Sample records for bio-inspired energy storage

  1. Bio-Inspired Energy Dynamics

    E-Print Network [OSTI]

    Datta, Shoumen

    2010-03-27T23:59:59.000Z

    Energy policies based on empirical assumptions without a foundation in granular real-time data may be limited in scope. It may sputter ineffectively in its role as the engine of energy economics. For energy efficiency and ...

  2. Energy 2050: Bio-inspired Renewable Non-Fossil Liquid Fuel

    E-Print Network [OSTI]

    Datta, Shoumen

    We propose an intelligent Energy Transparency model and a bio-inspired hypothetical mechanical mitochondria to optimize energy efficiency. iET seeks learning algorithms to build intelligence in order to pursue carbon-based ...

  3. Center for Bio-Inspired Energy Science (CBES) | U.S. DOE Office of Science

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 IndustrialIsadore Perlman,Bios High Energy Physics AdvisoryCMSNF

  4. Center for Bio-Inspired Solar Fuel Production | An Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation InExplosion Monitoring:Home| Visitors| Education|AboutCenter Sponsored by

  5. ASU is a place to be for energy research | Center for Bio-Inspired Solar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformationCenterResearch Highlights MediaFuel Production ASU is a place to be for

  6. Montana State University ME 455 Bio-Inspired Engineering1 ME 455: BIO-INSPIRED ENGINEERING

    E-Print Network [OSTI]

    Dyer, Bill

    problem solutions. Structure, thermal, and fluid concepts in nature applied to engineering. Advanced. 2) Perform basic structural, thermal, and fluid analyses in biological and engineering systems. 3Montana State University ME 455 Bio-Inspired Engineering1 ME 455: BIO-INSPIRED ENGINEERING CATALOG

  7. Bio-Inspired Computing with Resistive Memories Models, Architectures and Applications

    E-Print Network [OSTI]

    Qiu, Qinru

    Bio-Inspired Computing with Resistive Memories ­ Models, Architectures and Applications Qing Wu for applying massively parallel architecture to embedded high performance computing where we must optimize brain, the neuromorphic architecture offers a promising novel computing paradigm for compact and energy

  8. Bio-inspired Slowness for Robotic Systems Ronald C. Arkin

    E-Print Network [OSTI]

    Bio-inspired Slowness for Robotic Systems Ronald C. Arkin Mobile Robot Laboratory School of Interactive Computing Georgia Institute of Technology Atlanta, GA USA 30332 arkin@gatech.edu Abstract: Slowness in robotic systems is a quality that is typically undervalued. It is our contention

  9. Energy Storage

    ScienceCinema (OSTI)

    Paranthaman, Parans

    2014-06-23T23:59:59.000Z

    ORNL Distinguished Scientist Parans Paranthaman is discovering new materials with potential for greatly increasing batteries' energy storage capacity and bring manufacturing back to the US.

  10. Energy Storage

    SciTech Connect (OSTI)

    Paranthaman, Parans

    2014-06-03T23:59:59.000Z

    ORNL Distinguished Scientist Parans Paranthaman is discovering new materials with potential for greatly increasing batteries' energy storage capacity and bring manufacturing back to the US.

  11. To do better than Nature | Center for Bio-Inspired Solar Fuel...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    would like to do it better..." Marina Faiella is a postdoctoral scholar in the Center for Bio-Inspired Solar Fuel Production at ASU. Recently she has been awarded a UNESCO-L'Oral...

  12. Bio-Inspired Molecular Catalysts for Hydrogen Oxidation and Hydrogen Production

    SciTech Connect (OSTI)

    Ho, Ming-Hsun; Chen, Shentan; Rousseau, Roger J.; Dupuis, Michel; Bullock, R. Morris; Raugei, Simone

    2013-06-03T23:59:59.000Z

    Recent advances in Ni-based bio-inspired catalysts obtained in the Center for Molecular Electrocatalysis, an Energy Frontier Research Center (EFRC) at the Pacific Northwest National Laboratory, demonstrated the possibility of cleaving H2 or generating H2 heterolytically with turnover frequencies comparable or superior to those of hydrogenase enzymes. In these catalysts the transformation between H2 and protons proceeds via an interplay between proton, hydride and electron transfer steps and involves the interaction of a dihydrogen molecule with both a Ni(II) center and with pendant amine bases incorporated in a six-membered ring, which act as proton relays. These catalytic platforms are well designed in that when protons are correctly positioned (endo) toward the Raugei-ACS-Books.docxPrinted 12/18/12 2 metal center, catalysis proceeds at very high rates. We will show that the proton removal (for H2 oxidation) and proton delivery (for H2 production) are often the rate determining steps. Furthermore, the presence of multiple protonation sites gives rise to reaction intermediates with protons not correctly positioned (exo relative to the metal center). These isomers are easily accessible kinetically and are detrimental to catalysis because of the slow isomerization processes necessary to convert them to the catalytically competent endo isomers. In this chapter we will review the major findings of our computational investigation on the role of proton relays for H2 chemistry and provide guidelines for the design of new catalysts. This research was carried out in the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science. Pacific Northwest National Laboratory is operated for the U.S. Department of Energy by Battelle. Computational resources were provided at W. R. Wiley Environmental Molecular Science Laboratory (EMSL), a Raugei-Bio-Inspired Molecular-Catalysts-for-Hydrogen- Oxidation-and-Hydrogen-Production.doc Printed 12/18/2012 23 national scientific user facility sponsored by the Department of Energy’s Office of Biological and Environmental Research located at Pacific Northwest National Laboratory, the National Energy Research Scientific Computing Center (NERSC) at Lawrence Berkeley National Laboratory, and the Jaguar supercomputer at Oak Ridge National Laboratory (INCITE 2008-2011 award supported by the Office of Science of the U.S. DOE under Contract No. DE-AC0500OR22725).

  13. AQUIFER THERMAL ENERGY STORAGE

    E-Print Network [OSTI]

    Tsang, C.-F.

    2011-01-01T23:59:59.000Z

    using aquifers for thermal energy storage. Problems outlinedmatical Modeling of Thermal Energy Storage in Aquifers,"ings of Aquifer Thermal Energy Storage Workshop, Lawrence

  14. AQUIFER THERMAL ENERGY STORAGE

    E-Print Network [OSTI]

    Tsang, C.-F.

    2011-01-01T23:59:59.000Z

    aquifers for thermal energy storage. Problems outlined aboveModeling of Thermal Energy Storage in Aquifers," Proceed-ings of Aquifer Thermal Energy Storage Workshop, Lawrence

  15. SUPERCONDUCTING MAGNETIC ENERGY STORAGE

    E-Print Network [OSTI]

    Hassenzahl, W.

    2011-01-01T23:59:59.000Z

    Superconducting 30-MJ Energy Storage Coil", Proc. 19 80 ASC,Superconducting Magnetic Energy Storage Plant", IEEE Trans.SlIperconducting Magnetic Energy Storage Unit", in Advances

  16. AQUIFER THERMAL ENERGY STORAGE

    E-Print Network [OSTI]

    Tsang, C.-F.

    2011-01-01T23:59:59.000Z

    using aquifers for thermal energy storage. Problems outlinedmatical Modeling of Thermal Energy Storage in Aquifers,"Proceed- ings of Aquifer Thermal Energy Storage Workshop,

  17. AQUIFER THERMAL ENERGY STORAGE

    E-Print Network [OSTI]

    Tsang, C.-F.

    2011-01-01T23:59:59.000Z

    of Discharge Using Ground- Water Storage," Transactions1971. "Storage of Solar Energy in a Sandy-Gravel Ground,"

  18. Seasonal thermal energy storage

    SciTech Connect (OSTI)

    Allen, R.D.; Kannberg, L.D.; Raymond, J.R.

    1984-05-01T23:59:59.000Z

    This report describes the following: (1) the US Department of Energy Seasonal Thermal Energy Storage Program, (2) aquifer thermal energy storage technology, (3) alternative STES technology, (4) foreign studies in seasonal thermal energy storage, and (5) economic assessment.

  19. SUPERCONDUCTING MAGNETIC ENERGY STORAGE

    E-Print Network [OSTI]

    Hassenzahl, W.

    2011-01-01T23:59:59.000Z

    to MW/40 MWI-IR Battery Energy Storage Facility", proc. 23rdcompressed air, and battery energy storage are all only 65

  20. SUPERCONDUCTING MAGNETIC ENERGY STORAGE

    E-Print Network [OSTI]

    Hassenzahl, W.

    2011-01-01T23:59:59.000Z

    hydro, compressed air, and battery energy storage are allenergy storage sys tem s suc h as pumped hydro and compressed air.

  1. Center for Nanophase Materials Sciences (CNMS) - BIO-Inspired Nanomaterials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to someone6Energy,MUSEUMCongratulationsAlamosHighlights

  2. Task Descriptions | Center for Bio-Inspired Solar Fuel Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearchScheduled System Burst BufferFluorite Energy Levels ofTakeTask

  3. Jaro Arero | Center for Bio-Inspired Solar Fuel Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickrinformation forTechnologies | Blandine Jerome JanuaryEnergyJaro

  4. Xixi Wei | Center for Bio-Inspired Solar Fuel Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered energy consumption byAbout SRNL Home SRNL main campusMoreXRAYOPSAlex Volosin Anindya

  5. Yan Liu | Center for Bio-Inspired Solar Fuel Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered energy consumption byAbout SRNL Home SRNLSecurityNationalComplex ers

  6. Yuichi Terazono | Center for Bio-Inspired Solar Fuel Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered energy consumption byAbout SRNL HomeYoung Inventor Shares HisFA-250FYu Lok

  7. Zhao Zhao | Center for Bio-Inspired Solar Fuel Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered energy consumption byAbout SRNL HomeYoung InventorNothing About It |

  8. | Center for Bio-Inspired Solar Fuel Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered energy consumption byAbout SRNLBuildingsScattering atTh eFebruary 12, 2015As

  9. | Center for Bio-Inspired Solar Fuel Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered energy consumption byAbout SRNLBuildingsScattering atTh eFebruary 12, 2015AsAZ

  10. | Center for Bio-Inspired Solar Fuel Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered energy consumption byAbout SRNLBuildingsScattering atTh eFebruary 12, 2015AsAZprev

  11. BISfuel Collaborative Culture | Center for Bio-Inspired Solar Fuel

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformationCenterResearch HighlightsToolsBES Reports Energy Frontier Research

  12. SUPERCONDUCTING MAGNETIC ENERGY STORAGE

    E-Print Network [OSTI]

    Hassenzahl, W.

    2011-01-01T23:59:59.000Z

    Design of the BPA Superconducting 30-MJ Energy Storagefor a Utility Scale Superconducting Magnetic Energy Storagefor a Lnrge Scale Superconducting Magnetic Energy Storage

  13. Jesse Bergkamp | Center for Bio-Inspired Solar Fuel Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickrinformation forTechnologies |Jennifer Dunn Jennifer

  14. Justin Flory | Center for Bio-Inspired Solar Fuel Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickrinformation forTechnologiesDialysis Provider3 |

  15. Brian Watson | Center for Bio-Inspired Solar Fuel Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to someone6 M.ExtracellularBradburyBrian Toonen

  16. Matthieu Koepf | Center for Bio-Inspired Solar Fuel Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recovery challenge fund LasDubey Mathematica Matlab

  17. Alex Volosin | Center for Bio-Inspired Solar Fuel Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc Documentation RUCProductstwrmrAre theAdministratorCFMFusion ResearchAndrew Weaver Andrew

  18. Giovanna Ghirlanda | Center for Bio-Inspired Solar Fuel Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr Flickr Editor'sshortGeothermal HeatStarted GettingStartedGiantAna

  19. Hao Yan | Center for Bio-Inspired Solar Fuel Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr FlickrGuidedCH2M HILL Secretary MonizSiteAbout Us > Hans

  20. Chad Simmons | Center for Bio-Inspired Solar Fuel Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to User Group and User ExecutiveCentral ActivatorAntennaAPS Principal

  1. Chelsea Brown | Center for Bio-Inspired Solar Fuel Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to User Group and Userof a blast-resistant naval Charlesit

  2. Thomas Moore | Center for Bio-Inspired Solar Fuel Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmittedStatus TomAboutManusScienceThe43068G. Thundat (2005)> ThePrincipal

  3. Raimund Fromme | Center for Bio-Inspired Solar Fuel Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar HomePromising Science for1Principal Investigators Postdoctoral Fellows

  4. Multidisciplinary and Multicultural Environment | Center for Bio-Inspired

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recovery challenge fundProject8MistakesAdministration AboutMovingNOVSolar

  5. The Science | Center for Bio-Inspired Solar Fuel Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearchScheduled System BurstLong Term ScheduleProject

  6. Ian Pahk | Center for Bio-Inspired Solar Fuel Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr FlickrGuidedCH2MLLCBasicsScience at

  7. Jackson Megiatto | Center for Bio-Inspired Solar Fuel Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickrinformation for andFuel-EfficientJefferson Lab1Barun Das Bhupesh

  8. James Allen | Center for Bio-Inspired Solar Fuel Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickrinformation for andFuel-EfficientJeffersonAna Moore Anne Jones Devens

  9. John Tomlin | Center for Bio-Inspired Solar Fuel Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickrinformation forTechnologies |JenniferB. StorerJohn Shalf

  10. Katie Wong | Center for Bio-Inspired Solar Fuel Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickrinformation forTechnologiesDialysis Provider3KarlKathyNews,Katie Wong

  11. Kevin Redding | Center for Bio-Inspired Solar Fuel Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickrinformationPostdocs & Graduates > TheFox d3m351futureKevinRAna

  12. Kim Rendek | Center for Bio-Inspired Solar Fuel Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickrinformationPostdocs & Graduates >Pearson d3l178 Primary

  13. Kiwan Jeon | Center for Bio-Inspired Solar Fuel Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickrinformationPostdocs & Graduates >Pearson d3l178Kirsten

  14. Kul Bhushan | Center for Bio-Inspired Solar Fuel Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickrinformationPostdocs & Graduates >PearsonKlausKristyn D.

  15. Dalvin Mendez | Center for Bio-Inspired Solar Fuel Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: CrudeOffice ofINL is a U.S.11-26-20131 10 150 10 15

  16. Daniel Mieritz | Center for Bio-Inspired Solar Fuel Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: CrudeOffice ofINL is a U.S.11-26-20131 10 150Dan

  17. Danielle Ladd | Center for Bio-Inspired Solar Fuel Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: CrudeOffice ofINL is a U.S.11-26-20131

  18. Devens Gust | Center for Bio-Inspired Solar Fuel Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: CrudeOfficeNERSC Helps Develop Next-GenEMSLPrincipal

  19. Dinesh Medpelli | Center for Bio-Inspired Solar Fuel Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: CrudeOfficeNERSCDiesel prices top $4 perPrincipal

  20. Don Seo | Center for Bio-Inspired Solar Fuel Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct:Directives Templates8. U.S. uraniumDomesticAna Moore Anne

  1. Dong Wang | Center for Bio-Inspired Solar Fuel Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct:Directives Templates8. U.S.Donald R. Baer d37154

  2. Emily North | Center for Bio-Inspired Solar Fuel Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series toESnet4: Networking for37 East and West Other SLACScienceSenior Principal

  3. Graduate Research Opportunities | Center for Bio-Inspired Solar Fuel

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Region service area. TheEPSCIResearch toAboutPolicies AboutProduction

  4. Mission | Center for Bio-Inspired Solar Fuel Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Regionat Cornell Batteries & Fuel Cells System OverviewMission

  5. Barun Das | Center for Bio-Inspired Solar Fuel Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to someone6 M. Babzien, I. Ben-Zvi, P. Study ofJ U Principal Investigators

  6. Ben Sherman | Center for Bio-Inspired Solar Fuel Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to someone6 M. Babzien, I. Ben-Zvi, P.2.2Security919 Belowground Principal

  7. Bhupesh Goyal | Center for Bio-Inspired Solar Fuel Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to someone6 M. Babzien, I.Program Information AboutBetterBetterBeyond

  8. Biographical sketch - Giovanna Ghirlanda | Center for Bio-Inspired Solar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to someone6 M. Babzien, I.ProgramBig SolBiofilmProductionFuel

  9. Bradley Brennan | Center for Bio-Inspired Solar Fuel Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to someone6 M.ExtracellularBradbury Science Museum winterBlue

  10. Gerdenis Kodis | Center for Bio-Inspired Solar Fuel Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr Flickr Editor'sshortGeothermal Heat PumpsChad Simmons Gerdenis Kodis

  11. Bisfuel Logo | Center for Bio-Inspired Solar Fuel Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformationCenterResearch HighlightsToolsBESEnergy DepartmentLectures 9 Apr1of

  12. Center Objective | Center for Bio-Inspired Solar Fuel Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformationCenterResearchCASL Symposium:and Technical InformationCell Isolation

  13. Center publications | Center for Bio-Inspired Solar Fuel Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformationCenterResearchCASL Symposium:andNationalCNMSPartners

  14. Contact information | Center for Bio-Inspired Solar Fuel Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformationCenterResearchCASLNanoporousTestimonyContact Us - WorkingContact Us

  15. Lu Gan | Center for Bio-Inspired Solar Fuel Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recovery challenge fund Las ConchasTrail of a martian20085816 2.460 2.430Lower

  16. Matthieu Walther | Center for Bio-Inspired Solar Fuel Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recovery challenge fund LasDubey Mathematica MatlabWalther Postdoctoral Fellow

  17. Michael Kenney | Center for Bio-Inspired Solar Fuel Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recovery challenge fund LasDubeyChallengeMetal &MichaelMichael

  18. Michael Vaughn | Center for Bio-Inspired Solar Fuel Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recovery challenge fund LasDubeyChallengeMetalMichael

  19. Sandip Shinde | Center for Bio-Inspired Solar Fuel Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmitted for USMaterialstheterahertz sources andwindBRUSandia's Principal

  20. Shibom Basu | Center for Bio-Inspired Solar Fuel Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmitted forHighlightsSeminars SeminarsO'Leary d3j906Sheng Dai (2011)

  1. Minghui Liu | Center for Bio-Inspired Solar Fuel Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recovery challenge fundProject8 -3EutecticMinding the Gap Makes forMineralMinghui

  2. Palash Dutta | Center for Bio-Inspired Solar Fuel Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratorySpeedingOptimizingToolsto control intensePage Not Found Page Not

  3. Patrick Kwan | Center for Bio-Inspired Solar Fuel Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar Home Design Passive Solar Home Design June 24, 2013

  4. Petra Fromme | Center for Bio-Inspired Solar Fuel Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar Home Design Passive Solar Home Design SystemAndresende Bock Peter deAna

  5. Undergraduate Research Opportunities | Center for Bio-Inspired Solar Fuel

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearchScheduledProduction Undergraduate Research Opportunities

  6. | Center for Bio-Inspired Solar Fuel Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert SouthwestTechnologies | Blandine Jerome CareersTechnologiesto PerformCenter events

  7. | Center for Bio-Inspired Solar Fuel Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert SouthwestTechnologies | Blandine Jerome CareersTechnologiesto PerformCenter

  8. | Center for Bio-Inspired Solar Fuel Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert SouthwestTechnologies | Blandine Jerome CareersTechnologiesto PerformCenterMedia

  9. | Center for Bio-Inspired Solar Fuel Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert SouthwestTechnologies | Blandine Jerome CareersTechnologiesto

  10. | Center for Bio-Inspired Solar Fuel Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert SouthwestTechnologies | Blandine Jerome CareersTechnologiestoCenter Video Library

  11. | Center for Bio-Inspired Solar Fuel Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert SouthwestTechnologies | Blandine Jerome CareersTechnologiestoCenter Video Library

  12. | Center for Bio-Inspired Solar Fuel Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert SouthwestTechnologies | Blandine Jerome CareersTechnologiestoCenter Video Library2

  13. | Center for Bio-Inspired Solar Fuel Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert SouthwestTechnologies | Blandine Jerome CareersTechnologiestoCenter Video Library23

  14. | Center for Bio-Inspired Solar Fuel Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert SouthwestTechnologies | Blandine Jerome CareersTechnologiestoCenter Video

  15. | Center for Bio-Inspired Solar Fuel Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert SouthwestTechnologies | Blandine Jerome CareersTechnologiestoCenter VideoSubtask 1

  16. Ana Moore | Center for Bio-Inspired Solar Fuel Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to someone by E-mail ShareRed CrossAn IridatePrincetonwaste glass.Ana

  17. Anindya Roy | Center for Bio-Inspired Solar Fuel Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to someone by E-mail ShareRedAndreas E VasdekisAngela NorbeckThin FoilAlex

  18. Anne Jones | Center for Bio-Inspired Solar Fuel Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to someone by E-mail ShareRedAndreas E VasdekisAngelaAu2+ ions at 140 |Ana

  19. Arnab Dutta | Center for Bio-Inspired Solar Fuel Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to someone byDear Friend, Please,LaboratoryDecade Year-0Arnab Dutta

  20. Souvik Roy | Center for Bio-Inspired Solar Fuel Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmittedStatus Tom Fletcher,Future |Carlos Valencia NamedPolicy Statement

  1. Sudhanshu Sharma | Center for Bio-Inspired Solar Fuel Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmittedStatus TomAbout »Lab (NewportSuccess Stories T E C H T R A N S F

  2. Energy Storage Systems

    SciTech Connect (OSTI)

    Conover, David R.

    2013-12-01T23:59:59.000Z

    Energy Storage Systems – An Old Idea Doing New Things with New Technology article for the International Assoication of ELectrical Inspectors

  3. Bio-inspired MOF-based Catalysts for Lignin Valorization.

    SciTech Connect (OSTI)

    Allendorf, Mark D.; Stavila, Vitalie; Ramakrishnan, Parthasarathi; Davis, Ryan Wesley

    2014-09-01T23:59:59.000Z

    Lignin is a potentially plentiful source of renewable organics, with ~50Mtons/yr produced by the pulp/paper industry and 200-300 Mtons/yr projected production by a US biofuels industry. This industry must process approximately 1 billion tons of biomass to meet the US Renewable Fuel goals. However, there are currently no efficient processes for converting lignin to value-added chemicals and drop-in fuels. Lignin is therefore an opportunity for production of valuable renewable chemicals, but presents staggering technical and economic challenges due to the quantities of material involved and the strong chemical bonds comprising this polymer. Aggressive chemistries and high temperatures are required to degrade lignin without catalysts. Moreover, chemical non-uniformity among lignins leads to complex product mixtures that tend to repolymerize. Conventional petrochemical approaches (pyrolysis, catalytic cracking, gasification) are energy intensive (400-800 degC), require complicated separations, and remove valuable chemical functionality. Low-temperature (25-200 degC) alternatives are clearly desirable, but enzymes are thermally fragile and incompatible with liquid organic compounds, making them impractical for large-scale biorefining. Alternatively, homogeneous catalysts, such as recently developed vanadium complexes, must be separated from product mixtures, while many heterogenous catalysts involve costly noble metals. The objective of this project is to demonstrate proof of concept that an entirely new class of biomimetic, efficient, and industrially robust synthetic catalysts based on nanoporous Metal- Organic Frameworks (MOFs) can be developed. Although catalytic MOFs are known, catalysis of bond cleavage reactions needed for lignin degradation is completely unexplored. Thus, fundamental research is required that industry and most sponsoring agencies are currently unwilling to undertake. We introduce MOFs infiltrated with titanium and nickel species as catalysts for the C-O bond hydrogenolysis in model compounds, which mimic the b-O-4, a-O-4, and 4-O-5 linkages of natural lignin. The versatile IRMOF-74(n) series is proposed as a platform for creating efficient hydrogenolysis catalysts as it not only displays tunable pore sizes, but also has the required thermal and chemical stability. The catalytic C-O bond cleavage occurs at 10 bar hydrogen pressure and temperatures as low as 120 degC. The conversion efficiency of the aromatic ether substrates into the corresponding hydrocarbons and phenols varies as PhCH 2 CH 2 OPh > PhCH 2 OPh > PhOPh (Ph = phenyl), while the catalytic activity generally follows the following trend Ni%40IRMOF-74>Ti%40IRMOF-74>IRMOF-74. Conversions as high as 80%, coupled with good selectivity for hydrogenolysis vs. hydrogenation, highlight the potential of MOF-based catalysts for the selective cleavage of recalcitrant aryl-ether bonds found in lignin and other biopolymers. This project supports the DOE Integrated Biorefinery Program goals, the objective of which is to convert biomass to fuels and high-value chemicals, by addressing an important technology gap: the lack of low-temperature catalysts suitable for industrial lignin degradation. Biomass, which is ~30 wt% lignin, constitutes a potentially major source of platform chemicals that could improve overall profitability and productivity of all energy-related products, thereby benefiting consumers and reducing national dependence on imported oil. Additionally, DoD has a strong interest in low-cost drop-in fuels (Navy Biofuel Initiative) and has signed a Memorandum of Understanding with DOE and USDA to develop a sustainable biofuels industry.

