National Library of Energy BETA

Sample records for binary project cxs

  1. The DWARF project: Eclipsing binaries - precise clocks to discover exoplanets

    E-Print Network [OSTI]

    Pribulla, T; von Eiff, M Ammler -; Andreev, M; Aslantürk, A; Awadalla, N; Balu?anský, D; Bonanno, A; Boži?, H; Catanzaro, G; Çelik, L; Christopoulou, P E; Covino, E; Cusano, F; Dimitrov, D; Dubovský, P; Esmer, E M; Frasca, A; Hambálek, ?; Hanna, M; Hanslmeier, A; Kalomeni, B; Kjurkchieva, D P; Krushevska, V; Kudzej, I; Kundra, E; Kuznyetsova, Yu; Lee, J W; Leitzinger, M; Maciejewski, G; Moldovan, D; Morais, M H M; Mugrauer, M; Neuhäuser, R; Niedzielski, A; Odert, P; Ohlert, J; Özavc?, ?; Papageorgiou, A; Parimucha, Š; Poddaný, S; Pop, A; Raetz, M; Raetz, S; Romanyuk, Ya; Ruždjak, D; Schulz, J; ?enavc?, H V; Szalai, T; Székely, P; Sudar, D; Tezcan, C T; Törün, M E; Turcu, V; Vince, O; Zejda, M

    2012-01-01

    We present a new observational campaign, DWARF, aimed at detection of circumbinary extrasolar planets using the timing of the minima of low-mass eclipsing binaries. The observations will be performed within an extensive network of relatively small to medium-size telescopes with apertures of ~20-200 cm. The starting sample of the objects to be monitored contains (i) low-mass eclipsing binaries with M and K components, (ii) short-period binaries with sdB or sdO component, and (iii) post-common-envelope systems containing a WD, which enable to determine minima with high precision. Since the amplitude of the timing signal increases with the orbital period of an invisible third component, the timescale of project is long, at least 5-10 years. The paper gives simple formulas to estimate suitability of individual eclipsing binaries for the circumbinary planet detection. Intrinsic variability of the binaries (photospheric spots, flares, pulsation etc.) limiting the accuracy of the minima timing is also discussed. The...

  2. The NINJA-2 project: Detecting and characterizing gravitational waveforms modelled using numerical binary black hole simulations

    E-Print Network [OSTI]

    :,; Abbott, B P; Abbott, R; Abbott, T; Abernathy, M R; Accadia, T; Acernese, F; Ackley, K; Adams, C; Adams, T; Addesso, P; Adhikari, R X; Affeldt, C; Agathos, M; Aggarwal, N; Aguiar, O D; Ain, A; Ajith, P; Alemic, A; Allen, B; Allocca, A; Amariutei, D; Andersen, M; Anderson, R; Anderson, S B; Anderson, W G; Arai, K; Araya, M C; Arceneaux, C; Areeda, J; Aston, S M; Astone, P; Aufmuth, P; Aulbert, C; Austin, L; Aylott, B E; Babak, S; Baker, P T; Ballardin, G; Ballmer, S W; Barayoga, J C; Barbet, M; Barish, B C; Barker, D; Barone, F; Barr, B; Barsotti, L; Barsuglia, M; Barton, M A; Bartos, I; Bassiri, R; Basti, A; Batch, J C; Bauchrowitz, J; Bauer, Th S; Behnke, B; Bejger, M; Beker, M G; Belczynski, C; Bell, A S; Bell, C; Bergmann, G; Bersanetti, D; Bertolini, A; Betzwieser, J; Beyersdorf, P T; Bilenko, I A; Billingsley, G; Birch, J; Biscans, S; Bitossi, M; Bizouard, M A; Black, E; Blackburn, J K; Blackburn, L; Blair, D; Bloemen, S; Blom, M; Bock, O; Bodiya, T P; Boer, M; Bogaert, G; Bogan, C; Bond, C; Bondu, F; Bonelli, L; Bonnand, R; Bork, R; Born, M; Boschi, V; Bose, Sukanta; Bosi, L; Bradaschia, C; Brady, P R; Braginsky, V B; Branchesi, M; Brau, J E; Briant, T; Bridges, D O; Brillet, A; Brinkmann, M; Brisson, V; Brooks, A F; Brown, D A; Brown, D D; Brückner, F; Buchman, S; Bulik, T; Bulten, H J; Buonanno, A; Burman, R; Buskulic, D; Buy, C; Cadonati, L; Cagnoli, G; Bustillo, J Calderón; Calloni, E; Camp, J B; Campsie, P; Cannon, K C; Canuel, B; Cao, J; Capano, C D; Carbognani, F; Carbone, L; Caride, S; Castiglia, A; Caudill, S; Cavagliŕ, M; Cavalier, F; Cavalieri, R; Celerier, C; Cella, G; Cepeda, C; Cesarini, E; Chakraborty, R; Chalermsongsak, T; Chamberlin, S J; Chao, S; Charlton, P; Chassande-Mottin, E; Chen, X; Chen, Y; Chincarini, A; Chiummo, A; Cho, H S; Chow, J; Christensen, N; Chu, Q; Chua, S S Y; Chung, S; Ciani, G; Clara, F; Clark, J A; Cleva, F; Coccia, E; Cohadon, P -F; Colla, A; Collette, C; Colombini, M; Cominsky, L; Constancio, M; Conte, A; Cook, D; Corbitt, T R; Cordier, M; Cornish, N; Corpuz, A; Corsi, A; Costa, C A; Coughlin, M W; Coughlin, S; Coulon, J -P; Countryman, S; Couvares, P; Coward, D M; Cowart, M; Coyne, D C; Coyne, R; Craig, K; Creighton, J D E; Crowder, S G; Cumming, A; Cunningham, L; Cuoco, E; Dahl, K; Canton, T Dal; Damjanic, M; Danilishin, S L; D'Antonio, S; Danzmann, K; Dattilo, V; Daveloza, H; Davier, M; Davies, G S; Daw, E J; Day, R; Dayanga, T; Debreczeni, G; Degallaix, J; Deléglise, S; Del Pozzo, W; Denker, T; Dent, T; Dereli, H; Dergachev, V; De Rosa, R; DeRosa, R T; DeSalvo, R; Dhurandhar, S; Díaz, M; Di Fiore, L; Di Lieto, A; Di Palma, I; Di Virgilio, A; Donath, A; Donovan, F; Dooley, K L; Doravari, S; Dossa, S; Douglas, R; Downes, T P; Drago, M; Drever, R W P; Driggers, J C; Du, Z; Dwyer, S; Eberle, T; Edo, T; Edwards, M; Effler, A; Eggenstein, H; Ehrens, P; Eichholz, J; Eikenberry, S S; Endr?czi, G; Essick, R; Etzel, T; Evans, M; Evans, T; Factourovich, M; Fafone, V; Fairhurst, S; Fang, Q; Farinon, S; Farr, B; Farr, W M; Favata, M; Fehrmann, H; Fejer, M M; Feldbaum, D; Feroz, F; Ferrante, I; Ferrini, F; Fidecaro, F; Finn, L S; Fiori, I; Fisher, R P; Flaminio, R; Fournier, J -D; Franco, S; Frasca, S; Frasconi, F; Frede, M; Frei, Z; Freise, A; Frey, R; Fricke, T T; Fritschel, P; Frolov, V V; Fulda, P; Fyffe, M; Gair, J; Gammaitoni, L; Gaonkar, S; Garufi, F; Gehrels, N; Gemme, G; Genin, E; Gennai, A; Ghosh, S; Giaime, J A; Giardina, K D; Giazotto, A; Gill, C; Gleason, J; Goetz, E; Goetz, R; Gondan, L; González, G; Gordon, N; Gorodetsky, M L; Gossan, S; Goßler, S; Gouaty, R; Gräf, C; Graff, P B; Granata, M; Grant, A; Gras, S; Gray, C; Greenhalgh, R J S; Gretarsson, A M; Groot, P; Grote, H; Grover, K; Grunewald, S; Guidi, G M; Guido, C; Gushwa, K; Gustafson, E K; Gustafson, R; Hammer, D; Hammond, G; Hanke, M; Hanks, J; Hanna, C; Hanson, J; Harms, J; Harry, G M; Harry, I W; Harstad, E D; Hart, M; Hartman, M T; Haster, C -J; Haughian, K; Heidmann, A; Heintze, M; Heitmann, H; Hello, P; Hemming, G; Hendry, M; Heng, I S; Heptonstall, A W; Heurs, M; Hewitson, M; Hild, S; Hoak, D; Hodge, K A; Holt, K; Hooper, S; Hopkins, P; Hosken, D J; Hough, J; Howell, E J; Hu, Y; Hughey, B; Husa, S; Huttner, S H; Huynh, M; Huynh-Dinh, T; Ingram, D R; Inta, R; Isogai, T; Ivanov, A; Iyer, B R; Izumi, K; Jacobson, M; James, E; Jang, H; Jaranowski, P; Ji, Y; Jiménez-Forteza, F; Johnson, W W; Jones, D I; Jones, R; Jonker, R J G; Ju, L; K, Haris; Kalmus, P; Kalogera, V; Kandhasamy, S; Kang, G; Kanner, J B; Karlen, J; Kasprzack, M; Katsavounidis, E; Katzman, W; Kaufer, H; Kawabe, K; Kawazoe, F; Kéfélian, F; Keiser, G M; Keitel, D; Kelley, D B; Kells, W; Khalaidovski, A; Khalili, F Y; Khazanov, E A; Kim, C; Kim, K; Kim, N; Kim, N G; Kim, Y -M; King, E J; King, P J; Kinzel, D L; Kissel, J S; Klimenko, S; Kline, J; Koehlenbeck, S; Kokeyama, K; Kondrashov, V; Koranda, S; Korth, W Z; Kowalska, I

    2014-01-01

    The Numerical INJection Analysis (NINJA) project is a collaborative effort between members of the numerical relativity and gravitational-wave astrophysics communities. The purpose of NINJA is to study the ability to detect gravitational waves emitted from merging binary black holes and recover their parameters with next-generation gravitational-wave observatories. We report here on the results of the second NINJA project, NINJA-2, which employs 60 complete binary black hole hybrid waveforms consisting of a numerical portion modelling the late inspiral, merger, and ringdown stitched to a post-Newtonian portion modelling the early inspiral. In a "blind injection challenge" similar to that conducted in recent LIGO and Virgo science runs, we added 7 hybrid waveforms to two months of data recolored to predictions of Advanced LIGO and Advanced Virgo sensitivity curves during their first observing runs. The resulting data was analyzed by gravitational-wave detection algorithms and 6 of the waveforms were recovered w...

  3. Projected Constraints on Scalarization with Gravitational Waves from Neutron Star Binaries

    E-Print Network [OSTI]

    Laura Sampson; Nicolas Yunes; Neil Cornish; Marcelo Ponce; Enrico Barausse; Antoine Klein; Carlos Palenzuela; Luis Lehner

    2014-11-28

    Certain scalar-tensor theories have the property of endowing stars with scalar hair, sourced either by the star's own compactness (spontaneous scalarization) or, for binary systems, by the companion's scalar hair (induced scalarization) or by the orbital binding energy (dynamical scalarization). Scalarized stars in binaries present different conservative dynamics than in General Relativity, and can also excite a scalar mode in the metric perturbation that carries away dipolar radiation. As a result, the binary orbit shrinks faster than predicted in General Relativity, modifying the rate of decay of the orbital period. In spite of this, scalar-tensor theories can pass existing binary pulsar tests, because observed pulsars may not be compact enough or sufficiently orbitally bound to activate scalarization. Gravitational waves emitted during the last stages of compact binary inspirals are thus ideal probes of scalarization effects. For the standard projected sensitivity of advanced LIGO, we here show that, if neutron stars are sufficiently compact to enter the detector's sensitivity band already scalarized, then gravitational waves could place constraints at least comparable to binary pulsars. If the stars dynamically scalarize while inspiraling in band, then constraints are still possible provided the scalarization occurs sufficiently early in the inspiral, roughly below an orbital frequency of 50Hz. In performing these studies, we derive an easy-to-calculate data analysis measure, an integrated phase difference between a General Relativistic and a modified signal, that maps directly to the Bayes factor so as to determine whether a modified gravity effect is detectable. Finally, we find that custom-made templates are equally effective as model-independent, parameterized post-Einsteinian waveforms at detecting such modified gravity effects at realistic signal-to-noise ratios.

  4. Well-quasi-ordering Binary Matroids The Graph Minors Project of Robertson and Seymour is one of the highlights

    E-Print Network [OSTI]

    Banaji,. Murad

    Well-quasi-ordering Binary Matroids The Graph Minors Project of Robertson and Seymour is one with the matroid; thus it is not hard to see that matroids generalise graphs. Robertson and Seymour always believed

  5. THE BANANA PROJECT. IV. TWO ALIGNED STELLAR ROTATION AXES IN THE YOUNG ECCENTRIC BINARY SYSTEM EP CRUCIS: PRIMORDIAL ORIENTATION AND TIDAL ALIGNMENT

    E-Print Network [OSTI]

    Albrecht, Simon H.

    With observations of the EP Cru system, we continue our series of measurements of spin-orbit angles in eclipsing binary star systems, the BANANA project (Binaries Are Not Always Neatly Aligned). We find a close alignment ...

  6. Un-modeled search for black hole binary systems in the NINJA project

    E-Print Network [OSTI]

    Laura Cadonati; Shourov Chatterji; Sebastian Fischetti; Gianluca Guidi; Satyanarayan R. P. Mohapatra; Riccardo Sturani; Andrea Viceré

    2010-10-24

    The gravitational wave signature from binary black hole coalescences is an important target for LIGO and VIRGO. The Numerical INJection Analysis (NINJA) project brought together the numerical relativity and gravitational wave data analysis communities, with the goal to optimize the detectability of these events. In its first instantiation, the NINJA project produced a simulated data set with numerical waveforms from binary black hole coalescences of various morphologies (spin, mass ratio, initial conditions), superimposed to Gaussian colored noise at the design sensitivity for initial LIGO and VIRGO. We analyzed this simulated data set with the Q-pipeline burst algorithm. This code, designed for the all-sky detection of gravitational wave bursts with minimal assumptions on the shape of the waveform, filters the data with a bank of sine-Gaussians, or sinusoids with Gaussian envelope. The algorithm's performance was compared to matched filtering with ring-down templates. The results are qualitatively consistent; however due to the low simulation statistics in the first NINJA project, it is premature to draw quantitative conclusions at this stage.

  7. The NINJA-2 project: Detecting and characterizing gravitational waveforms modelled using numerical binary black hole simulations

    E-Print Network [OSTI]

    The LIGO Scientific Collaboration; the Virgo Collaboration; the NINJA-2 Collaboration; :; J. Aasi; B. P. Abbott; R. Abbott; T. Abbott; M. R. Abernathy; T. Accadia; F. Acernese; K. Ackley; C. Adams; T. Adams; P. Addesso; R. X. Adhikari; C. Affeldt; M. Agathos; N. Aggarwal; O. D. Aguiar; A. Ain; P. Ajith; A. Alemic; B. Allen; A. Allocca; D. Amariutei; M. Andersen; R. Anderson; S. B. Anderson; W. G. Anderson; K. Arai; M. C. Araya; C. Arceneaux; J. Areeda; S. M. Aston; P. Astone; P. Aufmuth; C. Aulbert; L. Austin; B. E. Aylott; S. Babak; P. T. Baker; G. Ballardin; S. W. Ballmer; J. C. Barayoga; M. Barbet; B. C. Barish; D. Barker; F. Barone; B. Barr; L. Barsotti; M. Barsuglia; M. A. Barton; I. Bartos; R. Bassiri; A. Basti; J. C. Batch; J. Bauchrowitz; Th. S. Bauer; B. Behnke; M. Bejger; M. G. Beker; C. Belczynski; A. S. Bell; C. Bell; G. Bergmann; D. Bersanetti; A. Bertolini; J. Betzwieser; P. T. Beyersdorf; I. A. Bilenko; G. Billingsley; J. Birch; S. Biscans; M. Bitossi; M. A. Bizouard; E. Black; J. K. Blackburn; L. Blackburn; D. Blair; S. Bloemen; M. Blom; O. Bock; T. P. Bodiya; M. Boer; G. Bogaert; C. Bogan; C. Bond; F. Bondu; L. Bonelli; R. Bonnand; R. Bork; M. Born; V. Boschi; Sukanta Bose; L. Bosi; C. Bradaschia; P. R. Brady; V. B. Braginsky; M. Branchesi; J. E. Brau; T. Briant; D. O. Bridges; A. Brillet; M. Brinkmann; V. Brisson; A. F. Brooks; D. A. Brown; D. D. Brown; F. Brückner; S. Buchman; T. Bulik; H. J. Bulten; A. Buonanno; R. Burman; D. Buskulic; C. Buy; L. Cadonati; G. Cagnoli; J. Calderón Bustillo; E. Calloni; J. B. Camp; P. Campsie; K. C. Cannon; B. Canuel; J. Cao; C. D. Capano; F. Carbognani; L. Carbone; S. Caride; A. Castiglia; S. Caudill; M. Cavagliŕ; F. Cavalier; R. Cavalieri; C. Celerier; G. Cella; C. Cepeda; E. Cesarini; R. Chakraborty; T. Chalermsongsak; S. J. Chamberlin; S. Chao; P. Charlton; E. Chassande-Mottin; X. Chen; Y. Chen; A. Chincarini; A. Chiummo; H. S. Cho; J. Chow; N. Christensen; Q. Chu; S. S. Y. Chua; S. Chung; G. Ciani; F. Clara; J. A. Clark; F. Cleva; E. Coccia; P. -F. Cohadon; A. Colla; C. Collette; M. Colombini; L. Cominsky; M. Constancio Jr.; A. Conte; D. Cook; T. R. Corbitt; M. Cordier; N. Cornish; A. Corpuz; A. Corsi; C. A. Costa; M. W. Coughlin; S. Coughlin; J. -P. Coulon; S. Countryman; P. Couvares; D. M. Coward; M. Cowart; D. C. Coyne; R. Coyne; K. Craig; J. D. E. Creighton; S. G. Crowder; A. Cumming; L. Cunningham; E. Cuoco; K. Dahl; T. Dal Canton; M. Damjanic; S. L. Danilishin; S. D'Antonio; K. Danzmann; V. Dattilo; H. Daveloza; M. Davier; G. S. Davies; E. J. Daw; R. Day; T. Dayanga; G. Debreczeni; J. Degallaix; S. Deléglise; W. Del Pozzo; T. Denker; T. Dent; H. Dereli; V. Dergachev; R. De Rosa; R. T. DeRosa; R. DeSalvo; S. Dhurandhar; M. Díaz; L. Di Fiore; A. Di Lieto; I. Di Palma; A. Di Virgilio; A. Donath; F. Donovan; K. L. Dooley; S. Doravari; S. Dossa; R. Douglas; T. P. Downes; M. Drago; R. W. P. Drever; J. C. Driggers; Z. Du; S. Dwyer; T. Eberle; T. Edo; M. Edwards; A. Effler; H. Eggenstein; P. Ehrens; J. Eichholz; S. S. Eikenberry; G. Endr?czi; R. Essick; T. Etzel; M. Evans; T. Evans; M. Factourovich; V. Fafone; S. Fairhurst; Q. Fang; S. Farinon; B. Farr; W. M. Farr; M. Favata; H. Fehrmann; M. M. Fejer; D. Feldbaum; F. Feroz; I. Ferrante; F. Ferrini; F. Fidecaro; L. S. Finn; I. Fiori; R. P. Fisher; R. Flaminio; J. -D. Fournier; S. Franco; S. Frasca; F. Frasconi; M. Frede; Z. Frei; A. Freise; R. Frey; T. T. Fricke; P. Fritschel; V. V. Frolov; P. Fulda; M. Fyffe; J. Gair; L. Gammaitoni; S. Gaonkar; F. Garufi; N. Gehrels; G. Gemme; E. Genin; A. Gennai; S. Ghosh; J. A. Giaime; K. D. Giardina; A. Giazotto; C. Gill; J. Gleason; E. Goetz; R. Goetz; L. Gondan; G. González; N. Gordon; M. L. Gorodetsky; S. Gossan; S. Goßler; R. Gouaty; C. Gräf; P. B. Graff; M. Granata; A. Grant; S. Gras; C. Gray; R. J. S. Greenhalgh; A. M. Gretarsson; P. Groot; H. Grote; K. Grover; S. Grunewald; G. M. Guidi; C. Guido; K. Gushwa; E. K. Gustafson; R. Gustafson; D. Hammer; G. Hammond; M. Hanke; J. Hanks; C. Hanna; J. Hanson; J. Harms; G. M. Harry; I. W. Harry; E. D. Harstad; M. Hart; M. T. Hartman; C. -J. Haster; K. Haughian; A. Heidmann; M. Heintze; H. Heitmann; P. Hello; G. Hemming; M. Hendry; I. S. Heng; A. W. Heptonstall; M. Heurs; M. Hewitson; S. Hild; D. Hoak; K. A. Hodge; K. Holt; S. Hooper; P. Hopkins; D. J. Hosken; J. Hough; E. J. Howell; Y. Hu; B. Hughey; S. Husa; S. H. Huttner; M. Huynh; T. Huynh-Dinh; D. R. Ingram; R. Inta; T. Isogai; A. Ivanov; B. R. Iyer; K. Izumi; M. Jacobson; E. James; H. Jang; P. Jaranowski; Y. Ji; F. Jiménez-Forteza; W. W. Johnson; D. I. Jones; R. Jones; R. J. G. Jonker; L. Ju; Haris K; P. Kalmus; V. Kalogera; S. Kandhasamy; G. Kang; J. B. Kanner; J. Karlen; M. Kasprzack; E. Katsavounidis; W. Katzman; H. Kaufer; K. Kawabe; F. Kawazoe; F. Kéfélian; G. M. Keiser; D. Keitel; D. B. Kelley; W. Kells; A. Khalaidovski

    2014-01-05

    The Numerical INJection Analysis (NINJA) project is a collaborative effort between members of the numerical relativity and gravitational-wave astrophysics communities. The purpose of NINJA is to study the ability to detect gravitational waves emitted from merging binary black holes and recover their parameters with next-generation gravitational-wave observatories. We report here on the results of the second NINJA project, NINJA-2, which employs 60 complete binary black hole hybrid waveforms consisting of a numerical portion modelling the late inspiral, merger, and ringdown stitched to a post-Newtonian portion modelling the early inspiral. In a "blind injection challenge" similar to that conducted in recent LIGO and Virgo science runs, we added 7 hybrid waveforms to two months of data recolored to predictions of Advanced LIGO and Advanced Virgo sensitivity curves during their first observing runs. The resulting data was analyzed by gravitational-wave detection algorithms and 6 of the waveforms were recovered with false alarm rates smaller than 1 in a thousand years. Parameter estimation algorithms were run on each of these waveforms to explore the ability to constrain the masses, component angular momenta and sky position of these waveforms. We also perform a large-scale monte-carlo study to assess the ability to recover each of the 60 hybrid waveforms with early Advanced LIGO and Advanced Virgo sensitivity curves. Our results predict that early Advanced LIGO and Advanced Virgo will have a volume-weighted average sensitive distance of 300Mpc (1Gpc) for $10M_{\\odot}+10M_{\\odot}$ ($50M_{\\odot}+50M_{\\odot}$) binary black hole coalescences. We demonstrate that neglecting the component angular momenta in the waveform models used in matched-filtering will result in a reduction in sensitivity for systems with large component angular momenta. [Abstract abridged for ArXiv, full version in PDF

  8. Environmental assessmental, geothermal energy, Heber geothermal binary-cycle demonstration project: Imperial County, California

    SciTech Connect (OSTI)

    Not Available

    1980-10-01

    The proposed design, construction, and operation of a commercial-scale (45 MWe net) binary-cycle geothermal demonstration power plant are described using the liquid-dominated geothermal resource at Heber, Imperial County, California. The following are included in the environmental assessment: a description of the affected environment, potential environmental consequences of the proposed action, mitigation measures and monitoring plans, possible future developmental activities at the Heber anomaly, and regulations and permit requirements. (MHR)

  9. Images of gravitational and magnetic phenomena derived from two-dimensional back-projection Doppler tomography of interacting binary stars

    SciTech Connect (OSTI)

    Richards, Mercedes T.; Cocking, Alexander S.; Fisher, John G.; Conover, Marshall J., E-mail: mrichards@astro.psu.edu, E-mail: asc5097@psu.edu [Department of Astronomy and Astrophysics, Pennsylvania State University, University Park, PA 16802 (United States)

    2014-11-10

    We have used two-dimensional back-projection Doppler tomography as a tool to examine the influence of gravitational and magnetic phenomena in interacting binaries that undergo mass transfer from a magnetically active star onto a non-magnetic main-sequence star. This multitiered study of over 1300 time-resolved spectra of 13 Algol binaries involved calculations of the predicted dynamical behavior of the gravitational flow and the dynamics at the impact site, analysis of the velocity images constructed from tomography, and the influence on the tomograms of orbital inclination, systemic velocity, orbital coverage, and shadowing. The H? tomograms revealed eight sources: chromospheric emission, a gas stream along the gravitational trajectory, a star-stream impact region, a bulge of absorption or emission around the mass-gaining star, a Keplerian accretion disk, an absorption zone associated with hotter gas, a disk-stream impact region, and a hot spot where the stream strikes the edge of a disk. We described several methods used to extract the physical properties of the emission sources directly from the velocity images, including S-wave analysis, the creation of simulated velocity tomograms from hydrodynamic simulations, and the use of synthetic spectra with tomography to sequentially extract the separate sources of emission from the velocity image. In summary, the tomography images have revealed results that cannot be explained solely by gravitational effects: chromospheric emission moving with the mass-losing star, a gas stream deflected from the gravitational trajectory, and alternating behavior between stream state and disk state. Our results demonstrate that magnetic effects cannot be ignored in these interacting binaries.

  10. Artificial Intelligence Approach to the Determination of Physical Properties of Eclipsing Binaries. I. The EBAI Project

    E-Print Network [OSTI]

    A. Prsa; E. F. Guinan; E. J. Devinney; M. DeGeorge; D. H. Bradstreet; J. M. Giammarco; C. R. Alcock; S. G. Engle

    2008-07-10

    Achieving maximum scientific results from the overwhelming volume of astronomical data to be acquired over the next few decades will demand novel, fully automatic methods of data analysis. Artificial intelligence approaches hold great promise in contributing to this goal. Here we apply neural network learning technology to the specific domain of eclipsing binary (EB) stars, of which only some hundreds have been rigorously analyzed, but whose numbers will reach millions in a decade. Well-analyzed EBs are a prime source of astrophysical information whose growth rate is at present limited by the need for human interaction with each EB data-set, principally in determining a starting solution for subsequent rigorous analysis. We describe the artificial neural network (ANN) approach which is able to surmount this human bottleneck and permit EB-based astrophysical information to keep pace with future data rates. The ANN, following training on a sample of 33,235 model light curves, outputs a set of approximate model parameters (T2/T1, (R1+R2)/a, e sin(omega), e cos(omega), and sin i) for each input light curve data-set. The whole sample is processed in just a few seconds on a single 2GHz CPU. The obtained parameters can then be readily passed to sophisticated modeling engines. We also describe a novel method polyfit for pre-processing observational light curves before inputting their data to the ANN and present the results and analysis of testing the approach on synthetic data and on real data including fifty binaries from the Catalog and Atlas of Eclipsing Binaries (CALEB) database and 2580 light curves from OGLE survey data. [abridged

  11. The EB factory project. I. A fast, neural-net-based, general purpose light curve classifier optimized for eclipsing binaries

    SciTech Connect (OSTI)

    Paegert, Martin; Stassun, Keivan G.; Burger, Dan M. [Department of Physics and Astronomy, Vanderbilt University, Vu Station B 1807, Nashville, TN 37235 (United States)

    2014-08-01

    We describe a new neural-net-based light curve classifier and provide it with documentation as a ready-to-use tool for the community. While optimized for identification and classification of eclipsing binary stars, the classifier is general purpose, and has been developed for speed in the context of upcoming massive surveys such as the Large Synoptic Survey Telescope. A challenge for classifiers in the context of neural-net training and massive data sets is to minimize the number of parameters required to describe each light curve. We show that a simple and fast geometric representation that encodes the overall light curve shape, together with a chi-square parameter to capture higher-order morphology information results in efficient yet robust light curve classification, especially for eclipsing binaries. Testing the classifier on the ASAS light curve database, we achieve a retrieval rate of 98% and a false-positive rate of 2% for eclipsing binaries. We achieve similarly high retrieval rates for most other periodic variable-star classes, including RR Lyrae, Mira, and delta Scuti. However, the classifier currently has difficulty discriminating between different sub-classes of eclipsing binaries, and suffers a relatively low (?60%) retrieval rate for multi-mode delta Cepheid stars. We find that it is imperative to train the classifier's neural network with exemplars that include the full range of light curve quality to which the classifier will be expected to perform; the classifier performs well on noisy light curves only when trained with noisy exemplars. The classifier source code, ancillary programs, a trained neural net, and a guide for use, are provided.

  12. arXiv:1106.3570v2[astro-ph.SR]9Sep2011 The Palomar Transient Factory Orion Project: Eclipsing Binaries and Young

    E-Print Network [OSTI]

    Goddard III, William A.

    arXiv:1106.3570v2[astro-ph.SR]9Sep2011 The Palomar Transient Factory Orion Project: Eclipsing Propulsion Laboratory, Pasadena, CA 91125, USA #12;­ 3 ­ ABSTRACT The Palomar Transient Factory (PTF) Orion the PTF camera installed at the Palomar 48-inch telescope, 40 nights were dedicated in 2009 December

  13. Spectroscopic subsystems in nearby wide binaries

    E-Print Network [OSTI]

    Tokovinin, Andrei

    2015-01-01

    Radial velocity (RV) monitoring of solar-type visual binaries has been conducted at the CTIO/SMARTS 1.5-m telescope to study short-period systems. Data reduction is described, mean and individual RVs of 163 observed objects are given. New spectroscopic binaries are discovered or suspected in 17 objects, for some of them orbital periods could be determined. Subsystems are efficiently detected even in a single observation by double lines and/or by the RV difference between the components of visual binaries. The potential of this detection technique is quantified by simulation and used for statistical assessment of 96 wide binaries within 67pc. It is found that 43 binaries contain at least one subsystem and the occurrence of subsystems is equally probable in either primary or secondary components. The frequency of subsystems and their periods match the simple prescription proposed by the author (2014, AJ, 147, 87). The remaining 53 simple wide binaries with a median projected separation of 1300AU have the distri...

  14. Physics of Binary Information

    E-Print Network [OSTI]

    Walter Smilga

    2013-03-24

    Basic concepts of theoretical particle physics, including quantum mechanics and Poincar\\'e invariance, the leptonic mass spectrum and the proton mass, can be derived, without reference to first principles, from intrinsic properties of the simplest elements of information represented by binary data. What we comprehend as physical reality is, therefore, a reflection of mathematically determined logical structures, built from elements of binary data.

  15. Hypervelocity binary stars: smoking gun of massive binary black holes

    E-Print Network [OSTI]

    Youjun Lu; Qingjuan Yu; D. N. C. Lin

    2007-07-22

    The hypervelocity stars recently found in the Galactic halo are expelled from the Galactic center through interactions between binary stars and the central massive black hole or between single stars and a hypothetical massive binary black hole. In this paper, we demonstrate that binary stars can be ejected out of the Galactic center with velocities up to 10^3 km/s, while preserving their integrity, through interactions with a massive binary black hole. Binary stars are unlikely to attain such high velocities via scattering by a single massive black hole or through any other mechanisms. Based on the above theoretical prediction, we propose a search for binary systems among the hypervelocity stars. Discovery of hypervelocity binary stars, even one, is a definitive evidence of the existence of a massive binary black hole in the Galactic center.

  16. Binary ferrihydrite catalysts

    DOE Patents [OSTI]

    Huffman, G.P.; Zhao, J.; Feng, Z.

    1996-12-03

    A method of preparing a catalyst precursor comprises dissolving an iron salt and a salt of an oxoanion forming agent, in water so that a solution of the iron salt and oxoanion forming agent salt has a ratio of oxoanion/Fe of between 0.0001:1 to 0.5:1. Next is increasing the pH of the solution to 10 by adding a strong base followed by collecting of precipitate having a binary ferrihydrite structure. A binary ferrihydrite catalyst precursor is also prepared by dissolving an iron salt in water. The solution is brought to a pH of substantially 10 to obtain ferrihydrite precipitate. The precipitate is then filtered and washed with distilled water and subsequently admixed with a hydroxy carboxylic acid solution. The admixture is mixed/agitated and the binary ferrihydrite precipitate is then filtered and recovered. 3 figs.

  17. Binaries in the Kuiper Belt

    E-Print Network [OSTI]

    Noll, KS; Grundy, WM; Chiang, EI; Margot, J-L; Kern, SD

    2007-01-01

    The relative sizes of Kuiper Belt binaries. Bull. Amer. As-density for binary Kuiper belt object (26308) 1998 SM 165 .the satellite of Kuiper Belt object 2003 EL 61 . Astrophys.

  18. Binary Logic and Gates Introduction

    E-Print Network [OSTI]

    Bouhraoua, Abdelhafid

    . This binary system algebra is commonly referred to as Boolean Algebra after the mathematician George Boole, these functions are binary functions and require binary logic algebra for their derivation and manipulation Algebra Learn How to Map a Boolean Expressions into Logic Circuit Implementations Learn How To Manipulate

  19. Binary Join Trees

    E-Print Network [OSTI]

    Shenoy, Prakash P.

    1996-01-01

    the number of elements of set ?, and let || s || denote the number of elements of the state space of subset s. A procedure in pseudocode for constructing a join tree (N, E) using binary combination is as follows. 4.2.1 Procedure INPUT: ?, ? OUTPUT...

  20. Beowawe Binary Bottoming Cycle

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based Fuels Researchof Energy andandBeforeofOhio can|Beowawe Binary

  1. Accretion in Compact Binaries

    E-Print Network [OSTI]

    Andrew R. King

    2003-03-26

    Compact binaries have long been a paradigm for accretion theory. Much of our present view of how accretion occurs comes directly from the comparison of theory with observations of these sources. Since theory differs little for other objects such as active galaxies, increasing efforts have recently gone into searching for correspondences in observed behaviour. This chapter aims at giving a concise summary of the field, with particular emphasis on new developments since the previous edition of this book. These developments have been significant. Much of the earlier literature implicitly assumed that accreting binaries were fairly steady sources accreting most of the mass entering their vicinity, often with main-sequence companions, and radiating the resulting accretion luminosity in rough isotropy. We shall see that in reality these assumptions fail for the majority of systems. Most are transient; mass ejection in winds and jets is extremely common; a large (sometimes dominant) fraction of even short-period systems have evolved companions whose structure deviates significantly from the zero-age main sequence; and the radiation pattern of many objects is significantly anisotropic. It is now possible to give a complete characterization of the observed incidence of transient and persistent sources in terms of the disc instability model and formation constraints. X-ray populations in external galaxies, particularly the ultraluminous sources, are revealing important new insights into accretion processes and compact binary evolution.

  2. Beowawe Bottoming Binary Project Geothermal Project | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental JumpInformation BeaufortBent County,Benton, New Hampshire: EnergyBenzie

  3. Dynamic Tides in Close Binaries

    E-Print Network [OSTI]

    B. Willems

    2005-11-10

    The basic theory of dynamic tides in close binaries is reviewed. Particular attention is paid to resonances between dynamic tides and free oscillation modes and to the role of the apsidal-motion rate in probing the internal structure of binary components. The discussed effects are generally applicable to stars across the entire Hertzsprung-Russell diagram, including the binary OB-stars discussed at this meeting.

  4. Binary module test. Final report

    SciTech Connect (OSTI)

    Schilling, J.R.; Colley, T.C.; Pundyk, J.

    1980-12-01

    The objective of this project was to design and test a binary loop module representative of and scaleable to commercial size units. The design was based on state-of-the-art heat exchanger technology, and the purpose of the tests was to confirm performance of a supercritical boiling cycle using isobutane and a mixture of isobutane and isopentane as the secondary working fluid. The module was designed as one percent of a 50 MW unit. It was installed at Magma Power's East Mesa geothermal field and tested over a period of approximately 4 months. Most of the test runs were with isobutane but some data were collected for hydrocarbon mixtures. The results of the field tests are reported. In general these results indicate reasonably good heat balances and agreement with overall heat transfer coefficients calculated by current stream analysis methods and available fluid property data; however, measured pressure drops across the heat exchangers were 20 percent higher than estimated. System operation was stable under all conditions tested.

  5. THE BANANA PROJECT. V. MISALIGNED AND PRECESSING STELLAR ROTATION AXES IN CV VELORUM

    E-Print Network [OSTI]

    Albrecht, Simon H.

    As part of the Binaries Are Not Always Neatly Aligned project (BANANA), we have found that the eclipsing binary CV Velorum has misaligned rotation axes. Based on our analysis of the Rossiter-McLaughlin effect, we find ...

  6. Resolving subdwarf B stars in binaries by HST imaging

    E-Print Network [OSTI]

    U. Heber; S. Moehler; R. Napiwotzki; P. Thejll; E. M. Green

    2002-01-07

    The origin of subluminous B stars is still an unsolved problem in stellar evolution. Single star as well as close binary evolution scenarios have been invoked but until now have met with little success. We have carried out a small survey of spectroscopic binary candidates (19 systems consisting of an sdB star and late type companion) with the Planetary Camera of the WFPC2 onboard Hubble Space Telescope to test these scenarios. Monte Carlo simulations indicate that by imaging the programme stars in the R-band about one third of the sample (6-7 stars) should be resolved at a limiting angular resolution of 0.1" if they have linear separations like main sequence stars ("single star evolution"). None should be resolvable if all systems were produced by close binary evolution. In addition we expect three triple systems to be present in our sample. Most of these, if not all, should be resolvable. Components were resolved in 6 systems with separations between 0.2" and 4.5". However, only in two systems do the magnitudes of the resolved components match the expectations from the deconvolution of the spectral energy distribution. These two stars could be physical binaries whereas in the other cases the nearby star may be a chance projection or a third component. Radial velocity measurements indicate that the resolved system TON 139 is a triple system, with the sdB having a close companion that does not contribute detectably to the integrated light of the system. Accordingly the success rate would be only 5% which is clearly below the prediction for single star evolution. We conclude that the distribution of separations of sdB binaries deviates strongly from that of normal stars. Our results add further evidence that close binary evolution is fundamental for the evolution of sdB stars. (abbreviated)

  7. Gravitational-wave emission from compact Galactic binaries

    E-Print Network [OSTI]

    Samaya Nissanke; Michele Vallisneri; Gijs Nelemans; Thomas A. Prince

    2012-10-09

    Compact Galactic binaries where at least one member is a white dwarf or neutron star constitute the majority of individually detectable sources for future low-frequency space-based gravitational-wave (GW) observatories; they also form an unresolved continuum, the dominant Galactic foreground at frequencies below a few mHz. Due to the paucity of electromagnetic observations, the majority of studies of Galactic-binary populations so far have been based on population-synthesis simulations. However, recent surveys have reported several new detections of white-dwarf binaries, providing new constraints for population estimates. In this article, we evaluate the impact of revised local densities of interacting white-dwarf binaries on future GW observations. Specifically: we consider five scenarios that explain these densities with different assumptions on the formation of interacting systems; we simulate corresponding populations of detached and interacting white-dwarf binaries; we estimate the number of individually detectable GW sources and the magnitude of the confusion-noise foreground, as observed by space-based detectors with 5- and 1-Mkm arms. We confirm earlier estimates of thousands of detached-binary detections, but project only few ten to few hundred detections of interacting systems. This reduction is partly due to our assessment of detection prospects, based on the iterative identification and subtraction of bright sources with respect to both instrument and confusion noise. We also confirm earlier estimates for the confusion-noise foreground, except in one scenario that explains smaller local densities of interacting systems with smaller numbers of progenitor detached systems.

  8. A spectroscopic binary in the Hercules dwarf spheroidal galaxy

    SciTech Connect (OSTI)

    Koch, Andreas; Hansen, Terese [Landessternwarte, Zentrum für Astronomie der Universität Heidelberg, Königstuhl 12, D-69117 Heidelberg (Germany); Feltzing, Sofia [Lund Observatory, Department of Astronomy and Theoretical Physics, Box 43, SE-22100 Lund (Sweden); Wilkinson, Mark I., E-mail: akoch@lsw.uni-heidelberg.de [Department of Physics and Astronomy, University of Leicester, University Road, Leicester LE1 7RH (United Kingdom)

    2014-01-01

    We present the radial velocity curve of a single-lined spectroscopic binary in the faint Hercules dwarf spheroidal (dSph) galaxy, based on 34 individual spectra covering more than 2 yr of observations. This is the first time that orbital elements could be derived for a binary in a dSph. The system consists of a metal-poor red giant and a low-mass companion, possibly a white dwarf, with a 135 day period in a moderately eccentric (e = 0.18) orbit. Its period and eccentricity are fully consistent with metal-poor binaries in the Galactic halo, while the projected semimajor axis is small, at a{sub p} sin i = 38 R {sub ?}. In fact, a very close orbit could inhibit the production of heavier elements through s-process nucleosynthesis, leading to the very low abundances of neutron-capture elements that are found in this star. We discuss the further implications for the chemical enrichment history of the Hercules dSph, but find no compelling binary scenario that could reasonably explain the full, peculiar abundance pattern of the Hercules dSph galaxy.

  9. Binary and Multiple O-Type Stars in the Cas OB6 Association

    E-Print Network [OSTI]

    Todd C. Hillwig; Douglas R. Gies; William G. Bagnuolo, Jr.; Wenjin Huang; M. Virginia McSwain; David W. Wingert

    2005-12-15

    We present the results of time-resolved spectroscopy of 13 O-type stars in the Cas OB6 stellar association. We conducted a survey for radial velocity variability in search of binary systems, which are expected to be plentiful in young OB associations. Here we report the discovery of two new single-lined binaries, and we present new orbital elements for three double-lined binaries (including one in the multiple star system HD 17505). One of the double-lined systems is the eclipsing binary system DN Cas, and we present a preliminary light curve analysis that yields the system inclination, masses, and radii. We compare the spectra of the single stars and the individual components of the binary stars with model synthetic spectra to estimate the stellar effective temperatures, gravities, and projected rotational velocities. We also make fits of the spectral energy distributions to derive E(B-V), R=A_V/E(B-V), and angular diameter. A distance of 1.9 kpc yields radii that are consistent with evolutionary models. We find that 7 of 14 systems with spectroscopic data are probable binaries, consistent with the high binary frequency found for other massive stars in clusters and associations.

  10. Disks and Planets in Binary Systems

    E-Print Network [OSTI]

    Wilhelm Kley; Andreas Burkert

    2000-04-04

    The star formation process in molecular clouds usually leads to the formation of multiple stellar systems, mostly binaries. Remaining disks around those stars may be located around individual stars (circumstellar disks) or around the entire binary system (circumbinary disk). We shall briefly review the present observational evidence for both types of disks in binary stars, in particular the properties of circumbinary disks. We then present recent results of the theoretical modeling of the collapse and fragmentation of gravitationally unstable molecular cloud cores and their implications for binary and disk formation, and discuss the dynamical influence of the binary companions on disk truncation and gap formation. The presence of binaries may have profound influence on the process of planet formation as well. We present results on the stability and evolution of orbits of planets in disks around binaries.

  11. Project Year Project Team

    E-Print Network [OSTI]

    Gray, Jeffrey J.

    Project Year 2001 Project Team Faculty: Grace Brush, Geography & Environmental Engineering, Whiting School of Engineering Fellow: Dan Bain, Geography & Environmental Engineering, Whiting School. Through this project, the team proposes to develop a variety of resources: a set of general, web

  12. Binary Objects in the Kuiper Belt and Outlying Centaurs: Simulations

    E-Print Network [OSTI]

    Binary Objects in the Kuiper Belt and Outlying Centaurs: Simulations Stephan Kolassa kolassa Abstract. Two exchange reaction scenarios to account for the characteristics of Kuiper belt binaries, Websites and Programs . . . . . . . . . . . . . . . . . . . . . . 10 2 Binary Objects in the Kuiper Belt 11

  13. The Evolution of Compact Binary Star Systems

    E-Print Network [OSTI]

    Konstantin Postnov; Lev Yungelson

    2014-03-21

    We review the formation and evolution of compact binary stars consisting of white dwarfs (WDs), neutron stars (NSs), and black holes (BHs). Mergings of compact binary stars are expected to be the most important sources for the forthcoming gravitational-wave (GW) astronomy. In the first part of the review, we discuss observational manifestations of close binary stars with NS and/or black components and their merger rate, crucial points in the formation and evolution of compact stars in binary systems, including the treatment of the natal kicks which NSs and BHs acquire during the core collapse of massive stars and the common envelope phase of binary evolution, which are most relevant to the merging rates of NS-NS, NS-BH and BH-BH binaries. The second part of the review is devoted mainly to formation and evolution of binary WDs and their observational manifestations, including their role as progenitors of cosmologically important thermonuclear SN Ia. We also consider AM CVn-stars which are thought to be the best verification binary GW sources for future low-frequency GW space interferometers.

  14. Interacting Jets from Binary Protostars

    E-Print Network [OSTI]

    G. C. Murphy; T. Lery; S. O'Sullivan; D. Spicer; F. Bacciotti; A. Rosen

    2007-11-20

    We investigate potential models that could explain why multiple proto-stellar systems predominantly show single jets. During their formation, stars most frequently produce energetic outflows and jets. However, binary jets have only been observed in a very small number of systems. We model numerically 3D binary jets for various outflow parameters. We also model the propagation of jets from a specific source, namely L1551 IRS 5, known to have two jets, using recent observations as constraints for simulations with a new MHD code. We examine their morphology and dynamics, and produce synthetic emission maps. We find that the two jets interfere up to the stage where one of them is almost destroyed or engulfed into the second one. We are able to reproduce some of the observational features of L1551 such as the bending of the secondary jet. While the effects of orbital motion are negligible over the jets dynamical timeline, their interaction has significant impact on their morphology. If the jets are not strictly parallel, as in most observed cases, we show that the magnetic field can help the collimation and refocusing of both of the two jets.

  15. CS 3214, Spring 2012 Project 1: Defusing a Binary Bomb

    E-Print Network [OSTI]

    Butt, Ali R.

    your group's bomb, one (and only one) of the group members should point your Web browser to the bomb request daemon at http://cs3214.cs.vt.edu:15213 Fill out the HTML form with the CS SLO IDs of your team browser in a tar file called bombk.tar, where k is the unique number of your bomb. Save the bombk.tar file

  16. Beowawe Bottoming Binary Unit - Final Technical Report for EE0002856

    SciTech Connect (OSTI)

    McDonald, Dale Edward

    2013-02-12

    This binary plant is the first high-output refrigeration based waste heat recovery cycle in the industry. Its working fluid is environmentally friendly and as such, the permits that would be required with a butane based cycle are not necessary. The unit is modularized, meaning that the unit’s individual skids were assembled in another location and were shipped via truck to the plant site. This project proves the technical feasibility of using low temperature brine The development of the unit led to the realization of low temperature, high output, and environmentally friendly heat recovery systems through domestic research and engineering. The project generates additional renewable energy for Nevada, resulting in cleaner air and reduced carbon dioxide emissions. Royalty and tax payments to governmental agencies will increase, resulting in reduced financial pressure on local entities. The major components of the unit were sourced from American companies, resulting in increased economic activity throughout the country.

  17. A class of non-binary LDPC codes 

    E-Print Network [OSTI]

    Gilra, Deepak

    2004-09-30

    threshold. We use this concept to study and compare the convergence thresholds for binary and non-binary PA codes. We also use the concept of EXIT-charts to show why certain irregularities in LDPC codes are better than others. The organization... EXIT- charts in Chapter IV. 16 CHAPTER III Non-Binary Product Accumulate Codes From the previous chapter we see that non-binary LDPC codes perform better than binary LDPC codes. Also we see...

  18. Logic Design Chapter 1: Binary Numbers

    E-Print Network [OSTI]

    Wu, Xiaolin

    of four bits: nibble · A group of eight bits: byte Conversion between Decimal and Binary · Converting least-significant bit (LSB) · The left most bit is called the most significant bit (MSB) · A group

  19. Gravitational waves from merging compact binaries

    E-Print Network [OSTI]

    Hughes, Scott A.

    Largely motivated by the development of highly sensitive gravitational-wave detectors, our understanding of merging compact binaries and the gravitational waves they generate has improved dramatically in recent years. ...

  20. Binaries in the Hipparcos data: Keep digging

    E-Print Network [OSTI]

    Pourbaix, D; Jorissen, A

    2004-01-01

    Among the 120 000 objects in the Hipparcos catalogue, only 235 were fitted with an orbital model. Besides these 235 original astrometric binaries, most Hipparcos entries with a known spectroscopic orbit (extrasolar planet or stellar companion) have now been re-processed, as part of the on-going construction of the 9th Catalogue of Spectroscopic Binary Orbits (SB9, available at http://sb9.astro.ulb.ac.be). The pitfalls and successes of this re-processing are discussed in various contexts, like (i) orbital inclinations: the holy grail for extrasolar planets (ii) searching for binaries without a priori knowledge of their spectroscopic orbital elements, and application to barium stars (iii) why not all SB9 entries yield acceptable astrometric solutions? The lessons learned from this study are useful to devise the best possible binary-detection and orbit-determination algorithms for future astrometric missions like GAIA.

