National Library of Energy BETA

Sample records for binary floating-point number

  1. Multi-input and binary reproducible, high bandwidth floating point adder in a collective network

    DOE Patents [OSTI]

    Chen, Dong; Eisley, Noel A; Heidelberger, Philip; Steinmacher-Burow, Burkhard

    2015-03-10

    To add floating point numbers in a parallel computing system, a collective logic device receives the floating point numbers from computing nodes. The collective logic devices converts the floating point numbers to integer numbers. The collective logic device adds the integer numbers and generating a summation of the integer numbers. The collective logic device converts the summation to a floating point number. The collective logic device performs the receiving, the converting the floating point numbers, the adding, the generating and the converting the summation in one pass. One pass indicates that the computing nodes send inputs only once to the collective logic device and receive outputs only once from the collective logic device.

  2. Floating Point Control Library

    Energy Science and Technology Software Center (OSTI)

    2007-08-02

    Floating Point Control is a Library that allows for the manipulation of floating point unit exception masking funtions control exceptions in both the Streaming "Single Instruction, Multiple Data" Extension 2 (SSE2) unit and the floating point unit simultaneously. FPC also provides macros to set floating point rounding and precision control.

  3. T-561: IBM and Oracle Java Binary Floating-Point Number Conversion Denial of Service Vulnerability

    Broader source: Energy.gov [DOE]

    IBM and Oracle Java products contain a vulnerability that could allow an unauthenticated, remote attacker to cause a denial of service (DoS) condition on a targeted system.

  4. Double-Precision Floating-Point Cores V1.9

    Energy Science and Technology Software Center (OSTI)

    2005-10-15

    In studying the acceleration of scientific computing applications with reconfigurable hardware, such as field programmable gate arrays, one finds that many scientific applications require high-precision, floating-point arithmetic that is not innately supported in reconfigurable hardware. Consequently, we have written VDL code that describes hardware for performing double-precision (64-bit) floating-point arithmetic. From this code, it is possible for users to implement double-precision floating-point operations on FPGAs or any other hardware device to which VHDL code canmore » be synthesized. Specifically, we have written code for four floating-point cores. Each core performs one operation: one performs addition/subtraction, one performs multiplication, one performs division, and one performs square root. The code includes parameters that determine the features of the floating-point cores, such as what types of floating-point numbers are supported and what roudning modes are supported. These parameters influence the frequency achievable by the designs as well as the chip area required for the designs. The parameters are chosen so that the floating-point cores have varyinig amounts of compliance with the industry standard for floating-point cores have varying amounts of compliance with the industry standard for floating-point arithmetic, IEEE standard 754. There is an additional parameter that determines the number of pipelining stages in the floating-point cores.« less

  5. Improvements in floating point addition/subtraction operations

    DOE Patents [OSTI]

    Farmwald, P.M.

    1984-02-24

    Apparatus is described for decreasing the latency time associated with floating point addition and subtraction in a computer, using a novel bifurcated, pre-normalization/post-normalization approach that distinguishes between differences of floating point exponents.

  6. Generating and executing programs for a floating point single instruction

    Office of Scientific and Technical Information (OSTI)

    multiple data instruction set architecture (Patent) | SciTech Connect Generating and executing programs for a floating point single instruction multiple data instruction set architecture Citation Details In-Document Search Title: Generating and executing programs for a floating point single instruction multiple data instruction set architecture Mechanisms for generating and executing programs for a floating point (FP) only single instruction multiple data (SIMD) instruction set architecture

  7. Generating and executing programs for a floating point single...

    Office of Scientific and Technical Information (OSTI)

    The vector register file is configured to store both scalar and floating point values as vectors having a plurality of vector elements. Authors: Gschwind, Michael K Publication ...

  8. Floating-Point Units and Algorithms for field-programmable gate arrays

    Energy Science and Technology Software Center (OSTI)

    2005-11-01

    The software that we are attempting to copyright is a package of floating-point unit descriptions and example algorithm implementations using those units for use in FPGAs. The floating point units are best-in-class implementations of add, multiply, divide, and square root floating-point operations. The algorithm implementations are sample (not highly flexible) implementations of FFT, matrix multiply, matrix vector multiply, and dot product. Together, one could think of the collection as an implementation of parts of themore » BLAS library or something similar to the FFTW packages (without the flexibility) for FPGAs. Results from this work has been published multiple times and we are working on a publication to discuss the techniques we use to implement the floating-point units, For some more background, FPGAS are programmable hardware. "Programs" for this hardware are typically created using a hardware description language (examples include Verilog, VHDL, and JHDL). Our floating-point unit descriptions are written in JHDL, which allows them to include placement constraints that make them highly optimized relative to some other implementations of floating-point units. Many vendors (Nallatech from the UK, SRC Computers in the US) have similar implementations, but our implementations seem to be somewhat higher performance. Our algorithm implementations are written in VHDL and models of the floating-point units are provided in VHDL as well. FPGA "programs" make multiple "calls" (hardware instantiations) to libraries of intellectual property (IP), such as the floating-point unit library described here. These programs are then compiled using a tool called a synthesizer (such as a tool from Synplicity, Inc.). The compiled file is a netlist of gates and flip-flops. This netlist is then mapped to a particular type of FPGA by a mapper and then a place- and-route tool. These tools assign the gates in the netlist to specific locations on the specific type of FPGA chip used and constructs the required routes between them. The result is a "bitstream" that is analogous to a compiled binary. The bitstream is loaded into the FPGA to create a specific hardware configuration.« less

  9. Fixed-rate compressed floating-point arrays

    Energy Science and Technology Software Center (OSTI)

    2014-03-30

    ZFP is a library for lossy compression of single- and double-precision floating-point data. One of the unique features of ZFP is its support for fixed-rate compression, which enables random read and write access at the granularity of small blocks of values. Using a C++ interface, this allows declaring compressed arrays (1D, 2D, and 3D arrays are supported) that through operator overloading can be treated just like conventional, uncompressed arrays, but which allow the user tomore » specify the exact number of bits to allocate to the array. ZFP also has variable-rate fixed-precision and fixed-accuracy modes, which allow the user to specify a tolerance on the relative or absolute error.« less

  10. Quantifying the Impact of Single Bit Flips on Floating Point Arithmetic

    Office of Scientific and Technical Information (OSTI)

    (Technical Report) | SciTech Connect Quantifying the Impact of Single Bit Flips on Floating Point Arithmetic Citation Details In-Document Search Title: Quantifying the Impact of Single Bit Flips on Floating Point Arithmetic In high-end computing, the collective surface area, smaller fabrication sizes, and increasing density of components have led to an increase in the number of observed bit flips. If mechanisms are not in place to detect them, such flips produce silent errors, i.e. the code

  11. Quantifying the Impact of Single Bit Flips on Floating Point...

    Office of Scientific and Technical Information (OSTI)

    We focus on quantifying the impact of a single bit flip on specific floating-point operations. We analyze the error induced by flipping specific bits in the most widely used IEEE ...

  12. Floating point only SIMD instruction set architecture including compare, select, Boolean, and alignment operations

    DOE Patents [OSTI]

    Gschwind, Michael K.

    2011-03-01

    Mechanisms for implementing a floating point only single instruction multiple data instruction set architecture are provided. A processor is provided that comprises an issue unit, an execution unit coupled to the issue unit, and a vector register file coupled to the execution unit. The execution unit has logic that implements a floating point (FP) only single instruction multiple data (SIMD) instruction set architecture (ISA). The floating point vector registers of the vector register file store both scalar and floating point values as vectors having a plurality of vector elements. The processor may be part of a data processing system.

  13. Generating and executing programs for a floating point single instruction multiple data instruction set architecture

    DOE Patents [OSTI]

    Gschwind, Michael K

    2013-04-16

    Mechanisms for generating and executing programs for a floating point (FP) only single instruction multiple data (SIMD) instruction set architecture (ISA) are provided. A computer program product comprising a computer recordable medium having a computer readable program recorded thereon is provided. The computer readable program, when executed on a computing device, causes the computing device to receive one or more instructions and execute the one or more instructions using logic in an execution unit of the computing device. The logic implements a floating point (FP) only single instruction multiple data (SIMD) instruction set architecture (ISA), based on data stored in a vector register file of the computing device. The vector register file is configured to store both scalar and floating point values as vectors having a plurality of vector elements.

  14. Quantifying the Impact of Single Bit Flips on Floating Point...

    Office of Scientific and Technical Information (OSTI)

    surface area, smaller fabrication sizes, and increasing density of components have led to an increase in the number of observed bit flips. If mechanisms are not in place to...

  15. Preliminary Results of a RANS Simulation for a Floating Point Absorber Wave Energy System Under Extreme Wave Conditions

    SciTech Connect (OSTI)

    Yu, Y.; Li, Y.

    2011-10-01

    This paper presents the results of a preliminary study on the hydrodynamics of a moored floating-point absorber (FPA) wave energy system under extreme wave conditions.

  16. Software Aspects of IEEE Floating-Point Computations for Numerical Applications in High Energy Physics

    SciTech Connect (OSTI)

    2010-05-11

    Floating-point computations are at the heart of much of the computing done in high energy physics. The correctness, speed and accuracy of these computations are of paramount importance. The lack of any of these characteristics can mean the difference between new, exciting physics and an embarrassing correction. This talk will examine practical aspects of IEEE 754-2008 floating-point arithmetic as encountered in HEP applications. After describing the basic features of IEEE floating-point arithmetic, the presentation will cover: common hardware implementations (SSE, x87) techniques for improving the accuracy of summation, multiplication and data interchange compiler options for gcc and icc affecting floating-point operations hazards to be avoided About the speaker Jeffrey M Arnold is a Senior Software Engineer in the Intel Compiler and Languages group at Intel Corporation. He has been part of the Digital->Compaq->Intel compiler organization for nearly 20 years; part of that time, he worked on both low- and high-level math libraries. Prior to that, he was in the VMS Engineering organization at Digital Equipment Corporation. In the late 1980s, Jeff spent 2 years at CERN as part of the CERN/Digital Joint Project. In 2008, he returned to CERN to spent 10 weeks working with CERN/openlab. Since that time, he has returned to CERN multiple times to teach at openlab workshops and consult with various LHC experiments. Jeff received his Ph.D. in physics from Case Western Reserve University.

  17. Software Aspects of IEEE Floating-Point Computations for Numerical Applications in High Energy Physics

    ScienceCinema (OSTI)

    None

    2011-10-06

    Floating-point computations are at the heart of much of the computing done in high energy physics. The correctness, speed and accuracy of these computations are of paramount importance. The lack of any of these characteristics can mean the difference between new, exciting physics and an embarrassing correction. This talk will examine practical aspects of IEEE 754-2008 floating-point arithmetic as encountered in HEP applications. After describing the basic features of IEEE floating-point arithmetic, the presentation will cover: common hardware implementations (SSE, x87) techniques for improving the accuracy of summation, multiplication and data interchange compiler options for gcc and icc affecting floating-point operations hazards to be avoided About the speaker Jeffrey M Arnold is a Senior Software Engineer in the Intel Compiler and Languages group at Intel Corporation. He has been part of the Digital->Compaq->Intel compiler organization for nearly 20 years; part of that time, he worked on both low- and high-level math libraries. Prior to that, he was in the VMS Engineering organization at Digital Equipment Corporation. In the late 1980s, Jeff spent 2½ years at CERN as part of the CERN/Digital Joint Project. In 2008, he returned to CERN to spent 10 weeks working with CERN/openlab. Since that time, he has returned to CERN multiple times to teach at openlab workshops and consult with various LHC experiments. Jeff received his Ph.D. in physics from Case Western Reserve University.

  18. Experimental Wave Tank Test for Reference Model 3 Floating-Point Absorber Wave Energy Converter Project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Experimental Wave Tank Test for Reference Model 3 Floating- Point Absorber Wave Energy Converter Project Y.-H. Yu, M. Lawson, and Y. Li National Renewable Energy Laboratory M. Previsic and J. Epler Re Vision Consulting J. Lou Oregon State University Technical Report NREL/TP-5000-62951 January 2015 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This report is available at no

  19. Experimental Investigation of the Power Generation Performance of Floating-Point Absorber Wave Energy Systems: Preprint

    SciTech Connect (OSTI)

    Li, Y.; Yu, Y.; Epler, J.; Previsic, M.

    2012-04-01

    The extraction of energy from ocean waves has gained interest in recent years. The floating-point absorber (FPA) is one of the most promising devices among a wide variety of wave energy conversion technologies. Early theoretical studies mainly focused on understanding the hydrodynamics of the system and on predicting the maximum power that could be extracted by a heaving body. These studies evolve from the investigation of floating-body interactions in offshore engineering and naval architecture disciplines. To our best knowledge, no systematic study has been reported about the investigation of the power generation performance of an FPA with a close-to-commercial design. A series of experimental tests was conducted to investigate the power extraction performance of an FPA system.

  20. RANS Simulation of the Heave Response of a Two-Body Floating Point Wave Absorber: Preprint

    SciTech Connect (OSTI)

    Yu, Y.; Li, Y.

    2011-03-01

    A preliminary study on a two-body floating wave absorbers is presented in this paper. A Reynolds-Averaged Navier-Stokes computational method is applied for analyzing the hydrodynamic heave response of the absorber in operational wave conditions. The two-body floating wave absorber contains a float section and a submerged reaction section. For validation purposes, our model is first assumed to be locked. The two sections are forced to move together with each other. The locked single body model is used in a heave decay test, where the RANS result is validated with the experimental measurement. For the two-body floating point absorber simulation, the two sections are connected through a mass-spring-damper system, which is applied to simulate the power take-off mechanism under design wave conditions. Overall, the details of the flow around the absorber and its nonlinear interaction with waves are investigated, and the power absorption efficiency of the two-body floating wave absorber in waves with a constant value spring-damper system is examined.

  1. Number

    Office of Legacy Management (LM)

    ' , /v-i 2 -i 3 -A, This dow'at consists ~f--~-_,_~~~p.~,::, Number -------of.-&--copies, 1 Series.,-a-,-. ! 1 THE UNIVERSITY OF ROCHESTER 1; r-.' L INTRAMURALCORRESPONDENCE i"ks' 3 2.. September 25, 1947 Memo.tor Dr. A. H, Dovdy . From: Dr. H. E, Stokinger Be: Trip Report - Mayvood Chemical Works A trip vas made Nednesday, August 24th vith Messrs. Robert W ilson and George Sprague to the Mayvood Chemical F!orks, Mayvood, New Jersey one of 2 plants in the U.S.A. engaged in the

  2. Tongonan 1 Binary GEPP | Open Energy Information

    Open Energy Info (EERE)

    Philippine Island Arc Plant Information Facility Type Binary Cycle Power Plant Owner Energy Development Corporation Number of Units 3 1 Commercial Online Date 1997 Power...

  3. Mahanagdong A-Binary GEPP | Open Energy Information

    Open Energy Info (EERE)

    Philippine Island Arc Plant Information Facility Type Binary Cycle Power Plant Owner Energy Development Corporation Number of Units 2 1 Commercial Online Date 1997 Power...

  4. Mahanagdong B-Binary GEPP | Open Energy Information

    Open Energy Info (EERE)

    Philippine Island Arc Plant Information Facility Type Binary Cycle Power Plant Owner Energy Development Corporation Number of Units 2 1 Commercial Online Date 1997 Power...

  5. Binary classification of items of interest in a repeatable process

    DOE Patents [OSTI]

    Abell, Jeffrey A; Spicer, John Patrick; Wincek, Michael Anthony; Wang, Hui; Chakraborty, Debejyo

    2015-01-06

    A system includes host and learning machines. Each machine has a processor in electrical communication with at least one sensor. Instructions for predicting a binary quality status of an item of interest during a repeatable process are recorded in memory. The binary quality status includes passing and failing binary classes. The learning machine receives signals from the at least one sensor and identifies candidate features. Features are extracted from the candidate features, each more predictive of the binary quality status. The extracted features are mapped to a dimensional space having a number of dimensions proportional to the number of extracted features. The dimensional space includes most of the passing class and excludes at least 90 percent of the failing class. Received signals are compared to the boundaries of the recorded dimensional space to predict, in real time, the binary quality status of a subsequent item of interest.

  6. Binary ferrihydrite catalysts

    DOE Patents [OSTI]

    Huffman, Gerald P. (Lexington, KY); Zhao, Jianmin (Lexington, KY); Feng, Zhen (Lexington, KY)

    1996-01-01

    A method of preparing a catalyst precursor comprises dissolving an iron salt and a salt of an oxoanion forming agent, in water so that a solution of the iron salt and oxoanion forming agent salt has a ratio of oxoanion/Fe of between 0.0001:1 to 0.5:1. Next is increasing the pH of the solution to 10 by adding a strong base followed by collecting of precipitate having a binary ferrihydrite structure. A binary ferrihydrite catalyst precursor is also prepared by dissolving an iron salt in water. The solution is brought to a pH of substantially 10 to obtain ferrihydrite precipitate. The precipitate is then filtered and washed with distilled water and subsequently admixed with a hydroxy carboxylic acid solution. The admixture is mixed/agitated and the binary ferrihydrite precipitate is then filtered and recovered.

  7. Binary ferrihydrite catalysts

    DOE Patents [OSTI]

    Huffman, G.P.; Zhao, J.; Feng, Z.

    1996-12-03

    A method of preparing a catalyst precursor comprises dissolving an iron salt and a salt of an oxoanion forming agent, in water so that a solution of the iron salt and oxoanion forming agent salt has a ratio of oxoanion/Fe of between 0.0001:1 to 0.5:1. Next is increasing the pH of the solution to 10 by adding a strong base followed by collecting of precipitate having a binary ferrihydrite structure. A binary ferrihydrite catalyst precursor is also prepared by dissolving an iron salt in water. The solution is brought to a pH of substantially 10 to obtain ferrihydrite precipitate. The precipitate is then filtered and washed with distilled water and subsequently admixed with a hydroxy carboxylic acid solution. The admixture is mixed/agitated and the binary ferrihydrite precipitate is then filtered and recovered. 3 figs.

  8. Binary Optics Toolkit

    Energy Science and Technology Software Center (OSTI)

    1996-04-02

    This software is a set of tools for the design and analysis of binary optics. It consists of a series of stand-alone programs written in C and some scripts written in an application-specific language interpreted by a CAD program called DW2000. This software can be used to optimize the design and placement of a complex lens array from input to output and produce contours, mask designs, and data exported for diffractive optic analysis.

  9. Binary power multiplier for electromagnetic energy

    DOE Patents [OSTI]

    Farkas, Zoltan D. (203 Leland Ave., Menlo Park, CA 94025)

    1988-01-01

    A technique for converting electromagnetic pulses to higher power amplitude and shorter duration, in binary multiples, splits an input pulse into two channels, and subjects the pulses in the two channels to a number of binary pulse compression operations. Each pulse compression operation entails combining the pulses in both input channels and selectively steering the combined power to one output channel during the leading half of the pulses and to the other output channel during the trailing half of the pulses, and then delaying the pulse in the first output channel by an amount equal to half the initial pulse duration. Apparatus for carrying out each of the binary multiplication operation preferably includes a four-port coupler (such as a 3 dB hybrid), which operates on power inputs at a pair of input ports by directing the combined power to either of a pair of output ports, depending on the relative phase of the inputs. Therefore, by appropriately phase coding the pulses prior to any of the pulse compression stages, the entire pulse compression (with associated binary power multiplication) can be carried out solely with passive elements.

  10. Binary Cycle Power Plant | Open Energy Information

    Open Energy Info (EERE)

    binary-cycle power plants in the future will be binary-cycle plants1 Enel's Salts Wells Geothermal Plant in Nevada: This plant is a binary system that is rated at 13 MW...

  11. Request Number:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3023307 Name: Madeleine Brown Organization: nJa Address: --- -------- -------- -- Country: Phone Number: United States Fax Number: n/a E-mail: --- -------- --------_._------ --- Reasonably Describe Records Description: Please send me a copy of the emails and records relating to the decision to allow the underage son of Bill Gates to tour Hanford in June 2010. Please also send the emails and records that justify the Department of Energy to prevent other minors from visiting B Reactor. Optional

  12. Request Number:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1074438 Name: Gayle Cooper Organization: nla Address: _ Country: United States Phone Number: Fax Number: nla E-mail: . ~===--------- Reasonably Describe Records Description: Information pertaining to the Department of Energy's cost estimate for reinstating pension benefit service years to the Enterprise Company (ENCO) employees who are active plan participants in the Hanford Site Pension Plan. This cost estimate was an outcome of the DOE's Worker Town Hall Meetings held on September 17-18, 2009.

  13. THIRTY NEW LOW-MASS SPECTROSCOPIC BINARIES

    SciTech Connect (OSTI)

    Shkolnik, Evgenya L.; Hebb, Leslie; Cameron, Andrew C.; Liu, Michael C.; Neill Reid, I. E-mail: Andrew.Cameron@st-and.ac.u E-mail: mliu@ifa.hawaii.ed

    2010-06-20

    As part of our search for young M dwarfs within 25 pc, we acquired high-resolution spectra of 185 low-mass stars compiled by the NStars project that have strong X-ray emission. By cross-correlating these spectra with radial velocity standard stars, we are sensitive to finding multi-lined spectroscopic binaries. We find a low-mass spectroscopic binary fraction of 16% consisting of 27 SB2s, 2 SB3s, and 1 SB4, increasing the number of known low-mass spectroscopic binaries (SBs) by 50% and proving that strong X-ray emission is an extremely efficient way to find M-dwarf SBs. WASP photometry of 23 of these systems revealed two low-mass eclipsing binaries (EBs), bringing the count of known M-dwarf EBs to 15. BD-22 5866, the ESB4, was fully described in 2008 by Shkolnik et al. and CCDM J04404+3127 B consists of two mid-M stars orbiting each other every 2.048 days. WASP also provided rotation periods for 12 systems, and in the cases where the synchronization time scales are short, we used P{sub rot} to determine the true orbital parameters. For those with no P{sub rot}, we used differential radial velocities to set upper limits on orbital periods and semimajor axes. More than half of our sample has near-equal-mass components (q > 0.8). This is expected since our sample is biased toward tight orbits where saturated X-ray emission is due to tidal spin-up rather than stellar youth. Increasing the samples of M-dwarf SBs and EBs is extremely valuable in setting constraints on current theories of stellar multiplicity and evolution scenarios for low-mass multiple systems.

  14. Dixie Valley Bottoming Binary Cycle

    Broader source: Energy.gov [DOE]

    Project objective: Prove the technical and economic feasibility of utilizing the available unused heat to generate additional electric power from a binary power plant from low-temperature brine at the Dixie Valley Geothermal Power Plant.

  15. Beowawe Binary Bottoming Cycle | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Beowawe Binary Bottoming Cycle Beowawe Binary Bottoming Cycle Project objectives: Demonstrate the technical and economic feasibility of electricity generation from the nonconventional geothermal resources of 205°F by extracting waste heat from the brine to power a binary power plant. PDF icon low_mcdonald_beowawe_binary_bottoming_cycle.pdf More Documents & Publications Dixie Valley Bottoming Binary Cycle track 1: Low Temp | geothermal 2015 peer review Hybrid and Advanced Air Cooling

  16. Experimental Wave Tank Test for Reference Model 3 Floating-Point Absorber Wave Energy Converter Project

    SciTech Connect (OSTI)

    Yu, Y. H.; Lawson, M.; Li, Y.; Previsic, M.; Epler, J.; Lou, J.

    2015-01-01

    The U.S. Department of Energy established a reference model project to benchmark a set of marine and hydrokinetic technologies including current (tidal, open-ocean, and river) turbines and wave energy converters. The objectives of the project were to first evaluate the status of these technologies and their readiness for commercial applications. Second, to evaluate the potential cost of energy and identify cost-reduction pathways and areas where additional research could be best applied to accelerate technology development to market readiness.

  17. Merger of white dwarf-neutron star binaries: Prelude to hydrodynamic simulations in general relativity

    SciTech Connect (OSTI)

    Paschalidis, Vasileios; MacLeod, Morgan; Baumgarte, Thomas W.; Shapiro, Stuart L.

    2009-07-15

    White dwarf-neutron star binaries generate detectable gravitational radiation. We construct Newtonian equilibrium models of corotational white dwarf-neutron star (WDNS) binaries in circular orbit and find that these models terminate at the Roche limit. At this point the binary will undergo either stable mass transfer (SMT) and evolve on a secular time scale, or unstable mass transfer (UMT), which results in the tidal disruption of the WD. The path a given binary will follow depends primarily on its mass ratio. We analyze the fate of known WDNS binaries and use population synthesis results to estimate the number of LISA-resolved galactic binaries that will undergo either SMT or UMT. We model the quasistationary SMT epoch by solving a set of simple ordinary differential equations and compute the corresponding gravitational waveforms. Finally, we discuss in general terms the possible fate of binaries that undergo UMT and construct approximate Newtonian equilibrium configurations of merged WDNS remnants. We use these configurations to assess plausible outcomes of our future, fully relativistic simulations of these systems. If sufficient WD debris lands on the NS, the remnant may collapse, whereby the gravitational waves from the inspiral, merger, and collapse phases will sweep from LISA through LIGO frequency bands. If the debris forms a disk about the NS, it may fragment and form planets.

  18. Mak-Ban Binary 1 GEPP | Open Energy Information

    Open Energy Info (EERE)

    Home Mak-Ban Binary 1 GEPP General Information Name Mak-Ban Binary 1 GEPP Facility Power Plant Sector Geothermal energy Location Information Coordinates 14.087741209723,...

  19. A Flashing Binary Combined Cycle For Geothermal Power Generation...

    Open Energy Info (EERE)

    Flashing Binary Combined Cycle For Geothermal Power Generation Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: A Flashing Binary Combined Cycle...

  20. Binary module test. Final report

    SciTech Connect (OSTI)

    Schilling, J.R.; Colley, T.C.; Pundyk, J.

    1980-12-01

    The objective of this project was to design and test a binary loop module representative of and scaleable to commercial size units. The design was based on state-of-the-art heat exchanger technology, and the purpose of the tests was to confirm performance of a supercritical boiling cycle using isobutane and a mixture of isobutane and isopentane as the secondary working fluid. The module was designed as one percent of a 50 MW unit. It was installed at Magma Power's East Mesa geothermal field and tested over a period of approximately 4 months. Most of the test runs were with isobutane but some data were collected for hydrocarbon mixtures. The results of the field tests are reported. In general these results indicate reasonably good heat balances and agreement with overall heat transfer coefficients calculated by current stream analysis methods and available fluid property data; however, measured pressure drops across the heat exchangers were 20 percent higher than estimated. System operation was stable under all conditions tested.

  1. Number | Open Energy Information

    Open Energy Info (EERE)

    Property:NumOfPlants Property:NumProdWells Property:NumRepWells Property:Number of Color Cameras Property:Number of Devices Deployed Property:Number of Plants included in...

  2. NSR Key Number Retrieval

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NSR Key Number Retrieval Pease enter key in the box Submit

  3. ROTATIONAL SYNCHRONIZATION MAY ENHANCE HABITABILITY FOR CIRCUMBINARY PLANETS: KEPLER BINARY CASE STUDIES

    SciTech Connect (OSTI)

    Mason, Paul A.; Zuluaga, Jorge I.; Cuartas-Restrepo, Pablo A.; Clark, Joni M.

    2013-09-10

    We report a mechanism capable of reducing (or increasing) stellar activity in binary stars, thereby potentially enhancing (or destroying) circumbinary habitability. In single stars, stellar aggression toward planetary atmospheres causes mass-loss, which is especially detrimental for late-type stars, because habitable zones are very close and activity is long lasting. In binaries, tidal rotational breaking reduces magnetic activity, thus reducing harmful levels of X-ray and ultraviolet (XUV) radiation and stellar mass-loss that are able to erode planetary atmospheres. We study this mechanism for all confirmed circumbinary (p-type) planets. We find that main sequence twins provide minimal flux variation and in some cases improved environments if the stars rotationally synchronize within the first Gyr. Solar-like twins, like Kepler 34 and Kepler 35, provide low habitable zone XUV fluxes and stellar wind pressures. These wide, moist, habitable zones may potentially support multiple habitable planets. Solar-type stars with lower mass companions, like Kepler 47, allow for protected planets over a wide range of secondary masses and binary periods. Kepler 38 and related binaries are marginal cases. Kepler 64 and analogs have dramatically reduced stellar aggression due to synchronization of the primary, but are limited by the short lifetime. Kepler 16 appears to be inhospitable to planets due to extreme XUV flux. These results have important implications for estimates of the number of stellar systems containing habitable planets in the Galaxy and allow for the selection of binaries suitable for follow-up searches for habitable planets.

  4. BINARIES MIGRATING IN A GASEOUS DISK: WHERE ARE THE GALACTIC CENTER BINARIES?

    SciTech Connect (OSTI)

    Baruteau, C.; Lin, D. N. C.; Cuadra, J. E-mail: lin@ucolick.org

    2011-01-01

    The massive stars in the Galactic center inner arcsecond share analogous properties with the so-called Hot Jupiters. Most of these young stars have highly eccentric orbits and were probably not formed in situ. It has been proposed that these stars acquired their current orbits from the tidal disruption of compact massive binaries scattered toward the proximity of the central supermassive black hole. Assuming a binary star formed in a thin gaseous disk beyond 0.1 pc from the central object, we investigate the relevance of disk-satellite interactions to harden the binding energy of the binary, and to drive its inward migration. A massive, equal-mass binary star is found to become more tightly wound as it migrates inward toward the central black hole. The migration timescale is very similar to that of a single-star satellite of the same mass. The binary's hardening is caused by the formation of spiral tails lagging the stars inside the binary's Hill radius. We show that the hardening timescale is mostly determined by the mass of gas inside the binary's Hill radius and that it is much shorter than the migration timescale. We discuss some implications of the binary's hardening process. When the more massive (primary) components of close binaries eject most their mass through supernova explosion, their secondary stars may attain a range of eccentricities and inclinations. Such processes may provide an alternative unified scenario for the origin of the kinematic properties of the central cluster and S-stars in the Galactic center as well as the high-velocity stars in the Galactic halo.

  5. SEARCH FOR SUPERMASSIVE BLACK HOLE BINARIES IN THE SLOAN DIGITAL...

    Office of Scientific and Technical Information (OSTI)

    We further constrain that 16% (one-third) of quasars host SMBH binaries after considering gas-assisted sub-parsec evolution of SMBH binaries, although this result is very ...

  6. T-694: IBM Tivoli Federated Identity Manager Products Multiple Vulnerabilities

    Broader source: Energy.gov [DOE]

    This Security Alert addresses a serious security issue CVE-2010-4476 (Java Runtime Environment hangs when converting "2.2250738585072012e-308" to a binary floating-point number). This vulnerability might cause the Java Runtime Environment to hang, be in infinite loop, and/or crash resulting in a denial of service exposure. This same hang might occur if the number is written without scientific notation (324 decimal places). In addition to the Application Server being exposed to this attack, any Java program using the Double.parseDouble method is also at risk of this exposure including any customer written application or third party written application.

  7. CHARACTERIZING THE GALACTIC WHITE DWARF BINARY POPULATION WITH SPARSELY

    Office of Scientific and Technical Information (OSTI)

    SAMPLED RADIAL VELOCITY DATA (Journal Article) | SciTech Connect CHARACTERIZING THE GALACTIC WHITE DWARF BINARY POPULATION WITH SPARSELY SAMPLED RADIAL VELOCITY DATA Citation Details In-Document Search Title: CHARACTERIZING THE GALACTIC WHITE DWARF BINARY POPULATION WITH SPARSELY SAMPLED RADIAL VELOCITY DATA We present a method to characterize statistically the parameters of a detached binary sample-binary fraction, separation distribution, and mass-ratio distribution-using noisy radial

  8. Binary translation using peephole translation rules

    DOE Patents [OSTI]

    Bansal, Sorav; Aiken, Alex

    2010-05-04

    An efficient binary translator uses peephole translation rules to directly translate executable code from one instruction set to another. In a preferred embodiment, the translation rules are generated using superoptimization techniques that enable the translator to automatically learn translation rules for translating code from the source to target instruction set architecture.

  9. LOW-MASS ECLIPSING BINARIES IN THE INITIAL KEPLER DATA RELEASE

    SciTech Connect (OSTI)

    Coughlin, J. L.; Harrison, T. E.; Ule, N.; Lopez-Morales, M.; Hoffman, D. I.

    2011-03-15

    We identify 231 objects in the newly released Cycle 0 data set from the Kepler Mission as double-eclipse, detached eclipsing binary systems with T{sub eff} < 5500 K and orbital periods shorter than {approx}32 days. We model each light curve using the JKTEBOP code with a genetic algorithm to obtain precise values for each system. We identify 95 new systems with both components below 1.0 M{sub sun} and eclipses of at least 0.1 mag, suitable for ground-based follow-up. Of these, 14 have periods less than 1.0 day, 52 have periods between 1.0 and 10.0 days, and 29 have periods greater than 10.0 days. This new sample of main-sequence, low-mass, double-eclipse, detached eclipsing binary candidates more than doubles the number of previously known systems and extends the sample into the completely heretofore unexplored P > 10.0 day period regime. We find preliminary evidence from these systems that the radii of low-mass stars in binary systems decrease with period. This supports the theory that binary spin-up is the primary cause of inflated radii in low-mass binary systems, although a full analysis of each system with radial-velocity and multi-color light curves is needed to fully explore this hypothesis. Also, we present seven new transiting planet candidates that do not appear among the list of 706 candidates recently released by the Kepler team, or in the Kepler False Positive Catalog, along with several other new and interesting systems. We also present novel techniques for the identification, period analysis, and modeling of eclipsing binaries.

  10. Big Numbers | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Big Numbers May 16, 2011 This article has some numbers in it. In principle, numbers are just language, like English or Japanese. Nevertheless, it is true that not everyone is comfortable or facile with numbers and may be turned off by too many of them. To those people, I apologize that this article pays less attention to maximizing the readership than some I do. But sometimes it's just appropriate to indulge one's self, so here goes. When we discuss the performance of some piece of equipment, we

  11. Automated pupil remapping with binary optics

    DOE Patents [OSTI]

    Neal, Daniel R. (Tijeras, NM); Mansell, Justin (Albuquerque, NM)

    1999-01-01

    Methods and apparatuses for pupil remapping employing non-standard lenslet shapes in arrays; divergence of lenslet focal spots from on-axis arrangements; use of lenslet arrays to resize two-dimensional inputs to the array; and use of lenslet arrays to map an aperture shape to a different detector shape. Applications include wavefront sensing, astronomical applications, optical interconnects, keylocks, and other binary optics and diffractive optics applications.

  12. Automated pupil remapping with binary optics

    DOE Patents [OSTI]

    Neal, D.R.; Mansell, J.

    1999-01-26

    Methods and apparatuses are disclosed for pupil remapping employing non-standard lenslet shapes in arrays; divergence of lenslet focal spots from on-axis arrangements; use of lenslet arrays to resize two-dimensional inputs to the array; and use of lenslet arrays to map an aperture shape to a different detector shape. Applications include wavefront sensing, astronomical applications, optical interconnects, keylocks, and other binary optics and diffractive optics applications. 24 figs.

  13. Report number codes

    SciTech Connect (OSTI)

    Nelson, R.N.

    1985-05-01

    This publication lists all report number codes processed by the Office of Scientific and Technical Information. The report codes are substantially based on the American National Standards Institute, Standard Technical Report Number (STRN)-Format and Creation Z39.23-1983. The Standard Technical Report Number (STRN) provides one of the primary methods of identifying a specific technical report. The STRN consists of two parts: The report code and the sequential number. The report code identifies the issuing organization, a specific program, or a type of document. The sequential number, which is assigned in sequence by each report issuing entity, is not included in this publication. Part I of this compilation is alphabetized by report codes followed by issuing installations. Part II lists the issuing organization followed by the assigned report code(s). In both Parts I and II, the names of issuing organizations appear for the most part in the form used at the time the reports were issued. However, for some of the more prolific installations which have had name changes, all entries have been merged under the current name.

  14. BINARY CEPHEIDS: SEPARATIONS AND MASS RATIOS IN 5 M {sub ?} BINARIES

    SciTech Connect (OSTI)

    Evans, Nancy Remage; Karovska, Margarita; Tingle, Evan; Bond, Howard E.; Schaefer, Gail H.; Mason, Brian D. E-mail: heb11@psu.edu

    2013-10-01

    Deriving the distribution of binary parameters for a particular class of stars over the full range of orbital separations usually requires the combination of results from many different observing techniques (radial velocities, interferometry, astrometry, photometry, direct imaging), each with selection biases. However, Cepheidscool, evolved stars of ?5 M {sub ?}are a special case because ultraviolet (UV) spectra will immediately reveal any companion star hotter than early type A, regardless of the orbital separation. We have used International Ultraviolet Explorer UV spectra of a complete sample of all 76 Cepheids brighter than V = 8 to create a list of all 18 Cepheids with companions more massive than 2.0 M {sub ?}. Orbital periods of many of these binaries are available from radial-velocity studies, or can be estimated for longer-period systems from detected velocity variability. In an imaging survey with the Hubble Space Telescope Wide Field Camera 3, we resolved three of the companions (those of ? Aql, S Nor, and V659 Cen), allowing us to make estimates of the periods out to the long-period end of the distribution. Combining these separations with orbital data in the literature, we derive an unbiased distribution of binary separations, orbital periods, and mass ratios. The distribution of orbital periods shows that the 5 M {sub ?} binaries have systematically shorter periods than do 1 M {sub ?} stars. Our data also suggest that the distribution of mass ratios depends on both binary separation and system multiplicity. The distribution of mass ratios as a function of orbital separation, however, does not depend on whether a system is a binary or a triple.

  15. Controlling phase separation of binary Bose-Einstein condensates via

    Office of Scientific and Technical Information (OSTI)

    mixed-spin-channel Feshbach resonance (Journal Article) | SciTech Connect Controlling phase separation of binary Bose-Einstein condensates via mixed-spin-channel Feshbach resonance Citation Details In-Document Search Title: Controlling phase separation of binary Bose-Einstein condensates via mixed-spin-channel Feshbach resonance We investigate controlled phase separation of a binary Bose-Einstein condensate in the proximity of a mixed-spin-channel Feshbach resonance in the |F=1,m{sub

  16. Controlling phase separation of binary Bose-Einstein condensates...

    Office of Scientific and Technical Information (OSTI)

    Controlling phase separation of binary Bose-Einstein condensates via mixed-spin-channel Feshbach resonance Citation Details In-Document Search Title: Controlling phase separation...

  17. Document Details Document Number

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Document Details Document Number Date of Document Document Title/Description [Links below to each document] D195066340 Not listed. N/A REVISIONS IN STRATIGRAPHIC NOMENCLATURE OF COLUMBIA RIVER BASALT GROUP D196000240 Not listed. N/A EPA DENIAL OF LINER LEACHATE COLLECTION SYSTEM REQUIREMENTS D196005916 Not listed. N/A LATE CENOZOIC STRATIGRAPHY AND TECTONIC EVOLUTION WITHIN SUBSIDING BASIN SOUTH CENTRAL WASHINGTON D196025993 RHO-BWI-ST-14 N/A SUPRABASALT SEDIMENTS OF COLD CREEK SYNCLINE AREA

  18. Binary classification of items of interest in a repeatable process

    DOE Patents [OSTI]

    Abell, Jeffrey A.; Spicer, John Patrick; Wincek, Michael Anthony; Wang, Hui; Chakraborty, Debejyo

    2014-06-24

    A system includes host and learning machines in electrical communication with sensors positioned with respect to an item of interest, e.g., a weld, and memory. The host executes instructions from memory to predict a binary quality status of the item. The learning machine receives signals from the sensor(s), identifies candidate features, and extracts features from the candidates that are more predictive of the binary quality status relative to other candidate features. The learning machine maps the extracted features to a dimensional space that includes most of the items from a passing binary class and excludes all or most of the items from a failing binary class. The host also compares the received signals for a subsequent item of interest to the dimensional space to thereby predict, in real time, the binary quality status of the subsequent item of interest.

