Powered by Deep Web Technologies
Note: This page contains sample records for the topic "bio mass geo" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

MassBioFuel | Open Energy Information  

Open Energy Info (EERE)

MassBioFuel MassBioFuel Jump to: navigation, search Name MassBioFuel Address 271 Milton Street Place Dedham, Massachusetts Zip 02026 Sector Biofuels Product Biodiesel producer Website http://www.massbiofuel.com/ Coordinates 42.241122°, -71.145311° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.241122,"lon":-71.145311,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

2

bio  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Original Papers Original Papers An integrated toolkit for accurate prediction and analysis of cis regulatory motifs at a genome scale Qin Ma 1,a , Bingqiang Liu 2,a , Chuan Zhou 1,2 , Yanbin Yin 3 , Guojun Li 1,2 , Ying Xu 1,4,5, * 1 Computational Systems Biology Laboratory, Department of Biochemistry and Molecular Biology and Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA 2 School of Mathematics, Shandong University, Jinan 250100, China 3 Department of Biological Sciences, Northern Illinois University, DeKalb, IL 60115-2857, USA 4 BioEnergy Science Center (http://bioenergycenter.org/), USA, and 5 College of Computer Science and Technology, Jilin University, Changchun, Jilin, China a The first two authors contributed equally to this paper * Corresponding author: Ying Xu

3

C3Bio.org - Tags: Mass Spectrometry Data  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Dave J Borton, Hilkka Inkeri Kenttamaa Developments in atmospheric pressure ionization (API) techniques have revolutionized the mass spectrometric analysis of large and...

4

Bio-mass for biomass: biological mass spectrometry techniques for biomass fast pyrolysis oils.  

E-Print Network [OSTI]

??Biomass fast pyrolysis oils, or bio-oils, are a promising renewable energy source to supplement or replace petroleum-based products and fuels. However, there is a current (more)

Dalluge, Erica A.

2013-01-01T23:59:59.000Z

5

Bio-mass derived mesoporous carbon as super electrode in all vanadium redox flow battery with multicouple reactions  

Science Journals Connector (OSTI)

Abstract We first report the multi-couple reaction in all vanadium redox flow batteries (VRFB) while using bio-mass (coconut shell) derived mesoporous carbon as electrode. The presence of V3+/V4+ redox couple certainly supplies the additional electrons for the electrochemical reaction and subsequently provides improved electrochemical performance of VRFB system. The efficient electro-catalytic activity of such coconut shell derived high surface area mesoporous carbon is believed for the improved cell performance. Extensive power and electrochemical studies are performed for VRFB application point of view and described in detail.

Mani Ulaganathan; Akshay Jain; Vanchiappan Aravindan; Sundaramurthy Jayaraman; Wong Chui Ling; Tuti Mariana Lim; M.P. Srinivasan; Qingyu Yan; Srinivasan Madhavi

2014-01-01T23:59:59.000Z

6

High resolution FT-ICR mass spectral analysis of bio-oil and residual water soluble organics produced by hydrothermal liquefaction of the marine microalga Nannochloropsis salina  

SciTech Connect (OSTI)

We report a detailed compositional characterization of a bio-crude oil and aqueous by-product from hydrothermal liquefaction of Nannochloropsis salina by direct infusion Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FT-ICR MS) in both positive- and negative-ionization modes. The FT-ICR MS instrumentation approach facilitates direct assignment of elemental composition to >7000 resolved mass spectral peaks and three-dimensional mass spectral images for individual heteroatom classes highlight compositional diversity of the two samples and provide a baseline description of these materials. Aromatic nitrogen compounds and free fatty acids are predominant species observed in both the bio-oil and aqueous fraction. Residual organic compounds present in the aqueous fraction show distributions that are slightly lower in both molecular ring and/or double bond value and carbon number relative to those found in the bio-oil, albeit with a high degree of commonality between the two compositions.

Sudasinghe, Nilusha; Dungan, Barry; Lammers, Peter; Albrecht, Karl O.; Elliott, Douglas C.; Hallen, Richard T.; Schaub, Tanner

2014-03-01T23:59:59.000Z

7

GEO Imperial Valley activities  

SciTech Connect (OSTI)

Geothermal Resources International, Inc. (GEO) in San Mateo, California, and PacifiCorp Credit, a subsidiary of PacifiCorp in Portland, Oregon, announced that since July 1987, the company has raised about $21 million to fund the initial development of GEO's East Mesa project. GEO will use a portion of the funds to meet its commitment to share in the cost of a $50 million, 230-kilovolt transmission line. The line will carry electricity generated from geothermal power plants in the Imperial Valley to a Southern California Edison substation in Riverside County, California. In September 1987, two GEO geothermal wells at East Mesa were completed, and GEO was drilling its third and fourth wells in the field. Test data results from these wells will be analyzed to decide whether GEO will construct a dual-flash or binary power plant. GEO has the geothermal rights on about 300,000 acres in five western states. In addition to its operations and development projects in The Geysers and the Imperial Valley, the company is continuing exploration projects on the flanks of the Newberry Crater in Central Oregon and in Hokkaido, Japan. GEO also has an international geotechnical service group in the United Kingdom, GeoScience Ltd., which provides geotechnical services to clients around the world and to the company's geothermal operations.

Not Available

1987-07-01T23:59:59.000Z

8

Bio-oil Analysis Using Negative Electrospray Ionization: Comparative Study of High-Resolution Mass Spectrometers and Phenolic versus Sugaric Components  

SciTech Connect (OSTI)

We have previously demonstrated that a petroleomic analysis could be performed for bio-oils and revealed the complex nature of bio-oils for the nonvolatile phenolic compounds (Smith, E.; Lee, Y. J. Energy Fuels 2010, 24, 5190?5198). As a subsequent study, we have adapted electrospray ionization in negative-ion mode to characterize a wide variety of bio-oil compounds. A comparative study of three common high-resolution mass spectrometers was performed to validate the methodology and to investigate the differences in mass discrimination and resolution. The mass spectrum is dominated by low mass compounds with m/z of 100250, with some compounds being analyzable by gas chromatographymass spectrometry (GCMS). We could characterize over 800 chemical compositions, with only about 40 of them being previously known in GCMS. This unveiled a much more complex nature of bio-oils than typically shown by GCMS. The pyrolysis products of cellulose and hemicellulose, particularly polyhydroxy cyclic hydrocarbons (or what we call sugaric compounds), such as levoglucosan, could be effectively characterized with this approach. Phenolic compounds from lignin pyrolysis could be clearly distinguished in a contour map of double bond equivalent (DBE) versus the number of carbons from these sugaric compounds.

Smith, Erica A.; Park, Soojin; Klein, Adam T.; Lee, Young Jin

2012-05-16T23:59:59.000Z

9

Pyrolysis Gas Chromatography Mass Spectrometry Studies to Evaluate High-Temperature Aqueous Pretreatment as a Way to Modify the Composition of Bio-Oil from Fast Pyrolysis of Wheat Straw  

Science Journals Connector (OSTI)

Pyrolysis Gas Chromatography Mass Spectrometry Studies to Evaluate High-Temperature Aqueous Pretreatment as a Way to Modify the Composition of Bio-Oil from Fast Pyrolysis of Wheat Straw ... ?-Cellulose was obtained from Sigma-Aldrich (St. Louis, Missouri). ... This evidence suggests that CHW pretreatment may produce bio-oil that is composed of a greater amount of sugars and furanics and fewer small molecules and may therefore be a viable option to modify the chemical composition of bio-oils. ...

Robert Lee Johnson; Shi-Shen Liaw; Manuel Garcia-Perez; Su Ha; Sean S.-Y. Lin; Armando G. McDonald; Shulin Chen

2009-10-07T23:59:59.000Z

10

Direct analysis of samples by mass spectrometry: From elements to bio-molecules using laser ablation inductively couple plasma mass spectrometry and laser desorption/ionization mass spectrometry  

SciTech Connect (OSTI)

Mass spectrometric methods that are able to analyze solid samples or biological materials with little or no sample preparation are invaluable to science as well as society. Fundamental research that has discovered experimental and instrumental parameters that inhibit fractionation effects that occur during the quantification of elemental species in solid samples by laser ablation inductively coupled plasma mass spectrometry is described. Research that determines the effectiveness of novel laser desorption/ionization mass spectrometric methods for the molecular analysis of biological tissues at atmospheric pressure and at high spatial resolution is also described. A spatial resolution is achieved that is able to analyze samples at the single cell level.

Perdian, David C.

2009-08-19T23:59:59.000Z

11

Gas Mileage of 1990 Vehicles by Geo  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

90 Geo Vehicles 90 Geo Vehicles EPA MPG MODEL City Comb Hwy 1990 Geo Metro 3 cyl, 1.0 L, Automatic 3-spd, Regular Gasoline Compare 1990 Geo Metro 31 City 33 Combined 36 Highway 1990 Geo Metro 3 cyl, 1.0 L, Manual 5-spd, Regular Gasoline Compare 1990 Geo Metro View MPG Estimates Shared By Vehicle Owners 38 City 41 Combined 45 Highway 1990 Geo Metro LSI 3 cyl, 1.0 L, Automatic 3-spd, Regular Gasoline Compare 1990 Geo Metro LSI 31 City 33 Combined 35 Highway 1990 Geo Metro LSI 3 cyl, 1.0 L, Manual 5-spd, Regular Gasoline Compare 1990 Geo Metro LSI 38 City 40 Combined 44 Highway 1990 Geo Metro LSI Convertible 3 cyl, 1.0 L, Automatic 3-spd, Regular Gasoline Compare 1990 Geo Metro LSI Convertible 28 City 30 Combined 33 Highway 1990 Geo Metro LSI Convertible 3 cyl, 1.0 L, Manual 5-spd, Regular Gasoline

12

Geo-neutrinos: recent developments  

E-Print Network [OSTI]

Radiogenic heating is a key component of the energy balance and thermal evolution of the Earth. It contributes to mantle convection, plate tectonics, volcanoes, and mountain building. Geo-neutrino observations estimate the present radiogenic power of our planet. This estimate depends on the quantity and distribution of heat-producing elements in various Earth reservoirs. Of particular geological importance is radiogenic heating in the mantle. This quantity informs the origin and thermal evolution of our planet. Here we present: currently reported geo-neutrino observations; estimates of the mantle geo-neutrino signal, mantle radiogenic heating, and mantle cooling; a comparison of chemical Earth model predictions of the mantle geo-neutrino signal and mantle radiogenic heating; a brief discussion of radiogenic heating in the core, including calculations of geo-neutrino signals per pW/kg; and finally a discussion of observational strategy.

Dye, Steve

2014-01-01T23:59:59.000Z

13

Facilities: NHMFL 9.4 Tesla Fourier Transform Ion Cyclotron Resonance Mass Spectrometer Citation: Characterization of Pine Pellet and Peanut Hull Pyrolysis of Bio-Oils by Negative-Ion Electrospray Ionization Fourier  

E-Print Network [OSTI]

with greater than 1% relative abundance in either phase are shown. Pyrolysis of solid biomass, in this case: Characterization of Pine Pellet and Peanut Hull Pyrolysis of Bio-Oils by Negative-Ion Electrospray Ionization of nitrogen-containing species identified in the peanut hull pyrolysis oil by FT-ICR mass spectrometry

Weston, Ken

14

8/12/08 9:38 AMLife in a bubble ( CAMBRIDGE Mass. --Hundreds of insec...) Page 1 of 2http://www.bio-medicine.org/biology-news-1/Life-in-a-bubble-4270-1/  

E-Print Network [OSTI]

8/12/08 9:38 AMLife in a bubble ( CAMBRIDGE Mass. -- Hundreds of insec...) Page 1 of 2http://www.bio-medicine.org/biology-news-1/Life-in-a-bubble-4270-1/ Navigation Links Biology News Medicine News Biology Products Medicine Medicine Dictionary Biology Navigation Medical Navigation M life bubble Post Your Comments: (View All

Flynn, Morris R.

15

GEO Report on ProgressGEO Report on Progress Presentation to GEOSS in the Americas Symposium  

E-Print Network [OSTI]

GEO Report on ProgressGEO Report on Progress Presentation to GEOSS in the Americas Symposium. Process & Report Structure1. Process & Report Structure 2. GEO Report on Progress2. GEO Report on ProgressProcess !! " Report on ProgressReport on Progress # " $$ #12;Key ObjectivesKey Objectives · Engage Ministers

16

Owen Martel GEOS 206, 2009  

E-Print Network [OSTI]

Owen Martel GEOS 206, 2009 Paint It, Green: Studio Art and Sustainability Introduction Amidst growing societal concern for sustainability, the arts are particularly fertile ground for the development and dissemination of sustainable thinking. Sustainability itself is an inherently aesthetic concept: in asserting

Aalberts, Daniel P.

17

Universal GeoPower | Open Energy Information  

Open Energy Info (EERE)

GeoPower GeoPower Jump to: navigation, search Name Universal GeoPower Place Houston, Texas Zip 77007 Sector Geothermal energy Product A Texas-based geothermal development company. References Universal GeoPower[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Universal GeoPower is a company located in Houston, Texas . References ↑ "Universal GeoPower" Retrieved from "http://en.openei.org/w/index.php?title=Universal_GeoPower&oldid=352539" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load)

18

Dual recycling for GEO 600  

Science Journals Connector (OSTI)

Dual recycling is the combination of signal recycling and power recycling; both optical techniques improve the shot-noise-limited sensitivity of interferometric gravitational-wave detectors. In addition, signal recycling can reduce the loss of light power due to imperfect interference and allows us, in principle, to beat the standard quantum limit. The interferometric gravitational-wave detector GEO 600 is the first of the kilometre-scale detectors to use signal recycling. We have recently equipped the detector with a signal-recycling mirror with a transmittance of 1%. In this paper, we present details of the detector commissioning and the first locks of the dual-recycled interferometer.

H Grote; A Freise; M Malec; G Heinzel; B Willke; H Lck; K A Strain; J Hough; K Danzmann

2004-01-01T23:59:59.000Z

19

GEO Secretariat Global Earth Observing System of  

E-Print Network [OSTI]

and Epidemiology 3. Energy Management 4. Climate Variability & Change 5. Water Management 6. Weather Forecasting 7 Data Sets A Single Data Set Will Serve Many Communities #12;© GEO Secretariat Solar Energy #12;© GEO Secretariat Vegetation greenness profiles North America Vegetation Annual Greenness Profiles 100 120 140 160

20

D S Geo Innogy | Open Energy Information  

Open Energy Info (EERE)

Innogy Innogy Jump to: navigation, search Name D&S Geo Innogy Place Germany Sector Geothermal energy Product JV company set up to develop existing RWE deep geothermal drilling areas. References D&S Geo Innogy[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. D&S Geo Innogy is a company located in Germany . References ↑ "D&S Geo Innogy" Retrieved from "http://en.openei.org/w/index.php?title=D_S_Geo_Innogy&oldid=344020" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version Permanent link Browse properties About us Disclaimers Energy blogs Linked Data Developer services

Note: This page contains sample records for the topic "bio mass geo" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Final Technical Report -- GEO-VI - USGEO  

SciTech Connect (OSTI)

Representatives of US earth observations departments and agencies, other participating governments, NGOs and civil society participated in the Sixth Plenary Meeting of the Group on Earth Observations (GEO-VI), hosted by the United States in Washington, DC on November 17 and 18, 2009. The meeting was held in the Atrium Ballroom of the Ronald Reagan International Trade Center. Exhibitions of international Earth observation technology and programs were held concurrently in the same venue. A number of GEO committee meetings and side events were held in conjunction with the GEO-VI Plenary, including the GEO-IGOS Symposium on Earth observation science and applications, the GEOSS in the Americas Forum on Coastal Zones, and separate meetings of the GEO Communities of Practice on Carbon, Health, and Air Quality.

Hirsch, Leonard

2009-11-30T23:59:59.000Z

22

GeoModel | OpenEI  

Open Energy Info (EERE)

GeoModel GeoModel Dataset Summary Description Developed by NREL and the U.S. Trade and Development Agency, this geographic toolkit that allows users to relate the renewable energy resource (solar and wind) data to other geographic data, such as land use, protected areas, elevation, etc. The GsT was completely redesigned and re-released in November 2010 to provide a more modern, easier-to-use interface with considerably faster analytical querying capabilities. The revised version of the Geospatial Toolkit for Turkey is available using the following link: http://www.nrel.gov/international/downloads/gst_turkey.exe Source GeoModel Date Released March 31st, 2009 (5 years ago) Date Updated July 06th, 2012 (2 years ago) Keywords DNI GeoModel GHI GIS GsT NREL solar SWERA

23

GEO2 Technologies | Open Energy Information  

Open Energy Info (EERE)

GEO2 Technologies GEO2 Technologies Jump to: navigation, search Name GEO2 Technologies Address 12-R Cabot Road Place Woburn, Massachusetts Zip 01801 Product Materials science company working in advanced filtration and complex chemical reactions Website http://www.geo2tech.com/ Coordinates 42.509246°, -71.134124° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.509246,"lon":-71.134124,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

24

Geo-neutrinos and Earth Models  

E-Print Network [OSTI]

We present the current status of geo-neutrino measurements and their implications for radiogenic heating in the mantle. Earth models predict different levels of radiogenic heating and, therefore, different geo-neutrino fluxes from the mantle. Seismic tomography reveals features in the deep mantle possibly correlated with radiogenic heating and causing spatial variations in the mantle geo-neutrino flux at the Earth surface. An ocean-based observatory offers the greatest sensitivity to the mantle flux and potential for resolving Earth models and mantle features. Refinements to estimates of the geo-neutrino flux from continental crust reduce uncertainty in measurements of the mantle flux, especially measurements from land-based observatories. These refinements enable the resolution of Earth models using the combined measurements from multiple continental observatories.

Dye, S T; Lekic, V; McDonough, W F; Sramek, O

2014-01-01T23:59:59.000Z

25

GeoInnovation | Open Energy Information  

Open Energy Info (EERE)

GeoInnovation GeoInnovation Jump to: navigation, search Logo: GeoInnovation Name GeoInnovation Address 2828 N. Country Club, Suite 103 Place Tucson, Arizona Zip 85716 Sector Solar Phone number (520) 615-3883 Website http://www.geoinnovation.com/ Coordinates 32.258457°, -110.926271° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.258457,"lon":-110.926271,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

26

BioInformatics BioInformatics  

E-Print Network [OSTI]

BigRoc The BioInformatics and Genome Research Open Club The BioInformatics and Genome Research Open Bioinformatics group, Utrecht University, the Netherlands Patterns in genome and regulome evolution: insights information is coded in the genome and how this information is transformed into traits on which selection

Shamir, Ron

27

The MAC-GEO project 1/84 The MAC-GEO project  

E-Print Network [OSTI]

of deep geothermal uids extraction process upon phreatic supercial water layers The nal product should impact of deep geothermal uids extraction process upon phreatic supercial water layers The nal productThe MAC-GEO project 1/84 The MAC-GEO project MAthematical modelling for government control

Rosso, Fabio

28

GeoWells International | Open Energy Information  

Open Energy Info (EERE)

GeoWells International GeoWells International Jump to: navigation, search Name GeoWells International Place Nairobi, Kenya Sector Geothermal energy, Solar, Wind energy Product Kenya-based geothermal driller. The company also supplies and installs wind and solar units. Coordinates -1.277298°, 36.806261° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":-1.277298,"lon":36.806261,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

29

Geo Hydro Supply | Open Energy Information  

Open Energy Info (EERE)

Geo Hydro Supply Geo Hydro Supply Jump to: navigation, search Name Geo Hydro Supply Address 997 State Route 93 NW Place Sugarcreek, Ohio Zip 44681 Sector Geothermal energy Phone number 800-820-1005 Website http://www.geohydrosupply.com Coordinates 40.498216°, -81.661197° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.498216,"lon":-81.661197,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

30

GeoLectric Power Company NM LLC | Open Energy Information  

Open Energy Info (EERE)

GeoLectric Power Company NM LLC Jump to: navigation, search Name: GeoLectric Power Company NM LLC Place: New Mexico Sector: Geothermal energy Product: Owns geothermal rights to the...

31

Bio2Nano  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

correlated molecular networks based on a viral system and have begun to combine these networks with our micro- and nanofabricated environments. Moving forward, the Bio2Nano...

32

BioEnergy Blog  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

bioenergy985271 BioEnergy Blog en Energy Department Helping Lower Biofuel Costs for the Nation http:energy.goveerearticlesenergy-department-helping-lower-biofuel-costs-nation...

33

GeoPeak Energy | Open Energy Information  

Open Energy Info (EERE)

GeoPeak Energy GeoPeak Energy Jump to: navigation, search Logo: GeoPeak Energy Name GeoPeak Energy Address 285 Davidson Avenue Place Somerset, New Jersey Zip 08873 Sector Solar Product Residential and Commercial PV Solar Installations Number of employees 11-50 Company Type For Profit Phone number 732-377-3700 Website http://www.geopeakenergy.com Coordinates 40.5326723°, -74.5284554° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.5326723,"lon":-74.5284554,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

34

Control GIS and geo-information modelling  

Science Journals Connector (OSTI)

The contribution deals with the contextual design of spatial-temporal data, distinguishes three GIS level for the purposes of the regional development, land management and government and describes the role of the GIS Web services architecture that makes ... Keywords: control GIS, geo-information modelling, spatial decision support, spatial temporal approach, uncertainty

Dana Klimeov

2006-03-01T23:59:59.000Z

35

Innovative reuse of drinking water sludge in geo-environmental applications  

Science Journals Connector (OSTI)

In recent years, the replacement of natural raw materials with new alternative materials, which acquire an economic, energetic and environmental value, has gained increasing importance. The considerable consumption of water has favoured the increase in the number of drinking water treatment plants and, consequently, the production of drinking water sludge. This paper proposes a protocol of analyses capable of evaluating chemical characteristics of drinking water sludge from surface water treatment plants. Thereby we are able to assess their possible beneficial use for geo-environmental applications, such as the construction of barrier layers for landfill and for the formation of bio-soils, when mixed with the stabilized organic fraction of municipal solid waste. This paper reports the results of a study aimed at evaluating the quality and environmental aspects of reconstructed soils (bio-soil), which are used in much greater quantities than the usual standard, for massive applications in environmental actions such as the final cover of landfills. The granulometric, chemical and physical analyses of the sludge and the leaching test on the stabilized organic fraction showed the suitability of the proposed materials for reuse. The study proved that the reuse of drinking water sludge for the construction of barrier layers and the formation of bio-soils reduces the consumption of natural materials, the demand for landfill volumes, and offers numerous technological advantages.

D. Caniani; S. Masi; I.M. Mancini; E. Trulli

2013-01-01T23:59:59.000Z

36

Geo Energy Technology | Open Energy Information  

Open Energy Info (EERE)

Geo Energy Technology Geo Energy Technology Place Gangwon-Do, Korea (Republic) Zip 210-792 Sector Solar Product Manufacturs biodiesel plants and designs and constructs solar power systems. Coordinates 37.81773°, 128.234558° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.81773,"lon":128.234558,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

37

GeoSyndicate Power Pvt Ltd | Open Energy Information  

Open Energy Info (EERE)

GeoSyndicate Power Pvt Ltd Place: Mumbai, Maharashtra, India Zip: 400076 Sector: Geothermal energy Product: Plans to explore and set up geothermal energy power projects in India....

38

Bio-Mirror project for public bio-data distribution  

Science Journals Connector (OSTI)

......bio-data distribution Don Gilbert 1 Yoshihiro Ugawa 2...Korea, 8 Institute of Microbiology, Chinese Academy of...bio-data distribution Don Gilbert 1, ?, Yoshihiro Ugawa...Korea, 8 Institute of Microbiology, Chinese Academy of......

Don Gilbert; Yoshihiro Ugawa; Markus Buchhorn; Tan Tin Wee; Akira Mizushima; Hyunchul Kim; Kilnam Chon; Seyeon Weon; Juncai Ma; Yoshihiro Ichiyanagi; Der-Ming Liou; Somnuk Keretho; Suhaimi Napis

2004-11-01T23:59:59.000Z

39

BioMedical Sciences BioMedical Sciences  

E-Print Network [OSTI]

BioMedical Sciences BioMedical Sciences As a professional working in the field of biomedical science, you'll perform essential tests that are vital to the well-being of our society. The BioMedical/Medical Laboratory Science, Cytotechnology, Biomedical Sciences and Public Health Microbiology. The Diagnostic

Saldin, Dilano

40

BioFuels Atlas Presentation  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

BioFuels Atlas Kristi Moriarty NREL May 12, 2011 NATIONAL RENEWABLE ENERGY LABORATORY Introduction * BioFuels Atlas is a first-pass visualization tool that allows users to explore...

Note: This page contains sample records for the topic "bio mass geo" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

INVITATION: PRAKTISK TEMADAG OM INDHENTNING AF BIO-  

E-Print Network [OSTI]

INVITATION: PRAKTISK TEMADAG OM INDHENTNING AF BIO- MASSE FRA LAVBUNDSOMR?DE TIL BIOGAS 24 lavbundsområdet til biogas været stigende de senere år. Der sker en spændende teknologisk udvikling indenfor som har draget erfaringer med høst og anvendelse af enggræs til biogas, og se udstyr til slåning af

42

OLADE-Geo-Information System Referenced Renewable Energy | Open Energy  

Open Energy Info (EERE)

OLADE-Geo-Information System Referenced Renewable Energy OLADE-Geo-Information System Referenced Renewable Energy Jump to: navigation, search Tool Summary Name: OLADE-Geo-Information System Referenced Renewable Energy Agency/Company /Organization: Latin American Energy Organization (OLADE) Sector: Energy Focus Area: Renewable Energy Resource Type: Case studies/examples, Maps, Training materials, Video User Interface: Website Website: www.hidroinformatica.org/siger/home/es/index.html Cost: Free Language: Spanish; Castilian OLADE-Geo-Information System Referenced Renewable Energy Screenshot References: OLADE-Geo-Information System Referenced Renewable Energy[1] "Renewable energy sources have an important contribution to meet the growing energy demand in a sustainable manner. These energy sources have a

43

D S Geo Innogy Fraport JV | Open Energy Information  

Open Energy Info (EERE)

Innogy Fraport JV Innogy Fraport JV Jump to: navigation, search Name D&S Geo Innogy & Fraport JV Place Germany Sector Geothermal energy Product Germany-based JV that will supply part of the airport with geothermal energy for its heat requirements. References D&S Geo Innogy & Fraport JV[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. D&S Geo Innogy & Fraport JV is a company located in Germany . References ↑ "D&S Geo Innogy & Fraport JV" Retrieved from "http://en.openei.org/w/index.php?title=D_S_Geo_Innogy_Fraport_JV&oldid=344021" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes

44

Geo mbH | Open Energy Information  

Open Energy Info (EERE)

mbH mbH Jump to: navigation, search Name Geo mbH Place Enge-Sande, Germany Zip 25917 Sector Wind energy Product Wind farm developer and on-grid generator Coordinates 54.727247°, 8.979287° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":54.727247,"lon":8.979287,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

45

OpenEI:OldGeoGateway | Open Energy Information  

Open Energy Info (EERE)

Project page Project page Edit History Facebook icon Twitter icon » OpenEI:OldGeoGateway Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Geothermalpower.jpg GeoInfo.png Geothermal Information Geothermal Energy Overview Types of Geothermal Resources Energy Conversion Technologies Cooling Technologies Exploration Techniques Reference Materials GeoModels.png Geothermal Models & Tools GETEM SAM Geothermal Prospector Exploration Cost and Time Metric Georesource.png Resource Assessments USGS Maps (2008) Geothermal Resource Potential Map Geothermal Areas Geothermal Regions Installed.png Installed & Planned Capacity Geothermal Generation Installed Capacity Planned Capacity Geofinancing.png Geothermal Financing Developers' Financing Handbook RE Project Finance CREST

46

Recycling used palm oil and used engine oil to produce white bio oil, bio petroleum diesel and heavy fuel  

Science Journals Connector (OSTI)

Recycling waste materials produced in our daily life is considered as an additional resource of a wide range of materials and it conserves the environment. Used engine oil and used cooking oil are two oils disposed off in large quantities as a by-product of our daily life. This study aims at providing white bio oil bio petroleum diesel and heavy fuel from the disposed oils. Toxic organic materials suspected to be present in the used engine oil were separated using vacuum column chromatography to reduce the time needed for the separation process and to avoid solvent usage. The compounds separated were detected by gas chromatography-mass spectrometry (GC-MS) and found to contain toxic aromatic carboxylic acids. Used cooking oils (thermally cracked from usage) were collected and separated by vacuum column chromatography. White bio oil produced was examined by GC-MS. The white bio oil consists of non-toxic hydrocarbons and is found to be a good alternative to white mineral oil which is significantly used in food industry cosmetics and drugs with the risk of containing polycyclic aromatic compounds which are carcinogenic and toxic. Different portions of the used cooking oil and used engine were mixed to produce several blends for use as heavy oil fuels. White bio oil was used to produce bio petroleum diesel by blending it with petroleum diesel and kerosene. The bio petroleum diesel produced passed the PETRONAS flash point and viscosity specification test. The heat of combustion of the two blends of heavy fuel produced was measured and one of the blends was burned to demonstrate its burning ability. Higher heat of combustion was obtained from the blend containing greater proportion of used engine oil. This study has provided a successful recycled alternative for white bio oil bio petroleum fuel and diesel which can be an energy source.

Mustafa Hamid Al-abbas; Wan Aini Wan Ibrahim; Mohd. Marsin Sanagi

2012-01-01T23:59:59.000Z

47

FirstGeoTherm GmbH | Open Energy Information  

Open Energy Info (EERE)

FirstGeoTherm GmbH FirstGeoTherm GmbH Jump to: navigation, search Name FirstGeoTherm GmbH Place Waldsee, Germany Zip 67165 Sector Geothermal energy Product FirstGeoTherm plans and engineers geothermal plants in Germany. Coordinates 49.39388°, 8.441115° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":49.39388,"lon":8.441115,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

48

Property:ModernGeoFeatures | Open Energy Information  

Open Energy Info (EERE)

ModernGeoFeatures ModernGeoFeatures Jump to: navigation, search Property Name ModernGeoFeatures Property Type Page Description Describes modern surface manifestations present in vicinity of the resource area (e.g. hot springs, fumaroles, mudpots, geysers). See also Modern_Geothermal_Features This is a property of type Page. Subproperties This property has the following 12 subproperties: B Beowawe Hot Springs Geothermal Area Brady Hot Springs Geothermal Area D Desert Peak Geothermal Area H Heber Geothermal Area L Lightning Dock Geothermal Area R Raft River Geothermal Area Roosevelt Hot Springs Geothermal Area S Salton Sea Geothermal Area San Emidio Desert Geothermal Area S cont. Soda Lake Geothermal Area Steamboat Springs Geothermal Area Stillwater Geothermal Area Pages using the property "ModernGeoFeatures"

49

Geothermal: Sponsored by OSTI -- GeoEnergy technology  

Office of Scientific and Technical Information (OSTI)

GeoEnergy technology Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About Publications Advanced Search New Hot Docs...

50

Property:RelictGeoFeatures | Open Energy Information  

Open Energy Info (EERE)

RelictGeoFeatures RelictGeoFeatures Jump to: navigation, search Property Name RelictGeoFeatures Property Type String Description Describes evidence of ancient surface manifestations in the vicinity of the resource area (e.g. hydrothermally altered rock, hydrothermally deposited rock) This is a property of type Page. Subproperties This property has the following 8 subproperties: B Beowawe Hot Springs Geothermal Area Brady Hot Springs Geothermal Area D Desert Peak Geothermal Area L Lightning Dock Geothermal Area R Roosevelt Hot Springs Geothermal Area S San Emidio Desert Geothermal Area Soda Lake Geothermal Area S cont. Steamboat Springs Geothermal Area Pages using the property "RelictGeoFeatures" Showing 9 pages using this property. A Amedee Geothermal Area + Hydrothermal Deposition +

51

Property:AvgGeoFluidTemp | Open Energy Information  

Open Energy Info (EERE)

AvgGeoFluidTemp AvgGeoFluidTemp Jump to: navigation, search Property Name AvgGeoFluidTemp Property Type Temperature Description Average temperature of geofluid in a geothermal area. Subproperties This property has the following 15 subproperties: B Beowawe Hot Springs Geothermal Area Brady Hot Springs Geothermal Area C Chena Geothermal Area D Desert Peak Geothermal Area E East Mesa Geothermal Area G Geysers Geothermal Area H Heber Geothermal Area L Lightning Dock Geothermal Area R Roosevelt Hot Springs Geothermal Area S Salton Sea Geothermal Area San Emidio Desert Geothermal Area S cont. Soda Lake Geothermal Area Steamboat Springs Geothermal Area Stillwater Geothermal Area W Wabuska Hot Springs Geothermal Area Pages using the property "AvgGeoFluidTemp" Showing 10 pages using this property.

52

The Climatology of Parameterized Physical Processes in the GEOS-1 GCM and Their Impact on the GEOS-1 Data Assimilation System  

Science Journals Connector (OSTI)

The Goddard Earth Observing System (GEOS) General Circulation Model (GCM) is part of the GEOS Data Assimilation System (DAS), which is being developed at the Goddard Data Assimilation Office for the production of climate datasets. This study ...

Andrea Molod; H. M. Helfand; Lawrence L. Takacs

1996-04-01T23:59:59.000Z

53

Bio-CAT  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Bio-CAT, Biophysics Collaborative Access Team Bio-CAT, Biophysics Collaborative Access Team 18-ID A bent Laue analyzer detection system for dilute fluorescence XAFS C. Karanfil, Z. Zhong, L.D. Chapman, R. Fischetti, C.U. Segre, B.A. Bunker, and G.B. Bunker Harmonic selection by a bent Laue crystal C. Karanfil, L.D. Chapman, G.B. Bunker, C.U. Segre, and N.E. Leyarovska In vivox-ray diffraction of indirect flight muscle from Drosophila melanogaster T.C. Irving and D.W. Maughan Tests of a multilayer analyzer x-ray fluorescence array detector K. Zhang, G. Bunker, J. Xin, and G. Rosenbaum The three-dimensional molecular packing structure of collagen J. Orgel, T. Wess, A. Miller, T. Irving, and A. Hammersly X-ray absorption studies on the early development of Xenopus laevis (frog) oocytes K. Zhang and D. Auld

54

INTRODUCTION Weathering profiles are complex open geo-  

E-Print Network [OSTI]

to pro- vide an improved basis for selecting immobile ele- ments in future mass-balance calculations

Derry, Louis A.

55

Distributed Bio-Oil Reforming  

Broader source: Energy.gov [DOE]

Presentation by NREL's Robert Evans at the October 24, 2006 Bio-Derived Liquids to Hydrogen Distributed Reforming Working Group Kick-Off Meeting.

56

Bio-threat microparticle simulants  

SciTech Connect (OSTI)

A bio-threat simulant that includes a carrier and DNA encapsulated in the carrier. Also a method of making a simulant including the steps of providing a carrier and encapsulating DNA in the carrier to produce the bio-threat simulant.

Farquar, George Roy; Leif, Roald

2014-09-16T23:59:59.000Z

57

Impacts of light shading and nutrient enrichment geo-engineering approaches on the productivity of a stratified, oligotrophic ocean ecosystem  

Science Journals Connector (OSTI)

...geo-engineering approaches on the productivity...Environmental Earth Science, Hokkaido...geo-engineering approaches on ocean ecosystem...solar radiation management|South Atlantic...geo-engineering approaches, solar radiation management (SRM), could...

2013-01-01T23:59:59.000Z

58

The Study of Two Stages Anaerobic Digestion Application and Suitable Bio-Film as an Effort to Improve Bio-Gas Productivity from Jatropha Curcas Linn Capsule Husk  

Science Journals Connector (OSTI)

Abstract The conversion program from kerosene to LPG in Indonesia has positive impact on saving budget of fuel subsidized. However, the program does not only depend on LPG supply from overseas but also inadvisable related to the LPG availability in the world. Bio-gas is renewable energy which categorized as modern cooking oil. This gaseous bio- fuel is feasible in Indonesia due to plenty of bio-gas resources such as bio-mass and waste, simple technology, supporting tropical climate on bio-gas process, no food competition on material supply, minimizing global warming, reducing water pollution and producing organic fertilizer. Some series of study are conducted on dried Jatropha curcas Linn. capsule husk (JCL-CH) as bio-gas feedstock. The objective of the study is to create technology for managing JCL integrally according to bio-refinery principle. This paper will present two studies, JCL-CH performance in single stage digester compared with two stages digester in laboratory and palm fiber compared with glass wool as bio-film/bio-carrier in methanogenesis reactor. The studies were conducted in Research Laboratory PT. Bumimas Ekapersada, Bekasi, West Java from March until May 2012. A liter of glass bottle as digester, arranged in Randomized Complete Design, three replications per treatment placed in 32C water bath. The bio-gas feedstock was put continuously with Organic Loading Rate OLR or concentration 1: 12 in single stage compared with 1: 12 and 1: 8 in two stages. The observed parameters were pH, temperature, bio-gas volume, methane concentration, volatile solid and acetic acid concentration. Bio-gas volume was measured by water displacement method and methane concentration was measured by gas chromatography. T-test was used for statistical analysis. The studies showed that two stages digester more efficient since it can increase methane concentration and bio-gas volume/gram VS. The bio-gas volume increase 63.83% in OLR 1: 8. Glass wool was more effective as bio-film carrier compared with palm fiber.

Praptiningsih G. Adinurani; Tony Liwang; Salafudin; Leopold O. Nelwan; Yosephianus Sakri; Satriyo K. Wahono; Roy Hendroko

2013-01-01T23:59:59.000Z

59

Bio-coal briquette  

SciTech Connect (OSTI)

Some of the developing nations aim to earn foreign currency by exporting oil and/or gas and to increase the domestic consumption of coal to ensure a secure energy supply. Therefore, it is very important to promote effective coal utilization in these nations. Currently, these countries experience problems associated with coal use for household cooking and household industries. For household cooking, coal creates too much smoke and smells unpleasant. In addition, illegally obtained firewood is almost free in local agricultural regions. Coal is also used in household industries; however, simple stoker boilers are inefficient, since unburned coal particles tend to drop through screens during the combustion process. The bio-coal briquette, on the other hand, is an effective and efficient fuel, since it utilizes coal, which is to be used extensively in households and in small and medium-scale industry sectors in some coal-producing countries, as a primary fuel and bamboos (agricultural waste) as a secondary fuel. In addition, the use of bio-coal briquettes will greatly help reduce unburned coal content.

Honda, Hiroshi

1993-12-31T23:59:59.000Z

60

The GEO-SEQ Project: First-Year Status Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

GEO-SEQ PROJECT: FIRST-YEAR STATUS REPORT GEO-SEQ PROJECT: FIRST-YEAR STATUS REPORT Sally M. Benson and Larry Myer Earth Sciences Division Ernest Orlando Lawrence Berkeley National Laboratory Berkeley, California 94720 smbenson@lbl.gov ABSTRACT The GEO-SEQ Project is a public-private applied R&D partnership, formed with the goal of developing the technology and information needed to enable safe and cost-effective geologic sequestration by the year 2015. The effort, supported by the U.S. Department of Energy s (DOE s) National Energy Technology Laboratory, involves Lawrence Berkeley National Laboratory, Lawrence Livermore National Laboratory, Oak Ridge National Laboratory, Stanford University, the U.S. Geological Survey, the Texas Bureau of Economic Geology, the Alberta Research Council, and five private-sector partners

Note: This page contains sample records for the topic "bio mass geo" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

GeoGreen Fuels LLC | Open Energy Information  

Open Energy Info (EERE)

GeoGreen Fuels LLC GeoGreen Fuels LLC Jump to: navigation, search Name GeoGreen Fuels LLC Place Houston, Texas Product Houston-based developer of biodiesel plants in Texas. Coordinates 29.76045°, -95.369784° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":29.76045,"lon":-95.369784,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

62

A Resource assessment protocol for GEO-ELEC | Open Energy Information  

Open Energy Info (EERE)

protocol for GEO-ELEC Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: A Resource assessment protocol for GEO-ELEC Authors Jan-Diederik van Wees, Thijs...

