Powered by Deep Web Technologies
Note: This page contains sample records for the topic "binary cycle technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Binary Cycle Power Plant | Open Energy Information  

Open Energy Info (EERE)

Binary Cycle Power Plant Binary Cycle Power Plant (Redirected from Binary) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Binary Cycle Power Plant General List of Binary Plants Binary power plant process diagram - DOE EERE 2012 Binary cycle geothermal power generation plants differ from Dry Steam and Flash Steam systems in that the water or steam from the geothermal reservoir never comes in contact with the turbine/generator units. Low to moderately heated (below 400°F) geothermal fluid and a secondary (hence, "binary") fluid with a much lower boiling point that water pass through a heat exchanger. Heat from the geothermal fluid causes the secondary fluid to flash to vapor, which then drives the turbines and subsequently, the generators. Binary cycle power plants are closed-loop systems and virtually nothing

2

Binary Cycle Power Plant | Open Energy Information  

Open Energy Info (EERE)

Binary Cycle Power Plant Binary Cycle Power Plant (Redirected from Binary Cycle Power Plants) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Binary Cycle Power Plant General List of Binary Plants Binary power plant process diagram - DOE EERE 2012 Binary cycle geothermal power generation plants differ from Dry Steam and Flash Steam systems in that the water or steam from the geothermal reservoir never comes in contact with the turbine/generator units. Low to moderately heated (below 400°F) geothermal fluid and a secondary (hence, "binary") fluid with a much lower boiling point that water pass through a heat exchanger. Heat from the geothermal fluid causes the secondary fluid to flash to vapor, which then drives the turbines and subsequently, the generators.

3

Binary Cycle Power Plant | Open Energy Information  

Open Energy Info (EERE)

GEOTHERMAL ENERGYGeothermal Home GEOTHERMAL ENERGYGeothermal Home Binary Cycle Power Plant General List of Binary Plants Binary power plant process diagram - DOE EERE 2012 Binary cycle geothermal power generation plants differ from Dry Steam and Flash Steam systems in that the water or steam from the geothermal reservoir never comes in contact with the turbine/generator units. Low to moderately heated (below 400°F) geothermal fluid and a secondary (hence, "binary") fluid with a much lower boiling point that water pass through a heat exchanger. Heat from the geothermal fluid causes the secondary fluid to flash to vapor, which then drives the turbines and subsequently, the generators. Binary cycle power plants are closed-loop systems and virtually nothing (except water vapor) is emitted to the atmosphere. Resources below 400°F

4

Changes related to "A Flashing Binary Combined Cycle For Geothermal...  

Open Energy Info (EERE)

Twitter icon Changes related to "A Flashing Binary Combined Cycle For Geothermal Power Generation" A Flashing Binary Combined Cycle For Geothermal Power Generation...

5

Improving the efficiency of binary cycles  

SciTech Connect

The performance of binary geothermal power plants can be improved through the proper choice of a working fluid, and optimization of component designs and operating conditions. This paper summarizes the investigations at the Idaho National Engineering Laboratory (INEL) which are examining binary cycle performance improvements for moderate temperature (350 to 400 F) resources. These investigations examine performance improvements resulting from the supercritical vaporization and countercurrent integral condensation of mixed hydrocarbon working fluids, as well as the modification of the turbine inlet state points to achieve supersaturated turbine vapor expansions. For resources, with the brine outlet temperature restricted, the use of turbine exhaust recuperators is examined. The reference plant used to determine improvements in plant performance in these studies operates at conditions similar to the 45 MW Heber binary plant. The brine effectiveness (watt-hours per pound of brine) is used as an indicator for improvements in performance. The performance of the binary cycle can be improved by 25 to 30% relative to the reference plant through the selection of the optimum working fluids and operating conditions, achieving countercurrent integral condensation, and allowing supersaturated vapor expansions in the turbine. 9 refs., 5 figs.

Mines, G.L.; Bliem, C.J.

1988-01-01T23:59:59.000Z

6

A Flashing Binary Combined Cycle For Geothermal Power Generation | Open  

Open Energy Info (EERE)

Flashing Binary Combined Cycle For Geothermal Power Generation Flashing Binary Combined Cycle For Geothermal Power Generation Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: A Flashing Binary Combined Cycle For Geothermal Power Generation Details Activities (0) Areas (0) Regions (0) Abstract: The performance of a flashing binary combined cycle for geothermal power generation is analysed. It is proposed to utilize hot residual brine from the separator in flashing-type plants to run a binary cycle, thereby producing incremental power. Parametric variations were carried out to determine the optimum performance of the combined cycle. Comparative evaluation with the simple flashing plant was made to assess its thermodynamic potential and economic viability. Results of the analyses indicate that the combined cycle can generate 13-28% more power than the

7

Pages that link to "A Flashing Binary Combined Cycle For Geothermal...  

Open Energy Info (EERE)

Twitter icon Pages that link to "A Flashing Binary Combined Cycle For Geothermal Power Generation" A Flashing Binary Combined Cycle For Geothermal Power Generation...

8

Building Technologies Office: Life Cycle Inventory Database  

NLE Websites -- All DOE Office Websites (Extended Search)

Life Cycle Inventory Database to someone by E-mail Share Building Technologies Office: Life Cycle Inventory Database on Facebook Tweet about Building Technologies Office: Life...

9

Relative performance of supercritical binary geothermal power cycles with in-tube condensors in different orientations  

DOE Green Energy (OSTI)

The Heat Cycle Research Program, which is conducted for the Department of Energy, has as its objective the development of the technology for effecting the improved utilization of moderate temperature geothermal resources. The current testing involves the investigation of the performance of binary power cycles utilizing mixtures of non-adjacent hydrocarbons as the working fluids, with supercritical vaporization and in-tube condensation. The utilization of these concepts will improve the net geofluid effectiveness (net plant output per unit mass of geofluid) about 20% over that of a conventional binary power plant. The major prerequisite for this improvement is the achievement of integral, countercurrent condensation. Results are presented for testing of the performance of the condenser at different tube inclinations. The performance in the vertical orientation is better than in either the horizontal or inclined orientations. 7 refs., 8 figs.

Bliem, C.J.; Mines, G.L.

1989-01-01T23:59:59.000Z

10

Technology development life cycle processes.  

SciTech Connect

This report and set of appendices are a collection of memoranda originally drafted in 2009 for the purpose of providing motivation and the necessary background material to support the definition and integration of engineering and management processes related to technology development. At the time there was interest and support to move from Capability Maturity Model Integration (CMMI) Level One (ad hoc processes) to Level Three. As presented herein, the material begins with a survey of open literature perspectives on technology development life cycles, including published data on %E2%80%9Cwhat went wrong.%E2%80%9D The main thrust of the material presents a rational expose%CC%81 of a structured technology development life cycle that uses the scientific method as a framework, with further rigor added from adapting relevant portions of the systems engineering process. The material concludes with a discussion on the use of multiple measures to assess technology maturity, including consideration of the viewpoint of potential users.

Beck, David Franklin

2013-05-01T23:59:59.000Z

11

THE ROLE OF KOZAI CYCLES IN NEAR-EARTH BINARY ASTEROIDS  

SciTech Connect

We investigate the Kozai mechanism in the context of near-Earth binaries and the Sun. The Kozai effect can lead to changes in eccentricity and inclination of the binary orbit, but it can be weakened or completely suppressed by other sources of pericenter precession, such as the oblateness of the primary body. Through numerical integrations including primary oblateness and three bodies (the two binary components and the Sun), we show that Kozai cycles cannot occur for the closely separated near-Earth binaries in our sample. We demonstrate that this is due to pericenter precession around the oblate primary, even for very small oblateness values. Since the majority of observed near-Earth binaries are not well separated, we predict that Kozai cycles do not play an important role in the orbital evolution of most near-Earth binaries. For a hypothetical wide binary modeled after 1998 ST27, the separation is large at 16 primary radii and so the orbital effects of primary oblateness are lessened. For this wide binary, we illustrate the possible excursions in eccentricity and inclination due to Kozai cycles as well as depict stable orientations for the binary's orbital plane. Unstable orientations lead to collisions between binary components, and we suggest that the Kozai effect acting in wide binaries may be a route to the formation of near-Earth contact binaries.

Fang, Julia; Margot, Jean-Luc [Department of Physics and Astronomy, University of California, Los Angeles, CA 90095 (United States)

2012-03-15T23:59:59.000Z

12

Heber Binary-Cycle Geothermal Demonstration Power Plant, Half-Load Testing, Performance, and Thermodynamics  

Science Conference Proceedings (OSTI)

In its second year of operation, the Heber binary-cycle geothermal demonstration plant met design expectations for part-load operation. The plant, located in Heber, California, also demonstrated the environmental acceptability and design thermodynamic performance capabilities of the binary-cycle process.

1988-08-01T23:59:59.000Z

13

User manual for GEOCOST: a computer model for geothermal cost analysis. Volume 2. Binary cycle version  

DOE Green Energy (OSTI)

A computer model called GEOCOST has been developed to simulate the production of electricity from geothermal resources and calculate the potential costs of geothermal power. GEOCOST combines resource characteristics, power recovery technology, tax rates, and financial factors into one systematic model and provides the flexibility to individually or collectively evaluate their impacts on the cost of geothermal power. Both the geothermal reservoir and power plant are simulated to model the complete energy production system. In the version of GEOCOST in this report, geothermal fluid is supplied from wells distributed throughout a hydrothermal reservoir through insulated pipelines to a binary power plant. The power plant is simulated using a binary fluid cycle in which the geothermal fluid is passed through a series of heat exchangers. The thermodynamic state points in basic subcritical and supercritical Rankine cycles are calculated for a variety of working fluids. Working fluids which are now in the model include isobutane, n-butane, R-11, R-12, R-22, R-113, R-114, and ammonia. Thermodynamic properties of the working fluids at the state points are calculated using empirical equations of state. The Starling equation of state is used for hydrocarbons and the Martin-Hou equation of state is used for fluorocarbons and ammonia. Physical properties of working fluids at the state points are calculated.

Huber, H.D.; Walter, R.A.; Bloomster, C.H.

1976-03-01T23:59:59.000Z

14

Overview of recent supercritical binary geothermal cycle experiments from the Heat Cycle Research Program  

DOE Green Energy (OSTI)

The Heat Cycle Research Program, which is being conducted for the Department of Energy, has as its objective the development of the technology for effecting improved utilization of moderate temperature geothermal resources. Testing at the Heat Cycle Research Facility located at the DOE Geothermal Test Facility East Mesa, California involves supercritical vaporization and counterflow in-tube condensing in an organic Rankine cycle. Results of the experiments are given for both pure and mixed-hydrocarbon working fluids. The heater and condenser behavior predicted by the Heat Transfer Research, Inc. computer codes used for correlation of the data was in excellent agreement with experimental results. A special series of tests, conducted with propane and up to approximately 40% isopentane concentration, indicated that a close approach to ''integral'' condensation was occurring in the vertically-oriented condenser. Preliminary results of tests in which the turbine expansion ''passed through the two-phase region'' did not indicate efficiency degradation assignable to these metastable expansion processes.

Demuth, O.J.; Bliem, C.J.; Mines, G.L.; Swank, W.D.

1986-01-01T23:59:59.000Z

15

Resource utilization efficiency improvement of geothermal binary cycles, Phase II. Final report, June 15, 1976--December 31, 1977  

DOE Green Energy (OSTI)

During Phase II of this research program, the following elements of research have been performed: (1) improvement in the conventional geothermal binary cycle simulation computer program, (2) development of a direct contact brine heat exchanger algorithm for the cycle simulation program, (3) development of a preheater algorithm for the cycle simulation program, (4) modification of the basic simulation program to incorporate the staged flash binary cycle, (5) development of a parameter optimization algorithm to aid cycle evaluation studies, (6) sensitivity analysis of cost factors, (7) comparison of pure hydrocarbon and binary mixture cycles.

Starling, K.E.; West, H.; Iqbal, K.Z.; Hsu, C.C.; Malik, Z.I.; Fish, L.W.; Lee, C.O.

1977-01-01T23:59:59.000Z

16

High-Potential Working Fluids for Next Generation Binary Cycle...  

Open Energy Info (EERE)

for trilateral and supercritical cycles will help realize economically viable geothermal power generation from a broader range of resources temperature. Economic power generation...

17

Interim Report: Air-Cooled Condensers for Next Generation Geothermal Power Plants Improved Binary Cycle Performance  

DOE Green Energy (OSTI)

As geothermal resources that are more expensive to develop are utilized for power generation, there will be increased incentive to use more efficient power plants. This is expected to be the case with Enhanced Geothermal System (EGS) resources. These resources will likely require wells drilled to depths greater than encountered with hydrothermal resources, and will have the added costs for stimulation to create the subsurface reservoir. It is postulated that plants generating power from these resources will likely utilize the binary cycle technology where heat is rejected sensibly to the ambient. The consumptive use of a portion of the produced geothermal fluid for evaporative heat rejection in the conventional flash-steam conversion cycle is likely to preclude its use with EGS resources. This will be especially true in those areas where there is a high demand for finite supplies of water. Though they have no consumptive use of water, using air-cooling systems for heat rejection has disadvantages. These systems have higher capital costs, reduced power output (heat is rejected at the higher dry-bulb temperature), increased parasitics (fan power), and greater variability in power generation on both a diurnal and annual basis (larger variation in the dry-bulb temperature). This is an interim report for the task Air-Cooled Condensers in Next- Generation Conversion Systems. The work performed was specifically aimed at a plant that uses commercially available binary cycle technologies with an EGS resource. Concepts were evaluated that have the potential to increase performance, lower cost, or mitigate the adverse effects of off-design operation. The impact on both cost and performance were determined for the concepts considered, and the scenarios identified where a particular concept is best suited. Most, but not all, of the concepts evaluated are associated with the rejection of heat. This report specifically addresses three of the concepts evaluated: the use of recuperation, the use of turbine reheat, and the non-consumptive use of EGS make-up water to supplement heat rejection

Daniel S. Wendt; Greg L. Mines

2010-09-01T23:59:59.000Z

18

Fuel Cycle Technology Documents | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Technology Technology Documents Fuel Cycle Technology Documents January 11, 2013 Strategy for the Management and Disposal of Used Nuclear Fuel and High-Level Radioactive Waste Issued on January 11, 2013, the Strategy for the Management and Disposal of Used Nuclear Fuel and High-Level Radioactive Waste is a framework for moving toward a sustainable program to deploy an integrated system capable of transporting, storing, and disposing of used nuclear fuel and high-level radioactive waste from civilian nuclear power generation, defense, national security and other activities. October 30, 2012 2012 Fuel Cycle Technologies Annual Review Meeting Transaction Report The United States must continue to ensure improvements and access to this technology so we can meet our economic, environmental and energy security

19

Terra-Gen Power and TAS Celebrate Innovative Binary Geothermal Technology |  

Open Energy Info (EERE)

and TAS Celebrate Innovative Binary Geothermal Technology and TAS Celebrate Innovative Binary Geothermal Technology Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Terra-Gen Power and TAS Celebrate Innovative Binary Geothermal Technology Abstract N/A Authors Terra-Gen Power and LLC Published Publisher Not Provided, Date Not Provided DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Terra-Gen Power and TAS Celebrate Innovative Binary Geothermal Technology Citation Terra-Gen Power, LLC. Terra-Gen Power and TAS Celebrate Innovative Binary Geothermal Technology [Internet]. [updated 2011;cited 2011]. Available from: http://www.terra-genpower.com/News/TERRA-GEN-POWER-AND-TAS-CELEBRATE-INNOVATIVE-BINAR.aspx Retrieved from "http://en.openei.org/w/index.php?title=Terra-Gen_Power_and_TAS_Celebrate_Innovative_Binary_Geothermal_Technology&oldid=682514

20

Heber Geothermal Project, binary-cycle demonstration plant. Volume II. Proposal abstract  

SciTech Connect

San Diego Gas and Electric (SDG and E) believes that the binary-cycle offers an improved method of converting moderate temperature geothermal resources into electric power. The process, shown schematically in figure 1-1, has significant advantages over existing methods of geothermal power generation. The advantages of the binary process are that greater amounts of power can be generated from a given resource, fewer wells are needed to support a given power output, and the binary-cycle is expected to be more economical than the flash process for this type of resource. Another advantage is that the binary-cycle is a closed process and thus enhances environmental acceptability. In addition, this process is applicable to a larger range of the nations geothermal reservoirs. It is estimated that 80% of the nation's hydrothermal resources can be classified as moderate temperature (300 to 410 F) resources. The flash process, commonly used to convert high temperature geothermal resources to electric power, is technically feasible for moderate temperature resources. However, when compared to the binary process for moderate temperature applications, the flash process conversion efficiency is lower, environmental impacts may require abatement, and power production costs may not be commercially competitive.

Lacy, R.G.

1979-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "binary cycle technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Heber Geothermal Project, binary-cycle demonstration plant. Volume II. Proposal abstract  

DOE Green Energy (OSTI)

San Diego Gas and Electric (SDG and E) believes that the binary-cycle offers an improved method of converting moderate temperature geothermal resources into electric power. The process, shown schematically in figure 1-1, has significant advantages over existing methods of geothermal power generation. The advantages of the binary process are that greater amounts of power can be generated from a given resource, fewer wells are needed to support a given power output, and the binary-cycle is expected to be more economical than the flash process for this type of resource. Another advantage is that the binary-cycle is a closed process and thus enhances environmental acceptability. In addition, this process is applicable to a larger range of the nations geothermal reservoirs. It is estimated that 80% of the nation's hydrothermal resources can be classified as moderate temperature (300 to 410 F) resources. The flash process, commonly used to convert high temperature geothermal resources to electric power, is technically feasible for moderate temperature resources. However, when compared to the binary process for moderate temperature applications, the flash process conversion efficiency is lower, environmental impacts may require abatement, and power production costs may not be commercially competitive.

Lacy, R.G.

1979-12-01T23:59:59.000Z

22

Modeling and optimization of geothermal power plants using the binary fluid cycle  

SciTech Connect

A computer simulation of a binary fluid cycle power plant for use with geothermal energy sources, and the subsequent optimization of this power plant type over a range of geothermal source conditions are described. The optimization technique employed for this analysis was based upon the principle of maximum use of geothermal energy.

Walter, R.A.

1976-09-01T23:59:59.000Z

23

HUMID AIR TURBINE CYCLE TECHNOLOGY DEVELOPMENT PROGRAM  

SciTech Connect

The Humid Air Turbine (HAT) Cycle Technology Development Program focused on obtaining HAT cycle combustor technology that will be the foundation of future products. The work carried out under the auspices of the HAT Program built on the extensive low emissions stationary gas turbine work performed in the past by Pratt & Whitney (P&W). This Program is an integral part of technology base development within the Advanced Turbine Systems Program at the Department of Energy (DOE) and its experiments stretched over 5 years. The goal of the project was to fill in technological data gaps in the development of the HAT cycle and identify a combustor configuration that would efficiently burn high moisture, high-pressure gaseous fuels with low emissions. The major emphasis will be on the development of kinetic data, computer modeling, and evaluations of combustor configurations. The Program commenced during the 4th Quarter of 1996 and closed in the 4th Quarter of 2001. It teamed the National Energy Technology Laboratory (NETL) with P&W, the United Technologies Research Center (UTRC), and a subcontractor on-site at UTRC, kraftWork Systems Inc. The execution of the program started with bench-top experiments that were conducted at UTRC for extending kinetic mechanisms to HAT cycle temperature, pressure, and moisture conditions. The fundamental data generated in the bench-top experiments was incorporated into the analytical tools available at P&W to design the fuel injectors and combustors. The NETL then used the hardware to conduct combustion rig experiments to evaluate the performance of the combustion systems at elevated pressure and temperature conditions representative of the HAT cycle. The results were integrated into systems analysis done by kraftWork to verify that sufficient understanding of the technology had been achieved and that large-scale technological application and demonstration could be undertaken as follow-on activity. An optional program extended the experimental combustion evaluations to several specific technologies that can be used with HAT technology. After 5 years of extensive research and development, P&W is pleased to report that the HAT Technology Development Program goals have been achieved. With 0 to 10 percent steam addition, emissions achieved during this program featured less than 8 ppm NO{sub x}, less than 16 ppm CO, and unburned hydrocarbons corrected to 15 percent O{sub 2} for an FT8 engine operating between 0 and 120 F with 65 to 100 percent power at any day.

Richard Tuthill

2002-07-18T23:59:59.000Z

24

MHK Technologies/Closed Cycle OTEC | Open Energy Information  

Open Energy Info (EERE)

Closed Cycle OTEC Closed Cycle OTEC < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Closed Cycle OTEC.jpg Technology Profile Primary Organization Marine Development Associates Inc Technology Resource Click here OTEC Technology Type Click here OTEC - Closed Cycle Technology Description Closed Cycle System Technology Dimensions Device Testing Date Submitted 02:50.8 << Return to the MHK database homepage Retrieved from "http://en.openei.org/w/index.php?title=MHK_Technologies/Closed_Cycle_OTEC&oldid=681555" Category: Marine and Hydrokinetic Technologies What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load)

25

Program on Technology Innovation: Summary of the Electricite de France (EDF) Water/Ammonia Binary-Cycle Research Program (CYBIAM) fo r Electricity Production: Summary of the Work Conducted at EDF Research and Development Between 1978 and 1992  

Science Conference Proceedings (OSTI)

This report describes a program, conducted by Electricit de France (EDF) Research and Development (R&D) between 1978 and 1992, aimed at gathering information about and demonstrating the advantages of using an ammonia cycle to replace the low-pressure steam pressure reduction process. It was motivated by the need to limit the size of production facilities along with a constant increase of power delivered per production unit.

2011-12-16T23:59:59.000Z

26

Heber Binary-Cycle Geothermal Demonstration Power Plant: Startup and Low-Power Testing  

Science Conference Proceedings (OSTI)

This 45-MWe demonstration plant, the first of its kind, could lead to full-scale commercial development of moderate temperature hydrothermal resources. In startup, shakedown, and lowpower testing from October 1984 to June 1986, the facility confirmed the feasibility of binary-conversion technology.

1987-11-01T23:59:59.000Z

27

Floating dry cooling: a competitive alternative to evaporative cooling in a binary cycle geothermal power plant  

DOE Green Energy (OSTI)

The application of the floating cooling concept to non-evaporative and evaporative atmospheric heat rejection systems was studied as a method of improving the performance of geothermal powerplants operating upon medium temperature hydrothermal resources. The LBL thermodynamic process computer code GEOTHM is used in the case study of a 50 MWe isobutane binary cycle power plant at Heber, California. It is shown that operating a fixed capacity plant in the floating cooling mode can generate significantly more electrical energy at a higher thermodynamic efficiency and reduced but bar cost for approximately the same capital investment. Floating cooling is shown to benefit a plant which is dry cooled to an even greater extent than the same plant operating with an evaporative heat rejection system. Results of the Heber case study indicate that a dry floating cooling geothermal binary cycle plant can produce energy at a bus bar cost which is competitive with the cost of energy associated with evaporatively cooled systems.

Pines, H.S.; Green, M.A.; Pope, W.L.; Doyle, P.A.

1978-07-01T23:59:59.000Z

28

Next Generation Geothermal Power Plants (NGGPP) process data for binary cycle plants  

DOE Green Energy (OSTI)

The Next Generation Geothermal Power Plants (NGGPP) study provides the firm estimates - in the public domain - of the cost and performance of U.S. geothermal systems and their main components in the early 1990s. The study was funded by the U.S. Department of Energy Geothermal Research Program, managed for DOE by Evan Hughes of the Electric Power Research Institute, Palo Alto, CA, and conducted by John Brugman and others of the CE Holt Consulting Firm, Pasadena, CA. The printed NGGPP reports contain detailed data on the cost and performance for the flash steam cycles that were characterized, but not for the binary cycles. The nine Tables in this document are the detailed data sheets on cost and performance for the air cooled binary systems that were studied in the NGGPP.

Not Available

1996-10-02T23:59:59.000Z

29

Analysis of direct contact binary cycles for geothermal power generation (program DIRGEO)  

DOE Green Energy (OSTI)

A computer program was produced which would analyze a direct-contact binary fluid power plant as conceived for geothermal applications. The current cycle consists of a direct-contact boiler, binary vapor mixture turbine, parallel flow liquid-liquid preheaters, pumps, flash expander and a condenser. The program computes important design parameters which allow the user to select the optimum operating condition for a particular well. The program allows for the evaluation of cycles utilizing liquid hydrocarbons and fluorocarbons as secondary fluids. A complete description of the executive program including flow charts, program listings and variable symbol tables is contained. A sample run of the main program completes the description of its use.

Riemer, D.H.; Jacobs, H.R.; Boehm, R.F.

1976-09-01T23:59:59.000Z

30

Environmental assessmental, geothermal energy, Heber geothermal binary-cycle demonstration project: Imperial County, California  

DOE Green Energy (OSTI)

The proposed design, construction, and operation of a commercial-scale (45 MWe net) binary-cycle geothermal demonstration power plant are described using the liquid-dominated geothermal resource at Heber, Imperial County, California. The following are included in the environmental assessment: a description of the affected environment, potential environmental consequences of the proposed action, mitigation measures and monitoring plans, possible future developmental activities at the Heber anomaly, and regulations and permit requirements. (MHR)

Not Available

1980-10-01T23:59:59.000Z

31

Raft River binary-cycle geothermal pilot power plant final report  

DOE Green Energy (OSTI)

The design and performance of a 5-MW(e) binary-cycle pilot power plant that used a moderate-temperature hydrothermal resource, with isobutane as a working fluid, are examined. Operating problems experienced and solutions found are discussed and recommendations are made for improvements to future power plant designs. The plant and individual systems are analyzed for design specification versus actual performance figures.

Bliem, C.J.; Walrath, L.F.

1983-04-01T23:59:59.000Z

32

Analysis of binary thermodynamic cycles for a moderately low-temperature geothermal resource  

DOE Green Energy (OSTI)

Analyses of a number of geothermal binary-cycles were made with the objective of finding a cycle which can produce low-cost electrical energy from a moderately low-temperature geothermal resource. Cycles were screened which included isobutane, pentane, cis-2-butene, and several mixed-hydrocarbon working fluids. Dual- and triple-boiling cycles were analyzed. Both shell-and-tube and direct-contact boilers, heaters, and condensers were assessed. A geothermal fluid (geo-fluid), typical of Raft River resource conditions was assumed, which has a temperature of 290/sup 0/F and 52 parts per million dissolved nitrogen. Special emphasis in the analyses was directed toward investigation of several methods for keeping the loss of working fluid for the cycle at an acceptable level. It was concluded that for the Raft River geo-fluid, the direct-contact cycle has a potential for net geofluid utilization effectiveness values, (watt-hr/lbm geo-fluid) equivalent to those of the shell-and-tube cycle. Therefore, because of the lower cost of direct-contact components, a potential exists for the direct-contact plant to produce lower cost electrical energy than a comparable shell-and-tube plant. Advanced cycles were assessed which showed improvements in net geo-fluid utilization effectivness, relative to the first Raft River 5-MW Pilot Plant (dual-boiling, shell-and-tube isobutane cycle), of up to 19%.

Demuth, O.J.

1979-07-01T23:59:59.000Z

33

Development of Geothermal Binary Cycle Working Fluid Properties Information and Analysis of Cycles  

DOE Green Energy (OSTI)

The research discussed in this report was performed at the University of Oklahoma during the period January 1, 1979 through December 31, 1979. Efforts were directed principally to the following tasks: (1) comparisons of mixture and pure fluid cascade cycles, (2) development of guidelines for working fluid selection for single boiler cycles, (3) continued evaluation of mixtures as working fluids, (4) working fluid thermophysical property correlation and presentations of properties information.

Starling, Kenneth E.; Iqbal, K.Z.; Malik, Z.I.; Chu, C.T.; Ramaswamy, S.; Kumar, K.H.; Lee, T. J.; Brule, M.R.; Aly, F.; Brunsman, K.J.; Plumb, P.

1979-12-31T23:59:59.000Z

34

Fuel Cycle Science & Technology | Nuclear Science | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Fuel Cycle Systems Radiochemical Separation & Processing Recycle & Waste Management Uranium Enrichment Used Nuclear Fuel Storage, Transportation, and Disposal Fusion Nuclear Science Isotope Development and Production Nuclear Security Science & Technology Nuclear Systems Modeling, Simulation & Validation Nuclear Systems Technology Reactor Technology Nuclear Science Home | Science & Discovery | Nuclear Science | Research Areas | Fuel Cycle Science & Technology SHARE Fuel Cycle Science and Technology The ORNL expertise and experience across the entire nuclear fuel cycle is underpinned by extensive facilities and a comprehensive modeling and simulation capability ORNL supports the understanding, development, evaluation and deployment of

35

Investigation of heat exchanger flow arrangement on performance and cost in a geothermal binary cycle  

DOE Green Energy (OSTI)

The performance of an idealized geothermal binary-fluid-cycle energy conversion system is shown to be a function of the temperatures of brine and working fluid leaving the heat exchanger. System power output, heat exchanger area required and initial well and heat exchanger costs are determined for counterflow, single and multi-pass parallel-counterflow exchangers. Results are presented graphically as functions of the brine and working fluid exit temperatures from the exchanger. Use of the system analysis developed is illustrated by showing quantitatively the advantage of the counterflow over the other flow arrangements considered.

Giedt, W.H.

1976-06-15T23:59:59.000Z

36

Geothermal binary-cycle working-fluid properties information. Annual report  

DOE Green Energy (OSTI)

The research discussed was performed prior to December 31, 1979. The report was not released until September 30, 1981, so that pressure-enthalpy diagrams for a number of potential geothermal binary cycle working fluids could be prepared in SI units. Efforts were directed principally to working fluid thermophysical property correlation and presentation of properties information. Pressure-enthalpy diagrams are presented for propane, normal butane, isobutane, normal pentane, isopentane and propylene. Generalized correlations are presented for the thermodynamic and transport properties of hydrocarbon pure and mixture working fluids. Specific correlations are presented for the thermodynamic properties of 27 fluids and for the viscosity and thermal conductivity of hydrocarbons including isobutane and isopentane.

Starling, K.E.; Kumar, K.H.; Malik, Z.I.; Batson, B.; Plumb, P.

1981-09-30T23:59:59.000Z

37

NREL: Energy Analysis - Life Cycle Assessments of Energy Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Life Cycle Assessments of Energy Technologies Life Cycle Assessments of Energy Technologies Learn about how NREL research analysts are evaluating various LCA studies in the Life Cycle Analysis Harmonization Project. NREL is a leader in the field of life cycle assessment (LCA) of energy technologies, both renewable and conventional. Life cycle assessment is a standardized technique that tracks all material, energy, and pollutant flows of a system-from raw material extraction, manufacturing, transport, and construction to operation and end-of-life disposal. Life cycle assessment can help determine environmental burdens from "cradle to grave" and facilitate comparisons of energy technologies. Life cycle assessments provide a well-established and comprehensive framework to compare renewable energy technologies with fossil-based and

38

MHK Technologies/Kalina Cycle OTEC | Open Energy Information  

Open Energy Info (EERE)

Kalina Cycle OTEC Kalina Cycle OTEC < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Kalina Cycle OTEC.jpg Technology Profile Primary Organization Ocean Engineering and Energy Systems Technology Resource Click here OTEC Technology Type Click here OTEC - Closed Cycle Technology Description Kalina Cycle The Kalina Cycle is a variation of the more conventional closed cycle OTEC system incorporating aqueous ammonia ammonia water mixture as the working fluid instead of the conventional ammonia or propylene working fluid employed in earlier designs of closed cycle OTEC power systems The Kalina Cycle is a break through technology for OTEC power systems providing a nearly 80 increase in efficiency over previous closed cycle designs Because the ammonia water concentrations can be varied throughout the system to optimize according to system temperatures sort of a designer working fluid and by adding an extra component the recuperator heat losses generally experienced in other closed cycle designs can be minimized and recovered thereby improving the overall efficiency of the power cycle

39

Resource utilization efficiency improvement of geothermal binary cycles, phase I. Semiannual progress report, June 15, 1975--December 15, 1975  

DOE Green Energy (OSTI)

A summary of the research carried out prior to the start and during the first half of this project is presented. A description of the geothermal binary cycle and procedures for cycle thermodynamic analysis focusing on the question of resource utilization are discussed. General and specific criteria for preliminary selection of working fluids and operating conditions for binary cycles are considered in terms of equipment and working fluid costs and in terms of resource utilization efficiency. Steps are given for preliminary binary cycle design computations. Preliminary evaluations of alternative pure working fluid, ideal thermodynamic cycles are illustrated. The development of the working fluid mixture thermodynamic cycle, GEO 1, using the improved versions of previously developed thermodynamic properties routines was the first of several significant accomplishments during the first half of this project. Documentation of the thermodynamic properties program which can calculate densities, enthalpies, entropies, heat capacities, K-values for vapor and liquid mixtures (limited presently to hydrocarbons), flashes, dew and bubble points, isentropic and isenthalpic state changes, has been completed. Preliminary calculations using GEO 1 have indicated that mixture cycles yield greater net power output than either pure propane, isobutane, or isopentane cycles when equal heat exchanger log mean temperature differences are considered and also when optimized ideal cycles are compared. Steps to upgrade GEO 1 with equipment sizing and economics routines to produce GEO 2 and GEO 3 simulators were begun.

Starling, K.E.; Fish, L.W.; Iqbal, K.Z.; Yieh, D.