  4. SUPERCONDUCTING MAGNETIC ENERGY STORAGE

    E-Print Network [OSTI]

    Hassenzahl, W.

    2011-01-01T23:59:59.000Z

    and R. W . BOOIll, "Superconductive Energy Storage Inducand H. A. Peterson, "Superconductive E nergy S torage forMeeting, Janua ry N. Mohan, "Superconductive Energy S torage

  5. Energy Storage and Transportation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Storage and Transportation INL Logo Search Skip Navigation Links Home Newsroom About INL Careers Research Programs Energy and Environment National and Homeland Security New Energy...

  6. Final Report for Bio-Inspired Approaches to Moving-Target Defense Strategies

    SciTech Connect (OSTI)

    Fink, Glenn A.; Oehmen, Christopher S.

    2012-09-01T23:59:59.000Z

    This report records the work and contributions of the NITRD-funded Bio-Inspired Approaches to Moving-Target Defense Strategies project performed by Pacific Northwest National Laboratory under the technical guidance of the National Security Agency’s R6 division. The project has incorporated a number of bio-inspired cyber defensive technologies within an elastic framework provided by the Digital Ants. This project has created the first scalable, real-world prototype of the Digital Ants Framework (DAF)[11] and integrated five technologies into this flexible, decentralized framework: (1) Ant-Based Cyber Defense (ABCD), (2) Behavioral Indicators, (3) Bioinformatic Clas- sification, (4) Moving-Target Reconfiguration, and (5) Ambient Collaboration. The DAF can be used operationally to decentralize many such data intensive applications that normally rely on collection of large amounts of data in a central repository. In this work, we have shown how these component applications may be decentralized and may perform analysis at the edge. Operationally, this will enable analytics to scale far beyond current limitations while not suffering from the bandwidth or computational limitations of centralized analysis. This effort has advanced the R6 Cyber Security research program to secure digital infrastructures by developing a dynamic means to adaptively defend complex cyber systems. We hope that this work will benefit both our client’s efforts in system behavior modeling and cyber security to the overall benefit of the nation.

  7. Sandia National Laboratories: Energy Storage Multimedia Gallery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    StorageEnergy Storage Multimedia Gallery Energy Storage Multimedia Gallery Images Videos Energy Storage Image Gallery Energy Storage B-Roll Videos Battery Abuse Testing Laboratory...

  8. HEATS: Thermal Energy Storage

    SciTech Connect (OSTI)

    None

    2012-01-01T23:59:59.000Z

    HEATS Project: The 15 projects that make up ARPA-E’s HEATS program, short for “High Energy Advanced Thermal Storage,” seek to develop revolutionary, cost-effective ways to store thermal energy. HEATS focuses on 3 specific areas: 1) developing high-temperature solar thermal energy storage capable of cost-effectively delivering electricity around the clock and thermal energy storage for nuclear power plants capable of cost-effectively meeting peak demand, 2) creating synthetic fuel efficiently from sunlight by converting sunlight into heat, and 3) using thermal energy storage to improve the driving range of electric vehicles (EVs) and also enable thermal management of internal combustion engine vehicles.

  9. A bio-inspired location search algorithm for peer to peer Sachin Kulkarni, Niloy Ganguly, Geoffrey Canright, Andreas Deutsch . . . 1

    E-Print Network [OSTI]

    Ganguly, Niloy

    Ganguly, Geoffrey Canright, Andreas Deutsch . . . 1 #12;List of Contributors Sachin Kulkarni Department.canright@telenor.com Andreas Deutsch Center for Information Services and High Performance Computing (ZIH), TU-Dresden, Dresden 01062 andreas.deutsch@tu-dresden.de #12;A bio-inspired location search algorithm for peer to peer

  10. Sandia National Laboratories: Batteries & Energy Storage Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    StorageBatteries & Energy Storage Publications Batteries & Energy Storage Publications Batteries & Energy Storage Fact Sheets Achieving Higher Energy Density in Flow Batteries at...

  11. Energy storage capacitors

    SciTech Connect (OSTI)

    Sarjeant, W.J.

    1984-01-01T23:59:59.000Z

    The properties of capacitors are reviewed in general, including dielectrics, induced polarization, and permanent polarization. Then capacitance characteristics are discussed and modelled. These include temperature range, voltage, equivalent series resistance, capacitive reactance, impedance, dissipation factor, humidity and frequency effects, storage temperature and time, and lifetime. Applications of energy storage capacitors are then discussed. (LEW)

  12. DRAFT "Energy Advisory Committee" - Energy Storage Subcommittee...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Report: Revision 2 DRAFT "Energy Advisory Committee" - Energy Storage Subcommittee Report: Revision 2 Energy storage plays a vital role in all forms of business and affects the...

  13. Implementation of an Innovative Bio Inspired GA and PSO Algorithm for Controller design considering Steam GT Dynamics

    E-Print Network [OSTI]

    Shivakumar, R

    2010-01-01T23:59:59.000Z

    The Application of Bio Inspired Algorithms to complicated Power System Stability Problems has recently attracted the researchers in the field of Artificial Intelligence. Low frequency oscillations after a disturbance in a Power system, if not sufficiently damped, can drive the system unstable. This paper provides a systematic procedure to damp the low frequency oscillations based on Bio Inspired Genetic (GA) and Particle Swarm Optimization (PSO) algorithms. The proposed controller design is based on formulating a System Damping ratio enhancement based Optimization criterion to compute the optimal controller parameters for better stability. The Novel and contrasting feature of this work is the mathematical modeling and simulation of the Synchronous generator model including the Steam Governor Turbine (GT) dynamics. To show the robustness of the proposed controller, Non linear Time domain simulations have been carried out under various system operating conditions. Also, a detailed Comparative study has been don...

  14. Can bio-inspired information processing steps be realized as synthetic biochemical processes?

    E-Print Network [OSTI]

    Vladimir Privman; Evgeny Katz

    2014-11-07T23:59:59.000Z

    We consider possible designs and experimental realiza-tions in synthesized rather than naturally occurring bio-chemical systems of a selection of basic bio-inspired information processing steps. These include feed-forward loops, which have been identified as the most common information processing motifs in many natural pathways in cellular functioning, and memory-involving processes, specifically, associative memory. Such systems should not be designed to literally mimic nature. Rather, we can be guided by nature's mechanisms for experimenting with new information/signal processing steps which are based on coupled biochemical reactions, but are vastly simpler than natural processes, and which will provide tools for the long-term goal of understanding and harnessing nature's information processing paradigm. Our biochemical processes of choice are enzymatic cascades because of their compatibility with physiological processes in vivo and with electronics (e.g., electrodes) in vitro allowing for networking and interfacing of enzyme-catalyzed processes with other chemical and biochemical reactions. In addition to designing and realizing feed-forward loops and other processes, one has to develop approaches to probe their response to external control of the time-dependence of the input(s), by measuring the resulting time-dependence of the output. The goal will be to demonstrate the expected features, for example, the delayed response and stabilizing effect of the feed-forward loops.

  15. DOE Global Energy Storage Database

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The DOE International Energy Storage Database has more than 400 documented energy storage projects from 34 countries around the world. The database provides free, up-to-date information on grid-connected energy storage projects and relevant state and federal policies. More than 50 energy storage technologies are represented worldwide, including multiple battery technologies, compressed air energy storage, flywheels, gravel energy storage, hydrogen energy storage, pumped hydroelectric, superconducting magnetic energy storage, and thermal energy storage. The policy section of the database shows 18 federal and state policies addressing grid-connected energy storage, from rules and regulations to tariffs and other financial incentives. It is funded through DOE’s Sandia National Laboratories, and has been operating since January 2012.

  16. Energy storage connection system

    DOE Patents [OSTI]

    Benedict, Eric L.; Borland, Nicholas P.; Dale, Magdelena; Freeman, Belvin; Kite, Kim A.; Petter, Jeffrey K.; Taylor, Brendan F.

    2012-07-03T23:59:59.000Z

    A power system for connecting a variable voltage power source, such as a power controller, with a plurality of energy storage devices, at least two of which have a different initial voltage than the output voltage of the variable voltage power source. The power system includes a controller that increases the output voltage of the variable voltage power source. When such output voltage is substantially equal to the initial voltage of a first one of the energy storage devices, the controller sends a signal that causes a switch to connect the variable voltage power source with the first one of the energy storage devices. The controller then causes the output voltage of the variable voltage power source to continue increasing. When the output voltage is substantially equal to the initial voltage of a second one of the energy storage devices, the controller sends a signal that causes a switch to connect the variable voltage power source with the second one of the energy storage devices.

  17. Energy Storage: Current landscape for alternative energy

    E-Print Network [OSTI]

    Energy Storage: Current landscape for alternative energy storage technologies and what the future may hold for multi-scale storage applications Presented by: Dave Lucero, Director Alternative Energy · Industry initiatives · Technology · Energy Storage Market · EaglePicher initiatives · Summary #12

  18. Nanostructured Materials for Energy Generation and Storage

    E-Print Network [OSTI]

    Khan, Javed Miller

    2012-01-01T23:59:59.000Z

    for Electrochemical Energy Storage Nanostructured Electrodesof the batteries and their energy storage efficiency. viifor Nanostructure-Based Energy Storage and Generation Tech-

  19. AQUIFER THERMAL ENERGY STORAGE-A SURVEY

    E-Print Network [OSTI]

    Tsang, Chin Fu

    2012-01-01T23:59:59.000Z

    High temperature underground thermal energy storage, inProceedings, Thermal Energy Storage in Aquifers Workshop:underground thermal energy storage, in ATES newsletter:

  20. THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP

    E-Print Network [OSTI]

    Authors, Various

    2011-01-01T23:59:59.000Z

    Survey of Thermal Energy Storage in Aquifers Coupled withconcept of thermal energy storage in aquifers was suggestedLow Temperature Thermal Energy Storage Program of Oak Ridge

  1. AQUIFER THERMAL ENERGY STORAGE-A SURVEY

    E-Print Network [OSTI]

    Tsang, Chin Fu

    2012-01-01T23:59:59.000Z

    1978, High temperature underground thermal energy storage,in Proceedings, Thermal Energy Storage in Aquifers Workshop:High temperature underground thermal energy storage, in ATES

  2. Compressed Air Energy Storage System

    E-Print Network [OSTI]

    Farzad A. Shirazi; Mohsen Saadat; Bo Yan; Perry Y. Li; Terry W. Simon

    /expanders are crucial for the economical viability of a Compressed Air Energy Storage (CAES) system such as the

  3. Electrical Energy Storage: Stan Whittingham

    E-Print Network [OSTI]

    Suzuki, Masatsugu

    1 p. 1 Electrical Energy Storage: Stan Whittingham Report of DOE workshop, April 2007 A Cleaner and Energy Independent America through Chemistry Chemical Storage: Batteries, today and tomorrow http needed in Energy Storage Lithium Economy not Hydrogen Economy #12;9 p. 9 Batteries are key to an economy

  4. The Power of Energy Storage

    E-Print Network [OSTI]

    Sadoulet, Elisabeth

    The Power of Energy Storage How to Increase Deployment in California to Reduce Greenhouse Gas;1Berkeley Law \\ UCLA Law The Power of Energy Storage: How to Increase Deployment in California to Reduce Greenhouse Gas Emissions Executive Summary: Expanding Energy Storage in California Sunshine and wind, even

  5. Superconducting magnetic energy storage

    SciTech Connect (OSTI)

    Hassenzahl, W.

    1988-08-01T23:59:59.000Z

    Recent programmatic developments in Superconducting Magnetic Energy Storage (SMES) have prompted renewed and widespread interest in this field. In mid 1987 the Defense Nuclear Agency, acting for the Strategic Defense Initiative Office, issued a request for proposals for the design and construction of SMES Engineering Test Model (ETM). Two teams, one led by Bechtel and the other by Ebasco, are now engaged in the first phase of the development of a 10 to 20 MWhr ETM. This report presents the rationale for energy storage on utility systems, describes the general technology of SMES, and explains the chronological development of the technology. The present ETM program is outlined; details of the two projects for ETM development are described in other papers in these proceedings. The impact of high T/sub c/ materials on SMES is discussed. 69 refs., 3 figs., 3 tabs.

  6. Maui energy storage study.

    SciTech Connect (OSTI)

    Ellison, James; Bhatnagar, Dhruv; Karlson, Benjamin

    2012-12-01T23:59:59.000Z

    This report investigates strategies to mitigate anticipated wind energy curtailment on Maui, with a focus on grid-level energy storage technology. The study team developed an hourly production cost model of the Maui Electric Company (MECO) system, with an expected 72 MW of wind generation and 15 MW of distributed photovoltaic (PV) generation in 2015, and used this model to investigate strategies that mitigate wind energy curtailment. It was found that storage projects can reduce both wind curtailment and the annual cost of producing power, and can do so in a cost-effective manner. Most of the savings achieved in these scenarios are not from replacing constant-cost diesel-fired generation with wind generation. Instead, the savings are achieved by the more efficient operation of the conventional units of the system. Using additional storage for spinning reserve enables the system to decrease the amount of spinning reserve provided by single-cycle units. This decreases the amount of generation from these units, which are often operated at their least efficient point (at minimum load). At the same time, the amount of spinning reserve from the efficient combined-cycle units also decreases, allowing these units to operate at higher, more efficient levels.

  7. Fact Sheet: Energy Storage Technology Advancement Partnership...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology Advancement Partnership (October 2012) Fact Sheet: Energy Storage Technology Advancement Partnership (October 2012) The Energy Storage Technology Advancement Partnership...

  8. CFES RESEARCH THRUSTS: Energy Storage

    E-Print Network [OSTI]

    Lü, James Jian-Qiang

    CFES RESEARCH THRUSTS: Energy Storage Wind Energy Solar Energy Smart Grids Smart Buildings For our with the student to finalize the project plan. To sponsor an Energy Scholar, a company agrees to: · Assign

  9. Flywheel energy storage workshop

    SciTech Connect (OSTI)

    O`Kain, D.; Carmack, J. [comps.

    1995-12-31T23:59:59.000Z

    Since the November 1993 Flywheel Workshop, there has been a major surge of interest in Flywheel Energy Storage. Numerous flywheel programs have been funded by the Advanced Research Projects Agency (ARPA), by the Department of Energy (DOE) through the Hybrid Vehicle Program, and by private investment. Several new prototype systems have been built and are being tested. The operational performance characteristics of flywheel energy storage are being recognized as attractive for a number of potential applications. Programs are underway to develop flywheels for cars, buses, boats, trains, satellites, and for electric utility applications such as power quality, uninterruptible power supplies, and load leveling. With the tremendous amount of flywheel activity during the last two years, this workshop should again provide an excellent opportunity for presentation of new information. This workshop is jointly sponsored by ARPA and DOE to provide a review of the status of current flywheel programs and to provide a forum for presentation of new flywheel technology. Technology areas of interest include flywheel applications, flywheel systems, design, materials, fabrication, assembly, safety & containment, ball bearings, magnetic bearings, motor/generators, power electronics, mounting systems, test procedures, and systems integration. Information from the workshop will help guide ARPA & DOE planning for future flywheel programs. This document is comprised of detailed viewgraphs.

  10. Energy Storage Laboratory (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01T23:59:59.000Z

    This fact sheet describes the purpose, lab specifications, applications scenarios, and information on how to partner with NREL's Energy Storage Laboratory at the Energy Systems Integration Facility. At NREL's Energy Storage Laboratory in the Energy Systems Integration Facility (ESIF), research focuses on the integration of energy storage systems (both stationary and vehicle-mounted) and interconnection with the utility grid. Focusing on battery technologies, but also hosting ultra-capacitors and other electrical energy storage technologies, the laboratory will provide all resources necessary to develop, test, and prove energy storage system performance and compatibility with distributed energy systems. The laboratory will also provide robust vehicle testing capability, including a drive-in environmental chamber, which can accommodate commercial-sized hybrid, electric, biodiesel, ethanol, compressed natural gas, and hydrogen fueled vehicles. The Energy Storage Laboratory is designed to ensure personnel and equipment safety when testing hazardous battery systems or other energy storage technologies. Closely coupled with the research electrical distribution bus at ESIF, the Energy Storage Laboratory will offer megawatt-scale power testing capability as well as advanced hardware-in-the-loop and model-in-the-loop simulation capabilities. Some application scenarios are: The following types of tests - Performance, Efficiency, Safety, Model validation, and Long duration reliability. (2) Performed on the following equipment types - (a) Vehicle batteries (both charging and discharging V2G); (b) Stationary batteries; (c) power conversion equipment for energy storage; (d) ultra- and super-capacitor systems; and (e) DC systems, such as commercial microgrids.

  11. Sandia National Laboratories: energy storage requirements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Accomplishments On March 3, 2015, in Capabilities, Distribution Grid Integration, Energy, Energy Storage, Energy Storage Systems, Energy Surety, Grid Integration, Infrastructure...

  12. Article for thermal energy storage

    DOE Patents [OSTI]

    Salyer, Ival O. (Dayton, OH)

    2000-06-27T23:59:59.000Z

    A thermal energy storage composition is provided which is in the form of a gel. The composition includes a phase change material and silica particles, where the phase change material may comprise a linear alkyl hydrocarbon, water/urea, or water. The thermal energy storage composition has a high thermal conductivity, high thermal energy storage, and may be used in a variety of applications such as in thermal shipping containers and gel packs.

  13. NV Energy Electricity Storage Valuation

    SciTech Connect (OSTI)

    Ellison, James F.; Bhatnagar, Dhruv; Samaan, Nader A.; Jin, Chunlian

    2013-06-30T23:59:59.000Z

    This study examines how grid-level electricity storage may benet the operations of NV Energy in 2020, and assesses whether those benets justify the cost of the storage system. In order to determine how grid-level storage might impact NV Energy, an hourly production cost model of the Nevada Balancing Authority (\\BA") as projected for 2020 was built and used for the study. Storage facilities were found to add value primarily by providing reserve. Value provided by the provision of time-of-day shifting was found to be limited. If regulating reserve from storage is valued the same as that from slower ramp rate resources, then it appears that a reciprocating engine generator could provide additional capacity at a lower cost than a pumped storage hydro plant or large storage capacity battery system. In addition, a 25-MW battery storage facility would need to cost $650/kW or less in order to produce a positive Net Present Value (NPV). However, if regulating reserve provided by storage is considered to be more useful to the grid than that from slower ramp rate resources, then a grid-level storage facility may have a positive NPV even at today's storage system capital costs. The value of having storage provide services beyond reserve and time-of-day shifting was not assessed in this study, and was therefore not included in storage cost-benefit calculations.

  14. Bio-inspired Active Soft Orthotic Device for Ankle Foot Pathologies Yong-Lae Park, Bor-rong Chen, Diana Young, Leia Stirling,

    E-Print Network [OSTI]

    Napp, Nils

    Bio-inspired Active Soft Orthotic Device for Ankle Foot Pathologies Yong-Lae Park, Bor-rong Chen the design of an active soft ankle- foot orthotic device powered by pneumatic artificial muscles for treating assistance without restricting degrees of freedom at the ankle joint. Three pneumatic artificial muscles

  15. Energy Storage & Power Electronics 2008 Peer Review - Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Storage Systems (ESS) Presentations Energy Storage & Power Electronics 2008 Peer Review - Energy Storage Systems (ESS) Presentations The 2008 Peer Review Meeting for the DOE...

  16. Integrated Renewable Energy and Energy Storage Systems

    E-Print Network [OSTI]

    Integrated Renewable Energy and Energy Storage Systems Prepared for the U.S. Department of Energy and Energy Storage Systems TABLE OF CONTENTS 1 Office of Electricity Delivery and Energy Reliability Under Award No. DE-FC-06NT42847 Hawai`i Distributed

  17. Panel 3, Electrolysis for Grid Energy Storage

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electrolysis for Grid Energy Storage DOE-Industry Canada Workshop May 15, 2014 INTRODUCTION HYDROGEN ENERGY SYSTEMS FOR ENERGY STORAGE AND CLEAN FUEL PRODUCTION ITM POWER INC. ITM...

  18. Bio-Inspired Ideas for Sustainable Energy: Poster Session Day 1 1 Sayeh Sinichi Levente Diosady

    E-Print Network [OSTI]

    Prodiæ, Aleksandar

    due to its lower crystallization temperature. When compared with methanol, isopropyl alcohol (IPA) has alcohol transesterification at different IPA: oil: methanol molar ratios showed that although the presence of IPA as co-solvent has increased the total ester conversion, excess IPA in the system can hinder

  19. THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP

    E-Print Network [OSTI]

    Authors, Various

    2011-01-01T23:59:59.000Z

    and J. Schwarz, Survey of Thermal Energy Storage in AquifersLow Temperature Thermal Energy Storage Program of Oak RidgeAquifers for Seasonal Thermal Energy Storage: An Overview of

  20. THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP

    E-Print Network [OSTI]

    Authors, Various

    2011-01-01T23:59:59.000Z

    and J. Schwarz, Survey of Thermal Energy Storage in AquifersB. Quale. Seasonal storage of thermal energy in water in theSecond Annual Thermal Energy Storage Contractors'

  1. Panel 4, Hydrogen Energy Storage Policy Considerations

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Storage Policy Considerations Hydrogen Storage Workshop Jeffrey Reed Southern California Gas Company May 15, 2014 0 Methane is a Great Storage Medium 1 SoCalGas' storage...

  2. NREL: Vehicles and Fuels Research - Energy Storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Storage Vehicles and Fuels Research Cutaway image of an automobile showing the location of energy storage components (battery and inverter), as well as electric motor, power...

  3. Webinar Presentation: Energy Storage Solutions for Microgrids...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Presentation: Energy Storage Solutions for Microgrids (November 2012) Webinar Presentation: Energy Storage Solutions for Microgrids (November 2012) On November 7, 2012, Clean...

  4. Thermal Energy Storage Potential in Supermarkets.

    E-Print Network [OSTI]

    Ohannessian, Roupen

    2014-01-01T23:59:59.000Z

    ?? The objective of this research is to evaluate the potential of thermal energy storage in supermarkets with CO2 refrigeration systems. Suitable energy storage techniques… (more)

  5. SUPERCONDUCTING MAGNETIC ENERGY STORAGE

    E-Print Network [OSTI]

    Hassenzahl, W.

    2011-01-01T23:59:59.000Z

    Encrgy Storage Plant" , EPRI Report EM-3457, April 1984. [4521st century. REFERENCES The EPRI Regional Systems preparedby J. J. Mulvaney, EPRI Report EPRI P-19S0SR, (1981). [2J O.

  6. Department of Energy Will Hold a Batteries and Energy Storage...

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy Will Hold a Batteries and Energy Storage Information Meeting on October 21, 2011 Department of Energy Will Hold a Batteries and Energy Storage Information...

  7. Lih thermal energy storage device

    DOE Patents [OSTI]

    Olszewski, Mitchell (Knoxville, TN); Morris, David G. (Knoxville, TN)

    1994-01-01T23:59:59.000Z

    A thermal energy storage device for use in a pulsed power supply to store waste heat produced in a high-power burst operation utilizes lithium hydride as the phase change thermal energy storage material. The device includes an outer container encapsulating the lithium hydride and an inner container supporting a hydrogen sorbing sponge material such as activated carbon. The inner container is in communication with the interior of the outer container to receive hydrogen dissociated from the lithium hydride at elevated temperatures.

  8. Grid Storage and the Energy Frontier Research Centers | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Grid Storage and the Energy Frontier Research Centers Grid Storage and the Energy Frontier Research Centers DOE: Grid Storage and the Energy Frontier Research Centers Grid Storage...

  9. Breakthrough materials for energy storage

    E-Print Network [OSTI]

    Breakthrough materials for energy storage November 4, 2009 #12;#12;This revolution is happening;Electronics: our early market 5 hours #12;Progress on energy density... #12;Has reached a limit #12;Battery basics Anode Cathode #12;Battery basics Anode Cathode #12;Silicon leads in energy density

  10. Leading edge vortex detection using bio-inspired on-body pressure sensing

    E-Print Network [OSTI]

    Dusek, Jeff Ernest

    2011-01-01T23:59:59.000Z

    The increasing global demand for energy has placed emphasis on the development of innovative renewable energy sources. Ocean energy technologies, while currently underutilized worldwide, promise to emerge as an important ...

  11. Matt Rogers on AES Energy Storage | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Matt Rogers on AES Energy Storage Matt Rogers on AES Energy Storage Addthis Description The Department of Energy and AES Energy Storage recently agreed to a 17.1M conditional loan...