  19. Texas Natural Gas Number of Residential Consumers (Number of...

    Gasoline and Diesel Fuel Update (EIA)

    Residential Consumers (Number of Elements) Texas Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

  20. Texas Natural Gas Number of Commercial Consumers (Number of Elements...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Commercial Consumers (Number of Elements) Texas Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

  1. Connecticut Natural Gas Number of Commercial Consumers (Number...

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Connecticut Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

  2. Connecticut Natural Gas Number of Residential Consumers (Number...

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Connecticut Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

  3. North Carolina Natural Gas Number of Commercial Consumers (Number...

    Gasoline and Diesel Fuel Update (EIA)

    Commercial Consumers (Number of Elements) North Carolina Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

  4. New York Natural Gas Number of Commercial Consumers (Number of...

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) New York Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

  5. New York Natural Gas Number of Residential Consumers (Number...

    Gasoline and Diesel Fuel Update (EIA)

    Residential Consumers (Number of Elements) New York Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

  6. Indiana Natural Gas Number of Industrial Consumers (Number of...

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Indiana Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

  7. ON THE RARITY OF X-RAY BINARIES WITH NAKED HELIUM DONORS

    SciTech Connect (OSTI)

    Linden, T.; Valsecchi, F.; Kalogera, V.

    2012-04-01

    The paucity of known high-mass X-ray binaries (HMXBs) with naked He donor stars (hereafter He star) in the Galaxy has been noted over the years as a surprising fact, given the significant number of Galactic HMXBs containing H-rich donors, which are expected to be their progenitors. This contrast has further sharpened in light of recent observations uncovering a preponderance of HMXBs hosting loosely bound Be donors orbiting neutron stars (NSs), which would be expected to naturally evolve into He-HMXBs through dynamical mass transfer onto the NS and a common-envelope (CE) phase. Hence, reconciling the large population of Be-HMXBs with the observation of only one He-HMXB can help constrain the dynamics of CE physics. Here, we use detailed stellar structure and evolution models and show that binary mergers of HMXBs during CE events must be common in order to resolve the tension between these observed populations. We find that, quantitatively, this scenario remains consistent with the typically adopted energy parameterization of CE evolution, yielding expected populations which are not at odds with current observations. However, future observations which better constrain the underlying population of loosely bound O/B-NS binaries are likely to place significant constraints on the efficiency of CE ejection.

  8. Terra-Gen Power and TAS Celebrate Innovative Binary Geothermal...

    Open Energy Info (EERE)

    Terra-Gen Power and TAS Celebrate Innovative Binary Geothermal Technology Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Terra-Gen Power and TAS...

  9. Properties OF M31. V. 298 eclipsing binaries from PAndromeda

    SciTech Connect (OSTI)

    Lee, C.-H.; Koppenhoefer, J.; Seitz, S.; Bender, R.; Riffeser, A.; Kodric, M.; Hopp, U.; Snigula, J.; Gssl, C.; Kudritzki, R.-P.; Burgett, W.; Chambers, K.; Hodapp, K.; Kaiser, N.; Waters, C.

    2014-12-10

    The goal of this work is to conduct a photometric study of eclipsing binaries in M31. We apply a modified box-fitting algorithm to search for eclipsing binary candidates and determine their period. We classify these candidates into detached, semi-detached, and contact systems using the Fourier decomposition method. We cross-match the position of our detached candidates with the photometry from Local Group Survey and select 13 candidates brighter than 20.5 mag in V. The relative physical parameters of these detached candidates are further characterized with the Detached Eclipsing Binary Light curve fitter (DEBiL) by Devor. We will follow up the detached eclipsing binaries spectroscopically and determine the distance to M31.

  10. Russell Hulse, the First Binary Pulsar, and Science Education

    Office of Scientific and Technical Information (OSTI)

    Russell Hulse, the First Binary Pulsar, and Science Education Resources with Additional Information 'Dr. Russell A. Hulse of Princeton University, the discoverer of the first binary pulsar and co-recipient of the 1993 Nobel Prize in physics, will affiliate with The University of Texas at Dallas (UTD) as a visiting professor of physics and of science and math education, beginning in January 2004. Russell Hulse Courtesy Princeton Plasma Physics Laboratory Hulse will be involved with developing

  11. COLLOQUIUM: Binary Black Hole and Neutron Star Collisions | Princeton

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Plasma Physics Lab December 16, 2015, 4:15pm to 5:30pm Colloquia MBG AUDITORIUM COLLOQUIUM: Binary Black Hole and Neutron Star Collisions Dr. Frans Pretorius Princeton University Binary compact object mergers are among the primary gravitational wave sources expected to be observed by the next generation of ground-based gravitational wave detectors. Mergers where one or both compact objects are neutron stars will further produce electromagnetic emission, and coincident observation of this

  12. Transport in a highly asymmetric binary fluid mixture (Journal Article) |

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect Transport in a highly asymmetric binary fluid mixture Citation Details In-Document Search Title: Transport in a highly asymmetric binary fluid mixture We present molecular dynamics calculations of the thermal conductivity and viscosities of a model colloidal suspension with colloidal particles roughly one order of magnitude larger than the suspending liquid molecules. The results are compared with estimates based on the Enskog transport theory and effective medium theories

  13. Molecular Design of Branched and Binary Molecules at Ordered Interfaces

    SciTech Connect (OSTI)

    Kirsten Larson Genson

    2005-12-27

    This study examined five different branched molecular architectures to discern the effect of design on the ability of molecules to form ordered structures at interfaces. Photochromic monodendrons formed kinked packing structures at the air-water interface due to the cross-sectional area mismatch created by varying number of alkyl tails and the hydrophilic polar head group. The lower generations formed orthorhombic unit cell with long range ordering despite the alkyl tails tilted to a large degree. Favorable interactions between liquid crystalline terminal groups and the underlying substrate were observed to compel a flexible carbosilane dendrimer core to form a compressed elliptical conformation which packed stagger within lamellae domains with limited short range ordering. A twelve arm binary star polymer was observed to form two dimensional micelles at the air-water interface attributed to the higher polystyrene block composition. Linear rod-coil molecules formed a multitude of packing structures at the air-water interface due to the varying composition. Tree-like rod-coil molecules demonstrated the ability to form one-dimensional structures at the air-water interface and at the air-solvent interface caused by the preferential ordering of the rigid rod cores. The role of molecular architecture and composition was examined and the influence chemically competing fragments was shown to exert on the packing structure. The amphiphilic balance of the different molecular series exhibited control on the ordering behavior at the air-water interface and within bulk structures. The shell nature and tail type was determined to dictate the preferential ordering structure and molecular reorganization at interfaces with the core nature effect secondary.

  14. Alaska Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Alaska Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 10 11 8 1990's 8 8 10 11 11 9 202 7 7 9 2000's 9 8 9 9 10 12 11 11 6 3 2010's 3 5 3 3 1 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: Number of Natural Gas

  15. Hawaii Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Hawaii Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 27 26 29 2000's 28 28 29 29 29 28 26 27 27 25 2010's 24 24 22 22 23 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: Number of Natural Gas Industrial

  16. Total Number of Operable Refineries

    U.S. Energy Information Administration (EIA) Indexed Site

    Data Series: Total Number of Operable Refineries Number of Operating Refineries Number of Idle Refineries Atmospheric Crude Oil Distillation Operable Capacity (B/CD) Atmospheric Crude Oil Distillation Operating Capacity (B/CD) Atmospheric Crude Oil Distillation Idle Capacity (B/CD) Atmospheric Crude Oil Distillation Operable Capacity (B/SD) Atmospheric Crude Oil Distillation Operating Capacity (B/SD) Atmospheric Crude Oil Distillation Idle Capacity (B/SD) Vacuum Distillation Downstream Charge

  17. Compendium of Experimental Cetane Numbers

    SciTech Connect (OSTI)

    Yanowitz, J.; Ratcliff, M. A.; McCormick, R. L.; Taylor, J. D.; Murphy, M. J.

    2014-08-01

    This report is an updated version of the 2004 Compendium of Experimental Cetane Number Data and presents a compilation of measured cetane numbers for pure chemical compounds. It includes all available single compound cetane number data found in the scientific literature up until March 2014 as well as a number of unpublished values, most measured over the past decade at the National Renewable Energy Laboratory. This Compendium contains cetane values for 389 pure compounds, including 189 hydrocarbons and 201 oxygenates. More than 250 individual measurements are new to this version of the Compendium. For many compounds, numerous measurements are included, often collected by different researchers using different methods. Cetane number is a relative ranking of a fuel's autoignition characteristics for use in compression ignition engines; it is based on the amount of time between fuel injection and ignition, also known as ignition delay. The cetane number is typically measured either in a single-cylinder engine or a constant volume combustion chamber. Values in the previous Compendium derived from octane numbers have been removed, and replaced with a brief analysis of the correlation between cetane numbers and octane numbers. The discussion on the accuracy and precision of the most commonly used methods for measuring cetane has been expanded and the data has been annotated extensively to provide additional information that will help the reader judge the relative reliability of individual results.

  18. Determining the Porosity and Saturated Hydraulic Conductivity of Binary Mixtures

    SciTech Connect (OSTI)

    Zhang, Z. F.; Ward, Anderson L.; Keller, Jason M.

    2009-09-27

    Gravels and coarse sands make up significant portions of some environmentally important sediments, while the hydraulic properties of the sediments are typically obtained in the laboratory using only the fine fraction (e.g., <2 mm or 4.75 mm). Researchers have found that the content of gravel has significant impacts on the hydraulic properties of the bulk soils. Laboratory experiments were conducted to measure the porosity and the saturated hydraulic conductivity of binary mixtures with different fractions of coarse and fine components. We proposed a mixing-coefficient model to estimate the porosity and a power-averaging method to determine the effective particle diameter and further to predict the saturated hydraulic conductivity of binary mixtures. The proposed methods could well estimate the porosity and saturated hydraulic conductivity of the binary mixtures for the full range of gravel contents and was successfully applied to two data sets in the literature.

  19. BINARY QUASARS IN THE SLOAN DIGITAL SKY SURVEY: EVIDENCE FOR EXCESS CLUSTERING ON SMALL SCALES

    SciTech Connect (OSTI)

    Hennawi, J F; Strauss, M A; Oguri, M; Inada, N; Richards, G T; Pindor, B; Schneider, D P; Becker, R H; Gregg, M D; Hall, P B; Johnston, D E; Fan, X; Burles, S; Schlegel, D J; Gunn, J E; Lupton, R; Bahcall, N A; Brunner, R J; Brinkman, J

    2005-11-10

    We present a sample of 218 new quasar pairs with proper transverse separations R{sub prop} < 1 h{sup -1} Mpc over the redshift range 0.5 < z < 3.0, discovered from an extensive follow up campaign to find companions around the Sloan Digital Sky Survey and 2dF Quasar Redshift Survey quasars. This sample includes 26 new binary quasars with separations R{sub prop} < 50 h{sup -1} kpc ({theta} < 10''), more than doubling the number of such systems known. We define a statistical sample of binaries selected with homogeneous criteria and compute its selection function, taking into account sources of incompleteness. The first measurement of the quasar correlation function on scales 10 h{sup -1} kpc < R{sub prop} < 400 h{sup -1} kpc is presented. For R{sub prop} {approx}< 40 h{sup -1} kpc, we detect an order of magnitude excess clustering over the expectation from the large scale (R{sub prop} {approx}> 3 h{sup -1} Mpc) quasar correlation function, extrapolated down as a power law to the separations probed by our binaries. The excess grows to {approx}30 at R{sub prop} {approx} 10 h{sup -1} kpc, and provides compelling evidence that the quasar autocorrelation function gets progressively steeper on sub-Mpc scales. This small scale excess can likely be attributed to dissipative interaction events which trigger quasar activity in rich environments. Recent small scale measurements of galaxy clustering and quasar-galaxy clustering are reviewed and discussed in relation to our measurement of small scale quasar clustering.

  20. Arizona Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Arizona Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 358 344 354 1990's 526 532 532 526 519 530 534 480 514 555 2000's 526 504 488 450 414 425 439 395 383 390 2010's 368 371 379 383 386 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date:

  1. Montana Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Montana Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 435 435 428 1990's 457 452 459 462 453 463 466 462 454 397 2000's 71 73 439 412 593 716 711 693 693 396 2010's 384 381 372 372 369 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date:

  2. Nevada Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Nevada Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 93 98 100 1990's 100 113 114 117 119 120 121 93 93 109 2000's 90 90 96 97 179 192 207 220 189 192 2010's 184 177 177 195 218 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016

  3. New Hampshire Natural Gas Number of Industrial Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Industrial Consumers (Number of Elements) New Hampshire Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 153 295 376 1990's 364 361 344 334 324 332 367 385 389 417 2000's 432 331 437 550 305 397 421 578 5,298 155 2010's 306 362 466 403 326 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016

  4. North Dakota Natural Gas Number of Industrial Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Industrial Consumers (Number of Elements) North Dakota Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 138 148 151 1990's 165 170 171 174 186 189 206 216 404 226 2000's 192 203 223 234 241 239 241 253 271 279 2010's 307 259 260 266 269 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016

  5. Rhode Island Natural Gas Number of Industrial Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Industrial Consumers (Number of Elements) Rhode Island Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,158 1,152 1,122 1990's 1,135 1,107 1,096 1,066 1,064 359 363 336 325 302 2000's 317 283 54 236 223 223 245 256 243 260 2010's 249 245 248 271 266 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release

  6. South Dakota Natural Gas Number of Industrial Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Industrial Consumers (Number of Elements) South Dakota Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 261 267 270 1990's 275 283 319 355 381 396 444 481 464 445 2000's 416 402 533 526 475 542 528 548 598 598 2010's 580 556 574 566 575 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016

  7. Utah Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Utah Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 551 627 550 1990's 1,508 631 783 345 252 713 923 3,379 3,597 3,625 2000's 3,576 3,535 949 924 312 191 274 278 313 293 2010's 293 286 302 323 328 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release

  8. Vermont Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Vermont Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 22 21 14 1990's 15 13 18 20 24 23 27 30 36 37 2000's 38 36 38 41 43 41 35 37 35 36 2010's 38 36 38 13 13 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages:

  9. Delaware Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Delaware Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 241 233 235 1990's 240 243 248 249 252 253 250 265 257 264 2000's 297 316 182 184 186 179 170 185 165 112 2010's 114 129 134 138 141 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date:

  10. Florida Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Florida Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 575 552 460 1990's 452 377 388 433 481 515 517 561 574 573 2000's 520 518 451 421 398 432 475 467 449 607 2010's 581 630 507 528 520 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date:

  11. Idaho Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Idaho Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 219 132 64 1990's 62 65 66 75 144 167 183 189 203 200 2000's 217 198 194 191 196 195 192 188 199 187 2010's 184 178 179 183 189 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016

  12. Maine Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Maine Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 73 73 74 1990's 80 81 80 66 89 74 87 81 110 108 2000's 178 233 66 65 69 69 73 76 82 85 2010's 94 102 108 120 126 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring

  13. West Virginia Natural Gas Number of Industrial Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Industrial Consumers (Number of Elements) West Virginia Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 463 208 211 1990's 182 198 159 197 191 192 182 173 217 147 2000's 207 213 184 142 137 145 155 114 109 101 2010's 102 94 97 95 92 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next

  14. Wyoming Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Wyoming Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 190 200 230 1990's 284 228 244 194 135 126 170 194 317 314 2000's 308 295 877 179 121 127 133 133 155 130 2010's 120 123 127 132 131 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date:

  15. THE PHASES DIFFERENTIAL ASTROMETRY DATA ARCHIVE. II. UPDATED BINARY STAR ORBITS AND A LONG PERIOD ECLIPSING BINARY

    SciTech Connect (OSTI)

    Muterspaugh, Matthew W.; O'Connell, J.; Hartkopf, William I.; Lane, Benjamin F.; Williamson, M.; Kulkarni, S. R.; Konacki, Maciej; Burke, Bernard F.; Colavita, M. M.; Shao, M.; Wiktorowicz, Sloane J. E-mail: wih@usno.navy.mi E-mail: maciej@ncac.torun.p

    2010-12-15

    Differential astrometry measurements from the Palomar High-precision Astrometric Search for Exoplanet Systems have been combined with lower precision single-aperture measurements covering a much longer timespan (from eyepiece measurements, speckle interferometry, and adaptive optics) to determine improved visual orbits for 20 binary stars. In some cases, radial velocity observations exist to constrain the full three-dimensional orbit and determine component masses. The visual orbit of one of these binaries-{alpha} Com (HD 114378)-shows that the system is likely to have eclipses, despite its very long period of 26 years. The next eclipse is predicted to be within a week of 2015 January 24.

  16. Departmental Business Instrument Numbering System

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2000-12-05

    To prescribe procedures for assigning identifying numbers to all Department of Energy (DOE), including the National Nuclear Security Administration, business instruments. Cancels DOE 1331.2B. Canceled by DOE O 540.1A.

  17. Departmental Business Instrument Numbering System

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2005-01-27

    The Order prescribes the procedures for assigning identifying numbers to all Department of Energy (DOE) and National Nuclear Security Administration (NNSA) business instruments. Cancels DOE O 540.1. Canceled by DOE O 540.1B.

  18. Dixie Valley Binary Cycle Production Data 2013 YTD

    SciTech Connect (OSTI)

    Lee, Vitaly

    2013-10-18

    Proving the technical and economic feasibility of utilizing the available unused heat to generate additional electric power from a binary power plant from the low-temperature brine at the Dixie Valley Geothermal Power Plant. Monthly data for Jan 2013-September 2013

  19. BINARY STAR ORBITS. IV. ORBITS OF 18 SOUTHERN INTERFEROMETRIC PAIRS

    SciTech Connect (OSTI)

    Mason, Brian D.; Hartkopf, William I.; Tokovinin, Andrei E-mail: wih@usno.navy.mi

    2010-09-15

    First orbits are presented for 3 interferometric pairs and revised solutions for 15 others, based in part on first results from a recently initiated program of speckle interferometric observations of neglected southern binaries. Eight of these systems contain additional components, with multiplicity ranging up to 6.

  20. Coal liquefaction process using pretreatment with a binary solvent mixture

    DOE Patents [OSTI]

    Miller, Robert N. (Allentown, PA)

    1986-01-01

    An improved process for thermal solvent refining or hydroliquefaction of non-anthracitic coal at elevated temperatures under hydrogen pressure in a hydrogen donor solvent comprises pretreating the coal with a binary mixture of an aromatic hydrocarbon and an aliphatic alcohol at a temperature below 300.degree. C. before the hydroliquefaction step. This treatment generally increases both conversion of coal and yields of oil.

  1. Production and Injection data for NV Binary facilities

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Mines, Greg

    Excel files are provided with well production and injection data for binary facilities in Nevada. The files contain the data that reported montly to the Nevada Bureau of Mines and Geology (NBMG) by the facility operators. this data has been complied into Excel spreadsheets for each of the facilities given on the NBMG web site.

  2. Production and Injection data for NV Binary facilities

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Mines, Greg

    2013-12-24

    Excel files are provided with well production and injection data for binary facilities in Nevada. The files contain the data that reported montly to the Nevada Bureau of Mines and Geology (NBMG) by the facility operators. this data has been complied into Excel spreadsheets for each of the facilities given on the NBMG web site.

  3. Document ID Number: RL-721

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ---------------------------------------------------------- Document ID Number: RL-721 REV 4 NEPA REVIEW SCREENING FORM DOE/CX-00066 I. Project Title: Nesting Bird Deterrent Study at the 241-C Tank Farm CX B3.8, "Outdoor Terrestrial Ecological and Environmental Research" II. Project Description and Location (including Time Period over which proposed action will occur and Project Dimensions - e.g., acres displaced/disturbed, excavation length/depth, area/location/number of buildings,

  4. Alabama Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Alabama Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 53 54,306 55,400 56,822 1990's 56,903 57,265 58,068 57,827 60,320 60,902 62,064 65,919 76,467 64,185 2000's 66,193 65,794 65,788 65,297 65,223 65,294 66,337 65,879 65,313 67,674 2010's 68,163 67,696 67,252 67,136 67,806 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  5. Alabama Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Alabama Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2 2,313 2,293 2,380 1990's 2,431 2,523 2,509 2,458 2,477 2,491 2,512 2,496 2,464 2,620 2000's 2,792 2,781 2,730 2,743 2,799 2,787 2,735 2,704 2,757 3,057 2010's 3,039 2,988 3,045 3,143 3,244 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  6. Alabama Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Alabama Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 656 662,217 668,432 683,528 1990's 686,149 700,195 711,043 730,114 744,394 751,890 766,322 781,711 788,464 775,311 2000's 805,689 807,770 806,389 809,754 806,660 809,454 808,801 796,476 792,236 785,005 2010's 778,985 772,892 767,396 765,957 769,418 - = No Data Reported; -- = Not Applicable; NA = Not

  7. Alaska Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Alaska Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 11 11,484 11,649 11,806 1990's 11,921 12,071 12,204 12,359 12,475 12,584 12,732 12,945 13,176 13,409 2000's 13,711 14,002 14,342 14,502 13,999 14,120 14,384 13,408 12,764 13,215 2010's 12,998 13,027 13,133 13,246 13,399 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  8. Alaska Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Alaska Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 66 67,648 68,612 69,540 1990's 70,808 72,565 74,268 75,842 77,670 79,474 81,348 83,596 86,243 88,924 2000's 91,297 93,896 97,077 100,404 104,360 108,401 112,269 115,500 119,039 120,124 2010's 121,166 121,736 122,983 124,411 126,416 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  9. Arizona Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Arizona Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 46 46,702 46,636 46,776 1990's 47,292 53,982 47,781 47,678 48,568 49,145 49,693 50,115 51,712 53,022 2000's 54,056 54,724 56,260 56,082 56,186 56,572 57,091 57,169 57,586 57,191 2010's 56,676 56,547 56,532 56,585 56,649 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  10. Arizona Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Arizona Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 545 567,962 564,195 572,461 1990's 586,866 642,659 604,899 610,337 635,335 661,192 689,597 724,911 764,167 802,469 2000's 846,016 884,789 925,927 957,442 993,885 1,042,662 1,088,574 1,119,266 1,128,264 1,130,047 2010's 1,138,448 1,146,286 1,157,688 1,172,003 1,186,794 - = No Data Reported; -- = Not

  11. Arkansas Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Arkansas Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 60 60,355 61,630 61,848 1990's 61,530 61,731 62,221 62,952 63,821 65,490 67,293 68,413 69,974 71,389 2000's 72,933 71,875 71,530 71,016 70,655 69,990 69,475 69,495 69,144 69,043 2010's 67,987 67,815 68,765 68,791 69,011 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  12. Arkansas Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Arkansas Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1 1,410 1,151 1,412 1990's 1,396 1,367 1,319 1,364 1,417 1,366 1,488 1,336 1,300 1,393 2000's 1,414 1,122 1,407 1,269 1,223 1,120 1,120 1,055 1,104 1,025 2010's 1,079 1,133 990 1,020 1,009 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  13. Arkansas Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Arkansas Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 475 480,839 485,112 491,110 1990's 488,850 495,148 504,722 513,466 521,176 531,182 539,952 544,460 550,017 554,121 2000's 560,055 552,716 553,192 553,211 554,844 555,861 555,905 557,966 556,746 557,355 2010's 549,970 551,795 549,959 549,764 549,034 - = No Data Reported; -- = Not Applicable; NA =

  14. Massachusetts Natural Gas Number of Commercial Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Commercial Consumers (Number of Elements) Massachusetts Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 84,636 93,005 92,252 1990's 85,775 88,746 85,873 102,187 92,744 104,453 105,889 107,926 108,832 113,177 2000's 117,993 120,984 122,447 123,006 125,107 120,167 126,713 128,965 242,693 153,826 2010's 144,487 138,225 142,825 144,246 139,556 - = No Data Reported; -- = Not Applicable;

  15. Massachusetts Natural Gas Number of Industrial Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Industrial Consumers (Number of Elements) Massachusetts Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 5,626 7,199 13,057 1990's 6,539 5,006 8,723 7,283 8,019 10,447 10,952 11,058 11,245 8,027 2000's 8,794 9,750 9,090 11,272 10,949 12,019 12,456 12,678 36,928 19,208 2010's 12,751 10,721 10,840 11,063 10,946 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld

  16. Massachusetts Natural Gas Number of Residential Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Residential Consumers (Number of Elements) Massachusetts Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,082,777 1,100,635 1,114,920 1990's 1,118,429 1,127,536 1,137,911 1,155,443 1,179,869 1,180,860 1,188,317 1,204,494 1,212,486 1,232,887 2000's 1,278,781 1,283,008 1,295,952 1,324,715 1,306,142 1,297,508 1,348,848 1,361,470 1,236,480 1,370,353 2010's 1,389,592 1,408,314 1,447,947

  17. Michigan Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Michigan Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 178,469 185,961 191,474 1990's 195,766 198,890 201,561 204,453 207,629 211,817 214,843 222,726 224,506 227,159 2000's 230,558 225,109 247,818 246,123 246,991 253,415 254,923 253,139 252,382 252,017 2010's 249,309 249,456 249,994 250,994 253,127 - = No Data Reported; -- = Not Applicable; NA = Not

  18. Michigan Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Michigan Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 10,885 11,117 11,452 1990's 11,500 11,446 11,460 11,425 11,308 11,454 11,848 12,233 11,888 14,527 2000's 11,384 11,210 10,468 10,378 10,088 10,049 9,885 9,728 10,563 18,186 2010's 9,332 9,088 8,833 8,497 8,156 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  19. Michigan Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Michigan Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,452,554 2,491,149 2,531,304 1990's 2,573,570 2,609,561 2,640,579 2,677,085 2,717,683 2,767,190 2,812,876 2,859,483 2,903,698 2,949,628 2000's 2,999,737 3,011,205 3,110,743 3,140,021 3,161,370 3,187,583 3,193,920 3,188,152 3,172,623 3,169,026 2010's 3,152,468 3,153,895 3,161,033 3,180,349

  20. Minnesota Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Minnesota Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 88,789 90,256 92,916 1990's 95,474 97,388 99,707 93,062 102,857 103,874 105,531 108,686 110,986 114,127 2000's 116,529 119,007 121,751 123,123 125,133 126,310 129,149 128,367 130,847 131,801 2010's 132,163 132,938 134,394 135,557 136,382 - = No Data Reported; -- = Not Applicable; NA = Not Available;

  1. Minnesota Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Minnesota Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,585 2,670 2,638 1990's 2,574 2,486 2,515 2,477 2,592 2,531 2,564 2,233 2,188 2,267 2000's 2,025 1,996 2,029 2,074 2,040 1,432 1,257 1,146 1,131 2,039 2010's 2,106 1,770 1,793 1,870 1,878 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  2. Minnesota Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Minnesota Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 872,148 894,380 911,001 1990's 946,107 970,941 998,201 1,074,631 1,049,263 1,080,009 1,103,709 1,134,019 1,161,423 1,190,190 2000's 1,222,397 1,249,748 1,282,751 1,308,143 1,338,061 1,364,237 1,401,362 1,401,623 1,413,162 1,423,703 2010's 1,429,681 1,436,063 1,445,824 1,459,134 1,472,663 - = No

  3. Mississippi Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Mississippi Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 43,362 44,170 44,253 1990's 43,184 43,693 44,313 45,310 43,803 45,444 46,029 47,311 45,345 47,620 2000's 50,913 51,109 50,468 50,928 54,027 54,936 55,741 56,155 55,291 50,713 2010's 50,537 50,636 50,689 50,153 50,238 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  4. Mississippi Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Mississippi Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,312 1,263 1,282 1990's 1,317 1,314 1,327 1,324 1,313 1,298 1,241 1,199 1,165 1,246 2000's 1,199 1,214 1,083 1,161 996 1,205 1,181 1,346 1,132 1,141 2010's 980 982 936 933 943 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company

  5. Mississippi Natural Gas Number of Residential Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Residential Consumers (Number of Elements) Mississippi Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 370,094 372,238 376,353 1990's 382,251 386,264 392,155 398,472 405,312 415,123 418,442 423,397 415,673 426,352 2000's 434,501 438,069 435,146 438,861 445,212 445,856 437,669 445,043 443,025 437,715 2010's 436,840 442,479 442,840 445,589 444,423 - = No Data Reported; -- = Not

  6. Missouri Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Missouri Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 96,711 97,939 99,721 1990's 105,164 117,675 125,174 125,571 132,378 130,318 133,445 135,553 135,417 133,464 2000's 133,969 135,968 137,924 140,057 141,258 142,148 143,632 142,965 141,529 140,633 2010's 138,670 138,214 144,906 142,495 143,024 - = No Data Reported; -- = Not Applicable; NA = Not

  7. Missouri Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Missouri Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,832 2,880 3,063 1990's 3,140 3,096 2,989 3,040 3,115 3,033 3,408 3,097 3,151 3,152 2000's 3,094 3,085 2,935 3,115 3,600 3,545 3,548 3,511 3,514 3,573 2010's 3,541 3,307 3,692 3,538 3,497 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  8. Missouri Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Missouri Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,180,546 1,194,985 1,208,523 1990's 1,213,305 1,211,342 1,220,203 1,225,921 1,281,007 1,259,102 1,275,465 1,293,032 1,307,563 1,311,865 2000's 1,324,282 1,326,160 1,340,726 1,343,614 1,346,773 1,348,743 1,353,892 1,354,173 1,352,015 1,348,781 2010's 1,348,549 1,342,920 1,389,910 1,357,740

  9. Montana Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Montana Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 21,382 22,246 22,219 1990's 23,331 23,185 23,610 24,373 25,349 26,329 26,374 27,457 28,065 28,424 2000's 29,215 29,429 30,250 30,814 31,357 31,304 31,817 32,472 33,008 33,731 2010's 34,002 34,305 34,504 34,909 35,205 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  10. Montana Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Montana Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 167,883 171,785 171,156 1990's 174,384 177,726 182,641 188,879 194,357 203,435 205,199 209,806 218,851 222,114 2000's 224,784 226,171 229,015 232,839 236,511 240,554 245,883 247,035 253,122 255,472 2010's 257,322 259,046 259,957 262,122 265,849 - = No Data Reported; -- = Not Applicable; NA = Not

  11. Nebraska Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Nebraska Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 60,707 61,365 60,377 1990's 60,405 60,947 61,319 60,599 62,045 61,275 61,117 51,661 63,819 53,943 2000's 55,194 55,692 56,560 55,999 57,087 57,389 56,548 55,761 58,160 56,454 2010's 56,246 56,553 56,608 58,005 57,191 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  12. Nebraska Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Nebraska Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 675 684 702 1990's 712 718 696 718 766 2,432 2,234 11,553 10,673 10,342 2000's 10,161 10,504 9,156 9,022 8,463 7,973 7,697 7,668 11,627 7,863 2010's 7,912 7,955 8,160 8,495 8,791 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company

  13. Nevada Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Nevada Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 18,294 18,921 19,924 1990's 20,694 22,124 22,799 23,207 24,521 25,593 26,613 27,629 29,030 30,521 2000's 31,789 32,782 33,877 34,590 35,792 37,093 38,546 40,128 41,098 41,303 2010's 40,801 40,944 41,192 41,710 42,338 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  14. Nevada Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Nevada Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 213,422 219,981 236,237 1990's 256,119 283,307 295,714 305,099 336,353 364,112 393,783 426,221 458,737 490,029 2000's 520,233 550,850 580,319 610,756 648,551 688,058 726,772 750,570 758,315 760,391 2010's 764,435 772,880 782,759 794,150 808,970 - = No Data Reported; -- = Not Applicable; NA = Not

  15. New Hampshire Natural Gas Number of Commercial Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Commercial Consumers (Number of Elements) New Hampshire Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 8,831 9,159 10,237 1990's 10,521 11,088 11,383 11,726 12,240 12,450 12,755 13,225 13,512 13,932 2000's 14,219 15,068 15,130 15,047 15,429 16,266 16,139 16,150 41,332 16,937 2010's 16,645 17,186 17,758 17,298 17,421 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  16. New Hampshire Natural Gas Number of Residential Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Residential Consumers (Number of Elements) New Hampshire Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 60,078 61,969 64,059 1990's 65,310 67,991 69,356 70,938 72,656 74,232 75,175 77,092 78,786 80,958 2000's 82,813 84,760 87,147 88,170 88,600 94,473 94,600 94,963 67,945 96,924 2010's 95,361 97,400 99,738 98,715 99,146 - = No Data Reported; -- = Not Applicable; NA = Not Available;

  17. North Carolina Natural Gas Number of Industrial Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Industrial Consumers (Number of Elements) North Carolina Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 3,236 3,196 3,381 1990's 2,802 3,506 3,119 2,664 3,401 3,652 3,973 5,375 6,228 5,672 2000's 5,288 2,962 3,200 3,101 3,021 2,891 2,701 2,991 2,984 2,384 2010's 2,457 2,468 2,525 2,567 2,596 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  18. North Carolina Natural Gas Number of Residential Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Residential Consumers (Number of Elements) North Carolina Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 435,826 472,928 492,821 1990's 520,140 539,321 575,096 607,388 652,307 678,147 699,159 740,013 777,805 815,908 2000's 858,004 891,227 905,816 953,732 948,283 992,906 1,022,430 1,063,871 1,095,362 1,102,001 2010's 1,115,532 1,128,963 1,142,947 1,161,398 1,183,152 - = No Data

  19. North Dakota Natural Gas Number of Commercial Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Commercial Consumers (Number of Elements) North Dakota Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 11,905 12,104 12,454 1990's 12,742 12,082 12,353 12,650 12,944 13,399 13,789 14,099 14,422 15,050 2000's 15,531 15,740 16,093 16,202 16,443 16,518 16,848 17,013 17,284 17,632 2010's 17,823 18,421 19,089 19,855 20,687 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  20. North Dakota Natural Gas Number of Residential Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Residential Consumers (Number of Elements) North Dakota Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 83,517 84,059 84,643 1990's 85,646 87,880 89,522 91,237 93,398 95,818 97,761 98,326 101,930 104,051 2000's 105,660 106,758 108,716 110,048 112,206 114,152 116,615 118,100 120,056 122,065 2010's 123,585 125,392 130,044 133,975 137,972 - = No Data Reported; -- = Not Applicable; NA =

  1. Ohio Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Ohio Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 213,601 219,257 225,347 1990's 233,075 236,519 237,861 240,684 245,190 250,223 259,663 254,991 258,076 266,102 2000's 269,561 269,327 271,160 271,203 272,445 277,767 270,552 272,555 272,899 270,596 2010's 268,346 268,647 267,793 269,081 269,758 - = No Data Reported; -- = Not Applicable; NA = Not

  2. Ohio Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Ohio Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 7,929 8,163 8,356 1990's 8,301 8,479 8,573 8,678 8,655 8,650 8,672 7,779 8,112 8,136 2000's 8,267 8,515 8,111 8,098 7,899 8,328 6,929 6,858 6,806 6,712 2010's 6,571 6,482 6,381 6,554 6,526 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  3. Ohio Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Ohio Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,648,972 2,678,838 2,714,839 1990's 2,766,912 2,801,716 2,826,713 2,867,959 2,921,536 2,967,375 2,994,891 3,041,948 3,050,960 3,111,108 2000's 3,178,840 3,195,584 3,208,466 3,225,908 3,250,068 3,272,307 3,263,062 3,273,791 3,262,716 3,253,184 2010's 3,240,619 3,236,160 3,244,274 3,271,074 3,283,869 -

  4. Oklahoma Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Oklahoma Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 87,824 86,666 86,172 1990's 85,790 86,744 87,120 88,181 87,494 88,358 89,852 90,284 89,711 80,986 2000's 80,558 79,045 80,029 79,733 79,512 78,726 78,745 93,991 94,247 94,314 2010's 92,430 93,903 94,537 95,385 96,004 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  5. Oklahoma Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Oklahoma Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,772 2,689 2,877 1990's 2,889 2,840 2,859 2,912 2,853 2,845 2,843 2,531 3,295 3,040 2000's 2,821 3,403 3,438 3,367 3,283 2,855 2,811 2,822 2,920 2,618 2010's 2,731 2,733 2,872 2,958 3,063 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  6. Oklahoma Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Oklahoma Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 809,171 805,107 806,875 1990's 814,296 824,172 832,677 842,130 845,448 856,604 866,531 872,454 877,236 867,922 2000's 859,951 868,314 875,338 876,420 875,271 880,403 879,589 920,616 923,650 924,745 2010's 914,869 922,240 927,346 931,981 937,237 - = No Data Reported; -- = Not Applicable; NA = Not

  7. Oregon Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Oregon Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 40,967 41,998 43,997 1990's 47,175 55,374 50,251 51,910 53,700 55,409 57,613 60,419 63,085 65,034 2000's 66,893 68,098 69,150 74,515 71,762 73,520 74,683 80,998 76,868 76,893 2010's 77,370 77,822 78,237 79,276 80,480 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  8. Oregon Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Oregon Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 676 1,034 738 1990's 699 787 740 696 765 791 799 704 695 718 2000's 717 821 842 926 907 1,118 1,060 1,136 1,075 1,051 2010's 1,053 1,066 1,076 1,085 1,099 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016

  9. Oregon Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Oregon Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 280,670 288,066 302,156 1990's 326,177 376,166 354,256 371,151 391,845 411,465 433,638 456,960 477,796 502,000 2000's 523,952 542,799 563,744 625,398 595,495 626,685 647,635 664,455 674,421 675,582 2010's 682,737 688,681 693,507 700,211 707,010 - = No Data Reported; -- = Not Applicable; NA = Not

  10. Pennsylvania Natural Gas Number of Commercial Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Commercial Consumers (Number of Elements) Pennsylvania Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 166,901 172,615 178,545 1990's 186,772 191,103 193,863 198,299 206,812 209,245 214,340 215,057 216,519 223,732 2000's 228,037 225,911 226,957 227,708 231,051 233,132 231,540 234,597 233,462 233,334 2010's 233,751 233,588 235,049 237,922 239,681 - = No Data Reported; -- = Not

  11. Pennsylvania Natural Gas Number of Industrial Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Industrial Consumers (Number of Elements) Pennsylvania Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 6,089 6,070 6,023 1990's 6,238 6,344 6,496 6,407 6,388 6,328 6,441 6,492 6,736 7,080 2000's 6,330 6,159 5,880 5,577 5,726 5,577 5,241 4,868 4,772 4,745 2010's 4,624 5,007 5,066 5,024 5,084 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  12. Pennsylvania Natural Gas Number of Residential Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Residential Consumers (Number of Elements) Pennsylvania Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,237,877 2,271,801 2,291,242 1990's 2,311,795 2,333,377 2,363,575 2,386,249 2,393,053 2,413,715 2,431,909 2,452,524 2,493,639 2,486,704 2000's 2,519,794 2,542,724 2,559,024 2,572,584 2,591,458 2,600,574 2,605,782 2,620,755 2,631,340 2,635,886 2010's 2,646,211 2,667,392 2,678,547

  13. Rhode Island Natural Gas Number of Commercial Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Commercial Consumers (Number of Elements) Rhode Island Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 15,128 16,096 16,924 1990's 17,765 18,430 18,607 21,178 21,208 21,472 21,664 21,862 22,136 22,254 2000's 22,592 22,815 23,364 23,270 22,994 23,082 23,150 23,007 23,010 22,988 2010's 23,049 23,177 23,359 23,742 23,934 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  14. Rhode Island Natural Gas Number of Residential Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Residential Consumers (Number of Elements) Rhode Island Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 180,656 185,861 190,796 1990's 195,100 196,438 197,926 198,563 200,959 202,947 204,259 212,777 208,208 211,097 2000's 214,474 216,781 219,769 221,141 223,669 224,320 225,027 223,589 224,103 224,846 2010's 225,204 225,828 228,487 231,763 233,786 - = No Data Reported; -- = Not

  15. South Carolina Natural Gas Number of Commercial Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Commercial Consumers (Number of Elements) South Carolina Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 35,414 37,075 38,856 1990's 39,904 39,999 40,968 42,191 45,487 47,293 48,650 50,817 52,237 53,436 2000's 54,794 55,257 55,608 55,909 56,049 56,974 57,452 57,544 56,317 55,850 2010's 55,853 55,846 55,908 55,997 56,172 - = No Data Reported; -- = Not Applicable; NA = Not Available; W

  16. South Carolina Natural Gas Number of Industrial Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Industrial Consumers (Number of Elements) South Carolina Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,256 1,273 1,307 1990's 1,384 1,400 1,568 1,625 1,928 1,802 1,759 1,764 1,728 1,768 2000's 1,715 1,702 1,563 1,574 1,528 1,535 1,528 1,472 1,426 1,358 2010's 1,325 1,329 1,435 1,452 1,426 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  17. South Carolina Natural Gas Number of Residential Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Residential Consumers (Number of Elements) South Carolina Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 302,321 313,831 327,527 1990's 339,486 344,763 357,818 370,411 416,773 412,259 426,088 443,093 460,141 473,799 2000's 489,340 501,161 508,686 516,362 527,008 541,523 554,953 570,213 561,196 565,774 2010's 570,797 576,594 583,633 593,286 604,743 - = No Data Reported; -- = Not