63

Mass Media Science Fellows  

Science Journals Connector (OSTI)

...alternative energy sources, including solar, bio-mass, and geothermal. The changing...assistant secretary for con-servation and solar applications, U.S. Department of Energy...representative of the United Re-public of Tanzania to the United Na-tions, the resolution...

1979-12-07T23:59:59.000Z

64

GEO NET Umweltconsulting GmbH | Open Energy Information  

Open Energy Info (EERE)

GEO NET Umweltconsulting GmbH GEO NET Umweltconsulting GmbH Jump to: navigation, search Name GEO-NET Umweltconsulting GmbH Place Hannover, Germany Zip 30161 Sector Wind energy Product Undertakes environmental planning and consulting in wind and other sectors. Part of the GEO-NET interdisciplinary technology-oriented research, consulting and service agency. Coordinates 52.372278°, 9.738157° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":52.372278,"lon":9.738157,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

65

Lindsay Millert GEOS 206--Renewable Energy and the Sustainable Campuses  

E-Print Network [OSTI]

into the proposed details of a sustainable plan. The building, constructed in 1924, was intended to be usedMillert 1 Lindsay Millert GEOS 206--Renewable Energy and the Sustainable Campuses Final Paper--Green Renovation/Design May 13, 2008 Greening Garfield: the Issues and the Solutions Aldo Leopold writes in his

Aalberts, Daniel P.

66

Exploring a Marine Sanctuary Lab 2 GEO 465/565  

E-Print Network [OSTI]

for the nation's system of marine protected areas, to conserve, protect, and enhance their biodiversity1 Exploring a Marine Sanctuary Lab 2 GEO 465/565 Based on the Mapping an Ocean Sanctuary series of the Center for Image Processing in Education (www.evisual.org) Overview Channel Islands National Marine

Wright, Dawn Jeannine

67

Environmental model access and interoperability: The GEO Model Web initiative  

Science Journals Connector (OSTI)

The Group on Earth Observation (GEO) Model Web initiative utilizes a Model as a Service approach to increase model access and sharing. It relies on gradual, organic growth leading towards dynamic webs of interacting models, analogous to the World Wide ... Keywords: Composition as a Service (CaaS), Environmental Modelling, GEOSS, Interoperability, Model Web, Model as a Service (MaaS)

Stefano Nativi; Paolo Mazzetti; Gary N. Geller

2013-01-01T23:59:59.000Z

68

NCBI GEO: archive for functional genomics data sets--update  

E-Print Network [OSTI]

, Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA Received and gene expres- sion profile charts. The GEO database continues to grow and is being actively developed towards facilitating data mining and discovery; this article provides an update of the current status

Levin, Judith G.

69

Large Diffractive Optics for GEo-Based Earth Surveillance  

SciTech Connect (OSTI)

The natural vantage point for performing Earth-centric operations from space is geosynchronous orbit (GEO); a platform there moves at the same rate as the Earth's surface, so appears to continually ''hover'' over a fixed site on the Earth. Unlike spacecraft in other orbits, which rapidly fly-over targets, a GEO-based platform remains in-position all the time. In order to insure continual access to sites using low earth orbit (LEO) platforms, one needs a large enough constellation ({approx} 50) of spacecraft so that one is always overhead; in contrast, a single GEO platform provides continuous coverage over sites throughout Euro-Asia. This permanent coverage comes, unfortunately, with a stiff price-tag; geosynchronous orbit is 36,000 km high, so space platforms there must operate at ranges roughly 100 times greater than ones located in LEO. For optical-based applications, this extreme range is difficult to deal with; for surveillance the price is a 100-fold loss of resolution, for laser weapons it is a 10,000-fold loss in flux-on-target. These huge performance penalties are almost always unacceptable, preventing us from successfully using GEO-based platforms. In practice, we are forced to either settle for brief, infrequent access to targets, or, if we demand continuous coverage, to invest in large, many-satellite, constellations. There is, fortunately, a way to use GEO-based optical platforms without incurring the huge, range-dependent, performance penalties; one must simply use bigger optics. As long as the aperture of a platform's optics increases as much as its operating range, then its performance (resolution and/or flux) does not suffer; the price for operating from GEO is simply 100-fold larger optics. This is, of course, a very stiff price; while meter-class optics may suffice for many low-earth-orbit applications, 100 meter apertures are needed in order to achieve similar performance from GEO. Since even the largest Earth-based telescope is only 10 meters in diameter, building ten-fold larger ones for GEO applications (let alone delivering and operating them there) presents major difficulties. However, since the challenges of fielding large platforms in GEO are matched by the benefits of continuous coverage, we propose a program to develop such optical platforms. In this section, we will examine a particular form of large aperture optic, using a flat diffractive lens instead of the more conventional curved reflectors considered elsewhere in this report. We will discuss both the development of this type of large aperture optics, as well as the steps necessary to use it for GEO-based Earth surveillance. In a later section of this report we will discuss another use for large diffractive optics, their application for global-reach laser weapons.

Hyde, R A

2003-09-11T23:59:59.000Z

70

Geo-neutrinos and the Radioactive Power of the Earth  

E-Print Network [OSTI]

Chemical and physical Earth models agree little as to the radioactive power of the planet. Each predicts a range of radioactive powers, overlapping slightly with the other at about 24 TW, and together spanning 14-46 TW. Approximately 20 % of this radioactive power (3-8 TW) escapes to space in the form of geo-neutrinos. The remaining 11-38 TW heats the planet with significant geo-dynamical consequences, appearing as the radiogenic component of the 43-49 TW surface heat flow. The non-radiogenic component of the surface heat flow (5-38 TW) is presumably primordial, a legacy of the formation and early evolution of the planet. A constraining measurement of radiogenic heating provides insights to the thermal history of the Earth and potentially discriminates chemical and physical Earth models. Radiogenic heating in the planet primarily springs from unstable nuclides of uranium, thorium, and potassium. The paths to their stable daughter nuclides include nuclear beta decays, producing geo-neutrinos. Large sub-surface detectors efficiently record the energy but not the direction of the infrequent interactions of the highest energy geo-neutrinos, originating only from uranium and thorium. The measured energy spectrum of the interactions estimates the relative amounts of these heat-producing elements, while the intensity estimates planetary radiogenic power. Recent geo-neutrino observations in Japan and Italy find consistent values of radiogenic heating. The combined result mildly excludes the lowest model values of radiogenic heating and, assuming whole mantle convection, identifies primordial heat loss. Future observations have the potential to measure radiogenic heating with better precision, further constraining geological models and the thermal evolution of the Earth.

Steve Dye

2012-09-11T23:59:59.000Z

71

Bio-oil fractionation and condensation  

DOE Patents [OSTI]

A method of fractionating bio-oil vapors which involves providing bio-oil vapors comprising bio-oil constituents is described. The bio-oil vapors are cooled in a first stage which comprises a condenser having passages for the bio-oil separated by a heat conducting wall from passages for a coolant. The coolant in the condenser of the first stage is maintained at a substantially constant temperature, set at a temperature in the range of 75 to 100.degree. C., to condense a first liquid fraction of liquefied bio-oil constituents in the condenser of the first stage. The first liquid fraction of liquified bio-oil constituents from the condenser in the first stage is collected. Also described are steps for subsequently recovering further liquid fractions of liquefied bio-oil constituents. Particular compositions of bio-oil condensation products are also described.

Brown, Robert C; Jones, Samuel T; Pollard, Anthony

2013-07-02T23:59:59.000Z

72

Bio Energy LLC | Open Energy Information  

Open Energy Info (EERE)

Bio-Energy founded at the beginning of the year has been commissioned its first biogas plant. References: Bio-Energy LLC1 This article is a stub. You can help OpenEI by...

73

Geological Sequestration of CO2: The GEO-SEQ Project  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

GeoloGical SequeStration of co GeoloGical SequeStration of co 2 : the Geo-Seq Project Background Growing concern over the potential adverse effects of carbon dioxide (CO 2 ) buildup in the atmosphere leading to global climate change may require reductions in carbon emissions from industrial, transportation, and other sources. One promising option is the capture of CO 2 from large point sources and subsequent sequestration in geologic formations. For this approach to achieve wide acceptance, t assurances that safe, permanent, and verifiable CO 2 geologic storage is attained during sequestration operations must be made. Project results are made available to potential CO 2 storage operators and other interested stakeholders. The primary performing organizations of the GEO-SEQ project team are Lawrence

74

Microsoft Word - Building Energy Codes Survey Report GEO _2_.doc  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Building & Energy Codes Building & Energy Codes Survey Results Prepared by the Governor's Energy Offi ce July 2009 The Governor's Energy Offi ce 1580 Logan Street, Suite 100 Denver, CO 80203 www.colorado.gov/energy (303) 866-2100 Executive Summary Colorado Governor Bill Ritter, Jr., issued an Executive Order on April 16, 2007, re-creating the Governor's Office of Energy Management and Conservation as the Governor's Energy Office (GEO). The GEO's mission is to lead Colorado to a New Energy Economy by advancing energy efficiency and renewable, clean energy resources. The New Energy Economy embraces energy conservation as an important component in our energy future, yet requires a broader mission to meet the goals of expanding renewable and clean energy resources and opportunities for the state's economy, environment and energy

75

Tunneling states in vitreous GeO2s  

Science Journals Connector (OSTI)

Ultrasonic measurements of the attenuation and the velocity variation have been carried out in amorphous GeO2 at low temperature (0.310 K) and high frequencies (80210 MHz). From numerical fits to the tunneling model, the typical parameters of the tunneling states (TS) were determined and compared to those found for vitreous SiO2 . The study reveals that in a-GeO2 , which is considered as a close structural analog to a-SiO2 , although the density of states is found to be very similar in both materials, the coupling between the TS and the phonons is significantly smaller. In the model of coupled tetrahedra as the origin of the TS, this difference can be understood in view of the fact that numerical calculations about the vibrational characteristics of network amorphous solids indicate that the tetrahedra are more decoupled in vitreous GeO2 than in vitreous silica.

Christiane Laermans; Veerle Keppens; Robert Weeks

1997-02-01T23:59:59.000Z

76

INEOS Bio | Open Energy Information  

Open Energy Info (EERE)

INEOS Bio INEOS Bio Jump to: navigation, search Name INEOS Bio Place Lisle, Illinois Zip 60562 Sector Biofuels Product Subsidiary of UK-based Ineos Group that develops next generation biofuels technology, particularly involving biocatalytic conversion of synthesis gas into ethanol. Coordinates 42.351811°, -76.004643° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.351811,"lon":-76.004643,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

77

Electric Storage Partners / GeoBATTERY | Open Energy Information  

Open Energy Info (EERE)

Storage Partners / GeoBATTERY Storage Partners / GeoBATTERY Jump to: navigation, search Name Electric Storage Partners / GeoBATTERY Address P.O. Box 3321 Place Austin, Texas Zip 78764 Sector Efficiency Product Manufacturer and developer of utility-scale bulk grid storage systems for the electric utilities Website http://www.geobattery.com/ Coordinates 30.2667°, -97.7428° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.2667,"lon":-97.7428,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

78

BioProcess Algae | Open Energy Information  

Open Energy Info (EERE)

BioProcess Algae BioProcess Algae Jump to: navigation, search Name BioProcess Algae Place Shenandoah, Iowa Sector Biomass Product US-based joint venture created to commercialize advanced photobioreactor technologies for continuous production of algal biomass. References BioProcess Algae[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. BioProcess Algae is a company located in Shenandoah, Iowa . References ↑ "BioProcess Algae" Retrieved from "http://en.openei.org/w/index.php?title=BioProcess_Algae&oldid=342867" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version Permanent link Browse properties

79

New Bio LLC | Open Energy Information  

Open Energy Info (EERE)

New Bio LLC New Bio LLC Jump to: navigation, search Name New Bio LLC Place Eden Prarie, Minnesota Zip MN 55344-3446 Sector Biomass Product Working on the development and commercialization of an Integrated Biomass to Electricity System (IBES) References New Bio LLC[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. New Bio LLC is a company located in Eden Prarie, Minnesota . References ↑ "New Bio LLC" Retrieved from "http://en.openei.org/w/index.php?title=New_Bio_LLC&oldid=349152" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load)

80

TNX GeoSiphon Cell (TGSC-1) Phase I Deployment/Demonstration Final Report  

SciTech Connect (OSTI)

This report documents the results of the installation of the TNX GeoSiphon Cell and the Phase I testing of the cell.

Phifer, M.A. [Westinghouse Savannah River Company, AIKEN, SC (United States); Sappington, F.C.; Denham, M.E.

1998-02-27T23:59:59.000Z

Note: This page contains sample records for the topic "bio mass geo" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

E-Print Network 3.0 - aos sistemas geo Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Summary: ustica submarina para exploracao e observacao do oceano (tomografia, geo-acustica, etc) sao as dimens... veiculos e necessario em tarefas de...

82

Geo energy research and development: technology transfer update  

SciTech Connect (OSTI)

Sandia Geo Energy Programs in geothermal, coal, oil and gas, and synfuel technologies have been effective in transferring research concepts to applications in private industry. This report updates the previous summary (SAND82-0211, March 1982) to include recent technology transfers and to reflect recent changes in philosophy on technology transfer. Over 40 items transferred to industry have been identified in the areas of Hardware, Risk Removal and Understanding. Successful transfer is due largely to personal interactions between Sandia engineers and the technical staffs of private industry.

Traeger, R.K.; Dugan, V.L.

1983-01-01T23:59:59.000Z

83

Direct Conversion of Bio-ethanol to Isobutene on Nanosized ZnxZryOz Mixed Oxides with Balanced AcidBase Sites  

SciTech Connect (OSTI)

Bio-mass conversion has attracted increasing research interests to produce bio-fuels with bio-ethanol being a major product. Development of advanced processes to further upgrade bio-ethanol to other value added fuels or chemicals are pivotal to improving the economics of biomass conversion and deversifying the utilization of biomass resources. In this paper, for the first time, we report the direct conversion of bio-ethanol to isobutene with high yield (~83%) on a multifunctional ZnxZryOz mixed oxide with a dedicated balance of surface acid-base properties. This work illustrates the significance of rational design of a multifunctional mixed oxide catalyst for one step bio-ethanol conversion to a value-added intermediate, isobutene, for chemical and fuel production. This work was supported by the US Department of Energy Basic Energy Sciences' Chemical Sciences, Geosciences & Biosciences Division. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.

Sun, Junming; Zhu, Kake; Gao, Feng; Wang, Chong M.; Liu, Jun; Peden, Charles HF; Wang, Yong

2011-06-17T23:59:59.000Z

84

A Generic Biogeochemical Module for Earth System Models: Next Generation BioGeoChemical Module (NGBGC), Version 1.0  

SciTech Connect (OSTI)

Physical and biogeochemical processes regulate soil carbon dynamics and CO2 flux to and from atmosphere, influencing global climate changes. Integration of these processes into earth system models (e.g., community land models (CLM)), however, currently faces three major challenges: 1) extensive efforts are required to modify modeling structures and to rewrite computer programs to incorporate new or updated processes as new knowledge is being generated, 2) computational cost is prohibitively expensive to simulate biogeochemical processes in land models due to large variations in the rates of biogeochemical processes, and 3) various mathematical representations of biogeochemical processes exist to incorporate different aspects of fundamental mechanisms, but systematic evaluation of the different mathematical representations is difficult, if not possible. To address these challenges, we propose a new computational framework to easily incorporate physical and biogeochemical processes into land models. The new framework consists of a new biogeochemical module with a generic algorithm and reaction database so that new and updated processes can be incorporated into land models without the need to manually set up the ordinary differential equations to be solved numerically. The reaction database consists of processes of nutrient flow through the terrestrial ecosystems in plants, litter and soil. This framework facilitates effective comparison studies of biogeochemical cycles in an ecosystem using different conceptual models under the same land modeling framework. The approach was first implemented in CLM and benchmarked against simulations from the original CLM-CN code. A case study was then provided to demonstrate the advantages of using the new approach to incorporate a phosphorus cycle into the CLM model. To our knowledge, the phosphorus-incorporated CLM is a new model that can be used to simulate phosphorus limitation on the productivity of terrestrial ecosystems.

Fang, Yilin; Huang, Maoyi; Liu, Chongxuan; Li, Hongyi; Leung, Lai-Yung R.

2013-11-13T23:59:59.000Z

85

Concerning the Cause of the General Trade-Winds: By Geo. Hadley, Esq; F. R. S.  

Science Journals Connector (OSTI)

1735-1736 research-article Concerning the Cause of the General Trade-Winds: By Geo. Hadley, Esq; F. R. S. Geo. Hadley The Royal Society is collaborating with JSTOR to digitize, preserve, and extend access to Philosophical Transactions (1683-1775). www.jstor.org

1735-01-01T23:59:59.000Z

86

The Pennsylvania State University www.BioEnergyBridge.psu.edu 1 BioEnergy Bridge  

E-Print Network [OSTI]

© The Pennsylvania State University www.BioEnergyBridge.psu.edu 1 Penn State BioEnergy# trichard@psu.edu rtw103@psu.edu www.bioenergy.psu.edu Biomass Energy Center #12;© The Pennsylvania State · The BioEnergy BridgeTM will address the full spectrum of challenges to our national priority of reducing

Lee, Dongwon

87

Microsoft PowerPoint - GeoSiphonTechBriefp1.ppt  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

GeoSiphon GeoSiphon at a glance  U.S. patent 6,254,785  in situ  accelerated clean-up  lower operating & maintenance costs  proven technology Scientists at the Savannah River National Laboratory have developed innovative processes for groundwater remediation. Called the GeoSiphon, this process offers significant advantages over pump and treat systems, funnel and gate systems and continuous permeable wall treatment systems. The GeoSiphon Cell is a passive, in situ, groundwater treatment system which uses a siphon between two points of natural head difference to induce greater than natural flow through a permeable treatment media. GeoSiphon cells advance the current state of the art for reactive barriers (i.e. funnel and gate) by using

88

Refining Bio-Oil alongside Petroleum  

Office of Energy Efficiency and Renewable Energy (EERE)

W.R. Grace and Pacific Northwest National Laboratory are working to establish a bio-oil refining process that users existing petroleum refinery infrastructure.

89

Bio-energy recovery from high-solid organic substrates by dry anaerobic bio-conversion processes: a review  

Science Journals Connector (OSTI)

Dry anaerobic bio-conversion (D-AnBioC) of high-solid organic ... involved in bioreactor designing; (3) present factors influencing the bio-conversion efficiency; (4) discuss the microbiology of ... existing comm...

Obuli P. Karthikeyan; C. Visvanathan

2013-09-01T23:59:59.000Z

90

Conversion Technologies for Advanced Biofuels ? Bio-Oil Upgrading  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

of bio-oils. Focus on process development activities and underlying science for biofuels production. Bio-oil Upgrading - Presenter Information Energy Efficiency & Renewable...

91

Gateway Ethanol LLC formerly Wildcat Bio Energy LLC | Open Energy...  

Open Energy Info (EERE)

Gateway Ethanol LLC formerly Wildcat Bio Energy LLC Jump to: navigation, search Name: Gateway Ethanol LLC (formerly Wildcat Bio-Energy LLC) Place: Pratt, Kansas Zip: 67124 Product:...

92

BioCarbon Fund (BioCF T3) | Open Energy Information  

Open Energy Info (EERE)

BioCF T3) BioCF T3) Jump to: navigation, search Name BioCarbon Fund (BioCF T3) Agency/Company /Organization World Bank Sector Climate, Land Focus Area Renewable Energy, Agriculture, Biomass Topics Finance, Low emission development planning Website http://climate-l.iisd.org/news References BioCarbon Fund (BioCF T3)[1] "...the BioCF T3, focuses on reforestation and agriculture projects that facilitates decreased soil erosion and increased land fertility. In particular, the initiatives focus on agriculture directly and improving access to energy. They will facilitate the purchase of certified emission reductions (CERs) from various projects such as household biogas systems in Nepal, cook stoves in Africa, reforestation in the Democratic Republic of Congo, soil carbon in Kenya, and municipal solid waste in Uganda."

93

OpenEI:GeoTeam | Open Energy Information  

Open Energy Info (EERE)

with form History with form History Facebook icon Twitter icon » OpenEI:GeoTeam Jump to: navigation, search How to Create a new Exploration Technique Be sure the technique you want to add does not already exist - in any form of the name Go to Click on "Add a new Exploration Technique" Enter the name of the new technique - be careful to check the spelling, since this creates the page name, which can be problematic to change in the future - and click enter. You will be brought to the exploration techniques template. For the "Exploration Group" - enter one of the 8 exploration groups listed here For the "Exploration Subgroup" - enter then next level below the exploration group. If the technique itself is the next level, enter the technique as the subgroup

94

Property:GeoNames URL | Open Energy Information  

Open Energy Info (EERE)

URL URL Jump to: navigation, search This is a property of type URL. Pages using the property "GeoNames URL" Showing 25 pages using this property. (previous 25) (next 25) A Abbotsford, Australia + http://sws.geonames.org/2178377/ + Abidjan, Côte d'Ivoire + http://sws.geonames.org/2293538/ + Abu Dhabi, United Arab Emirates + http://sws.geonames.org/292968/ + Accra, Ghana + http://sws.geonames.org/2306104/ + Alberta + http://sws.geonames.org/5883102/ + Alger, Algeria + http://sws.geonames.org/2507480/ + Almo, Idaho + http://sws.geonames.org/5583921/ + Anaconda, Montana + http://sws.geonames.org/5637146/ + Animas, New Mexico + http://sws.geonames.org/5455243/ + Ankara, Turkey + http://sws.geonames.org/323786/ + Argonne, Illinois + http://sws.geonames.org/4883533/ +

95

Geo X GmbH | Open Energy Information  

Open Energy Info (EERE)

X GmbH X GmbH Jump to: navigation, search Name Geo X GmbH Place Landau, Germany Zip 76829 Sector Geothermal energy Product Germany-based geothermal project developer. Coordinates 48.672821°, 12.69422° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":48.672821,"lon":12.69422,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

96

Giangiacorno, SPE, Fluor Daniel (NPOSR), Inc.; D. Michael Dennis, Geo  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 1 Field Testing of the Biocompetitive Exclusion Process for Control of Iron and Hydrogen Sulfides Leo A. Giangiacorno, SPE, Fluor Daniel (NPOSR), Inc.; D. Michael Dennis, Geo - Microbial Technologies, Inc. This paper was prepared for presentation at the 1997 SPE Rocky Mountain Regional Meeting held in Casper, Wyoming, 18 - 21 May 1997. This paper was selected for presentation by an SPE Program Committee following review of information contained in an abstract submitted by the author(s) Contents of the paper, as presented, have not been reviewed by the Society of Petroleum Engineers and are subject to co rrection by the author(s). The material, as presented, does not necessarily reflect any position of the Society of Petroleum Engineers, its officers, or members. Papers

97

Hydrogen from Bio-Derived Liquids (Presentation)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

From Bio-Derived Liquids From Bio-Derived Liquids Hydrogen From Bio Hydrogen From Bio - - Derived Liquids Derived Liquids Dave King, Yong Wang, PNNL BILIWIG Meeting Laurel, Maryland November 6, 2007 Innovation / Overview Innovation / Overview Innovation / Overview Project comprises two components z Ethanol steam reforming z Aqueous phase reforming (APR) Importance to small scale hydrogen production for distributed reforming for hydrogen production ‹ Ethanol is rapidly becoming an infrastructure fuel and is a logical feedstock ‹ APR provides vehicle for facile reforming of a variety of bio-derived feedstocks available in the biorefinery that are not conducive to conventional vapor phase reforming Distinctive technology approach/innovation z We are investigating single step ethanol reforming with emphasis on lower

98

Evaluation and Application of the Constant Flow Technique in Testing Low-Permeability Geo-Materials  

SciTech Connect (OSTI)

Safety assessment of facilities involved in geological disposal of hazardous waste, including radioactive nuclear waste, is generally performed through mass transport simulations combined with uncertainty and sensitivity analyses. Transport of contaminants, such as radionuclides, through an engineered and/or natural barrier system is mainly controlled by advection, dispersion, sorption, and chain decay. Ideally, waste disposal facilities should be constructed in the geological environments where groundwater is not existent, or groundwater is static, or its flow is extremely slow. Potential fluid flow, however, may be induced by thermal convection and/or gas generation, and thus accurate evaluation of hydraulic properties, specifically the permeability and specific storage, along with diffusive transport properties of engineered and natural barrier materials, is of fundamental importance for safety assessment. The engineered and natural barrier materials for isolating hazardous wastes are hydraulically tight, and special techniques are generally required to obtain both rapid and accurate determination of their hydraulic properties. In this paper, the constant flow technique is introduced and evaluated. The capability of this technique in testing low-permeability geo-materials are illustrated through practical applications to a bentonite-sand mixture and rock samples having low permeabilities. (authors)

Nakajima, H.; Takeda, M.; Zhang, M. [National Institute of Advanced Industrial Science and Technology (AIST), Research Center for Deep Geological Environments, Tsukuba, Ibaraki (Japan)

2007-07-01T23:59:59.000Z

99

Direct hydro-liquefaction of sawdust in petroleum ether and comprehensive bio-oil products analysis  

Science Journals Connector (OSTI)

Abstract The effect of temperature, time, hydrogen pressure and amount of catalyst on production distribution and the bio-oil yield obtained from the direct liquefaction of sawdust in the petroleum ether (6090C) are investigated. The highest sawdust conversion obtained was 72.32% with a bio-oil yield of 47.69% were obtained at 370C, 40min and 5wt.% catalyst content with the initial H2 pressure of 3.0MPa. Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) approach was utilized to analyze the non-volatile fraction. In this study, the composition of bio-oil could be analyzed in an unprecedented detail through a combination of GCMS and FT-ICR MS techniques.

Dong Liu; Linhua Song; Pingping Wu; Yan Liu; Qingyin Li; Zifeng Yan

2014-01-01T23:59:59.000Z

100

DOE-IG-0513 - Bio Mass.PDF  

Office of Environmental Management (EM)

ENERGY OFFICE OF INSPECTOR GENERAL OFFICE OF AUDIT SERVICES FINANCIAL ASSISTANCE FOR BIOMASS-TO-ETHANOL PROJECTS AUDIT REPORT DOEIG-0513 MEMORANDUM FOR THE SECRETARY FROM:...

Note: This page contains sample records for the topic "bio mass geo" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Green Energy Ohio - GEO Solar Thermal Rebate Program | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Ohio - GEO Solar Thermal Rebate Program Ohio - GEO Solar Thermal Rebate Program Green Energy Ohio - GEO Solar Thermal Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Solar Water Heating Program Info Start Date 04/01/2009 State Ohio Program Type Non-Profit Rebate Program Provider Green Energy Ohio With funding from The Sierra Club, Green Energy Ohio (GEO) is offering rebates on residential properties in Ohio for solar water heating systems purchased after April 1, 2009. The rebates are based on the projected energy output from the solar collectors and are calculated at $30 per kBtu/day (based on SRCC rating for "Clear Day/C Interval"). The maximum amount is $2,400 per applicant. There are two parts to the application. PART I of the application collects

102

GeoF: Geodesic Forests for Learning Coupled Predictors P. Kontschieder  

E-Print Network [OSTI]

GeoF: Geodesic Forests for Learning Coupled Predictors P. Kontschieder P. Kohli J. Shotton A are captured via new long-range, soft connectivity features, computed via generalized geodesic distance trans

Kohli, Pushmeet

103

The Evolution of International Geo-Political Risk 19562001  

Science Journals Connector (OSTI)

In this paper we study the characteristics and evolution of international geo-political risk between 1956, the end of the Korean ... To this end we propose a database of political events with global impact that s...

Ephraim Clark; Radu Tunaru

2013-01-01T23:59:59.000Z

104

"Foundation Challenges in Urban Environment" Presented by ASCE Metropolitan Section / Geo-Institute Chapter  

E-Print Network [OSTI]

"Foundation Challenges in Urban Environment" Presented by ASCE Metropolitan Section / Geo EXCAVATION STABILITY: A CRITICAL FOUNDATION CONSIDERATION IN URBAN ENVIRONMENTS Daniel A. Vellone, PG, M: Urban construction environments in rock present unique foundation challenges. Owners, design

Merguerian, Charles

105

GeoEnergy is Beautiful 2014 Apply by April 5th!  

Broader source: Energy.gov [DOE]

GeoEnergy Is Beautiful 2014 is a student competition promoting awareness of geothermal energy as a key player in the nation's renewable energy mix. Student teams from leading colleges and...

106

Bio Algene | Open Energy Information  

Open Energy Info (EERE)

Algene Algene Jump to: navigation, search Name Bio Algene Address 100 NE Northlake Way Place Seattle, Washington Zip 98105 Sector Biofuels Product Algae-based biofuels Website http://www.bioalgene.com/ Coordinates 47.6163159°, -122.3463563° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":47.6163159,"lon":-122.3463563,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

107

Fully Integrated Complementary Metal Oxide Semiconductor (CMOS) Bio-Assay Platform  

E-Print Network [OSTI]

PON IVD platform, namely high bio- chemical sensitivity andthat this platform had the bio- chemical selectivityThe bio-chemical sensitivity of this platform was evaluated

Florescu, Octavian

2010-01-01T23:59:59.000Z

108

Addressing the Need for Alternative Transportation Fuels: The Joint BioEnergy Institute  

E-Print Network [OSTI]

Fuels: The Joint BioEnergy Institute Harvey W. Blanch ,,,, * Joint BioEnergy Institute, Department of Chemicalbiomass monomers. The Joint BioEnergy Institute (JBEI) is a

Blanch, Harvey

2010-01-01T23:59:59.000Z

109

Fuel Bio One LLC | Open Energy Information  

Open Energy Info (EERE)

Bio One LLC Bio One LLC Jump to: navigation, search Name Fuel Bio One, LLC Place Elizabeth, New Jersey Zip 7202 Product Fuel Bio operates a 189.5mLpa (50m gallon) capacity biodiesel plant in New Jersey. Coordinates 39.060915°, -81.396769° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.060915,"lon":-81.396769,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

110

BioSolar Inc | Open Energy Information  

Open Energy Info (EERE)

Name: BioSolar Inc Place: Santa Clara, California Zip: 91387 Product: US-based manufacturer of sub and superstrates made of plant sources; it can be used for crystalline or...

111

The climatology of parameterized physical processes in the GEOS-1 GCM and their impact on the GEOS-1 data assimilation system  

SciTech Connect (OSTI)

The Goddard Earth Observing System (GEOS) General Circulation Model (GCM) is part of the GEOS Data Assimilation System (DAS), which is being developed at the Goddard Data Assimilation Office for the production of climate datasets. This study examines Version 1 of the GEOS GCM by evaluating the quality of the fields that relate most closely to the GCM physical parameterizations and examines the impact of the GCM climate errors on the climate of the DAS assimilated fields. The climate characteristics are evaluated using independent satellite and ground-based data for comparison. The GEOS-1 GCM shows reasonably good agreement with available observations in terms of general global distribution and seasonal cycles. The major biases or systematic errors are a tendency toward a dry tropical atmosphere and an inadequate cloud radiative impact in the extratropics. Other systematic errors are a generally wet subtropical atmosphere, slightly excess precipitation over the continents, and excess cloud radiative effects over the Tropics. There is also an underestimation of surface sensible and latent heat fluxes over the area of maximum flux. The DAS climate characteristics, in general, show better agreement with available observations than the GCM. Four distinct ways that the GCM impacts the DAS have been identified, ranging from a DAS climate with little or no impact form the GCM bias to a DAS climate with a greater bias than the GCM due to a spurious feedback between the GCM and the input data. 59 refs., 26 figs.

Molod, A.; Helfand, H.M.; Takacs, L.L. [Goddard Space Flight Center, Greenbelt, MD (United States)] [Goddard Space Flight Center, Greenbelt, MD (United States)

1996-04-01T23:59:59.000Z

112

Kinetic study of GeO disproportionation into a GeO{sub 2}/Ge system using x-ray photoelectron spectroscopy  

SciTech Connect (OSTI)

GeO disproportionation into GeO{sub 2} and Ge is studied through x-ray photoelectron spectroscopy. Direct evidence for the reaction 2GeO {yields} GeO{sub 2} + Ge after annealing in ultra-high vacuum is presented. Activation energy for GeO disproportionation is found to be about 0.7 {+-} 0.2 eV through kinetic and thermodynamic calculations. A kinetic model of GeO disproportionation is established by considering oxygen transfer in the GeO network. The relationship between GeO disproportionation and GeO desorption induced by GeO{sub 2}/Ge interfacial reaction is discussed, and the apparent contradiction between GeO desorption via interfacial redox reaction and GeO disproportionation into Ge and GeO{sub 2} is explained by considering the oxygen vacancy.

Wang Shengkai [Micorowave Devices and Integrated Circuits Department, Institute of Microelectronics, Chinese Academy of Sciences, 3 Bei-Tu-Cheng West Road, Beijing 100029 (China); Department of Materials Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); CREST, Japan Science and Technology Agency (JST), 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Liu Honggang [Microwave Devices and Integrated Circuits Department, Institute of Microelectronics, Chinese Academy of Sciences, 3 Bei-Tu-Cheng West Road, Beijing 100029 (China); Toriumi, Akira [Department of Materials Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); CREST, Japan Science and Technology Agency (JST), 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan)

2012-08-06T23:59:59.000Z

113

Montana State University ME 455 Bio-Inspired Engineering1 ME 455: BIO-INSPIRED ENGINEERING  

E-Print Network [OSTI]

problem solutions. Structure, thermal, and fluid concepts in nature applied to engineering. Advanced. 2) Perform basic structural, thermal, and fluid analyses in biological and engineering systems. 3Montana State University ME 455 Bio-Inspired Engineering1 ME 455: BIO-INSPIRED ENGINEERING CATALOG

Dyer, Bill

114

Whither `nano' or `bio'? | Rob Ritchie So what's all this hype about `nano' and `bio'?  

E-Print Network [OSTI]

OPINION Whither `nano' or `bio'? | Rob Ritchie So what's all this hype about `nano' and `bio of these words. Indeed, I've heard numerous people glibly state that, unless the title of your proposal has `nano! The nano revolution has certainly taken our field by storm. One constantly hears of the new paradigm ­ we

Ritchie, Robert

115

Supporting BioMedical Information Retrieval: The BioTracer Approach  

E-Print Network [OSTI]

Supporting BioMedical Information Retrieval: The BioTracer Approach Heri Ramampiaro1 and Chen Li2 1 biomedical in- formation has put a high demand on existing search systems. Such a tool should be able the relevant ones the highest rank- ing. Focusing on biomedical information, this work investigates how

Li, Chen

116

Report of the First GEO Forest Monitoring Symposium 4-7 November 2008, Foz do Iguau, Brazil  

E-Print Network [OSTI]

Report of the First GEO Forest Monitoring Symposium 4-7 November 2008, Foz do Iguaçu, Brazil Edited

117

AREA DEL PERSONALE SETTORE PERSONALE DOCENTE E RICERCATORE  

E-Print Network [OSTI]

ruolo di I fascia: AGR/01 BIO/09 BIO/10 BIO/12 BIO/13 CHIM/01 CHIM/03 CHIM/06 FIS/04 FIS/07 GEO/03 GEO BIO/18 CHIM/02 CHIM/03 CHIM/06 CHIM/12 FIS/01 FIS/02 FIS/03 FIS/04 FIS/05 FIS/07 FIS/08 GEO/03 GEO/05 BIO/17CHIM/02 CHIM/03 CHIM/04CHIM/06 FIS/01 FIS/03 FIS/04 FIS/06 FIS/07 GEO/04 GEO/05 GEO/07 INF/01

Milano-Bicocca, Università

118

OpenMSI: A Science Gateway to Sort Through Bio-Imaging's Big Datasets  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

OpenMSI: A Science OpenMSI: A Science Gateway to Sort Through Bio-Imaging's Big Datasets OpenMSI: A Science Gateway to Sort Through Bio-Imaging's Big Datasets August 27, 2013 | Tags: Basic Energy Sciences (BES), Carver, Computer Science, Dirac, Hopper, Life Sciences, Science Gateways, Visualization Group Contact: Linda Vu, +1 510 495 2402, lvu@lbl.gov OpenMSINERSC.jpg This overlay of mass spectrometry images shows the spatial distribution of three different kind of lipids across a whole mouse cross-section. Lipids act as the structural components of cell membranes and are responsible for energy storage, among other things. Image credit: Wolfgang Reindl (Berkeley Lab). Using cutting-edge mass spectrometry imaging (MSI) technology, scientists can study tissues, cell cultures and bacterial colonies in unprecedented

119

BioGold Fuels Corporation | Open Energy Information  

Open Energy Info (EERE)

BioGold Fuels Corporation BioGold Fuels Corporation Jump to: navigation, search Name BioGold Fuels Corporation Place Los Angeles, California Zip CA 90067 Product BioGold Fuels Corporation has licensed and/or developed through joint ventures a lower-cost, higher-output system for the production of diesel fuel derived from Municipal Solid Waste ("MSW"). References BioGold Fuels Corporation[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. BioGold Fuels Corporation is a company located in Los Angeles, California . References ↑ "BioGold Fuels Corporation" Retrieved from "http://en.openei.org/w/index.php?title=BioGold_Fuels_Corporation&oldid=342834" Categories:

120

"Geo-social media analytics: exploring and exploiting geo-social experience from crowd-sourced lifelogs" by R. Lee, S. Wakamiya, and K. Sumiya with Ching-man Au Yeung as coordinator  

Science Journals Connector (OSTI)

Geo-social media represents geo-tagged crowd-sourced media emerged from the wide-spread dissemination of smartphones and the availability of social media during daily social activities. Nowadays, with such novel media as a fertile ground to observe a ...

Ryong Lee; Shoko Wakamiya; Kazutoshi Sumiya

2014-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "bio mass geo" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Conversion Technologies for Advanced Biofuels Bio-Oil Production  

Broader source: Energy.gov [DOE]

RTI International report-out at the CTAB webinar on Conversion Technologies for Advanced Biofuels Bio-Oil Production.

