2006-02-27

    Small volumes of Pd{sub 44}Ni{sub 10}Cu{sub 26}P{sub 20} and Pd{sub 43.2}Ni{sub 8.8}Cu{sub 28}P{sub 20} were encapsulated in B{sub 2}O{sub 3} and thermally cycled between T{sub g}-60 deg. C and T{sub l}+60 deg. C, where T{sub g} and T{sub l} denote the alloys' glass transition and liquidus temperatures. After this thermal treatment, the critical cooling rates (CCRs) for glass formation can be lowered by an order of magnitude, resulting in a critical cooling rate significantly lower than that reported for any other glass forming alloy melt. These experiments demonstrate that the CCR is not constant but strongly dependent on the degree of heterogeneous nucleation.

  4. An empirical modeling approach to high sodium glass durability

    SciTech Connect (OSTI)

    Shine, E.P.; Sadler, A.L.K. [Westinghouse Savannah River Company, Aiken, SC (United States)

    1996-12-31

    Empirical mixture models have been developed for chemical durability of high sodium borosilicate glass. The response of boron to a seven-day Product Consistency Test (PCT) was chosen as the measure of durability. The objective of the model development was to support the proposed vitrification of Hanford low-level waste (LLW), the bulk of which is primarily sodium oxide. A full first-order model and a second order model were developed from a database of high-sodium borosilicate glasses. First-order models proved to be satisfactory in a qualitative sense, but root mean squared errors were fairly large for quantitative predictive purposes. The results imply that mechanistic models relating durability to composition should include higher order compositional interactions; a second-order model yielded much improved statistics. The modeling results also suggest that calcium, which is considered a network modifier yet is also regarded as a glass {open_quotes}stiffener{close_quotes}, may improve durability.

  5. Radiation and Thermal Ageing of Nuclear Waste Glass

    SciTech Connect (OSTI)

    Weber, William J [ORNL

    2014-01-01

    The radioactive decay of fission products and actinides incorporated into nuclear waste glass leads to self-heating and self-radiation effects that may affect the stability, structure and performance of the glass in a closed system. Short-lived fission products cause significant self-heating for the first 600 years. Alpha decay of the actinides leads to self-radiation damage that can be significant after a few hundred years, and over the long time periods of geologic disposal, the accumulation of helium and radiation damage from alpha decay may lead to swelling, microstructural evolution and changes in mechanical properties. Four decades of research on the behavior of nuclear waste glass are reviewed.

  6. Magnesium-phosphate-glass cements with ceramic-type properties

    DOE Patents [OSTI]

    Sugama, T.; Kukacka, L.E.

    1982-09-23

    Rapid setting magnesium phosphate (Mg glass) cementitious materials consisting of magnesium phosphate cement paste, polyborax and water-saturated aggregate, exhibits rapid setting and high early strength characteristics. The magnesium glass cement is prepared from a cation-leachable powder and a bivalent metallic ion-accepting liquid such as an aqueous solution of diammonium phosphate and ammonium polyphosphate. The cation-leachable powder includes a mixture of two different magnesium oxide powders processed and sized differently which when mixed with the bivalent metallic ion-accepting liquid provides the magnesium glass cement consisting primarily of magnesium ortho phosphate tetrahydrate, with magnesium hydroxide and magnesium ammonium phosphate hexahydrate also present. The polyborax serves as a set-retarder. The resulting magnesium mono- and polyphosphate cements are particularly suitable for use as a cementing matrix in rapid repair systems for deteriorated concrete structures as well as construction materials and surface coatings for fireproof structures.

  7. Magnesium phosphate glass cements with ceramic-type properties

    DOE Patents [OSTI]

    Sugama, Toshifumi (Mastic Beach, NY); Kukacka, Lawrence E. (Port Jefferson, NY)

    1984-03-13

    Rapid setting magnesium phosphate (Mg glass) cementitious materials consisting of magnesium phosphate cement paste, polyborax and water-saturated aggregate exhibiting rapid setting and high early strength characteristics. The magnesium glass cement is prepared from a cation-leachable powder and a bivalent metallic ion-accepting liquid such as an aqueous solution of diammonium phosphate and ammonium polyphosphate. The cation-leachable powder includes a mixture of two different magnesium oxide powders processed and sized differently which when mixed with the bivalent metallic ion-accepting liquid provides the magnesium glass cement consisting primarily of magnesium ortho phosphate tetrahydrate, with magnesium hydroxide and magnesium ammonium phosphate hexahydrate also present. The polyborax serves as a set-retarder. The resulting magnesium mono- and polyphosphate cements are particularly suitable for use as a cementing matrix in rapid repair systems for deteriorated concrete structures as well as construction materials and surface coatings for fireproof structures.

  8. Shedding Synchrotron Light on a Puzzle of Glasses

    ScienceCinema (OSTI)

    Chumakov, Aleksandr [European Synchrotron Radiation Facility, Grenoble, France

    2010-01-08

    Vibrational dynamics of glasses remains a point of controversial discussions. In particular, the density of vibrational states (DOS) reveals an excess of states above the Debye model called "boson peak." Despite the fact that this universal feature for all glasses has been known for more than 35 years, the nature of the boson peak is still not understood. The application of nuclear inelastic scattering via synchrotron radiation perhaps provides a clearer, more consistent picture of the subject. The distinguishing features of nuclear inelastic scattering relative to, e.g., neutron inelastic scattering, are ideal momentum integration and exact scaling of the DOS in absolute units. This allows for reliable comparison to data from other techniques such as Brillouin light scattering. Another strong point is ideal isotope selectivity: the DOS is measured for a single isotope with a specific low-energy nuclear transition. This allows for special "design" of an experiment to study, for instance, the dynamics of only center-of-mass motions. Recently, we have investigated the transformation of the DOS as a function of several key parameters such as temperature, cooling rate, and density. In all cases the transformation of the DOS is sufficiently well described by a transformation of the continuous medium, in particular, by changes of the macroscopic density and the sound velocity. These results suggest a collective sound-like nature of vibrational dynamics in glasses and cast doubts on microscopic models of glass dynamics. Further insight can be obtained in combined studies of glass with nuclear inelastic and inelastic neutron scattering. Applying two techniques, we have measured the energy dependence of the characteristic correlation length of atomic motions. The data do not reveal localization of atomic vibrations at the energy of the boson peak. Once again, the results suggest that special features of glass dynamics are related to extended motions and not to local models.

  9. Method for fabricating transistors using crystalline silicon devices on glass

    DOE Patents [OSTI]

    McCarthy, Anthony M. (Menlo Park, CA)

    1997-01-01

    A method for fabricating transistors using single-crystal silicon devices on glass. This method overcomes the potential damage that may be caused to the device during high voltage bonding and employs a metal layer which may be incorporated as part of the transistor. This is accomplished such that when the bonding of the silicon wafer or substrate to the glass substrate is performed, the voltage and current pass through areas where transistors will not be fabricated. After removal of the silicon substrate, further metal may be deposited to form electrical contact or add functionality to the devices. By this method both single and gate-all-around devices may be formed.

  10. Color Glass Condensate in Schwinger-Keldysh QCD (Journal Article) |

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect Color Glass Condensate in Schwinger-Keldysh QCD Citation Details In-Document Search Title: Color Glass Condensate in Schwinger-Keldysh QCD Within the Schwinger-Keldysh representation of many-body QCD, it is shown that the leading quantum corrections to the strong classical color field are "classical" in the sense that the fluctuation field still obeys the classical Jacobi-field equation, while the quantum effects solely reside in the fluctuations of the initial

  11. Thermally efficient melting and fuel reforming for glass making

    DOE Patents [OSTI]

    Chen, M.S.; Painter, C.F.; Pastore, S.P.; Roth, G.S.; Winchester, D.C.

    1991-10-15

    An integrated process is described for utilizing waste heat from a glass making furnace. The hot off-gas from the furnace is initially partially cooled, then fed to a reformer. In the reformer, the partially cooled off-gas is further cooled against a hydrocarbon which is thus reformed into a synthesis gas, which is then fed into the glass making furnace as a fuel. The further cooled off-gas is then recycled back to absorb the heat from the hot off-gas to perform the initial cooling. 2 figures.

  12. Thermally efficient melting and fuel reforming for glass making

    DOE Patents [OSTI]

    Chen, Michael S. (Zionsville, PA); Painter, Corning F. (Allentown, PA); Pastore, Steven P. (Allentown, PA); Roth, Gary S. (Trexlertown, PA); Winchester, David C. (Allentown, PA)

    1991-01-01

    An integrated process for utilizing waste heat from a glass making furnace. The hot off-gas from the furnace is initially partially cooled, then fed to a reformer. In the reformer, the partially cooled off-gas is further cooled against a hydrocarbon which is thus reformed into a synthesis gas, which is then fed into the glass making furnace as a fuel. The further cooled off-gas is then recycled back to absorb the heat from the hot off-gas to perform the initial cooling.

  13. Risk-based high-throughput chemical screening and prioritization using exposure models and in vitro bioactivity assays

    SciTech Connect (OSTI)

    Shin, Hyeong -Moo; Ernstoff, Alexi; Arnot, Jon A.; Wetmore, Barbara A.; Csiszar, Susan A.; Fantke, Peter; Zhang, Xianming; McKone, Thomas E.; Jolliet, Olivier; Bennett, Deborah H.

    2015-05-01

    We present a risk-based high-throughput screening (HTS) method to identify chemicals for potential health concerns or for which additional information is needed. The method is applied to 180 organic chemicals as a case study. We first obtain information on how the chemical is used and identify relevant use scenarios (e.g., dermal application, indoor emissions). For each chemical and use scenario, exposure models are then used to calculate a chemical intake fraction, or a product intake fraction, accounting for chemical properties and the exposed population. We then combine these intake fractions with use scenario-specific estimates of chemical quantity to calculate daily intake rates (iR; mg/kg/day). These intake rates are compared to oral equivalent doses (OED; mg/kg/day), calculated from a suite of ToxCast in vitro bioactivity assays using in vitro-to-in vivo extrapolation and reverse dosimetry. Bioactivity quotients (BQs) are calculated as iR/OED to obtain estimates of potential impact associated with each relevant use scenario. Of the 180 chemicals considered, 38 had maximum iRs exceeding minimum OEDs (i.e., BQs > 1). For most of these compounds, exposures are associated with direct intake, food/oral contact, or dermal exposure. The method provides high-throughput estimates of exposure and important input for decision makers to identify chemicals of concern for further evaluation with additional information or more refined models.

  14. Risk-based high-throughput chemical screening and prioritization using exposure models and in vitro bioactivity assays

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Shin, Hyeong -Moo; Ernstoff, Alexi; Arnot, Jon A.; Wetmore, Barbara A.; Csiszar, Susan A.; Fantke, Peter; Zhang, Xianming; McKone, Thomas E.; Jolliet, Olivier; Bennett, Deborah H.

    2015-05-01

    We present a risk-based high-throughput screening (HTS) method to identify chemicals for potential health concerns or for which additional information is needed. The method is applied to 180 organic chemicals as a case study. We first obtain information on how the chemical is used and identify relevant use scenarios (e.g., dermal application, indoor emissions). For each chemical and use scenario, exposure models are then used to calculate a chemical intake fraction, or a product intake fraction, accounting for chemical properties and the exposed population. We then combine these intake fractions with use scenario-specific estimates of chemical quantity to calculate dailymore » intake rates (iR; mg/kg/day). These intake rates are compared to oral equivalent doses (OED; mg/kg/day), calculated from a suite of ToxCast in vitro bioactivity assays using in vitro-to-in vivo extrapolation and reverse dosimetry. Bioactivity quotients (BQs) are calculated as iR/OED to obtain estimates of potential impact associated with each relevant use scenario. Of the 180 chemicals considered, 38 had maximum iRs exceeding minimum OEDs (i.e., BQs > 1). For most of these compounds, exposures are associated with direct intake, food/oral contact, or dermal exposure. The method provides high-throughput estimates of exposure and important input for decision makers to identify chemicals of concern for further evaluation with additional information or more refined models.« less

  15. High-Power Solid-State Lasers from a Laser Glass Perspective

    SciTech Connect (OSTI)

    Campbell, J H; Hayden, J S; Marker, A J

    2010-12-17

    Advances in laser glass compositions and manufacturing have enabled a new class of high-energy/high-power (HEHP), petawatt (PW) and high-average-power (HAP) laser systems that are being used for fusion energy ignition demonstration, fundamental physics research and materials processing, respectively. The requirements for these three laser systems are different necessitating different glasses or groups of glasses. The manufacturing technology is now mature for melting, annealing, fabricating and finishing of laser glasses for all three applications. The laser glass properties of major importance for HEHP, PW and HAP applications are briefly reviewed and the compositions and properties of the most widely used commercial laser glasses summarized. Proposed advances in these three laser systems will require new glasses and new melting methods which are briefly discussed. The challenges presented by these laser systems will likely dominate the field of laser glass development over the next several decades.

  16. Spin-Glass Behavior in a Giant Unit Cell Compound Tb117Fe52Ge113...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Spin-Glass Behavior in a Giant Unit Cell Compound Tb117Fe52Ge113.8(1) Citation Details In-Document Search Title: Spin-Glass Behavior in a Giant Unit Cell Compound ...

  17. Development and Validation of a Coupled Combustion Space/Glass Bath Furnace Simulation

    SciTech Connect (OSTI)

    2000-12-01

    Glass Furnace Simulation Model will Improve Energy Use and Efficiency While Reducing Emissions. Competitive and regulatory pressures are motivating glass manufacturers to seek new ways to improve productivity while reducing furnace enery use and emission.

  18. Comparison of glass surfaces as a countertop material to existing surfaces

    SciTech Connect (OSTI)

    Turo, Laura A.; Winschell, Abigail E.

    2011-09-01

    Gleen Glass, a small production glass company that creates countertops, was selected for the Technology Assistance Program through Pacific Northwest National Laboratory. Gleen Glass was seeking material property analysis comparing glass as a countertop material to current surfaces (i.e. marble, granite and engineered stone). With samples provided from Gleen Glass, testing was done on granite, marble, and 3 different glass surfaces ('Journey,' 'Pebble,' and 'Gleen'). Results showed the glass surfaces have a lower density, lower water absorption, and are stronger in compressive and flexural tests as compared to granite and marble. Thermal shock tests showed the glass failed when objects with a high thermal mass are placed directly on them, whereas marble and granite did not fracture under these conditions.

  19. The structural origin of the hard-sphere glass transition in...

    Office of Scientific and Technical Information (OSTI)

    The structural origin of the hard-sphere glass transition in granular packing Prev Next Title: The structural origin of the hard-sphere glass transition in granular packing ...

  20. GLASS FABRICATION AND ANALYSIS LITERATURE REVIEW AND METHOD SELECTION FOR WTP WASTE FEED QUALIFICATION

    SciTech Connect (OSTI)

    Peeler, D.

    2013-06-27

    Scope of the Report The objective of this literature review is to identify and review documents to address scaling, design, operations, and experimental setup, including configuration, data collection, and remote handling that would be used during waste feed qualification in support of the glass fabrication unit operation. Items addressed include: ? LAW and HLW glass formulation algorithms; ? Mixing and sampling; ? Rheological measurements; ? Heat of hydration; ? Glass fabrication techniques; ? Glass inspection; ? Composition analysis; ? Use of cooling curves; ? Hydrogen generation rate measurement.

  1. Process for Converting Waste Glass Fiber into Value-Added Products |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy for Converting Waste Glass Fiber into Value-Added Products Process for Converting Waste Glass Fiber into Value-Added Products New Process Reduces Glass Fiber Waste Stream to Landfills Solid wastes are generated at glass fiber manufacturing facilities. With the help of a grant from DOE's Inventions and Innovation Program, Albacem, LLC, developed a new process that converts these waste streams into VCAS(tm) (vitrified calcium alumino-silicate) pozzolans that can be used in

  2. PNL vitrification technology development project glass formulation strategy for LLW vitrification

    SciTech Connect (OSTI)

    Kim, D.; Hrma, P.R.; Westsik, J.H. Jr.

    1996-03-01

    This Glass Formulation Strategy describes development approaches to optimize glass compositions for Hanford`s low-level waste vitrification between now and the projected low-level waste facility start-up in 2005. The objectives of the glass formulation task are to develop optimized glass compositions with satisfactory long-term durability, acceptable processing characteristics, adequate flexibility to handle waste variations, maximize waste loading to practical limits, and to develop methodology to respond to further waste variations.

  3. Glass composition and process for sealing void spaces in electrochemical devices

    DOE Patents [OSTI]

    Meinhardt, Kerry D.; Kirby, Brent W.

    2012-05-01

    A glass foaming material and method are disclosed for filling void spaces in electrochemical devices. The glass material includes a reagent that foams at a temperature above the softening point of the glass. Expansion of the glass fills void spaces including by-pass and tolerance channels of electrochemical devices. In addition, cassette to cassette seals can also be formed while channels and other void spaces are filled, reducing the number of processing steps needed.

  4. Expanded High-Level Waste Glass Property Data Development: Phase I

    SciTech Connect (OSTI)

    Schweiger, Michael J.; Riley, Brian J.; Crum, Jarrod V.; Hrma, Pavel R.; Rodriguez, Carmen P.; Arrigoni, Benjamin M.; Lang, Jesse B.; Kim, Dong-Sang; Vienna, John D.; Raszewski, F. C.; Peeler, David K.; Edwards, Tommy B.; Best, D. R.; Reamer, Irene A.; Riley, W. T.; Simmons, P. T.; Workman, R. J.

    2011-01-21

    Two separate test matrices were developed as part if the EM-21 Glass Matrix Crucible Testing. The first matrix, developed using a single component-at-a-time design method and covering glasses of interest primarily to Hanford, is addressed in this data package. This data package includes methods and results from glass fabrication, chemical analysis of glass compositions, viscosity, electrical conductivity, liquidus temperature, canister centerline cooling, product consistency testing, and the toxicity characteristic leach procedure.