1975-01-01T23:59:59.000Z

40

Preliminary performance estimates of binary geothermal cycles using mixed-halocarbon working fluids  

DOE Green Energy (OSTI)

The performance of Rankine cycle binary systems for power generation using a hydrothermal resource has been investigated as a part of the DOE/GTD Heat Cycle Research Program. To date mixtures of paraffin-type hydrocarbons and water-ammonia mixtures have been investigated. This report gives the first results of the consideration of mixtures of halocarbons as working fluids in these power cycles. The performance of mixtures of Refrigerant-114 (R-114) and Refrigerant-22 (R-22) in combinations from pure R-114 to pure R-22 was calculated for such cycles. Various alternatives were considered: (1) minimum geofluid outlet temperature constraint/no constraint, (2) dry turbine expansion/expansion through vapor dome, (3) use of a turbine exhaust gas recuperator/no recuperator. Results of the study indicate that the halocarbon mixtures are at least as good as the hydrocarbon mixtures previously analyzed for a 360/sup 0/F resource. The magnitude of the net geofluid effectiveness (net energy produced per unit mass geofluid flow) for the R-114/R-22 mixtures is the same as for the best hydrocarbon mixtures previously analyzed. The percentage improvement in effectiveness in using mixtures over using the pure fluids as working fluids is comparable for both classes of working fluids. Recommendations are made to continue investigation of the halocarbon mixtures as possible alternatives to the hydrocarbon working fluids.

Bliem, C.J.

1986-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "binary cycle technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

MHK Technologies/Open Cycle OTEC | Open Energy Information  

Open Energy Info (EERE)

OTEC OTEC < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Open Cycle OTEC.jpg Technology Profile Primary Organization Ocean Engineering and Energy Systems Technology Resource Click here OTEC Technology Type Click here OTEC - Open Cycle Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description Closed Cycle OTEC In the closed cycle OTEC system warm seawater vaporizes a working fluid such as ammonia flowing through a heat exchanger evaporator The vapor expands at moderate pressures and turns a turbine coupled to a generator that produces electricity The vapor is then condensed in another heat exchanger condenser using cold seawater pumped from the ocean s depths through a cold water pipe The condensed working fluid is pumped back to the evaporator to repeat the cycle The working fluid remains in a

42

Fuel Cycle Comparison of Distributed Power Generation Technologies  

E-Print Network (OSTI)

, as well as for coal and natural gas grid-generation technologies, are provided as baseline cases Cycle Power Plants 14.9 33.1 Natural Gas Turbine, Combined Cycle Power Plants 18.3 46.0 Coal comparable to the total energy use associated with the natural gas and coal grid-generation technologies

Argonne National Laboratory

43

Zeotropic mixtures of halocarbons as working fluids in binary geothermal power generation cycles  

DOE Green Energy (OSTI)

The performance of Rankine cycle binary systems for geothermal power generation using a hydrothermal resource has been investigated. To date, in addition to many pure fluids, mixtures of Paraffin-type hydrocarbons and water-ammonia mixtures have been investigated. This paper gives the results of consideration of mixtures of halocarbons as working fluids in these power cycles. The performance of mixtures of Refrigerant-114 (R-114) and Refrigerant-22 (R-22) in combinations from pure R-114 to pure R-22 was calculated for such cycles. Various alternatives were considered: (1) minimum geofluid outlet temperature constraint/no constraint, (2) dry turbine expansion/expansion through vapor dome, and (3) use of turbine exhaust gas recuperator/no recuperator. Results of the study indicate that the halocarbon mixtures are at least as good as the hydrocarbon mixtures previously analyzed for a 360 F resource. The magnitude of the net geofluid effectiveness (net energy produced per unit mass geofluid flow) for the R-114/R-22 mixtures is the same as for the best hydrocarbon mixture previously analyzed. The percentage improvement in effectiveness in using mixtures over using the pure fluids as working fluids is comparable for both classes of working fluids.

Bliem, C.J.

1987-01-01T23:59:59.000Z

44

Effect of Mixed Working Fluid Composition on Binary Cycle Condenser Heat Transfer Coefficients  

DOE Green Energy (OSTI)

Effect of Mixed Working Fluid Composition on Binary Cycle Condenser Heat Transfer Coefficients Dan Wendt, Greg Mines Idaho National Laboratory The use of mixed working fluids in binary power plants can provide significant increases in plant performance, provided the heat exchangers are designed to take advantage of these fluids non-isothermal phase changes. In the 1980's testing was conducted at DOE's Heat Cycle Research Facility (HCRF) where mixtures of different compositions were vaporized at supercritical pressures and then condensed. This testing had focused on using the data collected to verify that Heat Transfer Research Incorporated (HTRI) codes were suitable for the design of heat exchangers that could be used with mixtures. The HCRF data includes mixture compositions varying from 0% to 40% isopentane and condenser tube orientations of 15{sup o}, 60{sup o}, and 90{sup o} from horizontal. Testing was performed over a range of working fluid and cooling fluid conditions. Though the condenser used in this testing was water cooled, the working fluid condensation occurred on the tube-side of the heat exchanger. This tube-side condensation is analogous to that in an air-cooled condenser. Tube-side condensing heat transfer coefficient information gleaned from the HCRF testing is used in this study to assess the suitability of air-cooled condenser designs for use with mixtures. Results of an air-cooled binary plant process model performed with Aspen Plus indicate that that the optimal mixture composition (producing the maximum net power for the scenario considered) is within the range of compositions for which data exist. The HCRF data is used to assess the impact of composition, tube orientation, and process parameters on the condensing heat transfer coefficients. The sensitivity of the condensing coefficients to these factors is evaluated and the suitability of air-cooled condenser designs with mixtures is assessed. This paper summarizes the evaluation of the HCRF data and discusses the next steps in the project evaluation of air-cooled condenser designs that can take advantage of the performance gains possible with these fluids.

Dan Wendt; Greg Mines

2011-10-01T23:59:59.000Z

45

IDENTIFICATION AND EXPERIMENTAL DATABASE FOR BINARY AND MULTICOMPONENT MIXTURES WITH POTENTIAL FOR INCREASING OVERALL CYCLE EFFICIENCY  

SciTech Connect

This report describes an experimental investigation designed to identify binary and multicomponent mixture systems that may be for increasing the overall efficiency of a coal fired unit by extracting heat from flue gases. While ammonia-water mixtures have shown promise for increasing cycle efficiencies in a Kalina cycle, the costs and associated range of thermal conditions involved in a heat recovery system may prohibit its use in a relatively low temperature heat recovery system. This investigation considered commercially available non-azeotropic binary mixtures with a boiling range applicable to a flue gas initially at 477.6 K (400 F) and developed an experimental database of boiling heat transfer coefficients for those mixtures. In addition to their potential as working fluids for increasing cycle efficiency, cost, ease of handling, toxicity, and environmental concerns were considered in selection of the mixture systems to be examined experimentally. Based on this review, water-glycol systems were identified as good candidates. However, previous investigations of mixture boiling have focused on aqueous hydrocarbon mixtures, where water is the heaviest component. There have been few studies of water-glycol systems, and those that do exist have investigated boiling on plain surfaces only. In water-glycol systems, water is the light component, which makes these systems unique compared to those that have been previously examined. This report examines several water-glycol systems, and documents a database of experimental heat transfer coefficients for these systems. In addition, this investigation also examines the effect of an enhanced surface on pool boiling in water-glycol mixtures, by comparing boiling on a smooth surface to boiling on a Turbo IIIB. The experimental apparatus, test sections, and the experimental procedures are described. The mixture systems tested included water-propylene glycol, water-ethylene glycol, and water-diethylene glycol. All experimental data were obtained at atmospheric pressure with the test section oriented horizontally. The effect of subcooling in pool boiling of mixtures is another area that has received limited attention. Therefore, experimental data were obtained for the water-propylene glycol and water-ethylene glycol systems for subcoolings ranging from 0 to 30 C. The experimental data showed that boiling heat transfer coefficients were found to have significant degradation due to the mixture effect for each of the water-glycol systems examined. This result is consistent with previous studies which examined water-hydrocarbon mixtures with large boiling ranges. The Turbo BIII surface was found to significantly increase heat transfer in each mixture and pure component in comparison to that for the smooth surface.

Stephen M Bajorek; J. Schnelle

2002-05-01T23:59:59.000Z

46

Fuel Cycle Comparison for Distributed Power Technologies  

Fuel Cell Technologies Publication and Product Library (EERE)

This report examines backup power and prime power systems and addresses the potential energy and environmental effects of substituting fuel cells for existing combustion technologies based on microtur

47

Technology Assessment Report: Duty Cycling Controllers Revisited  

SciTech Connect

This report covers an assessment of two brands of energy management controllers that are currently being offered that utilize the principle of duty cycling to purportedly save energy for unitary air conditioners and heat pumps, gas furnaces, and gas fired boilers. The results of an extensive review of past research on this subject as well as a review of vendor sponsored field testing of these controllers compares these newer controllers to those of the past. Included also is a discussion of how the duty cycling principle is prone to misinterpretation as to its potential to save energy.

Webster, Tom; Benenson, Peter

1998-05-01T23:59:59.000Z

48

A Kalina cycle technology and its applications  

SciTech Connect

A thermodynamic cycle with variation in the composition of the working fluid used in the process has been developed. The additional degree of freedom of design due to the variation in the composition of the working fluid provides superior efficiency for several diversified applications such as industrial waste-heat recovery, geothermal, fuel-fired power plants, and others.

Kalina, A.I.

1986-01-01T23:59:59.000Z

49

2011 Fuel Cycle Technologies Annual Review Meeting | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1 Fuel Cycle Technologies Annual Review Meeting 1 Fuel Cycle Technologies Annual Review Meeting 2011 Fuel Cycle Technologies Annual Review Meeting As the largest domestic source of low-carbon energy, nuclear power is making major contributions toward meeting our nation's current and future energy demands. The United States must continue to ensure improvements and access to this technology so we can meet our economic, environmental and energy security goals. We rely on nuclear energy because it provides a consistent, reliable and stable source of base load electricity with an excellent safety record in the United States. To support nuclear energy's continued and expanded role in our energy platform, therefore, the United States must continually improve its knowledge, technology, and policy in order to:

50

2012 Fuel Cycle Technologies Annual Review Meeting Transaction Report |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fuel Cycle Technologies Annual Review Meeting Transaction Fuel Cycle Technologies Annual Review Meeting Transaction Report 2012 Fuel Cycle Technologies Annual Review Meeting Transaction Report The United States must continue to ensure improvements and access to this technology so we can meet our economic, environmental and energy security goals. We rely on nuclear energy because it provides a consistent, reliable and stable source of base load electricity with an excellent safety record in the United States. In order to continue or expand the role for nuclear power in our long- term energy platform, the United States must: Continually improve the safety and security of nuclear energy and its associated technologies worldwide. Develop solutions for the transportation, storage, and long-term disposal of used nuclear fuel and associated wastes.

51

Gas Turbine Technology, Part A: Overview, Cycles, and Thermodynamic Performance  

E-Print Network (OSTI)

The growth of cogeneration technology has accelerated in recent years, and it is estimated that fifty percent of the cogeneration market will involve gas turbines. To several energy engineers, gas turbine engines present a new and somewhat perplexing prime mover. This paper (Parts A & B) intends to treat the area of gas turbine technology to provide a broad overview and understanding of this subject. This paper (Part A) covers the basics of gas turbine cycles, thermodynamics and performance considerations that are important in cogeneration. Simple, regenerative and combined cycles will be discussed, along with important performance losses (inlet and exit losses and part load operation). Waste heat recovery, as it relates to gas turbine performance, will also be discussed. This paper will provide the basic equations enabling quick computations to be made. Topics such as typical efficiencies, evaporative cooling costs, emissions, etc. will be discussed. A brief discussion of advanced cycles such as the dual fluid cycle and close cycles is also made.

Meher-Homji, C. B.; Focke, A. B.

1985-05-01T23:59:59.000Z

52

Nuclear Fuel Cycle and Waste Management Technologies - Nuclear Engineering  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Fuel Cycle and Nuclear Fuel Cycle and Waste Management Technologies Nuclear Fuel Cycle and Waste Management Technologies Overview Modeling and analysis Unit Process Modeling Mass Tracking System Software Waste Form Performance Modeling Safety Analysis, Hazard and Risk Evaluations Development, Design, Operation Overview Systems and Components Development Expertise System Engineering Design Other Major Programs Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE Division on Flickr Nuclear Fuel Cycle and Waste Management Technologies Overview Bookmark and Share Much of the NE Division's research is directed toward developing software and performing analyses, system engineering design, and experiments to support the demonstration and optimization of the electrometallurgical

53

Solid looping cycles: A new technology for coal conversion  

SciTech Connect

This article examines both oxygen looping cycles (otherwise known as chemical looping combustion), and lime-based CO{sub 2} looping cycles, where calcined limestone is used for in situ CO{sub 2} capture. There has been a rapid rise in the amount of research carried out recently, and both technologies are likely to see practical application in the near future. However, these technologies urgently require demonstration at the large pilot-plant level - in the case of chemical looping cycles for use with high-pressure syngas of the type likely to be produced by current coal gasification technologies and in the case of CO{sub 2} looping cycles both for combustion and gasification applications with coal. Both approaches have potential for application in schemes for H{sub 2} production, but these have not been considered here, although such applications will also inevitably follow in the medium to long term.

Anthony, E.J. [CANMET Energy Technology Centre Ottawa, Ottawa, ON (Canada). Natural Resources Canada

2008-03-19T23:59:59.000Z

54

System Design and Experimental Development of the Kalina Cycle Technology  

E-Print Network (OSTI)

For any given heat source, only a portion of the thermal energy may be converted into useful work. The amount of energy which may be converted from any form into mechanical energy is referred to as exergy. The ratio of the system's mechanical work to the exergy of the heat source is referred to as exergetical or thermodynamic efficiency. As heat sources vary in their temperature and heat exchange process, there is a particular thermodynamic cycle that best fits each system's border conditions. The Kalina cycle technology seeks to develop a set of systems and cycles with which to optimize a particular heat source; e.g., coal, geothermal, waste heat, nuclear, etc.

Kalina, A. I.

1987-09-01T23:59:59.000Z

55

Transmaterialization: technology and materials demand cycles  

SciTech Connect

Recently concern has risen worldwide regarding the issue of declining materials demand which has been termed dematerialization. A summary of the issues involved appears in the proceedings of the recent conference on metals demand published in Materials and Society (1986). Dematerialization refers to the constant decline in use of materials as a percentage of total production. Dematerialization implies a structural change in an economy, indicating a reduced demand for materials and, therefore, a decline in overall industrial growth. This paper proposes that, instead of dematerialization in the US material markets, the demand change that has been occurring can be more aptly described as transmaterialization. Transmaterialization implies a recurring industrial transformation in the way that economic societies use materials, a process that has occurred regularly or cyclically throughout history. Instead of a once and for all structural change as implied by dematerialization, transmaterialization suggests that minerals demand experiences phases in which old, lower-quality materials linked to mature industries undergo replacement periodically by higher-quality or technologically-more-appropriate materials. The latter, as of recent, tend to be lighter materials with more robust technical properties than those being replaced.

Waddell, L.M.; Labys, W.C.

1988-01-01T23:59:59.000Z

56

Integrated gasification combined cycle -- A review of IGCC technology  

SciTech Connect

Over the past three decades, significant efforts have been made toward the development of cleaner and more efficient technology for power generation. Coal gasification technology received a big thrust with the concept of combined cycle power generation. The integration of coal gasification with combined cycle for power generation (IGCC) had the inherent characteristic of gas cleanup and waste minimization, which made this system environmentally preferable. Commercial-scale demonstration of a cool water plant and other studies have shown that the greenhouse gas and particulates emission from an IGCC plant is drastically lower than the recommended federal New Source Performance Standard levels. IGCC also offers a phased construction and repowering option, which allows multiple-fuel flexibility and the necessary economic viability. IGCC technology advances continue to improve efficiency and further reduce the emissions, making it the technology of the 21st century.

Joshi, M.M.; Lee, S. [Univ. of Akron, OH (United States)

1996-07-01T23:59:59.000Z

57

Turbine Cycle Heat Rate Monitoring: Technology and Application  

Science Conference Proceedings (OSTI)

Research has been completed on available technology for monitoring turbine cycle heat rate and factors affecting the successful deployment of this technology in fossil generating plants. Information has been gathered from interviews with experienced industry plant staff and vendors. Trends were noted and are described in this report. The report is recommended as guidance for power generation fleets and individual plants seeking to establish a successful program for heat rate reduction.

2006-12-20T23:59:59.000Z

58

Technology Insights and Perspectives for Nuclear Fuel Cycle Concepts  

SciTech Connect

The following report provides a rich resource of information for exploring fuel cycle characteristics. The most noteworthy trends can be traced back to the utilization efficiency of natural uranium resources. By definition, complete uranium utilization occurs only when all of the natural uranium resource can be introduced into the nuclear reactor long enough for all of it to undergo fission. Achieving near complete uranium utilization requires technologies that can achieve full recycle or at least nearly full recycle of the initial natural uranium consumed from the Earth. Greater than 99% of all natural uranium is fertile, and thus is not conducive to fission. This fact requires the fuel cycle to convert large quantities of non-fissile material into fissile transuranics. Step increases in waste benefits are closely related to the step increase in uranium utilization going from non-breeding fuel cycles to breeding fuel cycles. The amount of mass requiring a disposal path is tightly coupled to the quantity of actinides in the waste stream. Complete uranium utilization by definition means that zero (practically, near zero) actinide mass is present in the waste stream. Therefore, fuel cycles with complete (uranium and transuranic) recycle discharge predominately fission products with some actinide process losses. Fuel cycles without complete recycle discharge a much more massive waste stream because only a fraction of the initial actinide mass is burned prior to disposal. In a nuclear growth scenario, the relevant acceptable frequency for core damage events in nuclear reactors is inversely proportional to the number of reactors deployed in a fuel cycle. For ten times the reactors in a fleet, it should be expected that the fleet-average core damage frequency be decreased by a factor of ten. The relevant proliferation resistance of a fuel cycle system is enhanced with: decreasing reliance on domestic fuel cycle services, decreasing adaptability for technology misuse, enablement of material accountability, and decreasing material attractiveness.

S. Bays; S. Piet; N. Soelberg; M. Lineberry; B. Dixon

2010-09-01T23:59:59.000Z

59

Fuel cycle comparison of distributed power generation technologies.  

DOE Green Energy (OSTI)

The fuel-cycle energy use and greenhouse gas (GHG) emissions associated with the application of fuel cells to distributed power generation were evaluated and compared with the combustion technologies of microturbines and internal combustion engines, as well as the various technologies associated with grid-electricity generation in the United States and California. The results were primarily impacted by the net electrical efficiency of the power generation technologies and the type of employed fuels. The energy use and GHG emissions associated with the electric power generation represented the majority of the total energy use of the fuel cycle and emissions for all generation pathways. Fuel cell technologies exhibited lower GHG emissions than those associated with the U.S. grid electricity and other combustion technologies. The higher-efficiency fuel cells, such as the solid oxide fuel cell (SOFC) and molten carbonate fuel cell (MCFC), exhibited lower energy requirements than those for combustion generators. The dependence of all natural-gas-based technologies on petroleum oil was lower than that of internal combustion engines using petroleum fuels. Most fuel cell technologies approaching or exceeding the DOE target efficiency of 40% offered significant reduction in energy use and GHG emissions.

Elgowainy, A.; Wang, M. Q.; Energy Systems

2008-12-08T23:59:59.000Z

60

High-potential Working Fluids for Next Generation Binary Cycle Geothermal Power Plants  

SciTech Connect

A thermo-economic model has been built and validated for prediction of project economics of Enhanced Geothermal Projects. The thermo-economic model calculates and iteratively optimizes the LCOE (levelized cost of electricity) for a prospective EGS (Enhanced Geothermal) site. It takes into account the local subsurface temperature gradient, the cost of drilling and reservoir creation, stimulation and power plant configuration. It calculates and optimizes the power plant configuration vs. well depth. Thus outputs from the model include optimal well depth and power plant configuration for the lowest LCOE. The main focus of this final report was to experimentally validate the thermodynamic properties that formed the basis of the thermo-economic model built in Phase 2, and thus build confidence that the predictions of the model could be used reliably for process downselection and preliminary design at a given set of geothermal (and/or waste heat) boundary conditions. The fluid and cycle downselected was based on a new proprietary fluid from a vendor in a supercritical ORC cycle at a resource condition of 200?C inlet temperature. The team devised and executed a series of experiments to prove the suitability of the new fluid in realistic ORC cycle conditions. Furthermore, the team performed a preliminary design study for a MW-scale turbo expander that would be used for a supercritical ORC cycle with this new fluid. The following summarizes the main findings in the investigative campaign that was undertaken: 1. Chemical compatibility of the new fluid with common seal/gasket/Oring materials was found to be problematic. Neoprene, Viton, and silicone materials were found to be incompatible, suffering chemical decomposition, swelling and/or compression set issues. Of the materials tested, only TEFLON was found to be compatible under actual ORC temperature and pressure conditions. 2. Thermal stability of the new fluid at 200?C and 40 bar was found to be acceptable after 399 hours of exposure?only 3% of the initial charge degraded into by products. The main degradation products being an isomer and a dimer. 3. In a comparative experiment between R245fa and the new fluid under subcritical conditions, it was found that the new fluid operated at 1 bar lower than R245fa for the same power output, which was also predicted in the Aspen HSYSY model. As a drop-in replacement fluid for R245fa, this new fluid was found to be at least as good as R245fa in terms of performance and stability. Further optimization of the subcritical cycle may lead to a significant improvement in performance for the new fluid. 4. For supercritical conditions, the experiment found a good match between the measured and model predicted state point property data and duties from the energy balance. The largest percent differences occurred with densities and evaporator duty (see Figure 78). It is therefore reasonable to conclude that the state point model was experimentally validated with a realistic ORC system. 5. The team also undertook a preliminary turbo-expander design study for a supercritical ORC cycle with the new working fluid. Variants of radial and axial turbo expander geometries went through preliminary design and rough costing. It was found that at 15MWe or higher power rating, a multi-stage axial turbine is most suitable providing the best performance and cost. However, at lower power ratings in the 5MWe range, the expander technology to be chosen depends on the application of the power block. For EGS power blocks, it is most optimal to use multi-stage axial machines. In conclusion, the predictions of the LCOE model that showed a supercritical cycle based on the new fluid to be most advantageous for geothermal power production at a resource temperature of ~ 200C have been experimentally validated. It was found that the cycle based on the new fluid is lower in LCOE and higher in net power output (for the same boundary conditions). The project, therefore has found a new optimal configuration for low temperature geothermal power production in the form of a su

Zia, Jalal [GE Global Research; Sevincer, Edip; Chen, Huijuan; Hardy, Ajilli; Wickersham, Paul; Kalra, Chiranjeev; Laursen, Anna Lis; Vandeputte, Thomas

2013-06-29T23:59:59.000Z

Note: This page contains sample records for the topic "binary cycle technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

New Clean Coal Cycle Optimized Using Pinch Technology  

E-Print Network (OSTI)

High thermal efficiency and low levels of environmental emissions are priorities in the design of modern power plants. The M. W. Kellogg Company under funding from the Department of Energy, has recently completed a study of a new coal fueled system that would achieve these objectives. During the course of study, Pinch Technology was used to assist in the optimization of the process. The "hybrid cycle" is a second generation PFBC system, employing both gasification and combustion processes. High velocity transport reaction technology, developed originally for Fluid Catalytic Cracking plants, is used in the coal conversion steps; and pulverized limestone is circulated with the coal to capture the sulfur that is released during this process. Both gas turbines and steam turbines are used for power generation. Results from the study indicate that thermal efficiencies in excess of 45% are attainable, with very low NOx and SOx emissions and attractive capital costs. In this paper the hybrid cycle is described and key aspects of this new technology are explained. The benefits of using Pinch Technology as an optimization tool in this project are also presented.

Rossiter, A. P.; O'Donnell, J. J.

1990-06-01T23:59:59.000Z

62

Technology and component development for a closed tritium cycle  

Science Conference Proceedings (OSTI)

A brief summary on recent advances in the field of tritium technology concerning the most important subsystems of the fuel cycle of a fusion reactor, i.e. the plasma exhaust pumping system, the exhaust gas clean up system, the isotope separation, the tritium storage and the tritium extraction from a blanket is provided. Experimental results, single component developments, and technical tests including those with relevant amounts of tritium that constitute the basis of proposed integral process concepts are described. 48 refs., 2 tabs.

Penzhorn, R.D. (Kernforschungszentrum Karlsruhe GmbH (Germany, F.R.). Inst. fuer Radiochemie); Anderson, J. (Los Alamos National Lab., NM (USA)); Haange, R. (JET Joint Undertaking, Abingdon (UK)); Hircq, B. (CEA Centre d'Etudes de Bruyeres-le-Chatel, 91 (France)); Meikle, A. (Canadian Fusion Fuels Technology Project, Mississauga, ON (Canada)); Naruse, Y. (Japan Atomic Energy Research Inst., Tokai

1991-01-01T23:59:59.000Z

63

Dr. Hussein Khalil at Reactor and Fuel Cycle Technologies Subcommittee  

NLE Websites -- All DOE Office Websites (Extended Search)

Blue Blue ribbon presentation by Dr. Hussein Khalil Director's Welcome Organization Achievements Highlights Fact Sheets, Brochures & Other Documents Multimedia Library About Nuclear Energy Nuclear Reactors Designed by Argonne Argonne's Nuclear Science and Technology Legacy Opportunities within NE Division Visit Argonne Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Celebrating the 70th Anniversary of Chicago Pile 1 (CP-1) Argonne OutLoud on Nuclear Energy Argonne Energy Showcase 2012 Highlights Bookmark and Share Blue ribbon presentation by Hussein Khalil Hussein Khalil Dr. Hussein Khalil during the panel discussion Oct. 21, 2010 On October 12 Hussein Khalil, director of Argonne's Nuclear Engineering Division, participated in a Reactor and Fuel Cycle Technologies

64

Performance Evaluation of the Magma 11.2MWe Binary Cycle Power Plant  

DOE Green Energy (OSTI)

The Magma 11.2 MWe geothermal power plant has been constructed and is currently in the final stages of shakedown. It should be starting up at the end of August, 1979. This project has many exciting features which will be reviewed in this presentation. Generally, the adjective ''exciting'' is not used in a technical report but, in this case, there is no way to disguise the enthusiasm of the organizations which conceived, designed, constructed and will operate the plant. It is an example of private venture capital invested in new technology to stimulate production of a significant new energy resource.

None

1979-09-01T23:59:59.000Z

65

Study for Technology of Asphalt Pavement Aggregate Washed by Cycle Limewater  

Science Conference Proceedings (OSTI)

Technology of asphalt pavement aggregate washed by cycle limewater was put forward for the first time in this paper. Before and after the aggregate was washed by cycle limewater, aggregate mud content, aggregate asphalt adhesion and asphalt mixture water ... Keywords: energy conservation, emissions reduction, cycle limewater, wash, asphalt pavement aggregate

Jiang Tao; Sun Bin

2010-12-01T23:59:59.000Z

66

Environmental Emissions from Energy Technology Systems: The Total Fuel Cycle  

SciTech Connect

This is a summary report that compares emissions during the entire project life cycle for a number of fossil-fueled and renewable electric power systems, including geothermal steam (probably modeled after The Geysers). The life cycle is broken into Fuel Extraction, Construction, and Operation. The only emission covered is carbon dioxide.

San Martin, Robert L.

1989-01-01T23:59:59.000Z

67

Environmental Emissions From Energy Technology Systems: The Total Fuel Cycle  

SciTech Connect

This is a summary report that compares emissions during the entire project life cycle for a number of fossil-fueled and renewable electric power systems, including geothermal steam (probably modeled after The Geysers). The life cycle is broken into Fuel Extraction, Construction, and Operation. The only emission covered is carbon dioxide. (DJE 2005)

San Martin, Robert L.

1989-04-01T23:59:59.000Z

68

Department of Energy Awards $15 Million for Nuclear Fuel Cycle Technology  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

15 Million for Nuclear Fuel Cycle 15 Million for Nuclear Fuel Cycle Technology Research and Development Department of Energy Awards $15 Million for Nuclear Fuel Cycle Technology Research and Development August 1, 2008 - 2:40pm Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) today announced it will award up to $15 million to 34 research organizations as part of the Department's Advanced Fuel Cycle Initiative (AFCI). AFCI is the Department's nuclear energy research and development program supporting the long-term goals and objectives of the United States' nuclear energy policy. These projects will provide necessary data and analyses to further U.S. nuclear fuel cycle technology development, meet the need for advanced nuclear energy production and help to close the nuclear fuel cycle

69

Technology Analysis - Battery Recycling and Life Cycle Analysis  

NLE Websites -- All DOE Office Websites (Extended Search)

Lithium-Ion Battery Recycling and Life Cycle Analysis Lithium-Ion Battery Recycling and Life Cycle Analysis diagram of the battery recycling life cycle Several types of recycling processes are available, recovering materials usable at different stages of the production cycle- from metallic elements to materials that can be reused directly in new batteries. Recovery closer to final usable form avoids more impact-intensive process steps. Portions courtesy of Umicore, Inc. To identify the potential impacts of the growing market for automotive lithium-ion batteries, Argonne researchers are examining the material demand and recycling issues related to lithium-ion batteries. Research includes: Conducting studies to identify the greenest, most economical recycling processes, Investigating recycling practices to determine how much of which

70

The Binary Cooling Tower Process: An Energy Conserving Water Reuse Technology  

E-Print Network (OSTI)

The Binary Cooling Tower (BCT) harnesses cooling system waste heat to accomplish concentration of waste and process streams. The BCT can also be integrated to isolate and improve the efficiency of critical cooling loops. This paper describes the BCT, its integration into a cooling system, and some energy saving applications

Lancaster, R. L.; Sanderson, W. G.; Cooke, R. L., Jr.

1981-01-01T23:59:59.000Z

71

Beyond the Business Cycle: The Need for a Technology ...  

Science Conference Proceedings (OSTI)

... stimulation alone.33 ... Technology investments demand higher skill levels, so that rates of compensation for the labor force will rise over time, as well. ...

2012-10-17T23:59:59.000Z

72

Systematic Review and Harmonization of Life Cycle GHG Emission Estimates for Electricity Generation Technologies (Presentation)  

SciTech Connect

This powerpoint presentation to be presented at the World Renewable Energy Forum on May 14, 2012, in Denver, CO, discusses systematic review and harmonization of life cycle GHG emission estimates for electricity generation technologies.

Heath, G.

2012-06-01T23:59:59.000Z

73

Program on Technology Innovation: Modified Brayton Cycle for Use in Coal-Fired Power Plants  

Science Conference Proceedings (OSTI)

A modified closed Brayton cycle using supercritical carbon dioxide (SCO2) as the working fluid is being proposed for a number of power generation applications. The technology offers the prospect of increased plant efficiency and reduced plant cost. This report compares candidate closed Brayton cycle performance with advanced ultra-supercritical steam-Rankine cycle performance.BackgroundIncreasing the efficiency of coal-fired steam-electric power ...

2013-02-14T23:59:59.000Z

74

Program on Technology Innovation: Summary of 2012 EPRI Nuclear Fuel Cycle Assessment Workshop  

Science Conference Proceedings (OSTI)

Government, industry, and academic stakeholders met at an EPRI-sponsored Nuclear Fuel Cycle Assessment Workshop, held July 2324, 2012, to exchange perspectives, plans, and insights concerning how fuel cycle technology options should be evaluated for the purposes of research, development, and demonstration (RD&D) as well as eventual deployment. The workshop reviewed efforts in the screening and assessment of advanced nuclear fuel cycle options for future energy systems and focused on the ...

2012-12-07T23:59:59.000Z

75

Advanced CO2 Capture Technology for Low Rank Coal Integrated Gasification Combined Cycle (IGCC) Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

CO CO 2 Capture Technology for Low Rank Coal Integrated Gasification Combined Cycle (IGCC) Systems Background Gasification of coal or other solid feedstocks (wood waste, petroleum coke, etc.) is a clean way to produce electricity and produce or co-produce a variety of commercial products. The major challenge is cost reduction; current integrated gasification combined cycle (IGCC) technology is estimated to produce power at a cost higher than that of pulverized coal combustion. However, the Gasification

76

Supercritical binary geothermal cycle experiments with mixed-hydrocarbon working fluids and a near-horizontal in-tube condenser  

DOE Green Energy (OSTI)

The Heat Cycle Research Program, which is being conducted for the Department of Energy, has as its objective the development of the technology for effecting improved utilization of moderate temperature geothermal resources. Testing at the Heat Cycle Research Facility which was located at the DOE Geothermal Test Facility, East Mesa, California is presently being conducted to meet this objective. The testing effort discussed in this interim report involves a supercritical vaporization and counterflow in-tube condensing system with a near horizontal tube orientation. A previous report explored the supercritical heating, supersaturated turbine expansions and the condenser performance in the vertical orientation. This report presents a description of the test facility and results from a part of the program in which the condenser was oriented in a nearly horizontal orientation. Results of the experiments for the in-tube condenser in a nearly horizontal orientation are given for both pure and mixed-hydrocarbon working fluids. Although most of the data is for a completely active condenser in countercurrent flow, some data is available for a configuration in which half of the tubes were plugged and some data for cocurrent (parallel) flow is analyzed. The horizontal-oriented condenser behavior predicted by the Heat Transfer Research Institute computer codes used for correlation of the data was not in agreement with experimental results at this orientation. Some reasons for this difference are discussed. A special series of tests, conducted with propane and up to approximately 40% isopentane concentration, indicated that a close approach to integral'' condensation has occurred as was the case with the horizontally oriented condenser (similar results were obtained for the vertical condenser). 18 refs., 37 figs., 15 tabs.

Bliem, C.J.; Mines, G.L.