122

Kent BioEnergy | Open Energy Information  

Open Energy Info (EERE)

Kent BioEnergy Kent BioEnergy Jump to: navigation, search Name Kent BioEnergy Address 11125 Flintkote Avenue Place San Diego, California Zip 92121 Sector Biofuels Product Technologies that use algae in biofuel production, water pollution remediation, CO2 absorption, etc Website http://www.kentbioenergy.com/ Coordinates 32.904312°, -117.231255° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.904312,"lon":-117.231255,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

123

Ammana Bio Pharma Ltd | Open Energy Information  

Open Energy Info (EERE)

Ammana Bio Pharma Ltd Ammana Bio Pharma Ltd Jump to: navigation, search Name Ammana Bio Pharma Ltd Place Secunderabad, Andhra Pradesh, India Zip 500 003 Product Hyderabad-based ethanol producer working with multi-feed fermentation technologies. Coordinates 17.46071°, 78.49298° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":17.46071,"lon":78.49298,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

124

Earthship BioDiesel | Open Energy Information  

Open Energy Info (EERE)

Earthship BioDiesel Earthship BioDiesel Jump to: navigation, search Name Earthship BioDiesel Place Taos, New Mexico Zip 87571 Product Supplier and retailer of biodiesel made from Waste Vegetable Oil. Coordinates 36.4116°, -105.574251° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.4116,"lon":-105.574251,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

125

Prime BioSolutions | Open Energy Information  

Open Energy Info (EERE)

Prime BioSolutions Prime BioSolutions Jump to: navigation, search Name Prime BioSolutions Place Omaha, Nebraska Zip 68137 Product Ethanol and biogas producer using the closed-loop system. Coordinates 33.180954°, -94.743294° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.180954,"lon":-94.743294,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

126

SG BioFuels | Open Energy Information  

Open Energy Info (EERE)

BioFuels BioFuels Jump to: navigation, search Name SG BioFuels Place Encinitas, California Zip 92024 Product California-based biofuel producer operating across the United States. Coordinates 33.045436°, -117.292518° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.045436,"lon":-117.292518,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

127

Blue Sky Bio Fuels | Open Energy Information  

Open Energy Info (EERE)

Bio Fuels Bio Fuels Jump to: navigation, search Name Blue Sky Bio-Fuels Place Oakland, California Zip 94602 Product Blue Sky owns and operates a biodiesel plant in Idaho with a capacity of 37.9mLpa (10m gallons annually). Coordinates 37.805065°, -122.273024° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.805065,"lon":-122.273024,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

128

HR BioPetroleum | Open Energy Information  

Open Energy Info (EERE)

HR BioPetroleum HR BioPetroleum Jump to: navigation, search Name HR BioPetroleum Address 7597 Eads Ave Place La Jolla, California Zip 92037 Sector Biofuels Product Developing marine microalgae to help absorb industrial emissions of CO2 and produce biofuel feedstocks Website http://www.hrbp.com/ Coordinates 32.84197°, -117.275213° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.84197,"lon":-117.275213,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

129

Natura Bio Fuels Ltd | Open Energy Information  

Open Energy Info (EERE)

Natura Bio Fuels Ltd Natura Bio Fuels Ltd Jump to: navigation, search Name Natura Bio-Fuels Ltd. Place Bangalore, Karnataka, India Zip 560091 Sector Biomass Product Bangalore-based biomass project developers. Coordinates 12.97092°, 77.60482° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":12.97092,"lon":77.60482,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

130

An Account and Abstract of the Meteorological Diaries Communicated to the Royal Society, for the Years 1729 and 1730. By Geo. Hadley, Esq; F. R. S.  

Science Journals Connector (OSTI)

...the Meteorological Diaries Communicated to the Royal Society, for the Years 1729 and 1730. By Geo. Hadley, Esq; F. R. S. Geo. Hadley The Royal Society is collaborating with JSTOR to digitize, preserve, and extend access to Philosophical...

1737-01-01T23:59:59.000Z

131

Long-term surveillance and maintenance Geo-spatial Environmental Mapping System  

SciTech Connect (OSTI)

For sites currently under the U.S. Department of Energy (DOE) Office of Legacy Management (LM) and for sites transitioning to LM, technical, operational, and environmental monitoring information continues to be of great interest to stakeholders. The Web-based Geo-spatial Environmental Mapping System (GEMS) developed by LM provides stakeholders, DOE, regulators, project staff, and the public with a user-friendly mechanism for retrieving geo-spatial and environmental monitoring information about the sites. This paper discusses GEMS and its use by LM stakeholders. (authors)

Appetta, J. [U.S. Department of Energy Office of Legacy Management, Pittsburgh, PA (United States); MacMillan, S.; Miller, K.; LaBonte, E. [S.M. Stoller Corporation, Junction, CO (United States)

2007-07-01T23:59:59.000Z

132

11/7/2004 Prashant and Penumadu. Geo-Quebec 2004 1 INFLUENCE OF SPECIMEN SHAPE ANDINFLUENCE OF SPECIMEN SHAPE AND  

E-Print Network [OSTI]

11/7/2004 Prashant and Penumadu. Geo-Quebec 2004 1 INFLUENCE OF SPECIMEN SHAPE ANDINFLUENCE. Geo-Quebec 2004 2 Presentation outlinePresentation outline The need of laboratory testing behaviour Conclusions #12;11/7/2004 Prashant and Penumadu. Geo-Quebec 2004 3 Triaxial test on solid

Prashant, Amit

133

Production of hydrogen rich bio-oil derived syngas from co-gasification of bio-oil and waste engine oil as feedstock for lower alcohols synthesis in two-stage bed reactor  

Science Journals Connector (OSTI)

Abstract High efficient production of lower alcohols (C1C5 mixed alcohols) from hydrogen rich bio-oil derived syngas was achieved in this work. A non-catalytic partial oxidation (NPOX) gasification technology was successfully applied in the production and conditioning of bio-oil derived syngas using bio-oil (BO) and emulsifying waste engine oil (EWEO) as feedstock. The effects of water addition and feedstock composition on the gasification performances were investigated. When the BO20 and EWEO30 was mixed with mass ratio of 1: 0.33, the maximum hydrogen yield of 93.7% with carbon conversion of 96.7% was obtained, and the hydrogen rich bio-oil derived syngas was effectively produced. Furthermore, a two-stage bed reactor was applied in the downstream process of lower alcohols synthesis from hydrogen rich bio-oil derived syngas (H2/CO/CO2/CH4/N2=52.2/19.5/3.0/9.4/15.9, v/v). The highest carbon conversion of 42.5% and the maximum alcohol yield of 0.18kg/kgcath with selectivity of 53.8wt% were obtained over the Cu/ZnO/Al2O3(2.5)//Cu25Fe22Co3K3/SiO2(2.5) catalyst combination system. The mechanism and evaluation for lower alcohols synthesis from model bio-oil derived syngas and model mixture gas were also discussed. The integrative process of hydrogen rich bio-oil derived syngas production and downstream lower alcohols synthesis, potentially providing a promising route for the conversion of organic wastes into high performance fuels and high value-added chemicals.

Haijun Guo; Fen Peng; Hairong Zhang; Lian Xiong; Shanggui Li; Can Wang; Bo Wang; Xinde Chen; Yong Chen

2014-01-01T23:59:59.000Z

134

Forest Biomass Supply for BioForest Biomass Supply for Bio--productionproduction in the Southeastern United Statesin the Southeastern United States  

E-Print Network [OSTI]

Forest Biomass Supply for BioForest Biomass Supply for BioBio--production and biomass utilizationsproduction and biomass utilizations Industrial sector: for heat and steam Utility sector: for electricity Forest biomass: Agricultural biomass: Transportation sector: for biofuels

Gray, Matthew

135

Ternion Bio Industries | Open Energy Information  

Open Energy Info (EERE)

Ternion Bio Industries Ternion Bio Industries Jump to: navigation, search Logo: Ternion Bio Industries Name Ternion Bio Industries Address 1060 Minnesota Ave., Suite 6 Place San Jose, California Zip 95125 Sector Carbon Product Algae Year founded 2007 Number of employees 1-10 Phone number 408-717-4280 Website http://www.ternionbio.com Coordinates 37.304069°, -121.895932° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.304069,"lon":-121.895932,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

136

Tersus BioEnergy | Open Energy Information  

Open Energy Info (EERE)

Tersus BioEnergy Tersus BioEnergy Jump to: navigation, search Name Tersus BioEnergy Place London, Greater London, United Kingdom Zip W1J 5PT Sector Bioenergy, Biomass Product Subsidiary of Tersus Energy. Tersus BioEnergy invests in companies developing biofuel and biomass and waste technologies. Typical investment size USD 500,000-USD 5m Coordinates 51.506325°, -0.127144° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":51.506325,"lon":-0.127144,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

137

Biofuels and bio-products derived from  

E-Print Network [OSTI]

NEED Biofuels and bio- products derived from lignocellulosic biomass (plant materials) are part improve the energy and carbon efficiencies of biofuels production from a barrel of biomass using chemical and thermal catalytic mechanisms. The Center for Direct Catalytic Conversion of Biomass to Biofuels IMPACT

Ginzel, Matthew

138

Flexible Bio-battery February 7, 2013  

E-Print Network [OSTI]

Flexible Bio-battery Materials Thursday February 7, 2013 12:30pm - 1:30pm Talk by Dr. W.H. Katie at Washington State University (WSU), and 2012 International Visiting Research Scholar with the Peter Wall elastic and superior ionic conductive solid polymer electrolytes (SPEs) are prerequisite

Handy, Todd C.

139

Energy dissipation in bio molecular machines  

E-Print Network [OSTI]

Energy dissipation in bio molecular machines Thesis for the degree of Philosophiae Doctor Trondheim applied to molecular machines and energy trans- duction and dissipation in these. The main result to include heat effects. This framework is general and can be applied to other molecular machines as well

Kjelstrup, Signe

140

BIO-OPTICAL PRESENTATIONS YEARS 2000 2004  

E-Print Network [OSTI]

BIO-OPTICAL PRESENTATIONS YEARS 2000 ­ 2004 YEAR 00-01 Armstrong, R.A., F. Gilbes, R. Guerrero. Lopez, and F. Gilbes, 2000, "Apparent Optical Properties at the Caribbean Time Station", Ocean Optics XV, Monaco. Gilbes, F., and R.A. Armstrong, 2000, "Inherent Optical Properties at the Caribbean Time Series

Gilbes, Fernando

Note: This page contains sample records for the topic "bio mass geo" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

BioPower Atlas and BioFuels Atlas | Open Energy Information  

Open Energy Info (EERE)

BioPower Atlas and BioFuels Atlas BioPower Atlas and BioFuels Atlas Jump to: navigation, search Tool Summary LAUNCH TOOL Name: BioPower Atlas and BioFuels Atlas Agency/Company /Organization: National Renewable Energy Laboratory Sector: Energy Focus Area: Biomass Topics: Resource assessment Resource Type: Dataset, Maps, Software/modeling tools User Interface: Website Website: maps.nrel.gov/bioenergyatlas Country: United States Web Application Link: maps.nrel.gov/biomass Cost: Free UN Region: Northern America Coordinates: 37.09024°, -95.712891° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.09024,"lon":-95.712891,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

142

Ceres BioVentures Ltd | Open Energy Information  

Open Energy Info (EERE)

Ceres BioVentures Ltd Ceres BioVentures Ltd Jump to: navigation, search Name Ceres BioVentures Ltd Place Surrey, United Kingdom Zip TW10 5ED Sector Biomass Product UK-based firm that provides biomass supply solutions to European power and heat markets. It controls the entire supply chain to deliver reliable, repeatable and certifiably sustainable volumes in woodchip and wood pellet form. References Ceres BioVentures Ltd[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Ceres BioVentures Ltd is a company located in Surrey, United Kingdom . References ↑ "Ceres BioVentures Ltd" Retrieved from "http://en.openei.org/w/index.php?title=Ceres_BioVentures_Ltd&oldid=343419"

143

BioPower Systems Pty Ltd | Open Energy Information  

Open Energy Info (EERE)

Systems Pty Ltd Systems Pty Ltd Jump to: navigation, search Name BioPower Systems Pty Ltd Address Suite 145 National Innovation Centre Australian Technology Park Place Eveleigh Zip 1430 Sector Marine and Hydrokinetic Phone number +61 2 9209 4237 Website http://www.biopowersystems.com Region Australia LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This company is involved in the following MHK Projects: BioSTREAM Pilot Plant bioWAVE Pilot Plant This company is involved in the following MHK Technologies: bioBase bioSTREAM bioWave This article is a stub. You can help OpenEI by expanding it. Retrieved from "http://en.openei.org/w/index.php?title=BioPower_Systems_Pty_Ltd&oldid=678254

144

ECr Technologies Inc formerly GeoSolar Energy Corporation | Open Energy  

Open Energy Info (EERE)

ECr Technologies Inc formerly GeoSolar Energy Corporation ECr Technologies Inc formerly GeoSolar Energy Corporation Jump to: navigation, search Name ECr Technologies Inc (formerly GeoSolar Energy Corporation) Place Lakeland, Florida Zip 33811 Sector Geothermal energy Product Manufactures and markets the GeoExchange geothermal heat pump systems. Coordinates 35.264796°, -89.724114° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.264796,"lon":-89.724114,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

145

Random even graphs and the Ising model Geo#rey Grimmett # , Svante Janson +  

E-Print Network [OSTI]

Random even graphs and the Ising model Geo#rey Grimmett # , Svante Janson + September 19, 2007 Abstract We explore the relationship between the Ising model with inverse temperature #, the q = 2 random. For a planar graph G, the boundary edges of the + clusters of the Ising model on the planar dual of G forms

Janson, Svante

146

Entanglement in the quantum Ising model Geo#rey R. Grimmett # , Tobias J. Osborne + ,  

E-Print Network [OSTI]

Entanglement in the quantum Ising model Geo#rey R. Grimmett # , Tobias J. Osborne + , Petra F for the ground state of the one­dimensional quantum Ising model with transverse field. When the field is su of disordered interactions. 1 The quantum Ising model The quantum Ising model in a transverse magnetic field

Grimmett, Geoffrey

147

ORIGINAL ARTICLE GeoChip 3.0 as a high-throughput tool for analyzing  

E-Print Network [OSTI]

significantly changed with the plant species diversity. As expected, GeoChip 3.0 is a high-throughput powerful Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA and 8 Virtual Institute Keywords: microarray; functional genes; microbial community; plant diversity Introduction Microorganisms

Hazen, Terry

148

ORIGINAL ARTICLE GeoChip 3.0 as a high-throughput tool for analyzing  

E-Print Network [OSTI]

significantly changed with the plant species diversity. As expected, GeoChip 3.0 is a high-throughput powerful Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA and 8 Virtual Institute in microbial ecology Keywords: microarray; functional genes; microbial community; plant diversity Introduction

Weiblen, George D

149

"Foundation Challenges in Urban Environments" Presented by ASCE Metropolitan Section / Geo-Institute Chapter  

E-Print Network [OSTI]

"Foundation Challenges in Urban Environments" Presented by ASCE Metropolitan Section / Geo-Institute Chapter May 16, 2013, New York City FOUNDATION CHALLENGES IN THE NEW YORK CITY METROPOLITAN AREA CAUSED by foundation engineers and constructors in the New York City metropolitan area are the result of a complex

Horvath, John S.

150

GTube: geo-predictive video streaming over HTTP in mobile environments  

Science Journals Connector (OSTI)

Mobile video streaming sometimes suffers from playback interruptions which are typically due to considerable network bandwidth variations that a user may experience when s/he travels along a route. Segmented adaptive HTTP streaming that switches between ... Keywords: DASH, geo-prediction, location services, mobile video

Jia Hao; Roger Zimmermann; Haiyang Ma

2014-03-01T23:59:59.000Z

151

2006 GeoX Conference, pages 1 to 6 Characterisation of hydraulic fractures in  

E-Print Network [OSTI]

2006 GeoX Conference, pages 1 to 6 Characterisation of hydraulic fractures in limestones using X, France Jacques.Desrues@hmg.inpg.fr ABSTRACT: Hydraulic tension fractures were produced in porous, hydraulic fracture, permeability tensor MOTS-CL?S: microtomographie, fracturation hydraulique, tenseur de

152

TNX GeoSiphon Cell (TGSC-1) Phase II Single Cell Deployment/Demonstration Final Report  

SciTech Connect (OSTI)

This Phase II final report documents the Phase II testing conducted from June 18, 1998 through November 13, 1998, and it focuses on the application of the siphon technology as a sub-component of the overall GeoSiphon Cell technology. [Q-TPL-T-00004

Phifer, M.A.

1999-04-15T23:59:59.000Z

153

Visualizing Multivariate Network Using GeoSOM and Spherical Disk Layout School of Information Technologies  

E-Print Network [OSTI]

. Connections in the network describe relationships/activities between the data points. Many real world data countries are repre- sented as nodes, each country has properties like gross domestic product (GDP), GDP Previously, we treat each graph node as a point in high-dimensional space and use GeoSOM to project the nodes

Hong,Seokhee

154

Semantic MediaWiki GeoChart | OpenEI Community  

Open Energy Info (EERE)

Dandrocec on 6 March, 2014 - 00:52 Points: 0 Hi Nick, I have a question. Google GeoChart API is JavaScript. How can I use it in Semantic MediaWiki? In OpenEI code I see something...

155

Carbon-aware Load Balancing for Geo-distributed Cloud Services  

E-Print Network [OSTI]

Carbon-aware Load Balancing for Geo-distributed Cloud Services Zhi Zhou1 Fangming Liu1 Yong Xu1 Chinese University of Hong Kong. Abstract--Recently, datacenter carbon emission has become an emerging of the electricity carbon footprint can be fully exploited to further green the cloud running on top

Lui, John C.S.

156

GIS&T Professional Ethics Project GEO 599 Initial Student Survey  

E-Print Network [OSTI]

1 GIS&T Professional Ethics Project GEO 599 Initial Student Survey A. Personal Information 1. Name familiar with the Code of Ethics by the GIS Certification Institute. 2. I am familiar with the Rules of Conduct by the GIS Certification Institute. 3. To what extent should ethics education be a required

Wright, Dawn Jeannine

157

Fuel Cell Generation in Geo-Distributed Cloud Services: A Quantitative Study  

E-Print Network [OSTI]

Fuel Cell Generation in Geo-Distributed Cloud Services: A Quantitative Study Zhi Zhou1 Fangming Liu of fuel cell energy in cloud computing, yet it is unclear what and how much benefit it may bring. This paper, for the first time, attempts to quantitatively examine the benefits brought by fuel cell

Li, Baochun

158

Forcings and feedbacks in the GeoMIP ensemble for a reduction in solar  

E-Print Network [OSTI]

Forcings and feedbacks in the GeoMIP ensemble for a reduction in solar irradiance and increase Canadian Centre for Climate Modelling and Analysis, Environment Canada, Toronto, Ontario, Canada, 5 School of Earth and Ocean Sciences, University of Victoria, Victoria, British Columbia, Canada, 6 State Key

Robock, Alan

159

GeoTran-HC: Geometric transformation of highly coupled variable topology multi-body problems  

Science Journals Connector (OSTI)

Manipulating geometry to prepare a CAD design model for mesh generation is an important step in the finite element analysis (FEA) process. However, complex problems such as electronic chip packages often consist of hundreds or even thousands of sub-features ... Keywords: Cell decomposition, Chip package, FEA modeling, GeoTran-HC, Geometrical transformation, Knowledge-based design and analysis

Sai Zeng; Angran Xiao; Russell S. Peak

2007-09-01T23:59:59.000Z

160

Structure of GeO2 glass at pressures up to 8.6 GPa  

Science Journals Connector (OSTI)

The structure of GeO2 glass at pressures extending from ambient to 8.6(5) GPa was measured at ?25?C by using in situ neutron diffraction. The results show a gradual change in the intermediate range order with increasing density as manifested by an increase in position and reduction in height of the first sharp diffraction peak in the total structure factor. By contrast, the local ordering, as characterized by the Ge-O bond length and coordination number, remains constant for the pressure range from ambient to ?5?GPa. As the pressure is increased further to 8.6(5) GPa, however, a steady increase from 4.0(1) to 4.9(1) is observed in the Ge-O coordination number as the corresponding distance increases from 1.73(2) to 1.77(2)?. The results are therefore consistent with the operation of two densification mechanisms, the low-pressure one associated with squeezing the open network of corner-linked tetrahedral motifs and the high-pressure one associated with a transformation of those motifs. There is no evidence in support of an abrupt transformation of the network structure over the investigated pressure range. The structure of permanently densified GeO2 glass was also investigated by high-energy x-ray diffraction. The results show that there is a threshold pressure at ?5?GPa below which the structure of a recovered glass is similar to that of the high-pressure material. Above the threshold pressure there is, however, a reorganization of both the local and intermediate range ordering once the pressure is released and the Ge-O coordination number returns to 4.

James W. E. Drewitt; Philip S. Salmon; Adrian C. Barnes; Stefan Klotz; Henry E. Fischer; Wilson A. Crichton

2010-01-11T23:59:59.000Z

Note: This page contains sample records for the topic "bio mass geo" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Wrap-up : Bio Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Wrap-up Wrap-up Time Duration: 5-10 minutes Did we find out the answers to our questions and problems?? Walk around to each station and do a quick review emphasizing the main objective of each station: Center 1 - Ask the students which fuel they think will be the best choice by the time they are adults and why? Talk about short term solutions and long term solutions. (Short term solution - new biofuels; long term solution - create new types of engines, possibly hydrogen powered, that are now expensive to make individually and not prone to mass production.) Have a student hold up the objective card from the station and read it: Our current engines use liquid fuels, which are being depleted, for their power source. Biofuels, renewable sources of energy, can replace current fuels.

162

Bio Fuel Systems BFS | Open Energy Information  

Open Energy Info (EERE)

Fuel Systems BFS Fuel Systems BFS Jump to: navigation, search Name Bio Fuel Systems (BFS) Place Alicante, Spain Sector Biomass Product Bio Fuel Systems focuses on the development of biofuel through marine biomass (algae). Coordinates 38.344085°, -0.480474° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.344085,"lon":-0.480474,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

163

Presenter Bio - Tasios Melis, Professor, UC Berkeley  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Presenter Bio - Tasios Melis, Professor, UC Berkeley Presenter Bio - Tasios Melis, Professor, UC Berkeley A Professor at the University of California Berkeley, Tasios Melis envisioned and pioneered the concept of "Photosynthetic Biofuels", entailing the direct application of photosynthesis for the generation of bioenergy, in a process where a single organism acts both as photocatalyst and processor, synthesizing and secreting ready to use fuels. This has been successfully applied to hydrogen production and specific hydrocarbon products. The Melis lab contributed with a breakthrough in the field, when several years ago they demonstrated, for the first time, how to divert the natural flow of photosynthesis in green microalgae and to sustainably generate hydrogen gas, instead of the normally produced oxygen. This technology is currently employed by

164

Our Partners : BioEnergy Science Center  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Bringing the best and the brightest together. Bringing the best and the brightest together. The mission of the Department of Energy BioEnergy Science Center is to revolutionize how Bioenergy is processed within five years. To reach this goal, we have assembled a world-class team of some of the world's leading experts and facilities. We are working together to develop alternative fuel solutions that are a viable and affordable option to petroleum-based fuels. To accomplish this mission, The BioEnergy Science Center is backed by more than $80 million in investments from state and private-sector sources. This includes $30 million toward research and equipment and a $40 million, 250,000 gallons-a-year switchgrass-to-ethanol demonstration facility. View the INTERACTIVE MAP to learn more about the specific contributions we

165

Biofacts : BioEnergy Science Center  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

BioFacts BioFacts What causes global warming? Carbon dioxide and other air pollution trap in the sun's heat in the atmosphere. Coal-burning power plants and automobiles are the largest U.S. sources of carbon dioxide pollution. What are alternative fuels? Alternative fuels, such as biofuels, are substitutes for conventional fossil fuels, such as petroleum (oil), coal, propane and natural gas. Common U.S. agricultural products specifically grown for biofuel production include switchgrass and soybeans. What is switchgrass anyway? Switchgrass is a common, warm-season grass that can be used to make an environmentally friendly biofuel and alternative to traditional gasoline. By 2050, biofuels could reduce our greenhouse gas emissions by 1.7 billion tons per year - equivalent to more than 80% of current

166

Retrofitting analysis of integrated bio-refineries  

E-Print Network [OSTI]

for biomass for purpose use (U.S. Department of Energy 2004) 14 There are also other platforms such as biogas, carbon-rich chains, plant products and bio-oil which are beyond the scope of this work. Biogas platform is the decomposition... Thailand 74 Mexico 9 Germany 71 Nicaragua 8 Ukraine 66 Mauritius 6 Canada 61 Zimbabwe 6 Poland 53 Kenya 3 Indonesia 42 Swaziland 3 Argentina 42 Others 338 Total 10770 Many countries try to reduce petroleum imports...

Cormier, Benjamin R.

2007-04-25T23:59:59.000Z

167

BioSAR Airborne Biomass Sensing System  

SciTech Connect (OSTI)

This CRADA was developed to enable ORNL to assist American Electronics, Inc. test a new technology--BioSAR. BioSAR is a an airborne, low frequency (80-120 MHz {approx} FM radio frequencies) synthetic aperture radar (SAR) technology which was designed and built for NASA by ZAI-Amelex under Patrick Johnson's direction. At these frequencies, leaves and small branches are nearly transparent and the majority of the energy reflected from the forest and returned to the radar is from the tree trunks. By measuring the magnitude of the back scatter, the volume of the tree trunk and therefore the biomass of the trunks can be inferred. The instrument was successfully tested on tropical rain forests in Panama. Patrick Johnson, with American Electronics, Inc received a Phase II SBIR grant from DOE Office of Climate Change to further test and refine the instrument. Mr Johnson sought ORNL expertise in measuring forest biomass in order for him to further validate his instrument. ORNL provided ground truth measurements of forest biomass at three locations--the Oak Ridge Reservation, Weyerhaeuser Co. commercial pine plantations in North Carolina, and American Energy and Power (AEP) Co. hardwood forests in southern Ohio, and facilitated flights over these forests. After Mr. Johnson processed the signal data from BioSAR instrument, the processed data were given to ORNL and we attempted to derive empirical relationships between the radar signals and the ground truth forest biomass measurements using standard statistical techniques. We were unsuccessful in deriving such relationships. Shortly before the CRADA ended, Mr Johnson discovered that FM signal from local radio station broadcasts had interfered with the back scatter measurements such that the bulk of the signal received by the BioSAR instrument was not backscatter from the radar but rather was local radio station signals.

Graham, R.L.; Johnson, P.

2007-05-24T23:59:59.000Z

168

MHK Technologies/bioWave | Open Energy Information  

Open Energy Info (EERE)

bioWave bioWave < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage BioWave.jpg Technology Profile Primary Organization BioPower Systems Pty Ltd Project(s) where this technology is utilized *MHK Projects/bioWAVE Pilot Plant Technology Resource Click here Wave Technology Type Click here Oscillating Wave Surge Converter Technology Readiness Level Click here TRL 5/6: System Integration and Technology Laboratory Demonstration Technology Description TThe bioWAVE is based on the swaying motion of sea plants in the presence of ocean waves. The hydrodynamic interaction of the buoyant blades with the oscillating flow field is designed for maximum energy absorption. Mooring Configuration Gravity base Optimum Marine/Riverline Conditions 30 to 50M depth 20kW m wave climate or greater

169

BioFuels Energy LLC | Open Energy Information  

Open Energy Info (EERE)

BioFuels Energy, LLC BioFuels Energy, LLC Place Encinitas, California Zip 92024 Sector Renewable Energy Product Encinitas-based renewable energy project developer. References BioFuels Energy, LLC[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. BioFuels Energy, LLC is a company located in Encinitas, California . References ↑ "BioFuels Energy, LLC" Retrieved from "http://en.openei.org/w/index.php?title=BioFuels_Energy_LLC&oldid=342819" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version Permanent link Browse properties About us Disclaimers Energy blogs Linked Data Developer services OpenEI partners with a broad range of international organizations to grow

170

Center for BioEnergy Sustainability | Open Energy Information  

Open Energy Info (EERE)

Sustainability Sustainability Jump to: navigation, search Logo: Center for BioEnergy Sustainability Name Center for BioEnergy Sustainability Agency/Company /Organization Oak Ridge National Laboratory Sector Energy Focus Area Biomass Topics Resource assessment Resource Type Dataset, Maps Website http://www.ornl.gov/sci/besd/c References Center for BioEnergy Sustainability[1] Abstract The Center for BioEnergy Sustainability, or CBES, is a Center at Oak Ridge National Laboratory with a focus on dealing with the environmental impacts and the ultimate sustainability of biomass production for conversion to biofuels and bio-based products. The Center for BioEnergy Sustainability, or CBES, is a Center at Oak Ridge National Laboratory with a focus on "dealing with the environmental impacts

171

BioGas Project Applications for Federal Agencies and Utilities  

Broader source: Energy.gov (indexed) [DOE]

Alternate Energy Systems, Inc. Alternate Energy Systems, Inc. Natural Gas / Air Blenders for BioGas Installations BioGas Project Applications for Federal Agencies and Utilities Federal Utility Partnership Working Group Meeting - October 20-21, 2010 Rapid City, SD 1 BioGas Project Applications for Federal Agencies and Utilities Wolfgang H. Driftmeier Alternate Energy Systems, Inc. 210 Prospect Park - Peachtree City, GA 30269 wdriftmeier@altenergy.com www.altenergy.com 770 - 487 - 8596 Alternate Energy Systems, Inc. Natural Gas / Air Blenders for BioGas Installations BioGas Project Applications for Federal Agencies and Utilities Federal Utility Partnership Working Group Meeting - October 20-21, 2010 Rapid City, SD 2 BioGas Project Applications for Federal Agencies and Utilities Objective

172

All-sky search for gravitational-wave bursts in the first joint LIGO-GEO-Virgo run  

E-Print Network [OSTI]

We present results from an all-sky search for unmodeled gravitational-wave bursts in the data collected by the LIGO, GEO 600 and Virgo detectors between November 2006 and October 2007. The search is performed by three ...

Weiss, Rainer

173

Method to upgrade bio-oils to fuel and bio-crude  

DOE Patents [OSTI]

This invention relates to a method and device to produce esterified, olefinated/esterified, or thermochemolytic reacted bio-oils as fuels. The olefinated/esterified product may be utilized as a biocrude for input to a refinery, either alone or in combination with petroleum crude oils. The bio-oil esterification reaction is catalyzed by addition of alcohol and acid catalyst. The olefination/esterification reaction is catalyzed by addition of resin acid or other heterogeneous catalyst to catalyze olefins added to previously etherified bio-oil; the olefins and alcohol may also be simultaneously combined and catalyzed by addition of resin acid or other heterogeneous catalyst to produce the olefinated/esterified product.

Steele, Philip H; Pittman, Jr., Charles U; Ingram, Jr., Leonard L; Gajjela, Sanjeev; Zhang, Zhijun; Bhattacharya, Priyanka

2013-12-10T23:59:59.000Z

174

E-Print Network 3.0 - advancing bio-hydrogen presentation Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

producing bio-hydrogen 27 2.3.3 Photo-fermentation producing bio-hydrogen 28 2.3.4 Biogas production 28 2... Dark fermentation producing bio-hydrogen Photo-fermentation...

175

Bio-Derived Liquids to Hydrogen Distributed Reforming Targets (Presentation)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Distributed Reforming Targets Arlene F. Anderson Technology Development Manager, U.S. DOE Office of Energy Efficiency and Renewable Energy Hydrogen, Fuel Cells and Infrastructure Technologies Program Bio-Derived Liquids to Hydrogen Distributed Reforming Working Group and Hydrogen Production Technical Team Review November 6, 2007 Bio-Derived Liquids to Hydrogen Distributed Reforming Working Group (BILIWG) The Bio-Derived Liquids to Hydrogen Distributed Reforming Working Group (BILIWG), launched in October 2006, provides a forum for effective communication and collaboration among participants in DOE Hydrogen, Fuel Cells, and Infrastructure Technologies Program (HFCIT) cost-shared research directed at distributed bio-liquid reforming. The Working Group includes

176

BioEnergy Solutions BES | Open Energy Information  

Open Energy Info (EERE)

California Zip: 93309 Product: Bakersfield-based firm installing and operating biogas plants for farmers and food producers. References: BioEnergy Solutions (BES)1 This...

177

WELtec BioPower GmbH | Open Energy Information  

Open Energy Info (EERE)

Saxony, Germany Zip: 49377 Sector: Services Product: WELtec BioPower provides turnkey biogas plants and related services. Coordinates: 52.728997, 8.286404 Show Map Loading...

178

Bio-Derived Liquids to Hydrogen Distributed Reforming Targets  

Broader source: Energy.gov [DOE]

Presentation by Arlene Anderson at the October 24, 2006 Bio-Derived Liquids to Hydrogen Distributed Reforming Working Group Kick-Off Meeting.

179

Biographical sketch - Hao Yan | Center for Bio-Inspired Solar...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

New York University Chemistry Ph. D. 2001 b. Area of Specialization:Structural DNA nanotechnology, Molecular Self-assembly c. Appointments Member, Center for Bio-Inspired Solar...

180

Mission | Center for Bio-Inspired Solar Fuel Production  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

EFRC-501 graduate class Seminar schedules Mission The Mission of the Center for Bio-Inspired Solar Fuel Production (BISfuel) is to construct a complete system for...

Note: This page contains sample records for the topic "bio mass geo" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Center for Bio-inspired Solar Fuel Production Personnel | Center...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Center for Bio-inspired Solar Fuel Production Personnel Principal Investigators Postdoctoral Fellows Center researchers Graduate Students Undergraduate Students All Bisfuel Center...

182

Biographical sketch - Giovanna Ghirlanda | Center for Bio-Inspired...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Lipid Solvation and -Helical Structure by Deep-UV Resonance Raman Spectroscopy. Chem. Bio. Chem. 12, 2125-2128. Ghirlanda, G. (2009) "Design of membrane proteins: toward...

183

Bio-Derived Liquids to Hydrogen Distributed Reforming Targets (Presentation)  

Broader source: Energy.gov [DOE]

Presented at the 2007 Bio-Derived Liquids to Hydrogen Distributed Reforming Working Group held November 6, 2007 in Laurel, Maryland.

184

Next Generation Bio-Based & Sustainable Chemicals Summit  

Broader source: Energy.gov [DOE]

The 6th Annual Next Generation Bio-Based & Sustainable Chemicals Summit will be hosted in New Orleans, Louisiana, from February 35.

185

Biographical sketch - Devens Gust | Center for Bio-Inspired Solar...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

studies 1974 - 1975 b. Area of Specialization: Organic photochemistry, artificial photosynthesis c. Appointments Director, Center for Bio-Inspired Solar Fuel Production, Arizona...

186

Vibrational dynamics in isotopically substituted vitreous GeO2  

Science Journals Connector (OSTI)

We report the polarized Raman spectra of vitreous Ge O216, Ge O218, Ge70O2, and Ge74O2. This yields the O16?O18 and Ge70?Ge74 isotopic shifts for nearly all vibrational modes of the pure glassy material. The shifts of the broad high-frequency (infrared-active) modes are as predicted by a nearest-neighbor central-force ideal continuousrandom-network model. The shift of the broad dominant Raman line indicates a small but significant dependence on the Ge mass, and this suggests an effect of disorder not included in the central-force theory. The narrow "defect" line at 530 cm-1 appears to be all oxygen motion, and is tentatively identified with a regular ring of bonds. The narrow line at 345 cm-1 is unique in that it exhibits very little oxygen shift; it seems to consist largely of Ge motion, for which we have no firm explanation.

F. L. Galeener; A. E. Geissberger; G. W. Ogar; Jr.; R. E. Loehman

1983-10-15T23:59:59.000Z

187

The Joint BioEnergy Institute (JBEI): Developing New Biofuels by Overcoming Biomass Recalcitrance  

E-Print Network [OSTI]

Bioenerg. Res. (010-9086-2 The Joint BioEnergy Institute (JBEI): DevelopingThe mission of the Joint BioEnergy Institute is to advance

Scheller, Henrik Vibe; Singh, Seema; Blanch, Harvey; Keasling, Jay D.

2010-01-01T23:59:59.000Z

188

The DBCLS BioHackathon: standardization and interoperability for bioinformatics web services and workflows  

E-Print Network [OSTI]

The DBCLS BioHackathon: standardization and interoperabilityThe DBCLS BioHackathon: standardization and interoperabilitythis event, including the standardization of data exchange

2010-01-01T23:59:59.000Z

189

Towards Optimal Placement of Bio-Weapon Chris Kiekintveld  

E-Print Network [OSTI]

Towards Optimal Placement of Bio-Weapon Detectors Chris Kiekintveld Department of Computer Science, USA Email: lolerma@episd.edu Abstract--Biological weapons are difficult and expensive to detect. Within a limited budget, we can afford a limited number of bio-weapon detector stations. It is therefore

Ward, Karen

190

European Market Study for BioOil (Pyrolysis Oil)  

E-Print Network [OSTI]

European Market Study for BioOil (Pyrolysis Oil) Dec 15, 2006 Doug Bradley President Climate Change Solutions National Team Leader- IEA Bioenergy Task 40- Bio-trade 402 Third Avenue ·Ottawa, Ontario ·Canada K. Market Determining Factors 5. EU Country Perspectives 6. Potential European Markets 6.1. Pulp Mill Lime

191

Complex biological and bio-inspired systems  

SciTech Connect (OSTI)

The understanding and characterization ofthe fundamental processes of the function of biological systems underpins many of the important challenges facing American society, from the pathology of infectious disease and the efficacy ofvaccines, to the development of materials that mimic biological functionality and deliver exceptional and novel structural and dynamic properties. These problems are fundamentally complex, involving many interacting components and poorly understood bio-chemical kinetics. We use the basic science of statistical physics, kinetic theory, cellular bio-chemistry, soft-matter physics, and information science to develop cell level models and explore the use ofbiomimetic materials. This project seeks to determine how cell level processes, such as response to mechanical stresses, chemical constituents and related gradients, and other cell signaling mechanisms, integrate and combine to create a functioning organism. The research focuses on the basic physical processes that take place at different levels ofthe biological organism: the basic role of molecular and chemical interactions are investigated, the dynamics of the DNA-molecule and its phylogenetic role are examined and the regulatory networks of complex biochemical processes are modeled. These efforts may lead to early warning algorithms ofpathogen outbreaks, new bio-sensors to detect hazards from pathomic viruses to chemical contaminants. Other potential applications include the development of efficient bio-fuel alternative-energy processes and the exploration ofnovel materials for energy usages. Finally, we use the notion of 'coarse-graining,' which is a method for averaging over less important degrees of freedom to develop computational models to predict cell function and systems-level response to disease, chemical stress, or biological pathomic agents. This project supports Energy Security, Threat Reduction, and the missions of the DOE Office of Science through its efforts to accurately model biological systems at the molecular and cellular level. The project's impact encompasses applications to biofuels, to novel sensors and to materials with broad use for energy or threat reduction. The broad, interdisciplinary approach of CNLS offers the unparalleled strength of combining science backgrounds and expertise -a unique and important asset in attacking the complex science of biological organisms. This approach also allows crossfertilization, with concepts and techniques transferring across field boundaries.

Ecke, Robert E [Los Alamos National Laboratory

2009-01-01T23:59:59.000Z

192

Bio-Based Product Basics | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Bio-Based Product Basics Bio-Based Product Basics Bio-Based Product Basics August 14, 2013 - 1:19pm Addthis Almost all of the products we currently make from fossil fuels can also be made from biomass. These bioproducts, or bio-based products, are not only made from renewable sources, but they also often require less energy to produce than petroleum-based ones. Researchers have discovered that the process for making biofuels also can be used to make antifreeze, plastics, glues, artificial sweeteners, and gel for toothpaste. Other important building blocks for bio-based products are carbon monoxide and hydrogen. When biomass is heated with a small amount of oxygen, these two gases are produced in abundance. Scientists call this mixture biosynthesis gas. Biosynthesis gas can be used to make plastics and acids,

193

Bio-Based Product Basics | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Bio-Based Product Basics Bio-Based Product Basics Bio-Based Product Basics August 14, 2013 - 1:19pm Addthis Almost all of the products we currently make from fossil fuels can also be made from biomass. These bioproducts, or bio-based products, are not only made from renewable sources, but they also often require less energy to produce than petroleum-based ones. Researchers have discovered that the process for making biofuels also can be used to make antifreeze, plastics, glues, artificial sweeteners, and gel for toothpaste. Other important building blocks for bio-based products are carbon monoxide and hydrogen. When biomass is heated with a small amount of oxygen, these two gases are produced in abundance. Scientists call this mixture biosynthesis gas. Biosynthesis gas can be used to make plastics and acids,

194

Microsoft PowerPoint - ShanasBioSlides121307  

Broader source: Energy.gov (indexed) [DOE]

BioPreferred BioPreferred SM Making a Difference with Biobased Products Presented by: Shana Y. Love USDA Co-Program Manager * What are biobased products * What is the BioPreferred Program * USDA's Role and Strategy * Reporting and Tracking * What you can do now Topics for Discussion ...commercial or industrial products (other than food or feed) composed wholly or in significant part of biological products including renewable agricultural materials (plant, animal, and marine materials) or forestry materials. What are biobased products? BioPreferred makes it easy for you to make a difference by identifying and establishing new markets for biobased products. What is BioPreferred? 1. Federal Procurement Preference Program * Federal agencies and contractors are required to purchase qualifying

195

Bio-Med Variable Field MRI Project | Superconducting Magnet Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Bio-Med Variable Field MRI Project Bio-Med Variable Field MRI Project One of the Research and Development projects currently underway is the Bio-Med magnet. Destined for use within the solenoidal field of an MRI, it is designed for use where the subject, in this case a rat, must be tracked in order to obtain an image. Typical MRIs require the subject to remain stationary, and a rat will not normally oblige when it is awake. By moving the composite field (MRI Solenoid plus Bio-Med dipole) to track the rat, it is possible to allow the rat some freedom of motion, while still imaging the brain functions. For the rapid movement typical of a rat, the Bio-Med coil magnet must be capable of very rapid changes in field. Superconducting magnets are typically not designed to allow rapid field variations. To do so typically

196

Bio-pharmaceutical entrepreneurship in two Japanese and French bio-clusters: differences in founder's profiles and experience.  