  5. The effect of high-level waste glass composition on spinel liquidus

    Office of Scientific and Technical Information (OSTI)

    temperature (Journal Article) | SciTech Connect Journal Article: The effect of high-level waste glass composition on spinel liquidus temperature Citation Details In-Document Search Title: The effect of high-level waste glass composition on spinel liquidus temperature Spinel crystals precipitate in high-level waste glasses containing Fe, Cr, Ni , Mn, Zn, and Ru. The liquidus temperature (TL) of spinel as the primary crystallization phase is a function of glass composition and the spinel

  6. Integrated Disposal Facility FY2011 Glass Testing Summary Report

    SciTech Connect (OSTI)

    Pierce, Eric M.; Bacon, Diana H.; Kerisit, Sebastien N.; Windisch, Charles F.; Cantrell, Kirk J.; Valenta, Michelle M.; Burton, Sarah D.; Westsik, Joseph H.

    2011-09-29

    Pacific Northwest National Laboratory was contracted by Washington River Protection Solutions, LLC to provide the technical basis for estimating radionuclide release from the engineered portion of the disposal facility (e.g., source term). Vitrifying the low-activity waste at Hanford is expected to generate over 1.6 x 10{sup 5} m{sup 3} of glass (Certa and Wells 2010). The volume of immobilized low-activity waste (ILAW) at Hanford is the largest in the DOE complex and is one of the largest inventories (approximately 8.9 x 10{sup 14} Bq total activity) of long-lived radionuclides, principally {sup 99}Tc (t{sub 1/2} = 2.1 x 10{sup 5}), planned for disposal in a low-level waste (LLW) facility. Before the ILAW can be disposed, DOE must conduct a performance assessment (PA) for the Integrated Disposal Facility (IDF) that describes the long-term impacts of the disposal facility on public health and environmental resources. As part of the ILAW glass testing program PNNL is implementing a strategy, consisting of experimentation and modeling, in order to provide the technical basis for estimating radionuclide release from the glass waste form in support of future IDF PAs. The purpose of this report is to summarize the progress made in fiscal year (FY) 2011 toward implementing the strategy with the goal of developing an understanding of the long-term corrosion behavior of low-activity waste glasses.

  7. Method of making in-situ whisker reinforced glass ceramic

    DOE Patents [OSTI]

    Brown, Jesse J. (Christiansburg, VA); Hirschfeld, Deidre A. (Elliston, VA); Lee, K. H. (Blacksburg, VA)

    1993-02-16

    A heat processing procedure is used to create reinforcing whiskers of TiO.sub.2 in glass-ceramic materials in the LAS and MAS family. The heat processing procedure has particular application in creating TiO.sub.2 in-situ in a modified .beta.-eucryptite system.

  8. Baseline Glass Development for Combined Fission Products Waste Streams

    SciTech Connect (OSTI)

    Crum, Jarrod V.; Billings, Amanda Y.; Lang, Jesse B.; Marra, James C.; Rodriguez, Carmen P.; Ryan, Joseph V.; Vienna, John D.

    2009-06-29

    Borosilicate glass was selected as the baseline technology for immobilization of the Cs/Sr/Ba/Rb (Cs), lanthanide (Ln) and transition metal fission product (TM) waste steams as part of a cost benefit analysis study.[1] Vitrification of the combined waste streams have several advantages, minimization of the number of waste forms, a proven technology, and similarity to waste forms currently accepted for repository disposal. A joint study was undertaken by Pacific Northwest National Laboratory (PNNL) and Savannah River National Laboratory (SRNL) to develop acceptable glasses for the combined Cs + Ln + TM waste streams (Option 1) and Cs + Ln combined waste streams (Option 2) generated by the AFCI UREX+ set of processes. This study is aimed to develop baseline glasses for both combined waste stream options and identify key waste components and their impact on waste loading. The elemental compositions of the four-corners study were used along with the available separations data to determine the effect of burnup, decay, and separations variability on estimated waste stream compositions.[2-5] Two different components/scenarios were identified that could limit waste loading of the combined Cs + LN + TM waste streams, where as the combined Cs + LN waste stream has no single component that is perceived to limit waste loading. Combined Cs + LN waste stream in a glass waste form will most likely be limited by heat due to the high activity of Cs and Sr isotopes.

  9. Glass-ceramic hermetic seals to high thermal expansion metals

    DOE Patents [OSTI]

    Kramer, D.P.; Massey, R.T.

    1987-04-28

    A process for forming glass-ceramic materials from an alkaline silica-lithia glass composition comprising 60-72 mole-% SiO/sub 2/, 18-27 mole-% Li/sub 2/O, 0-5 mole-% Al/sub 2/O/sub 3/, 0-6 mole-% K/sub 2/O, 0-3 mole-% B/sub 2/O/sub 3/, and 0.5-2.5 mole-% P/sub 2/O/sub 5/, which comprises heating said glass composition at a first temperature within the 950-1050/degree/C range for 5-60 minutes, and then at a devitrification temperature within the 700-900/degree/C range for about 5-300 minutes to obtain a glass-ceramic having a thermal expansion coefficient of up to 210 x 10/sup /minus/7///degree/C. These ceramics form strong, hermetic seals with high expansion metals such as stainless steel alloys. An intermediate nucleation heating step conducted at a temperature within the range of 675-750/degree/C for 10-120 minutes may be employed between the first stage and the devitrification stage. 1 fig., 2 tabs.

  10. Alloy with metallic glass and quasi-crystalline properties

    DOE Patents [OSTI]

    Xing, Li-Qian; Hufnagel, Todd C.; Ramesh, Kaliat T.

    2004-02-17

    An alloy is described that is capable of forming a metallic glass at moderate cooling rates and exhibits large plastic flow at ambient temperature. Preferably, the alloy has a composition of (Zr, Hf).sub.a Ta.sub.b Ti.sub.c Cu.sub.d Ni.sub.e Al.sub.f, where the composition ranges (in atomic percent) are 45.ltoreq.a.ltoreq.70, 3.ltoreq.b.ltoreq.7.5, 0.ltoreq.c.ltoreq.4, 3.ltoreq.b+c.ltoreq.10, 10.ltoreq.d.ltoreq.30, 0.ltoreq.e.ltoreq.20, 10.ltoreq.d+e.ltoreq.35, and 5.ltoreq.f.ltoreq.15. The alloy may be cast into a bulk solid with disordered atomic-scale structure, i.e., a metallic glass, by a variety of techniques including copper mold die casting and planar flow casting. The as-cast amorphous solid has good ductility while retaining all of the characteristic features of known metallic glasses, including a distinct glass transition, a supercooled liquid region, and an absence of long-range atomic order. The alloy may be used to form a composite structure including quasi-crystals embedded in an amorphous matrix. Such a composite quasi-crystalline structure has much higher mechanical strength than a crystalline structure.

  11. Iron Phosphate Glass-Containing Hanford Waste Simulant

    SciTech Connect (OSTI)

    Sevigny, Gary J.; Kimura, Marcia L.; Fischer, Christopher M.; Schweiger, Michael J.; Kim, Dong-Sang

    2011-08-01

    Resolution of the nations high level tank waste legacy requires the design, construction, and operation of large and technically complex one-of-a-kind processing waste treatment and vitrification facilities. While the ultimate limits for waste loading and melter efficiency have yet to be defined or realized, significant reductions in glass volumes for disposal and mission life may be possible with advancements in melter technologies and/or glass formulations. This test report describes the experimental results from a small-scale test using the research scale melter (RSM) at Pacific Northwest National Laboratory (PNNL) to demonstrate the viability of iron phosphate-based glass with a selected waste composition that is high in sulfates (4.37 wt% SO3). The primary objective of the test was to develop data to support a cost-benefit analysis as related to the implementation of phosphate-based glasses for Hanford low activity waste (LAW) and/or other high-level waste streams within the U.S. Department of Energy complex. The testing was performed by PNNL and supported by Idaho National Laboratory, Savannah River National Laboratory, and Mo-Sci Corporation.

  12. Iron Phosphate Glass-Containing Hanford Waste Simulant

    SciTech Connect (OSTI)

    Sevigny, Gary J.; Kimura, Marcia L.; Fischer, Christopher M.; Schweiger, M. J.; Rodriguez, Carmen P.; Kim, Dong-Sang; Riley, Brian J.

    2012-01-18

    Resolution of the nation's high-level tank waste legacy requires the design, construction, and operation of large and technically complex one-of-a-kind processing waste treatment and vitrification facilities. While the ultimate limits for waste loading and melter efficiency have yet to be defined or realized, significant reductions in glass volumes for disposal and mission life may be possible with advancements in melter technologies and/or glass formulations. This test report describes the experimental results from a small-scale test using the research-scale melter (RSM) at Pacific Northwest National Laboratory (PNNL) to demonstrate the viability of iron-phosphate-based glass with a selected waste composition that is high in sulfate (4.37 wt% SO3). The primary objective of the test was to develop data to support a cost-benefit analysis related to the implementation of phosphate-based glasses for Hanford low-activity waste (LAW) and/or other high-level waste streams within the U.S. Department of Energy complex. The testing was performed by PNNL and supported by Idaho National Laboratory, Savannah River National Laboratory, Missouri University of Science and Technology, and Mo-Sci Corporation.

  13. Surface plasmon resonance assisted rapid laser joining of glass

    SciTech Connect (OSTI)

    Zolotovskaya, Svetlana A.; Tang, Guang; Abdolvand, Amin, E-mail: a.abdolvand@dundee.ac.uk [School of Engineering, Physics and Mathematics, University of Dundee, Dundee DD1 4HN (United Kingdom); Wang, Zengbo [School of Electronic Engineering, Bangor University, Bangor LL57 1UT (United Kingdom)

    2014-08-25

    Rapid and strong joining of clear glass to glass containing randomly distributed embedded spherical silver nanoparticles upon nanosecond pulsed laser irradiation (?40?ns and repetition rate of 100?kHz) at 532?nm is demonstrated. The embedded silver nanoparticles were ?3040?nm in diameter, contained in a thin surface layer of ?10??m. A joint strength of 12.5?MPa was achieved for a laser fluence of only ?0.13?J/cm{sup 2} and scanning speed of 10?mm/s. The bonding mechanism is discussed in terms of absorption of the laser energy by nanoparticles and the transfer of the accumulated localised heat to the surrounding glass leading to the local melting and formation of a strong bond. The presented technique is scalable and overcomes a number of serious challenges for a widespread adoption of laser-assisted rapid joining of glass substrates, enabling applications in the manufacture of microelectronic devices, sensors, micro-fluidic, and medical devices.

  14. Barium oxide, calcium oxide, magnesia, and alkali oxide free glass

    DOE Patents [OSTI]

    Lu, Peizhen Kathy; Mahapatra, Manoj Kumar

    2013-09-24

    A glass composition consisting essentially of about 10-45 mole percent of SrO; about 35-75 mole percent SiO.sub.2; one or more compounds from the group of compounds consisting of La.sub.2O.sub.3, Al.sub.2O.sub.3, B.sub.2O.sub.3, and Ni; the La.sub.2O.sub.3 less than about 20 mole percent; the Al.sub.2O.sub.3 less than about 25 mole percent; the B.sub.2O.sub.3 less than about 15 mole percent; and the Ni less than about 5 mole percent. Preferably, the glass is substantially free of barium oxide, calcium oxide, magnesia, and alkali oxide. Preferably, the glass is used as a seal in a solid oxide fuel/electrolyzer cell (SOFC) stack. The SOFC stack comprises a plurality of SOFCs connected by one or more interconnect and manifold materials and sealed by the glass. Preferably, each SOFC comprises an anode, a cathode, and a solid electrolyte.

  15. FABRICATION OF GAS-FILLED TUNGSTEN-COATED GLASS SHELLS

    SciTech Connect (OSTI)

    NIKROO,A; BAUGH,W; STEINMAN,D.A

    2003-06-01

    OAK-B135 Deuterium (D{sub 2}) filled glass shells coated with a high Z element are needed for high energy density (HED) experiments by researchers at Los Alamos National Laboratory. They report here on our initial attempt to produce such shells. Glass shells made using the drop tower technique were coated with gold, palladium or tungsten, or a mixture of two of these elements. It was found that gold and palladium coatings did not stick well to the glass and resulted in poor or delaminated films. Tungsten coatings resulted in films suitable for these targets. Bouncing of shells during coating resulted in uniform tungsten coatings, but the surface of such coatings were filled with small nodules. Proper agitation of shells using a tapping technique resulted in smooth films with minimal particulate contamination. For coating rates of {approx} 0.15 {micro}m/hr coatings with {approx} 2 nm RMS surface finish could be deposited. The surface roughness of coatings at higher rates, 0.7 {micro}m/hr, was considerably worse ({approx} 100 nm RMS). The columnar structure of the coatings allowed permeation filling of the tungsten coated glass shells with deuterium at 300 C.

  16. Fabrication of Gas-Filled Tungsten-Coated Glass Shells

    SciTech Connect (OSTI)

    Nikroo, A.; Baugh, W.; Steinman, D.A.

    2004-03-15

    Deuterium (D{sub 2}) filled glass shells coated with a high Z element are needed for high energy density (HED) experiments by researchers at Los Alamos National Laboratory. We report here on our initial attempt to produce such shells. Glass shells made using the drop tower technique were coated with gold, palladium or tungsten, or a mixture of two of these elements. It was found that gold and palladium coatings did not stick well to the glass and resulted in poor or delaminated films. Tungsten coatings resulted in films suitable for these targets. Bouncing of shells during coating resulted in uniform tungsten coatings, but the surface of such coatings were filled with small nodules. Proper agitation of shells using a tapping technique resulted in smooth films with minimal particulate contamination. For coating rates of {approx}0.15 {mu}m/hr coatings with {approx}2 nm RMS surface finish could be deposited. The surface roughness of coatings at higher rates, 0.7 {mu}m/hr, was considerably worse ({approx}100 nm RMS). The columnar structure of the coatings allowed permeation filling of the tungsten coated glass shells with deuterium at 300 deg. C.

  17. High strength glass-ceramic to metal seals

    SciTech Connect (OSTI)

    Haws, L D; Kramer, D P; Moddeman, W E; Wooten, G W

    1986-12-01

    In many applications, ceramics are joined to other materials, especially metals. In such cases, interfacial strength is as important as the strength of each constituent material. Examples are presented for tailoring materials and processes to optimize the glass-ceramic-to-metal seal. Means for detecting defects, nondestructively, are also identified.

  18. Lensless imaging of nanoporous glass with soft X-rays

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Turner, Joshua J.; Nelson, Johanna; Huang, Xiaojing; Steinbrener, Jan; Jacobsen, Chris

    2013-06-01

    Coherent soft X-ray diffraction has been used to image nanoporous glass structure in two dimensions using different methods. The merit of the reconstructions was judged using a new method of Fourier phase correlation with a final, refined image. The porous structure was found to have a much larger average size then previously believed.

  19. Glass surface deactivants for sulfur-containing gases

    SciTech Connect (OSTI)

    Farwell, S.O.; Gluck, S.J.

    1980-10-01

    In gas chromatographic technique for measuring reduced sulfur-containing gases in biogenic air fluxes, the major problem seemed to be the irreversible adsorption of the polar sulfur compounds on the glass surfaces of the cryogenic sampling traps. This article discusses the comparative degrees of Pyrex glass surface passivation for over 25 chemical deactivants and their related pretreatment procedures. Since H/sub 2/S was discovered to be the sulfur compound with a consistently lower recovery efficiency than COS, CH/sub 3/SH, CH/sub 3/SCH, CS/sub 2/ or CH/sub 3/SSCH/sub 3/, the percent recovery for H/sub 2/S was employed as the indicator of effectiveness for the various deactivation treatments. Tables are presented summarizing the mean H/sub 2/S recoveries for chlorosilane deactivants and for the mean H/sub 2/S recoveries for different pyrex surface pretreatments with an octadecyltrialkoxysilane deactivation. The general conclusion of this investigation is that the relative degree of passivation for glass surfaces by present deactivation techniques is dependent on the types of analyzed compounds and the nature of the glass surface.

  20. Examining the role of canister cooling conditions on the formation of nepheline from nuclear waste glasses

    SciTech Connect (OSTI)

    Christian, J. H.

    2015-09-01

    Nepheline (NaAlSiO?) crystals can form during slow cooling of high-level waste (HLW) glass after it has been poured into a waste canister. Formation of these crystals can adversely affect the chemical durability of the glass. The tendency for nepheline crystallization to form in a HLW glass increases with increasing concentrations of Al?O? and Na?O.

  1. Glass Strengthening via High-Intensity Plasma-Arc Heating

    SciTech Connect (OSTI)

    Wereszczak, Andrew A; Harper, David C; Duty, Chad E; Patel, P

    2010-01-01

    The use of a high-intensity plasma-arc lamp was used to irradiate the surface of soda-lime silicate glass tiles to determine if an increase in strength could be achieved. The lamp had a power density of 3500 W/cm2, a processing area of 1 cm x 10 cm, irradiated near-infrared heating at a wavelength between 0.2 1.4 m, and was controlled to unidirectionally sweep across 50-mm-square tiles at a constant speed of 8 mm/s. Ring-on-ring (RoR) equibiaxial flexure and 4 pt uni-directional flexure testings of entire tiles were used to measure and compare failure stress distributions of treated and untreated glass. Even with non-optimized processing conditions, RoR failure stress increased by approximately 25% and the 4 pt bend failure stress increased by approximately 65%. Strengthening was due to a fire-polishing-like mechanism. The arc-lamp heat-treatment caused the location of the strength-limiting flaws in the 4-pt-bend tiles to change; namely, failure initiation occurred on the gage section surface for the treated glass whereas it occurred at a gage section edge for the untreated. Arc-lamp heat-treatment is attractive not only because it provides strengthening, but because it can (non-contact) process large amounts of glass quickly and inexpensively, and is a process that either a glass manufacturer or end-user can readily employ.

  2. Energy Saving Glass Lamination via Selective Radio-Frequency Heating

    SciTech Connect (OSTI)

    Shulman, Holly S.; Allan, Shawn M.