  12. Energy Storage Program Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecord ofESPC ENABLE:2009Applications - Report |ofSectorSTORAGE 101The

  13. National Energy Storage Strategy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAXBalanced Scorecard Federal2 to:DieselEnergy AuditorWesternNational Grid Energy

  14. Nanostructured Materials for Energy Generation and Storage

    E-Print Network [OSTI]

    Khan, Javed Miller

    2012-01-01T23:59:59.000Z

    energy generation and battery storage via the use ofenergy generation and battery storage via the use of nanos-and storage (e.g lithium-ion rechargeable battery)

  15. AQUIFER THERMAL ENERGY STORAGE-A SURVEY

    E-Print Network [OSTI]

    Tsang, Chin Fu

    2012-01-01T23:59:59.000Z

    solid-fluid heat storage systems in the ground; extractions0 Thermal storage of cold water in ground water aquifers forA. 8 1971, Storage of solar energy in a sandy-gravel ground:

  16. E-Print Network 3.0 - adaptive bio-inspired wireless Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Systems Summary: -224460 Traffic Adaptivity in Wireless Sensor Networks (TRAWSN) Energy efficiency is a major concern in the design... - cations were required to adapt the...

  17. Making molecules to serve the function | Center for Bio-Inspired...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    is about learning from nature and trying to use photons and convert light energy into chemical potential and to use that potential to produce storable and transportable fuel...

  18. Post regulation circuit with energy storage

    DOE Patents [OSTI]

    Ball, Don G. (Livermore, CA); Birx, Daniel L. (Oakley, CA); Cook, Edward G. (Livermore, CA)

    1992-01-01T23:59:59.000Z

    A charge regulation circuit provides regulation of an unregulated voltage supply and provides energy storage. The charge regulation circuit according to the present invention provides energy storage without unnecessary dissipation of energy through a resistor as in prior art approaches.

  19. EXPERIMENTAL AND THEORETICAL STUDIES OF THERMAL ENERGY STORAGE IN AQUIFERS

    E-Print Network [OSTI]

    Tsang, Chin Fu

    2011-01-01T23:59:59.000Z

    Department of Energy, Energy Storage Division through thegeneration and energy storage, Presented at Frontiers ofIn Proceed- ings of Thermal Energy Storage in Aquifers Work-

  20. Energy Storage, Conversion and Utilization

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Storage, Conversion and Utilization A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Al-Ghadhban, Samir - Electrical Engineering Department, King Fahd University of...

  1. Energy Conversion and Storage Program

    SciTech Connect (OSTI)

    Cairns, E.J.

    1992-03-01T23:59:59.000Z

    The Energy Conversion and Storage Program applies chemistry and materials science principles to solve problems in (1) production of new synthetic fuels, (2) development of high-performance rechargeable batteries and fuel cells, (3) development of advanced thermochemical processes for energy conversion, (4) characterization of complex chemical processes, and (5) application of novel materials for energy conversion and transmission. Projects focus on transport-process principles, chemical kinetics, thermodynamics, separation processes, organic and physical chemistry, novel materials, and advanced methods of analysis. Electrochemistry research aims to develop advanced power systems for electric vehicle and stationary energy storage applications. Topics include identification of new electrochemical couples for advanced rechargeable batteries, improvements in battery and fuel-cell materials, and the establishment of engineering principles applicable to electrochemical energy storage and conversion. Chemical Applications research includes topics such as separations, catalysis, fuels, and chemical analyses. Included in this program area are projects to develop improved, energy-efficient methods for processing waste streams from synfuel plants and coal gasifiers. Other research projects seek to identify and characterize the constituents of liquid fuel-system streams and to devise energy-efficient means for their separation. Materials Applications research includes the evaluation of the properties of advanced materials, as well as the development of novel preparation techniques. For example, the use of advanced techniques, such as sputtering and laser ablation, are being used to produce high-temperature superconducting films.

  2. Energy Storage 101

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.Program -Department oftoThese WebThese caseEnergyA123Sector(PE)

  3. Prestressed elastomer for energy storage

    DOE Patents [OSTI]

    Hoppie, Lyle O. (Birmingham, MI); Speranza, Donald (Canton, MI)

    1982-01-01T23:59:59.000Z

    Disclosed is a regenerative braking device for an automotive vehicle. The device includes a power isolating assembly (14), an infinitely variable transmission (20) interconnecting an input shaft (16) with an output shaft (18), and an energy storage assembly (22). The storage assembly includes a plurality of elastomeric rods (44, 46) mounted for rotation and connected in series between the input and output shafts. The elastomeric rods are prestressed along their rotational or longitudinal axes to inhibit buckling of the rods due to torsional stressing of the rods in response to relative rotation of the input and output shafts.

  4. Storage Solutions for Hawaii's Smart Energy

    E-Print Network [OSTI]

    Storage Solutions for Hawaii's Smart Energy Future Presented to CMRU August 12, 2012 University of Hawaii at Manoa Hawaii Natural Energy Institute #12;Current Energy Storage Projects in Hawaii · 15 (2) · Spinning reserve/reserve support (2) #12;· Select and deploy Grid-scale energy storage systems

  5. Biographical sketch - Hao Yan | Center for Bio-Inspired Solar Fuel

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to someone6 M. Babzien, I.ProgramBig

  6. Bisfuel retreat at Camp Tontozona | Center for Bio-Inspired Solar Fuel

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to someone6 M.

  7. Incorporating Peptides in the Outer Coordination Sphere of Bio-inspired Electrocatalysts for Hydrogen Production

    SciTech Connect (OSTI)

    Jain, Avijita; Lense, Sheri; Linehan, John C.; Raugei, Simone; Cho, Herman M.; DuBois, Daniel L.; Shaw, Wendy J.

    2011-04-01T23:59:59.000Z

    Four new cyclic 1,5-diaza-3,7-diphosphacyclooctane ligands have been prepared and used to synthesize [Ni(PPh2NR2)2]2+ complexes in which R is a mono- or dipeptide. These complexes represent a first step in developing an outer coordination sphere for this class of complexes that can mimic the outer coordination sphere of the active sites of hydrogenase enzymes. Importantly, these complexes retain the electrocatalytic activity of the parent [Ni(PPh2NPh2)2]2+ complex in acetonitrile solution with turnover frequencies (TOF) for hydrogen production ranging from 14 to 25 s-1 in the presence of p-cyanoanilinium trifluoromethanesulphonic acid and 135-1000 s-1 in the presence of triflic acid salt of protonated dimethylformamide, with moderately low overpotentials, ~0.3 V. The addition of small amounts of water result in rate increases of 5-7 times. Unlike the parent complex, these complexes demonstrate dynamic structural transformations in solution whereby the dipeptide tail interacts with the nickel center. These results establish a building block from which larger peptide scaffolding can be added to allow the [Ni(PR2NR’2)2]2+ molecular catalytic core to begin to mimic the multifunctional outer coordination sphere of enzymes. This work was supported by the US Department of Energy Basic Energy Sciences' Chemical Sciences, Geosciences & Biosciences Division. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.

  8. Sandia National Laboratories: Energy Storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared0EnergySandiaConsortiumAct EnergyEnergy Storage Sandian Spoke

  9. I have a lot of things to discover | Center for Bio-Inspired Solar Fuel

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr FlickrGuidedCH2MLLCBasics Hydropower BasicsDepartment of

  10. Designing catalysts for hydrogen production | Center for Bio-Inspired Solar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phasesData FilesShape, Density, andagingabout Influenza DesigningFuelFuel

  11. Chelsea McIntosh | Center for Bio-Inspired Solar Fuel Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to User Group and Userof a blast-resistant naval CharlesitMcIntosh

  12. Publications by year | Center for Bio-Inspired Solar Fuel Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar HomePromising Science for PlutoniumAboutAbout /Lee

  13. Rational Design of Artificial Metal-Based Enzymes | Center for Bio-Inspired

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar HomePromising Science for1PrincipalRare Iron Oxide in AncientRatesSolar

  14. Resa Vatan Meidanshahi | Center for Bio-Inspired Solar Fuel Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar HomePromisingStories » Removing nuclearReportingJ.RequestsPrincipal

  15. 2013 Bisfuel Center Retreat at Camp Tontozona | Center for Bio-Inspired

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation InExplosion Monitoring:Home|PhysicsGas SeparationsRelevant0 0

  16. About the Center for Bio-Inspired Solar Fuel Production | Center for

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformationCenterResearch Highlights MediaFuel Production ASUEMSL NewsAboutUs

  17. Principal Investigator CV's | Center for Bio-Inspired Solar Fuel Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearch Welcome to theNews &User ServicesRadioPress

  18. The Research Team | Center for Bio-Inspired Solar Fuel Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearchScheduled System BurstLong Term ScheduleProject Issue

  19. Searching for novel catalysts for water oxidation | Center for Bio-Inspired

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systemsBi (2) Sr (2)ScienceScientists InSearchsuperconduct* HelpSolar Fuel

  20. It Really Helps Research to Move Forward | Center for Bio-Inspired Solar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickrinformation for andFuel-Efficient Engines |Iron isCancerFuel

  1. Designing artificial metal binding peptides | Center for Bio-Inspired Solar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phasesData FilesShape, Density, andagingabout Influenza DesigningFuel

  2. 2012 Graduate research awards | Center for Bio-Inspired Solar Fuel

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert SouthwestTechnologies |November 2011 Mon, 11/28/2011 -April 2012OctoberDecember2

  3. My Success Is a Success For the Whole Team | Center for Bio-Inspired Solar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Regionat Cornell Batteries & FuelTechnologies | Blandine

  4. Biographical sketch - Ana Moore | Center for Bio-Inspired Solar Fuel

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to someone6 M. Babzien, I.ProgramBig SolBiofilm

  5. Biographical sketch - Anne Jones | Center for Bio-Inspired Solar Fuel

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to someone6 M. Babzien, I.ProgramBig SolBiofilmProduction Anne Jones

  6. Biographical sketch - Devens Gust | Center for Bio-Inspired Solar Fuel

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to someone6 M. Babzien, I.ProgramBig SolBiofilmProduction Anne

  7. Biographical sketch - Dong-Kyun Seo | Center for Bio-Inspired Solar Fuel

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to someone6 M. Babzien, I.ProgramBig SolBiofilmProduction

  8. Biographical sketch - James Allen | Center for Bio-Inspired Solar Fuel

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to someone6 M. Babzien, I.ProgramBigProduction James Allen a.

  9. Biographical sketch - Kevin Redding | Center for Bio-Inspired Solar Fuel

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to someone6 M. Babzien, I.ProgramBigProduction James Allen

  10. Biographical sketch - Petra Fromme | Center for Bio-Inspired Solar Fuel

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to someone6 M. Babzien, I.ProgramBigProduction James

  11. Biographical sketch - Thomas Moore | Center for Bio-Inspired Solar Fuel

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to someone6 M. Babzien, I.ProgramBigProduction JamesProduction

  12. Biographical sketch - Yan Liu | Center for Bio-Inspired Solar Fuel

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to someone6 M. Babzien, I.ProgramBigProduction

  13. Center for Bio-inspired Solar Fuel Production Personnel | Center for

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformationCenterResearchCASL Symposium:and TechnicalTheory and Modeling in

  14. EFRC 501 - Fall 2012 | Center for Bio-Inspired Solar Fuel Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Region service area. The DesertDirectionsWorkplaceResearch Center EES

  15. EFRC 501 - Fall 2013 | Center for Bio-Inspired Solar Fuel Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Region service area. The DesertDirectionsWorkplaceResearch Center EES3

  16. EFRC Creative Potential: Thinking Out of the Box | Center for Bio-Inspired

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Region service area. The DesertDirectionsWorkplaceResearch Center

  17. Antaeres' Antoniuk-Pablant | Center for Bio-Inspired Solar Fuel Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to someone by E-mail ShareRedAndreasAnode performanceAnouarAntaeres'

  18. Subtask 2: Water oxidation complex | Center for Bio-Inspired Solar Fuel

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmittedStatus TomAbout »Lab (Newport NewsStyleProduction 2: Water

  19. Subtask 3: Fuel production complex | Center for Bio-Inspired Solar Fuel

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmittedStatus TomAbout »Lab (Newport NewsStyleProduction 2:

  20. Storage | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearchScheduled System Burst Buffer Archive Home » R & D

  1. Energy Storage Systems 2010 Update Conference Presentations ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3 Energy Storage Systems 2010 Update Conference Presentations - Day 2, Session 3 The U.S. DOE Energy Storage Systems Program (ESS) conducted a record-breaking Update Conference at...

  2. Energy Storage Systems 2010 Update Conference Presentations ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2 Energy Storage Systems 2010 Update Conference Presentations - Day 2, Session 2 The U.S. DOE Energy Storage Systems Program (ESS) conducted a record-breaking Update Conference at...

  3. Energy Storage Systems 2010 Update Conference Presentations ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4 Energy Storage Systems 2010 Update Conference Presentations - Day 1, Session 4 The U.S. DOE Energy Storage Systems Program (ESS) conducted a record-breaking Update Conference at...

  4. Energy Storage Systems 2010 Update Conference Presentations ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 Energy Storage Systems 2010 Update Conference Presentations - Day 1, Session 1 The U.S. DOE Energy Storage Systems Program (ESS) conducted a record-breaking Update Conference at...

  5. Energy Storage Systems 2010 Update Conference Presentations ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3 Energy Storage Systems 2010 Update Conference Presentations - Day 1, Session 3 The U.S. DOE Energy Storage Systems Program (ESS) conducted a record-breaking Update Conference at...

  6. Regenerative Fuel Cells for Energy Storage

    Broader source: Energy.gov (indexed) [DOE]

    1 1 Regenerative Fuel Cells for Energy Storage April 2011 Corky Mittelsteadt April 2011 2 Outline 1. Regenerative Fuel Cells at Giner 2. Regenerative Systems for Energy Storage 1....

  7. THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP

    E-Print Network [OSTI]

    Authors, Various

    2011-01-01T23:59:59.000Z

    Key to Large-Scale Cogeneration?" Public Power, v, 35, no.Thermal Energy Storage for Cogeneration and Solar Systems,"Energy Storage for Cogeneration and Solar Systems, tion from

  8. Rational Material Architecture Design for Better Energy Storage

    E-Print Network [OSTI]

    Chen, Zheng

    2012-01-01T23:59:59.000Z

    energy and power storage systems, Renewable and Sustainable Energyeconomical and sustainable energy storage devices. Moreover,performance and sustainable energy storage systems. Figure.

  9. ENERGY STORAGE IN AQUIFERS - - A SURVEY OF RECENT THEORETICAL STUDIES

    E-Print Network [OSTI]

    Tsang, Chin Fu

    2013-01-01T23:59:59.000Z

    temperature underground thermal energy storage. In Proc. Th~al modeling of thermal energy storage in aquifers. In ~~-Mathematical modeling; thermal energy storage; aquifers;

  10. Thermal Energy Storage for Cooling of Commercial Buildings

    E-Print Network [OSTI]

    Akbari, H.

    2010-01-01T23:59:59.000Z

    of Commercial Building Thermal Energy _Storage in ASEANGas Electric Company, "Thermal Energy Storage for Cooling,"LBL--25393 DE91 ,THERMAL ENERGY STORAGE FOR COOLING OF

  11. Energy Storage Systems 2007 Peer Review - Power Electronics Presentati...

    Broader source: Energy.gov (indexed) [DOE]

    Studies and Environment Benefit Studies Utility & Commercial Applications of Advanced Energy Storage Systems International Energy Storage Programs Innovations in Energy Storage...

  12. Panel 3, Necessary Conditions for Hydrogen Energy Storage Projects...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Necessary Conditions for Hydrogen Energy Storage Projects to Succeed in North America Rob Harvey Director, Energy Storage Hydrogen Energy Storage for Grid and Transportation...

  13. Thermal Energy Storage for Cooling of Commercial Buildings

    E-Print Network [OSTI]

    Akbari, H.

    2010-01-01T23:59:59.000Z

    Building Thermal Energy _Storage in ASEAN Countries,"Company, "Thermal Energy Storage for Cooling," SeminarTHERMAL FOR COOLING ENERGY STORAGE BUILDINGS OF COMMERCIAL

  14. Modeling and simulations of electrical energy storage in electrochemical capacitors

    E-Print Network [OSTI]

    Wang, Hainan

    2013-01-01T23:59:59.000Z

    3D nanoarchitec- tures for energy storage and conversion,”functionality in energy storage materials and devices byto electrochemical energy storage in TiO 2 (anatase)

  15. Fact Sheet: Lithium-Ion Batteries for Stationary Energy Storage...

    Energy Savers [EERE]

    Fact Sheet: Lithium-Ion Batteries for Stationary Energy Storage (October 2012) Fact Sheet: Lithium-Ion Batteries for Stationary Energy Storage (October 2012) DOE's Energy Storage...

  16. Rational Material Architecture Design for Better Energy Storage

    E-Print Network [OSTI]

    Chen, Zheng

    2012-01-01T23:59:59.000Z

    for electrochemical energy storage. Adv. Funct. Mater. 2009,electrochemical capacitive energy storage. Angew. Chem. Int.for Electrochemical Energy Storage. Adv. Funct. Mater. 2009,

  17. Energy Storage | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProvedDecember 2005DepartmentDecember 2011District |Department of Energy

  18. Energy Storage | Clean Energy | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing Zirconia NanoparticlesSmart Grocer Program Sign-up FormEnergy

  19. Energy Storage | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing Zirconia NanoparticlesSmart Grocer Program Sign-up FormEnergy StorageEnergy

  20. Underground Energy Storage Program. 1983 annual summary

    SciTech Connect (OSTI)

    Kannberg, L.D.

    1984-06-01T23:59:59.000Z

    The Underground Energy Storage Program approach, structure, history, and milestones are described. Technical activities and progress in the Seasonal Thermal Energy Storage and Compressed Air Energy Storage components of the program are then summarized, documenting the work performed and progress made toward resolving and eliminating technical and economic barriers associated with those technologies. (LEW)

  1. Nanotubular metalinsulatormetal capacitor arrays for energy storage

    E-Print Network [OSTI]

    Rubloff, Gary W.

    Nanotubular metal­insulator­metal capacitor arrays for energy storage Parag Banerjee1,2 , Israel be possible to scale devices fabricated with this approach to make viable energy storage systems that provide, with speeds limited only by external circuit RCs. However, energy storage is limited because only surface

  2. Energy Storage Structural Composites: TONY PEREIRA

    E-Print Network [OSTI]

    Guo, John Zhanhu

    Energy Storage Structural Composites: a Review TONY PEREIRA 1, *, ZHANHU GUO 1 , S. NiEH 2 , J: This study demonstrates the construction of a multifunctional composite structure capable of energy storage) composites were laminated with energy storage all-solid-state thin- film lithium cells. The processes

  3. Microwavable thermal energy storage material

    DOE Patents [OSTI]

    Salyer, Ival O. (Dayton, OH)

    1998-09-08T23:59:59.000Z

    A microwavable thermal energy storage material is provided which includes a mixture of a phase change material and silica, and a carbon black additive in the form of a conformable dry powder of phase change material/silica/carbon black, or solid pellets, films, fibers, moldings or strands of phase change material/high density polyethylene/ethylene-vinyl acetate/silica/carbon black which allows the phase change material to be rapidly heated in a microwave oven. The carbon black additive, which is preferably an electrically conductive carbon black, may be added in low concentrations of from 0.5 to 15% by weight, and may be used to tailor the heating times of the phase change material as desired. The microwavable thermal energy storage material can be used in food serving applications such as tableware items or pizza warmers, and in medical wraps and garments.

  4. Microwavable thermal energy storage material

    DOE Patents [OSTI]

    Salyer, I.O.

    1998-09-08T23:59:59.000Z

    A microwavable thermal energy storage material is provided which includes a mixture of a phase change material and silica, and a carbon black additive in the form of a conformable dry powder of phase change material/silica/carbon black, or solid pellets, films, fibers, moldings or strands of phase change material/high density polyethylene/ethylene vinyl acetate/silica/carbon black which allows the phase change material to be rapidly heated in a microwave oven. The carbon black additive, which is preferably an electrically conductive carbon black, may be added in low concentrations of from 0.5 to 15% by weight, and may be used to tailor the heating times of the phase change material as desired. The microwavable thermal energy storage material can be used in food serving applications such as tableware items or pizza warmers, and in medical wraps and garments. 3 figs.

  5. Energy Storage Technologies - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series toESnet4: Networking for37Energy Storage & Battery Leading theStorage

  6. Compact magnetic energy storage module

    DOE Patents [OSTI]

    Prueitt, Melvin L. (Los Alamos, NM)

    1994-01-01T23:59:59.000Z

    A superconducting compact magnetic energy storage module in which a plurality of superconducting toroids, each having a toroidally wound superconducting winding inside a poloidally wound superconducting winding, are stacked so that the flow of electricity in each toroidally wound superconducting winding is in a direction opposite from the direction of electrical flow in other contiguous superconducting toroids. This allows for minimal magnetic pollution outside of the module.

  7. Compact magnetic energy storage module

    DOE Patents [OSTI]

    Prueitt, M.L.

    1994-12-20T23:59:59.000Z

    A superconducting compact magnetic energy storage module in which a plurality of superconducting toroids, each having a toroidally wound superconducting winding inside a poloidally wound superconducting winding, are stacked so that the flow of electricity in each toroidally wound superconducting winding is in a direction opposite from the direction of electrical flow in other contiguous superconducting toroids. This allows for minimal magnetic pollution outside of the module. 4 figures.

  8. Power Electronics and Motor Drives Laboratory Integrating Energy Storage withIntegrating Energy Storage with

    E-Print Network [OSTI]

    Saldin, Dilano

    Power Electronics and Motor Drives Laboratory Integrating Energy Storage withIntegrating Energy Storage with Renewable Energy SystemsRenewable Energy Systems Power Electronics and Motor Drives Introduction Wind Energy Profile Solar Energy Profile Energy Storage Options Role of Industrial Electronics

  9. Flywheel Energy Storage technology workshop

    SciTech Connect (OSTI)

    O`Kain, D.; Howell, D. [comps.

    1993-12-31T23:59:59.000Z

    Advances in recent years of high strength/lightweight materials, high performance magnetic bearings, and power electronics technology has spurred a renewed interest by the transportation, utility, and manufacturing industries in Flywheel Energy Storage (FES) technologies. FES offers several advantages over conventional electro-chemical energy storage, such as high specific energy and specific power, fast charging time, long service life, high turnaround efficiency (energy out/energy in), and no hazardous/toxic materials or chemicals are involved. Potential applications of FES units include power supplies for hybrid and electric vehicles, electric vehicle charging stations, space systems, and pulsed power devices. Also, FES units can be used for utility load leveling, uninterruptable power supplies to protect electronic equipment and electrical machinery, and for intermittent wind or photovoltaic energy sources. The purpose of this workshop is to provide a forum to highlight technologies that offer a high potential to increase the performance of FES systems and to discuss potential solutions to overcome present FES application barriers. This document consists of viewgraphs from 27 presentations.

  10. Integratedenergy storage system for optimal energy production.

    E-Print Network [OSTI]

    Stevens, Kristoffer

    2013-01-01T23:59:59.000Z

    ?? This project served to analyze the effects that energy storage can have on energy production.  The study was aimed at Johannes CHP bio fuel.… (more)

  11. Hydrogen Storage | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG | Department ofHTS Cable ProjectsHistory HistoryEducation » IncreaseStorage

  12. Energy Harvesting Communications with Hybrid Energy Storage and Processing Cost

    E-Print Network [OSTI]

    Ulukus, Sennur

    Energy Harvesting Communications with Hybrid Energy Storage and Processing Cost Omur Ozel Khurram with an energy harvesting transmitter with non-negligible processing circuitry power and a hybrid energy storage for energy storage while the battery has unlimited space. The transmitter stores the harvested energy either

  13. Microsoft Word - Energy Storage 092209 BAR.docx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    offer the broadest potential. Superconducting Magnetic Energy Storage (SMES), Compressed Air Energy Storage (CAES), and pumped hydroelectric storage all have value as large...

  14. FY06 DOE Energy Storage Program PEER Review

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    7 DOE Energy Storage Program PEER Review FY07 DOE Energy Storage Program PEER Review John D. Boyes Sandia National Laboratories Mission Mission Develop advanced electricity storage...