  18. South Dakota Natural Gas Number of Commercial Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Commercial Consumers (Number of Elements) South Dakota Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 12,480 12,438 12,771 1990's 13,443 13,692 14,133 16,523 15,539 16,285 16,880 17,432 17,972 18,453 2000's 19,100 19,378 19,794 20,070 20,457 20,771 21,149 21,502 21,819 22,071 2010's 22,267 22,570 22,955 23,214 23,591 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  19. South Dakota Natural Gas Number of Residential Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Residential Consumers (Number of Elements) South Dakota Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 101,468 102,084 103,538 1990's 105,436 107,846 110,291 128,029 119,544 124,152 127,269 130,307 133,095 136,789 2000's 142,075 144,310 147,356 150,725 148,105 157,457 160,481 163,458 165,694 168,096 2010's 169,838 170,877 173,856 176,204 179,042 - = No Data Reported; -- = Not

  20. Tennessee Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Tennessee Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 77,104 81,159 84,040 1990's 88,753 89,863 91,999 94,860 97,943 101,561 103,867 105,925 109,772 112,978 2000's 115,691 118,561 120,130 131,916 125,042 124,755 126,970 126,324 128,007 127,704 2010's 127,914 128,969 130,139 131,091 131,001 - = No Data Reported; -- = Not Applicable; NA = Not Available;

  1. Tennessee Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Tennessee Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,206 2,151 2,555 1990's 2,361 2,369 2,425 2,512 2,440 2,393 2,306 2,382 5,149 2,159 2000's 2,386 2,704 2,657 2,755 2,738 2,498 2,545 2,656 2,650 2,717 2010's 2,702 2,729 2,679 2,581 2,595 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  2. Tennessee Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Tennessee Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 534,882 565,856 599,042 1990's 627,031 661,105 696,140 733,363 768,421 804,724 841,232 867,793 905,757 937,896 2000's 969,537 993,363 1,009,225 1,022,628 1,037,429 1,049,307 1,063,328 1,071,756 1,084,102 1,083,573 2010's 1,085,387 1,089,009 1,084,726 1,094,122 1,106,681 - = No Data Reported; -- =

  3. Texas Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Texas Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 4,852 4,427 13,383 1990's 13,659 13,770 5,481 5,823 5,222 9,043 8,796 5,339 5,318 5,655 2000's 11,613 10,047 9,143 9,015 9,359 9,136 8,664 11,063 5,568 8,581 2010's 8,779 8,713 8,953 8,525 8,406 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  4. Utah Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Utah Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 31,329 32,637 32,966 1990's 34,697 35,627 36,145 37,816 39,183 40,101 40,107 40,689 42,054 43,861 2000's 47,201 47,477 50,202 51,063 51,503 55,174 55,821 57,741 59,502 60,781 2010's 61,976 62,885 63,383 64,114 65,134 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  5. Utah Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Utah Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 414,020 418,569 432,377 1990's 453,023 455,649 467,664 484,438 503,583 523,622 562,343 567,786 588,364 609,603 2000's 641,111 657,728 660,677 678,833 701,255 743,761 754,554 778,644 794,880 810,442 2010's 821,525 830,219 840,687 854,389 869,052 - = No Data Reported; -- = Not Applicable; NA = Not

  6. Vermont Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Vermont Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,447 2,698 2,768 1990's 2,949 3,154 3,198 3,314 3,512 3,649 3,790 3,928 4,034 4,219 2000's 4,316 4,416 4,516 4,602 4,684 4,781 4,861 4,925 4,980 5,085 2010's 5,137 5,256 5,535 5,441 5,589 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  7. Vermont Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Vermont Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 15,553 16,616 16,920 1990's 18,300 19,879 20,468 21,553 22,546 23,523 24,383 25,539 26,664 27,931 2000's 28,532 29,463 30,108 30,856 31,971 33,015 34,081 34,937 35,929 37,242 2010's 38,047 38,839 39,917 41,152 42,231 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  8. Virginia Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Virginia Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 54,071 54,892 61,012 1990's 63,751 67,997 69,629 70,161 72,188 74,690 77,284 78,986 77,220 80,500 2000's 84,646 84,839 86,328 87,202 87,919 90,577 91,481 93,015 94,219 95,704 2010's 95,401 96,086 96,503 97,499 98,741 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  9. Virginia Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Virginia Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 877 895 895 1990's 929 1,156 1,101 2,706 2,740 2,812 2,822 2,391 2,469 2,984 2000's 1,749 1,261 1,526 1,517 1,217 1,402 1,256 1,271 1,205 1,126 2010's 1,059 1,103 1,132 1,132 1,123 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company

  10. Virginia Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Virginia Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 550,318 573,731 601,906 1990's 622,883 651,203 664,500 690,061 721,495 753,003 789,985 812,866 847,938 893,887 2000's 907,855 941,582 982,521 996,564 1,029,389 1,066,302 1,085,509 1,101,863 1,113,016 1,124,717 2010's 1,133,103 1,145,049 1,155,636 1,170,161 1,183,894 - = No Data Reported; -- = Not

  11. Washington Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Washington Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 51,365 56,487 55,231 1990's 58,148 60,887 63,391 65,810 68,118 70,781 73,708 75,550 77,770 80,995 2000's 83,189 84,628 85,286 87,082 93,559 92,417 93,628 95,615 97,799 98,965 2010's 99,231 99,674 100,038 100,939 101,730 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  12. Washington Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Washington Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 3,355 3,564 3,365 1990's 3,428 3,495 3,490 3,448 3,586 3,544 3,587 3,748 3,848 4,040 2000's 4,007 3,898 3,928 3,775 3,992 3,489 3,428 3,630 3,483 3,428 2010's 3,372 3,353 3,338 3,320 3,355 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  13. Washington Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Washington Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 392,469 413,008 425,624 1990's 458,013 492,189 528,913 565,475 604,315 638,603 673,357 702,701 737,208 779,104 2000's 813,319 841,617 861,943 895,800 926,510 966,199 997,728 1,025,171 1,047,319 1,059,239 2010's 1,067,979 1,079,277 1,088,762 1,102,318 1,118,193 - = No Data Reported; -- = Not

  14. California Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) California Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 413 404,507 407,435 410,231 1990's 415,073 421,278 412,467 411,648 411,140 411,535 408,294 406,803 588,224 416,791 2000's 413,003 416,036 420,690 431,795 432,367 434,899 442,052 446,267 447,160 441,806 2010's 439,572 440,990 442,708 444,342 443,115 - = No Data Reported; -- = Not Applicable; NA =

  15. California Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) California Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 31 44,764 44,680 46,243 1990's 46,048 44,865 40,528 42,748 38,750 38,457 36,613 35,830 36,235 36,435 2000's 35,391 34,893 33,725 34,617 41,487 40,226 38,637 39,134 39,591 38,746 2010's 38,006 37,575 37,686 37,996 37,548 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  16. California Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) California Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 7,626 7,904,858 8,113,034 8,313,776 1990's 8,497,848 8,634,774 8,680,613 8,726,187 8,790,733 8,865,541 8,969,308 9,060,473 9,181,928 9,331,206 2000's 9,370,797 9,603,122 9,726,642 9,803,311 9,957,412 10,124,433 10,329,224 10,439,220 10,515,162 10,510,950 2010's 10,542,584 10,625,190 10,681,916

  17. Colorado Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Colorado Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 108 109,770 110,769 112,004 1990's 112,661 113,945 114,898 115,924 115,994 118,502 121,221 123,580 125,178 129,041 2000's 131,613 134,393 136,489 138,621 138,543 137,513 139,746 141,420 144,719 145,624 2010's 145,460 145,837 145,960 150,145 150,235 - = No Data Reported; -- = Not Applicable; NA = Not

  18. Colorado Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Colorado Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1 896 923 976 1990's 1,018 1,074 1,108 1,032 1,176 1,528 2,099 2,923 3,349 4,727 2000's 4,994 4,729 4,337 4,054 4,175 4,318 4,472 4,592 4,816 5,084 2010's 6,232 6,529 6,906 7,293 7,823 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  19. Colorado Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Colorado Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 925 942,571 955,810 970,512 1990's 983,592 1,002,154 1,022,542 1,044,699 1,073,308 1,108,899 1,147,743 1,183,978 1,223,433 1,265,032 2000's 1,315,619 1,365,413 1,412,923 1,453,974 1,496,876 1,524,813 1,558,911 1,583,945 1,606,602 1,622,434 2010's 1,634,587 1,645,716 1,659,808 1,672,312 1,690,581 -

  20. Connecticut Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Connecticut Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2 2,709 2,818 2,908 1990's 3,061 2,921 2,923 2,952 3,754 3,705 3,435 3,459 3,441 3,465 2000's 3,683 3,881 3,716 3,625 3,470 3,437 3,393 3,317 3,196 3,138 2010's 3,063 3,062 3,148 4,454 4,217 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  1. Delaware Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Delaware Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 6 6,180 6,566 7,074 1990's 7,485 7,895 8,173 8,409 8,721 9,133 9,518 9,807 10,081 10,441 2000's 9,639 11,075 11,463 11,682 11,921 12,070 12,345 12,576 12,703 12,839 2010's 12,861 12,931 12,997 13,163 13,352 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  2. Delaware Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Delaware Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 81 82,829 84,328 86,428 1990's 88,894 91,467 94,027 96,914 100,431 103,531 106,548 109,400 112,507 115,961 2000's 117,845 122,829 126,418 129,870 133,197 137,115 141,276 145,010 147,541 149,006 2010's 150,458 152,005 153,307 155,627 158,502 - = No Data Reported; -- = Not Applicable; NA = Not

  3. Florida Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Florida Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 41 42,376 43,178 43,802 1990's 43,674 45,012 45,123 47,344 47,851 46,459 47,578 48,251 46,778 50,052 2000's 50,888 53,118 53,794 55,121 55,324 55,479 55,259 57,320 58,125 59,549 2010's 60,854 61,582 63,477 64,772 67,460 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  4. Florida Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Florida Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 442 444,848 446,690 452,544 1990's 457,648 467,221 471,863 484,816 497,777 512,365 521,674 532,790 542,770 556,628 2000's 571,972 590,221 603,690 617,373 639,014 656,069 673,122 682,996 679,265 674,090 2010's 675,551 679,199 686,994 694,210 703,535 - = No Data Reported; -- = Not Applicable; NA = Not

  5. Georgia Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Georgia Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 94 98,809 102,277 106,690 1990's 108,295 109,659 111,423 114,889 117,980 120,122 123,200 123,367 126,050 225,020 2000's 128,275 130,373 128,233 129,867 128,923 128,389 127,843 127,832 126,804 127,347 2010's 124,759 123,454 121,243 126,060 122,573 - = No Data Reported; -- = Not Applicable; NA = Not

  6. Georgia Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Georgia Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 3 3,034 3,144 3,079 1990's 3,153 3,124 3,186 3,302 3,277 3,261 3,310 3,310 3,262 5,580 2000's 3,294 3,330 3,219 3,326 3,161 3,543 3,053 2,913 2,890 2,254 2010's 2,174 2,184 2,112 2,242 2,481 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  7. Georgia Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Georgia Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,190 1,237,201 1,275,128 1,308,972 1990's 1,334,935 1,363,723 1,396,860 1,430,626 1,460,141 1,495,992 1,538,458 1,553,948 1,659,730 1,732,865 2000's 1,680,749 1,737,850 1,735,063 1,747,017 1,752,346 1,773,121 1,726,239 1,793,650 1,791,256 1,744,934 2010's 1,740,587 1,740,006 1,739,543 1,805,425

  8. Hawaii Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Hawaii Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,896 2,852 2,842 1990's 2,837 2,786 2,793 3,222 2,805 2,825 2,823 2,783 2,761 2,763 2000's 2,768 2,777 2,781 2,804 2,578 2,572 2,548 2,547 2,540 2,535 2010's 2,551 2,560 2,545 2,627 2,789 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  9. Hawaii Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Hawaii Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 28,502 28,761 28,970 1990's 29,137 29,701 29,805 29,984 30,614 30,492 31,017 30,990 30,918 30,708 2000's 30,751 30,794 30,731 30,473 26,255 26,219 25,982 25,899 25,632 25,466 2010's 25,389 25,305 25,184 26,374 28,919 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  10. Idaho Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Idaho Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 17,482 18,454 18,813 1990's 19,452 20,328 21,145 21,989 22,999 24,150 25,271 26,436 27,697 28,923 2000's 30,018 30,789 31,547 32,274 33,104 33,362 33,625 33,767 37,320 38,245 2010's 38,506 38,912 39,202 39,722 40,229 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  11. Idaho Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Idaho Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 104,824 111,532 113,898 1990's 113,954 126,282 136,121 148,582 162,971 175,320 187,756 200,165 213,786 227,807 2000's 240,399 251,004 261,219 274,481 288,380 301,357 316,915 323,114 336,191 342,277 2010's 346,602 350,871 353,963 359,889 367,394 - = No Data Reported; -- = Not Applicable; NA = Not

  12. Illinois Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Illinois Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 241,367 278,473 252,791 1990's 257,851 261,107 263,988 268,104 262,308 264,756 265,007 268,841 271,585 274,919 2000's 279,179 278,506 279,838 281,877 273,967 276,763 300,606 296,465 298,418 294,226 2010's 291,395 293,213 297,523 282,743 294,391 - = No Data Reported; -- = Not Applicable; NA = Not

  13. Illinois Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Illinois Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 19,460 20,015 25,161 1990's 25,991 26,489 27,178 27,807 25,788 25,929 29,493 28,472 28,063 27,605 2000's 27,348 27,421 27,477 26,698 29,187 29,887 26,109 24,000 23,737 23,857 2010's 25,043 23,722 23,390 23,804 23,829 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  14. Illinois Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Illinois Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 3,170,364 3,180,199 3,248,117 1990's 3,287,091 3,320,285 3,354,679 3,388,983 3,418,052 3,452,975 3,494,545 3,521,707 3,556,736 3,594,071 2000's 3,631,762 3,670,693 3,688,281 3,702,308 3,754,132 3,975,961 3,812,121 3,845,441 3,869,308 3,839,438 2010's 3,842,206 3,855,942 3,878,806 3,838,120

  15. Indiana Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Indiana Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 116,571 119,458 122,803 1990's 124,919 128,223 129,973 131,925 134,336 137,162 139,097 140,515 141,307 145,631 2000's 148,411 148,830 150,092 151,586 151,943 159,649 154,322 155,885 157,223 155,615 2010's 156,557 161,293 158,213 158,965 159,596 - = No Data Reported; -- = Not Applicable; NA = Not

  16. Indiana Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Indiana Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,250,476 1,275,401 1,306,747 1990's 1,327,772 1,358,640 1,377,023 1,402,770 1,438,483 1,463,640 1,489,647 1,509,142 1,531,914 1,570,253 2000's 1,604,456 1,613,373 1,657,640 1,644,715 1,588,738 1,707,195 1,661,186 1,677,857 1,678,158 1,662,663 2010's 1,669,026 1,707,148 1,673,132 1,681,841 1,693,267

  17. Iowa Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Iowa Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 80,797 81,294 82,549 1990's 83,047 84,387 85,325 86,452 86,918 88,585 89,663 90,643 91,300 92,306 2000's 93,836 95,485 96,496 96,712 97,274 97,767 97,823 97,979 98,144 98,416 2010's 98,396 98,541 99,113 99,017 99,182 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  18. Iowa Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Iowa Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,033 1,937 1,895 1990's 1,883 1,866 1,835 1,903 1,957 1,957 2,066 1,839 1,862 1,797 2000's 1,831 1,830 1,855 1,791 1,746 1,744 1,670 1,651 1,652 1,626 2010's 1,528 1,465 1,469 1,491 1,572 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  19. Iowa Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Iowa Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 690,532 689,655 701,687 1990's 706,842 716,088 729,081 740,722 750,678 760,848 771,109 780,746 790,162 799,015 2000's 812,323 818,313 824,218 832,230 839,415 850,095 858,915 865,553 872,980 875,781 2010's 879,713 883,733 892,123 895,414 900,420 - = No Data Reported; -- = Not Applicable; NA = Not

  20. Kansas Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Kansas Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 82,934 83,810 85,143 1990's 85,539 86,874 86,840 87,735 86,457 88,163 89,168 85,018 89,654 86,003 2000's 87,007 86,592 87,397 88,030 86,640 85,634 85,686 85,376 84,703 84,715 2010's 84,446 84,874 84,673 84,969 85,867 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  1. Kansas Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Kansas Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 4,440 4,314 4,366 1990's 4,357 3,445 3,296 4,369 3,560 3,079 2,988 7,014 10,706 5,861 2000's 8,833 9,341 9,891 9,295 8,955 8,300 8,152 8,327 8,098 7,793 2010's 7,664 7,954 7,970 7,877 7,429 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  2. Kansas Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Kansas Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 725,676 733,101 731,792 1990's 747,081 753,839 762,545 777,658 773,357 797,524 804,213 811,975 841,843 824,803 2000's 833,662 836,486 843,353 850,464 855,272 856,761 862,203 858,304 853,125 855,454 2010's 853,842 854,730 854,800 858,572 861,092 - = No Data Reported; -- = Not Applicable; NA = Not

  3. Kentucky Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Kentucky Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 63,024 63,971 65,041 1990's 67,086 68,461 69,466 71,998 73,562 74,521 76,079 77,693 80,147 80,283 2000's 81,588 81,795 82,757 84,110 84,493 85,243 85,236 85,210 84,985 83,862 2010's 84,707 84,977 85,129 85,999 85,318 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  4. Kentucky Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Kentucky Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,391 1,436 1,443 1990's 1,544 1,587 1,608 1,585 1,621 1,630 1,633 1,698 1,864 1,813 2000's 1,801 1,701 1,785 1,695 1,672 1,698 1,658 1,599 1,585 1,715 2010's 1,742 1,705 1,720 1,767 1,780 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  5. Kentucky Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Kentucky Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 596,320 606,106 614,058 1990's 624,477 633,942 644,281 654,664 668,774 685,481 696,989 713,509 726,960 735,371 2000's 744,816 749,106 756,234 763,290 767,022 770,080 770,171 771,047 753,531 754,761 2010's 758,129 759,584 757,790 761,575 760,131 - = No Data Reported; -- = Not Applicable; NA = Not

  6. Louisiana Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Louisiana Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 67,382 66,472 64,114 1990's 62,770 61,574 61,030 62,055 62,184 62,930 62,101 62,270 63,029 62,911 2000's 62,710 62,241 62,247 63,512 60,580 58,409 57,097 57,127 57,066 58,396 2010's 58,562 58,749 63,381 59,147 58,611 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  7. Louisiana Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Louisiana Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,617 1,503 1,531 1990's 1,504 1,469 1,452 1,592 1,737 1,383 1,444 1,406 1,380 1,397 2000's 1,318 1,440 1,357 1,291 1,460 1,086 962 945 988 954 2010's 942 920 963 916 883 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data.

  8. Maine Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Maine Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 3,435 3,731 3,986 1990's 4,250 4,455 4,838 4,979 5,297 5,819 6,414 6,606 6,662 6,582 2000's 6,954 6,936 7,375 7,517 7,687 8,178 8,168 8,334 8,491 8,815 2010's 9,084 9,681 10,179 11,415 11,810 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  9. Maine Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Maine Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 12,134 11,933 11,902 1990's 12,000 12,424 13,766 13,880 14,104 14,917 14,982 15,221 15,646 15,247 2000's 17,111 17,302 17,921 18,385 18,707 18,633 18,824 18,921 19,571 20,806 2010's 21,142 22,461 23,555 24,765 27,047 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  10. Maryland Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Maryland Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 51,252 53,045 54,740 1990's 55,576 61,878 62,858 63,767 64,698 66,094 69,991 69,056 67,850 69,301 2000's 70,671 70,691 71,824 72,076 72,809 73,780 74,584 74,856 75,053 75,771 2010's 75,192 75,788 75,799 77,117 77,846 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  11. Maryland Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Maryland Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 5,222 5,397 5,570 1990's 5,646 520 514 496 516 481 430 479 1,472 536 2000's 329 795 1,434 1,361 1,354 1,325 1,340 1,333 1,225 1,234 2010's 1,255 1,226 1,163 1,173 1,179 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release

  12. Maryland Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Maryland Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 755,294 760,754 767,219 1990's 774,707 782,373 894,677 807,204 824,137 841,772 871,012 890,195 901,455 939,029 2000's 941,384 959,772 978,319 987,863 1,009,455 1,024,955 1,040,941 1,053,948 1,057,521 1,067,807 2010's 1,071,566 1,077,168 1,078,978 1,099,272 1,101,292 - = No Data Reported; -- = Not

  13. West Virginia Natural Gas Number of Commercial Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Commercial Consumers (Number of Elements) West Virginia Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 31,283 33,192 33,880 1990's 32,785 32,755 33,289 33,611 33,756 36,144 33,837 33,970 35,362 35,483 2000's 41,949 35,607 35,016 35,160 34,932 36,635 34,748 34,161 34,275 34,044 2010's 34,063 34,041 34,078 34,283 34,339 - = No Data Reported; -- = Not Applicable; NA = Not Available; W

  14. West Virginia Natural Gas Number of Residential Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Residential Consumers (Number of Elements) West Virginia Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 351,024 349,765 349,347 1990's 349,673 350,489 352,463 352,997 352,929 353,629 358,049 362,432 359,783 362,292 2000's 360,471 363,126 361,171 359,919 358,027 374,301 353,292 347,433 347,368 343,837 2010's 344,131 342,069 340,256 340,102 338,652 - = No Data Reported; -- = Not

  15. Wisconsin Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Wisconsin Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 96,760 99,157 102,492 1990's 106,043 109,616 112,761 115,961 119,788 125,539 129,146 131,238 134,651 135,829 2000's 140,370 144,050 149,774 150,128 151,907 155,109 159,074 160,614 163,026 163,843 2010's 164,173 165,002 165,657 166,845 167,901 - = No Data Reported; -- = Not Applicable; NA = Not

  16. Wisconsin Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Wisconsin Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 7,411 7,218 7,307 1990's 7,154 7,194 7,396 7,979 7,342 6,454 5,861 8,346 9,158 9,756 2000's 9,630 9,864 9,648 10,138 10,190 8,484 5,707 5,999 5,969 6,396 2010's 6,413 6,376 6,581 6,677 7,000 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  17. Wisconsin Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Wisconsin Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,054,347 1,072,585 1,097,514 1990's 1,123,557 1,151,939 1,182,834 1,220,500 1,253,333 1,291,424 1,324,570 1,361,348 1,390,068 1,426,909 2000's 1,458,959 1,484,536 1,514,700 1,541,455 1,569,719 1,592,621 1,611,772 1,632,200 1,646,644 1,656,614 2010's 1,663,583 1,671,834 1,681,001 1,692,891

  18. Wyoming Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Wyoming Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 15,342 15,093 14,012 1990's 13,767 14,931 15,064 15,315 15,348 15,580 17,036 15,907 16,171 16,317 2000's 16,366 16,027 16,170 17,164 17,490 17,904 18,016 18,062 19,286 19,843 2010's 19,977 20,146 20,387 20,617 20,894 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  19. Wyoming Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Wyoming Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 113,175 112,126 113,129 1990's 113,598 113,463 114,793 116,027 117,385 119,544 131,910 125,740 127,324 127,750 2000's 129,274 129,897 133,445 135,441 137,434 140,013 142,385 143,644 152,439 153,062 2010's 153,852 155,181 157,226 158,889 160,896 - = No Data Reported; -- = Not Applicable; NA = Not

  20. UNDERSTANDING THE EVOLUTION OF CLOSE BINARY SYSTEMS WITH RADIO PULSARS

    SciTech Connect (OSTI)

    Benvenuto, O. G.; De Vito, M. A.

    2014-05-01

    We calculate the evolution of close binary systems (CBSs) formed by a neutron star (behaving as a radio pulsar) and a normal donor star, which evolve either to a helium white dwarf (HeWD) or to ultra-short orbital period systems. We consider X-ray irradiation feedback and evaporation due to radio pulsar irradiation. We show that irradiation feedback leads to cyclic mass transfer episodes, allowing CBSs to be observed in between episodes as binary radio pulsars under conditions in which standard, non-irradiated models predict the occurrence of a low-mass X-ray binary. This behavior accounts for the existence of a family of eclipsing binary systems known as redbacks. We predict that redback companions should almost fill their Roche lobe, as observed in PSR J1723-2837. This state is also possible for systems evolving with larger orbital periods. Therefore, binary radio pulsars with companion star masses usually interpreted as larger than expected to produce HeWDs may also result in such quasi-Roche lobe overflow states, rather than hosting a carbon-oxygen WD. We found that CBSs with initial orbital periods of P{sub i} < 1day evolve into redbacks. Some of them produce low-mass HeWDs, and a subgroup with shorter P{sub i} becomes black widows (BWs). Thus, BWs descend from redbacks, although not all redbacks evolve into BWs. There is mounting observational evidence favoring BW pulsars to be very massive (? 2 M {sub ?}). As they should be redback descendants, redback pulsars should also be very massive, since most of the mass is transferred before this stage.

  1. Constraints on the binary properties of mid- to late T dwarfs from Hubble space telescope WFC3 observations

    SciTech Connect (OSTI)

    Aberasturi, M.; Solano, E.; Burgasser, A. J.; Mora, A.; Martn, E. L.; Reid, I. N.; Looper, D.

    2014-12-01

    We used Hubble Space Telescope/Wide Field Camera 3 (WFC3) observations of a sample of 26 nearby (?20 pc) mid- to late T dwarfs to search for cooler companions and measure the multiplicity statistics of brown dwarfs (BDs). Tightly separated companions were searched for using a double point-spread-function-fitting algorithm. We also compared our detection limits based on simulations to other prior T5+ BD binary programs. No new wide or tight companions were identified, which is consistent with the number of known T5+ binary systems and the resolution limits of WFC3. We use our results to add new constraints to the binary fraction (BF) of T-type BDs. Modeling selection effects and adopting previously derived separation and mass ratio distributions, we find an upper limit total BF of <16% and <25% assuming power law and flat mass ratio distributions, respectively, which are consistent with previous results. We also characterize a handful of targets around the L/T transition.

  2. DIRECT N-BODY MODELING OF THE OLD OPEN CLUSTER NGC 188: A DETAILED COMPARISON OF THEORETICAL AND OBSERVED BINARY STAR AND BLUE STRAGGLER POPULATIONS

    SciTech Connect (OSTI)

    Geller, Aaron M.; Hurley, Jarrod R.; Mathieu, Robert D. E-mail: mathieu@astro.wisc.edu

    2013-01-01

    Following on from a recently completed radial-velocity survey of the old (7 Gyr) open cluster NGC 188 in which we studied in detail the solar-type hard binaries and blue stragglers of the cluster, here we investigate the dynamical evolution of NGC 188 through a sophisticated N-body model. Importantly, we employ the observed binary properties of the young (180 Myr) open cluster M35, where possible, to guide our choices for parameters of the initial binary population. We apply pre-main-sequence tidal circularization and a substantial increase to the main-sequence tidal circularization rate, both of which are necessary to match the observed tidal circularization periods in the literature, including that of NGC 188. At 7 Gyr the main-sequence solar-type hard-binary population in the model matches that of NGC 188 in both binary frequency and distributions of orbital parameters. This agreement between the model and observations is in a large part due to the similarities between the NGC 188 and M35 solar-type binaries. Indeed, among the 7 Gyr main-sequence binaries in the model, only those with P {approx}> 1000 days begin to show potentially observable evidence for modifications by dynamical encounters, even after 7 Gyr of evolution within the star cluster. This emphasizes the importance of defining accurate initial conditions for star cluster models, which we propose is best accomplished through comparisons with observations of young open clusters like M35. Furthermore, this finding suggests that observations of the present-day binaries in even old open clusters can provide valuable information on their primordial binary populations. However, despite the model's success at matching the observed solar-type main-sequence population, the model underproduces blue stragglers and produces an overabundance of long-period circular main-sequence-white-dwarf binaries as compared with the true cluster. We explore several potential solutions to the paucity of blue stragglers and conclude that the model dramatically underproduces blue stragglers through mass-transfer processes. We suggest that common-envelope evolution may have been incorrectly imposed on the progenitors of the spurious long-period circular main-sequence-white-dwarf binaries, which perhaps instead should have gone through stable mass transfer to create blue stragglers, thereby bringing both the number and binary frequency of the blue straggler population in the model into agreement with the true blue stragglers in NGC 188. Thus, improvements in the physics of mass transfer and common-envelope evolution employed in the model may in fact solve both discrepancies with the observations. This project highlights the unique accessibility of open clusters to both comprehensive observational surveys and full-scale N-body simulations, both of which have only recently matured sufficiently to enable such a project, and underscores the importance of open clusters to the study of star cluster dynamics.

  3. Binary nanoparticle superlattices of soft-particle systems

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Travesset, Alex

    2015-08-04

    The solid-phase diagram of binary systems consisting of particles of diameter ?A=? and ?B=?? (??1) interacting with an inverse p = 12 power law is investigated as a paradigm of a soft potential. In addition to the diameter ratio ? that characterizes hard-sphere models, the phase diagram is a function of an additional parameter that controls the relative interaction strength between the different particle types. Phase diagrams are determined from extremes of thermodynamic functions by considering 15 candidate lattices. In general, it is shown that the phase diagram of a soft repulsive potential leads to the morphological diversity observed inmoreexperiments with binary nanoparticles, thus providing a general framework to understand their phase diagrams. In addition, particular emphasis is shown to the two most successful crystallization strategies so far: evaporation of solvent from nanoparticles with grafted hydrocarbon ligands and DNA programmable self-assembly.less

  4. Coal liquefaction process using pretreatment with a binary solvent mixture

    DOE Patents [OSTI]

    Miller, R.N.

    1986-10-14

    An improved process for thermal solvent refining or hydroliquefaction of non-anthracitic coal at elevated temperatures under hydrogen pressure in a hydrogen donor solvent comprises pretreating the coal with a binary mixture of an aromatic hydrocarbon and an aliphatic alcohol at a temperature below 300 C before the hydroliquefaction step. This treatment generally increases both conversion of coal and yields of oil. 1 fig.

  5. HYPERCRITICAL ACCRETION, INDUCED GRAVITATIONAL COLLAPSE, AND BINARY-DRIVEN HYPERNOVAE

    SciTech Connect (OSTI)

    Fryer, Chris L. [CCS-2, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Rueda, Jorge A.; Ruffini, Remo [ICRANet, Piazza della Repubblica 10, I-65122 Pescara (Italy)

    2014-10-01

    The induced gravitational collapse (IGC) paradigm has been successfully applied to the explanation of the concomitance of gamma-ray bursts (GRBs) with supernovae (SNe) Ic. The progenitor is a tight binary system composed of a carbon-oxygen (CO) core and a neutron star (NS) companion. The explosion of the SN leads to hypercritical accretion onto the NS companion, which reaches the critical mass, hence inducing its gravitational collapse to a black hole (BH) with consequent emission of the GRB. The first estimates of this process were based on a simplified model of the binary parameters and the Bondi-Hoyle-Lyttleton accretion rate. We present here the first full numerical simulations of the IGC phenomenon. We simulate the core-collapse and SN explosion of CO stars to obtain the density and ejection velocity of the SN ejecta. We follow the hydrodynamic evolution of the accreting material falling into the Bondi-Hoyle surface of the NS all the way up to its incorporation in the NS surface. The simulations go up to BH formation when the NS reaches the critical mass. For appropriate binary parameters, the IGC occurs in short timescales ?10{sup 2}-10{sup 3} s owing to the combined effective action of the photon trapping and the neutrino cooling near the NS surface. We also show that the IGC scenario leads to a natural explanation for why GRBs are associated only with SNe Ic with totally absent or very little helium.

  6. Molecular Dynamics Simulation of Binary Fluid in a Nanochannel

    SciTech Connect (OSTI)

    Mullick, Shanta; Ahluwalia, P. K. [Department of Physics, Himachal Pradesh University, SummerHill, Shimla - 171005 (India); Pathania, Y. [Chitkara University, Atal Shiksha Kunj, Atal Nagar, Barotiwala, Dist Solan, Himachal Pradesh - 174103 (India)

    2011-12-12

    This paper presents the results from a molecular dynamics simulation of binary fluid (mixture of argon and krypton) in the nanochannel flow. The computational software LAMMPS is used for carrying out the molecular dynamics simulations. Binary fluids of argon and krypton with varying concentration of atom species were taken for two densities 0.65 and 0.45. The fluid flow takes place between two parallel plates and is bounded by horizontal walls in one direction and periodic boundary conditions are imposed in the other two directions. To drive the flow, a constant force is applied in one direction. Each fluid atom interacts with other fluid atoms and wall atoms through Week-Chandler-Anderson (WCA) potential. The velocity profile has been looked at for three nanochannel widths i.e for 12{sigma}, 14{sigma} and 16{sigma} and also for the different concentration of two species. The velocity profile of the binary fluid predicted by the simulations agrees with the quadratic shape of the analytical solution of a Poiseuille flow in continuum theory.

  7. GRAVITATIONAL WAVES FROM MASSIVE MAGNETARS FORMED IN BINARY NEUTRON STAR MERGERS

    SciTech Connect (OSTI)

    Dall'Osso, Simone [Theoretical Astrophysics, University of Tbingen, auf der Morgenstelle 10 D-72076 (Germany); Giacomazzo, Bruno [Physics Department, University of Trento, via Sommarive 14, I-38123 Trento (Italy); Perna, Rosalba [Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794 (United States); Stella, Luigi, E-mail: simone.dallosso@uni-tuebingen.de [INAF-Osservatorio Astronomico di Roma, via di Frascati 33, I-00040 Monteporzio Catone, Roma (Italy)

    2015-01-01

    Binary neutron star (NS) mergers are among the most promising sources of gravitational waves (GWs), as well as candidate progenitors for short gamma-ray bursts (SGRBs). Depending on the total initial mass of the system and the NS equation of state (EOS), the post-merger phase can be characterized by a prompt collapse to a black hole or by the formation of a supramassive NS, or even a stable NS. In the latter cases of post-merger NS (PMNS) formation, magnetic field amplification during the merger will produce a magnetar and induce a mass quadrupole moment in the newly formed NS. If the timescale for orthogonalization of the magnetic symmetry axis with the spin axis is smaller than the spindown time, the NS will radiate its spin down energy primarily via GWs. Here we study this scenario for the various outcomes of NS formation: we generalize the set of equilibrium states for a twisted torus magnetic configuration to include solutions that, for the same external dipolar field, carry a larger magnetic energy reservoir; we hence compute the magnetic ellipticity for such configurations, and the corresponding strength of the expected GW signal as a function of the relative magnitude of the dipolar and toroidal field components. The relative number of GW detections from PMNSs and from binary NSs is a very strong function of the NS EOS, being higher (?1%) for the stiffest EOSs and negligibly small for the softest ones. For intermediate-stiffness EOSs, such as the n = 4/7 polytrope recently used by Giacomazzo and Perna or the GM1 used by Lasky etal., the relative fraction is ?0.3%; correspondingly, we estimate a GW detection rate from stable PMNSs of ?0.1-1yr{sup 1} with advanced detectors, and of ?100-1000yr{sup 1} with detectors of third generation such as the Einstein Telescope. Measurement of such GW signals would provide constraints on the NS EOS and, in connection with an SGRB, on the nature of the binary progenitors giving rise to these events.

  8. Detection And Discrimination Of Pure Gases And Binary Mixtures Using A

    Office of Scientific and Technical Information (OSTI)

    Single Microcantilever (Journal Article) | SciTech Connect Detection And Discrimination Of Pure Gases And Binary Mixtures Using A Single Microcantilever Citation Details In-Document Search Title: Detection And Discrimination Of Pure Gases And Binary Mixtures Using A Single Microcantilever A new method for detecting and discriminating pure gases and binary mixtures has been investigated. This approach combines two distinct physical mechanisms within a single piezoresistive microcantilever:

  9. CHARACTERIZATION OF THE MOST LUMINOUS STAR IN M33: A SUPER SYMBIOTIC BINARY

    SciTech Connect (OSTI)

    Miko?ajewska, Joanna; I?kiewicz, Krystian; Caldwell, Nelson; Shara, Michael M.

    2015-01-30

    We present the first spectrum of the most luminous infrared star in M33, and use it to demonstrate that the object is almost certainly a binary composed of a massive O star and a dust-enshrouded red hypergiant. This is the most luminous symbiotic binary ever discovered. Its radial velocity is an excellent match to that of the hydrogen gas in the disk of M33, supporting our interpretation that it is a very young and massive binary star.

  10. SEARCH FOR SUPERMASSIVE BLACK HOLE BINARIES IN THE SLOAN DIGITAL SKY SURVEY

    Office of Scientific and Technical Information (OSTI)

    SPECTROSCOPIC SAMPLE (Journal Article) | SciTech Connect SEARCH FOR SUPERMASSIVE BLACK HOLE BINARIES IN THE SLOAN DIGITAL SKY SURVEY SPECTROSCOPIC SAMPLE Citation Details In-Document Search Title: SEARCH FOR SUPERMASSIVE BLACK HOLE BINARIES IN THE SLOAN DIGITAL SKY SURVEY SPECTROSCOPIC SAMPLE Supermassive black hole (SMBH) binaries are expected in a ΛCDM cosmology given that most (if not all) massive galaxies contain a massive black hole (BH) at their center. So far, however, direct

  11. THE AGE AND STELLAR PARAMETERS OF THE PROCYON BINARY SYSTEM (Journal

    Office of Scientific and Technical Information (OSTI)

    Article) | SciTech Connect THE AGE AND STELLAR PARAMETERS OF THE PROCYON BINARY SYSTEM Citation Details In-Document Search Title: THE AGE AND STELLAR PARAMETERS OF THE PROCYON BINARY SYSTEM The Procyon AB binary system (orbital period 40.838 yr, a newly refined determination) is near and bright enough that the component radii, effective temperatures, and luminosities are very well determined, although more than one possible solution to the masses has limited the claimed accuracy. Preliminary

  12. GridRun: A lightweight packaging and execution environment forcompact, multi-architecture binaries

    SciTech Connect (OSTI)

    Shalf, John; Goodale, Tom

    2004-02-01

    GridRun offers a very simple set of tools for creating and executing multi-platform binary executables. These ''fat-binaries'' archive native machine code into compact packages that are typically a fraction the size of the original binary images they store, enabling efficient staging of executables for heterogeneous parallel jobs. GridRun interoperates with existing distributed job launchers/managers like Condor and the Globus GRAM to greatly simplify the logic required launching native binary applications in distributed heterogeneous environments.

  13. TWENTY-FIVE SUBARCSECOND BINARIES DISCOVERED BY LUNAR OCCULTATIONS

    SciTech Connect (OSTI)

    Richichi, A.; Fors, O.; Cusano, F.; Moerchen, M.

    2013-09-15

    We report on 25 subarcsecond binaries, detected for the first time by means of lunar occultations in the near-infrared (near-IR) as part of a long-term program using the ISAAC instrument at the ESO Very Large Telescope. The primaries have magnitudes in the range K = 3.8-10.4, and the companions in the range K = 6.4-12.1. The magnitude differences have a median value of 2.8, with the largest being 5.4. The projected separations are in the range 6-748 mas and with a median of 18 mas, or about three times less than the diffraction limit of the telescope. Among our binary detections are a pre-main-sequence star and an enigmatic Mira-like variable previously suspected to have a companion. Additionally, we quote an accurate first-time near-IR detection of a previously known wider binary. We discuss our findings on an individual basis as far as made possible by the available literature, and we examine them from a statistical point of view. We derive a typical frequency of binarity among field stars of Almost-Equal-To 10%, in the resolution and sensitivity range afforded by the technique ( Almost-Equal-To 0.''003 to Almost-Equal-To 0.''5, and K Almost-Equal-To 12 mag, respectively). This is in line with previous results using the same technique but we point out interesting differences that we can trace up to sensitivity, time sampling, and average distance of the targets. Finally, we discuss the prospects for further follow-up studies.

  14. Verification Challenges at Low Numbers

    SciTech Connect (OSTI)

    Benz, Jacob M.; Booker, Paul M.; McDonald, Benjamin S.

    2013-06-01

    Many papers have dealt with the political difficulties and ramifications of deep nuclear arms reductions, and the issues of “Going to Zero”. Political issues include extended deterrence, conventional weapons, ballistic missile defense, and regional and geo-political security issues. At each step on the road to low numbers, the verification required to ensure compliance of all parties will increase significantly. Looking post New START, the next step will likely include warhead limits in the neighborhood of 1000 . Further reductions will include stepping stones at1000 warheads, 100’s of warheads, and then 10’s of warheads before final elimination could be considered of the last few remaining warheads and weapons. This paper will focus on these three threshold reduction levels, 1000, 100’s, 10’s. For each, the issues and challenges will be discussed, potential solutions will be identified, and the verification technologies and chain of custody measures that address these solutions will be surveyed. It is important to note that many of the issues that need to be addressed have no current solution. In these cases, the paper will explore new or novel technologies that could be applied. These technologies will draw from the research and development that is ongoing throughout the national laboratory complex, and will look at technologies utilized in other areas of industry for their application to arms control verification.