    2009-11-11

    This Inventions and Innovations program supported the technical and commercial research and development needed to elevate Ceralink's energy saving process for flat glass lamination from bench scale to a self-supporting technology with significant potential for growth. Radio-frequency heating was any un-explored option for laminating glass prior to this program. With significant commercial success through time and energy savings in the wood, paper, and plastics industries, RF heating was found to have significant promise for the energy intensive glass lamination industry. A major technical goal of the program was to demonstrate RF lamination across a wide range of laminate sizes and materials. This was successfully accomplished, dispelling many skeptics' concerns about the abilities of the technology. Ceralink laminated panels up to 2 ft x 3 ft, with four sets processed simultaneously, in a 3 minute cycle. All major categories of interlayer materials were found to work with RF lamination. In addition to laminating glass, other materials including photovoltaic silicon solar cells, light emitting diodes, metallized glass, plastics (acrylic and polycarbonate), and ceramics (alumina) were found compatible with the RF process. This opens up a wide range of commercial opportunities beyond the initially targeted automotive industry. The dramatic energy savings reported for RF lamination at the bench scale were found to be maintained through the scale up of the process. Even at 2 ft x 3 ft panel sizes, energy savings are estimated to be at least 90% compared to autoclaving or vacuum lamination. With targeted promotion through conference presentations, press releases and internet presence, RF lamination has gained significant attention, drawing large audiences at American Ceramic Society meetings. The commercialization success of the project includes the establishment of a revenue-generating business model for providing process development and demonstrations for potential RF lamination users. A path to industrial energy benefits and revenue through industrial equipment sales was established in a partnership with Thermex Thermatron, a manufacturer of RF equipment.

  3. Filled glass composites for sealing of solid oxide fuel cells.

    SciTech Connect (OSTI)

    Tandon, Rajan; Widgeon, Scarlett Joyce; Garino, Terry J.; Brochu, Mathieu; Gauntt, Bryan D.; Corral, Erica L.; Loehman, Ronald E.

    2009-04-01

    Glasses filled with ceramic or metallic powders have been developed for use as seals for solid oxide fuel cells (SOFC's) as part of the U.S. Department of Energy's Solid State Energy Conversion Alliance (SECA) Program. The composites of glass (alkaline earth-alumina-borate) and powders ({approx}20 vol% of yttria-stabilized zirconia or silver) were shown to form seals with SOFC materials at or below 900 C. The type and amount of powder were adjusted to optimize thermal expansion to match the SOFC materials and viscosity. Wetting studies indicated good wetting was achieved on the micro-scale and reaction studies indicated that the degree of reaction between the filled glasses and SOFC materials, including spinel-coated 441 stainless steel, at 750 C is acceptable. A test rig was developed for measuring strengths of seals cycled between room temperature and typical SOFC operating temperatures. Our measurements showed that many of the 410 SS to 410 SS seals, made using silver-filled glass composites, were hermetic at 0.2 MPa (2 atm.) of pressure and that seals that leaked could be resealed by briefly heating them to 900 C. Seal strength measurements at elevated temperature (up to 950 C), measured using a second apparatus that we developed, indicated that seals maintained 0.02 MPa (0.2 atm.) overpressures for 30 min at 750 C with no leakage. Finally, the volatility of the borate component of sealing glasses under SOFC operational conditions was studied using weight loss measurements and found by extrapolation to be less than 5% for the projected SOFC lifetime.

  4. Molecular basis of the structural stability of a Top7-based scaffold at extreme pH and temperature conditions

    SciTech Connect (OSTI)

    Soares, Thereza A.; Boschek, Curt B.; Apiyo, David O.; Baird, Cheryl L.; Straatsma, TP

    2010-07-01

    The development of stable scaffolds that can tolerate environmental extremes has an immense potential for applications in industry and defense. Recently, we have engineered an eight-residue loop into the de novo designed Top7 protein, which specifically binds the glycoprotein CD4. The robust properties of the Top7, coupled with the ease in production, make it a robust scaffold to design novel functionalities for use under extreme environmental conditions. In the present work, a series of explicit-solvent molecular dynamics simulations are reported which investigates the effect of mutations and extreme conditions of temperature and pH on the structure, stability, and dynamics of the native and engineered Top7. These simulations indicate that i. The structural dynamics of the engineered and native Top7 in solution are equivalent under corresponding conditions of pH and temperature. Ensemble-averaged structures of the native and engineered Top7 maintain the overall tertiary structure pattern, albeit with loss of helical content when at low pH and high-temperature conditions. Mutations of residues E43A, D46A, E67A, E69A, EA81A along the ?-helices of the engineered Top7 did not lead to significant changes in the native fold under pH 2 and 400 K, suggesting that the helices can accommodate varying sequences. iii. The anti-parallel ?-sheet is the structural core responsible for the stability of the native and engineered Top7 and is well maintained under extreme pH and temperature conditions. These findings indicate that the insertion of an eight-residue loop into the structure of Top7 does not adversely affect the global fold or the structural stability of the Top7 scaffold.

  5. Chemical composition analysis and product consistency tests to support Enhanced Hanford Waste Glass Models. Results for the Augusta and October 2014 LAW Glasses

    SciTech Connect (OSTI)

    Fox, K. M.; Edwards, T. B.; Best, D. R.

    2015-07-07

    In this report, the Savannah River National Laboratory provides chemical analyses and Product Consistency Test (PCT) results for several simulated low activity waste (LAW) glasses (designated as the August and October 2014 LAW glasses) fabricated by the Pacific Northwest National Laboratory. The results of these analyses will be used as part of efforts to revise or extend the validation regions of the current Hanford Waste Treatment and Immobilization Plant glass property models to cover a broader span of waste compositions.

  6. Chemical composition analysis and product consistency tests to support enhanced Hanford waste glass models: Results for the January, March, and April 2015 LAW glasses

    SciTech Connect (OSTI)

    Fox, K. M.; Edwards, T. B.; Riley, W. T.; Best, D. R.

    2015-09-03

    In this report, the Savannah River National Laboratory provides chemical analyses and Product Consistency Test (PCT) results for several simulated low activity waste (LAW) glasses (designated as the January, March, and April 2015 LAW glasses) fabricated by the Pacific Northwest National Laboratory. The results of these analyses will be used as part of efforts to revise or extend the validation regions of the current Hanford Waste Treatment and Immobilization Plant glass property models to cover a broader span of waste compositions.

  7. Silane Modification of Glass and Silica Surfaces to Obtain Equally Oil-Wet Surfaces in Glass-Covered Silicon Micromodel Applications

    SciTech Connect (OSTI)

    Grate, Jay W.; Warner, Marvin G.; Pittman, Jonathan W.; Dehoff, Karl J.; Wietsma, Thomas W.; Zhang, Changyong; Oostrom, Martinus

    2013-08-05

    The wettability of silicon and glass surfaces can be modified by silanization. However, similar treatments of glass and silica surfaces using the same silane do not necessarily yield the same wettability as determined by the oil-water contact angle. In this technical note, surface cleaning pretreatments were investigated to determine conditions that would yield oil-wet surfaces on glass with similar wettability to silica surfaces treated with the same silane, and both air-water and oil-water contact angles were determined. Air-water contact angles were less sensitive to differences between silanized silica and glass surfaces, often yielding similar values while the oil-water contact angles were quite different. Borosilicate glass surfaces cleaned with standard cleaning solution 1 (SC1) yield intermediate-wet surfaces when silanized with hexamethyldisilazane, while the same cleaning and silanization yields oil-wet surfaces on silica. However, cleaning glass in boiling concentrated nitric acid creates a surface that can be silanized to obtain oil-wet surfaces using HDMS. Moreover, this method is effective on glass with prior thermal treatment at an elevated temperature of 400oC. In this way, silica and glass can be silanized to obtain equally oil-wet surfaces using HMDS. It is demonstrated that pretreatment and silanization is feasible in silicon-silica/glass micromodels previously assembled by anodic bonding, and that the change in wettability has a significant observable effect on immiscisble fluid displacements in the pore network.

  8. Chemical composition analysis and product consistency tests to support enhanced Hanford waste glass models. Results for the third set of high alumina outer layer matrix glasses

    SciTech Connect (OSTI)

    Fox, K. M.; Edwards, T. B.

    2015-12-01

    In this report, the Savannah River National Laboratory provides chemical analyses and Product Consistency Test (PCT) results for 14 simulated high level waste glasses fabricated by the Pacific Northwest National Laboratory. The results of these analyses will be used as part of efforts to revise or extend the validation regions of the current Hanford Waste Treatment and Immobilization Plant glass property models to cover a broader span of waste compositions. The measured chemical composition data are reported and compared with the targeted values for each component for each glass. All of the measured sums of oxides for the study glasses fell within the interval of 96.9 to 100.8 wt %, indicating recovery of all components. Comparisons of the targeted and measured chemical compositions showed that the measured values for the glasses met the targeted concentrations within 10% for those components present at more than 5 wt %. The PCT results were normalized to both the targeted and measured compositions of the study glasses. Several of the glasses exhibited increases in normalized concentrations (NCi) after the canister centerline cooled (CCC) heat treatment. Five of the glasses, after the CCC heat treatment, had NCB values that exceeded that of the Environmental Assessment (EA) benchmark glass. These results can be combined with additional characterization, including X-ray diffraction, to determine the cause of the higher release rates.

  9. Ancient Glass in the Nuclear Age - Denis Strachan and Joseph Ryan |

    Office of Environmental Management (EM)

    Department of Energy Ancient Glass in the Nuclear Age - Denis Strachan and Joseph Ryan Ancient Glass in the Nuclear Age - Denis Strachan and Joseph Ryan August 12, 2011 - 12:00pm Addthis Ancient Glass in the Nuclear Age - Denis Strachan and Joseph Ryan PNNL scientists are studying pieces of ancient Roman glass from 1,800-year-old shipwrecks and ruins to assist today's efforts to safely store nuclear waste. One way to store nuclear waste safely is to turn it into durable glass through a

  10. Glass former composition and method for immobilizing nuclear waste using the same

    DOE Patents [OSTI]

    Cadoff, Laurence H. (Wilkins Township, Allegheny County, PA); Smith-Magowan, David B. (Washington, DC)

    1988-01-01

    An alkoxide glass former composition has silica-containing constituents present as solid particulates of a particle size of 0.1 to 0.7 micrometers in diameter in a liquid carrier phase substantially free of dissolved silica. The glass former slurry is resistant to coagulation and may contain other glass former metal constituents. The immobilization of nuclear waste employs the described glass former by heating the same to reduce the volume, mixing the same with the waste, and melting the resultant mixture to encapsulate the waste in the resultant glass.

  11. Spinel dissolution via addition of glass forming chemicals. Results of preliminary experiments

    SciTech Connect (OSTI)

    Fox, K. M.; Johnson, F. C.

    2015-11-01

    Increased loading of high level waste in glass can lead to crystallization within the glass. Some crystalline species, such as spinel, have no practical impact on the chemical durability of the glass, and therefore may be acceptable from both a processing and a product performance standpoint. In order to operate a melter with a controlled amount of crystallization, options must be developed for remediating an unacceptable accumulation of crystals. This report describes preliminary experiments designed to evaluate the ability to dissolve spinel crystals in simulated waste glass melts via the addition of glass forming chemicals (GFCs).

  12. Compositional trends of ?-induced optical changes observed in chalcogenide glasses of binary As-S system

    SciTech Connect (OSTI)

    Shpotyuk, M.; Shpotyuk, O.; Golovchak, Roman; McCloy, John S.; Riley, Brian J.

    2014-01-23

    Compositional trends of ?-induced optical changes in chalcogenide glasses are studied with the binary As-S system. Effects of ?-irradiation and annealing are compared using the changes measured in the fundamental optical absorption edge region. It is shown that annealing near the glass transition temperature leads to bleaching of As-S glasses, while ?-irradiation leads to darkening; both depend on the glass composition and thermal history of the specimens. These results are explained in terms of competitive destructionpolymerization transformations and physical aging occurring in As-S chalcogenide glasses under the influence of ?-irradiation.

  13. Simulation of an Aspheric Glass Lens Forming Behavior in Progressive GMP Process

    SciTech Connect (OSTI)

    Chang, Sung Ho; Lee, Young Min; Kang, Jeong Jin; Hong, Seok Kwan; Shin, Gwang Ho; Heo, Young Moo [Precision Molds and Dies Technology Team, Korea Institute of Industrial Technology, 7-47 Songdo-Dong, Yeonsu-Gu, Incheon 406-800 (Korea, Republic of); Jung, Tae Sung [Kmold Team, JY solutec, 47BL-6LT, 436-5 Nonhyeon-Dong, Namdong-Gu, Incheon 405-848 (Korea, Republic of)

    2007-05-17

    Recently, GMP(Glass Molding Press) process is mainly used to produce aspheric glass lenses. Because glass lens is heated at high temperature above Tg (Transformation Temperature) for forming the glass, the quality of aspheric glass lens is deteriorated by residual stresses which are generated in a aspheric glass lens after forming. In this study, as a fundamental study to develop the mold for progressive GMP process, we conducted a aspheric glass lens forming simulation. Prior to a aspheric glass lens forming simulation, compression and thermal conductivity tests were carried out to obtain mechanical and thermal properties of K-PBK40 which is newly developed material for precision molding, and flow characteristics of K-PBK40 were obtained at high temperature. Then, using the flow characteristics obtained, compression simulation was carried out and compared with the experimental result for the purpose of verifying the obtained flow characteristics. Finally, a glass lens press simulation in progressive GMP process was carried out and we could forecast the shape of deformed glass lenses and residual stresses contribution in the structure of deformed glass lenses after forming.

  14. INCORPORATION OF MONO SODIUM TITANATE AND CRYSTALLINE SILICOTITANATE FEEDS IN HIGH LEVEL NUCLEAR WASTE GLASS

    SciTech Connect (OSTI)

    Fox, K.; Johnson, F.; Edwards, T.

    2010-11-23

    Four series of glass compositions were selected, fabricated, and characterized as part of a study to determine the impacts of the addition of Crystalline Silicotitanate (CST) and Monosodium Titanate (MST) from the Small Column Ion Exchange (SCIX) process on the Defense Waste Processing Facility (DWPF) glass waste form and the applicability of the DWPF process control models. All of the glasses studied were considerably more durable than the benchmark Environmental Assessment (EA) glass. The measured Product Consistency Test (PCT) responses were compared with the predicted values from the current DWPF durability model. One of the KT01-series and two of the KT03-series glasses had measured PCT responses that were outside the lower bound of the durability model. All of the KT04 glasses had durabilities that were predictable regardless of heat treatment or compositional view. In general, the measured viscosity values of the KT01, KT03, and KT04-series glasses are well predicted by the current DWPF viscosity model. The results of liquidus temperature (T{sub L}) measurements for the KT01-series glasses were mixed with regard to the predictability of the T{sub L} for each glass. All of the measured T{sub L} values were higher than the model predicted values, although most fell within the 95% confidence intervals. Overall, the results of this study show a reasonable ability to incorporate the anticipated SCIX streams into DWPF-type glass compositions with TiO{sub 2} concentrations of 4-5 wt % in glass.

  15. Pressurized heat treatment of glass-ceramic to control thermal expansion

    DOE Patents [OSTI]

    Kramer, Daniel P. (Dayton, OH)

    1985-01-01

    A method of producing a glass-ceramic having a specified thermal expansion value is disclosed. The method includes the step of pressurizing the parent glass material to a predetermined pressure during heat treatment so that the glass-ceramic produced has a specified thermal expansion value. Preferably, the glass-ceramic material is isostatically pressed. A method for forming a strong glass-ceramic to metal seal is also disclosed in which the glass-ceramic is fabricated to have a thermal expansion value equal to that of the metal. The determination of the thermal expansion value of a parent glass material placed in a high-temperature environment is also used to determine the pressure in the environment.

  16. Ammonia-treated phosphate glasses useful for sealing to metals metals

    DOE Patents [OSTI]

    Brow, Richard K. (Albuquerque, NM); Day, Delbert E. (Rolla, MO)

    1991-01-01

    A method of improving surface-dependent properties of phosphate glass such as durability and wear resistance without significantly affecting its thermal expansion coefficient is provided which comprises annealing the glass in a dry ammonia atmosphere at temperatures approximating the transition temperature of the glass. The ammonia annealing treatment of the present invention is carried out for a time sufficient to allow incorporation of a thin layer of nitrogen into the surface of the phosphate glass, and the treatment improves the durability of the glass without the reduction in the thermal expansion coefficient that has restricted the effectiveness of prior ammonia treatments. The improved phosphate glass resulting from this method is superior in wear resistance, yet maintains suitable thermal expansion properties so that it may be used effectively in a variety of applications requiring hermetic glass-metal seals.

  17. Energy Saving Glass Lamination via Selective Radio Frequency Heating

    SciTech Connect (OSTI)

    Allan, Shawn M.