E-Print Network [OSTI]

breakthroughs, a new type of firm has emerged in the pharmaceutical industry, called the New Biotechnology FirmBio-pharmaceutical entrepreneurship in two Japanese and French bio- clusters: differences academia to the pharmaceutical market and facilitate technological incursions into drug development

Boyer, Edmond

197

Horarios de clases Curso 2014-2015  

E-Print Network [OSTI]

MAT 1 17 ­ 18 GEO GEO BIO BIO (actividad / salida) 18 ­ 19 BIO FIS FIS FIS (actividad / salida) 19 Cruz Rot FIS: Física General Javier Used Villuendas / Juan Sabuco Larrosa GEO: Geología David Gómez / salida) BIO QUIM GEO QUIM 16 ­ 17 INF INF BIO QUIM FIS 17 ­ 18 INF INF GEO FIS MAT 2 18 ­ 19 BIO MAT 2

Rey Juan Carlos, Universidad

198

Pyrolysis of waste animal fats in a fixed-bed reactor: Production and characterization of bio-oil and bio-char  

SciTech Connect (OSTI)

Highlights: Produced bio-fuels (bio-oil and bio-char) from some animal fatty wastes. Investigated the effects of main parameters on pyrolysis products distribution. Determined the suitable conditions for the production of the maximum of bio-oil. Characterized bio-oils and bio-chars obtained from several animal fatty wastes. - Abstract: Several animal (lamb, poultry and swine) fatty wastes were pyrolyzed under nitrogen, in a laboratory scale fixed-bed reactor and the main products (liquid bio-oil, solid bio-char and syngas) were obtained. The purpose of this study is to produce and characterize bio-oil and bio-char obtained from pyrolysis of animal fatty wastes. The maximum production of bio-oil was achieved at a pyrolysis temperature of 500 C and a heating rate of 5 C/min. The chemical (GCMS analyses) and spectroscopic analyses (FTIR analyses) of bio-oil showed that it is a complex mixture consisting of different classes of organic compounds, i.e., hydrocarbons (alkanes, alkenes, cyclic compoundsetc.), carboxylic acids, aldehydes, ketones, esters,etc. According to fuel properties, produced bio-oils showed good properties, suitable for its use as an engine fuel or as a potential source for synthetic fuels and chemical feedstock. Obtained bio-chars had low carbon content and high ash content which make them unattractive for as renewable source energy.

Ben Hassen-Trabelsi, A., E-mail: aidabenhassen@yahoo.fr [Centre de Recherche et de Technologies de lEnergie (CRTEn), Technople Borj-Cdria, B.P 95, 2050, Hammam Lif (Tunisia); Kraiem, T. [Centre de Recherche et de Technologies de lEnergie (CRTEn), Technople Borj-Cdria, B.P 95, 2050, Hammam Lif (Tunisia); Dpartement de Gologie, Universit de Tunis, 2092, Tunis (Tunisia); Naoui, S. [Centre de Recherche et de Technologies de lEnergie (CRTEn), Technople Borj-Cdria, B.P 95, 2050, Hammam Lif (Tunisia); Belayouni, H. [Dpartement de Gologie, Universit de Tunis, 2092, Tunis (Tunisia)

2014-01-15T23:59:59.000Z

199

University of Illinois at ChicagoUniversity of Illinois at ChicagoUniversity of Illinois at ChicagoUniversity of Illinois at Chicago ----BioE Seminar SeriesBioE Seminar SeriesBioE Seminar SeriesBioE Seminar Series FridayFridayFridayFriday,,,, SeptemberSep  

E-Print Network [OSTI]

University of Illinois at ChicagoUniversity of Illinois at ChicagoUniversity of Illinois at ChicagoUniversity of Illinois at Chicago ---- BioE Seminar SeriesBioE Seminar SeriesBioE Seminar SeriesBioE Seminar Series 60607606076060760607 The Second Law of Energy Degradation Including Biological and Intelligent Processes The Second Law

Kostic, Milivoje M.

200

Optimal Homogenization of Perfusion Flows in Microfluidic Bio-Reactors: A Numerical Study  

E-Print Network [OSTI]

Optimal Homogenization of Perfusion Flows in Microfluidic Bio-Reactors: A Numerical Study Fridolin of Denmark, DTU Nanotech, Kongens Lyngby, Denmark Abstract In recent years, the interest in small-scale bio-reactors microfluidic bio-reactors, we develop a general design of a continually feed bio- reactor with uniform

Note: This page contains sample records for the topic "bio mass geo" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

MHK Technologies/bioSTREAM | Open Energy Information  

Open Energy Info (EERE)

bioSTREAM bioSTREAM < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage BioSTREAM.jpg Technology Profile Primary Organization BioPower Systems Pty Ltd Project(s) where this technology is utilized *MHK Projects/bioSTREAM Pilot Plant Technology Resource Click here Current/Tidal Technology Type Click here Reciprocating Device Technology Readiness Level Click here TRL 5/6: System Integration and Technology Laboratory Demonstration Technology Description The bioSTREAM is an oscillating hydrofoil based on the highly efficient propulsion of Thunniform-mode swimming species, such as shark, tuna, and mackerel. The bioSTREAM mimics the shape and motion characteristics of these species, but is a fixed device in a moving stream. In this configuration the propulsion mechanism is reversed, and the energy in the passing flow is used to drive the device motion against the resisting torque of an electrical generator. Due to the single point of rotation, this device can align with the flow in any direction and can assume a streamlined configuration to avoid excess loading in extreme conditions. Systems are being developed for 250 kW, 500 kW, and 1 MW capacities to match conditions in various locations.

202

Bio-methane via fast pyrolysis of biomass  

Science Journals Connector (OSTI)

Bio-methane, a renewable vehicle fuel, is today produced by anaerobic digestion and a 2nd generation production route via gasification is under development. This paper proposes a poly-generation plant that produces bio-methane, bio-char and heat via fast pyrolysis of biomass. The energy and material flows for the fuel synthesis are calculated by process simulation in Aspen Plus. The production of bio-methane and bio-char amounts to 15.5MW and 3.7MW, when the total inputs are 23MW raw biomass and 1.39MW electricity respectively (HHV basis). The results indicate an overall efficiency of 84% including high-temperature heat and the biomass to bio-methane yield amounts to 83% after allocation of the biomass input to the final products (HHV basis). The overall energy efficiency is higher for the suggested plant than for the gasification production route and is therefore a competitive route for bio-methane production.

Martin Grling; Mrten Larsson; Per Alvfors

2013-01-01T23:59:59.000Z

203

MHK Technologies/bioBase | Open Energy Information  

Open Energy Info (EERE)

bioBase bioBase < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage BioBase.jpg Technology Profile Primary Organization BioPower Systems Pty Ltd Technology Resource Click here Wave Technology Type Click here Seabed mooring system Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description BioPower Systems has developed a novel singular mounting system called bioBASE This system is modeled on the seabed holdfast mechanism used by large sea plants such as the giant kelp In such systems the vertical and lateral loads that are translated to the seabed by the main shaft are re distributed into many smaller elements that engage with the bottom strata This mechanism serves to distribute the forces and alleviate excess loads The bioBASE utilises rockbolting technology for the multiple roots of the system and does not require large specialised vessels or drill rigs due to the small gauge of each bolt

204

High Mass Accuracy and High Mass Resolving Power FT-ICR Secondary Ion Mass Spectrometry for Biological Tissue Imaging  

SciTech Connect (OSTI)

Biological tissue imaging by secondary ion mass spectrometry has seen rapid development with the commercial availability of polyatomic primary ion sources. Endogenous lipids and other small bio-molecules can now be routinely mapped on the micrometer scale. Such experiments are typically performed on time-of-flight mass spectrometers for high sensitivity and high repetition rate imaging. However, such mass analyzers lack the mass resolving power to ensure separation of isobaric ions and the mass accuracy for exact mass elemental formula assignment. We have recently reported a secondary ion mass spectrometer with the combination of a C60 primary ion gun with a Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR MS) for high mass resolving power, high mass measurement accuracy and tandem mass spectrometry capabilities. In this work, high specificity and high sensitivity secondary ion FT-ICR MS was applied to chemical imaging of biological tissue. An entire rat brain tissue was measured with 150 ?m spatial resolution (75 ?m primary ion spot size) with mass resolving power (m/?m50%) of 67,500 (at m/z 750) and root-mean-square measurement accuracy less than two parts-per-million for intact phospholipids, small molecules and fragments. For the first time, ultra-high mass resolving power SIMS has been demonstrated, with m/?m50% > 3,000,000. Higher spatial resolution capabilities of the platform were tested at a spatial resolution of 20 ?m. The results represent order of magnitude improvements in mass resolving power and mass measurement accuracy for SIMS imaging and the promise of the platform for ultra-high mass resolving power and high spatial resolution imaging.

Smith, Donald F.; Kiss, Andras; Leach, Franklin E.; Robinson, Errol W.; Pasa-Tolic, Ljiljana; Heeren, Ronald M.

2013-07-01T23:59:59.000Z

205

BioCarbon Fund Project Portfolio | Open Energy Information  

Open Energy Info (EERE)

Portfolio Portfolio Jump to: navigation, search Name BioCarbon Fund Project Portfolio Agency/Company /Organization World Bank Sector Land Focus Area Forestry Topics Market analysis, Policies/deployment programs, Background analysis Website http://wbcarbonfinance.org/Rou Country Albania, China, Colombia, Costa Rica, Ethiopia, Honduras, India, Kenya, Madagascar, Mali, Moldova, Nicaragua, Niger, Uganda Southern Europe, Eastern Asia, South America, Central America, Eastern Africa, Central America, Southern Asia, Eastern Africa, Eastern Africa, Western Africa, Eastern Europe, Central America, Western Africa, Eastern Africa References BioFund Projects[1] Background "The BioCarbon Fund provides carbon finance for projects that sequester or conserve greenhouse gases in forests, agro- and other ecosystems. Through

206

Joining : BioEnergy Science Center  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Inventions Inventions The effective translation of BESC research results into applications testing and potential deployment is an implicit part of reaching DOE's bioenergy goals. The BESC member institutions recognize that a common strategy is important to the success of BESC. To promote the commercialization of new technologies, our plan is to: Maintain a single portal for information about available technologies. This web site features inventions and commercial opportunities in addition to the information content related to the research program Provide a single point of contact for the licensing of new BESC inventions on behalf of our team (contact speckrr@ornl.gov) Periodically Host a "BioEnergy Nexus" venture forum Provide opportunity for research institutions and private companies

207

Bio Energy Investments BEI | Open Energy Information  

Open Energy Info (EERE)

Investments BEI Investments BEI Jump to: navigation, search Name Bio Energy Investments (BEI) Place Chinnor, United Kingdom Zip OX39 4TW Sector Biomass Product UK-based company involved in the design and building of biomass plants. Coordinates 51.702702°, -0.910879° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":51.702702,"lon":-0.910879,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

208

Bio Architecture Lab | Open Energy Information  

Open Energy Info (EERE)

Architecture Lab Architecture Lab Jump to: navigation, search Name Bio Architecture Lab Address 454 North 34th Street Place Seattle, Washington Zip 98103 Sector Biofuels Product Designing enzymes for new sources of biofuels Website http://www.ba-lab.com/ Coordinates 47.6502637°, -122.3536534° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":47.6502637,"lon":-122.3536534,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

209

Bio Oils Energy | Open Energy Information  

Open Energy Info (EERE)

Oils Energy Oils Energy Jump to: navigation, search Name Bio-Oils Energy Place Madrid, Spain Zip 28010 Sector Biofuels Product Madrid-based biofuels producer with plans to build a 500-tonne plant in Huelva. Coordinates 40.4203°, -3.705774° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.4203,"lon":-3.705774,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

210

Press Releases: BioEnergy Science Center  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Press Releases Press Releases Chu presents energy research, development vision to senators U.S. Energy Secretary Steven Chu testified at a U.S. Senate Energy and Natural Resources Committee hearing March 5. During his testimony, Chu presented his vision for energy research and development at the... Source: Checkbiotech (Trade), March 11, 2009 Keywords Matched: Oak Ridge National Country: Switzerland Region: SourceType: News Laboratory: ORNL Feed Source: Meltwater Chu presents energy research, development vision to senators: An example, Chu said, is the current biofuels research underway at the three BioEnergy Research Centers located at the Oak Ridge National Laboratory in Oak Ridge, Tenn.; the University of Wisconsin in Madison; and Lawrence Berkeley National Laboratory. March 10, 2009

211

An Account and Abstract of the Meteorological Observations Communicated to the Royal Society, for the Years 1731, 1732, 1733, 1734 and 1735. By Geo. Hadley, Esq; F. R. S.  

Science Journals Connector (OSTI)

...Observations Communicated to the Royal Society, for the Years 1731, 1732, 1733, 1734 and 1735. By Geo. Hadley, Esq; F. R. S. Geo. Hadley The Royal Society is collaborating with JSTOR to digitize, preserve, and extend access to Philosophical...

1742-01-01T23:59:59.000Z

212

The Treatment of Mixed Waste with GeoMelt In-Container Vitrification  

SciTech Connect (OSTI)

AMEC's GeoMelt{sup R} In-Container Vitrification (ICV){sup TM} has been used to treat diverse types of mixed low-level radioactive waste. ICV is effective in the treatment of mixed wastes containing polychlorinated biphenyls (PCBs) and other semi-volatile organic compounds, volatile organic compounds (VOCs) and heavy metals. The GeoMelt vitrification process destroys organic compounds and immobilizes metals and radionuclides in an extremely durable glass waste form. The process is flexible allowing for treatment of aqueous, oily, and solid mixed waste, including contaminated soil. In 2004, ICV was used to treat mixed radioactive waste sludge containing PCBs generated from a commercial cleanup project regulated by the Toxic Substances Control Act (TSCA), and to treat contaminated soil from Rocky Flats Environmental Technology Site. The Rocky Flats soil contained cadmium, PCBs, and depleted uranium. In 2005, AMEC completed a treatability demonstration of the ICV technology on Mock High Explosive from Sandia National Laboratories. This paper summarizes results from these mixed waste treatment projects. (authors)

Finucane, K.G.; Campbell, B.E. [AMEC Earth and Environmental, Inc., 1135 Jadwin Avenue, Richland, Washington 99352 (United States)

2006-07-01T23:59:59.000Z

213

Frontline BioEnergy LLC | Open Energy Information  

Open Energy Info (EERE)

Frontline BioEnergy LLC Frontline BioEnergy LLC Jump to: navigation, search Name Frontline BioEnergy LLC Place Ames, Iowa Zip 50010 Sector Bioenergy, Biomass Product Frontline BioEnergy Inc develops and installs gasification systems and individual equipment to convert biomass into valuable products. Coordinates 30.053389°, -94.742269° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.053389,"lon":-94.742269,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

214

Energy BioSciences Institute | Open Energy Information  

Open Energy Info (EERE)

BioSciences Institute BioSciences Institute Jump to: navigation, search Logo: Energy BioSciences Institute Name Energy BioSciences Institute Place Berkeley, California Zip 94720 Region Bay Area Coordinates 37.8744633°, -122.2526269° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.8744633,"lon":-122.2526269,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

215

Coulee Region Bio Fuels LLC | Open Energy Information  

Open Energy Info (EERE)

Region Bio Fuels LLC Region Bio Fuels LLC Jump to: navigation, search Name Coulee Region Bio-Fuels LLC Place Ettrick, Wisconsin Zip 54627 Sector Biofuels Product LLC created by PrairieFire BioFuels Coop, INOV8, and Arcade Pumping to distribute waste vegetable oil vehicle fuel in Wisconsin. Coordinates 44.16944°, -91.268549° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.16944,"lon":-91.268549,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

216

BioPower Application (United States) | Open Energy Information  

Open Energy Info (EERE)

BioPower Application (United States) BioPower Application (United States) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: BioPower Application (United States) Focus Area: Ethanol Topics: Potentials & Scenarios Website: rpm.nrel.gov/biopower/biopower/launch Equivalent URI: cleanenergysolutions.org/content/biopower-application-united-states,ht Language: English Policies: Deployment Programs DeploymentPrograms: Demonstration & Implementation BioPower is an interactive map for comparing biomass feedstocks and biopower by location. This tool helps users select from and apply biomass data layers to a map as well as query and download biopower and feedstock data. The analysis function offers common conversion factors that allow users to determine the potential biopower production for a selected

217

C3Bio.org - Wiki: Spero Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Index Search Search pages Search Go Article History Based on C3Bio chemical catalysis discovery, Spero Energy was founded to provide an integrated technology for single-step...

218

BioFuel Energy Corp | Open Energy Information  

Open Energy Info (EERE)

Energy Corp Place: Denver, Colorado Zip: 80202 Product: Develops, owns and operates ethanol facilities. References: BioFuel Energy Corp1 This article is a stub. You can help...

219

Workshop on Conversion Technologies for Advanced Biofuels - Bio...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Program U.S. Department of Energy Workshop on Conversion Technologies for Advanced Biofuels - Bio-Oils Report-Out Webinar February 9, 2012 2 Energy Efficiency & Renewable Energy...

220

Bio-oils Upgrading for Second Generation Biofuels  

Science Journals Connector (OSTI)

Bio-oils Upgrading for Second Generation Biofuels ... The present review is then focused on the upgrading possibilities of renewable nonedible feedstocks, obtained from biomass fast pyrolysis or liquefaction, in petroleum refineries, toward the production of second generation biofuels. ...

Ins Graa; Jos M. Lopes; Henrique S. Cerqueira; Maria F. Ribeiro

2012-11-21T23:59:59.000Z

Note: This page contains sample records for the topic "bio mass geo" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

BioGas Project Applications for Federal Agencies and Utilities  

Broader source: Energy.gov [DOE]

Presentation covers BioGas Project Applications for Federal Agencies and Utilities and is given at the Spring 2010 Federal Utility Partnership Working Group (FUPWG) meeting in Rapid City, South Dakota.

222

Center Objective | Center for Bio-Inspired Solar Fuel Production  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the fundamental principles of natural photosynthesis to the man-made production of hydrogen or other fuels from sunlight A multidisciplinary team of the Center for Bio-Inspired...

223

TransAtlas and BioPower Tools  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Innovation for Our Energy Future National Renewable Energy Laboratory Innovation for Our Energy Future Biopower Assessment Tool * BioPower is a web 2.0 mapping application that...

224

Bisfuel Logo | Center for Bio-Inspired Solar Fuel Production  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

EFRC-501 graduate class Seminar schedules Bisfuel Logo BISfuel is abbreviation of Bio-Inspired Solar Fuels BIS is a prefix or suffix designating the second instance of a...

225

Designing catalysts for hydrogen production | Center for Bio...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

production 12 Oct 2012 Dr. Anne Jones is a Principal Investigator in the Center of Bio-Inspired Solar Fuel production at Arizona State University. Her lab is involved in...

226

Contact information | Center for Bio-Inspired Solar Fuel Production  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Phone: (480) 965-1548 Fax: (480) 965-5927 Mailing address (US mail): Center for Bio-Inspired Solar Fuel Production Arizona State University P.O. Box 871604 Tempe, AZ...

227

| Center for Bio-Inspired Solar Fuel Production  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

State University will present a talk "Hydrogenases and Oxygenases as Blueprints for (Bio)catalytic Systems" Biodesign Auditorium at 4:00 pm 3 Apr 2014 BISfuel Seminar Ron...

228

KVK Bio Energy Pvt Ltd | Open Energy Information  

Open Energy Info (EERE)

KVK Bio Energy Pvt Ltd KVK Bio Energy Pvt Ltd Jump to: navigation, search Name KVK Bio Energy Pvt. Ltd Place Hyderabad, Andhra Pradesh, India Zip 500 082 Sector Biomass Product Hyderabad-based biomass project developer. KVK Bio operates as an IPP. Coordinates 17.6726°, 77.5971° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":17.6726,"lon":77.5971,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

229

Geo-neutrino Observation S.T. Dye^'^ M. Alderman^, M. Batygov^ J.G. Learned^ S. Matsuno^  

E-Print Network [OSTI]

-neutrino observation and describes the scientific capabilities of the deep ocean observatory, with emphasis on geology are in the decay series of uranium-238 and thorium-232. Terrestrial antineutrino observation relies on detecting comprehensive reviews of geo-neutrinos exist in the literature''^. Uranium-238 and thorium-232, the parent

Mcdonough, William F.

230

BIO?REFINERIES: BIOPROCESS TECHNOLOGIES FOR WASTE?WATER TREATMENT, ENERGY AND PRODUCT VALORIZATION  

Science Journals Connector (OSTI)

Increasing pressure is being exerted on communities and nations to source energy from forms other than fossil fuels. Also potable water is becoming a scarce resource in many parts of the world and there remains a large divide in the demand and utilization of plant products derived from genetically modified organisms (GMOs) and non?GMOs. The most extensive user and manager of terrestrial ecosystems is agriculture which is also the de facto steward of natural resources. As stated by Miller (2008) no other industry or institution comes close to the comparative advantage held for this vital responsibility while simultaneously providing food fiber and other biology?based products including energy. Since modern commercial agriculture is transitioning from the production of bulk commodities to the provision of standardized products and specific?attribute raw materials for differentiated markets we can argue that processes such as mass cultivation of microalgae and the concept of bio?refineries be seen as part of a new agronomy. EBRU is currently exploring the integration of bioprocess technologies using microalgae as biocatalysts to achieve waste?water treatment water polishing and endocrine disruptor (EDC) removal sustainable energy production and exploitation of the resultant biomass in agriculture as foliar fertilizer and seed coatings and for commercial extraction of bulk commodities such as bio?oils and lecithin. This presentation will address efforts to establish a fully operational solar?driven microalgae bio?refinery for use not only in waste remediation but to transform waste and biomass to energy fuels and other useful materials (valorisation) with particular focus on environmental quality and sustainability goals.

A. Keith Cowan

2010-01-01T23:59:59.000Z

231

Mission analysis for hybrid thermionic nuclear reactor LEO-to-GEO transfer applications  

SciTech Connect (OSTI)

This paper details the results of mission analyses concerning a hybrid STAR-C based system, which is based on a safe solid fuel form for high-temperature reactor core operation and a rugged planar thermionic energy converter for long-life steady-state electric power production. Hybrid power/propulsion system concepts are shown to offer superior performance capabilities for Low-Earth-Orbit (LEO) to Geosynchronous-Earth-Orbit (GEO) orbital transfer applications over chemical propulsion systems. A key feature of the hybrid power/propulsion system is that the propulsion system uses the on-board payload power system. Mission results for hybrid concepts using Nuclear Thermal Propulsion (NTP), Nuclear Electric Propulsion (NEP), and combination of NTP and NEP are discussed.

Widman, F.W. Jr.; North, D.M. (Rockwell International/Rocketdyne Division, 6633 Canoga Avenue, Canoga Park, California 91303 (United States)); Choong, P.T.; Teofilo, V.L. (Lockheed Missiles and Space Company, Inc., 1111 Lockheed Way, Synnyvale, California 94088 (United States))

1993-01-10T23:59:59.000Z

232

Raman spectroscopic study of the pressure-induced coordination change in GeO2 glass  

Science Journals Connector (OSTI)

Raman spectra of GeO2 glass are recorded in situ as a function of pressure to 56 GPa at room temperature. Under initial compression to 6 GPa the main 419-cm-1 Raman band shifts to higher frequency and broadens with a gradual loss of intensity. These spectral changes are consistent with an increase in distortion of GeO4 tetrahedra and a decrease in the intertetrahedral bond angle with pressure. Between 6 and 13 GPa (the pressure range of the reported fourfold- to sixfold-coordination change of Ge in germania glass) the main Raman band broadens, and the scattering intensity is dramatically reduced with little shift in peak frequency. This pressure interval is also marked with the appearance and growth of a broad low-frequency band near 240 cm-1. The inferred pressure-induced coordination change occurs without the formation of nonbridging oxygens. Above 13 GPa no further major structural changes are indicated by the Raman data taken with pressures up to 56 GPa. On decompression the back transformation of octahedral Ge to tetrahedral coordination is complete but exhibits a large hysteresis. The Raman data indicate that the high-coordinate germanium species are retained down to pressures of at least 2.3 GPa. In samples decompressed from high pressures, the intensity of the 520-cm-1 defect band is considerably enhanced relative to that in normal germania glass, consistent with an increase in three-membered-ring population. It is proposed that a large component of this increase in three-membered rings is a result of the reversion of OIII species to tetrahedra-bridging OII species under decompression.

Dan J. Durben and George H. Wolf

1991-01-15T23:59:59.000Z

233

The mass  

Science Journals Connector (OSTI)

The mass of the charged Higgs boson at the 1-loop level is investigated, assuming the CP symmetry to be violated explicitly in the Higgs sector of the minimal supersymmetric standard model (MSSM). It is found that there is a parameter region of the MSSM where the presence of explicit CP violation in the Higgs sector yields negative radiative corrections to the charged Higgs boson mass. Thus, the charged Higgs boson in the MSSM may have as low a mass as 60GeV at the 1-loop level, if the CP symmetry is violated. This lower bound may be improved by the Higgs search at LEP2, which imposes experimental constraints on the charged Higgs mass, as well as on the masses of the neutral Higgs bosons. Hence, LEP2 can constrain experimentally the charged Higgs mass to be not smaller than 109GeV under our assumption. In addition, it sets 75GeV as the lower bound on the mass of the lightest neutral Higgs boson, and 84GeV for that of the next-to-lightest neutral Higgs boson.

Seung Woo Ham; Sun Kun Oh; Eun Jong Yoo; Hyun Kyu Lee

2001-01-01T23:59:59.000Z

234

Bio-based production of the platform chemical 1,5-diaminopentane  

Science Journals Connector (OSTI)

In the rising era of bio-economy, the five carbon compound 1,5-diaminopentane receives increasing interest as platform chemical, especially as innovative building block for bio...Corynebacterium glutamicum or Esc...

Stefanie Kind; Christoph Wittmann

2011-09-01T23:59:59.000Z

235

E85/b20 for I-65 AND BEYOND: Putting BioFuels in Your Vehicles...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

b20 for I-65 AND BEYOND: Putting BioFuels in Your Vehicles from Lake Michigan to the Gulf of Mexico E85b20 for I-65 AND BEYOND: Putting BioFuels in Your Vehicles from Lake...

236

BioDiesel Content On-board monitoring | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

BioDiesel Content On-board monitoring BioDiesel Content On-board monitoring onboard fuel monitoring of fuel and biofuel qualities using an optical sensor for engine...

237

Development of a bio-sensing technique for the detection of prions in foods  

E-Print Network [OSTI]

An affinity based bio-sensing technique was developed using an anti-transmissible spongiform encephalopathy monoclonal antibody as a bio-recognition molecule. Fluorescein iso-thio-cynate (FITC), labeled with a prion epitope (QYQRES), was used as a...

Anand, Ashish

2005-02-17T23:59:59.000Z

238

Using mobile distributed pyrolysis facilities to deliver a forest residue resource for bio-fuel production.  

E-Print Network [OSTI]

??Distributed mobile conversion facilities using either fast pyrolysis or torrefaction processes can be used to convert forest residues to more energy dense substances (bio-oil, bio-slurry (more)

Brown, Duncan

2013-01-01T23:59:59.000Z

239

Simulation of Bio-syngas Production from Biomass Gasification via Pressurized Interconnected Fluidized Beds  

Science Journals Connector (OSTI)

Bio-syngas production from biomass gasification via pressurized interconnected fluidized...T g), gasification pressure (p g) and steam to biomass ratio (S/B) on bio-syngas production

Fei Feng; Guohui Song; Laihong Shen

2014-01-01T23:59:59.000Z

240

DuPont's Journey to Build a Global Cellulosic BioFuel Business...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

& Regulation Cell Tissue Culture Protein Engineering Molecular Breeding Genomics Bio- informatics Entomology Plant Genetics Particle & Dispersion Science World Class...

Note: This page contains sample records for the topic "bio mass geo" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

BioGas Energy Inc | Open Energy Information  

Open Energy Info (EERE)

BioGas Energy Inc BioGas Energy Inc Jump to: navigation, search Name BioGas Energy Inc Address 4509 Interlake Ave N # 222 Place Seattle, Washington Zip 98103 Sector Biomass Product Makes anaerobic digesters that convert manure into methane for fuel Website http://www.biogas-energy.com/s Coordinates 47.6163159°, -122.3463563° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":47.6163159,"lon":-122.3463563,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

242

Kai BioEnergy Corporation | Open Energy Information  

Open Energy Info (EERE)

Kai BioEnergy Corporation Kai BioEnergy Corporation Jump to: navigation, search Name Kai BioEnergy Corporation Place Del Mar, California Zip 92014 Sector Biofuels Product Developing technologies to produce biodiesel from algae Website http://www.kaibioenergy.com/ Coordinates 32.964294°, -117.265191° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.964294,"lon":-117.265191,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

243

Bio Hallman | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Staff » Bio Staff » Bio Hallman Nuclear Physics (NP) NP Home About Staff Organization Chart .pdf file (32KB) NP Budget NP Committees of Visitors Directions Jobs Labs & Universities Nuclear Physics Related Brochures Research Facilities Science Highlights Benefits of NP Funding Opportunities Nuclear Science Advisory Committee (NSAC) News & Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3613 F: (301) 903-3833 E: sc.np@science.doe.gov More Information » Staff Bio Hallman Print Text Size: A A A RSS Feeds FeedbackShare Page Associate Director of Science for Nuclear Physics Timothy J. Hallman Dr. Timothy J. Hallman has served as the Associate Director for Nuclear Physics of the Office of Science since November 23, 2009. With an annual

244

Iroquois Bio Energy Co LLC | Open Energy Information  

Open Energy Info (EERE)

Iroquois Bio Energy Co LLC Iroquois Bio Energy Co LLC Jump to: navigation, search Name Iroquois Bio-Energy Co LLC Place Rensselaer, Indiana Zip 47978 Product Iroquois is developing a project near Rensselaer, Indiana, making ethanol from corn. Coordinates 42.64379°, -73.742173° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.64379,"lon":-73.742173,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

245

Bio-Heating Oil Tax Credit (Personal) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Bio-Heating Oil Tax Credit (Personal) Bio-Heating Oil Tax Credit (Personal) Bio-Heating Oil Tax Credit (Personal) < Back Eligibility Commercial Residential Savings Category Biofuels Alternative Fuel Vehicles Bioenergy Maximum Rebate $500 per year Program Info Start Date 01/01/2008 State Maryland Program Type Personal Tax Credit Rebate Amount $0.03/gallon of biodiesel Provider Revenue Administration Division Maryland allows individuals and corporations to take an income tax credit of $0.03/gallon for purchases of biodiesel used for space heating or water heating. The maximum credit is $500 per year. It may not be refunded or carried over to subsequent years. In order to qualify for the tax credit, the heating oil must be at least 5% biodiesel sourced from U.S. Environmental Protection Agency (EPA) approved feedstocks or be accepted

246

MHK Projects/BioSTREAM Pilot Plant | Open Energy Information  

Open Energy Info (EERE)

BioSTREAM Pilot Plant BioSTREAM Pilot Plant < MHK Projects(Redirected from MHK Projects/bioSTREAM Pilot Plant) Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":-39.9872,"lon":148.051,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

247

Bio-Heating Oil Tax Credit (Corporate) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Bio-Heating Oil Tax Credit (Corporate) Bio-Heating Oil Tax Credit (Corporate) Bio-Heating Oil Tax Credit (Corporate) < Back Eligibility Commercial Industrial Savings Category Biofuels Alternative Fuel Vehicles Bioenergy Maximum Rebate $500 per year Program Info Start Date 01/01/2008 State Maryland Program Type Corporate Tax Credit Rebate Amount $0.03/gallon Provider Revenue Administration Division Maryland allows individuals and corporations to take an income tax credit of $0.03/gallon for purchases of biodiesel used for space heating or water heating. The maximum credit is $500 per year. It may not be refunded or carried over to subsequent years. In order to qualify for the tax credit, the heating oil must be at least 5% biodiesel sourced from U.S. Environmental Protection Agency (EPA) approved feedstocks or be accepted

248

Creative Discovery Museum : BioEnergy Science Center  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The Creative Discovery Museum The Creative Discovery Museum BESC reaches thousands of students with 'Farming for Fuels' lessons The DOE BioEnergy Science Center and the Creative Discovery Museum in Chattanooga, TN, have developed a set of hands-on lesson plans on BioFuels aimed at students in fourth, fifth and sixth grades. These "Farming for Fuels" lessons educate students about the carbon cycle, the use of lignocellulosic biomass as a substrate for the production of biofuels and the technical and economic obstacles to a bio-based fuel economy. The nationally expanded outreach program has now reached more than 60,000 students, teachers and parents by partnering with museums and centers in Tennessee, Georgia, Texas, Michigan, Illinois, Florida, New York and Arizona. To extend use of the lessons to the general public we have assembled

249

Amrit Bio Energy Industries Ltd | Open Energy Information  

Open Energy Info (EERE)

Amrit Bio Energy Industries Ltd Amrit Bio Energy Industries Ltd Jump to: navigation, search Name Amrit Bio Energy & Industries Ltd. Place Kolkata, West Bengal, India Zip 700017 Sector Biomass Product Kolkata-based biomass project developer. Subsidiary of Amrit Projects Ltd. (APL). Coordinates 22.52667°, 88.34616° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":22.52667,"lon":88.34616,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

250

Bio Atcher | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Staff » Bio Staff » Bio Atcher Nuclear Physics (NP) NP Home About Staff Organization Chart .pdf file (32KB) NP Budget NP Committees of Visitors Directions Jobs Labs & Universities Nuclear Physics Related Brochures Research Facilities Science Highlights Benefits of NP Funding Opportunities Nuclear Science Advisory Committee (NSAC) News & Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3613 F: (301) 903-3833 E: sc.np@science.doe.gov More Information » Staff Bio Atcher Print Text Size: A A A RSS Feeds FeedbackShare Page Director of NIDC Robert Atcher On December 11, 2009, Dr. Jehanne Simon-Gillo issued the following statement: Dear Colleagues, I would like to announce the appointment of Robert W. Atcher as Director of

251

Borgford BioEnergy LLC | Open Energy Information  

Open Energy Info (EERE)

Borgford BioEnergy LLC Borgford BioEnergy LLC Jump to: navigation, search Name Borgford BioEnergy LLC Place Colville, Washington State Zip 99114 Sector Biomass Product Washington-based developer of biomass-to-energy projects. Coordinates 48.54657°, -117.904754° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":48.54657,"lon":-117.904754,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

252

Varam Bio Energy P Ltd | Open Energy Information  

Open Energy Info (EERE)

Varam Bio Energy P Ltd Varam Bio Energy P Ltd Jump to: navigation, search Name Varam Bio Energy (P) Ltd Place Hyderabad, Andhra Pradesh, India Zip 532005 Sector Biomass Product Hyderabad-based biomass project developer that is known to be setting up a 10MW biomass project in Bhandara district, Maharashtra. Coordinates 17.6726°, 77.5971° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":17.6726,"lon":77.5971,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

253

Jyothi Bio Energies Ltd JBEL | Open Energy Information  

Open Energy Info (EERE)

Jyothi Bio Energies Ltd JBEL Jyothi Bio Energies Ltd JBEL Jump to: navigation, search Name Jyothi Bio-Energies Ltd. (JBEL) Place Hyderabad, Andhra Pradesh, India Zip 500029 Sector Biomass Product Hyderabad-based biomass project developer. Coordinates 17.6726°, 77.5971° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":17.6726,"lon":77.5971,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

254

PrairieFire BioFuels Cooperative | Open Energy Information  

Open Energy Info (EERE)

PrairieFire BioFuels Cooperative PrairieFire BioFuels Cooperative Jump to: navigation, search Name PrairieFire BioFuels Cooperative Place Madison, Wisconsin Zip 53704 Product A member-owned cooperative which produces and distributes vegetable oil-based biodiesel. Coordinates 43.07295°, -89.386694° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.07295,"lon":-89.386694,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

255

E3 BioFuels | Open Energy Information  

Open Energy Info (EERE)

BioFuels BioFuels Jump to: navigation, search Name E3 BioFuels Place Shawnee, Kansas Zip 66218 Product Owns a 90.9m litres-a-year ethanol plant in Nebraska; an anaerobic digester generates all the biogas needed to operate the ethanol plant. Coordinates 42.746644°, -105.010904° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.746644,"lon":-105.010904,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

256

Seattle Biodiesel aka Seattle BioFuels | Open Energy Information  

Open Energy Info (EERE)

Seattle Biodiesel aka Seattle BioFuels Seattle Biodiesel aka Seattle BioFuels Jump to: navigation, search Name Seattle Biodiesel (aka Seattle BioFuels) Place Seattle, Washington Sector Renewable Energy Product Subsidiary of Imperium Renewables which operates the 19m liter Seattle biodiesel plant. Coordinates 47.60356°, -122.329439° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":47.60356,"lon":-122.329439,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

257

Agridea BioPower GmbH | Open Energy Information  

Open Energy Info (EERE)

Agridea BioPower GmbH Agridea BioPower GmbH Jump to: navigation, search Name Agridea BioPower GmbH Place Luebbecke, North Rhine-Westphalia, Germany Zip 32312 Product German developer and operator of biogas plants. Coordinates 52.303048°, 8.612882° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":52.303048,"lon":8.612882,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

258

Carbon Green BioEnergy LLC | Open Energy Information  

Open Energy Info (EERE)

BioEnergy LLC BioEnergy LLC Jump to: navigation, search Name Carbon Green BioEnergy LLC Place Chicago, Illinois Zip 60603 Sector Efficiency Product Chicago-based company dedicated to optimising biofuel production through management, energy efficiency, and operational improvements. Coordinates 41.88415°, -87.632409° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.88415,"lon":-87.632409,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

259

Macroscale Properties of Porous Media from a Network Model of Bio lm Processes  

E-Print Network [OSTI]

Macroscale Properties of Porous Media from a Network Model of Bio#12;lm Processes Brian J. Suchomel porosity and permeability changes in a porous medium as a result of bio#12;lm buildup in the pore spaces. A bio#12;lm consists of bacteria and extracellular polymeric substances (EPS) bonded together

260

The Northeast Forest Bio-products Puzzle David T. Damery and Jeff Benjamin  

E-Print Network [OSTI]

to manufacture Levulinic Acid (LA). LA can then be used as a "building block" for bio-diesel, polymers, plasticsThe Northeast Forest Bio-products Puzzle David T. Damery and Jeff Benjamin Forest products industry, landowners, universities, equipment manufacturers and governments share an interest in the emerging bio

Schweik, Charles M.