  1. Binaries in the Hipparcos data: Keep digging

    E-Print Network [OSTI]

    D. Pourbaix; S. Jancart; A. Jorissen

    2004-01-23

    Among the 120 000 objects in the Hipparcos catalogue, only 235 were fitted with an orbital model. Besides these 235 original astrometric binaries, most Hipparcos entries with a known spectroscopic orbit (extrasolar planet or stellar companion) have now been re-processed, as part of the on-going construction of the 9th Catalogue of Spectroscopic Binary Orbits (SB9, available at http://sb9.astro.ulb.ac.be). The pitfalls and successes of this re-processing are discussed in various contexts, like (i) orbital inclinations: the holy grail for extrasolar planets (ii) searching for binaries without a priori knowledge of their spectroscopic orbital elements, and application to barium stars (iii) why not all SB9 entries yield acceptable astrometric solutions? The lessons learned from this study are useful to devise the best possible binary-detection and orbit-determination algorithms for future astrometric missions like GAIA.

  2. Direct Exoplanet Detection with Binary Differential Imaging

    E-Print Network [OSTI]

    Rodigas, Timothy J; Mamajek, Eric E; Males, Jared R; Close, Laird M; Morzinski, Katie; Hinz, Philip M; Kaib, Nathan

    2015-01-01

    Binaries are typically excluded from direct imaging exoplanet surveys. However, the recent findings of Kepler and radial velocity programs show that planets can and do form in binary systems. Here, we suggest that visual binaries offer unique advantages for direct imaging. We show that Binary Differential Imaging (BDI), whereby two stars are imaged simultaneously at the same wavelength within the isoplanatic patch at high Strehl ratio, offers improved point spread function (PSF) subtraction that can result in increased sensitivity to planets close to each star. We demonstrate this by observing a young visual binary separated by 4\\asec ~with MagAO/Clio-2 at 3.9 \\microns, where the Strehl ratio is high, the isoplanatic patch is large, and giant planets are bright. Comparing BDI to angular differential imaging (ADI), we find that BDI's 5$\\sigma$ contrast is \\about 0.5 mags better than ADI's within \\about 1\\asec ~for the particular binary we observed. Because planets typically reside close to their host stars, BD...

  3. Identification of Owner’s Project Value Interests 

    E-Print Network [OSTI]

    Gunby, Molly Gaynell

    2011-02-22

    the parameter estimates show specific project characteristics are significant in explaining the importance of individual value interests to a project. The model was developed through binary logistic regression of industry survey data, and validated... the applicability of individual value interests to a project. The methodology required to develop the mathematical model and test the hypothesis included the following activities: 1. Generation of data. In this step, the value interests and project...

  4. TWENTY-FIVE SUBARCSECOND BINARIES DISCOVERED BY LUNAR OCCULTATIONS

    SciTech Connect (OSTI)

    Richichi, A.; Fors, O.; Cusano, F.; Moerchen, M.

    2013-09-15

    We report on 25 subarcsecond binaries, detected for the first time by means of lunar occultations in the near-infrared (near-IR) as part of a long-term program using the ISAAC instrument at the ESO Very Large Telescope. The primaries have magnitudes in the range K = 3.8-10.4, and the companions in the range K = 6.4-12.1. The magnitude differences have a median value of 2.8, with the largest being 5.4. The projected separations are in the range 6-748 mas and with a median of 18 mas, or about three times less than the diffraction limit of the telescope. Among our binary detections are a pre-main-sequence star and an enigmatic Mira-like variable previously suspected to have a companion. Additionally, we quote an accurate first-time near-IR detection of a previously known wider binary. We discuss our findings on an individual basis as far as made possible by the available literature, and we examine them from a statistical point of view. We derive a typical frequency of binarity among field stars of Almost-Equal-To 10%, in the resolution and sensitivity range afforded by the technique ( Almost-Equal-To 0.''003 to Almost-Equal-To 0.''5, and K Almost-Equal-To 12 mag, respectively). This is in line with previous results using the same technique but we point out interesting differences that we can trace up to sensitivity, time sampling, and average distance of the targets. Finally, we discuss the prospects for further follow-up studies.

  5. Revisit on ''Ruling out chaos in compact binary systems''

    SciTech Connect (OSTI)

    Wu Xin [Department of Physics, Nanchang University, Nanchang 330031 (China); Xie Yi [Department of Astronomy, Nanjing University, Nanjing 210093 (China)

    2007-12-15

    Full general relativity requires that chaos indicators should be invariant in various spacetime coordinate systems for a given relativistic dynamical problem. On the basis of this point, we calculate the invariant Lyapunov exponents (LEs) for one of the spinning compact binaries in the conservative second post-Newtonian (2PN) Lagrangian formulation without the dissipative effects of gravitational radiation, using the two-nearby-orbits method with projection operations and with coordinate time as an independent variable. It is found that the actual source leading to zero LEs in one paper [J. D. Schnittman and F. A. Rasio, Phys. Rev. Lett. 87, 121101 (2001)] but to positive LEs in the other [N. J. Cornish and J. Levin, Phys. Rev. Lett. 89, 179001 (2002)] does not mainly depend on rescaling, but is due to two slightly different treatments of the LEs. It takes much more CPU time to obtain the stabilizing limit values as reliable values of LEs for the former than to get the slopes (equal to LEs) of the fit lines for the latter. Due to coalescence of some of the black holes, the LEs from the former are not an adaptive indicator of chaos for comparable mass compact binaries. In this case, the invariant fast Lyapunov indicator (FLI) of two-nearby orbits, as a very sensitive tool to distinguish chaos from order, is worth recommending. As a result, we do again find chaos in the 2PN approximation through different ratios of FLIs varying with time. Chaos cannot indeed be ruled out in real binaries.

  6. The Binary White Dwarf LHS 3236

    E-Print Network [OSTI]

    Harris, Hugh; Dupuy, Trent; Canzian, Blaise; Guetter, Harry; Hartkopf, William; Ireland, Michael; Leggett, Sandy; Levine, Stephen; Liu, Michael; Luginbuhl, Christian; Monet, Alice; Stone, Ronald; Subasavage, John; Tilleman, Trudy; Walker, Richard

    2013-01-01

    The white dwarf LHS 3236 (WD1639+153) is shown to be a double-degenerate binary, with each component having a high mass. Astrometry at the U.S. Naval Observatory gives a parallax and distance of 30.86 +/- 0.25 pc and a tangential velocity of 98 km/s, and reveals binary orbital motion. The orbital parameters are determined from astrometry of the photocenter over more than three orbits of the 4.0-year period. High-resolution imaging at the Keck Observatory resolves the pair with a separation of 31 and 124 mas at two epochs. Optical and near-IR photometry give a set of possible binary components. Consistency of all data indicates that the binary is a pair of DA stars with temperatures near 8000 and 7400 K and with masses of 0.93 and 0.91 M_solar; also possible, is a DA primary and a helium DC secondary with temperatures near 8800 and 6000 K and with masses of 0.98 and 0.69 M_solar. In either case, the cooling ages of the stars are ~3 Gyr and the total ages are <4 Gyr. The combined mass of the binary (1.66--1....

  7. The binary white dwarf LHS 3236

    SciTech Connect (OSTI)

    Harris, Hugh C.; Dahn, Conard C.; Canzian, Blaise; Guetter, Harry H.; Levine, Stephen E.; Luginbuhl, Christian B.; Monet, Alice K. B.; Stone, Ronald C.; Subasavage, John P.; Tilleman, Trudy; Walker, Richard L. [US Naval Observatory, 10391 West Naval Observatory Road, Flagstaff, AZ 86001-8521 (United States); Dupuy, Trent J.; Liu, Michael C. [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Hartkopf, William I. [US Naval Observatory, 3450 Massachusetts Avenue, N.W., Washington, DC 20392-5420 (United States); Ireland, Michael J. [Department of Physics and Astronomy, Macquarie University, New South Wales, NSW 2109 (Australia); Leggett, S. K., E-mail: hch@nofs.navy.mil [Gemini Observatory, 670 N. Aohoku Place, Hilo, HI 96720 (United States)

    2013-12-10

    The white dwarf LHS 3236 (WD1639+153) is shown to be a double-degenerate binary, with each component having a high mass. Astrometry at the U.S. Naval Observatory gives a parallax and distance of 30.86 ± 0.25 pc and a tangential velocity of 98 km s{sup –1}, and reveals binary orbital motion. The orbital parameters are determined from astrometry of the photocenter over more than three orbits of the 4.0 yr period. High-resolution imaging at the Keck Observatory resolves the pair with a separation of 31 and 124 mas at two epochs. Optical and near-IR photometry give a set of possible binary components. Consistency of all data indicates that the binary is a pair of DA stars with temperatures near 8000 and 7400 K and with masses of 0.93 and 0.91 M {sub ?}; also possible is a DA primary and a helium DC secondary with temperatures near 8800 and 6000 K and with masses of 0.98 and 0.69 M {sub ?}. In either case, the cooling ages of the stars are ?3 Gyr and the total ages are <4 Gyr. The combined mass of the binary (1.66-1.84 M {sub ?}) is well above the Chandrasekhar limit; however, the timescale for coalescence is long.

  8. Investigating Dark Energy with Black Hole Binaries

    E-Print Network [OSTI]

    Laura Mersini-Houghton; Adam Kelleher

    2009-06-08

    The accelerated expansion of the universe is ascribed to the existence of dark energy. Black holes accretion of dark energy induces a mass change proportional to the energy density and pressure of the background dark energy fluid. The time scale during which the mass of black holes changes considerably is too long relative to the age of the universe, thus beyond detection possibilities. We propose to take advantage of the modified black hole masses for exploring the equation of state $w[z]$ of dark energy, by investigating the evolution of supermassive black hole binaries on a dark energy background. Deriving the signatures of dark energy accretion on the evolution of binaries, we find that dark energy imprints on the emitted gravitational radiation and on the changes in the orbital radius of the binary can be within detection limits for certain supermassive black hole binaries. In this talk I describe how binaries can provide a useful tool in obtaining complementary information on the nature of dark energy, based on the work done with A.Kelleher.

  9. TIDAL NOVAE IN COMPACT BINARY WHITE DWARFS

    SciTech Connect (OSTI)

    Fuller, Jim; Lai Dong [Department of Astronomy, Cornell University, Ithaca, NY 14850 (United States)

    2012-09-01

    Compact binary white dwarfs (WDs) undergoing orbital decay due to gravitational radiation can experience significant tidal heating prior to merger. In these WDs, the dominant tidal effect involves the excitation of outgoing gravity waves in the inner stellar envelope and the dissipation of these waves in the outer envelope. As the binary orbit decays, the WDs are synchronized from outside in (with the envelope synchronized first, followed by the core). We examine the deposition of tidal heat in the envelope of a carbon-oxygen WD and study how such tidal heating affects the structure and evolution of the WD. We show that significant tidal heating can occur in the star's degenerate hydrogen layer. This layer heats up faster than it cools, triggering runaway nuclear fusion. Such 'tidal novae' may occur in all WD binaries containing a CO WD, at orbital periods between 5 minutes and 20 minutes, and precede the final merger by 10{sup 5}-10{sup 6} years.

  10. Hybrid black-hole binary initial data

    E-Print Network [OSTI]

    Bruno C. Mundim; Bernard J. Kelly; Yosef Zlochower; Hiroyuki Nakano; Manuela Campanelli

    2010-12-04

    Traditional black-hole binary puncture initial data is conformally flat. This unphysical assumption is coupled with a lack of radiation signature from the binary's past life. As a result, waveforms extracted from evolutions of this data display an abrupt jump. In Kelly et al. [Class.Quant.Grav.27:114005,2010], a new binary black-hole initial data with radiation contents derived in the post-Newtonian (PN) calculation was adapted to puncture evolutions in numerical relativity. This data satisfies the constraint equations to the 2.5PN order, and contains a transverse-traceless "wavy" metric contribution, violating the standard assumption of conformal flatness. Although the evolution contained less spurious radiation, there were undesired features; the unphysical horizon mass loss and the large initial orbital eccentricity. Introducing a hybrid approach to the initial data evaluation, we significantly reduce these undesired features.

  11. BINARIES MIGRATING IN A GASEOUS DISK: WHERE ARE THE GALACTIC CENTER BINARIES?

    SciTech Connect (OSTI)

    Baruteau, C.; Lin, D. N. C.; Cuadra, J. E-mail: lin@ucolick.org

    2011-01-01

    The massive stars in the Galactic center inner arcsecond share analogous properties with the so-called Hot Jupiters. Most of these young stars have highly eccentric orbits and were probably not formed in situ. It has been proposed that these stars acquired their current orbits from the tidal disruption of compact massive binaries scattered toward the proximity of the central supermassive black hole. Assuming a binary star formed in a thin gaseous disk beyond 0.1 pc from the central object, we investigate the relevance of disk-satellite interactions to harden the binding energy of the binary, and to drive its inward migration. A massive, equal-mass binary star is found to become more tightly wound as it migrates inward toward the central black hole. The migration timescale is very similar to that of a single-star satellite of the same mass. The binary's hardening is caused by the formation of spiral tails lagging the stars inside the binary's Hill radius. We show that the hardening timescale is mostly determined by the mass of gas inside the binary's Hill radius and that it is much shorter than the migration timescale. We discuss some implications of the binary's hardening process. When the more massive (primary) components of close binaries eject most their mass through supernova explosion, their secondary stars may attain a range of eccentricities and inclinations. Such processes may provide an alternative unified scenario for the origin of the kinematic properties of the central cluster and S-stars in the Galactic center as well as the high-velocity stars in the Galactic halo.

  12. Low-mass binaries in the young cluster IC 348: implications for binary formation and evolution

    E-Print Network [OSTI]

    Gaspard Duchene; Jerome Bouvier; Theodore Simon

    1999-01-05

    We report on a near-infrared adaptive optics survey of a sample of 66 low-mass members of the pre-main sequence stellar cluster IC 348. We find 12 binary systems in the separation range 0.1-8.0 arcsec. An estimate of the number of faint undetected companions is derived, before we evaluate the binary frequency in this cluster. In the orbital period range log P=5.0-7.9 days, the binary fraction in IC 348 is 19+/-5 %.This is similar to the values correspondings to G- and M-dwarfs populations in the solar neigbourhood. Substellar companions are found to be rare, or even missing, as companions of low-mass stars in the separation range we surveyed. Also, the mass ratio distribution is not peaked at q=1. We do not find any evidence for an evolution of the binary frequency with age within the age spread of the cluster of about 10 Myr. We conclude that there is no temporal evolution of the binary fraction between a few Myrs after the formation process, the zero-age main sequence and the field population. We find instead a trend for the binary fraction to be inversely correlated with stellar density, with only loose associations exhibiting an excess of binaries. Either all star-forming regions initially host a large number of binaries, which is subsequently reduced only in dense clusters on a timescale of less than 1 Myr due to numerous gravitational encounters, or specific initial conditions in the parental molecular clouds impact on the fragmentation process leading to intrinsically different binary fractions.

  13. Scalable Support for Multithreaded Applications on Dynamic Binary Instrumentation Systems

    E-Print Network [OSTI]

    Hazelwood, Kim

    Scalable Support for Multithreaded Applications on Dynamic Binary Instrumentation Systems Kim Dynamic binary instrumentation systems are used to inject or mod- ify arbitrary instructions in existing for supporting large, multithreaded applications on JIT-based dynamic instrumentation systems. While implementing

  14. Protecting Kernels from Untrusted Modules using Dynamic Binary Instrumentation

    E-Print Network [OSTI]

    Goel, Ashvin

    Protecting Kernels from Untrusted Modules using Dynamic Binary Instrumentation University · virtualization · Secure only modules whose source code is available (BGI, · LXFI, etc.) · Many modules is manageable · Data consistency is challenging Dynamic Binary Instrumentation Goals and Approach Challenges Two

  15. Dielectric elastomer actuators for binary robotics and mechatronics

    E-Print Network [OSTI]

    Plante, Jean-Sébastien, Ph. D. Massachusetts Institute of Technology

    2006-01-01

    Future robotics and mechatronics applications will require systems that are simple, robust, lightweight and inexpensive. A suggested solution for future systems is binary actuation. Binary actuation is the mechanical analogy ...

  16. Binary Evolution in World Wide Web

    E-Print Network [OSTI]

    S. N. Nazin; V. M. Lipunov; I. E. Panchenko; K. A. Postnov; M. E. Prokhorov; S. B. Popov

    1996-05-29

    We present a WWW-version of the {\\it Scenario Machine} - a computer code designed to calculate the evolution of close binary stellar systems. The Internet users can directly access to the code and calculate binary evolutionary tracks with parameters at the user's will. The program is running on the {\\it Pentium} server of the Division of the Relativistic Astrophysics of the Sternberg Astronimical Institute (http://xray.sai.msu.su/ ). The results are presented both in the form of tables and graphic diagrams. The work is always in progress. More possibilities for Internet users are intended to become available in the near future.

  17. Binary Capture Rates for Massive Protostars

    E-Print Network [OSTI]

    Nickolas Moeckel; John Bally

    2007-04-09

    The high multiplicity of massive stars in dense, young clusters is established early in their evolution. The mechanism behind this remains unresolved. Recent results suggest that massive protostars may capture companions through disk interactions with much higher efficiency than their solar mass counterparts. However, this conclusion is based on analytic determinations of capture rates and estimates of the robustness of the resulting binaries. We present the results of coupled n-body and SPH simulations of star-disk encounters to further test the idea that disk-captured binaries contribute to the observed multiplicity of massive stars.

  18. Final binary star results from the ESO VLT Lunar occultations program

    SciTech Connect (OSTI)

    Richichi, A.; Fors, O.; Cusano, F.; Ivanov, V. D.

    2014-03-01

    We report on 13 subarcsecond binaries, detected by means of lunar occultations in the near-infrared at the ESO Very Large Telescope (VLT). They are all first-time detections except for the visual binary HD 158122, which we resolved for the first time in the near-infrared. The primaries have magnitudes in the range K = 4.5-10.0, and companions in the range K = 6.8-11.1. The magnitude differences have a median value of 2.4, with the largest being 4.6. The projected separations are in the range of 4-168 mas, with a median of 13 mas. We discuss and compare our results with the available literature. With this paper, we conclude the mining for binary star detections in the 1226 occultations recorded at the VLT with the ISAAC instrument. We expect that the majority of these binaries may be unresolvable by adaptive optics on current telescopes, and they might be challenging for long-baseline interferometry. However, they constitute an interesting sample for future larger telescopes and for astrometric missions such as GAIA.

  19. Ph.D.Thesis Binary inversion of gravity

    E-Print Network [OSTI]

    Ph.D.Thesis Binary inversion of gravity data for salt imaging Richard A. Krahenbuhl Center of Mines Golden, CO 80401 http://www.geophysics.mines.edu/cgem CGEM #12;#12;Ph.D.Thesis Binary inversion) #12;#12;BINARY INVERSION OF GRAVITY DATA FOR SALT IMAGING by Richard A. Krahenbuhl #12;#12;ii A thesis

  20. Eclipsing Binaries in the WTS 19a Field

    E-Print Network [OSTI]

    Pinfield, David J.

    Eclipsing Binaries in the WTS 19a Field Hristo Stoev Department of Astrophysics, Centre of the WTS light curves Results from the search of variable stars in the field Focus on eclipsing binaries;Summary and outlook 66 high-quality light curves of eclipsing binaries have been identified in the WTS 19a

  1. Comprehensive Kernel Instrumentation via Dynamic Binary Translation

    E-Print Network [OSTI]

    Toronto, University of

    Comprehensive Kernel Instrumentation via Dynamic Binary Translation Peter Feiner Angela Demke Brown, bug-finding, and security tools. Such tools are currently not available for operating system (OS handlers and device drivers, enabling comprehensive instrumentation of the OS without imposing any overhead

  2. Binary translation using peephole translation rules

    DOE Patents [OSTI]

    Bansal, Sorav; Aiken, Alex

    2010-05-04

    An efficient binary translator uses peephole translation rules to directly translate executable code from one instruction set to another. In a preferred embodiment, the translation rules are generated using superoptimization techniques that enable the translator to automatically learn translation rules for translating code from the source to target instruction set architecture.

  3. Flip-flopping binary black holes

    E-Print Network [OSTI]

    Carlos O. Lousto; James Healy

    2015-03-14

    We study binary spinning black holes to display the long term individual spin dynamics. We perform a full numerical simulation starting at an initial proper separation of $d\\approx25M$ between equal mass holes and evolve them down to merger for nearly 48 orbits, 3 precession cycles, and half of a flip-flop cycle. The simulation lasts for $t=20000M$ and displays a total change in the orientation of the spin of one of the black holes from initially aligned with the orbital angular momentum to a complete anti-alignment after half of a flip-flop cycle. We compare this evolution with an integration of the 3.5 Post-Newtonian equations of motion and spin evolution to show that this process continuously flip-flops the spin during the lifetime of the binary until merger. We also provide lower order analytic expressions for the maximum flip-flop angle and frequency. We discuss the effects this dynamics may have on spin growth in accreting binaries and on the observational consequences for galactic and supermassive binary black holes.

  4. XM-17330/27330 BINARY/ASCII

    E-Print Network [OSTI]

    Skemer, Philip

    the instruction manual of the basic unit. Conversion Measured data of each program is stored in files withinXM-17330/27330 BINARY/ASCII CONVERSION PROGRAM For the proper use of the instrument, be sure Conversion............................................. 4 2.2 Conversion of Quantitative Analysis Line Formed

  5. Binary power multiplier for electromagnetic energy

    DOE Patents [OSTI]

    Farkas, Zoltan D. (203 Leland Ave., Menlo Park, CA 94025)

    1988-01-01

    A technique for converting electromagnetic pulses to higher power amplitude and shorter duration, in binary multiples, splits an input pulse into two channels, and subjects the pulses in the two channels to a number of binary pulse compression operations. Each pulse compression operation entails combining the pulses in both input channels and selectively steering the combined power to one output channel during the leading half of the pulses and to the other output channel during the trailing half of the pulses, and then delaying the pulse in the first output channel by an amount equal to half the initial pulse duration. Apparatus for carrying out each of the binary multiplication operation preferably includes a four-port coupler (such as a 3 dB hybrid), which operates on power inputs at a pair of input ports by directing the combined power to either of a pair of output ports, depending on the relative phase of the inputs. Therefore, by appropriately phase coding the pulses prior to any of the pulse compression stages, the entire pulse compression (with associated binary power multiplication) can be carried out solely with passive elements.

  6. Planetary nebula progenitors that swallow binary systems

    E-Print Network [OSTI]

    Soker, Noam

    2015-01-01

    I propose that some irregular `messy' planetary nebulae owe their morphologies to triple-stellar evolution where tight binary systems are tidally and frictionally destroyed inside the envelope of asymptotic giant branch (AGB) stars. The tight binary system might breakup with one star leaving the system. In an alternative evolution, one of the stars of the brook-up tight binary system falls toward the AGB envelope with low specific angular momentum, and drowns in the envelope. In a different type of destruction process the drag inside the AGB envelope causes the tight binary system to merge. This releases gravitational energy within the AGB envelope, leading to a very asymmetrical envelope ejection, with an irregular and `messy' planetary nebula as a descendant. The evolution of the triple-stellar system before destruction can be in a full common envelope evolution (CEE) or in a grazing envelope evolution (GEE). Both before and after destruction the system might lunch pairs of opposite jets. One pronounced sig...

  7. Mining Binary Expressions: Applications and Toon Calders

    E-Print Network [OSTI]

    Antwerpen, Universiteit

    Mining Binary Expressions: Applications and Algorithms Toon Calders Jan Paredaens Universiteit Antwerpen, Departement Wiskunde-Informatica, Universiteitsplein 1, B-2610 Wilrijk, Belgium. {calders,pareda}@uia.ua.ac.be Technical report TR0008, June 2000 Abstract In data mining, searching for frequent patterns is a common

  8. Bipolar Jets Produced By A Spectroscopic Binary

    E-Print Network [OSTI]

    Mundt, Reinhard

    0.6, periastron separation ~18 R[subscript A] , M[subscript A] = 0.6 M sun, MB = 0.7 M sun) are a common product of the whole binary system, rather than being launched from either star individually. They may be launched ...

  9. Probing Dark Energy with Black Hole Binaries

    E-Print Network [OSTI]

    Laura Mersini-Houghton; Adam Kelleher

    2008-08-25

    The equation of state (EoS) of dark energy $w$ remains elusive despite enormous experimental efforts to pin down its value and its time variation. Yet it is the single most important handle we have in our understanding of one of the most mysterious puzzle in nature, dark energy. This letter proposes a new method for measuring the EoS of dark energy by using the gravitational waves (GW) of black hole binaries. The method described here offers an alternative to the standard way of large scale surveys. It is well known that the mass of a black hole changes due to the accretion of dark energy but at an extremely slow rate. However, a binary of supermassive black holes (SBH) radiates gravitational waves with a power proportional to the masses of these accreting stars and thereby carries information on dark energy. These waves can propagate through the vastness of structure in the universe unimpeded. The orbital changes of the binary, induced by the energy loss from gravitational radiation, receive a large contribution from dark energy accretion. This contribution is directly proportional to $(1+w)$ and is dominant for SBH binaries with separation $R \\ge 1000$ parsec, thereby accelerating the merging process for $w > -1$ or ripping the stars apart for phantom dark energy with $w < -1$. Such orbital changes, therefore $w$, can be detected with LIGO and LISA near merging time, or with X-ray and radio measurements of Chandra and VLBA experiments.

  10. Project Year Project Team

    E-Print Network [OSTI]

    Gray, Jeffrey J.

    & Sciences Project Title Visualize Physical Principles with Virtual Lab Modules Audience Undergraduate provide easy access to digital information, but don't provide experience with right- hand screws, electric of the last generation of physics students. The result is that today's students don't have an intuitive

  11. Project Year Project Title

    E-Print Network [OSTI]

    Gray, Jeffrey J.

    . Pedagogical Issue One of the challenges in teaching the Introduction to Computer Music course is the lack flow and practices. These resources will provide an online space through which students will be able piece of this project will be an animated studio walkthrough requiring user interaction and providing

  12. Project Controls

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-03-28

    Project controls are systems used to plan, schedule, budget, and measure the performance of a project/program. The cost estimation package is one of the documents that is used to establish the baseline for project controls. This chapter gives a brief description of project controls and the role the cost estimation package plays.

  13. Binary Black Holes in Stationary Orbits

    E-Print Network [OSTI]

    Sandip K. Chakrabarti

    1992-08-27

    We show that under certain astrophysical conditions a binary system consisting of two compact objects can be stabilized against indefinite shrinking of orbits due to the emission of gravitational radiation. In this case, the lighter binary companion settles down to a stable orbit when the loss of the angular momentum due to gravitational radiation becomes equal to its gain from the accreting matter from the disk around the more massive primary. We claim that such systems can be stable against small perturbations and can be regarded as steady emitters of gravitational waves of constant frequency and amplitude. Furthermore, X-rays emitted by the secondary can also produce astrophysically interesting situations when coupled with gravitational lensing and Doppler effects.

  14. Long-Term Stability of Planets in Binary Systems

    E-Print Network [OSTI]

    Matthew Holman; Paul Wiegert

    1998-09-24

    A simple question of celestial mechanics is investigated: in what regions of phase space near a binary system can planets persist for long times? The planets are taken to be test particles moving in the field of an eccentric binary system. A range of values of the binary eccentricity and mass ratio is studied, and both the case of planets orbiting close to one of the stars, and that of planets outside the binary orbiting the system's center of mass, are examined. From the results, empirical expressions are developed for both 1) the largest orbit around each of the stars, and 2) the smallest orbit around the binary system as a whole, in which test particles survive the length of the integration (10^4 binary periods). The empirical expressions developed, which are roughly linear in both the mass ratio mu and the binary eccentricity e, are determined for the range 0.0 <= e <= 0.7-0.8 and 0.1 <= mu <= 0.9 in both regions, and can be used to guide searches for planets in binary systems. After considering the case of a single low-mass planet in binary systems, the stability of a mutually-interacting system of planets orbiting one star of a binary system is examined, though in less detail.

  15. On the Neutron Star-Black Hole Binaries Produced by Binary-driven Hypernovae

    E-Print Network [OSTI]

    Fryer, C L; Rueda, J A; Ruffini, R

    2015-01-01

    Binary-driven hypernovae (BdHNe) following the induced gravitational collapse (IGC) paradigm have been introduced to explain the concomitance of energetic long gamma-ray bursts (GRBs) with type Ic supernovae. The progenitor system is a tight binary system composed of a carbon-oxygen (CO) core and a neutron star (NS) companion. The supernova ejecta of the exploding CO core triggers a hypercritical accretion process onto the NS, which in a few seconds reach the NS critical mass, and gravitationally collapses to a black hole (BH) emitting a GRB. These tight binary systems evolve through the supernova explosion very differently than compact binary progenitors studied in population synthesis calculations. First, the hypercritical accretion onto the NS companion alters both the mass and momentum of the binary. Second, because the explosion timescale is on par with the orbital period, the mass ejection can not be assumed to be instantaneous. Finally, the bow shock created as the accreting NS plows through the supern...

  16. Automated pupil remapping with binary optics

    DOE Patents [OSTI]

    Neal, Daniel R. (Tijeras, NM); Mansell, Justin (Albuquerque, NM)

    1999-01-01

    Methods and apparatuses for pupil remapping employing non-standard lenslet shapes in arrays; divergence of lenslet focal spots from on-axis arrangements; use of lenslet arrays to resize two-dimensional inputs to the array; and use of lenslet arrays to map an aperture shape to a different detector shape. Applications include wavefront sensing, astronomical applications, optical interconnects, keylocks, and other binary optics and diffractive optics applications.

  17. Automated pupil remapping with binary optics

    DOE Patents [OSTI]

    Neal, D.R.; Mansell, J.

    1999-01-26

    Methods and apparatuses are disclosed for pupil remapping employing non-standard lenslet shapes in arrays; divergence of lenslet focal spots from on-axis arrangements; use of lenslet arrays to resize two-dimensional inputs to the array; and use of lenslet arrays to map an aperture shape to a different detector shape. Applications include wavefront sensing, astronomical applications, optical interconnects, keylocks, and other binary optics and diffractive optics applications. 24 figs.

  18. Binary mixture flammability characteristics for hazard assessment 

    E-Print Network [OSTI]

    Vidal Vazquez, Migvia del C.

    2005-11-01

    flash point value as the mixture flash point. Flash point predictions were performed for 14 binary mixtures using various G ex models for the activity coefficients. Quantum chemical calculations and UNIFAC, a theoretical model that does not require... Page 1. Classification of Flammability According to DOT and NFPA.......................5 2. Some Activity Coefficient (G ex Energy) Models..........................................21 3. Input Data Used for COSMO-RS Calculations...

  19. Gravitational lensing in eclipsing binary stars

    E-Print Network [OSTI]

    T. R. Marsh

    2000-12-18

    I consider the effect of the gravitational deflection of light upon the light curves of eclipsing binary stars, focussing mainly upon systems containing at least one white dwarf component. In absolute terms the effects are small, however they are strongest at the time of secondary eclipse when the white dwarf transits its companion, and act to reduce the depth of this feature. If not accounted for, this may lead to under-estimation of the radius of the white dwarf compared to that of its companion. I show that the effect is significant for plausible binary parameters, and that it leads to ~25% reduction in the transit depth in the system KPD 1930+2752. The reduction of eclipse depth is degenerate with the stellar radius ratio, and therefore cannot be used to establish the existence of lensing. A second order effect of the light bending is to steepen the ingress and egress features of the secondary eclipse relative to the primary eclipse, although it will be difficult to see this in practice. I consider also binaries containing neutron stars and black-holes. I conclude that, although relatively large effects are possible in such systems, a combination of rarity, faintness and intrinsic variability make it unlikely that lensing will be detectable in them.

  20. BINARY CEPHEIDS: SEPARATIONS AND MASS RATIOS IN 5 M {sub ?} BINARIES

    SciTech Connect (OSTI)

    Evans, Nancy Remage; Karovska, Margarita; Tingle, Evan; Bond, Howard E.; Schaefer, Gail H.; Mason, Brian D. E-mail: heb11@psu.edu

    2013-10-01

    Deriving the distribution of binary parameters for a particular class of stars over the full range of orbital separations usually requires the combination of results from many different observing techniques (radial velocities, interferometry, astrometry, photometry, direct imaging), each with selection biases. However, Cepheids—cool, evolved stars of ?5 M {sub ?}—are a special case because ultraviolet (UV) spectra will immediately reveal any companion star hotter than early type A, regardless of the orbital separation. We have used International Ultraviolet Explorer UV spectra of a complete sample of all 76 Cepheids brighter than V = 8 to create a list of all 18 Cepheids with companions more massive than 2.0 M {sub ?}. Orbital periods of many of these binaries are available from radial-velocity studies, or can be estimated for longer-period systems from detected velocity variability. In an imaging survey with the Hubble Space Telescope Wide Field Camera 3, we resolved three of the companions (those of ? Aql, S Nor, and V659 Cen), allowing us to make estimates of the periods out to the long-period end of the distribution. Combining these separations with orbital data in the literature, we derive an unbiased distribution of binary separations, orbital periods, and mass ratios. The distribution of orbital periods shows that the 5 M {sub ?} binaries have systematically shorter periods than do 1 M {sub ?} stars. Our data also suggest that the distribution of mass ratios depends on both binary separation and system multiplicity. The distribution of mass ratios as a function of orbital separation, however, does not depend on whether a system is a binary or a triple.

  1. Automatic classification of eclipsing binaries light curves using neural networks

    E-Print Network [OSTI]

    L. M. Sarro; C. Sánchez-Fernández; A. Giménez

    2005-11-11

    In this work we present a system for the automatic classification of the light curves of eclipsing binaries. This system is based on a classification scheme that aims to separate eclipsing binary sistems according to their geometrical configuration in a modified version of the traditional classification scheme. The classification is performed by a Bayesian ensemble of neural networks trained with {\\em Hipparcos} data of seven different categories including eccentric binary systems and two types of pulsating light curve morphologies.

  2. Candidate spectroscopic binaries in the Sloan Digital Sky Survey

    E-Print Network [OSTI]

    Pourbaix, D; Szkody, P; Ivezic, Z; Kleinman, S J; Long, D; Snedden, S A; Nitta, A; Harvanek, M; Krzesínski, J; Brewington, H J; Barentine, J C; Neilsen, E H; Brinkmann, J

    2005-01-01

    We have examined the radial velocity data for stars spectroscopically observed by the Sloan Digital Sky Survey (SDSS) more than once to investigate the incidence of spectroscopic binaries, and to evaluate the accuracy of the SDSS stellar radial velocities. We find agreement between the fraction of stars with significant velocity variations and the expected fraction of binary stars in the halo and thick disk populations. The observations produce a list of 675 possible new spectroscopic binary stars and orbits for eight of them.

  3. Candidate spectroscopic binaries in the Sloan Digital Sky Survey

    E-Print Network [OSTI]

    D. Pourbaix; G. R. Knapp; P. Szkody; Z. Ivezic; S. J. Kleinman; D. Long; S. A. Snedden; A. Nitta; M. Harvanek; J. Krzesinski; H. J. Brewington; J. C. Barentine; E. H. Neilsen; J. Brinkman

    2005-08-29

    We have examined the radial velocity data for stars spectroscopically observed by the Sloan Digital Sky Survey (SDSS) more than once to investigate the incidence of spectroscopic binaries, and to evaluate the accuracy of the SDSS stellar radial velocities. We find agreement between the fraction of stars with significant velocity variations and the expected fraction of binary stars in the halo and thick disk populations. The observations produce a list of 675 possible new spectroscopic binary stars and orbits for eight of them.

  4. DESTRUCTION OF BINARY MINOR PLANETS DURING NEPTUNE SCATTERING

    SciTech Connect (OSTI)

    Parker, Alex H. [Department of Astronomy, University of Victoria, BC (Canada); Kavelaars, J. J., E-mail: alexhp@uvic.c [Herzberg Institute of Astrophysics, National Research Council of Canada (Canada)

    2010-10-20

    The existence of extremely wide binaries in the low-inclination component of the Kuiper Belt provides a unique handle on the dynamical history of this population. Some popular frameworks of the formation of the Kuiper Belt suggest that planetesimals were moved there from lower semimajor axis orbits by scattering encounters with Neptune. We test the effects such events would have on binary systems and find that wide binaries are efficiently destroyed by the kinds of scattering events required to create the Kuiper Belt with this mechanism. This indicates that a binary-bearing component of the cold Kuiper Belt was emplaced through a gentler mechanism or was formed in situ.

  5. Synergy of short gamma ray burst and gravitational wave observations: Constraining the inclination angle of the binary and possible implications for off-axis gamma ray bursts

    E-Print Network [OSTI]

    K. G. Arun; Hideyuki Tagoshi; Chandra Kant Mishra; Archana Pai

    2014-12-15

    Compact binary mergers are the strongest candidates for the progenitors of Short Gamma Ray Bursts (SGRBs). If a gravitational wave (GW) signal from the compact binary merger is observed in association with a SGRB, such a synergy can help us understand many interesting aspects of these bursts. We examine the accuracies with which a world wide network of gravitational wave interferometers would measure the inclination angle (the angle between the angular momentum axis of the binary and the observer's line of sight) of the binary. We compare the projected accuracies of GW detectors to measure the inclination angle of double neutron star (DNS) and neutron star-black hole (NS-BH) binaries for different astrophysical scenarios. We find that a 5 detector network can measure the inclination angle to an accuracy of $\\sim 5.1 (2.2)$ degrees for a DNS(NS-BH) system at 200 Mpc if the direction of the source as well as the redshift is known electromagnetically. We argue as to how an accurate estimation of the inclination angle of the binary can prove to be crucial in understanding off-axis GRBs, the dynamics and the energetics of their jets, and help the searches for (possible) orphan afterglows of the SGRBs.

  6. GSC 07396-00759 = V4046 Sgr C[D]: A WIDE-SEPARATION COMPANION TO THE CLOSE T TAURI BINARY SYSTEM V4046 Sgr AB

    E-Print Network [OSTI]

    Kastner, J. H.

    We explore the possibility that GSC 07396-00759 (spectral type M1e) is a widely separated (~2[' over .]82, or projected separation ~12,350 AU) companion to the "old" (age ~12 Myr) classical T Tauri binary system V4046 Sgr ...

  7. Closure for Production Planning under Power Uncertainty Project

    E-Print Network [OSTI]

    Grossmann, Ignacio E.

    Closure for Production Planning under Power Uncertainty Project Lehigh University Pietro Belotti C the power is recovered Production occurs at reduced rate The New Uncertainty Set Requires more binary¸ agri Latifoglu Fay Li Larry Snyder Air Products and Chemicals, Inc. Jim Hutton Peter Connard September

  8. The albedo, size, and density of binary Kuiper Belt object (47171) 1999 TC36

    E-Print Network [OSTI]

    2006-01-01

    2005. The formation of Kuiper-belt binaries through exchangeand Density of Binary Kuiper Belt Object (47171) 1999 TC 36emission of the binary Kuiper Belt Object (47171) 1999 TC 36

  9. Upper Mahiao Binary GEPP | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al.,Turin, New York:Power CompanyCROSS-VALIDATION OFUpperMahiao Binary

  10. The Gaia Mission, Binary Stars and Exoplanets

    E-Print Network [OSTI]

    Eyer, Laurent; Holl, Berry; North, Pierre; Zucker, Shay; Evans, Dafydd W; Pourbaix, Dimitri; Hodgkin, Simon T; Thuillot, William; Mowlavi, Nami; Carry, Benoit

    2015-01-01

    On the 19th of December 2013, the Gaia spacecraft was successfully launched by a Soyuz rocket from French Guiana and started its amazing journey to map and characterise one billion celestial objects with its one billion pixel camera. In this presentation, we briefly review the general aims of the mission and describe what has happened since launch, including the Ecliptic Pole scanning mode. We also focus especially on binary stars, starting with some basic observational aspects, and then turning to the remarkable harvest that Gaia is expected to yield for these objects.

  11. Status of NINJA: the Numerical INJection Analysis project

    E-Print Network [OSTI]

    Benjamin Aylott; John G. Baker; William D. Boggs; Michael Boyle; Patrick R. Brady; Duncan A. Brown; Bernd Brügmann; Luisa T. Buchman; Alessandra Buonanno; Laura Cadonati; Jordan Camp; Manuela Campanelli; Joan Centrella; Shourov Chatterjis; Nelson Christensen; Tony Chu; Peter Diener; Nils Dorband; Zachariah B. Etienne; Joshua Faber; Stephen Fairhurst; Benjamin Farr; Sebastian Fischetti; Gianluca Guidi; Lisa M. Goggin; Mark Hannam; Frank Herrmann; Ian Hinder; Sascha Husa; Vicky Kalogera; Drew Keppel; Lawrence E. Kidder; Bernard J. Kelly; Badri Krishnan; Pablo Laguna; Carlos O. Lousto; Ilya Mandel; Pedro Marronetti; Richard Matzner; Sean T. McWilliams; Keith D. Matthews; R. Adam Mercer; Satyanarayan R. P. Mohapatra; Abdul H. Mroué; Hiroyuki Nakano; Evan Ochsner; Yi Pan; Larne Pekowsky; Harald P. Pfeiffer; Denis Pollney; Frans Pretorius; Vivien Raymond; Christian Reisswig; Luciano Rezzolla; Oliver Rinne; Craig Robinson; Christian Röver; Lucía Santamaría; Bangalore Sathyaprakash; Mark A. Scheel; Erik Schnetter; Jennifer Seiler; Stuart L. Shapiro; Deirdre Shoemaker; Ulrich Sperhake; Alexander Stroeer; Riccardo Sturani; Wolfgang Tichy; Yuk Tung Liu; Marc van der Sluys; James R. van Meter; Ruslan Vaulin; Alberto Vecchio; John Veitch; Andrea Viceré; John T. Whelan; Yosef Zlochower

    2009-05-26

    The 2008 NRDA conference introduced the Numerical INJection Analysis project (NINJA), a new collaborative effort between the numerical relativity community and the data analysis community. NINJA focuses on modeling and searching for gravitational wave signatures from the coalescence of binary system of compact objects. We review the scope of this collaboration and the components of the first NINJA project, where numerical relativity groups shared waveforms and data analysis teams applied various techniques to detect them when embedded in colored Gaussian noise.

  12. A Dynamic Binary Instrumentation Engine for the ARM Architecture

    E-Print Network [OSTI]

    Hazelwood, Kim

    A Dynamic Binary Instrumentation Engine for the ARM Architecture Kim Hazelwood University of Virginia Artur Klauser Intel Corporation ABSTRACT Dynamic binary instrumentation (DBI) is a powerful instrumentation system from Intel. In particular, we highlight the design decisions that are geared toward

  13. The angular velocity of the apsidal rotation in binary stars

    E-Print Network [OSTI]

    B. V. Vasiliev

    2004-05-19

    The shape of a rotating star consisting of equilibrium plasma is considered. The velocity of apsidal rotation of close binary stars (periastron rotation) which depends on the star shapes is calculated. The obtained estimations are in a good agreement with the observation data of the apsidal motion in binary systems.

  14. Fast Software Implementation of Binary Elliptic Curve Cryptography

    E-Print Network [OSTI]

    International Association for Cryptologic Research (IACR)

    Fast Software Implementation of Binary Elliptic Curve Cryptography Manuel Bluhm1 and Shay Gueron2 protected software implementation of point multiplication for the standard NIST and SECG binary elliptic of their relatively short keys. Thus, software implementations of ECC for the high end server platforms become

  15. Binary coding of Kekule structures of catacondensed benzenoid hydrocarbons

    E-Print Network [OSTI]

    Klavzar, Sandi

    Binary coding of Kekulâ??e structures of catacondensed benzenoid hydrocarbons Sandi KlavŸzar, aâ??e structures of benzenoids Key words: benzenoid hydrocarbons, benzenoid graph, resonance graph, Kekul easily be recovered from its binary code. Key words: benzenoid hydrocarbons, benzenoid graph, resonance

  16. Binary coding of Kekule structures of catacondensed benzenoid hydrocarbons

    E-Print Network [OSTI]

    Klavzar, Sandi

    Binary coding of Kekul´e structures of catacondensed benzenoid hydrocarbons Sandi Klavzar of benzenoids Key words: benzenoid hydrocarbons, benzenoid graph, resonance graph, Kekul´e structure, algorithm easily be recovered from its binary code. Key words: benzenoid hydrocarbons, benzenoid graph, resonance

  17. MICROLENSING BINARIES WITH CANDIDATE BROWN DWARF COMPANIONS

    SciTech Connect (OSTI)

    Shin, I.-G.; Han, C. [Department of Physics, Institute for Astrophysics, Chungbuk National University, Cheongju 371-763 (Korea, Republic of); Gould, A.; Skowron, J. [Department of Astronomy, Ohio State University, 140 W. 18th Ave., Columbus, OH 43210 (United States); Udalski, A.; Szymanski, M. K.; Kubiak, M.; Soszynski, I.; Pietrzynski, G.; Poleski, R.; Ulaczyk, K.; Pietrukowicz, P.; Kozlowski, S.; Wyrzykowski, L. [Warsaw University Observatory, Al. Ujazdowskie 4, 00-478 Warszawa (Poland); Sumi, T. [Department of Earth and Space Science, Osaka University, Osaka 560-0043 (Japan); Dominik, M. [SUPA, University of St. Andrews, School of Physics and Astronomy, North Haugh, St. Andrews KY16 9SS (United Kingdom); Beaulieu, J.-P. [Institut d'Astrophysique de Paris, UMR7095 CNRS-Universite Pierre and Marie Curie, 98 bis boulevard Arago, F-75014 Paris (France); Tsapras, Y. [Las Cumbres Observatory Global Telescope Network, 6740B Cortona Dr., Suite 102, Goleta, CA 93117 (United States); Bozza, V. [Dipartimento di Fisica 'E. R. Caianiello', Universita degli Studi di Salerno, Via S. Allende, I-84081 Baronissi (Italy); Abe, F. [Solar-Terrestrial Environment Laboratory, Nagoya University, Nagoya 464-8601 (Japan); Collaboration: OGLE Collaboration; MOA Collaboration; muFUN Collaboration; and others

    2012-12-01

    Brown dwarfs are important objects because they may provide a missing link between stars and planets, two populations that have dramatically different formation histories. In this paper, we present the candidate binaries with brown dwarf companions that are found by analyzing binary microlensing events discovered during the 2004-2011 observation seasons. Based on the low mass ratio criterion of q < 0.2, we found seven candidate events: OGLE-2004-BLG-035, OGLE-2004-BLG-039, OGLE-2007-BLG-006, OGLE-2007-BLG-399/MOA-2007-BLG-334, MOA-2011-BLG-104/OGLE-2011-BLG-0172, MOA-2011-BLG-149, and MOA-201-BLG-278/OGLE-2011-BLG-012N. Among them, we are able to confirm that the companions of the lenses of MOA-2011-BLG-104/OGLE-2011-BLG-0172 and MOA-2011-BLG-149 are brown dwarfs by determining the mass of the lens based on the simultaneous measurement of the Einstein radius and the lens parallax. The measured masses of the brown dwarf companions are 0.02 {+-} 0.01 M {sub Sun} and 0.019 {+-} 0.002 M {sub Sun} for MOA-2011-BLG-104/OGLE-2011-BLG-0172 and MOA-2011-BLG-149, respectively, and both companions are orbiting low-mass M dwarf host stars. More microlensing brown dwarfs are expected to be detected as the number of lensing events with well-covered light curves increases with new-generation searches.

  18. Hamiltonian Hydrodynamics and Irrotational Binary Inspiral

    E-Print Network [OSTI]

    Charalampos M. Markakis

    2014-10-28

    Gravitational waves from neutron-star and black-hole binaries carry valuable information on their physical properties and probe physics inaccessible to the laboratory. Although development of black-hole gravitational-wave templates in the past decade has been revolutionary, the corresponding work for double neutron-star systems has lagged. Neutron stars can be well-modelled as simple barotropic fluids during the part of binary inspiral most relevant to gravitational wave astronomy, but the crucial geometric and mathematical consequences of this simplification have remained computationally unexploited. In particular, Carter and Lichnerowicz have described barotropic fluid motion via classical variational principles as conformally geodesic. Moreover, Kelvin's circulation theorem implies that initially irrotational flows remain irrotational. Applied to numerical relativity, these concepts lead to novel Hamiltonian or Hamilton-Jacobi schemes for evolving relativistic fluid flows. Hamiltonian methods can conserve not only flux, but also circulation and symplecticity, and moreover do not require addition of an artificial atmosphere typically required by standard conservative methods. These properties can allow production of high-precision gravitational waveforms at low computational cost. This canonical hydrodynamics approach is applicable to a wide class of problems involving theoretical or computational fluid dynamics.