    2012-02-27

    This project focused on advancing radio-frequency (RF) lamination technology closer to commercial implementation, in order to reduce the energy intensity of glass lamination by up to 90%. Lamination comprises a wide range of products including autoglass, architectural safety and innovative design glass, transparent armor (e.g. bullet proof glass), smart glass, mirrors, and encapsulation of photovoltaics. Lamination is also the fastest growing segment of glass manufacturing, with photovoltaics, architectural needs, and an anticipated transition to laminated side windows in vehicles. The state-of-the-art for glass lamination is to use autoclaves, which apply heat and uniform gas pressure to bond the laminates over the course of 1 to 18 hours. Laminates consist of layers of glass or other materials bonded with vinyl or urethane interlayers. In autoclaving, significant heat energy is lost heating the chamber, pressurized air, glass racks, and the glass. In RF lamination, the heat is generated directly in the vinyl interlayer, causing it to heat and melt quickly, in just 1 to 10 minutes, without significantly heating the glass or the equipment. The main purpose of this project was to provide evidence that low energy, rapid RF lamination quality met the same standards as conventionally autoclaved windows. The development of concepts for laminating curved glass with RF lamination was a major goal. Other primary goals included developing a stronger understanding of the lamination product markets described above, and to refine the potential benefits of commercial implementation. The scope of the project was to complete implementation concept studies in preparation for continuation into advanced development, pilot studies, and commercial implementation. The project consisted of 6 main tasks. The first dealt with lamination with poly-vinyl butyral (PVB) interlayers, which prior work had shown difficulties in achieving good quality laminates, working with Pilkington North America. The second task dealt with a study of current lamination processes in the various laminate industries, and development of concepts for integrating RF lamination into new or existing processes. The third task explored the use of a non-destructive technique for analyzing laminate adhesion with the University of Illinois at Urbana-Champaign. The fourth task focused on developing concepts for curved glass lamination using RF lamination. The fifth and sixth tasks together comprised an analysis of laminate product markets, ranking for applicability and commercialization potential, and the development of commercialization strategies for those products. In addition, throughout the project as new experimental data and conventional process data were obtained, the benefits analysis of RF lamination was refined. The goals of the project described above were achieved, positioning RF lamination for the next stage growth envisioned in the original Industrial Grand Challenge proposal. Working with Pilkington North America, lamination of flat autoglass with PVB was achieved, meeting all 16 stringent industry tests. In particular, PVB laminates made with RF lamination passed environmental tests including the high temperature, 120 C bake test, without significant formation of bubbles (defects). The adhesion of PVB to glass was measured using the pummel method. Adhesion values ranging from 1 to 7 out of 10 were obtained. The significant process parameters affecting the environmental and adhesion performance were identified through a designed experiment. Pre-lamination process variables including PVB storage humidity and the de-airing process (vacuum or nip rolling) were significant, as well as the level of pressure applied to the laminate during the RF process. Analysis of manufacturing with RF lamination equipment, based on the processes developed indicated that 3 RF presses could replace a typical auto-industry autoclave to achieve equal or greater throughput with possibly less capital cost and smaller footprint. Concepts for curved lamination identifying castable molds for prototyping were developed, which allowed Ceralink to obtain commitment to begin curved tooling development. The project significantly helped to advance RF lamination past the feasibility and novelty stage and into the realm of commercial acceptance as a viable alternative to autoclaves. The demonstration of autoclave-quality autoglass produced in just 1 minute with RF lamination, with validation by Pilkington, has fueled industry motivation to seriously consider RF lamination. The industry and other contacts and outreach made in the study of laminate markets (including 3 technical publications and 5 conference presentations), has resulted in a recent surge in RF lamination activity.

  18. Energy Saving Glass Lamination via Selective Radio Frequency Heating

    SciTech Connect (OSTI)

    Allan, Shawn M.; Baranova, Inessa; Poley, Joseph; Reis, Henrique

    2012-02-27

    This project focused on advancing radio-frequency (RF) lamination technology closer to commercial implementation, in order to reduce the energy intensity of glass lamination by up to 90%. Lamination comprises a wide range of products including autoglass, architectural safety and innovative design glass, transparent armor (e.g. bullet proof glass), smart glass, mirrors, and encapsulation of photovoltaics. Lamination is also the fastest growing segment of glass manufacturing, with photovoltaics, architectural needs, and an anticipated transition to laminated side windows in vehicles. The state-of-the-art for glass lamination is to use autoclaves, which apply heat and uniform gas pressure to bond the laminates over the course of 1 to 18 hours. Laminates consist of layers of glass or other materials bonded with vinyl or urethane interlayers. In autoclaving, significant heat energy is lost heating the chamber, pressurized air, glass racks, and the glass. In RF lamination, the heat is generated directly in the vinyl interlayer, causing it to heat and melt quickly, in just 1 to 10 minutes, without significantly heating the glass or the equipment. The main purpose of this project was to provide evidence that low energy, rapid RF lamination quality met the same standards as conventionally autoclaved windows. The development of concepts for laminating curved glass with RF lamination was a major goal. Other primary goals included developing a stronger understanding of the lamination product markets described above, and to refine the potential benefits of commercial implementation. The scope of the project was to complete implementation concept studies in preparation for continuation into advanced development, pilot studies, and commercial implementation. The project consisted of 6 main tasks. The first dealt with lamination with poly-vinyl butyral (PVB) interlayers, which prior work had shown difficulties in achieving good quality laminates, working with Pilkington North America. The second task dealt with a study of current lamination processes in the various laminate industries, and development of concepts for integrating RF lamination into new or existing processes. The third task explored the use of a non-destructive technique for analyzing laminate adhesion with the University of Illinois at Urbana-Champaign. The fourth task focused on developing concepts for curved glass lamination using RF lamination. The fifth and sixth tasks together comprised an analysis of laminate product markets, ranking for applicability and commercialization potential, and the development of commercialization strategies for those products. In addition, throughout the project as new experimental data and conventional process data were obtained, the benefits analysis of RF lamination was refined. The goals of the project described above were achieved, positioning RF lamination for the next stage growth envisioned in the original Industrial Grand Challenge proposal. Working with Pilkington North America, lamination of flat autoglass with PVB was achieved, meeting all 16 stringent industry tests. In particular, PVB laminates made with RF lamination passed environmental tests including the high temperature, 120 °C bake test, without significant formation of bubbles (defects). The adhesion of PVB to glass was measured using the pummel method. Adhesion values ranging from 1 to 7 out of 10 were obtained. The significant process parameters affecting the environmental and adhesion performance were identified through a designed experiment. Pre-lamination process variables including PVB storage humidity and the de-airing process (vacuum or nip rolling) were significant, as well as the level of pressure applied to the laminate during the RF process. Analysis of manufacturing with RF lamination equipment, based on the processes developed indicated that 3 RF presses could replace a typical auto-industry autoclave to achieve equal or greater throughput with possibly less capital cost and smaller footprint. Concepts for curved lamination identifying castable molds for prototyping were developed, which allowed Ceralink to obtain commitment to begin curved tooling development. The project significantly helped to advance RF lamination past the feasibility and novelty stage and into the realm of commercial acceptance as a viable alternative to autoclaves. The demonstration of autoclave-quality autoglass produced in just 1 minute with RF lamination, with validation by Pilkington, has fueled industry motivation to seriously consider RF lamination. The industry and other contacts and outreach made in the study of laminate markets (including 3 technical publications and 5 conference presentations), has resulted in a recent surge in RF lamination activity.

  19. THE IMPACT OF KINETICS ON NEPHELINE FORMATION IN NUCLEAR WASTE GLASSES

    SciTech Connect (OSTI)

    Amoroso, J.

    2011-03-07

    Sixteen glass compositions were selected to study the potential impacts of the kinetics of nepheline formation in high-level nuclear waste (HLW) glass. The chosen compositions encompassed a relatively large nepheline discriminator (ND) range, 0.40-0.66, and included a relatively broad range, and amount of, constituents including high aluminum and high boron concentrations. All glasses were fabricated in the laboratory and subsequently exposed to six different cooling treatments. The cooling treatments consisted of three 'stepped' profiles and their corresponding 'smooth' profiles. Included in the cooling treatment was the Defense Waste Processing Facility (DWPF) canister centerline cooling (CCC) profile in addition to a 'faster' and a 'slower' total cooling line. After quenching and heat treating, x-ray diffraction confirmed the type and amount of any resultant crystallization. The target compositions were shown to be consistent with the measured compositions. Two quenched glasses and several treated glasses exhibited minor amounts of spinel and spinel-like phases. Nepheline was not observed in any of the quenched glasses but was observed in many of the treated glasses. The amount of nepheline ranged from approximately 2wt% to 30wt% for samples cooled over shorter times and longer times respectively. Differences were observed in the amount of nepheline crystallization after smooth and stepped cooling and increased with total cooling time. In some glasses, nepheline crystallization appeared to be directly proportional to total cooling time while the total amount of nepheline crystallization varied, suggesting that the nepheline crystallization rate was independent of (or at least faster than) cooling rate but, varied depending on the glass composition. On the contrary, in another glass, nepheline crystallization appeared to be inversely proportional to cooling rate. The high alumina glasses, predicted to form nepheline according to the ND, did not precipitate nepheline. Additionally, analysis from different regions of treated glasses indicated that nepheline nucleation and growth occurs at the glass/crucible and glass/atmosphere interfaces. Furthermore, the measured amount of non-nepheline phases appeared independent of the sampling region. It is postulated that crucible-scale methods used to heat treat HLW glass, such as the CCC method, artificially induce nepheline formation in the glass. The results of this study suggest nepheline kinetics can vary significantly depending on glass composition and, more importantly, glasses fabricated using current DWPF conditions are potentially susceptible to the impact of nepheline kinetics. This report summarizes the supporting research and provides the basis for continued research on nepheline kinetics and its effects on HLW glasses.

  20. Method for forming silicon on a glass substrate

    DOE Patents [OSTI]

    McCarthy, Anthony M. (Menlo Park, CA)

    1995-01-01

    A method by which single-crystal silicon microelectronics may be fabricated on glass substrates at unconventionally low temperatures. This is achieved by fabricating a thin film of silicon on glass and subsequently forming the doped components by a short wavelength (excimer) laser doping procedure and conventional patterning techniques. This method may include introducing a heavily boron doped etch stop layer on a silicon wafer using an excimer laser, which permits good control of the etch stop layer removal process. This method additionally includes dramatically reducing the remaining surface roughness of the silicon thin films after etching in the fabrication of silicon on insulator wafers by scanning an excimer laser across the surface of the silicon thin film causing surface melting, whereby the surface tension of the melt causes smoothing of the surface during recrystallization. Applications for this method include those requiring a transparent or insulating substrate, such as display manufacturing. Other applications include sensors, actuators, optoelectronics, radiation hard and high temperature electronics.

  1. Method for fabricating transistors using crystalline silicon devices on glass

    DOE Patents [OSTI]

    McCarthy, A.M.

    1997-09-02

    A method for fabricating transistors using single-crystal silicon devices on glass. This method overcomes the potential damage that may be caused to the device during high voltage bonding and employs a metal layer which may be incorporated as part of the transistor. This is accomplished such that when the bonding of the silicon wafer or substrate to the glass substrate is performed, the voltage and current pass through areas where transistors will not be fabricated. After removal of the silicon substrate, further metal may be deposited to form electrical contact or add functionality to the devices. By this method both single and gate-all-around devices may be formed. 13 figs.

  2. Tetraethyl orthosilicate-based glass composition and method

    DOE Patents [OSTI]

    Wicks, George G. (Aiken, SC); Livingston, Ronald R. (Aiken, SC); Baylor, Lewis C. (North Augusta, SC); Whitaker, Michael J. (North Augusta, SC); O'Rourke, Patrick E. (Martinez, GA)

    1997-01-01

    A tetraethyl orthosilicate-based, sol-gel glass composition with additives selected for various applications. The composition is made by mixing ethanol, water, and tetraethyl orthosilicate, adjusting the pH into the acid range, and aging the mixture at room temperature. The additives, such as an optical indicator, filler, or catalyst, are then added to the mixture to form the composition which can be applied to a substrate before curing. If the additive is an indicator, the light-absorbing characteristics of which vary upon contact with a particular analyte, the indicator can be applied to a lens, optical fiber, reagant strip, or flow cell for use in chemical analysis. Alternatively, an additive such as alumina particles is blended into the mixture to form a filler composition for patching cracks in metal, glass, or ceramic piping.

  3. Tetraethyl orthosilicate-based glass composition and method

    DOE Patents [OSTI]

    Wicks, G.G.; Livingston, R.R.; Baylor, L.C.; Whitaker, M.J.; O`Rourke, P.E.

    1997-06-10

    A tetraethyl orthosilicate-based, sol-gel glass composition with additives selected for various applications is described. The composition is made by mixing ethanol, water, and tetraethyl orthosilicate, adjusting the pH into the acid range, and aging the mixture at room temperature. The additives, such as an optical indicator, filler, or catalyst, are then added to the mixture to form the composition which can be applied to a substrate before curing. If the additive is an indicator, the light-absorbing characteristics of which vary upon contact with a particular analyte, the indicator can be applied to a lens, optical fiber, reagent strip, or flow cell for use in chemical analysis. Alternatively, an additive such as alumina particles is blended into the mixture to form a filler composition for patching cracks in metal, glass, or ceramic piping. 12 figs.

  4. Reconstruction dynamics of recorded holograms in photochromic glass

    SciTech Connect (OSTI)

    Mihailescu, Mona; Pavel, Eugen; Nicolae, Vasile B.

    2011-06-20

    We have investigated the dynamics of the record-erase process of holograms in photochromic glass using continuum Nd:YVO{sub 4} laser radiation ({lambda}=532 nm). A bidimensional microgrid pattern was formed and visualized in photochromic glass, and its diffraction efficiency decay versus time (during reconstruction step) gave us information (D, {Delta}n) about the diffusion process inside the material. The recording and reconstruction processes were carried out in an off-axis setup, and the images of the reconstructed object were recorded by a CCD camera. Measurements realized on reconstructed object images using holograms recorded at a different incident power laser have shown a two-stage process involved in silver atom kinetics.

  5. Durability of waste glass flax fiber reinforced mortar

    SciTech Connect (OSTI)

    Aly, M.; Hashmi, M. S. J.; Olabi, A. G. [School of Mechanical Engineering, Dublin City University (Ireland); Messeiry, M. [Dept of Engineering Physics, Faculty of Engineering, Cairo University (Egypt)

    2011-01-17

    The main concern for natural fibre reinforced mortar composites is the durability of the fibres in the alkaline environment of cement. The composites may undergo a reduction in strength as a result of weakening of the fibres by a combination of alkali attack and fibre mineralisation. In order to enhance the durability of natural fiber reinforced cement composites several approaches have been studied including fiber impregnation, sealing of the matrix pore system and reduction of matrix alkalinity through the use of pozzolanic materials. In this study waste glass powder was used as a pozzolanic additive to improve the durability performance of flax fiber reinforced mortar (FFRM). The durability of the FFRM was studied by determining the effects of ageing in water and exposure to wetting and drying cycles; on the microstructures and flexural behaviour of the composites. The mortar tests demonstrated that the waste glass powder has significant effect on improving the durability of FFRM.

  6. Glass-ceramic material and method of making

    DOE Patents [OSTI]

    Meinhardt, Kerry D [Richland, WA; Vienna, John D [West Richland, WA; Armstrong, Timothy R [Pasco, WA; Pederson, Larry R [Kennewick, WA

    2002-08-13

    The present invention is a glass-ceramic material and method of making useful for joining at least two solid ceramic parts. The seal is a blend of M.sub.A O--M.sub.B O.sub.y --SiO.sub.2 that substantially matches a coefficient of thermal expansion of the solid electrolyte. According to the present invention, a series of glass ceramics in the M.sub.A O--M.sub.B O.sub.y --SiO.sub.2 system can be used to join or seal both tubular and planar ceramic solid oxide fuel cells, oxygen electrolyzers, and membrane reactors for the production of syngas, commodity chemicals and other products.

  7. ENCAPSULATION OF PALLADIUM IN POROUS WALL HOLLOW GLASS MICROSPHERES

    SciTech Connect (OSTI)

    Heung, L; George Wicks, G; Ray Schumacher, R

    2008-04-09

    A new encapsulation method was investigated in an attempt to develop an improved palladium packing material for hydrogen isotope separation. Porous wall hollow glass microspheres (PWHGMs) were produced by using a flame former, heat treating and acid leaching. The PWHGMs were then filled with palladium salt using a soak-and-dry process. The palladium salt was reduced at high temperature to leave palladium inside the microspheres.

  8. 2014 Enhanced LAW Glass Property-Composition Models, Phase 2

    SciTech Connect (OSTI)

    Muller, Isabelle; Pegg, Ian L.; Joseph, Innocent; Gilbo, Konstantin

    2015-10-28

    This report describes the results of testing specified by the Enhanced LAW Glass Property-Composition Models, VSL-13T3050-1, Rev. 0 Test Plan. The work was performed in compliance with the quality assurance requirements specified in the Test Plan. Results required by the Test Plan are reported. The te4st results and this report have been reviewed for correctness, technical adequacy, completeness, and accuracy.

  9. Encapsulant Material For Solar Cell Module And Laminated Glass Applications

    DOE Patents [OSTI]

    Hanoka, Jack I. (Brookline, MA); Klemchuk, Peter P. (Watertown, CT)

    2001-02-13

    An encapsulant material includes a layer of metallocene polyethylene disposed between two layers of an acid copolymer of polyethylene. More specifically, the layer of metallocene polyethylene is disposed adjacent a rear surface of the first layer of the acid copolymer of polyethylene, and a second layer of the acid copolymer of polyethlene is disposed adjacent a rear surface of the layer of metallocene polyethylene. The encapsulant material can be used in solar cell module and laminated glass applications.

  10. Encapsulant Material For Solar Cell Module And Laminated Glass Applications

    DOE Patents [OSTI]

    Hanoka, Jack I. (Brookline, MA)

    2000-09-05

    An encapsulant material includes a layer of metallocene polyethylene disposed between two layers of ionomer. More specifically, the layer of metallocene polyethylene is disposed adjacent a rear surface of the first ionomer layer, and a second layer of ionomer is disposed adjacent a rear surface of the layer of metallocene polyethylene. The encapsulant material can be used in solar cell module and laminated glass applications.

  11. Advanced coal-fired glass melting development program

    SciTech Connect (OSTI)

    Not Available

    1991-05-01

    The objective of Phase 1 of the current contract was to verify the technical feasibility and economic benefits of Vortec's advanced combustion/melting technology using coal as the fuel of choice. The objective of the Phase 2 effort was to improve the performance of the primary components and demonstrate the effective operation of a subscale process heater system integrated with a glass separator/reservoir. (VC)

  12. Hollow microspheres of silica glass and method of manufacture

    DOE Patents [OSTI]

    Downs, Raymond L. (Ann Arbor, MI); Miller, Wayne J. (Ann Arbor, MI)

    1982-01-01

    A method of manufacturing gel powder suitable for use as a starting material in the manufacture of hollow glass microspheres having a high concentration of silica. The powder is manufactured from a gel containing boron in the amount of about 1% to 20% (oxide equivalent mole percent), alkali metals, specifically potassium and sodium, in an amount exceeding 8% total, and the remainder silicon. Preferably, the ratio of potassium to sodium is greater than 1.5.