  15. Charging Graphene for Energy Storage

    SciTech Connect (OSTI)

    Liu, Jun

    2014-10-06T23:59:59.000Z

    Since 2004, graphene, including single atomic layer graphite sheet, and chemically derived graphene sheets, has captured the imagination of researchers for energy storage because of the extremely high surface area (2630 m2/g) compared to traditional activated carbon (typically below 1500 m2/g), excellent electrical conductivity, high mechanical strength, and potential for low cost manufacturing. These properties are very desirable for achieving high activity, high capacity and energy density, and fast charge and discharge. Chemically derived graphene sheets are prepared by oxidation and reduction of graphite1 and are more suitable for energy storage because they can be made in large quantities. They still contain multiply stacked graphene sheets, structural defects such as vacancies, and oxygen containing functional groups. In the literature they are also called reduced graphene oxide, or functionalized graphene sheets, but in this article they are all referred to as graphene for easy of discussion. Two important applications, batteries and electrochemical capacitors, have been widely investigated. In a battery material, the redox reaction occurs at a constant potential (voltage) and the energy is stored in the bulk. Therefore, the energy density is high (more than 100 Wh/kg), but it is difficult to rapidly charge or discharge (low power, less than 1 kW/kg)2. In an electrochemical capacitor (also called supercapacitors or ultracapacitor in the literature), the energy is stored as absorbed ionic species at the interface between the high surface area carbon and the electrolyte, and the potential is a continuous function of the state-of-charge. The charge and discharge can happen rapidly (high power, up to 10 kW/kg) but the energy density is low, less than 10 Wh/kg2. A device that can have both high energy and high power would be ideal.

  16. Optimal Scheduling for Energy Harvesting Transmitters with Hybrid Energy Storage

    E-Print Network [OSTI]

    Ulukus, Sennur

    Optimal Scheduling for Energy Harvesting Transmitters with Hybrid Energy Storage Omur Ozel Khurram with an energy harvesting transmitter which has a hybrid energy storage unit composed of a perfectly efficient super-capacitor (SC) and an inefficient battery. The SC has finite space for energy storage while

  17. Enabling Utility-Scale Electrical Energy Storage through Underground Hydrogen-Natural Gas Co-Storage.

    E-Print Network [OSTI]

    Peng, Dan

    2013-01-01T23:59:59.000Z

    ??Energy storage technology is needed for the storage of surplus baseload generation and the storage of intermittent wind power, because it can increase the flexibility… (more)

  18. Test report : Milspray Scorpion energy storage device.

    SciTech Connect (OSTI)

    Rose, David Martin; Schenkman, Benjamin L.; Borneo, Daniel R.

    2013-08-01T23:59:59.000Z

    The Department of Energy Office of Electricity (DOE/OE), Sandia National Laboratory (SNL) and the Base Camp Integration Lab (BCIL) partnered together to incorporate an energy storage system into a microgrid configured Forward Operating Base to reduce the fossil fuel consumption and to ultimately save lives. Energy storage vendors have supplied their systems to SNL Energy Storage Test Pad (ESTP) for functional testing and a subset of these systems were selected for performance evaluation at the BCIL. The technologies tested were electro-chemical energy storage systems comprised of lead acid, lithium-ion or zinc-bromide. MILSPRAY Military Technologies has developed an energy storage system that utilizes lead acid batteries to save fuel on a military microgrid. This report contains the testing results and some limited assessment of the Milspray Scorpion Energy Storage Device.

  19. Investigation of energy storage options for sustainable energy systems.

    E-Print Network [OSTI]

    Hosseini, Mehdi

    2013-01-01T23:59:59.000Z

    ??Determination of the possible energy storage options for a specific source of energy requires a thorough analysis from the points of energy, exergy, and exergoeconomics.… (more)

  20. Energy Storage Testing and Analysis High Power and High Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Testing and Analysis High Power and High Energy Development Energy Storage Testing and Analysis High Power and High Energy Development 2009 DOE Hydrogen Program and Vehicle...

  1. THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP

    E-Print Network [OSTI]

    Authors, Various

    2011-01-01T23:59:59.000Z

    III, "Man-made Geothermal Energy," presented at MiamiA.C.Meyers III; "Manmade Geothermal Energy", Proc. of Miamiin soils extraction of geothermal energy heat storage in the

  2. Nanostructured Materials for Energy Generation and Storage

    E-Print Network [OSTI]

    Khan, Javed Miller

    2012-01-01T23:59:59.000Z

    efficiency of the thermoelectric energy generation and battery storageefficiency of the thermoelectric energy generation and battery storagebattery electrodes suggest that the use of nanostructured materials can substantially improve the thermal management of the batteries and their energy storage efficiency.

  3. Matt Rogers on AES Energy Storage

    ScienceCinema (OSTI)

    Rogers, Matt

    2013-05-29T23:59:59.000Z

    The Department of Energy and AES Energy Storage recently agreed to a $17.1M conditional loan guarantee commitment. This project will develop the first battery-based energy storage system to provide a more stable and efficient electrical grid for New York State's high-voltage transmission network. Matt Rogers is the Senior Advisor to the Secretary for Recovery Act Implementation.

  4. Battery energy storage market feasibility study

    SciTech Connect (OSTI)

    Kraft, S. [Frost and Sullivan, Mountain View, CA (United States); Akhil, A. [Sandia National Labs., Albuquerque, NM (United States). Energy Storage Systems Analysis and Development Dept.

    1997-07-01T23:59:59.000Z

    Under the sponsorship of the Department of Energy`s Office of Utility Technologies, the Energy Storage Systems Analysis and Development Department at Sandia National Laboratories (SNL) contracted Frost and Sullivan to conduct a market feasibility study of energy storage systems. The study was designed specifically to quantify the energy storage market for utility applications. This study was based on the SNL Opportunities Analysis performed earlier. Many of the groups surveyed, which included electricity providers, battery energy storage vendors, regulators, consultants, and technology advocates, viewed energy storage as an important enabling technology to enable increased use of renewable energy and as a means to solve power quality and asset utilization issues. There are two versions of the document available, an expanded version (approximately 200 pages, SAND97-1275/2) and a short version (approximately 25 pages, SAND97-1275/1).

  5. Energy Storage for the Power Grid

    ScienceCinema (OSTI)

    Wang, Wei; Imhoff, Carl; Vaishnav, Dave

    2014-06-12T23:59:59.000Z

    The iron vanadium redox flow battery was developed by researchers at Pacific Northwest National Laboratory as a solution to large-scale energy storage for the power grid.

  6. Hydrogen for Energy Storage Analysis Overview (Presentation)

    SciTech Connect (OSTI)

    Steward, D. M.; Ramsden, T.; Harrison, K.

    2010-06-01T23:59:59.000Z

    Overview of hydrogen for energy storage analysis presented at the National Hydrogen Association Conference & Expo, May 3-6, 2010, Long Beach, CA.

  7. Energy Storage Systems 2010 Update Conference Presentations ...

    Broader source: Energy.gov (indexed) [DOE]

    session are below. ESS 2010 Update Conference - Fuel-Free, Ubiquitous, Compressed Air Energy Storage and Power Conditioning - David Marcus, General Compression.pdf ESS 2010...

  8. Energy Storage Systems 2010 Update Conference Presentations ...

    Broader source: Energy.gov (indexed) [DOE]

    by SNL's Ross Guttromson, are below. ESS 2010 Update Conference - NYSERDA-DOE Joint Energy Storage Initiative - Georgianne Huff, SNL.pdf ESS 2010 Update Conference - Testing...

  9. Energy Storage Systems 2010 Update Conference Presentations ...

    Broader source: Energy.gov (indexed) [DOE]

    - Bulk Gallium Nitride Substrates - Karen Waldrip, SNL.pdf More Documents & Publications Energy Storage & Power Electronics 2008 Peer Review - Power Electronics (PE) Systems...

  10. Energy Storage for the Power Grid

    SciTech Connect (OSTI)

    Wang, Wei; Imhoff, Carl; Vaishnav, Dave

    2014-04-23T23:59:59.000Z

    The iron vanadium redox flow battery was developed by researchers at Pacific Northwest National Laboratory as a solution to large-scale energy storage for the power grid.

  11. Energy Storage Systems 2010 Update Conference Presentations ...

    Broader source: Energy.gov (indexed) [DOE]

    and Peak Shifting - Steve Willard, PNM.pdf ESS 2010 Update Conference - Tehachapi Wind Energy Storage - Loic Gaillac, SCE.pdf ESS 2010 Update Conference - Flow Battery Solution...

  12. Local electrochemical functionality in energy storage materials...

    Office of Scientific and Technical Information (OSTI)

    devices by scanning probe microscopies: Status and perspectives Re-direct Destination: Energy storage and conversion systems are an integral component of emerging green...

  13. AQUIFER THERMAL ENERGY STORAGE-A SURVEY

    E-Print Network [OSTI]

    Tsang, Chin Fu

    2012-01-01T23:59:59.000Z

    energy storage for cogeneration and solar systems, inTwin City district cogeneration system, in Proceedings,proposed system, based on cogeneration of power and heat by

  14. MISO Energy Storage Study DRAFT Scope MISO Page 1

    E-Print Network [OSTI]

    , compressed air, and pumped hydro energy storage. This study will explore reliability, market, and planning such as battery storage, compressed air energy storage (CAES), and pumped hydro storage 2. Identify the valueMISO Energy Storage Study DRAFT Scope MISO Page 1 MISO Energy Storage Study DRAFT Scope July 19

  15. Energy Storage Success Stories - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series toESnet4: Networking for37Energy Storage & Battery Leading the

  16. Energy Storage Systems 2007 Peer Review - International Energy...

    Broader source: Energy.gov (indexed) [DOE]

    international energy storage programs are below. Other presentation categories were: Economics - Benefit Studies and Environment Benefit Studies Utility & Commercial Applications...

  17. Rational Material Architecture Design for Better Energy Storage

    E-Print Network [OSTI]

    Chen, Zheng

    2012-01-01T23:59:59.000Z

    and their cryogenic hydrogen storage capacities. J. Phys.Hydrogen Spillover for Hydrogen Storage J. Am. Chem. Soc.electrostatic energy storage, hydrogen (H 2 )-based chemical

  18. Explorations of Novel Energy Conversion and Storage Systems

    E-Print Network [OSTI]

    Duffin, Andrew Mark

    2010-01-01T23:59:59.000Z

    Vehicular Hydrogen Storage http://www.hydrogen.energy.gov/et al. , Reversible hydrogen storage in calcium borohydridereversible hydrogen storage. Chemical Communications, 2010.

  19. Nuclear Hybrid Energy Systems: Molten Salt Energy Storage

    SciTech Connect (OSTI)

    P. Sabharwall; M. Green; S.J. Yoon; S.M. Bragg-Sitton; C. Stoots

    2014-07-01T23:59:59.000Z

    With growing concerns in the production of reliable energy sources, the next generation in reliable power generation, hybrid energy systems, are being developed to stabilize these growing energy needs. The hybrid energy system incorporates multiple inputs and multiple outputs. The vitality and efficiency of these systems resides in the energy storage application. Energy storage is necessary for grid stabilizing and storing the overproduction of energy to meet peak demands of energy at the time of need. With high thermal energy production of the primary nuclear heat generation source, molten salt energy storage is an intriguing option because of its distinct properties. This paper will discuss the different energy storage options with the criteria for efficient energy storage set forth, and will primarily focus on different molten salt energy storage system options through a thermodynamic analysis

  20. Flexographically Printed Rechargeable Zinc-based Battery for Grid Energy Storage

    E-Print Network [OSTI]

    Wang, Zuoqian

    2013-01-01T23:59:59.000Z

    Electrochemical Capacitor Energy Storage Using Direct WriteD. O. Energy, “Energy Storage-A Key Enabler of the Smartof storage [electric energy storage],” Power and Energy

  1. Rational Material Architecture Design for Better Energy Storage

    E-Print Network [OSTI]

    Chen, Zheng

    2012-01-01T23:59:59.000Z

    Webb, C. Nelson, Compressed Air Energy Storage in Hard RockEnergy Program: Compressed Air Energy Storage, United StatesOn the other hand, compressed air energy storage is based on

  2. Rational Material Architecture Design for Better Energy Storage

    E-Print Network [OSTI]

    Chen, Zheng

    2012-01-01T23:59:59.000Z

    onto carbon nanotubes for energy-storage applications.and Carbon Nanotubes, Advanced Energy Materials, 2011, 1,Energy Storage Architectures from Carbon Nanotubes and

  3. Energy Storage Systems 2012 Peer Review Presentations - Poster...

    Broader source: Energy.gov (indexed) [DOE]

    - Notrees Wind Storage - Jeff Gates, Duke Energy ESS 2012 Peer Review - Compressed Air Energy Storage - Robert Booth, PG&E-BAI ESS 2012 Peer Review - Tehachapi Wind Energy...

  4. Panel 4, CPUCs Energy Storage Mandate

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ix CPUC's Energy Storage Mandate: Hydrogen Energy Storage Workshop May 15, 2014 Melicia Charles California Public Utilities Commission ix Overview of CPUC Energy Oversight * The...

  5. Hydrogen Energy Storage for Grid and Transportation Services...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Storage for Grid and Transportation Services Workshop Hydrogen Energy Storage for Grid and Transportation Services Workshop The U.S. Department of Energy (DOE) and Industry...

  6. Implementing a Hydrogen Energy Infrastructure: Storage Options and System Design

    E-Print Network [OSTI]

    Ogden, Joan M; Yang, Christopher

    2005-01-01T23:59:59.000Z

    to International Journal of Hydrogen Energy (November 2005).05—28 Implementing a Hydrogen Energy Infrastructure: StorageImplementing a Hydrogen Energy Infrastructure: Storage

  7. Energy Harvesting Broadcast Channel with Inefficient Energy Storage

    E-Print Network [OSTI]

    Yener, Aylin

    Energy Harvesting Broadcast Channel with Inefficient Energy Storage Kaya Tutuncuoglu Aylin Yener with an energy harvesting transmitter equipped with an inefficient energy storage device. For this setting by the energy harvesting process. The convexity of the capacity region for the energy harvesting broadcast

  8. Joint Center for Energy Storage Research

    SciTech Connect (OSTI)

    Eric Isaacs

    2012-11-30T23:59:59.000Z

    The Joint Center for Energy Storage Research (JCESR) is a major public-private research partnership that integrates U.S. Department of Energy national laboratories, major research universities and leading industrial companies to overcome critical scientific challenges and technical barriers, leading to the creation of breakthrough energy storage technologies. JCESR, centered at Argonne National Laboratory, outside of Chicago, consolidates decades of basic research experience that forms the foundation of innovative advanced battery technologies. The partnership has access to some of the world's leading battery researchers as well as scientific research facilities that are needed to develop energy storage materials that will revolutionize the way the United States and the world use energy.

  9. Mechanical energy storage in carbon nanotube springs

    E-Print Network [OSTI]

    Hill, Frances Ann

    2011-01-01T23:59:59.000Z

    Energy storage in mechanical springs made of carbon nanotubes is a promising new technology. Springs made of dense, ordered arrays of carbon nanotubes have the potential to surpass both the energy density of electrochemical ...

  10. Batteries and electrochemical energy storage are central to any future alternative energy scenario. Future energy generation

    E-Print Network [OSTI]

    Kemner, Ken

    Batteries and electrochemical energy storage are central to any future alternative energy scenario. Future energy generation sources are likely to be intermittent, requiring storage capacity energy storage for uninterrupted power supply units, the electrical grid, and transportation. Of all

  11. The Energy Harvesting Multiple Access Channel with Energy Storage Losses

    E-Print Network [OSTI]

    Yener, Aylin

    The Energy Harvesting Multiple Access Channel with Energy Storage Losses Kaya Tutuncuoglu and Aylin considers a Gaussian multiple access channel with two energy harvesting transmitters with lossy energy storage. The power allocation policy maximizing the average weighted sum rate given the energy harvesting

  12. Battery energy storage and superconducting magnetic energy storage for utility applications: A qualitative analysis

    SciTech Connect (OSTI)

    Akhil, A.A.; Butler, P.; Bickel, T.C.

    1993-11-01T23:59:59.000Z

    This report was prepared at the request of the US Department of Energy`s Office of Energy Management for an objective comparison of the merits of battery energy storage with superconducting magnetic energy storage technology for utility applications. Conclusions are drawn regarding the best match of each technology with these utility application requirements. Staff from the Utility Battery Storage Systems Program and the superconductivity Programs at Sandia National contributed to this effort.

  13. J.M. Tarascon, et al. , Electrochemical energy storage

    E-Print Network [OSTI]

    Canet, Léonie

    opportunities for Electrochemical Energy Storage (EES) Mass storage (MW): Which technology? Compressed air #12J.M. Tarascon, et al. , Electrochemical energy storage for renewable energies CNRS, Jeudi 3 Octobre 28 TW Renewable EnergiesRenewable EnergiesRenewable Energies WHY ENERGY STORAGE ? Billionsdebarils

  14. EXPERIMENTAL AND THEORETICAL STUDIES OF THERMAL ENERGY STORAGE IN AQUIFERS

    E-Print Network [OSTI]

    Tsang, Chin Fu

    2011-01-01T23:59:59.000Z

    In Proceed- ings of Thermal Energy Storage in Aquifers Work-Mathematical Modeling of Thermal Energy storage in Aquifers.In Proceed- ings of Thermal Energy Storage in Aquifers Work-

  15. ENERGY STORAGE IN AQUIFERS - - A SURVEY OF RECENT THEORETICAL STUDIES

    E-Print Network [OSTI]

    Tsang, Chin Fu

    2013-01-01T23:59:59.000Z

    underground thermal energy storage. In Proc. Th~rmal1980), 'I'hermal energy storage? in a confined aquifer·--al modeling of thermal energy storage in aquifers. In ~~-

  16. High Speed Flywheels for Integrated Energy Storage and Attitude Control

    E-Print Network [OSTI]

    Hall, Christopher D.

    High Speed Flywheels for Integrated Energy Storage and Attitude Control Christopher D. Hall. Decomposition of the space of internal torques separates the attitude control functionfrom the energy storage simultaneously performing energy storage and extraction operations. 1 Introduction The power engineering

  17. Chemical Hydrogen Storage R & D | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Hydrogen Storage Chemical Hydrogen Storage R & D Chemical Hydrogen Storage R & D DOE's chemical hydrogen storage R&D is focused on developing low-cost energy-efficient...

  18. Thermal Energy Storage for Vacuum Precoolers

    E-Print Network [OSTI]

    Nugent, D. M.

    radically creating high peak demands and low load factors. An ice bank thermal energy storage (TES) and ice water vapor condenser were installed. The existing equipment and TES system were computer monitored to determine energy consumption and potential... efficiency at night. The ice bank thermal energy storage system has a 4.4 year simple payback. While building ice, the refrigeration system operated at a 6.26 Coefficient of Performance (COP). The refrigeration system operated more efficiently at night...

  19. Electrical Energy Storage for Renewable Energy Systems

    SciTech Connect (OSTI)

    Helms, C. R.; Cho, K. J.; Ferraris, John; Balkus, Ken; Chabal, Yves; Gnade, Bruce; Rotea, Mario; Vasselli, John

    2012-08-31T23:59:59.000Z

    This program focused on development of the fundamental understanding necessary to significantly improve advanced battery and ultra-capacitor materials and systems to achieve significantly higher power and energy density on the one hand, and significantly lower cost on the other. This program spanned all the way from atomic-level theory, to new nanomaterials syntheses and characterization, to system modeling and bench-scale technology demonstration. Significant accomplishments are detailed in each section. Those particularly noteworthy include: • Transition metal silicate cathodes with 2x higher storage capacity than commercial cobalt oxide cathodes were demonstrated. • MnO? nanowires, which are a promising replacement for RuO?, were synthesized • PAN-based carbon nanofibers were prepared and characterized with an energy density 30-times higher than current ultracapacitors on the market and comparable to lead-acid batteries • An optimization-based control strategy for real-time power management of battery storage in wind farms was developed and demonstrated. • PVDF films were developed with breakdown strengths of > 600MVm?¹, a maximum energy density of approximately 15 Jcm?³, and an average dielectric constant of 9.8 (±1.2). Capacitors made from these films can support a 10-year lifetime operating at an electric field of 200 MV m?¹. This program not only delivered significant advancements in fundamental understanding and new materials and technology, it also showcased the power of the cross-functional, multi-disciplinary teams at UT Dallas and UT Tyler for such work. These teams are continuing this work with other sources of funding from both industry and government.

  20. Project Profile: Reducing the Cost of Thermal Energy Storage...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reducing the Cost of Thermal Energy Storage for Parabolic Trough Solar Power Plants Project Profile: Reducing the Cost of Thermal Energy Storage for Parabolic Trough Solar Power...

  1. SUSTAINABLE AND HOLISTIC INTEGRATION OF ENERGY STORAGE AND SOLAR...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SUSTAINABLE AND HOLISTIC INTEGRATION OF ENERGY STORAGE AND SOLAR PV (SHINES) SUSTAINABLE AND HOLISTIC INTEGRATION OF ENERGY STORAGE AND SOLAR PV (SHINES) Funding Number:...

  2. Project Profile: Degradation Mechanisms for Thermal Energy Storage...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Degradation Mechanisms for Thermal Energy Storage and Heat Transfer Fluid Containment Materials Project Profile: Degradation Mechanisms for Thermal Energy Storage and Heat Transfer...

  3. Self-Assembled, Nanostructured Carbon for Energy Storage and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Self-Assembled, Nanostructured Carbon for Energy Storage and Water Treatment Self-Assembled, Nanostructured Carbon for Energy Storage and Water Treatment nanostructuredcarbon.pdf...

  4. Project Profile: Innovative Phase Change Thermal Energy Storage...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Phase Change Thermal Energy Storage Solution for Baseload Power Project Profile: Innovative Phase Change Thermal Energy Storage Solution for Baseload Power Infinia logo Infinia,...

  5. 2012 Transmission and Energy Storage Peer Review Presentations...

    Broader source: Energy.gov (indexed) [DOE]

    Transmission and Energy Storage Peer Review Presentations Available 2012 Transmission and Energy Storage Peer Review Presentations Available December 3, 2012 - 1:26pm Addthis...

  6. In-Situ Electron Microscopy of Electrical Energy Storage Materials...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications In-Situ Electron Microscopy of Electrical Energy Storage Materials In-Situ Electron Microscopy of Electrical Energy Storage...

  7. USABC Energy Storage Testing - High Power and PHEV Development...

    Energy Savers [EERE]

    Energy Storage Testing - High Power and PHEV Development USABC Energy Storage Testing - High Power and PHEV Development Presentation from the U.S. DOE Office of Vehicle...

  8. Extreme Temperature Energy Storage and Generation, for Cost and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Extreme Temperature Energy Storage and Generation, for Cost and Risk Reduction in Geothermal Exploration Extreme Temperature Energy Storage and Generation, for Cost and Risk...

  9. Energy Storage Systems 2014 Peer Review Presentations - Poster...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4 Energy Storage Systems 2014 Peer Review Presentations - Poster Session 4 OE's Energy Storage Systems (ESS) Program conducted a peer review and update meeting in Washington, DC on...

  10. Thermal Energy Storage Technology for Transportation and Other...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Storage Technology for Transportation and Other Applications D. Bank, M. Maurer, J. Penkala, K. Sehanobish, A. Soukhojak Thermal Energy Storage Technology for Transportation...

  11. US DRIVE Electrochemical Energy Storage Technical Team Roadmap...

    Broader source: Energy.gov (indexed) [DOE]

    This U.S. DRIVE electrochemical energy storage roadmap describes ongoing and planned efforts to develop electrochemical energy storage technologies for plug-in electric vehicles...

  12. 2012 Annual Merit Review Results Report - Energy Storage Technologies...

    Energy Savers [EERE]

    Energy Storage Technologies 2012 Annual Merit Review Results Report - Energy Storage Technologies Merit review of DOE Vehicle Technologies research activities 2012amr02.pdf More...

  13. Record-Setting Microscopy Illuminates Energy Storage Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Record-Setting Microscopy Illuminates Energy Storage Materials Record-Setting Microscopy Illuminates Energy Storage Materials Print Thursday, 22 January 2015 12:10 X-ray microscopy...

  14. Energy Storage Solutions Industrial Symposium | ornl.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Storage Solutions Industrial Symposium Sep 04 2013 09:00 AM - 05:30 PM Energy Storage Solutions Industrial Symposium - Wednesday September 4, 2013 CONTACT : Email: Phone:...

  15. A National Grid Energy Storage Strategy - Electricity Advisory...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A National Grid Energy Storage Strategy - Electricity Advisory Committee - January 2014 A National Grid Energy Storage Strategy - Electricity Advisory Committee - January 2014 The...

  16. 2012 Annual Merit Review Results Report - Energy Storage Technologies...

    Energy Savers [EERE]

    2 Annual Merit Review Results Report - Energy Storage Technologies 2012 Annual Merit Review Results Report - Energy Storage Technologies Merit review of DOE Vehicle Technologies...

  17. Project Profile: CSP Energy Storage Solutions - Multiple Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Storage Solutions - Multiple Technologies Compared Project Profile: CSP Energy Storage Solutions - Multiple Technologies Compared US Solar Holdings logo US Solar Holdings,...