Note: This page contains sample records for the topic "bio mass geo" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

A Glucose BioFuel Cell Implanted in Rats Philippe Cinquin1  

E-Print Network [OSTI]

A Glucose BioFuel Cell Implanted in Rats Philippe Cinquin1 *, Chantal Gondran2 , Fabien Giroud2 powerful ones, Glucose BioFuel Cells (GBFCs), are based on enzymes electrically wired by redox mediators applications. Citation: Cinquin P, Gondran C, Giroud F, Mazabrard S, Pellissier A, et al. (2010) A Glucose BioFuel

Paris-Sud XI, Université de

262

Framework for using grocery data for early detection of bio-terrorism attacks  

E-Print Network [OSTI]

Framework for using grocery data for early detection of bio-terrorism attacks #3; Anna Goldenberg 15213 anya@cmu.edu October 16, 2001 Abstract Early detection of epidemics and bio-terrorism attacks. The main goal of this project is to investigate the possibility of detecting epidemics and bio-terrorism

Goldenberg, Anna

263

Bio-based Thermochromic Intelligent Roof Coating Research Project |  

Broader source: Energy.gov (indexed) [DOE]

based Thermochromic Intelligent Roof based Thermochromic Intelligent Roof Coating Research Project Bio-based Thermochromic Intelligent Roof Coating Research Project The Department of Energy is conducting research into bio-based thermochromic intelligent roof coatings. The coatings are developed from waste cooking oil. Project Description This project seeks to develop and demonstrate a waste cooking oil-based thermochromic smart roof coating technology that will adjust light transmission in response to temperature changes. This will reduce energy demands for temperature regulation. The project will also study the effects of different oil sources on coating properties. Project Partners This project is being undertaken between the Department of Energy and United Environment & Energy. Project Goals

264

Cost Analysis of Bio-Derived Liquids Reforming (Presentation)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Analysis of Analysis of Bio-Derived Liquids Reforming Brian James Directed Technologies, Inc. 6 November 2007 This presentation does not contain any proprietary, confidential, or otherwise restricted information Objective * Assess cost of H 2 from bio-derived liquids * Looking at forecourt scale systems: 100-1500kg/day * Emphasis on Ethanol * Looking at both "conventional" and "advanced" systems * Interaction with the Researchers is bi-directional * Researchers help me with catalysts, performance, configurations * I can assist Researchers with system studies, configurations, and system performance estimates * Output of my work will be: * System/Configuration Definition * Performance specification & optimization * Capital cost estimation

265

Modeling of Air Pollution over the Ganges Basin and North-West Bay of Bengal in the Early Post-monsoon Season Using the NASA GEOS-5 Model  

Science Journals Connector (OSTI)

The NASA GEOS-5 model was used to extend the MERRA reanalysis with five atmospheric aerosol components (sulfates, organic carbon, black carbon, desert dust, and sea-salt). The obtained eight-year (20022009) MERR...

Pavel Kishcha; Arlindo M. da Silva

2014-01-01T23:59:59.000Z

266

Yngve Kristoffersen, University of Bergen, Allegaten 41, Bergen, 5007 Norway, yngve.kristoffersen@geo.uib.no Coen Hofstede, AWI, Bremerhaven, Germany  

E-Print Network [OSTI]

.kristoffersen@geo.uib.no Coen Hofstede, AWI, Bremerhaven, Germany Olaf Eisen, AWI, Bremerhaven, Germany Lomonosov Canada Basin Coen Hofstede, AWI, Bremerhaven, Germany Olaf Eisen, AWI, Bremerhaven, Germany Richard Blenkner, Dept

Kristoffersen, Yngve

267

Plant variability and bio-fuel properties  

SciTech Connect (OSTI)

Thermochemically converting biomass feedstocks to fuels is one of the major thrusts of renewable energy research at the National Renewable Energy Laboratory. Among several thermochemical routes is the fast pyrolysis process which produces liquid fuels from woody and herbaceous biomass feedstocks. Because of the large variability in the composition of biomass feedstocks due to plant variety and environmental factors, it is important to assess how these variabilities affect the properties of thermochemical liquid fuels (bio-oils) produced from these resources. Similar varieties of switchgrass (Panicum virgatum L.) that were grown at three different locations and three hybrid poplar clones that were grown at one location were used in these studies. The feedstocks were pyrolyzed in a fluidized bed reactor at 500{degrees}C. The gas products were analyzed on-line and the liquid products were analyzed for elemental composition and higher heating values. Apart from small difference in the yield of char/ash, the yields of pyrolysis oils and gases were similar for switchgrass feedstocks grown at all three locations. The char/ash yields ranged from 21.1 to 22.9%; total liquids (organic liquids + water) yields ranged from 59%-60.5%; and the gas yields ranged from 11%-12% (wt). The higher heating values (HHVs) of the oils were similar (24.3-24.6 MJ/kg). For the hybrid poplar feedstocks, total liquids (65%-69%), char/ash (10%-11%), and gas yields (15.6%-17%) were similar for all three poplar clones; however, the elemental composition and the HHVs of the pyrolysis oils had statistically significant differences. The NC5260 pyrolysis oils had lower HHV (22.0{+-}0.5 MG/kg) compared to the DN clones (23.2{+-}0.3 MJ/kg). The yields of total liquids and organics for the three clones were higher than those for the switchgrass feedstocks. The gas yields for the hybrid poplar clones were higher than for the switchgrass, but had compositions similar to those of the switchgrass feedstocks.

Agblevor, F.A.; Besler-Guran, S.; Wiselogel, A.E. [National Renewable Energy Lab., Golden, CO (United States)

1995-11-01T23:59:59.000Z

268

SRS 2010 Vegetation Inventory GeoStatistical Mapping Results for Custom Reaction Intensity and Total Dead Fuels.  

SciTech Connect (OSTI)

This report of the geostatistical analysis results of the fire fuels response variables, custom reaction intensity and total dead fuels is but a part of an SRS 2010 vegetation inventory project. For detailed description of project, theory and background including sample design, methods, and results please refer to USDA Forest Service Savannah River Site internal report SRS 2010 Vegetation Inventory GeoStatistical Mapping Report, (Edwards & Parresol 2013).

Edwards, Lloyd A. [Leading Solutions, LLC.; Paresol, Bernard [U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station, Portland, OR.

2014-09-01T23:59:59.000Z

269

EPR investigation of defects in Bi12GeO20:Cr single crystal irradiated by high energy uranium ions  

E-Print Network [OSTI]

The results of investigations of EPR spectra of chromium doped $Bi_{12} GeO_{20} (BGO)$ single crystals are presented. The crystals were studied before and after irradiation by the $^{235}U$ ions with energy 9.47 MeV/u and fluency $5 \\cdot 10^{2} cm^{-2}$. The effect of heating irradiated samples in air on the EPR spectra is also studied.

Stefaniuk, I; Rogalska, I; Wrbel, D

2013-01-01T23:59:59.000Z

270

Steam Gasification of Bio-Oil and Bio-Oil/Char Slurry in a Fluidized Bed Reactor  

Science Journals Connector (OSTI)

In the present study, the steam gasification of bio-oil/char slurry was investigated using a lab-scale fluidized bed reactor filled with either Ni-based naphtha steam reforming catalyst or silica sand. ... LOI: Loss on ignition after a 30 min fusion at 1000 C. ... Table 5. Product Gas Composition (in Mol %) and Heating Value from Steam Gasification of the Bio-Oil and the Slurry with the Catalyst and the Sand at T ? 800C, H2O/C ? 5.5, and GC1HSV ? 340 h?1; Wet with Nitrogen and Dry Nitrogen Free Basisa ...

Masakazu Sakaguchi; A. Paul Watkinson; Naoko Ellis

2010-08-23T23:59:59.000Z

271

BioFuelBox Corporation | Open Energy Information  

Open Energy Info (EERE)

BioFuelBox Corporation BioFuelBox Corporation Jump to: navigation, search Logo: BioFuelBox Corporation Name BioFuelBox Corporation Address 50 Las Colinas Lane Place San Jose, California Zip 95119 Sector Biofuels Product Makes a modular container that produces biofuel cost-effectively Website http://www.biofuelbox.com/ Coordinates 37.237774°, -121.777361° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.237774,"lon":-121.777361,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

272

Phillips BioFuel Supply Co | Open Energy Information  

Open Energy Info (EERE)

Phillips BioFuel Supply Co Phillips BioFuel Supply Co Jump to: navigation, search Name Phillips BioFuel Supply Co Place Williston, Vermont Product Phillips BioFuel Supply Company was created specifically to create an area wide marketing and distribution network for agriculturally sourced biodiesel fuel in Vermont, eastern upstate NY, western NH and Quebec south in Canada. Coordinates 44.45307°, -73.116729° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.45307,"lon":-73.116729,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

273

CleanTech Meets BioTech August 25, 2009  

E-Print Network [OSTI]

. · Cleantech is driven by productivity-based purchasing, and therefore enjoys broader market economics, withj y ti i· Green Marketing & Advertising · Biological Solutions · Renewable Energy · Carbon Markets covering key regulators of plant genetic pathways Building a BioEnergy Seed business for the biofuels d bl

Puglisi, Joseph

274

BioMed Central Page 1 of 11  

E-Print Network [OSTI]

-induced lung injury Karmene Ahamed1, Ralph Epaud1, Martin Holzenberger2, Monique Bonora1, Jean-François Flejou3 of Pathology, Hospital Saint-Antoine, 75012 Paris, France Email: Karmene Ahamed - ahamed://respiratory-research.com/content/6/1/31 © 2005 Ahamed et al; licensee BioMed Central Ltd. This is an Open Access article distributed

Paris-Sud XI, Université de

275

Ringvorlesung Sommersemester 2011 RNA im Jahr der (Bio-)Chemie  

E-Print Network [OSTI]

Seite 9 Ringvorlesung Sommersemester 2011 RNA im Jahr der (Bio-)Chemie Mittwoch, 22. 06. 2011, 17:00 bis 18:00 Uhr, Hörsaal B, Fachbereich Chemie, Martin-Luther-King-Platz 6 Aptamere ­ molekulare Chemie, Universität Hamburg www.chemie.uni-hamburg.de/bc/hahn/Mitarbeiter/index.html Das Aufgabenspektrum

Hamburg,.Universität

276

Ringvorlesung Sommersemester 2011 RNA im Jahr der (Bio-)Chemie  

E-Print Network [OSTI]

Seite 11 Ringvorlesung Sommersemester 2011 RNA im Jahr der (Bio-)Chemie Mittwoch, 06. 07. 2011, 17:00 bis 18:00 Uhr Hörsaal B, Fachbereich Chemie, Martin-Luther-King-Platz 6 Die RNA-Welt Theorie ­ von

Hamburg,.Universität

277

BioMed Central Page 1 of 12  

E-Print Network [OSTI]

BioMed Central Page 1 of 12 (page number not for citation purposes) BMC Microbiology Open Access Gilbert Greub1, François Collyn2,3, Lionel Guy3 and Claude-Alain Roten*3 Address: 1Center for Research on Intracellular Bacteria, Institute of Microbiology, Faculty of Biology and Medicine, University of Lausanne

Paris-Sud XI, Université de

278

Bio-inspired Slowness for Robotic Systems Ronald C. Arkin  

E-Print Network [OSTI]

Bio-inspired Slowness for Robotic Systems Ronald C. Arkin Mobile Robot Laboratory School of Interactive Computing Georgia Institute of Technology Atlanta, GA USA 30332 arkin@gatech.edu Abstract: Slowness in robotic systems is a quality that is typically undervalued. It is our contention

279

An assessment of chemical kinetics for bio-syngas combustion  

Science Journals Connector (OSTI)

Abstract The present work was devoted to assess the chemical kinetic modelling of bio-syngas combustion. Three reaction mechanisms (the Gas Research Institute-mechanism GRI 3.0, its skeletal version DRM22 and Heghes C1C4 mechanism) were considered for that purpose along with series of ignition delay measurements relevant to the burning of bio-syngas. For experiments involving methane with and without considerably smaller quantities of added hydrogen, the measurements are generally overpredicted by Heghes mechanism but underpredicted by the GRI and DRM mechanisms. Experiments involving various blends of the bio-syngas constituents were also simulated. The strong discrepancies present for high pressures and temperatures and low pressures and temperatures could be correlated to five reactions which are only influential under those conditions, four of which involving HO 2 . The effects of variations in the bio-syngas composition on combustion were numerically investigated by using the GRI-mechanism. Globally it was found that an increase in any of the constituents goes hand in hand with higher amount of CO released. The ignition delay is either shortened or left unchanged as the initial concentration is increased except in the case of methane where it is raised. The results were in good agreement with experimental observations made elsewhere.

M. Fischer; X. Jiang

2014-01-01T23:59:59.000Z

280

Elec 331 -Bio-Potential Electrodes Review Definitions  

E-Print Network [OSTI]

voltages ­ Ohmic (Vr) · Resistance of surface layer · Resistance of electrolyte ­ Concentration (Vc) · Ion V I V I #12;Elec 331 - Bio-Potential Electrodes 5 Equivalent Circuit · Vhc = half-cell potential · Vop = over-potential · CJ = junction capacitance · RJ = junction resistance · RE = electrolyte

Pulfrey, David L.

Note: This page contains sample records for the topic "bio mass geo" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

BioMed Central Page 1 of 16  

E-Print Network [OSTI]

BioMed Central Page 1 of 16 (page number not for citation purposes) BMC Microbiology Open Access Control, Jeroen Bosch Hospital,'s-Hertogenbosh, The Netherlands, 2Laboratory of Microbiology, Wageningen University, Wageningen, the Netherlands and 3School of Physics and Astronomy, Raymond & Beverly Sackler

Jacob, Eshel Ben

282

BioMed Central Page 1 of 3  

E-Print Network [OSTI]

BioMed Central Page 1 of 3 (page number not for citation purposes) BMC Bioinformatics Open Access, France, Germany, Greece, India, Japan, Korea, the Netherlands, Poland, Sin- gapore, Switzerland, Thailand://www.biomedcentral.com/1471-2105/10/S1/S1 Page 2 of 3 (page number not for citation purposes) the biological contexts of th

283

BioMed Central Page 1 of 14  

E-Print Network [OSTI]

BioMed Central Page 1 of 14 (page number not for citation purposes) Malaria Journal Open Access 7HT, UK, 2Laboratory of Entomology, Wageningen University, 6709 PD Wageningen, The Netherlands, 3 Amsterdam, The Netherlands and 4Ifakara Health Institute, PO Box 78373, Dar es Salaam, Tanzania Email

Loon, E. Emiel van

284

BioMed Central Page 1 of 4  

E-Print Network [OSTI]

BioMed Central Page 1 of 4 (page number not for citation purposes) BMC Bioinformatics Open Access, The Netherlands, 4Bioinformatics and Statistics, Dept. of Molecular Biology, Netherlands Cancer Institute, Amsterdam, The Netherlands and 5Department of Biology and PENN Genome Frontiers Institute, University

Gent, Universiteit

285

BioMed Central Page 1 of 7  

E-Print Network [OSTI]

BioMed Central Page 1 of 7 (page number not for citation purposes) BMC Bioinformatics Open Access University, Padualaan 8, 3584 CH, The Netherlands and 2Academic Biomedical Centre, Utrecht University, Yalelaan 1, 3584 CL Utrecht, The Netherlands Email: Jos Boekhorst* - J.Boekhorst@uu.nl; Berend Snel - B

Utrecht, Universiteit

286

BioMed Central Page 1 of 16  

E-Print Network [OSTI]

BioMed Central Page 1 of 16 (page number not for citation purposes) BMC Developmental Biology Open Utrecht, The Netherlands and 4Present address : Molecular Oncology and Aging Research, Centre d-213X/7/30 Page 2 of 16 (page number not for citation purposes) Background The retinoblastoma gene (Rb

287

BioMed Central Page 1 of 7  

E-Print Network [OSTI]

BioMed Central Page 1 of 7 (page number not for citation purposes) Behavioral and Brain Functions, 2300 RB Leiden, The Netherlands, 2Leiden Institute for Brain and Cognition, Leiden University, Albinusdreef 2, 2300 RC Leiden, The Netherlands and 3Department of Radiology, Leiden University Medical Center

Nieuwenhuis, Sander

288

BioMed Central Page 1 of 16  

E-Print Network [OSTI]

BioMed Central Page 1 of 16 (page number not for citation purposes) BMC Genomics Open Access of Leiden, Leiden, The Netherlands and 3Bioinformatics Laboratory, Turku Centre for Biotechnology, Turku-2164/7/130 Page 2 of 16 (page number not for citation purposes) Background The last decade has witnessed

Beldade, Patrícia

289

BioMed Central Page 1 of 11  

E-Print Network [OSTI]

BioMed Central Page 1 of 11 (page number not for citation purposes) BMC Evolutionary Biology Open Wageningen, The Netherlands, 2Department of Population Biology, Institute of Biology, University and Ecosystem Dynamics, University of Amsterdam, P.O. Box 94062, 1090 GB Amsterdam, The Netherlands Email: Duur

290

BioMed Central Page 1 of 7  

E-Print Network [OSTI]

BioMed Central Page 1 of 7 (page number not for citation purposes) BMC Bioinformatics Open Access of Groningen, Haren, The Netherlands and 2Department of Genetics, University Medical Center Groningen and University of Groningen, Groningen, The Netherlands Email: Yang Li* - yang.li@rug.nl; Morris A Swertz - m

Breitling, Rainer

291

BioMed Central Page 1 of 20  

E-Print Network [OSTI]

BioMed Central Page 1 of 20 (page number not for citation purposes) BMC Genomics Open Access, Delft, the Netherlands, 2Industrial Microbiology section, Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, the Netherlands, 3Bioinformatics and Statistics, Department

Shmulevich, Ilya

292

BioMed Central Page 1 of 14  

E-Print Network [OSTI]

BioMed Central Page 1 of 14 (page number not for citation purposes) BMC Genomics Open Access Delft, The Netherlands, 2Industrial Microbiology, Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands and 3Department of Molecular Biology

Shmulevich, Ilya

293

BioMed Central Page 1 of 15  

E-Print Network [OSTI]

BioMed Central Page 1 of 15 (page number not for citation purposes) BMC Evolutionary Biology Open, Utrecht University, the Netherlands and 2Academic Biomedical Centre, Utrecht University, the Netherlands. #12;BMC Evolutionary Biology 2009, 9:184 http://www.biomedcentral.com/1471-2148/9/184 Page 2 of 15

Utrecht, Universiteit

294

BioMed Central Page 1 of 6  

E-Print Network [OSTI]

BioMed Central Page 1 of 6 (page number not for citation purposes) BMC Genetics Open Access of Medical Statistics and Bioinformatics, Leiden University, P.O.Box 9604, 2300RC, Leiden, The Netherlands Noordwijkerhout, The Netherlands, 7-10 September 2004 Published: 30 December 2005 BMC Genetics 2005, 6(Suppl 1):S

Tang, Hua

295

Aurora BioFuels Inc | Open Energy Information  

Open Energy Info (EERE)

Aurora BioFuels Inc Aurora BioFuels Inc Jump to: navigation, search Name Aurora BioFuels Inc. Place Alameda, California Zip 94502 Sector Biofuels, Renewable Energy Product California-based renewable energy company exploring new sources of feedstock for the production of biofuels. The firm focus on the utilization of microalgae to generate bio-oil, which can be converted into biodiesel. Coordinates 37.766585°, -122.244739° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.766585,"lon":-122.244739,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

296

HORRIO ENSINO MDIO 2012 Segunda Tera Quarta Quinta Sexta  

E-Print Network [OSTI]

HIS LE FIS MAT MAT 64 FIS LE POR POR GEO 64 FIS POR POR ELA GEO 64 LAB FIL BIO ELA QMC 64 LAB FIL BIO SOC QMC 64 SOC Turma 1ºB Segunda Terça Quarta Quinta Sexta 64 GEO POR FIS ELA BIO 64 GEO LE GEO ELA BIO 64 HIS LE QMC HIS SOC 64 FIL MAT QMC HIS SOC 64 FIL LAB POR MAT MAT 64 FIS LAB FIS POR MAT 64 POR

Floeter, Sergio Ricardo

297

Dynamometer testing of the U.S. Electricar Geo Prizm conversion electric vehicle  

SciTech Connect (OSTI)

A Geo Prizm electric vehicle conversion by U.S. Electricar was tested in the INEL HEV Laboratory over several standard driving regimes. The vehicle, owned by the Los Angeles Department of Water and Power (LADWP), was loaned to the INEL for performance testing under a Cooperative Research and Development Agreement (CRADA) between the U.S. Department of Energy (DOE) and the California Air Resources Board (CARB). The Prizm conversion is the fourth vehicle in the planned test series. A summary of the test results is presented as Table ES-1. For the LA-92 and the Highway Fuel Economy Test cycles, the driving cycle ranges were 71 and 95 km, respectively. The net DC energy consumption during these cycles was measured at 199 and 154 W-h/km, respectively. During the constant-current-discharge test, the vehicle was driven 150 km at an average steady speed of 43 km/h. Energy consumption at various steady-state speeds, averaged over two tests, was approximately 108 W-h/km at 40 km/hr and 175 W-h/km at 96 km/h at 80T state-of-charge (SOC). Gradeability-at-speed tests indicated that the vehicle can be driven at 80 km/h up a simulated 5% grade for periods up to 15 minutes beginning at an initial 100% SOC, and 3 minutes beginning at 80% battery depth-of-discharge (DOD). Maximum-effort vehicle acceleration times were determined at five different battery DODs and speeds from 24 to 104 km/h. The acceleration is approximately linear up to 48 km/h, with no DOD effect; at higher speeds the curve becomes non-linear, and the effect of DOD becomes increasingly evident. Gradeability at each of these speeds was also determined, showing a decrease from the initial 26% at 24 km/h to 4% at 104 km/h.

Richardson, R.A.; Yarger, E.J.; Cole, G.H.

1996-04-01T23:59:59.000Z

298

The Hydrological Impact of Geoengineering in the Geoengineering Model Intercomparison Project (GeoMIP)  

SciTech Connect (OSTI)

Abstract: The hydrologic impact of enhancing Earths albedo due to solar radiation management (SRM) is investigated using simulations from 12 models contributing to the Geoengineering Model Intercomparison Project (GeoMIP). An artificial experiment is investigated, where global mean temperature is preserved at pre-industrial conditions, while atmospheric carbon dioxide concentrations are quadrupled. The associated reduction of downwelling surface solar radiation in a high CO2 environment leads to a reduction of global evaporation of 10% and 4% and precipitation of 6.1% and 6.3% over land and ocean, respectively. An initial reduction of latent heat flux at the surface is largely driven by reduced evapotranspiration over land with instantly increasing CO2 concentrations in both experiments. A warming surface associated with the transient adjustment in the 4xCO2 experiment further generates an increase of global precipitation, with considerable regional changes, such as a significant precipitation reduction of 7% for the North American summer monsoon. Reduced global precipitation persists in the geoengineered experiment where temperatures are stabilized, with considerable regional rainfall deficits. Precipitation reductions that are consistent in sign across models are identified in the geoengineered experiment over monsoonal land regions of East Asia (6%), North America (7%), South America (6%) and South Africa (5%). In contrast to the 4xCO2 experiment, where the frequency of months with heavy precipitation intensity is increased by over 50%, it is reduced by up to 20% in the geoengineering scenario . The reduction in heavy precipitation is more pronounced over land than over the ocean, and accompanies a stronger reduction in evaporation over land. For northern mid-latitudes, maximum precipitation reduction over land ranges from 1 to 16% for individual models. For 45-65N, the frequency of median to high intensity precipitation in summer is strongly reduced. These changes in precipitation in both total amount and frequency of extremes, point to a considerable weakening of the hydrological cycle in a geoengineered world.

Tilmes, S.; Fasullo, John; Lamarque, J.-F.; Marsh, D.; Mills, Mike; Alterskjaer, Kari; Muri, Helene O.; Kristjansson, Jon E.; Boucher, Olivier; Schulz, M.; Cole, Jason N.; Curry, Charles L.; Jones, A.; Haywood, J.; Irvine, Peter; Ji, Duoying; Moore, John; Bou Karam, Diana; Kravitz, Benjamin S.; Rasch, Philip J.; Singh, Balwinder; Yoon, Jin-Ho; Niemeier, Ulrike; Schmidt, Hauke; Robock, Alan; Yang, Shuting; Watanabe, Shingo

2013-10-14T23:59:59.000Z

299

THE PRODUCTION OF SYNGAS VIA HIGH TEMPERATURE ELECTROLYSIS AND BIO-MASS GASIFICATION  

SciTech Connect (OSTI)

A process model of syngas production using high temperature electrolysis and biomass gasification is presented. Process heat from the biomass gasifier is used to improve the hydrogen production efficiency of the steam electrolysis process. Hydrogen from electrolysis allows a high utilization of the biomass carbon for syngas production. Based on the gasifier temperature, 94% to 95% of the carbon in the biomass becomes carbon monoxide in the syngas (carbon dioxide and hydrogen). Assuming the thermal efficiency of the power cycle for electricity generation is 50%, (as expected from GEN IV nuclear reactors), the syngas production efficiency ranges from 70% to 73% as the gasifier temperature decreases from 1900 K to 1500 K.

M. G. McKellar; G. L. Hawkes; J. E. O'Brien

2008-11-01T23:59:59.000Z

300

doi:10.1128/mBio.00158-10. 1(3): e00158-10.mBio.Secretion System  

E-Print Network [OSTI]

hydrophilic domains to move sub- strates across lipid bilayers. Type III secretion systems (T3SSs) deliverdoi:10.1128/mBio.00158-10. 1(3): e00158-10.mBio.Secretion System Serovar Typhimurium Type, Richard A. Pfuetzner, et al. Secretion System Serovar Typhimurium Type IIIenterica Salmonella

Baker, David

Note: This page contains sample records for the topic "bio mass geo" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

BioEnergy International LLC | Open Energy Information  

Open Energy Info (EERE)

BioEnergy International LLC BioEnergy International LLC Address 1 Pinehill Drive Place Quincy, Massachusetts Zip 02169 Sector Biofuels Product Development and commercialization of next generation biorefineries Website http://www.bioenergyllc.com/ Coordinates 42.228468°, -71.027593° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.228468,"lon":-71.027593,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

302

File:NREL-BioMap.pdf | Open Energy Information  

Open Energy Info (EERE)

BioMap.pdf BioMap.pdf Jump to: navigation, search File File history File usage Biomass Power Potential (GW) on Federal Lands by County Size of this preview: 776 × 600 pixels. Go to page 1 2 3 4 5 6 7 Go! next page → next page → Full resolution ‎(1,650 × 1,275 pixels, file size: 1.55 MB, MIME type: application/pdf, 7 pages) Title Biomass Power Potential (GW) on Federal Lands by County Description Biomass Power Potential (GW) on Federal Lands by County Sources National Renewable Energy Laboratory Authors Donna Heimiller Related Technologies Biomass Creation Date 2009-01-30 Extent National Countries United States UN Region Northern America File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment

303

Contact Information - Industrial : BioEnergy Science Center  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

BESC Industry Contact Information BESC Industry Contact Information To learn more about BESC's industry program please contact Renae Speck, Director of Technology Transfer and Partnerships for BESC, (865-576-4680), Renae Speck). Renae Speck Renae Speck, PhD spends fifty percent of her time as a Senior Commercialization Manager in the Office of Technology Transfer in the Partnership Directorate and fifty percent of her time as the Manager of Technology Transfer and Partnerships for the BioEnergy Science Center. As a Senior Commercialization Manager, Renae is responsible for portfolio management and commercialization of intellectual property created by researchers and staff in the Biological and Environmental Sciences Divisions as well as any intellectual property created by Oak Ridge National Laboratory staff that is funded by the BioEnergy Science Center

304

MHK Projects/bioWAVE Pilot Plant | Open Energy Information  

Open Energy Info (EERE)

bioWAVE Pilot Plant bioWAVE Pilot Plant < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":-37.8197,"lon":144.964,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

305

MHK Projects/BioSTREAM Pilot Plant | Open Energy Information  

Open Energy Info (EERE)

BioSTREAM Pilot Plant BioSTREAM Pilot Plant < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":-39.9872,"lon":148.051,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

306

BESC Affiliate Program : BioEnergy Science Center  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Affiliate Program Affiliate Program The BioEnergy Science Center has among its goals the effective, coordinated commercialization of appropriate technologies through formation of start-up ventures as well as licensing to corporate entities pursuing biofuels development. The effective translation of BESC research results into applications testing and potential deployment is an implicit part of reaching DOE's bioenergy goals. Toward this end, we are offering companies and universities the opportunity to become BESC Affiliates and receive the following benefits: An invitation to participate in all bio-energy related training, summer courses, symposia, and seminars hosted by or connected with BESC Notification of all publications resulting from BESC sponsored research, as well as timely information about BESC news

307

BioCentric Energy Inc formerly Nano Chemical Systems Holdings | Open Energy  

Open Energy Info (EERE)

BioCentric Energy Inc formerly Nano Chemical Systems Holdings BioCentric Energy Inc formerly Nano Chemical Systems Holdings Jump to: navigation, search Name BioCentric Energy Inc (formerly Nano Chemical Systems Holdings) Place Santa Ana, California Zip 90707 Product California-based development-stage company that manufactures and sells closed-loop photobioreactor systems for growing algae. References BioCentric Energy Inc (formerly Nano Chemical Systems Holdings)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. BioCentric Energy Inc (formerly Nano Chemical Systems Holdings) is a company located in Santa Ana, California . References ↑ "BioCentric Energy Inc (formerly Nano Chemical Systems Holdings)" Retrieved from

308

Environmental cost-effectiveness of bio diesel production in Greece: Current policies and alternative scenarios  

Science Journals Connector (OSTI)

Following European Directive 2003/30/EC, the Greek Government adapted legislation that introduces and regulates the bio diesel market. The implemented quota scheme allocates the country's annual, predetermined, tax exempt production of bio diesel to industries based on their ability to meet several criteria. A number of bio diesel supply chain stakeholders have criticized this policy for being efficiency-robbing and vague. This paper uses 2007 data from energy crop farms and three bio diesel-producing companies in order to assess these criticisms. We study the economic and environmental aspects of the currently adopted policy and compare them to three alternative scenarios. We conclude that such criticisms have a merit and that policy makers need to reconsider their alternative options regarding the promotion of bio diesel in transport. Permission of sales directly to local consumers and promotion of forward integration by farmers are efficiency enhancing and environment-friendly means of promoting the use of bio diesel in transport.

Constantine Iliopoulos; Stelios Rozakis

2010-01-01T23:59:59.000Z

309

Production of hydrogen, liquid fuels, and chemicals from catalytic processing of bio-oils  

SciTech Connect (OSTI)

Disclosed herein is a method of generating hydrogen from a bio-oil, comprising hydrogenating a water-soluble fraction of the bio-oil with hydrogen in the presence of a hydrogenation catalyst, and reforming the water-soluble fraction by aqueous-phase reforming in the presence of a reforming catalyst, wherein hydrogen is generated by the reforming, and the amount of hydrogen generated is greater than that consumed by the hydrogenating. The method can further comprise hydrocracking or hydrotreating a lignin fraction of the bio-oil with hydrogen in the presence of a hydrocracking catalyst wherein the lignin fraction of bio-oil is obtained as a water-insoluble fraction from aqueous extraction of bio-oil. The hydrogen used in the hydrogenating and in the hydrocracking or hydrotreating can be generated by reforming the water-soluble fraction of bio-oil.

Huber, George W; Vispute, Tushar P; Routray, Kamalakanta

2014-06-03T23:59:59.000Z

310

Novatec BioSol AG | Open Energy Information  

Open Energy Info (EERE)

Novatec BioSol AG Novatec BioSol AG Jump to: navigation, search Name Novatec BioSol AG Place Karlsruhe, Rhineland-Palatinate, Germany Zip D-76135 Sector Solar Product Novatec is a solar field component manufacturer and plans to develop and operate using linear Fresnel concentrator solar thermal electrical generation (STEG) plants in Spain. Coordinates 49.01076°, 8.408695° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":49.01076,"lon":8.408695,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

311

BioPartners ApS | Open Energy Information  

Open Energy Info (EERE)

BioPartners ApS BioPartners ApS Jump to: navigation, search Name BioPartners ApS Place Tjele, Denmark Zip 8830 Sector Biomass Product Start-up company offering factual, professional and impartial advice in connection with processes that include biogas production and separation of clean fertilizers directly from degassed digester biomass. Coordinates 56.481861°, 9.62648° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":56.481861,"lon":9.62648,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

312

Bio-Gas Technologies, LLC | Open Energy Information  

Open Energy Info (EERE)

Bio-Gas Technologies, LLC Bio-Gas Technologies, LLC Jump to: navigation, search Name Bio-Gas Technologies, LLC Address 2025 George St. Place Sandusky, Ohio Zip 44870 Sector Biomass, Renewable Energy, Wind energy Product Agriculture;Business and legal services;Consulting; Energy provider: power production;Energy provider: wholesale;Engineering/architectural/design;Installation;Investment/finances;Maintenance and repair;Manufacturing Phone number 419-663-8000 Website http://www.biogastech.com Coordinates 41.4369°, -82.747133° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.4369,"lon":-82.747133,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

313

Catalytic Upgrading of bio-oil using 1-octene and 1-butanol over sulfonic acid resin catalysts  

SciTech Connect (OSTI)

Raw bio-oil from fast pyrolysis of biomass must be refined before it can be used as a transporation fuel, a petroleum refinery feed or for many other fuel uses. Raw bio-oil was upgraded with the neat model olefin, 1-octene, and with 1-octene/1-butanol mixtures over sulfonic acid resin catalysts frin 80 to 150 degrees celisus in order to simultaneously lower water content and acidity and to increase hydrophobicity and heating value. Phase separation and coke formation were key factors limiting the reaction rate during upgrading with neat 1-octene although octanols were formed by 1-octene hydration along with small amounts of octyl acetates and ethers. GC-MS analysis confirmed that olefin hydration, carboxylic acid esterification, acetal formation from aldehydes and ketones and O- and C-alkylations of phenolic compounds occurred simultaneously during upgrading with 1-octene/1-butanol mixtures. Addition of 1-butanol increased olefin conversion dramatically be reducing mass transfer restraints and serving as a cosolvent or emulsifying agent. It also reacted with carboxylic acids and aldehydes/ketones to form esters, and acetals, respectively, while also serving to stabilize bio-oil during heating. 1-Butanol addition also protected the catalysts, increasing catalyst lifetime and reducing or eliminationg coking. Upgrading sharply increased ester content and decreased the amounts of levoglucosan, polyhydric alcohols and organic acids. Upgrading lowered acidity (pH value rise from 2.5 to >3.0), removed the uppleasant ordor and increased hydrocarbon solubility. Water content decreased from 37.2% to < 7.5% dramatically and calorific value increased from 12.6 MJ kg to about 30.0 MJ kg.

Zhang, Zhijun; Wang, Qingwen; Tripathi, Prabhat; Pittman, Charles U.

2011-02-04T23:59:59.000Z

314

ESS 2012 Peer Review - CAES Geo Performance for Natural Gas and Salt Reservoirs and TMH Response of GSFs - Payton Gardner, SNL  

Broader source: Energy.gov (indexed) [DOE]

CAES Geo Performance CAES Geo Performance for Natural Gas and Salt Reservoirs, Thermal-Mechanical- Hydraulic Response of Geological Storage Formations for CAES 27 September 2012 SJ Bauer, M Martinez, W. Payton Gardner, J Holland 2 CAES Geo Performance for Natural Gas and Salt Reservoirs / Thermal-Mechanical-Hydraulic (T-M-H) Response of Geological Storage Formations for CAES  Problem: Siting of CAES facilities may be limited by specific geologic conditions  Opportunity: Fundamental understanding of T-M-H will enable/extend CAES siting potential throughout the US 3 Images taken from: http://www.rwe.com/ 1. CAES in Mined Salt Caverns  Model large scale salt cavern response to air pressure cycling  Experimentally evaluate thermal cycling effect on domal salt

315

Cough BioMed Central Methodology The automatic recognition and counting of cough  

E-Print Network [OSTI]

2006 Barry et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License

Samantha J Barry; Adrie D Dane; Alyn H Morice; Anthony D Walmsley; Anthony D Walmsley

2006-01-01T23:59:59.000Z

316

Cough BioMed Central Review Cough: are children really different to adults?  

E-Print Network [OSTI]

2005 Chang; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License

Anne B Chang; Anne B Chang

2005-01-01T23:59:59.000Z

317

Bio/Medical Applications Using High Definition 3-D Stereo Camera and Monitor System  

Science Journals Connector (OSTI)

In this paper, we demonstrated high definition resolution stereoscopic microscope as bio/medical application and 24/40inch polarized-light stereoscopic display to improve the...

Kim, Nam

318

Bio-renewable fibers extracted from lignin/polylactide (PLA) blend.  

E-Print Network [OSTI]

??Due to the high cost and environment issues in the production of carbon fiber from polyacrylonitrile (PAN) and pitch, the use of low cost bio-renewable (more)

Chen, Keke

2012-01-01T23:59:59.000Z

319

Effects of bio-diesel fuel blends on the performance and emissions of diesel engine.  

E-Print Network [OSTI]

??This study presents an experimental investigation into the effects of running biodiesel fuel blends on conventional diesel engines. Bio fuels provide a way to produce (more)

Bastiani, Sergio.

2008-01-01T23:59:59.000Z

320

Marine Bio-Nanotechnology: High-Performance Materials from Sponge Silicatein  

E-Print Network [OSTI]

Title: Marine Bio-Nanotechnology: High-Performance MaterialsChemical Biology (2005); Nanotechnology Review (2005, 2006);Marine biotechnology; nanotechnology; sponge; silica;

Morse, Daniel E.

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "bio mass geo" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

BILIWG Meeting: High Pressure Steam Reforming of Bio-Derived Liquids (Presentation)  

Broader source: Energy.gov [DOE]

Presented at the 2007 Bio-Derived Liquids to Hydrogen Distributed Reforming Working Group held November 6, 2007 in Laurel, Maryland.

322

Investigation of Bio-Ethanol Steam Reforming over Cobalt-based Catalysts (Presentation)  

Broader source: Energy.gov [DOE]

Presented at the 2007 Bio-Derived Liquids to Hydrogen Distributed Reforming Working Group held November 6, 2007 in Laurel, Maryland.

323

Evaporation Characteristics of a Liquid Bio-Fuel from Chicken Litter .  

E-Print Network [OSTI]

??Alternative fuels are becoming more important as fossil fuels become more expensive. This thesis describes the production and properties of a bio-oil produced from waste (more)

Tolonen, Erik

2013-01-01T23:59:59.000Z

324

Development of a Computational Fluid Dynamics Model for Combustion of Fast Pyrolysis Liquid (Bio-oil).  

E-Print Network [OSTI]

??A study was carried out into the computational fluid dynamic simulation of bio-oil combustion. Measurements were taken in an empirical burner to obtain information regarding (more)

McGrath, Arran Thomas

2011-01-01T23:59:59.000Z

325

Center for Bio-Inspired Energy Science (CBES) | U.S. DOE Office...  

Office of Science (SC) Website

Bio-Inspired Energy Science (CBES) Energy Frontier Research Centers (EFRCs) EFRCs Home Centers EFRC External Websites Research Science Highlights News & Events Publications History...

326

Miscible, multi-component, diesel fuels and methods of bio-oil transformation  

DOE Patents [OSTI]

Briefly described, embodiments of this disclosure include methods of recovering bio-oil products, fuels, diesel fuels, and the like are disclosed.

Adams, Thomas (Athens, GA); Garcia, Manuel (Quebec, CA); Geller, Dan (Athens, GA); Goodrum, John W. (Athens, GA); Pendergrass, Joshua T. (Jefferson, GA)

2010-10-26T23:59:59.000Z

327

Toward Single-Cell Analysis by Plume Collimation in Laser Ablation Electrospray Ionization Mass Spectrometry  

Science Journals Connector (OSTI)

In the plume collimation experiments, laser radiation was delivered through a germanium oxide (GeO2) optical fiber (450 ?m core diameter, HP Fiber, Infrared Fiber Systems, Inc., Silver Spring, MD) with a tip etched in a 2% nitric acid solution as described earlier. ... Upon ablation in the capillary, a collimated plume emerges (shown in blue) and is ionized by an electrospray. ... Individual sea urchin eggs were selected by using the micromanipulator system and deposited into a capillary for LAESI mass spectrometry with plume collimation. ...