  19. Binary classification of items of interest in a repeatable process

    DOE Patents [OSTI]

    Abell, Jeffrey A.; Spicer, John Patrick; Wincek, Michael Anthony; Wang, Hui; Chakraborty, Debejyo

    2014-06-24

    A system includes host and learning machines in electrical communication with sensors positioned with respect to an item of interest, e.g., a weld, and memory. The host executes instructions from memory to predict a binary quality status of the item. The learning machine receives signals from the sensor(s), identifies candidate features, and extracts features from the candidates that are more predictive of the binary quality status relative to other candidate features. The learning machine maps the extracted features to a dimensional space that includes most of the items from a passing binary class and excludes all or most of the items from a failing binary class. The host also compares the received signals for a subsequent item of interest to the dimensional space to thereby predict, in real time, the binary quality status of the subsequent item of interest.

  20. project management

    National Nuclear Security Administration (NNSA)

    3%2A en Project Management and Systems Support http:www.nnsa.energy.govaboutusouroperationsapmprojectmanagementandsystemssupport

  1. Project Complete

    Broader source: Energy.gov [DOE]

    DOE has published its Record of Decision announcing and explaining DOE’s chosen project alternative and describing any commitments for mitigating potential environmental impacts. The NEPA process...

  2. Project Construction

    Broader source: Energy.gov [DOE]

    Integrating renewable energy into Federal new construction or major renovations requires effective structuring of the construction team and project schedule. This overview discusses key construction team considerations for renewable energy as well as timing and expectations for the construction phase. The project construction phase begins after a project is completely designed and the construction documents (100%) have been issued. Construction team skills and experience with renewable energy technologies are crucial during construction, as is how the integration of renewable energy affects the project construction schedule.

  3. Research Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    projects that involve UCSD faculty members and graduate students from the structural engineering (SE), mechanical and aerospace engineering (MAE), electrical and computer...

  4. RESEARCH PROJECTS February 13

    E-Print Network [OSTI]

    Schenato, Luca

    RESEARCH PROJECTS FP7 February 13 #12; FP7 COOPERATION #12; INTERNATIONAL RESEARCH PROJECTS FP7 COOPERATION ENERGY PROJECT ACRONYM: EFONET PROJECT TITLE: Energy foresight network PROJECT

  5. ALMA observations of a misaligned binary protoplanetary disk system in Orion

    SciTech Connect (OSTI)

    Williams, Jonathan P.; Mann, Rita K.; Francesco, James Di; Johnstone, Doug; Matthews, Brenda; Andrews, Sean M.; Ricci, Luca; Hughes, A. Meredith; Bally, John

    2014-12-01

    We present Atacama Large Millimeter/Submillimeter Array (ALMA) observations of a wide binary system in Orion, with projected separation 440 AU, in which we detect submillimeter emission from the protoplanetary disks around each star. Both disks appear moderately massive and have strong line emission in CO 3-2, HCO{sup +} 4-3, and HCN 3-2. In addition, CS 7-6 is detected in one disk. The line-to-continuum ratios are similar for the two disks in each of the lines. From the resolved velocity gradients across each disk, we constrain the masses of the central stars, and show consistency with optical-infrared spectroscopy, both indicative of a high mass ratio ?9. The small difference between the systemic velocities indicates that the binary orbital plane is close to face-on. The angle between the projected disk rotation axes is very high, ?72°, showing that the system did not form from a single massive disk or a rigidly rotating cloud core. This finding, which adds to related evidence from disk geometries in other systems, protostellar outflows, stellar rotation, and similar recent ALMA results, demonstrates that turbulence or dynamical interactions act on small scales well below that of molecular cores during the early stages of star formation.

  6. Gravitational waveforms for neutron star binaries from binary black hole simulations

    E-Print Network [OSTI]

    Barkett, Kevin; Haas, Roland; Ott, Christian D; Bernuzzi, Sebastiano; Brown, Duncan A; Szilágyi, Béla; Kaplan, Jeffrey D; Lippuner, Jonas; Muhlberger, Curran D; Foucart, Francois; Duez, Matthew D

    2015-01-01

    Gravitational waves from binary neutron star (BNS) and black-hole/neutron star (BHNS) inspirals are primary sources for detection by the Advanced Laser Interferometer Gravitational-Wave Observatory. The tidal forces acting on the neutron stars induce changes in the phase evolution of the gravitational waveform, and these changes can be used to constrain the nuclear equation of state. Current methods of generating BNS and BHNS waveforms rely on either computationally challenging full 3D hydrodynamical simulations or approximate analytic solutions. We introduce a new method for computing inspiral waveforms for BNS/BHNS systems by adding the post-Newtonian (PN) tidal effects to full numerical simulations of binary black holes (BBHs), effectively replacing the non-tidal terms in the PN expansion with BBH results. Comparing a waveform generated with this method against a full hydrodynamical simulation of a BNS inspiral yields a phase difference of $<1$ radian over $\\sim 15$ orbits. The numerical phase accuracy ...

  7. Implementation aspects of nonsynchronized binary receivers 

    E-Print Network [OSTI]

    Wills, Wesley Mark

    1990-01-01

    )-RECSUM-0. 25 C22=RL(2, ZA) +RECSUM-0. 25 IF(THAT(IA) . LT. 0. 5)THEN 021=RL(2, IA)-RECSUM+2. 0*THAT(IA)eRR(i, ZB)- 1 0, 5e(2. 0eTHAT(IA)-0. 5) ee2-0. 126 C12=RL (1, I A) +REC SUM-2 . 0 &THAT ( IA) eRR (1, IB)? 0. Se (0. 5-2. OeTHAT (IA) ) ee2-0. 125...IMPLEMENTATION ASPECTS OF NONSYNCHRONIZED BINARY RECEIVERS A Thesis by WESLEY MARK WILLS Approved as to style and content by: ostas N. Georghiades (Chair of Committee) Don Halverson (Member) Ohannes Ek an (Member) Thomas Adair, III...

  8. Strong Binary Pulsar Constraints on Lorentz Violation in Gravity

    E-Print Network [OSTI]

    Kent Yagi; Diego Blas; Nicolas Yunes; Enrico Barausse

    2014-04-30

    Binary pulsars are excellent laboratories to test the building blocks of Einstein's theory of General Relativity. One of these is Lorentz symmetry which states that physical phenomena appear the same for all inertially moving observers. We study the effect of violations of Lorentz symmetry in the orbital evolution of binary pulsars and find that it induces a much more rapid decay of the binary's orbital period due to the emission of dipolar radiation. The absence of such behavior in recent observations allows us to place the most stringent constraints on Lorentz violation in gravity, thus verifying one of the cornerstones of Einstein's theory much more accurately than any previous gravitational observation.

  9. Binary Evolution and Neutron Stars in Globular Clusters

    E-Print Network [OSTI]

    Natalia Ivanova; John M. Fregeau; Frederic A. Rasio

    2004-05-20

    We investigate the dynamical formation and evolution of binaries containing neutron stars in dense globular clusters. Our numerical simulations combine a simple Monte Carlo prescription for stellar dynamics, a sophisticated binary population synthesis code, and a small-N-body integrator for computing 3-body and 4-body interactions. Our results suggest that there is no ``retention problem,'' i.e., that, under standard assumptions, globular clusters can retain enough neutron stars to produce the observed numbers of millisecond pulsars. We also identify the dominant evolutionary and dynamical channels through which globular clusters produce their two main types of binary millisecond pulsars

  10. Massive Stars in Interacting Binaries ASP Conference Series, Vol. 367, 2007

    E-Print Network [OSTI]

    Tokovinin, Andrei A.

    , most spec- troscopic binaries discovered during the last decade are cool stars (Pourbaix et al. 2004

  11. The Binary Zoo: The Calculation of Production Rates of Binaries Through 2+1 Encounters in Globular Clusters

    E-Print Network [OSTI]

    M. B. Davies

    1995-07-07

    In studying encounters between binaries and single stars, one is interested in three classes of events: exchanges of stars, hardening of the original binary by a third star, and the production of merged objects. We present a means for computing cross sections for these three outcomes for an arbitrary binary and single star as might be found in the core of a globular cluster. The cross sections for a number of binaries in various stellar populations are then computed. We consider multiple encounters and the ultimate fate of a population of binaries fed into the cores of different globular cluster models. We see that the presence of only a relatively small number of binaries (containing 10\\% of the stars) will boost the production rate of astrophysically-interesting objects by a factor of at least a few over the rates expected from encounters between single stars. In particular, the ratio of smothered neutron stars to low-mass X-ray binaries (LMXBs) may be greatly increased, possibly explaining, in part, the excess of millisecond pulsars compared to LMXBs.

  12. Optimal placement of binary actuators in deformable optical systems

    E-Print Network [OSTI]

    Geykhman, Roman

    2011-01-01

    Recently, exploration has been conducted into the applicability of binary mechatronics to active figure correction in large optical systems such as space telescopes and ground-based solar-thermal concentrators. This Thesis ...

  13. Properties OF M31. V. 298 eclipsing binaries from PAndromeda

    SciTech Connect (OSTI)

    Lee, C.-H.; Koppenhoefer, J.; Seitz, S.; Bender, R.; Riffeser, A.; Kodric, M.; Hopp, U.; Snigula, J.; Gössl, C.; Kudritzki, R.-P.; Burgett, W.; Chambers, K.; Hodapp, K.; Kaiser, N.; Waters, C.

    2014-12-10

    The goal of this work is to conduct a photometric study of eclipsing binaries in M31. We apply a modified box-fitting algorithm to search for eclipsing binary candidates and determine their period. We classify these candidates into detached, semi-detached, and contact systems using the Fourier decomposition method. We cross-match the position of our detached candidates with the photometry from Local Group Survey and select 13 candidates brighter than 20.5 mag in V. The relative physical parameters of these detached candidates are further characterized with the Detached Eclipsing Binary Light curve fitter (DEBiL) by Devor. We will follow up the detached eclipsing binaries spectroscopically and determine the distance to M31.

  14. Fe xxv line profiles in colliding wind binaries

    E-Print Network [OSTI]

    Rauw, Gregor; Naze, Yael

    2015-01-01

    Strong wind-wind collisions in massive binaries generate a very hot plasma that frequently produces a moderately strong iron line. The morphology of this line depends upon the properties of the wind interaction zone and its orientation with respect to the line of sight. As the binary components revolve around their common centre of mass, the line profiles are thus expected to vary. With the advent of the next generation of X-ray observatories (Astro-H, Athena) that will offer high-resolution spectroscopy above 6 keV, it will become possible to exploit these changes as the most sensitive probe of the inner parts of the colliding wind interaction. Using a simple prescription of the wind-wind interaction in an early-type binary, we have generated synthetic line profiles for a number of configurations and orbital phases. These profiles can help constrain the properties of the stellar winds in such binary systems.

  15. Binary Neutron Stars with Arbitrary Spins in Numerical Relativity

    E-Print Network [OSTI]

    Tacik, Nick; Pfeiffer, Harald P; Haas, Roland; Ossokine, Serguei; Kaplan, Jeff; Muhlberger, Curran; Duez, Matt D; Kidder, Lawrence E; Scheel, Mark A; Szilágyi, Béla

    2015-01-01

    We present a code to construct initial data for binary neutron star systems in which the stars are rotating. Our code, based on a formalism developed by Tichy, allows for arbitrary rotation axes of the neutron stars and is able to achieve rotation rates near rotational breakup. We compute the neutron star angular momentum through quasi-local angular momentum integrals. When constructing irrotational binary neutron stars, we find a very small residual dimensionless spin of $\\sim 2\\times 10^{-4}$. Evolutions of rotating neutron star binaries show that the magnitude of the stars' angular momentum is conserved, and that the spin- and orbit-precession of the stars is well described by post-Newtonian approximation. We demonstrate that orbital eccentricity of the binary neutron stars can be controlled to $\\sim 0.1\\%$. The neutron stars show quasi-normal mode oscillations at an amplitude which increases with the rotation rate of the stars.

  16. Binary Neutron Stars with Arbitrary Spins in Numerical Relativity

    E-Print Network [OSTI]

    Nick Tacik; Francois Foucart; Harald P. Pfeiffer; Roland Haas; Serguei Ossokine; Jeff Kaplan; Curran Muhlberger; Matt D. Duez; Lawrence E. Kidder; Mark A. Scheel; Béla Szilágyi

    2015-08-27

    We present a code to construct initial data for binary neutron star systems in which the stars are rotating. Our code, based on a formalism developed by Tichy, allows for arbitrary rotation axes of the neutron stars and is able to achieve rotation rates near rotational breakup. We compute the neutron star angular momentum through quasi-local angular momentum integrals. When constructing irrotational binary neutron stars, we find a very small residual dimensionless spin of $\\sim 2\\times 10^{-4}$. Evolutions of rotating neutron star binaries show that the magnitude of the stars' angular momentum is conserved, and that the spin- and orbit-precession of the stars is well described by post-Newtonian approximation. We demonstrate that orbital eccentricity of the binary neutron stars can be controlled to $\\sim 0.1\\%$. The neutron stars show quasi-normal mode oscillations at an amplitude which increases with the rotation rate of the stars.

  17. Improvements to the construction of binary black hole initial data

    E-Print Network [OSTI]

    Serguei Ossokine; Francois Foucart; Harald P. Pfeiffer; Michael Boyle; Béla Szilágyi

    2015-06-04

    Construction of binary black hole initial data is a prerequisite for numerical evolutions of binary black holes. This paper reports improvements to the binary black hole initial data solver in the Spectral Einstein Code, to allow robust construction of initial data for mass-ratio above 10:1, and for dimensionless black hole spins above 0.9, while improving efficiency for lower mass-ratios and spins. We implement a more flexible domain decomposition, adaptive mesh refinement and an updated method for choosing free parameters. We also introduce a new method to control and eliminate residual linear momentum in initial data for precessing systems, and demonstrate that it eliminates gravitational mode mixing during the evolution. Finally, the new code is applied to construct initial data for hyperbolic scattering and for binaries with very small separation.

  18. Controlling phase separation of binary Bose-Einstein condensates...

    Office of Scientific and Technical Information (OSTI)

    resonance We investigate controlled phase separation of a binary Bose-Einstein condensate in the proximity of a mixed-spin-channel Feshbach resonance in the |F1,msub F+1>...

  19. First Law of Mechanics for Compact Binaries on Eccentric Orbits

    E-Print Network [OSTI]

    Tiec, Alexandre Le

    2015-01-01

    Using the canonical Arnowitt-Deser-Misner Hamiltonian formalism, a "first law of mechanics" is established for binary systems of point masses moving along generic stable bound (eccentric) orbits. This relationship is checked to hold within the post-Newtonian approximation to general relativity, up to third (3PN) order. Several applications are discussed, including the use of gravitational self-force results to inform post-Newtonian theory and the effective one-body model for eccentric-orbit compact binaries.

  20. Manifold corrections on spinning compact binaries

    SciTech Connect (OSTI)

    Zhong Shuangying; Wu Xin [Nanchang University, Nanchang 330031 (China)

    2010-05-15

    This paper deals mainly with a discussion of three new manifold correction methods and three existing ones, which can numerically preserve or correct all integrals in the conservative post-Newtonian Hamiltonian formulation of spinning compact binaries. Two of them are listed here. One is a new momentum-position scaling scheme for complete consistency of both the total energy and the magnitude of the total angular momentum, and the other is the Nacozy's approach with least-squares correction of the four integrals including the total energy and the total angular momentum vector. The post-Newtonian contributions, the spin effects, and the classification of orbits play an important role in the effectiveness of these six manifold corrections. They are all nearly equivalent to correct the integrals at the level of the machine epsilon for the pure Kepler problem. Once the third-order post-Newtonian contributions are added to the pure orbital part, three of these corrections have only minor effects on controlling the errors of these integrals. When the spin effects are also included, the effectiveness of the Nacozy's approach becomes further weakened, and even gets useless for the chaotic case. In all cases tested, the new momentum-position scaling scheme always shows the optimal performance. It requires a little but not much expensive additional computational cost when the spin effects exist and several time-saving techniques are used. As an interesting case, the efficiency of the correction to chaotic eccentric orbits is generally better than one to quasicircular regular orbits. Besides this, the corrected fast Lyapunov indicators and Lyapunov exponents of chaotic eccentric orbits are large as compared with the uncorrected counterparts. The amplification is a true expression of the original dynamical behavior. With the aid of both the manifold correction added to a certain low-order integration algorithm as a fast and high-precision device and the fast Lyapunov indicators of two nearby trajectories, phase space scans for chaos in the spinning compact binary system are given.

  1. Spin alignment and differential accretion in merging black hole binaries

    E-Print Network [OSTI]

    Davide Gerosa; Benedetta Veronesi; Giuseppe Lodato; Giovanni Rosotti

    2015-07-01

    Interactions between a supermassive black hole binary and the surrounding accretion disc can both assist the binary inspiral and align the black hole spins to the disc angular momentum. While binary migration is due to angular-momentum transfer within the circumbinary disc, the spin-alignment process is driven by the mass accreting on to each black hole. Mass transfer between different disc components thus couples the inspiral and the alignment process together. Mass is expected to leak through the cavity cleared by the binary, and preferentially accretes on to the lighter (secondary) black hole which orbits closer to the disc edge. Low accretion rate on to the heavier (primary) black hole slows the alignment process down. We revisit the problem and develop a semi-analytical model to describe the coupling between gas-driven inspiral and spin alignment, finding that binaries with mass ratio qprimaries from aligning. Binary black holes with misaligned primaries are ideal candidates for precession effects in the strong-gravity regime and may suffer from moderately large (~1500 km/s) recoil velocities.

  2. Cool and Luminous Transients from Mass-Losing Binary Stars

    E-Print Network [OSTI]

    Pejcha, Ondrej; Tomida, Kengo

    2015-01-01

    We study transients produced by equatorial disk-like outflows from catastrophically mass-losing binary stars with an asymptotic velocity and energy deposition rate near the inner edge which are proportional to the binary escape velocity v_esc. As a test case, we present the first smoothed-particle radiation-hydrodynamics calculations of the mass loss from the outer Lagrange point with realistic equation of state and opacities. The resulting spiral stream becomes unbound for binary mass ratios 0.06 < q < 0.8. For synchronous binaries with non-degenerate components, the spiral-stream arms merge at a radius of ~10a, where a is the binary semi-major axis, and the accompanying shock thermalizes 10-20% of the kinetic power of the outflow. The mass-losing binary outflows produce luminosities proportional to the mass loss rate and v_esc, reaching up to ~10^6 L_Sun. The effective temperatures depend primarily on v_esc and span 500 < T_eff < 6000 K. Dust readily forms in the outflow, potentially in a catast...

  3. Mesoscale solubilization and critical phenomena in binary and quasi binary solutions of hydrotropes

    E-Print Network [OSTI]

    Andreas E. Robertson; Dung H. Phan; Joseph E. Macaluso; Vladimir N. Kuryakov; Elena V. Jouravleva; Christopher E. Bertrand; Igor K. Yudin; Mikhail A. Anisimov

    2015-03-24

    Hydrotropes are substances consisting of amphiphilic molecules that are too small to self assemble in equilibrium structures in aqueous solutions, but can form dynamic molecular clusters H bonded with water molecules. Some hydrotropes, such as low molecular weight alcohols and amines, can solubilize hydrophobic compounds in aqueous solutions at a mesoscopic scale, around 100 nm, with formation of long lived mesoscale droplets. In this work, we report on the studies of near critical and phase behavior of binary, 2,6-lutidine - H2O, and quasibinary, 2,6-lutidine - H2O - D2O, and tert-butanol - 2-butanol - H2O solutions in the presence of a solubilized hydrophobic impurity, cyclohexane. In additional to visual observation of fluid phase equilibria, two experimental techniques were used - light scattering and small - angle neutron scattering. It was found that the increase of the tert-butanol to 2-butanol ratio affects the liquid - liquid equilibria in the quasi-binary system at ambient pressure in the same way as the increase of pressure modifies the phase behavior of binary 2-butanol - H2O solutions. The correlation length of critical fluctuations near the liquid-liquid separation and the size of mesoscale droplets of solubilized cyclohexane were obtained by dynamic light scattering and by small - angle neutron scattering. It is shown that the effect of the presence of small amounts of cyclohexane on the near - critical phase behavior is twofold - the transition temperature changes towards increasing the two-phase domain, and long-lived mesoscopic inhomogeneities emerge in the macroscopically homogeneous domain. These homogeneities remain unchanged upon approach to the critical point of macroscopic phase separation and do not alter the universal nature of criticality. However, a larger amount of cyclohexane generates additional liquid-liquid phase separation at lower temperatures.

  4. VLA multifrequency observations of RS CVn binaries

    E-Print Network [OSTI]

    J. Garcia-Sanchez; J. M. Paredes; M. Ribo

    2003-03-21

    We present multiepoch Very Large Array (VLA) observations at 1.4 GHz, 4.9 GHz, 8.5 GHz and 14.9 GHz for a sample of eight RS CVn binary systems. Circular polarization measurements of these systems are also reported. Most of the fluxes observed are consistent with incoherent emission from mildly relativistic electrons. Several systems show an increase of the degree of circular polarization with increasing frequency in the optically thin regime, in conflict with predictions by gyrosynchrotron models. We observed a reversal in the sense of circular polarization with increasing frequency in three non-eclipsing systems: EI Eri, DM Uma and HD 8358. We find clear evidence for coherent plasma emission at 1.4 GHz in the quiescent spectrum of HD 8358 during the helicity reversal. The degrees of polarization of the other two systems could also be accounted for by a coherent emission process. The observations of ER Vul revealed two U-shaped flux spectra at the highest frequencies. The U-shape of the spectra may be accounted for by an optically thin gyrosynchrotron source for the low frequency part whereas the high frequency part is dominated by a thermal emission component.

  5. Anisotropic mass ejection in binary mergers

    E-Print Network [OSTI]

    T. Morris; Ph. Podsiadlowski

    2006-01-10

    We investigate the mass loss from a rotationally distorted envelope following the early, rapid in-spiral of a companion star inside a common envelope. For initially wide, massive binaries (M_1+M_2=20M_{\\odot}, P\\sim 10 yr), the primary has a convective envelope at the onset of mass transfer and is able to store much of the available orbital angular momentum in its expanded envelope. Three-dimensional smoothed particle hydrodynamics calculations show that mass loss is enhanced at mid-latitudes due to shock reflection from a torus-shaped outer envelope. Mass ejection in the equatorial plane is completely suppressed if the shock wave is too weak to penetrate the outer envelope in the equatorial direction (typically when the energy deposited in the star is less than about one-third of the binding energy of the envelope). We present a parameter study to show how the geometry of the ejecta depends on the angular momentum and the energy deposited in the envelope during a merging event. Applications to the nearly axisymmetric, but very non-spherical nebulae around SN1987A and Sheridan 25 are discussed, as well as possible links to RY Scuti and the Small Magellanic Cloud object R4.

  6. Phase Transformations in Binary Colloidal Monolayers

    E-Print Network [OSTI]

    Ye Yang; Lin Fu; Catherine Marcoux; Joshua E. S. Socolar; Patrick Charbonneau; Benjamin B. Yellen

    2015-02-10

    Phase transformations can be difficult to characterize at the microscopic level due to the inability to directly observe individual atomic motions. Model colloidal systems, by contrast, permit the direct observation of individual particle dynamics and of collective rearrangements, which allows for real-space characterization of phase transitions. Here, we study a quasi-two-dimensional, binary colloidal alloy that exhibits liquid-solid and solid-solid phase transitions, focusing on the kinetics of a diffusionless transformation between two crystal phases. Experiments are conducted on a monolayer of magnetic and nonmagnetic spheres suspended in a thin layer of ferrofluid and exposed to a tunable magnetic field. A theoretical model of hard spheres with point dipoles at their centers is used to guide the choice of experimental parameters and characterize the underlying materials physics. When the applied field is normal to the fluid layer, a checkerboard crystal forms; when the angle between the field and the normal is sufficiently large, a striped crystal assembles. As the field is slowly tilted away from the normal, we find that the transformation pathway between the two phases depends strongly on crystal orientation, field strength, and degree of confinement of the monolayer. In some cases, the pathway occurs by smooth magnetostrictive shear, while in others it involves the sudden formation of martensitic plates.

  7. PROJECT MANGEMENT PLAN EXAMPLES

    Broader source: Energy.gov (indexed) [DOE]

    accelerates the project schedule and significantly reduces the project total life cycle cost. Current Baseline (FY99 MYWP) Revised Project Baseline Project Scope: ...

  8. Gravitational waveforms for neutron star binaries from binary black hole simulations

    E-Print Network [OSTI]

    Kevin Barkett; Mark A. Scheel; Roland Haas; Christian D. Ott; Sebastiano Bernuzzi; Duncan A. Brown; Béla Szilágyi; Jeffrey D. Kaplan; Jonas Lippuner; Curran D. Muhlberger; Francois Foucart; Matthew D. Duez

    2015-09-22

    Gravitational waves from binary neutron star (BNS) and black-hole/neutron star (BHNS) inspirals are primary sources for detection by the Advanced Laser Interferometer Gravitational-Wave Observatory. The tidal forces acting on the neutron stars induce changes in the phase evolution of the gravitational waveform, and these changes can be used to constrain the nuclear equation of state. Current methods of generating BNS and BHNS waveforms rely on either computationally challenging full 3D hydrodynamical simulations or approximate analytic solutions. We introduce a new method for computing inspiral waveforms for BNS/BHNS systems by adding the post-Newtonian (PN) tidal effects to full numerical simulations of binary black holes (BBHs), effectively replacing the non-tidal terms in the PN expansion with BBH results. Comparing a waveform generated with this method against a full hydrodynamical simulation of a BNS inspiral yields a phase difference of $<1$ radian over $\\sim 15$ orbits. The numerical phase accuracy required of BNS simulations to measure the accuracy of the method we present here is estimated as a function of the tidal deformability parameter ${\\lambda}$.

  9. Cloudnet Project

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Hogan, Robin

    2008-01-15

    Cloudnet is a research project supported by the European Commission. This project aims to use data obtained quasi-continuously for the development and implementation of cloud remote sensing synergy algorithms. The use of active instruments (lidar and radar) results in detailed vertical profiles of important cloud parameters which cannot be derived from current satellite sensing techniques. A network of three already existing cloud remote sensing stations (CRS-stations) will be operated for a two year period, activities will be co-ordinated, data formats harmonised and analysis of the data performed to evaluate the representation of clouds in four major european weather forecast models.

  10. Cloudnet Project

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Hogan, Robin

    Cloudnet is a research project supported by the European Commission. This project aims to use data obtained quasi-continuously for the development and implementation of cloud remote sensing synergy algorithms. The use of active instruments (lidar and radar) results in detailed vertical profiles of important cloud parameters which cannot be derived from current satellite sensing techniques. A network of three already existing cloud remote sensing stations (CRS-stations) will be operated for a two year period, activities will be co-ordinated, data formats harmonised and analysis of the data performed to evaluate the representation of clouds in four major european weather forecast models.

  11. Project Overview

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeedingProgramExemptions |(Conference) | SciTechProjectITER Project

  12. Project Tour

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeedingProgramExemptions |(Conference)Project Tour Project Tour See NMSSUP from

  13. First all-sky search for continuous gravitational waves from unknown sources in binary systems

    E-Print Network [OSTI]

    Aasi, J; Abbott, R; Abbott, T; Abernathy, M R; Accadia, T; Acernese, F; Ackley, K; Adams, C; Adams, T; Addesso, P; Adhikari, R X; Affeldt, C; Agathos, M; Aggarwal, N; Aguiar, O D; Ain, A; Ajith, P; Alemic, A; Allen, B; Allocca, A; Amariutei, D; Andersen, M; Anderson, R; Anderson, S B; Anderson, W G; Arai, K; Araya, M C; Arceneaux, C; Areeda, J; Aston, S M; Astone, P; Aufmuth, P; Aulbert, C; Austin, L; Aylott, B E; Babak, S; Baker, P T; Ballardin, G; Ballmer, S W; Barayoga, J C; Barbet, M; Barish, B C; Barker, D; Barone, F; Barr, B; Barsotti, L; Barsuglia, M; Barton, M A; Bartos, I; Bassiri, R; Basti, A; Batch, J C; Bauchrowitz, J; Bauer, Th S; Behnke, B; Bejger, M; Beker, M G; Belczynski, C; Bell, A S; Bell, C; Bergmann, G; Bersanetti, D; Bertolini, A; Betzwieser, J; Beyersdorf, P T; Bilenko, I A; Billingsley, G; Birch, J; Biscans, S; Bitossi, M; Bizouard, M A; Black, E; Blackburn, J K; Blackburn, L; Blair, D; Bloemen, S; Blom, M; Bock, O; Bodiya, T P; Boer, M; Bogaert, G; Bogan, C; Bond, C; Bondu, F; Bonelli, L; Bonnand, R; Bork, R; Born, M; Boschi, V; Bose, Sukanta; Bosi, L; Bradaschia, C; Brady, P R; Braginsky, V B; Branchesi, M; Brau, J E; Briant, T; Bridges, D O; Brillet, A; Brinkmann, M; Brisson, V; Brooks, A F; Brown, D A; Brown, D D; Brückner, F; Buchman, S; Bulik, T; Bulten, H J; Buonanno, A; Burman, R; Buskulic, D; Buy, C; Cadonati, L; Cagnoli, G; Bustillo, J Calderón; Calloni, E; Camp, J B; Campsie, P; Cannon, K C; Canuel, B; Cao, J; Capano, C D; Carbognani, F; Carbone, L; Caride, S; Castiglia, A; Caudill, S; Cavagliŕ, M; Cavalier, F; Cavalieri, R; Celerier, C; Cella, G; Cepeda, C; Cesarini, E; Chakraborty, R; Chalermsongsak, T; Chamberlin, S J; Chao, S; Charlton, P; Chassande-Mottin, E; Chen, X; Chen, Y; Chincarini, A; Chiummo, A; Cho, H S; Chow, J; Christensen, N; Chu, Q; Chua, S S Y; Chung, S; Ciani, G; Clara, F; Clark, J A; Cleva, F; Coccia, E; Cohadon, P -F; Colla, A; Collette, C; Colombini, M; Cominsky, L; Constancio, M; Conte, A; Cook, D; Corbitt, T R; Cordier, M; Cornish, N; Corpuz, A; Corsi, A; Costa, C A; Coughlin, M W; Coughlin, S; Coulon, J -P; Countryman, S; Couvares, P; Coward, D M; Cowart, M; Coyne, D C; Coyne, R; Craig, K; Creighton, J D E; Creighton, T D; Crowder, S G; Cumming, A; Cunningham, L; Cuoco, E; Dahl, K; Canton, T Dal; Damjanic, M; Danilishin, S L; D'Antonio, S; Danzmann, K; Dattilo, V; Daveloza, H; Davier, M; Davies, G S; Daw, E J; Day, R; Dayanga, T; Debreczeni, G; Degallaix, J; Deléglise, S; Del Pozzo, W; Denker, T; Dent, T; Dereli, H; Dergachev, V; De Rosa, R; DeRosa, R T; DeSalvo, R; Dhurandhar, S; Díaz, M; Di Fiore, L; Di Lieto, A; Di Palma, I; Di Virgilio, A; Donath, A; Donovan, F; Dooley, K L; Doravari, S; Dossa, S; Douglas, R; Downes, T P; Drago, M; Drever, R W P; Driggers, J C; Du, Z; Dwyer, S; Eberle, T; Edo, T; Edwards, M; Effler, A; Eggenstein, H; Ehrens, P; Eichholz, J; Eikenberry, S S; Endr\\Hoczi, G; Essick, R; Etzel, T; Evans, M; Evans, T; Factourovich, M; Fafone, V; Fairhurst, S; Fang, Q; Farinon, S; Farr, B; Farr, W M; Favata, M; Fehrmann, H; Fejer, M M; Feldbaum, D; Feroz, F; Ferrante, I; Ferrini, F; Fidecaro, F; Finn, L S; Fiori, I; Fisher, R P; Flaminio, R; Fournier, J -D; Franco, S; Frasca, S; Frasconi, F; Frede, M; Frei, Z; Freise, A; Frey, R; Fricke, T T; Fritschel, P; Frolov, V V; Fulda, P; Fyffe, M; Gair, J; Gammaitoni, L; Gaonkar, S; Garufi, F; Gehrels, N; Gemme, G; Genin, E; Gennai, A; Ghosh, S; Giaime, J A; Giardina, K D; Giazotto, A; Gill, C; Gleason, J; Goetz, E; Goetz, R; Gondan, L; González, G; Gordon, N; Gorodetsky, M L; Gossan, S; Goßler, S; Gouaty, R; Gräf, C; Graff, P B; Granata, M; Grant, A; Gras, S; Gray, C; Greenhalgh, R J S; Gretarsson, A M; Groot, P; Grote, H; Grover, K; Grunewald, S; Guidi, G M; Guido, C; Gushwa, K; Gustafson, E K; Gustafson, R; Hammer, D; Hammond, G; Hanke, M; Hanks, J; Hanna, C; Hanson, J; Harms, J; Harry, G M; Harry, I W; Harstad, E D; Hart, M; Hartman, M T; Haster, C -J; Haughian, K; Heidmann, A; Heintze, M; Heitmann, H; Hello, P; Hemming, G; Hendry, M; Heng, I S; Heptonstall, A W; Heurs, M; Hewitson, M; Hild, S; Hoak, D; Hodge, K A; Holt, K; Hooper, S; Hopkins, P; Hosken, D J; Hough, J; Howell, E J; Hu, Y; Huerta, E; Hughey, B; Husa, S; Huttner, S H; Huynh, M; Huynh-Dinh, T; Ingram, D R; Inta, R; Isogai, T; Ivanov, A; Iyer, B R; Izumi, K; Jacobson, M; James, E; Jang, H; Jaranowski, P; Ji, Y; Jiménez-Forteza, F; Johnson, W W; Jones, D I; Jones, R; Jonker, R J G; Ju, L; K, Haris; Kalmus, P; Kalogera, V; Kandhasamy, S; Kang, G; Kanner, J B; Karlen, J; Kasprzack, M; Katsavounidis, E; Katzman, W; Kaufer, H; Kawabe, K; Kawazoe, F; Kéfélian, F; Keiser, G M; Keitel, D; Kelley, D B; Kells, W; Khalaidovski, A; Khalili, F Y; Khazanov, E A; Kim, C; Kim, K; Kim, N; Kim, N G; Kim, Y -M; King, E J; King, P J; Kinzel, D L; Kissel, J S; Klimenko, S; Kline, J; Koehlenbeck, S; Kokeyama, K; Kondrashov, V; Koranda, S

    2014-01-01

    We present the first results of an all-sky search for continuous gravitational waves from unknown spinning neutron stars in binary systems using LIGO and Virgo data. Using a specially developed analysis program, the TwoSpect algorithm, the search was carried out on data from the sixth LIGO Science Run and the second and third Virgo Science Runs. The search covers a range of frequencies from 20 Hz to 520 Hz, a range of orbital periods from 2 to ~2,254 h and a frequency- and period-dependent range of frequency modulation depths from 0.277 to 100 mHz. This corresponds to a range of projected semi-major axes of the orbit from ~0.6e-3 ls to ~6,500 ls assuming the orbit of the binary is circular. While no plausible candidate gravitational wave events survive the pipeline, upper limits are set on the analyzed data. The most sensitive 95% confidence upper limit obtained on gravitational wave strain is 2.3e-24 at 217 Hz, assuming the source waves are circularly polarized. Although this search has been optimized for ci...

  14. DIRECT N-BODY MODELING OF THE OLD OPEN CLUSTER NGC 188: A DETAILED COMPARISON OF THEORETICAL AND OBSERVED BINARY STAR AND BLUE STRAGGLER POPULATIONS

    SciTech Connect (OSTI)

    Geller, Aaron M.; Hurley, Jarrod R.; Mathieu, Robert D. E-mail: mathieu@astro.wisc.edu

    2013-01-01

    Following on from a recently completed radial-velocity survey of the old (7 Gyr) open cluster NGC 188 in which we studied in detail the solar-type hard binaries and blue stragglers of the cluster, here we investigate the dynamical evolution of NGC 188 through a sophisticated N-body model. Importantly, we employ the observed binary properties of the young (180 Myr) open cluster M35, where possible, to guide our choices for parameters of the initial binary population. We apply pre-main-sequence tidal circularization and a substantial increase to the main-sequence tidal circularization rate, both of which are necessary to match the observed tidal circularization periods in the literature, including that of NGC 188. At 7 Gyr the main-sequence solar-type hard-binary population in the model matches that of NGC 188 in both binary frequency and distributions of orbital parameters. This agreement between the model and observations is in a large part due to the similarities between the NGC 188 and M35 solar-type binaries. Indeed, among the 7 Gyr main-sequence binaries in the model, only those with P {approx}> 1000 days begin to show potentially observable evidence for modifications by dynamical encounters, even after 7 Gyr of evolution within the star cluster. This emphasizes the importance of defining accurate initial conditions for star cluster models, which we propose is best accomplished through comparisons with observations of young open clusters like M35. Furthermore, this finding suggests that observations of the present-day binaries in even old open clusters can provide valuable information on their primordial binary populations. However, despite the model's success at matching the observed solar-type main-sequence population, the model underproduces blue stragglers and produces an overabundance of long-period circular main-sequence-white-dwarf binaries as compared with the true cluster. We explore several potential solutions to the paucity of blue stragglers and conclude that the model dramatically underproduces blue stragglers through mass-transfer processes. We suggest that common-envelope evolution may have been incorrectly imposed on the progenitors of the spurious long-period circular main-sequence-white-dwarf binaries, which perhaps instead should have gone through stable mass transfer to create blue stragglers, thereby bringing both the number and binary frequency of the blue straggler population in the model into agreement with the true blue stragglers in NGC 188. Thus, improvements in the physics of mass transfer and common-envelope evolution employed in the model may in fact solve both discrepancies with the observations. This project highlights the unique accessibility of open clusters to both comprehensive observational surveys and full-scale N-body simulations, both of which have only recently matured sufficiently to enable such a project, and underscores the importance of open clusters to the study of star cluster dynamics.

  15. Spent Nuclear Fuel project, project management plan

    SciTech Connect (OSTI)

    Fuquay, B.J.

    1995-10-25

    The Hanford Spent Nuclear Fuel Project has been established to safely store spent nuclear fuel at the Hanford Site. This Project Management Plan sets forth the management basis for the Spent Nuclear Fuel Project. The plan applies to all fabrication and construction projects, operation of the Spent Nuclear Fuel Project facilities, and necessary engineering and management functions within the scope of the project

  16. Lemon Project Spring Symposium

    E-Print Network [OSTI]

    Fashing, Norman

    Lemon Project: A Journey of Reconciliation." The BOV defined Lemon "as a long- term research project

  17. Gamma-ray emission from binaries in context

    E-Print Network [OSTI]

    Dubus, Guillaume

    2015-01-01

    More than a dozen binary systems are now established as sources of variable, high energy (HE, 0.1-100 GeV) gamma rays. Five are also established sources of very high energy (VHE, >100 GeV) gamma rays. The mechanisms behind gamma-ray emission in binaries are very diverse. My current understanding is that they divide up into four types of systems: gamma-ray binaries, powered by pulsar rotation; microquasars, powered by accretion onto a black hole or neutron star; novae, powered by thermonuclear runaway on a white dwarf; colliding wind binaries, powered by stellar winds from massive stars. Some of these types had long been suspected to emit gamma rays (microquasars), others have taken the community by surprise (novae). My purpose here is to provide a brief review of the current status of gamma-ray emission from binaries, in the context of related objects where similar mechanisms are at work (pulsar wind nebulae, active galactic nuclei, supernova remnants).

  18. Formation of the wide asynchronous binary asteroid population

    SciTech Connect (OSTI)

    Jacobson, Seth A. [Department of Astrophysical and Planetary Science, UCB 391, University of Colorado, Boulder, CO 80309 (United States); Scheeres, Daniel J.; McMahon, Jay [Department of Aerospace Engineering Sciences, UCB 429, University of Colorado, Boulder, CO 80309 (United States)

    2014-01-01

    We propose and analyze a new mechanism for the formation of the wide asynchronous binary population. These binary asteroids have wide semimajor axes relative to most near-Earth and main belt asteroid systems. Confirmed members have rapidly rotating primaries and satellites that are not tidally locked. Previously suggested formation mechanisms from impact ejecta, from planetary flybys, and directly from rotational fission events cannot satisfy all of the observations. The newly hypothesized mechanism works as follows: (1) these systems are formed from rotational fission, (2) their satellites are tidally locked, (3) their orbits are expanded by the binary Yarkovsky-O'Keefe-Radzievskii-Paddack (BYORP) effect, (4) their satellites desynchronize as a result of the adiabatic invariance between the libration of the secondary and the mutual orbit, and (5) the secondary avoids resynchronization because of the YORP effect. This seemingly complex chain of events is a natural pathway for binaries with satellites that have particular shapes, which define the BYORP effect torque that acts on the system. After detailing the theory, we analyze each of the wide asynchronous binary members and candidates to assess their most likely formation mechanism. Finally, we suggest possible future observations to check and constrain our hypothesis.

  19. The Ratio of Retrograde to Prograde Orbits: A Test for Kuiper Belt Binary Formation Theories

    E-Print Network [OSTI]

    Hilke E. Schlichting; Re'em Sari

    2008-07-03

    With the discovery of Kuiper Belt binaries that have wide separations and roughly equal masses new theories were proposed to explain their formation. Two formation scenarios were suggested by Goldreich and collaborators: In the first, dynamical friction that is generated by a sea of small bodies enables a transient binary to become bound ($L^2s$ mechanism); in the second, a transient binary gets bound by an encounter with a third body ($L^3$ mechanism). We show that these different binary formation scenarios leave their own unique signatures in the relative abundance of prograde to retrograde binary orbits. This signature is due to stable retrograde orbits that exist much further out in the Hill sphere than prograde orbits. It provides an excellent opportunity to distinguish between the different binary formation scenarios observationally. We predict that if binary formation proceeded while sub-Hill velocities prevailed, the vast majority of all comparable mass ratio binaries have retrograde orbits. This dominance of retrograde binary orbits is a result of binary formation via the $L^2s$ mechanism, or any other mechanism that dissipates energy in a smooth and gradual manner. For super-Hill velocities binary formation proceeds via the $L^3$ mechanism which produces a roughly equal number of prograde and retrograde binaries. These predictions assume that subsequent orbital evolution due to dynamical friction and dynamical stirring of the Kuiper belt did not alter the sense of the binary orbit after formation.

  20. THE LOCATIONS OF SHORT GAMMA-RAY BURSTS AS EVIDENCE FOR COMPACT OBJECT BINARY PROGENITORS

    SciTech Connect (OSTI)

    Fong, W.; Berger, E.

    2013-10-10

    We present a detailed investigation of Hubble Space Telescope rest-frame UV/optical observations of 22 short gamma-ray burst (GRB) host galaxies and sub-galactic environments. Utilizing the high angular resolution and depth of HST we characterize the host galaxy morphologies, measure precise projected physical and host-normalized offsets between the bursts and host centers, and calculate the locations of the bursts with respect to their host light distributions (rest-frame UV and optical). We calculate a median short GRB projected physical offset of 4.5 kpc, about 3.5 times larger than that for long GRBs, and find that ?25% of short GRBs have offsets of ?> 10 kpc. When compared to their host sizes, the median offset is 1.5 half-light radii (r{sub e} ), about 1.5 times larger than the values for long GRBs, core-collapse supernovae, and Type Ia supernovae. In addition, ?20% of short GRBs having offsets of ?> 5r{sub e} , and only ?25% are located within 1r{sub e} . We further find that short GRBs severely under-represent their hosts' rest-frame optical and UV light, with ?30%-45% of the bursts located in regions of their host galaxies that have no detectable stellar light, and ?55% in the regions with no UV light. Therefore, short GRBs do not occur in regions of star formation or even stellar mass. This demonstrates that the progenitor systems of short GRBs must migrate from their birth sites to their eventual explosion sites, a signature of kicks in compact object binary systems. Utilizing the full sample of offsets, we estimate natal kick velocities of ?20-140 km s{sup –1}. These independent lines of evidence provide the strongest support to date that short GRBs result from the merger of compact object binaries (NS-NS/NS-BH)

  1. Hydropower Projects

    SciTech Connect (OSTI)

    2015-04-02

    The Water Power Program helps industry harness this renewable, emissions-free resource to generate environmentally sustainable and cost-effective electricity. Through support for public, private, and nonprofit efforts, the Water Power Program promotes the development, demonstration, and deployment of advanced hydropower devices and pumped storage hydropower applications. These technologies help capture energy stored by diversionary structures, increase the efficiency of hydroelectric generation, and use excess grid energy to replenish storage reserves for use during periods of peak electricity demand. In addition, the Water Power Program works to assess the potential extractable energy from domestic water resources to assist industry and government in planning for our nation’s energy future. From FY 2008 to FY 2014, DOE’s Water Power Program announced awards totaling approximately $62.5 million to 33 projects focused on hydropower. Table 1 provides a brief description of these projects.

  2. Exploring Particle Acceleration in Gamma-Ray Binaries

    E-Print Network [OSTI]

    Bosch-Ramon, V

    2011-01-01

    Binary systems can be powerful sources of non-thermal emission from radio to gamma rays. When the latter are detected, then these objects are known as gamma-ray binaries. In this work, we explore, in the context of gamma-ray binaries, different acceleration processes to estimate their efficiency: Fermi I, Fermi II, shear acceleration, the converter mechanism, and magnetic reconnection. We find that Fermi I acceleration in a mildly relativistic shock can provide, although marginally, the multi-10 TeV particles required to explain observations. Shear acceleration may be a complementary mechanism, giving particles the final boost to reach such a high energies. Fermi II acceleration may be too slow to account for the observed very high energy photons, but may be suitable to explain extended low-energy emission. The converter mechanism seems to require rather high Lorentz factors but cannot be discarded a priori. Standard relativistic shock acceleration requires a highly turbulent, weakly magnetized downstream med...

  3. The Formation of the Wide Asynchronous Binary Asteroid Population

    E-Print Network [OSTI]

    Jacobson, Seth A; McMahon, Jay

    2013-01-01

    We propose and analyze a new mechanism for the formation of the wide asynchronous binary population. These binary asteroids have wide semi-major axes relative to most near-Earth and Main Belt asteroid systems. Confirmed members have rapidly rotating primaries and satellites that are not tidally locked. Previously suggested formation mechanisms from impact ejecta, planetary flybys and directly from rotational fission events cannot satisfy all of the observations. The newly hypothesized mechanism works as follows: (i) these systems are formed from rotational fission, (ii) their satellites are tidally locked, (iii) their orbits are expanded by the BYORP effect, (iv) their satellites de-synchronize due to the adiabatic invariance between the libration of the secondary and the mutual orbit, and (v) the secondary avoids resynchronization due to the the YORP effect. This seemingly complex chain of events is a natural pathway for binaries with satellites that have particular shapes, which define the BYORP effect torq...

  4. Three-dimensional modeling of radiative disks in binaries

    E-Print Network [OSTI]

    Picogna, Giovanni

    2013-01-01

    Circumstellar disks in binaries are perturbed by the companion gravity causing significant alterations of the disk morphology. Spiral waves due to the companion tidal force also develop in the vertical direction and affect the disk temperature profile. These effects may significantly influence the process of planet formation. We perform 3D numerical simulations of disks in binaries with different initial dynamical configurations and physical parameters. Our goal is to investigate their evolution and their propensity to grow planets. We use an improved version of the SPH code VINE modified to better account for momentum and energy conservation. The energy equation includes a flux--limited radiative transfer algorithm and the disk cooling is obtained via "boundary particles". We model a system made of star/disk + star/disk where the secondary star (and relative disk) is less massive than the primary. The numerical simulations performed for different values of binary separation and disk density show that the dis...

  5. Determining the Porosity and Saturated Hydraulic Conductivity of Binary Mixtures

    SciTech Connect (OSTI)

    Zhang, Z. F.; Ward, Anderson L.; Keller, Jason M.

    2009-09-27

    Gravels and coarse sands make up significant portions of some environmentally important sediments, while the hydraulic properties of the sediments are typically obtained in the laboratory using only the fine fraction (e.g., <2 mm or 4.75 mm). Researchers have found that the content of gravel has significant impacts on the hydraulic properties of the bulk soils. Laboratory experiments were conducted to measure the porosity and the saturated hydraulic conductivity of binary mixtures with different fractions of coarse and fine components. We proposed a mixing-coefficient model to estimate the porosity and a power-averaging method to determine the effective particle diameter and further to predict the saturated hydraulic conductivity of binary mixtures. The proposed methods could well estimate the porosity and saturated hydraulic conductivity of the binary mixtures for the full range of gravel contents and was successfully applied to two data sets in the literature.