  15. Analyses of mixed-hydrocarbon binary thermodynamic cycles for moderate-temperature geothermal resources

    SciTech Connect (OSTI)

    Demuth, O.J.

    1981-02-01

    A number of binary geothermal cycles utilizing mixed hydrocarbon working fluids were analyzed with the overall objective of finding a working fluid which can produce low-cost electrical energy using a moderately-low temperature geothermal resource. Both boiling and supercritical shell-and-tube cycles were considered. The performance of a dual-boiling isobutane cycle supplied by a 280/sup 0/F hydrothermal resource (corresponding to the 5 MW pilot plant at the Raft River site in Idaho) was selected as a reference. To investigate the effect of resource temperature on the choice of working fluid, several analyses were conducted for a 360/sup 0/F hydrothermal resource, which is representative of the Heber resource in California. The hydrocarbon working fluids analyzed included methane, ethane, propane, isobutane, isopentane, hexane, heptane, and mixtures of those pure hydrocarbons. For comparison, two fluorocarbon refrigerants were also analyzed. These fluorocarbons, R-115 and R-22, were suggested as resulting in high values of net plant geofluid effectiveness (watt-hr/lbm geofluid) at the two resource temperatures chosen for the study. Preliminary estimates of relative heat exchanger size (product of overall heat transfer coefficient times heater surface area) were made for a number of the better performing cycles.

  16. California's Efforts for Advancing Ultrafine Particle Number...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Efforts for Advancing Ultrafine Particle Number Measurements for Clean Diesel Exhaust California's Efforts for Advancing Ultrafine Particle Number Measurements for Clean Diesel...

  17. Identification of Export Control Classification Number - ITER

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Identification of Export Control Classification Number - ITER (April 2012) As the "Shipper of Record" please provide the appropriate Export Control Classification Number (ECCN) for...

  18. Consequences of dynamical disruption and mass segregation for the binary frequencies of star clusters

    SciTech Connect (OSTI)

    Geller, Aaron M.; De Grijs, Richard; Li, Chengyuan; Hurley, Jarrod R.

    2013-12-10

    The massive (13,000-26,000 M {sub ?}) and young (15-30 Myr) Large Magellanic Cloud star cluster NGC 1818 reveals an unexpected increasing binary frequency with radius for F-type stars (1.3-2.2 M {sub ?}). This is in contrast to many older star clusters that show a decreasing binary frequency with radius. We study this phenomenon with sophisticated N-body modeling, exploring a range of initial conditions, from smooth virialized density distributions to highly substructured and collapsing configurations. We find that many of these models can reproduce the cluster's observed properties, although with a modest preference for substructured initial conditions. Our models produce the observed radial trend in binary frequency through disruption of soft binaries (with semi-major axes, a ? 3000 AU), on approximately a crossing time (?5.4 Myr), preferentially in the cluster core. Mass segregation subsequently causes the binaries to sink toward the core. After roughly one initial half-mass relaxation time (t {sub rh}(0) ? 340 Myr) the radial binary frequency distribution becomes bimodal, the innermost binaries having already segregated toward the core, leaving a minimum in the radial binary frequency distribution that marches outward with time. After 4-6 t {sub rh}(0), the rising distribution in the halo disappears, leaving a radial distribution that rises only toward the core. Thus, both a radial binary frequency distribution that falls toward the core (as observed for NGC 1818) and one that rises toward the core (as for older star clusters) can arise naturally from the same evolutionary sequence owing to binary disruption and mass segregation in rich star clusters.

  19. Bump formation in a binary attractor neural network

    SciTech Connect (OSTI)

    Koroutchev, Kostadin; Korutcheva, Elka

    2006-02-15

    The conditions for the formation of local bumps in the activity of binary attractor neural networks with spatially dependent connectivity are investigated. We show that these formations are observed when asymmetry between the activity during the retrieval and learning is imposed. An analytical approximation for the order parameters is derived. The corresponding phase diagram shows a relatively large and stable region where this effect is observed, although critical storage and information capacities drastically decrease inside that region. We demonstrate that the stability of the network, when starting from the bump formation, is larger than the stability when starting even from the whole pattern. Finally, we show a very good agreement between the analytical results and the simulations performed for different topologies of the network.

  20. Low velocity ion stopping in binary ionic mixtures

    SciTech Connect (OSTI)

    Tashev, Bekbolat; Baimbetov, Fazylkhan; Deutsch, Claude; Fromy, Patrice

    2008-10-15

    Attention is focused on the low ion velocity stopping mechanisms in multicomponent and dense target plasmas built of quasiclassical electron fluids neutralizing binary ionic mixtures, such as, deuterium-tritium of current fusion interest, proton-heliumlike iron in the solar interior or proton-helium ions considered in planetology, as well as other mixtures of fiducial concern in the heavy ion beam production of warm dense matter at Bragg peak conditions. The target plasma is taken in a multicomponent dielectric formulation a la Fried-Conte. The occurrence of projectile ion velocities (so-called critical) for which target electron slowing down equals that of given target ion components is also considered. The corresponding multiquadrature computations, albeit rather heavy, can be monitored analytical through a very compact code operating a PC cluster. Slowing down results are systematically scanned with respect to target temperature and electron density, as well as ion composition.

  1. Two-klystron Binary Pulse Compression at SLAC

    SciTech Connect (OSTI)

    Farkas, Z.D.; Lavine, T.L.; Menegat, A.; Vlieks, A.E.; Wang, J.W.; Wilson, P.B.

    1993-04-01

    The Binary Pulse Compression system installed at SLAC was tested using two klystrons, one with 10 MW and the other with 34 MW output. By compressing 560 ns klystron pulses into 70 ns, the measured BPC output was 175 MW, limited by the available power from the two klystrons. This output was used to provide 100-MW input to a 30-cell X-band structure in which a 100-MV/m gradient was obtained. This system, using the higher klystron outputs expected in the future has the potential to deliver the 350 MW needed to obtain 100 MV/m gradients in the 1.8-m NLC prototype structure. This note describes the timing, triggering, and phase coding used in the two-klystron experiment, and the expected and measured net-work response to three- or two-stage modulation.

  2. Probing instabilities in arc plasma devices using binary gas mixtures

    SciTech Connect (OSTI)

    Ghorui, S.; Vysohlid, M.; Heberlein, J. V. R.; Pfender, E.

    2007-07-15

    This paper presents an experimental approach to identify the sources of instabilities in arc plasma devices. The phenomena of demixing in arcs have been utilized to explore the characteristics of different instabilities. Problems in explaining the observed behavior with our current understanding of the phenomena are discussed. Hydrogen is used as a secondary gas with argon as the primary plasma gas for this study. Results indicate that the observed behavior such as steady, takeover, and restrike modes of instabilities in arcs may essentially originate from the thin boundary layer over the anode wall primarily at the location of the anodic arc root. The bulk core flow apparently does not play any significant role in such instabilities. Arc currents rather than flow rates control the behavior of the instabilities in frequency space. Bifurcation of the system behavior and evidence for the existence of quadratic zones in flow space of binary gas mixtures separating steady and unsteady behavior are discussed.

  3. Beowawe Bottoming Binary Unit - Final Technical Report for EE0002856

    SciTech Connect (OSTI)

    McDonald, Dale Edward

    2013-02-12

    This binary plant is the first high-output refrigeration based waste heat recovery cycle in the industry. Its working fluid is environmentally friendly and as such, the permits that would be required with a butane based cycle are not necessary. The unit is modularized, meaning that the unit’s individual skids were assembled in another location and were shipped via truck to the plant site. This project proves the technical feasibility of using low temperature brine The development of the unit led to the realization of low temperature, high output, and environmentally friendly heat recovery systems through domestic research and engineering. The project generates additional renewable energy for Nevada, resulting in cleaner air and reduced carbon dioxide emissions. Royalty and tax payments to governmental agencies will increase, resulting in reduced financial pressure on local entities. The major components of the unit were sourced from American companies, resulting in increased economic activity throughout the country.

  4. THE HAWAII INFRARED PARALLAX PROGRAM. I. ULTRACOOL BINARIES AND THE L/T TRANSITION

    SciTech Connect (OSTI)

    Dupuy, Trent J.; Liu, Michael C.

    2012-08-01

    We present the first results from our high-precision infrared (IR) astrometry program at the Canada-France-Hawaii Telescope. We measure parallaxes for 83 ultracool dwarfs (spectral types M6-T9) in 49 systems, with a median uncertainty of 1.1 mas (2.3%) and as good as 0.7 mas (0.8%). We provide the first parallaxes for 48 objects in 29 systems, and for another 27 objects in 17 systems, we significantly improve upon published results, with a median (best) improvement of 1.7 times (5 times). Three systems show astrometric perturbations indicative of orbital motion; two are known binaries (2MASS J0518-2828AB and 2MASS J1404-3159AB) and one is spectrally peculiar (SDSS J0805+4812). In addition, we present here a large set of Keck adaptive optics imaging that more than triples the number of binaries with L6-T5 components that have both multi-band photometry and distances. Our data enable an unprecedented look at the photometric properties of brown dwarfs as they cool through the L/T transition. Going from Almost-Equal-To L8 to Almost-Equal-To T4.5, flux in the Y and J bands increases by Almost-Equal-To 0.7 mag and Almost-Equal-To 0.5 mag, respectively (the Y- and J-band 'bumps'), while flux in the H, K, and L' bands declines monotonically. This wavelength dependence is consistent with cloud clearing over a narrow range of temperature, since condensate opacity is expected to dominate at 1.0-1.3 {mu}m. Interestingly, despite more than doubling the near-IR census of L/T transition objects, we find a conspicuous paucity of objects on the color-magnitude diagram just blueward of the late-L/early-T sequence. This 'L/T gap' occurs at (J - H){sub MKO} 0.1-0.3 mag, (J - K){sub MKO} = 0.0-0.4 mag, and implies that the last phases of cloud evolution occur rapidly. Finally, we provide a comprehensive update to the absolute magnitudes of ultracool dwarfs as a function of spectral type using a combined sample of 314 objects.

  5. Climate Zone Number 5 | Open Energy Information

    Open Energy Info (EERE)

    Climate Zone Number 5 Jump to: navigation, search A type of climate defined in the ASHRAE 169-2006 standard. Climate Zone Number 5 is defined as Cool- Humid(5A) with IP Units 5400...

  6. 2007 TY430: A COLD CLASSICAL KUIPER BELT TYPE BINARY IN THE PLUTINO POPULATION

    SciTech Connect (OSTI)

    Sheppard, Scott S.; Ragozzine, Darin; Trujillo, Chadwick

    2012-03-15

    Kuiper Belt object 2007 TY430 is the first wide, equal-sized, binary known in the 3:2 mean motion resonance with Neptune. The two components have a maximum separation of about 1 arcsec and are on average less than 0.1 mag different in apparent magnitude with identical ultra-red colors (g - i = 1.49 {+-} 0.01 mag). Using nearly monthly observations of 2007 TY430 from 2007 to 2011, the orbit of the mutual components was found to have a period of 961.2 {+-} 4.6 days with a semi-major axis of 21000 {+-} 160 km and eccentricity of 0.1529 {+-} 0.0028. The inclination with respect to the ecliptic is 15.68 {+-} 0.22 deg and extensive observations have allowed the mirror orbit to be eliminated as a possibility. The total mass for the binary system was found to be 7.90 {+-} 0.21 Multiplication-Sign 10{sup 17} kg. Equal-sized, wide binaries and ultra-red colors are common in the low-inclination 'cold' classical part of the Kuiper Belt and likely formed through some sort of three-body interactions within a much denser Kuiper Belt. To date 2007 TY430 is the only ultra-red, equal-sized binary known outside of the classical Kuiper Belt population. Numerical simulations suggest 2007 TY430 is moderately unstable in the outer part of the 3:2 resonance and thus 2007 TY430 is likely an escaped 'cold' classical object that later got trapped in the 3:2 resonance. Similar to the known equal-sized, wide binaries in the cold classical population, the binary 2007 TY430 requires a high albedo and very low density structure to obtain the total mass found for the pair. For a realistic minimum density of 0.5 g cm{sup -3} the albedo of 2007 TY430 would be greater than 0.17. For reasonable densities, the radii of either component should be less than 60 km, and thus the relatively low eccentricity of the binary is interesting since no tides should be operating on the bodies at their large distances from each other. The low prograde inclination of the binary also makes it unlikely that the Kozai mechanism could have altered the orbit, making the 2007 TY430 binary orbit likely one of the few relatively unaltered primordial binary orbits known. Under some binary formation models, the low-inclination prograde orbit of the 2007 TY430 binary indicates formation within a relatively high velocity regime in the Kuiper Belt.

  7. THE MERGER RATE OF BINARY WHITE DWARFS IN THE GALACTIC DISK (Journal

    Office of Scientific and Technical Information (OSTI)

    Article) | SciTech Connect THE MERGER RATE OF BINARY WHITE DWARFS IN THE GALACTIC DISK Citation Details In-Document Search Title: THE MERGER RATE OF BINARY WHITE DWARFS IN THE GALACTIC DISK We use multi-epoch spectroscopy of {approx}4000 white dwarfs in the Sloan Digital Sky Survey to constrain the properties of the Galactic population of binary white dwarf systems and calculate their merger rate. With a Monte Carlo code, we model the distribution of {Delta}RV{sub max}, the maximum radial

  8. Upper limits to surface-force disturbances on LISA proof masses and the possibility of observing galactic binaries

    SciTech Connect (OSTI)

    Carbone, Ludovico; Ciani, Giacomo; Dolesi, Rita; Hueller, Mauro; Tombolato, David; Vitale, Stefano; Weber, William Joseph; Cavalleri, Antonella

    2007-02-15

    We have measured surface-force noise on a hollow replica of a LISA proof mass surrounded by its capacitive motion sensor. Forces are detected through the torque exerted on the proof mass by means of a torsion pendulum in the 0.1-30 mHz range. The sensor and electronics have the same design as for the flight hardware, including 4 mm gaps around the proof mass. The measured upper limit for forces would allow detection of a number of galactic binaries signals with signal-to-noise ratio up to {approx_equal}40 for 1 yr integration. We also discuss how LISA Pathfinder will substantially improve this limit, approaching the LISA performance.

  9. On the rarity of X-ray binaries with Wolf-Rayet donors

    SciTech Connect (OSTI)

    Linden, T.; Valsecchi, F.; Kalogera, V.

    2012-03-14

    The paucity of High mass X-Ray binaries (HMXB) consisting of a neutron star (NS) accretor and Wolf-Rayet (WR) donor has long been at odds with expectations from population synthesis studies indicating that these systems should survive as the evolved offspring of the observed HMXB population. This tension is particularly troubling in light of recent observations uncovering a preponderance of HMXBs containing loosely bound Be donors which would be expected to naturally evolve into WR-HMXBs. Reconciling the unexpectedly large population of Be-HMXBs with the lack of observed WR-HMXB sources thus serves to isolate the dynamics of CE physics from other binary evolution parameters. We find that binary mergers during CE events must be common in order to resolve tension between these observed populations. Furthermore, future observations which better constrain the background population of loosely bound O/B-NS binaries are likely to place significant constraints on the efficiency of CE removal.

  10. CrayConv V1.0

    Energy Science and Technology Software Center (OSTI)

    2002-06-01

    Cray Convert converts a Fortran unformatted file from Cray file format to generic Fortran 77 file format, includes automatic conversion of Cray binary data representation to IEEE binary data representation. Each 64-bit word is categorized into a floating-point, integer, or character data based on permissable bit patterns for that data. Can distinguish automatically between different datatypes in the file and automatically pick the correct way to convert the data correctly.

  11. Point Defects in Binary Laves-Phase Alloys

    SciTech Connect (OSTI)

    Liaw, P.K.; Liu, C.T.; Pike, L.M.; Zhu, J.H.

    1998-11-30

    Point defect mechanisms in the binary C15 NbCr{sub 2} and NbCo{sub 2}, and C14 NbFe{sub 2} systems on both sides of stoichiometry was studied and clarified by both bulk density and X-ray lattice parameter measurements. It was found that the vacancy concentrations in these systems after quenching from 1000 C are essentially zero. The constitutional defects on both sides of stoichiometry for these systems were found to be of the anti-site type in comparison with the model predictions. However, thermal vacancies exhibiting a maximum at the stoichiometric composition were obtained in NbCr{sub 2} laves phase alloys after quenching from 1400 C. These could be completely eliminated by annealing at 1000 C. Anti-site hardening was found on both sides of stoichiometry for all three Laves phase systems studied. Furthermore, the thermal vacancies in NbCr{sub 2} alloys after quenching from 1400 C were found to soften the Laves phase. The anti-site hardening of the Laves phases is similar to that of the B2 compounds, while the thermal vacancy softening is unique to the Laves phase. Both the anti-site defects and thermal vacancies do not significantly affect the fracture toughness of the Laves phases.

  12. Summary of Historical Production for Nevada Binary Facilities

    SciTech Connect (OSTI)

    Mines, Greg; Hanson, Hillary

    2014-09-01

    The analysis described was initiated to validate inputs used in the US Department of Energys (DOE) economic modeling tool GETEM (Geothermal Electricity Technology Evaluation Model) by using publically available data to identify production trends at operating geothermal binary facilities in the state of Nevada. Data required for this analysis was obtained from the Nevada Bureau of Mines and Geology (NBMG), whom received the original operator reports from the Nevada Division of Minerals (NDOM). The data from the NBMG was inputted into Excel files that have been uploaded to the DOEs National Geothermal Data System (NGDS). Once data was available in an Excel format, production trends for individual wells and facilities could be established for the periods data was available (thru 2009). Additionally, this analysis identified relationships existing between production (temperature and flow rates), power production and plant conversion efficiencies. The data trends showed that temperature declines have a significant impact on power production, and that in some instances operators increased production flow rate to offset power declines. The production trends with time that were identified are being used to update GETEMs default inputs.

  13. DISCOVERY OF A BINARY SYSTEM IN IRAM 04191+1522

    SciTech Connect (OSTI)

    Chen Xuepeng; Arce, Hector G.; Dunham, Michael M.; Zhang Qizhou

    2012-03-10

    We present high angular resolution observations of the Class 0 protostar IRAM 04191+1522 using the Submillimeter Array (SMA). The SMA 1.3 mm continuum images reveal within IRAM 04191+1522 two distinct sources with an angular separation of 7.''8 {+-} 0.''2. The two continuum sources are located in the southeast-northwest direction, with total gas masses of {approx}0.011 M{sub Sun} and {approx}0.005 M{sub Sun }, respectively. The southeastern source, associated with an infrared source seen in the Spitzer images, is the well-known Class 0 protostar with a bolometric luminosity of {approx}0.08 L{sub Sun }. The newly discovered northwestern continuum source is not visible in the Spitzer images at wavelengths from 3.6 to 70 {mu}m and has an extremely low bolometric luminosity (<0.03 L{sub Sun }). Complementary IRAM N{sub 2}H{sup +} (1-0) data that probe the dense gas in the common envelope suggest that the two sources were formed through the rotational fragmentation of an elongated dense core. Furthermore, comparisons between IRAM 04191+1522 and other protostars suggest that most cores with binary systems formed therein have ratios of rotational energy to gravitational energy {beta}{sub rot} > 1%. This is consistent with theoretical simulations and indicates that the level of rotational energy in a dense core plays an important role in the fragmentation process.

  14. Irradiation-induced composition patterns in binary solid solutions

    SciTech Connect (OSTI)

    Dubey, Santosh; El-Azab, Anter [School of Nuclear Engineering, Purdue University, West Lafayette, Indiana 47906 (United States)] [School of Nuclear Engineering, Purdue University, West Lafayette, Indiana 47906 (United States)

    2013-09-28

    A theoretical/computational model for the irradiation-driven compositional instabilities in binary solid solutions has been developed. The model is suitable for investigating the behavior of structural alloys and metallic nuclear fuels in a reactor environment as well as the response of alloy thin films to ion beam irradiation. The model is based on a set of reaction-diffusion equations for the dynamics of vacancies, interstitials, and lattice atoms under irradiation. The dynamics of these species includes the stochastic generation of defects by collision cascades as well as the defect reactions and diffusion. The atomic fluxes in this model are derived based on the transitions of lattice defects. The set of reaction-diffusion equations are stiff, hence a stiffly stable method, also known as the Gear method, has been used to numerically approximate the equations. For the Cu-Au alloy in the solid solution regime, the model results demonstrate the formation of compositional patterns under high-temperature particle irradiation, with Fourier space properties (Fourier spectrum, average wavelength, and wavevector) depending on the cascade damage characteristics, average composition, and irradiation temperature.

  15. METHOD FOR THE PREPARATION OF BINARY NITROGEN-FLUORINE COMPOUNDS

    DOE Patents [OSTI]

    Frazer, J.W.

    1962-05-01

    A process is given for preparing binary nitrogenfluorine compounds, in particular, tetrafluorohydrazine (N/sub 2/F/sub 4/) and difluorodiazine (N/sub 2/ F/sub 2/), The process comprises subjecting gaseous nitrogen trifluoride to the action of an alternating current electrical glow discharge in the presence of mercury vapors. By the action of the electrical discharge, the nitrogen trifluoride is converted into a gaseous product comprising a mixture of tetrafluorohydrazine, the isomers of difluorodiazine, and other impurities including nitrogen, nitrogen oxides, silicon tetrafiuoride, and unreacted nitrogen trifluoride. The gaseous products and impurities are passed into a trap maintained at about - 196 deg C to freeze out the desired products and impurities with the exception of nitregen gas which passes off from the trap and is discarded. Subsequently, the desired products and remaining impurities are warmed to the gaseous state and passed through a silica gel trap maintained at about - 55DEC, wherein the desired tetrafluorohydrazine and difluorodiazine products are retained while the remaining gaseous impurities pass therethrough. The desired products are volatilized from the silica gel trap by heating and then separated by gas chrounatography means into the respective tetrafluorohydrazine and difluorodiazine products. (A.e.C)

  16. Binary and ternary gas mixtures for use in glow discharge closing switches

    DOE Patents [OSTI]

    Hunter, Scott R. (Oak Ridge, TN); Christophorou, Loucas G. (Oak Ridge, TN)

    1990-01-01

    Highly efficient binary and ternary gas mixtures for use in diffuse glow discharge closing switches are disclosed. The binary mixtures are combinations of helium or neon and selected perfluorides. The ternary mixtures are combinations of helium, neon, or argon, a selected perfluoride, and a small amount of gas that exhibits enhanced ionization characteristics. These mixtures are shown to be the optimum choices for use in diffuse glow discharge closing switches by virtue of the combined physio-electric properties of the mixture components.

  17. Gravitational Waves from Coalescing Binary Black Holes: Theoretical and Experimental Challenges

    ScienceCinema (OSTI)

    None

    2011-10-06

    A network of ground-based interferometric gravitational wave detectors (LIGO/VIRGO/GEO/...) is currently taking data near its planned sensitivity. Coalescing black hole binaries are among the most promising, and most exciting, gravitational wave sources for these detectors. The talk will review the theoretical and experimental challenges that must be met in order to successfully detect gravitational waves from coalescing black hole binaries, and to be able to reliably measure the physical parameters of the source (masses, spins, ...).

  18. Alabama Natural Gas Number of Gas and Gas Condensate Wells (Number...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas and Gas Condensate Wells (Number of Elements) Alabama Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  19. Ohio Natural Gas Number of Gas and Gas Condensate Wells (Number...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas and Gas Condensate Wells (Number of Elements) Ohio Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  20. Wyoming Natural Gas Number of Gas and Gas Condensate Wells (Number...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas and Gas Condensate Wells (Number of Elements) Wyoming Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  1. Texas Natural Gas Number of Gas and Gas Condensate Wells (Number...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas and Gas Condensate Wells (Number of Elements) Texas Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  2. Indiana Natural Gas Number of Gas and Gas Condensate Wells (Number...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Gas and Gas Condensate Wells (Number of Elements) Indiana Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  3. Alaska Natural Gas Number of Gas and Gas Condensate Wells (Number...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Gas and Gas Condensate Wells (Number of Elements) Alaska Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  4. Oregon Natural Gas Number of Gas and Gas Condensate Wells (Number...

    Gasoline and Diesel Fuel Update (EIA)

    Gas and Gas Condensate Wells (Number of Elements) Oregon Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  5. U.S. Natural Gas Number of Gas and Gas Condensate Wells (Number...

    Gasoline and Diesel Fuel Update (EIA)

    Gas and Gas Condensate Wells (Number of Elements) U.S. Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  6. Nevada Natural Gas Number of Gas and Gas Condensate Wells (Number...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas and Gas Condensate Wells (Number of Elements) Nevada Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  7. Utah Natural Gas Number of Gas and Gas Condensate Wells (Number...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Gas and Gas Condensate Wells (Number of Elements) Utah Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  8. ARM - Measurement - Cloud particle number concentration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    number concentration ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Cloud particle number concentration The total number of cloud particles present in any given volume of air. Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available

  9. Calculating Atomic Number Densities for Uranium

    Energy Science and Technology Software Center (OSTI)

    1993-01-01

    Provides method to calculate atomic number densities of selected uranium compounds and hydrogenous moderators for use in nuclear criticality safety analyses at gaseous diffusion uranium enrichment facilities.

  10. OMB Control Number: 1910-5165

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    damages assessed under Contract Work Hours and Safety Standards Act: Page 1 OMB Control Number: 1910-5165 Expires: 04302015 SEMI-ANNUAL DAVIS-BACON ENFORCEMENT REPORT...

  11. Low Mach Number Models in Computational Astrophysics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ann Almgren Low Mach Number Models in Computational Astrophysics February 4, 2014 Ann Almgren. Berkeley Lab Downloads Almgren-nug2014.pdf | Adobe Acrobat PDF file Low Mach Number Models in Computational Astrophysics - Ann Almgren, Berkeley Lab Last edited: 2016-02-01 08:06:52

  12. Compendium of Experimental Cetane Number Data

    SciTech Connect (OSTI)

    Murphy, M. J.; Taylor, J. D.; McCormick, R. L.

    2004-09-01

    In this report, we present a compilation of reported cetane numbers for pure chemical compounds. The compiled database contains cetane values for 299 pure compounds, including 156 hydrocarbons and 143 oxygenates. Cetane number is a relative ranking of fuels based on the amount of time between fuel injection and ignition. The cetane number is typically measured either in a combustion bomb or in a single-cylinder research engine. This report includes cetane values from several different measurement techniques - each of which has associated uncertainties. Additionally, many of the reported values are determined by measuring blending cetane numbers, which introduces significant error. In many cases, the measurement technique is not reported nor is there any discussion about the purity of the compounds. Nonetheless, the data in this report represent the best pure compound cetane number values available from the literature as of August 2004.

  13. Luminous blue variables and superluminous supernovae from binary mergers

    SciTech Connect (OSTI)

    Justham, Stephen; Podsiadlowski, Philipp; Vink, Jorick S. E-mail: podsi@astro.ox.ac.uk

    2014-12-01

    Evidence suggests that the direct progenitor stars of some core-collapse supernovae (CCSNe) are luminous blue variables (LBVs), perhaps including some Type II 'superluminous supernovae' (SLSNe). We examine models in which massive stars gain mass soon after the end of core hydrogen burning. These are mainly intended to represent mergers following a brief contact phase during early Case B mass transfer, but may also represent stars which gain mass in the Hertzsprung Gap or extremely late during the main-sequence phase for other reasons. The post-accretion stars spend their core helium-burning phase as blue supergiants (BSGs), and many examples are consistent with being LBVs at the time of core collapse. Other examples are yellow supergiants at explosion. We also investigate whether such post-accretion stars may explode successfully after core collapse. The final core properties of post-accretion models are broadly similar to those of single stars with the same initial mass as the pre-merger primary star. More surprisingly, when early Case B accretion does affect the final core properties, the effect appears likely to favor a successful SN explosion, i.e., to make the core properties more like those of a lower-mass single star. However, the detailed structures of these cores sometimes display qualitative differences to any single-star model we have calculated. The rate of appropriate binary mergers may match the rate of SNe with immediate LBV progenitors; for moderately optimistic assumptions we estimate that the progenitor birthrate is ?1% of the CCSN rate.

  14. Chandra resolves the T Tauri binary system RW Aur

    SciTech Connect (OSTI)

    Skinner, Stephen L.; Gdel, Manuel E-mail: manuel.guedel@univie.ac.at

    2014-06-20

    RW Aur is a multiple T Tauri system consisting of an early-K type primary (A) and a K5 companion (B) at a separation of 1.''4. RW Aur A drives a bipolar optical jet that is well characterized optically. We present results of a sensitive Chandra observation whose primary objective was to search for evidence of soft extended X-ray emission along the jet, as has been seen for a few other nearby T Tauri stars. The binary is clearly resolved by Chandra and both stars are detected as X-ray sources. The X-ray spectra of both stars reveal evidence for cool and hot plasma. Surprisingly, the X-ray luminosity of the less-massive secondary is at least twice that of the primary and is variable. The disparity is attributed to the primary whose X-ray luminosity is at the low end of the range for classical T Tauri stars of similar mass based on established correlations. Deconvolved soft-band images show evidence for slight outward elongation of the source structure of RW Aur A along the blueshifted jet axis inside the central arcsecond. In addition, a faint X-ray emission peak is present on the redshifted axis at an offset of 1.''2 0.''2 from the star. Deprojected jet speeds determined from previous optical studies are too low to explain this faint emission peak as shock-heated jet plasma. Thus, unless flow speeds in the redshifted jet have been underestimated, other mechanisms such as magnetic jet heating may be involved.

  15. Radiation-driven warping of circumbinary disks around eccentric young star binaries

    SciTech Connect (OSTI)

    Hayasaki, Kimitake; Sohn, Bong Won; Jung, Taehyun; Zhao, Guangyao; Okazaki, Atsuo T.; Naito, Tsuguya

    2014-12-10

    We study a warping instability of a geometrically thin, non-self-gravitating, circumbinary disk around young binary stars on an eccentric orbit. Such a disk is subject to both the tidal torques due to a time-dependent binary potential and the radiative torques due to radiation emitted from each star. The tilt angle between the circumbinary disk plane and the binary orbital plane is assumed to be very small. We find that there is a radius within/beyond which the circumbinary disk is unstable to radiation-driven warping, depending on the disk density and temperature gradient indices. This marginally stable warping radius is very sensitive to viscosity parameters, a fiducial disk radius and the temperature measured there, the stellar luminosity, and the disk surface density at a radius where the disk changes from optically thick to thin for the irradiation from the central stars. On the other hand, it is insensitive to the orbital eccentricity and binary irradiation parameter, which is a function of the binary mass ratio and luminosity of each star. Since the tidal torques can suppress the warping in the inner part of the circumbinary disk, the disk starts to be warped in the outer part. While the circumbinary disks are most likely to be subject to the radiation-driven warping on an AU to kilo-AU scale for binaries with young massive stars more luminous than 10{sup 4} L {sub ?}, the radiation-driven warping does not work for those around young binaries with the luminosity comparable to the solar luminosity.

  16. Compact binary mergers as the origin of r-process elements in the Galactic halo

    SciTech Connect (OSTI)

    Ishimaru, Yuhri; Wanajo, Shinya; Prantzos, Nikos

    2014-05-02

    Compact binary mergers (of double neutron star and black hole-neutron star systems) are suggested to be the major site of the r-process elements in the Galaxy by recent hydrodynamical and nucleosynthesis studies. It has been pointed out, however, that estimated long lifetimes of compact binaries are in conflict with the presence of r-process-enhanced stars at the metallicity [Fe/H] ? ?3. To resolve this problem, we examine the role of compact binary mergers in the early Galactic chemical evolution on the assumption that our Galactic halo was formed from merging sub-halos. The chemical evolutions are modeled for sub-halos with their total stellar masses between 10{sup 4}M{sub ?} and 2 10{sup 8}M{sub ?}. The lifetimes of compact binaries are assumed to be 100 Myr (95%) and 1 Myr (5%) according to recent binary population synthesis studies. We find that the r-process abundances (relative to iron; [r/Fe]) start increasing at [Fe/H] ? ?3 if the star formation rates are smaller for less massive sub-halos. Our models also suggest that the star-to-star scatter of [r/Fe]'s observed in Galactic halo stars can be interpreted as a consequence of greater gas outflow rates for less massive sub-halos. In addition, the sub-solar [r/Fe]'s (observed as [Ba/Fe] ? ?1.5 for [Fe/H] < ?3) are explained by the contribution from the short-lived (? 1 Myr) binaries. Our result indicates, therefore, that compact binary mergers can be potentially the origin of the r-process elements throughout the Galactic history.

  17. THE POTENTIAL IMPORTANCE OF BINARY EVOLUTION IN ULTRAVIOLET-OPTICAL SPECTRAL FITTING OF EARLY-TYPE GALAXIES

    SciTech Connect (OSTI)

    Li, Zhongmu; Mao, Caiyan; Chen, Li; Zhang, Qian; Li, Maocai

    2013-10-10

    Most galaxies possibly contain some binaries, and more than half of Galactic hot subdwarf stars, which are thought to be a possible origin of the UV-upturn of old stellar populations, are found in binaries. However, the effect of binary evolution has not been taken into account in most works on the spectral fitting of galaxies. This paper studies the role of binary evolution in the spectral fitting of early-type galaxies, via a stellar population synthesis model including both single and binary star populations. Spectra from ultraviolet to optical bands are fitted to determine a few galaxy parameters. The results show that the inclusion of binaries in stellar population models may lead to obvious change in the determination of some parameters of early-type galaxies and therefore it is potentially important for spectral studies. In particular, the ages of young components of composite stellar populations become much older when using binary star population models instead of single star population models. This implies that binary star population models will measure significantly different star formation histories for early-type galaxies compared to single star population models. In addition, stellar population models with binary interactions on average measure larger dust extinctions than single star population models. This suggests that when binary star population models are used, negative extinctions are possibly no longer necessary in the spectral fitting of galaxies (see previous works, e.g., Cid Fernandes et al. for comparison). Furthermore, it is shown that optical spectra have strong constraints on stellar age while UV spectra have strong constraints on binary fraction. Finally, our results suggest that binary star population models can provide new insight into the stellar properties of globular clusters.

  18. In what sense a neutron star-black hole binary is the holy grail for testing gravity?

    SciTech Connect (OSTI)

    Bagchi, Manjari; Torres, Diego F. E-mail: dtorres@ieec.uab.es

    2014-08-01

    Pulsars in binary systems have been very successful to test the validity of general relativity in the strong field regime [1-4]. So far, such binaries include neutron star-white dwarf (NS-WD) and neutron star-neutron star (NS-NS) systems. It is commonly believed that a neutron star-black hole (NS-BH) binary will be much superior for this purpose. But in what sense is this true? Does it apply to all possible deviations?.

  19. Particle Number & Particulate Mass Emissions Measurements on...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    on a 'Euro VI' Heavy-duty Engine using the PMP Methodologies Particle Number & Particulate Mass Emissions Measurements on a 'Euro VI' Heavy-duty Engine using the PMP ...

  20. Identification of Export Control Classification Number - ITER

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Identification of Export Control Classification Number - ITER (April 2012) As the "Shipper of Record" please provide the appropriate Export Control Classification Number (ECCN) for the products (equipment, components and/or materials) and if applicable the nonproprietary associated installation/maintenance documentation that will be shipped from the United States to the ITER International Organization in Cadarache, France or to ITER Members worldwide on behalf of the Company. In rare

  1. Stockpile Stewardship Quarterly Volume 1, Number 4

    National Nuclear Security Administration (NNSA)

    1, Number 4 * February 2012 Message from the Assistant Deputy Administrator for Stockpile Stewardship, Chris Deeney Defense Programs Stockpile Stewardship in Action Volume 1, Number 4 Inside this Issue 2 Applying Advanced Simulation Models to Neutron Tube Ion Extraction 3 Advanced Optical Cavities for Subcritical and Hydrodynamic Experiments 5 Progress Toward Ignition on the National Ignition Facility 7 Commissioning URSA Minor: The First LTD-Based Accelerator for Radiography 8 Publication

  2. EXPECTED LARGE SYNOPTIC SURVEY TELESCOPE (LSST) YIELD OF ECLIPSING BINARY STARS

    SciTech Connect (OSTI)

    Prsa, Andrej; Pepper, Joshua; Stassun, Keivan G.

    2011-08-15

    In this paper, we estimate the Large Synoptic Survey Telescope (LSST) yield of eclipsing binary stars, which will survey {approx}20,000 deg{sup 2} of the southern sky during a period of 10 years in six photometric passbands to r {approx} 24.5. We generate a set of 10,000 eclipsing binary light curves sampled to the LSST time cadence across the whole sky, with added noise as a function of apparent magnitude. This set is passed to the analysis-of-variance period finder to assess the recoverability rate for the periods, and the successfully phased light curves are passed to the artificial-intelligence-based pipeline ebai to assess the recoverability rate in terms of the eclipsing binaries' physical and geometric parameters. We find that, out of {approx}24 million eclipsing binaries observed by LSST with a signal-to-noise ratio >10 in mission lifetime, {approx}28% or 6.7 million can be fully characterized by the pipeline. Of those, {approx}25% or 1.7 million will be double-lined binaries, a true treasure trove for stellar astrophysics.

  3. The outcome of supernovae in massive binaries; removed mass, and its separation dependence

    SciTech Connect (OSTI)

    Hirai, Ryosuke; Sawai, Hidetomo; Yamada, Shoichi [Advanced Research Institute for Science and Engineering, Waseda University, 3-4-1, Okubo, Shinjuku, Tokyo 169-8555 (Japan)

    2014-09-01

    The majority of massive stars are formed in binary systems. It is hence reasonable to expect that most core-collapse supernovae (CCSNe) take place in binaries and the existence of a companion star may leave some imprints in observed features. Having this in mind, we have conducted two-dimensional hydrodynamical simulations of the collisions of CCSNe ejecta with the companion star in an almost-equal-mass (?10 M {sub ?}) binary to find out possible consequences of such events. In particular we pay attention to the amount of mass removed and its dependence on the binary separation. In contrast to the previous surmise, we find that the companion mass is stripped not by momentum transfer but by shock heating. Up to 25% of the original mass can be removed for the closest separations and the removed mass decreases as M {sub ub}?a {sup 4.3} with the binary separation a. By performing some experimental computations with artificially modified densities of incident ejecta, we show that if the velocity of ejecta is fixed, the density of incident ejecta is the single important parameter that actually determines the removed mass as M{sub ub}??{sub ej}{sup 1.4}. On the other hand, another set of simulations with modified velocities of incident ejecta demonstrate that the strength of the forward shock, which heats up the stellar material and causes the mass loss of the companion star, is actually the key parameter for the removed mass.

  4. THE OCCURRENCE OF WIDE-ORBIT PLANETS IN BINARY STAR SYSTEMS

    SciTech Connect (OSTI)

    Zuckerman, B.

    2014-08-20

    The occurrence of planets in binary star systems has been investigated via a variety of techniques that sample a wide range of semi-major axes, but with a preponderance of such results applicable to planets with semi-major axes less than a few astronomical units. We utilize a new methodthe presence or absence of heavy elements in the atmospheres of white dwarf starsto elucidate the frequency in main sequence binary star systems of planets with semi-major axes greater than a few astronomical units. We consider only binaries where a putative planetary system orbits one member (no circumbinary planets). For main sequence binaries where the primary star is of spectral type A or F, data in the published literature suggests that the existence of a secondary star with a semi-major axis less than about 1000AU suppresses the formation and/or long-term stability of an extended planetary system around the primary. For these spectral types and initial semi-major axis ?1000AU, extended planetary systems appear to be as common around stars in binary systems as they are around single stars.

  5. Radial velocity curves of ellipsoidal red giant binaries in the Large Magellanic Cloud

    SciTech Connect (OSTI)

    Nie, J. D.; Wood, P. R. E-mail: peter.wood@anu.edu.au

    2014-12-01

    Ellipsoidal red giant binaries are close binary systems where an unseen, relatively close companion distorts the red giant, leading to light variations as the red giant moves around its orbit. These binaries are likely to be the immediate evolutionary precursors of close binary planetary nebula and post-asymptotic giant branch and post-red giant branch stars. Due to the MACHO and OGLE photometric monitoring projects, the light variability nature of these ellipsoidal variables has been well studied. However, due to the lack of radial velocity curves, the nature of their masses, separations, and other orbital details has so far remained largely unknown. In order to improve this situation, we have carried out spectral monitoring observations of a large sample of 80 ellipsoidal variables in the Large Magellanic Cloud and we have derived radial velocity curves. At least 12 radial velocity points with good quality were obtained for most of the ellipsoidal variables. The radial velocity data are provided with this paper. Combining the photometric and radial velocity data, we present some statistical results related to the binary properties of these ellipsoidal variables.