Jessica A. Stolee; Akos Vertes

2013-02-28T23:59:59.000Z

328

University Information Technology Services UITS Photo Policy September 16, 2010 Rev 1 UITS Photo and Bio Policy  

E-Print Network [OSTI]

University Information Technology Services · UITS Photo Policy · September 16, 2010 · Rev 1 UITS Photo and Bio Policy University Information Technology Services developed a set of requirements and recommendations regarding employee photos and bios. Internal View

Watkins, Joseph C.

329

Effect of Acid, Alkali, and Steam Explosion Pretreatments on Characteristics of Bio-Oil Produced from Pinewood  

SciTech Connect (OSTI)

Bio-oil produced from pinewood by fast pyrolysis has the potential to be a valuable substitute for fossil fuels. Pretreatment prior to the fast pyrolysis process has been shown to alter the structure and chemical composition of biomass. To determine the influence of biomass pretreatments on bio-oil produced during fast pyrolysis, we tested three pretreatment methods: dilute acid, dilute alkali, and steam explosion. Bio-oils were produced from untreated and pretreated pinewood feedstocks in an auger reactor at 450 C. The bio-oils?¢???? physical properties including pH, water content, acid value, density, viscosity, and heating value were measured. Chemical characteristics of the bio-oils were determined by gas chromatographymass spectrometry. Results showed that bio-oil yield and composition were influenced by biomass pretreatment. Of the three pretreatment methods, 1%H2SO4 pretreatment resulted in the highest bio-oil yield and best bio-oil quality.

Wang, Hui; Srinivasan, Radhakrishnan; Yu, Fei; Steele, Philip; Li, Qi; Mitchell, Brian

2011-06-21T23:59:59.000Z

330

I corsi di BioBusiness dell'USI in premio alla migliore start-up biotech italiana  

E-Print Network [OSTI]

, Bio & Nano, Social Innovation. L'iniziativa, nata in occasione dei 150 anni dell'Unità di Italia e

Krause, Rolf

331

Conceptual design assessment for the co-firing of bio-refinery supplied lignin project. Quarterly report, June 23--July 1, 2000  

SciTech Connect (OSTI)

The Conceptual Design Assessment for the Co-Firing of Bio-Refinery Supplied Lignin Project was successfully kicked off on July 23, 2000 during a meeting at the TVA-PPI facility in Muscle Shoals, AL. An initial timeline for the study was distributed, issues of concern were identified and a priority actions list was developed. Next steps include meeting with NETL to discuss de-watering and lignin fuel testing, the development of the mass balance model and ethanol facility design criteria, providing TVA-Colbert with preliminary lignin fuel analysis and the procurement of representative feed materials for the pilot and bench scale testing of the hydrolysis process.

Berglund, T.; Ranney, J.T.; Babb, C.L.

2000-07-27T23:59:59.000Z

332

MSU BioEconomy Network COLLABORATE. Link Michigan State University's internal assets and  

E-Print Network [OSTI]

to accelerate new research discoveries to the global market to benefit the university, the state, the region, to identify and address the complex issues related to converting plants to biofuels, bioenergy, bio- chemicals and other biomaterials. Areas of Strength Plant science research to create improved bio- fuel and bioenergy

333

Efficient force distribution and leg posture for a bio-inspired spider robot  

Science Journals Connector (OSTI)

Legged walking and climbing robots have recently achieved important results and developments, but they still need further improvement and study. As demonstrated by recent works, bio-mimesis can lead to important technical solutions in order to achieve ... Keywords: Adhesion, Bio-mimesis, Climbing spider robot, Force distribution, Legged mechanism

R. Vidoni; A. Gasparetto

2011-02-01T23:59:59.000Z

334

PS3060: Perception and Action (L.5) Bio-Robotics & Neuro-Engineering  

E-Print Network [OSTI]

PS3060: Perception and Action (L.5) Bio-Robotics & Neuro-Engineering Johannes M. Zanker http of toys · the approach & opportunities of biorobotics · questions and answers, poster preparation bio-robotics, neuro-engineering: why? the dream of robotics: stupid & dangerous work should be done by robust

Zanker, Johannes M.

335

BioThesaurus: a web-based thesaurus of protein and gene names  

Science Journals Connector (OSTI)

......text mining BioThesaurus: a web-based thesaurus of protein and gene names Hongfang Liu...web-based system BioThesaurus that maps a thesaurus of protein and gene names extracted from...construction is shown in Figure 1. The thesaurus was designed to provide comprehensive......

Hongfang Liu; Zhang-Zhi Hu; Jian Zhang; Cathy Wu

2006-01-01T23:59:59.000Z

336

Optimal adaptive control of (bio)chemical reactors: past, present and future  

E-Print Network [OSTI]

Optimal adaptive control of (bio)chemical reactors: past, present and future Ilse Y. Smets Abstract In this paper an overview of optimal adaptive control of (bio)chemical reactors is presented. Following the paradigm of the Minimum Principle of Pontryagin the derivation of optimal control sequences

Bastin, Georges

337

Abstract 4271: The cBioPortal for Cancer Genomics as a clinical decision support tool  

Science Journals Connector (OSTI)

...To this end, we are evolving the cBioPortal for Cancer Genomics into a clinical decision support tool. The cBioPortal is a web-based visualization and analysis engine that makes complex cancer genomics data accessible to a wide range of cancer researchers...

JianJiong Gao; B. Arman Aksoy; Benjamin Gross; Gideon Dresdner; Yichao Sun; S. Onur Sumer; Chris Sander; Nikolaus Schultz

2014-10-01T23:59:59.000Z

338

Bio-optical properties of oceanic waters: A reappraisal Andre Morel  

E-Print Network [OSTI]

Bio-optical properties of oceanic waters: A reappraisal Andre´ Morel Laboratoire de Physique et, California Abstract. The apparent optical properties (AOPs) of oceanic case 1 waters were previously analyzed describing the trophic conditions of water bodies. From these empirical relationships a bio-optical model

California at Santa Barbara, University of

339

Abstract 4271: The cBioPortal for Cancer Genomics as a clinical decision support tool  

Science Journals Connector (OSTI)

...Abstract 4271: The cBioPortal for Cancer Genomics as a clinical decision support tool JianJiong...are evolving the cBioPortal for Cancer Genomics into a clinical decision support tool...analysis engine that makes complex cancer genomics data accessible to a wide range of cancer...

JianJiong Gao; B. Arman Aksoy; Benjamin Gross; Gideon Dresdner; Yichao Sun; S. Onur Sumer; Chris Sander; Nikolaus Schultz

2014-10-01T23:59:59.000Z

340

Nanomaterials for bio-functionalized electrodes: recent trends  

SciTech Connect (OSTI)

This review intends to highlight the interest of nanomaterials for building biologically-modified electrodes. Rather than giving a comprehensive overview of the topic, the present work intends to give a flavour on the most exciting achievements and most recent approaches to get (and use) nanostructured electrode surfaces (or electrodes modified with nano-objects) comprising biomolecules. It will mainly consider nano-engineered functional polymers, nano-sized objects such as nanoparticles, carbon nanotubes, graphene or related materials, as well as template-based nanostructures, as modifiers for bio-functionalised electrodes.

Walcarius, Alain; Minteer, Shelley D.; Wang, Joseph; Lin, Yuehe; Merkoci, Arben

2013-09-10T23:59:59.000Z

Note: This page contains sample records for the topic "bio mass geo" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

UBC Social Ecological Economic Development Studies (SEEDS) Student Report Rapidly Renewable Materials Soy and Bio-Diesel  

E-Print Network [OSTI]

Materials ­ Soy and Bio-Diesel Navin Abeysundara Brian Lee Aramazd Gharapetian University of British RENEWABLE MATERIALS ­ SOY AND BIO-DIESEL SUBMITTED TO Florence Luo By: Navin Abeysundara Brian Lee Aramazd based spray foam and bio-diesel furnaces. Soy based spray foam and biodiesel furnaces were considered

342

T-598: Apache Tomcat HTTP BIO Connector Error Discloses Information From  

Broader source: Energy.gov (indexed) [DOE]

8: Apache Tomcat HTTP BIO Connector Error Discloses Information 8: Apache Tomcat HTTP BIO Connector Error Discloses Information From Different Requests to Remote Users T-598: Apache Tomcat HTTP BIO Connector Error Discloses Information From Different Requests to Remote Users April 8, 2011 - 5:35am Addthis PROBLEM: A vulnerability was reported in Apache Tomcat. A remote user may be able to obtain information from a different request. PLATFORM: Apache Tomcat v7.0.0 - v7.0.11 ABSTRACT: When using HTTP pipelining, the system may return information from a different request to a remote user. The vulnerability resides in the HTTP BIO connector. reference LINKS: Apache Tomcat Security Alert CVE-2011-1475 SecurityTracker Alert ID: 1025303 IMPACT ASSESSMENT: Medium Discussion: Changes introduced to the HTTP BIO connector to support Servlet 3.0

343

E. coli for Energy: Ginkgo BioWorks and the Entrepreneurial Mentorship  

Broader source: Energy.gov (indexed) [DOE]

E. coli for Energy: Ginkgo BioWorks and the Entrepreneurial E. coli for Energy: Ginkgo BioWorks and the Entrepreneurial Mentorship Program E. coli for Energy: Ginkgo BioWorks and the Entrepreneurial Mentorship Program March 2, 2011 - 3:56pm Addthis Researchers at Ginko BioWorks seek to turn carbon dioxide into a liquid fuel. April Saylor April Saylor Former Digital Outreach Strategist, Office of Public Affairs I don't know about you, but when I hear "E. coli" I think of undercooked chicken. Researchers at Ginkgo BioWorks, on the other hand, are developing the vehicle fuels of the future from E. coli bacteria. The young company, founded by five PhDs from the Massachusetts Institute of Technology (MIT), is on a mission to make biology easier to engineer. Dr. Jason Kelly, one of five founding "DNA Hackers," sees E. coli from

344

ASCAC MEMBERS BIO's | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

ASCAC Members Bio ASCAC Members Bio Advanced Scientific Computing Advisory Committee (ASCAC) ASCAC Home Meetings Members ASCAC Members Bio Previous ASCAC Members Charges/Reports Charter .pdf file (38KB) ASCR Committees of Visitors ASCR Home Members ASCAC Members Bio Print Text Size: A A A RSS Feeds FeedbackShare Page ASCAC Members Bios Giles, Roscoe C. (CHAIR) Field of Interest: COMPUTATIONAL PHYSICS. Education: Univ Chicago, BA, 70; Stanford Univ, PhD (physics), 75. Professional Experience: Res assoc, Stanford Linear Accelerator Center, 75-76; Res. assoc, Center for Theoretical Physics, MIT, 76-78; asst professor, MIT Physics Department, 79-85; assoc professor, Electrical and Computer Engineering, Boston University, 85-98, Professor, Department of Electrical and Computer Engineering, Boston University, 99-. Concurrent Pos: Team Leader, Education

345

Argonne CNM News: NanoBio Technology for Alternative Medical Applications  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

NanoBio Technology for Alternative Medical Applications NanoBio Technology for Alternative Medical Applications Argonne nanoscientist Elena Rozhkova is studying ways to enlist nanoparticles to treat brain cancer. This nano-bio technology may eventually provide an alternative form of therapy that targets only cancer cells and does not affect normal living tissue. This video is part of the U.S. Department of Energy's Lab Breakthroughs series, which brings together video produced by each of the national laboratories about their innovations and discoveries. A collaborative team comprised of Center for Nanoscale Materials users from the University of Chicago, Argonne's Materials Science Division, and the CNM NanoBio Interfaces Group is studying ways to enlist nanoparticles to treat brain cancer. This nano-bio technology may eventually provide an

346

C3Bio | U.S. DOE Office of Science (SC)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

C3Bio C3Bio Energy Frontier Research Centers (EFRCs) EFRCs Home Centers Research Science Highlights News & Events Publications Contact BES Home Centers C3Bio Print Text Size: A A A RSS Feeds FeedbackShare Page Center for direct Catalytic Conversion of Biomass to Biofuels (C3Bio) Director(s): Maureen McCann Lead Institution: Purdue University Mission: To integrate fundamental knowledge and enable technologies for catalytic conversion of engineered biomass to advanced biofuels and value-added products. Research Topics: catalysis (homogeneous), catalysis (heterogeneous), biofuels (including algae and biomass), bio-inspired, materials and chemistry by design, synthesis (self-assembly), synthesis (scalable processing) Materials Studied: MATERIALS: metal, polymer, cellulose, biological (DNA, protein)

347

T-598: Apache Tomcat HTTP BIO Connector Error Discloses Information From  

Broader source: Energy.gov (indexed) [DOE]

8: Apache Tomcat HTTP BIO Connector Error Discloses Information 8: Apache Tomcat HTTP BIO Connector Error Discloses Information From Different Requests to Remote Users T-598: Apache Tomcat HTTP BIO Connector Error Discloses Information From Different Requests to Remote Users April 8, 2011 - 5:35am Addthis PROBLEM: A vulnerability was reported in Apache Tomcat. A remote user may be able to obtain information from a different request. PLATFORM: Apache Tomcat v7.0.0 - v7.0.11 ABSTRACT: When using HTTP pipelining, the system may return information from a different request to a remote user. The vulnerability resides in the HTTP BIO connector. reference LINKS: Apache Tomcat Security Alert CVE-2011-1475 SecurityTracker Alert ID: 1025303 IMPACT ASSESSMENT: Medium Discussion: Changes introduced to the HTTP BIO connector to support Servlet 3.0

348

New detector array improves neutron count capability at HFIR's Bio-SANS |  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Bio-SANS neutron count capability improves Bio-SANS neutron count capability improves New detector array improves neutron count capability at HFIR's Bio-SANS Agatha Bardoel - June 29, 2012 Bio-SANS team that worked on installation of the new detector system. Front row, left to right: Doug Selby, Steve Hicks, Shuo Qian, Sai Venkatesh Pingali, Kathy Bailey, Amy Black Jones, and Derrick Williams. Back row, left to right: Ed Blackburn, John Palatinus, William Brad O'Dell, Mike Humphreys, Justin Beal, Ken Littrell, Greg Jones, Kevin Berry, Volker Urban, Randy Summers, and Ron Maples. Bio-SANS, the Biological Small-Angle Neutron Scattering Instrument at HFIR recently had a detector upgrade that will provide significantly improved performance that is more in line with the instrument's capability. Shorter experiment times are expected, which means more experiments can be

349

Methods and results of a search for gravitational waves associated with gamma-ray bursts using the GEO 600, LIGO, and Virgo detectors  

E-Print Network [OSTI]

In this paper we report on a search for short-duration gravitational wave bursts in the frequency range 64 Hz1792 Hz associated with gamma-ray bursts (GRBs), using data from GEO 600 and one of the LIGO or Virgo detectors. ...

Aggarwal, Nancy

350

Web tool for energy policy decision-making through geo-localized LCA models: A focus on offshore wind farms in Northern Europe  

E-Print Network [OSTI]

1 Web tool for energy policy decision-making through geo-localized LCA models: A focus on offshore-dependent life cycle assessment (LCA) taking into ac- count geographical issues is of high interest for different configurations has been developed. Based on a modular LCA model and on collaborative works made

Paris-Sud XI, Université de

351

Riad, EPS Structures Innovations on Central Artery/Tunnel (CA/T) Project 2005 BSCES-GEO-INSTITUTE RECENT ADVANCES IN GEOTECHNICAL  

E-Print Network [OSTI]

Riad, EPS Structures Innovations on Central Artery/Tunnel (CA/T) Project 2005 BSCES-GEO-INSTITUTE RECENT ADVANCES IN GEOTECHNICAL ENGINEERING Seminar 1 EPS STRUCTURES INNOVATIONS ON CENTRAL ARTERY/TUNNEL (CA/T) PROJECT Hany L. Riad, Ph.D., P.E. (1) Abstract The use of Expanded Polystyrene (EPS) in block

Horvath, John S.

352

Partially Crystalline Zn2GeO4 Nanorod/Graphene Composites as Anode Materials for High Performance Lithium Ion Batteries  

E-Print Network [OSTI]

-step hydrothermal processing. Crystalline and amorphous regions were found to coexist in a single Zn2GeO4 nanorod change during the charge and discharge processes. These advantageous attributes make ZGCs the potential expansion and eliminate the stress during the charge and discharge processes. Clearly, it remains

Lin, Zhiqun

353

ExpTreeDB: Web-based query and visualization of manually annotated gene expression profiling experiments of human and mouse from GEO  

Science Journals Connector (OSTI)

......PAPERS DATABASES AND ONTOLOGIES ExpTreeDB: Web-based query and visualization of manually...biotech.bmi.ac.cn/ExpTreeDB . Web site is implemented in Perl, PHP, R...allows keywords and signature search. Other Web servers for analysis and annotation of GEO......

Ming Ni; Fuqiang Ye; Juanjuan Zhu; Zongwei Li; Shuai Yang; Bite Yang; Lu Han; Yongge Wu; Ying Chen; Fei Li; Shengqi Wang; Xiaochen Bo

2014-12-01T23:59:59.000Z

354

IM-GEO: Impact of R and D on cost of geothermal power: Documentation of Model Version 2. 09  

SciTech Connect (OSTI)

IM-GEO is an analysis used to estimate the impact of technology improvements on the relative cost of hydrothermal power. The analysis is available in a tutorial program for use on personal computers. It is designed for use by R and D program managers to evaluate R and D options. Only the potential impact of technologies is considered with all economic factors being held constant. This analysis has one unique feature. The economic impact of reducing risk by improving reservoir characterization is included using a strategy currently employed by financial institutions. This report describes the basis of the calculations, documents the code, and describes the operational procedures. Application of the code to study potential cost reductions due to R and D success will be done by R and D managers to evaluate and direct their own programs.

Petty, S.; Entingh, D.; Livesay, B.J.

1988-02-01T23:59:59.000Z

355

Power from bio-sources in Italy incentives and results  

SciTech Connect (OSTI)

In Italy most of the technologies for producing power from bio-sources, as well as from other non-conventional renewable Energy Sources (RES), are rather mature, but their exploitation is still not completely convenient from the economic point of view. It depends on many factors, such as designing of plants, selection of energy conversion system and components, selection of installation site, size of market still too limited, high production costs of the technologies and lack of adequate financial supports. In the early nineties, in the attempt to overcome this situation, the Italian Government issued a series of measures addressed mainly to the power production from RES. This gives a short description of the regulations in force and some details about an important incentive tool (CIP 6/92 and relative decrees) for RES power plants installation. In particular, it indicates the possible power plant typologies, the criteria to assimilate the fossil fuel plants to RES ones, the present prices of electricity transferred into the grid and the methodology for updating the prices. Furthermore, the paper gives some data concerning submitted proposals, plant operation planning and their geographic distribution according to different bio-sources typologies.

Gerardi, V.; Ricci, A.; Scoditti, E. [ENEA, Rome (Italy)

1996-12-31T23:59:59.000Z

356

Mass Spectrometer: Orbitrap | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Software (ISIS): A Machine Learning Approach to Tandem Mass Spectral Identification of Lipids. Liquid chromatography-mass spectrometry-based metabolomics has gained importance...

357

Mass Spectrometry | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and Microfabrication Mass Spectrometry Microscopy Molecular Science Computing NMR and EPR Spectroscopy and Diffraction Subsurface Flow and Transport Mass Spectrometry Systems...

358

Investigation of Bio-Ethanol Steam Reforming over Cobalt-based Catalysts (Presentation)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

DOE Bio-Derived Liquids to Hydrogen Distributed DOE Bio-Derived Liquids to Hydrogen Distributed Reforming Working Group (BILIWG) Meeting Investigation of Bio-Ethanol Steam Reforming over Cobalt-based Catalysts Hua Song Lingzhi Zhang Umit S. Ozkan* November 6 th , 2007 Heterogeneous Catalysis Research Group Department of Chemical and Biomolecular Engineering The Ohio State University Columbus, OH 43210 *Ozkan.1@osu.edu Biomass to Hydrogen (Environmentally Friendly) Plant cultivation Plant cultivation Saccharification Saccharification / / Fermentation Fermentation Anaerobic digestion Anaerobic digestion Residues of Residues of agroindustries agroindustries and cultivations and cultivations Municipal Solid Waste Municipal Solid Waste (organic fraction) (organic fraction) Distillation Distillation Reformation of ethanol

359

Harvest BioFuels LLC | Open Energy Information  

Open Energy Info (EERE)

LLC LLC Jump to: navigation, search Name Harvest BioFuels LLC Place Addison, Texas Zip TX 75001 Product Setting up corn-based ethanol plants. Coordinates 38.477365°, -80.412149° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.477365,"lon":-80.412149,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

360

BioEnergy of America Inc | Open Energy Information  

Open Energy Info (EERE)

America Inc America Inc Jump to: navigation, search Name BioEnergy of America Inc Address 30 Executive Avenue Place Edison, New Jersey Zip 08817 Sector Biofuels Product Biofuels producer Website http://www.bioenergyofamerica. Coordinates 40.497076°, -74.375894° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.497076,"lon":-74.375894,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "bio mass geo" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Final Test Report for BioCOPE.PDF  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

33 33 An Evaluation of BioCOPE to Reduce Hydrogen Sulfide in Sediments, and Accelerate the Breakdown of Petroleum Hydrocarbons in Soil June 28, 2000 - October 16, 2000 Date Published: June 12, 2001 L.M. Jackson PREPARED FOR THE UNITED STATES DEPARTMENT OF ENERGY/ROCKY MOUNTAIN OILFIELD TESTING CENTER Work Performed Under Rocky Mountain Oilfield Testing Center (RMOTC) CRADA No. 2000-006 PROTECTED CRADA INFORMATION This product contains Protected CRADA Information which was produced on June 12, 2001 under CRADA No. 2000-006 and is not to be further disclosed for a period of 1 year(s) from the date it was produced except as expressly provided for in the CRADA. Distribution E. Further dissemination authorized to the Department of Energy only; other requests shall be

362

Guidance For Preparatioon of Basis For Interim Operation (BIO) Documents  

Broader source: Energy.gov (indexed) [DOE]

3011-2002 3011-2002 December 2002 Superceding DOE-STD-3011-94 November 1994 DOE STANDARD GUIDANCE FOR PREPARATION OF BASIS FOR INTERIM OPERATION (BIO) DOCUMENTS U.S. Department of Energy AREA SAFT Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. NOT MEASUREMENT SENSITIVE DOE-STD-3011-2002 ii This document has been reproduced directly from the best available copy. Available to DOE and DOE contractors from ES&H Technical Information Services, U.S. Department of Energy, (800) 473-4375, fax: (301) 903-9823. Available to the public from the U.S. Department of Commerce, Technology Administration, National Technical Information Service, Springfield, VA 22161;

363

Quantum dots in bio-imaging: Revolution by the small  

SciTech Connect (OSTI)

Visual analysis of biomolecules is an integral avenue of basic and applied biological research. It has been widely carried out by tagging of nucleotides and proteins with traditional fluorophores that are limited in their application by features such as photobleaching, spectral overlaps, and operational difficulties. Quantum dots (QDs) are emerging as a superior alternative and are poised to change the world of bio-imaging and further its applications in basic and applied biology. The interdisciplinary field of nanobiotechnology is experiencing a revolution and QDs as an enabling technology have become a harbinger of this hybrid field. Within a decade, research on QDs has evolved from being a pure science subject to the one with high-end commercial applications.

Arya, Harinder [Gene Function Research Center, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8562 (Japan); Kaul, Zeenia [Gene Function Research Center, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8562 (Japan); Wadhwa, Renu [Gene Function Research Center, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8562 (Japan); Taira, Kazunari [Gene Function Research Center, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8562 (Japan); Hirano, Takashi [Institute for Biological Resources and Functions, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, 7 Ibaraki 305-8562 (Japan); Kaul, Sunil C. [Gene Function Research Center, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8562 (Japan)]. E-mail: s-kaul@aist.go.jp

2005-04-22T23:59:59.000Z

364

Mass spectrometric immunoassay  

DOE Patents [OSTI]

Rapid mass spectrometric immunoassay methods for detecting and/or quantifying antibody and antigen analytes utilizing affinity capture to isolate the analytes and internal reference species (for quantification) followed by mass spectrometric analysis of the isolated analyte/internal reference species. Quantification is obtained by normalizing and calibrating obtained mass spectrum against the mass spectrum obtained for an antibody/antigen of known concentration.

Nelson, Randall W; Williams, Peter; Krone, Jennifer Reeve

2013-07-16T23:59:59.000Z

365

Mass spectrometric immunoassay  

DOE Patents [OSTI]

Rapid mass spectrometric immunoassay methods for detecting and/or quantifying antibody and antigen analytes utilizing affinity capture to isolate the analytes and internal reference species (for quantification) followed by mass spectrometric analysis of the isolated analyte/internal reference species. Quantification is obtained by normalizing and calibrating obtained mass spectrum against the mass spectrum obtained for an antibody/antigen of known concentration.

Nelson, Randall W (Phoenix, AZ); Williams, Peter (Phoenix, AZ); Krone, Jennifer Reeve (Granbury, TX)

2007-12-04T23:59:59.000Z

366

Mayne, P.W., Coop, M.R., Springman, S., Huang, A-B., and Zornberg, J. (2009). State-of-the-Art Paper (SOA-1): GeoMaterial Behavior and Testing. Proc. 17th Intl. Conf. Soil Mechanics & Geotechnical  

E-Print Network [OSTI]

Mayne, P.W., Coop, M.R., Springman, S., Huang, A-B., and Zornberg, J. (2009). State-of-the-Art Paper (SOA-1): GeoMaterial Behavior and Testing. Proc. 17th Intl. Conf. Soil Mechanics & Geotechnical

Mayne, Paul W.

367

BioTextQuest+: a knowledge integration platform for literature mining and concept discovery  

Science Journals Connector (OSTI)

......experimental data analysis platform and is designed to work with...domain architectures, related chemicals and involved pathways...protein (PPI), protein - chemical interactions networks...automatically feed the BioCompendium platform with the relevant identifiers......

Nikolas Papanikolaou; Georgios A. Pavlopoulos; Evangelos Pafilis; Theodosios Theodosiou; Reinhard Schneider; Venkata P. Satagopam; Christos A. Ouzounis; Aristides G. Eliopoulos; Vasilis J. Promponas; Ioannis Iliopoulos

2014-11-15T23:59:59.000Z

368

Making Translation Work BIOTECHNOLOGY'S LARGEST GLOBAL EVENT, THE BIO INTERNATIONAL CONVENTION, CONVENES  

E-Print Network [OSTI]

Making Translation Work BIOTECHNOLOGY'S LARGEST GLOBAL EVENT, THE BIO INTERNATIONAL CONVENTION- tunities and discussing industry trends, investments, and policies meant to better the world.The gathering reasonable protection of commercial interests within strictly defined domains of joint activity, while

Mullins, Dyche

369

Polyelectrolyte multilayers (PEM) in micro / nanofluidics for novel BioMEMS platforms  

E-Print Network [OSTI]

The overall goal of this thesis was to exploit the versatility of the polyelectrolyte multilayer (PEM) to fabricate a novel micro/nanofluidic device for patterning bacteria in BioMEMS. Nanofluidic channels offer new ...

Jang, Hongchul

2010-01-01T23:59:59.000Z

370

growth laws II). Hum. BioI. 10:181-213. IVLEV, V. S.  

E-Print Network [OSTI]

growth laws II). Hum. BioI. 10:181-213. IVLEV, V. S. 1939. Balance of energy in carps. [In Russ ofhigher salinity (early flood to early ebb tide). Generally a subsample of at least 100 Dungeness crabs

371

The Joint BioEnergy Institute (JBEI): Developing New Biofuels by Overcoming Biomass Recalcitrance  

Science Journals Connector (OSTI)

The mission of the Joint BioEnergy Institute is to advance the development of the next-generation of biofuelsliquid fuels derived from the solar energy...

Henrik Vibe Scheller; Seema Singh; Harvey Blanch; Jay D. Keasling

2010-06-01T23:59:59.000Z

372

Assembly of BioBrick standard biological parts using three antibiotic assembly  

E-Print Network [OSTI]

An underlying goal of synthetic biology is to make the process of engineering biological systems easier and more reliable. In support of this goal, we developed BioBrick assembly standard 10 to enable the construction of ...

Shetty, Reshma

2011-05-20T23:59:59.000Z

373

Surrogate-based optimization of a BioMEMs microfluidic weir  

E-Print Network [OSTI]

BioMEM microfluidic weirs enable biologists to study biological processes at the cell level. A novel substrate-affixed microfluidic array of weirs allows active sorting of cells via control electrodes. The ability of the ...

Ooi, Boon Hooi

2008-01-01T23:59:59.000Z

374

DuPonts Journey to Build a Global Cellulosic BioFuel Business Enterprise  

Broader source: Energy.gov [DOE]

Plenary I: Progress in Advanced Biofuels DuPonts Journey to Build a Global Cellulosic BioFuel Business Enterprise William Provine, DirectorScience and Technology External Affairs, DuPont

375

A Systems Approach to Bio-Oil Stabilization - Final Technical Report  

SciTech Connect (OSTI)

The objective of this project is to develop practical, cost effective methods for stabilizing biomass-derived fast pyrolysis oil for at least six months of storage under ambient conditions. The U.S. Department of Energy has targeted three strategies for stabilizing bio-oils: (1) reducing the oxygen content of the organic compounds comprising pyrolysis oil; (2) removal of carboxylic acid groups such that the total acid number (TAN) of the pyrolysis oil is dramatically reduced; and (3) reducing the charcoal content, which contains alkali metals known to catalyze reactions that increase the viscosity of bio-oil. Alkali and alkaline earth metals (AAEM), are known to catalyze decomposition reactions of biomass carbohydrates to produce light oxygenates that destabilize the resulting bio-oil. Methods envisioned to prevent the AAEM from reaction with the biomass carbohydrates include washing the AAEM out of the biomass with water or dilute acid or infusing an acid catalyst to passivate the AAEM. Infusion of acids into the feedstock to convert all of the AAEM to salts which are stable at pyrolysis temperatures proved to be a much more economically feasible process. Our results from pyrolyzing acid infused biomass showed increases in the yield of anhydrosugars by greater than 300% while greatly reducing the yield of light oxygenates that are known to destabilize bio-oil. Particulate matter can interfere with combustion or catalytic processing of either syngas or bio-oil. It also is thought to catalyze the polymerization of bio-oil, which increases the viscosity of bio-oil over time. High temperature bag houses, ceramic candle filters, and moving bed granular filters have been variously suggested for syngas cleaning at elevated temperatures. High temperature filtration of bio-oil vapors has also been suggested by the National Renewable Energy Laboratory although there remain technical challenges to this approach. The fast pyrolysis of biomass yields three main organic products: condensable vapors, non-condensable gases, and liquid aerosols. Traditionally these are recovered by a spray quencher or a conventional shell and tube condenser. The spray quencher or condenser is typically followed by an electrostatic precipitator to yield 1 or 2 distinct fractions of bio-oil. The pyrolyzer system developed at Iowa State University incorporates a proprietary fractionating condenser train. The system collects the bio-oil into five unique fractions. For conditions typical of fluidized bed pyrolyzers, stage fractions have been collected that are carbohydrate-rich (anhydrosugars), lignin-rich, and an aqueous solution of carboxylic acids and aldehydes. One important feature is that most of the water normally found in bio-oil appears in the last stage fraction along with several water-soluble components that are thought to be responsible for bio-oil aging (low molecular weight carboxylic acids and aldehydes). Research work on laser diagnostics for hot-vapor filtration and bio-oil recovery centered on development of analytical techniques for in situ measurements during fast pyrolysis, hot-vapor filtration, and fractionation relative to bio-oil stabilization. The methods developed in this work include laser-induced breakdown spectroscopy (LIBS), laser-induced incandescence (LII), and laser scattering for elemental analysis (N, O, H, C), detection of particulates, and detection of aerosols, respectively. These techniques were utilized in simulated pyrolysis environments and applied to a small-scale pyrolysis unit. Stability of Bio-oils is adversely affected by the presence of particulates that are formed as a consequence of thermal pyrolysis, improving the CFD simulations of moving bed granular filter (MBGF) is useful for improving the design of MBGF for bio-oil production. The current work uses fully resolved direct numerical simulation (where the flow past each granule is accurately represented) to calculate the filter efficiency that is used in the CFD model at all flow speeds. This study shows that fully-resolved direct numerical simulation (DNS

Brown, Robert C; Meyer, Terrence; Fox, Rodney; Submramaniam, Shankar; Shanks, Brent; Smith, Ryan G

2011-12-23T23:59:59.000Z

376

Nanoparticle-based Bio-Bar Code (MNP probe, barcode amplification, BCA)  

Science Journals Connector (OSTI)

This bio-bar code can be applied for the ultra-sensitive detection of proteins at attomolar (1018) concentration. Magnetic microparticle probes are equipped with monoclonal antibodies and with DNA unique to the ...

2008-01-01T23:59:59.000Z

377

Production of Bio-oil from Alfalfa Stems by Fluidized-Bed Fast Pyrolysis  

Science Journals Connector (OSTI)

Findings included a lower-than-average yield of bio-oil and a higher-than-average yield of charcoal from alfalfa stems, compared to previous results for other biomass feedstocks. ...

Akwasi A. Boateng; Charles A. Mullen; Neil Goldberg; Kevin B. Hicks; Hans-Joachim G. Jung; JoAnn F. S. Lamb

2008-05-21T23:59:59.000Z

378

The Center for BioEnergy Sustainability (CBES) at Oak Ridge National Laboratory (ORNL)  

E-Print Network [OSTI]

The Center for BioEnergy Sustainability (CBES) at Oak Ridge National Laboratory (ORNL) is pleased to announce that we are holding our next Forum on October 20th, 2011 in the Ocoee Room (room 189) in Building

379

The Center for BioEnergy Sustainability (CBES) At Oak Ridge National Laboratory (ORNL)  

E-Print Network [OSTI]

The Center for BioEnergy Sustainability (CBES) At Oak Ridge National Laboratory (ORNL) is pleased to announce that we are holding our next Forum on March 15th, 2012 in the Ocoee Room (Room 189) in Building

380

Development of a mechanical counter pressure Bio-Suit System for planetary exploration  

E-Print Network [OSTI]

Extra-vehicular activity (EVA) is critical for human spaceflight and particularly for human planetary exploration. The MIT Man Vehicle Laboratory is developing a Bio-Suit EVA System, based on mechanical counterpressure ...

Sim, Zhe Liang

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "bio mass geo" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

To do better than Nature | Center for Bio-Inspired Solar Fuel...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

would like to do it better..." Marina Faiella is a postdoctoral scholar in the Center for Bio-Inspired Solar Fuel Production at ASU. Recently she has been awarded a UNESCO-L'Oral...

382

ASU is a place to be for energy research | Center for Bio-Inspired...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ASU BISfuel Center. The focus of his project is the proton reduction catalyst site of the bio-inspired fuel cell that is being designed in the Center. Specific aspect of the...

383

Bio-Derived Liquids to Hydrogen Distributed Reforming Working Group Background Paper  

Broader source: Energy.gov [DOE]

Paper by Arlene Anderson and Tracy Carole presented at the Bio-Derived Liquids to Hydrogen Distributed Reforming Working Group, with a focus on key drivers, purpose, and scope.

384

Combustion Tests of Bio-Oils Derived from Biomass Slow Pyrolysis  

Science Journals Connector (OSTI)

ENEL in collaboration with Region Abruzzo and Tecnars has carried out some experimental combustion tests of bio-oil produced with a conventional slow pyrolysis process, with a partial economic support of EEC.

C. Rossi; R. Frandi; E. Bonfitto

1993-01-01T23:59:59.000Z

385

Photothermal nano-cavities for ultra-sensitive chem-bio detection  

E-Print Network [OSTI]

Nano-cavity photothermal spectroscopy is a novel technique for ultra-sensitive chem-bio detection. We illustrate that through simultaneous localization of optical and thermal interactions in a planar nano-cavity, detection ...

Hu, Juejun

386

Life cycle assessment of bio-based ethanol produced from different agricultural feedstocks  

Science Journals Connector (OSTI)

Bio-based products are often considered sustainable due to their renewable nature. However, the environmental performance of products needs to be assessed considering a life cycle perspective to get a complete pi...

Ivan Muoz; Karin Flury; Niels Jungbluth

2014-01-01T23:59:59.000Z

387

Refuse derived soluble bio-organics enhancing tomato plant growth and productivity  

SciTech Connect (OSTI)

Highlights: Black-Right-Pointing-Pointer Municipal bio-wastes are a sustainable source of bio-based products. Black-Right-Pointing-Pointer Refuse derived soluble bio-organics promote chlorophyll synthesis. Black-Right-Pointing-Pointer Refuse derived soluble bio-organics enhance plant growth and fruit ripening rate. Black-Right-Pointing-Pointer Sustainable chemistry exploiting urban refuse allows sustainable development. Black-Right-Pointing-Pointer Chemistry, agriculture and the environment benefit from biowaste technology. - Abstract: Municipal bio-refuse (CVD), containing kitchen wastes, home gardening residues and public park trimmings, was treated with alkali to yield a soluble bio-organic fraction (SBO) and an insoluble residue. These materials were characterized using elemental analysis, potentiometric titration, and 13C NMR spectroscopy, and then applied as organic fertilizers to soil for tomato greenhouse cultivation. Their performance was compared with a commercial product obtained from animal residues. Plant growth, fruit yield and quality, and soil and leaf chemical composition were the selected performance indicators. The SBO exhibited the best performance by enhancing leaf chlorophyll content, improving plant growth and fruit ripening rate and yield. No product performance-chemical composition relationship could be assessed. Solubility could be one reason for the superior performance of SBO as a tomato growth promoter. The enhancement of leaf chlorophyll content is discussed to identify a possible link with the SBO photosensitizing properties that have been demonstrated in other work, and thus with photosynthetic performance.

Sortino, Orazio [Dipartimento di Scienze Agronomiche Agrochimiche e delle Produzioni Animali, Universita degli Studi di Catania, Via Valdisavoia 5, 95123 Catania (Italy); Dipasquale, Mauro [Dipartimento di Chimica, Universita di Torino, Via P. Giuria 7, 10125 Torino (Italy); Montoneri, Enzo, E-mail: enzo.montoneri@unito.it [Dipartimento di Chimica, Universita di Torino, Via P. Giuria 7, 10125 Torino (Italy); Tomasso, Lorenzo; Perrone, Daniele G. [Dipartimento di Chimica, Universita di Torino, Via P. Giuria 7, 10125 Torino (Italy); Vindrola, Daniela; Negre, Michele; Piccone, Giuseppe [Dipartimento di Valorizzazione e Protezione delle Risorse Agroforestali, Universita di Torino, Via L. da Vinci 44, 10095 Grugliasco (Italy)

2012-10-15T23:59:59.000Z

388

Life cycle GHG analysis of rice straw bio-DME production and application in Thailand  

Science Journals Connector (OSTI)

Abstract Thailand is one of the leading countries in rice production and export; an abundance of rice straw, therefore, is left in the field nowadays and is commonly burnt to facilitate quick planting of the next crop. The study assesses the life cycle greenhouse gas (GHG) emissions of using rice straw for bio-DME production in Thailand. The analysis is divided into two scenarios of rice straw bio-DME utilization i.e. used as automotive fuel for diesel engines and used as LPG supplement for household application. The results reveal that that utilization of rice straw for bio-DME in the two scenarios could help reduce GHG emissions by around 1470% and 266%, respectively as compared to the diesel fuel and LPG substituted. In case rice straw is considered as a by-product of rice cultivation, the cultivation of rice straw will be the major source of GHG emission contributing around 50% of the total GHG emissions of rice straw bio-DME production. Several factors that can affect the GHG performance of rice straw bio-DME production are discussed along with measures to enhance GHG performance of rice straw bio-DME production and utilization.