  6. PROJECT SUMMARY

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy Bills andOrder 422.1, CONDUCT P - . . -Pathways)PROJECT SUMMARY 1 TITLE

  7. Hallmark Project

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12,ExecutiveFinancing Programs |ReferencePowerHaier: OrderProject

  8. COMPACT BINARY PROGENITORS OF SHORT GAMMA-RAY BURSTS

    SciTech Connect (OSTI)

    Giacomazzo, Bruno [JILA, University of Colorado and National Institute of Standards and Technology, Boulder, CO 80309 (United States); Perna, Rosalba [JILA and Department of Astrophysical and Planetary Sciences, University of Colorado, Boulder, CO 80309 (United States); Rezzolla, Luciano [Max-Planck-Institut fuer Gravitationsphysik, Albert-Einstein-Institut, Potsdam D-14476 (Germany); Troja, Eleonora [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Lazzati, Davide [Department of Physics, NC State University, 2401 Stinson Drive, Raleigh, NC 27695-8202 (United States)

    2013-01-10

    In recent years, detailed observations and accurate numerical simulations have provided support to the idea that mergers of compact binaries containing either two neutron stars (NSs) or an NS and a black hole (BH) may constitute the central engine of short gamma-ray bursts (SGRBs). The merger of such compact binaries is expected to lead to the production of a spinning BH surrounded by an accreting torus. Several mechanisms can extract energy from this system and power the SGRBs. Here we connect observations and numerical simulations of compact binary mergers, and use the current sample of SGRBs with measured energies to constrain the mass of their powering tori. By comparing the masses of the tori with the results of fully general-relativistic simulations, we are able to infer the properties of the binary progenitors that yield SGRBs. By assuming a constant efficiency in converting torus mass into jet energy, {epsilon}{sub jet} = 10%, we find that most of the tori have masses smaller than 0.01 M{sub Sun }, favoring 'high-mass' binary NSs mergers, i.e., binaries with total masses {approx}> 1.5 the maximum mass of an isolated NS. This has important consequences for the gravitational wave signals that may be detected in association with SGRBs, since 'high-mass' systems do not form a long-lived hypermassive NS after the merger. While NS-BH systems cannot be excluded to be the engine of at least some of the SGRBs, the BH would need to have an initial spin of {approx}0.9 or higher.

  9. Estimation of the error for small-sample optimal binary filter design using prior knowledge 

    E-Print Network [OSTI]

    Sabbagh, David L

    1999-01-01

    Optimal binary filters estimate an unobserved ideal quantity from observed quantities. Optimality is with respect to some error criterion, which is usually mean absolute error MAE (or equivalently mean square error) for the binary values. Both...

  10. Radar Imaging and Characterization of Binary Near-Earth Asteroid (185851) 2000 DP107

    E-Print Network [OSTI]

    2015-01-01

    modeling of triple near-Earth Asteroid (136617) 1994 CC.CHARACTERIZATION OF BINARY NEAR-EARTH ASTEROID (185851) 2000of Contact Binary Near-Earth Asteroids. In AAS/Division for

  11. Radio emission from Colliding-Wind Binaries: Observations and Models

    E-Print Network [OSTI]

    S. M. Dougherty; J. M. Pittard; E. P. O'Connor

    2005-10-18

    We have developed radiative transfer models of the radio emission from colliding-wind binaries (CWB) based on a hydrodynamical treatment of the wind-collision region (WCR). The archetype of CWB systems is the 7.9-yr period binary WR140, which exhibits dramatic variations at radio wavelengths. High-resolution radio observations of WR140 permit a determination of several system parameters, particularly orbit inclination and distance, that are essential for any models of this system. A model fit to data at orbital phase 0.9 is shown, and some short comings of our model described.

  12. Efficient, Sensitivity Resistant Binary Instrumentation Andrew R. Bernat, Kevin Roundy, and Barton P. Miller

    E-Print Network [OSTI]

    Miller, Barton P.

    is frequently the only available form of a given program. Even in other domains, binary instrumentation mayEfficient, Sensitivity Resistant Binary Instrumentation Andrew R. Bernat, Kevin Roundy, and Barton,roundy,bart}@cs.wisc.edu ABSTRACT Binary instrumentation allows users to inject new code into programs without requiring source code

  13. Clustering of Binary Colloidal Suspensions: Experiment MEHRDAD YASREBI, WAN Y. SHIH, AND ILHAN A. AKSAY

    E-Print Network [OSTI]

    Aksay, Ilhan A.

    ; accepted August 24, 1990 The stability of binary colloidal suspensions is examined and comparedClustering of Binary Colloidal Suspensions: Experiment MEHRDAD YASREBI, WAN Y. SHIH, AND ILHAN A to particle-polymer systems, we have observed that in binary colloidal suspensions, particles of the first

  14. Custom Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submit theCovalent Bonding in ActinideRailCurrent ResearchInnovationCustom-Projects

  15. Project Title

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy Bills andOrderNATIONALofDefineEnergy NationalDepartmentProjectNE I&C

  16. Project Gnome

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeedingProgramExemptions |(Conference) | SciTechProject Gnome Double Beta Decay

  17. Project Title

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeedingProgramExemptions |(Conference) | SciTechProjectITERFebruaryStorage

  18. About Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory of raregovAboutRecovery Act Recovery ActARM OverviewAbout GEDOE Projects

  19. Line Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACTThousand CubicResourcelogo and-E C H2015Tray and|Projects Pages default

  20. THE PHASES DIFFERENTIAL ASTROMETRY DATA ARCHIVE. II. UPDATED BINARY STAR ORBITS AND A LONG PERIOD ECLIPSING BINARY

    SciTech Connect (OSTI)

    Muterspaugh, Matthew W.; O'Connell, J.; Hartkopf, William I.; Lane, Benjamin F.; Williamson, M.; Kulkarni, S. R.; Konacki, Maciej; Burke, Bernard F.; Colavita, M. M.; Shao, M.; Wiktorowicz, Sloane J. E-mail: wih@usno.navy.mi E-mail: maciej@ncac.torun.p

    2010-12-15

    Differential astrometry measurements from the Palomar High-precision Astrometric Search for Exoplanet Systems have been combined with lower precision single-aperture measurements covering a much longer timespan (from eyepiece measurements, speckle interferometry, and adaptive optics) to determine improved visual orbits for 20 binary stars. In some cases, radial velocity observations exist to constrain the full three-dimensional orbit and determine component masses. The visual orbit of one of these binaries-{alpha} Com (HD 114378)-shows that the system is likely to have eclipses, despite its very long period of 26 years. The next eclipse is predicted to be within a week of 2015 January 24.

  1. PROJECT MANGEMENT PLAN EXAMPLES Project Organization Examples

    Energy Savers [EERE]

    is responsible for supporting the FDH and RL project offices with adequate day-to-day planning and review technical management, coordination, control, and reporting of project...

  2. Categorical Exclusion Determinations: Office of River Protection...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2014 CX-012329: Categorical Exclusion Determination PNNL Projects Involving Small-Scale Research and Development, Laboratory Operations, and Pilot Projects in the 300 Area CX(s)...

  3. Characterization of some binary words with few squares Golnaz Badkobeha

    E-Print Network [OSTI]

    Ochem, Pascal

    Characterization of some binary words with few squares Golnaz Badkobeha , Pascal Ochemb a smaller morphisms to define these two square-free morphic words and we give such characterizations for six of patterns, and a finite set F of factors over k, we say that P F characterizes a morphic word w over k if w

  4. Landscape statistics of the low autocorrelated binary string problem

    E-Print Network [OSTI]

    Stadler, Peter F.

    , NM 87501, USA Abstract. The statistical properties of the energy landscape of the low autocorrelated]. In this contribution we carry out a thorough investigation of the statistical properties of the energy landscapeLandscape statistics of the low autocorrelated binary string problem Fernando F. Ferreira a , Jos

  5. Landscape statistics of the low autocorrelated binary string problem

    E-Print Network [OSTI]

    Stadler, Peter F.

    , NM 87501, USA Abstract. The statistical properties of the energy landscape of the low autocorrelated]. In this contribution we carry out a thorough investigation of the statistical properties of the energy landscapeLandscape statistics of the low autocorrelated binary string problem Fernando F. Ferreiraa , Jos

  6. Binary Energy Harvesting Channel with Finite Energy Storage

    E-Print Network [OSTI]

    Ulukus, Sennur

    Binary Energy Harvesting Channel with Finite Energy Storage Kaya Tutuncuoglu1 , Omur Ozel2 , Aylin can be viewed as an energy queue where energy arrives as a stochastic process over time; for tractability, we assume an i.i.d. energy arrival process. The codebook used to transmit messages acts

  7. Dynamical mass ejection from black hole-neutron star binaries

    E-Print Network [OSTI]

    Koutarou Kyutoku; Kunihito Ioka; Hirotada Okawa; Masaru Shibata; Keisuke Taniguchi

    2015-08-19

    We investigate properties of material ejected dynamically in the merger of black hole-neutron star binaries by numerical-relativity simulations. We systematically study the dependence of ejecta properties on the mass ratio of the binary, spin of the black hole, and equation of state of the neutron-star matter. Dynamical mass ejection is driven primarily by tidal torque, and the ejecta is much more anisotropic than that from binary neutron star mergers. In particular, the dynamical ejecta is concentrated around the orbital plane with a half opening angle of 10--20deg and often sweeps out only a half of the plane. The ejecta mass can be as large as ~0.1M_sun, and the velocity is subrelativistic with ~0.2--0.3c for typical cases. The ratio of the ejecta mass to the bound mass (disk and fallback components) is larger, and the ejecta velocity is larger, for larger values of the binary mass ratio, i.e., for larger values of the black-hole mass. The remnant black hole-disk system receives a kick velocity of O(100)km/s due to the ejecta linear momentum, and this easily dominates the kick velocity due to gravitational radiation. Structures of postmerger material, velocity distribution of the dynamical ejecta, fallback rates, and gravitational waves are also investigated. We also discuss the effect of ejecta anisotropy on electromagnetic counterparts, specifically a macronova/kilonova and synchrotron radio emission, developing analytic models.

  8. Coal liquefaction process using pretreatment with a binary solvent mixture

    DOE Patents [OSTI]

    Miller, Robert N. (Allentown, PA)

    1986-01-01

    An improved process for thermal solvent refining or hydroliquefaction of non-anthracitic coal at elevated temperatures under hydrogen pressure in a hydrogen donor solvent comprises pretreating the coal with a binary mixture of an aromatic hydrocarbon and an aliphatic alcohol at a temperature below 300.degree. C. before the hydroliquefaction step. This treatment generally increases both conversion of coal and yields of oil.

  9. Fixpoint alternation: arithmetic, transition systems, and the binary tree

    E-Print Network [OSTI]

    Bradfield, Julian

    Fixpoint alternation: arithmetic, transition systems, and the binary tree J. C. Brad#12;eld LFCS, 1 for ex- pressing temporal properties of systems. It was #12;rst studied by Dexter Kozen in [Koz83 of the logic that gives it both its simplicity and its power is that it is possible to have mutually dependent

  10. Binary and recycled pulsars: 30 years after observational discovery

    E-Print Network [OSTI]

    G S Bisnovatyi-Kogan

    2006-11-13

    Binary radio pulsars, first discovered by Hulse and Taylor in 1974 [1], are a unique tool for experimentally testing general relativity (GR), whose validity has been confirmed with a precision unavailable in laboratory experiments. In particular, indirect evidence of the existence of gravitational waves has been obtained. Radio pulsars in binary systems (which have come to be known as recycled) have completed the accretion stage, during which neutron star spins reach millisecond periods and their magnetic fields decay 2 to 4 orders of magnitude more weakly than ordinary radio pulsars. Among about a hundred known recycled pulsars, many have turned out to be single neutron stars. The high concentration of single recycled pulsars in globular clusters suggests that close stellar encounters are highly instrumental in the loss of the companion. A system of one recycled pulsar and one 'normal' one discovered in 2004 is the most compact among binaries containing recycled pulsars [2]. Together with the presence of two pulsars in one system, this suggests new prospects for further essential improvements in testing GR. This paper considers theoretical predictions of binary pulsars, their evolutionary formation, and mechanisms by which their companions may be lost. The use of recycled pulsars in testing GR is discussed and their possible relation to the most intriguing objects in the universe, cosmic gamma-ray bursts, is examined.

  11. A detection pipeline for galactic binaries in LISA data

    E-Print Network [OSTI]

    Tyson B. Littenberg

    2011-06-30

    The Galaxy is suspected to contain hundreds of millions of binary white dwarf systems, a large fraction of which will have sufficiently small orbital period to emit gravitational radiation in band for space-based gravitational wave detectors such as the Laser Interferometer Space Antenna (LISA). LISA's main science goal is the detection of cosmological events (supermassive black hole mergers, etc.) however the gravitational signal from the galaxy will be the dominant contribution to the data -- including instrumental noise -- over approximately two decades in frequency. The catalogue of detectable binary systems will serve as an unparalleled means of studying the Galaxy. Furthermore, to maximize the scientific return from the mission, the data must be "cleansed" of the galactic foreground. We will present an algorithm that can accurately resolve and subtract >10000 of these sources from simulated data supplied by the Mock LISA Data Challenge Task Force. Using the time evolution of the gravitational wave frequency, we will reconstruct the position of the recovered binaries and show how LISA will sample the entire compact binary population in the Galaxy.

  12. Improved Capacity Bounds for the Binary Energy Harvesting Channel

    E-Print Network [OSTI]

    Yener, Aylin

    Improved Capacity Bounds for the Binary Energy Harvesting Channel Kaya Tutuncuoglu1 , Omur Ozel2 the encoder has unit energy storage capacity. We first show that an encoding scheme based on block indexing/channel use. The capacity of additive white Gaussian noise (AWGN) energy harvesting channel was studied in [2

  13. First-post-Newtonian quadrupole tidal interactions in binary systems

    E-Print Network [OSTI]

    Justin Vines; Éanna É. Flanagan

    2014-10-09

    We consider tidal coupling in a binary stellar system to first-post-Newtonian order. We derive the orbital equations of motion for bodies with spins and mass quadrupole moments and show that they conserve the total linear momentum of the binary. We note that spin-orbit coupling must be included in a 1PN treatment of tidal interactions in order to maintain consistency (except in the special case of adiabatically induced quadrupoles); inclusion of 1PN quadrupolar tidal effects while omitting spin effects would lead to a failure of momentum conservation for generic evolution of the quadrupoles. We use momentum conservation to specialize our analysis to the system's center-of-mass-energy frame; we find the binary's relative equation of motion in this frame and also present a generalized Lagrangian from which it can be derived. We then specialize to the case in which the quadrupole moment is adiabatically induced by the tidal field (in which case it is consistent to ignore spin effects). We show how the adiabatic dynamics for the quadrupole can be incorporated into our action principle and present the simplified orbital equations of motion and conserved energy for the adiabatic case. These results are relevant to gravitational wave signals from inspiralling binary neutron stars.

  14. Every interacting double white dwarf binary may merge

    E-Print Network [OSTI]

    Shen, Ken J

    2015-01-01

    Interacting double white dwarf binaries can give rise to a wide variety of astrophysical outcomes ranging from faint thermonuclear and Type Ia supernovae to the formation of neutron stars and stably accreting AM Canum Venaticorum systems. One key factor affecting the final outcome is whether mass transfer remains dynamically stable or instead diverges, leading to the tidal disruption of the donor and the merger of the binary. It is typically thought that for low ratios of the donor mass to the accretor mass, mass transfer remains stable, especially if accretion occurs via a disk. In this Letter, we examine disk-accreting binaries with extremely low mass ratios and find that the initial phase of hydrogen-rich mass transfer leads to a classical nova-like outburst on the accretor. Dynamical friction within the expanding nova shell shrinks the orbit and causes the mass transfer rate to increase dramatically above the accretor's Eddington limit, resulting in a binary merger. While further calculations are necessar...

  15. Performance Evaluation of Binary Negative-Exponential Backoff Algorithm

    E-Print Network [OSTI]

    Lee, Tae-Jin

    resolve collisions, DCF uses binary exponen- tial backoff (BEB) algorithm with three parameters, i with BEB wastes wireless resource when there are many contending stations. Therefore, in this pa- per, we of a frame without retransmissions. We also compare the performance of DCF with BEB to that with BNEB. From

  16. BINARY STAR ORBITS. IV. ORBITS OF 18 SOUTHERN INTERFEROMETRIC PAIRS

    SciTech Connect (OSTI)

    Mason, Brian D.; Hartkopf, William I.; Tokovinin, Andrei E-mail: wih@usno.navy.mi

    2010-09-15

    First orbits are presented for 3 interferometric pairs and revised solutions for 15 others, based in part on first results from a recently initiated program of speckle interferometric observations of neglected southern binaries. Eight of these systems contain additional components, with multiplicity ranging up to 6.

  17. Production and Injection data for NV Binary facilities

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Mines, Greg

    2013-12-24

    Excel files are provided with well production and injection data for binary facilities in Nevada. The files contain the data that reported montly to the Nevada Bureau of Mines and Geology (NBMG) by the facility operators. this data has been complied into Excel spreadsheets for each of the facilities given on the NBMG web site.

  18. Analyze Influenza Virus Sequences Using Binary Encoding Approach

    E-Print Network [OSTI]

    Boley, Daniel

    Analyze Influenza Virus Sequences Using Binary Encoding Approach Ham Ching Lam , Srinand Sreevatsan and Daniel Boley Abstract Capturing mutation patterns of each individual influenza virus sequence is often reduction technique, we were able to capture the intrinsic mutation pattern of the virus. Our approach looks

  19. Complexity of Layered Binary Search Trees with Relaxed Balance

    E-Print Network [OSTI]

    Larsen, Kim Skak

    Complexity of Layered Binary Search Trees with Relaxed Balance Lars Jacobsen Kim S. Larsen University of Southern Denmark, Odense Abstract. When search trees are made relaxed, balance constraints circumstances. However, the weakened balance constraints also make it more challenging to prove complexity

  20. Dixie Valley Binary Cycle Production Data 2013 YTD

    SciTech Connect (OSTI)

    Lee, Vitaly

    2013-10-18

    Proving the technical and economic feasibility of utilizing the available unused heat to generate additional electric power from a binary power plant from the low-temperature brine at the Dixie Valley Geothermal Power Plant. Monthly data for Jan 2013-September 2013

  1. Production and Injection data for NV Binary facilities

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Mines, Greg

    Excel files are provided with well production and injection data for binary facilities in Nevada. The files contain the data that reported montly to the Nevada Bureau of Mines and Geology (NBMG) by the facility operators. this data has been complied into Excel spreadsheets for each of the facilities given on the NBMG web site.

  2. Bolt: On-Demand Infinite Loop Escape in Unmodified Binaries

    E-Print Network [OSTI]

    Rinard, Martin

    . Bolt supports an on- demand usage model--a user can attach Bolt to a running application at any point the application has successfully escaped from the loop, Bolt detaches from the application. To support the onBolt: On-Demand Infinite Loop Escape in Unmodified Binaries Michael Kling Sasa Misailovic Michael

  3. Spectroscopic Binary Star Studies with the Palomar Testbed Interferometer II

    E-Print Network [OSTI]

    Spectroscopic Binary Star Studies with the Palomar Testbed Interferometer II A.F. Boden 1;2#3; , B; bode@ipac.caltech.edu ABSTRACT The Palomar Testbed Interferometer (PTI) is a long-baseline near-infrared interfer- ometer located at Palomar Observatory. Following our previous work on resolving spectroscopic

  4. A New Merging Double Degenerate Binary in the Solar Neighborhood

    E-Print Network [OSTI]

    Debes, John H; Tremblay, Pier-Emmanuel; López-Morales, Mercedes; Anglada-Escudé, Guillem; Napiwotzki, Ralf; Osip, David; Weinberger, Alycia

    2015-01-01

    Characterizing the local space density of double degenerate binary systems is a complementary approach to broad sky surveys of double degenerates to determine the expected rates of white dwarf binary mergers, in particular those that may evolve into other observable phenomena such as extreme helium stars, Am CVn systems, and supernovae Ia. However, there have been few such systems detected in local space. We report here the discovery that WD 1242$-$105, a nearby bright WD, is a double-line spectroscopic binary consisting of two degenerate DA white dwarfs of similar mass and temperature, despite it previously having been spectroscopically characterized as a single degenerate. Follow-up photometry, spectroscopy, and trigonometric parallax have been obtained in an effort to determine the fundamental parameters of each component of this system. The binary has a mass ratio of 0.7 and a trigonometric parallax of 25.5 mas, placing it at a distance of 39 pc. The system's total mass is 0.95 M$_\\odot$ and has an orbita...

  5. Power-Aware FPGA Logic Synthesis Using Binary Decision Diagrams

    E-Print Network [OSTI]

    Tessier, Russell

    with signal switching estimates to achieve power-efficient circuit networks. The results of synthesis and subsequent power-aware technology mapping are evaluated using two distinct physical design platforms Circuits]: Design Aids General Terms Algorithms Keywords FPGA, Binary decision diagram, Dynamic power 1

  6. Mining Frequent Binary Expressions Toon Calders and Jan Paredaens

    E-Print Network [OSTI]

    Antwerpen, Universiteit

    Mining Frequent Binary Expressions Toon Calders and Jan Paredaens Universiteit Antwerpen, Departement Wiskunde-Informatica, Universiteitsplein 1, B-2610 Wilrijk, Belgium. {calders,pareda}@uia.ua.ac.be Abstract. In data mining, searching for frequent patterns is a common basic operation. It forms the basis

  7. COLLISIONAL EVOLUTION OF ULTRA-WIDE TRANS-NEPTUNIAN BINARIES

    SciTech Connect (OSTI)

    Parker, Alex H. [Department of Astronomy, University of Victoria, Victoria BC (Canada); Kavelaars, J. J., E-mail: alexhp@uvic.ca [Herzberg Institute of Astrophysics, National Research Council of Canada, Saanich BC (Canada)

    2012-01-10

    The widely separated, near-equal mass binaries hosted by the cold classical Kuiper Belt are delicately bound and subject to disruption by many perturbing processes. We use analytical arguments and numerical simulations to determine their collisional lifetimes given various impactor size distributions and include the effects of mass loss and multiple impacts over the lifetime of each system. These collisional lifetimes constrain the population of small (R {approx}> 1 km) objects currently residing in the Kuiper Belt and confirm that the size distribution slope at small size cannot be excessively steep-likely q {approx}< 3.5. We track mutual semimajor axis, inclination, and eccentricity evolution through our simulations and show that it is unlikely that the wide binary population represents an evolved tail of the primordially tight binary population. We find that if the wide binaries are a collisionally eroded population, their primordial mutual orbit planes must have preferred to lie in the plane of the solar system. Finally, we find that current limits on the size distribution at small radii remain high enough that the prospect of detecting dust-producing collisions in real time in the Kuiper Belt with future optical surveys is feasible.

  8. UNDERSTANDING THE EVOLUTION OF CLOSE BINARY SYSTEMS WITH RADIO PULSARS

    SciTech Connect (OSTI)

    Benvenuto, O. G.; De Vito, M. A.

    2014-05-01

    We calculate the evolution of close binary systems (CBSs) formed by a neutron star (behaving as a radio pulsar) and a normal donor star, which evolve either to a helium white dwarf (HeWD) or to ultra-short orbital period systems. We consider X-ray irradiation feedback and evaporation due to radio pulsar irradiation. We show that irradiation feedback leads to cyclic mass transfer episodes, allowing CBSs to be observed in between episodes as binary radio pulsars under conditions in which standard, non-irradiated models predict the occurrence of a low-mass X-ray binary. This behavior accounts for the existence of a family of eclipsing binary systems known as redbacks. We predict that redback companions should almost fill their Roche lobe, as observed in PSR J1723-2837. This state is also possible for systems evolving with larger orbital periods. Therefore, binary radio pulsars with companion star masses usually interpreted as larger than expected to produce HeWDs may also result in such quasi-Roche lobe overflow states, rather than hosting a carbon-oxygen WD. We found that CBSs with initial orbital periods of P{sub i} < 1 day evolve into redbacks. Some of them produce low-mass HeWDs, and a subgroup with shorter P{sub i} becomes black widows (BWs). Thus, BWs descend from redbacks, although not all redbacks evolve into BWs. There is mounting observational evidence favoring BW pulsars to be very massive (? 2 M {sub ?}). As they should be redback descendants, redback pulsars should also be very massive, since most of the mass is transferred before this stage.

  9. Training a Binary Classifier with the Quantum Adiabatic Algorithm

    E-Print Network [OSTI]

    Hartmut Neven; Vasil S. Denchev; Geordie Rose; William G. Macready

    2008-11-04

    This paper describes how to make the problem of binary classification amenable to quantum computing. A formulation is employed in which the binary classifier is constructed as a thresholded linear superposition of a set of weak classifiers. The weights in the superposition are optimized in a learning process that strives to minimize the training error as well as the number of weak classifiers used. No efficient solution to this problem is known. To bring it into a format that allows the application of adiabatic quantum computing (AQC), we first show that the bit-precision with which the weights need to be represented only grows logarithmically with the ratio of the number of training examples to the number of weak classifiers. This allows to effectively formulate the training process as a binary optimization problem. Solving it with heuristic solvers such as tabu search, we find that the resulting classifier outperforms a widely used state-of-the-art method, AdaBoost, on a variety of benchmark problems. Moreover, we discovered the interesting fact that bit-constrained learning machines often exhibit lower generalization error rates. Changing the loss function that measures the training error from 0-1 loss to least squares maps the training to quadratic unconstrained binary optimization. This corresponds to the format required by D-Wave's implementation of AQC. Simulations with heuristic solvers again yield results better than those obtained with boosting approaches. Since the resulting quadratic binary program is NP-hard, additional gains can be expected from applying the actual quantum processor.

  10. CHARACTERIZATION OF SEVEN ULTRA-WIDE TRANS-NEPTUNIAN BINARIES

    SciTech Connect (OSTI)

    Parker, Alex H. [Department of Astronomy, University of Victoria, Victoria, BC (Canada); Kavelaars, J. J. [Herzberg Institute of Astrophysics, National Research Council of Canada, Saanich, BC (Canada); Petit, Jean-Marc [Observatoire de Besancon, Besancon (France); Jones, Lynne [Department of Astronomy, University of Washington, Seattle, WA (United States); Gladman, Brett [Department of Astronomy, University of British Columbia, Vancouver, BC (Canada); Parker, Joel, E-mail: alexhp@uvic.ca [Southwest Research Institute, Boulder, CO (United States)

    2011-12-10

    The low-inclination component of the Classical Kuiper Belt is host to a population of extremely widely separated binaries. These systems are similar to other trans-Neptunian binaries (TNBs) in that the primary and secondary components of each system are of roughly equal size. We have performed an astrometric monitoring campaign of a sample of seven wide-separation, long-period TNBs and present the first-ever well-characterized mutual orbits for each system. The sample contains the most eccentric (2006 CH{sub 69}, e{sub m} = 0.9) and the most widely separated, weakly bound (2001 QW{sub 322}, a/R{sub H} {approx_equal} 0.22) binary minor planets known, and also contains the system with lowest-measured mass of any TNB (2000 CF{sub 105}, M{sub sys} {approx_equal} 1.85 Multiplication-Sign 10{sup 17} kg). Four systems orbit in a prograde sense, and three in a retrograde sense. They have a different mutual inclination distribution compared to all other TNBs, preferring low mutual-inclination orbits. These systems have geometric r-band albedos in the range of 0.09-0.3, consistent with radiometric albedo estimates for larger solitary low-inclination Classical Kuiper Belt objects, and we limit the plausible distribution of albedos in this region of the Kuiper Belt. We find that gravitational collapse binary formation models produce an orbital distribution similar to that currently observed, which along with a confluence of other factors supports formation of the cold Classical Kuiper Belt in situ through relatively rapid gravitational collapse rather than slow hierarchical accretion. We show that these binary systems are sensitive to disruption via collisions, and their existence suggests that the size distribution of TNOs at small sizes remains relatively shallow.

  11. The contact binary GSC 04778-00152 with a visual companion

    E-Print Network [OSTI]

    T. Tuvikene; T. Eenmäe; C. Sterken; E. Brogt

    2008-09-11

    Photometric and spectroscopic observations of the unstudied 12th-magnitude eclipsing binary GSC 04778-00152 are presented. We report the discovery of a visual companion about 1 mag fainter and 2 arcsec away from the binary. By subtracting the light contribution of the visual companion, we obtain the UBVRI light curves of the binary system alone. The shape of the light curve indicates that GSC 04778-00152 is an A-type W UMa contact binary. From light-curve modeling, we derive parameters of the binary system.

  12. Detection of Gravitational Wave Emission by Supermassive Black Hole Binaries Through Tidal Disruption Flares

    E-Print Network [OSTI]

    Hayasaki, Kimitake

    2015-01-01

    Galaxy mergers produce binaries of supermassive black holes, which emit gravitational waves prior to their coalescence. We perform three-dimensional hydrodynamic simulations to study the tidal disruption of stars by such a binary in the final centuries of its life. We find that the gas stream of the stellar debris moves chaotically in the binary potential and forms accretion disks around both black holes. The accretion light curve is modulated over the binary orbital period owing to relativistic beaming. This periodic signal allows to detect the decay of the binary orbit due to gravitational wave emission by observing two tidal disruption events that are separated by more than a decade.

  13. PROJECT MANAGEMENT Professional Organizations

    E-Print Network [OSTI]

    Acton, Scott

    PROJECT MANAGEMENT Professional Organizations: Association of Collegiate Computing Services) Project Management Institute (PMI) Events & Training: UVA Local Support Partners (LSP) program training Project Management Institute webinars Project Management Institute events Scrum Alliance events Learning

  14. Project Management Lessons Learned

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2008-08-05

    The guide supports DOE O 413.3A, Program and Project Management for the Acquisition of Capital Assets, and aids the federal project directors and integrated project teams in the execution of projects.

  15. PROJECT MANAGEMENT Professional Organizations

    E-Print Network [OSTI]

    Acton, Scott

    PROJECT MANAGEMENT Professional Organizations: Project Management Institute International Association of Project and Program Management (IAPPM) Events & Training: UVa Center for Leadership Excellence classes SkillSoft classes PMO Symposium through PMI Project Management Institute (PMI) webinars American

  16. Efficiency of mass transfer in massive close binaries, Tests from double-lined eclipsing binaries in the SMC

    E-Print Network [OSTI]

    S. E. de Mink; O. R. Pols; R. W. Hilditch

    2007-03-19

    One of the major uncertainties in close binary evolution is the efficiency of mass transfer beta: the fraction of transferred mass that is accreted by a secondary star. We attempt to constrain the mass-transfer efficiency for short-period massive binaries undergoing case A mass transfer. We present a grid of about 20,000 detailed binary evolution tracks with primary masses 3.5-35 Msun, orbital periods 1-5 days at a metallicity Z=0.004, assuming both conservative and non-conservative mass transfer. We perform a systematic comparison, using least-squares fitting, of the computed models with a sample of 50 double-lined eclipsing binaries in the Small Magellanic Cloud, for which fundamental stellar parameters have been determined. About 60% of the systems are currently undergoing slow mass transfer. In general we find good agreement between our models and the observed detached systems. However, for many of the semi-detached systems the observed temperature ratio is more extreme than our models predict. For the 17 semi-detached systems that we are able to match, we find a large spread in the best fitting mass-transfer efficiency; no single value of beta can explain all systems. We find a hint that initially wider systems tend to fit better to less conservative models. We show the need for more accurate temperature determinations and we find that determinations of surface abundances of nitrogen and carbon can potentially constrain the mass-transfer efficiency further.

  17. Perspectives on Project Finance

    Broader source: Energy.gov [DOE]

    Plenary III: Project Finance and Investment Perspectives on Project Finance John May, Managing Partner, Stern Brothers & Co.

  18. Community Renewables Projects

    Broader source: Energy.gov [DOE]

    This webinar covered introduction and barriers to individual renewable projects, resources for community and group buy projects, and permitting guidelines.

  19. Computer Vision Project Topics Project Reports

    E-Print Network [OSTI]

    Zhu, Zhigang

    (contour projection?). step5: choose a tolerance value(3 or 5 pixels) to evaluate the image with eachComputer Vision Project Topics CSc I6716 Spring2011 #12;Project Reports 1. Introduction (problem up with Nikolaos Markou? · Key Components ­ The project is to find a target image from bunch

  20. Project Final Report UBC LBS Project Services1 Project Final Report UBC LBS Project Services2

    E-Print Network [OSTI]

    is used as a foundation for all development, land use, and transportation activities at UBC. LBS Project Services is a fee-for-service provider of development, design, and project management servicesProject Final Report UBC LBS Project Services1 #12;Project Final Report UBC LBS Project Services2

  1. Simulating three-dimensional nonthermal high-energy photon emission in colliding-wind binaries

    SciTech Connect (OSTI)

    Reitberger, K.; Kissmann, R.; Reimer, A.; Reimer, O.

    2014-07-01

    Massive stars in binary systems have long been regarded as potential sources of high-energy ? rays. The emission is principally thought to arise in the region where the stellar winds collide and accelerate relativistic particles which subsequently emit ? rays. On the basis of a three-dimensional distribution function of high-energy particles in the wind collision region—as obtained by a numerical hydrodynamics and particle transport model—we present the computation of the three-dimensional nonthermal photon emission for a given line of sight. Anisotropic inverse Compton emission is modeled using the target radiation field of both stars. Photons from relativistic bremsstrahlung and neutral pion decay are computed on the basis of local wind plasma densities. We also consider photon-photon opacity effects due to the dense radiation fields of the stars. Results are shown for different stellar separations of a given binary system comprising of a B star and a Wolf-Rayet star. The influence of orbital orientation with respect to the line of sight is also studied by using different orbital viewing angles. For the chosen electron-proton injection ratio of 10{sup –2}, we present the ensuing photon emission in terms of two-dimensional projections maps, spectral energy distributions, and integrated photon flux values in various energy bands. Here, we find a transition from hadron-dominated to lepton-dominated high-energy emission with increasing stellar separations. In addition, we confirm findings from previous analytic modeling that the spectral energy distribution varies significantly with orbital orientation.

  2. Infrared and visual lunar occultations measurements of stellar diameters and new binary stars detections at the Calar Alto 1.5m telescope

    E-Print Network [OSTI]

    O. Fors; A. Richichi; J. Nunez; A. Prades

    2004-02-03

    We present a program of routine lunar occultations, at optical and near-IR wavelengths, recently started at the 1.5m Spanish telescope at the Calar Alto Observatory. Both a CCD and an infrared array detector are used. The program is aimed mainly at the detection and investigation of binary systems, although results in other areas of stellar research are also anticipated. Occultations are reported for a total of 40 stars. Among these, SAO 164567, SAO 78258 and AG+24 788 have been discovered to be binaries, with projected separations as small as 0.006". Furthermore, binarity is suspected in the case of SAO 78119 and SAO 79251. Additionally, the angular diameter of the late-type giant 30 Psc and of the infrared star V349 Gem have been accurately measured, this latter for the first time. We finally evaluate the instrumentation performance in terms of limiting magnitude and angular resolution, and discuss applications to larger telescopes.

  3. Dynamical Tides in Compact White Dwarf Binaries: Influence of Rotation

    E-Print Network [OSTI]

    Fuller, Jim

    2014-01-01

    Tidal interactions play an important role in the evolution and ultimate fate of compact white dwarf (WD) binaries. Not only do tides affect the pre-merger state (such as temperature and rotation rate) of the WDs, but they may also determine which systems merge and which undergo stable mass transfer. In this paper, we attempt to quantify the effects of rotation on tidal angular momentum transport in binary stars, with specific calculations applied to WD stellar models. We incorporate the effect of rotation using the traditional approximation, in which the dynamically excited gravity waves within the WDs are transformed into gravito-inertial Hough waves. The Coriolis force has only a minor effect on prograde gravity waves, and previous results predicting the tidal spin-up and heating of inspiraling WDs are not significantly modified. However, rotation strongly alters retrograde gravity waves and inertial waves, with important consequences for the tidal spin-down of accreting WDs. We identify new dynamical tidal...

  4. Complete phenomenological gravitational waveforms from spinning coalescing binaries

    E-Print Network [OSTI]

    R. Sturani; S. Fischetti; L. Cadonati; G. M. Guidi; J. Healy; D. Shoemaker; A. Viceré

    2010-11-03

    The quest for gravitational waves from coalescing binaries is customarily performed by the LIGO-Virgo collaboration via matched filtering, which requires a detailed knowledge of the signal. Complete analytical coalescence waveforms are currently available only for the non-precessing binary systems. In this paper we introduce complete phenomenological waveforms for the dominant quadrupolar mode of generically spinning systems. These waveforms are constructed by bridging the gap between the analytically known inspiral phase, described by spin Taylor (T4) approximants in the restricted waveform approximation, and the ring-down phase through a phenomenological intermediate phase, calibrated by comparison with specific, numerically generated waveforms, describing equal mass systems with dimension-less spin magnitudes equal to 0.6. The overlap integral between numerical and phenomenological waveforms ranges between 0.95 and 0.99.

  5. General Relativistic Binary Merger Simulations and Short Gamma Ray Bursts

    E-Print Network [OSTI]

    Joshua A. Faber; Thomas W. Baumgarte; Stuart L. Shapiro; Keisuke Taniguchi

    2006-03-10

    The recent localization of some short-hard gamma ray bursts (GRBs) in galaxies with low star formation rates has lent support to the suggestion that these events result from compact object binary mergers. We discuss how new simulations in general relativity are helping to identify the central engine of short-hard GRBs. Motivated by our latest relativistic black hole-neutron star merger calculations, we discuss a scenario in which these events may trigger short-hard GRBs, and compare this model to competing relativistic models involving binary neutron star mergers and the delayed collapse of hypermassive neutron stars. Distinguishing features of these models may help guide future GRB and gravitational wave observations to identify the nature of the sources.

  6. Binary nanoparticle superlattices of soft-particle systems

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Travesset, Alex

    2015-07-20

    The solid-phase diagram of binary systems consisting of particles of diameter ?A=? and ?B=?? (??1) interacting with an inverse p = 12 power law is investigated as a paradigm of a soft potential. In addition to the diameter ratio ? that characterizes hard-sphere models, the phase diagram is a function of an additional parameter that controls the relative interaction strength between the different particle types. Phase diagrams are determined from extremes of thermodynamic functions by considering 15 candidate lattices. In general, it is shown that the phase diagram of a soft repulsive potential leads to the morphological diversity observed inmore »experiments with binary nanoparticles, thus providing a general framework to understand their phase diagrams. In addition, particular emphasis is shown to the two most successful crystallization strategies so far: evaporation of solvent from nanoparticles with grafted hydrocarbon ligands and DNA programmable self-assembly.« less

  7. Gravitational-wave modes from precessing black-hole binaries

    E-Print Network [OSTI]

    Michael Boyle; Lawrence E. Kidder; Serguei Ossokine; Harald P. Pfeiffer

    2014-09-22

    Gravitational waves from precessing black-hole binaries exhibit features that are absent in nonprecessing systems. The most prominent of these is a parity-violating asymmetry that beams energy and linear momentum preferentially along or opposite to the orbital angular momentum, leading to recoil of the binary. The asymmetry will appear as amplitude and phase modulations at the orbital frequency. For strongly precessing systems, it accounts for at least 3% amplitude modulation for binaries in the sensitivity band of ground-based gravitational-wave detectors, and can exceed 50% for massive systems. Such asymmetric features are also clearly visible when the waves are decomposed into modes of spin-weighted spherical harmonics, and are inherent in the waves themselves---rather than resulting from residual eccentricity in numerical simulations, or from mode-mixing due to precession. In particular, there is generically no instantaneous frame for which the mode decomposition will have any symmetry. We introduce a method to simplify the expressions for waveforms given in analytical relativity, which can be used to combine existing high-order waveforms for nonprecessing systems with expressions for the precessing contributions, leading to improved accuracy and a unified treatment of precessing and nonprecessing binaries. Using this method, it is possible to clarify the nature and the origins of the asymmetries and show the effects of asymmetry on recoils more clearly. We present post-Newtonian (PN) expressions for the waveform modes that include these terms, complete to the relative 2PN level in spin (proportional to $v^4/c^4$ times a certain combination of the spins). Comparing the results of those expressions to numerical results, we find good qualitative agreement. We also demonstrate how these expressions can be used to efficiently calculate waveforms for gravitational-wave astronomy.

  8. Short Gamma-Ray Bursts from Binary Neutron Star Mergers

    E-Print Network [OSTI]

    Roland Oechslin; Thomas Janka

    2006-04-27

    We present the results from new relativistic hydrodynamic simulations of binary neutron star mergers using realistic non-zero temperature equations of state. We vary several unknown parameters in the system such as the neutron star (NS) masses, their spins and the nuclear equation of state. The results are then investigated with special focus on the post-merger torus-remnant system. Observational implications on the Gamma-ray burst (GRB) energetics are discussed and compared with recent observations.

  9. Coal liquefaction process using pretreatment with a binary solvent mixture

    DOE Patents [OSTI]

    Miller, R.N.

    1986-10-14

    An improved process for thermal solvent refining or hydroliquefaction of non-anthracitic coal at elevated temperatures under hydrogen pressure in a hydrogen donor solvent comprises pretreating the coal with a binary mixture of an aromatic hydrocarbon and an aliphatic alcohol at a temperature below 300 C before the hydroliquefaction step. This treatment generally increases both conversion of coal and yields of oil. 1 fig.

  10. A study of diffusion in binary solutions using spin echoes 

    E-Print Network [OSTI]

    Rousseau, Cecil Clyde

    1962-01-01

    of Experimentally Determined Diffusion Coefficients of Cyclohexane and Acetone with the Results of NcCall, Douglass, and Anderson . . . . . . . . . 23 INTRODUCTION The available descriptions of the liquid state form a continuous spectrum that extends from... the liquid with unit velocity. The intrinsic diffusion coefficient is now given by Di kT Equation (1-11) is known as the Einstein relation. Thus far, no explicit statement has been made concerning diffusion in binary systems. In addition to the intrinsic...

  11. Molecular Dynamics Simulation of Binary Fluid in a Nanochannel

    SciTech Connect (OSTI)

    Mullick, Shanta; Ahluwalia, P. K. [Department of Physics, Himachal Pradesh University, SummerHill, Shimla - 171005 (India); Pathania, Y. [Chitkara University, Atal Shiksha Kunj, Atal Nagar, Barotiwala, Dist Solan, Himachal Pradesh - 174103 (India)

    2011-12-12

    This paper presents the results from a molecular dynamics simulation of binary fluid (mixture of argon and krypton) in the nanochannel flow. The computational software LAMMPS is used for carrying out the molecular dynamics simulations. Binary fluids of argon and krypton with varying concentration of atom species were taken for two densities 0.65 and 0.45. The fluid flow takes place between two parallel plates and is bounded by horizontal walls in one direction and periodic boundary conditions are imposed in the other two directions. To drive the flow, a constant force is applied in one direction. Each fluid atom interacts with other fluid atoms and wall atoms through Week-Chandler-Anderson (WCA) potential. The velocity profile has been looked at for three nanochannel widths i.e for 12{sigma}, 14{sigma} and 16{sigma} and also for the different concentration of two species. The velocity profile of the binary fluid predicted by the simulations agrees with the quadratic shape of the analytical solution of a Poiseuille flow in continuum theory.

  12. Non-thermal emission processes in massive binaries

    E-Print Network [OSTI]

    M. De Becker

    2007-09-26

    In this paper, I present a general discussion of several astrophysical processes likely to play a role in the production of non-thermal emission in massive stars, with emphasis on massive binaries. Even though the discussion will start in the radio domain where the non-thermal emission was first detected, the census of physical processes involved in the non-thermal emission from massive stars shows that many spectral domains are concerned, from the radio to the very high energies. First, the theoretical aspects of the non-thermal emission from early-type stars will be addressed. The main topics that will be discussed are respectively the physics of individual stellar winds and their interaction in binary systems, the acceleration of relativistic electrons, the magnetic field of massive stars, and finally the non-thermal emission processes relevant to the case of massive stars. Second, this general qualitative discussion will be followed by a more quantitative one, devoted to the most probable scenario where non-thermal radio emitters are massive binaries. I will show how several stellar, wind and orbital parameters can be combined in order to make some semi-quantitative predictions on the high-energy counterpart to the non-thermal emission detected in the radio domain. These theoretical considerations will be followed by a census of results obtained so far, and related to this topic... (see paper for full abstract)

  13. Binary Formation in Star-Forming Clouds with Various Metallicities

    E-Print Network [OSTI]

    Masahiro N. Machida

    2008-03-01

    Cloud evolution for various metallicities is investigated by three-dimensional nested grid simulations, in which the initial ratio of rotational to gravitational energy of the host cloud \\beta_0 (=10^-1 - 10^-6) and cloud metallicity Z (=0 - Z_\\odot) are parameters. Starting from a central number density of n = 10^4 cm^-3, cloud evolution for 48 models is calculated until the protostar is formed (n \\simeq 10^23 cm^-3) or fragmentation occurs. The fragmentation condition depends both on the initial rotational energy and cloud metallicity. Cloud rotation promotes fragmentation, while fragmentation tends to be suppressed in clouds with higher metallicity. Fragmentation occurs when \\beta_0 > 10^-3 in clouds with solar metallicity, while fragmentation occurs when \\beta_0 > 10^-5 in the primordial gas cloud. Clouds with lower metallicity have larger probability of fragmentation, which indicates that the binary frequency is a decreasing function of cloud metallicity. Thus, the binary frequency at the early universe (or lower metallicity environment) is higher than at present day (or higher metallicity environment). In addition, binary stars born from low-metallicity clouds have shorter orbital periods than those from high-metallicity clouds. These trends are explained in terms of the thermal history of the collapsing cloud.

  14. HYPERCRITICAL ACCRETION, INDUCED GRAVITATIONAL COLLAPSE, AND BINARY-DRIVEN HYPERNOVAE

    SciTech Connect (OSTI)

    Fryer, Chris L. [CCS-2, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Rueda, Jorge A.; Ruffini, Remo [ICRANet, Piazza della Repubblica 10, I-65122 Pescara (Italy)

    2014-10-01

    The induced gravitational collapse (IGC) paradigm has been successfully applied to the explanation of the concomitance of gamma-ray bursts (GRBs) with supernovae (SNe) Ic. The progenitor is a tight binary system composed of a carbon-oxygen (CO) core and a neutron star (NS) companion. The explosion of the SN leads to hypercritical accretion onto the NS companion, which reaches the critical mass, hence inducing its gravitational collapse to a black hole (BH) with consequent emission of the GRB. The first estimates of this process were based on a simplified model of the binary parameters and the Bondi-Hoyle-Lyttleton accretion rate. We present here the first full numerical simulations of the IGC phenomenon. We simulate the core-collapse and SN explosion of CO stars to obtain the density and ejection velocity of the SN ejecta. We follow the hydrodynamic evolution of the accreting material falling into the Bondi-Hoyle surface of the NS all the way up to its incorporation in the NS surface. The simulations go up to BH formation when the NS reaches the critical mass. For appropriate binary parameters, the IGC occurs in short timescales ?10{sup 2}-10{sup 3} s owing to the combined effective action of the photon trapping and the neutrino cooling near the NS surface. We also show that the IGC scenario leads to a natural explanation for why GRBs are associated only with SNe Ic with totally absent or very little helium.

  15. Wide binaries as a critical test for Gravity theories

    E-Print Network [OSTI]

    X. Hernandez; M. A. Jimenez; C. Allen

    2012-05-25

    Assuming Newton's gravity and GR to be valid at all scales leads to the dark matter hypothesis as a requirement demanded by the observed dynamics and measured baryonic content at galactic and extragalactic scales. Alternatively, modified gravity scenarios where a change of regime appears at acceleration scales $abinary stars. Since for $1 M_{\\odot}$ systems the acceleration drops below $a_{0}$ at scales of around 7000 AU, a statistical survey of wide binaries with relative velocities and separations reaching $10^{4}$ AU and beyond should prove useful to the above debate. We apply the proposed test to the best currently available data. Results show a constant upper limit to the relative velocities in wide binaries which is independent of separation for over three orders of magnitude, in analogy with galactic flat rotation curves in the same $a

  16. GALACTIC ULTRACOMPACT X-RAY BINARIES: EMPIRICAL LUMINOSITIES

    SciTech Connect (OSTI)

    Cartwright, T. F.; Engel, M. C.; Heinke, C. O.; Sivakoff, G. R.; Berger, J. J.; Gladstone, J. C.; Ivanova, N., E-mail: heinke@ualberta.ca [Physics Department, 4-183 CCIS, University of Alberta, Edmonton, AB T6G 2E1 (Canada)

    2013-05-10

    Ultracompact X-ray binaries (UCXBs) are thought to have relatively simple binary evolution post-contact, leading to clear predictions of their luminosity function. We test these predictions by studying the long-term behavior of known UCXBs in our Galaxy, principally using data from the MAXI All-Sky Survey and the Galactic bulge scans with RXTE's Proportional Counter Array instrument. Strong luminosity variations are common (and well documented) among persistent UCXBs, which requires an explanation other than the disk instability mechanism. We measure the luminosity function of known UCXBs in the Milky Way, which extends to lower luminosities than some proposed theoretical luminosity functions of UCXBs. The difference between field and globular cluster (GC) X-ray luminosity functions in other galaxies cannot be explained by an increased fraction of UCXBs in GCs. Instead, our measured luminosity function suggests that UCXBs only make up a small fraction of the X-ray binaries above a few Multiplication-Sign 10{sup 36} erg s{sup -1} in both old field populations and GCs.