  6. WIYN open cluster study. LX. Spectroscopic binary orbits in NGC 6819

    SciTech Connect (OSTI)

    Milliman, Katelyn E.; Mathieu, Robert D.; Gosnell, Natalie M.; Geller, Aaron M.; Meibom, Sren; Platais, Imants

    2014-08-01

    We present the current state of the WOCS radial-velocity (RV) survey for the rich open cluster NGC 6819 (2.5 Gyr) including 93 spectroscopic binary orbits with periods ranging from 1.5 to 8000 days. These results are the product of our ongoing RV survey of NGC 6819 using the Hydra Multi-Object Spectrograph on the WIYN 3.5 m telescope. We also include a detailed analysis of multiple prior sets of optical photometry for NGC 6819. Within a 1 field of view, our stellar sample includes the giant branch, the red clump, and blue straggler candidates, and extends to almost 2 mag below the main sequence (MS) turnoff. For each star observed in our survey we present all RV measurements, the average RV, and velocity variability information. Additionally, we discuss notable binaries from our sample, including eclipsing binaries (WOCS 23009, WOCS 24009, and WOCS 40007), stars noted in Kepler asteroseismology studies (WOCS 4008, WOCS 7009, and WOCS 8007), and potential descendants of past blue stragglers (WOCS 1006 and WOCS 6002). We find the incompleteness-corrected binary fraction for all MS binaries with periods less than 10{sup 4} days to be 22% 3% and a tidal circularization period of 6.2{sub ?1.1}{sup +1.1} days for NGC 6819.

  7. BINARY DISRUPTION BY MASSIVE BLACK HOLES: HYPERVELOCITY STARS, S STARS, AND TIDAL DISRUPTION EVENTS

    SciTech Connect (OSTI)

    Bromley, Benjamin C.; Kenyon, Scott J.; Geller, Margaret J.; Brown, Warren R. E-mail: skenyon@cfa.harvard.edu E-mail: wbrown@cfa.harvard.edu

    2012-04-20

    We examine whether disrupted binary stars can fuel black hole growth. In this mechanism, tidal disruption produces a single hypervelocity star (HVS) ejected at high velocity and a former companion star bound to the black hole. After a cluster of bound stars forms, orbital diffusion allows the black hole to accrete stars by tidal disruption at a rate comparable to the capture rate. In the Milky Way, HVSs and the S star cluster imply similar rates of 10{sup -5} to 10{sup -3} yr{sup -1} for binary disruption. These rates are consistent with estimates for the tidal disruption rate in nearby galaxies and imply significant black hole growth from disrupted binaries on 10 Gyr timescales.

  8. Effect of Ambient Design Temperature on Air-Cooled Binary Plant Output

    SciTech Connect (OSTI)

    Dan Wendt; Greg Mines

    2011-10-01

    Air-cooled binary plants are designed to provide a specified level of power production at a particular air temperature. Nominally this air temperature is the annual mean or average air temperature for the plant location. This study investigates the effect that changing the design air temperature has on power generation for an air-cooled binary plant producing power from a resource with a declining production fluid temperature and fluctuating ambient temperatures. This analysis was performed for plants operating both with and without a geothermal fluid outlet temperature limit. Aspen Plus process simulation software was used to develop optimal air-cooled binary plant designs for specific ambient temperatures as well as to rate the performance of the plant designs at off-design operating conditions. Results include calculation of annual and plant lifetime power generation as well as evaluation of plant operating characteristics, such as improved power generation capabilities during summer months when electric power prices are at peak levels.

  9. Three close binaries in different evolutionary stages in the old open cluster NGC 188

    SciTech Connect (OSTI)

    Zhu, L. Y.; Qian, S. B.; Liu, L.; He, J. J.; Liu, N. P.; Zhao, E. G.; Zhang, J.; Wang, J. J.; Soonthornthum, B.

    2014-02-01

    NGC 188 is a good laboratory for studying the formation and evolution of W UMa type contact binaries due to its rich populations of them. We present a detailed photometric study of three short-period close binaries, EP Cep, ES Cep, and V369 Cep, in the old open cluster NGC 188 based on our two-set photometric observations. We discovered that both EP Cep and ES Cep are shallow-contact binaries with continuously decreasing periods. The difference is in their mass ratios. EP Cep has an extremely low-mass ratio, q = 0.15, while ES Cep has a relatively high-mass ratio, q = 0.69, indicating that they lie in different evolutionary stages. ES Cep is likely a newly formed contact binary via a Case A mass transfer, while EP Cep is an evolved system and may be on the oscillations caused by the combined effect of the thermal relaxation oscillation and the variable angular momentum loss. For another system, V369 Cep, we found that it is a primary-filling near-contact binary. Both the semidetached configuration and the continuous decrease in the orbital period indicate that it is undergoing a mass transfer from the primary component to the secondary one. This conclusion is in agreement with the excess luminosity seen in the light curves on the ingress of the secondary minimum produced by the impact of the mass transfer. All of the results suggest that V369 Cep is evolving into contact, and a shallow-contact high-mass ratio system similar to ES Cep will be formed. Then, it will evolve into a low-mass ratio contact binary just like EP Cep, and finally merge into a rapidly rotating single star.

  10. The end of the MACHO era, revisited: New limits on MACHO masses from halo wide binaries

    SciTech Connect (OSTI)

    Monroy-Rodrguez, Miguel A.; Allen, Christine

    2014-08-01

    In order to determine an upper bound for the mass of the massive compact halo objects (MACHOs), we use the halo binaries contained in a recent catalog by Allen and Monroy-Rodrguez. To dynamically model their interactions with massive perturbers, a Monte Carlo simulation is conducted, using an impulsive approximation method and assuming a galactic halo constituted by massive particles of a characteristic mass. The results of such simulations are compared with several subsamples of our improved catalog of candidate halo wide binaries. In accordance with Quinn et al., we also find our results to be very sensitive to the widest binaries. However, our larger sample, together with the fact that we can obtain galactic orbits for 150 of our systems, allows a more reliable estimate of the maximum MACHO mass than that obtained previously. If we employ the entire sample of 211 candidate halo stars we, obtain an upper limit of 112 M{sub ?}. However, using the 150 binaries in our catalog with computed galactic orbits, we are able to refine our fitting criteria. Thus, for the 100 most halo-like binaries we obtain a maximum MACHO mass of 21-68 M{sub ?}. Furthermore, we can estimate the dynamical effects of the galactic disk using binary samples that spend progressively shorter times within the disk. By extrapolating the limits obtained for our most reliablealbeit smallestsample, we find that as the time spent within the disk tends to zero, the upper bound of the MACHO mass tends to less than 5 M{sub ?}. The non-uniform density of the halo has also been taken into account, but the limit obtained, less than 5 M{sub ?}, does not differ much from the previous one. Together with microlensing studies that provide lower limits on the MACHO mass, our results essentially exclude the existence of such objects in the galactic halo.

  11. Probing lepton number violation on three frontiers

    SciTech Connect (OSTI)

    Deppisch, Frank F. [Department of Physics and Astronomy, University College London (United Kingdom)

    2013-12-30

    Neutrinoless double beta decay constitutes the main probe for lepton number violation at low energies, motivated by the expected Majorana nature of the light but massive neutrinos. On the other hand, the theoretical interpretation of the (non-)observation of this process is not straightforward as the Majorana neutrinos can destructively interfere in their contribution and many other New Physics mechanisms can additionally mediate the process. We here highlight the potential of combining neutrinoless double beta decay with searches for Tritium decay, cosmological observations and LHC physics to improve the quantitative insight into the neutrino properties and to unravel potential sources of lepton number violation.

  12. Battling bird flu by the numbers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Battling bird flu by the numbers Battling bird flu by the numbers Lab theorists have developed a mathematical tool that could help health experts and crisis managers determine in real time whether an emerging infectious disease such as avian influenza H5N1 is poised to spread globally. May 27, 2008 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience,

  13. WIPP Documents - All documents by number

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Note: Documents that do not have document numbers are not included in this listing. Large file size alert This symbol means the document may be a large file size. All documents by number Common document prefixes DOE/CAO DOE/TRU DOE/CBFO DOE/WIPP DOE/EA NM DOE/EIS Other DOE/CAO Back to top DOE/CAO 95-1095, Oct. 1995 Remote Handled Transuranic Waste Study This study was conducted to satisfy the requirements defined by the WIPP Land Withdrawal Act and considered by DOE to be a prudent exercise in

  14. THE PHASES DIFFERENTIAL ASTROMETRY DATA ARCHIVE. V. CANDIDATE SUBSTELLAR COMPANIONS TO BINARY SYSTEMS

    SciTech Connect (OSTI)

    Muterspaugh, Matthew W.; Lane, Benjamin F.; Kulkarni, S. R.; Konacki, Maciej; Burke, Bernard F.; Colavita, M. M.; Shao, M.; Hartkopf, William I.; Boss, Alan P.; Williamson, M. E-mail: blane@draper.co

    2010-12-15

    The Palomar High-precision Astrometric Search for Exoplanet Systems monitored 51 subarcsecond binary systems to evaluate whether tertiary companions as small as Jovian planets orbited either the primary or secondary stars, perturbing their otherwise smooth Keplerian motions. Six binaries are presented that show evidence of substellar companions orbiting either the primary or secondary star. Of these six systems, the likelihoods of two of the detected perturbations to represent real objects are considered to be 'high confidence', while the remaining four systems are less certain and will require continued observations for confirmation.

  15. Gamma-Ray Emission Concurrent with the Nova in the Symbiotic Binary V407

    Office of Scientific and Technical Information (OSTI)

    Cygni (Journal Article) | SciTech Connect SciTech Connect Search Results Journal Article: Gamma-Ray Emission Concurrent with the Nova in the Symbiotic Binary V407 Cygni Citation Details In-Document Search Title: Gamma-Ray Emission Concurrent with the Nova in the Symbiotic Binary V407 Cygni Authors: Abdo, A.A. ; /Naval Research Lab, Wash., D.C. /Natl. Res. Coun., Wash., D.C. ; Ackermann, M. ; /KIPAC, Menlo Park /SLAC ; Ajello, M. ; /KIPAC, Menlo Park /SLAC ; Atwood, W.B. ; /UC, Santa Cruz ;

  16. Binary and ternary gas mixtures for use in glow discharge closing switches

    DOE Patents [OSTI]

    Hunter, S.R.; Christophorou, L.G.

    1988-04-27

    Highly efficient binary and ternary gas mixtures for use in diffuse glow discharge closing switches are disclosed. The binary mixtures are combinations of helium or neon and selected perfluorides. The ternary mixtures are combinations of helium, neon, or argon, a selected perfluoride, and a small amount of gas that exhibits enhanced ionization characteristics. These mixtures are shown to be the optimum choices for use in diffuse glow discharge closing switches by virtue if the combines physio-electric properties of the mixture components. 9 figs.

  17. The 17 GHz active region number

    SciTech Connect (OSTI)

    Selhorst, C. L.; Pacini, A. A.; Costa, J. E. R.; Gimnez de Castro, C. G.; Valio, A.; Shibasaki, K.

    2014-08-01

    We report the statistics of the number of active regions (NAR) observed at 17 GHz with the Nobeyama Radioheliograph between 1992, near the maximum of cycle 22, and 2013, which also includes the maximum of cycle 24, and we compare with other activity indexes. We find that NAR minima are shorter than those of the sunspot number (SSN) and radio flux at 10.7 cm (F10.7). This shorter NAR minima could reflect the presence of active regions generated by faint magnetic fields or spotless regions, which were a considerable fraction of the counted active regions. The ratio between the solar radio indexes F10.7/NAR shows a similar reduction during the two minima analyzed, which contrasts with the increase of the ratio of both radio indexes in relation to the SSN during the minimum of cycle 23-24. These results indicate that the radio indexes are more sensitive to weaker magnetic fields than those necessary to form sunspots, of the order of 1500 G. The analysis of the monthly averages of the active region brightness temperatures shows that its long-term variation mimics the solar cycle; however, due to the gyro-resonance emission, a great number of intense spikes are observed in the maximum temperature study. The decrease in the number of these spikes is also evident during the current cycle 24, a consequence of the sunspot magnetic field weakening in the last few years.

  18. Pennsylvania Number of Natural Gas Consumers

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    1998-2014 Average Consumption per Consumer (Thousand Cubic Ft.) 618 606 604 540 627 666 1967-2014 Industrial Number of Consumers 4,745 4,624 5,007 5,066 5,024 5,084 1987-2014...

  19. The New Element Curium (Atomic Number 96)

    DOE R&D Accomplishments [OSTI]

    Seaborg, G. T.; James, R. A.; Ghiorso, A.

    1948-00-00

    Two isotopes of the element with atomic number 96 have been produced by the helium-ion bombardment of plutonium. The name curium, symbol Cm, is proposed for element 96. The chemical experiments indicate that the most stable oxidation state of curium is the III state.

  20. Washington Number of Natural Gas Consumers

    Gasoline and Diesel Fuel Update (EIA)

    059,239 1,067,979 1,079,277 1,088,762 1,102,318 1,118,193 1987-2014 Sales 1,067,979 1,079,277 1,088,762 1,102,318 1,118,193 1997-2014 Commercial Number of Consumers 98,965 99,231...

  1. Minnesota Number of Natural Gas Consumers

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    1,436,063 1,445,824 1,459,134 1,472,663 1997-2014 Commercial Number of Consumers 131,801 132,163 132,938 134,394 135,557 136,382 1987-2014 Sales 131,986 132,697 134,165 135,235...

  2. West Virginia Number of Natural Gas Consumers

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    343,837 344,131 342,069 340,256 340,102 338,652 1987-2014 Sales 344,125 342,063 340,251 340,098 338,649 1997-2014 Transported 6 6 5 4 3 1997-2014 Commercial Number of Consumers...

  3. Connecticut Number of Natural Gas Consumers

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    489,349 490,185 494,970 504,138 513,492 522,658 1986-2014 Sales 489,380 494,065 503,241 512,110 521,460 1997-2014 Transported 805 905 897 1,382 1,198 1997-2014 Commercial Number of...

  4. North Carolina Number of Natural Gas Consumers

    Gasoline and Diesel Fuel Update (EIA)

    ,102,001 1,115,532 1,128,963 1,142,947 1,161,398 1,183,152 1987-2014 Sales 1,115,532 1,128,963 1,142,947 1,161,398 1,183,152 1997-2014 Commercial Number of Consumers 113,630...

  5. Climate Zone Number 1 | Open Energy Information

    Open Energy Info (EERE)

    Zone Number 1 is defined as Very Hot - Humid(1A) with IP Units 9000 < CDD50F and SI Units 5000 < CDD10C Dry(1B) with IP Units 9000 < CDD50F and SI Units 5000 < CDD10C...

  6. Maine Number of Natural Gas Consumers

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    20,806 21,142 22,461 23,555 24,765 27,047 1987-2014 Sales 21,141 22,461 23,555 24,765 27,047 1997-2014 Transported 1 0 0 0 0 2010-2014 Commercial Number of Consumers 8,815 9,084...

  7. South Dakota Number of Natural Gas Consumers

    Gasoline and Diesel Fuel Update (EIA)

    173,856 176,204 179,042 1997-2014 Commercial Number of Consumers 22,071 22,267 22,570 22,955 23,214 23,591 1987-2014 Sales 22,028 22,332 22,716 22,947 23,330 1998-2014...

  8. Rhode Island Number of Natural Gas Consumers

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    24,846 225,204 225,828 228,487 231,763 233,786 1987-2014 Sales 225,204 225,828 228,487 231,763 233,786 1997-2014 Commercial Number of Consumers 22,988 23,049 23,177 23,359 23,742 23,934 1987-2014 Sales 21,507 21,421 21,442 21,731 21,947 1998-2014 Transported 1,542 1,756 1,917 2,011 1,987 1998-2014 Average Consumption per Consumer (Thousand Cubic Ft.) 467 454 468 432 490 551 1967-2014 Industrial Number of Consumers 260 249 245 248 271 266 1987-2014 Sales 57 53 56 62 62 1998-2014 Transported 192

  9. South Carolina Number of Natural Gas Consumers

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    565,774 570,797 576,594 583,633 593,286 604,743 1987-2014 Sales 570,797 576,594 583,633 593,286 604,743 1997-2014 Commercial Number of Consumers 55,850 55,853 55,846 55,908 55,997 56,172 1987-2014 Sales 55,776 55,760 55,815 55,902 56,074 1998-2014 Transported 77 86 93 95 98 1998-2014 Average Consumption per Consumer (Thousand Cubic Ft.) 393 432 396 383 426 452 1967-2014 Industrial Number of Consumers 1,358 1,325 1,329 1,435 1,452 1,426 1987-2014 Sales 1,139 1,137 1,215 1,223 1,199 1998-2014

  10. Tennessee Number of Natural Gas Consumers

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    ,083,573 1,085,387 1,089,009 1,084,726 1,094,122 1,106,681 1987-2014 Sales 1,085,387 1,089,009 1,084,726 1,094,122 1,106,681 1997-2014 Commercial Number of Consumers 127,704 127,914 128,969 130,139 131,091 131,001 1987-2014 Sales 127,806 128,866 130,035 130,989 130,905 1998-2014 Transported 108 103 104 102 96 1998-2014 Average Consumption per Consumer (Thousand Cubic Ft.) 406 439 404 345 411 438 1967-2014 Industrial Number of Consumers 2,717 2,702 2,729 2,679 2,581 2,595 1987-2014 Sales 2,340

  11. Texas Number of Natural Gas Consumers

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    4,248,613 4,288,495 4,326,156 4,370,057 4,424,103 4,469,282 1987-2014 Sales 4,287,929 4,326,076 4,369,990 4,424,037 4,469,220 1997-2014 Transported 566 80 67 66 62 1997-2014 Commercial Number of Consumers 313,384 312,277 314,041 314,811 314,036 317,217 1987-2014 Sales 310,842 312,164 312,574 311,493 313,971 1998-2014 Transported 1,435 1,877 2,237 2,543 3,246 1998-2014 Average Consumption per Consumer (Thousand Cubic Ft.) 534 605 587 512 553 583 1967-2014 Industrial Number of Consumers 8,581

  12. Kentucky Number of Natural Gas Consumers

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    754,761 758,129 759,584 757,790 761,575 760,131 1987-2014 Sales 728,940 730,602 730,184 736,011 735,486 1997-2014 Transported 29,189 28,982 27,606 25,564 24,645 1997-2014 Commercial Number of Consumers 83,862 84,707 84,977 85,129 85,999 85,318 1987-2014 Sales 80,541 80,392 80,644 81,579 81,026 1998-2014 Transported 4,166 4,585 4,485 4,420 4,292 1998-2014 Average Consumption per Consumer (Thousand Cubic Ft.) 423 435 407 361 435 469 1967-2014 Industrial Number of Consumers 1,715 1,742 1,705 1,720

  13. Louisiana Number of Natural Gas Consumers

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    889,570 893,400 897,513 963,688 901,635 899,378 1987-2014 Sales 893,400 897,513 963,688 901,635 899,378 1997-2014 Transported 0 0 0 0 0 1997-2014 Commercial Number of Consumers 58,396 58,562 58,749 63,381 59,147 58,611 1987-2014 Sales 58,501 58,685 63,256 58,985 58,438 1998-2014 Transported 61 64 125 162 173 1998-2014 Average Consumption per Consumer (Thousand Cubic Ft.) 405 461 441 415 488 532 1967-2014 Industrial Number of Consumers 954 942 920 963 916 883 1987-2014 Sales 586 573 628 570 546

  14. Maryland Number of Natural Gas Consumers

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    067,807 1,071,566 1,077,168 1,078,978 1,099,272 1,101,292 1987-2014 Sales 923,870 892,844 867,627 852,555 858,352 1997-2014 Transported 147,696 184,324 211,351 246,717 242,940 1997-2014 Commercial Number of Consumers 75,771 75,192 75,788 75,799 77,117 77,846 1987-2014 Sales 54,966 53,778 52,383 52,763 53,961 1998-2014 Transported 20,226 22,010 23,416 24,354 23,885 1998-2014 Average Consumption per Consumer (Thousand Cubic Ft.) 912 898 891 846 923 961 1967-2014 Industrial Number of Consumers

  15. Mississippi Number of Natural Gas Consumers

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    437,715 436,840 442,479 442,840 445,589 444,423 1987-2014 Sales 436,840 439,511 440,171 442,974 444,423 1997-2014 Transported 0 2,968 2,669 2,615 0 2010-2014 Commercial Number of Consumers 50,713 50,537 50,636 50,689 50,153 50,238 1987-2014 Sales 50,503 50,273 50,360 49,829 50,197 1998-2014 Transported 34 363 329 324 41 1998-2014 Average Consumption per Consumer (Thousand Cubic Ft.) 377 419 400 352 388 442 1967-2014 Industrial Number of Consumers 1,141 980 982 936 933 943 1987-2014 Sales 860 853

  16. Missouri Number of Natural Gas Consumers

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    348,781 1,348,549 1,342,920 1,389,910 1,357,740 1,363,286 1987-2014 Sales 1,348,549 1,342,920 1,389,910 1,357,740 1,363,286 1997-2014 Transported 0 0 0 0 0 2010-2014 Commercial Number of Consumers 140,633 138,670 138,214 144,906 142,495 143,024 1987-2014 Sales 137,342 136,843 143,487 141,047 141,477 1998-2014 Transported 1,328 1,371 1,419 1,448 1,547 1998-2014 Average Consumption per Consumer (Thousand Cubic Ft.) 437 441 451 378 453 510 1967-2014 Industrial Number of Consumers 3,573 3,541 3,307

  17. Montana Number of Natural Gas Consumers

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    255,472 257,322 259,046 259,957 262,122 265,849 1987-2014 Sales 256,841 258,579 259,484 261,637 265,323 1997-2014 Transported 481 467 473 485 526 2005-2014 Commercial Number of Consumers 33,731 34,002 34,305 34,504 34,909 35,205 1987-2014 Sales 33,652 33,939 33,967 34,305 34,558 1998-2014 Transported 350 366 537 604 647 1998-2014 Average Consumption per Consumer (Thousand Cubic Ft.) 699 602 651 557 601 612 1967-2014 Industrial Number of Consumers 396 384 381 372 372 369 1987-2014 Sales 312 304

  18. Utah Number of Natural Gas Consumers

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    810,442 821,525 830,219 840,687 854,389 869,052 1987-2014 Sales 821,525 830,219 840,687 854,389 869,052 1997-2014 Commercial Number of Consumers 60,781 61,976 62,885 63,383 64,114 65,134 1987-2014 Sales 61,929 62,831 63,298 63,960 64,931 1998-2014 Transported 47 54 85 154 203 1998-2014 Average Consumption per Consumer (Thousand Cubic Ft.) 609 621 643 558 646 586 1967-2014 Industrial Number of Consumers 293 293 286 302 323 328 1987-2014 Sales 205 189 189 187 178 1998-2014 Transported 88 97 113

  19. Vermont Number of Natural Gas Consumers

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    37,242 38,047 38,839 39,917 41,152 42,231 1987-2014 Sales 38,047 38,839 39,917 41,152 42,231 1997-2014 Commercial Number of Consumers 5,085 5,137 5,256 5,535 5,441 5,589 1987-2014 Sales 5,137 5,256 5,535 5,441 5,589 1998-2014 Average Consumption per Consumer (Thousand Cubic Ft.) 488 464 472 418 873 864 1967-2014 Industrial Number of Consumers 36 38 36 38 13 13 1987-2014 Sales 37 35 38 13 13 1998-2014 Transported 1 1 0 0 0 1999-2014 Average Consumption per Consumer (Thousand Cubic Ft.) 80,290

  20. Virginia Number of Natural Gas Consumers

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    1,124,717 1,133,103 1,145,049 1,155,636 1,170,161 1,183,894 1987-2014 Sales 1,076,080 1,081,581 1,088,340 1,102,646 1,114,224 1997-2014 Transported 57,023 63,468 67,296 67,515 69,670 1997-2014 Commercial Number of Consumers 95,704 95,401 96,086 96,503 97,499 98,741 1987-2014 Sales 85,521 85,522 85,595 86,618 87,470 1998-2014 Transported 9,880 10,564 10,908 10,881 11,271 1998-2014 Average Consumption per Consumer (Thousand Cubic Ft.) 707 722 669 624 699 731 1967-2014 Industrial Number of

  1. Washington Number of Natural Gas Consumers

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    059,239 1,067,979 1,079,277 1,088,762 1,102,318 1,118,193 1987-2014 Sales 1,067,979 1,079,277 1,088,762 1,102,318 1,118,193 1997-2014 Commercial Number of Consumers 98,965 99,231 99,674 100,038 100,939 101,730 1987-2014 Sales 99,166 99,584 99,930 100,819 101,606 1998-2014 Transported 65 90 108 120 124 1998-2014 Average Consumption per Consumer (Thousand Cubic Ft.) 563 517 567 534 553 535 1967-2014 Industrial Number of Consumers 3,428 3,372 3,353 3,338 3,320 3,355 1987-2014 Sales 3,056 3,031

  2. Wisconsin Number of Natural Gas Consumers

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    656,614 1,663,583 1,671,834 1,681,001 1,692,891 1,705,907 1987-2014 Sales 1,663,583 1,671,834 1,681,001 1,692,891 1,705,907 1997-2014 Transported 0 0 0 0 0 1997-2014 Commercial Number of Consumers 163,843 164,173 165,002 165,657 166,845 167,901 1987-2014 Sales 163,060 163,905 164,575 165,718 166,750 1998-2014 Transported 1,113 1,097 1,082 1,127 1,151 1998-2014 Average Consumption per Consumer (Thousand Cubic Ft.) 558 501 528 465 596 637 1967-2014 Industrial Number of Consumers 6,396 6,413 6,376

  3. Wyoming Number of Natural Gas Consumers

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    153,062 153,852 155,181 157,226 158,889 160,896 1987-2014 Sales 117,735 118,433 118,691 117,948 118,396 1997-2014 Transported 36,117 36,748 38,535 40,941 42,500 1997-2014 Commercial Number of Consumers 19,843 19,977 20,146 20,387 20,617 20,894 1987-2014 Sales 14,319 14,292 14,187 14,221 14,452 1998-2014 Transported 5,658 5,854 6,200 6,396 6,442 1998-2014 Average Consumption per Consumer (Thousand Cubic Ft.) 523 558 580 514 583 583 1967-2014 Industrial Number of Consumers 130 120 123 127 132 131

  4. Nebraska Number of Natural Gas Consumers

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    512,551 510,776 514,481 515,338 527,397 522,408 1987-2014 Sales 442,413 446,652 447,617 459,712 454,725 1997-2014 Transported 68,363 67,829 67,721 67,685 67,683 1997-2014 Commercial Number of Consumers 56,454 56,246 56,553 56,608 58,005 57,191 1987-2014 Sales 40,348 40,881 41,074 42,400 41,467 1998-2014 Transported 15,898 15,672 15,534 15,605 15,724 1998-2014 Average Consumption per Consumer (Thousand Cubic Ft.) 563 569 568 468 555 567 1967-2014 Industrial Number of Consumers 7,863 7,912 7,955

  5. Nevada Number of Natural Gas Consumers

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    760,391 764,435 772,880 782,759 794,150 808,970 1987-2014 Sales 764,435 772,880 782,759 794,150 808,970 1997-2014 Commercial Number of Consumers 41,303 40,801 40,944 41,192 41,710 42,338 1987-2014 Sales 40,655 40,786 41,023 41,536 42,163 1998-2014 Transported 146 158 169 174 175 1998-2014 Average Consumption per Consumer (Thousand Cubic Ft.) 715 722 751 704 748 687 1967-2014 Industrial Number of Consumers 192 184 177 177 195 218 1987-2014 Sales 152 147 146 162 183 1998-2014 Transported 32 30 31

  6. New Hampshire Number of Natural Gas Consumers

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    96,924 95,361 97,400 99,738 98,715 99,146 1987-2014 Sales 95,360 97,400 99,738 98,715 99,146 1997-2014 Transported 1 0 0 0 0 2010-2014 Commercial Number of Consumers 16,937 16,645 17,186 17,758 17,298 17,421 1987-2014 Sales 15,004 15,198 15,429 14,685 14,527 1998-2014 Transported 1,641 1,988 2,329 2,613 2,894 1998-2014 Average Consumption per Consumer (Thousand Cubic Ft.) 587 505 517 458 532 540 1967-2014 Industrial Number of Consumers 155 306 362 466 403 326 1987-2014 Sales 31 25 30 35 45

  7. New Mexico Number of Natural Gas Consumers

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    560,479 559,852 570,637 561,713 572,224 614,313 1987-2014 Sales 559,825 570,592 561,652 572,146 614,231 1997-2014 Transported 27 45 61 78 82 1997-2014 Commercial Number of Consumers 48,846 48,757 49,406 48,914 50,163 55,689 1987-2014 Sales 45,679 46,104 45,298 46,348 51,772 1998-2014 Transported 3,078 3,302 3,616 3,815 3,917 1998-2014 Average Consumption per Consumer (Thousand Cubic Ft.) 506 516 507 509 534 461 1967-2014 Industrial Number of Consumers 471 438 360 121 123 116 1987-2014 Sales 390

  8. North Dakota Number of Natural Gas Consumers

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    22,065 123,585 125,392 130,044 133,975 137,972 1987-2014 Sales 123,585 125,392 130,044 133,975 137,972 1997-2014 Transported 0 0 0 0 0 2004-2014 Commercial Number of Consumers 17,632 17,823 18,421 19,089 19,855 20,687 1987-2014 Sales 17,745 18,347 19,021 19,788 20,623 1998-2014 Transported 78 74 68 67 64 1998-2014 Average Consumption per Consumer (Thousand Cubic Ft.) 623 578 596 543 667 677 1967-2014 Industrial Number of Consumers 279 307 259 260 266 269 1987-2014 Sales 255 204 206 211 210

  9. Oklahoma Number of Natural Gas Consumers

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    924,745 914,869 922,240 927,346 931,981 937,237 1987-2014 Sales 914,869 922,240 927,346 931,981 937,237 1997-2014 Transported 0 0 0 0 0 1997-2014 Commercial Number of Consumers 94,314 92,430 93,903 94,537 95,385 96,004 1987-2014 Sales 88,217 89,573 90,097 90,861 91,402 1998-2014 Transported 4,213 4,330 4,440 4,524 4,602 1998-2014 Average Consumption per Consumer (Thousand Cubic Ft.) 439 452 430 382 464 489 1967-2014 Industrial Number of Consumers 2,618 2,731 2,733 2,872 2,958 3,063 1987-2014

  10. Oregon Number of Natural Gas Consumers

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    675,582 682,737 688,681 693,507 700,211 707,010 1987-2014 Sales 682,737 688,681 693,507 700,211 707,010 1997-2014 Commercial Number of Consumers 76,893 77,370 77,822 78,237 79,276 80,480 1987-2014 Sales 77,351 77,793 78,197 79,227 80,422 1998-2014 Transported 19 29 40 49 58 1998-2014 Average Consumption per Consumer (Thousand Cubic Ft.) 387 352 390 368 386 353 1967-2014 Industrial Number of Consumers 1,051 1,053 1,066 1,076 1,085 1,099 1987-2014 Sales 821 828 817 821 839 1998-2014 Transported

  11. Sensitivity in risk analyses with uncertain numbers.

    SciTech Connect (OSTI)

    Tucker, W. Troy; Ferson, Scott

    2006-06-01

    Sensitivity analysis is a study of how changes in the inputs to a model influence the results of the model. Many techniques have recently been proposed for use when the model is probabilistic. This report considers the related problem of sensitivity analysis when the model includes uncertain numbers that can involve both aleatory and epistemic uncertainty and the method of calculation is Dempster-Shafer evidence theory or probability bounds analysis. Some traditional methods for sensitivity analysis generalize directly for use with uncertain numbers, but, in some respects, sensitivity analysis for these analyses differs from traditional deterministic or probabilistic sensitivity analyses. A case study of a dike reliability assessment illustrates several methods of sensitivity analysis, including traditional probabilistic assessment, local derivatives, and a ''pinching'' strategy that hypothetically reduces the epistemic uncertainty or aleatory uncertainty, or both, in an input variable to estimate the reduction of uncertainty in the outputs. The prospects for applying the methods to black box models are also considered.

  12. Colorado Number of Natural Gas Consumers

    Gasoline and Diesel Fuel Update (EIA)

    ,622,434 1,634,587 1,645,716 1,659,808 1,672,312 1,690,581 1986-2014 Sales 1,634,582 1,645,711 1,659,803 1,672,307 1,690,576 1997-2014 Transported 5 5 5 5 5 1997-2014 Commercial Number of Consumers 145,624 145,460 145,837 145,960 150,145 150,235 1986-2014 Sales 145,236 145,557 145,563 149,826 149,921 1998-2014 Transported 224 280 397 319 314 1998-2014 Average Consumption per Consumer (Thousand Cubic Ft.) 429 396 383 355 392 386 1967-2014 Industrial Number of Consumers 5,084 6,232 6,529 6,906

  13. Delaware Number of Natural Gas Consumers

    Gasoline and Diesel Fuel Update (EIA)

    9,006 150,458 152,005 153,307 155,627 158,502 1986-2014 Sales 150,458 152,005 153,307 155,627 158,502 1997-2014 Commercial Number of Consumers 12,839 12,861 12,931 12,997 13,163 13,352 1986-2014 Sales 12,706 12,656 12,644 12,777 12,902 1998-2014 Transported 155 275 353 386 450 1999-2014 Average Consumption per Consumer (Thousand Cubic Ft.) 910 948 810 772 849 890 1967-2014 Industrial Number of Consumers 112 114 129 134 138 141 1987-2014 Sales 40 35 29 28 28 1998-2014 Transported 74 94 105 110

  14. Florida Number of Natural Gas Consumers

    Gasoline and Diesel Fuel Update (EIA)

    674,090 675,551 679,199 686,994 694,210 703,535 1986-2014 Sales 661,768 664,564 672,133 679,191 687,766 1997-2014 Transported 13,783 14,635 14,861 15,019 15,769 1997-2014 Commercial Number of Consumers 59,549 60,854 61,582 63,477 64,772 67,460 1986-2014 Sales 41,750 41,068 41,102 40,434 41,303 1998-2014 Transported 19,104 20,514 22,375 24,338 26,157 1998-2014 Average Consumption per Consumer (Thousand Cubic Ft.) 846 888 869 861 926 929 1967-2014 Industrial Number of Consumers 607 581 630 507 528

  15. Georgia Number of Natural Gas Consumers

    Gasoline and Diesel Fuel Update (EIA)

    1,744,934 1,740,587 1,740,006 1,739,543 1,805,425 1,755,847 1986-2014 Sales 321,290 321,515 319,179 377,652 315,562 1997-2014 Transported 1,419,297 1,418,491 1,420,364 1,427,773 1,440,285 1997-2014 Commercial Number of Consumers 127,347 124,759 123,454 121,243 126,060 122,573 1986-2014 Sales 32,318 32,162 31,755 36,556 31,845 1998-2014 Transported 92,441 91,292 89,488 89,504 90,728 1998-2014 Average Consumption per Consumer (Thousand Cubic Ft.) 421 482 458 428 454 482 1967-2014 Industrial Number

  16. Hawaii Number of Natural Gas Consumers

    Gasoline and Diesel Fuel Update (EIA)

    25,466 25,389 25,305 25,184 26,374 28,919 1987-2014 Sales 25,389 25,305 25,184 26,374 28,919 1998-2014 Commercial Number of Consumers 2,535 2,551 2,560 2,545 2,627 2,789 1987-2014 Sales 2,551 2,560 2,545 2,627 2,789 1998-2014 Average Consumption per Consumer (Thousand Cubic Ft.) 691 697 691 727 713 692 1980-2014 Industrial Number of Consumers 25 24 24 22 22 23 1997-2014 Sales 24 24 22 22 23 1998-2014 Average Consumption per Consumer (Thousand Cubic Ft.) 13,753 14,111 15,087 16,126 17,635 17,

  17. Idaho Number of Natural Gas Consumers

    Gasoline and Diesel Fuel Update (EIA)

    42,277 346,602 350,871 353,963 359,889 367,394 1987-2014 Sales 346,602 350,871 353,963 359,889 367,394 1997-2014 Commercial Number of Consumers 38,245 38,506 38,912 39,202 39,722 40,229 1987-2014 Sales 38,468 38,872 39,160 39,681 40,188 1998-2014 Transported 38 40 42 41 41 1998-2014 Average Consumption per Consumer (Thousand Cubic Ft.) 412 390 433 404 465 422 1967-2014 Industrial Number of Consumers 187 184 178 179 183 189 1987-2014 Sales 108 103 105 109 115 1998-2014 Transported 76 75 74 74 74

  18. Iowa Number of Natural Gas Consumers

    Gasoline and Diesel Fuel Update (EIA)

    875,781 879,713 883,733 892,123 895,414 900,420 1987-2014 Sales 879,713 883,733 892,123 895,414 900,420 1997-2014 Commercial Number of Consumers 98,416 98,396 98,541 99,113 99,017 99,182 1987-2014 Sales 96,996 97,075 97,580 97,334 97,409 1998-2014 Transported 1,400 1,466 1,533 1,683 1,773 1998-2014 Average Consumption per Consumer (Thousand Cubic Ft.) 576 525 526 442 572 579 1967-2014 Industrial Number of Consumers 1,626 1,528 1,465 1,469 1,491 1,572 1987-2014 Sales 1,161 1,110 1,042 1,074 1,135

  19. Kansas Number of Natural Gas Consumers

    Gasoline and Diesel Fuel Update (EIA)

    855,454 853,842 854,730 854,800 858,572 861,092 1987-2014 Sales 853,842 854,730 854,779 858,546 861,066 1997-2014 Transported 0 0 21 26 26 2004-2014 Commercial Number of Consumers 84,715 84,446 84,874 84,673 84,969 85,867 1987-2014 Sales 78,310 78,559 78,230 78,441 79,231 1998-2014 Transported 6,136 6,315 6,443 6,528 6,636 1998-2014 Average Consumption per Consumer (Thousand Cubic Ft.) 384 377 378 301 391 425 1967-2014 Industrial Number of Consumers 7,793 7,664 7,954 7,970 7,877 7,429 1987-2014

  20. Alabama Number of Natural Gas Consumers

    Gasoline and Diesel Fuel Update (EIA)

    785,005 778,985 772,892 767,396 765,957 769,418 1986-2014 Sales 778,985 772,892 767,396 765,957 769,418 1997-2014 Transported 0 0 0 0 0 1997-2014 Commercial Number of Consumers 67,674 68,163 67,696 67,252 67,136 67,806 1986-2014 Sales 68,017 67,561 67,117 67,006 67,677 1998-2014 Transported 146 135 135 130 129 1998-2014 Average Consumption per Consumer (Thousand Cubic Ft.) 359 397 371 320 377 406 1967-2014 Industrial Number of Consumers 3,057 3,039 2,988 3,045 3,143 3,244 1986-2014 Sales 2,758

  1. Alaska Number of Natural Gas Consumers

    Gasoline and Diesel Fuel Update (EIA)

    120,124 121,166 121,736 122,983 124,411 126,416 1986-2014 Sales 121,166 121,736 122,983 124,411 126,416 1997-2014 Commercial Number of Consumers 13,215 12,998 13,027 13,133 13,246 13,399 1986-2014 Sales 12,673 12,724 13,072 13,184 13,336 1998-2014 Transported 325 303 61 62 63 1998-2014 Average Consumption per Consumer (Thousand Cubic Ft.) 1,258 1,225 1,489 1,515 1,411 1,338 1967-2014 Industrial Number of Consumers 3 3 5 3 3 1 1987-2014 Sales 2 2 3 2 1 1998-2014 Transported 1 3 0 1 0 1998-2014

  2. Arizona Number of Natural Gas Consumers

    Gasoline and Diesel Fuel Update (EIA)

    ,130,047 1,138,448 1,146,286 1,157,688 1,172,003 1,186,794 1986-2014 Sales 1,138,448 1,146,280 1,157,682 1,171,997 1,186,788 1997-2014 Transported 0 6 6 6 6 1997-2014 Commercial Number of Consumers 57,191 56,676 56,547 56,532 56,585 56,649 1986-2014 Sales 56,510 56,349 56,252 56,270 56,331 1998-2014 Transported 166 198 280 315 318 1998-2014 Average Consumption per Consumer (Thousand Cubic Ft.) 563 564 577 558 581 538 1967-2014 Industrial Number of Consumers 390 368 371 379 383 386 1987-2014

  3. Arkansas Number of Natural Gas Consumers

    Gasoline and Diesel Fuel Update (EIA)

    557,355 549,970 551,795 549,959 549,764 549,034 1986-2014 Sales 549,970 551,795 549,959 549,764 549,034 1997-2014 Commercial Number of Consumers 69,043 67,987 67,815 68,765 68,791 69,011 1986-2014 Sales 67,676 67,454 68,151 68,127 68,291 1998-2014 Transported 311 361 614 664 720 1998-2014 Average Consumption per Consumer (Thousand Cubic Ft.) 527 592 590 603 692 734 1967-2014 Industrial Number of Consumers 1,025 1,079 1,133 990 1,020 1,009 1986-2014 Sales 580 554 523 513 531 1998-2014 Transported

  4. Volume, Number of Shipments Surpass Goals

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    shatters records in first year of accelerated shipping effort October 3, 2012 Los Alamos National Laboratory shatters records in first year of accelerated shipping effort Volume, Number of Shipments Surpass Goals LOS ALAMOS, NEW MEXICO, October 3, 2012-In the first year of an effort to accelerate shipments of transuranic (TRU) waste to the Waste Isolation Pilot Plant (WIPP), Los Alamos National Laboratory shattered its own record with 59 more shipments than planned, and became one of the largest

  5. Low Mach Number Models in Computational Astrophysics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    In memoriam: Michael Welcome 1957 - 2014 RIP Almgren CCSE Low Mach Number Models in Computational Astrophysics Ann Almgren Center for Computational Sciences and Engineering Lawrence Berkeley National Laboratory NUG 2014: NERSC@40 February 4, 2014 Collaborators: John Bell, Chris Malone, Andy Nonaka, Stan Woosley, Michael Zingale Almgren CCSE Introduction We often associate astrophysics with explosive phenomena: novae supernovae gamma-ray bursts X-ray bursts Type Ia Supernovae Largest

  6. Notices Total Estimated Number of Annual

    Energy Savers [EERE]

    372 Federal Register / Vol. 78, No. 181 / Wednesday, September 18, 2013 / Notices Total Estimated Number of Annual Burden Hours: 10,128. Abstract: Enrollment in the Federal Student Aid (FSA) Student Aid Internet Gateway (SAIG) allows eligible entities to securely exchange Title IV, Higher Education Act (HEA) assistance programs data electronically with the Department of Education processors. Organizations establish Destination Point Administrators (DPAs) to transmit, receive, view and update

  7. Stockpile Stewardship Quarterly, Volume 2, Number 1

    National Nuclear Security Administration (NNSA)

    1 * May 2012 Message from the Assistant Deputy Administrator for Stockpile Stewardship, Chris Deeney Defense Programs Stockpile Stewardship in Action Volume 2, Number 1 Inside this Issue 2 LANL and ANL Complete Groundbreaking Shock Experiments at the Advanced Photon Source 3 Characterization of Activity-Size-Distribution of Nuclear Fallout 5 Modeling Mix in High-Energy-Density Plasma 6 Quality Input for Microscopic Fission Theory 8 Fiber Reinforced Composites Under Pressure: A Case Study in

  8. U.S. Natural Gas Number of Underground Storage Acquifers Capacity (Number

    U.S. Energy Information Administration (EIA) Indexed Site

    of Elements) Acquifers Capacity (Number of Elements) U.S. Natural Gas Number of Underground Storage Acquifers Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 49 2000's 49 39 38 43 43 44 44 43 43 43 2010's 43 43 44 47 46 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: Number of

  9. The Kozai-Lidov mechanism in hydrodynamical disks. II. Effects of binary and disk parameters

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Fu, Wen; Lubow, Stephen H.; Martin, Rebecca G.