  18. Energy Storage Systems 2014 Peer Review Presentations - Poster...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    8 Energy Storage Systems 2014 Peer Review Presentations - Poster Session 8 OE's Energy Storage Systems (ESS) Program conducted a peer review and update meeting in Washington, DC on...

  19. 2011 Annual Merit Review Results Report - Energy Storage Technologies...

    Energy Savers [EERE]

    Energy Storage Technologies 2011 Annual Merit Review Results Report - Energy Storage Technologies Merit review of DOE Vehicle Technologies research activities 2011amr02.pdf More...

  20. Increasing Renewable Energy with Hydrogen Storage and Fuel Cell...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Increasing Renewable Energy with Hydrogen Storage and Fuel Cell Technologies Increasing Renewable Energy with Hydrogen Storage and Fuel Cell Technologies Download presentation...

  1. 2014 Annual Merit Review Results Report - Energy Storage Technologies...

    Energy Savers [EERE]

    Energy Storage Technologies 2014 Annual Merit Review Results Report - Energy Storage Technologies Merit review of DOE Vehicle Technologies research activities 2014amr02.pdf More...

  2. Project Profile: Innovative Thermal Energy Storage for Baseload...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thermal Energy Storage for Baseload Solar Power Generation Project Profile: Innovative Thermal Energy Storage for Baseload Solar Power Generation University of South Florida logo...

  3. Surface-Driven Sodium Ion Energy Storage in Nanocellular Carbon...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Surface-Driven Sodium Ion Energy Storage in Nanocellular Carbon Foams. Surface-Driven Sodium Ion Energy Storage in Nanocellular Carbon Foams. Abstract: Sodium ion (Na+) batteries...

  4. Compressed air energy storage system

    DOE Patents [OSTI]

    Ahrens, Frederick W. (Naperville, IL); Kartsounes, George T. (Naperville, IL)

    1981-01-01T23:59:59.000Z

    An internal combustion reciprocating engine is operable as a compressor during slack demand periods utilizing excess power from a power grid to charge air into an air storage reservoir and as an expander during peak demand periods to feed power into the power grid utilizing air obtained from the air storage reservoir together with combustible fuel. Preferably the internal combustion reciprocating engine is operated at high pressure and a low pressure turbine and compressor are also employed for air compression and power generation.

  5. University of Arizona Compressed Air Energy Storage

    SciTech Connect (OSTI)

    Simmons, Joseph; Muralidharan, Krishna

    2012-12-31T23:59:59.000Z

    Boiled down to its essentials, the grant’s purpose was to develop and demonstrate the viability of compressed air energy storage (CAES) for use in renewable energy development. While everyone agrees that energy storage is the key component to enable widespread adoption of renewable energy sources, the development of a viable scalable technology has been missing. The Department of Energy has focused on expanded battery research and improved forecasting, and the utilities have deployed renewable energy resources only to the extent of satisfying Renewable Portfolio Standards. The lack of dispatchability of solar and wind-based electricity generation has drastically increased the cost of operation with these components. It is now clear that energy storage coupled with accurate solar and wind forecasting make up the only combination that can succeed in dispatchable renewable energy resources. Conventional batteries scale linearly in size, so the price becomes a barrier for large systems. Flow batteries scale sub-linearly and promise to be useful if their performance can be shown to provide sufficient support for solar and wind-base electricity generation resources. Compressed air energy storage provides the most desirable answer in terms of scalability and performance in all areas except efficiency. With the support of the DOE, Tucson Electric Power and Science Foundation Arizona, the Arizona Research Institute for Solar Energy (AzRISE) at the University of Arizona has had the opportunity to investigate CAES as a potential energy storage resource.

  6. Energy Storage Systems 2005 Peer Review

    Broader source: Energy.gov [DOE]

    The U.S. DOE Energy Storage Systems Program (ESS) held an annual peer review on October 20, 2005 in San Francisco, CA. The agenda and ESS program overview presentation are below.

  7. Energy Storage Systems 2010 Update Conference Presentations ...

    Broader source: Energy.gov (indexed) [DOE]

    of Day 2, chaired by NETL's Kim Nuhfer, are below. ESS 2010 Update Conference - Low Cost Energy Storage - Ted Wiley, Aquion.pdf Ess 2010 Update Conference - Solid State Li Metal...

  8. Energy Storage Systems 2010 Update Conference Presentations ...

    Broader source: Energy.gov (indexed) [DOE]

    Terry Aselage, are below. ESS 2010 Update Conference - Advanced Stationary Electrical Energy Storage R&D at PNNL - Z Gary Yang, PNNL.pdf ESS 2010 Update Conference - A New...

  9. Energy Storage Systems 2010 Update Conference Presentations ...

    Broader source: Energy.gov (indexed) [DOE]

    chaired by ARPA-E's Mark Johnson, are below. ESS 2010 Update Conference - Electrochemical Energy Storage for the Grid - Yet-Ming Chiang, MIT.pdf ESS 2010 Update Conference - DOE...

  10. Energy Proportionality for Disk Storage Using Replication

    E-Print Network [OSTI]

    Kim, Jinoh

    2010-01-01T23:59:59.000Z

    energy consumed in a datacenter. Recent work introduced theoperational costs in a datacenter, and if we consider power-the many components in the datacenter, storage is the next

  11. Solar energy thermalization and storage device

    DOE Patents [OSTI]

    McClelland, John F. (Ames, IA)

    1981-09-01T23:59:59.000Z

    A passive solar thermalization and thermal energy storage assembly which is visually transparent. The assembly consists of two substantial parallel, transparent wall members mounted in a rectangular support frame to form a liquid-tight chamber. A semitransparent thermalization plate is located in the chamber, substantially paralled to and about equidistant from the transparent wall members to thermalize solar radiation which is stored in a transparent thermal energy storage liquid which fills the chamber. A number of the devices, as modules, can be stacked together to construct a visually transparent, thermal storage wall for passive solar-heated buildings.

  12. Energy Storage Architecture Northwest Power and Conservation Council Symposium

    E-Print Network [OSTI]

    Modular Energy Storage Architecture (MESA) Northwest Power and Conservation Council Symposium: Innovations in Energy Storage Technologies February 13, 2013 Portland, OR #12;2 Agenda 2/13/2013 Renewable energy challenges Vision for energy storage Energy storage barriers MESA ­ Standardization & software

  13. Hydrogen-based electrochemical energy storage

    DOE Patents [OSTI]

    Simpson, Lin Jay

    2013-08-06T23:59:59.000Z

    An energy storage device (100) providing high storage densities via hydrogen storage. The device (100) includes a counter electrode (110), a storage electrode (130), and an ion conducting membrane (120) positioned between the counter electrode (110) and the storage electrode (130). The counter electrode (110) is formed of one or more materials with an affinity for hydrogen and includes an exchange matrix for elements/materials selected from the non-noble materials that have an affinity for hydrogen. The storage electrode (130) is loaded with hydrogen such as atomic or mono-hydrogen that is adsorbed by a hydrogen storage material such that the hydrogen (132, 134) may be stored with low chemical bonding. The hydrogen storage material is typically formed of a lightweight material such as carbon or boron with a network of passage-ways or intercalants for storing and conducting mono-hydrogen, protons, or the like. The hydrogen storage material may store at least ten percent by weight hydrogen (132, 134) at ambient temperature and pressure.

  14. Energy storage systems cost update : a study for the DOE Energy Storage Systems Program.

    SciTech Connect (OSTI)

    Schoenung, Susan M. (Longitude 122 West, Menlo Park, CA)

    2011-04-01T23:59:59.000Z

    This paper reports the methodology for calculating present worth of system and operating costs for a number of energy storage technologies for representative electric utility applications. The values are an update from earlier reports, categorized by application use parameters. This work presents an update of energy storage system costs assessed previously and separately by the U.S. Department of Energy (DOE) Energy Storage Systems Program. The primary objective of the series of studies has been to express electricity storage benefits and costs using consistent assumptions, so that helpful benefit/cost comparisons can be made. Costs of energy storage systems depend not only on the type of technology, but also on the planned operation and especially the hours of storage needed. Calculating the present worth of life-cycle costs makes it possible to compare benefit values estimated on the same basis.

  15. ENERGY EFFICIENCY AND ENVIRONMENTALLY FRIENDLY DISTRIBUTED ENERGY STORAGE BATTERY

    SciTech Connect (OSTI)

    LANDI, J.T.; PLIVELICH, R.F.

    2006-04-30T23:59:59.000Z

    Electro Energy, Inc. conducted a research project to develop an energy efficient and environmentally friendly bipolar Ni-MH battery for distributed energy storage applications. Rechargeable batteries with long life and low cost potentially play a significant role by reducing electricity cost and pollution. A rechargeable battery functions as a reservoir for storage for electrical energy, carries energy for portable applications, or can provide peaking energy when a demand for electrical power exceeds primary generating capabilities.

  16. Solar energy in the context of energy use, energy transportation, and energy storage

    E-Print Network [OSTI]

    MacKay, David J.C.

    Solar energy in the context of energy use, energy transportation, and energy storage By David J C to the following journal article, published July 2013: MacKay DJC. 2013 Solar energy in the context of energy use, energy trans- portation and energy storage. Phil Trans R Soc A 371: 20110431. http://dx.doi.org/10

  17. Solar energy in the context of energy use, energy transportation, and energy storage

    E-Print Network [OSTI]

    MacKay, David J.C.

    Solar energy in the context of energy use, energy transportation, and energy storage By David J C to the following journal article, published July 2013: MacKay DJC. 2013 Solar energy in the context of energy use, energy trans­ portation and energy storage. Phil Trans R Soc A 371: 20110431. http://dx.doi.org/10

  18. Kauai Island Utility Cooperative energy storage study.

    SciTech Connect (OSTI)

    Akhil, Abbas Ali; Yamane, Mike (Kauai Island Utility Cooperative, Lihu'e, HI); Murray, Aaron T.

    2009-06-01T23:59:59.000Z

    Sandia National Laboratories performed an assessment of the benefits of energy storage for the Kauai Island Utility Cooperative. This report documents the methodology and results of this study from a generation and production-side benefits perspective only. The KIUC energy storage study focused on the economic impact of using energy storage to shave the system peak, which reduces generator run time and consequently reduces fuel and operation and maintenance (O&M) costs. It was determined that a 16-MWh energy storage system would suit KIUC's needs, taking into account the size of the 13 individual generation units in the KIUC system and a system peak of 78 MW. The analysis shows that an energy storage system substantially reduces the run time of Units D1, D2, D3, and D5 - the four smallest and oldest diesel generators at the Port Allen generating plant. The availability of stored energy also evens the diurnal variability of the remaining generation units during the off- and on-peak periods. However, the net economic benefit is insufficient to justify a load-leveling type of energy storage system at this time. While the presence of storage helps reduce the run time of the smaller and older units, the economic dispatch changes and the largest most efficient unit in the KIUC system, the 27.5-MW steam-injected combustion turbine at Kapaia, is run for extra hours to provide the recharge energy for the storage system. The economic benefits of the storage is significantly reduced because the charging energy for the storage is derived from the same fuel source as the peak generation source it displaces. This situation would be substantially different if there were a renewable energy source available to charge the storage. Especially, if there is a wind generation resource introduced in the KIUC system, there may be a potential of capturing the load-leveling benefits as well as using the storage to dampen the dynamic instability that the wind generation could introduce into the KIUC grid. General Electric is presently conducting such a study and results of this study will be available in the near future. Another study conducted by Electric Power Systems, Inc. (EPS) in May 2006 took a broader approach to determine the causes of KIUC system outages. This study concluded that energy storage with batteries will provide stability benefits and possibly eliminate the load shedding while also providing positive voltage control. Due to the lack of fuel diversity in the KIUC generation mix, SNL recommends that KIUC continue its efforts to quantify the dynamic benefits of storage. The value of the dynamic benefits, especially as an enabler of renewable generation such as wind energy, may be far greater than the production cost benefits alone. A combination of these benefits may provide KIUC sufficient positive economic and operational benefits to implement an energy storage project that will contribute to the overall enhancement of the KIUC system.

  19. Original article Energy balance storage terms and big-leaf

    E-Print Network [OSTI]

    Boyer, Edmond

    ), biomass heat storage (Sv) and photosynthetic energy storage (Sp). Soil heat storage Sg can be furtherOriginal article Energy balance storage terms and big-leaf evapotranspiration in a mixed deciduous not be omitted. On a seasonal basis soil heat storage seems to be the most important term. The overall heat

  20. Aquifer thermal energy storage. International symposium: Proceedings

    SciTech Connect (OSTI)

    NONE

    1995-05-01T23:59:59.000Z

    Aquifers have been used to store large quantities of thermal energy to supply process cooling, space cooling, space heating, and ventilation air preheating, and can be used with or without heat pumps. Aquifers are used as energy sinks and sources when supply and demand for energy do not coincide. Aquifer thermal energy storage may be used on a short-term or long-term basis; as the sole source of energy or as a partial storage; at a temperature useful for direct application or needing upgrade. The sources of energy used for aquifer storage are ambient air, usually cold winter air; waste or by-product energy; and renewable energy such as solar. The present technical, financial and environmental status of ATES is promising. Numerous projects are operating and under development in several countries. These projects are listed and results from Canada and elsewhere are used to illustrate the present status of ATES. Technical obstacles have been addressed and have largely been overcome. Cold storage in aquifers can be seen as a standard design option in the near future as it presently is in some countries. The cost-effectiveness of aquifer thermal energy storage is based on the capital cost avoidance of conventional chilling equipment and energy savings. ATES is one of many developments in energy efficient building technology and its success depends on relating it to important building market and environmental trends. This paper attempts to provide guidance for the future implementation of ATES. Individual projects have been processed separately for entry onto the Department of Energy databases.

  1. Underground-Energy-Storage Program, 1982 annual report

    SciTech Connect (OSTI)

    Kannberg, L.D.

    1983-06-01T23:59:59.000Z

    Two principal underground energy storage technologies are discussed--Seasonal Thermal Energy Storage (STES) and Compressed Air Energy Storage (CAES). The Underground Energy Storage Program objectives, approach, structure, and milestones are described, and technical activities and progress in the STES and CAES areas are summarized. STES activities include aquifer thermal energy storage technology studies and STES technology assessment and development. CAES activities include reservoir stability studies and second-generation concepts studies. (LEW)

  2. Macroencapsulation of Phase Change Materials for Thermal Energy Storage.

    E-Print Network [OSTI]

    Pendyala, Swetha

    2012-01-01T23:59:59.000Z

    ??The use of a latent heat storage system using phase change materials (PCMs) is an effective way of storing thermal energy. Latent heat storage enables… (more)

  3. FY06 DOE Energy Storage Program PEER Review

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    9 DOE Energy Storage PEER Review John D. Boyes Sandia National Laboratories Mission Develop advanced electricity storage and PE technologies, in partnership with industry, for...

  4. Economical Energy Storage Option Enhances Energy Purchasing Strategies

    E-Print Network [OSTI]

    Hansen, D. W.; Winters, P. J.

    Chilled Water Thermal Energy Storage (TES) offers benefits to both the electricity supplier and the electricity user. This well-established technology uses stratified chilled water to store energy in thermal form so that electricity can be purchased...

  5. On the Energy Overhead of Mobile Storage Systems Anirudh Badam*

    E-Print Network [OSTI]

    Narasayya, Vivek

    On the Energy Overhead of Mobile Storage Systems Jing Li Anirudh Badam* Ranveer Chandra* Steven the energy consumption of the storage stack on mobile platforms. We conduct several experiments on mobile plat- forms to analyze the energy requirements of their re- spective storage stacks. Software storage

  6. Valuation of Energy Storage: An Optimal Switching Rene Carmona

    E-Print Network [OSTI]

    Carmona, Rene

    Valuation of Energy Storage: An Optimal Switching Approach Ren´e Carmona Department of Operations://www.pstat.ucsb.edu/faculty/ludkovski We consider the valuation of energy storage facilities within the framework of stochastic control;Carmona and Ludkovski: Optimal Switching for Energy Storage 2 in the commodity financial markets. Storage

  7. THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP

    E-Print Network [OSTI]

    Authors, Various

    2011-01-01T23:59:59.000Z

    The Legalization of Ground Water Storage," Water Resourcesprocedure to above ground storage of heat in huge insulatedthis project is heat storage in ground-water regions storage

  8. EXPERIMENTAL AND THEORETICAL STUDIES OF THERMAL ENERGY STORAGE IN AQUIFERS

    E-Print Network [OSTI]

    Tsang, Chin Fu

    2011-01-01T23:59:59.000Z

    1971, storage of Solar Energy in a Bandy- Gravel Ground. 2.Aquifer Storage of Heated Water: A Field Experuuent. GroundStorage of Heated Water: Part II - Numerical Simulation of Field Results. Ground

  9. Optimal Demand Response with Energy Storage Management

    E-Print Network [OSTI]

    Huang, Longbo; Ramchandran, Kannan

    2012-01-01T23:59:59.000Z

    In this paper, we consider the problem of optimal demand response and energy storage management for a power consuming entity. The entity's objective is to find an optimal control policy for deciding how much load to consume, how much power to purchase from/sell to the power grid, and how to use the finite capacity energy storage device and renewable energy, to minimize his average cost, being the disutility due to load- shedding and cost for purchasing power. Due to the coupling effect of the finite size energy storage, such problems are challenging and are typically tackled using dynamic programming, which is often complex in computation and requires substantial statistical information of the system dynamics. We instead develop a low-complexity algorithm called Demand Response with Energy Storage Management (DR-ESM). DR-ESM does not require any statistical knowledge of the system dynamics, including the renewable energy and the power prices. It only requires the entity to solve a small convex optimization pr...

  10. Aquifer thermal energy (heat and chill) storage

    SciTech Connect (OSTI)

    Jenne, E.A. (ed.)

    1992-11-01T23:59:59.000Z

    As part of the 1992 Intersociety Conversion Engineering Conference, held in San Diego, California, August 3--7, 1992, the Seasonal Thermal Energy Storage Program coordinated five sessions dealing specifically with aquifer thermal energy storage technologies (ATES). Researchers from Sweden, The Netherlands, Germany, Switzerland, Denmark, Canada, and the United States presented papers on a variety of ATES related topics. With special permission from the Society of Automotive Engineers, host society for the 1992 IECEC, these papers are being republished here as a standalone summary of ATES technology status. Individual papers are indexed separately.

  11. LiH thermal energy storage device

    DOE Patents [OSTI]

    Olszewski, M.; Morris, D.G.

    1994-06-28T23:59:59.000Z

    A thermal energy storage device for use in a pulsed power supply to store waste heat produced in a high-power burst operation utilizes lithium hydride as the phase change thermal energy storage material. The device includes an outer container encapsulating the lithium hydride and an inner container supporting a hydrogen sorbing sponge material such as activated carbon. The inner container is in communication with the interior of the outer container to receive hydrogen dissociated from the lithium hydride at elevated temperatures. 5 figures.

  12. Carbon Capture and Storage | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power Systems EngineeringDepartment of4 Federal6CleanCaithness ShepherdsCapturingStorageStorage

  13. Transportation Storage Interface | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNGInternationalTechnologyDepartmentStorage Interface Transportation Storage

  14. The assessment of battery-ultracapacitor hybrid energy storage systems

    E-Print Network [OSTI]

    He, Yiou

    2014-01-01T23:59:59.000Z

    Battery-ultracapacitors hybrid energy storage systems (ESS) could combine the high power density and high life cycle of ultracapacitors with the high energy density of batteries, which forms a promising energy storage ...

  15. Sandia National Laboratories: Energy Storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Exhibition (EU PVSC) EC Top Publications Reference Model 5 (RM5): Oscillating Surge Wave Energy Converter Experimental Wave Tank Test for Reference Model 3 Floating- Point...

  16. NREL: Energy Storage - Battery Ownership

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    publications. Updating United States Advanced Battery Consortium and Department of Energy Battery Technology Targets for Battery Electric Vehicles Sensitivity of Plug-In Hybrid...

  17. Sandia National Laboratories: Energy Storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared0EnergySandiaConsortiumAct Energy SavingsNuclear EnergyStoring

  18. Modeling of Thermal Storage Systems in MILP Distributed Energy Resource Models

    E-Print Network [OSTI]

    Steen, David

    2014-01-01T23:59:59.000Z

    potential materials for thermal energy storage in buildingcoupled with thermal energy storage," Applied Energy, vol.N. Fumo, "Benefits of thermal energy storage option combined

  19. Energy Storage & Power Electronics 2008 Peer Review - Energy Storage

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.Program -Department oftoThese WebThese caseEnergyA123Sector

  20. Energy Storage Systems 2007 Peer Review - International Energy Storage

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.Program -Department oftoThese WebTheseof Energy| Department of

  1. Optimization Decomposition of Resistive Power Networks with Energy Storage

    E-Print Network [OSTI]

    Tan, Chee Wei

    Optimization Decomposition of Resistive Power Networks with Energy Storage Xin Lou and Chee Wei Tan energy through space and time be optimized to benefit the power network with large-scale energy storage integration? With energy storage, there is a possibility to generate more energy when the demand is low

  2. STATE OF CALIFORNIA DISTRIBUTED ENERGY STORAGE DX AC SYSTEMES ACCEPTANCE

    E-Print Network [OSTI]

    STATE OF CALIFORNIA DISTRIBUTED ENERGY STORAGE DX AC SYSTEMES ACCEPTANCE CEC-MECH-14A (Revised 08/09) CALIFORNIA ENERGY COMMISSION CERTIFICATE OF ACCEPTANCE MECH-14A NA7.5.13 Distributed Energy Storage DX AC DISTRIBUTED ENERGY STORAGE DX AC SYSTEMES ACCEPTANCE CEC-MECH-14A (Revised 08/09) CALIFORNIA ENERGY COMMISSION

  3. Energy Storage System Sizing for Smoothing Power Generation , P. Bydlowski

    E-Print Network [OSTI]

    Boyer, Edmond

    Energy Storage System Sizing for Smoothing Power Generation of Direct J. Aubry1 , P. Bydlowski 1 E-mail: judicael.aubry Abstract This paper examines the sizing energy storage system (ESS) for energy converter. Keywords: Energy Storage System (ESS), power smoothing, Direct Wave Energy Converter, Supercapacitor, Power

  4. STATE OF CALIFORNIA THERMAL ENERGY STORAGE (TES) SYSTEM ACCEPTANCE

    E-Print Network [OSTI]

    STATE OF CALIFORNIA THERMAL ENERGY STORAGE (TES) SYSTEM ACCEPTANCE CEC-MECH-15A (Revised 07/10) CALIFORNIA ENERGY COMMISSION CERTIFICATE OF ACCEPTANCE MECH-15A NA7.5.14 Thermal Energy Storage (TES) System THERMAL ENERGY STORAGE (TES) SYSTEM ACCEPTANCE CEC-MECH-15A (Revised 07/10) CALIFORNIA ENERGY COMMISSION

  5. Control Algorithms for Grid-Scale Battery Energy Storage Systems

    E-Print Network [OSTI]

    Control Algorithms for Grid-Scale Battery Energy Storage Systems This report describes development-connected battery energy storage system. The report was submitted by HNEI to the U.S. Department of Energy Office.2: Energy Storage Systems August 2014 HAWAI`I NATURAL ENERGY INSTITUTE School of Ocean & Earth Science

  6. Sandia National Laboratories: Energy Storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive SolarEducation Programs:CRFProvideAids EnergyUFDSunShot On NovemberEnergy

  7. Sandia National Laboratories: Energy Storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared0EnergySandiaConsortiumAct Energy SavingsNuclear

  8. Sandia National Laboratories: Energy Storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared0EnergySandiaConsortiumAct Energy SavingsNuclearMore Efficient

  9. Sandia National Laboratories: Energy Storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared0EnergySandiaConsortiumAct Energy SavingsNuclearMore

  10. Sandia National Laboratories: Energy Storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared0EnergySandiaConsortiumAct Energy

  11. National Hydrogen Storage Project | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAXBalanced Scorecard Federal2 to:DieselEnergyHydrogen Storage » DOE R&D

  12. Cost-Effective Solar Thermal Energy Storage: Thermal Energy Storage With Supercritical Fluids

    SciTech Connect (OSTI)

    None

    2011-02-01T23:59:59.000Z

    Broad Funding Opportunity Announcement Project: UCLA and JPL are creating cost-effective storage systems for solar thermal energy using new materials and designs. A major drawback to the widespread use of solar thermal energy is its inability to cost-effectively supply electric power at night. State-of-the-art energy storage for solar thermal power plants uses molten salt to help store thermal energy. Molten salt systems can be expensive and complex, which is not attractive from a long-term investment standpoint. UCLA and JPL are developing a supercritical fluid-based thermal energy storage system, which would be much less expensive than molten-salt-based systems. The team’s design also uses a smaller, modular, single-tank design that is more reliable and scalable for large-scale storage applications.