  13. Collaboration yields 'The Right Glasses' for observing mystery behavior

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in electrons Observing mystery behavior In electrons Collaboration yields 'The Right Glasses' for observing mystery behavior in electrons The research may lead to a better understanding of superconductors or development of better materials for powering high-speed electronics. December 13, 2007 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience,

  14. Microwires fabricated by glass-coated melt spinning

    SciTech Connect (OSTI)

    Zhao, Y. Y.; Li, H.; Hao, H. Y.; Li, M.; Zhang, Y.; Liaw, P. K.

    2013-07-15

    The glass-coated melt spinning method offers a route for the manufacture of metal filaments with a few micrometers in diameter in a single operation directly from the melt. Cobalt-based amorphous wires, Cu-15.0 atomic percent (at. %) Sn shape-memory wires, and Ni{sub 2}MnGa (atomic percent) ferromagnetic wires were successfully produced by this method. The cobalt-based amorphous wire is flexible, and Cu-15.0 at. % Sn shape-memory wires have the tensile elongation of 14%. However, because of chemical reaction with glass and oxidation, it is hard to make CuAlNi shape-memory wires and NiNbSn amorphous wires. Conditions for preparing these materials were summarized, and the differences of the solidification processes among glass-coated amorphous cobalt-based wires, Cu-15.0 at. % Sn shape-memory wires, and Ni{sub 2}MnGa wires were analyzed and discussed.

  15. Low sintering temperature glass waste forms for sequestering radioactive iodine

    DOE Patents [OSTI]

    Nenoff, Tina M.; Krumhansl, James L.; Garino, Terry J.; Ockwig, Nathan W.

    2012-09-11

    Materials and methods of making low-sintering-temperature glass waste forms that sequester radioactive iodine in a strong and durable structure. First, the iodine is captured by an adsorbant, which forms an iodine-loaded material, e.g., AgI, AgI-zeolite, AgI-mordenite, Ag-silica aerogel, ZnI.sub.2, CuI, or Bi.sub.5O.sub.7I. Next, particles of the iodine-loaded material are mixed with powdered frits of low-sintering-temperature glasses (comprising various oxides of Si, B, Bi, Pb, and Zn), and then sintered at a relatively low temperature, ranging from 425.degree. C. to 550.degree. C. The sintering converts the mixed powders into a solid block of a glassy waste form, having low iodine leaching rates. The vitrified glassy waste form can contain as much as 60 wt % AgI. A preferred glass, having a sintering temperature of 500.degree. C. (below the silver iodide sublimation temperature of 500.degree. C.) was identified that contains oxides of boron, bismuth, and zinc, while containing essentially no lead or silicon.

  16. Metallic glass alloys of Zr, Ti, Cu and Ni

    DOE Patents [OSTI]

    Lin, Xianghong (Pasadena, CA); Peker, Atakan (Pasadena, CA); Johnson, William L. (Pasadena, CA)

    1997-01-01

    At least quaternary alloys form metallic glass upon cooling below the glass transition temperature at a rate less than 10.sup.3 K/s. Such alloys comprise titanium from 19 to 41 atomic percent, an early transition metal (ETM) from 4 to 21 atomic percent and copper plus a late transition metal (LTM) from 49 to 64 atomic percent. The ETM comprises zirconium and/or hafnium. The LTM comprises cobalt and/or nickel. The composition is further constrained such that the product of the copper plus LTM times the atomic proportion of LTM relative to the copper is from 2 to 14. The atomic percentage of ETM is less than 10 when the atomic percentage of titanium is as high as 41, and may be as large as 21 when the atomic percentage of titanium is as low as 24. Furthermore, when the total of copper and LTM are low, the amount of LTM present must be further limited. Another group of glass forming alloys has the formula (ETM.sub.1-x Ti.sub.x).sub.a Cu.sub.b (Ni.sub.1-y Co.sub.y).sub.c wherein x is from 0.1 to 0.3, y.cndot.c is from 0 to 18, a is from 47 to 67, b is from 8 to 42, and c is from 4 to 37. This definition of the alloys has additional constraints on the range of copper content, b.

  17. Synthesis and studies on microhardness of alkali zinc borate glasses

    SciTech Connect (OSTI)

    Subhashini, Bhattacharya, Soumalya Shashikala, H. D. Udayashankar, N. K.

    2014-04-24

    The mixed alkali effect on zinc borate glasses have been reported. The glass systems of nominal composition 10Zn+xLi{sub 2}O+yNa{sub 2}O+80B{sub 2}O{sub 3} (x = y = 0, 5, 10, 15 mol%) were prepared using standard melt quenching method. The structural, physical and mechanical properties of the samples have been studied using X-ray diffraction(XRD), density measurement and Vickers hardness measurement, respectively. A consistent increase in the density was observed, which explains the role of the modifiers (Li{sub 2}O and Na{sub 2}O) in the network modification of borate structure. The molar volume is decreasing linearly with the alkali concentration, which is attributed to the conversion of tetrahedral boron (BO{sub 4/2}){sup ?} into (BO{sub 3/2}){sup ?}. The microhardness studies reveals the anisotropy nature of the material. It further confirms that the samples belong to hard glass category.

  18. Energy Saving Glass Lamination via Selective Radio Frequency Heating

    SciTech Connect (OSTI)

    Shawn M. Allan; Patricia M. Strickland; Holly S. Shulman

    2009-11-11

    Ceralink Inc. developed FastFuse, a rapid, new, energy saving process for lamination of glass and composites using radio frequency (RF) heating technology. The Inventions and Innovations program supported the technical and commercial research and development needed to elevate the innovation from bench scale to a self-supporting technology with significant potential for growth. The attached report provides an overview of the technical and commerical progress achieved for FastFuse during the course of the project. FastFuse has the potential to revolutionize the laminate manufacturing industries by replacing energy intensive, multi-step processes with an energy efficient, single-step process that allows higher throughput. FastFuse transmits RF energy directly into the interlayer to generate heat, eliminating the need to directly heat glass layers and the surrounding enclosures, such as autoclaves or vacuum systems. FastFuse offers lower start-up and energy costs (up to 90% or more reduction in energy costs), and faster cycles times (less than 5 minutes). FastFuse is compatible with EVA, TPU, and PVB interlayers, and has been demonstrated for glass, plastics, and multi-material structures such as photovoltaics and transparent armor.

  19. Control of high level radioactive waste-glass melters

    SciTech Connect (OSTI)

    Bickford, D.F.; Choi, A.S.

    1991-01-01

    Slurry Fed Melters (SFM) are being developed in the United States, Europe and Japan for the conversion of high-level radioactive waste to borosilicate glass for permanent disposal. The high transition metal, noble metal, nitrate, organic, and sulfate contents of these wastes lead to unique melter redox control requirements. Pilot waste-glass melter operations have indicated the possibility of nickel sulfide or noble-metal fission-product accumulation on melter floors, which can lead to distortion of electric heating patterns, and decrease melter life. Sulfide formation is prevented by control of the redox chemistry of the melter feed. The redox state of waste-glass melters is determined by balance between the reducing potential of organic compounds in the feed, and the oxidizing potential of gases above the melt, and nitrates and polyvalent elements in the waste. Semiquantitative models predicting limitations of organic content have been developed based on crucible testing. Computerized thermodynamic computations are being developed to predict the sequence and products of redox reactions and is assessing process variations. Continuous melter test results have been compared to improved computer staged-thermodynamic-models of redox behavior. Feed chemistry control to prevent sulfide and moderate noble metal accumulations are discussed. 17 refs., 3 figs.

  20. G-Plus Report to Judel Products: Spectral Analysis and Imaging of Colored Glasses

    SciTech Connect (OSTI)

    Wang, H

    2005-06-20

    Redox state is one of the most important factors that affect color of glasses. Recently, optical properties and redox state of the glass melts have been studied at TNO by A.J. Faber [1]. Spectral measurements up to 4 {micro}m into the infrared region were taken. The focus of similar studies [2] was on the redox state of iron. In glassware production, the control of color is mainly dependent upon the experience of the operators. When the color varies due to changes in processing conditions, batching or furnace contamination, usually little can be done but to scrap the entire batch. This can result in significant down time and waste of energy to melt and refine the glass. For small glass companies, detecting out-of-specification color variation early in the melting process means savings on labor and energy costs. In larger color glass operations, early detection may provide means to correct or save the batch. Monitoring the redox state of the glass melt can be used to effectively control the quality of glass products. An in-line redox sensor has been tested in industrial environment [3]. Thermal emission spectroscopy is a non-contact, real-time sensing technique. The collection of a spectrum takes only a few seconds or less. This may allow on-line analysis of the glass melt or hot glass products. For a specific glass product, a series of spectra with different processing parameters could be collected and analyzed. The sensing system would be able to detect a deviation from the normal conditions and signal the operator a change has occurred. The primary goal of this GPLUS effort is to find a practical solution for color monitoring. In this project, we proposed to conduct initial experiments of spectral characterization of colored glasses from the designated glass industry members of the Society for Glass Science and Practices. The work plan contained three stages: (1) Obtain glass samples and use spectroscopy analysis at ORNL to measure basic spectral characteristics of various glass products; (2) collect emission spectra of the glasses using single-point spectrometers (UV to 2.5 microns) from glass melts; (3) Using a spectral imaging device (3-5 microns) at ORNL to obtain 2D hyper-spectra images to evaluate the emission of glass melts.

  1. Lead iron phosphate glass as a containment medium for disposal of high-level nuclear waste

    DOE Patents [OSTI]

    Boatner, Lynn A.; Sales, Brian C.

    1989-01-01

    Lead-iron phosphate glasses containing a high level of Fe.sub.2 O.sub.3 for use as a storage medium for high-level radioactive nuclear waste. By combining lead-iron phosphate glass with various types of simulated high-level nuclear waste, a highly corrosion resistant, homogeneous, easily processed glass can be formed. For corroding solutions at 90.degree. C., with solution pH values in the range between 5 and 9, the corrosion rate of the lead-iron phosphate nuclear waste glass is at least 10.sup.2 to 10.sup.3 times lower than the corrosion rate of a comparable borosilicate nuclear waste glass. The presence of Fe.sub.2 O.sub.3 in forming the lead-iron phosphate glass is critical. Lead-iron phosphate nuclear waste glass can be prepared at temperatures as low as 800.degree. C., since they exhibit very low melt viscosities in the 800.degree. to 1050.degree. C. temperature range. These waste-loaded glasses do not readily devitrify at temperatures as high as 550.degree. C. and are not adversely affected by large doses of gamma radiation in H.sub.2 O at 135.degree. C. The lead-iron phosphate waste glasses can be prepared with minimal modification of the technology developed for processing borosilicate glass nuclear wasteforms.

  2. Glass optimization for vitrification of Hanford Site low-level tank waste

    SciTech Connect (OSTI)

    Feng, X.; Hrma, P.R.; Westsik, J.H. Jr.

    1996-03-01

    The radioactive defense wastes stored in 177 underground single-shell tanks (SST) and double-shell tanks (DST) at the Hanford Site will be separated into low-level and high-level fractions. One technology activity underway at PNNL is the development of glass formulations for the immobilization of the low-level tank wastes. A glass formulation strategy has been developed that describes development approaches to optimize glass compositions prior to the projected LLW vitrification facility start-up in 2005. Implementation of this strategy requires testing of glass formulations spanning a number of waste loadings, compositions, and additives over the range of expected waste compositions. The resulting glasses will then be characterized and compared to processing and performance specifications yet to be developed. This report documents the glass formulation work conducted at PNL in fiscal years 1994 and 1995 including glass formulation optimization, minor component impacts evaluation, Phase 1 and Phase 2 melter vendor glass development, liquidus temperature and crystallization kinetics determination. This report also summarizes relevant work at PNNL on high-iron glasses for Hanford tank wastes conducted through the Mixed Waste Integrated Program and work at Savannah River Technology Center to optimize glass formulations using a Plackett-Burnam experimental design.

  3. Evaluation of Impurity Extremes in a Plutonium-loaded Borosilicate Glass

    SciTech Connect (OSTI)

    Fox, K.M.; Crawford, C.L.; Marra, J.C.; Bibler, N.E.; Hoffman, E.N.; Edwards, T.B. [Savannah River National Laboratory, Aiken, SC (United States)

    2008-07-01

    A vitrification technology utilizing a lanthanide borosilicate (LaBS) glass appears to be a viable option for the disposition of excess weapons-usable plutonium that is not suitable for processing into mixed oxide (MOX) fuel. A significant effort to develop a glass formulation and vitrification process to immobilize plutonium was completed in the mid-1990's. The LaBS glass formulation was found to be capable of immobilizing in excess of 10 wt % Pu and to be tolerant of a range of impurities. To confirm the results of previous testing with surrogate Pu feeds containing impurities, four glass compositions were selected for fabrication with actual plutonium oxide and impurities. The four compositions represented extremes in impurity type and concentration. The homogeneity and durability of these four compositions were measured. The homogeneity of the glasses was evaluated using x-ray diffraction (XRD) and scanning electron microscopy coupled with energy dispersive spectroscopy (SEM/EDS). The XRD results indicated that the glasses were amorphous with no evidence of crystalline species in the glass. The SEM/EDS analyses did show the presence of some undissolved PuO{sub 2} material. The EDS spectra indicated that some of the PuO{sub 2} crystals also contained hafnium oxide. The SEM/EDS analyses showed that there were no heterogeneities in the glass due to the feed impurities. The durability of the glasses was measured using the Product Consistency Test (PCT). The PCT results indicated that the durability of Pu impurity glasses was comparable with Pu glasses without impurities and significantly more durable than the Environmental Assessment (EA) glass used as the benchmark for repository disposition of high-level waste (HLW) glasses. (authors)

  4. Glass Ceramic Waste Forms for Combined CS+LN+TM Fission Products Waste Streams

    SciTech Connect (OSTI)

    Crum, Jarrod V.; Turo, Laura A.; Riley, Brian J.; Tang, Ming; Kossoy, Anna; Sickafus, Kurt E.

    2010-09-23

    In this study, glass ceramics were explored as an alternative waste form for glass, the current baseline, to be used for immobilizing alkaline/alkaline earth + lanthanide (CS+LN) or CS+LN+transition metal (TM) fission-product waste streams generated by a uranium extraction (UREX+) aqueous separations type process. Results from past work on a glass waste form for the combined CS+LN waste streams showed that as waste loading increased, large fractions of crystalline phases precipitated upon slow cooling.[1] The crystalline phases had no noticeable impact on the waste form performance by the 7-day product consistency test (PCT). These results point towards the development of a glass ceramic waste form for treating CS+LN or CS+LN+TM combined waste streams. Three main benefits for exploring glass ceramics are: (1) Glass ceramics offer increased solubility of troublesome components in crystalline phases as compared to glass, leading to increased waste loading; (2) The crystalline network formed in the glass ceramic results in higher heat tolerance than glass; and (3) These glass ceramics are designed to be processed by the same melter technology as the current baseline glass waste form. It will only require adding controlled canister cooling for crystallization into a glass ceramic waste form. Highly annealed waste form (essentially crack free) with up to 50X lower surface area than a typical High-Level Waste (HLW) glass canister. Lower surface area translates directly into increased durability. This was the first full year of exploring glass ceramics for the Option 1 and 2 combined waste stream options. This work has shown that dramatic increases in waste loading are achievable by designing a glass ceramic waste form as an alternative to glass. Table S1 shows the upper limits for heat, waste loading (based on solubility), and the decay time needed before treatment can occur for glass and glass ceramic waste forms. The improvements are significant for both combined waste stream options in terms of waste loading and/or decay time required before treatment. For Option 1, glass ceramics show an increase in waste loading of 15 mass % and reduction in decay time of 24 years. Decay times of {approx}50 years or longer are close to the expected age of the fuel that will be reprocessed when the modified open or closed fuel cycle is expected to be put into action. Option 2 shows a 2x to 2.5x increase in waste loading with decay times of only 45 years. Note that for Option 2 glass, the required decay time before treatment is only 35 years because of the waste loading limits related to the solubility of MoO{sub 3} in glass. If glass was evaluated for similar waste loadings as those achieved in Option 2 glass ceramics, the decay time would be significantly longer than 45 years. These glass ceramics are not optimized, but already they show the potential to dramatically reduce the amount of waste generated while still utilizing the proven processing technology used for glass production.

  5. Method of producing optical quality glass having a selected refractive index

    DOE Patents [OSTI]

    Poco, John F. (Livermore, CA); Hrubesh, Lawrence W. (Livermore, CA)

    2000-01-01

    Optical quality glass having a selected refractive index is produced by a two stage drying process. A gel is produced using sol-gel chemistry techniques and first dried by controlled evaporation until the gel volume reaches a pre-selected value. This pre-selected volume determines the density and refractive index of the finally dried gel. The gel is refilled with solvent in a saturated vapor environment, and then dried again by supercritical extraction of the solvent to form a glass. The glass has a refractive index less than the full density of glass, and the range of achievable refractive indices depends on the composition of the glass. Glasses having different refractive indices chosen from an uninterrupted range of values can be produced from a single precursor solution.

  6. Chemical durability of soda-lime-aluminosilicate glass for radioactive waste vitrification

    SciTech Connect (OSTI)

    Eppler, F.H.; Yim, M.S. [North Carolina State Univ., Raleigh, NC (United States)

    1998-09-01

    Vitrification has been identified as one of the most viable waste treatment alternatives for nuclear waste disposal. Currently, the most popular glass compositions being selected for vitrification are the borosilicate family of glasses. Another popular type that has been around in glass industry is the soda-lime-silicate variety, which has often been characterized as the least durable and a poor candidate for radioactive waste vitrification. By replacing the boron constituent with a cheaper substitute, such as silica, the cost of vitrification processing can be reduced. At the same time, addition of network intermediates such as Al{sub 2}O{sub 3} to the glass composition increases the environmental durability of the glass. The objective of this study is to examine the ability of the soda-lime-aluminosilicate glass as an alternative vitrification tool for the disposal of radioactive waste and to investigate the sensitivity of product chemical durability to variations in composition.