    2015-07-01

    Martin et al. (2014b) showed that a substantially misaligned accretion disk around one component of a binary system can undergo global damped Kozai–Lidov (KL) oscillations. During these oscillations, the inclination and eccentricity of the disk are periodically exchanged. However, the robustness of this mechanism and its dependence on the system parameters were unexplored. In this paper, we use three-dimensional hydrodynamical simulations to analyze how various binary and disk parameters affect the KL mechanism in hydrodynamical disks. The simulations include the effect of gas pressure and viscosity, but ignore the effects of disk self-gravity. We describe results for different numerical resolutions,more » binary mass ratios and orbital eccentricities, initial disk sizes, initial disk surface density profiles, disk sound speeds, and disk viscosities. We show that the KL mechanism can operate for a wide range of binary-disk parameters. We discuss the applications of our results to astrophysical disks in various accreting systems.« less

  10. Final binary star results from the ESO VLT Lunar occultations program

    SciTech Connect (OSTI)

    Richichi, A.; Fors, O.; Cusano, F.; Ivanov, V. D.

    2014-03-01

    We report on 13 subarcsecond binaries, detected by means of lunar occultations in the near-infrared at the ESO Very Large Telescope (VLT). They are all first-time detections except for the visual binary HD 158122, which we resolved for the first time in the near-infrared. The primaries have magnitudes in the range K = 4.5-10.0, and companions in the range K = 6.8-11.1. The magnitude differences have a median value of 2.4, with the largest being 4.6. The projected separations are in the range of 4-168 mas, with a median of 13 mas. We discuss and compare our results with the available literature. With this paper, we conclude the mining for binary star detections in the 1226 occultations recorded at the VLT with the ISAAC instrument. We expect that the majority of these binaries may be unresolvable by adaptive optics on current telescopes, and they might be challenging for long-baseline interferometry. However, they constitute an interesting sample for future larger telescopes and for astrometric missions such as GAIA.

  11. Importance of tides for periastron precession in eccentric neutron star-white dwarf binaries

    SciTech Connect (OSTI)

    Sravan, N.; Valsecchi, F.; Kalogera, V.; Althaus, L. G.

    2014-09-10

    Although not nearly as numerous as binaries with two white dwarfs, eccentric neutron star-white dwarf (NS-WD) binaries are important gravitational-wave (GW) sources for the next generation of space-based detectors sensitive to low frequency waves. Here we investigate periastron precession in these sources as a result of general relativistic, tidal, and rotational effects; such precession is expected to be detectable for at least some of the detected binaries of this type. Currently, two eccentric NS-WD binaries are known in the galactic field, PSR J11416545 and PSR B2303+46, both of which have orbits too wide to be relevant in their current state to GW observations. However, population synthesis studies predict the existence of a significant Galactic population of such systems. Though small in most of these systems, we find that tidally induced periastron precession becomes important when tides contribute to more than 3% of the total precession rate. For these systems, accounting for tides when analyzing periastron precession rate measurements can improve estimates of the inferred WD component mass and, in some cases, will prevent us from misclassifying the object. However, such systems are rare, due to rapid orbital decay. To aid the inclusion of tidal effects when using periastron precession as a mass measurement tool, we derive a function that relates the WD radius and periastron precession constant to the WD mass.

  12. Quantum mechanical method of fragment's angular and energy distribution calculation for binary and ternary fission

    SciTech Connect (OSTI)

    Kadmensky, S. G., E-mail: kadmensky@phys.vsu.ru; Titova, L. V.; Pen'kov, N. V. [Voronezh State University (Russian Federation)

    2006-08-15

    In the framework of quantum-mechanical fission theory, the method of calculation for partial fission width amplitudes and asymptotic behavior of the fissile nucleus wave function with strong channel coupling taken into account has been suggested. The method allows one to solve the calculation problem of angular and energy distribution countation for binary and ternary fission.

  13. DEEP MULTI-TELESCOPE PHOTOMETRY OF NGC 5466. I. BLUE STRAGGLERS AND BINARY SYSTEMS

    SciTech Connect (OSTI)

    Beccari, G.; Dalessandro, E.; Lanzoni, B.; Ferraro, F. R.; Miocchi, P.; Sollima, A.; Bellazzini, M.

    2013-10-10

    We present a detailed investigation of the radial distribution of blue straggler star (BSS) and binary populations in the Galactic globular cluster NGC 5466, over the entire extension of the system. We used a combination of data acquired with the Advanced Camera for Survey on board the Hubble Space Telescope, the LBC-blue mounted on the Large Binocular Telescope, and MEGACAM on the Canada-France-Hawaii Telescope. BSSs show a bimodal distribution with a mild central peak and a quite internal minimum. This feature is interpreted in terms of a relatively young dynamical age in the framework of the 'dynamical clock' concept proposed by Ferraro et al. The estimated fraction of binaries is ?6%-7% in the central region (r < 90'') and slightly lower (?5.5%) in the outskirts, at r > 200''. Quite interestingly, the comparison with the results of Milone et al. suggests that binary systems may also display a bimodal radial distribution, with the position of the minimum consistent with that of BSSs. If confirmed, this feature would give additional support to the scenario where the radial distribution of objects more massive than the average cluster stars is primarily shaped by the effect of dynamical friction. Moreover, this would also be consistent with the idea that the unperturbed evolution of primordial binaries could be the dominant BSS formation process in low-density environments.

  14. From binaries to multiples. II. Hierarchical multiplicity of F and G dwarfs

    SciTech Connect (OSTI)

    Tokovinin, Andrei

    2014-04-01

    Statistics of hierarchical multiplicity among solar-type dwarfs are studied using the distance-limited sample of 4847 targets presented in the accompanying Paper I. Known facts about binaries (multiplicity fraction 0.46, lognormal period distribution with median period 100 yr and logarithmic dispersion 2.4, and nearly uniform mass-ratio distribution independent of the period) are confirmed with a high statistical significance. The fraction of hierarchies with three or more components is 0.13 0.01, and the fractions of targets with n = 1, 2, 3, ... components are 54:33:8:4:1. Subsystems in the secondary components are almost as frequent as in the primary components, but in half of such cases both inner pairs are present. The high frequency of those 2+2 hierarchies (4%) suggests that both inner pairs were formed by a common process. The statistics of hierarchies can be reproduced by simulations, assuming that the field is a mixture coming from binary-rich and binary-poor environments. Periods of the outer and inner binaries are selected recursively from the same lognormal distribution, subject to the stability constraint and accounting for the correlation between inner subsystems. The simulator can be used to evaluate the frequency of multiple systems with specified parameters. However, it does not reproduce the observed excess of inner periods shorter than 10 days, caused by tidal evolution.

  15. Property:Number of Plants Included in Planned Estimate | Open...

    Open Energy Info (EERE)

    Number of Plants Included in Planned Estimate Jump to: navigation, search Property Name Number of Plants Included in Planned Estimate Property Type String Description Number of...

  16. Property:NumberOfLEDSTools | Open Energy Information

    Open Energy Info (EERE)

    Name NumberOfLEDSTools Property Type Number Retrieved from "http:en.openei.orgwindex.php?titleProperty:NumberOfLEDSTools&oldid322418" Feedback Contact needs updating Image...

  17. Property:Number of Color Cameras | Open Energy Information

    Open Energy Info (EERE)

    Color Cameras Jump to: navigation, search Property Name Number of Color Cameras Property Type Number Pages using the property "Number of Color Cameras" Showing 25 pages using this...

  18. Health Code Number (HCN) Development Procedure

    SciTech Connect (OSTI)

    Petrocchi, Rocky; Craig, Douglas K.; Bond, Jayne-Anne; Trott, Donna M.; Yu, Xiao-Ying

    2013-09-01

    This report provides the detailed description of health code numbers (HCNs) and the procedure of how each HCN is assigned. It contains many guidelines and rationales of HCNs. HCNs are used in the chemical mixture methodology (CMM), a method recommended by the department of energy (DOE) for assessing health effects as a result of exposures to airborne aerosols in an emergency. The procedure is a useful tool for proficient HCN code developers. Intense training and quality assurance with qualified HCN developers are required before an individual comprehends the procedure to develop HCNs for DOE.

  19. The numbers will follow | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The numbers will follow September 26, 2008 As all of you well know, the safety performance of Jefferson Lab, our laboratory, has been nothing short of stellar over the past couple of years. To cap it all, you were subjected to what is usually rated as the toughest of the sit-down examinations, the HSS audit. Not only did you exceed expectations, but you did so by a large margin. A basis for this great result, as documented by the HSS team, was the engagement and commitment of the workforce, the

  20. Mo Year Report Period: EIA ID NUMBER:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mo Year Report Period: EIA ID NUMBER: http://www.eia.gov/survey/form/eia_14/instructions.pdf Mailing Address: Secure File Transfer option available at: (e.g., PO Box, RR) https://signon.eia.doe.gov/upload/noticeoog.jsp Electronic Transmission: The PC Electronic Zip Code - Data Reporting Option (PEDRO) is available. If interested in software, call (202) 586-9659. Email form to: OOG.SURVEYS@eia.doe.gov - - - - Fax form to: (202) 586-9772 Mail form to: Oil & Gas Survey Email address: U.S.

  1. Experimental Stations by Number | Stanford Synchrotron Radiation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lightsource Experimental Stations by Number Beam Line by Techniques Photon Source Parameters Station Type Techniques Energy Range Contact Person Experimental Station 1-5 X-ray Materials Small-angle X-ray Scattering (SAXS) focused 4600-16000 eV Christopher J. Tassone Tim J. Dunn Experimental Station 2-1 X-ray Powder diffraction Thin film diffraction Focused 5000 - 14500 eV Apurva Mehta Charles Troxel Jr Experimental Station 2-2 X-ray X-ray Absorption Spectroscopy 1000-40000 eV Ryan Davis

  2. OMB Control Number: 1910-5165

    Energy Savers [EERE]

    OMB Control Number: 1910-5165 Expires: xx/xx/201x SEMI-ANNUAL DAVIS-BACON ENFORCEMENT REPORT Please submit this Semi-Annual Davis-Bacon Enforcement Report to your site DOE/NNSA Contractor Human Resource Division (CHRD) Office. If you do not have a DOE/NNSA CHRD Office, please submit the report to: DBAEnforcementReports@hq.doe.gov. The following questions regarding enforcement activity (Davis-Bacon and Related Acts) by this Agency are required by 29 CFR, Part 5.7(b), and Department of Labor, All

  3. What's Behind the Numbers? | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    What's Behind the Numbers? Dr. Richard Newell Dr. Richard Newell What does this mean for me? New website shows data on the why's, when's and how's of crude oil prices. Among the most visible prices that consumers may see on a daily basis are the ones found on the large signs at the gasoline stations alongside our streets and highways. The biggest single factor affecting gasoline prices is the cost of crude oil, the main raw material for gasoline production, which accounts for well over half the

  4. Arizona Natural Gas Number of Gas and Gas Condensate Wells (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Gas and Gas Condensate Wells (Number of Elements) Arizona Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 3 1990's 5 6 6 6 6 7 7 8 8 8 2000's 9 8 7 9 6 6 7 7 6 6 2010's 5 5 5 5 5 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages:

  5. Michigan Number of Natural Gas Consumers

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    3,169,026 3,152,468 3,153,895 3,161,033 3,180,349 3,192,807 1987-2014 Sales 2,952,550 2,946,507 2,939,693 2,950,315 2,985,315 1997-2014 Transported 199,918 207,388 221,340 230,034 207,492 1997-2014 Commercial Number of Consumers 252,017 249,309 249,456 249,994 250,994 253,127 1987-2014 Sales 217,325 213,995 212,411 213,532 219,240 1998-2014 Transported 31,984 35,461 37,583 37,462 33,887 1998-2014 Average Consumption per Consumer (Thousand Cubic Ft.) 649 611 656 578 683 736 1967-2014 Industrial

  6. New Jersey Number of Natural Gas Consumers

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    2,635,324 2,649,282 2,659,205 2,671,308 2,686,452 2,705,274 1987-2014 Sales 2,556,514 2,514,492 2,467,520 2,428,664 2,482,281 1997-2014 Transported 92,768 144,713 203,788 257,788 222,993 1997-2014 Commercial Number of Consumers 234,125 234,158 234,721 237,602 236,746 240,083 1987-2014 Sales 200,680 196,963 192,913 185,030 186,591 1998-2014 Transported 33,478 37,758 44,689 51,716 53,492 1998-2014 Average Consumption per Consumer (Thousand Cubic Ft.) 771 775 817 735 726 842 1967-2014 Industrial

  7. Ohio Number of Natural Gas Consumers

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    3,253,184 3,240,619 3,236,160 3,244,274 3,271,074 3,283,869 1987-2014 Sales 1,418,217 1,352,292 855,055 636,744 664,015 1997-2014 Transported 1,822,402 1,883,868 2,389,219 2,634,330 2,619,854 1997-2014 Commercial Number of Consumers 270,596 268,346 268,647 267,793 269,081 269,758 1987-2014 Sales 92,621 85,877 51,308 35,966 37,035 1998-2014 Transported 175,725 182,770 216,485 233,115 232,723 1998-2014 Average Consumption per Consumer (Thousand Cubic Ft.) 594 583 601 543 625 679 1967-2014

  8. California Number of Natural Gas Consumers

    Gasoline and Diesel Fuel Update (EIA)

    0,510,950 10,542,584 10,625,190 10,681,916 10,754,908 10,781,720 1986-2014 Sales 10,469,734 10,545,585 10,547,706 10,471,814 10,372,973 1997-2014 Transported 72,850 79,605 134,210 283,094 408,747 1997-2014 Commercial Number of Consumers 441,806 439,572 440,990 442,708 444,342 443,115 1986-2014 Sales 399,290 390,547 387,760 387,806 385,878 1998-2014 Transported 40,282 50,443 54,948 56,536 57,237 1998-2014 Average Consumption per Consumer (Thousand Cubic Ft.) 561 564 558 572 574 536 1967-2014

  9. Illinois Number of Natural Gas Consumers

    Gasoline and Diesel Fuel Update (EIA)

    ,839,438 3,842,206 3,855,942 3,878,806 3,838,120 3,868,501 1987-2014 Sales 3,568,120 3,594,047 3,605,796 3,550,217 3,570,339 1997-2014 Transported 274,086 261,895 273,010 287,903 298,162 1997-2014 Commercial Number of Consumers 294,226 291,395 293,213 297,523 282,743 294,391 1987-2014 Sales 240,197 241,582 244,480 225,913 235,097 1998-2014 Transported 51,198 51,631 53,043 56,830 59,294 1998-2014 Average Consumption per Consumer (Thousand Cubic Ft.) 757 680 735 632 816 837 1967-2014 Industrial

  10. Contractor: Contract Number: Contract Type: Total Estimated

    Office of Environmental Management (EM)

    Contract Number: Contract Type: Total Estimated Contract Cost: Performance Period Total Fee Paid FY2004 $294,316 FY2005 $820,074 FY2006 $799,449 FY2007 $877,898 FY2008 $866,608 FY2009 $886,404 FY2010 $800,314 FY2011 $871,280 FY2012 $824,517 FY2013 Cumulative Fee Paid $7,040,860 $820,074 $799,449 $877,898 $916,130 $886,608 Computer Sciences Corporation DE-AC06-04RL14383 $895,358 $899,230 $907,583 Cost Plus Award Fee $134,100,336 $8,221,404 Fee Available Contract Period: Fee Information Minimum

  11. DIVERSITY OF SHORT GAMMA-RAY BURST AFTERGLOWS FROM COMPACT BINARY MERGERS HOSTING PULSARS

    SciTech Connect (OSTI)

    Holcomb, Cole; Ramirez-Ruiz, Enrico; De Colle, Fabio; Montes, Gabriela [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States)

    2014-07-20

    Short-duration gamma-ray bursts (sGRBs) are widely believed to result from the mergers of compact binaries. This model predicts an afterglow that bears the characteristic signatures of a constant, low-density medium, including a smooth prompt-afterglow transition, and a simple temporal evolution. However, these expectations are in conflict with observations for a non-negligible fraction of sGRB afterglows. In particular, the onset of the afterglow phase for some of these events appears to be delayed and, in addition, a few of them exhibit late-time rapid fading in their light curves. We show that these peculiar observations can be explained independently of ongoing central engine activity if some sGRB progenitors are compact binaries hosting at least one pulsar. The Poynting flux emanating from the pulsar companion can excavate a bow-shock cavity surrounding the binary. If this cavity is larger than the shock deceleration length scale in the undisturbed interstellar medium, then the onset of the afterglow will be delayed. Should the deceleration occur entirely within the swept-up thin shell, a rapid fade in the light curve will ensue. We identify two types of pulsar that can achieve the conditions necessary for altering the afterglow: low-field, long-lived pulsars, and high-field pulsars. We find that a sizable fraction (?20%-50%) of low-field pulsars are likely to reside in neutron star binaries based on observations, while their high-field counterparts are not. Hydrodynamical calculations motivated by this model are shown to be in good agreement with observations of sGRB afterglow light curves.

  12. CHARACTERIZING THE BROWN DWARF FORMATION CHANNELS FROM THE INITIAL MASS FUNCTION AND BINARY-STAR DYNAMICS

    SciTech Connect (OSTI)

    Thies, Ingo; Pflamm-Altenburg, Jan; Kroupa, Pavel; Marks, Michael

    2015-02-10

    The stellar initial mass function (IMF) is a key property of stellar populations. There is growing evidence that the classical star-formation mechanism by the direct cloud fragmentation process has difficulties reproducing the observed abundance and binary properties of brown dwarfs and very-low-mass stars. In particular, recent analytical derivations of the stellar IMF exhibit a deficit of brown dwarfs compared to observational data. Here we derive the residual mass function of brown dwarfs as an empirical measure of the brown dwarf deficiency in recent star-formation models with respect to observations and show that it is compatible with the substellar part of the Thies-Kroupa IMF and the mass function obtained by numerical simulations. We conclude that the existing models may be further improved by including a substellar correction term that accounts for additional formation channels like disk or filament fragmentation. The term ''peripheral fragmentation'' is introduced here for such additional formation channels. In addition, we present an updated analytical model of stellar and substellar binarity. The resulting binary fraction and the dynamically evolved companion mass-ratio distribution are in good agreement with observational data on stellar and very-low-mass binaries in the Galactic field, in clusters, and in dynamically unprocessed groups of stars if all stars form as binaries with stellar companions. Cautionary notes are given on the proper analysis of mass functions and the companion mass-ratio distribution and the interpretation of the results. The existence of accretion disks around young brown dwarfs does not imply that these form just like stars in direct fragmentation.

  13. Environmental assessmental, geothermal energy, Heber geothermal binary-cycle demonstration project: Imperial County, California

    SciTech Connect (OSTI)

    Not Available

    1980-10-01

    The proposed design, construction, and operation of a commercial-scale (45 MWe net) binary-cycle geothermal demonstration power plant are described using the liquid-dominated geothermal resource at Heber, Imperial County, California. The following are included in the environmental assessment: a description of the affected environment, potential environmental consequences of the proposed action, mitigation measures and monitoring plans, possible future developmental activities at the Heber anomaly, and regulations and permit requirements. (MHR)

  14. On the rarity of X-ray binaries with Wolf-Rayet donors

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Linden, T.; Valsecchi, F.; Kalogera, V.

    2012-03-14

    The paucity of High mass X-Ray binaries (HMXB) consisting of a neutron star (NS) accretor and Wolf-Rayet (WR) donor has long been at odds with expectations from population synthesis studies indicating that these systems should survive as the evolved offspring of the observed HMXB population. This tension is particularly troubling in light of recent observations uncovering a preponderance of HMXBs containing loosely bound Be donors which would be expected to naturally evolve into WR-HMXBs. Reconciling the unexpectedly large population of Be-HMXBs with the lack of observed WR-HMXB sources thus serves to isolate the dynamics of CE physics from other binarymoreevolution parameters. We find that binary mergers during CE events must be common in order to resolve tension between these observed populations. Furthermore, future observations which better constrain the background population of loosely bound O/B-NS binaries are likely to place significant constraints on the efficiency of CE removal.less

  15. GRAVITATIONAL CONUNDRUM? DYNAMICAL MASS SEGREGATION VERSUS DISRUPTION OF BINARY STARS IN DENSE STELLAR SYSTEMS

    SciTech Connect (OSTI)

    De Grijs, Richard; Li, Chengyuan; Zheng, Yong; Kouwenhoven, M. B. N.; Deng, Licai; Hu, Yi; Wicker, James E.

    2013-03-01

    Upon their formation, dynamically cool (collapsing) star clusters will, within only a few million years, achieve stellar mass segregation for stars down to a few solar masses, simply because of gravitational two-body encounters. Since binary systems are, on average, more massive than single stars, one would expect them to also rapidly mass segregate dynamically. Contrary to these expectations and based on high-resolution Hubble Space Telescope observations, we show that the compact, 15-30 Myr old Large Magellanic Cloud cluster NGC 1818 exhibits tantalizing hints at the {approx}> 2{sigma} level of significance (>3{sigma} if we assume a power-law secondary-to-primary mass-ratio distribution) of an increasing fraction of F-star binary systems (with combined masses of 1.3-1.6 M {sub Sun }) with increasing distance from the cluster center, specifically between the inner 10''-20'' (approximately equivalent to the cluster's core and half-mass radii) and the outer 60''-80''. If confirmed, then this will offer support for the theoretically predicted but thus far unobserved dynamical disruption processes of the significant population of 'soft' binary systems-with relatively low binding energies compared to the kinetic energy of their stellar members-in star clusters, which we have access to here by virtue of the cluster's unique combination of youth and high stellar density.

  16. U.S. Natural Gas Number of Commercial Consumers - Sales (Number of

    Gasoline and Diesel Fuel Update (EIA)

    Elements) - Sales (Number of Elements) U.S. Natural Gas Number of Commercial Consumers - Sales (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 4,823,842 4,599,494 2000's 4,576,873 4,532,034 4,588,964 4,662,853 4,644,363 4,698,626 4,733,822 2010's 4,584,884 4,556,220 4,518,745 4,491,326 4,533,729 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date:

  17. U.S. Natural Gas Number of Commercial Consumers - Transported (Number of

    Gasoline and Diesel Fuel Update (EIA)

    Elements) Transported (Number of Elements) U.S. Natural Gas Number of Commercial Consumers - Transported (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 220,655 410,695 2000's 433,944 464,412 475,420 489,324 495,586 499,402 539,557 2010's 716,692 763,597 837,652 881,196 885,257 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release

  18. U.S. Natural Gas Number of Industrial Consumers - Sales (Number of

    Gasoline and Diesel Fuel Update (EIA)

    Elements) Sales (Number of Elements) U.S. Natural Gas Number of Industrial Consumers - Sales (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 182,424 157,050 2000's 157,806 152,974 143,177 142,816 151,386 146,450 135,070 2010's 129,119 124,552 121,821 123,124 122,182 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date:

  19. U.S. Natural Gas Number of Industrial Consumers - Transported (Number of

    Gasoline and Diesel Fuel Update (EIA)

    Elements) Transported (Number of Elements) U.S. Natural Gas Number of Industrial Consumers - Transported (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 49,014 71,281 2000's 75,826 64,052 62,738 62,698 57,672 59,773 58,760 2010's 63,611 64,749 67,551 69,164 69,953 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date:

  20. U.S. Natural Gas Number of Residential Consumers - Sales (Number of

    Gasoline and Diesel Fuel Update (EIA)

    Elements) Sales (Number of Elements) U.S. Natural Gas Number of Residential Consumers - Sales (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 55,934,175 56,520,482 56,023,710 2000's 56,261,031 56,710,548 57,267,445 57,815,669 58,524,797 59,787,524 60,129,047 2010's 60,267,648 60,408,842 60,010,723 59,877,464 60,222,681 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company

  1. U.S. Natural Gas Number of Residential Consumers - Transported (Number of

    Gasoline and Diesel Fuel Update (EIA)

    Elements) Transported (Number of Elements) U.S. Natural Gas Number of Residential Consumers - Transported (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 252,783 801,264 2,199,519 2000's 2,978,319 3,576,181 3,839,809 4,055,781 3,971,337 3,829,303 4,037,233 2010's 5,274,697 5,531,680 6,364,411 6,934,929 7,005,081 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data.

  2. Montana Natural Gas Number of Gas and Gas Condensate Wells (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Gas and Gas Condensate Wells (Number of Elements) Montana Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,700 1990's 2,607 2,802 2,890 3,075 2,940 2,918 2,990 3,071 3,423 3,634 2000's 3,321 4,331 4,544 4,539 4,971 5,751 6,578 6,925 7,095 7,031 2010's 6,059 6,477 6,240 5,754 5,754 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure

  3. New Jersey Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) New Jersey Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 200,387 206,261 212,496 1990's 217,548 215,408 212,726 215,948 219,061 222,632 224,749 226,714 234,459 232,831 2000's 243,541 212,726 214,526 223,564 223,595 226,007 227,819 230,855 229,235 234,125 2010's 234,158 234,721 237,602 236,746 240,083 - = No Data Reported; -- = Not Applicable; NA = Not

  4. New Jersey Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) New Jersey Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 6,265 6,123 6,079 1990's 5,976 8,444 11,474 11,224 10,608 10,362 10,139 17,625 16,282 10,089 2000's 9,686 9,247 8,473 9,027 8,947 8,500 8,245 8,036 7,680 7,871 2010's 7,505 7,391 7,290 7,216 7,157 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  5. New Jersey Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) New Jersey Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,869,903 1,918,185 1,950,165 1990's 1,982,136 2,005,020 2,032,115 2,060,511 2,089,911 2,123,323 2,147,622 2,193,629 2,252,248 2,245,904 2000's 2,364,058 2,466,771 2,434,533 2,562,856 2,582,714 2,540,283 2,578,191 2,609,788 2,601,051 2,635,324 2010's 2,649,282 2,659,205 2,671,308 2,686,452

  6. New Mexico Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) New Mexico Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 36,444 36,940 36,960 1990's 38,026 38,622 40,312 40,166 39,846 38,099 37,796 38,918 42,067 43,834 2000's 44,164 44,306 45,469 45,491 45,961 47,745 47,233 48,047 49,235 48,846 2010's 48,757 49,406 48,914 50,163 55,689 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  7. New Mexico Natural Gas Number of Gas and Gas Condensate Wells (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Gas and Gas Condensate Wells (Number of Elements) New Mexico Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 17,087 1990's 17,124 20,021 18,040 20,846 23,292 23,510 24,134 27,421 28,200 26,007 2000's 33,948 35,217 35,873 37,100 38,574 40,157 41,634 42,644 44,241 44,784 2010's 44,748 32,302 28,206 27,073 27,957 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  8. New Mexico Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) New Mexico Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,703 1,668 1,653 1990's 1,407 1,337 141 152 1,097 1,065 1,365 1,366 1,549 1,482 2000's 1,517 1,875 1,356 1,270 1,164 988 1,062 470 383 471 2010's 438 360 121 123 116 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release

  9. New Mexico Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) New Mexico Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 348,759 356,192 361,521 1990's 369,451 379,472 389,063 397,681 409,095 421,896 428,621 443,167 454,065 473,375 2000's 479,894 485,969 496,577 498,852 509,119 530,277 533,971 547,512 556,905 560,479 2010's 559,852 570,637 561,713 572,224 614,313 - = No Data Reported; -- = Not Applicable; NA = Not

  10. New York Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) New York Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 23,276 24,654 27,426 1990's 25,008 28,837 28,198 23,833 21,833 22,484 15,300 23,099 5,294 6,136 2000's 6,553 6,501 3,068 2,984 2,963 3,752 3,642 7,484 7,080 6,634 2010's 6,236 6,609 5,910 6,311 6,313 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  11. U.S. Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) U.S. Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 4,013,040 4,124,745 4,168,048 1990's 4,236,280 4,357,252 4,409,699 4,464,906 4,533,905 4,636,500 4,720,227 4,761,409 5,044,497 5,010,189 2000's 5,010,817 4,996,446 5,064,384 5,152,177 5,139,949 5,198,028 5,273,379 5,308,785 5,444,335 5,322,332 2010's 5,301,576 5,319,817 5,356,397 5,372,522 5,418,986 - =

  12. U.S. Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) U.S. Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 195,544 199,041 225,346 1990's 218,341 216,529 209,616 209,666 202,940 209,398 206,049 234,855 226,191 228,331 2000's 220,251 217,026 205,915 205,514 209,058 206,223 193,830 198,289 225,044 207,624 2010's 192,730 189,301 189,372 192,288 192,135 - = No Data Reported; -- = Not Applicable; NA = Not

  13. U.S. Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) U.S. Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 47,710,444 48,474,449 49,309,593 1990's 50,187,178 51,593,206 52,331,397 52,535,411 53,392,557 54,322,179 55,263,673 56,186,958 57,321,746 58,223,229 2000's 59,252,728 60,286,364 61,107,254 61,871,450 62,496,134 63,616,827 64,166,280 64,964,769 65,073,996 65,329,582 2010's 65,542,345 65,940,522

  14. California Natural Gas Number of Gas and Gas Condensate Wells (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Gas and Gas Condensate Wells (Number of Elements) California Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,214 1990's 1,162 1,377 1,126 1,092 1,261 997 978 930 847 1,152 2000's 1,169 1,244 1,232 1,249 1,272 1,356 1,451 1,540 1,645 1,643 2010's 1,580 1,308 1,423 1,335 1,118 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  15. District of Columbia Natural Gas Number of Commercial Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Commercial Consumers (Number of Elements) District of Columbia Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 11 14,683 11,370 11,354 1990's 11,322 11,318 11,206 11,133 11,132 11,089 10,952 10,874 10,658 12,108 2000's 11,106 10,816 10,870 10,565 10,406 10,381 10,410 9,915 10,024 10,288 2010's 9,879 10,050 9,771 9,963 10,049 - = No Data Reported; -- = Not Applicable; NA = Not

  16. District of Columbia Natural Gas Number of Residential Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Residential Consumers (Number of Elements) District of Columbia Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 134 130,748 134,758 134,837 1990's 136,183 136,629 136,438 135,986 135,119 135,299 135,215 134,807 132,867 137,206 2000's 138,252 138,412 143,874 136,258 138,134 141,012 141,953 142,384 142,819 143,436 2010's 144,151 145,524 145,938 146,712 147,877 - = No Data Reported; --

  17. Kansas Natural Gas Number of Gas and Gas Condensate Wells (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Gas and Gas Condensate Wells (Number of Elements) Kansas Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 13,935 1990's 16,980 17,948 18,400 19,472 19,365 22,020 21,388 21,500 21,000 17,568 2000's 15,206 15,357 16,957 17,387 18,120 18,946 19,713 19,713 17,862 21,243 2010's 22,145 25,758 24,697 23,792 24,354 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  18. Project Registration Number Assignments (Active) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Project Registration Number Assignments (Active) Project Registration Number Assignments (Active) As of: October 2015 Provides a table of Project Registration Number Assignments (Active) PDF icon Project Registration Number Assignment (Active) More Documents & Publications Project Registration Number Assignments (Completed) All Active DOE Technical Standards Document Active Project Justification Statement For Additional Information Contact: Jeffrey Feit phone: 301-903-0471 e-mail:

  19. Project Registration Number Assignments (Completed) | Department of Energy

    Energy Savers [EERE]

    Registration Number Assignments (Completed) Project Registration Number Assignments (Completed) As of: March 2016 Provides a table of Project Registration Number Assignments (Completed) PDF icon Project Registration Number Assignments (Completed) More Documents & Publications All Active DOE Technical Standards Document Project Registration Number Assignments (Active) The Proposed Reaffirmations and Cancellations For Additional Information Contact: Jeffrey Feit phone: 301-903-0471 e-mail:

  20. Property:NEPA SerialNumber | Open Energy Information

    Open Energy Info (EERE)

    SerialNumber Jump to: navigation, search Property Name NEPA SerialNumber Property Type String This is a property of type String. Pages using the property "NEPA SerialNumber"...

  1. Property:OutagePhoneNumber | Open Energy Information

    Open Energy Info (EERE)

    OutagePhoneNumber Jump to: navigation, search Property Name OutagePhoneNumber Property Type String Description An outage hotline or 24-hour customer service number Note: uses...

  2. Alaska Maximum Number of Active Crews Engaged in Seismic Surveying...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Seismic Surveying (Number of Elements) Alaska Maximum Number of Active Crews Engaged in Seismic Surveying (Number of Elements) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec...

  3. Virginia Natural Gas Number of Gas and Gas Condensate Wells ...

    Gasoline and Diesel Fuel Update (EIA)

    Gas and Gas Condensate Wells (Number of Elements) Virginia Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  4. Colorado Natural Gas Number of Gas and Gas Condensate Wells ...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Gas and Gas Condensate Wells (Number of Elements) Colorado Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  5. Nebraska Natural Gas Number of Gas and Gas Condensate Wells ...

    Gasoline and Diesel Fuel Update (EIA)

    Gas and Gas Condensate Wells (Number of Elements) Nebraska Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  6. Missouri Natural Gas Number of Gas and Gas Condensate Wells ...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas and Gas Condensate Wells (Number of Elements) Missouri Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  7. Michigan Natural Gas Number of Gas and Gas Condensate Wells ...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Gas and Gas Condensate Wells (Number of Elements) Michigan Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  8. Kentucky Natural Gas Number of Gas and Gas Condensate Wells ...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas and Gas Condensate Wells (Number of Elements) Kentucky Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  9. Tennessee Natural Gas Number of Gas and Gas Condensate Wells...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Gas and Gas Condensate Wells (Number of Elements) Tennessee Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  10. Pennsylvania Natural Gas Number of Gas and Gas Condensate Wells...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas and Gas Condensate Wells (Number of Elements) Pennsylvania Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

  11. Mississippi Natural Gas Number of Gas and Gas Condensate Wells...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas and Gas Condensate Wells (Number of Elements) Mississippi Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

  12. Oklahoma Natural Gas Number of Gas and Gas Condensate Wells ...

    Gasoline and Diesel Fuel Update (EIA)

    Gas and Gas Condensate Wells (Number of Elements) Oklahoma Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  13. Illinois Natural Gas Number of Gas and Gas Condensate Wells ...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Gas and Gas Condensate Wells (Number of Elements) Illinois Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  14. Arkansas Natural Gas Number of Gas and Gas Condensate Wells ...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas and Gas Condensate Wells (Number of Elements) Arkansas Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  15. Maryland Natural Gas Number of Gas and Gas Condensate Wells ...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas and Gas Condensate Wells (Number of Elements) Maryland Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  16. Louisiana Natural Gas Number of Gas and Gas Condensate Wells...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas and Gas Condensate Wells (Number of Elements) Louisiana Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  17. RED GIANTS IN ECLIPSING BINARY AND MULTIPLE-STAR SYSTEMS: MODELING AND ASTEROSEISMIC ANALYSIS OF 70 CANDIDATES FROM KEPLER DATA

    SciTech Connect (OSTI)

    Gaulme, P.; McKeever, J.; Rawls, M. L.; Jackiewicz, J.; Mosser, B.; Guzik, J. A.

    2013-04-10

    Red giant stars are proving to be an incredible source of information for testing models of stellar evolution, as asteroseismology has opened up a window into their interiors. Such insights are a direct result of the unprecedented data from space missions CoRoT and Kepler as well as recent theoretical advances. Eclipsing binaries are also fundamental astrophysical objects, and when coupled with asteroseismology, binaries provide two independent methods to obtain masses and radii and exciting opportunities to develop highly constrained stellar models. The possibility of discovering pulsating red giants in eclipsing binary systems is therefore an important goal that could potentially offer very robust characterization of these systems. Until recently, only one case has been discovered with Kepler. We cross-correlate the detected red giant and eclipsing-binary catalogs from Kepler data to find possible candidate systems. Light-curve modeling and mean properties measured from asteroseismology are combined to yield specific measurements of periods, masses, radii, temperatures, eclipse timing variations, core rotation rates, and red giant evolutionary state. After using three different techniques to eliminate false positives, out of the 70 systems common to the red giant and eclipsing-binary catalogs we find 13 strong candidates (12 previously unknown) to be eclipsing binaries, one to be a non-eclipsing binary with tidally induced oscillations, and 10 more to be hierarchical triple systems, all of which include a pulsating red giant. The systems span a range of orbital eccentricities, periods, and spectral types F, G, K, and M for the companion of the red giant. One case even suggests an eclipsing binary composed of two red giant stars and another of a red giant with a {delta}-Scuti star. The discovery of multiple pulsating red giants in eclipsing binaries provides an exciting test bed for precise astrophysical modeling, and follow-up spectroscopic observations of many of the candidate systems are encouraged. The resulting highly constrained stellar parameters will allow, for example, the exploration of how binary tidal interactions affect pulsations when compared to the single-star case.

  18. Property:Number of Plants included in Capacity Estimate | Open...

    Open Energy Info (EERE)

    Plants included in Capacity Estimate Jump to: navigation, search Property Name Number of Plants included in Capacity Estimate Property Type Number Retrieved from "http:...