Thapat Silalertruksa; Shabbir H. Gheewala; Masayuki Sagisaka; Katsunobu Yamaguchi

2013-01-01T23:59:59.000Z

389

GeoChip-based analysis of functional microbial communities during the reoxidation of a bioreduced uranium-contaminated aquifer  

SciTech Connect (OSTI)

A pilot-scale system was established for in situ biostimulation of U(VI) reduction by ethanol addition at the US Department of Energy's (DOE's) Field Research Center (Oak Ridge, TN). After achieving U(VI) reduction, stability of the bioreduced U(IV) was evaluated under conditions of (i) resting (no ethanol injection), (ii) reoxidation by introducing dissolved oxygen (DO), and (iii) reinjection of ethanol. GeoChip, a functional gene array with probes for N, S and C cycling, metal resistance and contaminant degradation genes, was used for monitoring groundwater microbial communities. High diversity of all major functional groups was observed during all experimental phases. The microbial community was extremely responsive to ethanol, showing a substantial change in community structure with increased gene number and diversity after ethanol injections resumed. While gene numbers showed considerable variations, the relative abundance (i.e. percentage of each gene category) of most gene groups changed little. During the reoxidation period, U(VI) increased, suggesting reoxidation of reduced U(IV). However, when introduction of DO was stopped, U(VI) reduction resumed and returned to pre-reoxidation levels. These findings suggest that the community in this system can be stimulated and that the ability to reduce U(VI) can be maintained by the addition of electron donors. This biostimulation approach may potentially offer an effective means for the bioremediation of U(VI)-contaminated sites.

Van Nostrand, Joy [University of Oklahoma, Norman; Wu, Weimin [ORNL; Wu, Liyou [University of Oklahoma, Norman; Deng, Ye [University of Oklahoma; Carley, Jack M [ORNL; Carroll, Sue L [ORNL; He, Zhili [University of Oklahoma; Gu, Baohua [ORNL; Luo, Jian [ORNL; Criddle, Craig [ORNL; Watson, David B [ORNL; Jardine, Philip M [ORNL; Marsh, Terence [Michigan State University, East Lansing; Tiedje, James [Michigan State University, East Lansing; Hazen, T. C. [Lawrence Berkeley National Laboratory (LBNL); Zhou, Jizhong [University of Oklahoma, Norman

2009-01-01T23:59:59.000Z

390

Maximum Hydrogen Production by Autothermal Steam Reforming of Bio-oil With NiCuZnAl Catalyst  

Science Journals Connector (OSTI)

Autothermal steam reforming (ATR) of bio-oil, which couples the endothermic steam reforming reaction with the exothermic partial oxidation, offers many advantages from a technical and economic point of view. Effective production of hydrogen through ATR of bio-oil was performed at lower temperature with NiCuZnAl catalyst. The highest hydrogen yield from bio-oil reached 64.3% with a nearly complete bio-oil conversion at 600 C, the ratio of steam to carbon fed (S/C) of 3 and the oxygen to carbon ratio (O/C) of 0.34. The reaction conditions in ATR including temperature, O/C, S/C and weight hourly space velocity can be used to control both hydrogen yield and products distribution. The comparison between the ATR and common steam reforming of bio-oil was studied. The mechanism of the ATR of bio-oil was also discussed.

Shi-zhi Yan; Qi Zhai; Quan-xin Li

2012-01-01T23:59:59.000Z

391

EMSL - Mass Spectrometry  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

mass-spectrometry Proteomics Capabilities High resolution and mass accuracy Fourier-transform ion cyclotron resonance (FT-ICR) spectrometers, from 6 Tesla (T) to 15T and 21T in...

392

mass communication advertising &  

E-Print Network [OSTI]

mass communication advertising & public relations introduction. Graduate programs in the Department of Mass Communication, Advertising, and Public Relations provide an entry to a wide spectrum of careers the opportunity to create content, campaigns, strategy, and research in public relations, advertising

Finzi, Adrien

393

Investigation of engine performance and exhaust gas emissions by using bio-diesel in compression ignition engine and optimisation of bio-diesel production from feedstock by using response surface methodology.  

E-Print Network [OSTI]

??Bio-diesel, derived from the transesterification of vegetable oils or animal fats with simple alcohols, has attracted more and more attention recently. As a cleaner burning (more)

Abuhabaya, Abdullah

2012-01-01T23:59:59.000Z

394

Interstitial BiO molecule as a broadband IR luminescence centre in bismuth-doped silica glass  

SciTech Connect (OSTI)

Experimental data on absorption and luminescence in optical fibres with a Bi : SiO{sub 2} glass core are compared to experimentally determined and calculated spectroscopic properties of the BiO molecule. The results suggest that the IR luminescence of Bi : SiO{sub 2} glass is due to interstitial BiO molecules. This assumption is supported by quantum-chemical simulation results for a BiO molecule in a ring interstice of the silica glass network.

Sokolov, V O; Plotnichenko, V G; Dianov, Evgenii M [Fiber Optics Research Center, Russian Academy of Sciences, Moscow (Russian Federation)

2011-12-31T23:59:59.000Z

395

Elbow mass flow meter  

DOE Patents [OSTI]

Elbow mass flow meter. The present invention includes a combination of an elbow pressure drop generator and a shunt-type mass flow sensor for providing an output which gives the mass flow rate of a gas that is nearly independent of the density of the gas. For air, the output is also approximately independent of humidity.

McFarland, Andrew R. (College Station, TX); Rodgers, John C. (Santa Fe, NM); Ortiz, Carlos A. (Bryan, TX); Nelson, David C. (Santa Fe, NM)

1994-01-01T23:59:59.000Z

396

Cough BioMed Central Methodology Establishing a gold standard for manual cough counting: video versus digital audio recordings  

E-Print Network [OSTI]

2006 Smith et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License

Jaclyn A Smith; John E Earis; Ashley A Woodcock Open Access; Jaclyn A Smith; John E Earis; Ashley A Woodcock

2006-01-01T23:59:59.000Z

397

Poppy: a New Bio-Inspired Humanoid Robot Platform for Biped Locomotion and Physical Human-Robot Interaction  

E-Print Network [OSTI]

was made possible by the use of 3D printing techniques (all limbs were 3D printed). Poppy uses the bio

Paris-Sud XI, Université de

398

744 Mol. BioSyst., 2012, 8, 744752 This journal is c The Royal Society of Chemistry 2012 Cite this: Mol. BioSyst., 2012, 8, 744752  

E-Print Network [OSTI]

: Mol. BioSyst., 2012, 8, 744­752 Dissecting ensemble networks in ES cell populations reveals micro in pluripotency in eighty-three ES cells to create Gene Regulatory Networks (GRNs) at the single cell level. We is associated with a collection of active sub-networks, with differing degrees of connectivity between

Babu, M. Madan

399

This journal is c The Royal Society of Chemistry 2012 Mol. BioSyst., 2012, 8, 4757 47 Cite this: Mol. BioSyst., 2012, 8, 4757  

E-Print Network [OSTI]

: Mol. BioSyst., 2012, 8, 47­57 Intrinsically disordered regions as affinity tuners in protein-binding proteins and play a crucial role by increasing the affinity and specificity of DNA binding. Disordered disordered linkers in multidomain proteins that mediate the cross-talks between the constituent domains

Martin, Jan M.L.

400

This journal is c The Royal Society of Chemistry 2012 Mol. BioSyst., 2012, 8, 21 21 Cite this: Mol. BioSyst., 2012, 8, 21  

E-Print Network [OSTI]

. BioSyst., 2012, 8, 21 Intrinsically disordered proteins M. Madan Babu DOI: 10.1039/c1mb90045e Our of protein function. Such segments, usually referred to as intrinsically disordered regions (IDRs), may understanding of protein function has been predominated by the view that proteins need to adopt a defined three

Babu, M. Madan

Note: This page contains sample records for the topic "bio mass geo" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Application of bio-oils from lignocellulosic biomass to transportation, heat and power generationA review  

Science Journals Connector (OSTI)

Abstract This review will be concentrated on the application of bio-oil produced from the cellulosic biomass among the various liquid biofuels to transport fuels, heat and power generation as substitute. Main application of bio-oil and biocrude from two main thermochemical processes, i.e., pyrolysis and liquefaction include boiler for heat and electricity production, diesel engine or gas turbine for power generation, and diesel engine for transportation fuel. Fast pyrolysis is the most popular process for converting cellulosic biomass to high yield of bio-oil with relatively low cost. For the application of bio-oils to transportation, heat and power generation, physical upgrading methods such as emulsions (bio-oil/diesel or bio-oil/biodiesel ) and blends of bio-oil/oxygenated fuel (ethanol, diglyme) were mainly used and tested. The studies on the spray characteristics of emulsions and blends in diesel engine condition are not available in the literature. In most studies on the combustion and emission characteristics of emulsions and blends, CO emission was increased in most fuels and engines tested and HC was increased or comparable to diesel operation. However, \\{NOx\\} and soot emissions were decreased in most case of experiments. In the pressure-swirl nozzle for gas turbine application, preheating and blending techniques were employed to reduce the SMD of spray. In case of blend for the application of heat and power generation, E20 blend was mainly selected in most studies. Most studies related to bio-oil combustion in burners, diesel engines and gas turbines demonstrated the higher HC, CO and soot emissions than the original design fuel. Although the properties of bio-oil/methanol blend were widely investigated, there are no studies available about the application of bio-oil/methanol blend to transportation, heat and power generation in the literature. In addition, more research is required for the combustion of upgraded bio-oils for transportation application.

Soo-Young No

2014-01-01T23:59:59.000Z

402

A systemic approach for dimensioning and designing anaerobic bio-digestion/energy generation biomass supply networks  

Science Journals Connector (OSTI)

Abstract Anaerobic bio-digestion/energy generation complexes using animal waste raw materials represent an important component of renewable energy initiatives and policies worldwide, and are significant contributors to broaden sustainability efforts. In such projects bio-power feasibility depends heavily on generation complex access to biomass which is of costly transportation. As a result, an important component of renewable energy planning is the optimization of a logistics system to guarantee low-cost access to animal waste. This access is a function of local characteristics including number and geographic location of organic waste sources, operating and maintenance costs of the generation facility, energy prices, and marginal contribution of biomass collected and delivered to the anaerobic bio-digestion unit. Because biomass exhibits high transportation costs per unit of energy ultimately generated, and because different types of biomass have different biogas-generating properties, design of the supply logistics system can be the determinant factor towards economic viability of energy generation from an anaerobic bio-digestion plant. Indeed, to address this problem it is helpful to consider the farms, the logistics system, the anaerobic bio-digestion plant, and the generation plant as subsystems in an integrated system. Additionally, the existence of an outlet for manure may allow farmers to significantly raise boundaries of one constraint they face, namely disposing of animal waste, therefore permitting increases in farm production capacity. This paper suggests and outlines a systematic methodology to address the design of such systems.

Joo Neiva de Figueiredo; Srgio Fernando Mayerle

2014-01-01T23:59:59.000Z

403

future science group 675ISSN 1759-726910.4155/BFS.12.65 2012 Future Science Ltd In the past decade, the annual production of bio-  

E-Print Network [OSTI]

decade, the annual production of bio- diesel had increased globally by 5 billion gallons [201]. Meanwhile if the reaction time were extended. ReseaRch aRticle 1 Bio-Energy Center, Montana State University ­ Northern

He, Brian

404

Macro-ions collapse leading to hybrid bio-nanomaterials.  

SciTech Connect (OSTI)

I used supramolecular self-assembling cyanine and the polyamine spermine binding to Escherichia coli genomic DNA as a model for DNA collapse during high throughput screening. Polyamine binding to DNA converts the normally right handed B-DNA into left handed Z-DNA conformation. Polyamine binding to DNA was inhibited by the supramolecular self-assembling cyanine. Self-assembly of cyanine upon DNA scaffold was likewise competitively inhibited by spermine as signaled by fluorescence quench from DNA-cyanine ensemble. Sequence of DNA exposure to cyanine or spermine was critical in determining the magnitude of fluorescence quench. Methanol potentiated spermine inhibition by >10-fold. The IC{sub 50} for spermine inhibition was 0.35 {+-} 0.03 {micro}M and the association constant Ka was 2.86 x 10{sup -6}M. Reversibility of the DNA-polyamine interactions was evident from quench mitigation at higher concentrations of cyanine. System flexibility was demonstrated by similar spermine interactions with {lambda}DNA. The choices and rationale regarding the polyamine, the cyanine dye as well as the remarkable effects of methanol are discussed in detail. Cyanine might be a safer alternative to the mutagenic toxin ethidium bromide for investigating DNA-drug interactions. The combined actions of polyamines and alcohols mediate DNA collapse producing hybrid bio-nanomaterials with novel signaling properties that might be useful in biosensor applications. Finally, this work will be submitted to Analytical Sciences (Japan) for publication. This journal published our earlier, related work on cyanine supramolecular self-assembly upon a variety of nucleic acid scaffolds.

Achyuthan, Komandoor E.

2009-10-01T23:59:59.000Z

405

Nuclear Masses in Astrophysics  

E-Print Network [OSTI]

Among all nuclear ground-state properties, atomic masses are highly specific for each particular combination of N and Z and the data obtained apply to a variety of physics topics. One of the most crucial questions to be addressed in mass spectrometry of unstable radionuclides is the one of understanding the processes of element formation in the Universe. To this end, accurate atomic mass values of a large number of exotic nuclei participating in nucleosynthesis are among the key input data in large-scale reaction network calculations. In this paper, a review on the latest achievements in mass spectrometry for nuclear astrophysics is given.

Christine Weber; Klaus Blaum; Hendrik Schatz

2008-12-09T23:59:59.000Z

406

EMSL - Mass Spectrometer  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

mass-spectrometer en Physical Properties of Ambient and Laboratory-Generated Secondary Organic Aerosol. http:www.emsl.pnl.govemslwebpublicationsphysical-properties-ambient-and...

407

reprinted from BioQUEST Notes, Spring, 2002 There is a lot of buzz about biocomplexity. The National Science Foundation (NSF) has identified  

E-Print Network [OSTI]

characteristics that align well with goals in educational reform. #12;reprinted from BioQUEST Notes, Spring, 2002

408

Bio-Derived Liquids to Hydrogen Distributed Reforming Working Group (BILIWG) Kick-Off Meeting Proceedings Hilton Garden Inn-BWI,Baltimore, MD October 24, 2006  

Broader source: Energy.gov [DOE]

Proceedings from the October 24, 2006 Bio-Derived Liquids to Hydrogen Distributed Reforming Working Group Kick-Off Meeting.

409

What's wrong with the field of bio-neutron scattering? 1) Not enough professional science and not enough professional scientists  

E-Print Network [OSTI]

What's wrong with the field of bio-neutron scattering? 1) Not enough professional science a paper in this field. Anybody can do it! The most detailed analysis of bio-neutron scattering data up independent moment analysis of the neutron scattering spectrum. Up to today nobody, not even MD people, picked

Doster, Wolfgang

410

The newesT addiTion To The UniversiTy of MinnesoTa's BioMedical  

E-Print Network [OSTI]

The newesT addiTion To The UniversiTy of MinnesoTa's BioMedical discovery disTricT is designed The BUilding's collegial and physical relaTionship To neighBoring faciliTies in The U's BioMedical discovery in the U's Biomedical Discovery District. "The brick, precast concrete, and curtain wall vocabulary

Weiblen, George D

411

Fuel Cell Technologies Office: Bio-Derived Liquids to Hydrogen Distributed  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Group Meeting - November 2007 Group Meeting - November 2007 The Bio-Derived Liquids to Hydrogen Distributed Reforming Working Group participated in a Hydrogen Production Technical Team Research Review on November 6, 2007. The meeting provided the opportunity for researchers to share their experiences in converting bio-derived liquids to hydrogen with members of the Department of Energy Hydrogen Production Technical Team. The following meeting documents are available as Adobe Acrobat PDFs. Download Adobe Reader. Proceedings Agenda, discussion points, and participant list (PDF 146 KB) Action items and meeting highlights (PDF 104 KB) 2007 Annual Merit Review Report excerpts on bio-derived liquids to hydrogen distributed reforming research (PDF 3.9 MB) Presentations DOE Targets, Tools, and Technology

412

Geek-Up[1.21.2011]: Bio-Prospecting and Self-Assembling Nano Ropes |  

Broader source: Energy.gov (indexed) [DOE]

.21.2011]: Bio-Prospecting and Self-Assembling Nano Ropes .21.2011]: Bio-Prospecting and Self-Assembling Nano Ropes Geek-Up[1.21.2011]: Bio-Prospecting and Self-Assembling Nano Ropes January 21, 2011 - 5:41pm Addthis Niketa Kumar Niketa Kumar Public Affairs Specialist, Office of Public Affairs What are the key facts? Microalgae are ;ole biological solar cells -- they capture solar energy and fix inorganic carbon into energy-rich lipids which can be converted into biofuels. The best way to make these biofuels commercially viable is to maximize lipid production, which tends to occur when algaes are under stress. Researchers are searching for the 5 most best-performing algae. Researchers have developed self-assembling nanoscale ropes designed to mimic the intricacy and functionality of biological materials. In the past year, Lee Elliott logged 3,500 miles traveling the West,

413

BioEnergie Park Soesetal GmbH | Open Energy Information  

Open Energy Info (EERE)

BioEnergie Park Soesetal GmbH BioEnergie Park Soesetal GmbH Jump to: navigation, search Name BioEnergie-Park Soesetal GmbH Place Osterode, Lower Saxony, Germany Zip 37520 Sector Biomass Product Lower Saxony-based biomass project developer. Coordinates 53.695599°, 19.973301° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":53.695599,"lon":19.973301,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

414

EA-1850: Flambeau River BioFuels, Inc. Proposed Wood Biomass-to-Liquid Fuel  

Broader source: Energy.gov (indexed) [DOE]

50: Flambeau River BioFuels, Inc. Proposed Wood 50: Flambeau River BioFuels, Inc. Proposed Wood Biomass-to-Liquid Fuel Biorefinery, Park Falls, Wisconsin EA-1850: Flambeau River BioFuels, Inc. Proposed Wood Biomass-to-Liquid Fuel Biorefinery, Park Falls, Wisconsin Summary NOTE: This EA has been cancelled. This EA will evaluate the environmental impacts of a proposal to provide federal funding to Flambeau River Biofuels (FRB) to construct and operate a biomass-to-liquid biorefinery in Park Falls, Wisconsin, on property currently used by Flambeau Rivers Paper, LLC (FRP) for a pulp and paper mill and Johnson Timber Corporation's (JTC) Summit Lake Yard for timber storage. This project would design a biorefinery which would produce up to 1,150 barrels per day (bpd) of clean syncrude. The biorefinery would also supply

415

Hydrogen Production by Catalytic Steam Reforming of Bio-oil, Naphtha  

Science Journals Connector (OSTI)

Hydrogen production by catalytic steam reforming of the bio-oil, naphtha, and CH4 was investigated over a novel metal-doped catalyst of (Ca24Al28O64)4+4O?/Mg (C12A7-Mg). The catalytic steam reforming was investigated from 250 to 850C in the fixed-bed continuous flow reactor. For the reforming of bio-oil, the yield of hydrogen of 80% was obtained at 750C, and the maximum carbon conversion is nearly close to 95% under the optimum steam reforming condition. For the reforming of naphtha and CH4, the hydrogen yield and carbon conversion are lower than that of bio-oil at the same temperature. The characteristics of catalyst were also investigated by XPS. The catalyst deactivation was mainly caused by the deposition of carbon in the catalytic steam reforming process.

Yue Pan; Zhao-xiang Wang; Tao Kan; Xi-feng Zhu; Quan-xin Li

2006-01-01T23:59:59.000Z

416

Bio-char refineries: an accessible approach for the development of biomass-based industry  

Science Journals Connector (OSTI)

Being a by-product of the well-established charcoal industry, slow pyrolysis bio-oil can be an excellent, cost-effective and renewable liquid fuel. However, even in Brazil, a country with a very clean energy profile and large-scale charcoal production, bio-oil is not properly utilised yet. A simple upgrade of traditional methods of charcoal production can significantly increase liquid fuel output. The concept of a bio-char-refinery, introduced in this paper, for production of charcoal, activated carbon, liquid fuel and variety of chemicals presents a possible approach for the development of biomass-based industry. Successful implementation of this concept could provide significant amounts of fuel and chemicals able to enhance economic development and reduce the consumption of petroleum derived products.

Venelin Stamatov; Jose Dilcio Rocha

2007-01-01T23:59:59.000Z

417

BioPig: Developing Cloud Computing Applications for Next-Generation Sequence Analysis  

SciTech Connect (OSTI)

Next Generation sequencing is producing ever larger data sizes with a growth rate outpacing Moore's Law. The data deluge has made many of the current sequenceanalysis tools obsolete because they do not scale with data. Here we present BioPig, a collection of cloud computing tools to scale data analysis and management. Pig is aflexible data scripting language that uses Apache's Hadoop data structure and map reduce framework to process very large data files in parallel and combine the results.BioPig extends Pig with capability with sequence analysis. We will show the performance of BioPig on a variety of bioinformatics tasks, including screeningsequence contaminants, Illumina QA/QC, and gene discovery from metagenome data sets using the Rumen metagenome as an example.

Bhatia, Karan; Wang, Zhong

2011-03-22T23:59:59.000Z

418

Optimal homogenization of perfusion flows in microfluidic bio-reactors; a numerical study  

E-Print Network [OSTI]

To ensure homogeneous conditions within the complete area of perfused microfluidic bio-reactors, we develop a general design of a continuously feed bio-reactor with uniform perfusion flow. This is achieved by introducing a specific type of perfusion inlet to the reaction area. The geometry of these inlets are found using the methods of topology optimization and shape optimization. The results are compared with two different analytic models, from which a general parametric description of the design is obtained and tested numerically. Such a parametric description will generally be beneficial for the design of a broad range of microfluidic bioreactors used for e.g. cell culturing and analysis, and in feeding bio-arrays.

Okkels, Fridolin; Bruus, Henrik

2009-01-01T23:59:59.000Z

419

National Bio Energy Co Ltd formerly Guoneng Biomass Power Ltd | Open Energy  

Open Energy Info (EERE)

Bio Energy Co Ltd formerly Guoneng Biomass Power Ltd Bio Energy Co Ltd formerly Guoneng Biomass Power Ltd Jump to: navigation, search Name National Bio Energy Co Ltd (formerly Guoneng Biomass Power Ltd.) Place Beijing, Beijing Municipality, China Zip 100005 Sector Biomass Product Invest in, build and run biomass power plants. Coordinates 39.90601°, 116.387909° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.90601,"lon":116.387909,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

420

Bio Centers Announcement at the National Press Club | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Bio Centers Announcement at the National Press Club Bio Centers Announcement at the National Press Club Bio Centers Announcement at the National Press Club June 26, 2007 - 2:08pm Addthis Remarks as Prepared for Secretary Bodman WASHINGTON, DC - Good afternoon, ladies and gentlemen, and welcome. I want to start by thanking Ray Orbach for introducing me today, for the excellent work his people did overseeing this particular announcement and for the excellence he and his team bring to the pursuit of scientific discovery every day on the country's behalf. Today we are here to announce which three scientific teams, from among the many that applied, have been selected to create and operate the Department of Energy's three new Bioenergy Research Centers. The competition was rigorous. The applications, most of which were partnerships, involved

Note: This page contains sample records for the topic "bio mass geo" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Pairing and phase separation in BiO3-based superconductors  

Science Journals Connector (OSTI)

We study a model proposed before to give rise to a nonconventional pairing mechanism in BaPb1-xBixO3 and Ba1-xKxBiO3. This model, in which both phonons and electronic excitations play an essential role, is supported by experimental evidence. We solve exactly a BiO6 cluster and we calculate the interaction between this cluster and the rest of the system using perturbation theory in the hopping term. The holes introduced by doping form groups of n holes where n depends essentially on the values of the electron-phonon interaction, Bi-O repulsion, and Bi-O hopping. n=2 is favored near the limit at which the disproportionated ground state becomes unstable.

A. A. Aligia and M. Balia

1993-06-01T23:59:59.000Z

422

Pairing mechanism in Bi-O superconductors: A finite-size chain calculation  

Science Journals Connector (OSTI)

We have studied the pairing mechanism in BiO3 systems by calculating the binding energy of a pair of holes in finite Bi-O chains, for parameters that simulate three-dimensional behavior. In agreement with previous results using perturbation theory in the hopping t, for covalent Bi-O binding and parameters for which the parent compound has a disproportionate ground state, pairing induced by the presence of biexcitons is obtained for sufficiently large interatomic Coulomb repulsion. The analysis of appropriate correlation functions shows a rapid metallization of the system as t and the number of holes increase. This fact shrinks the region of parameters for which the finite-size calculations can be trusted without further study. The same model for other parameters yields pairing in two other regimes: bipolaronic and magnetic excitonic.

A. A. Aligia; M. D. Nuez Regueiro; E. R. Gagliano

1989-09-01T23:59:59.000Z

423

Bio-Oil Separation and Stabilization by Supercritical Fluid Fractionation 2014 Final Report  

SciTech Connect (OSTI)

The objective of this project is to use supercritical fluids to separate and fractionate algal-based bio-oils into stable products that can be subsequently upgraded to produce drop-in renewable fuels. To accomplish this objective, algae was grown and thermochemically converted to bio-oils using hydrothermal liquefaction (HTL), pyrolysis, and catalytic pyrolysis. The bio-oils were separated into an extract and a raffinate using near-critical propane or carbon dioxide. The fractions were then subjected to thermal aging studies to determine if the extraction process had stabilized the products. It was found that the propane extract fraction was twice as stable as the parent catalytic pyrolysis bio-oils as measured by the change in viscosity after two weeks of accelerated aging at 80C. Further, in-situ NMR aging studies found that the propane extract was chemically more stable than the parent bio-oil. Thus the milestone of stabilizing the product was met. A preliminary design of the extraction plant was prepared. The design was based on a depot scale plant processing 20,000,000 gallons per year of bio-oil. It was estimated that the capital costs for such a plant would be $8,700,000 with an operating cost of $3,500,000 per year. On a per gallon of product cost and a 10% annual rate of return, capital costs would represent $0.06 per gallon and operating costs would amount to $0.20 per gallon. Further, it was found that the energy required to run the process represented 6.2% of the energy available in the bio-oil, meeting the milestone of less than 20%. Life cycle analysis and greenhouse gas (GHG) emission analysis found that the energy for running the critical fluid separation process and the GHG emissions were minor compared to all the inputs to the overall well to pump system. For the well to pump system boundary, energetics in biofuel conversion are typically dominated by energy demands in the growth, dewater, and thermochemical process. Bio-oil stabilization by near critical propane extraction had minimal impact in the overall energetics of the process with NER contributions of 0.03. Based on the LCA, the overall conversion pathways were found to be energy intensive with a NER of about 2.3 and 1.2 for catalytic pyrolysis and HTL, respectively. GHG emissions for the catalytic pyrolysis process were greater than that of petroleum diesel at 210 g CO2 eq compared to 18.9 g CO2 eq. Microalgae bio-oil based diesel with thermochemical conversion through HTL meets renewable fuel standards with favorable emission reductions of -10.8 g CO2 eq. The importance of the outcomes is that the critical fluid extraction and stabilization process improved product stability and did so with minimal energy inputs and processing costs. The LCA and GHG emission calculations point toward the HTL pathway as the more favorable thermochemical route towards upgrading algae to bio-fuels. Since the quality of the HTL oil was significantly lower than that of the catalytic pyrolysis bio-oil, the next steps point toward improving the quality of the HTL oils from algae biomass and focusing the critical fluid stabilization on that bio-oil product.

Foster Agblevor; Lucia Petkovic; Edward Bennion; Jason Quinn; John Moses; Deborah Newby; Daniel Ginosar

2014-03-01T23:59:59.000Z

424

Bio-Optical Variability in Mayaguez Bay during the Rainy Season Joel A. Quiones Rivera, ja23_degrees@hotmail.com  

E-Print Network [OSTI]

Bio-Optical Variability in Mayaguez Bay during the Rainy Season Joel A. Quiñones Rivera, ja23 by suspending particles in the water that affects light penetration. This is critical for the bio-optical from different stations collected with an bio-optical rosette along the Mayagüez Bay and considering

Gilbes, Fernando

425

Bio-Derived Liquids to Hydrogen Distributed Reforming Working Group Kick-Off Meeting  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy held a kick-off meeting for the Bio-Derived Liquids to Hydrogen Distributed Reforming Working Group (BILIWG) on October 24, 2006, in Baltimore, Maryland. The Working Group is addressing technical challenges to distributed reforming of biomass-derived, renewable liquid fuels to hydrogen, including the reforming, water-gas shift, and hydrogen recovery and purification steps. The meeting provided the opportunity for researchers to share their experiences in converting bio-derived liquids to hydrogen with each other and with members of the DOE Hydrogen Production Technical Team.

426

Status of the Bio-Nano electron cyclotron resonance ion source at Toyo University  

SciTech Connect (OSTI)

In the paper, the material science experiments, carried out recently using the Bio-Nano electron cyclotron resonance ion source (ECRIS) at Toyo University, are reported. We have investigated several methods to synthesize endohedral C{sub 60} using ion-ion and ion-molecule collision reaction in the ECRIS. Because of the simplicity of the configuration, we can install a large choice of additional equipment in the ECRIS. The Bio-Nano ECRIS is suitable not only to test the materials production but also to test technical developments to improve or understand the performance of an ECRIS.

Uchida, T., E-mail: uchida-t@toyo.jp [Bio-Nano Electronics Research Centre, Toyo University, Kawagoe 350-8585 (Japan); Minezaki, H.; Ishihara, S. [Graduate School of Engineering, Toyo University, Kawagoe 350-8585 (Japan)] [Graduate School of Engineering, Toyo University, Kawagoe 350-8585 (Japan); Muramatsu, M.; Kitagawa, A.; Drentje, A. G. [National Institute of Radiological Sciences (NIRS), Chiba 263-8555 (Japan)] [National Institute of Radiological Sciences (NIRS), Chiba 263-8555 (Japan); Rcz, R.; Biri, S. [Institute for Nuclear Research (ATOMKI), H-4026 Debrecen (Hungary)] [Institute for Nuclear Research (ATOMKI), H-4026 Debrecen (Hungary); Asaji, T. [Oshima National College of Maritime Technology, Yamaguchi 742-2193 (Japan)] [Oshima National College of Maritime Technology, Yamaguchi 742-2193 (Japan); Kato, Y. [Graduate School of Engineering, Osaka University, Suita 565-0871 (Japan)] [Graduate School of Engineering, Osaka University, Suita 565-0871 (Japan); Yoshida, Y. [Bio-Nano Electronics Research Centre, Toyo University, Kawagoe 350-8585 (Japan) [Bio-Nano Electronics Research Centre, Toyo University, Kawagoe 350-8585 (Japan); Graduate School of Engineering, Toyo University, Kawagoe 350-8585 (Japan)

2014-02-15T23:59:59.000Z

427

Failure by fracture and fatigue in 'NANO' and 'BIO'materials  

SciTech Connect (OSTI)

The behavior of nanostructured materials/small-volumestructures and biologi-cal/bio-implantable materials, so-called "nano"and "bio" materials, is currently much in vogue in materials science. Oneaspect of this field, which to date has received only limited attention,is their fracture and fatigue properties. In this paper, we examine twotopics in this area, namely the premature fatigue failure ofsilicon-based micron-scale structures for microelectromechanical systems(MEMS), and the fracture properties of mineralized tissue, specificallyhuman bone.

Ritchie, R.O.; Muhlstein, C.L.; Nalla, R.K.

2003-12-19T23:59:59.000Z

428

Production of higher quality bio-oils by in-line esterification of pyrolysis vapor  

DOE Patents [OSTI]

The disclosure encompasses in-line reactive condensation processes via vapor phase esterification of bio-oil to decease reactive species concentration and water content in the oily phase of a two-phase oil, thereby increasing storage stability and heating value. Esterification of the bio-oil vapor occurs via the vapor phase contact and subsequent reaction of organic acids with ethanol during condensation results in the production of water and esters. The pyrolysis oil product can have an increased ester content and an increased stability when compared to a condensed pyrolysis oil product not treated with an atomized alcohol.

Hilten, Roger Norris; Das, Keshav; Kastner, James R; Bibens, Brian P

2014-12-02T23:59:59.000Z

429

Status of the Bio-Nano electron cyclotron resonance ion source at Toyo University  

E-Print Network [OSTI]

In the paper, the material science experiments, carried out recently using the Bio-Nano electron cyclotron resonance ion source (ECRIS) at Toyo University, are reported. We have investigated several methods to synthesize endohedral C60 using ion-ion and ion-molecule collision reaction in the ECRIS. Because of the simplicity of the configuration, we can install a large choice of additional equipment in the ECRIS. The Bio-Nano ECRIS is suitable not only to test the materials production but also to test technical developments to improve or understand the performance of an ECRIS.

Uchida, T; Ishihara, S; Muramatsu, M; Racz, R; Asaji, T; Kitagawa, A; Kato, Y; Biri, S; Drentje, A G; Yoshida, Y

2015-01-01T23:59:59.000Z

430

Dr. Piotr Zelenay - Speaker Bio for the Fuel Cell Technologies Program Webinar  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Piotr Zelenay's Professional Bio Piotr Zelenay's Professional Bio Dr. Zelenay's expertise is in polymer electrolyte fuel cells, electrocatalysis, surface electrochemistry, electrode kinetics and organic electrosynthesis. Dr. Zelenay has been associated with Materials Physics and Applications Division at Los Alamos National Laboratory for the last 13 years. He is currently a project/team leader, focusing primarily on fundamental and applied aspects of polymer electrolyte fuel cell science and technology, electrocatalysis, and electrode kinetics. Piotr Zelenay received his Ph.D. and D.Sc. ("habilitation") degrees in chemistry from Warsaw University, Warsaw, Poland. He was a postdoctoral research fellow at Texas A&M

431

Elbow mass flow meter  

DOE Patents [OSTI]

The present invention includes a combination of an elbow pressure drop generator and a shunt-type mass flow sensor for providing an output which gives the mass flow rate of a gas that is nearly independent of the density of the gas. For air, the output is also approximately independent of humidity. 3 figs.

McFarland, A.R.; Rodgers, J.C.; Ortiz, C.A.; Nelson, D.C.

1994-08-16T23:59:59.000Z

432

The Origins of Mass  

SciTech Connect (OSTI)

The Higgs boson was discovered in July of 2012 and is generally understood to be the origin of mass. While those statements are true, they are incomplete. It turns out that the Higgs boson is responsible for only about 2% of the mass of ordinary matter. In this dramatic new video, Dr. Don Lincoln of Fermilab tells us the rest of the story.

Lincoln, Don

2014-07-30T23:59:59.000Z

433

Gas Chromatography -Mass Spectrometry  

E-Print Network [OSTI]

GCMS - 1 Gas Chromatography - Mass Spectrometry GC-MS ANALYSIS OF ETHANOL AND BENZENE IN GASOLINE Last updated: June 17, 2014 #12;GCMS - 2 Gas Chromatography - Mass Spectrometry GC-MS ANALYSIS). The goal of this experiment is to separate the components in a sample of gasoline using Gas Chromatography

Nizkorodov, Sergey

434

W Transverse Mass  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Some Data Analysis Some Data Analysis The Tevatron produces millions of collisions each second in CDF and DZero. The detectors have hardware triggers to decide if a collision is "interesting," that is it contains a candidate event for any one of a number studies. Our dataset contains 48,844 candidate events for a W mass study. There are other datasets to study Z mass, top and b quarks, QCD, etc. Why don't all the W decays give exactly the same mass? Are all these candidates really Ws? What if we chose only some of these data. How would our choice effect the value of the transverse mass? Work with your classmates. Test the data to see what you can learn. Help with data analysis. Record the best estimate of the W transverse mass from your data analysis. Explain which data you used and why. Check with your classmates and explain any differences between your estimate and theirs.

435

BioMed Central Page 1 of 1  

E-Print Network [OSTI]

Poster presentation Chromatin control of Tat-mediated reactivation of latent HIV-1 provirus Guillemette X Masse*1 of cellular factors in controlling gene silencing and Tat-mediated reactivation of silenced HIV proviruses Immunodeficiency Virus (HIV-1) persists in a latent state within resting CD4+ T cells of infected patients treated

Boyer, Edmond

436

Fast Pyrolysis Oil Stabilization: An Integrated Catalytic and Membrane Approach for Improved Bio-oils  

SciTech Connect (OSTI)

This University of Massachusetts, Amherst project, "Fast Pyrolysis Oil Stabilization: An Integrated Catalytic and Membrane Approach for Improved Bio-oils" started on 1st February 2009 and finished on August 31st 2011. The project consisted following tasks: Task 1.0: Char Removal by Membrane Separation Technology The presence of char particles in the bio-oil causes problems in storage and end-use. Currently there is no well-established technology to remove char particles less than 10 micron in size. This study focused on the application of a liquid-phase microfiltration process to remove char particles from bio-oil down to slightly sub-micron levels. Tubular ceramic membranes of nominal pore sizes 0.5 and 0.8 ???µm were employed to carry out the microfiltration, which was conducted in the cross-flow mode at temperatures ranging from 38 to 45 C and at three different trans-membrane pressures varying from 1 to 3 bars. The results demonstrated the removal of the major quantity of char particles with a significant reduction in overall ash content of the bio-oil. The results clearly showed that the cake formation mechanism of fouling is predominant in this process. Task 2.0 Acid Removal by Membrane Separation Technology The feasibility of removing small organic acids from the aqueous fraction of fast pyrolysis bio-oils using nanofiltration (NF) and reverse osmosis (RO) membranes was studied. Experiments were carried out with a single solute solutions of acetic acid and glucose, binary solute solutions containing both acetic acid and glucose, and a model aqueous fraction of bio-oil (AFBO). Retention factors above 90% for glucose and below 0% for acetic acid were observed at feed pressures near 40 bar for single and binary solutions, so that their separation in the model AFBO was expected to be feasible. However, all of the membranes were irreversibly damaged when experiments were conducted with the model AFBO due to the presence of guaiacol in the feed solution. Experiments with model AFBO excluding guaiacol were also conducted. NF membranes showed retention factors of glucose greater than 80% and of acetic acid less than 15% when operated at transmembrane pressures near 60 bar. Task 3.0 Acid Removal by Catalytic Processing It was found that the TAN reduction in bio-oil was very difficult using low temperature hydrogenation in flow and batch reactors. Acetic acid is very resilient to hydrogenation and we could only achieve about 16% conversion for acetic acid. Although it was observed that acetic acid was not responsible for instability of aqueous fraction of bio-oil during ageing studies (described in task 5). The bimetallic catalyst PtRe/ceria-zirconia was found to be best catalyst because its ability to convert the acid functionality with low conversion to gas phase carbon. Hydrogenation of the whole bio-oil was carried out at 125???°C, 1450 psi over Ru/C catalyst in a flow reactor. Again, negligible acetic acid conversion was obtained in low temperature hydrogenation. Hydrogenation experiments with whole bio-oil were difficult to perform because of difficulty to pumping the high viscosity oil and reactor clogging. Task 4.0 Acid Removal using Ion Exchange Resins DOWEX M43 resin was used to carry out the neutralization of bio-oil using a packed bed column. The pH of the bio-oil increased from 2.43 to 3.7. The GC analysis of the samples showed that acetic acid was removed from the bio-oil during the neutralization and recovered in the methanol washing. But it was concluded that process would not be economical at large scale as it is extremely difficult to regenerate the resin once the bio-oil is passed over it. Task 5.0 Characterization of Upgraded Bio-oils We investigated the viscosity, microstructure, and chemical composition of bio-oils prepared by a fast pyrolysis approach, upon aging these fuels at 90???ºC for periods of several days. Our results suggest that the viscosity increase is not correlated with the acids or char present in the bio-oils. The

George W. Huber, Aniruddha A Upadhye, David M. Ford, Surita R. Bhatia, Phillip C. Badger

2012-10-19T23:59:59.000Z

437

Comparison of the neutron, Raman, and infrared vibrational spectra of vitreous SiO2, GeO2, and BeF2  

Science Journals Connector (OSTI)

The inelastic neutron, Raman, and infrared vibrational spectra of vitreous SiO2, GeO2, and BeF2 are reported in detail and compared with one another. The neutron spectrum is shown to be a good measure of the vibrational density of states for glassy SiO2 and GeO2, but a poorer measure for BeF2. The density of states is shown to be split into transverse-opticallongitudinal-optical bands whose nature is revealed in the infrared and Raman spectra. Empirical selection rules are noted, including the observation that the HV Raman spectrum "mimics" the density of states, while the HH spectrum is dominated by matrix-element effects. The spectra are discussed in terms of an augmented central-force model which allows prediction of selection rules and relative densities of states. The latter allows an empirical estimate of the frequency dependence of the neutron scattering coupling coefficients, showing relatively weak scattering by acoustic modes, especially in the case of BeF2 glass.