1989-12-01T23:59:59.000Z

77

CYCLE-BY-CYCLE COMBUSTION VARIATIONS IN SPARK-IGNITED ENGINES Engineering Technology Division, Oak Ridge National Laboratory, Oak Ridge TN 37831-8088 USA  

E-Print Network (OSTI)

CYCLE-BY-CYCLE COMBUSTION VARIATIONS IN SPARK-IGNITED ENGINES C.S. DAW Engineering Technology-2053 USA ABSTRACT Under constant nominal operating conditions, internal combustion engines can exhibit sub- stantial variation in combustion efficiency from one cycle to the next. Previous researchers have attempted

Tennessee, University of

78

Exxon Chemical's Coal-Fired Combined Cycle Power Technology  

E-Print Network (OSTI)

Exxon Chemical's Central Engineering Division has recently developed and patented CAT-PAC for Industrial Cogeneration and Utility Power Plants. It involves the marriage of a conventional direct pulverized coal-fired boiler radiant section with a convection section adapted from our furnace experience. In particular, it is an open-cycle, hot air turbine arrangement with indirect heating of the air in the boiler convection section. The turbine exhaust is then used as pre-heated combustion air for the boiler. The air coil heats the 150 psig air from the standard gas turbine axial compressor to approximately, 1750F. Today, CAT-PAC would require about 10% less fuel (or 1000 Btu/kwh) than the best coal-fired Utility Plant for the same net power output, at a comparable investment. With improved air heater metallurgy, and/or trim firing of a premium fuel (up to 2000 F permissible gas turbine temperature), CAT-PAC savings would double to 20%. Today, in an industrial coal-fired cogeneration plant, CAT-PAC can produce up to 75% more power for a given steam load, while maintaining the highest cogeneration efficiencies. With improved metallurgy, and/or trim firing, the additional power would approach 100%.

Guide, J. J.

1985-05-01T23:59:59.000Z

79

Heber Geothermal Binary Demonstration Plant: Design, Construction, and Early Startup  

Science Conference Proceedings (OSTI)

Binary-cycle technology could almost double the electric energy yield from known hydrothermal resources. The 45-MWe Heber geothermal demonstration plant--now in a three-year test and demonstration program--has successfully passed through a series of feasibility studies, design stages, and field experiments that show its promise to tap these resources.

1987-10-09T23:59:59.000Z

80

A fuel cycle framework for evaluating greenhouse gas emission reduction technology  

SciTech Connect

Energy-related greenhouse gas (GHG) emissions arise from a number of fossil fuels, processes and equipment types throughout the full cycle from primary fuel production to end-use. Many technology alternatives are available for reducing emissions based on efficiency improvements, fuel switching to low-emission fuels, GHG removal, and changes in end-use demand. To conduct systematic analysis of how new technologies can be used to alter current emission levels, a conceptual framework helps develop a comprehensive picture of both the primary and secondary impacts of a new technology. This paper describes a broad generic fuel cycle framework which is useful for this purpose. The framework is used for cataloging emission source technologies and for evaluating technology solutions to reduce GHG emissions. It is important to evaluate fuel mix tradeoffs when investigating various technology strategies for emission reductions. For instance, while substituting natural gas for coal or oil in end-use applications to reduce CO{sub 2} emissions, natural gas emissions of methane in the production phase of the fuel cycle may increase. Example uses of the framework are given.

Ashton, W.B.; Barns, D.W. (Pacific Northwest Lab., Richland, WA (USA)); Bradley, R.A. (USDOE Office of Policy, Planning and Analysis, Washington, DC (USA). Office of Environmental Analysis)

1990-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "binary cycle technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

A Strategic Metal for Green Technology: The Geologic Occurrence and Global Life Cycle of Lithium  

E-Print Network (OSTI)

A Strategic Metal for Green Technology: The Geologic Occurrence and Global Life Cycle of Lithium. Mainly due to the growing demand for lightweight and powerful batteries, lithium has become such a metal. While supplies of lithium have historically been mined from pegmatites, brine extraction from salars

82

A review of biomass integrated-gasifier/gas turbine combined cycle technology and its  

E-Print Network (OSTI)

A review of biomass integrated-gasifier/gas turbine combined cycle technology and its application Copersucar, CP 162, Piracicaba, SP ­ Brazil ­ 13400-970 Biomass integrated-gasifier/gas turbine combined-from-sugarcane program. 1. Introduction The biomass integrated-gasifier/gas turbine combined cy- cle (BIG

83

Energy utilization and environmental control technologies in the coal-electric cycle  

SciTech Connect

This report presents an overview and assessment of the currently commercial and possible future technologies in the United States that are a part of the coal-electric cycle. From coal production to residual emissions control at the power plant stack, this report includes a brief history, current status and future assessment of each technology. It also includes a discussion, helpful for policy making decisions, of the process operation, environmental emission characteristics, market constraints and detailed cost estimates for each of these technologies, with primary emphasis on coal preparation, coal-electric generation and emissions control systems.

Ferrell, G.C.

1977-10-01T23:59:59.000Z

84

Advanced binary geothermal power plants: Limits of performance  

SciTech Connect

The Heat Cycle Research Program is investigating potential improvements to power cycles utilizing moderate temperature geothermal resources to produce electrical power. Investigations have specifically examined Rankine cycle binary power systems. Binary Rankine cycles are more efficient than the flash steam cycles at moderate resource temperature, achieving a higher net brine effectiveness. At resource conditions similar to those at the Heber binary plant, it has been shown that mixtures of saturated hydrocarbons (alkanes) or halogenated hydrocarbons operating in a supercritical Rankine cycle gave improved performance over Rankine cycles with the pure working fluids executing single or dual boiling cycles or supercritical cycles. Recently, other types of cycles have been proposed for binary geothermal service. This report explores the feasible limits on efficiency of a plant given practical limits on equipment performance and discusses the methods used in these advanced concept plants to achieve the maximum possible efficiency. (Here feasible is intended to mean reasonably achievable and not cost-effective.) No direct economic analysis has been made because of the sensitivity of economic results to site specific input. The limit of performance of three advanced plants were considered in this report. The performance predictions were taken from the developers of each concept. The advanced plants considered appear to be approaching the feasible limit of performance. Ultimately, the plant designer must weigh the advantages and disadvantages of the the different cycles to find the best plant for a given service. In addition, this report presents a standard of comparison of the work which has been done in the Heat Cycle Research Program and in the industrial sector by Exergy, Inc. and Polythermal Technologies. 18 refs., 16 figs., 1 tab.

Bliem, C.J.; Mines, G.L.

1991-01-01T23:59:59.000Z

85

Evaluation of Thermal Zero Liquid Discharge Treatment Technologies for Combined Cycle Gas Turbine Power Plants  

Science Conference Proceedings (OSTI)

A study was conducted to identify and update key details of zero liquid discharge (ZLD) water management systems currently operating at U.S. gas-fired combined cycle generating stations (CC). The study focused on not only the technologies applied, but also on the advantages and shortcomings of the various processes and summarized the lessons learned from the operating systems. Most ZLD's were found to employ one of four different types of water pretreatment process assemblies consisting of the following:...

2011-12-19T23:59:59.000Z

86

Program on Technology Innovation: Comparative Radiological Risk Assessment of Advanced Nuclear Fuel Cycles  

Science Conference Proceedings (OSTI)

The Electric Power Research Institute (EPRI) is working to develop tools to support long-term strategic planning for research, development, and demonstration (RDD) of advanced nuclear fuel cycle technologies for electricity generation. The research described in this EPRI progress report supports the larger decision framework endeavor and intends to provide a standalone usable tool. Two strategic issues are addressed: radioactive and chemical waste management and safety (both radiological and chemical). U...

2012-05-21T23:59:59.000Z

87

Supercritical binary geothermal cycle experiments with mixed-hydrocarbon working fluids and a vertical, in-tube, counterflow condenser  

DOE Green Energy (OSTI)

The objective is improved utilization of moderate temperature geothermal resources. Current testing involves supercritical vaporization and counterflow in-tube condensing in an organic Rankine cycle. This report presents a description of the test facility and results from a part of the program in which the condenser was oriented in a vertical attitude. Results of the experiments for the supercritical heaters and the countercurrent, vertical, in-tube condenser are given for both pure and mixed-hydrocarbon working fluids. The heater and condenser behavior predicted by the Heat Transfer Research, Inc. computer codes used for correlation of the data was in excellent agreement with experimental results. A special series of tests, conducted with propane and up to approximately 40% isopentane concentration, indicated that a close approach to ''integral'' condensation was occurring in the vertically-oriented condenser.

Demuth, O.J.; Bliem, C.J.; Mines, G.L.; Swank, W.D.

1985-12-01T23:59:59.000Z

88

Conceptual design and techno-economic assessment of integrated solar combined cycle system with DSG technology  

SciTech Connect

Direct steam generation (DSG) in parabolic trough collectors causes an increase to competitiveness of solar thermal power plants (STPP) by substitution of oil with direct steam generation that results in lower investment and operating costs. In this study the integrated solar combined cycle system with DSG technology is introduced and techno-economic assessment of this plant is reported compared with two conventional cases. Three considered cases are: an integrated solar combined cycle system with DSG technology (ISCCS-DSG), a solar electric generating system (SEGS), and an integrated solar combined cycle system with HTF (heat transfer fluid) technology (ISCCS-HTF). This study shows that levelized energy cost (LEC) for the ISCCS-DSG is lower than the two other cases due to reducing O and M costs and also due to increasing the heat to electricity net efficiency of the power plant. Among the three STPPs, SEGS has the lowest CO{sub 2} emissions, but it will operate during daytime only. (author)

Nezammahalleh, H.; Farhadi, F.; Tanhaemami, M. [Chemical and Petroleum Engineering Department, Sharif University of Technology, No 593 Azadi Ave., Tehran (Iran)

2010-09-15T23:59:59.000Z

89

HTGR Technology Family Assessment for a Range of Fuel Cycle Missions  

SciTech Connect

This report examines how the HTGR technology family can provide options for the once through, modified open cycle (MOC), or full recycle fuel cycle strategies. The HTGR can serve all the fuel cycle missions that an LWR can; both are thermal reactors. Additional analyses are warranted to determine if HTGR full recycle service could provide improved consumption of transuranic (TRU) material than LWRs (as expected), to analyze the unique proliferation resistance issues associated with the pebble bed approach, and to further test and analyze methods to separate TRISO-coated fuel particles from graphite and/or to separate used HTGR fuel meat from its TRISO coating. The feasibility of these two separation issues is not in doubt, but further R&D could clarify and reduce the cost and enable options not adequately explored at present. The analyses here and the now-demonstrated higher fuel burnup tests (after the illustrative designs studied here) should enable future MOC and full recycle HTGR concepts to more rapidly consume TRU, thereby offering waste management advantages. Interest in limited separation or minimum fuel treatment separation approaches motivates study of impurity-tolerant fuel fabrication. Several issues are outside the scope of this report, including the following: thorium fuel cycles, gas-cooled fast reactors, the reliability of TRISO-coated particles (billions in a reactor), and how soon any new reactor or fuel type could be licensed and then deployed and therefore impact fuel cycle performance measures.

Steven J. Piet; Samuel E. Bays; Nick Soelberg

2010-08-01T23:59:59.000Z

90

Fuel-cycle greenhouse gas emissions impacts of alternative transportation fuels and advanced vehicle technologies.  

DOE Green Energy (OSTI)

At an international conference on global warming, held in Kyoto, Japan, in December 1997, the United States committed to reduce its greenhouse gas (GHG) emissions by 7% over its 1990 level by the year 2012. To help achieve that goal, transportation GHG emissions need to be reduced. Using Argonne's fuel-cycle model, I estimated GHG emissions reduction potentials of various near- and long-term transportation technologies. The estimated per-mile GHG emissions results show that alternative transportation fuels and advanced vehicle technologies can help significantly reduce transportation GHG emissions. Of the near-term technologies evaluated in this study, electric vehicles; hybrid electric vehicles; compression-ignition, direct-injection vehicles; and E85 flexible fuel vehicles can reduce fuel-cycle GHG emissions by more than 25%, on the fuel-cycle basis. Electric vehicles powered by electricity generated primarily from nuclear and renewable sources can reduce GHG emissions by 80%. Other alternative fuels, such as compressed natural gas and liquefied petroleum gas, offer limited, but positive, GHG emission reduction benefits. Among the long-term technologies evaluated in this study, conventional spark ignition and compression ignition engines powered by alternative fuels and gasoline- and diesel-powered advanced vehicles can reduce GHG emissions by 10% to 30%. Ethanol dedicated vehicles, electric vehicles, hybrid electric vehicles, and fuel-cell vehicles can reduce GHG emissions by over 40%. Spark ignition engines and fuel-cell vehicles powered by cellulosic ethanol and solar hydrogen (for fuel-cell vehicles only) can reduce GHG emissions by over 80%. In conclusion, both near- and long-term alternative fuels and advanced transportation technologies can play a role in reducing the United States GHG emissions.

Wang, M. Q.

1998-12-16T23:59:59.000Z

91

Fuel-cycle greenhouse gas emissions impacts of alternative transportation fuels and advanced vehicle technologies.  

SciTech Connect

At an international conference on global warming, held in Kyoto, Japan, in December 1997, the United States committed to reduce its greenhouse gas (GHG) emissions by 7% over its 1990 level by the year 2012. To help achieve that goal, transportation GHG emissions need to be reduced. Using Argonne's fuel-cycle model, I estimated GHG emissions reduction potentials of various near- and long-term transportation technologies. The estimated per-mile GHG emissions results show that alternative transportation fuels and advanced vehicle technologies can help significantly reduce transportation GHG emissions. Of the near-term technologies evaluated in this study, electric vehicles; hybrid electric vehicles; compression-ignition, direct-injection vehicles; and E85 flexible fuel vehicles can reduce fuel-cycle GHG emissions by more than 25%, on the fuel-cycle basis. Electric vehicles powered by electricity generated primarily from nuclear and renewable sources can reduce GHG emissions by 80%. Other alternative fuels, such as compressed natural gas and liquefied petroleum gas, offer limited, but positive, GHG emission reduction benefits. Among the long-term technologies evaluated in this study, conventional spark ignition and compression ignition engines powered by alternative fuels and gasoline- and diesel-powered advanced vehicles can reduce GHG emissions by 10% to 30%. Ethanol dedicated vehicles, electric vehicles, hybrid electric vehicles, and fuel-cell vehicles can reduce GHG emissions by over 40%. Spark ignition engines and fuel-cell vehicles powered by cellulosic ethanol and solar hydrogen (for fuel-cell vehicles only) can reduce GHG emissions by over 80%. In conclusion, both near- and long-term alternative fuels and advanced transportation technologies can play a role in reducing the United States GHG emissions.

Wang, M. Q.

1998-12-16T23:59:59.000Z

92

Geothermal power plant R and D: an analysis of cost-performance tradeoffs and the Heber Binary-Cycle Demonstration Project  

SciTech Connect

A study of advancements in power plant designs for use at geothermal resources in the low to moderate (300 to 400F) temperature range is reported. In 3 case studies, the benefits of R and D to achieve these advancements are evaluated in terms of expected increases in installed geothermal generating capacity over the next 2 decades. A parametric sensitivity study is discussed which analyzes differential power development for combinations of power plant efficiency and capitol cost. Affordable tradeoffs between plant performance and capital costs are illustrated. The independent review and analysis of the expected costs of construction, operation and maintenance of the Heber Binary Cycle Geothermal Power Demonstration Plant are described. Included in this assessment is an analysis of each of the major cost components of the project, including (1) construction cost, (2) well field development costs, (3) fluid purchase costs, and (4) well field and power plant operation and maintenance costs. The total cost of power generated from the Heber Plant (in terms of mills per kWh) is then compared to the cost of power from alternative fossil-fueled base load units. Also evaluated are the provisions of both: (a) the Cooperative Agreement between the federal government and San Diego Gas and Electric (SDG and E); and (b) the Geothermal Heat Sales Contract with Union Oil Company.

Cassel, T.A.V.; Amundsen, C.B.; Blair, P.D.

1983-06-30T23:59:59.000Z

93

Externally-fired combined cycle: An effective coal fueled technology for repowering and new generation  

SciTech Connect

The Externally-Fired Combined Cycle (EFCC) is an attractive emerging technology for powering high efficiency combined gas and steam turbine cycles with coal or other ash bearing fuels. In the EFCC, the heat input to a gas turbine is supplied indirectly through a ceramic air heater. The air heater, along with an atmospheric coal combustor and ancillary equipment, replaces the conventional gas turbine combustor. A steam generator located downstream from the ceramic air heater and steam turbine cycle, along with an exhaust cleanup system, completes the combined cycle. A key element of the EFCC Development Program, the 25 MMBtu/h heat-input Kennebunk Test Facility (KTF), has recently begun operation. The KTF has been operating with natural gas and will begin operating with coal in early 1995. The US Department of Energy selected an EFCC repowering of the Pennsylvania Electric Company`s Warren Station for funding under the Clean Coal Technology Program Round V. The project focuses on repowering an existing 48 MW (gross) steam turbine with an EFCC power island incorporating a 30 MW gas turbine, for a gross power output of 78 MW and a net output of 72 MW. The net plant heat rate will be decreased by approximately 30% to below 9,700 Btu/kWh. Use of a dry scrubber and fabric filter will reduce sulfur dioxide (SO{sub 2}) and particulate emissions to levels under those required by the Clean Air Act Amendments (CAAA) of 1990. Nitrogen oxides (NO{sub x}) emissions are controlled by the use of staged combustion. The demonstration project is currently in the engineering phase, with startup scheduled for 1997. This paper discusses the background of the EFCC, the KTF, the Warren Station EFCC Clean Coal Technology Demonstration Project, the commercial plant concept, and the market potential for the EFCC.

Stoddard, L.E.; Bary, M.R. [Black and Veatch, Kansas City, MO (United States); Gray, K.M. [Pennsylvania Electric Co., Johnstown, PA (United States); LaHaye, P.G. [Hague International, South Portland, ME (United States)

1995-06-01T23:59:59.000Z

94

Environmental impacts of lighting technologies - Life cycle assessment and sensitivity analysis  

SciTech Connect

With two regulations, 244/2009 and 245/2009, the European Commission recently put into practice the EuP Directive in the area of lighting devices, aiming to improve energy efficiency in the domestic lighting sector. This article presents a comprehensive life cycle assessment comparison of four different lighting technologies: the tungsten lamp, the halogen lamp, the conventional fluorescent lamp and the compact fluorescent lamp. Taking advantage of the most up-to-date life cycle inventory database available (ecoinvent data version 2.01), all life cycle phases were assessed and the sensitivity of the results for varying assumptions analysed: different qualities of compact fluorescent lamps (production phase), different electricity mixes (use phase), and end-of-life scenarios for WEEE recycling versus municipal solid waste incineration (disposal phase). A functional unit of 'one hour of lighting' was defined and the environmental burdens for the whole life cycle for all four lamp types were calculated, showing a clearly lower impact for the two gas-discharge lamps, i.e. the fluorescent and the compact fluorescent lamp. Differences in the product quality of the compact fluorescent lamps reveal to have only a very small effect on the overall environmental performance of this lamp type; a decline of the actual life time of this lamp type doesn't result in a change of the rank order of the results of the here examined four lamp types. It was also shown that the environmental break-even point of the gas-discharge lamps is reached long before the end of their expected life-span. All in all, it can be concluded that a change from today's tungsten lamp technology to a low-energy-consuming technology such as the compact fluorescent lamp results in a substantial environmental benefit.

Welz, Tobias; Hischier, Roland, E-mail: Roland.Hischier@empa.ch; Hilty, Lorenz M.

2011-04-15T23:59:59.000Z

95

Session 9: Heber Geothermal Binary Demonstration Project  

DOE Green Energy (OSTI)

The Heber Binary Project had its beginning in studies performed for the Electric Power Research Institute (EPRI), which identified the need for commercial scale (50 Mw or larger) demonstration of the binary cycle technology. In late 1980, SDG&E and the Department of Energy (DOE) signed a Cooperative Agreement calling for DOE to share in 50 percent of the Project costs. Similarly, SDG&E signed Project participation agreements with EPRI, the Imperial Irrigation District, California Department of Water Resources, and Southern California Edison Company, which provided the remaining 50 percent of the required funding. In 1982, the State of California also joined the Project. The objectives of the Heber Binary Project are to demonstrate the potential of moderate-temperature (below 410 F) geothermal energy to produce economic electric power with binary cycle conversion technology, and to establish schedule, cost and equipment performance, reservoir performance, and the environmental acceptability of such plants. The plant will be the first large-scale power generating facility in the world utilizing the binary conversion process, and it is expected that information resulting from this Project will be applicable to a wide range of moderate-temperature hydrothermal reservoirs, which represent 80 percent of geothermal resources in the United States. To accomplish the plant engineering, design, and equipment procurement, SDG&E has hired Fluor Engineers, Inc., Power Division, of Irvine, California. In early 1982, SDG&E contracted for construction management services with Dravo Constructors, Inc. (DCI) of New York. DCI is responsible for casting the Fluor design into construction packages, letting the construction contracts, and overseeing the construction in the field.

Allen, Richard F.; Nelson, Tiffany T.

1983-12-01T23:59:59.000Z

96

Program on Technology Innovation: Tradeoffs Between Once-Through Cooling and Closed-Cycle Cooling for Nuclear Power Plants  

Science Conference Proceedings (OSTI)

The Electric Power Research Institute (EPRI) has been investigating a number of energy-related water topics that include the implications of retrofitting existing once-through generating stations with closed-cycle cooling, the cost and benefits of closed-cycle cooling, the impacts of impingement and entrainment, alternative fish protection technologies, water use in the electric power generation sector, and advanced power plant cooling technologies.

2012-06-29T23:59:59.000Z

97

HTGR Technology Family Assessment for a Range of Fuel Cycle Missions  

SciTech Connect

This report examines how the HTGR technology family can provide options for the once through, modified open cycle (MOC), or full recycle fuel cycle strategies. The HTGR can serve all the fuel cycle missions that an LWR can; both are thermal reactors. Additional analyses are warranted to determine if HTGR full recycle service could provide improved consumption of transuranic (TRU) material than LWRs (as expected), to analyze the unique proliferation resistance issues associated with the pebble bed approach, and to further test and analyze methods to separate TRISO-coated fuel particles from graphite and/or to separate used HTGR fuel meat from its TRISO coating. The feasibility of these two separation issues is not in doubt, but further R&D could clarify and reduce the cost and enable options not adequately explored at present. The analyses here and the now-demonstrated higher fuel burnup tests (after the illustrative designs studied here) should enable future MOC and full recycle HTGR concepts to more rapidly consume TRU, thereby offering waste management advantages. Interest in limited separation or minimum fuel treatment separation approaches motivates study of impurity-tolerant fuel fabrication.

Steven J. Piet; Samuel E. Bays; Nick R. Soelberg

2010-11-01T23:59:59.000Z

98

Supersaturated Turbine Expansions for Binary Geothermal Power Plants  

DOE Green Energy (OSTI)

The Heat Cycle Research project is developing the technology base that will permit a much greater utilization of the moderate-temperature, liquid-dominated geothermal resources, particularly for the generation of electrical power. The emphasis in the project has been the improvement of the performance of binary power cycles. The investigations have been examining concepts projected to improve the brine utilization by 20% relative to a ''Heber-type'' binary plant; these investigations are nearing completion. preparations are currently underway in the project to conduct field investigations of the condensation behavior of supersaturated turbine expansions. These investigations will evaluate whether the projected additional 8% to 10% improvement in brine utilization can be realized by allowing these expansions. Future program efforts will focus on the problems associated with heat rejection and on the transfer of the technology being developed to industry.

Bliem, C.J.; Mines, G.L.

1992-03-24T23:59:59.000Z

99

Demonstration Development Project - Combustion Turbine Low Power Turndown Technologies: A Review of Current and Emerging Technologies for Combined Cycle Gas Turbines  

Science Conference Proceedings (OSTI)

EPRI has established a Demonstration Development Program that supports projects that evaluate developing technologies which will potentially decrease cost and increase performance of power generating assets. This report provides a review of recent developments in combined cycle technologies that provide improved performance in the areas of response time (start-up and ramp time), power turndown while maintaining low emissions, and fuel flexibility.A review of technologies either ...

2012-11-30T23:59:59.000Z

100

Preliminary reliability and availability analysis of the Heber geothermal binary demonstration plant. Final report  

DOE Green Energy (OSTI)

An assessment is presented of the reliability and availability of the Heber Geothermal Binary Demonstration Plant on the basis of preliminary design information. It also identifies and ranks components of the plant in order of their criticality to system operation and their contribution to system unavailability. The sensitivity of the various components to uncertainties of data and the potential for reliability growth are also examined. The assessment results were obtained through the adaptation and application of an existing reliability and availability methodology to the Heber plant design. These preliminary assessments were made to assist (1) in evaluating design alternatives for the plant and (2) in demonstrating that the closed-loop, multiple-fluid, binary cycle geothermal concept is competitive with the more conventional flashed steam cycle technology. The Heber Geothermal Binary Demonstration Plant Project is a cooperative effort directed toward accelerating geothermal development for power generation and establishing the binary cycle technology as a proven alternative to the flashed steam cycle for moderate temperature hydrothermal resources. The binary power plant would have a capacity of 45 MW/sub e/ net and would derive its energy from the low salinity (14,000 ppM), moderate temperature (360/sup 0/F, 182/sup 0/C) fluid from the Heber reservoir in southern California.

Himpler, H.; White, J.; Witt, J.

1981-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "binary cycle technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Geothermal heat cycle research: Supercritical cycle with horizontal counterflow condenser  

DOE Green Energy (OSTI)

The Heat Cycle Research Program, which is being conducted for the Department of Energy, has as its objective the development of the technology for effecting the improved utilization of moderate temperature geothermal resources. To meet this objective, the program has as one of its goals to improve the performance of geothermal binary cycles to levels approaching the practicable thermodynamic maximum. In pursuit of this goal, tests are being conducted at the Heat Cycle Research Facility located at the DOE Geothermal Test Facility, East Mesa, California. The current testing involves the investigation of binary power cycle performance utilizing mixtures of non-adjacent hydrocarbons as the working fluids, with supercritical vaporization and in-tube condensation of the working fluid. In addition to the present test program, preparations are being made to investigate the binary cycle performance improvements which can be achieved by allowing supersaturated vapor expansions in the turbine. These efforts are anticipated to verify that through the utilization of these advanced power cycle concepts and allowing the supersaturated turbine expansions, improvements of up to 28% in the net geofluid effectiveness (net watt hours plant output per pound of geofluid) over conventional binary power plants can be achieved. Results are presented for the recent testing including those tests examining the performance of the countercurrent condenser at different tube inclinations. Performance of the heaters and the condenser in a vertical orientation can be predicted well with existing methods and data. The condenser in its near horizontal orientation performs slightly worse than in its vertical orientation. Some problems have been encountered in predicting the performance in the horizontal orientation. There is no evidence of departure from integral condensation in either orientation.

Mines, G.L.; Swank, W.D.; Bliem, C.J.

1987-01-01T23:59:59.000Z

102

Technology for Brayton-cycle space powerplants using solar and nuclear energy  

SciTech Connect

Brayton-cycle gas turbines have the potential to use either solar heat or nuclear reactors to generate from tens of kilowatts to tens of megawatts of power in space, all this from a single technology for the power-generating system. Their development for solar-energy dynamic power generation for the space station could be the first step in an evolution of such powerplants for a very wide range of applications. At the low power level of only 10 kWe, a power-generating system has already demonstrated overall efficiency of 0.29 and operated for 38,000 hr. Tests of improved components show that, if installed in the power-generating system, these components would raise that efficiency to 0.32; this efficiency is twice that so far demonstrated by any alternate concept, a characteristic especially important for solar power systems. Because of this high efficiency, solar-heat Brayton-cycle power generators offer the potential to increase power per unit of solar-collector area to levels exceeding four times that from photovoltaic powerplants based on present technology for silicon solar cells. For the heat source, paraboloidal mirrors have been assembled from sectors here on Earth. One mirror, 1.5-m diameter, had a standard error for its surface of only 1 arc-min and a specific mass of only 1.3 kg/m 2. A heavier mirror (nearly 5 kg/m{sup 2}), assembled from 12 sectors, had a standard surface error of 3 arc-min but was 6 m in diameter. Either of these mirrors is sufficiently accurate for use with the Brayton cycle, but the techniques for actually assembling large mirrors in space must yet be worked out. For use during the shadow period of a low Earth orbit (LEO), heat could be stored in LiF, a salt that melts at 1121 K (1558{degrees}F) and whose latent heat of fusion exceeds 1 MJ/kg. Because of the prior experience with its fabrication and of its tolerance of the thermal cycling in LEO, Nb-1Zr was selected to contain the LiF.

English, R.E.

1986-02-01T23:59:59.000Z

103

Analyzing the Life Cycle Energy Savings of DOE Supported Buildings Technologies  

SciTech Connect

This report examines the factors that would potentially help determine an appropriate analytical timeframe for measuring the U.S. Department of Energy's Building Technology (BT) benefits and presents a summary-level analysis of the life cycle savings for BTs Commercial Buildings Integration (CBI) R&D program. The energy savings for three hypothetical building designs are projected over a 100-year period using Building Energy Analysis and Modeling System (BEAMS) to illustrate the resulting energy and carbon savings associated with the hypothetical aging buildings. The report identifies the tasks required to develop a long-term analytical and modeling framework, and discusses the potential analytical gains and losses by extending an analysis into the long-term.

Cort, Katherine A.; Hostick, Donna J.; Dirks, James A.; Elliott, Douglas B.

2009-08-31T23:59:59.000Z

104

Analyzing the Life Cycle Energy Savings of DOE Supported Buildings Technologies  

SciTech Connect

This report examines the factors that would potentially help determine an appropriate analytical timeframe for measuring the U.S. Department of Energy's Building Technology (BT) benefits and presents a summary-level analysis of the life cycle savings for BTs Commercial Buildings Integration (CBI) R&D program. The energy savings for three hypothetical building designs are projected over a 100-year period using Building Energy Analysis and Modeling System (BEAMS) to illustrate the resulting energy and carbon savings associated with the hypothetical aging buildings. The report identifies the tasks required to develop a long-term analytical and modeling framework, and discusses the potential analytical gains and losses by extending an analysis into the long-term.

Cort, Katherine A.; Hostick, Donna J.; Dirks, James A.; Elliott, Douglas B.

2009-08-31T23:59:59.000Z

105

ENERGY UTILIZATION AND ENVIRONMENTAL CONTROL TECHNOLOGIES IN THE COAL-ELECTRIC CYCLE  

E-Print Network (OSTI)

Fluidized-Bed Steam-Electric Steam-Electric Combined-CycleCombined-Cycle Current (1974) Future Future a Source:steam plants. The combined-cycle versions of advanced

Ferrell, G.C.

2010-01-01T23:59:59.000Z

106

Beowawe Bottoming Binary Project Geothermal Project | Open Energy  

Open Energy Info (EERE)

Beowawe Bottoming Binary Project Geothermal Project Beowawe Bottoming Binary Project Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Beowawe Bottoming Binary Project Project Type / Topic 1 Recovery Act: Geothermal Technologies Program Project Type / Topic 2 Geothermal Energy Production from Low Temperature Resources, Coproduced Fluids from Oil and Gas Wells, and Geopressured Resources Project Type / Topic 3 Low Temperature Resources Project Description The proposed two-year project supports the DOE GTP's goal of promoting the development and commercial application of energy production from low-temperature geothermal fluids, i.e., between 150°F and 300°F. State Nevada Objectives Demonstrate the technical and economic feasibility of electricity generation from nonconventional geothermal resources of 205°F using the first commercial use of a cycle at a geothermal power plant inlet temperature of less than 300°F.

107

Program on Technology Innovation: A Quantitative Radiological Risk Analysis of the U.S. Once-Through Nuclear Fuel Cycle  

Science Conference Proceedings (OSTI)

EPRI is sponsoring the development of tools to support long-term strategic planning for research, development, and demonstration (RD&D) of nuclear fuel cycle technologies and options. This report describes progress and results to date on the development of a novel comparative risk assessment tool and its application to the baseline once-through nuclear fuel cycle (OTC) in its present incarnation in the United States. An updated detailed description of the U.S. OTC reveals far greater complexity ...

2013-05-30T23:59:59.000Z

108

Application of a Tractive Energy Analysis to Quantify the Benefits of Advanced Efficiency Technologies Using Characteristic Drive Cycle Data  

SciTech Connect

Accurately predicting the fuel savings that can be achieved with the implementation of various technologies developed for fuel efficiency can be very challenging, particularly when considering combinations of technologies. Differences in the usage of highway vehicles can strongly influence the benefits realized with any given technology, which makes generalizations about fuel savings inappropriate for different vehicle applications. A model has been developed to estimate the potential for reducing fuel consumption when advanced efficiency technologies, or combinations of these technologies, are employed on highway vehicles, particularly medium- and heavy-duty trucks. The approach is based on a tractive energy analysis applied to drive cycles representative of the vehicle usage, and the analysis specifically accounts for individual energy loss factors that characterize the technologies of interest. This tractive energy evaluation is demonstrated by analyzing measured drive cycles from a long-haul trucking fleet and the results of an assessment of the fuel savings potential for combinations of technologies are presented. The results of this research will enable more reliable estimates of the fuel savings benefits that can be realized with particular technologies and technology combinations for individual trucking applications so that decision makers can make informed investment decisions for the implementation of advanced efficiency technologies.