  13. MODELING OF HYDRO-PNEUMATIC ENERGY STORAGE USING PUMP TURBINES

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    of delivered power and energy capacities. Hydraulic storage or compressed air energy storage (CAES) can be used-turbine to displace a virtual liquid piston for air compression (Figure 1). A dynamic model of the storage system. It is based upon air compression storage using a hydraulic drive, which allows relatively high conversion

  14. A bio-inspired molecular water oxidation catalyst for renewable hydrogen generation: An examination of salt effects

    E-Print Network [OSTI]

    Lawson, Catherine L.

    , purification, and/or burning processes. The generation of hydrogen using solar energy to split water, ideally. Swiegersc , Leone Spicciaa * a School of Chemistry, Monash University, Clayton, Victoria 3800, Australia b, University of Wollongong, Wollongong, NSW 2522, Australia ABSTRACT Most transport fuels are derived from

  15. Storage - Challenges and Opportunities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage » SearchEnergyDepartmentScopingOverviewFranklinStatusJ.R.StevenStop.Storage -

  16. Storage Gas Water Heaters | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage » SearchEnergyDepartmentScopingOverviewFranklinStatusJ.R.StevenStop.Storage

  17. Southern company energy storage study : a study for the DOE energy storage systems program.

    SciTech Connect (OSTI)

    Ellison, James; Bhatnagar, Dhruv; Black, Clifton [Southern Company Services, Inc., Birmingham, AL; Jenkins, Kip [Southern Company Services, Inc., Birmingham, AL

    2013-03-01T23:59:59.000Z

    This study evaluates the business case for additional bulk electric energy storage in the Southern Company service territory for the year 2020. The model was used to examine how system operations are likely to change as additional storage is added. The storage resources were allowed to provide energy time shift, regulation reserve, and spinning reserve services. Several storage facilities, including pumped hydroelectric systems, flywheels, and bulk-scale batteries, were considered. These scenarios were tested against a range of sensitivities: three different natural gas price assumptions, a 15% decrease in coal-fired generation capacity, and a high renewable penetration (10% of total generation from wind energy). Only in the elevated natural gas price sensitivities did some of the additional bulk-scale storage projects appear justifiable on the basis of projected production cost savings. Enabling existing peak shaving hydroelectric plants to provide regulation and spinning reserve, however, is likely to provide savings that justify the project cost even at anticipated natural gas price levels. Transmission and distribution applications of storage were not examined in this study. Allowing new storage facilities to serve both bulk grid and transmission/distribution-level needs may provide for increased benefit streams, and thus make a stronger business case for additional storage.

  18. The Economic Case for Bulk Energy Storage in Transmission Systems

    E-Print Network [OSTI]

    The Economic Case for Bulk Energy Storage in Transmission Systems with High Percentages to Engineer the Future Electric Energy System #12;#12;The Economic Case for Bulk Energy Storage Economic Case for Bulk Energy Storage in Transmission Sys- tems with High Percentages of Renewable

  19. Thermochemical energy storage systems: modelling, analysis and design.

    E-Print Network [OSTI]

    Haji Abedin, Ali

    2010-01-01T23:59:59.000Z

    ??Thermal energy storage (TES) is an advanced technology for storing thermal energy that can mitigate environmental impacts and facilitate more efficient and clean energy systems.… (more)

  20. Fact Sheet: Codes and Standards for Energy Storage System Performance...

    Broader source: Energy.gov (indexed) [DOE]

    The U.S. Department of Energy's Office of Electricity Delivery and Energy Reliability Energy Storage Systems Program, with the support of Pacific Northwest National Laboratory...

  1. Fact Sheet Available: Codes and Standards for Energy Storage...

    Broader source: Energy.gov (indexed) [DOE]

    U.S. Department of Energy's Office of Electricity Delivery and Energy Reliability Energy Storage Systems Program, with the support of Pacific Northwest National Laboratory (PNNL)...

  2. Crosstalk compensation in analysis of energy storage devices...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biomass and Biofuels Building Energy Efficiency Electricity Transmission Energy Analysis Energy Storage Geothermal Hydrogen and Fuel Cell Hydropower, Wave and Tidal Industrial...

  3. Energy Storage Computational Tool | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Power Basics (The followingDirectLowDiscussion PageOpenEIenergy_storage_computat

  4. Ocean Renewable Energy Storage (ORES) System: Analysis of an Undersea Energy Storage Concept

    E-Print Network [OSTI]

    Slocum, Alexander H.

    Due to its higher capacity factor and proximity to densely populated areas, offshore wind power with integrated energy storage could satisfy > 20% of U.S. electricity demand. Similar results could also be obtained in many ...

  5. Test profiles for stationary energy storage applications

    SciTech Connect (OSTI)

    Butler, P.C. [Sandia National Labs., Albuquerque, NM (United States); Cole, J.F. [International Lead Zinc Research Organization, Research Triangle Park, NC (United States); Taylor, P.A. [Energetics, Inc., Columbia, MD (United States)

    1998-09-01T23:59:59.000Z

    Evaluation of battery and other energy storage technologies for stationary uses is progressing rapidly toward application-specific testing that uses computer-based data acquisition and control equipment, active electronic loads and power supplies, and customized software, to enable sophisticated test regimes that simulate actual use conditions. These simulated-use tests provide more accurate performance and life evaluations than simple constant resistance or current testing regimes. Some of the tests use stepped constant-power charge and discharge regimes to simulate conditions created by electric utility applications such as frequency regulation and spinning reserve. Other test profiles under development simulate conditions for the energy storage component of Remote Area Power Supplies (RAPS) that include renewable and/or fossil-fueled generators. Various RAPS applications have unique sets of service conditions that require specialized test profiles. However, almost all RAPS tests and many tests that represent other stationary applications need to simulate significant time periods during which storage devices operate at low-to-medium states-of-charge without full recharge. Consideration of these and similar issues in simulated-use test regimes is necessary to effectively predict the responses of the various types of batteries in specific stationary applications. This paper describes existing and evolving stationary applications for energy storage technologies and test regimes that are designed to simulate them. The paper also discusses efforts to develop international testing standards.

  6. Sandia National Laboratories: Energy Storage Multimedia Gallery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared0EnergySandiaConsortiumAct EnergyEnergy Storage Sandian

  7. Sandia National Laboratories: Energy Storage Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared0EnergySandiaConsortiumAct EnergyEnergy Storage

  8. Sandia National Laboratories: Energy Storage Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared0EnergySandiaConsortiumAct EnergyEnergy StorageHigh-Efficiency

  9. Improving energy storage devices | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickrinformation for planning experimental workImprovingImproving

  10. EPRI Energy Storage Talking Points

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecord of DecisionDraftDepartmentofEnergyPortfolioEPAct Section

  11. NREL: Transportation Research - Energy Storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions andData and ResourcesOtherForecastingAlternativeVehicleHydrogen

  12. 24M Technologies: Using Innovation to Solve the Energy Storage...

    Broader source: Energy.gov (indexed) [DOE]

    24M Technologies: Using Innovation to Solve the Energy Storage Challenge 24M Technologies: Using Innovation to Solve the Energy Storage Challenge February 1, 2011 - 3:30pm Addthis...

  13. Vehicle Technologies Office: 2013 Energy Storage R&D Progress...

    Broader source: Energy.gov (indexed) [DOE]

    1-3 Vehicle Technologies Office: 2013 Energy Storage R&D Progress Report, Sections 1-3 The FY 2013 Progress Report for Energy Storage R&D focuses on advancing the development of...

  14. Vehicle Technologies Office: 2013 Energy Storage R&D Progress...

    Broader source: Energy.gov (indexed) [DOE]

    4-6 Vehicle Technologies Office: 2013 Energy Storage R&D Progress Report, Sections 4-6 The FY 2013 Progress Report for Energy Storage R&D focuses on advancing the development of...

  15. Energy Storage Systems 2012 Peer Review Presentations - Poster...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ARPA-E Projects Energy Storage Systems 2012 Peer Review Presentations - Poster Session 1 (Day 1): ARPA-E Projects The U.S. DOE Energy Storage Systems Program (ESS) conducted a peer...

  16. Flexographically Printed Rechargeable Zinc-based Battery for Grid Energy Storage

    E-Print Network [OSTI]

    Wang, Zuoqian

    2013-01-01T23:59:59.000Z

    J. Østergaard, “Battery energy storage technology for powerBattery for Grid Energy Storage..Energy Storage for the Grid: A Battery of Choices,” Science,

  17. AQUIFER THERMAL ENERGY STORAGE. A NUMERICAL SIMULATION OF AUBURN UNIVERSITY FIELD EXPERIMENTS

    E-Print Network [OSTI]

    Tsang, Chin Fu

    2013-01-01T23:59:59.000Z

    Auburn University Thermal Energy Storage , LBL No. 10194.Mathematical modeling of thermal energy storage in aquifers,of Current Aquifer Thermal Energy Storage Programs (in

  18. Optimal Deployment of Thermal Energy Storage under Diverse Economic and Climate Conditions

    E-Print Network [OSTI]

    DeForest, Nicolas

    2014-01-01T23:59:59.000Z

    Deployment  of  Thermal  Energy   Storage  under  Diverse  Dincer I. On thermal energy storage systems and applicationsin research on cold thermal energy storage, International

  19. THEORETICAL STUDIES IN LONG-TERM THERMAL ENERGY STORAGE IN AQUIFERS

    E-Print Network [OSTI]

    Tsang, C.F.

    2013-01-01T23:59:59.000Z

    Mathematical Modeling of Thermal Energy Storage in Aquifers.of Aquifer Thermal Energy Storage Workshop, Lawrencewithin the Seasonal Thermal Energy Storage program managed

  20. SEASONAL THERMAL ENERGY STORAGE IN AQUIFERS-MATHEMATICAL MODELING STUDIES IN 1979

    E-Print Network [OSTI]

    Tsang, Chin Fu

    2013-01-01T23:59:59.000Z

    of Aquifer Thermal Energy Storage." Lawrence Berkeleythe Auburn University Thermal Energy Storage Experiment."LBL~l0208 SEASONAL THERMAL ENERGY STORAGE IN AQUIFERS~

  1. Phase Change Materials for Thermal Energy Storage in Concentrated Solar Thermal Power Plants

    E-Print Network [OSTI]

    Hardin, Corey Lee

    2011-01-01T23:59:59.000Z

    PHASE CHANGE THERMAL ENERGY STORAGE FOR CONCENTRATING SOLARChange Materials for Thermal Energy Storage in ConcentratedChange Materials for Thermal Energy Storage in Concentrated

  2. A COMPARISON OF THE CONDUCTOR REQUIREMENTS FOR ENERGY STORAGE DEVICES MADE WITH IDEAL COIL GEOMETRIES

    E-Print Network [OSTI]

    Hassenzahl, W.

    2011-01-01T23:59:59.000Z

    Superconducting Magnetic Energy Storage Program," Los AlamosWisconsin Superconductive Energy Storage Project. Y2!.l,J. J. Stekly, "Magnetic Energy Storage Using Superconducting

  3. Graphene-based Material Systems for Nanoelectronics and Energy Storage Devices

    E-Print Network [OSTI]

    Guo, Shirui

    2012-01-01T23:59:59.000Z

    conductive paper for energy-storage devices" Proceedings ofChemical Capacitive Energy Storage" Advanced Materials 2011,conductive paper for energy-storage devices" Proceedings of

  4. THEORETICAL STUDIES IN LONG-TERM THERMAL ENERGY STORAGE IN AQUIFERS

    E-Print Network [OSTI]

    Tsang, C.F.

    2013-01-01T23:59:59.000Z

    Mathematical Modeling of Thermal Energy Storage in Aquifers.of Aquifer Thermal Energy Storage Workshop, Lawrencethe Seasonal Thermal Energy Storage program managed by

  5. Electrochemical Capacitors as Energy Storage in Hybrid-Electric Vehicles: Present Status and Future Prospects

    E-Print Network [OSTI]

    Burke, Andy; Miller, Marshall

    2009-01-01T23:59:59.000Z

    Capacitors as Energy Storage in Hybrid- Electric Vehicles:uncertainty regarding the energy storage technologies.Whether a particular energy storage technology is suitable

  6. SEASONAL THERMAL ENERGY STORAGE IN AQUIFERS-MATHEMATICAL MODELING STUDIES IN 1979

    E-Print Network [OSTI]

    Tsang, Chin Fu

    2013-01-01T23:59:59.000Z

    of Aquifer Thermal Energy Storage." Lawrence BerkeleyP, Andersen, "'rhermal Energy Storage in a Confined Aquifer~University Thermal Energy Storage Experiment." Lawrence

  7. Synthesis and characterization of nanostructured transition metal oxides for energy storage devices

    E-Print Network [OSTI]

    Kim, Jong Woung

    2012-01-01T23:59:59.000Z

    Figure 1.1. Ragone plot of various energy storage systems [metal oxides for energy storage devices A dissertationmetal oxides for energy storage devices by Jong Woung Kim

  8. Optimal Deployment of Thermal Energy Storage under Diverse Economic and Climate Conditions

    E-Print Network [OSTI]

    DeForest, Nicolas

    2014-01-01T23:59:59.000Z

    2012. [8] Dincer I. On thermal energy storage systems andin research on cold thermal energy storage, InternationalLF. Overview of thermal energy storage (TES) potential

  9. SEASONAL THERMAL ENERGY STORAGE IN AQUIFERS-MATHEMATICAL MODELING STUDIES IN 1979

    E-Print Network [OSTI]

    Tsang, Chin Fu

    2013-01-01T23:59:59.000Z

    Aspects of Aquifer Thermal Energy Storage." Lawrencethe Auburn University Thermal Energy Storage Experiment."LBL~l0208 SEASONAL THERMAL ENERGY STORAGE IN AQUIFERS~

  10. Modeling of Thermal Storage Systems in MILP Distributed Energy Resource Models

    E-Print Network [OSTI]

    Steen, David

    2014-01-01T23:59:59.000Z

    potential materials for thermal energy storage in buildingcogeneration coupled with thermal energy storage," AppliedN. Fumo, "Benefits of thermal energy storage option combined

  11. THEORETICAL STUDIES IN LONG-TERM THERMAL ENERGY STORAGE IN AQUIFERS

    E-Print Network [OSTI]

    Tsang, C.F.

    2013-01-01T23:59:59.000Z

    Mathematical Modeling of Thermal Energy Storage in Aquifers.Proceedings of Aquifer Thermal Energy Storage Workshop,within the Seasonal Thermal Energy Storage program managed

  12. BAdvanced adiabatic compressed air energy storage for the article has been accepted for inclusion

    E-Print Network [OSTI]

    Chris Bullough; Christoph Gatzen; Christoph Jakiel; Martin Koller; Andreas Nowi; Stefan Zunft; Alstom Power; Technology Centre; Leicester Le Lh

    2004-01-01T23:59:59.000Z

    advantages, only compressed air energy storage (“CAES”) has the storage capacity of pumped hydro, but with

  13. Boosting CSP Production with Thermal Energy Storage

    SciTech Connect (OSTI)

    Denholm, P.; Mehos, M.

    2012-06-01T23:59:59.000Z

    Combining concentrating solar power (CSP) with thermal energy storage shows promise for increasing grid flexibility by providing firm system capacity with a high ramp rate and acceptable part-load operation. When backed by energy storage capability, CSP can supplement photovoltaics by adding generation from solar resources during periods of low solar insolation. The falling cost of solar photovoltaic (PV) - generated electricity has led to a rapid increase in the deployment of PV and projections that PV could play a significant role in the future U.S. electric sector. The solar resource itself is virtually unlimited; however, the actual contribution of PV electricity is limited by several factors related to the current grid. The first is the limited coincidence between the solar resource and normal electricity demand patterns. The second is the limited flexibility of conventional generators to accommodate this highly variable generation resource. At high penetration of solar generation, increased grid flexibility will be needed to fully utilize the variable and uncertain output from PV generation and to shift energy production to periods of high demand or reduced solar output. Energy storage is one way to increase grid flexibility, and many storage options are available or under development. In this article, however, we consider a technology already beginning to be used at scale - thermal energy storage (TES) deployed with concentrating solar power (CSP). PV and CSP are both deployable in areas of high direct normal irradiance such as the U.S. Southwest. The role of these two technologies is dependent on their costs and relative value, including how their value to the grid changes as a function of what percentage of total generation they contribute to the grid, and how they may actually work together to increase overall usefulness of the solar resource. Both PV and CSP use solar energy to generate electricity. A key difference is the ability of CSP to utilize high-efficiency TES, which turns CSP into a partially dispatchable resource. The addition of TES produces additional value by shifting the delivery of solar energy to periods of peak demand, providing firm capacity and ancillary services, and reducing integration challenges. Given the dispatchability of CSP enabled by TES, it is possible that PV and CSP are at least partially complementary. The dispatchability of CSP with TES can enable higher overall penetration of the grid by solar energy by providing solar-generated electricity during periods of cloudy weather or at night, when PV-generated power is unavailable. Such systems also have the potential to improve grid flexibility, thereby enabling greater penetration of PV energy (and other variable generation sources such as wind) than if PV were deployed without CSP.

  14. Energy Storage Activities in the United States Electricity Grid...

    Broader source: Energy.gov (indexed) [DOE]

    Activities in the United States Electricity Grid Electricity Advisory Committee Energy Storage Technologies Subcommittee Members Ralph Masiello, Subcommittee Chair Senior...

  15. Solar Energy Grid Integration Systems -- Energy Storage (SEGIS-ES).

    SciTech Connect (OSTI)

    Hanley, Charles J.; Ton, Dan T. (U.S. Department of Energy, Washington, D.C.); Boyes, John D.; Peek, Georgianne Huff

    2008-07-01T23:59:59.000Z

    This paper describes the concept for augmenting the SEGIS Program (an industry-led effort to greatly enhance the utility of distributed PV systems) with energy storage in residential and small commercial applications (SEGIS-ES). The goal of SEGIS-ES is to develop electrical energy storage components and systems specifically designed and optimized for grid-tied PV applications. This report describes the scope of the proposed SEGIS-ES Program and why it will be necessary to integrate energy storage with PV systems as PV-generated energy becomes more prevalent on the nation's utility grid. It also discusses the applications for which energy storage is most suited and for which it will provide the greatest economic and operational benefits to customers and utilities. Included is a detailed summary of the various storage technologies available, comparisons of their relative costs and development status, and a summary of key R&D needs for PV-storage systems. The report concludes with highlights of areas where further PV-specific R&D is needed and offers recommendations about how to proceed with their development.

  16. Energy conversion & storage program. 1994 annual report

    SciTech Connect (OSTI)

    Cairns, E.J.

    1995-04-01T23:59:59.000Z

    The Energy Conversion and Storage Program investigates state-of-the-art electrochemistry, chemistry, and materials science technologies for: (1) development of high-performance rechargeable batteries and fuel cells; (2) development of high-efficiency thermochemical processes for energy conversion; (3) characterization of complex chemical processes and chemical species; (4) study and application of novel materials for energy conversion and transmission. Research projects focus on transport process principles, chemical kinetics, thermodynamics, separation processes, organic and physical chemistry, novel materials, and advanced methods of analysis.

  17. Energy Conversion & Storage Program, 1993 annual report

    SciTech Connect (OSTI)

    Cairns, E.J.

    1994-06-01T23:59:59.000Z

    The Energy Conversion and Storage Program applies chemistry and materials science principles to solve problems in: production of new synthetic fuels; development of high-performance rechargeable batteries and fuel cells; development of high-efficiency thermochemical processes for energy conversion; characterization of complex chemical processes and chemical species; and the study and application of novel materials for energy conversion and transmission. Projects focus on transport-process principles, chemical kinetics, thermodynamics, chemical kinetics, thermodynamics, separation processes, organic and physical chemistry, novel materials, and advanced methods of analysis.

  18. Exploiting Redundancy to Conserve Energy in Storage Systems

    E-Print Network [OSTI]

    Bianchini, Ricardo

    Exploiting Redundancy to Conserve Energy in Storage Systems Eduardo Pinheiro Rutgers University redundancy configura- tion for new energy-aware storage systems. To study Diverted Ac- cesses for realistic, and wide-area storage utilities, con- sume significant amounts of energy. For example, one report indi

  19. SRCMap: Energy Proportional Storage using Dynamic Consolidation Akshat Verma

    E-Print Network [OSTI]

    Rangaswami, Raju

    SRCMap: Energy Proportional Storage using Dynamic Consolidation Akshat Verma Ricardo Koller Luis-Replicate- Consolidate Mapping (SRCMap), is a storage virtual- ization layer optimization that enables energy propor of SRCMap in minimizing the power con- sumption of enterprise storage systems. 1 Introduction Energy

  20. Examining Energy Use in Heterogeneous Archival Storage Systems

    E-Print Network [OSTI]

    Polyzotis, Neoklis (Alkis)

    Examining Energy Use in Heterogeneous Archival Storage Systems Ian F. Adams*, Ethan L. Miller to consume upwards of 35% the total energy used [2]. As systems grow to encompass thousands of storage to power and cool storage devices, and energy costs are no longer the only issues--data center architects

  1. Ris-M-2191 RESEARCH ON ENERGY STORAGE AT

    E-Print Network [OSTI]

    Risø-M-2191 RESEARCH ON ENERGY STORAGE AT RIS� NATIONAL LABORATORY K. Jensen, S. Krenk, N. This paper was presented at the International Assembly on Energy Storage held from May 27 to June 1, 1979 in Dubrovnik, Yugoslavia. It contains a review of some of the research projects on energy storage at Risø

  2. The Role of Energy Storage for Mini-Grid Stabilization

    E-Print Network [OSTI]

    Boyer, Edmond

    The Role of Energy Storage for Mini-Grid Stabilization Report IEA-PVPS T11-02:2011 hal-00802927 Program The role of energy storage for mini-grid stabilization IEA PVPS Task 11 Report IEA-PVPS T11 Foreword 5 Executive Summary 7 1 Introduction 10 2 Scope of the study 14 3 The role of energy storage

  3. Stationary Applications of Energy Storage Technologies for Transit Systems

    E-Print Network [OSTI]

    Shu, Lily H.

    Stationary Applications of Energy Storage Technologies for Transit Systems Paul Radcliffe, James S, Ontario, Canada paul.radcliffe@utoronto.ca Abstract ­ Stationary energy storage technologies can improve the efficiency of transit systems. In this paper, three different demonstrations of energy storage technologies

  4. Modeling of Field Distribution and Energy Storage in Diphasic Dielectrics

    E-Print Network [OSTI]

    Koledintseva, Marina Y.

    Modeling of Field Distribution and Energy Storage in Diphasic Dielectrics S. K. Patil, M. Y, USA Modeling of electrostatic field distribution and energy storage in diphasic dielectrics containing to the increased energy storage density. For composites with lower volume fractions of high-permittivity inclusions

  5. Optimal Energy Storage Control Policies for the Smart Power Grid

    E-Print Network [OSTI]

    Koutsopoulos, Iordanis

    Optimal Energy Storage Control Policies for the Smart Power Grid Iordanis Koutsopoulos Vassiliki Center for Research and Technology Hellas (CERTH), Greece Abstract--Electric energy storage devices the optimal energy storage control problem from the side of the utility operator. The operator controller

  6. Large Scale Energy Storage: From Nanomaterials to Large Systems

    E-Print Network [OSTI]

    Fisher, Frank

    Large Scale Energy Storage: From Nanomaterials to Large Systems Wednesday October 26, 2011, Babbio energy storage devices. Specifically, this talk discusses 1) the challenges for grid scale of emergent technologies with ultralow costs on new energy storage materials and mechanisms. Dr. Jun Liu

  7. Reluctance apparatus for flywheel energy storage

    DOE Patents [OSTI]

    Hull, John R. (Downers Grove, IL)

    2000-01-01T23:59:59.000Z

    A motor generator for providing high efficiency, controlled voltage output or storage of energy in a flywheel system. A motor generator includes a stator of a soft ferromagnetic material, a motor coil and a generator coil, and a rotor has at least one embedded soft ferromagnetic piece. Control of voltage output is achieved by use of multiple stator pieces and multiple rotors with controllable gaps between the stator pieces and the soft ferromagnetic piece.