  17. Projective ML Didier Remy

    E-Print Network [OSTI]

    RĂ©my, Didier

    Projective ML Didier Remy INRIA-Rocquencourt Apr 10, 1992 Abstract We propose a projective lambda calculus as the ba- sis for operations on records. Projections operate on elevations, that is, records projective ML from this calculus by adding the ML Let typing rule to the simply typed projective calculus. We

  18. Collective properties of neutron-star X-ray binary populations of galaxies. II. Pre-low-mass X-ray binary properties, formation rates, and constraints

    SciTech Connect (OSTI)

    Bhadkamkar, H. [Astronomy and Astrophysics, Raman Research Institute, Bengaluru 560080 (India); Ghosh, P. [Department of Astronomy and Astrophysics, Tata Institute of Fundamental Research, Mumbai 400005 (India)

    2014-04-01

    We continue our exploration of the collective properties of neutron-star X-ray binaries in the stellar fields (i.e., outside globular clusters) of normal galaxies. In Paper I of this series, we considered high-mass X-ray binaries (HMXBs). In this paper (Paper II), we consider low-mass X-ray binaries (LMXBs), whose evolutionary scenario is very different from that of HMXBs. We consider the evolution of primordial binaries up to the stage where the neutron star just formed in the supernova explosion of the primary is in a binary with its low-mass, unevolved companion, and this binary has circularized tidally, producing what we call a pre-low-mass X-ray binary (pre-LMXB). We study the constraints on the formation of such pre-LMXBs in detail (since these are low-probability events), and calculate their collective properties and formation rates. To this end, we first consider the changes in the binary parameters in the various steps involved, viz., the common-envelope phase, the supernova, and the tidal evolution. This naturally leads to a clarification of the constraints. We then describe our calculation of the evolution of the distributions of primordial binary parameters into those of pre-LMXB parameters, following the standard evolutionary scenario for individual binaries. We display the latter as both bivariate and monovariate distributions, discuss their essential properties, and indicate the influences of some essential factors on these. Finally, we calculate the formation rate of these pre-LMXBs. The results of this paper will be used in a subsequent one to compute the expected X-ray luminosity function of LMXBs.

  19. Project Reports for Haida Corporation- 2010 Project

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Reynolds Creek Hydroelectric Project ("Reynolds Creek" or the "Project") is a 5 MW hydroelectric resource to be constructed on Prince of Wales Island, Alaska, approximately 10 miles east of Hydaburg.

  20. A new method of determining the inclination angle in interacting binaries

    E-Print Network [OSTI]

    Tariq Shahbaz

    1998-03-25

    We describe a method of determining the system parameters in non-eclipsing interacting binaries. We find that the extent to which an observer sees the shape of the Roche-lobe of the secondary star governs the amount of distortion of the absorption line profiles. The width and degree of asymmetry of the phase-resolved absorption line profiles show a characteristic shape, which depends primarily on the binary inclination and gravity darkening exponent. We show that, in principle, by obtaining high spectral and time resolution spectra of quiescent cataclysmic variables or low mass X-ray binaries in which the mass-losing star is visible, fitting the shape of absorption line profiles will allow one to determine not only the mass function of the binary, but also the binary inclination and hence the mass of the binary components.

  1. Project Selection - Record Keeping 

    E-Print Network [OSTI]

    Howard, Jeff W.

    2005-05-10

    4-H members have many project areas to choose from, depending on where they live. Members should consult with their parents and 4-H leaders when choosing a project. This publication outlines project considerations.

  2. From binaries to multiples. I. Data on F and G dwarfs within 67 pc of the Sun

    SciTech Connect (OSTI)

    Tokovinin, Andrei

    2014-04-01

    Data on the multiplicity of F- and G-type dwarf stars within 67 pc of the Sun are presented. This distance-limited sample based on the Hipparcos catalog contains 4847 primary stars (targets) with 0.5 < V – I{sub C} < 0.8 and is >90% complete. There are 2196 known stellar pairs; some of them belong to 361 hierarchical systems from triples to quintuples. Models of companion detection by radial velocity, astrometric acceleration, direct resolution, and common proper motion are developed. They serve to compute completeness for each target, using the information on its coverage collected here. About 80% of companions to the primary stars are detected, but the census of subsystems in the secondary components is only about 30%. Masses of binary components are estimated from their absolute magnitudes or by other methods; the periods of wide pairs are evaluated from their projected separations. A third of binaries with periods shorter than ?100 yr are spectroscopic and/or astrometric pairs with yet unknown periods and mass ratios. These data are used in the accompanying Paper II to derive unbiased statistics of hierarchical multiple systems.

  3. Clean Coal Projects (Virginia)

    Broader source: Energy.gov [DOE]

    This legislation directs the Virginia Air Pollution Control Board to facilitate the construction and implementation of clean coal projects by expediting the permitting process for such projects.

  4. 2016 Technology Innovation Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Projects FY 2016 Technology Innovation Project Briefs Demand Response TIP 292: Advanced Heat Pump Water Heater Research TIP 336: Scaled Deployment and Demonstration of Demand...

  5. Contract/Project Management

    Office of Environmental Management (EM)

    Contract and Project Management Performance Metrics and Targets 1 ContractProject Management Primary Performance Metrics FY 2011 Target FY 2011 Actual & Forecast FY 2011...

  6. Contract/Project Management

    Office of Environmental Management (EM)

    and Project Management Improvement Performance Metrics and Targets 1 ContractProject Management Primary Performance Metrics FY 2011 Target FY 2011 Forecast FY 2011 Pre- &...

  7. Contract/Project Management

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Contract and Project Management Performance Metrics and Targets 1 ContractProject Management Primary Performance Metrics FY 2010 Target FY 2010 Actual FY 2010 Pre- &...

  8. Contract/Project Management

    Broader source: Energy.gov (indexed) [DOE]

    Contract and Project Management Performance Metrics and Targets 1 ContractProject Management Primary Performance Metrics FY 2010 Target FY 2010 Forecast FY 2010 Pre- &...

  9. Contract/Project Management

    Energy Savers [EERE]

    and Project Management Improvement Performance Metrics and Targets 1 ContractProject Management Performance Metric FY 2012 Target FY 2012 Forecast FY 2012 Pre- & Post-CAP...

  10. Contract/Project Management

    Broader source: Energy.gov (indexed) [DOE]

    and Project Management Improvement Performance Metrics and Targets 1 ContractProject Management Performance Metric FY 2012 Target FY 2012 Final FY 2012 Pre- & Post-CAP Final...

  11. Contract/Project Management

    Broader source: Energy.gov (indexed) [DOE]

    2 nd Quarter Overall Contract and Project Management Performance Metrics and Targets ContractProject Management Performance Metrics FY 2009 Target FY 2009 Actual Comment 1....

  12. Contract/Project Management

    Office of Environmental Management (EM)

    1 st Quarter Overall Contract and Project Management Performance Metrics and Targets ContractProject Management Performance Metrics FY 2009 Target FY 2009 Actual Comment 1....

  13. Contract/Project Management

    Office of Environmental Management (EM)

    3 rd Quarter Overall Contract and Project Management Performance Metrics and Targets ContractProject Management Performance Metrics FY 2009 Target FY 2009 Actual Comment 1....

  14. Contract/Project Management

    Energy Savers [EERE]

    Third Quarter Overall Contract and Project Management Improvement Performance Metrics and Targets 1 ContractProject Management Performance Metric FY 2012 Target FY 2012 Forecast...

  15. Project 1640 Palomar Procedures

    E-Print Network [OSTI]

    Project 1640 Palomar Procedures Version 0.1 7/7/08 2:11:08 PM #12;2 Project 1640 Design..................................................................................................................... 1 Palomar Procedures

  16. Project Finance and Investments

    Broader source: Energy.gov [DOE]

    Plenary III: Project Finance and Investment Project Finance and Investments Chris Cassidy, National Business Renewable Energy Advisor, U.S. Department of Agriculture

  17. Falls Creek Hydroelectric Project

    SciTech Connect (OSTI)

    Gustavus Electric Company; Richard Levitt; DOE Project Officer - Keith Bennett

    2007-06-12

    This project was for planning and construction of a 700kW hydropower project on the Fall River near Gustavus, Alaska.

  18. Weight Distribution of a Class of Binary Linear Block Codes Formed from RCPC Codes

    E-Print Network [OSTI]

    Shen, Yushi Dr.; Cosman, Pamela C; Milstein, Laurence B

    2006-01-01

    On the weight distribution of terminated convolutionalViterbi, “On the weight distribution of linear block codes9, SEPTEMBER 2005 Weight Distribution of a Class of Binary

  19. Radio Crickets: Chirping Jets from Black Hole Binaries Entering their Gravitational Wave Inspiral

    E-Print Network [OSTI]

    Kulkarni, Girish

    2015-01-01

    We study a novel electromagnetic signature of supermassive black hole binaries whose inspiral starts being dominated by gravitational wave (GW) emission. Recent simulations suggest that the binary's member BHs can continue to accrete gas from the circumbinary accretion disk in this phase of the binary's evolution, all the way until coalescence. If one of the binary members produces a radio jet as a result of accretion, the jet precesses along a biconical surface due to the binary's orbital motion. When the binary enters the GW phase of its evolution, the opening angle widens, the jet exhibits milliarcsecond scale wiggles, and the conical surface of jet precession is twisted due to apparant superluminal motion. The rapidly increasing orbital velocity of the binary gives the jet an appearance of a "chirp." This helical chirping morphology of the jet can be used to infer the binary parameters. For binaries with mass 10^7--10^10 Msun at redshifts z<0.5, monitoring these features in current and archival data wi...

  20. Gendered perspectives in archaeological narratives of the Danish Bronze Age: deconstructing the binary approach 

    E-Print Network [OSTI]

    Jones, Megan Elizabeth

    2011-11-22

    Utilising a gender critical perspective augmented by statistical analysis, this thesis examines the binary approach customarily employed throughout archaeological narratives pertaining to the Danish Bronze Age. In respect ...

  1. Dynamics of Satellites in Binary Near-Earth Asteroid Systems: A Study Based on Radar Observations

    E-Print Network [OSTI]

    Naidu, Shantanu

    2015-01-01

    characterization of Binary Near-Earth Asteroid (185851) 20003 Near-Earth Asteroid Satellite Spins Under Spin-Orbitlibration amplitudes for synchronous near-Earth as- teroid

  2. Migration of massive black hole binaries in self--gravitating accretion discs: Retrograde versus prograde

    E-Print Network [OSTI]

    Constanze Roedig; Alberto Sesana

    2013-07-24

    We study the interplay between mass transfer, accretion and gravitational torques onto a black hole binary migrating in a self-gravitating, retrograde circumbinary disc. A direct comparison with an identical prograde disc shows that: (i) because of the absence of resonances, the cavity size is a factor a(1+e) smaller for retrograde discs; (ii) nonetheless the shrinkage of a circular binary semi--major axis, a, is identical in both cases; (iii) a circular binary in a retrograde disc remains circular while eccentric binaries grow more eccentric. For non-circular binaries, we measure the orbital decay rates and the eccentricity growth rates to be exponential as long as the binary orbits in the plane of its disc. Additionally, for these co-planar systems, we find that interaction (~ non--zero torque) stems only from the cavity edge plus a(1+e) in the disc, i.e. for dynamical purposes, the disc can be treated as a annulus of small radial extent. We find that simple 'dust' models in which the binary- disc interaction is purely gravitational can account for all main numerical results, both for prograde and retrograde discs. Furthermore, we discuss the possibility of an instability occurring for highly eccentric binaries causing it to leave the disc plane, secularly tilt and converge to a prograde system. Our results suggest that there are two stable configurations for binaries in self-gravitating discs: the special circular retrograde case and an eccentric (e~ 0.6) prograde configuration as a stable attractor.

  3. Implications of the eccentric Kozai-Lidov mechanism for stars surrounding supermassive black hole binaries

    E-Print Network [OSTI]

    Li, G; Naoz, S; Kocsis, B; Loeb, A

    2015-01-01

    of the eccentric Kozai–Lidov mechanism for stars surroundingeccentric Kozai–Lidov (EKL) mechanism, including octupolein the binary where the EKL mechanism drives stars to high

  4. GridRun: A lightweight packaging and execution environment forcompact, multi-architecture binaries

    SciTech Connect (OSTI)

    Shalf, John; Goodale, Tom

    2004-02-01

    GridRun offers a very simple set of tools for creating and executing multi-platform binary executables. These ''fat-binaries'' archive native machine code into compact packages that are typically a fraction the size of the original binary images they store, enabling efficient staging of executables for heterogeneous parallel jobs. GridRun interoperates with existing distributed job launchers/managers like Condor and the Globus GRAM to greatly simplify the logic required launching native binary applications in distributed heterogeneous environments.

  5. A Type System for Certified Binaries Zhong Shao Bratin Saha Valery Trifonov Nikolaos Papaspyr*

    E-Print Network [OSTI]

    for Certified Binaries Zhong Shao Bratin Saha Valery Trifonov Nikolaos Papaspyr* *ou.S.A. {shao, saha, trifonov, nickie}@cs.yale.edu Abstract ever, none

  6. Kenya geothermal private power project: A prefeasibility study

    SciTech Connect (OSTI)

    Not Available

    1992-10-01

    Twenty-eight geothermal areas in Kenya were evaluated and prioritized for development. The prioritization was based on the potential size, resource temperature, level of exploration risk, location, and exploration/development costs for each geothermal area. Suswa, Eburru and Arus are found to offer the best short-term prospects for successful private power development. It was found that cost per kill developed are significantly lower for the larger (50MW) than for smaller-sized (10 or 20 NW) projects. In addition to plant size, the cost per kill developed is seen to be a function of resource temperature, generation mode (binary or flash cycle) and transmission distance.

  7. Simulations of eccentric disks in close binary systems

    E-Print Network [OSTI]

    Wilhelm Kley; John Papaloizou; Gordon Ogilvie

    2008-06-24

    We study the development of finite eccentricity in accretion disks in close binary systems using a two-dimensional grid-based numerical scheme. We perform detailed parameter studies to explore the dependence on viscosity, disk aspect ratio, the inclusion of a mass-transfer stream and the role of the boundary conditions. We consider mass ratios 0.05binary systems. Instability to the formation of a precessing eccentric disk that attains a quasi-steady state with mean eccentricity in the range 0.3-0.5 occurs readily. The shortest growth times are ~15 binary orbits for the largest viscosities and the instability mechanism is for the most part consistent with the mode-coupling mechanism associated with the 3:1 resonance proposed by Lubow. However, the results are sensitive to the treatment of the inner boundary and to the incorporation of the mass-transfer stream. In the presence of a stream we found a critical viscosity below which the disk remains circular. Incorporation of a mass-transfer stream tends to impart stability for small enough viscosity (or, equivalently, mass-transfer rate through the disk) and does assist in obtaining a prograde precession rate that is in agreement with observations. For the larger q the location of the 3:1 resonance is pushed outwards towards the Roche lobe where higher-order mode couplings and nonlinearity occur. It is likely that three-dimensional simulations that properly resolve the disk's vertical structure are required to make significant progress in this case.

  8. Planet Formation in Binary Stars: The case of Gamma Cephei

    E-Print Network [OSTI]

    Wilhelm Kley; Richard Nelson

    2008-05-09

    Over 30 planetary systems have been discovered to reside in binary stars. For small separations gravitational perturbation of the secondary star has a strong influence on the planet formation process. It truncates the protoplanetary disk, may shortens its lifetime, and stirs up the embedded planetesimals. Due to its small semi-major axis (18.5 AU) and large eccentricity (e=0.35) the binary $\\gamma$ Cephei represents a particularly challenging example. In the present study we model the orbital evolution and growth of embedded protoplanetary cores of about 30 earth masses in the putative protoplanetary disk surrounding the primary star in the $\\gamma$ Cep system. We assume coplanarity of the disk, binary and planet and perform two-dimensional hydrodynamic simulations of embedded cores in a protoplanetary disk. The presence of the eccentric secondary star perturbs the disk periodically and generates strong spiral arms at periapse which propagate toward the disk centre. The disk also becomes slightly eccentric (with e_d = 0.1-0.15), and displays a slow retrograde precession in the inertial frame. For all initial separations (2.5 to 3.5 AU) we find inward migration of the cores. For initial semi-major axes (a_p \\gsim 2.7), we find a strong increase in the planetary eccentricity despite the presence of inward migration. Only cores which are initially far from the disk outer edge have a bounded orbital eccentricity which converges, roughly to the value of the planet observed in the $\\gamma$ Cep system. We have shown that under the condition protoplanetary cores can form at around 2.5 AU, it is possible to evolve and grow such a core to form a planet with final outcome similar to that observed.

  9. Wind accretion in binary stars II. Accretion rates

    E-Print Network [OSTI]

    Tom Theuns; Henri Boffin; Alain Jorissen

    1996-02-18

    Smoothed particle hydrodynamics (SPH) is used to estimate accretion rates of mass, linear and angular momentum in a binary system where one component undergoes mass loss through a wind. Physical parameters are chosen such as to model the alleged binary precursors of barium stars, whose chemical peculiarities are believed to result from the accretion of the wind from a companion formerly on the asymptotic giant branch (AGB). The binary system modelled consists of a 3 solar masses AGB star on the main sequence, in a 3AU circular orbit. Three-dimensional simulations are performed for gases with polytropic indices gamma=1, 1.1 and 1.5, to bracket more realistic situations that would include radiative cooling. Mass accretion rates are found to depend on resolution and we estimate typical values of 1-2% for the gamma=1.5 case and 8% for the other models. The highest resolution obtained (with 400k particles) corresponds to an accretor of linear size 16 solar radii. Despite being (in the gamma = 1.5 case) about ten times smaller than theoretical estimates based on the Bondi-Hoyle prescription, the SPH accretion rates remain large enough to explain the pollution of barium stars. Uncertainties in the current SPH rates remain however, due to the simplified treatment of the wind acceleration mechanism, as well as to the absence of any cooling prescription and to the limited numerical resolution. Angular momentum transfer leads to significant spin up of the accretor and can account for the rapid rotation of HD165141, a barium star with a young white dwarf companion and a rotation rate unusually large among K giants.

  10. Plastic flow in polycrystal states in a binary mixture

    E-Print Network [OSTI]

    Toshiyuki Hamanaka; Akira Onuki

    2007-09-05

    Using molecular dynamics simulation we examine dynamics in sheared polycrystal states in a binary mixture containing 10% larger particles in two dimensions. We find large stress fluctuations arising from sliding motions of the particles at the grain boundaries, which occur cooperatively to release the elastic energy stored. These dynamic processes are visualized with the aid of a sixfold angle $\\alpha_j(t)$ representing the local crystal orientation and a disorder variable $D_j(t)$ representing a deviation from the hexagonal order for particle $j$.

  11. Hybrid lattice Boltzmann model for binary fluid mixtures

    E-Print Network [OSTI]

    A. Tiribocchi; N. Stella; G. Gonnella; A. Lamura

    2009-07-16

    A hybrid lattice Boltzmann method (LBM) for binary mixtures based on the free-energy approach is proposed. Non-ideal terms of the pressure tensor are included as a body force in the LBM kinetic equations, used to simulate the continuity and Navier-Stokes equations. The convection-diffusion equation is studied by finite difference methods. Differential operators are discretized in order to reduce the magnitude of spurious velocities. The algorithm has been shown to be stable and reproducing the correct equilibrium behavior in simple test configurations and to be Galilean invariant. Spurious velocities can be reduced of about an order of magnitude with respect to standard discretization procedure.

  12. SB9: The Ninth Catalogue of Spectroscopic Binary Orbits

    E-Print Network [OSTI]

    Pourbaix, D; Batten, A H; Fekel, F C; Hartkopf, W I; Levato, H; Morrell, N I; Torres, G; Udry, S

    2004-01-01

    The Ninth Catalogue of Spectroscopic Binary Orbits (http://sb9.astro.ulb.ac.be) continues the series of compilations of spectroscopic orbits carried out over the past 35 years by Batten and collaborators. As of 2004 May 1st, the new Catalogue holds orbits for 2,386 systems. Some essential differences between this catalogue and its predecessors are outlined and three straightforward applications are presented: (1) Completeness assessment: period distribution of SB1s and SB2s; (2) Shortest periods across the H-R diagram; (3) Period-eccentricity relation.

  13. SB9: The Ninth Catalogue of Spectroscopic Binary Orbits

    E-Print Network [OSTI]

    D. Pourbaix; A. A. Tokovinin; A. H. Batten; F. C. Fekel; W. I. Hartkopf; H. Levato; N. I. Morrell; G. Torres; S. Udry

    2004-06-25

    The Ninth Catalogue of Spectroscopic Binary Orbits (http://sb9.astro.ulb.ac.be) continues the series of compilations of spectroscopic orbits carried out over the past 35 years by Batten and collaborators. As of 2004 May 1st, the new Catalogue holds orbits for 2,386 systems. Some essential differences between this catalogue and its predecessors are outlined and three straightforward applications are presented: (1) Completeness assessment: period distribution of SB1s and SB2s; (2) Shortest periods across the H-R diagram; (3) Period-eccentricity relation.

  14. Investigating Binary Black Hole Mergers with Principal Component Analysis

    E-Print Network [OSTI]

    James Clark; Laura Cadonati; James Healy; Ik Siong Heng; Josh Logue; Nicholas Mangini; Lionel London; Larne Pekowsky; Deirdre Shoemaker

    2014-06-23

    Despite recent progress in numerical simulations of the coalescence of binary black hole systems, highly asymmetric spinning systems and the construction of accurate physical templates remain challenging and computationally expensive. We explore the feasibility of a prompt and robust test of whether the signals exhibit evidence for generic features that can educate new simulations. We form catalogs of numerical relativity waveforms with distinct physical effects and compute the relative probability that a gravitational wave signal belongs to each catalog. We introduce an algorithm designed to perform this task for coalescence signals using principal component analysis of waveform catalogs and Bayesian model selection and demonstrate its effectiveness.

  15. Mahanagdong B-Binary GEPP | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas:Montezuma,Information MHKMHK5 <Kentucky:York:Texas: EnergyMagpie JumpB-Binary

  16. CX-008588: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    St. Petersburg Solar Pilot Project CX(s) Applied: B5.1 Date: 07/19/2012 Location(s): Florida Offices(s): Golden Field Office

  17. CX-008684: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Metaline Radio Station Upgrade Project CX(s) Applied: B1.19 Date: 07/11/2012 Location(s): Washington Offices(s): Bonneville Power Administration

  18. CX-010618: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Midwest Region Alternative Fuels Project CX(s) Applied: 0 Date: 07/19/2013 Location(s): Missouri Offices(s): National Energy Technology Laboratory

  19. CX-008438: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Biogas Reconditioning Project CX(s) Applied: B5.1 Date: 06/27/2012 Location(s): Nevada Offices(s): National Energy Technology Laboratory

  20. CX-008282: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Biogas Reconditioning Project CX(s) Applied: B5.1 Date: 05/01/2012 Location(s): Nevada Offices(s): National Energy Technology Laboratory

  1. Categorical Exclusion Determinations: Western Area PowerAdministratio...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Center October 26, 2009 CX-005544: Categorical Exclusion Determination Power Rate Formula for the Provo River Project of the Western Area Power Administration CX(s) Applied:...

  2. CX-008799: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Jack Case Showers Projects CX(s) Applied: B1.3 Date: 06/04/2012 Location(s): Tennessee Offices(s): Y-12 Site Office

  3. CX-009923: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CX-009923: Categorical Exclusion Determination CX-009923: Categorical Exclusion Determination Project Icebreaker CX(s) Applied: A9, B3.1 Date: 01072013 Location(s): Ohio...

  4. CX-012097: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Microgrid Demonstration Project CX(s) Applied: B5.15 Date: 03/24/2014 Location(s): Idaho Offices(s): Idaho Operations Office

  5. CX-012122: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    OCGen Module Mooring Project CX(s) Applied: B5.25 Date: 04/29/2014 Location(s): Maine Offices(s): Golden Field Office

  6. CX-010109: Categorical Exclusion Determination | Department of...

    Office of Environmental Management (EM)

    09: Categorical Exclusion Determination CX-010109: Categorical Exclusion Determination Curecanti-Poncha 230 Kilovolt Transmission Line Cross Bar Ranch Project CX(s) Applied: B1.3...

  7. CX-008683: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Shaniko Radio Station Replacement Project CX(s) Applied: B1.19 Date: 07/11/2012 Location(s): Oregon Offices(s): Bonneville Power Administration

  8. CX-010155: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Augspurger Radio Tower Replacement Project CX(s) Applied: B1.19 Date: 04/03/2013 Location(s): Washington Offices(s): Bonneville Power Administration

  9. CX-011630: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    9831 Wall Construction Project CX(s) Applied: B1.3 Date: 06/05/2013 Location(s): Tennessee Offices(s): Y-12 Site Office

  10. CX-012482: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Mid-Atlantic Regional Infrastructure Development Project CX(s) Applied: B5.22Date: 41862 Location(s): MarylandOffices(s): National Energy Technology Laboratory

  11. CX-008803: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Milling Machine Replacement Projects CX(s) Applied: B1.31 Date: 05/14/2012 Location(s): Tennessee Offices(s): Y-12 Site Office

  12. CX-012632: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    LURR 20140456 - Salmon Creek Avenue Pathway Project CX(s) Applied: B4.9Date: 41885 Location(s): WashingtonOffices(s): Bonneville Power Administration

  13. Categorical Exclusion Determinations: Western Area PowerAdministratio...

    Energy Savers [EERE]

    Mountain Region August 14, 2014 CX-012767: Categorical Exclusion Determination Medicine Bow Substation Control Building Installation Project Carbon County, Wyoming CX(s)...

  14. CX-012474: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Refractories/Ceramics Project CX(s) Applied: B3.6Date: 41870 Location(s): OregonOffices(s): National Energy Technology Laboratory

  15. CX-011626: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Line Yard Fence Project CX(s) Applied: B1.11 Date: 06/05/2013 Location(s): Tennessee Offices(s): Y-12 Site Office

  16. BINARY CENTRAL STARS OF PLANETARY NEBULAE DISCOVERED THROUGH PHOTOMETRIC VARIABILITY. III. THE CENTRAL STAR OF ABELL 65

    E-Print Network [OSTI]

    Hillwig, Todd C.

    A growing number of close binary stars are being discovered among central stars of planetary nebulae. Recent and ongoing surveys are finding new systems and contributing to our knowledge of the evolution of close binary ...

  17. Noise-enhanced capacity via stochastic resonance in an asymmetric binary channel Francois Chapeau-Blondeau

    E-Print Network [OSTI]

    Chapeau-Blondeau, François

    Noise-enhanced capacity via stochastic resonance in an asymmetric binary channel Franc¸ois Chapeau to an arbitrarily distributed noise and compared to a fixed threshold to determine the binary output signal. Noise the statistics of the input signal is matched to the noise. It is then demonstrated that a regime exists where

  18. DISTRIBUTION OF RPATTERNS IN THE KERDOCKCODE BINARY SEQUENCES AND THE HIGHEST LEVEL SEQUENCES

    E-Print Network [OSTI]

    International Association for Cryptologic Research (IACR)

    DISTRIBUTION OF R­PATTERNS IN THE KERDOCK­CODE BINARY SEQUENCES AND THE HIGHEST LEVEL SEQUENCES OF PRIMITIVE SEQUENCES OVER Z 2 l HONGGANG HU,DENGGUO FENG Abstract. The distribution of r is to study the distribution of r­patterns in the Kerdock­code binary sequences and the highest level

  19. A Platform for Secure Static Binary Instrumentation Mingwei Zhang Rui Qiao Niranjan Hasabnis R. Sekar

    E-Print Network [OSTI]

    Sekar, R.

    A Platform for Secure Static Binary Instrumentation Mingwei Zhang Rui Qiao Niranjan Hasabnis R. Sekar Stony Brook University Abstract Program instrumentation techniques form the basis of many recent. As com- pared to source-code instrumentation, binary instrumenta- tion is easier to use and more broadly

  20. Autologistic Regression Analysis of Spatial-Temporal Binary Data via Monte Carlo

    E-Print Network [OSTI]

    Aukema, Brian

    Autologistic Regression Analysis of Spatial-Temporal Binary Data via Monte Carlo Maximum Likelihood regression analysis of binary data that are measured on a spatial lattice and repeatedly over discrete time points. We propose a spatial- temporal autologistic regression model and draw statistical inference via

  1. Binary hard-sphere crystals with the cesium chloride structure A. B. Schofield

    E-Print Network [OSTI]

    Schofield, Andrew B.

    Binary hard-sphere crystals with the cesium chloride structure A. B. Schofield Department The possibility of binary hard-sphere colloids crystallizing with the cesium chloride CsCl structure was examined compressed exceeds the value, /3& 0.74, which applies to fully compressed one-component systems. For cesium

  2. Second Order Phase Transition in Neural Rate Coding: Binary Encoding is Optimal for Rapid Signal Transmission

    E-Print Network [OSTI]

    Kreiter, Andreas K.

    Second Order Phase Transition in Neural Rate Coding: Binary Encoding is Optimal for Rapid Signal firing rate. A phase transition towards pure binary encoding occurs if the maximum mean spike count of a second-order phase transition. The analytically derived critical decoding time window length

  3. CRYSTALLINE SILICATE EMISSION IN THE PROTOSTELLAR BINARY SERPENS SVS 20 David R. Ciardi

    E-Print Network [OSTI]

    De Buizer, James Michael

    CRYSTALLINE SILICATE EMISSION IN THE PROTOSTELLAR BINARY SERPENS SVS 20 David R. Ciardi Michelson. We also find evidence for emission from crystalline forsterite and enstatite associated with both SVS 20-S and SVS 20-N. The presence of crystalline silicate in such a young binary system indicates

  4. CRYSTALLINE SILICATE EMISSION IN THE PROTOSTELLAR BINARY SERPENS SVS 20 David R. Ciardi

    E-Print Network [OSTI]

    De Buizer, James Michael

    CRYSTALLINE SILICATE EMISSION IN THE PROTOSTELLAR BINARY SERPENS SVS 20 David R. Ciardi Michelson. We also find evidence for emission from crystalline forsterite and enstatite associated with both SVS 20­S and SVS 20­N. The presence of crystalline silicate in such a young binary system indicates

  5. VAPOR + LIQUID EQUILIBRIUM OF WATER, CARBON DIOXIDE, AND THE BINARY SYSTEM WATER + CARBON DIOXIDE FROM

    E-Print Network [OSTI]

    VAPOR + LIQUID EQUILIBRIUM OF WATER, CARBON DIOXIDE, AND THE BINARY SYSTEM WATER + CARBON DIOXIDE the vapor-liquid equilibrium of water (between 323 and 573 K), carbon dioxide (between 230 and 290 K) and their binary mixtures (between 348 and 393 K). The properties of supercritical carbon dioxide were determined

  6. Evolution of massive black hole binaries in the core of Junichiro Makino *

    E-Print Network [OSTI]

    Makino, Jun

    the hardening by dynamical friction and the gravitational wave radiation. Using N­body simulation, we found that the energy generation from MBH binary (MBHB) can heat up and expand the core. Makino and Ebisuzaki [10­ku, Tokyo 153, Japan. #12; MAKINO : Black Hole Binary The result of Makino and Ebisuzaki [10], however, has

  7. Infinite Products Associated with Counting Blocks in Binary Strings J.-P. Allouche J. O. Shallit

    E-Print Network [OSTI]

    Shallit, Jeffrey O.

    ) occurrences of w in the binary expansion of n. We show that there exists an effectively computable rational we address in this paper. For any finite nonempty block w of 0's and 1's, we define aw(n) as the number of occurrences of w in the binary expansion of n. With this quantity we associate an infinite

  8. Preferential Solvent Partitioning within Asphaltenic Aggregates Dissolved in Binary Solvent Mixtures

    E-Print Network [OSTI]

    Kilpatrick, Peter K.

    Preferential Solvent Partitioning within Asphaltenic Aggregates Dissolved in Binary Solvent on asphaltenes from Hondo crude oil dissolved in binary solvent mixtures of toluene with n-heptane, decalin, or 1 data, and subsequent calculations of minimum error were performed to ascertain the entrained solvent

  9. ROM-less RNS-to-binary converter moduli Pedro Miguens Matutino

    E-Print Network [OSTI]

    Sousa, Leonel

    ROM-less RNS-to-binary converter moduli {22 - 1, 22 + 1, 2 - 3, 2 + 3} Pedro Miguens Matutino ISEL--In this paper, a novel ROM-less RNS-to-binary converter is proposed, using a new balanced moduli set {22 - 1, 22 metric can be achieved for the full RNS architecture using the proposed moduli set. Keywords

  10. Method for designing modulo {2n Binary-to-RNS converters

    E-Print Network [OSTI]

    Sousa, Leonel

    Method for designing modulo {2n ± k} Binary-to-RNS converters Hector Pettenghi1, Ricardo Chaves1-based modulo {2n ± k} Binary-to-RNS converters is pro- posed. Efficient modulo {2n ± k} converters can be used to support well balanced RNS moduli sets with large dynamic ranges. Moreover, a novel selection method

  11. Binary-to-RNS conversion units for moduli {2n Pedro Miguens Matutino

    E-Print Network [OSTI]

    Sousa, Leonel

    Binary-to-RNS conversion units for moduli {2n ± 3} Pedro Miguens Matutino Department of Electronics@inesc-id.pt Abstract--In this paper Residue Number Systems (RNS) con- version structures from Binary to RNS modulo {2n Residue Number Systems (RNS) are a good alternative to the conventional arithmetic, based on a weighted

  12. Multiplier-based Binary-to-RNS Converter Modulo {2n +-k} Pedro Miguens Matutino

    E-Print Network [OSTI]

    Sousa, Leonel

    125 Multiplier-based Binary-to-RNS Converter Modulo {2n +- k} Pedro Miguens Matutino ISEL for binary- to-RNS conversion modulo {2n ± k} is proposed. The proposed structure is based on adders know to date. I. INTRODUCTION The modular characteristics of Residue Number System (RNS) offers

  13. IDEAL BINARY CLUTTERS, CONNECTIVITY, AND A CONJECTURE OF SEYMOUR G ERARD CORNUEJOLS AND BERTRAND GUENIN

    E-Print Network [OSTI]

    Cornuejols, Gerard P.

    IDEAL BINARY CLUTTERS, CONNECTIVITY, AND A CONJECTURE OF SEYMOUR G ´ERARD CORNU´EJOLS AND BERTRAND in graphs, and odd circuits in weakly bipartite graphs. In 1977, Seymour conjectured that a binary clutter matroid, multicommodity flow, weakly bipartite graph, � -cut, Seymour's conjecture. Classification: 90C10

  14. Hypersonic acoustic excitations in binary colloidal crystals: Big versus small hard sphere control

    E-Print Network [OSTI]

    Schofield, Andrew B.

    Hypersonic acoustic excitations in binary colloidal crystals: Big versus small hard sphere control January 2007 The phononic band structure of two binary colloidal crystals, at hypersonic frequencies diagrams of the single colloidal crystals of the constituent particles. Besides the acoustic band

  15. WIND TOMOGRAPHY IN BINARY SYSTEMS O.Knill, R.Dgani and M.Vogel

    E-Print Network [OSTI]

    Knill, Oliver

    WIND TOMOGRAPHY IN BINARY SYSTEMS O.Knill, R.Dgani and M.Vogel ETH-Zurich, CH-8092, Switzerland method is particularly suitable for determining the velocity laws of stellar winds. 1. WIND TOMOGRAPHY AND ABEL'S INTEGRAL Binary systems in which a compact, point-like radiation source shines through the wind

  16. A wide binary trigger for white dwarf pollution

    E-Print Network [OSTI]

    Bonsor, Amy

    2015-01-01

    Metal pollution in white dwarf atmospheres is likely to be a signature of remnant planetary systems. Most explanations for this pollution predict a sharp decrease in the number of polluted systems with white dwarf cooling age. Observations do not confirm this trend, and metal pollution in old (1-5 Gyr) white dwarfs is difficult to explain. We propose an alternative, time-independent mechanism to produce the white dwarf pollution. The orbit of a wide binary companion can be perturbed by Galactic tides, approaching close to the primary star for the first time after billions of years of evolution on the white dwarf branch. We show that such a close approach perturbs a planetary system orbiting the white dwarf, scattering planetesimals onto star-grazing orbits, in a manner that could pollute the white dwarf's atmosphere. Our estimates find that this mechanism is likely to contribute to metal pollution, alongside other mechanisms, in up to a few percent of an observed sample of white dwarfs with wide binary compan...

  17. Theoretical X-ray Line Profiles from Colliding Wind Binaries

    E-Print Network [OSTI]

    D. B. Henley; I. R. Stevens; J. M. Pittard

    2003-06-23

    We present theoretical X-ray line profiles from a range of model colliding wind systems. In particular, we investigate the effects of varying the stellar mass-loss rates, the wind speeds, and the viewing orientation. We find that a wide range of theoretical line profile shapes is possible, varying with orbital inclination and phase. At or near conjunction, the lines have approximately Gaussian profiles, with small widths (HWHM ~ 0.1 v_\\infty) and definite blue- or redshifts (depending on whether the star with the weaker wind is in front or behind). When the system is viewed at quadrature, the lines are generally much broader (HWHM ~ v_\\infty), flat-topped and unshifted. Local absorption can have a major effect on the observed profiles - in systems with mass-loss rates of a few times 10^{-6} Msol/yr the lower energy lines (E wind of the primary. The orbital variation of the line widths and shifts is reduced in a low inclination binary. The extreme case is a binary with i = 0 degrees, for which we would expect no line profile variation.

  18. Photometric analysis of the overcontact binary CW Cas

    SciTech Connect (OSTI)

    Wang, J. J.; Qian, S. B.; He, J. J.; Li, L. J.; Zhao, E. G., E-mail: wjjbxw@ynao.ac.cn [National Astronomical Observatories/Yunnan Observatories, Chinese Academy of Sciences, P.O. Box 110, 650011 Kunming (China)

    2014-11-01

    New CCD photometric observations of overcontact binary CW Cas were carried out in 2004 and 2011. In particular, the light curve obtained in 2004 shows a remarkable O'Connell effect. Compared with light curves in different observing seasons, variations were found. These variations can be explained by dark spot activities on the surface of at least one component. Using the Wilson-Devinney code with a spot model, we find that the photometric solutions confirm CW Cas is a shallow W-subtype overcontact binary with a spotted massive component. Our new determined times of minimum light together with the others published in the literature were analyzed to find a change of orbital period. From the O – C curves, the period of the system shows a cyclic period change (P {sub 3} = 69.9 yr, A {sub 3} = 0.03196 days) superposed on the linear increase. The cyclic variation, if explained as the light-travel time effect, reveals the presence of a tertiary companion.

  19. Ten Kepler Eclipsing Binaries Containing the Third Components

    E-Print Network [OSTI]

    Zasche, P; Kucakova, H; Vrastil, J; Jurysek, J; Masek, M; Jelinek, M

    2015-01-01

    Analyzing the available photometry from the Kepler satellite and other databases, we performed detailed light curve modeling of 10 eclipsing binary systems that were found to exhibit a periodic modulation of their orbital periods. All of the selected systems are detached Algol type, with orbital periods from 0.9 to 2.9 days. In total, 9448 times of minimum for these binaries were analyzed in an attempt to identify the period variations caused by the third bodies in these systems. The well-known method of the light-travel time effect was used for the analysis. The orbital periods of the outer bodies were found to be between 1 and 14 years. This hypothesis makes such systems interesting for future prospective detections of these components, despite their low predicted masses. Considering the dynamical interaction between the orbits, the system KIC 3440230 seems to be the most interesting, in which one would expect the detection of some effects (i.e., changing the inclination) even after a few years or decades o...

  20. FORMATION OF STABLE MAGNETARS FROM BINARY NEUTRON STAR MERGERS

    SciTech Connect (OSTI)

    Giacomazzo, Bruno [JILA, University of Colorado and National Institute of Standards and Technology, Boulder, CO 80309 (United States); Perna, Rosalba [JILA and Department of Astrophysical and Planetary Sciences, University of Colorado, Boulder, CO 80309 (United States)

    2013-07-10

    By performing fully general relativistic magnetohydrodynamic simulations of binary neutron star mergers, we investigate the possibility that the end result of the merger is a stable magnetar. In particular, we show that, for a binary composed of two equal-mass neutron stars (NSs) of gravitational mass M {approx} 1.2 M{sub Sun} and equation of state similar to Shen et al. at high densities, the merger product is a stable NS. Such NS is found to be differentially rotating and ultraspinning with spin parameter J/M{sup 2} {approx} 0.86, where J is its total angular momentum, and it is surrounded by a disk of Almost-Equal-To 0.1 M{sub Sun }. While in our global simulations the magnetic field is amplified by about two orders of magnitude, local simulations have shown that hydrodynamic instabilities and the onset of the magnetorotational instability could further increase the magnetic field strength up to magnetar levels. This leads to the interesting possibility that, for some NS mergers, a stable and magnetized NS surrounded by an accretion disk could be formed. We discuss the impact of these new results for the emission of electromagnetic counterparts of gravitational wave signals and for the central engine of short gamma-ray bursts.

  1. Spin alignment and differential accretion in merging black-hole binaries

    E-Print Network [OSTI]

    Gerosa, Davide; Lodato, Giuseppe; Rosotti, Giovanni

    2015-01-01

    Interactions between a supermassive black-hole binary and the surrounding accretion disc can both assist the binary inspiral and align the black-hole spins to the disc angular momentum. While binary migration is due to angular-momentum transfer within the circumbinary disc, the spin-alignment process is driven by the mass accreting onto each black hole. Mass transfer between different disc components thus couples the inspiral and the alignment process together. Mass is expected to leak through the cavity cleared by the binary, and preferentially accretes onto the lighter (secondary) black-hole which orbits closer to the disc edge. Low accretion rate onto the heavier (primary) black hole slows the alignment process down. We revisit the problem and develop a semi-analytical model to describe the coupling between gas-driven inspiral and spin alignment, finding that binaries with mass ratio qprimaries ...

  2. Compact object mergers: Observations of supermassive binary black holes and stellar tidal disruption events

    E-Print Network [OSTI]

    Komossa, S

    2015-01-01

    The capture and disruption of stars by supermassive black holes (SMBHs), and the formation and coalescence of binaries, are inevitable consequences of the presence of SMBHs at the cores of galaxies. Pairs of active galactic nuclei (AGN) and binary SMBHs are important stages in the evolution of galaxy mergers, and an intense search for these systems is currently ongoing. In the early and advanced stages of galaxy merging, observations of the triggering of accretion onto one or both BHs inform us about feedback processes and BH growth. Identification of the compact binary SMBHs at parsec and sub-parsec scales provides us with important constraints on the interaction processes that govern the shrinkage of the binary beyond the "final parsec". Coalescing binary SMBHs are among the most powerful sources of gravitational waves (GWs) in the universe. Stellar tidal disruption events (TDEs) appear as luminous, transient, accretion flares when part of the stellar material is accreted by the SMBH. About 30 events have b...

  3. Short Gamma Ray Bursts as possible electromagnetic counterpart of coalescing binary systems

    E-Print Network [OSTI]

    S. Capozziello; M. De Laurentis; I. De Martino; M. Formisano

    2010-04-27

    Coalescing binary systems, consisting of two collapsed objects, are among the most promising sources of high frequency gravitational waves signals detectable, in principle, by ground-based interferometers. Binary systems of Neutron Star or Black Hole/Neutron Star mergers should also give rise to short Gamma Ray Bursts, a subclass of Gamma Ray Bursts. Short-hard-Gamma Ray Bursts might thus provide a powerful way to infer the merger rate of two-collapsed object binaries. Under the hypothesis that most short Gamma Ray Bursts originate from binaries of Neutron Star or Black Hole/Neutron Star mergers, we outline here the possibility to associate short Gamma Ray Bursts as electromagnetic counterpart of coalescing binary systems.

  4. A semianalytic Fisher matrix for precessing binaries with a single significant spin

    E-Print Network [OSTI]

    R. O'Shaughnessy; P. Nepal; A. Lundgren

    2015-09-22

    Gravitational waves from a binary with a single dynamically significant spin, notably including precessing black hole-neutron star (BH-NS) binaries, let us constrain that binary's properties: the two masses and the dominant black hole spin. Based on a straightforward fourier transform of $h(t)$ enabled by the corotating frame, we show the Fisher matrix for precessing binaries can be well-approximated by an extremely simple semianalytic approximation. This approximation can be easily understood as a weighted average of independent information channels, each associated with one gravitational wave harmonic. Generalizing previous studies of nonprecessing binaries to include critical symmetry-breaking precession effects required to understand plausible astrophysical sources, our ansatz can be applied to address how well gravitational wave measurements can address a wide range of astrophysical and fundamental questions. Our approach provides a simple method to assess what parameters gravitational wave detectors can measure, how well, and why.

  5. Livingston Campus Geothermal Project The Project

    E-Print Network [OSTI]

    Delgado, Mauricio

    Livingston Campus Geothermal Project The Project: Geothermal power is a cost effective, reliable is a Closed Loop Geothermal System involving the removal and storage of approximately four feet of dirt from the entire Geothermal Field and the boring of 321 vertical holes reaching a depth of 500 feet. These holes

  6. Judge Evaluation Scoring Form for Project Technical Report PROJECT .#.: ..Project Title......

    E-Print Network [OSTI]

    Dahlberg, Teresa A.

    Judge Evaluation Scoring Form for Project Technical Report PROJECT .#.: ..Project Title of the project?) Excellent Very Good Good Fair Unsatisfactory COMMENTS: #12;Judge Evaluation Scoring Form for REU) #12;Judge Evaluation Scoring Form for Poster Presentation PROJECT.#.: ...Title.. PARTICIPANTS: DATE

  7. Sample Project Execution Plan

    Broader source: Energy.gov [DOE]

    The project execution plan (PEP) is the governing document that establishes the means to execute, monitor, and control projects.  The plan serves as the main communication vehicle to ensure that...

  8. Haida Corporation- 2010 Project

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Reynolds Creek Hydroelectric Project ("Reynolds Creek" or the "Project") is a 5 MW hydroelectric resource to be constructed on Prince of Wales Island, Alaska, approximately 10 miles east of Hydaburg.

  9. Iskuulpa Watershed ProjectIskuulpa Watershed Project BPA Project # 199506001BPA Project # 199506001

    E-Print Network [OSTI]

    Basin Fish and Wildlife Mitigation ProjectMitigation Project Established by the CTUIR in 1995Established by the CTUIR in 1995 Provides dual benefit to fish and wildlifeProvides dual benefit to fish and wildlife while

  10. Rooftop Unit Network Project

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Network Project RTU Network Project Michael Brambley, Ph.D. Pacific Northwest National Laboratory Michael.Brambley@pnnl.gov (509) 375-6875 April 4, 2013 2 | Building Technologies...

  11. Contract/Project Management

    Broader source: Energy.gov (indexed) [DOE]

    100% Post-CAP This is based on a 3-year rolling average (FY10). TPC is Total Project Cost. 3. Certified EVM Systems: Post CD-3, 95% of line item projects and EM cleanup...

  12. Planning the Project Meeting 

    E-Print Network [OSTI]

    Howard, Jeff W.

    2005-05-10

    Project group meetings must be planned well in advance. Members should be involved in completing some type of work before the next meeting. This helps the leader plan the next project meeting and makes efficient use of time.

  13. The 4-H Project 

    E-Print Network [OSTI]

    Howard, Jeff W.

    2005-05-10

    As a 4-H volunteer, you will find that projects are useful tools for teaching a wide variety of skills to young people. This publication will help you plan and evaluate 4-H learning projects.

  14. Contract/Project Management

    Energy Savers [EERE]

    on a 3-year rolling average (FY09 to FY11). TPC is Total Project Cost. 2a. EM Cleanup (Soil and Groundwater Remediation, D&D, and Waste Treatment and Disposal) Projects: (Pre-...

  15. Rabbit Project Reference Manual 

    E-Print Network [OSTI]

    Wootton, Chad

    2000-05-04

    This publication explains how to raise rabbits for a 4-H rabbit project. It discusses project options; breeds; equipment; breeding and kindling; sanitation; diseases, parasites and illnesses; processing; marketing; and grooming and showing. Although...

  16. Contract/Project Management

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    within 12 months of the original CD- 34 duration. 90% 91% FY10-FY12 Seventy completions to date. Schedule Compliance, Projects greater than 5 years Duration: Projects will...

  17. Infrastructure Projects | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    conditions for many, as well as a change to the layout of the laboratory due to ancillary projects. The project has received approval to make early purchases in the...

  18. Information Technology Project Management

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2012-12-03

    The Order provides program and project management direction for the acquisition and management of IT projects, investments, and initiatives. Cancels DOE G 200.1-1. Admin Chg 1 approved 1-16-2013.

  19. GHPsRUS Project

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Battocletti, Liz

    The GHPsRUS Project's full name is "Measuring the Costs and Benefits of Nationwide Geothermal Heat Pump Deployment." The dataset contains employment and installation price data collected by four economic surveys: (1)GHPsRUS Project Manufacturer & OEM Survey, (2) GHPsRUS Project Geothermal Loop Survey, (3) GHPsRUS Project Mechanical Equipment Installation Survey, and (4) GHPsRUS Geothermal Heat Pump Industry Survey

  20. WIPP Projects Interative Map

    Broader source: Energy.gov [DOE]

    View WIPP Projects in a larger map. To report corrections, please email WeatherizationInnovation@ee.doe.gov.