LaClair, Tim J [ORNL

2012-01-01T23:59:59.000Z

109

Program Record 13006 (Offices of Vehicle Technologies and Fuel Cell Technologies: Life-Cycle Costs of Mid-Size Light-Duty Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Program Record (Offices of Vehicle Technologies & Fuel Cell Program Record (Offices of Vehicle Technologies & Fuel Cell Technologies) Record #: 13006 Date: April 24, 2013 Title: Life-cycle Costs of Mid-Size Light-Duty Vehicles Originator: Tien Nguyen & Jake Ward Approved by: Sunita Satyapal Pat Davis Date: April 25, 2013 Items: DOE is pursuing a portfolio of technologies with the potential to significantly reduce greenhouse gases (GHG) emissions and petroleum consumption while being cost-effective. This record documents the assumptions and results of analyses conducted to estimate the life-cycle costs resulting from several fuel/vehicle pathways, for a future mid-size car. The results are summarized graphically in the following figure. Costs of Operation for Future Mid-Size Car

110

Combustion Engineering Integrated Coal Gasification Combined Cycle Repowering Project: Clean Coal Technology Program  

SciTech Connect

On February 22, 1988, DOE issued Program Opportunity Notice (PON) Number-DE-PS01-88FE61530 for Round II of the CCT Program. The purpose of the PON was to solicit proposals to conduct cost-shared ICCT projects to demonstrate technologies that are capable of being commercialized in the 1990s, that are more cost-effective than current technologies, and that are capable of achieving significant reduction of SO[sub 2] and/or NO[sub x] emissions from existing coal burning facilities, particularly those that contribute to transboundary and interstate pollution. The Combustion Engineering (C-E) Integrated Coal Gasification Combined Cycle (IGCC) Repowering Project was one of 16 proposals selected by DOE for negotiation of cost-shared federal funding support from among the 55 proposals that were received in response to the PON. The ICCT Program has developed a three-level strategy for complying with the National Environmental Policy Act (NEPA) that is consistent with the President's Council on Environmental Quality regulations implementing NEPA (40 CFR 1500-1508) and the DOE guidelines for compliance with NEPA (10 CFR 1021). The strategy includes the consideration of programmatic and project-specific environmental impacts during and subsequent to the reject selection process.

1992-03-01T23:59:59.000Z

111

Combustion Engineering Integrated Coal Gasification Combined Cycle Repowering Project, Clean Coal Technology Program  

Science Conference Proceedings (OSTI)

The DOE entered into a cooperative agreement with Combustion Engineering, Inc. (C-E) under which DOE proposes to provide cost-shared funding to design, construct, and operate an Integrated Coal Gasification Combined Cycle (IGCC) project to repower an existing steam turbine generator set at the Springfield (Illinois) City Water, Light and Power (CWL P) Lakeside Generating Station, while capturing 90% of the coal's sulfur and producing elemental sulfur as a salable by-product. The proposed demonstration would help determine the technical and economic feasibility of the proposed IGCC technology on a scale that would allow the utility industry to assess its applicability for repowering other coal-burning power plants. This Environmental Assessment (EA) has been prepared by DOE in compliance with the requirements of National Environmental Policy Act (NEPA). The sources of information for this EA include the following: C-E's technical proposal for the project submitted to DOE in response to the Innovative Clean Coal Technology (ICCT) Program Opportunity Notice (PON); discussions with C-E and CWL P staff; the volume of environmental information for the project and its supplements provided by C-E; and a site visit to the proposed project site.

Not Available

1992-03-01T23:59:59.000Z

112

Combustion Engineering Integrated Coal Gasification Combined Cycle Repowering Project, Clean Coal Technology Program. Environmental Assessment  

Science Conference Proceedings (OSTI)

The DOE entered into a cooperative agreement with Combustion Engineering, Inc. (C-E) under which DOE proposes to provide cost-shared funding to design, construct, and operate an Integrated Coal Gasification Combined Cycle (IGCC) project to repower an existing steam turbine generator set at the Springfield (Illinois) City Water, Light and Power (CWL&P) Lakeside Generating Station, while capturing 90% of the coal`s sulfur and producing elemental sulfur as a salable by-product. The proposed demonstration would help determine the technical and economic feasibility of the proposed IGCC technology on a scale that would allow the utility industry to assess its applicability for repowering other coal-burning power plants. This Environmental Assessment (EA) has been prepared by DOE in compliance with the requirements of National Environmental Policy Act (NEPA). The sources of information for this EA include the following: C-E`s technical proposal for the project submitted to DOE in response to the Innovative Clean Coal Technology (ICCT) Program Opportunity Notice (PON); discussions with C-E and CWL&P staff; the volume of environmental information for the project and its supplements provided by C-E; and a site visit to the proposed project site.

Not Available

1992-03-01T23:59:59.000Z

113

Study of practical cycles for geothermal power plants. Final report  

SciTech Connect

A comparison is made of the performance and cost of geothermal power cycles designed specifically, utilizing existing technology, to exploit the high temperature, high salinity resource at Niland and the moderate temperature, moderately saline resource at East Mesa in California's Imperial Valley. Only two kinds of cycles are considered in the analysis. Both employ a dual flash arrangement and the liberated steam is either utilized directly in a condensing steam turbine or used to heat a secondary working fluid in a closed Rankine (binary) cycle. The performance of several organic fluids was investigated for the closed cycle and the most promising were selected for detailed analysis with the given resource conditions. Results show for the temperature range investigated that if the noncondensible gas content in the brine is low, a dual flash condensing steam turbine cycle is potentially better in terms of resource utilization than a dual flash binary cycle. (The reverse is shown to be true when the brine is utilized directly for heat exchange.) It is also shown that despite the higher resource temperature, the performance of the dual flash binary cycle at Niland is degraded appreciably by the high salinity and its output per unit of brine flow is almost 20 percent lower than that of the steam turbine cycle at East Mesa. Turbine designs were formulated and costs established for power plants having a nominal generating capacity of 50 MW. Three cycles were analyzed in detail. At East Mesa a steam turbine and a binary cycle were compared. At Niland only the binary cycle was analyzed since the high CO/sub 2/ content in the brine precludes the use of a steam turbine there. In each case only the power island equipment was considered and well costs and the cost of flash separators, steam scrubbers and piping to the power plant boundary were excluded from the estimate.

Eskesen, J.H.

1977-04-01T23:59:59.000Z

114

Study of practical cycles for geothermal power plants. Final report  

DOE Green Energy (OSTI)

A comparison is made of the performance and cost of geothermal power cycles designed specifically, utilizing existing technology, to exploit the high temperature, high salinity resource at Niland and the moderate temperature, moderately saline resource at East Mesa in California's Imperial Valley. Only two kinds of cycles are considered in the analysis. Both employ a dual flash arrangement and the liberated steam is either utilized directly in a condensing steam turbine or used to heat a secondary working fluid in a closed Rankine (binary) cycle. The performance of several organic fluids was investigated for the closed cycle and the most promising were selected for detailed analysis with the given resource conditions. Results show for the temperature range investigated that if the noncondensible gas content in the brine is low, a dual flash condensing steam turbine cycle is potentially better in terms of resource utilization than a dual flash binary cycle. (The reverse is shown to be true when the brine is utilized directly for heat exchange.) It is also shown that despite the higher resource temperature, the performance of the dual flash binary cycle at Niland is degraded appreciably by the high salinity and its output per unit of brine flow is almost 20 percent lower than that of the steam turbine cycle at East Mesa. Turbine designs were formulated and costs established for power plants having a nominal generating capacity of 50 MW. Three cycles were analyzed in detail. At East Mesa a steam turbine and a binary cycle were compared. At Niland only the binary cycle was analyzed since the high CO/sub 2/ content in the brine precludes the use of a steam turbine there. In each case only the power island equipment was considered and well costs and the cost of flash separators, steam scrubbers and piping to the power plant boundary were excluded from the estimate.

Eskesen, J.H.

1977-04-01T23:59:59.000Z

115

Program on Technology Innovation: Tampa Electric Company Polk Integrated Gasification Combined Cycle Plant Carbon Capture Retrofit Study  

Science Conference Proceedings (OSTI)

In support of the Industry Technology Demonstration Program on Integrated Gasification Combined Cycle (IGCC) with carbon capture and storage (CCS), an engineering study was conducted to evaluate the cost and performance impacts of various CCS schemes at the Tampa Electric Polk Power Station. The portion of the work presented here was funded by the Electric Power Research Institute (EPRI) Technology Innovation Program and focuses on a comparison of chemical and physical solvent-based CO2 capture systems i...

2010-03-30T23:59:59.000Z

116

Wabash River Coal Gasification Combined Cycle Repowering Project: Clean Coal Technology Program. Environmental Assessment  

Science Conference Proceedings (OSTI)

The proposed project would result in a combined-cycle power plant with lower emissions and higher efficiency than most existing coal-fired power plants of comparable size. The net plant heat rate (energy content of the fuel input per useable electrical generation output; i.e., Btu/kilowatt hour) for the new repowered unit would be a 21% improvement over the existing unit, while reducing SO{sub 2} emissions by greater than 90% and limiting NO{sub x} emissions by greater than 85% over that produced by conventional coal-fired boilers. The technology, which relies on gasified coal, is capable of producing as much as 25% more electricity from a given amount of coal than today`s conventional coal-burning methods. Besides having the positive environmental benefit of producing less pollutants per unit of power generated, the higher overall efficiency of the proposed CGCC project encourages greater utilization to meet base load requirements in order to realize the associated economic benefits. This greater utilization (i.e., increased capacity factor) of a cleaner operating plant has global environmental benefits in that it is likely that such power would replace power currently being produced by less efficient plants emitting a greater volume of pollutants per unit of power generated.

Not Available

1993-05-01T23:59:59.000Z

117

Technology assessments of advanced power generation systems 2: Kalina bottoming cycle: Final report  

SciTech Connect

A preliminary assessment of the Kalina cycle as the bottoming system of a small, combined-cycle power plant found that the cost of electricity for this plant was calculated to be somewhat less than that of competing steam-bottoming systems. This new system requires further analysis, however, particularly of the trade-off between heat exchanger cost and cycle performance.

1986-11-01T23:59:59.000Z

118

Technology Assessments of Advanced Power Generation Systems II--Kalina Bottoming Cycle  

Science Conference Proceedings (OSTI)

A preliminary assessment of the Kalina cycle as the bottoming system of a small, combined-cycle power plant found that the cost of electricity for this plant was calculated to be somewhat less than that of competing steam-bottoming systems. This new system requires further analysis, however, particularly of the trade-off between heat exchanger cost and cycle performance.

1986-11-14T23:59:59.000Z

119

Bitraker Anvil: Binary instrumentation for rapid creation of simulation and workload analysis tools  

E-Print Network (OSTI)

A wide range of ARM developers from architects, to compiler writers, to software developers, need tools to understand, analyze, and simulate program behavior. For developers to achieve high levels of system and program correctness, performance, reliability, and power efficiency these tools must be fast and customizable to the problems at hand. BitRaker Anvil is a tool building framework allowing developers to rapidly build tools to achieve these goals. BitRaker Anvil uses binary instrumentation to modify ARM binaries for the purpose of analyzing program behavior. BitRaker Anvil equips the developer with an easy to use API that allows the user to specify the particular program characteristics to analyze. Using this API, the developer can create custom tools to perform simulation or workload analysis several orders of magnitude faster than using a cycle level simulator. Prior binary instrumentation technology requires that analysis code be merged into the same binary as the code to be analyzed. A key new feature of our binary instrumentation framework is ReHost analysis, which allows an instrumented ARM binary to make calls to analysis code that is written in the native format of the desktop machine. Using this for cross-platform ARM development results in analysis that runs orders of magnitude faster while simultaneously reducing the size of the ARM binary images. 1

Brad Calder; Todd Austin; Don Yang; Timothy Sherwood; Suleyman Sair; David Newquist; Tim Cusac

2004-01-01T23:59:59.000Z

120

Determination of the 5 MW gross nominal design case binary cycle for power generation at Raft River, Idaho. [Using GEOSYS program  

DOE Green Energy (OSTI)

A series of Rankine cycle studies for power generation utilizing geothermal fluid as the heat source and isobutane as the working fluid are reported. To find the plant configuration which would most effectively utilize the available energy, a parametric study was performed. The desirability of supercritical, single boiler or double boiler cycles, and the relative boiler temperatures and percentage isobutane flow split between the boilers in the double cycles for geothermal fluid temperatures of 260/sup 0/F to 360/sup 0/F were considered. This study was designed to discover thermodynamic trends which would point to an optimum isobutane cycle for geothermal fluid temperatures in this temperature range. The results of the parametric study were applied to derive a Nominal Design Case for a demonstration plant at Raft River, with a geothermal fluid resource at 290/sup 0/F. In addition, plant variations due to tolerances applied to thermodynamic properties and other key factors are included.

Ingvarsson, I.J.; Madsen, W.W. (eds.)

1976-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "binary cycle technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Energy Storage: Breakthrough in Battery Technologies (Carbon Cycle 2.0)  

DOE Green Energy (OSTI)

Nitash Balsara speaks at the Carbon Cycle 2.0 kick-off symposium Feb. 2, 2010. We emit more carbon into the atmosphere than natural processes are able to remove - an imbalance with negative consequences. Carbon Cycle 2.0 is a Berkeley Lab initiative to provide the science needed to restore this balance by integrating the Labs diverse research activities and delivering creative solutions toward a carbon-neutral energy future. http://carboncycle2.lbl.gov/

Balsara, Nitash

2010-02-04T23:59:59.000Z

122

Integration of Ion Transport Membrane Technology with Integrated Gasification Combined Cycle Power Generation Systems  

Science Conference Proceedings (OSTI)

EPRI, in conjunction with Air Products and Chemicals, Inc. (AP), has reviewed the integrated gasification combined cycle (IGCC) process, whereby coal (or some other hydrocarbon such as petroleum coke or heavy oil) is broken down into its constituent volatile and nonvolatile components through the process of oxidative-pyrolysis. Combustible synthetic gas created in the process can be used in a traditional combined cycle. IGCC is particularly appealing for its potentially higher efficiencies compared ...

2013-10-30T23:59:59.000Z

123

ENERGY UTILIZATION AND ENVIRONMENTAL CONTROL TECHNOLOGIES IN THE COAL-ELECTRIC CYCLE  

E-Print Network (OSTI)

Electric Generation Technology Conventional Coal-Fired PowerPlants Advanced Coal-Electric Plants OperatingCharacteristics for Conventional Coal- Fired Power

Ferrell, G.C.

2010-01-01T23:59:59.000Z

124

Binary module test. Final report  

DOE Green Energy (OSTI)

The objective of this project was to design and test a binary loop module representative of and scaleable to commercial size units. The design was based on state-of-the-art heat exchanger technology, and the purpose of the tests was to confirm performance of a supercritical boiling cycle using isobutane and a mixture of isobutane and isopentane as the secondary working fluid. The module was designed as one percent of a 50 MW unit. It was installed at Magma Power's East Mesa geothermal field and tested over a period of approximately 4 months. Most of the test runs were with isobutane but some data were collected for hydrocarbon mixtures. The results of the field tests are reported. In general these results indicate reasonably good heat balances and agreement with overall heat transfer coefficients calculated by current stream analysis methods and available fluid property data; however, measured pressure drops across the heat exchangers were 20 percent higher than estimated. System operation was stable under all conditions tested.

Schilling, J.R.; Colley, T.C.; Pundyk, J.

1980-12-01T23:59:59.000Z

125

Geothermal completion technology life cycle cost model (GEOCOM). Volume I. Final report. Volume II. User instruction manual  

DOE Green Energy (OSTI)

Just as with petroleum wells, drilling and completing a geothermal well at minimum original cost may not be the most cost-effective way to exploit the resource. The impacts of the original completion activities on production and costs later in the life of the well must also be considered. In order to evaluate alternate completion and workover technologies, a simple computer model has been developed to compare total life-cycle costs for a geothermal well to total production or injection. Volume I discusses the mechanics of the model and then presents detailed results from its application to different completion and workover questions. Volume II is the user instruction manual.

Anderson, E.R.; Hoessel, W.C.; Mansure, A.J.; McKissen, P.

1982-07-01T23:59:59.000Z

126

Gas Turbine/Combined-Cycle Emissions Control Technology and Regulatory Issues Handbook-2010 Edition  

Science Conference Proceedings (OSTI)

This report provides information pertaining to emissions from combustion turbines. Topics covered include low-NOx burner design and information on add-on control systems, including equipment used in practice as well as emerging technologies. Select air quality regulations that apply to new and existing combustion turbines are discussed, including requirements regarding best available control technology (BACT) (which also may represent the lowest-achievable emission rate or LAER) requirement. United State...

2010-12-20T23:59:59.000Z

127

Program on Technology Innovation: Advanced Fuel Cycles--Impact on High-Level Waste Disposal  

Science Conference Proceedings (OSTI)

The aim of advanced fuel cycles is to improve the sustainability of nuclear energy by enhancing the effectiveness of natural uranium resource utilization and by mitigating waste disposal issues, while keeping the costs of energy products, in particular electricity, economically viable. In addition, this aim has to be achieved under conditions that minimize the risks of diversion of separated fissile materials and their possible misuse for non-peaceful ends. The report presents results from recently publi...

2007-12-21T23:59:59.000Z

128

Program on Technology Innovation: EPRI Framework for Assessment of Nuclear Fuel Cycle Options  

Science Conference Proceedings (OSTI)

EPRI is building a suite of tools for assessing nuclear fuel cycle options based on a platform of software, simplified relationships, and explicit decision-making and evaluation guidelines. This report describes a decision-support framework for assembling and structuring information for transparent auditable assessments as well as knowledge capture and transfer.The EPRI framework comprises evaluation and analysis at strategic, tactical, and readiness levels in regard to transformational ...

2013-03-28T23:59:59.000Z

129

Geothermal heat cycle research supercritical cycle with counterflow condenser in different orientations  

DOE Green Energy (OSTI)

The Heat Cycle Research Program, which is conducted for the Department of Energy, has as its objective the development of the technology for effecting the improved utilization of moderate temperature geothermal resources. The current testing involves the investigation of binary power cycle performance utilizing mixtures of non-adjacent hydrocarbons as the working fluids, with supercritical vaporization and in-tube condensation of the working fluid. The utilization of these concepts verified here will improve the net geofluid effectiveness (net watt hours plant output per pound of geofluid) about 20% over that of a conventional binary power plant. The major effect in this improvement is the ability to achieve integral, countercurrent condensation. Results are presented for the recent testing including those tests examining the performance of the countercurrent condenser at different tube inclinations and comparison with new design-base computer programs. 9 refs., 9 figs.

Bliem, C.J.; Mines, G.L.

1988-01-01T23:59:59.000Z

130

STATE-OF-THE-ART AND EMERGING TRUCK ENGINE TECHNOLOGIES FOR OPTIMIZED PERFORMANCE, EMISSIONS AND LIFE CYCLE COSTS  

DOE Green Energy (OSTI)

The challenge for truck engine product engineering is not only to fulfill increasingly stringent emission requirements, but also to improve the engine's economical viability in its role as the backbone of our global economy. While societal impact and therefore emission limit values are to be reduced in big steps, continuous improvement is not enough but technological quantum leaps are necessary. The introduction and refinement of electronic control of all major engine systems has already been a quantum leap forward. Maximizing the benefits of these technologies to customers and society requires full use of parameter optimization and other enabling technologies. The next big step forward will be widespread use of exhaust aftertreatment on all transportation related diesel engines. While exhaust gas aftertreatment has been successfully established on gasoline (Otto cycle) engines, the introduction of exhaust aftertreatment especially for heavy-duty diesel engines will be much mo re demanding. Implementing exhaust gas aftertreatment into commercial vehicle applications is a challenging task but the emission requirements to be met starting in Europe, the USA and Japan in the 2005-2007 timeframe require this step. The engine industry will be able to implement the new technology if all stakeholders support the necessary decisions. One decision has already been taken: the reduction of sulfur in diesel fuel being comparable with the elimination of lead in gasoline as a prerequisite for the three-way catalyst. Now we have the chance to optimize ecology and economy of the Diesel engine simultaneously by taking the decision to provide an additional infrastructure for a NOx reduction agent needed for the introduction of the Selective Catalytic Reduction (SCR) technology that is already implemented in the electric power generation industry. This requires some effort, but the resulting societal benefits, fuel economy and vehicle life cycle costs are significantly better when compared to other competitive technologies. After long discussions this decision for SCR has been made in Europe and is supported by all truck and engine manufacturers. The necessary logistic support will be in place when it will be needed commercially in 2005. For the US the decision has to be taken this year in order to have the infrastructure available in 2007. It will enable the global engine industry to focus their R & D resources in one direction not only for 2007, but for the years beyond 2010 with the best benefit for the environment, the customers and the industry.

Schittler, M

2003-08-24T23:59:59.000Z

131

Program on Technology Innovation: Development of an Integrated Gasification Combined Cycle Performance and Cost Modeling Tool  

Science Conference Proceedings (OSTI)

This report describes the development of an integrated performance and cost model for advanced coal power plant undertaken to enable users to screen technologies prior to engaging in more extensive studies of their preferred choice. Such screening activities generally require utilities to contract with outside engineering firms with access to sophisticated engineering modeling software and experienced staff to perform the studies, thus costing significant time and investment.

2010-12-31T23:59:59.000Z

132

An evolution of technologies and applications of gamma imagers in the nuclear cycle industry  

SciTech Connect

The tracking of radiation contamination and distribution has become a high priority in the nuclear cycle industry in order to respect the ALARA principle which is a main challenge during decontamination and dismantling activities. To support this need, AREVA/CANBERRA and CEA LIST have been actively carrying out research and development on a gamma-radiation imager. In this paper we will present the new generation of gamma camera, called GAMPIX. This system is based on the Timepix chip, hybridized with a CdTe substrate. A coded mask could be used in order to increase the sensitivity of the camera. Moreover, due to the USB connection with a standard computer, this gamma camera is immediately operational and user-friendly. The final system is a very compact gamma camera (global weight is less than 1 kg without any shielding) which could be used as a hand-held device for radioprotection purposes. In this article, we present the main characteristics of this new generation of gamma camera and we expose experimental results obtained during in situ measurements. Even though we present preliminary results the final product is under industrialization phase to address various applications specifications. (authors)

Khalil, R. A. [AREVA/CANBERRA - Nuclear Measurements Business Unit (France); Carrel, F. [CEA, LIST, F-91191 Gif-sur-Yvette (France); Menaa, N.; De Toro, D. [AREVA/CANBERRA - Nuclear Measurements Business Unit (France); Schoepff, V.; Gmar, M. [CEA, LIST, F-91191 Gif-sur-Yvette (France); Varet, T. [AREVA/Nuclear Site Value Development Business Unit (France); Toubon, H. [AREVA/CANBERRA - Nuclear Measurements Business Unit (France)

2011-07-01T23:59:59.000Z

133

Advances in Acid Concentration Membrane Technology for the Sulfur-Iodine Thermochemical Cycle  

DOE Green Energy (OSTI)

One of the most promising cycles for the thermochemical generation of hydrogen is the Sulfur-Iodine (S-I) process, where aqueous HI is thermochemically decomposed into H2 and I2 at approximately 350 degrees Celsius. Regeneration of HI is accomplished by the Bunsen reaction (reaction of SO2, water, and iodine to generate H2SO4 and HI). Furthermore, SO2 is regenerated from the decomposition of H2SO4 at 850 degrees Celsius yielding the SO2 as well as O2. Thus, the cycle actually consists of two concurrent oxidation-reduction loops. As HI is regenerated, co-produced H2SO4 must be separated so that each may be decomposed. Current flowsheets employ a large amount (~83 mol% of the entire mixture) of elemental I2 to cause the HI and the H2SO4 to separate into two phases. To aid in the isolation of HI, which is directly decomposed into hydrogen, water and iodine must be removed. Separation of iodine is facilitated by removal of water. Sulfuric acid concentration is also required to facilitate feed recycling to the sulfuric acid decomposer. Decomposition of the sulfuric acid is an equilibrium limited process that leaves a substantial portion of the acid requiring recycle. Distillation of water from sulfuric acid involves significant corrosion issues at the liquid-vapor interface. Thus, it is desirable to concentrate the acid without boiling. Recent efforts at the INL have concentrated on applying pervaporation through Nafion-117, Nafion-112, and sulfonated poly(etheretherketone) (S-PEEK) membranes for the removal of water from HI/water and HI/Iodine/water feedstreams. In pervaporation, a feed is circulated at low pressure across the upstream side of the membrane, while a vacuum is applied downstream. Selected permeants sorb into the membrane, transport through it, and are vaporized from the backside. Thus, a concentration gradient is established, which provides the driving force for transport. In this work, membrane separations have been performed at temperatures as high as 134 degrees Celsius. Transmembrane fluxes of water are commercially competitive (~5000 g/m2h) and separation factors have been measured as high as 8000, depending on the membrane and the water content. For the Nafion-117 experiments, the common trade off in membrane performance is observed in that as flux is increased, separation factor decreases. Nafion-112, a thinner membrane, exhibited much higher fluxes than the Nafion-117; however without the expected loss in separation factor indicating that the permeability of iodine and HI through Nafion materials is low. Preliminary data for the sulfuric acid concentration suggests performance similar to the HI experiments. All membranes studied for the HI, HI/iodine and sulfuric acid feeds exhibited no degradation in membrane performance during use.

Frederick F. Stewart; Christopher J. Orme

2006-11-01T23:59:59.000Z

134

Cycle Life Studies of Advanced Technology Development Program Gen 1 Lithium Ion Batteries  

SciTech Connect

This report presents the test results of a special calendar-life test conducted on 18650-size, prototype, lithium-ion battery cells developed to establish a baseline chemistry and performance for the Advanced Technology Development Program. As part of electrical performance testing, a new calendar-life test protocol was used. The test consisted of a once-per-day discharge and charge pulse designed to have minimal impact on the cell yet establish the performance of the cell over a period of time such that the calendar life of the cell could be determined. The calendar life test matrix included two states of charge (i.e., 60 and 80%) and four temperatures (40, 50, 60, and 70C). Discharge and regen resistances were calculated from the test data. Results indicate that both discharge and regen resistance increased nonlinearly as a function of the test time. The magnitude of the discharge and regen resistance depended on the temperature and state of charge at which the test was conducted. The calculated discharge and regen resistances were then used to develop empirical models that may be useful to predict the calendar life or the cells.

Wright, Randy Ben; Motloch, Chester George

2001-03-01T23:59:59.000Z

135

Modular Wellhead Binary Power System: Preliminary Design Results  

Science Conference Proceedings (OSTI)

To provide the utility industry with effective and flexible binary-cycle power plants, preliminary engineering analyses were conducted on a standardized design being developed for a modular wellhead binary-cycle power system. This design will use heat sources, such as geothermal or waste heat, in the 300-450 degrees F temperature range and will meet utility requirements for small geothermal resource capacity needs.

1990-09-13T23:59:59.000Z

136

Advanced binary geothermal power plants: Limits of performance  

SciTech Connect

The Heat Cycle Research Program is currently investigating the potential improvements to power cycles utilizing moderate temperature geothermal resources to produce electrical power. Investigations have specifically examined Rankine cycle binary power systems. Binary Rankine cycles are more efficient than the flash steam cycles at moderate resource temperatures, achieving a higher net brine effectiveness. At resource conditions similar to those at the Heber binary plant, it has been shown that mixtures of saturated hydrocarbons (alkanes) or halogenated hydrocarbons operating with a supercritical Rankine cycle gave improved performance over Rankine cycles with the pure working fluids executing single boiling cycles. Recently, in addition to the supercritical Rankine Cycle, other types of cycles have been proposed for binary geothermal service. This paper explores the limits on efficiency of a feasibility plant and discusses the methods used in these advanced concept plants to achieve the maximum possible efficiency. The advanced plants considered appear to be approaching the feasible limit of performance so that the designer must weigh all considerations to find the best plant for a given service. 16 refs., 12 figs.

Bliem, C.J.; Mines, G.L.

1990-01-01T23:59:59.000Z

137

Simple strategies for minimization of cooling water usage in binary power plants  

SciTech Connect

The geothermal resources which could be used for the production of electrical power in the United States are located for the most part in the semi-arid western regions of the country. The availability of ground or surface water in the quantity or quality desired for a conventional wet'' heat rejections system represents a barrier to the development of these resources with the binary cycle technology. This paper investigates some simple strategies to minimize the cooling water usage of binary power plants. The cooling water usage is reduced by increasing the thermal efficiency of the plant. Three methods of accomplishing this are considered here: increasing the average source temperature, by increasing the geofluid outlet temperature; decreasing pinch points on the heat rejection heat exchangers, increasing their size; and using internal recuperation within the cycle. In addition to the impact on water usage, the impact on cost-of-electricity is determined. The paper shows that some of these strategies can reduce the cooling water requirements 20 to 30% over that for a plant similar to the Heber Binary Plant, with a net reduction in the cost-of-electricity of about 15%. 13 refs., 4 figs., 3 tabs.

Bliem, C.J.; Mines, G.L. (EG and G Idaho, Inc., Idaho Falls, ID (USA))

1989-01-01T23:59:59.000Z

138

Simple strategies for minimization of cooling water usage in binary power plants  

SciTech Connect

The geothermal resources which could be used for the production of electrical power in the United States are located for the most part in the semi-arid western regions of the country. The availability of ground or surface water in the quantity or quality desired for a conventional wet'' heat rejections system represents a barrier to the development of these resources with the binary cycle technology. This paper investigates some simple strategies to minimize the cooling water usage of binary power plants. The cooling water usage is reduced by increasing the thermal efficiency of the plant. Three methods of accomplishing this are considered here: increasing the average source temperature, by increasing the geofluid outlet temperature; decreasing pinch points on the heat rejection heat exchangers, increasing their size; and using internal recuperation within the cycle. In addition to the impact on water usage, the impact on cost-of-electricity is determined. The paper shows that some of these strategies can reduce the cooling water requirements 20 to 30% over that for a plant similar to the Heber Binary Plant, with a net reduction in the cost-of-electricity of about 15%. 13 refs., 4 figs., 3 tabs.

Bliem, C.J.; Mines, G.L. (EG and G Idaho, Inc., Idaho Falls, ID (USA))

1989-01-01T23:59:59.000Z

139

Nuclear Energy Enabling Technologies | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Enabling Technologies Nuclear Energy Enabling Technologies Nuclear Reactor Technologies Fuel Cycle Technologies International Nuclear Energy Policy and Cooperation Nuclear...

140

Physics of Binary Information  

E-Print Network (OSTI)

Basic concepts of theoretical particle physics, including quantum mechanics and Poincar\\'e invariance, the leptonic mass spectrum and the proton mass, can be derived, without reference to first principles, from intrinsic properties of the simplest elements of information represented by binary data. What we comprehend as physical reality is, therefore, a reflection of mathematically determined logical structures, built from elements of binary data.

Walter Smilga

2005-05-05T23:59:59.000Z

Note: This page contains sample records for the topic "binary cycle technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Draft Final Phase II Report: Review of Life Cycle and Technology Applications of the Office of Environmental Managements Tank  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

A1-1 A1-1 APPENDIX 1 Charge Summary Issue Suggested Activities Expected Output/ Work Product Notes Charge 1 Modeling for Life-Cycle Analysis This task entails reviewing the modeling approaches for determining tank waste remediation life-cycle costs at both SRS and Hanford. This includes evaluating assumptions in system plans for completing tank waste missions at Hanford and SRS, as well as the rigor of the models for identifying activities and costs through the end of each site's program. Recommendation(s) At Hanford, LAW vitrification capital and operating costs are potentially substantially greater than competing technologies. A second LAW vitrification plant is currently part of the baseline in order to treat the balance of the

142

Program on Technology Innovation: An Optimization Approach for Life-Cycle Management Applied to Large Power Transformers  

Science Conference Proceedings (OSTI)

This report presents results and insights from a study of the life-cycle management (LCM) of main transformers at Constellation Energy Nuclear Group's (CENG's) five nuclear power plants. The study used two asset management (AM) tools developed by Electricit de France (EDF).

2011-07-04T23:59:59.000Z

143

Technologies  

Technologies Materials. Aggregate Spray for Air Particulate; Actuators Made From Nanoporous Materials; Ceramic Filters; Energy Absorbing Material; Diode Arrays for ...

144

Technologies  

Science & Technology. Weapons & Complex Integration. News Center. News Center. Around the Lab. Contacts. For Reporters. Livermore Lab Report. ...

145

Technologies  

Technologies Energy. Advanced Carbon Aerogels for Energy Applications; Distributed Automated Demand Response; Electrostatic Generator/Motor; Modular Electromechanical ...

146

Technologies  

Technologies Energy, Utilities, & Power Systems. Advanced Carbon Aerogels for Energy Applications; Distributed Automated Demand Response; Electrostatic Generator/Motor

147

Technologies  

Technologies Research Tools. Cell-Free Assembly of NanoLipoprotein Particles; Chemical Prism; Lawrence Livermore Microbial Detection Array (LLMDA) ...

148

Double Degenerate Binary Systems  

Science Conference Proceedings (OSTI)

In this study, angular momentum loss via gravitational radiation in double degenerate binary (DDB)systems (NS + NS, NS + WD, WD + WD, and AM CVn) is studied. Energy loss by gravitational waves has been estimated for each type of systems.

Yakut, K. [University of Ege, Department of Astronomy and Space Sciences, 35100-Izmir (Turkey)

2011-09-21T23:59:59.000Z

149

Combustion Turbine Experience and Intelligence Reports: 2004 Combustion Turbine/Combined Cycle Technology Developments, Reliability Issues, and Related Markets Conditions  

Science Conference Proceedings (OSTI)

Deregulating power generation markets worldwide present both business opportunities and challenges for combustion turbine plant owners, operators, and project developers. EPRI's comprehensive Combustion Turbine/Combined Cycle (CT/CC) program provides a range of tools, methodologies, and approaches to help owner/operators and project developers face these challenges and prosper in this evolving marketplace. Access to this resource base in a timely, concise manner is key to delivering benefits in the new e...

2005-03-23T23:59:59.000Z

150

Combustion Turbine Experience and Intelligence Report: 2003: Combustion Turbine/Combined Cycle Technology Developments, Reliability Issues, and Related Markets Conditions  

Science Conference Proceedings (OSTI)

The deregulation of power generation markets worldwide presents both business opportunities and challenges for combustion turbine plant owners, operators, and project developers. EPRI's comprehensive Combustion Turbine/Combined Cycle (CT/CC) program provides a range of tools, methodologies, and approaches to help owner/operators and project developers face these challenges and prosper in this evolving marketplace. Access to this resource base in a timely, concise manner is key to delivering benefits in t...

2004-01-28T23:59:59.000Z

151

Technologies  

High Performance Computing (HPC) Technologies; Industrial Partnerships Office P.O. Box 808, L-795 Livermore, CA 94551 Phone: (925) 422-6416 Fax: (925) ...