  8. Thermochemical Energy Storage | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of EnergyThe EnergyDepartment of Energy TheAgedMachines

  9. Advanced Thermal Energy Storage: Novel Tuning of Critical Fluctuations for Advanced Thermal Energy Storage

    SciTech Connect (OSTI)

    None

    2011-12-01T23:59:59.000Z

    HEATS Project: NAVITASMAX is developing a novel thermal energy storage solution. This innovative technology is based on simple and complex supercritical fluids— substances where distinct liquid and gas phases do not exist, and tuning the properties of these fluid systems to increase their ability to store more heat. In solar thermal storage systems, heat can be stored in NAVITASMAX’s system during the day and released at night—when the sun is not shining—to drive a turbine and produce electricity. In nuclear storage systems, heat can be stored in NAVITASMAX’s system at night and released to produce electricity during daytime peak-demand hours.

  10. Bio-inspired optical components

    E-Print Network [OSTI]

    Walish, Joseph John

    2008-01-01T23:59:59.000Z

    Guiding electro-magnetic radiation is fundamental to optics. Lenses, mirrors, and photonic crystals all accomplish this task by different routes. Understanding the interaction of light with materials is fundamental to ...

  11. Bio-inspired fluid locomotion

    E-Print Network [OSTI]

    Chan, Brian, 1980-

    2009-01-01T23:59:59.000Z

    We have developed several novel methods of locomotion at low Reynolds number, for both Newtonian and non-Newtonian fluids: Robosnails 1 and 2, which operate on a lubrication layer, and the three-link swimmer which moves ...

  12. Bio-inspired Intelligent Machines

    E-Print Network [OSTI]

    Petriu, Emil M.

    manipulator, an instrumented passive-compliant wrist and a tactile probe array. Position sensors placed in the robot joints and on the instrumented passive-compliant wrist provide the kinesthetic information Hand with Tendon-Driven Compliant Wrist #12;The sensory cortex: an oblique strip, on the side of each

  13. Modeling and simulations of electrical energy storage in electrochemical capacitors

    E-Print Network [OSTI]

    Wang, Hainan

    2013-01-01T23:59:59.000Z

    energy storage systems (EES) have been the subject of intense study as they constitute an essential element in the development of sustainable energy

  14. QER Report: Energy Transmission, Storage, and Distribution Infrastruct...

    Office of Environmental Management (EM)

    Report: Energy Transmission, Storage, and Distribution Infrastructure | April 2015 S-1 Summary SUMMARY FOR POLICYMAKERS The U.S. energy landscape is changing. The United States has...

  15. Comments by the Energy Storage Association to the Department...

    Broader source: Energy.gov (indexed) [DOE]

    Public comments by the Energy Storage Association to the Department of Energy Electricity Advisory Council presented at the March 13, 2014 meeting of the EAC. Comments by the...

  16. Increasing Renewable Energy with Hydrogen Storage and Fuel Cell...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen Energy Storage: Experimental analysis and modeling Monterey Gardiner U.S. Department of Energy Fuel Cell Technologies Office 2 Question and Answer * Please type your...

  17. Storage Water Heaters | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehicles »ExchangeDepartmentResolveFuture |Energy Steps toStorage Water

  18. Storage/Handling | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehicles »ExchangeDepartmentResolveFuture |Energy Steps toStorage

  19. Electrochemical Energy Storage | ornl.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series toESnet4: Networking for the‹ See allElectrochemical Energy Storage Apr

  20. Energy Storage & Battery | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series toESnet4: Networking for37Energy Storage & Battery Leading the charge

  1. Eurotherm Seminar #99 Advances in Thermal Energy Storage

    E-Print Network [OSTI]

    Boyer, Edmond

    Eurotherm Seminar #99 Advances in Thermal Energy Storage 1 EUROTHERM99-01-103 Convection Energy Storage 2 Nussel number. This study shows that an increase in the convection coefficient leads in this paper consists in horizontal PCM plates separated by an air flow. This is a storage system dedicated

  2. Valuation of Energy Storage: An Optimal Switching Mike Ludkovski

    E-Print Network [OSTI]

    Ludkovski, Mike

    Valuation of Energy Storage: An Optimal Switching Approach Mike Ludkovski Department of Mathematics University, Princeton, NJ 08544 rcarmona@princeton.edu, We consider the valuation of energy storage facilities within the framework of stochastic control. Our two main examples are natural gas dome storage

  3. Energy storage systems program report for FY1996

    SciTech Connect (OSTI)

    Butler, P.C.

    1997-05-01T23:59:59.000Z

    Sandia National Laboratories, New Mexico, conducts the Energy Storage Systems Program, which is sponsored by the US Department of Energy`s Office of Utility Technologies. The goal of this program is to assist industry in developing cost-effective energy storage systems as a resource option by 2000. Sandia is responsible for the engineering analyses, contracted development, and testing of energy storage systems for stationary applications. This report details the technical achievements realized during fiscal year 1996.

  4. Solar Thermochemical Energy Storage | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage » SearchEnergyDepartmentScoping Study |4 SolarPV IncentiveSolarSwap

  5. Energy storage benefits and market analysis handbook : a study for the DOE Energy Storage Systems Program.

    SciTech Connect (OSTI)

    Eyer, James M. (Distributed Utility Associates, Livermore, CA); Corey, Garth P.; Iannucci, Joseph J., Jr. (Distributed Utility Associates, Livermore, CA)

    2004-12-01T23:59:59.000Z

    This Guide describes a high level, technology-neutral framework for assessing potential benefits from and economic market potential for energy storage used for electric utility-related applications. In the United States use of electricity storage to support and optimize transmission and distribution (T&D) services has been limited due to high storage system cost and by limited experience with storage system design and operation. Recent improvement of energy storage and power electronics technologies, coupled with changes in the electricity marketplace, indicate an era of expanding opportunity for electricity storage as a cost-effective electric resource. Some recent developments (in no particular order) that drive the opportunity include: (1) states adoption of the renewables portfolio standard (RPS), which may increased use of renewable generation with intermittent output, (2) financial risk leading to limited investment in new transmission capacity, coupled with increasing congestion on some transmission lines, (3) regional peaking generation capacity constraints, and (4) increasing emphasis on locational marginal pricing (LMP).

  6. NV energy electricity storage valuation : a study for the DOE Energy Storage Systems program.

    SciTech Connect (OSTI)

    Ellison, James F.; Bhatnagar, Dhruv; Samaan, Nader [Pacific Northwest National Laboratory, Richland, WA; Jin, Chunlian [Pacific Northwest National Laboratory, Richland, WA

    2013-06-01T23:59:59.000Z

    This study examines how grid-level electricity storage may benefit the operations of NV Energy, and assesses whether those benefits are likely to justify the cost of the storage system. To determine the impact of grid-level storage, an hourly production cost model of the Nevada Balancing Authority (%22BA%22) as projected for 2020 was created. Storage was found to add value primarily through the provision of regulating reserve. Certain storage resources were found likely to be cost-effective even without considering their capacity value, as long as their effectiveness in providing regulating reserve was taken into account. Giving fast resources credit for their ability to provide regulating reserve is reasonable, given the adoption of FERC Order 755 (%22Pay-for-performance%22). Using a traditional five-minute test to determine how much a resource can contribute to regulating reserve does not adequately value fast-ramping resources, as the regulating reserve these resources can provide is constrained by their installed capacity. While an approximation was made to consider the additional value provided by a fast-ramping resource, a more precise valuation requires an alternate regulating reserve methodology. Developing and modeling a new regulating reserve methodology for NV Energy was beyond the scope of this study, as was assessing the incremental value of distributed storage.

  7. Basic Energy SciencesBasic Energy Sciences DOE/EERE Hydrogen Storage

    E-Print Network [OSTI]

    Basic Energy SciencesBasic Energy Sciences DOE/EERE Hydrogen Storage Pre-Solicitation Meeting, June 19, 2003 Report on Hydrogen Storage Panel Findings inReport on Hydrogen Storage Panel Findings,Basic Research for Hydrogen Production, Storage and UseStorage and Use A follow-on workshop to BESAC

  8. Energy Storage and Distributed Energy Generation Project, Final Project Report

    SciTech Connect (OSTI)

    Schwank, Johannes; Mader, Jerry; Chen, Xiaoyin; Mi, Chris; Linic, Suljo; Sastry, Ann Marie; Stefanopoulou, Anna; Thompson, Levi; Varde, Keshav

    2008-03-31T23:59:59.000Z

    This report serves as a Final Report under the “Energy Storage and Distribution Energy Generation Project” carried out by the Transportation Energy Center (TEC) at the University of Michigan (UM). An interdisciplinary research team has been working on fundamental and applied research on: -distributed power generation and microgrids, -power electronics, and -advanced energy storage. The long-term objective of the project was to provide a framework for identifying fundamental research solutions to technology challenges of transmission and distribution, with special emphasis on distributed power generation, energy storage, control methodologies, and power electronics for microgrids, and to develop enabling technologies for novel energy storage and harvesting concepts that can be simulated, tested, and scaled up to provide relief for both underserved and overstressed portions of the Nation’s grid. TEC’s research is closely associated with Sections 5.0 and 6.0 of the DOE "Five-year Program Plan for FY2008 to FY2012 for Electric Transmission and Distribution Programs, August 2006.”

  9. Grid Applications for Energy Storage Flow Cells for Energy Storage Workshop

    E-Print Network [OSTI]

    Will: Describe and illustrate selected grid applications for energy storage Time-of-use energy cost;Anatomy of a Time of Use Rate GenerationRate(C$/kWh) 0.14 Peak Periods 0.12 $0.099$0.099 0.10 0.08 $0-20 TOU Tariff Charge Type power energy Summer Max Peak Part-Peak Off-Peak Maximum $11.04 $2.59 - $7

  10. Optimal Energy Management for a Hybrid Energy Storage System Combining Batteries and Double

    E-Print Network [OSTI]

    Paderborn, Universität

    Optimal Energy Management for a Hybrid Energy Storage System Combining Batteries and Double Layer storage for operation. High demands concerning power and energy density, small volume and weight is to combine storage technologies with complementary characteristics as a hybrid energy storage system. Thus

  11. Department of Energy Engineering Spring 2011 Boeing #2 Mechanical Energy Storage

    E-Print Network [OSTI]

    Demirel, Melik C.

    PENNSTATE Department of Energy Engineering Spring 2011 Boeing #2 ­ Mechanical Energy Storage Overview The project was meant to show how well a mechanical energy storage system could compete of mechanical energy storage vs. battery storage is to provide a lower environmental impact. This would be due

  12. Energy Storage Program Overview | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.Program -Department oftoThese WebThese

  13. Seneca Compressed Air Energy Storage (CAES) Project

    SciTech Connect (OSTI)

    None

    2012-11-30T23:59:59.000Z

    Compressed Air Energy Storage (CAES) is a hybrid energy storage and generation concept that has many potential benefits especially in a location with increasing percentages of intermittent wind energy generation. The objectives of the NYSEG Seneca CAES Project included: for Phase 1, development of a Front End Engineering Design for a 130MW to 210 MW utility-owned facility including capital costs; project financials based on the engineering design and forecasts of energy market revenues; design of the salt cavern to be used for air storage; draft environmental permit filings; and draft NYISO interconnection filing; for Phase 2, objectives included plant construction with a target in-service date of mid-2016; and for Phase 3, objectives included commercial demonstration, testing, and two-years of performance reporting. This Final Report is presented now at the end of Phase 1 because NYSEG has concluded that the economics of the project are not favorable for development in the current economic environment in New York State. The proposed site is located in NYSEG’s service territory in the Town of Reading, New York, at the southern end of Seneca Lake, in New York State’s Finger Lakes region. The landowner of the proposed site is Inergy, a company that owns the salt solution mining facility at this property. Inergy would have developed a new air storage cavern facility to be designed for NYSEG specifically for the Seneca CAES project. A large volume, natural gas storage facility owned and operated by Inergy is also located near this site and would have provided a source of high pressure pipeline quality natural gas for use in the CAES plant. The site has an electrical take-away capability of 210 MW via two NYSEG 115 kV circuits located approximately one half mile from the plant site. Cooling tower make-up water would have been supplied from Seneca Lake. NYSEG’s engineering consultant WorleyParsons Group thoroughly evaluated three CAES designs and concluded that any of the designs would perform acceptably. Their general scope of work included development of detailed project construction schedules, capital cost and cash flow estimates for both CAES cycles, and development of detailed operational data, including fuel and compression energy requirements, to support dispatch modeling for the CAES cycles. The Dispatch Modeling Consultant selected for this project was Customized Energy Solutions (CES). Their general scope of work included development of wholesale electric and gas market price forecasts and development of a dispatch model specific to CAES technologies. Parsons Brinkerhoff Energy Storage Services (PBESS) was retained to develop an air storage cavern and well system design for the CAES project. Their general scope of work included development of a cavern design, solution mining plan, and air production well design, cost, and schedule estimates for the project. Detailed Front End Engineering Design (FEED) during Phase 1 of the project determined that CAES plant capital equipment costs were much greater than the $125.6- million originally estimated by EPRI for the project. The initial air storage cavern Design Basis was increased from a single five million cubic foot capacity cavern to three, five million cubic foot caverns with associated air production wells and piping. The result of this change in storage cavern Design Basis increased project capital costs significantly. In addition, the development time required to complete the three cavern system was estimated at approximately six years. This meant that the CAES plant would initially go into service with only one third of the required storage capacity and would not achieve full capability until after approximately five years of commercial operation. The market price forecasting and dispatch modeling completed by CES indicated that the CAES technologies would operate at only 10 to 20% capacity factors and the resulting overall project economics were not favorable for further development. As a result of all of these factors, the Phase 1 FEED developed an installe

  14. Energy conversion & storage program. 1995 annual report

    SciTech Connect (OSTI)

    Cairns, E.J.

    1996-06-01T23:59:59.000Z

    The 1995 annual report discusses laboratory activities in the Energy Conversion and Storage (EC&S) Program. The report is divided into three categories: electrochemistry, chemical applications, and material applications. Research performed in each category during 1995 is described. Specific research topics relate to the development of high-performance rechargeable batteries and fuel cells, the development of high-efficiency thermochemical processes for energy conversion, the characterization of new chemical processes and complex chemical species, and the study and application of novel materials related to energy conversion and transmission. Research projects focus on transport-process principles, chemical kinetics, thermodynamics, separation processes, organic and physical chemistry, novel materials and deposition technologies, and advanced methods of analysis.

  15. Compressed Air Storage Strategies | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana. DOCUMENTS AVAILABLEReport 2009 Department ofHallam NuclearMarch10storage

  16. Cost analysis of energy storage systems for electric utility applications

    SciTech Connect (OSTI)

    Akhil, A. [Sandia National Lab., Albuquerque, NM (United States); Swaminathan, S.; Sen, R.K. [R.K. Sen & Associates, Inc., Bethesda, MD (United States)

    1997-02-01T23:59:59.000Z

    Under the sponsorship of the Department of Energy, Office of Utility Technologies, the Energy Storage System Analysis and Development Department at Sandia National Laboratories (SNL) conducted a cost analysis of energy storage systems for electric utility applications. The scope of the study included the analysis of costs for existing and planned battery, SMES, and flywheel energy storage systems. The analysis also identified the potential for cost reduction of key components.

  17. Energy Storage Systems Program Report for FY99

    SciTech Connect (OSTI)

    BOYES,JOHN D.

    2000-06-01T23:59:59.000Z

    Sandia National Laboratories, New Mexico, conducts the Energy Storage Systems Program, which is sponsored by the US Department of Energy's Office of Power Technologies. The goal of this program is to develop cost-effective electric energy storage systems for many high-value stationary applications in collaboration with academia and industry. Sandia National Laboratories is responsible for the engineering analyses, contracted development, and testing of energy storage components and systems. This report details the technical achievements realized during fiscal year 1999.

  18. Energy Storage Systems Program Report for FY98

    SciTech Connect (OSTI)

    Butler, P.C.

    1999-04-01T23:59:59.000Z

    Sandia National Laboratories, New Mexico, conducts the Energy Storage Systems Program, which is sponsored by the U.S. Department of Energy's Office of Power Technologies. The goal of this program is to collaborate with industry in developing cost-effective electric energy storage systems for many high-value stationary applications. Sandia National Laboratories is responsible for the engineering analyses, contracted development and testing of energy storage components and systems. This report details the technical achievements realized during fiscal year 1998.

  19. Overview of current and future energy storage technologies for electric power applications

    E-Print Network [OSTI]

    Bahrami, Majid

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1519 6.2. Compressed air energy storageOverview of current and future energy storage technologies for electric power applications Ioannis September 2008 Keywords: Power generation Distributed generation Energy storage Electricity storage A B

  20. Test report : Raytheon / KTech RK30 energy storage system.

    SciTech Connect (OSTI)

    Rose, David Martin; Schenkman, Benjamin L.; Borneo, Daniel R.

    2013-10-01T23:59:59.000Z

    The Department of Energy Office of Electricity (DOE/OE), Sandia National Laboratories (SNL) and the Base Camp Integration Lab (BCIL) partnered together to incorporate an energy storage system into a microgrid configured Forward Operating Base to reduce the fossil fuel consumption and to ultimately save lives. Energy storage vendors will be sending their systems to SNL Energy Storage Test Pad (ESTP) for functional testing and then to the BCIL for performance evaluation. The technologies that will be tested are electro-chemical energy storage systems comprising of lead acid, lithium-ion or zinc-bromide. Raytheon/KTech has developed an energy storage system that utilizes zinc-bromide flow batteries to save fuel on a military microgrid. This report contains the testing results and some limited analysis of performance of the Raytheon/KTech Zinc-Bromide Energy Storage System.

  1. Test report : Princeton power systems prototype energy storage system.

    SciTech Connect (OSTI)

    Rose, David Martin; Schenkman, Benjamin L.; Borneo, Daniel R.

    2013-08-01T23:59:59.000Z

    The Department of Energy Office of Electricity (DOE/OE), Sandia National Laboratory (SNL) and the Base Camp Integration Lab (BCIL) partnered together to incorporate an energy storage system into a microgrid configured Forward Operating Base to reduce the fossil fuel consumption and to ultimately save lives. Energy storage vendors will be sending their systems to SNL Energy Storage Test Pad (ESTP) for functional testing and then to the BCIL for performance evaluation. The technologies that will be tested are electro-chemical energy storage systems comprised of lead acid, lithium-ion or zinc-bromide. Princeton Power Systems has developed an energy storage system that utilizes lithium ion phosphate batteries to save fuel on a military microgrid. This report contains the testing results and some limited analysis of performance of the Princeton Power Systems Prototype Energy Storage System.

  2. Electric utility applications of hydrogen energy storage systems

    SciTech Connect (OSTI)

    Swaminathan, S.; Sen, R.K.

    1997-10-15T23:59:59.000Z

    This report examines the capital cost associated with various energy storage systems that have been installed for electric utility application. The storage systems considered in this study are Battery Energy Storage (BES), Superconducting Magnetic Energy Storage (SMES) and Flywheel Energy Storage (FES). The report also projects the cost reductions that may be anticipated as these technologies come down the learning curve. This data will serve as a base-line for comparing the cost-effectiveness of hydrogen energy storage (HES) systems in the electric utility sector. Since pumped hydro or compressed air energy storage (CAES) is not particularly suitable for distributed storage, they are not considered in this report. There are no comparable HES systems in existence in the electric utility sector. However, there are numerous studies that have assessed the current and projected cost of hydrogen energy storage system. This report uses such data to compare the cost of HES systems with that of other storage systems in order to draw some conclusions as to the applications and the cost-effectiveness of hydrogen as a electricity storage alternative.

  3. Energy Storage Management for VG Integration (Presentation)

    SciTech Connect (OSTI)

    Kirby, B.

    2011-10-01T23:59:59.000Z

    This presentation describes how you economically manage integration costs of storage and variable generation.

  4. Positive electrode for electrical energy storage device

    SciTech Connect (OSTI)

    Heredy, L.A.; McCoy, L.R.

    1980-10-14T23:59:59.000Z

    A rechargeable electrical energy storage device is described that includes a spaced-apart negative electrode and positive electrode structures immersed in an electrolyte which is molten at the operating temperature of the device wherein the positive electrode structure comprises a housing for containing a body of electropositive active material, said housing having at least one open face, an electrolyte permeable member affixed to the housing and covering said open face for retaining said active material in said housing and said housing and electrolyte permeable member comprising material selected from the group consisting of steel, nickel, copper and alloys thereof having at least an 8 ..mu..M thick electroless nickel coating thereon. In accordance with the present invention, it has been found that such an electroless nickel coating permits the use of relatively inexpensive conductive materials such as steel, nickel, copper and alloys thereof and provides the corrosion resistance required in the molten electrolyte. The present invention is particularly applicable to electrical energy storage devices which utilize a transition metal chalcogenide as a positive electrode active material and a lithium alloy as the negative electrode active material.

  5. The significance of energy storage for renewable energy generation and the role of instrumentation and measurement.

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 The significance of energy storage for renewable energy generation and the role and Alternative Energies Commission INES: National Institute For Solar Energy ENERGY STORAGE: FROM PRESENT TO EMERGING TECHNOLOGIES Energy storage is not a new concept but is currently getting increasing importance

  6. Elastomeric member for energy storage device

    DOE Patents [OSTI]

    Hoppie, Lyle O. (Birmingham, MI); Chute, Richard (Birmingham, MI)

    1985-01-01T23:59:59.000Z

    An energy storage device (10) is disclosed consisting of a stretched elongated elastomeric member (16), disposed within a tubular housing (14), which elastomeric member (16) is adapted to be torsionally stressed to store energy. The elastomeric member (16) is configured in the relaxed state with a uniform diameter body section, transition end sections, and is attached to rigid end piece assemblies (22, 24) of a lesser diameter. The profile and deflection characteristic of the transition sections (76, 78) are such that upon stretching of the member, a substantially uniform diameter assembly results to minimize the required volume of the surrounding housing (14). During manufacture, woven wire mesh sleeves (26, 28) are forced against a forming surface and bonded to the associated transition section (76, 78) to provide the correct profile and helix angle. Each sleeve (26, 28) contracts with the contraction of the associated transition section to maintain the bond therebetween.

  7. Biomass energy with carbon capture and storage (BECCS): a review

    E-Print Network [OSTI]

    Matthews, Adrian

    Biomass energy with carbon capture and storage (BECCS): a review Claire Gough, Paul Upham December are alternative terms for the coupling of bioenergy with carbon capture and storage (CCS). The paper follows from a workshop held in December 2009, hosted by the Scottish Centre for Carbon Capture and Storage

  8. Market and policy barriers to energy storage deployment : a study for the energy storage systems program.

    SciTech Connect (OSTI)

    Bhatnagar, Dhruv; Currier, Aileen B.; Hernandez, Jacquelynne; Ma, Ookie [U.S. Department of Energy, Washington, D.C.; Kirby, Brendan [U.S. Department of Energy, Washington, D.C.

    2013-09-01T23:59:59.000Z

    Electric energy storage technologies have recently been in the spotlight, discussed as essential grid assets that can provide services to increase the reliability and resiliency of the grid, including furthering the integration of variable renewable energy resources. Though they can provide numerous grid services, there are a number of factors that restrict their current deployment. The most significant barrier to deployment is high capital costs, though several recent deployments indicate that capital costs are decreasing and energy storage may be the preferred economic alternative in certain situations. However, a number of other market and regulatory barriers persist, limiting further deployment. These barriers can be categorized into regulatory barriers, market (economic) barriers, utility and developer business model barriers, crosscutting barriers and technology barriers. This report, through interviews with stakeholders and review of regulatory filings in four regions roughly representative of the United States, identifies the key barriers restricting further energy storage development in the country. The report also includes a discussion of possible solutions to address these barriers and a review of initiatives around the country at the federal, regional and state levels that are addressing some of these issues. Energy storage could have a key role to play in the future grid, but market and regulatory issues have to be addressed to allow storage resources open market access and compensation for the services they are capable of providing. Progress has been made in this effort, but much remains to be done and will require continued engagement from regulators, policy makers, market operators, utilities, developers and manufacturers.

  9. Oriented Nanostructures for Energy Conversion and Storage

    SciTech Connect (OSTI)

    Liu, Jun; Cao, Guozhong H.; Yang, Zhenguo; Wang, Donghai; DuBois, Daniel L.; Zhou, Xiao Dong; Graff, Gordon L.; Pederson, Larry R.; Zhang, Jiguang

    2008-08-28T23:59:59.000Z

    Recently the role of nanostructured materials in addressing the challenges in energy and natural resources has attracted wide attention. In particular, oriented nanostructures have demonstrated promising properties for energy harvesting, conversion and storage. The purpose of the paper is to review the synthesis and application of oriented nanostructures in a few key areas of energy technologies, namely photovoltaics, batteries, supercapacitors and thermoelectrics. Although the applications differ from field to field, one of the fundamental challenges is to improve the generation and transport of electrons and ions. We will first briefly review the several major approaches to attain oriented nanostructured films that are applicable for energy applications. We will then discuss how such controlled nanostructures can be used in photovoltaics, batteries, capacitors, thermoelectrics, and other unconventional ways of energy conversion. We will highlight the role of high surface area to maximize the surface activity, and the importance of optimum dimension and architecture, controlled pore channels and alignment of the nanocrystalline phase to optimize the electrons and ion transport. Finally, the paper will discuss the challenges in attaining integrated architectures to achieve the desired performance. Brief background information will be provided for the relevant technologies, but the emphasis is focused mainly on the nanoeffects of mostly inorganic based materials and devices.