F. L. Galeener; A. J. Leadbetter; M. W. Stringfellow

1983-01-15T23:59:59.000Z

438

Mass of Ca-36  

E-Print Network [OSTI]

PH YS ICA 1. RE VIK W C VO I. UMK 15, 5 UMBER 6 Mass of ~Cat R. E. Tribble, ~ J. D. Cossairt, and R. A. Kenefick Cyclotron Institute and Physics Department, Texas AChM University, College Station, Texas 77843 (Received 14 October 1976) The ' Ca...('He, He)' Ca reaction has been used to provide the first observation of the nuclide ' Ca. The Q value and mass excess were found to be ?57.58~0.04 and ?6.44+0.04 MeV, respectively. The new mass completes four members of the A = 36 isobaric quintet...

Tribble, Robert E.; Cossairt, J. D.; Kenefick, R. A.

1977-01-01T23:59:59.000Z

439

Biodiversity, Entropy and Thermodynamics http://math.ucr.edu/home/baez/bio info/  

E-Print Network [OSTI]

Biodiversity, Entropy and Thermodynamics John Baez http://math.ucr.edu/home/baez/bio info/ October(pi ) is fundamental to thermodynamics and information theory. But it's also used to measure biodiversity, where pi. In biodiversity studies, the entropy of an ecosystem is the expected amount of information we gain about

Baez, John

440

Effects of Current on Microcosmic Properties of Catalyst and Reforming of Bio-oil  

Science Journals Connector (OSTI)

Highly effective production of hydrogen from bio-oil was achieved by using a low-temperature electrochemical catalytic reforming approach over the conventional Ni-based reforming catalyst (NiO-Al2O3), where an AC electronic current passed through the catalyst bed. The promoting effects of current on the bio-oil reforming were studied. It was found that the performance of the bio-oil reforming was remarkably enhanced by the current which passed through the catalyst. The effects of currents on the microcosmic properties of the catalyst, including the BrunauerEmmettTeller (BET) surface area, pore diameter, pore volume, the size of the crystallites and the reduction level of NiO into Ni, were carefully characterized by BET, X-ray diffraction, X-ray photoelectron spectroscopy, and scanning electron microscope. The desorption of the thermal electrons from the electrified catalyst was directly observed by the TOF (time of flight) measurements. The mechanism of the electrochemical catalytic reforming of bio-oil is discussed based on the above investigation.

Li-xia Yuan; Tong-qi Ye; Fei-yan Gong; Quan-xin Li

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "bio mass geo" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

BioImage Informatics A Principal Skeleton Algorithm for Standardizing Confocal  

E-Print Network [OSTI]

lines that would have their neuronal patterns cover the entire set of neurons in the fruit fly nervous1 BioImage Informatics A Principal Skeleton Algorithm for Standardizing Confocal Images of Fruit detection algorithm to robustly detect the principal skeleton from an image. Then for a pair of larval

Peng, Hanchuan

442

The colour of the Mediterranean Sea: Global versus regional bio-optical algorithms evaluation and implication  

E-Print Network [OSTI]

measurements, covering most of the trophic regimes of the basin, we validated two existing regional algorithms algorithm, the MedOC4. Using an independent set of in situ chlorophyll data, we quantified the uncertaintiesThe colour of the Mediterranean Sea: Global versus regional bio-optical algorithms evaluation

443

Proceedings of the 8th Pacific Rim Bio-Based Composites Symposium  

E-Print Network [OSTI]

Proceedings of the 8th Pacific Rim Bio-Based Composites Symposium 301 Cellulose Microfibril environmentally safe products because they have many advantages such as renewable, low cost, low density, high to isolate CMNF from the natural fiber cell wall at reasonable cost and low degradation and how to disperse

Wang, Siqun

444

Chem2Bio2RDF Dashboard: Ranking Semantic Associations in Systems Chemical Biology Space  

E-Print Network [OSTI]

Chem2Bio2RDF Dashboard: Ranking Semantic Associations in Systems Chemical Biology Space Xiao Dong1 a significant impact in scientific collaboration as it provides a common platform to integrate heterogeneous Dashboard, a prototype system for automatic collecting semantic associations within the systems chemical

Menczer, Filippo

445

Guidelines for Transportation, Handling, and Use of Fast Pyrolysis Bio-Oil. 1. Flammability and Toxicity  

Science Journals Connector (OSTI)

The first bio-oil burner fuel standard in ASTM D7544 was approved in 2010. ... A technical specification for a quality specification for pyrolysis oil suitable for gasification feedstock for production of syngas and synthetic biofuels ... Because of the severity of the dermal changes (erythema/edema i.e., burns) and for ethical reasons, the eye irritation test was not run. ...

Anja Oasmaa; Anssi Klli; Christian Lindfors; Douglas C. Elliott; Dave Springer; Cordner Peacocke; David Chiaramonti

2012-05-04T23:59:59.000Z

446

NORTHWESTERN LAKES OF THE UNITED STATES: BIO-LOGICAL AND CHEMICAL STUDIES WITH REFERENCE  

E-Print Network [OSTI]

102 102 103 103 Lakes in western Washington-Continued. Lake Stevens, Wash . Swan Lake, Wash . Lake '" . Lakes in California and Oregon . Crater Lake, Oreg .. Temperatures .. Net plankton '" . Fallen Leaf LakeNORTHWESTERN LAKES OF THE UNITED STATES: BIO- LOGICAL AND CHEMICAL STUDIES WITH REFERENCE

447

The Center for BioEnergy Sustainability (CBES) At Oak Ridge National Laboratory (ORNL)  

E-Print Network [OSTI]

­ ORNL Bioenergy Resource & Engineering Systems Matt has expertise in accounting for non-market amenitiesThe Center for BioEnergy Sustainability (CBES) At Oak Ridge National Laboratory (ORNL) is pleased of Short-rotation Pine for Bioenergy on Water Quality and Quantity Using a Watershed-scale Experiment

448

The Center for BioEnergy Sustainability (CBES) At Oak Ridge National Laboratory (ORNL)  

E-Print Network [OSTI]

The Center for BioEnergy Sustainability (CBES) At Oak Ridge National Laboratory (ORNL) is pleased of bioenergy crops as well as the impacts that the expansion of these crops over large areas may have on climate, water, nutrient, and biodiversity. The DOE Great Lakes Bioenergy Research Center (GLBRC) has been

449

Concorso Tesi di Laurea e Concorso Tesi di Dottorato di Ricerca BioEnergy Italy 2014  

E-Print Network [OSTI]

Concorso Tesi di Laurea e Concorso Tesi di Dottorato di Ricerca BioEnergy Italy 2014 Bioenergie, Chimica Verde e Agricoltura Destinato ai laureati di qualsiasi Facoltà che hanno dell'uso delle bioenergie o della chimica verde in agricoltura I Concorsi - promossi da Cremona

Segatti, Antonio

450

The Center for BioEnergy Sustainability (CBES) at Oak Ridge National Laboratory (ORNL)  

E-Print Network [OSTI]

The Center for BioEnergy Sustainability (CBES) at Oak Ridge National Laboratory (ORNL) is pleased Studies Great Lakes Bioenergy Research Center University of Wisconsin-Madison. Co-Leader in Creating Sustainable Bioenergy Practices Jackson's program focuses on structure and function of managed, semi

451

Optimizing Feedstock Logistics and Assessment of Hydrologic Impacts for Sustainable Bio-Energy Production  

E-Print Network [OSTI]

builder was used to automate the GIS analysis. Network analysis was used to find the best route to move the mobile pyrolysis units to new locations and to identify the closest refinery to transport the bio-crude oil. To produce bioenergy from feedstocks...

Ha, Mi-Ae 1979-

2012-12-11T23:59:59.000Z

452

Design and Control of a Bio-Inspired Human-Friendly Robot  

E-Print Network [OSTI]

Design and Control of a Bio-Inspired Human-Friendly Robot Dongjun Shin1 Irene Sardellitti3 Yong {djshin, ok}@robotics.stanford.edu 2 Mechanical Engineering, Stanford University, USA {ylpark, cutkosky for physical interaction between humans and robots has led to the development of robots that guarantee safe

Park, Yong-Lae

453

Computer-Assisted Ankle Joint Arthroplasty Using Bio-engineered Autografts  

E-Print Network [OSTI]

Computer-Assisted Ankle Joint Arthroplasty Using Bio-engineered Autografts R. Sidler1 , W. K study was conducted for the ankle joint, compris- ing a simplified rotational symmetric bone surface bioengineered autografts. The ankle joint was chosen as a first target J. Duncan and G. Gerig (Eds.): MICCAI

454

Nonintrusive 3D reconstruction of human bone models to simulate their bio-mechanical response  

Science Journals Connector (OSTI)

3D finite element models representing functional parts of the human skeletal system, have been repeatedly introduced over the last years, to simulate biomechanical response of anatomical characteristics or investigate surgical treatment. The reconstruction ... Keywords: 3D imaging, Bio-mechanical response, Computed tomography, FEM modeling

Tsouknidas Alexander; Lontos Antonis; Savvakis Savvas; Michailidis Nikolaos

2012-06-01T23:59:59.000Z

455

An extremely radioresistant green eukaryote for radionuclide bio-decontamination in the nuclear  

E-Print Network [OSTI]

An extremely radioresistant green eukaryote for radionuclide bio-decontamination in the nuclear Blignyabcd Nuclear activities generate radioactive elements which require processes for their decontamination of an extremophile autotrophic eukaryote, Coccomyxa actinabiotis nov. sp., that we isolated from a nuclear facility

Boyer, Edmond

456

Naturwissenschaftlich-Technische Fakultt III Chemie, Pharmazie, Bio-und Werkstoffwissenschaften  

E-Print Network [OSTI]

Naturwissenschaftlich-Technische Fakultät III Chemie, Pharmazie, Bio- und Werkstoffwissenschaften Spannende Chemie-Vorträge für saarländische Schulen Die Saarbrücker Chemie-Professoren möchten den Chemieunterricht an saarländischen Schulen durch Schulbesuche und Vorträge zu allgemeinen Themen der Chemie

Mayberry, Marty

457

Embryonics: A Bio-Inspired Cellular Architecture with Fault-Tolerant Properties  

Science Journals Connector (OSTI)

This paper details and expands the work on Embryonics, a recently proposed fault-tolerant cellular architecture with reconfiguration properties inspired by the ontogenetic development of multicellular systems. The design of a selector-based embryonic ... Keywords: FPGAs, bio-inspired systems, embryonics, fault-tolerant systems, reliability models

Cesar Ortega-Sanchez; Daniel Mange; Steve Smith; Andy Tyrrell

2000-07-01T23:59:59.000Z

458

New Catalyst Might Expand Bio-Ethanol's Possible uses: fuel additives, rubber and solvents  

E-Print Network [OSTI]

environmentally friendly products including octane- boosting gas and rubber for tires. #12;WHAT'S NEXT? FutureNew Catalyst Might Expand Bio-Ethanol's Usefulness Possible uses: fuel additives, rubber it first, potentially keeping costs lower and production times faster. Reported by researchers

459

Sneak peek at electrofuels: Geobacter team aims for bio-based solution to solar energy storage  

E-Print Network [OSTI]

Sneak peek at electrofuels: Geobacter team aims for bio-based solution to solar energy storage daily news In Massachusetts, more information about the new category of electrofuels has become available from a research team at University of Massachusetts Amherst. The "Geobacter" team led

Lovley, Derek

460

Semantics of the Integrated BioMedical Database Project -A Japanese National Project -  

E-Print Network [OSTI]

whole molecular information in a human. It includes genomics, transcriptomics, proteomics, metabolomics, and so on. In this post genomic era, researchers are trying to connect all omics information to phenomicsSemantics of the Integrated BioMedical Database Project - A Japanese National Project - Jun Nakaya1

Mizoguchi, Riichiro

Note: This page contains sample records for the topic "bio mass geo" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Bio-Inspired Computing with Resistive Memories Models, Architectures and Applications  

E-Print Network [OSTI]

Bio-Inspired Computing with Resistive Memories ­ Models, Architectures and Applications Qing Wu for applying massively parallel architecture to embedded high performance computing where we must optimize brain, the neuromorphic architecture offers a promising novel computing paradigm for compact and energy

Qiu, Qinru

462

A RESTful API for Supporting Automated BioBrick Model Assembly  

E-Print Network [OSTI]

Constructing simulatable models for BioBricks by hand is a complex and time-consuming task. The time taken could be reduced by using Computer Aided Design (CAD) tools to aid in designing models, but these tools need to be ...

Steyn, J S

2010-12-05T23:59:59.000Z

463

Passive liquid dispensing in capillary-based bio-adhesion Research teams Microfluidics Lab, GRASP (ULg)  

E-Print Network [OSTI]

Passive liquid dispensing in capillary-based bio-adhesion Research teams Microfluidics Lab, GRASP-81 (2010) #12;Coalescence strategies in droplet microfluidic systems Research team Microfluidics Lab, GRASP, mechanics) Droplet microfluidics is a new technology that aims at miniaturizing assays in life science (Lab

Wolper, Pierre

464

Bio-PEPA: A framework for the modelling and analysis of biological systems  

Science Journals Connector (OSTI)

In this work we present Bio-PEPA, a process algebra for the modelling and the analysis of biochemical networks. It is a modification of PEPA, originally defined for the performance analysis of computer systems, in order to handle some features of biological ... Keywords: Analysis, Biochemical networks, Modelling, Process algebras

Federica Ciocchetta; Jane Hillston

2009-08-01T23:59:59.000Z

465

Structural analysis of Catliq bio-oil produced by catalytic liquid conversion of biomass  

E-Print Network [OSTI]

. The energy contained in biomass can be utilized either directly as in combustion or by converting the biomassStructural analysis of Catliq® bio-oil produced by catalytic liquid conversion of biomass Toor, S The potential offered by biomass for solving some of the world's energy problems is widely recognized

Toor, Saqib

466

Bio-Optical Response and Coupling with Physical Processes in the Lombok Strait Region  

E-Print Network [OSTI]

Bio-Optical Response and Coupling with Physical Processes in the Lombok Strait Region Burton H.boss@maine.edu ABSTRACT The optical structure and variability of the Lombok Straits region is poorly understood, but available remotely sensed ocean color indicates that there is a strong optical response and signal

Boss, Emmanuel S.

467

TASK 40: Sustainable International Bio Energy Trade: securing supply Overview of the task  

E-Print Network [OSTI]

Page 1 TASK 40: Sustainable International Bio Energy Trade: securing supply and demand Overview-term security. Participating countries (status end 2005): · Belgium, Brazil, Canada, Finland, Netherlands, Utrecht University, the Netherlands Martijn Wagener (until October 2005), Alf van Weereld, Peter

468

Letter to the editor The bio-fuel debate and fossil energy use in palm oil  

E-Print Network [OSTI]

Letter to the editor The bio-fuel debate and fossil energy use in palm oil production: a critique-fuels based on palm oil to re- duce greenhouse gas emissions, due account should be taken of carbon emissions fuel use in palm oil pro- duction, making a number of assumptions that I believe to be incorrect

469

LIGHT AND PHOTOSYNTHESIS IN THE SEA, SPRING 2010 Instructor: Dr. Michael Durako BIO 495 009  

E-Print Network [OSTI]

LIGHT AND PHOTOSYNTHESIS IN THE SEA, SPRING 2010 Instructor: Dr. Michael Durako BIO 495 009 Class/14 Photosynthesis vs Light Dr. Durako 3 1/21 Utilization of Light in Aquatic Systems Dr. Durako 4 1/28* Carbon of Light Attenuation in Aquatic Systems - TSS, CDOM, Water Photosynthesis versus Irradiance Measurement

Durako, Michael J.

470

A question of mass  

Science Journals Connector (OSTI)

We present a pedagogical discussion of spontaneous symmetry breaking the Goldstone theorem and the Higgs mechanism. If the Higgs boson is found it might provide an explanation of the origin of mass.

Jeremy Bernstein

2011-01-01T23:59:59.000Z

471

Heavy Hybrid mesons Masses  

E-Print Network [OSTI]

We estimate the ground state masses of the heavy hybrid mesons using a phenomenological QCD-type potential. 0^{- -},1^{- -},0^{- +},1^{- +} and 0^{+ -} J^{PC} states are considered.

F. Iddir; L. Semlala

2006-11-13T23:59:59.000Z

472

MASS POLITICAL MOBILIZATION  

E-Print Network [OSTI]

................................................................................................................................................... MASS POLITICAL MOBILIZATION ................................................................................................................................................... Boix & Stokes: The Oxford Handbook of Comparative Politics Boixandstokes-chap21 Revise Proof page 497 20.4.2007 12:41pm #12;Boix & Stokes: The Oxford Handbook of Comparative Politics Boixandstokes-chap21

473

Masses of Fundamental Particles  

E-Print Network [OSTI]

In the original paper entitled, "Masses of Fundamental Particles"(arXiv:1109.3705v5, 10 Feb 2012), not only the masses of fundamental particles including the weak bosons, Higgs boson, quarks, and leptons, but also the mixing angles of quarks and those of neutrinos are all explained and/or predicted in the unified composite models of quarks and leptons successfully. In this addendum entitled, "Higgs Boson Mass in the Minimal Unified Subquark Model", it is emphasized that the Higgs boson mass is predicted to be about 130Gev in the minimal unified subquark model, which agrees well with the experimental values of 125-126GeV recently found by the ATLAS and CMS Collaborations at the LHC.

Hidezumi Terazawa

2014-06-11T23:59:59.000Z

474

Mass of Cd104  

Science Journals Connector (OSTI)

A quadrupole-dipole-dipole-dipole spectrograph has been used with a 34.6 MeV proton beam to observe the Cd106(p,t)Cd104 reaction. The Q value is measured and a mass excess of -83 963(14) keV is inferred for Cd104.NUCLEAR REACTIONS Cd106(p,t)Cd104, E=34.6 MeV; Q value measured; mass excess inferred.

R. A. Dewberry; R. T. Kouzes; R. A. Naumann

1983-02-01T23:59:59.000Z

475

W Transverse Mass  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Transverse Mass Histogram Transverse Mass Histogram Data for 49,844 candidate W events are in an Excel spreadsheet with the following data as shown in the table below: A B C D 1 Run No Event No W TMass GeV/c2 Bins 2 55237 19588 68.71732 3 55237 30799 72.19464 Get the data. Sort the data by ascending mass. Be sure to sort all the data in the first three columns! Make a histogram of the data. Rather than graphing the data as individual points, physicists group the data by mass. They consider the full range of the data and divide it into "bins" of equal range size. A histogram is a graph of the number of events in each bin vs. the bin range. They are looking for a peak in the data where most of the masses fall. This will be the value of the mass as detemined by that dataset, and the width of the distribution is a reflection of the errors in the measurements.

476

Rapid scanning mass spectrometer  

SciTech Connect (OSTI)

Mass spectrometers and residual gas analyzers (RGA) are used in a variety of applications for analysis of volatile and semi-volatile materials. Analysis is performed by detecting fragments of gas molecules, based on their mass to charge ratio, which are generated in the mass spectrometer. When used as a detector for a gas chromatograph, they function as a means to quantitatively identify isolated volatile species which have been separated from other species via the gas chromatograph. Vacuum Technology, Inc., (VTI) produces a magnetic sector mass spectrometer/RGA which is used in many industrial and laboratory environments. In order to increase the utility of this instrument, it is desirable to increase the mass scanning speed, thereby increasing the number of applications for which it is suited. This project performed the following three upgrades on the computer interface. (1) A new electrometer was designed and built to process the signal from the detector. This new electrometer is more sensitive, over 10 times faster, and over 100 times more stable than the electrometer it will replace. (2) The controller EPROM was reprogrammed with new firmware. This firmware acts as an operating system for the interface and is used to shuttle communications between the PC and the AEROVAC mass spectrometer. (3) The voltage regulator which causes the ion selector voltage to ramp to allow ions of selected mass to be sequentially detected was redesigned and prototyped. The redesigned voltage regulator can be ramped up or down more than 100 times faster than the existing regulator. These changes were incorporated into a prototype unit and preliminary performance testing conducted. Results indicated that scanning speed was significantly increased over the unmodified version.

Leckey, J.H. [Lockheed Martin Energy Systems, Inc., Oak Ridge, TN (United States); Boeckmann, M.D. [Vacuum Technology, Inc., Oak Ridge, TN (United States)

1996-11-25T23:59:59.000Z

477

Atomic mass compilation 2012  

SciTech Connect (OSTI)

Atomic mass reflects the total binding energy of all nucleons in an atomic nucleus. Compilations and evaluations of atomic masses and derived quantities, such as neutron or proton separation energies, are indispensable tools for research and applications. In the last decade, the field has evolved rapidly after the advent of new production and measuring techniques for stable and unstable nuclei resulting in substantial ameliorations concerning the body of data and their precision. Here, we present a compilation of atomic masses comprising the data from the evaluation of 2003 as well as the results of new measurements performed. The relevant literature in refereed journals and reports as far as available, was scanned for the period beginning 2003 up to and including April 2012. Overall, 5750 new data points have been collected. Recommended values for the relative atomic masses have been derived and a comparison with the 2003 Atomic Mass Evaluation has been performed. This work has been carried out in collaboration with and as a contribution to the European Nuclear Structure and Decay Data Network of Evaluations.

Pfeiffer, B., E-mail: bpfeiffe@uni-mainz.de [II. Physikalisches Institut, Justus-Liebig-Universitt Gieen, Gieen (Germany); GSI Helmholtzzentrum fr Schwerionenforschung, Darmstadt (Germany); Venkataramaniah, K. [Sri Sathya Sai Institute of Higher Learning, Prasanthinilayam (India)] [Sri Sathya Sai Institute of Higher Learning, Prasanthinilayam (India); Czok, U. [II. Physikalisches Institut, Justus-Liebig-Universitt Gieen, Gieen (Germany)] [II. Physikalisches Institut, Justus-Liebig-Universitt Gieen, Gieen (Germany); Scheidenberger, C. [GSI Helmholtzzentrum fr Schwerionenforschung, Darmstadt (Germany) [GSI Helmholtzzentrum fr Schwerionenforschung, Darmstadt (Germany); II. Physikalisches Institut, Justus-Liebig-Universitt Gieen, Gieen (Germany)

2014-03-15T23:59:59.000Z

478

A newly isolated Bacillus licheniformis strain thermophilically produces 2,3-butanediol, a platform and fuel bio-chemical  

Science Journals Connector (OSTI)

...2,3-Butanediol (2,3-BD), a platform and fuel bio-chemical, can be efficiently produced by Klebsiella pneumonia, K. oxytoca, and Serratia marcescens. However, these strains are opportunistic pathogens and not f...

Lixiang Li; Lijie Zhang; Kun Li; Yu Wang; Chao Gao

2013-08-01T23:59:59.000Z

479

High Throughput Plasmid Sequencing with Illumina and CLC Bio (Seventh Annual Sequencing, Finishing, Analysis in the Future (SFAF) Meeting 2012)  

ScienceCinema (OSTI)

Ajay Athavale (Monsanto) presents "High Throughput Plasmid Sequencing with Illumina and CLC Bio" at the 7th Annual Sequencing, Finishing, Analysis in the Future (SFAF) Meeting held in June, 2012 in Santa Fe, NM.

Athavale, Ajay [Monsanto

2013-01-25T23:59:59.000Z

480

A Carbon Molecular Sieve-based Catalyst with Encapsulated Ruthenium Nanoparticles for Bio-oil Stabilization and Upgrading  

E-Print Network [OSTI]

Pyrolysis oil derived from biomass (bio-oil) is regarded as a potential substitute for petroleum crude for producing environmentally friendly fuels of the future. However, pyrolysis oil upgrading still remains an issue due to its complex composition...

Mironenko, Alexander

2012-08-31T23:59:59.000Z

Note: This page contains sample records for the topic "bio mass geo" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Investigation of Reaction Networks and Active Sites In Bio-Ethanol Steam Reforming Over Co-Based Catalysts  

Broader source: Energy.gov [DOE]

Paper by Umit S. Ozkan, Hua Song, and Lingzhi Zhang (Ohio State University) on the fundamental understanding of reaction networks, active sites of deactivation mechanisms of potential bio-ethanol steam reforming catalysts.

482

BioNanoSci. (2011) 1:183191 DOI 10.1007/s12668-011-0028-z  

E-Print Network [OSTI]

of two available technologies into a general pipeline. Namely, high-throughput biochip for gene therefore regenerate and repair whole #12;184 BioNanoSci. (2011) 1:183­191 organs, or in vitro generation

Nardini, Christine

483

Understanding of interface structures and reaction mechanisms induced by Ge or GeO diffusion in Al{sub 2}O{sub 3}/Ge structure  

SciTech Connect (OSTI)

The reaction mechanisms at Al{sub 2}O{sub 3}/Ge interfaces with thermal oxidation through the Al{sub 2}O{sub 3} layer have been investigated. X-ray photoelectron spectroscopy reveals that an Al{sub 6}Ge{sub 2}O{sub 13} layer is formed near the interface, and a GeO{sub 2} layer is formed on the Al{sub 2}O{sub 3} surface, suggesting Ge or GeO diffusion from the Ge surface. It is also clarified that the Al{sub 6}Ge{sub 2}O{sub 13} layer is formed by the different mechanism with a small activation energy of 0.2 eV, compared with the GeO{sub 2} formation limited by oxygen diffusion. Formation of Al-O-Ge bonds due to the AlGeO formation could lead appropriate interface structures with high interface qualities.

Shibayama, Shigehisa [Department of Crystalline Materials Science, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan) [Department of Crystalline Materials Science, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); JSPS, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo 102-0083 (Japan); Kato, Kimihiko; Sakashita, Mitsuo; Takeuchi, Wakana; Taoka, Noriyuki; Nakatsuka, Osamu; Zaima, Shigeaki [Department of Crystalline Materials Science, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan)] [Department of Crystalline Materials Science, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan)

2013-08-19T23:59:59.000Z

484

Bio-oil Stabilization and Upgrading by Hot Gas Filtration  

Science Journals Connector (OSTI)

Removal of char and minerals from pyrolysis oil for the production of biomass-derived boiler and turbine fuels has been demonstrated at Solar Energy Research Institute (SERI)/National Renewable Energy Laboratory (NREL) using a ceramic cloth hot gas filter (HGF). ... Non-condensable gaseous products were vented through a 2 ?m filter for collection of any residual aerosol and then to a totalizing dry-gas meter for flow rate measurement. ... The composition of the feed and product vapors to and from the HGF test stand was monitored continuously with the molecular beam mass spectrometer (MBMS), and the composition of the product gases from the HGF test stand was monitored continuously by gas chromatography (GC). ...

Robert M. Baldwin; Calvin J. Feik

2013-04-22T23:59:59.000Z

485

The Mass Spectroscope  

Science Journals Connector (OSTI)

... THE handbook, prepared by M. G. Inghram of JL the University of Chicago, and R ... Committee on Nuclear Science of the National Research Council*, presents in some detail the fundamental design and operational techniques pertinent to the efficient utilization of the mass spectroscope. Attention ...

S. WEINTROUB

1955-03-12T23:59:59.000Z

486

Residential Thermal Mass Construction  

E-Print Network [OSTI]

The southwest has long known the value of building homes with high mass materials. The ancient Pueblo Indians found that by using "adobe" they could capture the energy necessary to survive the harsh desert climate. Our ancestors knew that a heavy...

Thieken, J. S.

1988-01-01T23:59:59.000Z

487

Top Quark Mass Measurements  

Science Journals Connector (OSTI)

First observed in 1995 the top quark is one of a pair of third?generation quarks in the Standard Model of particle physics. It has charge +2/3e and a mass of 171.4 GeV about 40 times heavier than its partner the bottom quark. The CDF and D collaborations have identified several hundred events containing the decays of top?antitop pairs in the large dataset collected at the Tevatron proton?antiproton collider over the last four years. They have used these events to measure the top quarks mass to nearly 1% precision and to study other top quark properties. The mass of the top quark is a fundamental parameter of the Standard Model and knowledge of its value with small uncertainty allows us to predict properties of the as?yet?unobserved Higgs boson. This paper presents the status of the measurements of the top quark mass. It is based on a talk I gave at the Conference on the Intersections of Particle and Nuclear Physics in Puerto Rico May 2006 which also included discussion of measurements of other top quark properties.

A. P. Heinson; CDF Collaboration; D Collaboration

2006-01-01T23:59:59.000Z

488

Mass Extinctions Geology 331  

E-Print Network [OSTI]

into shallow water and released to atmosphere. · Oxidation of coal and hydrocarbons by extensive erosion of sedimentary rocks, and/or massive volcanic eruptions in Siberia? CH2O + O2 CO2 +H2O · Release of methane by rapid influx of C12 caused by methane release and mass dying at the end of the Permian. Organisms

Kammer, Thomas

489

Gauge Invariance and Mass  

Science Journals Connector (OSTI)

It is argued that the gauge invariance of a vector field does not necessarily imply zero mass for an associated particle if the current vector coupling is sufficiently strong. This situation may permit a deeper understanding of nucleonic charge conservation as a manifestation of a gauge invariance, without the obvious conflict with experience that a massless particle entails.

Julian Schwinger

1962-01-01T23:59:59.000Z

490

U-152: OpenSSL "asn1_d2i_read_bio()" DER Format Data Processing  

Broader source: Energy.gov (indexed) [DOE]

2: OpenSSL "asn1_d2i_read_bio()" DER Format Data Processing 2: OpenSSL "asn1_d2i_read_bio()" DER Format Data Processing Vulnerability U-152: OpenSSL "asn1_d2i_read_bio()" DER Format Data Processing Vulnerability April 20, 2012 - 7:00am Addthis PROBLEM: A vulnerability has been reported in OpenSSL PLATFORM: OpenSSL 0.x OpenSSL 1.x ABSTRACT: The vulnerability is caused due to a type casting error in the "asn1_d2i_read_bio()" function when processing DER format data and can be exploited to cause a heap-based buffer overflow. reference LINKS: Vendor Advisory Secunia Advisory 48847 CVE-2012-2110 IMPACT ASSESSMENT: High Discussion: A potentially exploitable vulnerability has been discovered in the OpenSSL function asn1_d2i_read_bio. Any application which uses BIO or FILE based functions to read untrusted

491

BILIWG Meeting: High Pressure Steam Reforming of Bio-Derived Liquids (Presentation)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

High Pressure Steam Reforming of High Pressure Steam Reforming of Bio-Derived Liquids S. Ahmed, S. Lee, D. Papadias, and R. Kumar November 6, 2007 Laurel, MD Research sponsored by the Hydrogen, Fuel Cells, and Infrastructure Technologies Program of DOE's Office of Energy Efficiency and Renewable Energy Rationale and objective Rationale „ Steam reforming of liquid fuels at high pressures can reduce hydrogen compression costs - Much less energy is needed to pressurize liquids (fuel and water) than compressing gases (reformate or H 2 ) „ High pressure reforming is advantageous for subsequent separations and hydrogen purification Objective „ Develop a reformer design that takes advantage of the savings in compression cost in the steam reforming bio-derived liquid fuels - Metric:

492

SPEAKER BIOS DOE Office of Indian Energy Tribal Leader Energy Education Initiative  

Broader source: Energy.gov (indexed) [DOE]

SPEAKER BIOS SPEAKER BIOS DOE Office of Indian Energy Tribal Leader Energy Education Initiative NCAI Annual Convention November 1, 2011 U.S. Department of Energy Office of Indian Energy Tracey LeBeau Tracey A. LeBeau (Cheyenne River Sioux) is Director for the U.S. Department of Energy's Office of Indian Energy Policy and Programs. She was appointed in January 2011 to establish this new Office, which is authorized by statute to manage, coordinate, create, and facilitate programs and initiatives to encourage tribal energy and energy infrastructure development. Administratively, the Office was established to also coordinate, across the Department, those policies, programs, and initiatives involving Indian energy and energy infrastructure development. Pilar Thomas

493

Bio-Based Phase Change Materials Research Project | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Based Phase Change Materials Research Based Phase Change Materials Research Project Bio-Based Phase Change Materials Research Project The Department of Energy is currently conducting research into the development of low cost, bio-based phase change materials for building envelopes. Because insulation keeps hot air out inside buildings during the summer and outside during the winter, developing low cost materials can both drive down the cost of insulation and reduce energy costs. Project Description This project seeks to develop a low cost manufacturing process for the production of phase change materials (PCMs), and to subsequently evaluate the PCM pellets produced to provide improved insulation in buildings. Project Partners Research is being undertaken between the Department of Energy, Oak Ridge

494

CFN Operations and Safety Awareness (COSA) Checklist Soft-Bio Nanomaterials Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Soft-Bio Nanomaterials Facility Soft-Bio Nanomaterials Facility Building 735 This COSA form must be completed for all experimenters working in the CFN and must be submitted to the CFN User Office for badge access. CFN Safety Awareness Policy: Each user must be instructed in the safe procedures in CFN related activities. CFN Facility Laboratory personnel shall keep readily available all relevant instructions and safety literature. Employee/Guest Name Life/Guest Number Department/Division ES&H Coordinator/Ext. Facility Manager COSA Trainer Guest User Staff USER ADMINISTRATION Checked in at User Administration and has valid BNL ID badge Safety Approval Form (SAF) approved. Training requirements completed (Indicate additional training specified in SAF or ESR in lines provided below):

495

Distributed Bio-Oil Reforming - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

5 5 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Stefan Czernik (Primary Contact), Richard French, Michael Penev National Renewable Energy Laboratory (NREL) 15013 Denver West Parkway Golden, CO 80401 Phone: (303) 384-6135 Email: Stefan.Czernik@nrel.gov DOE Manager Sara Dillich Phone: (202) 586-1623 Email: Sara.Dillich@ee.doe.gov Subcontractor: University of Minnesota, Minneapolis, MN Project Start Date: October 1, 2004 Project End Date: September 30, 2012 Fiscal Year (FY) 2012 Objectives By 2012, develop and demonstrate distributed reforming * technology for producing hydrogen from bio-oil at $4.10/ kilogram (kg) purified hydrogen. Demonstrate integrated performance at bench scale * including bio-oil vaporization, partial-oxidation (POX)

496

Publications from Research Conducted at Bio-SANS | ORNL Neutron Sciences  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Publications from Research Conducted at Bio-SANS Publications from Research Conducted at Bio-SANS 2013 Publications Brosey C. A., Yan C., Tsutakawa S. E., Heller W. T., Rambo R. P., Tainer J. A., Ivanov I., Chazin W. J., "A new structural framework for integrating replication protein A into DNA processing machinery", Nucleic Acids Research 41, 2313-2327 (2013). Crawford M.K., Smalley R.J., Cohen G., Hogan B., Wood B., Kumar S.K., Melnichenko Y.B., He L., Guise W., Hammouda and B., "Chain conformation in polymer nanocomposites with uniformly dispersed nanoparticles", Physical Review Letters 110, 196001 (2013). Dergunov S., Richter A. G., Kim M. D., Pingali S. V., Urban V., Pinkhassik E., "Synergistic self-assembly of scaffolds and building blocks for directed synthesis of organic nanomaterials", Chemical Communications

497

Hydrogen Production From Crude Bio-oil and Biomass Char by Electrochemical Catalytic Reforming  

Science Journals Connector (OSTI)

We reports an efficient approach for production of hydrogen from crude bio-oil and biomass char in the dual fixed-bed system by using the electrochemical catalytic reforming method. The maximal absolute hydrogen yield reached 110.9 g H2/kg dry biomass. The product gas was a mixed gas containing 72%H2, 26%CO2, 1.9%CO, and a trace amount of CH4. It was observed that adding biomass char (a by-product of pyrolysis of biomass) could remarkably increase the absolute H2 yield (about 20%-50%). The higher reforming temperature could enhance the steam reforming reaction of organic compounds in crude bio-oil and the reaction of CO and H2O. In addition, the CuZn-Al2O3 catalyst in the water-gas shift bed could also increase the absolute H2 yield via shifting CO to CO2.

Xing-long Li; Shen Ning; Li-xia Yuan; Quan-xin Li

2011-01-01T23:59:59.000Z

498

BioDoser: Improved dose-estimation software for biological radiation dosimetry  

Science Journals Connector (OSTI)

This paper introduces a software program that was developed with the aims to improve the efficiency and veracity of calibration curve fitting and data processing in radiation biological dosimetry and other biological experiments, and which is termed BioDoser. BioDoser uses least squares and loop testing of monotonicity method and algorithm of non-uniformed confidence interval. In addition, this program enables integration of multiple different biomarkers typically used in biological dosimetry. These include partial body exposure, minimum number of cells to be analyzed, G function correction modules that are helpful in dose estimation when using chromosome aberration frequencies, micronucleus rate, comet assay and other biological methods. The software is freely available at http://bit.ly/kKBSNR.

Hong Wang; Qiang Liu; Dandan Wan; Jian Xiang; Liqing Du; Yan Wang; Jia Cao; Yue Fu; Feiyue Fan; Markus Hecker

2012-01-01T23:59:59.000Z

499

Small Scale SOFC Demonstration Using Bio-Based and Fossil Fuels - Technology Management, Inc.  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Small Scale SOFC Demonstration Using Small Scale SOFC Demonstration Using Bio-based and Fossil Fuels-Technology Management, Inc. Background In this congressionally directed project, Technology Management, Inc. (TMI) will develop and demonstrate a residential scale prototype solid oxide fuel cell (SOFC) system at end-user sites. These small-scale systems would operate continuously on either conventional or renewable biofuels, producing cost effective, uninterruptible

500

File:GRR project team bios.pdf | Open Energy Information  

Open Energy Info (EERE)

team bios.pdf team bios.pdf Jump to: navigation, search File File history File usage File:GRR project team bios.pdf Size of this preview: 463 × 599 pixels. Other resolution: 464 × 600 pixels. Go to page 1 2 3 Go! next page → next page → Full resolution ‎(1,275 × 1,650 pixels, file size: 439 KB, MIME type: application/pdf, 3 pages) File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 14:15, 27 August 2012 Thumbnail for version as of 14:15, 27 August 2012 1,275 × 1,650, 3 pages (439 KB) Kyoung (Talk | contribs) 10:06, 19 July 2012 Thumbnail for version as of 10:06, 19 July 2012 1,275 × 1,650, 3 pages (410 KB) Kyoung (Talk | contribs) You cannot overwrite this file. Edit this file using an external application (See the setup