152

Descriptions of Past Research in Program 80: New Combustion Turbine/Combined-Cycle Plant Design and Technology Selection  

Science Conference Proceedings (OSTI)

BackgroundAt a time when the power industry needs to meet growing demand and capacity requirements, informed decisions on gas turbine selection and plant designs are especially important. Technology selection impacts efficiency, emissions, availability, maintainability, and durability. Flexible operational capabilities are needed for plant dispatch, and planners need to understand upcoming trends and potential improvements for future growth.The Electric Power ...

2012-09-19T23:59:59.000Z

153

Technolog  

NLE Websites -- All DOE Office Websites (Extended Search)

Research in Research in Science and Technolog y Sandia pushes frontiers of knowledge to meet the nation's needs, today and tomorrow Sandia National Laboratories' fundamental science and technology research leads to greater understanding of how and why things work and is intrinsic to technological advances. Basic research that challenges scientific assumptions enables the nation to push scientific boundaries. Innovations and breakthroughs produced at Sandia allow it to tackle critical issues, from maintaining the safety, security and effectiveness of the nation's nuclear weapons and preventing domestic and interna- tional terrorism to finding innovative clean energy solutions, develop- ing cutting-edge nanotechnology and moving the latest advances to the marketplace. Sandia's expertise includes:

154

Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

Technology Computers and the internet play an increasingly larger role in the lives of students. In this activity, students must use various web sites to locate specific pieces of...

155

Binary ferrihydrite catalysts  

DOE Patents (OSTI)

A method of preparing a catalyst precursor comprises dissolving an iron salt and a salt of an oxoanion forming agent, in water so that a solution of the iron salt and oxoanion forming agent salt has a ratio of oxoanion/Fe of between 0.0001:1 to 0.5:1. Next is increasing the pH of the solution to 10 by adding a strong base followed by collecting of precipitate having a binary ferrihydrite structure. A binary ferrihydrite catalyst precursor is also prepared by dissolving an iron salt in water. The solution is brought to a pH of substantially 10 to obtain ferrihydrite precipitate. The precipitate is then filtered and washed with distilled water and subsequently admixed with a hydroxy carboxylic acid solution. The admixture is mixed/agitated and the binary ferrihydrite precipitate is then filtered and recovered. 3 figs.

Huffman, G.P.; Zhao, J.; Feng, Z.

1996-12-03T23:59:59.000Z

156

Binary ferrihydrite catalysts  

DOE Patents (OSTI)

A method of preparing a catalyst precursor comprises dissolving an iron salt and a salt of an oxoanion forming agent, in water so that a solution of the iron salt and oxoanion forming agent salt has a ratio of oxoanion/Fe of between 0.0001:1 to 0.5:1. Next is increasing the pH of the solution to 10 by adding a strong base followed by collecting of precipitate having a binary ferrihydrite structure. A binary ferrihydrite catalyst precursor is also prepared by dissolving an iron salt in water. The solution is brought to a pH of substantially 10 to obtain ferrihydrite precipitate. The precipitate is then filtered and washed with distilled water and subsequently admixed with a hydroxy carboxylic acid solution. The admixture is mixed/agitated and the binary ferrihydrite precipitate is then filtered and recovered.

Huffman, Gerald P. (Lexington, KY); Zhao, Jianmin (Lexington, KY); Feng, Zhen (Lexington, KY)

1996-01-01T23:59:59.000Z

157

NETL Life Cycle Analysis Fact Sheets  

NLE Websites -- All DOE Office Websites (Extended Search)

Life Cycle Analysis Fact Sheets Life Cycle Analysis Role of Alternative Energy Sources - Wind Technology Assessment PDF-372KB (Sept 2012) Role of Alternative Energy Sources -...

158

Department of Energy Awards $15 Million for Nuclear Fuel Cycle...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

15 Million for Nuclear Fuel Cycle Technology Research and Development Department of Energy Awards 15 Million for Nuclear Fuel Cycle Technology Research and Development August 1,...

159

The United States of America and the People`s Republic of China experts report on integrated gasification combined-cycle technology (IGCC)  

SciTech Connect

A report written by the leading US and Chinese experts in Integrated Gasification Combined Cycle (IGCC) power plants, intended for high level decision makers, may greatly accelerate the development of an IGCC demonstration project in the People`s Republic of China (PRC). The potential market for IGCC systems in China and the competitiveness of IGCC technology with other clean coal options for China have been analyzed in the report. Such information will be useful not only to the Chinese government but also to US vendors and companies. The goal of this report is to analyze the energy supply structure of China, China`s energy and environmental protection demand, and the potential market in China in order to make a justified and reasonable assessment on feasibility of the transfer of US Clean Coal Technologies to China. The Expert Report was developed and written by the joint US/PRC IGCC experts and will be presented to the State Planning Commission (SPC) by the President of the CAS to ensure consideration of the importance of IGCC for future PRC power production.

1996-12-01T23:59:59.000Z

160

Binary Tetrahedral Flavor Symmetry  

E-Print Network (OSTI)

A study of the T' Model and its variants utilizing Binary Tetrahedral Flavor Symmetry. We begin with a description of the historical context and motivations for this theory, together with some conceptual background for added clarity, and an account of our theory's inception in previous works. Our model endeavors to bridge two categories of particles, leptons and quarks, a unification made possible by the inclusion of additional Higgs particles, shared between the two fermion sectors and creating a single coherent system. This is achieved through the use of the Binary Tetrahedral symmetry group and an investigation of the Tribimaximal symmetry evidenced by neutrinos. Our work details perturbations and extensions of this T' Model as we apply our framework to neutrino mixing, quark mixing, unification, and dark matter. Where possible, we evaluate model predictions against experimental results and find excellent matching with the atmospheric and reactor neutrino mixing angles, an accurate prediction of the Cabibb...

Eby, David A

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "binary cycle technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Life-cycle analysis results of geothermal systems in comparison to other power systems.  

DOE Green Energy (OSTI)

A life-cycle energy and greenhouse gas emissions analysis has been conducted with Argonne National Laboratory's expanded Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) model for geothermal power-generating technologies, including enhanced geothermal, hydrothermal flash, and hydrothermal binary technologies. As a basis of comparison, a similar analysis has been conducted for other power-generating systems, including coal, natural gas combined cycle, nuclear, hydroelectric, wind, photovoltaic, and biomass by expanding the GREET model to include power plant construction for these latter systems with literature data. In this way, the GREET model has been expanded to include plant construction, as well as the usual fuel production and consumption stages of power plant life cycles. For the plant construction phase, on a per-megawatt (MW) output basis, conventional power plants in general are found to require less steel and concrete than renewable power systems. With the exception of the concrete requirements for gravity dam hydroelectric, enhanced geothermal and hydrothermal binary used more of these materials per MW than other renewable power-generation systems. Energy and greenhouse gas (GHG) ratios for the infrastructure and other life-cycle stages have also been developed in this study per kilowatt-hour (kWh) of electricity output by taking into account both plant capacity and plant lifetime. Generally, energy burdens per energy output associated with plant infrastructure are higher for renewable systems than conventional ones. GHG emissions per kWh of electricity output for plant construction follow a similar trend. Although some of the renewable systems have GHG emissions during plant operation, they are much smaller than those emitted by fossil fuel thermoelectric systems. Binary geothermal systems have virtually insignificant GHG emissions compared to fossil systems. Taking into account plant construction and operation, the GREET model shows that fossil thermal plants have fossil energy use and GHG emissions per kWh of electricity output about one order of magnitude higher than renewable power systems, including geothermal power.

Sullivan, J. L.; Clark, C. E.; Han, J.; Wang, M.; Energy Systems

2010-10-11T23:59:59.000Z

162

Accretion in Compact Binaries  

E-Print Network (OSTI)

Compact binaries have long been a paradigm for accretion theory. Much of our present view of how accretion occurs comes directly from the comparison of theory with observations of these sources. Since theory differs little for other objects such as active galaxies, increasing efforts have recently gone into searching for correspondences in observed behaviour. This chapter aims at giving a concise summary of the field, with particular emphasis on new developments since the previous edition of this book. These developments have been significant. Much of the earlier literature implicitly assumed that accreting binaries were fairly steady sources accreting most of the mass entering their vicinity, often with main-sequence companions, and radiating the resulting accretion luminosity in rough isotropy. We shall see that in reality these assumptions fail for the majority of systems. Most are transient; mass ejection in winds and jets is extremely common; a large (sometimes dominant) fraction of even short-period systems have evolved companions whose structure deviates significantly from the zero-age main sequence; and the radiation pattern of many objects is significantly anisotropic. It is now possible to give a complete characterization of the observed incidence of transient and persistent sources in terms of the disc instability model and formation constraints. X-ray populations in external galaxies, particularly the ultraluminous sources, are revealing important new insights into accretion processes and compact binary evolution.

Andrew R. King

2003-01-07T23:59:59.000Z

163

Binary Cultivation in Photobioreactors - Available ...  

The approach uses binary cultivationinside photobioreactorsto facilitate growth by creating a closed system in ... ranging from CO2 from power plant ...

164

Transposed critical temperature Rankine thermodynamic cycle  

DOE Green Energy (OSTI)

The transposed critical temperature (TPCT) is shown to be an extremely important thermodynamic property in the selection of the working fluid and turbine states for optimized geothermal power plants operating on a closed organic (binary) Rankine cycle. When the optimum working fluid composition and process states are determined for given source and sink conditions (7 parameter optimization), turbine inlet states are found to be consistently adjacent to the low pressure side of the working fluids' TPCT line on pressure-enthalpy coordinates. Although the TPCT concepts herein may find numerous future applications in high temperature, advanced cycles for fossil or nuclear fired steam power plants and in supercritical organic Rankine heat recovery bottoming cycles for Diesel engines, this discussion is limited to moderate temperature (150 to 250/sup 0/C) closed simple organic Rankine cycle geothermal power plants. Conceptual design calculations pertinent to the first geothermal binary cycle Demonstration Plant are included.

Pope, W.L.; Doyle, P.A.

1980-04-01T23:59:59.000Z

165

Binary Tetrahedral Flavor Symmetry  

E-Print Network (OSTI)

A study of the T' Model and its variants utilizing Binary Tetrahedral Flavor Symmetry. We begin with a description of the historical context and motivations for this theory, together with some conceptual background for added clarity, and an account of our theory's inception in previous works. Our model endeavors to bridge two categories of particles, leptons and quarks, a unification made possible by the inclusion of additional Higgs particles, shared between the two fermion sectors and creating a single coherent system. This is achieved through the use of the Binary Tetrahedral symmetry group and an investigation of the Tribimaximal symmetry evidenced by neutrinos. Our work details perturbations and extensions of this T' Model as we apply our framework to neutrino mixing, quark mixing, unification, and dark matter. Where possible, we evaluate model predictions against experimental results and find excellent matching with the atmospheric and reactor neutrino mixing angles, an accurate prediction of the Cabibbo angle, and a dark matter candidate that remains outside the limits of current tests. Additionally, we include mention of a number of unanswered questions and remaining areas of interest for future study. Taken together, we believe these results speak to the promising potential of finite groups and flavor symmetries to act as an approximation of nature.

David A. Eby

2013-04-15T23:59:59.000Z

166

Program on Technology Innovation: Summary of 2013 EPRI Nuclear Fuel Cycle Assessment Workshop - Vanderbilt University, Nashville, Tennessee, July 23 24, 2013  

Science Conference Proceedings (OSTI)

Government, industry, and academic stakeholders assembled at the second EPRI Nuclear Fuel Cycle Assessment Workshophosted and co-organized by Vanderbilt University and held July 2324, 2013to review ongoing efforts and opportunities for improving sustainability of nuclear fuel cycle (NFC) assessment related knowledge and tools through expanded collaboration. The workshop emphasized three topics addressing the development, maintenance, and application ...

2013-11-26T23:59:59.000Z

167

Evaluation of ammonia as a working fluid for a wet/dry-cooled binary geothermal plant  

DOE Green Energy (OSTI)

The concepts considered in this study involve various arrangments of the binary geothermal power cycle with advanced dry cooling schemes. Brief descriptions of the binary cycle and advanced cooling schemes are included. Also included are descriptions of the base case concept and the ammonia working fluid concept. Performance and cost estimates were developed for a wet-cooled isobutane cycle plant, wet/dry cooled isobutane cycle plant, wet-cooled ammonia cycle plant, and a wet/dry cooled ammonia cycle plant. The performance and cost estimates were calculated using the GEOCOST computer code developed at PNL. Inputs for GEOCOST were calculated based on the Heber sites. The characteristics of the wet/dry cooling system were determined using the BNWGEO computer code developed at PNL. Results of the cooling system analysis are presented, followed by results of the geothermal plant analysis. Conclusions and comments also are included.

Drost, M.K.; Huber, H.D.

1982-10-01T23:59:59.000Z

168

High-potential Working Fluids for Next Generation Binary Cycle...  

NLE Websites -- All DOE Office Websites (Extended Search)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...61 6.3 Heat Exchanger Sizing for the Supercritical NEW FLUID ORC Test Rig. . . . . . . . . . . ....

169

Inspection of the Heber binary-cycle geothermal project  

DOE Green Energy (OSTI)

We concluded that DOE had effective management control procedures to monitor project costs and the design, construction and demonstration activities. Lessons learned from previous DOE geothermal projects were applied and technical information generated from the Heber plant will be transferred to the public and private sectors by the project participants. We also identified the following issues that concerned us: Revenue Sharing: under existing revenue sharing provisions in the Cooperative Agreement, we estimate that reimbursable revenues to DOE will range between $30.5 million and $51.6 million. DOE and the public should be reimbursed for the total contribution of $61 million because the plant, if commercialized, will primarily benefit ratepayers and stockholders of San Diego Gas and Electric Company (SDG and E); Project Office Support Contracts: Our analyses of a number of project office support contracts suggest that some of this work should be cost shared with SDG and E; in other cases, the value of the work is questionable and appears to be an unnecessary expenditure of DOE funds; and Questionable Contractor Procurement: the noncompetitive procurement of a private firm to develop an economic study of a second Heber plant appears to be unjustified and duplicates work already planned by project participants. Comments on a draft of this report were received from the Acting Assistant Secretary for Conservation and Renewable Energy and from Heber program and project managers.

Not Available

1984-03-28T23:59:59.000Z

170

Binary Quantum Search  

E-Print Network (OSTI)

Database search has wide applications and is used as a subroutine in many important algorithms. We shall consider a database with one target item. Quantum algorithm finds the target item in a database faster than any classical algorithm. It frequently occurs in practice that only a portion of information about the target item is interesting, or we need to find a group of items sharing some common feature as the target item. This problem is in general formulated as search for a part of the database [a block] containing the target item, instead of the item itself. This is partial search. Partial search trades accuracy for speed, i.e. it works faster than a full search. Partial search algorithm was discovered by Grover and Radhakrishnan. We shall consider optimized version of the algorithm and call it GRK. It can be applied successively [in a sequence]. First the database is partitioned into blocks and we use GRK to find the target block. Then this target block is partitioned into sub-blocks and we use GRK again to find the target sub-block. [We can call it binary quantum search.] Another possibility is to partition the database into sub-blocks directly and use GRK to find the target sub-block in one time. In this paper we prove that the latter is faster [makes less queries to the oracle].

Vladimir Korepin; Ying Xu

2007-05-06T23:59:59.000Z

171

Reactor Technology | Nuclear Science | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Research Areas Fuel Cycle Science & Technology Fusion Nuclear Science Isotope Development and Production Nuclear Security Science & Technology Nuclear Systems Modeling, Simulation...

172

Development and use of the GREET model to estimate fuel-cycle energy use and emissions of various transportation technologies and fuels  

SciTech Connect

This report documents the development and use of the Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) model. The model, developed in a spreadsheet format, estimates the full fuel- cycle emissions and energy use associated with various transportation fuels for light-duty vehicles. The model calculates fuel-cycle emissions of five criteria pollutants (volatile organic compounds, carbon monoxide, nitrogen oxides, sulfur oxides, and particulate matter measuring 10 microns or less) and three greenhouse gases (carbon dioxide, methane, and nitrous oxide). The model also calculates the total fuel-cycle energy consumption, fossil fuel consumption, and petroleum consumption using various transportation fuels. The GREET model includes 17 fuel cycles: petroleum to conventional gasoline, reformulated gasoline, clean diesel, liquefied petroleum gas, and electricity via residual oil; natural gas to compressed natural gas, liquefied petroleum gas, methanol, hydrogen, and electricity; coal to electricity; uranium to electricity; renewable energy (hydrogen, solar energy, and wind) to electricity; corn, woody biomass, and herbaceous biomass to ethanol; and landfill gases to methanol. This report presents fuel-cycle energy use and emissions for a 2000 model-year car powered by each of the fuels that are produced from the primary energy sources considered in the study.

Wang, M.Q.

1996-03-01T23:59:59.000Z

173

A technical and economic analysis of a natural gas combined cycle power plant with carbon dioxide capture using membrane separation technology.  

E-Print Network (OSTI)

?? Carbon dioxide (CO2) capture and storage (CCS) is a key technology to reduce anthropogenic greenhouse gas emissions and mitigate the potential effects of climate (more)

Ducker, Michael Jay

2012-01-01T23:59:59.000Z

174

Minimize Boiler Short Cycling Losses  

SciTech Connect

This revised ITP tip sheet on minimizing boiler short cycling losses provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

2006-01-01T23:59:59.000Z

175

Closed-cycle Retrofit Study  

Science Conference Proceedings (OSTI)

EPRI is investigating implications of a potential U.S. Environmental Protection Agency (EPA) Clean Water Act 316(b) rulemaking that would establish "Best Technology Available" (BTA) based on closed-cycle cooling retrofits for facilities with once-through cooling. This report focuses on estimated costs associated with closed-cycle cooling system retrofits that include: 1) capital costs, 2) energy required to operate the closed-cycle system, 3) heat rate penalty, and 4) extended downtime required to retrof...

2011-01-31T23:59:59.000Z

176

Fuel Cycle Research and Development Presentation Title  

Science Conference Proceedings (OSTI)

Separations and Waste Form. Campaign Objectives. ?Develop the next generation of fuel cycle separation and waste management technologies that enable a.

177

2012 Fuel Cycle MPACT Working Group  

NLE Websites -- All DOE Office Websites (Extended Search)

meeting is to review findings and help advance research and development in the Fuel Cycle Materials Protection, Accounting and Control Technologies area. It will include a campaign...

178

An electrically powered binary star?  

E-Print Network (OSTI)

We propose a model for stellar binary systems consisting of a magnetic and a non-magnetic white-dwarf pair which is powered principally by electrical energy. In our model the luminosity is caused by resistive heating of the stellar atmospheres due to induced currents driven within the binary. This process is reminiscent of the Jupiter-Io system, but greatly increased in power because of the larger companion and stronger magnetic field of the primary. Electrical power is an alternative stellar luminosity source, following on from nuclear fusion and accretion. We find that this source of heating is sufficient to account for the observed X-ray luminosity of the 9.5-min binary RX J1914+24, and provides an explanation for its puzzling characteristics.

Kinwah Wu; Mark Cropper; Gavin Ramsay; Kazuhiro Sekiguchi

2001-11-19T23:59:59.000Z

179

Environmental Cycling of Cellulosic Thermal Insulation and Its ...  

Science Conference Proceedings (OSTI)

... cellulosic insulation industry, lengthy conditioning cycles and testing -8- ... energy using a flux profile generated during test ... and Technology, Vol. ...

2008-04-29T23:59:59.000Z

180

Program on Technology Innovation: Drying of Low-Rank Coal with Supercritical Carbon Dioxide (CO2) in Integrated Gasification Combined Cycle (IGCC) Plants  

Science Conference Proceedings (OSTI)

This study is part of the Electric Power Research Institute (EPRI) Technology Innovation Program to assess the potential to achieve increased process efficiency and reduced capital cost by drying low-rank coal with supercritical carbon dioxide (SCCO2). This study follows the EPRI report Program on Technology Innovation: Assessment of the Applicability of Drying Low-Rank Coal With Supercritical Carbon Dioxide in IGCC Plants (1016216), which concluded that this system has potential benefits with respect to...

2010-07-30T23:59:59.000Z

Note: This page contains sample records for the topic "binary cycle technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Metadata driven memory optimizations in dynamic binary translator  

Science Conference Proceedings (OSTI)

A dynamic binary translator offers solutions for translating and running source architecture binaries on target architecture at runtime. Regardless of its growing popularity, practical dynamic binary translators usually suffer from the limited optimizations ... Keywords: dynamic binary translator, memory optimizations, metadata

Chaohao Xu; Jianhui Li; Tao Bao; Yun Wang; Bo Huang

2007-06-01T23:59:59.000Z

182

Spectral analysis of X-ray binaries  

E-Print Network (OSTI)

In this thesis, I present work from three separate research projects associated with observations of X-ray binaries. Two of those revolve around spectral characteristics of neutron star low-mass X-ray binaries (NS-LMXBs), ...

Fridriksson, Joel Karl

2011-01-01T23:59:59.000Z

183

Ultrafast thermal cycling of solar panels  

SciTech Connect

Two new cyclers that utilize a novel hybrid approach to perform fast thermal cycling of solar panels have been built and are now operational in the Mechanics and Materials Technology Center at The Aerospace Corporation. These cyclers are part of a continuing effort to minimize solar cell life test durations by accelerating the cycling rates. These fully automated cyclers, which provide continuous unmanned cycling in a gaseous nitrogen atmosphere, can execute 5 min cycles, thus yielding in excess of 100,000 cycles per year. They also have a unique capability of verifying solar panel functionality without interruption of cycling, so that cycling doesn`t continue on nonfunctioning panels.

Wall, T.S.; Valenzuela, P.R.; Sue, C.

1998-08-15T23:59:59.000Z

184

Binary Cultivation in Photobioreactors - Energy Innovation Portal  

Biomass and Biofuels Advanced Materials Binary ... The processes of photosynthesis and photosynthate conversion into a target product are spatially separated ;

185

Carbon Cycle 2.0  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Carbon Cycle 2.0 Carbon Cycle 2.0 Pioneering science for sustainable energy solutions Artificial Photosynthesis Energy Storage Combustion Carbon Capture & Storage Developing World Efficiency Photovoltaics Biofuels Energy Analysis Climate Modeling Carbon Cycle 2.0 is... 1. A vision for * a global energy system integrated with the Earth's natural carbon cycles * an interactive Berkeley Lab environment with a shared sense of purpose 2. A program development plan that will allow us to deepen our capabilities and provide more opportunities to have impact 3. An attempt to integrate our basic research with applications using models of technology deployment constraints 4. Set of internal activities aimed at priming the effort

186

Stochastic binary sensor networks for noisy environments  

Science Conference Proceedings (OSTI)

This paper proposes a stochastic framework for detecting anomalies or gathering events of interest in a noisy environment using a network consisting of binary sensors. A binary sensor is an extremely coarse sensor, capable of measuring data to only 1-bit ... Keywords: energy consumption, energy efficiency, noisy environments, sensor networks, simulation, stochastic binary sensors, wireless networks

T. Nguyen; Dong Nguyen; Huaping Liu; Duc A. Tran

2007-07-01T23:59:59.000Z

187

Comparison of Geothermal Power Conversion Cycles  

SciTech Connect

Geothermal power conversion cycles are compared with respect to recovery of the available wellhead power. The cycles compared are flash steam, in which steam turbines are driven by steam separated from one or more flash states; binary, in which heat is transferred from flashed steam to an organic turbine cycle; and dual steam, in which two-phase expanders are driven by the flashing steam-brine mixture and steam turbines by the separated steam. Expander efficiencies assumed are 0.7 for steam turbines, 0.8 for organic turbines, and 0.6 for two-phase expanders. The fraction of available wellhead power delivered by each cycle is found to be about the same at all brine temperatures: 0.65 with one stage and 0.7 with four stages for dual stream; 0.4 with one stage and 0.6 with four stages for flash steam; 0.5 for binary; and 0.3 with one stage and 0.5 with four stages for flash binary.

Elliott, David G.

1976-12-01T23:59:59.000Z

188

Biomass Gasification Combined Cycle  

DOE Green Energy (OSTI)

Gasification combined cycle continues to represent an important defining technology area for the forest products industry. The ''Forest Products Gasification Initiative'', organized under the Industry's Agenda 2020 technology vision and supported by the DOE ''Industries of the Future'' program, is well positioned to guide these technologies to commercial success within a five-to ten-year timeframe given supportive federal budgets and public policy. Commercial success will result in significant environmental and renewable energy goals that are shared by the Industry and the Nation. The Battelle/FERCO LIVG technology, which is the technology of choice for the application reported here, remains of high interest due to characteristics that make it well suited for integration with the infrastructure of a pulp production facility. The capital cost, operating economics and long-term demonstration of this technology area key input to future economically sustainable projects and must be verified by the 200 BDT/day demonstration facility currently operating in Burlington, Vermont. The New Bern application that was the initial objective of this project is not currently economically viable and will not be implemented at this time due to several changes at and around the mill which have occurred since the inception of the project in 1995. The analysis shows that for this technology, and likely other gasification technologies as well, the first few installations will require unique circumstances, or supportive public policies, or both to attract host sites and investors.

Judith A. Kieffer

2000-07-01T23:59:59.000Z

189

New and interesting prepolymers based on the molecular dynamics computer simulation of binary systems to be utilized in the clean-up technologies of off-shore oil spills  

Science Conference Proceedings (OSTI)

New emerging technologies for the clean-up of off-shore oil spills have been reported. Several research groups are currently working on various ways to develop new urethane prepolymers that will foam upon contact with water and encapsulate the oil droplets ... Keywords: computer simulation, hydrophobic, miscibility, molecular dynamics, oil spill, urethane prepolymer

Rasha A. Azzam; Tarek M. Madkour

2008-12-01T23:59:59.000Z

190

BNL | Carbon Cycle Science  

NLE Websites -- All DOE Office Websites (Extended Search)

The Carbon Cycle Science & Technology Group aims to increase understanding The Carbon Cycle Science & Technology Group aims to increase understanding of the impacts of global change on managed and unmanaged ecosystems and improve knowledge of possible global change mitigation approaches. The group has three main focus areas. FACE Climate Change Experimental Facility Design and Management The CCS&T group is an internationally recognized leader in the development of Free Air CO2 Enrichment (FACE) research facilities. We are interested in the design and management of manipulative experiments that examine the effects of carbon dioxide, ozone, other atmospheric pollutants, temperature and precipitation on natural and managed ecosystems. FACE Plant Physiology and High Throughput Biochemical Phenotyping At FACE facilities we have studied the mechanisms that underlie the

191

International fuel cycle and waste management technology exchange activities sponsored by the United States Department of Energy: FY 1982 evaluation report  

SciTech Connect

In FY 1982, DOE and DOE contractor personnel attended 40 international symposia and conferences on fuel reprocessing and waste management subjects. The treatment of high-level waste was the topic most often covered in the visits, with geologic disposal and general waste management also being covered in numerous visits. Topics discussed less frequently inlcude TRU/LLW treatment, airborne waste treatment, D and D, spent fuel handling, and transportation. The benefits accuring to the US from technology exchange activities with other countries are both tangible, e.g., design of equipment, and intangible, e.g., improved foreign relations. New concepts initiated in other countries, particularly those with sizable nuclear programs, are beginning to appear in US efforts in growing numbers. The spent fuel dry storage concept originating in the FRG is being considered at numerous sites. Similarly, the German handling and draining concepts for the joule-heated ceramic melter used to vitrify wastes are being incorporated in US designs. Other foreigh technologies applicable in the US include the slagging incinerator (Belgium), the SYNROC waste form (Australia), the decontamination experience gained in decommissioning the Eurochemic reprocessing plant (Belgium), the engineered surface storage of low- and intermediate-level waste (Belgium, FRG, France), the air-cooled storage of vitrified high-level waste (France, UK), waste packaging (Canada, FRG, Sweden), disposal in salt (FRG), disposal in granite (Canada, Sweden), and sea dumping (UK, Belgium, The Netherlands, Switzerland). These technologies did not necessarily originated or have been tried in the US but for various reasons are now being applied and extended in other countries. This growing nuclear technological base in other countires reduces the number of technology avenues the US need follow to develop a solid nuclear power program.

Lakey, L.T.; Harmon, K.M.

1983-02-01T23:59:59.000Z

192

Study of practical cycles for geothermal power plants. Interim report, June 15, 1975-March 31, 1976  

DOE Green Energy (OSTI)

The preliminary analysis is described in a study of practical cycles for geothermal power plants. The analysis is based on three different brines whose temperatures and composition span the range that is of practical interest for power generation. Only two kinds of cycles were considered in the analysis - the steam turbine cycle and the binary cycle, in which energy from the geothermal fluid is transferred to a secondary working fluid in a closed Rankine cycle. The performance of several condidate working fluids has been investigated, and the most attracive binary cycles have been selected for the various resource conditions. The results show that if brine is utilized directly in the primary heat exchange process with the secondary working fluid, the binary cycle is potentially better in terms of resource utilization than a dual flash steam turbine cycle. However, if the brine is flashed to steam and the steam is used for the heat exchange process, the steam turbine cycle will produce more power per pound of brine flow. Preliminary turbine designs have been formulated for steam and also for the most promising working fluids in the secondary or binary cycle. For all cycle configurations at least 50 MW of electrical power can be generated by a single unit without exceeding mechanical design or manufacturing limitations even when the resource temperature is as low as 400/sup 0/F. Plant economics were not considered.

Eskesen, J.H.

1976-04-01T23:59:59.000Z

193

VISION: Verifiable Fuel Cycle Simulation Model  

Science Conference Proceedings (OSTI)

The nuclear fuel cycle is a very complex system that includes considerable dynamic complexity as well as detail complexity. In the nuclear power realm, there are experts and considerable research and development in nuclear fuel development, separations technology, reactor physics and waste management. What is lacking is an overall understanding of the entire nuclear fuel cycle and how the deployment of new fuel cycle technologies affects the overall performance of the fuel cycle. The Advanced Fuel Cycle Initiatives systems analysis group is developing a dynamic simulation model, VISION, to capture the relationships, timing and delays in and among the fuel cycle components to help develop an understanding of how the overall fuel cycle works and can transition as technologies are changed. This paper is an overview of the philosophy and development strategy behind VISION. The paper includes some descriptions of the model and some examples of how to use VISION.

Jacob J. Jacobson; Abdellatif M. Yacout; Gretchen E. Matthern; Steven J. Piet; David E. Shropshire

2009-04-01T23:59:59.000Z

194

The Hybrid Automobile and the Atkinson Cycle  

Science Conference Proceedings (OSTI)

The hybrid automobile is a strikingly new automobile technology with a number of new technological features that dramatically improve energy efficiency. This paper will briefly describe how hybrid automobiles work; what are these new technological features; why the Toyota Prius hybrid internal combustion engine operates on the Atkinson cycle instead of the Otto cycle; and what are the advantages and disadvantages of the hybrid automobile. This is a follow-up to my two previous papers on the physics of automobile engines.1

Bernard J. Feldman

2008-01-01T23:59:59.000Z

195

The Carbon Cycle  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Cycle Print E-mail U.S. Carbon Cycle Science Program U.S. Carbon Cycle Science Program The U.S. Carbon Cycle Science Program, in consultation with the Carbon Cycle...

196

Beowawe Bottoming Binary Unit - Final Technical Report for EE0002856  

SciTech Connect

This binary plant is the first high-output refrigeration based waste heat recovery cycle in the industry. Its working fluid is environmentally friendly and as such, the permits that would be required with a butane based cycle are not necessary. The unit is modularized, meaning that the units individual skids were assembled in another location and were shipped via truck to the plant site. This project proves the technical feasibility of using low temperature brine The development of the unit led to the realization of low temperature, high output, and environmentally friendly heat recovery systems through domestic research and engineering. The project generates additional renewable energy for Nevada, resulting in cleaner air and reduced carbon dioxide emissions. Royalty and tax payments to governmental agencies will increase, resulting in reduced financial pressure on local entities. The major components of the unit were sourced from American companies, resulting in increased economic activity throughout the country.

McDonald, Dale Edward

2013-02-12T23:59:59.000Z

197

Carbon Cycle  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Cycle Carbon Cycle Latest Global Carbon Budget Estimates Including CDIAC Estimates Terrestrial Carbon Management Data Sets and Analyses Carbon Dioxide Emissions from Fossil-Fuel Consumption and Cement Manufacture, (2011) Annual Fossil-Fuel CO2 Emissions: Mass of Emissions Gridded by One Degree Latitude by One Degree Longitude (2012) Monthly Fossil-Fuel CO2 Emissions: Mass of Emissions Gridded by One Degree Latitude by One Degree Longitude (2012) Annual Fossil-Fuel CO2 Emissions: Global Stable Carbon Isotopic Signature (2012) Monthly Fossil-Fuel CO2 Emissions: Isomass (δ 13C) of Emissions Gridded by One Degree Latitude by One Degree Longitude (2012) AmeriFlux - Terrestrial Carbon Dioxide, Water Vapor, and Energy Balance Measurements Estimates of Monthly CO2 Emissions and Associated 13C/12C Values

198

Photovoltaics: Life-cycle Analyses  

DOE Green Energy (OSTI)

Life-cycle analysis is an invaluable tool for investigating the environmental profile of a product or technology from cradle to grave. Such life-cycle analyses of energy technologies are essential, especially as material and energy flows are often interwoven, and divergent emissions into the environment may occur at different life-cycle-stages. This approach is well exemplified by our description of material and energy flows in four commercial PV technologies, i.e., mono-crystalline silicon, multi-crystalline silicon, ribbon-silicon, and cadmium telluride. The same life-cycle approach is applied to the balance of system that supports flat, fixed PV modules during operation. We also discuss the life-cycle environmental metrics for a concentration PV system with a tracker and lenses to capture more sunlight per cell area than the flat, fixed system but requires large auxiliary components. Select life-cycle risk indicators for PV, i.e., fatalities, injures, and maximum consequences are evaluated in a comparative context with other electricity-generation pathways.

Fthenakis V. M.; Kim, H.C.