  7. Effect of CaF{sub 2} addition on optical properties of barium phosphate glasses

    SciTech Connect (OSTI)

    Kumar, N. Manoj Rao, G. Venkateswara Akhila, B. E. Shashikala, H. D.

    2014-04-24

    Ternary barium phosphate glasses, (50?X)BaO?XCaF{sub 2}?50P{sub 2}O{sub 5} have been prepared by adding 0-10 mol% of CaF{sub 2} to binary barium phosphate glasses. The amorphous nature of the prepared glasses was confirmed by X-ray diffraction technique. The UV-Visible absorption spectra have been recorded, optical band gap energy Eopt and Urbach energy Etail were determined. Shift in Eopt and Etail with increase in concentration of CaF{sub 2} is noted. FTIR analysis was carried out to investigate the short and intermediate-range orders in glasses. Shift of (P-O-P) band to higher wave number with the substitution of BaO with CaF{sub 2} shows the shortening of the phosphate chains. Hardness and density of glass samples were measured and correlated with the composition of glasses.

  8. Method for melting glass by measurement of non-bridging oxygen

    DOE Patents [OSTI]

    Jantzen, Carol M. (3922 Wood Valley Dr., Aiken, SC 29801)

    1992-01-01

    A method for making better quality molten glass in a glass melter, the glass having the desired viscosity and, preferably, also the desired resistivity so that the glass melt can be established effectively and the product of the glass melter will have the desired level of quality. The method includes the adjustment of the composition of the glass constituents that are fed into the melter in accordance with certain correlations that reliably predict the viscosity and resistivity from the melter temperature and the melt composition, then heating the ingredients to the melter's operating temperature until they melt and homogenize. The equations include the calculation of a "non-bridging oxygen" term from the numbers of moles of the various ingredients, and then the determination of the viscosity and resistivity from the operating temperature of the melter and the non-bridging oxygen term.

  9. Method for melting glass by measurement of non-bridging oxygen

    DOE Patents [OSTI]

    Jantzen, C.M.

    1992-04-07

    A method is described for making better quality molten glass in a glass melter, the glass having the desired viscosity and, preferably, also the desired resistivity so that the glass melt can be established effectively and the product of the glass melter will have the desired level of quality. The method includes the adjustment of the composition of the glass constituents that are fed into the melter in accordance with certain correlations that reliably predict the viscosity and resistivity from the melter temperature and the melt composition, then heating the ingredients to the melter's operating temperature until they melt and homogenize. The equations include the calculation of a non-bridging oxygen' term from the numbers of moles of the various ingredients, and then the determination of the viscosity and resistivity from the operating temperature of the melter and the non-bridging oxygen term. 4 figs.

  10. Impacts of Feed Composition and Recycle on Hanford Low-Activity Waste Glass Mass

    Office of Environmental Management (EM)

    Feed Composition and Recycle on Hanford Low- Activity Waste Glass Mass J.D. Vienna & D.S. Kim - Pacific Northwest National Laboratory I.L. Pegg - Catholic University of America 1 LAW Glass Loading Limits WTP baseline (LAW Glass Formulation Algorithm) low uncertainty  thoroughly tested accounts for Na, S, Cl, F, Cr, K, and P impacts conservative loading Advanced silicate formulation higher uncertainty than baseline currently accounts for Na and S impacts impacts of other components not

  11. SETTLING OF SPINEL IN A HIGH-LEVEL WASTE GLASS MELTER

    SciTech Connect (OSTI)

    Pavel Hrma; Pert Schill; Lubomir Nemec

    2002-01-07

    High-level nuclear waste is being vitrified, i.e., converted to a durable glass that can be stored in a safe repository for hundreds of thousands of years. Waste vitrification is accomplished in reactors called melters to which the waste is charged together with glass-forming additives. The mixture is electrically heated to a temperature as high as 1150 decrees C to create a melt that becomes glass on cooling.

  12. Microstructure and luminescence of Yb{sup 3+}-doped fluorosilicate glass

    Office of Scientific and Technical Information (OSTI)

    ceramics (Journal Article) | SciTech Connect Microstructure and luminescence of Yb{sup 3+}-doped fluorosilicate glass ceramics Citation Details In-Document Search Title: Microstructure and luminescence of Yb{sup 3+}-doped fluorosilicate glass ceramics Highlights: Black-Right-Pointing-Pointer Fine nano-SrF{sub 2} lattices were observed in the fluorosilicate glass ceramics. Black-Right-Pointing-Pointer EDXS analysis showed Yb{sup 3+} was enriched into the SrF{sub 2} nanocrystals.

  13. Durability-Based Design Criteria for a Chopped-Glass-Fiber Automotive Structural Composite

    SciTech Connect (OSTI)

    Battiste, R.L.; Corum, J.M.; Ren, W.; Ruggles, M.B.

    1999-11-01

    This report provides recommended durability-based design criteria for a chopped-glass-fiber reinforced polymeric composite for automotive structural applications. The criteria closely follow the framework of an earlier criteria document for a continuous-strand-mat (CSM) glass-fiber reference composite. Together these design criteria demonstrate a framework that can be adapted for future random-glass-fiber composites for automotive structural applications.

  14. The structural origin of the hard-sphere glass transition in granular

    Office of Scientific and Technical Information (OSTI)

    packing (Journal Article) | DOE PAGES DOE PAGES Search Results Accepted Manuscript: The structural origin of the hard-sphere glass transition in granular packing Title: The structural origin of the hard-sphere glass transition in granular packing Glass transition is accompanied by a rapid growth of the structural relaxation time and a concomitant decrease of configurational entropy. It remains unclear whether the transition has a thermodynamic origin, and whether the dynamic arrest is

  15. Applications of Atomistic Simulation to Radioactive and Hazardous Waste Glass Formulation Development

    SciTech Connect (OSTI)

    Kielpinski, A.L.

    1995-03-01

    Glass formulation development depends on an understanding of the effects of glass composition on its processibility and product quality. Such compositional effects on properties in turn depend on the microscopic structure of the glass. Historically, compositional effects on macroscopic properties have been explored empirically, e.g., by measuring viscosity at various glass compositions. The relationship of composition to structure has been studied by microstructural experimental methods. More recently, computer simulation has proved a fruitful complement to these more traditional methods of study. By simulating atomic interaction over a period of time using the molecular dynamics method, a direct picture of the glass structure and dynamics is obtained which can verify existing concepts as well as permit ``measurement`` of quantities inaccessible to experiment. Atomistic simulation can be of particular benefit in the development of waste glasses. As vitrification is being considered for an increasing variety of waste streams, process and product models are needed to formulate compositions for an extremely wide variety of elemental species and composition ranges. The demand for process and product models which can predict over such a diverse composition space requires mechanistic understanding of glass behavior; atomistic simulation is ideally suited for providing this understanding. Moreover, while simulation cannot completely eliminate the need for treatability studies, it can play a role in minimizing the experimentation on (and therefore contact handling of) such materials. This paper briefly reviews the molecular dynamics method, which is the primary atomistic simulation tool for studying glass structure. We then summarize the current state of glass simulation, emphasizing areas of importance for waste glass process/product modeling. At SRS, glass process and product models have been formulated in terms of glass structural concepts.

  16. Sintering behavior of lanthanide-containing glass-ceramic sealants for solid oxide fuel cells

    SciTech Connect (OSTI)

    Goel, Ashutosh; Reddy, Allu Amarnath; Pascual, Maria J.; Gremillard, Laurent; Malchere, Annie; Ferreira, Jose M.

    2012-05-01

    This article reports on the influence of different lanthanides (La, Nd, Gd and Yb) on sintering behavior of alkaline-earth aluminosilicate glass-ceramics sealants for their application in solid oxide fuel cells (SOFC). All the glasses have been prepared by melt-quench technique. The in situ follow up of sintering behavior of glass powders has been done by high temperature - environmental scanning electron microscope (HT-ESEM) and hot-stage microscope (HSM) while the crystalline phase evolution and assemblage has been analyzed by x-ray diffraction (XRD) and scanning electron microscopy (SEM). All the glass compositions exhibit a glass-in-glass phase separation followed by two stage sintering resulting in well sintered glass powder compacts after heat treatment at 850 C for 1 h. Diopside (CaMgSi{sub 2}O{sub 6}) based phases constituted the major crystalline part in glass-ceramics followed by some minor phases. The increase in lanthanide content in glasses suppressed their tendency towards devitrification, thus, resulting in glass-ceramics with high amount of residual glassy phase (50-96 wt.%) which is expected to facilitate their self-healing behavior during SOFC operation. The electrical conductivity of the investigated glass-ceramics varied between (1.19 and 7.33) x 10{sup -7} S cm{sup -1} (750-800 C), and depended on the ionic field strength of lanthanide cations. Further experimentation with respect to the long term thermal and chemical stability of residual glassy phase under SOFC operation conditions along with high temperature viscosity measurements will be required in order to elucidate the potential of these glass-ceramics as self-healing sealants.

  17. EA-1645: Sage Electrochromics SageGlass High Volume Manufacturing Facility

    Office of Environmental Management (EM)

    in Fairbault, MN | Department of Energy 45: Sage Electrochromics SageGlass High Volume Manufacturing Facility in Fairbault, MN EA-1645: Sage Electrochromics SageGlass High Volume Manufacturing Facility in Fairbault, MN July 1, 2009 EA-1645: Final Environmental Assessment Sage Electrochromics Sageglass® High Volume Manufacturing (Hvm) Facility in Faribault, Minnesota July 1, 2009 EA-1645: Finding of No Significant Impact Loan Guarantee for Sage Electrochromics SageGlass High Volume

  18. Cladding glass ceramic for use in high powered lasers

    DOE Patents [OSTI]

    Marker, A.J.; Campbell, J.H.

    1998-02-17

    A Cu-doped/Fe-doped low expansion glass ceramic composition comprising in Wt. %: SiO{sub 2} 50--65; Al{sub 2}O{sub 3} 18--27; P{sub 2}O{sub 5} 0--10; Li{sub 2}O 2--6; Na{sub 2}O 0--2; K{sub 2}O 0--2; B{sub 2}O{sub 3} 0--1; MgO 0--4; ZnO 0--5; CaO 0--4; BaO 0--5; TiO{sub 2} 1--3; ZrO{sub 3} 1--3; As{sub 2}O{sub 3} 0--1.5; Sb{sub 2}O{sub 3} 0--1.5; CuO 0--3; and Fe{sub 2}O{sub 3} 0--1 wherein the total amount of SiO{sub 2}, Al{sub 2}O{sub 3} and P{sub 2}O{sub 5} is 80--89 wt. %, and said glass ceramic contains as a dopant 0.1--3 wt. % CuO, 0.1--1 wt. % Fe{sub 2}O{sub 3} or a combined CuO+Fe{sub 2}O{sub 3} amount of 0.1--4 wt. %. The glass ceramic composition is suitable for use as a cladding material for solid laser energy storage mediums as well as for use in beam attenuators for measuring laser energy level and beam blocks or beam dumps used for absorbing excess or unused laser energy.

  19. Cladding glass ceramic for use in high powered lasers

    DOE Patents [OSTI]

    Marker, Alexander J. (Moscow, PA); Campbell, John H. (Livermore, CA)

    1998-01-01

    A Cu-doped/Fe-doped low expansion glass ceramic composition comprising in Wt. %: SiO{sub 2} 50--65; Al{sub 2}O{sub 3} 18--27; P{sub 2}O{sub 5} 0--10; Li{sub 2}O 2--6; Na{sub 2}O 0--2; K{sub 2}O 0--2; B{sub 2}O{sub 3} 0--1; MgO 0--4; ZnO 0--5; CaO 0--4; BaO 0--5; TiO{sub 2} 1--3; ZrO{sub 3} 1--3; As{sub 2}O{sub 3} 0--1.5; Sb{sub 2}O{sub 3} 0--1.5; CuO 0--3; and Fe{sub 2}O{sub 3} 0--1 wherein the total amount of SiO{sub 2}, Al{sub 2}O{sub 3} and P{sub 2}O{sub 5} is 80--89 wt. %, and said glass ceramic contains as a dopant 0.1--3 wt. % CuO, 0.1--1 wt. % Fe{sub 2}O{sub 3} or a combined CuO+Fe{sub 2}O{sub 3} amount of 0.1--4 wt. %. The glass ceramic composition is suitable for use as a cladding material for solid laser energy storage mediums as well as for use in beam attenuators for measuring laser energy level and beam blocks or beam dumps used for absorbing excess or unused laser energy.

  20. Metallic glass alloys of Zr, Ti, Cu and Ni

    DOE Patents [OSTI]

    Lin, X.; Peker, A.; Johnson, W.L.

    1997-04-08

    At least quaternary alloys form metallic glass upon cooling below the glass transition temperature at a rate less than 10{sup 3} K/s. Such alloys comprise titanium from 19 to 41 atomic percent, an early transition metal (ETM) from 4 to 21 atomic percent and copper plus a late transition metal (LTM) from 49 to 64 atomic percent. The ETM comprises zirconium and/or hafnium. The LTM comprises cobalt and/or nickel. The composition is further constrained such that the product of the copper plus LTM times the atomic proportion of LTM relative to the copper is from 2 to 14. The atomic percentage of ETM is less than 10 when the atomic percentage of titanium is as high as 41, and may be as large as 21 when the atomic percentage of titanium is as low as 24. Furthermore, when the total of copper and LTM are low, the amount of LTM present must be further limited. Another group of glass forming alloys has the formula (ETM{sub 1{minus}x}Ti{sub x}){sub a} Cu{sub b} (Ni{sub 1{minus}y}Co{sub y}){sub c} wherein x is from 0.1 to 0.3, y{center_dot}c is from 0 to 18, a is from 47 to 67, b is from 8 to 42, and c is from 4 to 37. This definition of the alloys has additional constraints on the range of copper content, b. 2 figs.

  1. Experimental Design for Hanford Low-Activity Waste Glasses with High Waste Loading

    SciTech Connect (OSTI)

    Piepel, Gregory F.; Cooley, Scott K.; Vienna, John D.; Crum, Jarrod V.

    2015-07-24

    This report discusses the development of an experimental design for the initial phase of the Hanford low-activity waste (LAW) enhanced glass study. This report is based on a manuscript written for an applied statistics journal. Appendices A, B, and E include additional information relevant to the LAW enhanced glass experimental design that is not included in the journal manuscript. The glass composition experimental region is defined by single-component constraints (SCCs), linear multiple-component constraints (MCCs), and a nonlinear MCC involving 15 LAW glass components. Traditional methods and software for designing constrained mixture experiments with SCCs and linear MCCs are not directly applicable because of the nonlinear MCC. A modification of existing methodology to account for the nonlinear MCC was developed and is described in this report. One of the glass components, SO3, has a solubility limit in glass that depends on the composition of the balance of the glass. A goal was to design the experiment so that SO3 would not exceed its predicted solubility limit for any of the experimental glasses. The SO3 solubility limit had previously been modeled by a partial quadratic mixture model expressed in the relative proportions of the 14 other components. The partial quadratic mixture model was used to construct a nonlinear MCC in terms of all 15 components. In addition, there were SCCs and linear MCCs. This report describes how a layered design was generated to (i) account for the SCCs, linear MCCs, and nonlinear MCC and (ii) meet the goals of the study. A layered design consists of points on an outer layer, and inner layer, and a center point. There were 18 outer-layer glasses chosen using optimal experimental design software to augment 147 existing glass compositions that were within the LAW glass composition experimental region. Then 13 inner-layer glasses were chosen with the software to augment the existing and outer-layer glasses. The experimental design was completed by a center-point glass, a Vitreous State Laboratory glass, and replicates of the center point and Vitreous State Laboratory glasses.

  2. Properties of a new average power Nd-doped phosphate laser glass

    SciTech Connect (OSTI)

    Payne, S.A.; Marshall, C.D.; Bayramian, A.J.; Wilke, G.D.; Hayden, J.S.

    1995-03-09

    The Nd-doped phosphate laser glass described herein can withstand 2.3 times greater thermal loading without fracture, compared to APG-1 (commercially-available average-power glass from Schott Glass Technologies). The enhanced thermal loading capability is established on the basis of the intrinsic thermomechanical properties and by direct thermally-induced fracture experiments using Ar-ion laser heating of the samples. This Nd-doped phosphate glass (referred to as APG-t) is found to be characterized by a 29% lower gain cross section and a 25% longer low-concentration emission lifetime.

  3. Laser properties of an improved average-power Nd-doped phosphate glass

    SciTech Connect (OSTI)

    Payne, S.A.; Marshall, C.D.; Bayramian, A.J.

    1995-03-15

    The Nd-doped phosphate laser glass described herein can withstand 2.3 times greater thermal loading without fracture, compared to APG-1 (commercially-available average-power glass from Schott Glass Technologies). The enhanced thermal loading capability is established on the basis of the intrinsic thermomechanical properties (expansion, conduction, fracture toughness, and Young`s modulus), and by direct thermally-induced fracture experiments using Ar-ion laser heating of the samples. This Nd-doped phosphate glass (referred to as APG-t) is found to be characterized by a 29% lower gain cross section and a 25% longer low-concentration emission lifetime.

  4. Cooling rate and stress relaxation in silica melts and glasses via microsecond molecular dyanmics

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lane, J. Matthew D.

    2015-07-22

    We have conducted extremely long molecular dynamics simulations of glasses to microsecond times, which close the gap between experimental and atomistic simulation time scales by two to three orders of magnitude. The static, thermal, and structural properties of silica glass are reported for glass cooling rates down to 5×109 K/s and viscoelastic response in silica melts and glasses are studied over nine decades of time. We finally present results from relaxation of hydrostatic compressive stress in silica and show that time-temperature superposition holds in these systems for temperatures from 3500 to 1000 K.