  19. Property:NumberOfLowEmissionDevelopmentStrategiesExample | Open...

    Open Energy Info (EERE)

    issionDevelopmentStrategiesExample Property Type Number Retrieved from "http:en.openei.orgwindex.php?titleProperty:NumberOfLowEmissionDevelopmentStrategiesExample&oldid326472...

  20. Property:NumberOfLowEmissionDevelopmentStrategiesExamples | Open...

    Open Energy Info (EERE)

    sionDevelopmentStrategiesExamples Property Type Number Retrieved from "http:en.openei.orgwindex.php?titleProperty:NumberOfLowEmissionDevelopmentStrategiesExamples&oldid323715...

  1. Property:NumberOfResourceAssessments | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search This is a property of type Number. Retrieved from "http:en.openei.orgwindex.php?titleProperty:NumberOfResourceAssessments&oldid31439...

  2. KEPLER CYCLE 1 OBSERVATIONS OF LOW-MASS STARS: NEW ECLIPSING BINARIES, SINGLE STAR ROTATION RATES, AND THE NATURE AND FREQUENCY OF STARSPOTS

    SciTech Connect (OSTI)

    Harrison, T. E.; Coughlin, J. L.; Ule, N. M.; Lopez-Morales, M. E-mail: jlcough@nmsu.edu E-mail: mlopez@ieec.uab.es

    2012-01-15

    We have analyzed Kepler light curves for 849 stars with T{sub eff} {<=} 5200 K from our Cycle 1 Guest Observer program. We identify six new eclipsing binaries, one of which has an orbital period of 29.91 days and two of which are probably W UMa variables. In addition, we identify a candidate 'warm Jupiter' exoplanet. We further examine a subset of 670 sources for variability. Of these objects, 265 stars clearly show periodic variability that we assign to rotation of the low-mass star. At the photometric precision level provided by Kepler, 251 of our objects showed no evidence for variability. We were unable to determine periods for 154 variable objects. We find that 79% of stars with T{sub eff} {<=} 5200 K are variable. The rotation periods we derive for the periodic variables span the range 0.31 days {<=} P{sub rot} {<=} 126.5 days. A considerable number of stars with rotation periods similar to the solar value show activity levels that are 100 times higher than the Sun. This is consistent with results for solar-like field stars. As has been found in previous studies, stars with shorter rotation periods generally exhibit larger modulations. This trend flattens beyond P{sub rot} = 25 days, demonstrating that even long-period binaries may still have components with high levels of activity and investigating whether the masses and radii of the stellar components in these systems are consistent with stellar models could remain problematic. Surprisingly, our modeling of the light curves suggests that the active regions on these cool stars are either preferentially located near the rotational poles, or that there are two spot groups located at lower latitudes, but in opposing hemispheres.

  3. Photometric investigation of the totally eclipsing contact binary V12 in the intermediate-age open cluster NGC 7789

    SciTech Connect (OSTI)

    Qian, S.-B.; Wang, J.-J.; Liu, L.; Zhou, X.; Essam, A.; Ali, G. B.; Haroon, A.-A.

    2015-02-01

    NGC 7789 is an intermediate-age open cluster with an age similar to the mean age of contact binary stars. V12 is a bright W UMa-type binary star with an orbital period of 0.3917 days. The first complete light curves of V12 in the V, R, and I bands are presented and analyzed with the WilsonDevinney (W-D) method. The results show that V12 is an intermediate-contact binary (f=43.0(2.2)%) with a mass ratio of 3.848, and it is a W-type contact binary where the less massive component is slightly hotter than the more massive one. The asymmetry of the light curves is explained by the presence of a dark spot on the more massive component. The derived orbital inclination (i=83{sub .}{sup ?}6) indicates that it is a totally eclipsing binary, which suggests that the determined parameters are reliable. The orbital period may show a long-term increase at a rate of P-dot =+2.48(0.17)10{sup ?6} days yr{sup ?1} that reveals a rapid mass transfer from the less massive component to the more massive one. However, more observations are needed to confirm this conclusion. The presence of an intermediate-contact binary in an intermediate-age open cluster may suggest that some contact binaries have a very short pre-contact timescale. The presence of a third body and/or stellar collision may help to shorten the pre-contact evolution.

  4. SDSSJ001641-000925: THE FIRST STABLE RED DWARF CONTACT BINARY WITH A CLOSE-IN STELLAR COMPANION

    SciTech Connect (OSTI)

    Qian, S.-B.; Jiang, L.-Q.; Zhu, L.-Y.; Zhao, E. G.; He, J.-J.; Liao, W.-P.; Wang, J.-J.; Liu, L.; Zhou, X.; Liu, N. P.; Fernndez Lajs, E.; Soonthornthum, B.; Rattanasoon, S.; Aukkaravittayapun, S.

    2015-01-10

    SDSSJ001641-000925 is the first red dwarf contact binary star with an orbital period of 0.19856days that is one of the shortest known periods among M-dwarf binary systems. The orbital period was detected to be decreasing rapidly at a rate of P-dot ?8 s yr{sup ?1}. This indicated that SDSSJ001641-000925 was undergoing coalescence via a dynamical mass transfer or loss and thus this red dwarf contact binary is dynamically unstable. To understand the properties of the period change, we monitored the binary system photometrically from 2011 September 2 to 2014 October 1 by using several telescopes in the world and 25 eclipse times were determined. It is discovered that the rapid decrease of the orbital period is not true. This is contrary to the prediction that the system is merging driven by rapid mass transfer or loss. Our preliminary analysis suggests that the observed minus calculated (OC) diagram shows a cyclic oscillation with an amplitude of 0.00255days and a period of 5.7 yr. The cyclic variation can be explained by the light travel time effect via the presence of a cool stellar companion with a mass of M {sub 3}sin i' ? 0.14 M {sub ?}. The orbital separation between the third body and the central binary is about 2.8 AU. These results reveal that the rarity of red dwarf contact binaries could not be explained by rapidly dynamical destruction and the presence of the third body helps to form the red dwarf contact binary.

  5. MILLISECOND PULSAR AGES: IMPLICATIONS OF BINARY EVOLUTION AND A MAXIMUM SPIN LIMIT

    SciTech Connect (OSTI)

    Kiziltan, Buelent; Thorsett, Stephen E., E-mail: bulent@astro.ucsc.ed [Department of Astronomy and Astrophysics, University of California and UCO/Lick Observatory, Santa Cruz, CA 95064 (United States)

    2010-05-20

    In the absence of constraints from the binary companion or supernova remnant, the standard method for estimating pulsar ages is to infer an age from the rate of spin-down. While the generic spin-down age may give realistic estimates for normal pulsars, it can fail for pulsars with very short periods. Details of the spin-up process during the low-mass X-ray binary (LMXB) phase pose additional constraints on the period (P) and spin-down rates ( P-dot ) that may consequently affect the age estimate. Here, we propose a new recipe to estimate millisecond pulsar (MSP) ages that parametrically incorporates constraints arising from binary evolution and limiting physics. We show that the standard method can be improved by this approach to achieve age estimates closer to the true age while the standard spin-down age may overestimate or underestimate the age of the pulsar by more than a factor of {approx}10 in the millisecond regime. We use this approach to analyze the population on a broader scale. For instance, in order to understand the dominant energy loss mechanism after the onset of radio emission, we test for a range of plausible braking indices. We find that a braking index of n = 3 is consistent with the observed MSP population. We demonstrate the existence and quantify the potential contributions of two main sources of age corruption: the previously known 'age bias' due to secular acceleration and 'age contamination' driven by sub-Eddington progenitor accretion rates. We explicitly show that descendants of LMXBs that have accreted at very low rates ( m-dot << M-dot{sub Edd}) will exhibit ages that appear older than the age of the Galaxy. We further elaborate on this technique, the implications and potential solutions it offers regarding MSP evolution, the underlying age distribution, and the post-accretion energy loss mechanism.

  6. IMAGING DISK DISTORTION OF BE BINARY SYSTEM {delta} SCORPII NEAR PERIASTRON

    SciTech Connect (OSTI)

    Che, X.; Monnier, J. D.; Kraus, S.; Baron, F.; Tycner, C.; Zavala, R. T.; Pedretti, E.; Ten Brummelaar, T.; McAlister, H.; Sturmann, J.; Sturmann, L.; Turner, N.; Ridgway, S. T.

    2012-09-20

    The highly eccentric Be binary system {delta} Sco reached periastron during early 2011 July, when the distance between the primary and secondary was a few times the size of the primary disk in the H band. This opened a window of opportunity to study how the gaseous disks around Be stars respond to gravitational disturbance. We first refine the binary parameters with the best orbital phase coverage data from the Navy Precision Optical Interferometer. Then we present the first imaging results of the disk after the periastron, based on seven nights of five telescope observations with the MIRC combiner at the CHARA array. We found that the disk was inclined 27.{sup 0}6 {+-} 6.{sup 0}0 from the plane of the sky, had a half-light radius of 0.49 mas (2.2 stellar radii), and consistently contributed 71.4% {+-} 2.7% of the total flux in the H band from night to night, suggesting no ongoing transfer of material into the disk during the periastron. The new estimation of the periastron passage is UT 2011 July 3 07:00 {+-} 4:30. Re-analysis of archival VLTI-AMBER interferometry data allowed us to determine the rotation direction of the primary disk, constraining it to be inclined either {approx}119 Degree-Sign or {approx}171 Degree-Sign relative to the orbital plane of the binary system. We also detect inner disk asymmetries that could be explained by spot-like emission with a few percent of the disk total flux moving in Keplerian orbits, although we lack sufficient angular resolution to be sure of this interpretation and cannot yet rule out spiral density waves or other more complicated geometries.

  7. A PROPER MOTION STUDY OF THE HARO 6-10 OUTFLOW: EVIDENCE FOR A SUBARCSECOND BINARY

    SciTech Connect (OSTI)

    Wilking, Bruce A.; Gerling, Bradley M.; Gibb, Erika; Marvel, Kevin B.; Claussen, Mark J.; Wootten, Alwyn E-mail: bmg5333@truman.edu E-mail: marvel@aas.org E-mail: awootten@nrao.edu

    2012-07-10

    We present single-dish and very long baseline interferometry observations of an outburst of water maser emission from the young binary system Haro 6-10. Haro 6-10 lies in the Taurus molecular cloud and contains a visible T Tauri star with an infrared companion 1.''3 north. Using the Very Long Baseline Array, we obtained five observations spanning three months and derived absolute positions for 20 distinct maser spots. Three of the masers can be traced over three or more epochs, enabling us to extract absolute proper motions and tangential velocities. We deduce that the masers represent one side of a bipolar outflow that lies nearly in the plane of the sky with an opening angle of {approx}45 Degree-Sign . They are located within 50 mas of the southern component of the binary, the visible T Tauri star Haro 6-10S. The mean position angle on the sky of the maser proper motions ({approx}220 Degree-Sign ) suggests they are related to the previously observed giant Herbig-Haro (HH) flow which includes HH 410, HH 411, HH 412, and HH 184A-E. A previously observed HH jet and extended radio continuum emission (mean position angle of {approx}190 Degree-Sign ) must also originate in the vicinity of Haro 6-10S and represent a second, distinct outflow in this region. We propose that a yet unobserved companion within 150 mas of Haro 6-10S is responsible for the giant HH/maser outflow while the visible star is associated with the HH jet. Despite the presence of H{sub 2} emission in the spectrum of the northern component of the binary, Haro 6-10N, none of outflows/jets can be tied directly to this young stellar object.

  8. CIRCUMBINARY GAS ACCRETION ONTO A CENTRAL BINARY: INFRARED MOLECULAR HYDROGEN EMISSION FROM GG Tau A

    SciTech Connect (OSTI)

    Beck, Tracy L.; Lubow, S. H.; Bary, Jeffrey S.; Dutrey, Anne; Guilloteau, Stephane; Pietu, Vincent; Simon, M. E-mail: lubow@stsci.edu E-mail: Anne.Dutrey@obs.u-bordeaux1.fr E-mail: pietu@iram.fr

    2012-07-20

    We present high spatial resolution maps of ro-vibrational molecular hydrogen emission from the environment of the GG Tau A binary component in the GG Tau quadruple system. The H{sub 2} v = 1-0 S(1) emission is spatially resolved and encompasses the inner binary, with emission detected at locations that should be dynamically cleared on several hundred year timescales. Extensions of H{sub 2} gas emission are seen to {approx}100 AU distances from the central stars. The v = 2-1 S(1) emission at 2.24 {mu}m is also detected at {approx}30 AU from the central stars, with a line ratio of 0.05 {+-} 0.01 with respect to the v = 1-0 S(1) emission. Assuming gas in LTE, this ratio corresponds to an emission environment at {approx}1700 K. We estimate that this temperature is too high for quiescent gas heated by X-ray or UV emission from the central stars. Surprisingly, we find that the brightest region of H{sub 2} emission arises from a spatial location that is exactly coincident with a recently revealed dust 'streamer' which seems to be transferring material from the outer circumbinary ring around GG Tau A into the inner region. As a result, we identify a new excitation mechanism for ro-vibrational H{sub 2} stimulation in the environment of young stars. The H{sub 2} in the GG Tau A system appears to be stimulated by mass accretion infall as material in the circumbinary ring accretes onto the system to replenish the inner circumstellar disks. We postulate that H{sub 2} stimulated by accretion infall could be present in other systems, particularly binaries and 'transition disk' systems which have dust-cleared gaps in their circumstellar environments.

  9. THE COUNTERJET OF HH 30: NEW LIGHT ON ITS BINARY DRIVING SOURCE

    SciTech Connect (OSTI)

    Estalella, Robert; Lopez, Rosario; Riera, Angels; Anglada, Guillem; Carrasco-Gonzalez, Carlos

    2012-08-15

    We present new [S II] images of the Herbig-Haro (HH) 30 jet and counterjet observed in 2006, 2007, and 2010 that, combined with previous data, allowed us to measure with improved accuracy the positions and proper motions of the jet and counterjet knots. Our results show that the motion of the knots is essentially ballistic, with the exception of the farthest knots, which trace the large-scale 'C'-shape bending of the jet. The observed bending of the jet can be produced by a relative motion of the HH 30 star with respect to its surrounding environment, caused either by a possible proper motion of the HH 30 star, or by the entrainment of environment gas by the red lobe of the nearby L1551-IRS5 outflow. Alternatively, the bending can be produced by the stellar wind from a nearby classical T Tauri star, identified in the Two Micron All Sky Survey catalog as J04314418+181047. The proper motion velocities of the knots of the counterjet show more variations than those of the jet. In particular, we identify two knots of the counterjet that have the same kinematic age but whose velocities differ by almost a factor of two. Thus, it appears from our observations that counterjet knots launched simultaneously can be ejected with very different velocities. We confirm that the observed wiggling of the jet and counterjet arises from the orbital motion of the jet source in a binary system. Precession, if present at all, is of secondary importance in shaping the jet. We derive an orbital period of {tau}{sub o} = 114 {+-} 2 yr and a mass function of m{mu}{sup 3}{sub c} = 0.014 {+-} 0.006 M{sub Sun }. For a mass of the system of m = 0.45 {+-} 0.04 M{sub Sun} (the value inferred from observations of the CO kinematics of the disk), we obtain a mass of m{sub j} = 0.31 {+-} 0.04 M{sub Sun} for the jet source, a mass of m{sub c} = 0.14 {+-} 0.03 M{sub Sun} for the companion, and a binary separation of a = 18.0 {+-} 0.6 AU. This binary separation coincides with the value required to account for the size of the inner hole observed in the disk, which has been attributed to tidal truncation in a binary system.

  10. Comparison of binary collision approximation and molecular dynamics for displacement cascades in GaAs.

    SciTech Connect (OSTI)

    Foiles, Stephen Martin

    2011-10-01

    The predictions of binary collision approximation (BCA) and molecular dynamics (MD) simulations of displacement cascades in GaAs are compared. There are three issues addressed in this work. The first is the optimal choice of the effective displacement threshold to use in the BCA calculations to obtain the best agreement with MD results. Second, the spatial correlations of point defects are compared. This is related to the level of clustering that occurs for different types of radiation. Finally, the size and structure of amorphous zones seen in the MD simulations is summarized. BCA simulations are not able to predict the formation of amorphous material.

  11. Compositional trends of ?-induced optical changes observed in chalcogenide glasses of binary As-S system

    SciTech Connect (OSTI)

    Shpotyuk, M.; Shpotyuk, O.; Golovchak, Roman; McCloy, John S.; Riley, Brian J.

    2014-01-23

    Compositional trends of ?-induced optical changes in chalcogenide glasses are studied with the binary As-S system. Effects of ?-irradiation and annealing are compared using the changes measured in the fundamental optical absorption edge region. It is shown that annealing near the glass transition temperature leads to bleaching of As-S glasses, while ?-irradiation leads to darkening; both depend on the glass composition and thermal history of the specimens. These results are explained in terms of competitive destructionpolymerization transformations and physical aging occurring in As-S chalcogenide glasses under the influence of ?-irradiation.

  12. Export support of renewable energy industries. Task number 1, deliverable number 3. Final report

    SciTech Connect (OSTI)

    1998-01-14

    The United States Export Council for Renewable Energy (US/ECRE), a consortium of six industry associations, promotes the interests of the renewable energy and energy efficiency member companies which provide goods and services in biomass, geothermal, hydropower, passive solar, photovoltaics, solar thermal, wind, wood energy, and energy efficiency technologies. US/ECRE`s mission is to catalyze export markets for renewable energy and energy efficiency technologies worldwide. Under this grant, US/ECRE has conducted a number of in-house activities, as well as to manage activities by member trade associations, affiliate organizations and non-member contractors and consultants. The purpose of this document is to report on task coordination and effectiveness.

  13. Export support of renewable energy industries, grant number 1, deliverable number 3. Final report

    SciTech Connect (OSTI)

    1998-01-14

    The United States Export Council for Renewable Energy (US/ECRE), a consortium of six industry associations, promotes the interests of the renewable energy and energy efficiency member companies which provide goods and services in biomass, geothermal, hydropower, passive solar, photovoltaics, solar thermal, wind, wood energy, and energy efficiency technologies. US/ECRE`s mission is to catalyze export markets for renewable energy and energy efficiency technologies worldwide. Under this grant, US/ECRE has conducted a number of in-house activities, as well as to manage activities by member trade associations, affiliate organizations and non-member contractors and consultants. The purpose of this document is to report on grant coordination and effectiveness.

  14. Photometric analysis of overcontact binaries AK Her, HI Dra, V1128 Tau, and V2612 Oph

    SciTech Connect (OSTI)

    al??kan, ?.; zavc?, ?.; Ba?trk, .; ?enavc?, H. V.; K?l?o?lu, T.; Y?lmaz, M.; Selam, S. O.; Latkovi?, O.; Djuraevi?, G.; Cski, A. E-mail: ozavci@science.ankara.edu.tr E-mail: hvsenavci@ankara.edu.tr E-mail: mesutyilmaz@ankara.edu.tr E-mail: olivia@aob.rs E-mail: attila@aob.rs

    2014-12-01

    We analyze new, high quality multicolor light curves of four overcontact binaries: AK Her, HI Dra, V1128 Tau, and V2612 Oph, and determine their orbital and physical parameters using the modeling program of G. Djurasevic and recently published results of radial velocity studies. The achieved precision in absolute masses is between 10% and 20%, and the precision in absolute radii is between 5% and 10%. All four systems are W UMa-type binaries with bright or dark spots indicative of mass and energy transfer or surface activity. We estimate the distances and the ages of the systems using the luminosities computed through our analysis, and perform an O C study for V1128 Tau, which reveals a complex period variation that can be interpreted in terms of mass loss/exchange and either the presence of the third body, or the magnetic activity on one of the components. We conclude that further observations of these systems are needed to deepen our understanding of their nature and variability.

  15. DEEP, LOW MASS RATIO OVERCONTACT BINARY SYSTEMS. XIII. DZ PISCIUM WITH INTRINSIC LIGHT VARIABILITY

    SciTech Connect (OSTI)

    Yang, Y.-G.; Dai, H.-F.; Qian, S.-B.; Soonthornthum, B. E-mail: qsb@ynao.ac.cn

    2013-08-01

    New multi-color photometry for the eclipsing binary DZ Psc was performed in 2011 and 2012 using the 85 cm telescope at the Xinglong Station of the National Astronomical Observatories of China. Using the updated Wilson-Devinney (W-D) code, we deduced two sets of photometric solutions. The overcontact degree is f = 89.7({+-} 1.0)%, identifying DZ Psc as a deep, low mass ratio overcontact binary. The asymmetric light curves (i.e., LC{sub 2} in 2012) were modeled by a hot spot on the primary star. Based on all of the available light minimum times, we discovered that the orbital period of DZ Psc may be undergoing a secular period increase with a cyclic variation. The modulated period and semi-amplitude of this oscillation are P{sub mod} = 11.89({+-} 0.19) yr and A = 0.0064({+-} 0.0006) days, which may be possibly attributed to either cyclic magnetic activity or light-time effect due to the third body. The long-term period increases at a rate of dP/dt=+7.43({+-}0.17) Multiplication-Sign 10{sup -7} days yr{sup -1}, which may be interpreted as conserved mass transfer from the less massive component to the more massive one. With mass transferring, DZ Psc will finally merge into a rapid-rotation single star when J{sub spin}/J{sub orb} > 1/3.

  16. ALMA observations of a misaligned binary protoplanetary disk system in Orion

    SciTech Connect (OSTI)

    Williams, Jonathan P.; Mann, Rita K.; Francesco, James Di; Johnstone, Doug; Matthews, Brenda; Andrews, Sean M.; Ricci, Luca; Hughes, A. Meredith; Bally, John

    2014-12-01

    We present Atacama Large Millimeter/Submillimeter Array (ALMA) observations of a wide binary system in Orion, with projected separation 440 AU, in which we detect submillimeter emission from the protoplanetary disks around each star. Both disks appear moderately massive and have strong line emission in CO 3-2, HCO{sup +} 4-3, and HCN 3-2. In addition, CS 7-6 is detected in one disk. The line-to-continuum ratios are similar for the two disks in each of the lines. From the resolved velocity gradients across each disk, we constrain the masses of the central stars, and show consistency with optical-infrared spectroscopy, both indicative of a high mass ratio ?9. The small difference between the systemic velocities indicates that the binary orbital plane is close to face-on. The angle between the projected disk rotation axes is very high, ?72, showing that the system did not form from a single massive disk or a rigidly rotating cloud core. This finding, which adds to related evidence from disk geometries in other systems, protostellar outflows, stellar rotation, and similar recent ALMA results, demonstrates that turbulence or dynamical interactions act on small scales well below that of molecular cores during the early stages of star formation.

  17. Calculation of binary phase diagrams between the actinide elements, rare earth elements, and transition metal elements

    SciTech Connect (OSTI)

    Selle, J E

    1992-06-26

    Attempts were made to apply the Kaufman method of calculating binary phase diagrams to the calculation of binary phase diagrams between the rare earths, actinides, and the refractory transition metals. Difficulties were encountered in applying the method to the rare earths and actinides, and modifications were necessary to provide accurate representation of known diagrams. To calculate the interaction parameters for rare earth-rare earth diagrams, it was necessary to use the atomic volumes for each of the phases: liquid, body-centered cubic, hexagonal close-packed, and face-centered cubic. Determination of the atomic volumes of each of these phases for each element is discussed in detail. In some cases, empirical means were necessary. Results are presented on the calculation of rare earth-rare earth, rare earth-actinide, and actinide-actinide diagrams. For rare earth-refractory transition metal diagrams and actinide-refractory transition metal diagrams, empirical means were required to develop values for the enthalpy of vaporization for rare earth elements and values for the constant (C) required when intermediate phases are present. Results of using the values determined for each element are presented.

  18. Surface activity and oscillation amplitudes of red giants in eclipsing binaries

    SciTech Connect (OSTI)

    Gaulme, P.; Jackiewicz, J.; Appourchaux, T.; Mosser, B.

    2014-04-10

    Among the 19 red-giant stars belonging to eclipsing binary systems that have been identified in Kepler data, 15 display solar-like oscillations. We study whether the absence of mode detection in the remaining 4 is an observational bias or possibly evidence of mode damping that originates from tidal interactions. A careful analysis of the corresponding Kepler light curves shows that modes with amplitudes that are usually observed in red giants would have been detected if they were present. We observe that mode depletion is strongly associated with short-period systems, in which stellar radii account for 16%-24% of the semi-major axis, and where red-giant surface activity is detected. We suggest that when the rotational and orbital periods synchronize in close binaries, the red-giant component is spun up, so that a dynamo mechanism starts and generates a magnetic field, leading to observable stellar activity. Pressure modes would then be damped as acoustic waves dissipate in these fields.

  19. Property:ASHRAE 169 Climate Zone Number | Open Energy Information

    Open Energy Info (EERE)

    5 + Adair County, Oklahoma ASHRAE 169-2006 Climate Zone + Climate Zone Number 3 + Adams County, Colorado ASHRAE 169-2006 Climate Zone + Climate Zone Number 5 + Adams County,...

  20. Modeling the Number of Ignitions Following an Earthquake: Developing

    Office of Environmental Management (EM)

    Prediction Limits for Overdispersed Count Data | Department of Energy the Number of Ignitions Following an Earthquake: Developing Prediction Limits for Overdispersed Count Data Modeling the Number of Ignitions Following an Earthquake: Developing Prediction Limits for Overdispersed Count Data Modeling the Number of Ignitions Following an Earthquake: Developing Prediction Limits for Overdispersed Count Data Authors: Elizabeth J. Kelly and Raymond N. Tell PDF icon Modeling the Number of

  1. Social Security Number Reduction Project | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Social Security Number Reduction Project Social Security Number Reduction Project The document below provides information regarding acceptable uses of the Social Security Number (SSN). PDF icon Baseline Inventory.pdf More Documents & Publications DOE Guidance on the Use of the SSN Manchester Software 1099 Reporting PIA, Idaho National Laboratory Occupational Medicine - Assistant PIA, Idaho National Laboratory

  2. Head-on collisions of binary white dwarf-neutron stars: Simulations in full general relativity

    SciTech Connect (OSTI)

    Paschalidis, Vasileios; Etienne, Zachariah; Liu, Yuk Tung; Shapiro, Stuart L.

    2011-03-15

    We simulate head-on collisions from rest at large separation of binary white dwarf-neutron stars (WDNSs) in full general relativity. Our study serves as a prelude to our analysis of the circular binary WDNS problem. We focus on compact binaries whose total mass exceeds the maximum mass that a cold-degenerate star can support, and our goal is to determine the fate of such systems. A fully general relativistic hydrodynamic computation of a realistic WDNS head-on collision is prohibitive due to the large range of dynamical time scales and length scales involved. For this reason, we construct an equation of state (EOS) which captures the main physical features of neutron stars (NSs) while, at the same time, scales down the size of white dwarfs (WDs). We call these scaled-down WD models 'pseudo-WDs (pWDs)'. Using pWDs, we can study these systems via a sequence of simulations where the size of the pWD gradually increases toward the realistic case. We perform two sets of simulations; One set studies the effects of the NS mass on the final outcome, when the pWD is kept fixed. The other set studies the effect of the pWD compaction on the final outcome, when the pWD mass and the NS are kept fixed. All simulations show that after the collision, 14%-18% of the initial total rest mass escapes to infinity. All remnant masses still exceed the maximum rest mass that our cold EOS can support (1.92M{sub {center_dot}}), but no case leads to prompt collapse to a black hole. This outcome arises because the final configurations are hot. All cases settle into spherical, quasiequilibrium configurations consisting of a cold NS core surrounded by a hot mantle, resembling Thorne-Zytkow objects. Extrapolating our results to realistic WD compactions, we predict that the likely outcome of a head-on collision of a realistic, massive WDNS system will be the formation of a quasiequilibrium Thorne-Zytkow-like object.

  3. SWIFT OBSERVATIONS OF MAXI J1659-152: A COMPACT BINARY WITH A BLACK HOLE ACCRETOR

    SciTech Connect (OSTI)

    Kennea, J. A.; Romano, P.; Mangano, V.; Beardmore, A. P.; Evans, P. A.; Curran, P. A.; Markwardt, C. B.; Yamaoka, K.

    2011-07-20

    We report on the detection and follow-up high-cadence monitoring observations of MAXI J1659-152, a bright Galactic X-ray binary transient with a likely black hole accretor, by Swift over a 27 day period after its initial outburst detection. MAXI J1659-152 was discovered almost simultaneously by Swift and the Monitor of All-sky X-ray Image on 2010 September 25, and was monitored intensively from the early stages of the outburst through the rise to a brightness of {approx}0.5 Crab by the Swift X-ray, UV/Optical, and the hard X-ray Burst Alert Telescopes. We present temporal and spectral analysis of the Swift observations. The broadband light curves show variability characteristic of black hole candidate transients. We present the evolution of thermal and non-thermal components of the 0.5-150 keV combined X-ray spectra during the outburst. MAXI J1659-152 displays accretion state changes typically associated with black hole binaries, transitioning from its initial detection in the hard state, to the steep power-law state, followed by a slow evolution toward the thermal state, signified by an increasingly dominant thermal component associated with the accretion disk, although this state change did not complete before Swift observations ended. We observe an anti-correlation between the increasing temperature and decreasing radius of the inner edge of the accretion disk, suggesting that the inner edge of the accretion disk infalls toward the black hole as the disk temperature increases. We observed significant evolution in the absorption column during the initial rise of the outburst, with the absorption almost doubling, suggestive of the presence of an evolving wind from the accretion disk. We detect quasi-periodic oscillations that evolve with the outburst, as well as irregular shaped dips that recur with a period of 2.42 {+-} 0.09 hr, strongly suggesting an orbital period that would make MAXI J1659-152 the shortest period black hole binary yet known.

  4. Binary and ternary gas mixtures with temperature enhanced diffuse glow discharge characteristics for use in closing switches

    DOE Patents [OSTI]

    Christophorou, Loucas G. (Oak Ridge, TN); Hunter, Scott R. (Oak Ridge, TN)

    1990-01-01

    An improvement to the gas mixture used in diffuse glow discharge closing switches is disclosed which includes binary and ternary gas mixtures which are formulated to exhibit decreasing electron attachment with increasing temperature. This increases the efficiency of the conductance of the glow discharge and further inhibits the formation of an arc.

  5. Binary and ternary gas mixtures with temperature enhanced diffuse glow discharge characteristics for use in closing switches

    DOE Patents [OSTI]

    Christophorou, L.G.; Hunter, S.R.

    1990-06-26

    An improvement to the gas mixture used in diffuse glow discharge closing switches is disclosed which includes binary and ternary gas mixtures which are formulated to exhibit decreasing electron attachment with increasing temperature. This increases the efficiency of the conductance of the glow discharge and further inhibits the formation of an arc. 11 figs.

  6. Binary and ternary gas mixtures with temperature enhanced diffuse glow discharge characteristics for use in closing switches

    DOE Patents [OSTI]

    Christophorou, L.G.; Hunter, S.R.

    1988-06-28

    An improvement to the gas mixture used in diffuse glow discharge closing switches is disclosed which includes binary and ternary gas mixtures which are formulated to exhibit decreasing electron attachment with increasing temperature. This increases the efficiency of the conductance of the glow discharge and further inhibits the formation of an arc. 11 figs.

  7. DETECTABILITY OF EARTH-LIKE PLANETS IN CIRCUMSTELLAR HABITABLE ZONES OF BINARY STAR SYSTEMS WITH SUN-LIKE COMPONENTS

    SciTech Connect (OSTI)

    Eggl, Siegfried; Pilat-Lohinger, Elke; Haghighipour, Nader

    2013-02-20

    Given the considerable percentage of stars that are members of binaries or stellar multiples in the solar neighborhood, it is expected that many of these binaries host planets, possibly even habitable ones. The discovery of a terrestrial planet in the {alpha} Centauri system supports this notion. Due to the potentially strong gravitational interaction that an Earth-like planet may experience in such systems, classical approaches to determining habitable zones (HZ), especially in close S-type binary systems, can be rather inaccurate. Recent progress in this field, however, allows us to identify regions around the star permitting permanent habitability. While the discovery of {alpha} Cen Bb has shown that terrestrial planets can be detected in solar-type binary stars using current observational facilities, it remains to be shown whether this is also the case for Earth analogs in HZs. We provide analytical expressions for the maximum and rms values of radial velocity and astrometric signals, as well as transit probabilities of terrestrial planets in such systems, showing that the dynamical interaction of the second star with the planet may indeed facilitate the planets' detection. As an example, we discuss the detectability of additional Earth-like planets in the averaged, extended, and permanent HZs around both stars of the {alpha} Centauri system.

  8. A strict test of stellar evolution models: The absolute dimensions of the massive benchmark eclipsing binary V578 Mon

    SciTech Connect (OSTI)

    Garcia, E. V.; Stassun, Keivan G.; Pavlovski, K.; Hensberge, H.; Chew, Y. Gmez Maqueo; Claret, A.

    2014-09-01

    We determine the absolute dimensions of the eclipsing binary V578 Mon, a detached system of two early B-type stars (B0V + B1V, P = 2.40848 days) in the star-forming region NGC 2244 of the Rosette Nebula. From the light curve analysis of 40 yr of photometry and the analysis of HERMES spectra, we find radii of 5.41 0.04 R{sub ?} and 4.29 0.05 R{sub ?}, and temperatures of 30,000 500 K and 25,750 435 K, respectively. We find that our disentangled component spectra for V578 Mon agree well with previous spectral disentangling from the literature. We also reconfirm the previous spectroscopic orbit of V578 Mon finding that masses of 14.54 0.08 M{sub ?} and 10.29 0.06 M{sub ?} are fully compatible with the new analysis. We compare the absolute dimensions to the rotating models of the Geneva and Utrecht groups and the models of the Granada group. We find that all three sets of models marginally reproduce the absolute dimensions of both stars with a common age within the uncertainty for gravity-effective temperature isochrones. However, there are some apparent age discrepancies for the corresponding mass-radius isochrones. Models with larger convective overshoot, >0.35, worked best. Combined with our previously determined apsidal motion of 0.07089{sub ?0.00013}{sup +0.00021} deg cycle{sup 1}, we compute the internal structure constants (tidal Love number) for the Newtonian and general relativistic contribution to the apsidal motion as log k {sub 2} = 1.975 0.017 and log k {sub 2} = 3.412 0.018, respectively. We find the relativistic contribution to the apsidal motion to be small, <4%. We find that the prediction of log k {sub 2,theo} = 2.005 0.025 of the Granada models fully agrees with our observed log k {sub 2}.

  9. Production of bio-based materials using photobioreactors with binary cultures

    DOE Patents [OSTI]

    Beliaev, Alex S; Pinchuk, Grigoriy E; Hill, Eric A; Fredrickson, Jim K

    2013-08-27

    A method, device and system for producing preselected products, (either finished products or preselected intermediary products) from biobased precursors or CO.sub.2 and/or bicarbonate. The principal features of the present invention include a method wherein a binary culture is incubated with a biobased precursor in a closed system to transform at least a portion of the biobased precursor to a preselected product. The present invention provides a method of cultivation that does not need sparging of a closed bioreactor to remove or add a gaseous byproduct or nutrient from a liquid medium. This improvement leads to significant savings in energy consumption and allows for the design of photobioreactors of any desired shape. The present invention also allows for the use of a variety of types of waste materials to be used as the organic starting material.

  10. THE PUZZLING MUTUAL ORBIT OF THE BINARY TROJAN ASTEROID (624) HEKTOR

    SciTech Connect (OSTI)

    Marchis, F.; Cuk, M.; Durech, J.; Castillo-Rogez, J.; Vachier, F.; Berthier, J.; Wong, M. H.; Kalas, P.; Duchene, G.; Van Dam, M. A.; Hamanowa, H.; Viikinkoski, M.

    2014-03-10

    Asteroids with satellites are natural laboratories to constrain the formation and evolution of our solar system. The binary Trojan asteroid (624) Hektor is the only known Trojan asteroid to possess a small satellite. Based on W. M. Keck adaptive optics observations, we found a unique and stable orbital solution, which is uncommon in comparison to the orbits of other large multiple asteroid systems studied so far. From lightcurve observations recorded since 1957, we showed that because the large Req = 125km primary may be made of two joint lobes, the moon could be ejecta of the low-velocity encounter, which formed the system. The inferred density of Hektor's system is comparable to the L5 Trojan doublet (617) Patroclus but due to their difference in physical properties and in reflectance spectra, both captured Trojan asteroids could have a different composition and origin.

  11. Optical BVRI photometry of common proper motion F/G/K+M wide separation binaries

    SciTech Connect (OSTI)

    Li, Ting; Marshall, Jennifer L.; Williams, Patrick; Chavez, Joy [Department of Physics and Astronomy, Texas A and M University, College Station, TX 77840 (United States); Lpine, Sbastien [Department of Physics and Astronomy, Georgia State University, Atlanta, GA 30302-4106 (United States)

    2014-10-01

    We present optical (BVRI) photometric measurements of a sample of 76 common proper motion wide separation main-sequence binary pairs. The pairs are composed of a F-, G-, or K-type primary star and an M-type secondary. The sample is selected from the revised NLTT catalog and the LSPM catalog. The photometry is generally precise to 0.03 mag in all bands. We separate our sample into two groups, dwarf candidates and subdwarf candidates, using the reduced proper motion diagram constructed with our improved photometry. The M subdwarf candidates in general have larger V R colors than the M dwarf candidates at a given V I color. This is consistent with an average metallicity difference between the two groups, as predicted by the PHOENIX/BT-Settl models. The improved photometry will be used as input into a technique to determine the metallicities of the M-type stars.

  12. Quantitative measurement of binary liquid distributions using multiple-tracer x-ray fluorescence and radiography

    SciTech Connect (OSTI)

    Halls, Benjamin R.; Meyer, Terrence R.; Kastengren, Alan L.

    2015-01-01

    The complex geometry and large index-of-refraction gradients that occur near the point of impingement of binary liquid jets present a challenging environment for optical interrogation. A simultaneous quadruple-tracer x-ray fluorescence and line-of-sight radiography technique is proposed as a means of distinguishing and quantifying individual liquid component distributions prior to, during, and after jet impact. Two different pairs of fluorescence tracers are seeded into each liquid stream to maximize their attenuation ratio for reabsorption correction and differentiation of the two fluids during mixing. This approach for instantaneous correction of x-ray fluorescence reabsorption is compared with a more time-intensive approach of using stereographic reconstruction of x-ray attenuation along multiple lines of sight. The proposed methodology addresses the need for a quantitative measurement technique capable of interrogating optically complex, near-field liquid distributions in many mixing systems of practical interest involving two or more liquid streams.

  13. Quantitative measurement of binary liquid distributions using multiple-tracer x-ray fluorescence and radiography

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Halls, Benjamin R.; Meyer, Terrence R.; Kastengren, Alan L.

    2015-01-23

    The complex geometry and large index-of-refraction gradients that occur near the point of impingement of binary liquid jets present a challenging environment for optical interrogation. A simultaneous quadruple-tracer x-ray fluorescence and line-of-sight radiography technique is proposed as a means of distinguishing and quantifying individual liquid component distributions prior to, during, and after jet impact. Two different pairs of fluorescence tracers are seeded into each liquid stream to maximize their attenuation ratio for reabsorption correction and differentiation of the two fluids during mixing. This approach for instantaneous correction of x-ray fluorescence reabsorption is compared with a more time-intensive approach of usingmorestereographic reconstruction of x-ray attenuation along multiple lines of sight. The proposed methodology addresses the need for a quantitative measurement technique capable of interrogating optically complex, near-field liquid distributions in many mixing systems of practical interest involving two or more liquid streams.less

  14. THE LOCATIONS OF SHORT GAMMA-RAY BURSTS AS EVIDENCE FOR COMPACT OBJECT BINARY PROGENITORS

    SciTech Connect (OSTI)

    Fong, W.; Berger, E.