2009-10-02T23:59:59.000Z

199

CMVRTC: Heavy Truck Duty Cycle  

NLE Websites -- All DOE Office Websites (Extended Search)

heavy truck duty cycle (HTDC) project heavy truck duty cycle (HTDC) project OVERVIEW The Heavy Truck Duty Cycle (HTDC) Project was initiated in 2004 and is sponsored by the US Department of Energy's (DOE's) Office of FreedomCar and Vehicle Technologies Program. ORNL designed the research program to generate real-world-based duty cycle data from trucks operating in long-haul operations and was designed to be conducted in three phases: identification of parameters to be collected, instrumentation and pilot testing, identification of a real-world fleet, design of the data collection suite and fleet instrumentation, and data collection, analysis, and development of a duty cycle generation tool (DCGT). ANL logo dana logo michelin logo Schrader logo This type of data will be useful for supporting energy efficiency

200

Compact binary mergers: an astrophysical perspective  

E-Print Network (OSTI)

This paper reviews the current understanding of double neutron star and neutron star black hole binaries. It addresses mainly (nuclear) astrophysics aspects of compact binary mergers and thus complements recent reviews that have emphasized the numerical relativity viewpoint. In particular, the paper discusses different channels to release neutron-rich matter into the host galaxy, connections between compact binary mergers and short Gamma-ray bursts and accompanying electromagnetic signals.

S. Rosswog

2010-12-04T23:59:59.000Z

Note: This page contains sample records for the topic "binary cycle technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Segregation in noninteracting binary mixture  

E-Print Network (OSTI)

Process of stripe formation is analyzed numerically in a binary mixture. The system consists of particles of two sizes, without any direct mutual interactions. Overlapping of large particles, surrounded by a dense system of smaller particles induces indirect entropy driven interactions between large particles. Under an influence of an external driving force the system orders and stripes are formed. Mean width of stripes grows logarithmically with time, in contrast to a typical power law temporal increase observed for driven interacting lattice gas systems. We describe the mechanism responsible for this behavior and attribute the logarithmic growth to a random walk of large particles in a random potential due to the small ones.

Filip Krzyzewski; Magdalena Zaluska-Kotur

2007-08-06T23:59:59.000Z

202

Prioritizing Climate Change Mitigation Alternatives: Comparing Transportation Technologies to Options in Other Sectors  

E-Print Network (OSTI)

of natural gas-powered combined cycle power plants. The mostintegrated gasification combined cycle (IGCC) coal plants,integrated gasification combined cycle (IGCC) technology for

Lutsey, Nicholas P.

2008-01-01T23:59:59.000Z

203

Clean Energy Technologies: A Preliminary Inventory of the Potential for Electricity Generation  

E-Print Network (OSTI)

Outline of 145 MW Combined Cycle Power Plant for KawasakiGas Firing Gas Turbine Combined Cycle Plant, Journal ofgasifier/gas turbine combined cycle technology and its

Bailey, Owen; Worrell, Ernst

2005-01-01T23:59:59.000Z

204

Target tracking with binary proximity sensors  

Science Conference Proceedings (OSTI)

We explore fundamental performance limits of tracking a target in a two-dimensional field of binary proximity sensors, and design algorithms that attain those limits while providing minimal descriptions of the estimated target trajectory. Using geometric ... Keywords: Sensor networks, binary sensing, distributed algorithms, fundamental limits, target tracking

Nisheeth Shrivastava; Raghuraman Mudumbai; Upamanyu Madhow; Subhash Suri

2009-11-01T23:59:59.000Z

205

Mostly static program partitioning of binary executables  

Science Conference Proceedings (OSTI)

We have built a runtime compilation system that takes unmodified sequential binaries and improves their performance on off-the-shelf multiprocessors using dynamic vectorization and loop-level parallelization techniques. Our system, Azure, is purely software ... Keywords: Continuous compilation and optimization, binary translation, dynamic parallelization

Efe Yardimci; Michael Franz

2009-06-01T23:59:59.000Z

206

Numerical Investigations of Kuiper Belt Binaries  

E-Print Network (OSTI)

Observations of the Kuiper Belt indicate that a larger than expected percentage of KBO's (approximately 8 out of 500) are in binary pairs. The formation and survival of such objects presents a conundrum [1]. Two competing theories have been postulated to try to solve this problem. One entails the physical collision of bodies [2] while the other utilizes dynamical friction or a third body to dissipate excess momentum and energy from the system [3]. Although in general known binaries tend to differ significantly in mass, such as seen in the Earth-Moon or asteroid binary systems [4], Kuiper binaries discovered to date tend to instead be of similar size [5, 6]. This paper investigates the stability, development and lifetimes for Kuiper Belt binaries by tracking their orbital dynamics and subsequent evolution. Section two details the numerical model while Section three discusses the initial conditions. Finally, in Section four the results are discussed with Section five containing the conclusions.

R. C. Nazzario; T. W. Hyde

2005-01-20T23:59:59.000Z

207

Binary central stars of planetary nebulae  

E-Print Network (OSTI)

Abstract. Only a handful of binary central stars of planetary nebulae (PNe) are known today, due to the difficulty of detecting their companions. Preliminary results from radial velocity surveys, however, seem to indicate that binarity plays a fundamental, rather than marginal role in the evolution of PNe and that the close binary fraction might be much larger than the currently known value of 10-15%. In this review, we list all the known binary central stars, giving an updated census of their numbers and selected characteristics. A review is also given of the techniques used to detect binaries as well as selected characteristics of related stellar classes which might provide constraints (or additional puzzles) to the theory of PN evolution. Finally, we will formulate the conjecture that all PNe derive from binary interactions and suggest that this is not inconsistent with our current knowledge. 1.

Orsola De Marco

2006-01-01T23:59:59.000Z

208

Technology Analysis  

NLE Websites -- All DOE Office Websites (Extended Search)

* Heavy Vehicle Technologies * Heavy Vehicle Technologies * Multi-Path Transportation Futures * Idling Studies * EDrive Vehicle Monthly Sales Transportation Research and Analysis Computing Center Working With Argonne Contact TTRDC Technology Analysis truck Heavy vehicle techologies are one subject of study. Research Reducing Greenhouse Gas Emissions from U.S. Transportation Heavy Vehicle Technologies Multi-Path Transportation Futures Study Idling Studies Light Duty Electric Drive Vehicles Monthly Sales Updates Lithium-Ion Battery Recycling and Life Cycle Analysis Reports Propane Vehicles: Status, Challenges, and Opportunities (pdf; 525 kB) Natural Gas Vehicles: Status, Barriers, and Opportunities (pdf; 696 kB) Regulatory Influences That Will Likely Affect Success of Plug-in Hybrid and Battery Electric Vehicles (pdf; 1.02 MB)

209

Fuel Cycle Research & Development Documents | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Initiatives » Fuel Cycle Technologies » Fuel Cycle Research & Initiatives » Fuel Cycle Technologies » Fuel Cycle Research & Development » Fuel Cycle Research & Development Documents Fuel Cycle Research & Development Documents November 8, 2011 2011 Fuel Cycle Technologies Annual Review Meeting As the largest domestic source of low-carbon energy, nuclear power is making major contributions toward meeting our nation's current and future energy demands. The United States must continue to ensure improvements and access to this technology so we can meet our economic, environmental and energy security goals. We rely on nuclear energy because it provides a consistent, reliable and stable source of base load electricity with an excellent safety record in the United States. July 11, 2011 Nuclear Separations Technologies Workshop Report

210

NREL: U.S. Life Cycle Inventory Database - Related Links  

NLE Websites -- All DOE Office Websites (Extended Search)

Related Links Related Links Below are links to life cycle inventory (LCI) databases, life cycle assessment (LCA) information, LCA tools, research institutes utilizing LCA, labeling initiatives and organizations, international LCA initiatives, LCA online forums. Life Cycle Inventory Data Ecoinvent: Swiss Centre for Life Cycle Inventories IVAM LCA Data 4: Dutch LCA Database KITECH (Korea Institute of Industrial Technology): Korea National Cleaner Production Center LCI Database Life Cycle Assessment Information IERE (The Institute for Environmental Research and Education): The American Center for Life Cycle Assessment SETAC (Society of Environmental Toxicology and Chemistry): SETAC Life Cycle Assessment SPOLD (Society for Promotion of Life-cycle Assessment Development): 2.0 LCA Consultants homepage

211

CMVRTC: Medium Truck Duty Cycle  

NLE Websites -- All DOE Office Websites (Extended Search)

medium truck duty cycle (MTdc) project medium truck duty cycle (MTdc) project OVERVIEW The Medium Truck Duty Cycle (MTDC) project involves efforts to collect, analyze and archive data related to medium-truck operations in real-world driving environments. Such data and information will be useful to support technology evaluation efforts and to provide a means of accounting for real-world driving performance within medium-class truck analyses. The project involves private industry partners from various truck vocations. The MTDC project is unique in that there currently does not exist a national database of characteristic duty cycles for medium trucks. This project involves the collection of data from multiple vocations (four vocations) and multiple vehicles within these vocations (three vehicles per

212

NREL: Energy Analysis - Life Cycle Assessment Harmonization  

NLE Websites -- All DOE Office Websites (Extended Search)

Life Cycle Assessment Harmonization Life Cycle Assessment Harmonization Life Cycle Greenhouse Gas Emissions from Electricity Generation (Fact Sheet) Cover of the Life Cycle Greenhouse Gas Emissions from Electricity Generation factsheet Download the Fact Sheet The U.S. Department of Energy enlisted NREL to review and "harmonize" life cycle assessments (LCA) of electricity generation technologies. Hundreds of assessments have been published, often with considerable variability in results. These variations in approach, while usually legitimate, hamper comparison across studies and pooling of published results. Learn more about life cycle assessments of energy technologies. By harmonizing this data, NREL seeks to reduce the uncertainty around estimates for environmental impacts of renewables and increase the value of

213

Uncertainty Analyses of Advanced Fuel Cycles  

SciTech Connect

The Department of Energy is developing technology, experimental protocols, computational methods, systems analysis software, and many other capabilities in order to advance the nuclear power infrastructure through the Advanced Fuel Cycle Initiative (AFDI). Our project, is intended to facilitate will-informed decision making for the selection of fuel cycle options and facilities for development.

Laurence F. Miller; J. Preston; G. Sweder; T. Anderson; S. Janson; M. Humberstone; J. MConn; J. Clark

2008-12-12T23:59:59.000Z

214

NETL: 2010 - Independent Peer Reviews of NETL Technology Programs  

NLE Websites -- All DOE Office Websites (Extended Search)

- Independent Peer Reviews of NETL Technology Programs Advanced Integrated Gasification Combined Cycle (AIGCC) Peer Review Advanced Integrated Gasification Combined Cycle (AIGCC)...

215

Carbonate Thermochemical Cycle for the Production of Hydrogen ...  

Carbonate Thermochemical Cycle for the Production of Hydrogen (Supplemental to ID 1435) Note: The technology described above is an early stage opportunity.

216

Nonconformally flat initial data for binary compact objects  

SciTech Connect

A new method is described for constructing initial data for a binary neutron-star system in quasiequilibrium circular orbit. Two formulations for nonconformally flat data, waveless and near-zone helically symmetric, are introduced; in each formulation, the Einstein-Euler system, written in 3+1 form on an asymptotically flat spacelike hypersurface, is exactly solved for all metric components, including the spatially nonconformally flat potentials, and for irrotational flow. A numerical method applicable to both formulations is explained with an emphasis on the imposition of a spatial gauge condition. Results are shown for solution sequences of irrotational binary neutron-stars with matter approximated by parametrized equations of state that use a few segments of polytropic equations of state. The binding energy and total angular momentum of solution sequences computed within the conformally flat--Isenberg-Wilson-Mathews--formulation are closer to those of the third post-Newtonian (3PN) two point particles up to the closest orbits, for the more compact stars, whereas sequences resulting from the waveless/near-zone helically symmetric formulations deviate from the 3PN curve even more for the sequences with larger compactness. We think it likely that this correction reflects an overestimation in the Isenberg-Wilson-Mathews formulation as well as in the 3PN formula, by {approx}1 cycle in the gravitational-wave phase during the last several orbits. The work suggests that imposing spatial conformal flatness results in an underestimate of the quadrupole deformation of the components of binary neutron-star systems in the last few orbits prior to merger.

Uryu, Koji [Department of Physics, University of the Ryukyus, Senbaru, Nishihara, Okinawa 903-0213 (Japan); Limousin, Francois; Gourgoulhon, Eric [Laboratoire Univers et Theories, UMR 8102 du CNRS, Observatoire de Paris, Universite Paris Diderot, F-92190 Meudon (France); Friedman, John L. [Department of Physics, University of Wisconsin-Milwaukee, P.O. Box 413, Milwaukee, Wisconsin 53201 (United States); Shibata, Masaru [Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502 (Japan)

2009-12-15T23:59:59.000Z

217

Incorporating Carbon Capture and Storage Technologies in Integrated Assessment Models  

E-Print Network (OSTI)

carbon capture and storage, 2) a natural gas combined cycle technology with carbon capture and storage 1 power generation technologies are: 1) a natural gas combined cycle technology (advanced gas) without eight of technologies in the electric power sector: conventional fossil fuel, natural gas combined cycle

218

Microsoft PowerPoint - Nuclear Fuel Cycle_rev3 (1).pptx [Read...  

NLE Websites -- All DOE Office Websites (Extended Search)

nuclear fuel cycle options are possible * Argonne is involved in research and technology development related to understanding the science and technology of current and potential...

219

Solving Non-binary CSPs Using the Hidden Variable Encoding  

Science Conference Proceedings (OSTI)

Non-binary constraint satisfaction problems (CSPs) can be solved in two different ways. We can either translate the problem into an equivalent binary one and solve it using well-established binary CSP techniques or use extended versions of binary techniques ...

Nikos Mamoulis; Kostas Stergiou

2001-11-01T23:59:59.000Z

220

Fuel Cycle Technologies | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

in the fossil fuel supply. As the only large-scale source of nearly greenhouse gas-free energy, nuclear power is an essential part of our energy mix, generating about 20...

Note: This page contains sample records for the topic "binary cycle technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Novel Technologies and Life Cycle Assessment  

Science Conference Proceedings (OSTI)

The annual emission reduction from these models was expected to be between 2.0-3.0 Tons of CO2 per household and found to be in good agreement with the...

222

Fuel Cycle Technologies Program - Nuclear Engineering Division...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

223

Available Technologies: Organic Flash Cycles for Intermediate ...  

Iron and steel production; Food and ... The implementation of OFC in these industries has the potential of an annual recovery of up to 1,703 quadrillion BTUs from ...

224

Closed-Cycle Air Refrigeration Technology  

Science Conference Proceedings (OSTI)

... F , use of CCAR will require heavier storage tanks with thicker ... to compressed natural gas when storage tank wall thickness ... LNG Liquid natural gas ...

2002-02-25T23:59:59.000Z

225

Fuel Cycle Technologies | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

plant underscored the urgency behind enhancing accident tolerance of the existing reactor fleet. The United States must address these challenges in order to meet our goals for...

226

Numerical Relativity meets Data Analysis: Spinning Binary Black Hole Case  

E-Print Network (OSTI)

We present a study of the gravitational waveforms from a series of spinning, equal-mass black hole binaries focusing on the harmonic content of the waves and the contribution of the individual harmonics to the signal-to-noise ratio. The gravitational waves were produced from two series of evolutions with black holes of initial spins equal in magnitude and anti-aligned with each other. In one series the magnitude of the spin is varied; while in the second, the initial angle between the black-hole spins and the orbital angular momentum varies. We also conduct a preliminary investigation into using these waveforms as templates for detecting spinning binary black holes. Since these runs are relativity short, containing about two to three orbits, merger and ringdown, we limit our study to systems of total mass greater than 50 solar masses. This choice ensures that our waveforms are present in the ground-based detector band without needing addition gravitational wave cycles. We find that while the mode contribution to the signal-to-noise ratio varies with the initial angle, the total mass of the system caused greater variations in the match.

Deirdre Shoemaker; Birjoo Vaishnav; Ian Hinder; Frank Herrmann

2008-02-29T23:59:59.000Z

227

On target tracking with binary proximity sensors  

Science Conference Proceedings (OSTI)

We consider the use of binary proximity sensors for tracking targets. Such sensors provide only 1-bit information regarding a target's presence or absence in their vicinity, albeit with less than 100% reliability. A novel tracking method employing such ...

Wooyoung Kim; Kirill Mechitov; Jeung-Yoon Choi; Soo Ham

2005-04-01T23:59:59.000Z

228

ROTATIONAL DOPPLER BEAMING IN ECLIPSING BINARIES  

SciTech Connect

In eclipsing binaries the stellar rotation of the two components will cause a rotational Doppler beaming during eclipse ingress and egress when only part of the eclipsed component is covered. For eclipsing binaries with fast spinning components this photometric analog of the well-known spectroscopic Rossiter-McLaughlin effect can exceed the strength of the orbital effect. Example light curves are shown for a detached double white dwarf binary, a massive O-star binary and a transiting exoplanet case, similar to WASP-33b. Inclusion of the rotational Doppler beaming in eclipsing systems is a prerequisite for deriving the correct stellar parameters from fitting high-quality photometric light curves and can be used to determine stellar obliquities as well as, e.g., an independent measure of the rotational velocity in those systems that may be expected to be fully synchronized.

Groot, Paul J., E-mail: pgroot@astro.ru.nl [Cahill Center for Astronomy and Astrophysics, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125 (United States)

2012-01-20T23:59:59.000Z

229

Binary distillation column design using mathematica  

Science Conference Proceedings (OSTI)

The accurate design of distillation columns is a very important topic in chemical industry. In this paper, we describe a Mathematica program for the design of distillation columns for binary mixtures. For simplicity, it is assumed that the columns are ...

Akemi Glvez; Andrs Iglesias

2003-06-01T23:59:59.000Z

230

Optimization of nave dynamic binary instrumentation Tools/  

E-Print Network (OSTI)

The proliferation of dynamic program analysis tools has done much to ease the burden of developing complex software. However, creating such tools remains a challenge. Dynamic binary instrumentation frameworks such as ...

Kleckner, Reid (Reid N.)

2011-01-01T23:59:59.000Z

231

A Characteristics-Based Approach to Radioactive Waste Classification in Advanced Nuclear Fuel Cycles  

E-Print Network (OSTI)

a Geologic Repository, Nuclear Technology, 154, in decommissioned U.S. nuclear facilities, German Framework for Nuclear Fuel Cycle Concepts,

Djokic, Denia

2013-01-01T23:59:59.000Z

232

An empirical study of users' hype cycle based on search traffic: the case study on hybrid cars  

Science Conference Proceedings (OSTI)

Many forms of technology cycle models have been developed and utilized to identify new/convergent technologies and forecast social changes, and among these, the technology hype cycle introduced by Gartner has become established as an effective method ... Keywords: 91, D91, Google trends, Hybrid car, Hype cycle model, Search traffic, Users' hype cycle

Seung-Pyo Jun

2012-04-01T23:59:59.000Z

233

Analysis of binary vapor turbines  

DOE Green Energy (OSTI)

The effect the binary mixture has on the turbine is examined in terms of design and cost. Several flow theories for turbines and turbine blading are reviewed. The similarity method, which uses dimensionless parameters, is used in determining rotative speeds and diameters for a variety of inlet temperatures and exit pressures. It is shown that the ratio of exit to inlet specific volume for each component in the mixture is the same for each specie. The specific volume ratio constraints are combined with the temperature equalities, the condenser pressure, and the total inlet entropy to form the constraints necessary to determine the exit state uniquely in an isentropic expansion. The non-isentropic exit state is found in a similar manner. The expansion process is examined for several cases and compared with the expansion of a single component vapor. Finally, in order to maintain high efficiency and to meet the criteria which makes the similarity method valid at high inlet temperatures, turbine multistaging is examined and a sample case is given for a two stage turbine.

Bliss, R.W.; Boehm, R.F.; Jacobs, H.R.

1976-12-01T23:59:59.000Z

234

Transportation technology energy options  

SciTech Connect

New transportation technologies and their potential contribution to the solution of the energy problem are discussed. DOE transportation technologies briefly discussed are: Stirling and gas-turbine engines; constant-speed accessory-drive system; heavy-duty diesel-truck bottoming cycle; continuously variable transmission; turbocompound diesel engine; gas-turbine bus; new hydrocarbons (broad-cut petroleum fuels); alcohol fuels; synthetic fuels; advanced fuels (hydrogen); electric and hybrid vehicles; marine-diesel bottoming cycle; coal/oil-slurry marine steam turbines; pipeline bottoming cycle; and medium-speed diesel alternative fuels.

Bernard, M.J. III

1979-01-01T23:59:59.000Z

235

Technology Transfer: Available Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Biofuels Biofuels Biotechnology and Medecine Biotechnology & Medicine Chemistry Developing World Energy Efficient Technologies Energy Environmental Technologies...

236

Tools for supercritical carbon dioxide cycle analysis and the cycle's applicability to sodium fast reactors  

E-Print Network (OSTI)

The Sodium-Cooled Fast Reactor (SFR) and the Supercritical Carbon Dioxide (S-C0?) Recompression cycle are two technologies that have the potential to impact the power generation landscape of the future. In order for their ...

Ludington, Alexander R. (Alexander Rockwell)

2009-01-01T23:59:59.000Z

237

Advanced Binary Geothermal Power Plancts Working Fluid Property Determination and Heat Exchanger Design  

DOE Green Energy (OSTI)

The performance of binary geothermal power plants can be improved through the proper choice of a working fluid, and optimization of component designs and operating conditions. This paper reviews the investigations at the Idaho National Engineering Laboratory (INEL) which are examining binary cycle performance improvements: for moderate temperature (350 to 400 F) resources with emphasis on how the improvements may be integrated into design of binary cycles. These investigations are examining performance improvements resulting from the supercritical vaporization of mixed hydrocarbon working fluids and achieving countercurrent integral condensation with these fluids, as well as the modification of the turbine inlet state points to achieve supersaturated turbine vapor expansions. For resources where the brine outlet temperature is restricted, the use of turbine exhaust recuperators is examined. The baseline plant used to determine improvements in plant performance (characterized by the increase in the net brine effectiveness, watt-hours per pound of brine) in these studies operates at conditions similar to the 45 MW Heber binary plant. Through the selection of the optimum working fluids and operating conditions, achieving countercurrent integral condensation, and allowing supersaturated vapor expansions in the turbine, the performance of the binary cycle (the net brine effectiveness) can be improved by 25 to 30% relative to the baseline plant. The design of these supercritical Rankine-cycle (Binary) power plants for geothermal resources requires information about the potential working fluids used in the cycle. In addition, methods to design the various components, (e.g., heat exchangers, pumps, turbines) are needed. This paper limits its view of component design methods to the heat exchangers in binary power plants. The design of pumps and, turbines for these working fluids presents no new problems to the turbine manufacturer. However, additional work is proceeding at the Heat Cycle Research Facility to explore metastable expansions within turbines. This work, when completed, should allow the designer more flexibility in the state point selection in the design of these cycles which will potentially increase the system performance. The paper explores the different systems of thermodynamic and transport properties for mixtures of hydrocarbons. Methods include a computer program EXCST developed at the National Bureau of Standards in Boulder, as well as some of the thermodynamic models available in the chemical process simulation code, ASPEN, which was originally developed by the Department of Energy. The heat exchanger design methodology and computer programs of Heat Transfer Research, Inc. (HTRI) have been used because they represent data which is used throughout the industry by A & E firms as well as most heat exchanger manufacturers. For most cases, some modification of the computer results are necessary for supercritical heater design. When condensation takes place on the inside of enhanced tubes, new methods beyond HTRI's present state are necessary. The paper will discuss both of these modifications.

Bliem, C.J.; Mines, G.L.

1989-03-21T23:59:59.000Z

238

Test Plan for Heat Cycle Research Program, Phase I Supercritical Cycle Tests  

DOE Green Energy (OSTI)

The 60 kW Heat Cycle Research Facility (HCRF) provides a means of examining different concepts and components associated with the generation of electrical power from a geothermal resource using a binary power cycle. In this power cycle the heat or energy in a hot geothermal fluid is transferred to a secondary working fluid. This working fluid is vaporized in the heat exchange process and the vapor is in turn expanded through a turbine which drives a generator producing electrical power. the heat or energy in the vapor leaving the turbine is transferred to a circulating cooling water in the condenser where the working fluid is condensed to a liquid which can be pumped back to the heaters, completing the cycle. This waste heat load in the condenser is in turn transferred from the cooling water to the atmosphere in a cooling tower. The HCRF allows the different components described in the cycle above to be tested as well as the basic cycle itself. This cycle may vary in that the heaters, condenser, cooling system, pumps, etc. may differ in number and type, however the basic cycle does not change significantly. During this sequence of tests, the HCRF is operated using a supercritical vapor generator and a vertical condenser where the condensation occurs inside of the tubes as opposed to the shell side more commonly used in these applications. In addition to providing the data to be used to evaluate the design of these heat exchangers, these supercritical tests provide cycle and component performance data with both single component working fluids and working fluids comprised of different mixtures of hydrocarbons. The use of these mixtures promises to improve cycle performance, in terms of watt-hours per pound of geothermal fluid, provided the countercurrent flow paths can be maintained between the fluids in both the condenser and the heaters. The supercritical heaters and the condenser to be used in this series of tests were designed to provide the desired countercurrent flow paths.

Mines, Greg L.

1983-06-01T23:59:59.000Z

239

Investigating Dark Energy with Black Hole Binaries  

E-Print Network (OSTI)

The accelerated expansion of the universe is ascribed to the existence of dark energy. Black holes accretion of dark energy induces a mass change proportional to the energy density and pressure of the background dark energy fluid. The time scale during which the mass of black holes changes considerably is too long relative to the age of the universe, thus beyond detection possibilities. We propose to take advantage of the modified black hole masses for exploring the equation of state $w[z]$ of dark energy, by investigating the evolution of supermassive black hole binaries on a dark energy background. Deriving the signatures of dark energy accretion on the evolution of binaries, we find that dark energy imprints on the emitted gravitational radiation and on the changes in the orbital radius of the binary can be within detection limits for certain supermassive black hole binaries. In this talk I describe how binaries can provide a useful tool in obtaining complementary information on the nature of dark energy, based on the work done with A.Kelleher.

Laura Mersini-Houghton; Adam Kelleher

2009-06-08T23:59:59.000Z

240

Improved Linear Programming Decoding using Frustrated Cycles  

E-Print Network (OSTI)

We consider transmission over a binary-input additive white Gaussian noise channel using low-density parity-check codes. One of the most popular techniques for decoding low-density parity-check codes is the linear programming decoder. In general, the linear programming decoder is suboptimal. I.e., the word error rate is higher than the optimal, maximum a posteriori decoder. In this paper we present a systematic approach to enhance the linear program decoder. More precisely, in the cases where the linear program outputs a fractional solution, we give a simple algorithm to identify frustrated cycles which cause the output of the linear program to be fractional. Then adding these cycles, adaptively to the basic linear program, we show improved word error rate performance.

Kudekar, Shrinivas; Chertkov, Misha

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "binary cycle technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Modeling Flows Around Merging Black Hole Binaries  

E-Print Network (OSTI)

Coalescing massive black hole binaries are produced by the mergers of galaxies. The final stages of the black hole coalescence produce strong gravitational radiation that can be detected by the space-borne LISA. In cases where the black hole merger takes place in the presence of gas and magnetic fields, various types of electromagnetic signals may also be produced. Modeling such electromagnetic counterparts of the final merger requires evolving the behavior of both gas and fields in the strong-field regions around the black holes. We have taken a step towards solving this problem by mapping the flow of pressureless matter in the dynamic, 3-D general relativistic spacetime around the merging black holes. We find qualitative differences in collision and outflow speeds, including a signature of the merger when the net angular momentum of the matter is low, between the results from single and binary black holes, and between nonrotating and rotating holes in binaries. If future magnetohydrodynamic results confirm ...

van Meter, James R; Miller, M Coleman; Reynolds, Christopher S; Centrella, Joan M; Baker, John G; Boggs, William D; Kelly, Bernard J; McWilliams, Sean T

2009-01-01T23:59:59.000Z

242

Life Cycle Engineering Group  

Science Conference Proceedings (OSTI)

... for green manufacturing and construction applications; conduct life cycle engineering assessments for energy efficiency and environmental ...

2012-08-23T23:59:59.000Z

243

Auto-correlation of Binary stars  

E-Print Network (OSTI)

Speckle interferometric technique is used to record a series of short exposure images of several close binary stars with sub-arcsecond separation through a narrow band filter centred at H$\\alpha$ at the Cassegrain focus of the 2.34 meter Vainu Bappu telescope (VBT), situated at Vainu Bappu Observatory (VBO), Kavalur. The auto-correlation method is developed under Image Reduction Analysis Facility (IRAF). Wiener filter is included in the programme to eliminate spurious high frequency contributions; a few sets of data provide the optimised results. The auto-correlated image of these stars gives the separation of the binary components.

S. K. Saha; D. Maitra

2001-06-07T23:59:59.000Z

244

Speckle interferometric observations of close binary stars  

E-Print Network (OSTI)

Speckle interferometric technique is employed to record a series of hundreds of short-exposure images of several close binary stars with sub-arcsecond separation through a narrow band filter at the Cassegrain focus of the 2.34 meter (m) Vainu Bappu telescope (VBT), situated at Vainu Bappu Observatory (VBO), Kavalur, India. The data are recorded sequentially by a Peltier-cooled intensified CCD camera with 10 ms exposure. The auto-correlation method is applied to determine the angular separations and position angles of these binary systems.

S. K. Saha; V. Chinnappan; L. Yeswanth; P. Anbazhagan

2002-09-20T23:59:59.000Z

245

ENGINEERING TECHNOLOGY Engineering Technology  

E-Print Network (OSTI)

, Mechatronics Technology, and Renewable Energy Technology. Career Opportunities Graduates of four origin, gender, age, marital status, sexual orientation, status as a Vietnam-era veteran, or disability

246

Technology Transfer: Available Technologies  

Please refer to the list of technologies below for licensing and research collaboration availability. If you can't find the technology you ...

247

Simple reconstruction of binary near-perfect phylogenetic trees  

Science Conference Proceedings (OSTI)

We consider the problem of reconstructing near-perfect phylogenetic trees using binary character states (referred to as BNPP). A perfect phylogeny assumes that every character mutates at most once in the evolutionary tree, yielding an algorithm for binary ...

Srinath Sridhar; Kedar Dhamdhere; Guy E. Blelloch; Eran Halperin; R. Ravi; Russell Schwartz

2006-05-01T23:59:59.000Z

248

Time distribution analysis for binary search of a linked list  

Science Conference Proceedings (OSTI)

The aim of this article is to determine the probability distribution of sorting time for different sized linked lists utilizing binary search method and its comparison with results for sequential and binary tree search methods. In [1] the concept of ...

Firooz Khosraviyani; Mohammad H. Moadab; Douglas F. Hale

1991-11-01T23:59:59.000Z

249

MULTIPLE INPUT BINARY ADDER EMPLOYING MAGNETIC DRUM DIGITAL COMPUTING APPARATUS  

DOE Patents (OSTI)

A digital computing apparatus is described for adding a plurality of multi-digit binary numbers. The apparatus comprises a rotating magnetic drum, a recording head, first and second reading heads disposed adjacent to the first and second recording tracks, and a series of timing signals recorded on the first track. A series of N groups of digit-representing signals is delivered to the recording head at time intervals corresponding to the timing signals, each group consisting of digits of the same significance in the numbers, and the signal series is recorded on the second track of the drum in synchronism with the timing signals on the first track. The multistage registers are stepped cyclically through all positions, and each of the multistage registers is coupled to the control lead of a separate gate circuit to open the corresponding gate at only one selected position in each cycle. One of the gates has its input coupled to the bistable element to receive the sum digit, and the output lead of this gate is coupled to the recording device. The inputs of the other gates receive the digits to be added from the second reading head, and the outputs of these gates are coupled to the adding register. A phase-setting pulse source is connected to each of the multistage registers individually to step the multistage registers to different initial positions in the cycle, and the phase-setting pulse source is actuated each N time interval to shift a sum digit to the bistable element, where the multistage register coupled to bistable element is operated by the phase- setting pulse source to that position in its cycle N steps before opening the first gate, so that this gate opens in synchronism with each of the shifts to pass the sum digits to the recording head.

Cooke-Yarborough, E.H.

1960-12-01T23:59:59.000Z

250

Damage to Power Plants Due to Cycling  

Science Conference Proceedings (OSTI)

The duty cycle for power plants ranges from baseloading or consistently operating at or near fully rated capacity to two-shifting or shutting down during off-peak demand periods. Quantifying the cost of cycling and finding ways to mitigate and control those costs are critical to profitability. European Technology Development Ltd. (ETD) originally prepared and published this report and has agreed to the current revision by EPRI. The report evaluates the effects and implications of cyclic operation on equi...

2001-07-27T23:59:59.000Z

251

Large Scale Truck Duty Cycle.pub  

NLE Websites -- All DOE Office Websites (Extended Search)

Truck Duty Cycle Evaluation and Truck Duty Cycle Evaluation and Assessment of Fuel Efficiency and Emission Reduction Technologies Oak Ridge National Laboratory managed by UT-Battelle, LLC for the U.S. Department of Energy under Contract number DE-AC05-00OR22725 Research Areas Freight Flows Passenger Flows Supply Chain Efficiency Transportation: Energy Environment Safety Security Vehicle Technologies Research Brief T he Oak Ridge National Laboratory (ORNL) is conducting research to better understand truck fuel economy and emissions in normal everyday use, as part of a study sponsored by the Department of Energy (DOE) Vehicle Technologies Program (VTP). By collecting duty cycle data (velocity, acceleration and elevation) during normal operations of literally thousands of vehicles for an

252

Control of binary distillation column using fuzzy PI controllers  

Science Conference Proceedings (OSTI)

In this paper the automatic control of a binary distillation column is described. This control is done with fuzzy logic controllers. After a short explanation of the function and dynamic of a binary distillation column, it's operating and control strategies ... Keywords: binary distillation column, fuzzy inference system, simulation

Shahram Javadi; Jabber Hosseini

2009-08-01T23:59:59.000Z

253

Accretion Processes in BlackHole Binaries  

E-Print Network (OSTI)

Accretion Processes in Black­Hole Binaries Roberto Soria A thesis submitted for the degree presented in ``Measuring the Mass of the Black Hole in GRO J1655\\Gamma40'', Soria, R., Wickramasinghe, D. T processes in black­hole bina­ ries, theoretically and observationally, focussing on the role of outflows

Soria, Roberto

254

CSP for binary conservative relational structures  

E-Print Network (OSTI)

We prove that whenever A is a 3-conservative relational structure with only binary and unary relations then the algebra of polymorphisms of A either has no Taylor operation (i.e. CSP(A) is NP-complete), or generates a congruence meet semidistributive variety (i.e. CSP(A) has bounded width).