  10. Hydrogen Energy Storage: Grid and Transportation Services Workshop...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Workshop Structure 1 02 Hydrogen Energy Storage: Grid and Transportation Services NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and...

  11. Scaling Distributed Energy Storage for Grid Peak Reduction

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    efforts have shown how variable rate pricing can incentivize consumers to use energy storage to cut periods. Unfortunately, vari- able rate pricing provides only a weak incentive for dis- tributed energyScaling Distributed Energy Storage for Grid Peak Reduction Aditya Mishra, David Irwin, Prashant

  12. Project Profile: Novel Thermal Energy Storage Systems for Concentratin...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar Power Project Profile: Novel Thermal Energy Storage Systems for Concentrating Solar Power University of Connecticut logo The University of Connecticut, under the Thermal...

  13. Press Conference on the Batteries and Energy Storage Hub Announcement...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Press Conference on the Batteries and Energy Storage Hub Announcement Share Description A multipartner team led by Argonne National Laboratory has been selected for an award of up...

  14. Carbon Foam Infused with Pentaglycerine for Thermal Energy Storage Applications.

    E-Print Network [OSTI]

    Johnson, Douglas James

    2011-01-01T23:59:59.000Z

    ??A thermal energy storage device that uses pentaglycerine as a phase change material was developed. This solid-state phase change material was embedded in a carbon… (more)

  15. Performance investigation of various cold thermal energy storages.

    E-Print Network [OSTI]

    MacPhee, David

    2008-01-01T23:59:59.000Z

    ??This study deals with solidification and melting of some typical encapsulated ice thermal energy storage geometries. Using ANSYS GAMBIT and FLUENT 6.0 software, HTF fluid… (more)

  16. Record-Setting Microscopy Illuminates Energy Storage Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The results yielded important new insights into a material of high interest for electrochemical energy storage. Lithium iron phosphate is widely studied for its use as a...

  17. Hydrogen Energy Storage for Grid and Transportation Services...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Workshop Goal: Identify challenges, benefits and opportunities for commercial hydrogen energy storage applications to support grid services, variable electricity generation, and...

  18. Energy Storage Systems 2012 Peer Review Presentations - Poster...

    Broader source: Energy.gov (indexed) [DOE]

    Angell, AZ State ESS 2012 Peer Review - Iron Based Flow Batteries for Low Cost Grid Level Energy Storage - Jesse Wainright, Case Western Reserve ESS 2012 Peer Review - Electrode...

  19. Energy Storage Monitoring System and In-Situ Impedance Measurement...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Monitoring System and In-Situ Impedance Measurement Modeling Energy Storage Monitoring System and In-Situ Impedance Measurement Modeling 2012 DOE Hydrogen and Fuel Cells Program...

  20. Energy Storage Systems 2007 Peer Review - Utility & Commercial...

    Broader source: Energy.gov (indexed) [DOE]

    utility, commercial, and rail applications of advanced energy storage systems are below. Other presentation categories were: Economics - Benefit Studies and Environment Benefit...

  1. Energy Storage & Power Electronics 2008 Peer Review - Agenda...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    & Power Electronics 2008 Peer Review - AgendaPresentation List Energy Storage & Power Electronics 2008 Peer Review - AgendaPresentation List The 2008 Peer Review Meeting for the...

  2. April 2013 Most Viewed Documents for Energy Storage, Conversion...

    Office of Scientific and Technical Information (OSTI)

    April 2013 Most Viewed Documents for Energy Storage, Conversion, And Utilization Science Subject Feed Seventh Edition Fuel Cell Handbook NETL (2004) 628 > Continuously variable...

  3. FY06 DOE Energy Storage Program PEER Review

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    6 DOE Energy Storage Program PEER REVIEW John D. Boyes Sandia National Laboratories ESS Program Makeup ESS Base Program - CECDOE Data Acquisition and Project Support - NYSERDADOE...

  4. Energy Storage Laboratory (Fact Sheet), NREL (National Renewable...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Power conversion equipment for energy storage * Ultra- and super-capacitor systems * DC systems, such as commercial microgrids Partner with Us Work with NREL experts and take...

  5. Energy Storage & Power Electronics 2008 Peer Review - Power Electronic...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Power Electronics (PE) Systems Presentations Energy Storage & Power Electronics 2008 Peer Review - Power Electronics (PE) Systems Presentations The 2008 Peer Review Meeting for the...

  6. Energy Storage Technologies: State of Development for Stationary...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technologies: State of Development for Stationary and Vehicular Applications Energy Storage Technologies: State of Development for Stationary and Vehicular Applications Testimony...

  7. IN-VEHICLE, HIGH-POWER ENERGY STORAGE SYSTEMS

    Broader source: Energy.gov (indexed) [DOE]

    energy storage curriculum including vehicle configurations, advanced combustion, fuel cells, power electronics, controls, alternative fuels and vehicle fuel efficiency to prepare...

  8. Composite materials for thermal energy storage

    DOE Patents [OSTI]

    Benson, D.K.; Burrows, R.W.; Shinton, Y.D.

    1985-01-04T23:59:59.000Z

    A composite material for thermal energy storage based upon polyhydric alcohols, such as pentaerythritol, trimethylol ethane (also known as pentaglycerine), neopentyl glycol and related compounds including trimethylol propane, monoaminopentaerythritol, diamino-pentaerythritol and tris(hydroxymethyl)acetic acid, separately or in combinations, which provide reversible heat storage through crystalline phase transformations. These PCM's do not become liquid during use and are in contact with at least one material selected from the group consisting of metals, carbon, siliceous, plastic, cellulosic, natural fiber, artificial fiber, concrete, gypsum, porous rock, and mixtures thereof. Particulate additions such as aluminum or graphite powders, as well as metal and carbon fibers can also be incorporated therein. Particulate and/or fibrous additions can be introduced into molten phase change materials which can then be cast into various shapes. After the phase change materials have solidified, the additions will remain dispersed throughout the matrix of the cast solid. The polyol is in contact with at least one material selected from the group consisting of metals, carbon, siliceous, plastic, cellulosic, natural fiber, artificial fiber, concrete, gypsum, and mixtures thereof.

  9. Composite materials for thermal energy storage

    DOE Patents [OSTI]

    Benson, David K. (Golden, CO); Burrows, Richard W. (Conifer, CO); Shinton, Yvonne D. (Northglenn, CO)

    1986-01-01T23:59:59.000Z

    The present invention discloses composite material for thermal energy storage based upon polyhydric alcohols, such as pentaerythritol, trimethylol ethane (also known as pentaglycerine), neopentyl glycol and related compounds including trimethylol propane, monoaminopentaerythritol, diamino-pentaerythritol and tris(hydroxymethyl)acetic acid, separately or in combinations, which provide reversible heat storage through crystalline phase transformations. These phase change materials do not become liquid during use and are in contact with at least one material selected from the group consisting of metals, carbon siliceous, plastic, cellulosic, natural fiber, artificial fiber, concrete, gypsum, porous rock, and mixtures thereof. Particulate additions, such as aluminum or graphite powders, as well as metal and carbon fibers can also be incorporated therein. Particulate and/or fibrous additions can be introduced into molten phase change materials which can then be cast into various shapes. After the phase change materials have solidified, the additions will remain dispersed throughout the matrix of the cast solid. The polyol is in contact with at least one material selected from the group consisting of metals, carbon siliceous, plastic, cellulosic, natural fiber, artificial fiber, concrete, gypsum, and mixtures thereof.

  10. Assessment of Energy Storage Alternatives in the Puget Sound Energy System Volume 2: Energy Storage Evaluation Tool

    SciTech Connect (OSTI)

    Wu, Di; Jin, Chunlian; Balducci, Patrick J.; Kintner-Meyer, Michael CW

    2013-12-01T23:59:59.000Z

    This volume presents the battery storage evaluation tool developed at Pacific Northwest National Laboratory (PNNL), which is used to evaluate benefits of battery storage for multiple grid applications, including energy arbitrage, balancing service, capacity value, distribution system equipment deferral, and outage mitigation. This tool is based on the optimal control strategies to capture multiple services from a single energy storage device. In this control strategy, at each hour, a look-ahead optimization is first formulated and solved to determine battery base operating point. The minute by minute simulation is then performed to simulate the actual battery operation. This volume provide background and manual for this evaluation tool.

  11. Integration of Electric Energy Storage into Power Systems with Renewable Energy Resources

    E-Print Network [OSTI]

    Xu, Yixing 1985-

    2012-10-26T23:59:59.000Z

    strategy is proposed to optimally manage the charging and discharging operation of energy storage in order to minimize the energy purchasing cost for a distribution system load aggregator in power markets. Different operation strategies of energy storage...

  12. Title of thesis: SCHEDULING IN ENERGY HARVESTING SYSTEMS WITH HYBRID ENERGY STORAGE

    E-Print Network [OSTI]

    Ulukus, Sennur

    ABSTRACT Title of thesis: SCHEDULING IN ENERGY HARVESTING SYSTEMS WITH HYBRID ENERGY STORAGE and Computer Engineering In wireless networks, efficient energy storage and utilization plays a vital role transmission with an energy harvesting trans- mitter which has hybrid energy storage with a perfect super

  13. A Comparison of Methods for Sizing Energy Storage Devices in Renewable Energy Systems Thomas Bailey

    E-Print Network [OSTI]

    Victoria, University of

    A Comparison of Methods for Sizing Energy Storage Devices in Renewable Energy Systems by Thomas of Methods for Sizing Energy Storage Devices in Renewable Energy Systems by Thomas Bailey B.Eng, University, storage technologies are proposed as a means to increase the penetration of renewable energy, to minimize

  14. A Review of Energy Storage Technologies for Marine Current Energy Systems A Review of Energy Storage Technologies for Marine Current Energy Systems

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    A Review of Energy Storage Technologies for Marine Current Energy Systems 1 A Review of Energy Storage Technologies for Marine Current Energy Systems Z. Zhoua,b,c , M.E.H. Benbouzida,* , J of fossil resources and the issue of environment lead to a global need for producing more clean energy from

  15. THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP

    E-Print Network [OSTI]

    Authors, Various

    2011-01-01T23:59:59.000Z

    FUTURE CONSIDERATIONS FOR CAVERN STORAGE Some of the topicsgravel or sand into the cavern in order to reduce the volumeAbove ground equipment for cavern storage opera- tions.

  16. THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP

    E-Print Network [OSTI]

    Authors, Various

    2011-01-01T23:59:59.000Z

    HAUSZ, W. , 1977. "Seasonal Storage in District Heating,"District Heating, July-August-September, 1977, pp. 5-11.aquifer storage for district heating and cooling. C. W.

  17. Battery energy storage market feasibility study -- Expanded report

    SciTech Connect (OSTI)

    Kraft, S. [Frost and Sullivan, Mountain View, CA (United States); Akhil, A. [Sandia National Labs., Albuquerque, NM (United States). Energy Storage Systems Analysis and Development Dept.

    1997-09-01T23:59:59.000Z

    Under the sponsorship of the US Department of Energy`s Office of Utility Technologies, the Energy Storage Systems Analysis and Development Department at Sandia National Laboratories (SNL) contracted Frost and Sullivan to conduct a market feasibility study of energy storage systems. The study was designed specifically to quantify the battery energy storage market for utility applications. This study was based on the SNL Opportunities Analysis performed earlier. Many of the groups surveyed, which included electricity providers, battery energy storage vendors, regulators, consultants, and technology advocates, viewed battery storage as an important technology to enable increased use of renewable energy and as a means to solve power quality and asset utilization issues. There are two versions of the document available, an expanded version (approximately 200 pages, SAND97-1275/2) and a short version (approximately 25 pages, SAND97-1275/1).

  18. Modular Energy Storage System for Alternative Energy Vehicles

    SciTech Connect (OSTI)

    Janice Thomas; Frank Ervin

    2012-02-28T23:59:59.000Z

    An electrical vehicle environment was established to promote research and technology development in the area of high power energy management. The project incorporates a topology that permits parallel development of an alternative energy delivery system and an energy storage system. The objective of the project is to develop technologies, specifically power electronics, energy storage electronics and controls that provide efficient and effective energy management between electrically powered devices in alternative energy vehicles â?? plugin electric vehicles, hybrid vehicles, range extended vehicles, and hydrogen-based fuel cell vehicles. In order to meet the project objectives, the Vehicle Energy Management System (VEMS) was defined and subsystem requirements were obtained. Afterwards, power electronics, energy storage electronics and controls were designed. Finally, these subsystems were built, tested individually, and integrated into an electric vehicle system to evaluate and optimize the subsystemsâ?? performance. Phase 1 of the program established the fundamental test bed to support development of an electrical environment ideal for fuel cell application and the mitigation of many shortcomings of current fuel cell technology. Phase 2, continued development from Phase 1, focusing on implementing subsystem requirements, design and construction of the energy management subsystem, and the integration of this subsystem into the surrogate electric vehicle. Phase 2 also required the development of an Alternative Energy System (AES) capable of emulating electrical characteristics of fuel cells, battery, gen set, etc. Under the scope of the project, a boost converter that couples the alternate energy delivery system to the energy storage system was developed, constructed and tested. Modeling tools were utilized during the design process to optimize both component and system design. This model driven design process enabled an iterative process to track and evaluate the impact of design alternatives and the impact of changes. Refinement of models was accomplished through correlation studies to measured data obtained from functioning hardware. Specifically, correlation and characterization of the boost converter resulted in a model that was effectively used to determine overall VEMS performance. The successful development of the boost converter can be attributed to utilization of previously proven technologies and adapting to meet the VEMS requirements. This program provided significant improvement in development time of various generations of boost converters. The software strategies and testing results support the development of current energy management systems and directly contribute to the future of similar, commercial products at Magna E-Car Systems. Because of this development project, Magna E-Car Systems is able to offer automotive customers a boost converter system with reduced time to market and decreased product cost, thus transferring the cost and timing benefits to the end use consumer.

  19. Porous media compressed air energy storage (PM-CAES): Theory and simulation of the coupled wellbore-reservoir system

    E-Print Network [OSTI]

    Oldenburg, C.M.

    2014-01-01T23:59:59.000Z

    of selected compressed air energy storage studes, Pacificaspects of compressed-air energy storage in aquifers, J. ofresources and compressed air energy storage (CAES), Energy,

  20. Seneca Compressed Air Energy Storage (CAES) Project

    SciTech Connect (OSTI)

    None

    2012-11-30T23:59:59.000Z

    This report provides a review and an analysis of potential environmental justice areas that could be affected by the New York State Electric & Gas (NYSEG) compress air energy storage (CAES) project and identifies existing environmental burden conditions on the area and evaluates additional burden of any significant adverse environmental impact. The review assesses the socioeconomic and demographic conditions of the area surrounding the proposed CAES facility in Schuyler County, New York. Schuyler County is one of 62 counties in New York. Schuyler County’s 2010 population of 18,343 makes it one of the least populated counties in the State (U.S. Census Bureau, 2010). This report was prepared for WorleyParsons by ERM and describes the study area investigated, methods and criteria used to evaluate this area, and the findings and conclusions from the evaluation.

  1. Compressed Air Energy Storage (CAES) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:EnergyWisconsin: Energy,(EC-LEDS)ColumbusDHeatGeothermal AreaAir Energy Storage

  2. Preliminary survey and evaluation of nonaquifer thermal energy storage concepts for seasonal storage

    SciTech Connect (OSTI)

    Blahnik, D.E.

    1980-11-01T23:59:59.000Z

    Thermal energy storage enables the capture and retention of heat energy (or cold) during one time period for use during another. Seasonal thermal energy storage (STES) involves a period of months between the input and recovery of energy. The purpose of this study was to make a preliminary investigation and evaluation of potential nonaquifer STES systems. Current literature was surveyed to determine the state of the art of thermal energy storage (TES) systems such as hot water pond storage, hot rock storage, cool ice storage, and other more sophisticated concepts which might have potential for future STES programs. The main energy sources for TES principally waste heat, and the main uses of the stored thermal energy, i.e., heating, cooling, and steam generation are described. This report reviews the development of sensible, latent, and thermochemical TES technologies, presents a preliminary evaluation of the TES methods most applicable to seasonal storage uses, outlines preliminary conclusions drawn from the review of current TES literature, and recommends further research based on these conclusions. A bibliography of the nonaquifer STES literature review, and examples of 53 different TES concepts drawn from the literature are provided. (LCL)

  3. The Role of Energy Storage in Commercial Building

    SciTech Connect (OSTI)

    Kintner-Meyer, Michael CW; Subbarao, Krishnappa; Prakash Kumar, Nirupama; Bandyopadhyay, Gopal K.; Finley, C.; Koritarov, V. S.; Molburg, J. C.; Wang, J.; Zhao, Fuli; Brackney, L.; Florita, A. R.

    2010-09-30T23:59:59.000Z

    Motivation and Background of Study This project was motivated by the need to understand the full value of energy storage (thermal and electric energy storage) in commercial buildings, the opportunity of benefits for building operations and the potential interactions between a building and a smart grid infrastructure. On-site or local energy storage systems are not new to the commercial building sector; they have been in place in US buildings for decades. Most building-scale storage technologies are based on thermal or electrochemical storage mechanisms. Energy storage technologies are not designed to conserve energy, and losses associated with energy conversion are inevitable. Instead, storage provides flexibility to manage load in a building or to balance load and generation in the power grid. From the building owner's perspective, storage enables load shifting to optimize energy costs while maintaining comfort. From a grid operations perspective, building storage at scale could provide additional flexibility to grid operators in managing the generation variability from intermittent renewable energy resources (wind and solar). To characterize the set of benefits, technical opportunities and challenges, and potential economic values of storage in a commercial building from both the building operation's and the grid operation's view-points is the key point of this project. The research effort was initiated in early 2010 involving Argonne National Laboratory (ANL), the National Renewable Energy Laboratory (NREL), and Pacific Northwest National Laboratory (PNNL) to quantify these opportunities from a commercial buildings perspective. This report summarizes the early discussions, literature reviews, stakeholder engagements, and initial results of analyses related to the overall role of energy storage in commercial buildings. Beyond the summary of roughly eight months of effort by the laboratories, the report attempts to substantiate the importance of active DOE/BTP R&D activities in this space.

  4. SciTech Connect: Control and Size Energy Storage for Managing...

    Office of Scientific and Technical Information (OSTI)

    Control and Size Energy Storage for Managing Energy balance of Variable Generation Resources Citation Details In-Document Search Title: Control and Size Energy Storage for Managing...

  5. Energy Storage Program Planning Document (2011) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: TopEnergyIDIQBusinessinSupporting Jobs andHVACEnergy Storage Program

  6. Modeling the Performance and Energy of Storage Arrays

    E-Print Network [OSTI]

    Liu, Ling

    , it is desirable that techniques provide their energy savings while minimizing their impact on performance. DespiteModeling the Performance and Energy of Storage Arrays Sankaran Sivathanu Georgia Institute techniques for power optimization in storage. Given an ar- bitrary trace of disk requests, we split

  7. Innostock 2012 The 12th International Conference on Energy Storage

    E-Print Network [OSTI]

    exchanger (GHE) that may be used with ground source heat pump (GSHP) or underground thermal energy storage Innostock 2012 The 12th International Conference on Energy Storage 1 INNO-U-39 A quasi-two-dimensional standing column well model for ground source heat pump systems Annamalai Ramesh1 , Jeffrey Spitler2 1

  8. Superconducting magnetic energy storage for asynchronous electrical systems

    DOE Patents [OSTI]

    Boenig, H.J.

    1984-05-16T23:59:59.000Z

    It is an object of the present invention to provide superconducting magnetic energy storage for a plurality of asynchronous electrical systems. It is a further object of the present invention to provide load leveling and stability improvement in a plurality of independent ac systems using a single superconducting magnetic energy storage coil.

  9. advanced energy storage: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    energy storage First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Energy storage systems for advanced...

  10. annual energy storage: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    annual energy storage First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Energy Storage: Current landscape...

  11. air energy storage: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    energy storage First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 COMPRESSED-AIR ENERGY STORAGE SYSTEMS...

  12. energy.ca.gov facebook.com/CAEnergy twitter.com/calenergy Why is Energy Storage

    E-Print Network [OSTI]

    energy.ca.gov · facebook.com/CAEnergy · twitter.com/calenergy Why is Energy Storage Innovation plants. Energy storage can help grid operators and utilities take full advantage of abundant renewable and wind. Energy storage helps grid operators match supply with changing demand. Because of California

  13. Optimal Power Policy for Energy Harvesting Transmitters with Inefficient Energy Storage

    E-Print Network [OSTI]

    Yener, Aylin

    1 Optimal Power Policy for Energy Harvesting Transmitters with Inefficient Energy Storage Kaya with an inefficient energy storage device, i.e., battery or capacitor, is considered, where a fraction of the stored for optimal power allocations with energy harvesting transmitters, it is observed that storage losses

  14. The value of schedule update frequency on distributed energy storage performance in renewable energy

    E-Print Network [OSTI]

    Boyer, Edmond

    The value of schedule update frequency on distributed energy storage performance in renewable of Distributed Energy Storage devices for Renewable Energy integration. The primary objective is to describe scheduling on the storage performance in renewable energy integration. Optimal schedules of Distributed

  15. Designing a Residential Hybrid Electrical Energy Storage System Based on the Energy Buffering Strategy

    E-Print Network [OSTI]

    Pedram, Massoud

    Designing a Residential Hybrid Electrical Energy Storage System Based on the Energy Buffering-connected hybrid electrical energy storage (HEES) system can help residential users lower their electric bills system consists of different types of electrical energy storage (EES) elements, utilizing the benefits

  16. Energy storage systems program report for FY97

    SciTech Connect (OSTI)

    Butler, P.C.

    1998-08-01T23:59:59.000Z

    Sandia National Laboratories, New Mexico, conducts the Energy Storage Systems Program, which is sponsored by the US Department of Energy`s Office of Utility Technologies. The goal of this program is to collaborate with industry in developing cost-effective electric energy storage systems for many high-value stationary applications. Sandia National Laboratories is responsible for the engineering analyses, contracted development, and testing of energy storage components and systems. This report details the technical achievements realized during fiscal year 1997. 46 figs., 20 tabs.

  17. COLLOQUIUM: Compressed Air Energy Storage: The Bridge to Our...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    April 30, 2014, 4:00pm to 5:30pm Colloquia MBG Auditorium COLLOQUIUM: Compressed Air Energy Storage: The Bridge to Our Renewable Energy Future Mr. Al Cavallo Consultant Compressed...

  18. Energy Storage for Use in Load Frequency Control

    E-Print Network [OSTI]

    Leitermann, Olivia

    Certain energy storage technologies are well-suited to the high-frequency, high-cycling operation which is required in provision of load frequency control (LFC). To limit the total stored energy capacity required while ...

  19. Energy storage in carbon nanotube super-springs

    E-Print Network [OSTI]

    Hill, Frances Ann

    2008-01-01T23:59:59.000Z

    A new technology is proposed for lightweight, high density energy storage. The objective of this thesis is to study the potential of storing energy in the elastic deformation of carbon nanotubes (CNTs). Prior experimental ...

  20. Hydrogen energy for tomorrow: Advanced hydrogen transport and storage technologies

    SciTech Connect (OSTI)

    NONE

    1995-08-01T23:59:59.000Z

    The future use of hydrogen to generate electricity, heat homes and businesses, and fuel vehicles will require the creation of a distribution infrastructure of safe, and cost-effective transport and storage. Present storage methods are too expensive and will not meet the performance requirements of future applications. Transport technologies will need to be developed based on the production and storage systems that come into use as the hydrogen energy economy evolves. Different applications will require the development of different types of storage technologies. Utility electricity generation and home and office use will have storage fixed in one location--stationary storage--and size and weight will be less important than energy efficiency and costs of the system. Fueling a vehicle, however, will require hydrogen storage in an ``on-board`` system--mobile storage--with weight and size similar to the gasoline tank in today`s vehicle. Researchers are working to develop physical and solid-state storage systems that will meet these diverse future application demands. Physical storage systems and solid-state storage methods (metal hydrides, gas-on-solids adsorption, and glass microspheres) are described.