  1. GHPsRUS Project

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Battocletti, Liz

    2013-07-09

    The GHPsRUS Project's full name is "Measuring the Costs and Benefits of Nationwide Geothermal Heat Pump Deployment." The dataset contains employment and installation price data collected by four economic surveys: (1)GHPsRUS Project Manufacturer & OEM Survey, (2) GHPsRUS Project Geothermal Loop Survey, (3) GHPsRUS Project Mechanical Equipment Installation Survey, and (4) GHPsRUS Geothermal Heat Pump Industry Survey

  2. The ALPS project: open source software for strongly correlated systems

    E-Print Network [OSTI]

    F. Alet; P. Dayal; A. Grzesik; A. Honecker; M. Koerner; A. Laeuchli; S. R. Manmana; I. P. McCulloch; F. Michel; R. M. Noack; G. Schmid; U. Schollwoeck; F. Stoeckli; S. Todo; S. Trebst; M. Troyer; P. Werner; S. Wessel; for the ALPS collaboration

    2004-10-15

    We present the ALPS (Algorithms and Libraries for Physics Simulations) project, an international open source software project to develop libraries and application programs for the simulation of strongly correlated quantum lattice models such as quantum magnets, lattice bosons, and strongly correlated fermion systems. Development is centered on common XML and binary data formats, on libraries to simplify and speed up code development, and on full-featured simulation programs. The programs enable non-experts to start carrying out numerical simulations by providing basic implementations of the important algorithms for quantum lattice models: classical and quantum Monte Carlo (QMC) using non-local updates, extended ensemble simulations, exact and full diagonalization (ED), as well as the density matrix renormalization group (DMRG). The software is available from our web server at http://alps.comp-phys.org.

  3. Ferdinand Project Middleware List

    E-Print Network [OSTI]

    ://java.dzone.com/articles/case-study-how-lastfm-uses] - hornetq-vm: VM for testing of clustered scenarios [http://sourceforge.net/projects/hornetq-vm/] EvaluationFerdinand Project Middleware List Jaroslav Keznikl2 , Michal Malohlava1 , Lukás Marek1 , Petr Tma1 phone +420-266053831 #12;FERDINAND PROJECT MIDDLEWARE LIST PURPOSE The purpose of this report

  4. TEAM PROJECT: WORKING PROTOTYPE

    E-Print Network [OSTI]

    .) Value: the report is worth 10% of the Team Project grade. #12;Next steps: You will evaluateTEAM PROJECT: WORKING PROTOTYPE Due: Week of April 5-8 at time to be scheduled with GTA Format that will be polished into the final project for which you will create a final report and give a final presentation

  5. Project Description 1 Introduction

    E-Print Network [OSTI]

    VanDeGrift, Tammy

    Project Description 1 Introduction This project will investigate "commonsense computing": what, and 3. Apply our findings to changes in classroom pedagogy in ways that can be rigorously evalu- ated. 1 0736572 #12;In the exploratory part of this project, which we are proposing here, we will concentrate

  6. Kansas Advanced Semiconductor Project

    SciTech Connect (OSTI)

    Baringer, P.; Bean, A.; Bolton, T.; Horton-Smith, G.; Maravin, Y.; Ratra, B.; Stanton, N.; von Toerne, E.; Wilson, G.

    2007-09-21

    KASP (Kansas Advanced Semiconductor Project) completed the new Layer 0 upgrade for D0, assumed key electronics projects for the US CMS project, finished important new physics measurements with the D0 experiment at Fermilab, made substantial contributions to detector studies for the proposed e+e- international linear collider (ILC), and advanced key initiatives in non-accelerator-based neutrino physics.

  7. PROJECT MANGEMENT PLAN EXAMPLES Prepare Project Support Plans...

    Energy Savers [EERE]

    qualitativelysubjectively assess the project risk. The approach is modeled after project risk assessment processes outlined in standard project management texts and training...

  8. Bump formation in a binary attractor neural network

    SciTech Connect (OSTI)

    Koroutchev, Kostadin; Korutcheva, Elka

    2006-02-15

    The conditions for the formation of local bumps in the activity of binary attractor neural networks with spatially dependent connectivity are investigated. We show that these formations are observed when asymmetry between the activity during the retrieval and learning is imposed. An analytical approximation for the order parameters is derived. The corresponding phase diagram shows a relatively large and stable region where this effect is observed, although critical storage and information capacities drastically decrease inside that region. We demonstrate that the stability of the network, when starting from the bump formation, is larger than the stability when starting even from the whole pattern. Finally, we show a very good agreement between the analytical results and the simulations performed for different topologies of the network.

  9. AA Dor - An Eclipsing sdOB - Brown Dwarf Binary

    E-Print Network [OSTI]

    Thomas Rauch

    2003-11-25

    AA Dor is an eclipsing, close, post common-envelope binary consisting of a sdOB primary star and an unseen secondary with an extraordinary small mass - formally a brown dwarf. The brown dwarf may have been a former planet which survived a common envelope phase and has even gained mass. A recent determination of the components' masses from results of NLTE spectral analysis and subsequent comparison to evolutionary tracks shows a discrepancy to masses derived from radial-velocity and the eclipse curves. Phase-resolved high-resolution and high-SN spectroscopy was carried out in order to investigate on this problem. We present results of a NLTE spectral analysis of the primary, an analysis of its orbital parameters, and discuss possible evolutionary scenarios.

  10. Probing instabilities in arc plasma devices using binary gas mixtures

    SciTech Connect (OSTI)

    Ghorui, S.; Vysohlid, M.; Heberlein, J. V. R.; Pfender, E.

    2007-07-15

    This paper presents an experimental approach to identify the sources of instabilities in arc plasma devices. The phenomena of demixing in arcs have been utilized to explore the characteristics of different instabilities. Problems in explaining the observed behavior with our current understanding of the phenomena are discussed. Hydrogen is used as a secondary gas with argon as the primary plasma gas for this study. Results indicate that the observed behavior such as steady, takeover, and restrike modes of instabilities in arcs may essentially originate from the thin boundary layer over the anode wall primarily at the location of the anodic arc root. The bulk core flow apparently does not play any significant role in such instabilities. Arc currents rather than flow rates control the behavior of the instabilities in frequency space. Bifurcation of the system behavior and evidence for the existence of quadratic zones in flow space of binary gas mixtures separating steady and unsteady behavior are discussed.

  11. Investigation of Glass Transition Temperature of Binary Tellurite Glasses

    SciTech Connect (OSTI)

    Chippy, L.; Unnithan, C. Harikuttan [Solid State Physics Laboratory, D.B. College, Sasthamcotta, Kollam, Kerala-690 521 (India); Jayakumar, S. [MSM College, Kayamkulam, Kerala (India)

    2011-10-20

    Five series of binary Tellurite glass samples containing Sb{sub 2}O{sub 4}, WO{sub 3}, Fe{sub 2}O{sub 3}, Na{sub 2}O and ZnO{sub 2} are studied in terms of the variation of glass transition temperature (T{sub g}). It is seen that Tg increases as Tellurite concentration decreases in the case of glasses containing metal oxides Sb{sub 2}O{sub 4} WO{sub 3}, and Fe{sub 2}O{sub 3} while T{sub g} shows a decreasing trend with that of Na{sub 2}O and ZnO and the corresponding changes in the network structure are accounted to possible extent. The structural variations are analyzed using the concept of electronegativity.

  12. Absolute properties of the eclipsing binary star IM Persei

    SciTech Connect (OSTI)

    Lacy, Claud H. Sandberg [Physics Department, University of Arkansas, Fayetteville, AR 72701 (United States); Torres, Guillermo [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Fekel, Francis C.; Muterspaugh, Matthew W. [Center of Excellence in Information Systems, Tennessee State University, Nashville, TN 37209 (United States); Southworth, John, E-mail: clacy@uark.edu, E-mail: gtorres@cfa.harvard.edu, E-mail: fekel@evans.tsuniv.edu, E-mail: matthew1@coe.tsuniv.edu, E-mail: astro.js@keele.ac.uk [Astrophysics Group, Keele University, Staffordshire, ST5 5BG (United Kingdom)

    2015-01-01

    IM Per is a detached A7 eccentric eclipsing binary star. We have obtained extensive measurements of the light curve (28,225 differential magnitude observations) and radial velocity curve (81 spectroscopic observations) which allow us to fit orbits and determine the absolute properties of the components very accurately: masses of 1.7831 ± 0.0094 and 1.7741 ± 0.0097 solar masses, and radii of 2.409 ± 0.018 and 2.366 ± 0.017 solar radii. The orbital period is 2.25422694(15) days and the eccentricity is 0.0473(26). A faint third component was detected in the analysis of the light curves, and also directly observed in the spectra. The observed rate of apsidal motion is consistent with theory (U = 151.4 ± 8.4 year). We determine a distance to the system of 566 ± 46 pc.

  13. Two-klystron Binary Pulse Compression at SLAC

    SciTech Connect (OSTI)

    Farkas, Z.D.; Lavine, T.L.; Menegat, A.; Vlieks, A.E.; Wang, J.W.; Wilson, P.B.

    1993-04-01

    The Binary Pulse Compression system installed at SLAC was tested using two klystrons, one with 10 MW and the other with 34 MW output. By compressing 560 ns klystron pulses into 70 ns, the measured BPC output was 175 MW, limited by the available power from the two klystrons. This output was used to provide 100-MW input to a 30-cell X-band structure in which a 100-MV/m gradient was obtained. This system, using the higher klystron outputs expected in the future has the potential to deliver the 350 MW needed to obtain 100 MV/m gradients in the 1.8-m NLC prototype structure. This note describes the timing, triggering, and phase coding used in the two-klystron experiment, and the expected and measured net-work response to three- or two-stage modulation.

  14. Resurvey of order and chaos in spinning compact binaries

    SciTech Connect (OSTI)

    Wu Xin [Department of Physics, Nanchang University, Nanchang 330031 (China); Xie Yi [Department of Astronomy, Nanjing University, Nanjing 210093 (China)

    2008-05-15

    This paper is mainly devoted to applying the invariant, fast, Lyapunov indicator to clarify some doubt regarding the apparently conflicting results of chaos in spinning compact binaries at the second-order post-Newtonian approximation of general relativity from previous literatures. It is shown with a number of examples that no single physical parameter or initial condition can be described as responsible for causing chaos, but a complicated combination of all parameters and initial conditions is responsible. In other words, a universal rule for the dependence of chaos on each parameter or initial condition cannot be found in general. Chaos does not depend only on the mass ratio, and the maximal spins do not necessarily bring the strongest effect of chaos. Additionally, chaos does not always become drastic when the initial spin vectors are nearly perpendicular to the orbital plane, and the alignment of spins cannot trigger chaos by itself.

  15. Synthetic spectra of accretion disks in DQ Her binaries

    SciTech Connect (OSTI)

    Mauche, C.W.; Miller, G.S. (Los Alamos National Lab., NM (USA)); Raymond, J.C. (Harvard-Smithsonian Center for Astrophysics, Cambridge, MA (USA)); Lamb, F.K. (Illinois Univ., Urbana, IL (USA). Dept. of Physics)

    1989-01-01

    We explore the effect of the stellar magnetic field on the spectrum of the disk by comparing synthesized disk spectra to the observed ultraviolet spectrum of the well-studied DQ Her binary GK Per. We use the parameterized disk-magnetosphere interaction models of Miller and Lamb to calculate the radius of the inner edge of the disk and the local heating rate within the disk as a function of radius. With appropriate choices of parameters, these models can describe the models of Ghosh and Lamb and Wang. Once the local heating rate is determined, we assign an effective temperature to each of a series of disk annuli. The disk spectrum is then calculated by summing the flux contributed by each annulus, assuming that each annulus has the same spectrum as a main-sequence star with the assigned effective temperature. 5 refs., 2 figs.

  16. Evidence for a binary origin of a central compact object

    E-Print Network [OSTI]

    Doroshenko, Victor; Kavanagh, Patrick; Santangelo, Andrea; Suleimanov, Valery; Klochkov, Dmitry

    2015-01-01

    Central compact objects are thought to be young thermally emitting isolated neutron stars that were born during the preceding core-collapse supernova explosion. Here we present the first evidence that at least in one case the neutron star must have formed within a binary system. The former stellar companion, surrounded by a dust shell with an estimated mass of $\\sim0.4-1.5M_\\odot$ , is going through the final stages of its own evolution as a post-asymptotic giant branch star. We argue that accretion of matter supplied by the companion soon after the supernova explosion is likely responsible for dampening of the magnetic field of the central compact object to its presently low value.

  17. Asteroseismology and calibration of alpha Cen binary system

    E-Print Network [OSTI]

    Thévenin, F; Morel, P; Berthomieu, G; Bouchy, F; Carrier, F

    2002-01-01

    Using the oscillation frequencies of alpha Cen A recently discovered by Bouchy & Carrier, the available astrometric, photometric and spectroscopic data, we tried to improve the calibration of the visual binary system alpha Cen. With the revisited masses of Pourbaix et al. (2002) we do not succeed to obtain a solution satisfying all the seismic observational constraints. Relaxing the constraints on the masses, we have found an age t_alpha Cen=4850+-500 Myr, an initial helium mass fraction Y_i = 0.300+-0.008, and an initial metallicity (Z/X)_i=0.0459+-0.0019, with M_A=1.100+-0.006M_o and M_B=0.907+-0.006M_o for alpha Cen A&B.

  18. Asteroseismology and calibration of alpha Cen binary system

    E-Print Network [OSTI]

    F. Thevenin; J. Provost; P. Morel; G. Berthomieu; F. Bouchy; F. Carrier

    2002-06-17

    Using the oscillation frequencies of alpha Cen A recently discovered by Bouchy & Carrier, the available astrometric, photometric and spectroscopic data, we tried to improve the calibration of the visual binary system alpha Cen. With the revisited masses of Pourbaix et al. (2002) we do not succeed to obtain a solution satisfying all the seismic observational constraints. Relaxing the constraints on the masses, we have found an age t_alpha Cen=4850+-500 Myr, an initial helium mass fraction Y_i = 0.300+-0.008, and an initial metallicity (Z/X)_i=0.0459+-0.0019, with M_A=1.100+-0.006M_o and M_B=0.907+-0.006M_o for alpha Cen A&B.

  19. Merger of white dwarf-neutron star binaries: Prelude to hydrodynamic simulations in general relativity

    SciTech Connect (OSTI)

    Paschalidis, Vasileios; MacLeod, Morgan; Baumgarte, Thomas W.; Shapiro, Stuart L.

    2009-07-15

    White dwarf-neutron star binaries generate detectable gravitational radiation. We construct Newtonian equilibrium models of corotational white dwarf-neutron star (WDNS) binaries in circular orbit and find that these models terminate at the Roche limit. At this point the binary will undergo either stable mass transfer (SMT) and evolve on a secular time scale, or unstable mass transfer (UMT), which results in the tidal disruption of the WD. The path a given binary will follow depends primarily on its mass ratio. We analyze the fate of known WDNS binaries and use population synthesis results to estimate the number of LISA-resolved galactic binaries that will undergo either SMT or UMT. We model the quasistationary SMT epoch by solving a set of simple ordinary differential equations and compute the corresponding gravitational waveforms. Finally, we discuss in general terms the possible fate of binaries that undergo UMT and construct approximate Newtonian equilibrium configurations of merged WDNS remnants. We use these configurations to assess plausible outcomes of our future, fully relativistic simulations of these systems. If sufficient WD debris lands on the NS, the remnant may collapse, whereby the gravitational waves from the inspiral, merger, and collapse phases will sweep from LISA through LIGO frequency bands. If the debris forms a disk about the NS, it may fragment and form planets.

  20. SPECTRAL PROPERTIES OF X-RAY BINARIES IN CENTAURUS A

    SciTech Connect (OSTI)

    Burke, Mark J.; Raychaudhury, Somak [School of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom)] [School of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Kraft, Ralph P.; Forman, William R.; Jones, Christine; Murray, Stephen S.; Birkinshaw, Mark; Evans, Daniel A.; Jordan, Andres [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)] [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Maccarone, Thomas J.; Croston, Judith H. [School of Physics and Astronomy, University of Southampton, Southampton SO17 1BJ (United Kingdom)] [School of Physics and Astronomy, University of Southampton, Southampton SO17 1BJ (United Kingdom); Brassington, Nicola J.; Hardcastle, Martin J.; Goodger, Joanna L. [School of Physics, Astronomy, and Mathematics, University of Hertfordshire, Hatfield AL10 9AB (United Kingdom)] [School of Physics, Astronomy, and Mathematics, University of Hertfordshire, Hatfield AL10 9AB (United Kingdom); Kainulainen, Jouni [Max-Planck-Institute for Astronomy, Koenigstuhl 17, D-69117 Heidelberg (Germany)] [Max-Planck-Institute for Astronomy, Koenigstuhl 17, D-69117 Heidelberg (Germany); Woodley, Kristin A. [Department of Physics and Astronomy, University of British Columbia, Vancouver BC V6T 1Z1 (Canada)] [Department of Physics and Astronomy, University of British Columbia, Vancouver BC V6T 1Z1 (Canada); Sivakoff, Gregory R. [Department of Physics, University of Alberta, Edmonton, Alberta T6G 2E1 (Canada)] [Department of Physics, University of Alberta, Edmonton, Alberta T6G 2E1 (Canada); Gilfanov, Marat [Max-Planck-Institut fuer Astrophysik, Karl-Schwarzschild-Str. 1, D-85741, Garching (Germany)] [Max-Planck-Institut fuer Astrophysik, Karl-Schwarzschild-Str. 1, D-85741, Garching (Germany); Sarazin, Craig L. [Department of Astronomy, University of Virginia, P.O. Box 400325, Charlottesville, VA 22904-4325 (United States)] [Department of Astronomy, University of Virginia, P.O. Box 400325, Charlottesville, VA 22904-4325 (United States); Voss, Rasmus, E-mail: mburke@star.sr.bham.ac.uk [Department of Astrophysics/IMAPP, Radboud, University Nijmegen, P.O. Box 9010, NL-6500 GL Nijmegen (Netherlands)] [Department of Astrophysics/IMAPP, Radboud, University Nijmegen, P.O. Box 9010, NL-6500 GL Nijmegen (Netherlands); and others

    2013-04-01

    We present a spectral investigation of X-ray binaries (XBs) in NGC 5128 (Cen A), using six 100 ks Chandra observations taken over two months in 2007. We divide our sample into thermally and non-thermally dominated states based on the behavior of the fitted absorption column N{sub H}, and present the spectral parameters of sources with L{sub x} {approx}> 2 Multiplication-Sign 10{sup 37} erg s{sup -1}. The majority of sources are consistent with being neutron star low-mass X-ray binaries (NS LMXBs) and we identify three transient black hole (BH) LMXB candidates coincident with the dust lane, which is the remnant of a small late-type galaxy. Our results also provide tentative support for the apparent 'gap' in the mass distribution of compact objects between {approx}2-5 M{sub Sun }. We propose that BH LMXBs are preferentially found in the dust lane, and suggest this is because of the younger stellar population. The majority ({approx}70%-80%) of potential Roche lobe filling donors in the Cen A halo are {approx}> 12 Gyr old, while BH LMXBs require donors {approx}> 1 M{sub Sun} to produce the observed peak luminosities. This requirement for more massive donors may also explain recent results that claim a steepening of the X-ray luminosity function with age at L{sub x} {>=} 5 Multiplication-Sign 10{sup 38} erg s{sup -1} for the XB population of early-type galaxies; for older stellar populations, there are fewer stars {approx}> 1 M{sub Sun }, which are required to form the more luminous sources.

  1. Initial data for binary neutron stars with adjustable eccentricity

    E-Print Network [OSTI]

    Niclas Moldenhauer; Charalampos M. Markakis; Nathan K. Johnson-McDaniel; Wolfgang Tichy; Bernd Bruegmann

    2014-10-30

    Binary neutron stars in circular orbits can be modeled as helically symmetric, i.e., stationary in a rotating frame. This symmetry gives rise to a first integral of the Euler equation, often employed for constructing equilibrium solutions via iteration. For eccentric orbits, however, the lack of helical symmetry has prevented the use of this method, and the numerical relativity community has often resorted to constructing initial data by superimposing boosted spherical stars without solving the Euler equation. The spuriously excited neutron star oscillations seen in evolutions of such data arise because such configurations lack the appropriate tidal deformations and are stationary in a linearly comoving---rather than rotating---frame. We consider eccentric configurations at apoapsis that are instantaneously stationary in a rotating frame. We extend the notion of helical symmetry to eccentric orbits, by approximating the elliptical orbit of each companion as instantaneously circular, using the ellipse's inscribed circle. The two inscribed helical symmetry vectors give rise to approximate instantaneous first integrals of the Euler equation throughout each companion. We use these integrals as the basis of a self-consistent iteration of the Einstein constraints to construct conformal thin-sandwich initial data for eccentric binaries. We find that the spurious stellar oscillations are reduced by at least an order of magnitude, compared with those found in evolutions of superposed initial data. The tidally induced oscillations, however, are physical and qualitatively similar to earlier evolutions. Finally, we show how to incorporate radial velocity due to radiation reaction in our inscribed helical symmetry vectors, which would allow one to obtain truly non-eccentric initial data when our eccentricity parameter $e$ is set to zero.

  2. 2007 TY430: A COLD CLASSICAL KUIPER BELT TYPE BINARY IN THE PLUTINO POPULATION

    SciTech Connect (OSTI)

    Sheppard, Scott S.; Ragozzine, Darin; Trujillo, Chadwick

    2012-03-15

    Kuiper Belt object 2007 TY430 is the first wide, equal-sized, binary known in the 3:2 mean motion resonance with Neptune. The two components have a maximum separation of about 1 arcsec and are on average less than 0.1 mag different in apparent magnitude with identical ultra-red colors (g - i = 1.49 {+-} 0.01 mag). Using nearly monthly observations of 2007 TY430 from 2007 to 2011, the orbit of the mutual components was found to have a period of 961.2 {+-} 4.6 days with a semi-major axis of 21000 {+-} 160 km and eccentricity of 0.1529 {+-} 0.0028. The inclination with respect to the ecliptic is 15.68 {+-} 0.22 deg and extensive observations have allowed the mirror orbit to be eliminated as a possibility. The total mass for the binary system was found to be 7.90 {+-} 0.21 Multiplication-Sign 10{sup 17} kg. Equal-sized, wide binaries and ultra-red colors are common in the low-inclination 'cold' classical part of the Kuiper Belt and likely formed through some sort of three-body interactions within a much denser Kuiper Belt. To date 2007 TY430 is the only ultra-red, equal-sized binary known outside of the classical Kuiper Belt population. Numerical simulations suggest 2007 TY430 is moderately unstable in the outer part of the 3:2 resonance and thus 2007 TY430 is likely an escaped 'cold' classical object that later got trapped in the 3:2 resonance. Similar to the known equal-sized, wide binaries in the cold classical population, the binary 2007 TY430 requires a high albedo and very low density structure to obtain the total mass found for the pair. For a realistic minimum density of 0.5 g cm{sup -3} the albedo of 2007 TY430 would be greater than 0.17. For reasonable densities, the radii of either component should be less than 60 km, and thus the relatively low eccentricity of the binary is interesting since no tides should be operating on the bodies at their large distances from each other. The low prograde inclination of the binary also makes it unlikely that the Kozai mechanism could have altered the orbit, making the 2007 TY430 binary orbit likely one of the few relatively unaltered primordial binary orbits known. Under some binary formation models, the low-inclination prograde orbit of the 2007 TY430 binary indicates formation within a relatively high velocity regime in the Kuiper Belt.

  3. BEACON SOLAR ENERGY PROJECT (08-AFC-2) Project Title: Beacon Solar Energy Project (Beacon)

    E-Print Network [OSTI]

    BEACON SOLAR ENERGY PROJECT (08-AFC-2) FACT SHEET Project Title: Beacon Solar Energy Project and operate the Beacon Solar Energy Project (Beacon). Location: The project is located in eastern Kern County;BEACON SOLAR ENERGY PROJECT (08-AFC-2) FACT SHEET Licensing: The Beacon project would have a nominal

  4. National Compact Stellarator Experiment Project Closeout Report PROJECT CLOSEOUT REPORT

    E-Print Network [OSTI]

    Princeton Plasma Physics Laboratory

    Approved by Jeffrey Makiel DOE Federal Project Director for the National Compact Stellarator Experiment II.....................................................................................1 3. PROJECT HISTORY

  5. PROJECT MANGEMENT PLAN EXAMPLES Prepare Project Support Plans...

    Broader source: Energy.gov (indexed) [DOE]

    addressing the following key elements of project management and control: Project Management Control System (PMCS) - Work breakdown structure - Baseline developmentupdate...

  6. A transient supergiant X-ray binary in IC 10: An extragalactic SFXT?

    SciTech Connect (OSTI)

    Laycock, Silas; Cappallo, Rigel; Oram, Kathleen; Balchunas, Andrew

    2014-07-01

    We report the discovery of a large amplitude (factor of ?100) X-ray transient (IC 10 X-2, CXOU J002020.99+591758.6) in the nearby dwarf starburst galaxy IC 10 during our Chandra monitoring project. Based on the X-ray timing and spectral properties, and an optical counterpart observed with Gemini, the system is a high-mass X-ray binary consisting of a luminous blue supergiant and a neutron star. The highest measured luminosity of the source was 1.8 × 10{sup 37} erg s{sup –1}during an outburst in 2003. Observations before, during, and after a second outburst in 2010 constrain the outburst duration to be less than 3 months (with no lower limit). The X-ray spectrum is a hard power law (? = 0.3) with fitted column density (N{sub H} = 6.3 × 10{sup 21} atom cm{sup –2}), consistent with the established absorption to sources in IC 10. The optical spectrum shows hydrogen Balmer lines strongly in emission at the correct blueshift (-340 km s{sup –1}) for IC 10. The N III triplet emission feature is seen, accompanied by He II [4686] weakly in emission. Together these features classify the star as a luminous blue supergiant of the OBN subclass, characterized by enhanced nitrogen abundance. Emission lines of He I are seen, at similar strength to H?. A complex of Fe II permitted and forbidden emission lines are seen, as in B[e] stars. The system closely resembles galactic supergiant fast X-ray transients, in terms of its hard spectrum, variability amplitude, and blue supergiant primary.

  7. Project Surveillance and Maintenance Plan. [UMTRA Project

    SciTech Connect (OSTI)

    Not Available

    1985-09-01

    The Project Surveillance and Maintenance Plan (PSMP) describes the procedures that will be used by the US Department of Energy (DOE), or other agency as designated by the President to verify that inactive uranium tailings disposal facilities remain in compliance with licensing requirements and US Environmental Protection Agency (EPA) standards for remedial actions. The PSMP will be used as a guide for the development of individual Site Surveillance and Maintenance Plans (part of a license application) for each of the UMTRA Project sites. The PSMP is not intended to provide minimum requirements but rather to provide guidance in the selection of surveillance measures. For example, the plan acknowledges that ground-water monitoring may or may not be required and provides the (guidance) to make this decision. The Site Surveillance and Maintenance Plans (SSMPs) will form the basis for the licensing of the long-term surveillance and maintenance of each UMTRA Project site by the NRC. Therefore, the PSMP is a key milestone in the licensing process of all UMTRA Project sites. The Project Licensing Plan (DOE, 1984a) describes the licensing process. 11 refs., 22 figs., 8 tabs.

  8. Theory and Practice of Non-Binary Graph-Based Codes: A Combinatorial View

    E-Print Network [OSTI]

    Amiri, Behzad

    2015-01-01

    17 Finite-Length Analysis and Design of Non-Binary Block85 Finite-Length Analysis and Design of Spatially-Coupledcodes: enumerators, analysis, and designs,” Submitted to

  9. Non-Binary Protograph-Based LDPC Codes: Analysis,Enumerators and Designs

    E-Print Network [OSTI]

    Sun, Yizeng

    2013-01-01

    EXIT chart analysis and design of protograph-based non-D. Divsalar “EXIT chart analysis and design of non-binaryChapter 2 EXIT chart analysis and design of protograph-based

  10. Mechanisms size segregation binary granular mixture Matthias Schrter,* Stephan Ulrich, Jennifer Kreft, Jack Swift, Harry

    E-Print Network [OSTI]

    Mechanisms size segregation binary granular mixture Matthias Schröter,* Stephan Ulrich, Jennifer mechanisms have been suggested explain when each segregation observed. However, dependence of mechanisms number mechanisms consid­ ered seven. observe both BNE RBNE varying systematically driving frequency

  11. Migration into a Companion's Trap: Disruption of Multiplanet Systems in Binaries

    E-Print Network [OSTI]

    Touma, Jihad R

    2015-01-01

    Most exoplanetary systems in binary stars are of S--type, and consist of one or more planets orbiting a primary star with a wide binary stellar companion. Gravitational forcing of a single planet by a sufficiently inclined binary orbit can induce large amplitude oscillations of the planet's eccentricity and inclination through the Kozai-Lidov (KL) instability. KL cycling was invoked to explain: the large eccentricities of planetary orbits; the family of close--in hot Jupiters; and the retrograde planetary orbits in eccentric binary systems. However, several kinds of perturbations can quench the KL instability, by inducing fast periapse precessions which stabilize circular orbits of all inclinations: these could be a Jupiter--mass planet, a massive remnant disc or general relativistic precession. Indeed, mutual gravitational perturbations in multiplanet S--type systems can be strong enough to lend a certain dynamical rigidity to their orbital planes. Here we present a new and faster process that is driven by t...

  12. Simulation of the binary hard-sphere crystal/melt interface

    E-Print Network [OSTI]

    Davidchack, Ruslan L.; Laird, Brian Bostian

    1996-12-01

    We report results of molecular-dynamics simulations on a planar binary hard-sphere disordered facecentered-cubic [100] crystal/melt interface. From the analysis of the single-particle density and diffusion profiles for the separate components...

  13. The Kozai-Lidov Mechanism in Hydrodynamical Disks - II. Effects of binary and disk parameters

    E-Print Network [OSTI]

    Fu, Wen; Martin, Rebecca G

    2015-01-01

    Martin et al. (2014b) showed that a substantially misaligned accretion disk around one component of a binary system can undergo global damped Kozai-Lidov oscillations. During these oscillations, the inclination and eccentricity of the disk are periodically exchanged. However, the robustness of this mechanism and its dependence on the system parameters were unexplored. In this paper, we use three-dimensional hydrodynamical simulations to analyze how various binary and disk parameters affect the Kozai-Lidov mechanism in hydrodynamical disks. The simulations include the effect of gas pressure and viscosity, but ignore the effects of disk self-gravity. We describe results for different numerical resolutions, binary mass ratios and orbital eccentricities, initial disk sizes, initial disk surface density profiles, disk sound speeds, and disk viscosities. We show that the Kozai-Lidov mechanism can operate for a wide range of binary-disk parameters. We discuss the applications of our results to astrophysical disks in...

  14. The Holey Grail A special score function for non-binary traitor tracing

    E-Print Network [OSTI]

    International Association for Cryptologic Research (IACR)

    The Holey Grail A special score function for non-binary traitor tracing B. Skori´c, J decreases with growing alphabet size. We regret to inform you that this grail has holes. I. INTRODUCTION A

  15. Transformations in Massive Binary Stars: CRA Colloquium, Jan. 15, 2009 1 Mass and Angular Momentum

    E-Print Network [OSTI]

    Gies, Douglas R.

    over lives Progenitors of the Long Gamma Ray Bursts Binary Star Surveys Early Stages of Interacting, 2009 3 Progenitors of Long Gamma Ray Bursts Collapsar model (Woosley 1993): core of a massive, fast

  16. The accretion process in neutron-star low-mass X-ray binaries

    E-Print Network [OSTI]

    Lin, Dacheng

    2009-01-01

    There had been long-standing fundamental problems in the spectral studies of accreting neutron stars (NSs) in low-mass X-ray binaries involving the X-ray spectral decomposition, the relations between subtypes (mainly atoll ...

  17. PHYSICAL CHARACTERIZATION AND ORIGIN OF BINARY NEAR-EARTH ASTEROID (175706) 1996 FG

    E-Print Network [OSTI]

    Walsh, Kevin J.

    The near-Earth asteroid (NEA) (175706) 1996 FG[subscript 3] is a particularly interesting spacecraft target: a binary asteroid with a low-?v heliocentric orbit. The orbit of its satellite has provided valuable information ...

  18. A New Binary Logarithmic Arbitration Method for Ethernet Mart L. Molle

    E-Print Network [OSTI]

    Molle, Mart

    the dynamic behaviour of the current Truncated Binary Exponential Backoff (BEB) algorithm, and explain how Arbitration Method (BLAM), closely follow the stated design goals for BEB. I. Performance Implications

  19. On the rarity of x-ray binaries with Wolf-Rayet donors

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Linden, T; Valsecchi, F; Kalogera, V

    2012-03-06

    The paucity of High mass X-Ray binaries (HMXB) consisting of a neutron star (NS) accretor and Wolf-Rayet (WR) donor has long been at odds with expectations from population synthesis studies indicating that these systems should survive as the evolved offspring of the observed HMXB population. This tension is particularly troubling in light of recent observations uncovering a preponderance of HMXBs containing loosely bound Be donors which would be expected to naturally evolve into WR-HMXBs. Reconciling the unexpectedly large population of Be-HMXBs with the lack of observed WR-HMXB sources thus serves to isolate the dynamics of CE physics from other binary evolution parameters. Here, we find that binary mergers during CE events must be common in order to resolve tension between these observed populations. Furthermore, future observations which better constrain the background population of loosely bound O/B-NS binaries are likely to place significant constraints on the efficiency of CE removal.

  20. Ba and Ni speciation in a nodule of binary Mn oxide phase composition from Lake Baikal

    E-Print Network [OSTI]

    , and absorption spectroscopy. Fe is speciated as goethite, and Mn as romanechite (psilomelane) and 10 A is separated from the other type by goethite. The binary Mn oxide banding pattern is interpreted by a two

  1. THE YOUNGEST KNOWN X-RAY BINARY: CIRCINUS X-1 AND ITS NATAL SUPERNOVA REMNANT

    E-Print Network [OSTI]

    Heinz, S.

    Because supernova remnants are short-lived, studies of neutron star X-ray binaries within supernova remnants probe the earliest stages in the life of accreting neutron stars. However, such objects are exceedingly rare: ...

  2. On the rarity of X-ray binaries with Wolf-Rayet donors

    SciTech Connect (OSTI)

    Linden, T.; Valsecchi, F.; Kalogera, V.

    2012-03-14

    The paucity of High mass X-Ray binaries (HMXB) consisting of a neutron star (NS) accretor and Wolf-Rayet (WR) donor has long been at odds with expectations from population synthesis studies indicating that these systems should survive as the evolved offspring of the observed HMXB population. This tension is particularly troubling in light of recent observations uncovering a preponderance of HMXBs containing loosely bound Be donors which would be expected to naturally evolve into WR-HMXBs. Reconciling the unexpectedly large population of Be-HMXBs with the lack of observed WR-HMXB sources thus serves to isolate the dynamics of CE physics from other binary evolution parameters. We find that binary mergers during CE events must be common in order to resolve tension between these observed populations. Furthermore, future observations which better constrain the background population of loosely bound O/B-NS binaries are likely to place significant constraints on the efficiency of CE removal.

  3. Cyclotron line and wind studies of galactic high mass X- ray binaries

    E-Print Network [OSTI]

    Suchy, Slawomir

    2011-01-01

    of a low mass star, where the fusion process has stopped andhydrogen of the fusion process is depleted, the star reacheshydrogen fusion process. In binary systems, where one star

  4. On the Kinematics of Solar Mirrors Using Massively Parallel Binary Actuation

    E-Print Network [OSTI]

    Dubowsky, Steven

    Precision mirrors are required for effective solar energy collectors. Manufacturing such mirrors and making them robust to disturbances such as thermal gradients is expensive. In this paper, the use of parallel binary ...

  5. The Kozai-Lidov mechanism in hydrodynamical disks. II. Effects of binary and disk parameters

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Fu, Wen; Lubow, Stephen H.; Martin, Rebecca G.

    2015-07-01

    Martin et al. (2014b) showed that a substantially misaligned accretion disk around one component of a binary system can undergo global damped Kozai–Lidov (KL) oscillations. During these oscillations, the inclination and eccentricity of the disk are periodically exchanged. However, the robustness of this mechanism and its dependence on the system parameters were unexplored. In this paper, we use three-dimensional hydrodynamical simulations to analyze how various binary and disk parameters affect the KL mechanism in hydrodynamical disks. The simulations include the effect of gas pressure and viscosity, but ignore the effects of disk self-gravity. We describe results for different numerical resolutions,more »binary mass ratios and orbital eccentricities, initial disk sizes, initial disk surface density profiles, disk sound speeds, and disk viscosities. We show that the KL mechanism can operate for a wide range of binary-disk parameters. We discuss the applications of our results to astrophysical disks in various accreting systems.« less

  6. X-ray spectroscopy of neutron star low-mass X-ray binaries

    E-Print Network [OSTI]

    Krauss, Miriam Ilana

    2007-01-01

    In this thesis, I present work spanning a variety of topics relating to neutron star lowmass X-ray binaries (LMXBs) and utilize spectral information from X-ray observations to further our understanding of these sources. ...

  7. A Type System for Certified Binaries Zhong Shao Bratin Saha Valery Trifonov Nikolaos Papaspyrou

    E-Print Network [OSTI]

    Trifonov, Valery

    A Type System for Certified Binaries Zhong Shao Bratin Saha Valery Trifonov Nikolaos Papaspyrou Department of Computer Science, Yale University New Haven, CT 06520-8285, U.S.A. {shao, saha, trifonov

  8. Energy feedback from x-ray binaries in the early universe

    E-Print Network [OSTI]

    2013-01-01

    X-RAY BINARIES IN THE EARLY UNIVERSE T. Fragos 1,2 , B. D.heating and reionization of the early universe. The two mostX-ray photons in the universe are active galactic nuclei (

  9. The CHPRC Columbia River Protection Project Quality Assurance Project Plan

    SciTech Connect (OSTI)

    Fix, N. J.

    2008-11-30

    Pacific Northwest National Laboratory researchers are working on the CHPRC Columbia River Protection Project (hereafter referred to as the Columbia River Project). This is a follow-on project, funded by CH2M Hill Plateau Remediation Company, LLC (CHPRC), to the Fluor Hanford, Inc. Columbia River Protection Project. The work scope consists of a number of CHPRC funded, related projects that are managed under a master project (project number 55109). All contract releases associated with the Fluor Hanford Columbia River Project (Fluor Hanford, Inc. Contract 27647) and the CHPRC Columbia River Project (Contract 36402) will be collected under this master project. Each project within the master project is authorized by a CHPRC contract release that contains the project-specific statement of work. This Quality Assurance Project Plan provides the quality assurance requirements and processes that will be followed by the Columbia River Project staff.

  10. Structuring small projects

    SciTech Connect (OSTI)

    Pistole, C.O.

    1995-11-01

    One of the most difficult hurdles facing small project developers is obtaining financing. Many major banks and institutional investors are unwilling to become involved in projects valued at less than $25 million. To gain the interest of small project investors, developers will want to present a well-considered plan and an attractive rate of return. Waste-to-energy projects are one type that can offer diversified revenue sources that assure maximum profitability. The Ripe Touch Greenhouse project, a $14.5 million waste tire-to-energy facility in Colorado, provides a case study of how combining the strengths of the project partners can help gain community and regulatory acceptance and maximize profit opportunities.

  11. Battleground Energy Recovery Project

    SciTech Connect (OSTI)

    Daniel Bullock

    2011-12-31

    In October 2009, the project partners began a 36-month effort to develop an innovative, commercial-scale demonstration project incorporating state-of-the-art waste heat recovery technology at Clean Harbors, Inc., a large hazardous waste incinerator site located in Deer Park, Texas. With financial support provided by the U.S. Department of Energy, the Battleground Energy Recovery Project was launched to advance waste heat recovery solutions into the hazardous waste incineration market, an area that has seen little adoption of heat recovery in the United States. The goal of the project was to accelerate the use of energy-efficient, waste heat recovery technology as an alternative means to produce steam for industrial processes. The project had three main engineering and business objectives: Prove Feasibility of Waste Heat Recovery Technology at a Hazardous Waste Incinerator Complex; Provide Low-cost Steam to a Major Polypropylene Plant Using Waste Heat; and ď?· Create a Showcase Waste Heat Recovery Demonstration Project.

  12. Binary and ternary gas mixtures for use in glow discharge closing switches

    DOE Patents [OSTI]

    Hunter, Scott R. (Oak Ridge, TN); Christophorou, Loucas G. (Oak Ridge, TN)

    1990-01-01

    Highly efficient binary and ternary gas mixtures for use in diffuse glow discharge closing switches are disclosed. The binary mixtures are combinations of helium or neon and selected perfluorides. The ternary mixtures are combinations of helium, neon, or argon, a selected perfluoride, and a small amount of gas that exhibits enhanced ionization characteristics. These mixtures are shown to be the optimum choices for use in diffuse glow discharge closing switches by virtue of the combined physio-electric properties of the mixture components.

  13. Constraining alternative theories of gravity by gravitational waves from precessing eccentric compact binaries with LISA

    E-Print Network [OSTI]

    Kent Yagi; Takahiro Tanaka

    2010-05-13

    We calculate how strongly one can put constraints on alternative theories of gravity such as Brans-Dicke and massive graviton theories with LISA. We consider inspiral gravitational waves from a compact binary composed of a neutron star (NS) and an intermediate mass black hole (IMBH) in Brans-Dicke (BD) theory and that composed of 2 super massive black holes (SMBHs) in massive graviton theories. We use the restricted 2PN waveforms including the effects of spins. We also take both precession and eccentricity of the orbit into account. For simplicity, we set the fiducial value for the spin of one of the binary constituents to zero so that we can apply the approximation called \\textit{simple precession}. We perform the Monte Carlo simulations of $10^4$ binaries, estimating the determination accuracy of binary parameters including the BD parameter $\\omega_{\\mathrm{BD}}$ and the Compton wavelength of graviton $\\lambda_g$ for each binary using the Fisher matrix method. We find that including both the spin-spin coupling $\\sigma$ and the eccentricity $e$ into the binary parameters reduces the determination accuracy by an order of magnitude for the Brans-Dicke case, whilst it has less influence on massive graviton theories. On the other hand, including precession enhances the constraint on $\\omega_{\\mathrm{BD}}$ only 20$%$ but it increases the constraint on $\\lambda_g$ by an order of magnitude. Using a $(1.4+1000)M_{\\odot}$ NS/BH binary of SNR=$\\sqrt{200}$, one can put a constraint $\\omega_{\\mathrm{BD}}>6944$, whilst using a $(10^7+10^6)M_{\\odot}$ BH/BH binary at 3Gpc, one can put $\\lambda_g>3.06\\times10^{21}$cm, on average. The latter is 4 orders of magnitude stronger than the one obtained from the solar system experiment. These results indicate that the effects of precession and eccentricity must be taken carefully in the parameter estimation analysis.

  14. Gravitational Waves from Coalescing Binary Black Holes: Theoretical and Experimental Challenges

    ScienceCinema (OSTI)

    None

    2011-10-06

    A network of ground-based interferometric gravitational wave detectors (LIGO/VIRGO/GEO/...) is currently taking data near its planned sensitivity. Coalescing black hole binaries are among the most promising, and most exciting, gravitational wave sources for these detectors. The talk will review the theoretical and experimental challenges that must be met in order to successfully detect gravitational waves from coalescing black hole binaries, and to be able to reliably measure the physical parameters of the source (masses, spins, ...).

  15. A relativistic formalism for computation of irrotational binary stars in quasi equilibrium states

    E-Print Network [OSTI]

    Masaru Shibata

    1998-04-23

    We present relativistic hydrostatic equations for obtaining irrotational binary neutron stars in quasi equilibrium states in 3+1 formalism. Equations derived here are different from those previously given by Bonazzola, Gourgoulhon, and Marck, and have a simpler and more tractable form for computation in numerical relativity. We also present hydrostatic equations for computation of equilibrium irrotational binary stars in first post-Newtonian order.

  16. Operational Waste Volume Projection

    SciTech Connect (OSTI)

    STRODE, J.N.

    2000-08-28

    Waste receipts to the double-shell tank system are analyzed and wastes through the year 2015 are projected based on generation trends of the past 12 months. A computer simulation of site operations is performed, which results in projections of tank fill schedules, tank transfers, evaporator operations, tank retrieval, and aging waste tank usage. This projection incorporates current budget planning and the clean-up schedule of the Tri-Party Agreement. Assumptions were current as of June. 2000.

  17. Microwave solidification project overview

    SciTech Connect (OSTI)

    Sprenger, G.

    1993-01-01

    The Rocky Flats Plant Microwave Solidification Project has application potential to the Mixed Waste Treatment Project and the The Mixed Waste Integrated Program. The technical areas being addressed include (1) waste destruction and stabilization; (2) final waste form; and (3) front-end waste handling and feed preparation. This document covers need for such a program; technology description; significance; regulatory requirements; and accomplishments to date. A list of significant reports published under this project is included.

  18. Operational Waste Volume Projection

    SciTech Connect (OSTI)

    STRODE, J.N.

    1999-08-24

    Waste receipts to the double-shell tank system are analyzed and wastes through the year 2018 are projected based on assumption as of July 1999. A computer simulation of site operations is performed, which results in projections of tank fill schedules, tank transfers, evaporator operations, tank retrieval, and aging waste tank usage. This projection incorporates current budget planning and the clean-up schedule of the Tri-Party Agreement.

  19. Mascoma: Frontier Biorefinery Project

    Broader source: Energy.gov [DOE]

    This project involves the construction and operation of a biorefinery that produces ethanol and other co-products from cellulosic materials through advanced consolidated bioprocessing.

  20. Integrated Project Team RM

    Office of Environmental Management (EM)

    acquisition process and will be utilized during all phases of a project life cycle. The IPT is a team of professionals representing diverse disciplines with the specific...

  1. Mentors and Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ideas. Borovsky, Joe Mentor Joe Borovsky General Interests Magnetospheric physics, solar-wind physics, solar-windmagnetosphere coupling Suggested Project Topics Theory and...

  2. Penobscot Tribe- 2012 Project

    Broader source: Energy.gov [DOE]

    With this award, the Penobscot Indian Nation will advance the preconstruction activities required to secure funding for the proposed 227-megawatt (MW) Alder Stream wind project.

  3. Bacteria TMDL Projects 

    E-Print Network [OSTI]

    Wythe, Kathy

    2007-01-01

    stream_source_info Bacteria TMDL projects.pdf.txt stream_content_type text/plain stream_size 2550 Content-Encoding ISO-8859-1 stream_name Bacteria TMDL projects.pdf.txt Content-Type text/plain; charset=ISO-8859-1 tx H2O... of the projects are listed below. ? Peach CreekWater Quality Improvement Project ? Monitoring and Educational Programs Focused on Bacteria and Nutrient Runoff on Dairy Operations in the LeonWatershed ? Development of the Plum CreekWPP ? Impact of Proper...

  4. Whistling Ridge Energy Project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    build, own and operate the wind project and their associated facilities. The Final Environmental Impact Statement (FEIS) has been issued for the proposed Whistling Ridge...

  5. TThe {\\sc Majorana} Project

    E-Print Network [OSTI]

    The MAJORANA collaboration

    2009-10-23

    The {\\sc Majorana} Project, a neutrinoless double-beta decay experiment is described with an emphasis on the choice of Ge-detector configuration.

  6. The MAJORANA project

    SciTech Connect (OSTI)

    Elliott, Steven R [Los Alamos National Laboratory

    2009-01-01

    The Majorana Project, a neutrinoless double-beta decay experiment is described with an emphasis on the choice of Ge-detector configuration.

  7. Power Systems Past Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    loop and its six associated substations. An upgrade of the INL loop, designed by Power Systems personnel, was completed in 1997. This project consists of transmission line...

  8. Light curve modeling of eclipsing binaries towards the constellation of Carina

    E-Print Network [OSTI]

    Dey, Aniruddha; Kumar, Subhash; Bhardwaj, Hrishabh; Bhattacharya, Barnmoy; Richa,; Sharma, Angad; Chauhan, Akshyata; Tiwari, Neha; Kaur, Sharanjit; Kumar, Suman; Abhishek,

    2015-01-01

    We present a detailed V-band photometric light curve modeling of 30 eclipsing binaries using the data from Pietrukowicz et al. (2009) collected with the European Southern Observatory Very Large Telescope (ESO VLT) of diameter 8-m. The light curve of these 30 eclipsing binaries were selected out of 148 of them available in the database on the basis of complete phase coverage, regular and smooth phased light curve shapes. Eclipsing binaries play pivotal role in the direct measurement of astronomical distances more accurately simply from their geometry of light curves. The accurate value of Hubble constant (H0) which measures the rate of expansion of the Universe heavily relies on extragalactic distance scale measurements. Classification of the selected binary stars in the sample were done, preliminarily on the basis of Fourier parameters in the a2-a4 plane and final classification was obtained from the Roche lobe geometry. Out of these 30 eclipsing binaries, only one was found to be detached binary system while...