  5. Ultrahigh-pressure polyamorphism in GeO 2 glass with coordination...

    Office of Scientific and Technical Information (OSTI)

    Title: Ultrahigh-pressure polyamorphism in GeO 2 glass with coordination number >6 Authors: Kono, Yoshio ; Kenney-Benson, Curtis ; Ikuta, Daijo ; Shibazaki, Yuki ; Wang, Yanbin ; ...

  6. MELTING OF GLASS BATCH: MODEL FOR MULTIPLE OVERLAPPING GAS-EVOLVING

    Office of Scientific and Technical Information (OSTI)

    REACTIONS (Journal Article) | SciTech Connect MELTING OF GLASS BATCH: MODEL FOR MULTIPLE OVERLAPPING GAS-EVOLVING REACTIONS Citation Details In-Document Search Title: MELTING OF GLASS BATCH: MODEL FOR MULTIPLE OVERLAPPING GAS-EVOLVING REACTIONS In this study, we present a model for the kinetics of multiple overlapping reactions. Mathematical representation of the kinetics of gas-evolving reactions is crucial for the modeling of the feed-to-glass conversion in a waste-glass melter. The model

  7. The effect of high-level waste glass composition on spinel liquidus...

    Office of Scientific and Technical Information (OSTI)

    on spinel liquidus temperature Citation Details In-Document Search Title: The effect of high-level waste glass composition on spinel liquidus temperature Spinel crystals ...

  8. GLASSES CONTAINING IRON (II III) OXIDES FOR IMMOBILIZATION OF RADIOACTIVE TECHNETIUM

    SciTech Connect (OSTI)

    KRUGER AA; HEO J; XU K; CHOI JK; HRMA PR; UM W

    2011-11-07

    Technetium-99 (Tc-99) has posed serious environmental threats as US Department of Energy's high-level waste. This work reports the vitrification of Re, as surrogate for Tc-99, by iron-borosilicate and iron-phosphate glasses, respectively. Iron-phosphate glasses can dissolve Re as high as {approx} 1.2 wt. %, which can become candidate waste forms for Tc-99 disposal, while borosilicate glasses can retain less than 0.1 wt. % of Re due to high melting temperature and long melting duration. Vitrification of Re as Tc-99's mimic was investigated using iron-borosilicate and iron-phosphate glasses. The retention of Re in borosilicate glasses was less than 0.1 wt. % and more than 99 wt. % of Re were volatilized due to high melting temperature and long melting duration. Because the retention of Re in iron-phosphate glasses is as high as 1.2 wt. % and the volatilization is reduced down to {approx}50 wt. %, iron-phosphate glasses can be one of the glass waste form candidates for Tc (or Re) disposal. The investigations of chemical durability and leaching test of iron-phosphate glasses containing Re are now underway to test the performance of the waste form.

  9. CHEMICAL ANALYSIS OF SIMULATED HIGH LEVEL WASTE GLASSES TO SUPPORT SULFATE SOLUBILITY MODELING

    SciTech Connect (OSTI)

    Fox, K.; Marra, J.

    2014-08-14

    The U.S. Department of Energy (DOE), Office of Environmental Management (EM) is sponsoring an international, collaborative project to develop a fundamental model for sulfate solubility in nuclear waste glass. The solubility of sulfate has a significant impact on the achievable waste loading for nuclear waste forms both within the DOE complex and to some extent at U.K. sites. The development of enhanced borosilicate glass compositions with improved sulfate solubility will allow for higher waste loadings and accelerated cleanup missions. Much of the previous work on improving sulfate retention in waste glasses has been done on an empirical basis, making it difficult to apply the findings to future waste compositions despite the large number of glass systems studied. A more fundamental, rather than empirical, model of sulfate solubility in glass, under development at Sheffield Hallam University (SHU), could provide a solution to the issues of sulfate solubility. The model uses the normalized cation field strength index as a function of glass composition to predict sulfate capacity, and has shown early success for some glass systems. The objective of the current scope is to mature the sulfate solubility model to the point where it can be used to guide glass composition development for DOE waste vitrification efforts, allowing for enhanced waste loadings and waste throughput. A series of targeted glass compositions was selected to resolve data gaps in the current model. SHU fabricated these glasses and sent samples to the Savannah River National Laboratory (SRNL) for chemical composition analysis. SHU will use the resulting data to enhance the sulfate solubility model and resolve any deficiencies. In this report, SRNL provides chemical analyses for simulated waste glasses fabricated SHU in support of sulfate solubility model development. A review of the measured compositions revealed that there are issues with the B{sub 2}O{sub 3} and Fe{sub 2}O{sub 3} concentrations missing their targeted values by a significant amount for several of the study glasses. SHU is reviewing the fabrication of these glasses and the chemicals used in batching them to identify the source of these issues. The measured sulfate concentrations were all below their targeted values. This is expected, as the targeted concentrations likely exceeded the solubility limit for sulfate in these glass compositions. Some volatilization of sulfate may also have occurred during fabrication of the glasses. Measurements of the other oxides in the study glasses were reasonably close to their targeted values

  10. Evaluation of Phase II glass formulations for vitrification of Hanford Site low-level waste

    SciTech Connect (OSTI)

    Feng, X.; Hrma, P.R.; Schweiger, M.J.

    1996-03-01

    A vendor glass formulation study was carried out at Pacific Northwest Laboratory (PNL), supporting the Phase I and Phase II melter vendor testing activities for Westinghouse Hanford Company. This study is built upon the LLW glass optimization effort that will be described in a separate report. For Phase I vendor melter testing, six glass formulations were developed at PNL and additional were developed by Phase I vendors. All the doses were characterized in terms of viscosity and chemical durability by the 7-day Product Consistency Test. Twelve Phase II glass formulations (see Tables 3.5 and 3.6) were developed to accommodate 2.5 wt% P{sub 2}O{sub 5} and 1.0 wt% S0{sub 3} without significant processing problems. These levels of P{sub 2}O{sub 5} and SO{sub 3} are expected to be the highest possible concentrations from Hanford Site LLW streams at 25 wt% waste loading in glass. The Phase H compositions formulated were 6 to 23 times more durable than the environmental assessment (EA) glass. They melt within the temperature range of 1160{degrees} to 1410{degrees}C to suit different melting technologies. The composition types include boron-free for volatilization sensitive melters; boron-containing glasses for coId-cap melters; Zr-containing, glasses for enhanced Iong-term durability; and Fe-containing glasses for reducing melting temperature and melt volatility while maintaining chemical durability.

  11. Energy and Environmental Profile of the U.S. Glass Industry

    SciTech Connect (OSTI)

    Pellegrino, Joan L.

    2002-04-01

    This detailed report benchmarks the energy and environmental characteristics of the key technologies used in the major processes of the glass industry.

  12. Sulfur polymer cement as a low-level waste glass matrix encapsulant. Part 1: Thermal processing

    SciTech Connect (OSTI)

    Sliva, P.; Peng, Y.B.; Bunnell, L.R.; Peeler, D.K.; Feng, X.; Martin, P.; Turner, P.J. [Pacific Northwest National Lab., Richland, WA (United States)

    1996-08-01

    Sulfur polymer cement (SPC) is a candidate material to encapsulate low-level waste (LLW) glass. Molten SPC will be poured into a LLW glass cullet-filled canister, surrounding the glass to act as an additional barrier to groundwater intrusion. This paper covers the first part of a study performed at Pacific Northwest National Laboratory concerned with the fundamental aspects of embedding LLW glass in SPC. Part one is a study of the SPC itself. Variations in SPC properties are discussed, especially in relation to long-term stability and controlling crystallization in a cooling canister.

  13. The effect of chromium oxide on the properties of simulated nuclear waste glasses

    SciTech Connect (OSTI)

    Vojtech, O.; Sussmilch, J.; Urbanec, Z.

    1996-02-01

    A study of the effect of chromium on the properties of selected glasses was performed in the frame of a Contract between Battelle, Pacific Northwest Laboratories and Nuclear Research Institute, ReZ. In the period from July 1994 to June 1995 two borosilicate glasses of special composition were prepared according to the PNL procedure and their physical and structural characteristics of glasses were studied. This Final Report contains a vast documentation on the properties of all glasses studied. For the preparation of the respective technology more detailed study of physico-chemical properties and crystallinity of investigated systems would be desirable.

  14. Transmission electron microscopy of whiskers and hillocks formed on Al films deposited onto a glass

    SciTech Connect (OSTI)

    Saka, H.; Fujino, S.; Kuroda, K. [Department of Quantum Engineering, Nagoya University, Nagoya 464-01 (Japan); Tsujimoto, K.; Tsuji, S. [Display Technology, IBM Japan, Ltd., Shimotsuruma, Yamato, Kanagawa 242 (Japan); Takatsuji, H. [Display Technology, IBM Japan, Ltd., Ichimiyake, Yasu-gun, Shiga 520-23 (Japan)

    1998-01-05

    Whiskers and hillocks formed on an Al film deposited onto a glass substrate have been observed by means of a variety of transmission electron microscopy technique.

  15. Glass Fiber Mesh Method of Joining for Solid Oxide Fuel Cells...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Glass Fiber Mesh Method of Joining for Solid Oxide Fuel Cells Pacific Northwest National Laboratory Contact PNNL About This Technology A simple schematic shows the physical...

  16. Methods of making metallic glass foil laminate composites

    DOE Patents [OSTI]

    Vianco, Paul T. (Albuquerque, NM); Fisher, Robert W. (Albuquerque, NM); Hosking, Floyd M. (Albuquerque, NM); Zanner, Frank J. (Sandia Park, NM)

    1996-01-01

    A process for the fabrication of a rapidly solidified foil laminate composite. An amorphous metallic glass foil is flux treated and coated with solder. Before solidification of the solder the foil is collected on a take-up spool which forms the composite into a solid annular configuration. The resulting composite exhibits high strength, resiliency and favorable magnetic and electrical properties associated with amorphous materials. The composite also exhibits bonding strength between the foil layers which significantly exceeds the bulk strength of the solder alone.

  17. Chemical treatment for silica-containing glass surfaces

    DOE Patents [OSTI]

    Grabbe, Alexis (Albuquerque, NM); Michalske, Terry Arthur (Cedar Crest, NM); Smith, William Larry (Albuquerque, NM)

    1999-01-01

    Dehydroxylated, silica-containing, glass surfaces are known to be at least partially terminated by strained siloxane rings. According to the invention, a surface of this kind is exposed to a selected silane compound or mixture of silane compounds under reaction-promoting conditions. The ensuing reaction results in opening of the strained siloxane rings, and termination of surface atoms by chemical species, such as organic or organosilicon species, having desirable properties. These species can be chosen to provide qualities such as hydrophobicity, or improved coupling to a polymeric coating.

  18. Chemical treatment for silica-containing glass surfaces

    DOE Patents [OSTI]

    Grabbe, Alexis (Albuquerque, NM); Michalske, Terry Arthur (Cedar Crest, NM); Smith, William Larry (Albuquerque, NM)

    1999-01-01

    Dehydroxylated, silica-containing, glass surfaces are known to be at least partially terminated by strained siloxane rings. According to the invention, a surface of this kind is exposed to a selected silane compound or mixture of silane compounds under reaction-promoting conditons. The ensuing reaction results in opening of the strained siloxane rings, and termination of surface atoms by chemical species, such as organic or organosilicon species, having desirable properties. These species can be chosen to provide qualities such as hydrophobicity, or improved coupling to a polymeric coating.

  19. Chemical treatment for silica-containing glass surfaces

    DOE Patents [OSTI]

    Grabbe, Alexis (Albuquerque, NM); Michalske, Terry Arthur (Cedar Crest, NM); Smith, William Larry (Albuquerque, NM)

    1998-01-01

    Dehydroxylated, silica-containing, glass surfaces are known to be at least partially terminated by strained siloxane rings. According to the invention, a surface of this kind is exposed to a selected silane compound or mixture of silane compounds under reaction-promoting conditions. The ensuing reaction results in opening of the strained siloxane rings, and termination of surface atoms by chemical species, such as organic or organosilicon species, having desirable properties. These species can be chosen to provide qualities such as hydrophobicity, or improved coupling to a polymeric coating.

  20. Chemical treatment for silica-containing glass surfaces

    DOE Patents [OSTI]

    Grabbe, A.; Michalske, T.A.; Smith, W.L.

    1998-04-07

    Dehydroxylated, silica-containing, glass surfaces are known to be at least partially terminated by strained siloxane rings. According to the invention, a surface of this kind is exposed to a selected silane compound or mixture of silane compounds under reaction-promoting conditions. The ensuing reaction results in opening of the strained siloxane rings, and termination of surface atoms by chemical species, such as organic or organosilicon species, having desirable properties. These species can be chosen to provide qualities such as hydrophobicity, or improved coupling to a polymeric coating. 11 figs.

  1. Neutron detector using lithiated glass-scintillating particle composite

    DOE Patents [OSTI]

    Wallace, Steven; Stephan, Andrew C.; Dai, Sheng; Im, Hee-Jung

    2009-09-01

    A neutron detector composed of a matrix of scintillating particles imbedded in a lithiated glass is disclosed. The neutron detector detects the neutrons by absorbing the neutron in the lithium-6 isotope which has been enriched from the natural isotopic ratio to a commercial ninety five percent. The utility of the detector is optimized by suitably selecting scintillating particle sizes in the range of the alpha and the triton. Nominal particle sizes are in the range of five to twenty five microns depending upon the specific scintillating particle selected.

  2. Method and apparatus for laser scribing glass sheet substrate coatings

    DOE Patents [OSTI]

    Borgeson, Frank A.; Hanak, Joseph J.; Harju, Ricky S.; Helman, Norman L.; Hecht, Kenneth R.

    2003-05-06

    A method and apparatus (42) for laser scribing coatings on glass sheet substrates by conveying the substrate adjacent a laser source (83) that provides a pulsed laser beam (84) with a wavelength at a near-infrared fundamental frequency and having a frequency in the range of 50 to 100 kilohertz and a pulse duration in the range of 8 to 70 nanoseconds, and by reflecting the beam by an XYZ galvanometer controlled mirror system (90) toward an uncoated surface of the substrate for passage therethrough to the coating on the other surface to provide overlapping ablations through the coating and scribing at a speed of at least 1000 millimeters per second.

  3. Method and apparatus for laser scribing glass sheet substrate coatings

    DOE Patents [OSTI]

    Borgeson, Frank A.; Hanak, Joseph J.; Harju, Ricky S.; Harju, Karen M.; Helman, Norman L.; Hecht, Kenneth R.

    2005-07-19

    A method and apparatus (42) for laser scribing coatings on glass sheet substrates by conveying the substrate adjacent a laser source (83) that provides a pulsed laser beam (84) with a wavelength at a near-infrared fundamental frequency and having a frequency in the range of 50 to 100 kilohertz and a pulse duration in the range of 8 to 70 nanoseconds, and by reflecting the beam by an XYZ galvanometer controlled mirror system (90) toward an uncoated surface of the substrate for passage therethrough to the coating on the other surface to provide overlapping ablations through the coating and scribing at a speed of at least 1000 millimeters per second.

  4. Methods of making metallic glass foil laminate composites

    DOE Patents [OSTI]

    Vianco, P.T.; Fisher, R.W.; Hosking, F.M.; Zanner, F.J.

    1996-08-20

    A process for the fabrication of a rapidly solidified foil laminate composite. An amorphous metallic glass foil is flux treated and coated with solder. Before solidification of the solder the foil is collected on a take-up spool which forms the composite into a solid annular configuration. The resulting composite exhibits high strength, resiliency and favorable magnetic and electrical properties associated with amorphous materials. The composite also exhibits bonding strength between the foil layers which significantly exceeds the bulk strength of the solder alone. 6 figs.

  5. Resistance heater for use in a glass melter

    DOE Patents [OSTI]

    Routt, K.R.; Porter, M.A.

    1984-01-01

    A resistance heating element that includes: a resistance heating medium of a mixture of electrically conductive and insulative particles in powdered form mixed together in predetermined proportions to achieve a given resistivity; a hollow outer electrode surrounding the resistance heating medium; and an inner electrode coaxially disposed within said outer electrode. In its preferred embodiments, the electrically conductive powder is selected from the group consisting essentially of graphite, Inconel alloy, molybdenum, nichrome alloy and stainless steel, while the insulator powder is silicon dioxide or alumina. The resistance heating element, being resistant to damage from mechanical shock and corrosion at elevated temperatures, is used in a glass melter.

  6. Interactions at glass-ceramic to metal interfaces

    SciTech Connect (OSTI)

    Knorovsky, G.A.; Brow, R.K.; Watkins, R.D.; Loehman, R.E.

    1990-01-01

    Advanced pyrotechnic components can be fabricated from Ni-based superalloys with hermetic seals to high expansion lithium-silicate glass ceramics (LSGC). Prior studies have characterized the interfacial reactions in these systems necessary for good chemical bonding. Similar reactions occur when LSGCs are bonded to 300-series stainless steel except that these seals debond on cooling to room temperature. Cr-depletion (from {approximately}18 wt % to {approximately}5 wt %) from the steel interface cases an fcc-to-bcc phase transition that expands the interfacial grains and decreases their thermal expansion coefficient, putting the LSGC into tension, causing the seal to fail. 9 refs., 5 figs., 1 tab.