Kazda, Alexandr

2011-01-01T23:59:59.000Z

255

Modeling Flows Around Merging Black Hole Binaries  

E-Print Network (OSTI)

Coalescing massive black hole binaries are produced by the mergers of galaxies. The final stages of the black hole coalescence produce strong gravitational radiation that can be detected by the space-borne LISA. In cases where the black hole merger takes place in the presence of gas and magnetic fields, various types of electromagnetic signals may also be produced. Modeling such electromagnetic counterparts of the final merger requires evolving the behavior of both gas and fields in the strong-field regions around the black holes. We have taken a step towards solving this problem by mapping the flow of pressureless matter in the dynamic, 3-D general relativistic spacetime around the merging black holes. We find qualitative differences in collision and outflow speeds, including a signature of the merger when the net angular momentum of the matter is low, between the results from single and binary black holes, and between nonrotating and rotating holes in binaries. If future magnetohydrodynamic results confirm these differences, it may allow assessment of the properties of the binaries as well as yielding an identifiable electromagnetic counterpart to the attendant gravitational wave signal.

James R. van Meter; John H. Wise; M. Coleman Miller; Christopher S. Reynolds; Joan M. Centrella; John G. Baker; William D. Boggs; Bernard J. Kelly; Sean T. McWilliams

2009-07-31T23:59:59.000Z

256

Binary power multiplier for electromagnetic energy  

DOE Patents (OSTI)

A technique for converting electromagnetic pulses to higher power amplitude and shorter duration, in binary multiples, splits an input pulse into two channels, and subjects the pulses in the two channels to a number of binary pulse compression operations. Each pulse compression operation entails combining the pulses in both input channels and selectively steering the combined power to one output channel during the leading half of the pulses and to the other output channel during the trailing half of the pulses, and then delaying the pulse in the first output channel by an amount equal to half the initial pulse duration. Apparatus for carrying out each of the binary multiplication operation preferably includes a four-port coupler (such as a 3 dB hybrid), which operates on power inputs at a pair of input ports by directing the combined power to either of a pair of output ports, depending on the relative phase of the inputs. Therefore, by appropriately phase coding the pulses prior to any of the pulse compression stages, the entire pulse compression (with associated binary power multiplication) can be carried out solely with passive elements.

Farkas, Zoltan D. (203 Leland Ave., Menlo Park, CA 94025)

1988-01-01T23:59:59.000Z

257

Using binary search on a linked list  

Science Conference Proceedings (OSTI)

In this article a variation of binary search applicable to a linked list structure is examined. There are no additional data structure properties imposed on the list; that is the list may be singly or multiply linked, but it is not required that the ...

Firooz Khosraviyani

1990-08-01T23:59:59.000Z

258

On binary Kloosterman sums divisible by 3  

Science Conference Proceedings (OSTI)

By counting the coset leaders for cosets of weight 3 of the Melas code we give a new proof for the characterization of Kloosterman sums divisible by 3 for Keywords: 11L05, 11T71, 94B15, Binary Kloosterman sum, Cap, Melas code, Nonlinear function

Kseniya Garaschuk; Petr Lison?k

2008-12-01T23:59:59.000Z

259

Utility-scale combined-cycle power systems with Kalina bottoming cycles  

SciTech Connect

A new power-generation technology, often referred to as the Kalina cycle, is being developed as a direct replacement for the Rankine steam cycle. It can be applied to any thermal heat source, low or high temperature. Among several Kalina cycle variations, there is one that is particularly well suited as a bottoming cycle for utility combined-cycle applications. It is the subject of this paper. Using an ammonia/water mixture as the working fluid and a condensing system based on absorption-refrigeration principles, the Kalina bottoming cycle outperforms a triple-pressure steam cycle by 16%. Additionally, this version of the Kalina cycle is characterized by an intercooling feature between turbine stages, diametrically opposite to normal reheating practice in steam plants. Energy and mass balances are presented for a 200-MW(electric) Kalina bottoming cycle. Kalina cycle performance is compared to a triple-pressure steam plant. Energy and mass balances are presented as well for a 200-MW(electric) Kalina direct-fired cycle designed for utility purposes.

Kalina, A.I.

1987-01-01T23:59:59.000Z

260

Combined-cycle power tower  

DOE Green Energy (OSTI)

This paper evaluates a new power tower concept that offers significant benefits for commercialization of power tower technology. The concept uses a molten nitrate salt centralreceiver plant to supply heat, in the form of combustion air preheat, to a conventional combined-cycle power plant. The evaluation focused on first commercial plants, examined three plant capacities (31, 100, and 300 MWe), and compared these plants with a solar-only 100-MWe plant and with gas-only combined-cycle plants in the same three capacities. Results of the analysis point to several benefits relative to the solar-only plant including low energy cost for first plants, low capital cost for first plants, reduced risk with respect to business uncertainties, and the potential for new markets. In addition, the concept appears to have minimal technology development requirements. Significantly, the results show that it is possible to build a first plant with this concept that can compete with existing gas-only combined-cycle plants.

Bohn, M.S.; Williams, T.A.; Price, H.W.

1994-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "binary cycle technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

NREL: Energy Analysis: Life Cycle Assessment Harmonization  

NLE Websites -- All DOE Office Websites (Extended Search)

Life Cycle Assessment Harmonization Life Cycle Assessment Harmonization Life cycle assessment (LCA) harmonization helps lenders, utility executives, and lawmakers get the best, most precise information on greenhouse gas emissions from various sources of energy. LCA has been used to estimate and compare GHG emissions from utility-scale power systems for three decades, often with considerable variability in results. Harmonization provides more exact estimates of greenhouse-gas emissions for renewable and conventional electricity generation technologies, clarifying inconsistent and conflicting estimates in the published literature and reducing uncertainty. Highlights of Recent Studies Chart that compares published and harmonized lifecycle greenhouse gas emissions. For help reading this chart, please contact the webmaster.

262

Back end of an enduring fuel cycle  

SciTech Connect

An enduring nuclear fuel cycle is an essential part of sustainable consumption, the process whereby world`s riches are consumed in a responsible manner so that future generations can continue to enjoy at least some of them. In many countries, the goal of sustainable development has focused attention on the benefits of nuclear technologies. However, sustenance of the nuclear fuel cycle is dependent on sensible management of all the resources of the fuel cycle, including energy, spent fuels, and all of its side streams. The nuclear fuel cycle for energy production has suffered many traumas since the mid seventies. The common basis of technologies producing nuclear explosives and consumable nuclear energy has been a preoccupation for some, predicament for others, and a perception problem for many. It is essential to reestablish a reliable back end of the nuclear fuel cycle that can sustain the resource requirements of an enduring full cycle. This paper identifies some pragmatic steps necessary to reverse the trend and to maintain a necessary fuel cycle option for the future.

Pillay, K.K.S.

1998-03-01T23:59:59.000Z

263

H gas turbine combined cycle  

SciTech Connect

A major step has been taken in the development of the Next Power Generation System--``H`` Technology Combined Cycle. This new gas turbine combined-cycle system increases thermal performance to the 60% level by increasing gas turbine operating temperature to 1,430 C (2,600 F) at a pressure ratio of 23 to 1. Although this represents a significant increase in operating temperature for the gas turbine, the potential for single digit NOx levels (based upon 15% O{sub 2}, in the exhaust) has been retained. The combined effect of performance increase and environmental control is achieved by an innovative closed loop steam cooling system which tightly integrates the gas turbine and steam turbine cycles. The ``H`` Gas Turbine Combined Cycle System meets the goals and objectives of the DOE Advanced Turbine System Program. The development and demonstration of this new system is being carried out as part of the Industrial/Government cooperative agreement under the ATS Program. This program will achieve first commercial operation of this new system before the end of the century.

Corman, J.

1995-12-31T23:59:59.000Z

264

Quantifying Carbon Cycle Feedbacks  

Science Conference Proceedings (OSTI)

Perturbations to the carbon cycle could constitute large feedbacks on future changes in atmospheric CO2 concentration and climate. This paper demonstrates how carbon cycle feedback can be expressed in formally similar ways to climate feedback, ...

J. M. Gregory; C. D. Jones; P. Cadule; P. Friedlingstein

2009-10-01T23:59:59.000Z

265

Edgeworth cycles revisited  

E-Print Network (OSTI)

Some gasoline markets exhibit remarkable price cycles, where price spikes are followed by a series of small price declines: a pattern consistent with a model of Edgeworth cycles described by Maskin and Tirole. We extend ...

Doyle, Joseph J.

266

Technology Reviews | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Technology Reviews Technology Reviews Technology Reviews November 1, 2013 - 11:40am Addthis Selecting a distributed energy (DE) technology for a specific application depends on many factors. Considerations include the amount of power needed, the duty cycle, space constraints, thermal needs, emission regulations, fuel availability, utility prices, and interconnection issues. The following technology reviews include descriptions of a variety of DE and combined heat and power (CHP) technologies, providing (when available) such parameters as efficiency, size, and projected cost to install and maintain. Behavior of Capstone and Honeywell Microturbine Generators During Load Changes, 38 pp, Feb. 2004 Catalogue of CHP Technologies, Dec. 2012 Cost Analysis of Nitrogen Oxide (NOx) Control Alternatives for

267

Medium Truck Duty Cycle (MTDC)  

NLE Websites -- All DOE Office Websites (Extended Search)

Routes Data Acquisition System Setup Routes Data Acquisition System Setup Medium Truck Duty Cycle (MTDC) Objective This Department of Energy project focuses on the collection and analysis medium truck (Class-6 and -7) duty cycle data from real-world operations. Analysis of this data will provide information pertaining to the fuel efficiencies and performance of medium trucks in several vocations. Outcomes Rich source of data and information that can contribute to the development of new tools Sound basis upon which DOE can make technology investment decisions A national archive of real-world-based medium-truck operational data that will support medium-duty vehicle energy efficiency research Collected Data Speed & Acceleration Fuel Consumption GPS Location Road Grade

268

MTDC Safety Sensor Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

MTDC Safety Sensor Technology MTDC Safety Sensor Technology Background Beyond the standard duty cycle data collection system used in the Department of Energy's Medium Truck Duty Cycle program, additional sensors were installed on three test vehicles to collect several safety-related signals of interest to the Federal Motor Carrier Safety Administration. The real-time brake stroke, tire pressure, and weight information obtained from these sensors is expected to make possible a number of safety-related analyses such as determining the frequency and severity of braking events and tracking tire pressure changes over time. Because these signals are posted to the vehicle's databus, they also have the potential to be

269

Cycle to Cycle Manufacturing Process Control  

E-Print Network (OSTI)

Most manufacturing processes produce parts that can only be correctly measured after the process cycle has been completed. Even if in-process measurement and control is possible, it is often too expensive or complex to ...

Hardt, David E.

270

Technology Search  

home \\ technologies \\ search. Technologies: Ready-to-Sign Licenses: Software: Patents: Technology Search. ... Operated by Lawrence Livermore National Security, LLC, ...

271

Building Technologies Office: Emerging Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Emerging Technologies Emerging Technologies Printable Version Share this resource Send a link to Building Technologies Office: Emerging Technologies to someone by E-mail Share Building Technologies Office: Emerging Technologies on Facebook Tweet about Building Technologies Office: Emerging Technologies on Twitter Bookmark Building Technologies Office: Emerging Technologies on Google Bookmark Building Technologies Office: Emerging Technologies on Delicious Rank Building Technologies Office: Emerging Technologies on Digg Find More places to share Building Technologies Office: Emerging Technologies on AddThis.com... About Take Action to Save Energy Partner with DOE Activities Technology Research, Standards, & Codes Popular Links Success Stories Previous Next Lighten Energy Loads with System Design.

272

GRAVITY DARKENING AND BRIGHTENING IN BINARIES  

SciTech Connect

We apply a von Zeipel gravity darkening model to corotating binaries to obtain a simple, analytical expression for the emergent radiative flux from a tidally distorted primary orbiting a point-mass secondary. We adopt a simple Roche model to determine the envelope structure of the primary, assumed massive and centrally condensed, and use the results to calculate the flux. As for single rotating stars, gravity darkening reduces the flux along the stellar equator of the primary, but, unlike for rotating stars, we find that gravity brightening enhances the flux in a region around the stellar poles. We identify a critical limiting separation beyond which hydrostatic equilibrium no longer is possible, whereby the flux vanishes at the point on the stellar equator of the primary facing the companion. For equal-mass binaries, the total luminosity is reduced by about 13% when this limiting separation is reached.

White, Helen E.; Baumgarte, Thomas W. [Department of Physics and Astronomy, Bowdoin College, Brunswick, ME 04011 (United States); Shapiro, Stuart L. [Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801 (United States)

2012-06-20T23:59:59.000Z

273

Automated pupil remapping with binary optics  

DOE Patents (OSTI)

Methods and apparatuses for pupil remapping employing non-standard lenslet shapes in arrays; divergence of lenslet focal spots from on-axis arrangements; use of lenslet arrays to resize two-dimensional inputs to the array; and use of lenslet arrays to map an aperture shape to a different detector shape. Applications include wavefront sensing, astronomical applications, optical interconnects, keylocks, and other binary optics and diffractive optics applications.

Neal, Daniel R. (Tijeras, NM); Mansell, Justin (Albuquerque, NM)

1999-01-01T23:59:59.000Z

274

ORBITAL EVOLUTION OF COMPACT WHITE DWARF BINARIES  

SciTech Connect

The newfound prevalence of extremely low mass (ELM, M{sub He} < 0.2 M{sub Sun }) helium white dwarfs (WDs) in tight binaries with more massive WDs has raised our interest in understanding the nature of their mass transfer. Possessing small (M{sub env} {approx} 10{sup -3} M{sub Sun }) but thick hydrogen envelopes, these objects have larger radii than cold WDs and so initiate mass transfer of H-rich material at orbital periods of 6-10 minutes. Building on the original work of D'Antona et al., we confirm the 10{sup 6} yr period of continued inspiral with mass transfer of H-rich matter and highlight the fact that the inspiraling direct-impact double WD binary HM Cancri likely has an ELM WD donor. The ELM WDs have less of a radius expansion under mass loss, thus enabling a larger range of donor masses that can stably transfer matter and become a He mass transferring AM CVn binary. Even once in the long-lived AM CVn mass transferring stage, these He WDs have larger radii due to their higher entropy from the prolonged H-burning stage.

Kaplan, David L. [Physics Department, University of Wisconsin-Milwaukee, Milwaukee, WI 53211 (United States); Bildsten, Lars [Kavli Institute for Theoretical Physics and Department of Physics, Kohn Hall, University of California, Santa Barbara, CA 93106 (United States); Steinfadt, Justin D. R., E-mail: kaplan@uwm.edu, E-mail: bildsten@kitp.ucsb.edu, E-mail: jdrsteinfadt@gmail.com [Department of Physics, Broida Hall, University of California, Santa Barbara, CA 93106 (United States)

2012-10-10T23:59:59.000Z

275

Life-Cycle Assessment of Electric Power Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Life-Cycle Assessment of Electric Power Systems Life-Cycle Assessment of Electric Power Systems Title Life-Cycle Assessment of Electric Power Systems Publication Type Journal Article Year of Publication 2013 Authors Masanet, Eric R., Yuan Chang, Anand R. Gopal, Peter H. Larsen, William R. Morrow, Roger Sathre, Arman Shehabi, and Pei Zhai Journal Annual Review of Environment and Resources Volume 38 Date Published 2013 Keywords electricity, energy policy, environmental analysis, life-cycle impact, life-cycle inventory Abstract The application of life-cycle assessment (LCA) to electric power (EP) technologies is a vibrant research pursuit that is likely to continue as the world seeks ways to meet growing electricity demand with reduced environmental and human health impacts. While LCA is an evolving methodology with a number of barriers and challenges to its effective use, LCA studies to date have clearly improved our understanding of the life-cycle energy, GHG emissions, air pollutant emissions, and water use implications of EP technologies. With continued progress, LCA offers promise for assessing and comparing EP technologies in an analytically-thorough and environmentally-holistic manner for more robust deployment decisions. This article summarizes: (1) major challenges in applying LCA to EP technologies thus far, (2) LCA results to date on the various impacts of EP technologies, and (3) opportunities for improving LCAs as applied to EP technologies moving forward.

276

PROCEEDINGS OF THE THORIUM FUEL CYCLE SYMPOSIUM, GATLINBURG, TENNESSEE, DECEMBER 5-7, 1962  

SciTech Connect

Thirty-three papers presented at the Thorium Fuel Cycle symposium are given. Topics covered include fuel-cycle technology, raw materials, reactor physics, and reactor concepts. Separate abstracts were prepared for each of the papers. (M.C.G.)

1963-10-31T23:59:59.000Z

277

Summary of Investigations of the Use of Modified Turbine Inlet Conditions in a Binary Power Plant  

SciTech Connect

Investigators at the Idaho National Engineering and Environmental Laboratory (INEEL) are developing technologies that will enhance the feasibility of generating electrical power from a hydrothermal resource. One of the concepts investigated is the use of modified inlet conditions in geothermal binary power plant turbines to increase the power generation. An inlet condition of interest allows the expanding vapor to enter the two-phase region, a mode of operation typically avoided because of concern that condensate would form and damage the turbine, degrading performance. INEEL investigators postulated that initially a supersaturated vapor would be supported, and that no turbine damage would occur. This paper summarizes the investigation of these expansions that began with testing of their condensation behavior, and culminated with the incorporation of these expansions into the operation of several commercial binary plant turbines.

Mines, Gregory Lee

2000-09-01T23:59:59.000Z

278

Summary of investigations of the use of modified turbine inlet conditions in a binary power plant  

DOE Green Energy (OSTI)

Investigators at the Idaho National Engineering and Environmental Laboratory (INEEL) are developing technologies that will enhance the feasibility of generating electrical power from a hydrothermal resource. One of the concepts investigated is the use of modified inlet conditions in geothermal binary power plant turbines to increase the power generation. An inlet condition of interest allows the expanding vapor to enter the two-phase region, a mode of operation typically avoided because of concern that condensate would form and damage the turbine, degrading performance. INEEL investigators postulated that initially a supersaturated vapor would be supported, and that no turbine damage would occur. This paper summarizes the investigation of these expansions that began with testing of their condensation behavior, and culminated with the incorporation of these expansions into the operation of several commercial binary plant turbines.

G. L. Mines

2000-09-24T23:59:59.000Z

279

Requirements for wireless technology on rolling stock  

Science Conference Proceedings (OSTI)

This paper gives an overview of railway specific requirements on wireless technologies and discusses the influence of different product life cycles in railway industry and communication technology. The main challenges are the heterogeneous communication ... Keywords: maintenance, passenger information, product life cycle, railway application interface, railway requirements, train operation, wireless communication

Uwe Kucharzyk

2011-03-01T23:59:59.000Z

280

Technology Capabilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Homeland Security & Defense Homeland Security & Defense Information Technology & Communications Information Technology & Communications Sensors, Electronics &...

Note: This page contains sample records for the topic "binary cycle technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Nuclear Fuel Cycle | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Cycle Fuel Cycle Nuclear Fuel Cycle GC-52 provides legal advice to DOE regarding research and development of nuclear fuel and waste management technologies that meet the nation's energy supply, environmental, and energy security needs. GC-52 also advises DOE on issues involving support for international fuel cycle initiatives aimed at advancing a common vision of the necessity of the expansion of nuclear energy for peaceful purposes worldwide in a safe and secure manner. In addition, GC-52 provides legal advice to DOE regarding the management and disposition of excess uranium in DOE's uranium stockpile. GC-52 attorneys participate in meetings of DOE's Uranium Inventory Management Coordinating Committee and provide advice on compliance with statutory requirements for the sale or transfer of uranium.

282

VERITAS Observations of the gamma-Ray Binary LS I +61 303  

E-Print Network (OSTI)

LS I +61 303 is one of only a few high-mass X-ray binaries currently detected at high significance in very high energy gamma-rays. The system was observed over several orbital cycles (between September 2006 and February 2007) with the VERITAS array of imaging air-Cherenkov telescopes. A signal of gamma-rays with energies above 300 GeV is found with a statistical significance of 8.4 standard deviations. The detected flux is measured to be strongly variable; the maximum flux is found during most orbital cycles at apastron. The energy spectrum for the period of maximum emission can be characterized by a power law with a photon index of Gamma=2.40+-0.16_stat+-0.2_sys and a flux above 300 GeV corresponding to 15-20% of the flux from the Crab Nebula.

V. A. Acciari; M. Beilicke; G. Blaylock; S. M. Bradbury; J. H. Buckley; V. Bugaev; Y. Butt; K. L. Byrum; O. Celik; A. Cesarini; L. Ciupik; Y. C. K. Chow; P. Cogan; P. Colin; W. Cui; M. K. Daniel; C. Duke; T. Ergin; A. D. Falcone; S. J. Fegan; J. P. Finley; P. Fortin; L. F. Fortson; D. Gall; K. Gibbs; G. H. Gillanders; J. Grube R. Guenette; D. Hanna; E. Hays; J. Holder; D. Horan; S. B. Hughes; C. M. Hui; T. B. Humensky; P. Kaaret; D. B. Kieda; J. Kildea; A. Konopelko; H. Krawczynski; F. Krennrich; M. J. Lang; S. LeBohec; K. Lee; G. Maier; A. McCann; M. McCutcheon; J. Millis; P. Moriarty; R. Mukherjee; T. Nagai; R. A. Ong; D. Pandel; J. S. Perkins; F. Pizlo; M. Pohl; J. Quinn; K. Ragan; P. T. Reynolds; H. J. Rose; M. Schroedter; G. H. Sembroski; A. W. Smith; D. Steele; S. P. Swordy; J. A. Toner; L. Valcarcel; V. V. Vassiliev; R. Wagner; S. P. Wakely; J. E. Ward; T. C. Weekes; A. Weinstein; R. J. White; D. A. Williams; S. A. Wissel; M. Wood; B. Zitzer

2008-02-18T23:59:59.000Z

283

Life Cycle Environmental Assessment of the Internet: The Benefits...  

NLE Websites -- All DOE Office Websites (Extended Search)

Life Cycle Environmental Assessment of the Internet: The Benefits and Impacts of Innovative Technologies Speaker(s): Oliver Jolliet Date: July 15, 2004 - 12:00pm Location: Bldg. 90...

284

Duty Cycle Software  

Duty cycles capture the influence of one variable in relations to the whole system. This allows for analysis in determining the impact of new ...

285

Nuclear fuel cycle costs  

Science Conference Proceedings (OSTI)

The costs for the back-end of the nuclear fuel cycle, which were developed as part of the Nonproliferation Alternative Systems Assessment Program (NASAP), are presented. Total fuel cycle costs are given for the pressurized water reactor once-through and fuel recycle systems, and for the liquid-metal fast breeder reactor system. These calculations show that fuel cycle costs are a small part of the total power costs. For breeder reactors, fuel cycle costs are about half that of the present once-through system. The total power cost of the breeder reactor system is greater than that of light-water reactor at today's prices for uranium and enrichment.

Burch, W.D.; Haire, M.J.; Rainey, R.H.

1982-02-01T23:59:59.000Z

286

Cycles in fossil diversity  

E-Print Network (OSTI)

Transitions in Global Marine Diversity, Science 281, 1157-know if this cycle is a variation in true diversity or onlyin observed diversity, but either case requires explanation

Rohde, Robert A.; Muller, Richard A.

2004-01-01T23:59:59.000Z

287

Candidate spectroscopic binaries in the Sloan Digital Sky Survey  

E-Print Network (OSTI)

We have examined the radial velocity data for stars spectroscopically observed by the Sloan Digital Sky Survey (SDSS) more than once to investigate the incidence of spectroscopic binaries, and to evaluate the accuracy of the SDSS stellar radial velocities. We find agreement between the fraction of stars with significant velocity variations and the expected fraction of binary stars in the halo and thick disk populations. The observations produce a list of 675 possible new spectroscopic binary stars and orbits for eight of them.

D. Pourbaix; G. R. Knapp; P. Szkody; Z. Ivezic; S. J. Kleinman; D. Long; S. A. Snedden; A. Nitta; M. Harvanek; J. Krzesinski; H. J. Brewington; J. C. Barentine; E. H. Neilsen; J. Brinkman

2005-08-29T23:59:59.000Z

288

Candidate spectroscopic binaries in the Sloan Digital Sky Survey  

E-Print Network (OSTI)

We have examined the radial velocity data for stars spectroscopically observed by the Sloan Digital Sky Survey (SDSS) more than once to investigate the incidence of spectroscopic binaries, and to evaluate the accuracy of the SDSS stellar radial velocities. We find agreement between the fraction of stars with significant velocity variations and the expected fraction of binary stars in the halo and thick disk populations. The observations produce a list of 675 possible new spectroscopic binary stars and orbits for eight of them.

Pourbaix, D; Szkody, P; Ivezic, Z; Kleinman, S J; Long, D; Snedden, S A; Nitta, A; Harvanek, M; Krzesnski, J; Brewington, H J; Barentine, J C; Neilsen, E H; Brinkmann, J

2005-01-01T23:59:59.000Z

289

Life Cycle Greenhouse Gas Emissions from Solar Photovoltaics  

E-Print Network (OSTI)

and module manufacturing. · System/Plant Decommissioning · Disposal · PowerPlant Decommissioning · Waste life cycle GHG emissions from solar PV systems are similar to other renewables and nuclear energy.nrel.gov/harmonization. · Life cycle GHG emissions from c-Si and TF PV technologies appear broadly similar; the small number

290

Property:Technology Type | Open Energy Information  

Open Energy Info (EERE)

Technology Type Technology Type Property Type Text Pages using the property "Technology Type" Showing 25 pages using this property. (previous 25) (next 25) M MHK Technologies/14 MW OTECPOWER + OTEC - Closed Cycle MHK Technologies/Aegir Dynamo + Point Absorber - Floating MHK Technologies/Anaconda bulge tube drives turbine + Oscillating Wave Surge Converter MHK Technologies/AquaBuoy + Point Absorber MHK Technologies/Aquanator + Cross Flow Turbine MHK Technologies/Aquantis + Axial Flow Turbine MHK Technologies/Archimedes Wave Swing + Point Absorber MHK Technologies/Atlantis AN 150 + Axial Flow Turbine MHK Technologies/Atlantis AR 1000 + Axial Flow Turbine MHK Technologies/Atlantis AS 400 + Axial Flow Turbine MHK Technologies/Atlantisstrom + Cross Flow Turbine MHK Technologies/BOLT Lifesaver + Oscillating Wave Surge Converter

291

Structural Competition and Phase Transformations in Binary Ti-Nb ...  

Science Conference Proceedings (OSTI)

Structural Competition and Phase Transformations in Binary Ti-Nb Alloys for Biomedical Applications Structure and Fracture Resistance of Armored Fish Scales.

292

Binary Equilibrium Phase Diagrams and the Third Law of ...  

Science Conference Proceedings (OSTI)

I will make suggestions of probable configurations of binary phase diagrams at low temperatures. This leads to an expansion of the concept of improbable...

293

Excess volumes and excess viscosities of binary mixtures of 1 ...  

Science Conference Proceedings (OSTI)

Excess volumes V E, excess viscosities 1/E, and excess free energies of activation ... KEY WORDS: activation energy; binary mixtures; free energy; l-

294

A Molecular-Thermodynamic Lattice Model for Binary Mixtures  

E-Print Network (OSTI)

A Molecular-Thermodynamic Lattice Model for Binary Mixtures*was much interest in the thermodynamic properties of binarythat end, we use the thermodynamic perturbation method,

Qin, Yuan; Prausnitz, John M.

2005-01-01T23:59:59.000Z

295

Mining Truth Tables and Straddling Biclusters in Binary Datasets.  

E-Print Network (OSTI)

??As the world swims deeper into a deluge of data, binary datasets relating objects to properties can be found in many different fields. Such datasets (more)

Owens, Clifford Conley

2010-01-01T23:59:59.000Z

296

Stochastic binary problems with simple penalties for capacity ...  

E-Print Network (OSTI)

Mar 24, 2009 ... Abstract: This paper studies stochastic programs with first-stage binary variables and capacity constraints, using simple penalties for capacities...

297

DESTRUCTION OF BINARY MINOR PLANETS DURING NEPTUNE SCATTERING  

Science Conference Proceedings (OSTI)

The existence of extremely wide binaries in the low-inclination component of the Kuiper Belt provides a unique handle on the dynamical history of this population. Some popular frameworks of the formation of the Kuiper Belt suggest that planetesimals were moved there from lower semimajor axis orbits by scattering encounters with Neptune. We test the effects such events would have on binary systems and find that wide binaries are efficiently destroyed by the kinds of scattering events required to create the Kuiper Belt with this mechanism. This indicates that a binary-bearing component of the cold Kuiper Belt was emplaced through a gentler mechanism or was formed in situ.

Parker, Alex H. [Department of Astronomy, University of Victoria, BC (Canada); Kavelaars, J. J., E-mail: alexhp@uvic.c [Herzberg Institute of Astrophysics, National Research Council of Canada (Canada)

2010-10-20T23:59:59.000Z

298

High-Level Functional and Operational Requirements for the Advanced Fuel Cycle Facilty  

SciTech Connect

High-Level Functional & Operational Requirements for the AFCF -This document describes the principal functional and operational requirements for the proposed Advanced Fuel Cycle Facility (AFCF). The AFCF is intended to be the world's foremost facility for nuclear fuel cycle research, technology development, and demonstration. The facility will also support the near-term mission to develop and demonstrate technology in support of fuel cycle needs identified by industry, and the long-term mission to retain and retain U.S. leadership in fuel cycle operations. The AFCF is essential to demonstrate a more proliferation-resistant fuel cycle and make long-term improvements in fuel cycle effectiveness, performance and economy.

Charles Park

2006-12-01T23:59:59.000Z

299

Meta-Analysis of Estimates of Life Cycle GHG Emissions from Electricit...  

NLE Websites -- All DOE Office Websites (Extended Search)

Contacts Media Contacts Meta-Analysis of Estimates of Life Cycle GHG Emissions from Electricity Generation Technologies Speaker(s): Garvin Heath Date: April 11, 2011 -...

300

DYNAMICAL CAPTURE BINARY NEUTRON STAR MERGERS  

SciTech Connect

We study dynamical capture binary neutron star mergers as may arise in dense stellar regions such as globular clusters. Using general-relativistic hydrodynamics, we find that these mergers can result in the prompt collapse to a black hole or in the formation of a hypermassive neutron star, depending not only on the neutron star equation of state but also on impact parameter. We also find that these mergers can produce accretion disks of up to a tenth of a solar mass and unbound ejected material of up to a few percent of a solar mass. We comment on the gravitational radiation and electromagnetic transients that these sources may produce.

East, William E.; Pretorius, Frans [Department of Physics, Princeton University, Princeton, NJ 08544 (United States)

2012-11-20T23:59:59.000Z

Note: This page contains sample records for the topic "binary cycle technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Power Plant Cycling Costs  

Science Conference Proceedings (OSTI)

This report provides a detailed review of the most up to date data available on power plant cycling costs. The primary objective of this report is to increase awareness of power plant cycling cost, the use of these costs in renewable integration studies and to stimulate debate between policymakers, system dispatchers, plant personnel and power utilities.

Kumar, N.; Besuner, P.; Lefton, S.; Agan, D.; Hilleman, D.

2012-07-01T23:59:59.000Z

302

Streamlined Synthesis of Binary Nanorods for Power ...  

APPLICATIONS OF TECHNOLOGY: Solar cell devices; Light-emitting diodes (LEDs) Microscale and nanoscale electronic devices; ADVANTAGES:

303

Interfacing primary heat sources and cycles for thermochemical hydrogen production  

DOE Green Energy (OSTI)

Advantages cited for hydrogen production from water by coupling thermochemical cycles with primary heat include the possibility of high efficiencies. These can be realized only if the cycle approximates the criteria required to match the characteristics of the heat source. Different types of cycles may be necessary for fission reactors, for fusion reactors or for solar furnaces. Very high temperature processes based on decomposition of gaseous H/sub 2/O or CO/sub 2/ appear impractical even for projected solar technology. Cycles based on CdO decomposition are potentially quite efficient and require isothermal heat at temperatures that may be available from solar furnaces of fusion reactors. Sulfuric acid and solid sulfate cycles are potentially useful at temperatures available from each heat source. Solid sulfate cycles offer advantages for isothermal heat sources. All cycles under development include concentration and drying steps. Novel methods for improving such operations would be beneficial.

Bowman, M.G.

1980-01-01T23:59:59.000Z

304

Fuel Cycle Research & Development | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fuel Cycle Research & Fuel Cycle Research & Development Fuel Cycle Research & Development Fuel Cycle Research & Development The mission of the Fuel Cycle Research and Development (FCRD) program is to conduct research and development to help develop sustainable fuel cycles, as described in the Nuclear Energy Research and Development Roadmap. Sustainable fuel cycle options are those that improve uranium resource utilization, maximize energy generation, minimize waste generation, improve safety, and limit proliferation risk. The FCRD program will develop a suite of options to enable future policymakers to make informed decisions about how best to manage used fuel from nuclear reactors. The overall goal is to demonstrate the technologies necessary to allow commercial deployment of solutions for the sustainable management of used

305

Vendor / Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

Brake Assessment Tools Commercial Motor Vehicle Roadside Technology Corridor Safety Technology Showcase October 14, 2010 Commercial Motor Vehicle Roadside Technology Corridor...