  9. Caustic Crossing Microlensing Event by Binary MACHOs and Time Scale Bias

    E-Print Network [OSTI]

    Mareki Honma

    1998-11-25

    Caustic crossing microlensing events provide us a unique opportunity to measure the relative proper motion of the lens to the source, and so those caused by binary MACHOs are of great importance for understanding the structure of the Galactic halo and the nature of MACHOs. The microlensing event 98-SMC-01, occurred in June 1998, is the first event for which the proper motion is ever measured through the caustic crossing, and this event may be caused by binary MACHOs as we argue in this Letter. Motivated by the possible existence of binary MACHOs, we have performed the Monte Carlo simulations of caustic crossing events by binary MACHOs and investigated the properties and detectability of the events. Our calculation shows that typical caustic crossing events have the interval between two caustic crossings ($t_{\\rm cc}$) of about 5 days. We argue that with the current strategy of binary event search the proper motions of these typical events are not measurable because of the short time scale. Therefore the proper motion distribution measured from caustic crossing events suffers significantly from {`}time scale bias{'}, which is a bias toward finding long time scale events and hence slowly moving lenses. We predict there are two times more short time scale events ($t_{\\rm cc}\\le 10$ days) than long time scale events ($t_{\\rm cc}\\ge 10$ days), and propose an hourly monitoring observation instead of the nightly monitoring currently undertaken to detect caustic crossing events by binary MACHOs more efficiently.

  10. Project Reports for Kootznoowoo Incorporated- 2010 Project

    Office of Energy Efficiency and Renewable Energy (EERE)

    Thayer Lake Hydropower Development (TLHD) consists of a 1 MW+ run of the river hydropower project located in the Tongass Forest in the Admiralty Island National Monument Park that will provide the energy to the City of Angoon and Angoon Community Association (traditional tribe as recognized by Indian Reorganization Act).

  11. Monolithic Active Pixel Matrix with Binary Counters (MAMBO) ASIC

    SciTech Connect (OSTI)

    Khalid, Farah F.; Deptuch, Grzegorz; Shenai, Alpana; Yarema, Raymond J.; /Fermilab

    2010-11-01

    Monolithic Active Matrix with Binary Counters (MAMBO) is a counting ASIC designed for detecting and measuring low energy X-rays from 6-12 keV. Each pixel contains analogue functionality implemented with a charge preamplifier, CR-RC{sup 2} shaper and a baseline restorer. It also contains a window comparator which can be trimmed by 4 bit DACs to remove systematic offsets. The hits are registered by a 12 bit ripple counter which is reconfigured as a shift register to serially output the data from the entire ASIC. Each pixel can be tested individually. Two diverse approaches have been used to prevent coupling between the detector and electronics in MAMBO III and MAMBO IV. MAMBO III is a 3D ASIC, the bottom ASIC consists of diodes which are connected to the top ASIC using {mu}-bump bonds. The detector is decoupled from the electronics by physically separating them on two tiers and using several metal layers as a shield. MAMBO IV is a monolithic structure which uses a nested well approach to isolate the detector from the electronics. The ASICs are being fabricated using the SOI 0.2 {micro}m OKI process, MAMBO III is 3D bonded at T-Micro and MAMBO IV nested well structure was developed in collaboration between OKI and Fermilab.

  12. Summary of Historical Production for Nevada Binary Facilities

    SciTech Connect (OSTI)

    Mines, Greg; Hanson, Hillary

    2014-09-01

    The analysis described was initiated to validate inputs used in the US Department of Energy’s (DOE) economic modeling tool GETEM (Geothermal Electricity Technology Evaluation Model) by using publically available data to identify production trends at operating geothermal binary facilities in the state of Nevada. Data required for this analysis was obtained from the Nevada Bureau of Mines and Geology (NBMG), whom received the original operator reports from the Nevada Division of Minerals (NDOM). The data from the NBMG was inputted into Excel files that have been uploaded to the DOE’s National Geothermal Data System (NGDS). Once data was available in an Excel format, production trends for individual wells and facilities could be established for the periods data was available (thru 2009). Additionally, this analysis identified relationships existing between production (temperature and flow rates), power production and plant conversion efficiencies. The data trends showed that temperature declines have a significant impact on power production, and that in some instances operators increased production flow rate to offset power declines. The production trends with time that were identified are being used to update GETEM’s default inputs.

  13. Filtering post-Newtonian gravitational waves from coalescing binaries

    E-Print Network [OSTI]

    B. S. Sathyaprakash

    1994-11-15

    Gravitational waves from inspiralling binaries are expected to be detected using a data analysis technique known as {\\it matched filtering.} This technique is applicable whenever the form of the signal is known accurately. Though we know the form of the signal precisely, we will not know {\\it a priori} its parameters. Hence it is essential to filter the raw output through a host of search templates each corresponding to different values of the parameters. The number of search templates needed in detecting the Newtonian waveform characterized by three independent parameters is itself several thousands. With the inclusion of post-Newtonian corrections the inspiral waveform will have four independent parameters and this, it was thought, would lead to an increase in the number of filters by several orders of magnitude---an unfavorable feature since it would drastically slow down data analysis. In this paper I show that by a judicious choice of signal parameters we can work, even when the first post-Newtonian corrections are included, with as many number of parameters as in the Newtonian case. In other words I demonstrate that the effective dimensionality of the signal parameter space does not change when first post-Newtonian corrections are taken into account.

  14. How does a thermal binary crystal break under shear?

    E-Print Network [OSTI]

    Tobias Horn; Hartmut Löwen

    2014-11-21

    When exposed to strong shearing, the particles in a crystal will rearrange and ultimately, the crystal will break by forming large nonaffine defects. Even for the initial stage of this process, only little effort has been devoted to the understanding of the breaking process on the scale of the individual particle size for thermalized mixed crystals. Here, we explore the shear-induced breaking for an equimolar two-dimensional binary model crystal with a high interaction asymmetry between the two different species such that the initial crystal has an intersecting square sublattice of the two constituents. Using Brownian dynamics computer simulations, we show that the combination of shear and thermal fluctuations leads to a characteristic hierarchical breaking scenario where initially, the more strongly coupled particles are thermally distorted, paving the way for the weakly coupled particles to escape from their cage. This in turn leads to mobile defects which may finally merge, proliferating a cascade of defects, which triggers the final breakage of the crystal. This scenario is in marked contrast to the breakage of one-component crystals close to melting. Moreover, we explore the orientational dependence of the initial shear direction relative to the crystal orientation and compare this to the usual melting scenario without shear. Our results are verifiable in real-space experiments of superparamagnetic colloidal mixtures at a pending air-water interface in an external magnetic field where the shear can be induced by an external laser field.

  15. Simulations of stripped core-collapse supernovae in close binaries

    E-Print Network [OSTI]

    Rimoldi, Alex; Rossi, Elena Maria

    2015-01-01

    We perform smoothed-particle hydrodynamical simulations of the explosion of a helium star in a close binary system, and study the effects of the explosion on the companion star as well as the effect of the presence of the companion on the supernova remnant. By simulating the mechanism of the supernova from just after core bounce until the remnant shell passes the stellar companion, we are able to separate the various effects leading to the final system parameters. In the final system, we measure the mass stripping and ablation from, and the velocity kick imparted to, the companion star, as well as the structure of the supernova shell. The presence of the companion star produces a conical cavity in the expanding supernova remnant, and loss of material from the companion causes the supernova remnant to be more metal-rich on one side and more hydrogen-rich (from the companion material) around the cavity. Following the removal of mass from the companion, we study its subsequent evolution and compare it with a sin...

  16. The triple binary star EQ Tau with an active component

    SciTech Connect (OSTI)

    Li, K.; Hu, S.-M. [Shandong Provincial Key Laboratory of Optical Astronomy and Solar-Terrestrial Environment, Institute of Space Science and School of Space Science and Physics, Shandong University, Weihai, Weihai 264209 (China); Qian, S.-B.; He, J.-J., E-mail: kaili@sdu.edu.cn, E-mail: likai@ynao.ac.cn, E-mail: husm@sdu.edu.cn [Yunnan Observatories, Chinese Academy of Sciences, P.O. Box 110, Kunming 650011 (China)

    2014-05-01

    New photometric data of EQ Tau observed in 2010 and 2013 are presented. Light curves obtained in 2000 and 2004 by Yuan and Qian and 2001 by Yang and Liu, together with our two newly determined sets of light curves, were analyzed using the Wilson-Devinney code. The five sets of light curves exhibit very obvious variations, implying that the light curves of EQ Tau show a strong O'Connell effect. We found that EQ Tau is an A-type shallow contact binary with a contact degree of f = 11.8%; variable dark spots on the primary component of EQ Tau were also observed. Using 10 new times of minimum light, together with those collected from the literature, the orbital period change of EQ Tau was analyzed. We found that its orbital period includes a secular decrease (dP/dt = –3.63 × 10{sup –8} days yr{sup –1}) and a cyclic oscillation (A {sub 3} = 0.0058 days and P {sub 3} = 22.7 yr). The secular increase of the period can be explained by mass transfer from the more massive component to the less massive one or/and angular momentum loss due to a magnetic stellar wind. The Applegate mechanism cannot explain the cyclic orbital period change. A probable transit-like event was observed in 2010. Therefore, the cyclic orbital period change of EQ Tau may be due to the light time effect of a third body.

  17. Magnetically-induced outflows from binary neutron star merger remnants

    E-Print Network [OSTI]

    Siegel, Daniel M

    2015-01-01

    Recent observations by the Swift satellite have revealed long-lasting ($\\sim 10^2-10^5\\,\\mathrm{s}$), "plateau-like" X-ray afterglows in the vast majority of short gamma-ray bursts events. This has put forward the idea of a long-lived millisecond magnetar central engine being generated in a binary neutron star (BNS) merger and being responsible for the sustained energy injection over these timescales ("magnetar model"). We elaborate here on recent simulations that investigate the early evolution of such a merger remnant in general-relativistic magnetohydrodynamics. These simulations reveal very different conditions than those usually assumed for dipole spin-down emission in the magnetar model. In particular, the surrounding of the newly formed NS is polluted by baryons due to a dense, highly magnetized and isotropic wind from the stellar surface that is induced by magnetic field amplification in the interior of the star. The timescales and luminosities of this wind are compatible with early X-ray afterglows, ...

  18. COSMOLOGICAL FAST RADIO BURSTS FROM BINARY WHITE DWARF MERGERS

    SciTech Connect (OSTI)

    Kashiyama, Kazumi; Mészáros, Peter [Department of Astronomy and Astrophysics, Department of Physics, Center for Particle and Gravitational Astrophysics, Pennsylvania State University, University Park, PA 16802 (United States)] [Department of Astronomy and Astrophysics, Department of Physics, Center for Particle and Gravitational Astrophysics, Pennsylvania State University, University Park, PA 16802 (United States); Ioka, Kunihito, E-mail: kzk15@psu.edu, E-mail: nnp@psu.edu, E-mail: kunihito.ioka@kek.jp [Theory Center, Institute of Particle and Nuclear Studies, KEK, Department of Particle and Nuclear Physics, the Graduate University for Advanced Studies (Sokendai), Tsukuba 305-0801 (Japan)] [Theory Center, Institute of Particle and Nuclear Studies, KEK, Department of Particle and Nuclear Physics, the Graduate University for Advanced Studies (Sokendai), Tsukuba 305-0801 (Japan)

    2013-10-20

    Recently, Thornton et al. reported the detection of four fast radio bursts (FRBs). The dispersion measures indicate that the sources of these FRBs are at cosmological distance. Given the large full sky event rate ?10{sup 4} sky{sup –1} day{sup –1}, the FRBs are a promising target for multi-messenger astronomy. Here we propose double degenerate, binary white-dwarf (WD) mergers as the source of FRBs, which are produced by coherent emission from the polar region of a rapidly rotating, magnetized massive WD formed after the merger. The basic characteristics of the FRBs, such as the energetics, emission duration and event rate, can be consistently explained in this scenario. As a result, we predict that some FRBs can accompany type Ia supernovae (SNe Ia) or X-ray debris disks. Simultaneous detection could test our scenario and probe the progenitors of SNe Ia, and moreover would provide a novel constraint on the cosmological parameters. We strongly encourage future SN and X-ray surveys that follow up FRBs.

  19. The Fermi LAT view of the colliding wind binaries

    E-Print Network [OSTI]

    Pshirkov, Maxim S

    2015-01-01

    Colliding wind binaries (CWBs) have been considered as a possible high energy $\\gamma$-ray sources for some time, however no system other than $\\eta$ Car has been detected. In the paper a sample of seven CWBs (WR 11, WR 70, WR 137, WR 140, WR 146, WR 147) which were deemed most favourable candidates by a theoretic modelling was analyzed and almost 7 years of the Fermi-LAT data was used. WR 11 ($\\gamma^2$ Vel) was detected at 6.1$\\sigma$ significance level with a photon flux in 0.1-100 GeV range $(1.8\\pm0.6)\\times10^{-9}~\\mathrm{ph~cm^{-2}~s^{-1}}$, the energy flux $(2.7\\pm0.5)\\times10^{-12}~~\\mathrm{erg~cm^{-2}~s^{-1}}$. At the adopted distance $d=340$ pc that corresponds to luminosity $L=(3.7\\pm0.7)\\times10^{31}~\\mathrm{erg~s^{-1}}$. This luminosity amounts to $\\sim2\\times10^{-6}$ fraction of total wind kinetic power and $\\sim2\\times10^{-4}$ fraction of power injected into the wind-wind interaction region of this system. Upper limits were set on the high-energy flux from the WR 70 and WR 140 systems.

  20. Magnetically-induced outflows from binary neutron star merger remnants

    E-Print Network [OSTI]

    Daniel M. Siegel; Riccardo Ciolfi

    2015-05-06

    Recent observations by the Swift satellite have revealed long-lasting ($\\sim 10^2-10^5\\,\\mathrm{s}$), "plateau-like" X-ray afterglows in the vast majority of short gamma-ray bursts events. This has put forward the idea of a long-lived millisecond magnetar central engine being generated in a binary neutron star (BNS) merger and being responsible for the sustained energy injection over these timescales ("magnetar model"). We elaborate here on recent simulations that investigate the early evolution of such a merger remnant in general-relativistic magnetohydrodynamics. These simulations reveal very different conditions than those usually assumed for dipole spin-down emission in the magnetar model. In particular, the surrounding of the newly formed NS is polluted by baryons due to a dense, highly magnetized and isotropic wind from the stellar surface that is induced by magnetic field amplification in the interior of the star. The timescales and luminosities of this wind are compatible with early X-ray afterglows, such as the "extended emission". These isotropic winds are a generic feature of BNS merger remnants and thus represent an attractive alternative to current models of early X-ray afterglows. Further implications to BNS mergers and short gamma-ray bursts are discussed.

  1. Faint Thermonuclear Supernovae from AM Canum Venaticorum Binaries

    E-Print Network [OSTI]

    Lars Bildsten; Ken J. Shen; Nevin N. Weinberg; Gijs Nelemans

    2007-05-06

    Helium that accretes onto a Carbon/Oxygen white dwarf in the double white dwarf AM Canum Venaticorum (AM CVn) binaries undergoes unstable thermonuclear flashes when the orbital period is in the 3.5-25 minute range. At the shortest orbital periods (and highest accretion rates, Mdot > 10^-7 Msol/yr), the flashes are weak and likely lead to the Helium equivalent of classical nova outbursts. However, as the orbit widens and Mdot drops, the mass required for the unstable ignition increases, leading to progressively more violent flashes up to a final flash with Helium shell mass ~ 0.02-0.1 Msol. The high pressures of these last flashes allow the burning to produce the radioactive elements 48Cr, 52Fe, and 56Ni that power a faint (M_V in the range of -15 to -18) and rapidly rising (few days) thermonuclear supernova. Current galactic AM CVn space densities imply one such explosion every 5,000-15,000 years in 10^11 Msol of old stars (~ 2-6% of the Type Ia rate in E/SO galaxies). These ".Ia" supernovae (one-tenth as bright for one-tenth the time as a Type Ia supernovae) are excellent targets for deep (e.g. V=24) searches with nightly cadences, potentially yielding an all-sky rate of 1,000 per year.

  2. Irradiation-induced composition patterns in binary solid solutions

    SciTech Connect (OSTI)

    Dubey, Santosh; El-Azab, Anter [School of Nuclear Engineering, Purdue University, West Lafayette, Indiana 47906 (United States)] [School of Nuclear Engineering, Purdue University, West Lafayette, Indiana 47906 (United States)

    2013-09-28

    A theoretical/computational model for the irradiation-driven compositional instabilities in binary solid solutions has been developed. The model is suitable for investigating the behavior of structural alloys and metallic nuclear fuels in a reactor environment as well as the response of alloy thin films to ion beam irradiation. The model is based on a set of reaction-diffusion equations for the dynamics of vacancies, interstitials, and lattice atoms under irradiation. The dynamics of these species includes the stochastic generation of defects by collision cascades as well as the defect reactions and diffusion. The atomic fluxes in this model are derived based on the transitions of lattice defects. The set of reaction-diffusion equations are stiff, hence a stiffly stable method, also known as the Gear method, has been used to numerically approximate the equations. For the Cu-Au alloy in the solid solution regime, the model results demonstrate the formation of compositional patterns under high-temperature particle irradiation, with Fourier space properties (Fourier spectrum, average wavelength, and wavevector) depending on the cascade damage characteristics, average composition, and irradiation temperature.

  3. Preliminary study of pseudorandom binary sequence pulsing of ORELA

    SciTech Connect (OSTI)

    Larson, N. M.; Olsen, D. K.

    1980-03-01

    It has been suggested that pseudorandom binary sequence (PRBS) pulsing might enhance the performance of the Oak Ridge Electron Linear Accelerator (ORELA) for neutron-induced, time-of-flight (TOF) cross-section measurements. In this technical memorandum, equations are developed for expected count rates, statistical variances, and backgrounds for a pulsing scheme in which a PRBS is superimposed on the periodic equalintensity ORELA bursts. Introduction of the PRBS modification permits neutrons of different energies originating from different bursts to reach the detector simultaneously, and the signal corresponding to a unique flight time to be extracted mathematically. Relative advantages and disadvantages of measurements from conventional and PRBS pulsing modes are discussed in terms of counting statistics and backgrounds. Computer models of TOF spectra are generated for both pulsing modes, using as examples a 20-meter /sup 233/U fission-chamber measurement and a 155-meter /sup 238/U sample-in transmission measurement. Detailed comparisons of PRBS vs conventional results are presented. This study indicates that although PRBS pulsing could enhance ORELA performance for selected measurements, for general ORELA operation the disadvantages from PRBS pulsing probably outweigh the advantages.

  4. Comprehensive nucleosynthesis analysis for ejecta of compact binary mergers

    E-Print Network [OSTI]

    Just, Oliver; Pulpillo, Ricard Ardevol; Goriely, Stephane; Janka, H -Thomas

    2015-01-01

    We present a comprehensive study of r-process element nucleosynthesis in the ejecta of compact binary mergers (CBMs) and their relic black-hole (BH)-torus systems. The evolution of the BH-accretion tori is simulated for seconds with a Newtonian hydrodynamics code including viscosity effects, pseudo-Newtonian gravity for rotating BHs, and an energy-dependent two-moment closure scheme for the transport of electron neutrinos and antineutrinos. The investigated cases are guided by relativistic double neutron star (NS-NS) and NS-BH merger models, producing ~3-6 Msun BHs with rotation parameters of A~0.8 and tori of 0.03-0.3 Msun. Our nucleosynthesis analysis includes the dynamical (prompt) ejecta expelled during the CBM phase and the neutrino and viscously driven outflows of the relic BH-torus systems. While typically ~20-25% of the initial accretion-torus mass are lost by viscously driven outflows, neutrino-powered winds contribute at most another ~1%, but neutrino heating enhances the viscous ejecta significantl...

  5. How many Hipparcos Variability-Induced Movers are genuine binaries?

    E-Print Network [OSTI]

    Pourbaix, D; Detournay, S; Jorissen, A; Knapp, G; Makarov, V V

    2003-01-01

    Hipparcos observations of some variable stars, and especially of long-period (e.g. Mira) variables, reveal a motion of the photocenter correlated with the brightness variation ({variability-induced mover -- VIM), suggesting the presence of a binary companion. A re-analysis of the Hipparcos photometric and astrometric data does not confirm the VIM solution for 62 among the 288 VIM objects (21%) in the Hipparcos catalogue. Most of these 288 VIMs are long-period (e.g. Mira) variables (LPV). The effect of a revised chromaticity correction, which accounts for the color variations along the light cycle, was then investigated. It is based on `instantaneous' $V-I$ color indices derived from Hipparcos and Tycho-2 epoch photometry. Among the 188 LPVs flagged as VIM in the Hipparcos catalogue, 89 (47%) are not confirmed as VIM after this improved chromaticity correction is applied. This dramatic decrease in the number of VIM solutions is not surprising, since the chromaticity correction applied by the Hipparcos reductio...

  6. Kinetically driven ordered phase formation in binary colloidal crystals

    E-Print Network [OSTI]

    D. Bochicchio; A. Videcoq; R. Ferrando

    2013-01-25

    The aggregation of binary colloids of same size and balanced charges is studied by Brownian dynamics simulations for dilute suspensions. It is shown that, under appropriate conditions, the formation of colloidal crystals is dominated by kinetic effects leading to the growth of well-ordered crystallites of the sodium-chloride (NaCl) bulk phase. These crystallites form with very high probability even when the cesium-chloride (CsCl) phase is more stable thermodynamically. Global optimization searches show that this result is not related to the most favorable structures of small clusters, that are either amorphous or of CsCl structure. The formation of the NaCl phase is related to the specific kinetics of the crystallization process, which takes place by a two-step mechanism. In this mechanism, dense fluid aggregates form at first and then crystallization follows. It is shown that the type of short-range order in these dense fluid aggregates determines which phase is finally formed in the crystallites. The role of hydrodynamic effects in the aggregation process is analyzed by Stochastic Rotation Dynamics - Molecular Dynamics simulations, finding that these effects do not play a major role in the formation of the crystallites.

  7. The human genome project

    SciTech Connect (OSTI)

    Yager, T.D.; Zewert, T.E.; Hood, L.E. )

    1994-04-01

    The Human Genome Project (HGP) is a coordinated worldwide effort to precisely map the human genome and the genomes of selected model organisms. The first explicit proposal for this project dates from 1985 although its foundations (both conceptual and technological) can be traced back many years in genetics, molecular biology, and biotechnology. The HGP has matured rapidly and is producing results of great significance.

  8. The Home Microbiome Project

    SciTech Connect (OSTI)

    Gilbert, Jack

    2014-08-25

    The Home Microbiome Project is an initiative aimed at uncovering the dynamic co-associations between people's bacteria and the bacteria found in their homes.The hope is that the data and project will show that routine monitoring of the microbial diversity of your body and of the environment in which you live is possible.

  9. LEP Dismantling Project

    E-Print Network [OSTI]

    Poole, John; CERN. Geneva. SPS and LHC Division

    2001-01-01

    The LEP Dismantling Project has been in its operational phase since late in the year 2000. This report briefly reviews the development of the project and the current status. The report has been prepared for presentation to the Radiation Protection Committee in May 2001 and consequently it has a bias towards Radiation Protection activities.

  10. Project organizations and schedules

    SciTech Connect (OSTI)

    Briggs, R.J.

    1990-07-01

    The Superconducting Super Collider Laboratory (SSCL) faces the challenge of simultaneously carrying out a large-scale construction project with demanding cost, schedule, and performance goals; and creating a scientific laboratory capable of exploiting this unique scientific instrument. This paper describes the status of the laboratory organization developed to achieve these goals, and the major near-term schedule objectives of the project.

  11. TEAM PROJECT: USER TESTING

    E-Print Network [OSTI]

    TEAM PROJECT: USER TESTING Due: Wed April 21 (section 2) Thu April 22 (section 1) Now that you have: usability inspection, Neilsen's heuristic evaluation, pluralistic walk through, or GOMS analysis (without part of your project. You might consider a joint session with another team! Format: 3-4 page report

  12. Coal. [Great Plains Project

    SciTech Connect (OSTI)

    Not Available

    1981-03-01

    The status of various research projects related to coal is considered: gasification (approximately 30 processes) and in-situ gasification. Methanol production, retrofitting internal combustion engines to stratified charge engines, methanation (Conoco), direct reduction of iron ores, water resources, etc. Approximately 200 specific projects related to coal are considered with respect to present status. (LTN)

  13. The Home Microbiome Project

    ScienceCinema (OSTI)

    Gilbert, Jack

    2014-09-15

    The Home Microbiome Project is an initiative aimed at uncovering the dynamic co-associations between people's bacteria and the bacteria found in their homes.The hope is that the data and project will show that routine monitoring of the microbial diversity of your body and of the environment in which you live is possible.

  14. North American LNG Project Sourcebook

    SciTech Connect (OSTI)

    2007-06-15

    The report provides a status of the development of LNG Import Terminal projects in North America, and includes 1-2 page profiles of 63 LNG projects in North America which are either in operation, under construction, or under development. For each project, the sourcebook provides information on the following elements: project description, project ownership, project status, projected operation date, storage capacity, sendout capacity, and pipeline interconnection.

  15. In what sense a neutron star-black hole binary is the holy grail for testing gravity?

    E-Print Network [OSTI]

    Manjari Bagchi; Diego F. Torres

    2014-07-29

    Pulsars in binary systems have been very successful to test the validity of general relativity in the strong field regime. So far, such binaries include neutron star-white dwarf (NS-WD) and neutron star-neutron star (NS-NS) systems. It is commonly believed that a neutron star-black hole (NS-BH) binary will be much superior for this purpose. But in what sense is this true? Does it apply to all possible deviations?

  16. In what sense a neutron star-black hole binary is the holy grail for testing gravity?

    E-Print Network [OSTI]

    Bagchi, Manjari

    2014-01-01

    Pulsars in binary systems have been very successful to test the validity of general relativity in the strong field regime. So far, such binaries include neutron star-white dwarf (NS-WD) and neutron star-neutron star (NS-NS) systems. It is commonly believed that a neutron star-black hole (NS-BH) binary will be much superior for this purpose. But in what sense is this true? Does it apply to all possible deviations?

  17. Compact binary mergers as the origin of r-process elements in the Galactic halo

    SciTech Connect (OSTI)

    Ishimaru, Yuhri [Department of Material Science, International Christian University, 3-10-2 Osawa, Mitaka, Tokyo 181-8585 (Japan); Wanajo, Shinya [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Prantzos, Nikos [Institut d'Astrophysique de Paris, UMR7095 CNRS, Univ. P. and M. Curie, 98bis Bd. Arago, 75104 Paris (France)

    2014-05-02

    Compact binary mergers (of double neutron star and black hole-neutron star systems) are suggested to be the major site of the r-process elements in the Galaxy by recent hydrodynamical and nucleosynthesis studies. It has been pointed out, however, that estimated long lifetimes of compact binaries are in conflict with the presence of r-process-enhanced stars at the metallicity [Fe/H] ? ?3. To resolve this problem, we examine the role of compact binary mergers in the early Galactic chemical evolution on the assumption that our Galactic halo was formed from merging sub-halos. The chemical evolutions are modeled for sub-halos with their total stellar masses between 10{sup 4}M{sub ?} and 2 × 10{sup 8}M{sub ?}. The lifetimes of compact binaries are assumed to be 100 Myr (95%) and 1 Myr (5%) according to recent binary population synthesis studies. We find that the r-process abundances (relative to iron; [r/Fe]) start increasing at [Fe/H] ? ?3 if the star formation rates are smaller for less massive sub-halos. Our models also suggest that the star-to-star scatter of [r/Fe]'s observed in Galactic halo stars can be interpreted as a consequence of greater gas outflow rates for less massive sub-halos. In addition, the sub-solar [r/Fe]'s (observed as [Ba/Fe] ? ?1.5 for [Fe/H] < ?3) are explained by the contribution from the short-lived (? 1 Myr) binaries. Our result indicates, therefore, that compact binary mergers can be potentially the origin of the r-process elements throughout the Galactic history.

  18. Tailored Working Fluids for Enhanced Binary Geothermal Power Plants

    Office of Energy Efficiency and Renewable Energy (EERE)

    DOE Geothermal Program Peer Review 2010 - Presentation. Project Objective: To improve the utilization of available energy in geothermal resources and increase the energy conversion efficiency of systems employed by a) tailoring the subcritical and/or supercritical glide of enhanced working fluids to best match thermal resources, and b) identifying appropriate thermal system and component designs for the down-selected working fluids.

  19. Formation of binary phase gratings in photopolymer-liquid crystal composites by a surface-controlled anisotropic phase separation

    SciTech Connect (OSTI)

    Park, Jae-Hong; Khoo, Iam Choon; Yu, Chang-Jae; Jung, Min-Sik; Lee, Sin-Doo [216 Electrical Engineering East, Pennsylvania State University, University Park, Pennsylvania 16802 (United States); School of Electrical Engineering no. 32, Seoul National University, Kwanak P.O. Box 34, Seoul 151-600 (Korea, Republic of)

    2005-01-10

    We report on formation of binary phase gratings in photopolymer-liquid crystal (PLC) composites using a surface-controlled phase separation method. The binary nature of the PLC phase gratings is produced by employing a single step photo-ablation through an amplitude photomask which precisely controls the interfacial interactions between the LC and the photopolymer on the alignment layer. A subsequent illumination of the ultraviolet light onto the whole PLC promotes an anisotropic phase separation resulting in the formation of distinct binary patterns for the PLC structure. The electrically tunable diffraction properties of the binary phase gratings are presented.

  20. Energy Efficiency Project Development

    SciTech Connect (OSTI)

    IUEP

    2004-03-01

    The International Utility Efficiency Partnerships, Inc. (IUEP) has been a leader among the industry groups that have supported voluntary initiatives to promote international energy efficiency projects and address global climate change. The IUEP maintains its leadership by both supporting international greenhouse gas (GHG) reduction projects under the auspices of the U.S. Department of Energy (DOE) and by partnering with U.S. and international organizations to develop and implement strategies and specific energy efficiency projects. The goals of the IUEP program are to (1) provide a way for U.S. industry to maintain a leadership role in international energy efficiency infrastructure projects; (2) identify international energy project development opportunities to continue its leadership in supporting voluntary market-based mechanisms to reduce GHG emissions; and (3) demonstrate private sector commitment to voluntary approaches to global climate issues. The IUEP is dedicated to identifying, promoting, managing, and assisting in the registration of international energy efficiency projects that result in demonstrated voluntary reductions of GHG emissions. This Final Technical Report summarizes the IUEP's work in identifying, promoting, managing, and assisting in development of these projects and IUEP's effort in creating international cooperative partnerships to support project development activities that develop and deploy technologies that (1) increase efficiency in the production, delivery and use of energy; (2) increase the use of cleaner, low-carbon fuels in processing products; and (3) capture/sequester carbon gases from energy systems. Through international cooperative efforts, the IUEP intends to strengthen partnerships for energy technology innovation and demonstration projects capable of providing cleaner energy in a cost-effective manner. As detailed in this report, the IUEP met program objectives and goals during the reporting period January 1, 2001 through December 31, 2002. At the request of the DOE, we have also included in this report additional activities during the reporting period January, 1999 through January, 2001. This additional information had been reported earlier in the Final Technical Reports that summarized activities undertaken in those earlier periods.

  1. Energetics and phasing of nonprecessing spinning coalescing black hole binaries

    E-Print Network [OSTI]

    Alessandro Nagar; Thibault Damour; Christian Reisswig; Denis Pollney

    2015-06-28

    We present an improved numerical relativity (NR) calibration of the new effective-one-body (EOB) model for coalescing non precessing spinning black hole binaries recently introduced by Damour and Nagar [Physical Review D 90, 044018 (2014)]. We do so by comparing the EOB predictions to both the phasing and the energetics provided by two independent sets of NR data covering mass ratios $1\\leq q \\leq 8$ and dimensionless spin range $-0.95\\leq \\chi\\leq +0.98$. One set of data is a subset of the Simulating eXtreme Spacetimes (SXS) catalog of public waveforms; the other set consists of new simulations obtained with the Llama code plus Cauchy Characteristic Evolution. We present the first systematic computation of the gauge-invariant relation between the binding energy and the total angular momentum, $E_{b}(j)$, for a large sample of, spin-aligned, SXS and Llama data. The EOB model presented here has only two calibration parameters, one entering the non spinning sector, as a 5PN effective correction to the interaction potential, and one in the spinning sector, as an effective next-to-next-to-next-to-leading order correction to the spin-orbit coupling. These parameters are determined by comparing the EOB phasing with the SXS phasing, the consistency of the energetics being checked afterwards. The quality of the analytical model for gravitational wave data analysis purposes is assessed by computing the EOB/NR faithfulness, that is found to range, over the NR data sample, between $99\\%$ and $99.99\\%$ with a median value $99.865\\%$.

  2. Evolution of Low-Mass Helium Stars in Semidetached Binaries

    E-Print Network [OSTI]

    L. R. Yungelson

    2008-06-17

    We present results of a systematic investigation of the evolution of low-mass (0.35, 0.40, and 0.65 solar mass) helium donors in semidetached binaries with accretors - white dwarfs. In the initial models of evolutionary sequences abundance of helium in the center is between $\\simeq 0.1$ and 0.98. Results of computations may be applied to the study of the origin and evolutionary state of AM CVn stars. It is shown that the minimum orbital periods of the systems only weakly depend on the total mass of the system and evolutionary state of the donor at RLOF and are equal to 9-11 min. The scatter in the mass-exchange rates at a given orbital period in the range between period minimum and about 40 min. does not exceed $\\sim 2.5$. At orbital periods exceeding about 20 min. mass-losing stars are weakly degenerate homogeneous cooling objects and abundances of He, C, N, O, Ne in the matter lost by them depend on the extent of He-depletion at RLOF. For the systems which are currently considered as the most probable model candidates for AM CVn stars with helium donors these abundances are, approximately, Y$>$0.4, X_C$<$0.3, X_O$<$0.25, X_N$<$0.005. At orbital periods greater than about 40 min. the timescale of mass-loss begins to exceed thermal time-scale of the donors, the latter begin to contract, they become more degenerate and, apparently, "white-dwarf" and "helium-star" populations of AM CVn stars merge.

  3. Do X-ray Binary Spectral State Transition Luminosities Vary?

    E-Print Network [OSTI]

    Thomas J. Maccarone

    2003-08-02

    We tabulate the luminosities of the soft-to-hard state transitions of all X-ray binaries for which there exist good X-ray flux measurements at the time of the transition, good distance estimates, and good mass estimates for the compact star. We show that the state transition luminosities are at about 1-4% of the Eddington rate, markedly smaller than those typically quoted in the literature, with a mean value of 2%. Only the black hole candidate GRO J~1655-40 and the neutron star systems Aql X-1 and 4U 1728-34 have measured state transition luminosities inconsistent with this value at the 1$\\sigma$ level. GRO J~1655-40, in particular, shows a state transition luminosity below the mean value for the other sources at the $4\\sigma$ level. This result, combined with the known inner disk inclination angle (the disk is nearly parallel to the line of sight) from GRO J~1655-40's relativistic jets suggest that the hard X-ray emitting region in GRO J~1655-40 can have a velocity of no more than about $\\beta=0.68$, with a most likely value of about $\\beta=0.52$, and a minimum speed of $\\beta=0.45$, assuming that the variations in state transition luminosities are solely due to relativistic beaming effects. The variance in the state transition luminosities suggests an emission region with a velocity of $\\sim0.2c$. The results are discussed in terms of different emission models for the low/hard state. We also discuss the implications for measuring the dimensionless viscosity parameter $\\alpha$. We also find that if its state transitions occur at typical luminosities, then GX 339-4 is likely to be at a distance of at least 7.6 kpc, much further than typically quoted estimates.

  4. Coarsening dynamics of binary liquids with active rotation

    E-Print Network [OSTI]

    Syeda Sabrina; Matthew Spellings; Sharon C. Glotzer; Kyle J. M. Bishop

    2015-07-24

    Active matter comprised of many self-driven units can exhibit emergent collective behaviors such as pattern formation and phase separation in both biologica and synthetic systems. While these behaviors are increasingly well understood for ensembles of linearly self-propelled particles, less is known about the collective behaviors of active rotating particles where energy input at the particle level gives rise to rotational particle motion. A recent simulation study revealed that active rotation can induce phase separation in mixtures of counter-rotating particles in 2D. In contrast to that of linearly self-propelled particles, the phase separation of counter-rotating fluids is accompanied by steady convective flows that originate at the fluid-fluid interface. Here, we investigate the influence of these flows on the coarsening dynamics of actively rotating binary liquids using a phenomenological, hydrodynamic model that combines a Cahn-Hilliard equation for the fluid composition with a Navier-Stokes equation for the fluid velocity. The effect of active rotation is introduced though an additional force within the Navier-Stokes equations that arises due to gradients in the concentrations of clockwise and counter-clockwise rotating particles. Depending on the strength of active rotation and that of frictional interactions with the stationary surroundings, we observe and explain new dynamical behaviors such as "active coarsening" via self-generated flows as well as the emergence of self-propelled vortex doublets. We confirm that many of the qualitative behaviors identified by the continuum model can also be found in discrete, particle-based simulations of actively rotating liquids. Our results highlight further opportunities for achieving complex dissipative structures in active materials subject to distributed actuation.

  5. Luminous blue variables and superluminous supernovae from binary mergers

    SciTech Connect (OSTI)

    Justham, Stephen; Podsiadlowski, Philipp; Vink, Jorick S. E-mail: podsi@astro.ox.ac.uk

    2014-12-01

    Evidence suggests that the direct progenitor stars of some core-collapse supernovae (CCSNe) are luminous blue variables (LBVs), perhaps including some Type II 'superluminous supernovae' (SLSNe). We examine models in which massive stars gain mass soon after the end of core hydrogen burning. These are mainly intended to represent mergers following a brief contact phase during early Case B mass transfer, but may also represent stars which gain mass in the Hertzsprung Gap or extremely late during the main-sequence phase for other reasons. The post-accretion stars spend their core helium-burning phase as blue supergiants (BSGs), and many examples are consistent with being LBVs at the time of core collapse. Other examples are yellow supergiants at explosion. We also investigate whether such post-accretion stars may explode successfully after core collapse. The final core properties of post-accretion models are broadly similar to those of single stars with the same initial mass as the pre-merger primary star. More surprisingly, when early Case B accretion does affect the final core properties, the effect appears likely to favor a successful SN explosion, i.e., to make the core properties more like those of a lower-mass single star. However, the detailed structures of these cores sometimes display qualitative differences to any single-star model we have calculated. The rate of appropriate binary mergers may match the rate of SNe with immediate LBV progenitors; for moderately optimistic assumptions we estimate that the progenitor birthrate is ?1% of the CCSN rate.

  6. Multifragmentation vs. Evaporation vs. Binary-Decay in Fragment Production

    E-Print Network [OSTI]

    S. G. Mashnik; K. K. Gudima; M. I. Baznat

    2006-03-16

    This paper presents part of an internal LANL Progress Report on completion of the "S" and "G" versions of the improved Cascade-Exciton Model (CEM03.01) and the Los Alamos Quark-Gluon String Model (LAQGSM.03.01) codes. The "S" versions consider fragmentation of compound nuclei produced after the preequilibrium stage of reactions for excitation energies above 2A MeV using the Statistical Multifragmentation Model (SMM) by Botvina et al. ("S" stands for SMM), while the "G" versions describe evaporation/fission stages of reactions using the fission-like binary-decay model GEMINI of Charity et al. ("G" stands for GEMINI) instead of using the the Generalized Evaporation Model GEM2 of Furihata incorporated into the standard versions of these codes. We present here an analysis of the recent 660 MeV p + 129I and 3.65 GeV p + 112Sn JINR measurements, of the new COSY data on 1.2 GeV p + (13 nuclei from Al to Th), of the 300 MeV and 1 GeV p + 56Fe data measured at GSI in inverse kinematics, and of the new GSI data on 1 GeV/nucleon 124Xe and 136Xe + Pb. To better understand the mechanisms of fragment production, we discuss several calculated but not-yet-measured kinematic characteristics of products of these reactions, which are predicted to be quite different by SMM, GEMINI, and GEM2. We find these kinematic quantities to be potentially useful in differentiating these reaction mechanisms if they can be measured in future experiments.

  7. Chandra resolves the T Tauri binary system RW Aur

    SciTech Connect (OSTI)

    Skinner, Stephen L.; Güdel, Manuel E-mail: manuel.guedel@univie.ac.at

    2014-06-20

    RW Aur is a multiple T Tauri system consisting of an early-K type primary (A) and a K5 companion (B) at a separation of 1.''4. RW Aur A drives a bipolar optical jet that is well characterized optically. We present results of a sensitive Chandra observation whose primary objective was to search for evidence of soft extended X-ray emission along the jet, as has been seen for a few other nearby T Tauri stars. The binary is clearly resolved by Chandra and both stars are detected as X-ray sources. The X-ray spectra of both stars reveal evidence for cool and hot plasma. Surprisingly, the X-ray luminosity of the less-massive secondary is at least twice that of the primary and is variable. The disparity is attributed to the primary whose X-ray luminosity is at the low end of the range for classical T Tauri stars of similar mass based on established correlations. Deconvolved soft-band images show evidence for slight outward elongation of the source structure of RW Aur A along the blueshifted jet axis inside the central arcsecond. In addition, a faint X-ray emission peak is present on the redshifted axis at an offset of 1.''2 ± 0.''2 from the star. Deprojected jet speeds determined from previous optical studies are too low to explain this faint emission peak as shock-heated jet plasma. Thus, unless flow speeds in the redshifted jet have been underestimated, other mechanisms such as magnetic jet heating may be involved.

  8. Molecular Design of Branched and Binary Molecules at Ordered Interfaces

    SciTech Connect (OSTI)

    Kirsten Larson Genson

    2005-12-27

    This study examined five different branched molecular architectures to discern the effect of design on the ability of molecules to form ordered structures at interfaces. Photochromic monodendrons formed kinked packing structures at the air-water interface due to the cross-sectional area mismatch created by varying number of alkyl tails and the hydrophilic polar head group. The lower generations formed orthorhombic unit cell with long range ordering despite the alkyl tails tilted to a large degree. Favorable interactions between liquid crystalline terminal groups and the underlying substrate were observed to compel a flexible carbosilane dendrimer core to form a compressed elliptical conformation which packed stagger within lamellae domains with limited short range ordering. A twelve arm binary star polymer was observed to form two dimensional micelles at the air-water interface attributed to the higher polystyrene block composition. Linear rod-coil molecules formed a multitude of packing structures at the air-water interface due to the varying composition. Tree-like rod-coil molecules demonstrated the ability to form one-dimensional structures at the air-water interface and at the air-solvent interface caused by the preferential ordering of the rigid rod cores. The role of molecular architecture and composition was examined and the influence chemically competing fragments was shown to exert on the packing structure. The amphiphilic balance of the different molecular series exhibited control on the ordering behavior at the air-water interface and within bulk structures. The shell nature and tail type was determined to dictate the preferential ordering structure and molecular reorganization at interfaces with the core nature effect secondary.

  9. Hydropower major rehabilitation projects

    SciTech Connect (OSTI)

    Norlin, J.A. [Army Corps of Engineers, Portland, OR (United States)

    1995-12-31

    The Corps of Engineers has developed an active Major Rehabilitation Program to handle large, long duration restoration projects. These projects are funded by specific appropriations and subsequently are required to have detailed rehabilitation plans to justify the work. The emphasis of the Major Rehabilitation Program is correcting reliability problems. Papers that were presented at Waterpower `93 discussed the basic concepts that are required in preparing a Major Rehabilitation Evaluation Report. This paper will cover the current status of each of the current major rehabilitation projects that the Corps of Engineers has in progress.

  10. LIMB demonstration project extension

    SciTech Connect (OSTI)

    Not Available

    1990-09-21

    The purpose of the DOE limestone injection multistage burner (LIMB) Demonstration Project Extension is to extend the data base on LIMB technology and to expand DOE's list of Clean Coal Technologies by demonstrating the Coolside process as part of the project. The main objectives of this project are: to demonstrate the general applicability of LIMB technology by testing 3 coals and 4 sorbents (total of 12 coal/sorbent combinations) at the Ohio Edison Edgewater plant; and to demonstrate that Coolside is a viable technology for improving precipitator performance and reducing sulfur dioxide emissions while acceptable operability is maintained. Progress is reported. 3 figs.

  11. NAVAJO ELECTRIFICATION DEMONSTRATION PROJECT

    SciTech Connect (OSTI)

    Terry W. Battiest

    2008-06-11

    The Navajo Electrification Demonstration Project (NEDP) is a multi-year project which addresses the electricity needs of the unserved and underserved Navajo Nation, the largest American Indian tribe in the United States. The program serves to cumulatively provide off-grid electricty for families living away from the electricty infrastructure, line extensions for unserved families living nearby (less than 1/2 mile away from) the electricity, and, under the current project called NEDP-4, the construction of a substation to increase the capacity and improve the quality of service into the central core region of the Navajo Nation.

  12. Using Pulsars to Detect Massive Black Hole Binaries via Gravitational Radiation: Sagittarius A* and Nearby Galaxies

    E-Print Network [OSTI]

    Andrea N. Lommen; Donald C. Backer

    2001-07-24

    Pulsar timing measurements can be used to detect gravitational radiation from massive black hole binaries. The ~106d quasi-periodic flux variations in Sagittarius A* at radio wavelengths reported by Zhao, Bower, & Goss (2001) may be due to binarity of the massive black hole that is presumed to be responsible for the radio emission. A 106d equal-mass binary black hole is unlikely based on its short inspiral lifetime and other arguments. Nevertheless the reported quasi-periodicity has led us to consider whether the long-wavelength gravitational waves from a conjectured binary might be detected in present or future precision timing of millisecond pulsars. While present timing cannot reach the level expected for an equal-mass binary, we estimate that future efforts could. This inquiry has led us to further consider the detection of binarity in the massive black holes now being found in nearby galaxies. For orbital periods of ~2000d where the pulsar timing measurements are most precise, we place upper limits on the mass ratio of binaries as small as 0.06.

  13. ROTATIONAL SYNCHRONIZATION MAY ENHANCE HABITABILITY FOR CIRCUMBINARY PLANETS: KEPLER BINARY CASE STUDIES

    SciTech Connect (OSTI)

    Mason, Paul A.; Zuluaga, Jorge I.; Cuartas-Restrepo, Pablo A.; Clark, Joni M.

    2013-09-10

    We report a mechanism capable of reducing (or increasing) stellar activity in binary stars, thereby potentially enhancing (or destroying) circumbinary habitability. In single stars, stellar aggression toward planetary atmospheres causes mass-loss, which is especially detrimental for late-type stars, because habitable zones are very close and activity is long lasting. In binaries, tidal rotational breaking reduces magnetic activity, thus reducing harmful levels of X-ray and ultraviolet (XUV) radiation and stellar mass-loss that are able to erode planetary atmospheres. We study this mechanism for all confirmed circumbinary (p-type) planets. We find that main sequence twins provide minimal flux variation and in some cases improved environments if the stars rotationally synchronize within the first Gyr. Solar-like twins, like Kepler 34 and Kepler 35, provide low habitable zone XUV fluxes and stellar wind pressures. These wide, moist, habitable zones may potentially support multiple habitable planets. Solar-type stars with lower mass companions, like Kepler 47, allow for protected planets over a wide range of secondary masses and binary periods. Kepler 38 and related binaries are marginal cases. Kepler 64 and analogs have dramatically reduced stellar aggression due to synchronization of the primary, but are limited by the short lifetime. Kepler 16 appears to be inhospitable to planets due to extreme XUV flux. These results have important implications for estimates of the number of stellar systems containing habitable planets in the Galaxy and allow for the selection of binaries suitable for follow-up searches for habitable planets.

  14. The outcome of supernovae in massive binaries; removed mass, and its separation dependence

    SciTech Connect (OSTI)

    Hirai, Ryosuke; Sawai, Hidetomo; Yamada, Shoichi [Advanced Research Institute for Science and Engineering, Waseda University, 3-4-1, Okubo, Shinjuku, Tokyo 169-8555 (Japan)

    2014-09-01

    The majority of massive stars are formed in binary systems. It is hence reasonable to expect that most core-collapse supernovae (CCSNe) take place in binaries and the existence of a companion star may leave some imprints in observed features. Having this in mind, we have conducted two-dimensional hydrodynamical simulations of the collisions of CCSNe ejecta with the companion star in an almost-equal-mass (?10 M {sub ?}) binary to find out possible consequences of such events. In particular we pay attention to the amount of mass removed and its dependence on the binary separation. In contrast to the previous surmise, we find that the companion mass is stripped not by momentum transfer but by shock heating. Up to 25% of the original mass can be removed for the closest separations and the removed mass decreases as M {sub ub}?a {sup –4.3} with the binary separation a. By performing some experimental computations with artificially modified densities of incident ejecta, we show that if the velocity of ejecta is fixed, the density of incident ejecta is the single important parameter that actually determines the removed mass as M{sub ub}??{sub ej}{sup 1.4}. On the other hand, another set of simulations with modified velocities of incident ejecta demonstrate that the strength of the forward shock, which heats up the stellar material and causes the mass loss of the companion star, is actually the key parameter for the removed mass.

  15. EXPECTED LARGE SYNOPTIC SURVEY TELESCOPE (LSST) YIELD OF ECLIPSING BINARY STARS

    SciTech Connect (OSTI)

    Prsa, Andrej; Pepper, Joshua; Stassun, Keivan G.