  7. GLASS FABRICATION AND PRODUCT CONSISTENCY TESTING OF LANTHANIDE BOROSILICATE FRIT B COMPOSITION FOR PLUTONIUM DISPOSITION

    SciTech Connect (OSTI)

    Marra, J

    2006-01-19

    The Department of Energy Office of Environmental Management (DOE/EM) plans to conduct the Plutonium Disposition Project at the Savannah River Site (SRS) to disposition excess weapons-usable plutonium. A plutonium glass waste form is a leading candidate for immobilization of the plutonium for subsequent disposition in a geologic repository. A reference glass composition (Lanthanide Borosilicate (LaBS) Frit B) was developed during the Plutonium Immobilization Program (PIP) to immobilize plutonium. A limited amount of performance testing was performed on this baseline composition before efforts to further pursue Pu disposition via a glass waste form ceased. Therefore, the objectives of this present task were to fabricate plutonium loaded LaBS Frit B glass and perform additional testing to provide near-term data that will increase confidence that LaBS glass product is suitable for disposal in the Yucca Mountain Repository. Specifically, testing was conducted in an effort to provide data to Yucca Mountain Project (YMP) personnel for use in performance assessment calculations. Plutonium containing LaBS glass with the Frit B composition with a 9.5 wt% PuO{sub 2} loading was prepared for testing. Glass was prepared to support Product Consistency Testing (PCT) at Savannah River National Laboratory (SRNL) and for additional performance testing at Argonne National Laboratory (ANL) and Pacific Northwest National Laboratory (PNNL). The glass was characterized using x-ray diffraction (XRD) and scanning electron microscopy coupled with energy dispersive spectroscopy (SEM/EDS) prior to performance testing. A series of PCTs were conducted at SRNL with varying exposed surface area and test durations. The leachates from these tests were analyzed to determine the dissolved concentrations of key elements. Acid stripping of leach vessels was performed to determine the concentration of the glass constituents that may have sorbed on the vessels during leach testing. Additionally, the leachate solutions were ultrafiltered to quantify colloid formation. The leached solids from select PCTs were examined in an attempt to evaluate the Pu and neutron absorber release behavior from the glass and to identify the formation of alteration phases on the glass surface. Characterization of the glass prior to testing revealed that some undissolved plutonium oxide was present in the glass. The undissolved particles had a disk-like morphology and likely formed via coarsening of particles in areas compositionally enriched in plutonium. Similar disk-like PuO{sub 2} phases were observed in previous LaBS glass testing at PNNL. In that work, researchers concluded that plutonium formed with this morphology as a result of the leaching process. It was more likely that the presence of the plutonium oxide crystals in the PNNL testing was a result of glass fabrication. A series of PCTs were conducted at 90 C in ASTM Type 1 water. The PCT-Method A (PCT-A) was conducted to compare the Pu LaBS Frit B glass durability to current requirements for High Level Waste (HLW) glass in a geologic repository. The PCT-A test has a strict protocol and is designed to specifically be used to evaluate whether the chemical durability and elemental release characteristics of a nuclear waste glass have been consistently controlled during production and, thus, meet the repository acceptance requirements. The PCT-A results on the Pu containing LaBS Frit B glass showed that the glass was very durable with a normalized elemental release value for boron of approximately 0.02 g/L. This boron release value was better than two orders of magnitude better from a boron release standpoint than the current Environmental Assessment (EA) glass used for repository acceptance. The boron release value for EA glass is 16.7 g/L.

  8. Glass composition development for stabilization of lead based paints

    SciTech Connect (OSTI)

    Marra, J.C.

    1996-10-01

    Exposure to lead can lead to adverse health affects including permanent damage to the central nervous system. Common means of exposure to lead are from ingestion of lead paint chips or breathing of dust from deteriorating painted surfaces. The U.S. Army has over 101 million square feet of buildings dating to World War II or earlier. Many of these structures were built before the 1978 ban on lead based paints. The U.S. Army Corps of Engineers CERL is developing technologies to remove and stabilize lead containing organic coatings. Promising results have been achieved using a patented flame spray process that utilizes a glass frit to stabilize the hazardous constituents. When the glass frit is sprayed onto the paint containing substrate, differences in thermal expansion coefficients between the frit and the paint results in spalling of the paint from the substrate surface. The removed fragments are then collected and remelted to stabilize the hazardous constituents and allow for disposal as non-hazardous waste. Similar successful results using a patented process involving microwave technology for paint removal have also been achieved. In this process, the painted surface is coated with a microwave coupling compound that when exposed to microwave energy results in the spalling of the hazardous paint from the surface. The fragments can again be accumulated and remelted for stabilization and disposal.

  9. Self-cleaning feed distributing delivery device for glass melters

    DOE Patents [OSTI]

    Mensink, Daniel L. (155 Gatewood Dr., Aiken, SC 29801)

    1992-01-01

    A self cleaning, plug resistant, adjustable parameter feed distributing and delivery apparatus for a glass melter comprising a housing with a passage therethrough for a glass slurry, a cold finger within the passage for creating a dispersion pattern of the slurry, a movable slotted tube for controlling the confluence of air propellant and slurry in the passage, and a plurality of ribs that extend through the slots in the slotted tube to urge the slurry forward if it becomes stuck or resists forward movement. Coolant passages in the housing and the cold finger maintain the slurry temperature below that of the melter plenum. The cold finger is axially movable to adjust the dispersion pattern to the desired consistency. Other design features of size can be applied for use in situations requiring different parameters of pattern, particle size, rate, and feed consistencies. The device utilizes air as both a propellant and a surface cleansing mechanism. Other fluids may be used as propellants where process compatibility requires.

  10. Method for forming silicon on a glass substrate

    DOE Patents [OSTI]

    McCarthy, A.M.

    1995-03-07

    A method by which single-crystal silicon microelectronics may be fabricated on glass substrates at unconventionally low temperatures. This is achieved by fabricating a thin film of silicon on glass and subsequently forming the doped components by a short wavelength (excimer) laser doping procedure and conventional patterning techniques. This method may include introducing a heavily boron doped etch stop layer on a silicon wafer using an excimer laser, which permits good control of the etch stop layer removal process. This method additionally includes dramatically reducing the remaining surface roughness of the silicon thin films after etching in the fabrication of silicon on insulator wafers by scanning an excimer laser across the surface of the silicon thin film causing surface melting, whereby the surface tension of the melt causes smoothing of the surface during recrystallization. Applications for this method include those requiring a transparent or insulating substrate, such as display manufacturing. Other applications include sensors, actuators, optoelectronics, radiation hard and high temperature electronics. 15 figs.

  11. Two-dimensional electronic spectroscopy signatures of the glass transition

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lewis, K. L. .M.; Myers, J. A.; Fuller, F.; Tekavec, P. F.; Ogilvie, J. P.

    2010-01-01

    Two-dimensional electronic spectroscopy is a sensitive probe of solvation dynamics. Using a pump–probe geometry with a pulse shaper [ Optics Express 15 (2007), 16681-16689; Optics Express 16 (2008), 17420-17428], we present temperature dependent 2D spectra of laser dyes dissolved in glass-forming solvents. At low waiting times, the system has not yet relaxed, resulting in a spectrum that is elongated along the diagonal. At longer times, the system loses its memory of the initial excitation frequency, and the 2D spectrum rounds out. As the temperature is lowered, the time scale of this relaxation grows, and the elongation persists for longermore » waiting times. This can be measured in the ratio of the diagonal width to the anti-diagonal width; the behavior of this ratio is representative of the frequency–frequency correlation function [ Optics Letters 31 (2006), 3354–3356]. Near the glass transition temperature, the relaxation behavior changes. Understanding this change is important for interpreting temperature-dependent dynamics of biological systems.« less

  12. Glass-ceramic joint and method of joining

    DOE Patents [OSTI]

    Meinhardt, Kerry D [Richland, WA; Vienna, John D [West Richland, WA; Armstrong, Timothy R [Clinton, TN; Pederson, Larry R [Kennewick, WA

    2003-03-18

    The present invention is a glass-ceramic material and method of making useful for joining a solid ceramic component and at least one other solid component. The material is a blend of M1-M2-M3, wherein M1 is BaO, SrO, CaO, MgO, or combinations thereof, M2 is Al.sub.2 O.sub.3, present in the blend in an amount from 2 to 15 mol %, M3 is SiO.sub.2 with up to 50 mol % B.sub.2 O.sub.3 that substantially matches a coefficient of thermal expansion of the solid electrolyte. According to the present invention, a series of glass ceramics in the M1-Al.sub.2 O.sub.3 -M3 system can be used to join or seal both tubular and planar solid oxide fuel cells, oxygen electrolyzers, and membrane reactors for the production of syngas, commodity chemicals and other products.

  13. Eco-efficient waste glass recycling: Integrated waste management and green product development through LCA

    SciTech Connect (OSTI)

    Blengini, Gian Andrea, E-mail: blengini@polito.it [DISPEA - Department of Production Systems and Business Economics, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin (Italy); CNR-IGAG, Institute of Environmental Geology and Geo-Engineering, Corso Duca degli Abruzzi 24, 10129 Turin (Italy); Busto, Mirko, E-mail: mirko.busto@polito.it [DISPEA - Department of Production Systems and Business Economics, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin (Italy); Fantoni, Moris, E-mail: moris.fantoni@polito.it [DITAG - Department of Land, Environment and Geo-Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin (Italy); Fino, Debora, E-mail: debora.fino@polito.it [DISMIC - Department of Materials Science and Chemical Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin (Italy)

    2012-05-15

    Highlights: Black-Right-Pointing-Pointer A new eco-efficient recycling route for post-consumer waste glass was implemented. Black-Right-Pointing-Pointer Integrated waste management and industrial production are crucial to green products. Black-Right-Pointing-Pointer Most of the waste glass rejects are sent back to the glass industry. Black-Right-Pointing-Pointer Recovered co-products give more environmental gains than does avoided landfill. Black-Right-Pointing-Pointer Energy intensive recycling must be limited to waste that cannot be closed-loop recycled. - Abstract: As part of the EU Life + NOVEDI project, a new eco-efficient recycling route has been implemented to maximise resources and energy recovery from post-consumer waste glass, through integrated waste management and industrial production. Life cycle assessment (LCA) has been used to identify engineering solutions to sustainability during the development of green building products. The new process and the related LCA are framed within a meaningful case of industrial symbiosis, where multiple waste streams are utilised in a multi-output industrial process. The input is a mix of rejected waste glass from conventional container glass recycling and waste special glass such as monitor glass, bulbs and glass fibres. The green building product is a recycled foam glass (RFG) to be used in high efficiency thermally insulating and lightweight concrete. The environmental gains have been contrasted against induced impacts and improvements have been proposed. Recovered co-products, such as glass fragments/powders, plastics and metals, correspond to environmental gains that are higher than those related to landfill avoidance, whereas the latter is cancelled due to increased transportation distances. In accordance to an eco-efficiency principle, it has been highlighted that recourse to highly energy intensive recycling should be limited to waste that cannot be closed-loop recycled.

  14. CHEMICAL COMPOSITION AND PCT DATA FOR THE INITIAL SET OF HANFORD ENHANCED WASTE LOADING GLASSES

    SciTech Connect (OSTI)

    Fox, K.; Edwards, T.

    2014-06-02

    In this report, the Savannah River National Laboratory provides chemical analyses and Product Consistency Test results for 20 simulated high level waste glasses fabricated by the Pacific Northwest National Laboratory. The results of these analyses will be used as part of efforts to revise or extend the validation ranges of the current Hanford Waste Treatment and Immobilization Plant glass property models to cover a broader span of waste compositions. The measured chemical composition data are reported and compared with the targeted values for each component for each glass. Two components of the study glasses, fluorine and silver, were not measured since each of these species would have required the use of an additional preparation method and their measured values were likely to be near or below analytical detection limits. Some of the glasses were difficult to prepare for chemical analysis. A sodium peroxide fusion dissolution method was successful in completely dissolving the glasses. Components present in the glasses in minor concentrations can be difficult to measure using this dissolution method due to dilution requirements. The use of a lithium metaborate preparation method for the minor components (planned for use since it is typically successful in digesting Defense Waste Processing Facility HLW glasses) resulted in an unacceptable amount of undissolved solids remaining in the sample solutions. An acid dissolution method was used instead, which provided more thorough dissolution of the glasses, although a small amount of undissolved material remained for some of the study glasses. The undissolved material was analyzed to determine those components of the glasses that did not fully dissolve. These components (e.g., calcium and chromium) were present in sufficient quantities to be reported from the measurements resulting from the sodium peroxide fusion preparation method, which did not leave undissolved material. Overall, the analyses resulted in sums of oxides that ranged from about 98 to 101.5 wt % for the study glasses, indicating excellent recovery of all the components in the chemical composition analyses. Comparisons of the targeted and measured chemical compositions indicated that, in general, the measured values for the glasses met the targeted concentrations. Exceptions were Cr{sub 2}O{sub 3}, MgO, and P{sub 2}O{sub 5}. The measured values for Cr{sub 2}O{sub 3} were somewhat low when compared to the targeted values for all of the study glasses targeting Cr{sub 2}O{sub 3} concentrations above 0.5 wt %. Many of the measured MgO and P{sub 2}O{sub 5} values were below the targeted values for those glasses that contained these components. Two of the study glasses exhibited differences from the targeted compositions that may indicate a batching error. Glasses EWG-HAI-Centroid-2 and EWG-OL-1672 had measured values for Al{sub 2}O{sub 3} and SiO{sub 2} that were lower than the targeted values, and measured values for B{sub 2}O{sub 3} that were higher than the targeted values. Glass EWG-HAI-Centroid-2 also had a measured value for Fe{sub 2}O{sub 3} that was lower than the targeted value. A review of the PCT data, including standards and blanks, revealed no issues with the performance of the tests. The PCT results were normalized to both the targeted and measured compositions of the study glasses. Comparisons of the normalized PCT results for both the quenched and Canister Centerline Cooled versions of the study glasses are made with the Environmental Assessment benchmark glass for reference.

  15. Liquidus temperature and chemical durability of selected glasses to immobilize rare earth oxides waste

    SciTech Connect (OSTI)

    Mohd Fadzil, Syazwani Binti; Hrma, Pavel R.; Schweiger, Michael J.; Riley, Brian J.

    2015-06-30

    Pyroprocessing is a reprocessing method for managing and reusing used nuclear fuel (UNF) by dissolving it in an electrorefiner with a molten alkali or alkaline earth chloride salt mixture while avoiding wet reprocessing. Pyroprocessing UNF with a LiCl-KCl eutectic salt releases the fission products from the fuel and generates a variety of metallic and salt-based species, including rare earth (RE) chlorides. If the RE-chlorides are converted to oxides, borosilicate glass is a prime candidate for their immobilization because of its durability and ability to dissolve almost any RE waste component into the matrix at high loadings. Crystallization that occurs in waste glasses as the waste loading increases may complicate glass processing and affect the product quality. This work compares three types of borosilicate glasses in terms of liquidus temperature (TL): the International Simple Glass designed by the International Working Group, sodium borosilicate glass developed by Korea Hydro and Nuclear Power, and the lanthanide aluminoborosilicate (LABS) glass established in the United States. The LABS glass allows the highest waste loadings (over 50 mass% RE2O3) while possessing an acceptable chemical durability.

  16. Sodium nitrate containing mixture for producing ceramic-glass-ceramic seal by microwave heating

    DOE Patents [OSTI]

    Blake, R.D.; Meek, T.T.

    1984-10-10

    A mixture for, and method of using such a mixture, for producing a ceramic-glass-ceramic seal by the use of microwave energy are disclosed, wherein the mixture comprises a glass sealing material, a coupling agent, and an oxidizer. The seal produced exhibits greater strength due to its different microstructure. Sodium nitrate is the most preferred oxidizer.

  17. Method for producing ceramic-glass-ceramic seals by microwave heating

    DOE Patents [OSTI]

    Blake, Rodger D. (Santa Fe, NM); Meek, Thomas T. (Los Alamos, NM)

    1986-01-01

    Method for producing a ceramic-glass-ceramic seal by the use of microwave energy, and a sealing mixture which comprises a glass sealing material, a coupling agent, and an oxidizer. The seal produced exhibits greater strength due to its different microstructure. Sodium nitrate is the most preferred oxidizer.

  18. Ancient Glass in Swedish Hillforts May Shed Light on Immobilizing Nuclear Waste

    Broader source: Energy.gov [DOE]

    RICHLAND, Wash. – EM’s Office of River Protection (ORP) is looking to the past to help with its future by studying how ancient glass has fared through the centuries and how it compares to the results of accelerated aging tests on various types of low-activity waste (LAW) glass.

  19. GLASS FORMULATION FOR THE HANFORD TANK WASTE TREATMENT AND IMMOBILIZATION PLANT (WTP)

    SciTech Connect (OSTI)

    KRUGER AA; VIENNA JD; KIM DS; JAIN V

    2009-05-27

    A computational method for formulating Hanford HLW glasses was developed that is based on empirical glass composition-property models, accounts for all associated uncertainties, and can be solved in Excel{sup R} in minutes. Calculations for all waste form processing and compliance requirements included. Limited experimental validation performed.

  20. Investigation of Performance of SCN-1 Pure Glass as Sealant Used in SOFC

    SciTech Connect (OSTI)

    Liu, Wenning N.; Sun, Xin; Stephens, Elizabeth V.; Khaleel, Mohammad A.

    2010-03-01

    As its name implies, self-healing glass seal has the potential of restoring its mechanical properties upon being reheated to stack operating temperature, even when it has experienced some cooling induced damage/crack at room temperature. Such a self-healing feature is desirable for achieving high seal reliability during thermal cycling. On the other hand, self-healing glass is also characterized by its low mechanical stiffness and high creep rate at the typical operating temperature of SOFCs. Therefore, from a designs perspective, it is important to know the long term geometric stability and thermal mechanical behaviors of the self-healing glass under the stack operating conditions. These predictive capabilities will guide the design and optimization of a reliable sealing system that potentially utilizes self-healing glass as well as other ceramic seal components in achieving the ultimate goal of SOFC. In this report, we focused on predicting the effects of various generic seal design parameters on the stresses in the seal. For this purpose, we take the test cell used in the leakage test for compliant glass seals conducted in PNNL as our initial modeling geometry. The effect of the ceramic stopper on the geometry stability of the self-healing glass sealants is studied first. Then we explored the effect of various interfaces such as stopper and glass, stopper and PEN, as well stopper and IC plate, on the geometry stability and reliability of glass during the operating and cooling processes.