    2013-10-10

    We present a detailed investigation of Hubble Space Telescope rest-frame UV/optical observations of 22 short gamma-ray burst (GRB) host galaxies and sub-galactic environments. Utilizing the high angular resolution and depth of HST we characterize the host galaxy morphologies, measure precise projected physical and host-normalized offsets between the bursts and host centers, and calculate the locations of the bursts with respect to their host light distributions (rest-frame UV and optical). We calculate a median short GRB projected physical offset of 4.5 kpc, about 3.5 times larger than that for long GRBs, and find that ?25% of short GRBs have offsets of ?> 10 kpc. When compared to their host sizes, the median offset is 1.5 half-light radii (r{sub e} ), about 1.5 times larger than the values for long GRBs, core-collapse supernovae, and Type Ia supernovae. In addition, ?20% of short GRBs having offsets of ?> 5r{sub e} , and only ?25% are located within 1r{sub e} . We further find that short GRBs severely under-represent their hosts' rest-frame optical and UV light, with ?30%-45% of the bursts located in regions of their host galaxies that have no detectable stellar light, and ?55% in the regions with no UV light. Therefore, short GRBs do not occur in regions of star formation or even stellar mass. This demonstrates that the progenitor systems of short GRBs must migrate from their birth sites to their eventual explosion sites, a signature of kicks in compact object binary systems. Utilizing the full sample of offsets, we estimate natal kick velocities of ?20-140 km s{sup 1}. These independent lines of evidence provide the strongest support to date that short GRBs result from the merger of compact object binaries (NS-NS/NS-BH)

  15. Simulating three-dimensional nonthermal high-energy photon emission in colliding-wind binaries

    SciTech Connect (OSTI)

    Reitberger, K.; Kissmann, R.; Reimer, A.; Reimer, O.

    2014-07-01

    Massive stars in binary systems have long been regarded as potential sources of high-energy ? rays. The emission is principally thought to arise in the region where the stellar winds collide and accelerate relativistic particles which subsequently emit ? rays. On the basis of a three-dimensional distribution function of high-energy particles in the wind collision regionas obtained by a numerical hydrodynamics and particle transport modelwe present the computation of the three-dimensional nonthermal photon emission for a given line of sight. Anisotropic inverse Compton emission is modeled using the target radiation field of both stars. Photons from relativistic bremsstrahlung and neutral pion decay are computed on the basis of local wind plasma densities. We also consider photon-photon opacity effects due to the dense radiation fields of the stars. Results are shown for different stellar separations of a given binary system comprising of a B star and a Wolf-Rayet star. The influence of orbital orientation with respect to the line of sight is also studied by using different orbital viewing angles. For the chosen electron-proton injection ratio of 10{sup 2}, we present the ensuing photon emission in terms of two-dimensional projections maps, spectral energy distributions, and integrated photon flux values in various energy bands. Here, we find a transition from hadron-dominated to lepton-dominated high-energy emission with increasing stellar separations. In addition, we confirm findings from previous analytic modeling that the spectral energy distribution varies significantly with orbital orientation.

  16. ORISE: Report shows number of health physics degrees for 2010

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    report shows number of health physics degrees increased for graduates, decreased for undergraduates in 2010 Decreased number of B.S. degrees remains higher than levels in the early 2000 FOR IMMEDIATE RELEASE Dec. 20, 2011 FY12-09 OAK RIDGE, Tenn.-The number of health physics graduate degrees increased for both master's and doctoral candidates in 2010, but decreased for bachelor's degrees, says a report released this year by the Oak Ridge Institute for Science and Education. The ORISE report,

  17. Heavy pair production currents with general quantum numbers in

    Office of Scientific and Technical Information (OSTI)

    dimensionally regularized nonrelativistic QCD (Journal Article) | SciTech Connect Heavy pair production currents with general quantum numbers in dimensionally regularized nonrelativistic QCD Citation Details In-Document Search Title: Heavy pair production currents with general quantum numbers in dimensionally regularized nonrelativistic QCD We discuss the form and construction of general color singlet heavy particle-antiparticle pair production currents for arbitrary quantum numbers, and

  18. Developing and Enhancing Workforce Training Programs: Number of Projects by

    Energy Savers [EERE]

    State | Department of Energy Developing and Enhancing Workforce Training Programs: Number of Projects by State Developing and Enhancing Workforce Training Programs: Number of Projects by State Map of the United States showing the location of Workforce Training Projects, funded through the American Recovery and Reinvestment Act PDF icon Developing and Enhancing Workforce Training Programs: Number of Projects by State More Documents & Publications Workforce Development Wind Projects

  19. Modeling the Number of Ignitions Following an Earthquake: Developing...

    Office of Environmental Management (EM)

    Developing Prediction Limits for Overdispersed Count Data Authors: Elizabeth J. Kelly and Raymond N. Tell PDF icon Modeling the Number of Ignitions Following an Earthquake:...

  20. Conducting Your Annual VPP Self-Evaluation by the Numbers

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... VPP Annual Self-evaluation: By the Numbers Example pre-meeting training 5. Picking who to interview * Fixed - Pick by positionlocation - Safety Council Chair - Union Steward - ...

  1. Dependence of Band Renormalization Effect on the Number of Copper...

    Office of Scientific and Technical Information (OSTI)

    DOE Contract Number: AC02-76SF00515 Resource Type: Journal Article Resource Relation: Journal Name: Submitted to Physical Review Letters; Journal Volume: 103; Journal Issue: 6 ...

  2. Request for Proposals Number RHB-5-52483

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    9 National Renewable Energy Laboratory Managed and Operated by the Alliance for Sustainable Energy, LLC Request for Proposals Number RHB-5-52483 "Subsurface Utility Engineering...

  3. Quark-Gluon Plasma Model and Origin of Magic Numbers

    SciTech Connect (OSTI)

    Ghahramany, N.; Ghanaatian, M.; Hooshmand, M.

    2008-04-21

    Using Boltzman distribution in a quark-gluon plasma sample it is possible to obtain all existing magic numbers and their extensions without applying the spin and spin-orbit couplings. In this model it is assumed that in a quark-gluon thermodynamic plasma, quarks have no interactions and they are trying to form nucleons. Considering a lattice for a central quark and the surrounding quarks, using a statistical approach to find the maximum number of microstates, the origin of magic numbers is explained and a new magic number is obtained.

  4. Number of NERSC Users and Projects Through the Years

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Through the Years Careers Visitor Info Web Policies Home About Usage and User Demographics Users and Projects Through the Years Number of NERSC Users and Projects Through...

  5. Temporary EPA ID Number Request | Open Energy Information

    Open Energy Info (EERE)

    Temporary EPA ID Number RequestLegal Abstract A developer that may "generate hazardous waste only from an episodic event" may instead apply for a temporary hazardous waste...

  6. 2MASS 22344161+4041387AB: A WIDE, YOUNG, ACCRETING, LOW-MASS BINARY IN THE LkH{alpha}233 GROUP

    SciTech Connect (OSTI)

    Allers, K. N.; Liu, Michael C.; Cushing, Michael C.; Dupuy, Trent J.; Mathews, Geoffrey S.; Shkolnik, Evgenya; Reid, I. Neill; Cruz, Kelle L.; Vacca, W. D.

    2009-05-20

    We report the discovery of a young, 0.''16 binary, 2M2234+4041AB, found as the result of a Keck laser guide star adaptive optics imaging survey of young field ultracool dwarfs. Spatially resolved near-infrared photometry and spectroscopy indicate that the luminosity and temperature ratios of the system are near unity. From optical and near-infrared spectroscopy, we determine a composite spectral type of M6 for the system. Gravity-sensitive spectral features in the spectra of 2M2234+4041AB are best matched to those of young objects ({approx}1 Myr old). A comparison of the T {sub eff} and age of 2M2234+4041AB to evolutionary models indicates that the mass of each component is 0.10{sup +0.075} {sub -0.04} M {sub sun}. Emission lines of H{alpha} in the composite optical spectrum of the system and Br{gamma} in spatially resolved near-IR spectra of the two components indicate that the system is actively accreting. Both components of the system have IR excesses, indicating that they both harbor circumstellar disks. Though 2M2234+4041AB was originally identified as a young field dwarf, it lies 1.'5 from the well-studied Herbig Ae/Be star, LkH{alpha}233. The distance to LkH{alpha}233 is typically assumed to be 880 pc. It is unlikely that 2M2234+4041AB could be this distant, as it would then be more luminous than any known Taurus objects of similar spectral type. We re-evaluate the distance to the LkH{alpha}233 group and find a value of 325{sup +72} {sub -50} pc, based on the Hipparcos distance to a nearby B3-type group member (HD 213976). 2M2234+4041AB is the first low-mass star to be potentially associated with the LkH{alpha}233 group. At a distance of 325 pc, its projected physical separation is 51 AU, making it one of the growing number of wide, low-mass binaries found in young star-forming regions.

  7. A SURVEY OF THE HIGH ORDER MULTIPLICITY OF NEARBY SOLAR-TYPE BINARY STARS WITH Robo-AO

    SciTech Connect (OSTI)

    Riddle, Reed L.; Bui, Khanh; Dekany, Richard G.; Kulkarni, Shrinivas; Tendulkar, Shriharsh P.; Tokovinin, Andrei; Mason, Brian D.; Hartkopf, William I.; Roberts, Lewis C. Jr.; Baranec, Christoph; Law, Nicholas M.; Burse, Mahesh P.; Das, H. K.; Punnadi, Sujit; Ramaprakash, A. N.

    2015-01-20

    We conducted a survey of nearby binary systems composed of main sequence stars of spectral types F and G in order to improve our understanding of the hierarchical nature of multiple star systems. Using Robo-AO, the first robotic adaptive optics instrument, we collected high angular resolution images with deep and well-defined detection limits in the Sloan Digital Sky Survey i' band. A total of 695 components belonging to 595 systems were observed. We prioritized observations of faint secondary components with separations over 10'' to quantify the still poorly constrained frequency of their subsystems. Of the 214 secondaries observed, 39 contain such subsystems; 19 of those were discovered with Robo-AO. The selection-corrected frequency of secondary subsystems with periods from 10{sup 3.5} to 10{sup 5}days is 0.12 0.03, the same as the frequency of such companions to the primary. Half of the secondary pairs belong to quadruple systems where the primary is also a close pair, showing that the presence of subsystems in both components of the outer binary is correlated. The relatively large abundance of 2+2 quadruple systems is a new finding, and will require more exploration of the formation mechanism of multiple star systems. We also targeted close binaries with periods less than 100 yr, searching for their distant tertiary components, and discovered 17 certain and 2 potential new triples. In a subsample of 241 close binaries, 71 have additional outer companions. The overall frequency of tertiary components is not enhanced, compared to all (non-binary) targets, but in the range of outer periods from 10{sup 6} to 10{sup 7.5}days (separations on the order of 500 AU), the frequency of tertiary components is 0.16 0.03, exceeding the frequency of similar systems among all targets (0.09) by almost a factor of two. Measurements of binary stars with Robo-AO allowed us to compute first orbits for 9 pairs and to improve orbits of another 11 pairs.

  8. Table B10. Employment Size Category, Number of Buildings, 1999

    U.S. Energy Information Administration (EIA) Indexed Site

    0. Employment Size Category, Number of Buildings, 1999" ,"Number of Buildings (thousand)" ,"All Buildings","Number of Workers" ,,"Fewer than 5 Workers","5 to 9 Workers","10 to 19 Workers","20 to 49 Workers","50 to 99 Workers","100 to 249 Workers","250 or More Workers" "All Buildings ................",4657,2376,807,683,487,174,90,39 "Building Floorspace" "(Square

  9. Mailing Addresses and Information Numbers for Operations, Field, and Site

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Offices | Department of Energy About Energy.gov » Mailing Addresses and Information Numbers for Operations, Field, and Site Offices Mailing Addresses and Information Numbers for Operations, Field, and Site Offices Name Telephone Number U.S. Department of Energy Ames Site Office 111 TASF, Iowa State University Ames, Iowa 50011 515-294-9557 U.S. Department of Energy Argonne Site Office 9800 S. Cass Avenue Argonne, IL 60439 630-252-2000 U.S. Department of Energy Berkeley Site Office Berkeley

  10. Interim Report: Air-Cooled Condensers for Next Generation Geothermal Power Plants Improved Binary Cycle Performance

    SciTech Connect (OSTI)

    Daniel S. Wendt; Greg L. Mines

    2010-09-01

    As geothermal resources that are more expensive to develop are utilized for power generation, there will be increased incentive to use more efficient power plants. This is expected to be the case with Enhanced Geothermal System (EGS) resources. These resources will likely require wells drilled to depths greater than encountered with hydrothermal resources, and will have the added costs for stimulation to create the subsurface reservoir. It is postulated that plants generating power from these resources will likely utilize the binary cycle technology where heat is rejected sensibly to the ambient. The consumptive use of a portion of the produced geothermal fluid for evaporative heat rejection in the conventional flash-steam conversion cycle is likely to preclude its use with EGS resources. This will be especially true in those areas where there is a high demand for finite supplies of water. Though they have no consumptive use of water, using air-cooling systems for heat rejection has disadvantages. These systems have higher capital costs, reduced power output (heat is rejected at the higher dry-bulb temperature), increased parasitics (fan power), and greater variability in power generation on both a diurnal and annual basis (larger variation in the dry-bulb temperature). This is an interim report for the task Air-Cooled Condensers in Next- Generation Conversion Systems. The work performed was specifically aimed at a plant that uses commercially available binary cycle technologies with an EGS resource. Concepts were evaluated that have the potential to increase performance, lower cost, or mitigate the adverse effects of off-design operation. The impact on both cost and performance were determined for the concepts considered, and the scenarios identified where a particular concept is best suited. Most, but not all, of the concepts evaluated are associated with the rejection of heat. This report specifically addresses three of the concepts evaluated: the use of recuperation, the use of turbine reheat, and the non-consumptive use of EGS make-up water to supplement heat rejection

  11. Modeling the Number of Ignitions Following an Earthquake: Developing...

    Office of Environmental Management (EM)

    the likelihood of various fire scenarios. The first component of the approach is a statistical model to predict the number of ignitions for a new earthquake event. This model is...

  12. Property:NumberOfUsers | Open Energy Information

    Open Energy Info (EERE)

    property "NumberOfUsers" Showing 25 pages using this property. (previous 25) (next 25) H HOMER + 578 + HOMER + 14 + HOMER + 1 + HOMER + 34 + HOMER + 6 + HOMER + 68 + HOMER + 89...

  13. Number of NERSC Users and Projects Through the Years

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Users and Projects Through the Years Careers Visitor Info Web Policies Home » About » Usage and User Demographics » Users and Projects Through the Years Number of NERSC Users and Projects Through the Years These numbers exclude staff and vendor accounts. Year Number of Users Number of Projects 2014 5,950 846 2013 5.191 768 2012 4,659 728 2011 4,934 641 2010 4,294 540 2009 3,731 506 2008 3,271 464 2007 3,111 404 2006 2,978 385 2005 2,677 348 2004 2,416 347 2003 2,323 318 2002 2,594 337 2001

  14. Property:Buildings/ReportNumber | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search This is a property of type String. Pages using the property "BuildingsReportNumber" Showing 2 pages using this property. G General Merchandise 50%...

  15. Parameterized reduced-order models using hyper-dual numbers....

    Office of Scientific and Technical Information (OSTI)

    This report presents a methodology for developing parameterized ROMs, which is based on ... DOE Contract Number: AC04-94AL85000 Resource Type: Technical Report Research Org: Sandia ...

  16. Alaska Maximum Number of Active Crews Engaged in Seismic Surveying...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Seismic Surveying (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 13 4 23 12...

  17. Physical Modeling of Spinel Crystals Settling at Low Reynolds Numbers

    Office of Scientific and Technical Information (OSTI)

    (Journal Article) | SciTech Connect Journal Article: Physical Modeling of Spinel Crystals Settling at Low Reynolds Numbers Citation Details In-Document Search Title: Physical Modeling of Spinel Crystals Settling at Low Reynolds Numbers The crystallization of large octahedral crystals of spinel during the high-level waste (HLW) vitrification process poses a potential danger to electrically heated ceramic melters. Large spinel crystals rapidly settle under gravitational attraction and

  18. Reducing the Particulate Emission Numbers in DI Gasoline Engines |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy the Particulate Emission Numbers in DI Gasoline Engines Reducing the Particulate Emission Numbers in DI Gasoline Engines Formation of droplets was minimized through optimization of fuel vaporization and distribution avoiding air/fuel zones richer than stoichiometric and temperatures that promote particle formation PDF icon deer10_klindt.pdf More Documents & Publications Bosch Powertrain Technologies Vehicle Emissions Review - 2012 Ethanol Effects on Lean-Burn and

  19. Treatment of the intrinsic Hamiltonian in particle-number nonconserving

    Office of Scientific and Technical Information (OSTI)

    theories (Journal Article) | SciTech Connect Treatment of the intrinsic Hamiltonian in particle-number nonconserving theories Citation Details In-Document Search Title: Treatment of the intrinsic Hamiltonian in particle-number nonconserving theories Authors: Hergert, H. ; Roth, R. Publication Date: 2009-11-01 OSTI Identifier: 1209398 Type: Published Article Journal Name: Physics Letters. Section B Additional Journal Information: Journal Volume: 682; Journal Issue: 1; Journal ID: ISSN

  20. California's Efforts for Advancing Ultrafine Particle Number Measurements

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Clean Diesel Exhaust | Department of Energy Efforts for Advancing Ultrafine Particle Number Measurements for Clean Diesel Exhaust California's Efforts for Advancing Ultrafine Particle Number Measurements for Clean Diesel Exhaust Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and Fuel Partnership and 21st Century Truck Programs. PDF icon 2006_deer_huai.pdf More Documents & Publications Measurement of diesel solid

  1. Record Number Attend EM's Science Alliance | Department of Energy

    Energy Savers [EERE]

    Record Number Attend EM's Science Alliance Record Number Attend EM's Science Alliance October 30, 2013 - 12:00pm Addthis A record 1,200 students and educators visited EM’s Portsmouth Gaseous Diffusion Plant for the fourth annual Science Alliance. A record 1,200 students and educators visited EM's Portsmouth Gaseous Diffusion Plant for the fourth annual Science Alliance. PIKETON, Ohio - More than 1,200 students and educators from 23 southern Ohio schools visited EM's Portsmouth Gaseous

  2. Video: Recovery Act by the Numbers | Department of Energy

    Energy Savers [EERE]

    Recovery Act by the Numbers Video: Recovery Act by the Numbers February 17, 2016 - 11:30am Addthis Watch this video to learn how the Recovery Act helped jumpstart America's clean energy economy. | Video by Simon Edelman and graphics by Carly Wilkins, Energy Department. Paul Lester Paul Lester Digital Content Specialist, Office of Public Affairs Simon Edelman Simon Edelman Chief Creative Officer Carly Wilkins Carly Wilkins Multimedia Designer MORE ON THE RECOVERY ACT MAP: Learn about the impact

  3. INTERACTIVE: Energy Intensity and Carbon Intensity by the Numbers |

    Energy Savers [EERE]

    Department of Energy INTERACTIVE: Energy Intensity and Carbon Intensity by the Numbers INTERACTIVE: Energy Intensity and Carbon Intensity by the Numbers February 19, 2016 - 11:53am Addthis Daniel Wood Daniel Wood Data Visualization and Cartographic Specialist, Office of Public Affairs Watch our CO2 drop dramatically compared to other countries in this interactive Curious about the total amount of carbon we emit into the atmosphere? Compare countries from around the globe using this tool. If

  4. DEEP, LOW-MASS RATIO OVERCONTACT BINARY SYSTEMS. XII. CK BOOTIS WITH POSSIBLE CYCLIC MAGNETIC ACTIVITY AND ADDITIONAL COMPANION

    SciTech Connect (OSTI)

    Yang, Y.-G.; Qian, S.-B.; Soonthornthum, B. E-mail: qsb@ynao.ac.cn

    2012-05-15

    We present precision CCD photometry, a period study, and a two-color simultaneous Wilson code solution of the short-period contact binary CK Bootis. The asymmetric light curves were modeled by a dark spot on the primary component. The result identifies that CK Boo is an A-type W UMa binary with a high fillout of f = 71.7({+-} 4.4)%. From the O - C curve, it is found that the orbital period changes in a complicated mode, i.e., a long-term increase with two sinusoidal variations. One cyclic oscillation with a period of 10.67({+-} 0.20) yr may result from magnetic activity cycles, which are identified by the variability of Max. I - Max. II. Another sinusoidal variation (i.e., A = 0.0131 days({+-} 0.0009 days) and P{sub 3} = 24.16({+-} 0.64) yr) may be attributed to the light-time effect due to a third body. This kind of additional companion can extract angular momentum from the central binary system. The orbital period secularly increases at a rate of dP/dt = +9.79 ({+-}0.80) Multiplication-Sign 10{sup -8} days yr{sup -1}, which may be interpreted by conservative mass transfer from the secondary to the primary. This kind of deep, low-mass ratio overcontact binaries may evolve into a rapid-rotating single star, only if the contact configuration do not break down at J{sub spin} > (1/3)J{sub orb}.

  5. THIRD COMPONENT SEARCH AND ABUNDANCES OF THE VERY DUSTY SHORT-PERIOD BINARY BD +20 Degree-Sign 307

    SciTech Connect (OSTI)

    Fekel, Francis C.; Cordero, Maria J.; Galicher, Raphael; Zuckerman, B.; Melis, Carl; Weinberger, Alycia J. E-mail: majocord@indiana.edu E-mail: ben@astro.ucla.edu E-mail: weinberger@dtm.ciw.edu

    2012-04-10

    We have obtained near-infrared adaptive optics imaging and collected additional radial velocity observations to search for a third component in the extremely dusty short-period binary system BD +20 Degree-Sign 307. Our image shows no evidence for a third component at separations greater than 19 AU. Our four seasons of radial velocities have a constant center-of-mass velocity and are consistent with the systemic velocities determined at two earlier epochs. Thus, the radial velocities also provide no support for a third component. Unfortunately, the separation domains covered by our imaging and radial velocity results do not overlap. Thus, we examined the parameters for possible orbits of a third component that could have been missed by our current observations. With our velocities we determined improved circular orbital elements for the 3.4 day double-lined binary. We also performed a spectroscopic abundance analysis of the short-period binary components and conclude that the stars are a mid- and a late-F dwarf. We find that the iron abundances of both components, [Fe/H] = 0.15, are somewhat greater than the solar value and comparable to that of stars in the Hyades. Despite the similarity of the binary components, the lithium abundances of the two stars are very unequal. The primary has log {epsilon} (Li) = 2.72, while in the secondary log {epsilon} (Li) {<=}1.46, which corresponds to a difference of at least a factor of 18. The very disparate lithium abundances in very similar stars make it impossible to ascribe a single age to them. While the system is likely at least 1 Gyr old, it may well be as old as the Sun.

  6. Gray and multigroup radiation transport models for two-dimensional binary stochastic media using effective opacities

    SciTech Connect (OSTI)

    Olson, Gordon L.

    2015-09-24

    One-dimensional models for the transport of radiation through binary stochastic media do not work in multi-dimensions. In addition, authors have attempted to modify or extend the 1D models to work in multidimensions without success. Analytic one-dimensional models are successful in 1D only when assuming greatly simplified physics. State of the art theories for stochastic media radiation transport do not address multi-dimensions and temperature-dependent physics coefficients. Here, the concept of effective opacities and effective heat capacities is found to well represent the ensemble averaged transport solutions in cases with gray or multigroup temperature-dependent opacities and constant or temperature-dependent heat capacities. In every case analyzed here, effective physics coefficients fit the transport solutions over a useful range of parameter space. The transport equation is solved with the spherical harmonics method with angle orders of n=1 and 5. Although the details depend on what order of solution is used, the general results are similar, independent of angular order.

  7. Determination of recombination radius in Si for binary collision approximation codes

    SciTech Connect (OSTI)

    Vizkelethy, Gyorgy; Foiles, Stephen M.

    2015-09-11

    Displacement damage caused by ions or neutrons in microelectronic devices can have significant effect on the performance of these devices. Therefore, it is important to predict not only the displacement damage profile, but also its magnitude precisely. Analytical methods and binary collision approximation codes working with amorphous targets use the concept of displacement energy, the energy that a lattice atom has to receive to create a permanent replacement. It was found that this displacement energy is direction dependent; it can range from 12 to 32 eV in silicon. Obviously, this model fails in BCA codes that work with crystalline targets, such as Marlowe. Marlowe does not use displacement energy; instead, it uses lattice binding energy only and then pairs the interstitial atoms with vacancies. Then based on the configuration of the Frenkel pairs it classifies them as close, near, or distant pairs, and considers the distant pairs the permanent replacements. Unfortunately, this separation is an ad hoc assumption, and the results do not agree with molecular dynamics calculations. After irradiation, there is a prompt recombination of interstitials and vacancies if they are nearby, within a recombination radius. In order to implement this recombination radius in Marlowe, we used the comparison of MD and Marlowe calculation in a range of ion energies in single crystal silicon target. As a result, the calculations showed that a single recombination radius of ~7.4 in Marlowe for a range of ion energies gives an excellent agreement with MD.

  8. Uncovering the putative B-star binary companion of the SN 1993J progenitor

    SciTech Connect (OSTI)

    Fox, Ori D.; Filippenko, Alexei V.; Bradley Cenko, S.; Li, Weidong; Parker, Alex H. [Department of Astronomy, University of California, Berkeley, CA 94720-3411, USA. (United States); Azalee Bostroem, K. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Van Dyk, Schuyler D. [Caltech, Mailcode 314-6, Pasadena, CA 91125 (United States); Fransson, Claes [Department of Astronomy, Oskar Klein Centre, Stockholm University, AlbaNova, SE-106 91 Stockholm (Sweden); Matheson, Thomas [National Optical Astronomy Observatory, 950 North Cherry Avenue, Tucson, AZ 85719-4933 (United States); Chandra, Poonam [National Centre for Radio Astrophysics, Tata Institute of Fundamental Research, Pune University Campus, Ganeshkhind, Pune-411007 (India); Dwarkadas, Vikram [Department of Astronomy and Astrophysics, University of Chicago, 5640 S Ellis Ave, Chicago, IL 60637 (United States); Smith, Nathan, E-mail: ofox@berkeley.edu [Steward Observatory, 933 North Cherry Avenue, Tucson, AZ 85721 (United States)

    2014-07-20

    The Type IIb supernova (SN) 1993J is one of only a few stripped-envelope SNe with a progenitor star identified in pre-explosion images. SN IIb models typically invoke H envelope stripping by mass transfer in a binary system. For the case of SN 1993J, the models suggest that the companion grew to 22 M{sub ?} and became a source of ultraviolet (UV) excess. Located in M81, at a distance of only 3.6 Mpc, SN 1993J offers one of the best opportunities to detect the putative companion and test the progenitor model. Previously published near-UV spectra in 2004 showed evidence for absorption lines consistent with a hot (B2 Ia) star, but the field was crowded and dominated by flux from the SN. Here we present Hubble Space Telescope Cosmic Origins Spectrograph and Wide-Field Camera 3 observations of SN 1993J from 2012, at which point the flux from the SN had faded sufficiently to potentially measure the UV continuum properties from the putative companion. The resulting UV spectrum is consistent with contributions from both a hot B star and the SN, although we cannot rule out line-of-sight coincidences.

  9. On the spin period distribution in Be/X-ray binaries

    SciTech Connect (OSTI)

    Cheng, Z.-Q.; Shao, Y.; Li, X.-D., E-mail: lixd@nju.edu.cn [Department of Astronomy, Nanjing University, Nanjing 210093 (China)

    2014-05-10

    There is a remarkable correlation between the spin periods of the accreting neutron stars (NSs) in Be/X-ray binaries (BeXBs) and their orbital periods. Recently, Knigge et al. showed that the distribution of the spin periods contains two distinct subpopulations peaked at ?10 s and ?200 s, respectively, and suggested that they may be related to two types of supernovae for the formation of the NSs, i.e., core-collapse and electron-capture supernovae. Here we propose that the bimodal spin period distribution is likely to be ascribed to different accretion modes of the NSs in BeXBs. When the NS tends to capture material from the warped, outer part of the Be star disk and experiences giant outbursts, a radiatively cooling dominated disk is formed around the NS, which spins up the NS and is responsible for the short-period subpopulation. In BeXBs that are dominated by normal outbursts or are persistent, the accretion flow is advection-dominated or quasi-spherical. The spin-up process is accordingly inefficient, leading to longer periods of the neuron stars. The potential relation between the subpopulations and the supernova mechanism is also discussed.

  10. A NEW ACCRETION DISK AROUND THE MISSING LINK BINARY SYSTEM PSR J1023+0038

    SciTech Connect (OSTI)

    Patruno, A.; Archibald, A. M.; Hessels, J. W. T.; Bassa, C. G.; Janssen, G. H.; Bogdanov, S.; Stappers, B. W.; Lyne, A. G.; Kaspi, V. M.; Tendulkar, S.

    2014-01-20

    PSR J1023+0038 is an exceptional system for understanding how slowly rotating neutron stars are spun up to millisecond rotational periods through accretion from a companion star. Observed as a radio pulsar from 2007-2013, optical data showed that the system had an accretion disk in 2000/2001. Starting at the end of 2013 June, the radio pulsar has become undetectable, suggesting a return to the previous accretion-disk state, where the system more closely resembles an X-ray binary. In this Letter we report the first targeted X-ray observations ever performed of the active phase and complement them with UV/optical and radio observations collected in 2013 October. We find strong evidence that indeed an accretion disk has recently formed in the system and we report the detection of fast X-ray changes spanning about two orders of magnitude in luminosity. No radio pulsations are seen during low flux states in the X-ray light curve or at any other times.

  11. Materials corrosion of high temperature alloys immersed in 600C binary nitrate salt.

    SciTech Connect (OSTI)

    Kruizenga, Alan Michael; Gill, David Dennis; LaFord, Marianne Elizabeth

    2013-03-01

    Thirteen high temperature alloys were immersion tested in a 60/40 binary nitrate salt. Samples were interval tested up to 3000 hours at 600%C2%B0C with air as the ullage gas. Chemical analysis of the molten salt indicated lower nitrite concentrations present in the salt, as predicted by the equilibrium equation. Corrosion rates were generally low for all alloys. Corrosion products were identified using x-ray diffraction and electron microprobe analysis. Fe-Cr based alloys tended to form mixtures of sodium and iron oxides, while Fe-Ni/Cr alloys had similar corrosion products plus oxides of nickel and chromium. Nickel based alloys primarily formed NiO, with chromium oxides near the oxide/base alloy interface. In625 exhibited similar corrosion performance in relation to previous tests, lending confidence in comparisons between past and present experiments. HA230 exhibited internal oxidation that consisted of a nickel/chromium oxide. Alloys with significant aluminum alloying tended to exhibit superior performance, due formation of a thin alumina layer. Soluble corrosion products of chromium, molybdenum, and tungsten were also formed and are thought to be a significant factor in alloy performance.

  12. Probe Mssbauer spectroscopy of mechanical alloying in binary Cr?{sup 57}Fe(1 at%) system

    SciTech Connect (OSTI)

    Elsukov, Evgeny P. Kolodkin, Denis A. Ul'yanov, Alexander L. Porsev, Vitaly E.

    2014-10-27

    Solid state reactions during mechanical alloying (MA) in a binary mixture of powdered Cr and {sup 57}Fe in atomic ratio of 99:1 have been studied using {sup 57}Fe Mssbauer spectroscopy, X-ray diffraction and Auger spectrometry. The proposed model of MA includes formation of Cr(Fe){sub x}O{sub y} oxides at the contact places of Cr and Fe particles, formation of nanostructure with simultaneous dissolution of the oxides, penetration of Fe atoms along grain boundaries in close-to-boundary distorted zones of interfaces in a substitutional position, formation of the substitutional solid solution of Fe in Cr in the body of grains. It was shown that the increase in the BCC lattice parameter on increasing the milling time is due to the dissolution of oxides and formation of interstitial solid solution of O in Cr. There were established substantial differences in consumption of BCC Fe in a Mg ? Al ? Si ? Cr sequence due to the major role of chemical interaction of Mg(Al,Si,Cr) with Fe.

  13. NECESSARY CONDITIONS FOR SHORT GAMMA-RAY BURST PRODUCTION IN BINARY NEUTRON STAR MERGERS

    SciTech Connect (OSTI)

    Murguia-Berthier, Ariadna; Montes, Gabriela; Ramirez-Ruiz, Enrico; De Colle, Fabio; Lee, William H.

    2014-06-10

    The central engine of short gamma-ray bursts (sGRBs) is hidden from direct view, operating at a scale much smaller than that probed by the emitted radiation. Thus we must infer its origin not only with respect to the formation of the triggerthe actual astrophysical configuration that is capable of powering an sGRBbut also from the consequences that follow from the various evolutionary pathways that may be involved in producing it. Considering binary neutron star mergers we critically evaluate, analytically and through numerical simulations, whether the neutrino-driven wind produced by the newly formed hyper-massive neutron star can allow the collimated relativistic outflow that follows its collapse to actually produce an sGRB or not. Upon comparison with the observed sGRB duration distribution, we find that collapse cannot be significantly delayed (?100ms) before the outflow is choked, thus limiting the possibility that long-lived hyper-massive remnants can account for these events. In the case of successful breakthrough of the jet through the neutrino-driven wind, the energy stored in the cocoon could contribute to the precursor and extended emission observed in sGRBs.

  14. Theoretical calculation of the melting curve of Cu-Zr binary alloys

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gunawardana, K. G.S.H.; Wilson, S. R.; Mendelev, M. I.; Song, Xueyu

    2014-11-14

    Helmholtz free energies of the dominant binary crystalline solids found in the Cu-Zr system at high temperatures close to the melting curve are calculated. This theoretical approach combines fundamental measure density functional theory (applied to the hard-sphere reference system) and a perturbative approach to include the attractive interactions. The studied crystalline solids are Cu(fcc), Cu51Zr14(β), CuZr(B2), CuZr2(C11b), Zr(hcp), and Zr(bcc). The calculated Helmholtz free energies of crystalline solids are in good agreement with results from molecular-dynamics (MD) simulations. Using the same perturbation approach, the liquid phase free energies are calculated as a function of composition and temperature, from which themore » melting curve of the entire composition range of this system can be obtained. Phase diagrams are determined in this way for two leading embedded atom method potentials, and the results are compared with experimental data. Furthermore, theoretical melting temperatures are compared both with experimental values and with values obtained directly from MD simulations at several compositions.« less

  15. Dynamics of asymmetric binary glass formers. II. Results from nuclear magnetic resonance spectroscopy

    SciTech Connect (OSTI)

    Bock, D.; Kahlau, R.; Ptzschner, B.; Krber, T.; Wagner, E.; Rssler, E. A.

    2014-03-07

    Various {sup 2}H and {sup 31}P nuclear magnetic resonance (NMR) spectroscopy techniques are applied to probe the component dynamics of the binary glass former tripropyl phosphate (TPP)/polystyrene-d{sub 3} (PS) over the full concentration range. The results are quantitatively compared to those of a dielectric spectroscopy (DS) study on the same system previously published [R. Kahlau, D. Bock, B. Schmidtke, and E. A. Rssler, J. Chem. Phys. 140, 044509 (2014)]. While the PS dynamics does not significantly change in the mixtures compared to that of neat PS, two fractions of TPP molecules are identified, one joining the glass transition of PS in the mixture (?{sub 1}-process), the second reorienting isotropically (?{sub 2}-process) even in the rigid matrix of PS, although at low concentration resembling a secondary process regarding its manifestation in the DS spectra. Pronounced dynamical heterogeneities are found for the TPP ?{sub 2}-process, showing up in extremely stretched, quasi-logarithmic stimulated echo decays. While the time window of NMR is insufficient for recording the full correlation functions, DS results, covering a larger dynamical range, provide a satisfactory interpolation of the NMR data. Two-dimensional {sup 31}P NMR spectra prove exchange within the broadly distributed ?{sub 2}-process. As demonstrated by {sup 2}H NMR, the PS matrix reflects the faster ?{sub 2}-process of TPP by performing a spatially highly hindered motion on the same timescale.

  16. Calculation of cross sections for binary reactions between heavy ion projectiles and heavy actinide targets

    SciTech Connect (OSTI)

    Hoffman, D.C.; Hoffman, M.M.

    1990-11-01

    The computer program, described in this report, is identified as PWAVED5. It was developed to calculate cross sections for nucleon transfer reactions in low energy heavy ion bombardments. The objective was to calculate cross sections that agree with experimental results for ions of different charge and mass and to develop a predictive capability. It was undertaken because previous heavy ion calculations, for which programs were readily available, appeared to focus primarily on reactions resulting in compound nucleus formation and were not particularly applicable to calculations of binary reaction cross sections at low interaction energies. There are to principal areas in which this computation differs from several other partial wave calculations of heavy-ion reaction cross sections. First, this program is designed specifically to calculate cross sections for nucleon exchange interactions and to exclude interactions that are expected to result in fusion of the two nuclei. A second major difference in this calculation is the use of a statistical distribution to assign the total interaction cross section to individual final mass states.

  17. Gray and multigroup radiation transport models for two-dimensional binary stochastic media using effective opacities

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Olson, Gordon L.

    2015-09-24

    One-dimensional models for the transport of radiation through binary stochastic media do not work in multi-dimensions. In addition, authors have attempted to modify or extend the 1D models to work in multidimensions without success. Analytic one-dimensional models are successful in 1D only when assuming greatly simplified physics. State of the art theories for stochastic media radiation transport do not address multi-dimensions and temperature-dependent physics coefficients. Here, the concept of effective opacities and effective heat capacities is found to well represent the ensemble averaged transport solutions in cases with gray or multigroup temperature-dependent opacities and constant or temperature-dependent heat capacities. Inmore » every case analyzed here, effective physics coefficients fit the transport solutions over a useful range of parameter space. The transport equation is solved with the spherical harmonics method with angle orders of n=1 and 5. Although the details depend on what order of solution is used, the general results are similar, independent of angular order.« less

  18. DISCOVERY OF A BINARY BROWN DWARF AT 2 pc FROM THE SUN

    SciTech Connect (OSTI)

    Luhman, K. L.

    2013-04-10

    I am using multi-epoch astrometry from the Wide-field Infrared Survey Explorer (WISE) to search for new members of the solar neighborhood via their high proper motions. Through this work, I have identified WISE J104915.57-531906.1 as a high proper motion object and have found additional detections in images from the Digitized Sky Survey, the Two Micron All-Sky Survey, and the Deep Near-Infrared Survey of the Southern Sky. I have measured a parallax of 0.''496 {+-} 0.''037 (2.0 {+-} 0.15 pc) from the astrometry in these surveys, making WISE J104915.57-531906.1 the third closest system to the Sun. During spectroscopic observations with the Gemini Multi-Object Spectrograph at Gemini Observatory, an i-band acquisition image resolved it as a 1.''5 (3 AU) binary. A spectrum was collected for the primary, which I classify as L8 {+-} 1. The secondary is probably near the L/T transition as well given that it is only modestly fainter than the primary ({Delta}i = 0.45 mag).

  19. Theoretical calculation of the melting curve of Cu-Zr binary alloys

    SciTech Connect (OSTI)

    Gunawardana, K. G.S.H.; Wilson, S. R.; Mendelev, M. I.; Song, Xueyu

    2014-11-14

    Helmholtz free energies of the dominant binary crystalline solids found in the Cu-Zr system at high temperatures close to the melting curve are calculated. This theoretical approach combines fundamental measure density functional theory (applied to the hard-sphere reference system) and a perturbative approach to include the attractive interactions. The studied crystalline solids are Cu(fcc), Cu51Zr14(β), CuZr(B2), CuZr2(C11b), Zr(hcp), and Zr(bcc). The calculated Helmholtz free energies of crystalline solids are in good agreement with results from molecular-dynamics (MD) simulations. Using the same perturbation approach, the liquid phase free energies are calculated as a function of composition and temperature, from which the melting curve of the entire composition range of this system can be obtained. Phase diagrams are determined in this way for two leading embedded atom method potentials, and the results are compared with experimental data. Furthermore, theoretical melting temperatures are compared both with experimental values and with values obtained directly from MD simulations at several compositions.

  20. Precise atmospheric parameters for the shortest-period binary white dwarfs: gravitational waves, metals, and pulsations

    SciTech Connect (OSTI)

    Gianninas, A.; Kilic, Mukremin; Dufour, P.; Bergeron, P.; Brown, Warren R.; Hermes, J. J.

    2014-10-10

    We present a detailed spectroscopic analysis of 61 low-mass white dwarfs and provide precise atmospheric parameters, masses, and updated binary system parameters based on our new model atmosphere grids and the most recent evolutionary model calculations. For the first time, we measure systematic abundances of He, Ca, and Mg for metal-rich, extremely low mass white dwarfs and examine the distribution of these abundances as a function of effective temperature and mass. Based on our preliminary results, we discuss the possibility that shell flashes may be responsible for the presence of the observed He and metals. We compare stellar radii derived from our spectroscopic analysis to model-independent measurements and find good agreement except for white dwarfs with T {sub eff} ? 10,000 K. We also calculate the expected gravitational wave strain for each system and discuss their significance to the eLISA space-borne gravitational wave observatory. Finally, we provide an update on the instability strip of extremely low mass white dwarf pulsators.