    2011-08-15

    In this paper, we estimate the Large Synoptic Survey Telescope (LSST) yield of eclipsing binary stars, which will survey {approx}20,000 deg{sup 2} of the southern sky during a period of 10 years in six photometric passbands to r {approx} 24.5. We generate a set of 10,000 eclipsing binary light curves sampled to the LSST time cadence across the whole sky, with added noise as a function of apparent magnitude. This set is passed to the analysis-of-variance period finder to assess the recoverability rate for the periods, and the successfully phased light curves are passed to the artificial-intelligence-based pipeline ebai to assess the recoverability rate in terms of the eclipsing binaries' physical and geometric parameters. We find that, out of {approx}24 million eclipsing binaries observed by LSST with a signal-to-noise ratio >10 in mission lifetime, {approx}28% or 6.7 million can be fully characterized by the pipeline. Of those, {approx}25% or 1.7 million will be double-lined binaries, a true treasure trove for stellar astrophysics.

  16. WIYN open cluster study. LX. Spectroscopic binary orbits in NGC 6819

    SciTech Connect (OSTI)

    Milliman, Katelyn E.; Mathieu, Robert D.; Gosnell, Natalie M.; Geller, Aaron M.; Meibom, Sřren; Platais, Imants

    2014-08-01

    We present the current state of the WOCS radial-velocity (RV) survey for the rich open cluster NGC 6819 (2.5 Gyr) including 93 spectroscopic binary orbits with periods ranging from 1.5 to 8000 days. These results are the product of our ongoing RV survey of NGC 6819 using the Hydra Multi-Object Spectrograph on the WIYN 3.5 m telescope. We also include a detailed analysis of multiple prior sets of optical photometry for NGC 6819. Within a 1° field of view, our stellar sample includes the giant branch, the red clump, and blue straggler candidates, and extends to almost 2 mag below the main sequence (MS) turnoff. For each star observed in our survey we present all RV measurements, the average RV, and velocity variability information. Additionally, we discuss notable binaries from our sample, including eclipsing binaries (WOCS 23009, WOCS 24009, and WOCS 40007), stars noted in Kepler asteroseismology studies (WOCS 4008, WOCS 7009, and WOCS 8007), and potential descendants of past blue stragglers (WOCS 1006 and WOCS 6002). We find the incompleteness-corrected binary fraction for all MS binaries with periods less than 10{sup 4} days to be 22% ± 3% and a tidal circularization period of 6.2{sub ?1.1}{sup +1.1} days for NGC 6819.

  17. An alternative parameterisation for binary-lens caustic-crossing events

    E-Print Network [OSTI]

    A. Cassan

    2008-10-15

    Microlensing events are being discovered and alerted by the two survey teams OGLE and MOA at an increasing rate. Around ten percent of these events involve binary lenses. Such events potentially contain much information on the physical properties of the observed binary systems, which can then be used for e.g. statistical studies on binary objects in the Galactic disk or bulge. However, such events are usually not straightforward to study, because the model equations are strongly non-linear and there are many local minima that can fool the search for the best solution if the parameter space is not inspected with great care. In this work an alternative parameterisation for the binary lens fitting problem is proposed, in which the parameters involved are defined to represent as closely as possible the caustic-crossing features observed in most binary lens light curves. Furthermore, we work out an extension of the method in order to make use of the straight line fold caustic approximation, when the latter applies for both the caustic entry and exit. We introduce an alternative parameterisation in order to confine the exploration of the parameter space to regions where the models only involve caustic crossing at the dates seen in the light curve. We find that the proposed parameterisation provides more robustness to the light curve fitting process, in particular in avoiding a code to get stuck in false minima.

  18. Use of gravitational waves to measure alignment of spins in compact binaries

    E-Print Network [OSTI]

    Salvatore Vitale; Ryan Lynch; Philip Graff; Riccardo Sturani

    2015-03-14

    Coalescences of compact objects, neutron star and black holes, in binary systems are very promising sources of gravitational waves for the ground based detectors Advanced LIGO and Virgo. Much about compact binaries is still uncertain, including how often they are formed in the Universe, and some key details about their formation channels. One of the key open questions about compact binary coalescences is whether or not common envelope evolution is highly efficient in aligning spins with the orbital angular momentum. In this paper we show how gravitational waves detected by Advanced LIGO and Virgo can be used to verify if spins are preferentially aligned with the orbital angular momentum in compact binaries made of two black holes or a neutron star and a black hole. We first assume that all sources have either nearly aligned or non-aligned spins and use Bayesian model selection to calculate a cumulative odds ratio to compare the aligned and non-aligned models. We see that the correct model is typically preferred after one year of observation, at the realistic detection rate. We also simulate a situation where only a fraction of detected events have nearly aligned spins, and show how the mixture parameter can be estimated. We find that there exists a bias toward higher degrees of alignment and that this bias is larger for black hole binaries.

  19. NNSA project receives DOE Secretary's Award for Project Management...

    National Nuclear Security Administration (NNSA)

    project receives DOE Secretary's Award for Project Management Improvement | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the...

  20. Contract/Project Management

    Office of Environmental Management (EM)

    (Post- RCACAP) 80% Cleanup 86% Cleanup 67% Pre-CAP 88% Post-CAP This is based on a 3-year rolling average (FY09 to FY11, Note: zero cleanup projects completed in FY09). TPC is...

  1. CNEEC - Research Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of developing systems that can lead to break-out high-efficiency, cost-effective solar energy-to-fuel technologies. The projects are closely tied together through two mechanisms:...

  2. Hualapai Tribe- 2010 Project

    Broader source: Energy.gov [DOE]

    The project will build on the potential for renewable energy development on the Hualapai Reservation that was identified during the Phase l renewable energy resource assessment conducted by the Hualapai Tribe since 2005.

  3. Solar Forecast Improvement Project

    Office of Energy Efficiency and Renewable Energy (EERE)

    For the Solar Forecast Improvement Project (SFIP), the Earth System Research Laboratory (ESRL) is partnering with the National Center for Atmospheric Research (NCAR) and IBM to develop more...

  4. AVTA: The EV Project

    Broader source: Energy.gov [DOE]

    The EV Project partnered with city, regional and state governments, utilities, and other organizations in 18 cities to deploy about 12,500 public and residential charging stations.  It also...

  5. Winnebago Tribe- 2014 Project

    Broader source: Energy.gov [DOE]

    Following through with the Winnebago Tribe's commitment to reduce energy usage and consumption, the Winnebago Tribe Solar Project will focus on renewable energy production and energy cost savings consistent with protecting our natural environment.

  6. Offshore Wind Project Map

    Broader source: Energy.gov [DOE]

    Image that shows the demonstration project site and developer headquarters for two funding opportunity announcements: the 2011 Grants for Technology Development and the 2011 Grants for Removing Market Barriers.

  7. QUEST2 Energy Project 

    E-Print Network [OSTI]

    Clary, A. T.

    2007-01-01

    methodical process to identify primarily behavioral or procedural opportunities to improve energy efficiency. A key component of this process was to put control plans in place to maintain any gains that were achieved. The project resulting in finding...

  8. Portsmouth Paducah Project Office

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) established the Portsmouth/Paducah Project Office (PPPO) on October 1, 2003, to provide focused leadership to the Environmental Management missions at the...

  9. Contract/Project Management

    Energy Savers [EERE]

    76% This is a 3-year rolling average Data includes FY06 to FY08. (3748) 2. EM Cleanup (Soil and Groundwater Remediation, D&D, and Waste Treatment and Disposal) Projects: 90% of EM...

  10. Federal Project Facilitators

    Office of Energy Efficiency and Renewable Energy (EERE)

    The following are U.S. Department of Energy (DOE) approved project facilitators who are required under the DOE indefinite-delivery, indefinite-quantity contract to develop federal energy savings performance contracts.

  11. PROJECTION PURSUIT Jiayang Sun

    E-Print Network [OSTI]

    Sun, Jiayang

    PROJECTION PURSUIT Jiayang Sun Many data sets are high dimensional. It has been a common practice Friedman [7], Hall [11], Morton [21], Sun [23, 24], Cook et al. [2], Li and Cheng [19] and Roosen

  12. St. Bernard Project Update

    Broader source: Energy.gov [DOE]

    The folks at St. Bernard Project are helping survivors of Hurricane Katrina get back into their homes -- and are using new technologies to reduce energy and save money for the returning residents.

  13. Project financial evaluation

    SciTech Connect (OSTI)

    None, None

    2009-01-18

    The project financial section of the Renewable Energy Technology Characterizations describes structures and models to support the technical and economic status of emerging renewable energy options for electricity supply.

  14. Navajo Electrification Demonstraiton Project

    SciTech Connect (OSTI)

    Larry Ahasteen, Project Manager

    2006-07-17

    This is a final technical report required by DOE for the Navajo Electrification Demonstration Program, This report covers the electric line extension project for Navajo families that currently without electric power.

  15. Lake Charles CCS Project

    SciTech Connect (OSTI)

    Leib, Thomas; Cole, Dan

    2015-06-30

    In late September 2014 development of the Lake Charles Clean Energy (LCCE) Plant was abandoned resulting in termination of Lake Charles Carbon Capture and Sequestration (CCS) Project which was a subset the LCCE Plant. As a result, the project was only funded through Phase 2A (Design) and did not enter Phase 2B (Construction) or Phase 2C (Operations). This report was prepared relying on information prepared and provided by engineering companies which were engaged by Leucadia Energy, LLC to prepare or review Front End Engineering and Design (FEED) for the Lake Charles Clean Energy Project, which includes the Carbon Capture and Sequestration (CCS) Project in Lake Charles, Louisiana. The Lake Charles Carbon Capture and Sequestration (CCS) Project was to be a large-scale industrial CCS project intended to demonstrate advanced technologies that capture and sequester carbon dioxide (CO2) emissions from industrial sources into underground formations. The Scope of work was divided into two discrete sections; 1) Capture and Compression prepared by the Recipient Leucadia Energy, LLC, and 2) Transport and Sequestration prepared by sub-Recipient Denbury Onshore, LLC. Capture and Compression-The Lake Charles CCS Project Final Technical Report describes the systems and equipment that would be necessary to capture CO2 generated in a large industrial gasification process and sequester the CO2 into underground formations. The purpose of each system is defined along with a description of its equipment and operation. Criteria for selection of major equipment are provided and ancillary utilities necessary for safe and reliable operation in compliance with environmental regulations are described. Construction considerations are described including a general arrangement of the CCS process units within the overall gasification project. A cost estimate is provided, delineated by system area with cost breakdown showing equipment, piping and materials, construction labor, engineering, and other costs. The CCS Project Final Technical Report is based on a Front End Engineering and Design (FEED) study prepared by SK E&C, completed in [June] 2014. Subsequently, Fluor Enterprises completed a FEED validation study in mid-September 2014. The design analyses indicated that the FEED package was sufficient and as expected. However, Fluor considered the construction risk based on a stick-build approach to be unacceptable, but construction risk would be substantially mitigated through utilization of modular construction where site labor and schedule uncertainty is minimized. Fluor’s estimate of the overall EPC project cost utilizing the revised construction plan was comparable to SKE&C’s value after reflecting Fluor’s assessment of project scope and risk characteristic. Development was halted upon conclusion of Phase 2A FEED and the project was not constructed.Transport and Sequestration – The overall objective of the pipeline project was to construct a pipeline to transport captured CO2 from the Lake Charles Clean Energy project to the existing Denbury Green Line and then to the Hastings Field in Southeast Texas to demonstrate effective geologic sequestration of captured CO2 through commercial EOR operations. The overall objective of the MVA portion of the project was to demonstrate effective geologic sequestration of captured CO2 through commercial Enhanced Oil Recovery (EOR) operations in order to evaluate costs, operational processes and technical performance. The DOE target for the project was to capture and implement a research MVA program to demonstrate the sequestration through EOR of approximately one million tons of CO2 per year as an integral component of commercial operations.

  16. Term Pricing Project

    E-Print Network [OSTI]

    Jeff Beckley

    2015-10-29

    Term Pricing Project. Your job is to reprice Purdue Life's 20 Year Term. You are to write a one page memo or report summarizing your work. The report should ...

  17. A Mobile Robot Project

    E-Print Network [OSTI]

    Brooks, Rodney A.

    We are building a mobile robot which will roam around the AI lab observing and later perhaps doing. Our approach to building the robot and its controlling software differs from that used in many other projects in a number ...

  18. Innovative Self- Generating Projects 

    E-Print Network [OSTI]

    Kelly, L.

    2013-01-01

    ? All rights reserved. Case Studies on Canadian Customer Generation Projects Innovative Self-Generation Projects Liam Kelly, M.A.Sc, CMVP Energy Engineer Willis Energy Services A CLEAResult company ESL-IE-13-05-06 Proceedings of the Thrity...-05-06 Proceedings of the Thrity-Fifth Industrial Energy Technology Conference New Orleans, LA. May 21-24, 2013 ? 2013 CLEAResult ? All rights reserved. Overcoming Challenges ? Look for innovative opportunities ? Leverage available incentives ? Quantify other...

  19. Black Pine Circle Project

    SciTech Connect (OSTI)

    Mytko, Christine

    2014-03-31

    A group of seventh graders from Black Pine Circle school in Berkeley had the opportunity to experience the Advanced Light Source (ALS) as "users" via a collaborative field trip and proposal project. The project culminated with a field trip to the ALS for all seventh graders, which included a visit to the ALS data visualization room, a diffraction demonstration, a beamline tour, and informative sessions about x-rays and tomography presented by ALS scientists.

  20. Black Pine Circle Project

    ScienceCinema (OSTI)

    Mytko, Christine

    2014-09-15

    A group of seventh graders from Black Pine Circle school in Berkeley had the opportunity to experience the Advanced Light Source (ALS) as "users" via a collaborative field trip and proposal project. The project culminated with a field trip to the ALS for all seventh graders, which included a visit to the ALS data visualization room, a diffraction demonstration, a beamline tour, and informative sessions about x-rays and tomography presented by ALS scientists.

  1. The Mississippi CCS Project

    SciTech Connect (OSTI)

    Doug Cathro

    2010-09-30

    The Mississippi CCS Project is a proposed large-scale industrial carbon capture and sequestration (CCS) project which would have demonstrated advanced technologies to capture and sequester carbon dioxide (CO{sub 2}) emissions from industrial sources into underground formations. Specifically, the Mississippi CCS Project was to accelerate commercialization of large-scale CO{sub 2} storage from industrial sources by leveraging synergy between a proposed petcoke to Substitute Natural Gas (SNG) plant that is selected for a Federal Loan Guarantee and would be the largest integrated anthropogenic CO{sub 2} capture, transport, and monitored sequestration program in the U.S. Gulf Coast Region. The Mississippi CCS Project was to promote the expansion of enhanced oil recovery (EOR) in the Mississippi, Alabama and Louisiana region which would supply greater energy security through increased domestic energy production. The capture, compression, pipeline, injection, and monitoring infrastructure would have continued to sequester CO{sub 2} for many years after the completion of the term of the DOE agreement. The objectives of this project were expected to be fulfilled through two distinct phases. The overall objective of Phase 1 was to develop a fully definitive project basis for a competitive Renewal Application process to proceed into Phase 2 - Design, Construction and Operations. Phase 1 included the studies that establish the engineering design basis for the capture, compression and transportation of CO{sub 2} from the MG SNG Project, and the criteria and specifications for a monitoring, verification and accounting (MVA) plan at the Soso oil field in Mississippi. The overall objective of Phase 2, was to execute design, construction and operations of three capital projects: the CO{sub 2} capture and compression equipment, the Mississippi CO{sub 2} Pipeline to Denbury's Free State Pipeline, and an MVA system at the Soso oil field.

  2. Projects | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing Tool FitsProject Develops Student-Stakeholders ProjectBaseload

  3. Judge Evaluation Scoring Form for Project Technical Report PROJECT .#.: ..Project Title......

    E-Print Network [OSTI]

    Dahlberg, Teresa A.

    Judge Evaluation Scoring Form for Project Technical Report PROJECT .#.: ..Project Title...... #12 of the project?) Excellent Very Good Good Fair Unsatisfactory COMMENTS: #12;Judge Evaluation Scoring Form for REU and click! PROJECT TITLE REU Site: Computing Research for Undergraduates: Visualization, Virtual

  4. Project Title: Earthquake Documentary Interviews

    E-Print Network [OSTI]

    Hickman, Mark

    Project Title: Earthquake Documentary Interviews Bachelor of Arts Internship Company: Chris Thomson Academic Adviser: Mary Wiles Project Reference Number: S112/CEISMIC/29/NP - Earthquake collected on the earthquake, its survivors and their stories. This project is unique

  5. Projects of the year

    SciTech Connect (OSTI)

    Hansen, T.

    2007-01-15

    The Peabody Hotel, Orlando, Florida was the site of Power Engineering magazine's 2006 Projects of the Year Awards Banquet, which kicked-off the Power-Gen International conference and exhibition. The Best Coal-fired Project was awarded to Tri-State Generation and Transmission Association Inc., owner of Springenville Unit 3. This is a 400 MW pulverized coal plant in Springeville, AZ, sited with two existing coal-fired units. Designed to fire Powder River Basin coal, it has low NOx burners and selective catalytic reduction for NOx control, dry flue gas desulfurization for SO{sub 2} control and a pulse jet baghouse for particulate control. It has a seven-stage feedwater heater and condensers to ensure maximum performance. Progress Energy-Carolinas' Asheville Power Station FGD and SCR Project was awarded the 2006 coal-fired Project Honorable Mention. This plant in Skyland, NC was required to significantly reduce NOx emissions. When completed, the improvements will reduce NOx by 93% compared to 1996 levels and SO{sub 2} by 93% compared to 2001 levels. Awards for best gas-fired, nuclear, and renewable/sustainable energy projects are recorded. The Sasyadko Coal-Mine Methane Cogeneration Plant near Donezk, Ukraine, was given the 2006 Honorable Mention for Best Renewable/Sustainable Energy Project. In November 2004, Ukraine was among 14 nations to launch the Methane to Markets partnership. The award-winning plant is fuelled by methane released during coal extraction. It generates 42 MW of power. 4 photos.

  6. Static and dynamic properties of a particle-based algorithm for non-ideal fluids and binary mixtures

    E-Print Network [OSTI]

    Thomas Ihle; Erkan Tuzel

    2006-10-12

    A recently introduced particle-based model for fluid dynamics with effective excluded volume interactions is analyzed in detail. The interactions are modeled by means of stochastic multiparticle collisions which are biased and depend on local velocities and densities. Momentum and energy are exactly conserved locally. The isotropy and relaxation to equilibrium are analyzed and measured. It is shown how a discrete-time projection operator technique can be used to obtain Green-Kubo relations for the transport coefficients. Because of a large viscosity no long-time tails in the velocity auto-correlation and stress correlation functions were seen. Strongly reduced self-diffusion due to caging and an order/disorder transition is found at high collision frequency, where clouds consisting of at least four particles form a cubic phase. These structures were analyzed by measuring the pair-correlation function above and below the transition. Finally, the algorithm is extended to binary mixtures which phase-separate above a critical collision rate.

  7. Mak-Ban Binary 1 GEPP | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas:Montezuma,Information MHKMHK5Transport Projects | OpenMak-Ban / Laguna

  8. Gravitational wave detection using pulsars: status of the Parkes Pulsar Timing Array project

    E-Print Network [OSTI]

    G. B. Hobbs; M. Bailes; N. D. R. Bhat; S. Burke-Spolaor; D. J. Champion; W. Coles; A. Hotan; F. Jenet; L. Kedziora-Chudczer; J. Khoo; K. J. Lee; A. Lommen; R. N. Manchester; J. Reynolds; J. Sarkissian; W. van Straten; S. To; J. P. W. Verbiest; D. Yardley; X. P. You

    2008-12-15

    The first direct detection of gravitational waves may be made through observations of pulsars. The principal aim of pulsar timing array projects being carried out worldwide is to detect ultra-low frequency gravitational waves (f ~ 10^-9 to 10^-8 Hz). Such waves are expected to be caused by coalescing supermassive binary black holes in the cores of merged galaxies. It is also possible that a detectable signal could have been produced in the inflationary era or by cosmic strings. In this paper we review the current status of the Parkes Pulsar Timing Array project (the only such project in the Southern hemisphere) and compare the pulsar timing technique with other forms of gravitational-wave detection such as ground- and space-based interferometer systems.

  9. Geysers Project Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History View New Pages RecentPlant <Silver Peak Area (DOEEnergyProject

  10. Project Analysis Standard Operating Procedure

    Office of Environmental Management (EM)

    Standard Operating Procedure (EPASOP) Issued by Office of Acquisition and Project Management MA-63 March 12, 2014 DEPARTMENT OF ENERGY Office of Acquisition and Project...

  11. Towards frustration of freezing transition in a binary hard-disk mixture

    E-Print Network [OSTI]

    A. Huerta; V. Carrasco-Fadanelli; A. Trokhymchuk

    2012-12-27

    The freezing mechanism, recently suggested for a monodisperse hard-disk fluid [Huerta et al., Phys. Rev. E, 2006, 74, 061106] is extended here to an equimolar binary hard-disk mixtures. We are showing that for diameter ratios, smaller than 1.15 the global orientational order parameter of the binary mixture behaves like in the case of a monodisperse fluid. Namely, by increasing the disk number density there is a tendency to form a crystalline-like phase. However, for diameter ratios larger than 1.15 the binary mixtures behave like a disordered fluid. We use some of the structural and thermodynamic properties to compare and discuss the behavior as a function of diameter ratio and packing fraction.

  12. Wide Binary Effects on Asymmetries in Asymptotic Giant Branch Circumstellar Envelopes

    E-Print Network [OSTI]

    Kim, Hyosun

    2012-01-01

    Observations of increasingly higher spatial resolution reveal the existence of asymmetries in the circumstellar envelopes of a small fraction of asymptotic giant branch (AGB) stars. Although there is no general consensus for their origin, a binary companion star may be responsible. Within this framework, we investigate the gravitational effects associated with a sufficiently wide binary system, where Roche lobe overflow is unimportant, on the outflowing envelopes of AGB stars using three dimensional hydrodynamic simulations. The effects due to individual binary components are separately studied, enabling investigation of the stellar and circumstellar characteristics in detail. The reflex motion of the AGB star alters the wind velocity distribution, thereby, determining the overall shape of the outflowing envelope. On the other hand, the interaction of the companion with the envelope produces a gravitational wake, which exhibits a vertically thinner shape. The two patterns overlap and form clumpy structures. T...

  13. The Be/X-ray binary system V 0332+53: A Short Review

    E-Print Network [OSTI]

    Caballero-Garcia, M D; Arabaci, M Ozbey; Hudec, R

    2015-01-01

    Be/X-ray binary systems provide an excellent opportunity to study the physics around neutron stars through the study of the behaviour of matter around them. Intermediate and low-luminosity type outbursts are interesting because they provide relatively clean environments around neutron stars. In these conditions the physics of the magnetosphere around the neutron star can be better studied without being very disturbed by other phenomena regarding the transfer of matter between the two components of the Be/X-ray binary system. A recent study presents the optical longterm evolution of the Be/X-ray binary V 0332+53 plus the X-ray emission mainly during the intermediate-luminosity outburst on 2008. In this paper we comment on the context of these observations and on the properties that can be derived through the analysis of them.

  14. Effect of Ambient Design Temperature on Air-Cooled Binary Plant Output

    SciTech Connect (OSTI)

    Dan Wendt; Greg Mines

    2011-10-01

    Air-cooled binary plants are designed to provide a specified level of power production at a particular air temperature. Nominally this air temperature is the annual mean or average air temperature for the plant location. This study investigates the effect that changing the design air temperature has on power generation for an air-cooled binary plant producing power from a resource with a declining production fluid temperature and fluctuating ambient temperatures. This analysis was performed for plants operating both with and without a geothermal fluid outlet temperature limit. Aspen Plus process simulation software was used to develop optimal air-cooled binary plant designs for specific ambient temperatures as well as to rate the performance of the plant designs at off-design operating conditions. Results include calculation of annual and plant lifetime power generation as well as evaluation of plant operating characteristics, such as improved power generation capabilities during summer months when electric power prices are at peak levels.

  15. The Runaway Binary LP 400-22 is Leaving the Galaxy

    E-Print Network [OSTI]

    Kilic, Mukremin; Brown, Warren R; Harris, Hugh C; Dahn, Conard C; Agueros, M A; Heinke, Craig O; Kenyon, S J; Panei, J A; Camilo, Fernando

    2013-01-01

    We present optical spectroscopy, astrometry, radio, and X-ray observations of the runaway binary LP 400-22. We refine the orbital parameters of the system based on our new radial velocity observations. Our parallax data indicate that LP 400-22 is significantly more distant (3 sigma lower limit of 840 pc) than initially predicted. LP 400-22 has a tangential velocity in excess of 830 km/s; it is unbound to the Galaxy. Our radio and X-ray observations fail to detect a recycled millisecond pulsar companion, indicating that LP 400-22 is a double white dwarf system. This essentially rules out a supernova runaway ejection mechanism. Based on its orbit, a Galactic center origin is also unlikely. However, its orbit intersects the locations of several globular clusters; dynamical interactions between LP 400-22 and other binary stars or a central black hole in a dense cluster could explain the origin of this unusual binary.

  16. Jefferson Lab Project Control System Manual

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Project Control System Manual Technical Engineering Development Facility (TEDF) Utilities Infrastructure Modernization (UIM) Office of Project Management Project Control...

  17. Three close binaries in different evolutionary stages in the old open cluster NGC 188

    SciTech Connect (OSTI)

    Zhu, L. Y.; Qian, S. B.; Liu, L.; He, J. J.; Liu, N. P.; Zhao, E. G.; Zhang, J.; Wang, J. J.; Soonthornthum, B.

    2014-02-01

    NGC 188 is a good laboratory for studying the formation and evolution of W UMa type contact binaries due to its rich populations of them. We present a detailed photometric study of three short-period close binaries, EP Cep, ES Cep, and V369 Cep, in the old open cluster NGC 188 based on our two-set photometric observations. We discovered that both EP Cep and ES Cep are shallow-contact binaries with continuously decreasing periods. The difference is in their mass ratios. EP Cep has an extremely low-mass ratio, q = 0.15, while ES Cep has a relatively high-mass ratio, q = 0.69, indicating that they lie in different evolutionary stages. ES Cep is likely a newly formed contact binary via a Case A mass transfer, while EP Cep is an evolved system and may be on the oscillations caused by the combined effect of the thermal relaxation oscillation and the variable angular momentum loss. For another system, V369 Cep, we found that it is a primary-filling near-contact binary. Both the semidetached configuration and the continuous decrease in the orbital period indicate that it is undergoing a mass transfer from the primary component to the secondary one. This conclusion is in agreement with the excess luminosity seen in the light curves on the ingress of the secondary minimum produced by the impact of the mass transfer. All of the results suggest that V369 Cep is evolving into contact, and a shallow-contact high-mass ratio system similar to ES Cep will be formed. Then, it will evolve into a low-mass ratio contact binary just like EP Cep, and finally merge into a rapidly rotating single star.

  18. Gravitational wave observations of galactic intermediate-mass black hole binaries with DECIGO Path Finder

    E-Print Network [OSTI]

    Kent Yagi

    2012-03-03

    DECIGO Path Finder (DPF) is a space-borne gravitational wave (GW) detector with sensitivity in the frequency band 0.1--100Hz. As a first step mission to DECIGO, it is aiming for launching in 2016--2017. Although its main objective is to demonstrate technology for GW observation in space, DPF still has a chance of detecting GW signals and performing astrophysical observations. With an observable range up to 50 kpc, its main targets are GW signals from galactic intermediate mass black hole (IMBH) binaries. By using inspiral-merger-ringdown phenomenological waveforms, we perform both pattern-averaged analysis and Monte Carlo simulations including the effect of detector motion to find that the masses and (effective) spins of the IMBHs could be determined with errors of a few percent, should the signals be detected. Since GW signals from IMBH binaries with masses above $10^4 M_\\odot$ cannot be detected by ground-based detectors, these objects can be unique sources for DPF. If the inspiral signal of a $10^3M_\\odot$ IMBH binary is detected with DPF, it can give alert to the ringdown signal for the ground-based detectors $10^2$--$10^3$s before coalescence. We also estimate the possible bound on the graviton Compton wavelength from a possible IMBH binary in $\\omega$ Centauri. We obtain a slightly weaker constraint than the solar system experiment and an about 2 orders of magnitude stronger constraint than the one from binary pulsar tests. Unfortunately, the detection rate of IMBH binaries is rather small.

  19. LOW-MASS ECLIPSING BINARIES IN THE INITIAL KEPLER DATA RELEASE

    SciTech Connect (OSTI)

    Coughlin, J. L.; Harrison, T. E.; Ule, N.; Lopez-Morales, M.; Hoffman, D. I.

    2011-03-15

    We identify 231 objects in the newly released Cycle 0 data set from the Kepler Mission as double-eclipse, detached eclipsing binary systems with T{sub eff} < 5500 K and orbital periods shorter than {approx}32 days. We model each light curve using the JKTEBOP code with a genetic algorithm to obtain precise values for each system. We identify 95 new systems with both components below 1.0 M{sub sun} and eclipses of at least 0.1 mag, suitable for ground-based follow-up. Of these, 14 have periods less than 1.0 day, 52 have periods between 1.0 and 10.0 days, and 29 have periods greater than 10.0 days. This new sample of main-sequence, low-mass, double-eclipse, detached eclipsing binary candidates more than doubles the number of previously known systems and extends the sample into the completely heretofore unexplored P > 10.0 day period regime. We find preliminary evidence from these systems that the radii of low-mass stars in binary systems decrease with period. This supports the theory that binary spin-up is the primary cause of inflated radii in low-mass binary systems, although a full analysis of each system with radial-velocity and multi-color light curves is needed to fully explore this hypothesis. Also, we present seven new transiting planet candidates that do not appear among the list of 706 candidates recently released by the Kepler team, or in the Kepler False Positive Catalog, along with several other new and interesting systems. We also present novel techniques for the identification, period analysis, and modeling of eclipsing binaries.

  20. The end of the MACHO era, revisited: New limits on MACHO masses from halo wide binaries

    SciTech Connect (OSTI)

    Monroy-Rodríguez, Miguel A.; Allen, Christine

    2014-08-01

    In order to determine an upper bound for the mass of the massive compact halo objects (MACHOs), we use the halo binaries contained in a recent catalog by Allen and Monroy-Rodríguez. To dynamically model their interactions with massive perturbers, a Monte Carlo simulation is conducted, using an impulsive approximation method and assuming a galactic halo constituted by massive particles of a characteristic mass. The results of such simulations are compared with several subsamples of our improved catalog of candidate halo wide binaries. In accordance with Quinn et al., we also find our results to be very sensitive to the widest binaries. However, our larger sample, together with the fact that we can obtain galactic orbits for 150 of our systems, allows a more reliable estimate of the maximum MACHO mass than that obtained previously. If we employ the entire sample of 211 candidate halo stars we, obtain an upper limit of 112 M{sub ?}. However, using the 150 binaries in our catalog with computed galactic orbits, we are able to refine our fitting criteria. Thus, for the 100 most halo-like binaries we obtain a maximum MACHO mass of 21-68 M{sub ?}. Furthermore, we can estimate the dynamical effects of the galactic disk using binary samples that spend progressively shorter times within the disk. By extrapolating the limits obtained for our most reliable—albeit smallest—sample, we find that as the time spent within the disk tends to zero, the upper bound of the MACHO mass tends to less than 5 M{sub ?}. The non-uniform density of the halo has also been taken into account, but the limit obtained, less than 5 M{sub ?}, does not differ much from the previous one. Together with microlensing studies that provide lower limits on the MACHO mass, our results essentially exclude the existence of such objects in the galactic halo.

  1. WIDE BINARY EFFECTS ON ASYMMETRIES IN ASYMPTOTIC GIANT BRANCH CIRCUMSTELLAR ENVELOPES

    SciTech Connect (OSTI)

    Kim, Hyosun; Taam, Ronald E., E-mail: hkim@asiaa.sinica.edu.tw, E-mail: r-taam@northwestern.edu [Academia Sinica Institute of Astronomy and Astrophysics, P.O. Box 23-141, Taipei 10617, Taiwan (China)

    2012-11-01

    Observations of increasingly higher spatial resolution reveal the existence of asymmetries in the circumstellar envelopes of a small fraction of asymptotic giant branch (AGB) stars. Although there is no general consensus for their origin, a binary companion star may be responsible. Within this framework, we investigate the gravitational effects associated with a sufficiently wide binary system, where Roche lobe overflow is unimportant, on the outflowing envelopes of AGB stars using three-dimensional hydrodynamic simulations. The effects due to individual binary components are separately studied, enabling the investigation of the stellar and circumstellar characteristics in detail. The reflex motion of the AGB star alters the wind velocity distribution, thereby determining the overall shape of the outflowing envelope. On the other hand, the interaction of the companion with the envelope produces a gravitational wake, which exhibits a vertically thinner shape. The two patterns overlap and form clumpy structures. To illustrate the diversity of shapes, we present the numerical results as a function of inclination angle. Not only is spiral structure produced by the binary interaction, but arc patterns are also found that represent the former structure when viewed at different inclinations. The arcs reveal a systematic shift of their centers of curvature for cases when the orbital speed of the AGB star is comparable to its wind speed. They take on the shape of a peanut for inclinations nearly edge-on. In the limit of slow orbital motion of the AGB star relative to the wind speed, the arc pattern becomes nearly spherically symmetric. We find that the aspect ratio of the overall oblate shape of the pattern is an important diagnostic probe of the binary as it can be used to constrain the orbital velocity of the AGB star, and moreover, the binary mass ratio.

  2. Accurate Computer Simulation of Phase Equilibrium for Complex Fluid Mixtures. Application to Binaries Involving Isobutene, Methanol, Methyl tert-Butyl Ether, and

    E-Print Network [OSTI]

    Lisal, Martin

    to Binaries Involving Isobutene, Methanol, Methyl tert-Butyl Ether, and n-Butane Martin Li´sal,*,, William R + methyl tert-butyl ether (MTBE) and the binaries formed by methanol with isobutene, MTBE, and n

  3. DISTRIBUTION OF R-PATTERNS IN THE KERDOCK-CODE BINARY SEQUENCES AND THE HIGHEST LEVEL SEQUENCES

    E-Print Network [OSTI]

    International Association for Cryptologic Research (IACR)

    DISTRIBUTION OF R-PATTERNS IN THE KERDOCK-CODE BINARY SEQUENCES AND THE HIGHEST LEVEL SEQUENCES OF PRIMITIVE SEQUENCES OVER Z2l HONGGANG HU,DENGGUO FENG Abstract. The distribution of r is to study the distribution of r-patterns in the Kerdock-code binary sequences and the highest level

  4. ISIT 2002, Lausanne, Switzerland, June 30 --July 5, 2002 Matched Information Rate Codes for Binary ISI channels 1

    E-Print Network [OSTI]

    Kavcic, Aleksandar

    ISI channels 1 Xiao Ma, Nedeljko Varnica and Aleksandar KavŸciâ??c DEAS/Harvard University, Cambridge to ap­ proach the channel capacities for binary intersymbol interfer­ ence (ISI) channels. The proposed­density parity­check (LDPC) codes. The whole system is it­ eratively decodable. I. SUMMARY Binary ISI channel

  5. ISIT 2002, Lausanne, Switzerland, June 30 July 5, 2002 Matched Information Rate Codes for Binary ISI channels1

    E-Print Network [OSTI]

    Kavcic, Aleksandar

    ISI channels1 Xiao Ma, Nedeljko Varnica and Aleksandar Kavci´c DEAS/Harvard University, Cambridge, MA- proach the channel capacities for binary intersymbol interfer- ence (ISI) channels. The proposed codes-check (LDPC) codes. The whole system is it- eratively decodable. I. SUMMARY Binary ISI channel models

  6. An Application-Specific Compiler for High-Speed Binary Image Morphology Scott Hemmert, Brad Hutchings and Anshul Malvi

    E-Print Network [OSTI]

    Nelson, Brent E.

    An Application-Specific Compiler for High-Speed Binary Image Morphology Scott Hemmert, Brad discusses a two-level compilation scheme used for generating high-speed binary image morphology pipelines from a textual description of the algorithm. The first-level compiler generates a generic morphology

  7. Stability of the binary colloidal crystals AB2 and AB13 A. B. Schofield, P. N. Pusey, and P. Radcliffe

    E-Print Network [OSTI]

    Schofield, Andrew B.

    Stability of the binary colloidal crystals AB2 and AB13 A. B. Schofield, P. N. Pusey, and P Suspensions of binary mixtures of hard-sphere poly-methylmethacrylate colloidal particles were studied at six was discovered in computer simulations 4,5 and confirmed by experiments on colloidal suspensions 6

  8. Efficient implementation of multi-moduli architectures for Binary-to-RNS Hector Pettenghi, Leonel Sousa Jude Angelo Ambrose

    E-Print Network [OSTI]

    Sousa, Leonel

    Efficient implementation of multi-moduli architectures for Binary-to-RNS conversion Hector,las@sips.inesc-id.pt ajangelo@cse.unsw.edu.au Abstract-- This paper presents a novel approach to improve the existing Binary-to-RNS results among various RNS moduli channels. Two types of multi-moduli architectures are distinguished

  9. Binary and ternary gas mixtures for use in glow discharge closing switches

    DOE Patents [OSTI]

    Hunter, S.R.; Christophorou, L.G.

    1988-04-27

    Highly efficient binary and ternary gas mixtures for use in diffuse glow discharge closing switches are disclosed. The binary mixtures are combinations of helium or neon and selected perfluorides. The ternary mixtures are combinations of helium, neon, or argon, a selected perfluoride, and a small amount of gas that exhibits enhanced ionization characteristics. These mixtures are shown to be the optimum choices for use in diffuse glow discharge closing switches by virtue if the combines physio-electric properties of the mixture components. 9 figs.

  10. INTEGRAL and New Classes of High-Mass X-ray Binaries

    E-Print Network [OSTI]

    Christoph Winkler

    2007-12-04

    The gamma-ray observatory INTEGRAL, launched in October 2002, produces a wealth of discoveries and new results on compact high energy Galactic objects, nuclear gamma-ray line emission, diffuse line and continuum emission, cosmic background radiation, AGN and high energy transients. Two important serendipitous discoveries made by the INTEGRAL mission are new classes of X-ray binaries, namely the highly-obscured high-mass X-ray binaries, and the super-giant fast transients. In this paper I will review the current status of these discoveries.

  11. THE PHASES DIFFERENTIAL ASTROMETRY DATA ARCHIVE. V. CANDIDATE SUBSTELLAR COMPANIONS TO BINARY SYSTEMS

    SciTech Connect (OSTI)

    Muterspaugh, Matthew W.; Lane, Benjamin F.; Kulkarni, S. R.; Konacki, Maciej; Burke, Bernard F.; Colavita, M. M.; Shao, M.; Hartkopf, William I.; Boss, Alan P.; Williamson, M. E-mail: blane@draper.co

    2010-12-15

    The Palomar High-precision Astrometric Search for Exoplanet Systems monitored 51 subarcsecond binary systems to evaluate whether tertiary companions as small as Jovian planets orbited either the primary or secondary stars, perturbing their otherwise smooth Keplerian motions. Six binaries are presented that show evidence of substellar companions orbiting either the primary or secondary star. Of these six systems, the likelihoods of two of the detected perturbations to represent real objects are considered to be 'high confidence', while the remaining four systems are less certain and will require continued observations for confirmation.

  12. THE HOT R CORONAE BOREALIS STAR DY CENTAURI IS A BINARY

    SciTech Connect (OSTI)

    Kameswara Rao, N. [543, 17th Main, IV Sector, HSR Layout, Bangalore 560102 (India); Lambert, David L.; McArthur, Barbara [W. J. McDonald Observatory, University of Texas, Austin, TX 78712-1083 (United States); Garcia-Hernandez, D. A. [Instituto de Astrofisica de Canarias, C/Via Lactea s/n, E-38205 La Laguna (Spain); Simon Jeffery, C. [Armagh Observatory, College Hill, Armagh BT61 9DG (United Kingdom); Woolf, Vincent M., E-mail: nkrao@iiap.res.in, E-mail: dll@astro.as.utexas.edu, E-mail: agarcia@iac.es [Physics Department, University of Nebraska at Omaha, NE 68182-0266 (United States)

    2012-11-20

    The remarkable hot R Coronae Borealis (RCB) star DY Cen is revealed to be the first and only binary system to be found among the RCB stars and their likely relatives, including the extreme helium stars and the hydrogen-deficient carbon stars. Radial velocity determinations from 1982 to 2010 have shown that DY Cen is a single-lined spectroscopic binary in an eccentric orbit with a period of 39.67 days. It is also one of the hottest and most H-rich member of the class of RCB stars. The system may have evolved from a common envelope to its current form.

  13. Reprocessing the Hipparcos Intermediate Astrometric Data of spectroscopic binaries: II. Systems with a giant component

    E-Print Network [OSTI]

    D. Pourbaix; H. M. J. Boffin

    2002-11-21

    By reanalyzing the Hipparcos Intermediate Astrometric Data of a large sample of spectroscopic binaries containing a giant, we obtain a sample of 29 systems fulfilling a carefully derived set of constraints and hence for which we can derive an accurate orbital solution. Of these, one is a double-lined spectroscopic binary and six were not listed in the DMSA/O section of the catalogue. Using our solutions, we derive the masses of the components in these systems and statistically analyze them. We also briefly discuss each system individually.

  14. Reprocessing the Hipparcos Intermediate Astrometric Data of spectroscopic binaries II. Systems with a giant component

    E-Print Network [OSTI]

    Pourbaix, D

    2003-01-01

    By reanalyzing the Hipparcos Intermediate Astrometric Data of a large sample of spectroscopic binaries containing a giant, we obtain a sample of 29 systems fulfilling a carefully derived set of constraints and hence for which we can derive an accurate orbital solution. Of these, one is a double-lined spectroscopic binary and six were not listed in the DMSA/O section of the catalogue. Using our solutions, we derive the masses of the components in these systems and statistically analyze them. We also briefly discuss each system individually.

  15. July 2015 Project Dashboard.xls

    Broader source: Energy.gov (indexed) [DOE]

    Date: 07232015 Program Contractor Project Number Project Title Original Project Budget Project Budget Monthly Overall Assessment Cost Performance Schedule Performance 1 EM...

  16. September 2015 Project Dashboard | Department of Energy

    Energy Savers [EERE]

    September 2015 Project Dashboard September 2015 Project Dashboard Post CD-2 Active Projects (as of September 29, 2015) September 2015 Project Dashboard More Documents &...

  17. Instrument validation project

    SciTech Connect (OSTI)

    Reynolds, B.A.; Daymo, E.A.; Geeting, J.G.H.; Zhang, J.

    1996-06-01

    Westinghouse Hanford Company Project W-211 is responsible for providing the system capabilities to remove radioactive waste from ten double-shell tanks used to store radioactive wastes on the Hanford Site in Richland, Washington. The project is also responsible for measuring tank waste slurry properties prior to injection into pipeline systems, including the Replacement of Cross-Site Transfer System. This report summarizes studies of the appropriateness of the instrumentation specified for use in Project W-211. The instruments were evaluated in a test loop with simulated slurries that covered the range of properties specified in the functional design criteria. The results of the study indicate that the compact nature of the baseline Project W-211 loop does not result in reduced instrumental accuracy resulting from poor flow profile development. Of the baseline instrumentation, the Micromotion densimeter, the Moore Industries thermocouple, the Fischer and Porter magnetic flow meter, and the Red Valve Pressure transducer meet the desired instrumental accuracy. An alternate magnetic flow meter (Yokagawa) gave nearly identical results as the baseline fischer and Porter. The Micromotion flow meter did not meet the desired instrument accuracy but could potentially be calibrated so that it would meet the criteria. The Nametre on-line viscometer did not meet the desired instrumental accuracy and is not recommended as a quantitative instrument although it does provide qualitative information. The recommended minimum set of instrumentation necessary to ensure the slurry meets the Project W-058 acceptance criteria is the Micromotion mass flow meter and delta pressure cells.

  18. 2020 Vision Project Summary

    SciTech Connect (OSTI)

    Gordon, K.W.; Scott, K.P.

    2000-11-01

    Since the 2020 Vision project began in 1996, students from participating schools have completed and submitted a variety of scenarios describing potential world and regional conditions in the year 2020 and their possible effect on US national security. This report summarizes the students' views and describes trends observed over the course of the 2020 Vision project's five years. It also highlights the main organizational features of the project. An analysis of thematic trends among the scenarios showed interesting shifts in students' thinking, particularly in their views of computer technology, US relations with China, and globalization. In 1996, most students perceived computer technology as highly beneficial to society, but as the year 2000 approached, this technology was viewed with fear and suspicion, even personified as a malicious, uncontrollable being. Yet, after New Year's passed with little disruption, students generally again perceived computer technology as beneficial. Also in 1996, students tended to see US relations with China as potentially positive, with economic interaction proving favorable to both countries. By 2000, this view had transformed into a perception of China emerging as the US' main rival and ''enemy'' in the global geopolitical realm. Regarding globalization, students in the first two years of the project tended to perceive world events as dependent on US action. However, by the end of the project, they saw the US as having little control over world events and therefore, we Americans would need to cooperate and compromise with other nations in order to maintain our own well-being.

  19. Radiation Embrittlement Archive Project

    SciTech Connect (OSTI)

    Klasky, Hilda B; Bass, Bennett Richard; Williams, Paul T; Phillips, Rick; Erickson, Marjorie A; Kirk, Mark T; Stevens, Gary L

    2013-01-01

    The Radiation Embrittlement Archive Project (REAP), which is being conducted by the Probabilistic Integrity Safety Assessment (PISA) Program at Oak Ridge National Laboratory under funding from the U.S. Nuclear Regulatory Commission s (NRC) Office of Nuclear Regulatory Research, aims to provide an archival source of information about the effect of neutron radiation on the properties of reactor pressure vessel (RPV) steels. Specifically, this project is an effort to create an Internet-accessible RPV steel embrittlement database. The project s website, https://reap.ornl.gov, provides information in two forms: (1) a document archive with surveillance capsule(s) reports and related technical reports, in PDF format, for the 104 commercial nuclear power plants (NPPs) in the United States, with similar reports from other countries; and (2) a relational database archive with detailed information extracted from the reports. The REAP project focuses on data collected from surveillance capsule programs for light-water moderated, nuclear power reactor vessels operated in the United States, including data on Charpy V-notch energy testing results, tensile properties, composition, exposure temperatures, neutron flux (rate of irradiation damage), and fluence, (Fast Neutron Fluence a cumulative measure of irradiation for E>1 MeV). Additionally, REAP contains data from surveillance programs conducted in other countries. REAP is presently being extended to focus on embrittlement data analysis, as well. This paper summarizes the current status of the REAP database and highlights opportunities to access the data and to participate in the project.

  20. Project Plan Remote Target Fabrication Refurbishment Project

    SciTech Connect (OSTI)

    Bell, Gary L; Taylor, Robin D

    2009-08-01

    In early FY2009, the DOE Office of Science - Nuclear Physics Program reinstated a program for continued production of {sup 252}Cf and other transcurium isotopes at the Radiochemical Engineering Development Center (REDC) at Oak Ridge National Laboratory (ORNL). The FY2009 major elements of the workscope are as follows: (1) Recovery and processing of seven transuranium element targets undergoing irradiation at the High Flux Isotope Reactor (HFIR) at ORNL; (2) Development of a plan to manufacture new targets for irradiation beginning in early- to mid-FY10 to supply irradiated targets for processing Campaign 75 (TRU75); and (3) Refurbishment of the target manufacturing equipment to allow new target manufacture in early FY10 The {sup 252}Cf product from processing Campaign 74 (recently processed and currently shipping to customers) is expected to supply the domestic demands for a period of approximately two years. Therefore it is essential that new targets be introduced for irradiation by the second quarter of FY10 (HFIR cycle 427) to maintain supply of {sup 252}Cf; the average irradiation period is {approx}10 HFIR cycles, requiring about 1.5 calendar years. The strategy for continued production of {sup 252}Cf depends upon repairing and refurbishing the existing pellet and target fabrication equipment for one additional target production campaign. This equipment dates from the mid-1960s to the late 1980s, and during the last target fabrication campaign in 2005- 2006, a number of component failures and operations difficulties were encountered. It is expected that following the target fabrication and acceptance testing of the targets that will supply material for processing Campaign 75 a comprehensive upgrade and replacement of the remote hot-cell equipment will be required prior to subsequent campaigns. Such a major refit could start in early FY 2011 and would take about 2 years to complete. Scope and cost estimates for the repairs described herein were developed, and authorization for the work was received in July 2009 under the Remote Target Fabrication Refurbishment Task of the Enhanced Utilization of Isotope Facilities project (Project Identification Code 2005230) funded by the American Recovery and Reinvestment Act of 2009. The goal of this project is to recover the capability to produce 4-5 curium targets for the irradiation period starting with HFIR cycle 427, currently scheduled to begin 2/17/10. Assuming success, the equipment would then be used to fabricate 6-7 additional targets to hold for the next irradiation campaign specified by the program. Specific objectives are the return to functionality of the Cubicle 3 Pellet Fabrication Line; Cubicle 2 Target Assembly equipment; and Cubicle 1 Target Inspection and Final Assembly system.