306

Vendor / Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

Brake-Related Research Commercial Motor Vehicle Roadside Technology Corridor Safety Technology Showcase October 14, 2010 Commercial Motor Vehicle Roadside Technology Corridor...

307

Faience Technology  

E-Print Network (OSTI)

by Joanne Hodges. Faience Technology, Nicholson, UEE 2009Egyptian materials and technology, ed. Paul T. Nicholson,Nicholson, 2009, Faience Technology. UEE. Full Citation:

Nicholson, Paul

2009-01-01T23:59:59.000Z

308

Heavy Truck Duty Cycle (HTDC) Project OVERVIEW The Heavy Truck Duty Cycle (HTDC)  

NLE Websites -- All DOE Office Websites (Extended Search)

(HTDC) Project (HTDC) Project OVERVIEW The Heavy Truck Duty Cycle (HTDC) Project is sponsored by the US Department of Energy's (DOE's) Office of FreedomCar and Vehicle Technologies. The project involves efforts to collect, analyze and archive data and information related to class -8 truck operation in real-world environments. Such data and information will be useful for supporting: energy efficiency technology evaluation efforts, the

309

Thermodynamics of magnetized binary compact objects  

Science Conference Proceedings (OSTI)

Binary systems of compact objects with electromagnetic field are modeled by helically symmetric Einstein-Maxwell spacetimes with charged and magnetized perfect fluids. Previously derived thermodynamic laws for helically symmetric perfect-fluid spacetimes are extended to include the electromagnetic fields, and electric currents and charges; the first law is written as a relation between the change in the asymptotic Noether charge {delta}Q and the changes in the area and electric charge of black holes, and in the vorticity, baryon rest mass, entropy, charge and magnetic flux of the magnetized fluid. Using the conservation laws of the circulation of magnetized flow found by Bekenstein and Oron for the ideal magnetohydrodynamic fluid, and also for the flow with zero conducting current, we show that, for nearby equilibria that conserve the quantities mentioned above, the relation {delta}Q=0 is satisfied. We also discuss a formulation for computing numerical solutions of magnetized binary compact objects in equilibrium with emphasis on a first integral of the ideal magnetohydrodynamic-Euler equation.

Uryu, Koji [Department of Physics, University of the Ryukyus, Senbaru, Nishihara, Okinawa 903-0213 (Japan); Gourgoulhon, Eric [Laboratoire Univers et Theories, UMR 8102 du CNRS, Observatoire de Paris, Universite Paris Diderot, F-92190 Meudon (France); Markakis, Charalampos [Department of Physics, University of Wisconsin-Milwaukee, Post Office Box 413, Milwaukee, Wisconsin 53201 (United States)

2010-11-15T23:59:59.000Z

310

TIDAL INTERACTIONS IN MERGING WHITE DWARF BINARIES  

SciTech Connect

The recently discovered system J0651 is the tightest known detached white dwarf (WD) binary. Since it has not yet initiated Roche-lobe overflow, it provides a relatively clean environment for testing our understanding of tidal interactions. I investigate the tidal heating of each WD, parameterized in terms of its tidal Q parameter. Assuming that the heating can be radiated efficiently, the current luminosities are consistent with Q {sub 1} {approx} 7 x 10{sup 10} and Q {sub 2} {approx} 2 x 10{sup 7}, for the He and C/O WDs, respectively. Conversely, if the observed luminosities are merely from the cooling of the WDs, these estimated values of Q represent the upper limits. A large Q {sub 1} for the He WD means its spin velocity will be slower than that expected if it was tidally locked, which, since the binary is eclipsing, may be measurable via the Rossiter-McLaughlin effect. After one year, gravitational wave emission shifts the time of eclipses by 5.5 s, but tidal interactions cause the orbit to shrink more rapidly, changing the time by up to an additional 0.3 s after a year. Future eclipse timing measurements may therefore infer the degree of tidal locking.

Piro, Anthony L., E-mail: piro@caltech.edu [Theoretical Astrophysics, California Institute of Technology, 1200 East California Boulevard, M/C 350-17, Pasadena, CA 91125 (United States)

2011-10-20T23:59:59.000Z

311

Monitoring the chemistry and materials of the Magma binary-cycle generating plant  

DOE Green Energy (OSTI)

This monitoring program includes studies of the following areas: chemistry of the geothermal brine, chemistry of the cooling water, corrosion of materials in both water systems, scale formation, suspended solids in th brine, and methods and instruments to monitor corrosion and chemistry. (MHR)

Shannon, D.W.; Elmore, R.P.; Pierce, D.D.

1981-10-01T23:59:59.000Z

312

Solid oxide fuel cell combined cycles  

DOE Green Energy (OSTI)

The integration of the solid oxide fuel cell and combustion turbine technologies can result in combined-cycle power plants, fueled with natural gas, that have high efficiencies and clean gaseous emissions. Results of a study are presented in which conceptual designs were developed for 3 power plants based upon such an integration, and ranging in rating from 3 to 10 MW net ac. The plant cycles are described and characteristics of key components summarized. Also, plant design-point efficiency estimates are presented as well as values of other plant performance parameters.

Bevc, F.P. [Westinghouse Electric Corp., Orlando, FL (United States). Power Generation Business Unit; Lundberg, W.L.; Bachovchin, D.M. [Westinghouse Electric Corp., Pittsburgh, PA (United States). Science and Technology Center

1996-12-31T23:59:59.000Z

313

Life-Cycle Cost Analysis Highlights Hydrogen's Potential for Electrical Energy Storage (Fact Sheet)  

DOE Green Energy (OSTI)

This fact sheet describes NREL's accomplishments in analyzing life-cycle costs for hydrogen storage in comparison with other energy storage technologies. Work was performed by the Hydrogen Technologies and Systems Center.

Not Available

2010-11-01T23:59:59.000Z

314

Development of a low-cost, rapid-cycle hot embossing system for microscale parts  

E-Print Network (OSTI)

Hot embossing is an effective technology for reproducing micro-scale features in polymeric materials, but large-scale adoption of this method is hindered by high capital costs and low cycle times relative to other technologies, ...

Hale, Melinda (Melinda Rae)

2009-01-01T23:59:59.000Z

315

NETL: Combustion Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Nebraska Public Power District's Sheldon Station with APFBC Technology Nebraska Public Power District's Sheldon Station with APFBC Technology FBC Repower APFBC AES Greenidge APFBC Dan River FBC, APFBC Four Corners CHIPPS H.F. Lee Products Summary Sheldon Summary APFBC Sheldon GFBCC Sheldon APFBC L.V. Sutton Contents: APFBC Repowering Project Summary Key Features Site Layout Performance Environmental Characteristics Cost Other Combustion Systems Repowering Study Links: A related study is underway that would repower Sheldon Unit 1 and Unit 2 with gasification fluidized-bed combined cycle technology (GFBCC). CLICK HERE to find out more about repowering the Sheldon station with GFBCC instead. APFBC Repowering Project Summary Click on picture to enlarge Advanced circulating pressurized fluidized-bed combustion combined cycle systems (APFBC) are systems with jetting-bed pressurized fluidized-bed (PFB) carbonizer/gasifier and circulating PFBC combustor. The PFB carbonizer and PFBC both operate at elevated pressures (10 to 30 times atmospheric pressure) to provide syngas for operating a gas turbine topping combustor giving high cycle energy efficiency. The remaining char from the PFB carbonizer is burned in the pressurized PFBC. The combustion gas from the PFB also feeds thermal energy to the gas turbine topping combustor. This provides combined cycle plant efficiency on coal by providing the opportunity to generate electricity using both high efficiency gas turbines and steam.

316

The Anderson Quin Cycle  

SciTech Connect

The objective of this study was to make a more refined evaluation of the Anderson Quin Cycle based on most recent information on the performance of various elements that will be used in the Anderson Quin Cycle. My original estimate of the work plan for evaluating and optimizing the Anderson Quin Cycle called for 7000 man hours of work. Since this grant was limited to 2150 man hours, we could not expect to achieve all the objectives within the allotted period of work. However, the most relevant program objectives have been completed as reported here. The analysis generally confirms the results originally estimated in my paper on the subject. (Ref. 2) Further optimizations should show even higher efficiencies. The Anderson Quin Cycle (US Patent applied for) basically consists of 5 elements in the power cycle: A refrigeration system to cool and clean the inlet air before it enters the compressor that supplies air for the gas turbine; a gas turbine consisting of a compressor, combustor, and turbine; a steam boiler and steam turbine system using the heat from the exhaust gas out of the gas turbine; a vapor turbine cycle, which utilizes the condensed heat from the exhaust of the steam turbine and the exhaust gas heat leaving the steam boiler to operate a vapor turbine cycle which utilizes another fluid than water, in this case isobutane; and the fifth element consists of a gas cooler and heat pump system, which removes the heat from the exhaust gas to lower its temperature essentially to atmospheric temperature, and at the same time permits treatment of the exhaust gas to remove acid components such as sulfur dioxide and nitrogen oxides. Current industry accepted component characteristics were incorporated in the performance analysis of the overall cycle, ensuring accurate and meaningful operating predictions. The characteristics and performance of each of the elements are described. The thermal efficiency of the optimized calculated Anderson Quin Cycle is 62 percent.

Anderson, J.H.; Bilbow, W.M.

1993-03-18T23:59:59.000Z

317

Answering Key Fuel Cycle Questions  

Science Conference Proceedings (OSTI)

The Advanced Fuel Cycle Initiative (AFCI) program has both outcome and process goals because it must address both waste already accumulating as well as completing the fuel cycle in connection with advanced nuclear power plant concepts. The outcome objectives are waste geological repository capacity and cost, energy security and sustainability, proliferation resistance, fuel cycle economics, and safety. The process objectives are readiness to proceed and adaptability and robustness in the face of uncertainties. A classic decision-making approach to such a multi-attribute problem would be to weight individual quantified criteria and calculate an overall figure of merit. This is inappropriate for several reasons. First, the goals are not independent. Second, the importance of different goals varies among stakeholders. Third, the importance of different goals is likely to vary with time, especially the energy future. Fourth, some key considerations are not easily or meaningfully quantifiable at present. Instead, at this point, we have developed 16 questions the AFCI program should answer and suggest an approach of determining for each whether relevant options improve meeting each of the program goals. We find that it is not always clear which option is best for a specific question and specific goal; this helps identify key issues for future work. In general, we suggest attempting to create as many win-win decisions (options that are attractive or neutral to most goals) as possible. Thus, to help clarify why the program is exploring the options it is, and to set the stage for future narrowing of options, we have developed 16 questions, as follows: What are the AFCI program goals? Which potential waste disposition approaches do we plan for? What are the major separations, transmutation, and fuel options? How do we address proliferation resistance? Which potential energy futures do we plan for? What potential external triggers do we plan for? Should we separate uranium? If we separate uranium, should we recycle it, store it or dispose of it? Is it practical to plan to fabricate and handle hot fuel? Which transuranic elements (TRU) should be separated and transmuted? Of those TRU separated, which should be transmuted together? Should we separate and/or transmute Cs and Sr isotopes that dominate near-term repository heating? Should we separate and/or transmute very long-lived Tc and I isotopes? Which separation technology? What mix of transmutation technologies? What fuel technology best supports the above decisions?

Steven J. Piet; Brent W. Dixon; J. Stephen Herring; David E. Shropshire; Mary Lou Dunzik-Gougar

2003-10-01T23:59:59.000Z

318

Comparing the Costs of Intermittent and Dispatchable Electricity Generating Technologies  

E-Print Network (OSTI)

Economic evaluations of alternative electric generating technologies typically rely on comparisons between their expected life-cycle production costs per unit of electricity supplied. The standard life-cycle cost metric ...

Joskow, Paul L.

319

The Technology Imperative and The Future of R&D Policy  

Science Conference Proceedings (OSTI)

... over technology life cycle Page 44. Sooner or later, we sit down to a banquet of consequences Robert Louis Stevenson

2012-10-10T23:59:59.000Z

320

Binary self-dual codes with automorphisms of order 23  

Science Conference Proceedings (OSTI)

The only example of a binary doubly-even self-dual [120,60,20] code was found in 2005 by Gaborit etal. (IEEE Trans Inform theory 51, 402---407 2005). In this work we present 25 new binary doubly-even self-dual [120,60,20] ... Keywords: 94B05, Algorithms, Automorphisms, Self-dual codes

Radinka Yorgova; Alfred Wassermann

2008-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "binary cycle technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Identification of Wiener systems with binary-valued output observations  

Science Conference Proceedings (OSTI)

This work is concerned with identification of Wiener systems whose outputs are measured by binary-valued sensors. The system consists of a linear FIR (finite impulse response) subsystem of known order, followed by a nonlinear function with a known parametrization ... Keywords: Binary-valued observations, Identification, Joint identifiability, Parameter estimation, Periodic inputs, Sensor thresholds, Wiener systems

Yanlong Zhao; Le Yi Wang; G. George Yin; Ji-Feng Zhang

2007-10-01T23:59:59.000Z

322

Modelling light curves of binary systems: accounting for extended winds  

E-Print Network (OSTI)

We suggest a simple synthesis model of an eclipsing binary system which includes one component with strong stellar wind. Numerical simulations show that the shape of the light curve (and in particularly the widths of the minima) strongly depends on wind parameters. Wind effects are crucial in modelling light curves of binaries including e.g., WR stars.

Antokhina, E A; Cherepashchuk, A M

2013-01-01T23:59:59.000Z

323

Information---Theoretic Multiclass Classification Based on Binary Classifiers  

Science Conference Proceedings (OSTI)

In this paper, we consider the multiclass classification problem based on sets of independent binary classifiers. Each binary classifier represents the output of a quantized projection of training data onto a randomly generated orthonormal basis vector ... Keywords: Classification, Coding matrix design, Complexity, Maximum number of classes, Reliability

Sviatoslav Voloshynovskiy; Oleksiy Koval; Fokko Beekhof; Taras Holotyak

2011-12-01T23:59:59.000Z

324

Layered Binary-Dielectrics for Energy Applications: Limitations and Potentials  

Science Conference Proceedings (OSTI)

In this Letter, an attempt is made to illustrate how performance of an electrically insulating material, a dielectric, can be improved by constructing a layered binary-dielectric structure that employs a weak insulator with high dielectric permittivity. It is shown that layered binary-dielectrics could have a signicant impact on energy storage and electrical insulation.

Tuncer, Enis [ORNL

2012-01-01T23:59:59.000Z

325

Technology Search Results | Brookhaven Technology ...  

There are no technology records available that match the search query. Find a Technology. Search our technologies by categories or by keywords.

326

Technology Transfer: Available Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

test test Please refer to the list of technologies below for licensing and research collaboration availability. If you can't find the technology you're interested in, please contact us at TTD@lbl.gov. Energy ENERGY EFFICIENT TECHNOLOGIES Aerosol Sealing Aerosol Remote Sealing System Clog-free Atomizing and Spray Drying Nozzle Air-stable Nanomaterials for Efficient OLEDs Solvent Processed Nanotube Composites OLEDS with Air-stable Structured Electrodes APIs for Online Energy Saving Tools: Home Energy Saver and EnergyIQ Carbon Dioxide Capture at a Reduced Cost Dynamic Solar Glare Blocking System Electrochromic Device Controlled by Sunlight Electrochromic Windows with Multiple-Cavity Optical Bandpass Filter Electrochromic Window Technology Portfolio Universal Electrochromic Smart Window Coating

327

Binary electrokinetic separation of target DNA from background DNA primers.  

Science Conference Proceedings (OSTI)

This report contains the summary of LDRD project 91312, titled ''Binary Electrokinetic Separation of Target DNA from Background DNA Primers''. This work is the first product of a collaboration with Columbia University and the Northeast BioDefense Center of Excellence. In conjunction with Ian Lipkin's lab, we are developing a technique to reduce false positive events, due to the detection of unhybridized reporter molecules, in a sensitive and multiplexed detection scheme for nucleic acids developed by the Lipkin lab. This is the most significant problem in the operation of their capability. As they are developing the tools for rapidly detecting the entire panel of hemorrhagic fevers this technology will immediately serve an important national need. The goal of this work was to attempt to separate nucleic acid from a preprocessed sample. We demonstrated the preconcentration of kilobase-pair length double-stranded DNA targets, and observed little preconcentration of 60 base-pair length single-stranded DNA probes. These objectives were accomplished in microdevice formats that are compatible with larger detection systems for sample pre-processing. Combined with Columbia's expertise, this technology would enable a unique, fast, and potentially compact method for detecting/identifying genetically-modified organisms and multiplexed rapid nucleic acid identification. Another competing approach is the DARPA funded IRIS Pharmaceutical TIGER platform which requires many hours for operation, and an 800k$ piece of equipment that fills a room. The Columbia/SNL system could provide a result in 30 minutes, at the cost of a few thousand dollars for the platform, and would be the size of a shoebox or smaller.

James, Conrad D.; Derzon, Mark Steven

2005-10-01T23:59:59.000Z

328

Crosscutting Technology Development | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Crosscutting Crosscutting Technology Development Crosscutting Technology Development The NEET Crosscutting Technology Development (CTD) activity provides R&D support to various reactor and fuel cycle technologies, both existing and under development. These include several areas that crosscut multiple nuclear technologies CTD aims to: Work with other NE R&D programs to identify critical capabilities and common technology needs. Encourage and lead coordinated research and development activities to deliver capabilities and technologies when needed to ensure NE R&D program success. Ensure scalability and compatibility of results across NE R&D programs. Reduce costs of resulting technologies and capabilities. Leverage programmatic investments to maximize benefits across the

329

Nuclear Energy Enabling Technologies | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Enabling Technologies Enabling Technologies Nuclear Energy Enabling Technologies Nuclear Energy Enabling Technologies The Nuclear Energy Enabling Technologies (NEET) Program will develop crosscutting technologies that directly support and complement the Department of Energy, Office of Nuclear Energy's (DOE-NE) advanced reactor and fuel cycle concepts, focusing on innovative research that offers the promise of dramatically improved performance. NEET will coordinate research efforts on common issues and challenges that confront the DOE-NE R&D programs (Light Water Reactor Sustainability [LWRS], Next Generation Nuclear Plant [NGNP], Advanced Reactor Technologies [ART], and Small Modular Reactors [SMR]) to advance technology development and deployment. The activities undertaken in the NEET program will

330

DOE Hydrogen Analysis Repository: Life Cycle Assessment of Hydrogen Fuel  

NLE Websites -- All DOE Office Websites (Extended Search)

Life Cycle Assessment of Hydrogen Fuel Cell and Gasoline Vehicles Life Cycle Assessment of Hydrogen Fuel Cell and Gasoline Vehicles Project Summary Full Title: Life Cycle Assessment of Hydrogen Fuel Cell and Gasoline Vehicles Project ID: 143 Principal Investigator: Ibrahim Dincer Brief Description: Examines the social, environmental and economic impacts of hydrogen fuel cell and gasoline vehicles. Purpose This project aims to investigate fuel cell vehicles through environmental impact, life cycle assessment, sustainability, and thermodynamic analyses. The project will assist in the development of highly qualified personnel in such areas as system analysis, modeling, methodology development, and applications. Performer Principal Investigator: Ibrahim Dincer Organization: University of Ontario Institute of Technology

331

title Life Cycle Assessment of Electric Power Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Life Cycle Assessment of Electric Power Systems Life Cycle Assessment of Electric Power Systems journal Annual Review of Environment and Resources volume year month abstract p The application of life cycle assessment LCA to electric power EP technologies is a vibrant research pursuit that is likely to continue as the world seeks ways to meet growing electricity demand with reduced environmental and human health impacts While LCA is an evolving methodology with a number of barriers and challenges to its effective use LCA studies to date have clearly improved our understanding of the life cycle energy GHG emissions air pollutant emissions and water use implications of EP technologies With continued progress LCA offers promise for assessing and comparing EP technologies in an analytically thorough and environmentally holistic manner for more robust deployment

332

Cycle isolation monitoring  

SciTech Connect

There are many factors to monitor in power plants, but one that is frequently overlooked is cycle isolation. Often this is an area where plant personnel can find 'low hanging fruit' with great return on investment, especially high energy valve leakage. This type of leakage leads to increased heat rate, potential valve damage and lost generation. The fundamental question to ask is 'What is 100 Btu/kW-hr of heat rate worth to your plant? On a 600 MW coal-fired power plant, a 1% leakage can lead to an 81 Btu/kW-hr impact on the main steam cycle and a 64 Btu/kW-hr impact on the hot reheat cycle. The article gives advice on methods to assist in detecting leaking valves and to monitor cycle isolation. A software product, TP. Plus-CIM was designed to estimate flow rates of potentially leaking valves.

Svensen, L.M. III; Zeigler, J.R.; Todd, F.D.; Alder, G.C. [Santee Copper, Moncks Corner, SC (United States)

2009-07-15T23:59:59.000Z

333

The Carbon Cycle  

NLE Websites -- All DOE Office Websites (Extended Search)

The Carbon Cycle The Carbon Cycle The global carbon cycle involves the carbon in and exchanging between the earth's atmosphere, fossil fuels, the oceans, and the vegetation and soils of the earth's terrestrial ecosystems. image Each year, the world's terrestrial ecosystems withdraw carbon from the atmosphere through photosynthesis and add it again through respiration and decay. A more detailed look at the global carbon cycle for the 1990s is shown below. The main annual fluxes in GtC yr-1 are: pre-industrial "natural" fluxes in black and "anthropogenic" fluxes in red (modified from Sarmiento and Gruber, 2006, with changes in pool sizes from Sabine et al., 2004a). The net terrestrial loss of -39 GtC is inferred from cumulative fossil fuel emissions minus atmospheric increase minus ocean storage. The loss of

334

Cycle Chemistry Improvement Program  

Science Conference Proceedings (OSTI)

The purity of water and steam is central to ensuring fossil plant component availability and reliability. This report, which describes formal cycle chemistry improvement programs at nine utilities, will assist utilities in achieving significant operation and maintenance cost reductions.

1997-04-21T23:59:59.000Z

335

Crude Oil Price Cycles  

Gasoline and Diesel Fuel Update (EIA)

The heating oil and diesel fuel price runups in late January were made even more problematic by coming on top of the high side of the latest crude market cycle. Over the past 10...

336

Crude Oil Price Cycles  

U.S. Energy Information Administration (EIA)

The heating oil and diesel price runups in late January were made even more problematic by coming on top of the high side of the latest crude market cycle.

337

The Annual Agricultural Cycle  

E-Print Network (OSTI)

. Sman shad agriculture 1.WAV Length of track 00:44:03 Related tracks (include description/relationship if appropriate) Title of track The Annual Agricultural Cycle Translation of title Description (to be used in archive entry...

Zla ba sgrol ma

2009-11-16T23:59:59.000Z

338

Advanced Nuclear Fuel Cycles -- Main Challenges and Strategic Choices  

Science Conference Proceedings (OSTI)

This report presents the results of a critical review of the technological challenges to the growth of nuclear energy, emerging advanced technologies that would have to be deployed, and fuel cycle strategies that could conceivably involve interim storage, plutonium recycling in thermal and fast reactors, reprocessed uranium recycling, and transmutation of minor actinide elements and fission products before eventual disposal of residual wastes.

2010-09-02T23:59:59.000Z

339

Secular Cycles and Millennial Trends  

E-Print Network (OSTI)

both secular cycles and millennial up- ward trend dynamics.Cycles and Millennial Trends by Andrey Korotayev, ArtemySecular Cycles and Millennial Trends 1 Initially, we want to

Korotayev, Andrey V; Malkov, Artemy S; Khaltourina, Daria A

2006-01-01T23:59:59.000Z

340

MHD Integrated Topping Cycle Project  

DOE Green Energy (OSTI)

The Magnetohydrodynamics (MHD) Integrated Topping Cycle (ITC) Project represents the culmination of the proof-of-concept (POC) development stage in the US Department of Energy (DOE) program to advance MHD technology to early commercial development stage utility power applications. The project is a joint effort, combining the skills of three topping cycle component developers: TRW, Avco/TDS, and Westinghouse. TRW, the prime contractor and system integrator, is responsible for the 50 thermal megawatt (50 MW{sub t}) slagging coal combustion subsystem. Avco/TDS is responsible for the MHD channel subsystem (nozzle, channel, diffuser, and power conditioning circuits), and Westinghouse is responsible for the current consolidation subsystem. The ITC Project will advance the state-of-the-art in MHD power systems with the design, construction, and integrated testing of 50 MW{sub t} power train components which are prototypical of the equipment that will be used in an early commercial scale MHD utility retrofit. Long duration testing of the integrated power train at the Component Development and Integration Facility (CDIF) in Butte, Montana will be performed, so that by the early 1990's, an engineering data base on the reliability, availability, maintainability and performance of the system will be available to allow scaleup of the prototypical designs to the next development level. This Sixteenth Quarterly Technical Progress Report covers the period May 1, 1991 to July 31, 1991.

Not Available

1992-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "binary cycle technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Estimation of binary Markov random fields  

E-Print Network (OSTI)

The theoryand practiceof estimationof binary Markov random fields on lattices is reviewedand advanced. The natural objects of inference are the local conditionaldistributions, which define an exponential family owing to the equivalence between Markov and Gibbs random fields. Maximumlikelihoodestimation generally is impracticable. Methods of asymptotic, or otherwise approximate, maximum likelihood estimation do not easily apply in all cases likely to be of practical interest. The only generallypracticableprocedures available thus far are the Coding Method and MaximumPseudo-Likelihood. A new estimation procedure is suggestedthat is strongly consistentfor processesdefined by translation-invariant families of local conditionaldistributions. The procedure is analogous to minimum logit chi-squareestimation in logistic regression, does not involve non-linearoptimization, and decisively beats Maximum Pseudo-Likelihood in mean squarederror. Subsarnpling techniques can be employed to assess precision,and to increase efficiency, in estimation.

Antonio Possolo; Anond Possolo

1986-01-01T23:59:59.000Z

342

High-energy emission from pulsar binaries  

E-Print Network (OSTI)

Unpulsed, high-energy emission from pulsar binaries can be attributed to the interaction of a pulsar wind with that of a companion star. At the shock between the outflows, particles carried away from the pulsar magnetosphere are accelerated and radiate both in synchrotron and inverse Compton processes. This emission constitutes a significant fraction of the pulsar spin-down luminosity. It is not clear however, how the highly magnetized pulsar wind could convert its mainly electromagnetic energy into the particles with such high efficiency. Here we investigate a scenario in which a pulsar striped wind converts into a strong electromagnetic wave before reaching the shock. This mode can be thought of as a shock precursor that is able to accelerate particles to ultrarelativistic energies at the expense of the electromagnetic energy it carries. Radiation of the particles leads to damping of the wave. The efficiency of this process depends on the physical conditions imposed by the external medium. Two regimes can b...

Mochol, Iwona

2013-01-01T23:59:59.000Z

343

Binary hyper-redundant robotic manipulator concept  

E-Print Network (OSTI)

Continuously actuated robotic manipulators are the most common type of manipulators even though they require sophisticated and expensive control and sensor systems to function with high accuracy and repeatability. Binary hyper-redundant (Bi-HR) robotic manipulators are potential candidates to be used in applications where high repeatability and reasonable accuracy are required. Such applications include pick-and-place, spot welding and assistants to people with disabilities. Generally, the Bi-HR manipulator is relatively inexpensive, lightweight, and has a high payload to arm weight ratio. This paper discusses a concept of Bi-HR manipulator, influencing concepts to the Bi-HR, examples of applications, and its advantages and disadvantages. 1.

Jackrit Suthakorn

2004-01-01T23:59:59.000Z

344

Technology Search Results | Brookhaven Technology ...  

Staff Directory; BNL People Technology Commercialization & Partnerships. Home; For BNL Inventors; ... a nonprofit applied science and technology organization. ...

345

Technology Search Results | Brookhaven Technology ...  

Non-Noble Metal Water Electrolysis Catalysts; Find a Technology. Search our technologies by categories or by keywords. Search ...

346

Technology Search Results | Brookhaven Technology ...  

BSA 08-04: High Temperature Interfacial Superconductivity; Find a Technology. Search our technologies by categories or by keywords. Search ...

347

Technology Search Results | Brookhaven Technology ...  

Receive Technology Updates. Get email notifications about new or improved technologies in your area of interest. Subscribe

348

Extracting the three- and four-graviton vertices from binary pulsars and coalescing binaries  

E-Print Network (OSTI)

Using a formulation of the post-Newtonian expansion in terms of Feynman graphs, we discuss how various tests of General Relativity (GR) can be translated into measurement of the three- and four-graviton vertices. In problems involving only the conservative dynamics of a system, a deviation of the three-graviton vertex from the GR prediction is equivalent, to lowest order, to the introduction of the parameter beta_{PPN} in the parametrized post-Newtonian formalism, and its strongest bound comes from lunar laser ranging, which measures it at the 0.02% level. Deviation of the three-graviton vertex from the GR prediction, however, also affects the radiative sector of the theory. We show that the timing of the Hulse-Taylor binary pulsar provides a bound on the deviation of the three-graviton vertex from the GR prediction at the 0.1% level. For coalescing binaries at interferometers we find that, because of degeneracies with other parameters in the template such as mass and spin, the effects of modified three- and four-graviton vertices is just to induce an error in the determination of these parameters and, at least in the restricted PN approximation, it is not possible to use coalescing binaries for constraining deviations of the vertices from the GR prediction.

Umberto Cannella; Stefano Foffa; Michele Maggiore; Hillary Sanctuary; Riccardo Sturani

2009-07-13T23:59:59.000Z

349

Fuel Cycle and Isotopes Division  

NLE Websites -- All DOE Office Websites (Extended Search)

Divisions Fuel Cycle and Isotopes Division Jeffrey Binder, Division Director Jeffrey Binder, Division Director The Fuel Cycle and Isotopes Division (FCID) of the Nuclear Science...

350

Technology Transfer: Available Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Please refer to the list of technologies below for licensing and research Please refer to the list of technologies below for licensing and research collaboration availability. If you can't find the technology you're interested in, please contact us at TTD@lbl.gov. Biotechnology and Medicine DIAGNOSTICS AND THERAPEUTICS CANCER CANCER PROGNOSTICS 14-3-3 Sigma as a Biomarker of Basal Breast Cancer ANXA9: A Therapeutic Target and Predictive Marker for Early Detection of Aggressive Breast Cancer Biomarkers for Predicting Breast Cancer Patient Response to PARP Inhibitors Breast Cancer Recurrence Risk Analysis Using Selected Gene Expression Comprehensive Prognostic Markers and Therapeutic Targets for Drug-Resistant Breast Cancers Diagnostic Test to Personalize Therapy Using Platinum-based Anticancer Drugs Early Detection of Metastatic Cancer Progenitor Cells

351

Environmental Energy Technologies Division News  

NLE Websites -- All DOE Office Websites (Extended Search)

1: 1: Vol. 10, No. 2 Carbon Cycle 2.0 Analysis Team Carbon Sequestration Study Materials Genome Project Increased Building Ventilation VOC Cleaning Technology Fort Irwin Lighting Testbed Tracking the Sun IV Cool Coatings for Cars Research Highlights Sources and Credits PDF of EETD News Carbon Cycle 2.0 Energy and Environmental Analysis Team Evaluates Impacts of Technology R&D It's a grand challenge: develop clean, sustainable technologies that deliver a low-carbon energy future, and through innovation create jobs, new markets, and exports while increasing America's energy security. Researchers at Lawrence Berkeley National Laboratory (Berkeley Lab) have made it their mission to develop low-carbon and energy-efficient technologies such as advanced materials and information technology for

352

Technology Transfer: Available Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Software and Information Technologies Software and Information Technologies Algorithm for Correcting Detector Nonlinearites Chatelet: More Accurate Modeling for Oil, Gas or Geothermal Well Production Collective Memory Transfers for Multi-Core Processors Energy Efficiency Software EnergyPlus:Energy Simulation Software for Buildings Tools, Guides and Software to Support the Design and Operation of Energy Efficient Buildings Flexible Bandwidth Reservations for Data Transfer Genomic and Proteomic Software LABELIT - Software for Macromolecular Diffraction Data Processing PHENIX - Software for Computational Crystallography Vista/AVID: Visualization and Allignment Software for Comparative Genomics Geophysical Software Accurate Identification, Imaging, and Monitoring of Fluid Saturated Underground Reservoirs

353

Physics of fusion-fuel cycles  

SciTech Connect

The evaluation of nuclear fusion fuels for a magnetic fusion economy must take into account the various technological impacts of the various fusion fuel cycles as well as the relative reactivity and the required ..beta..'s and temperatures necessary for economic steady-state burns. This paper will review some of the physics of the various fusion fuel cycles (D-T, catalyzed D-D, D-/sup 3/He, D-/sup 6/Li, and the exotic fuels: /sup 3/He/sup 3/He and the proton-based fuels such as P-/sup 6/Li, P-/sup 9/Be, and P-/sup 11/B) including such items as: (1) tritium inventory, burnup, and recycle, (2) neutrons, (3) condensable fuels and ashes, (4) direct electrical recovery prospects, (5) fissile breeding, etc. The advantages as well as the disadvantages of the different fusion fuel cycles will be discussed. The optimum fuel cycle from an overall standpoint of viability and potential technological considerations appears to be catalyzed D-D, which could also support smaller relatively clean, lean-D, rich-/sup 3/He satellite reactors as well as fission reactors.

McNally, J.R. Jr.

1981-01-01T23:59:59.000Z

354

They`re he-e-re (almost): The 60% efficient combined cycle  

SciTech Connect

This article examines the technology that promises 60% efficiency from combined-cycle power plants. The topics of the article include advancing design, off-peak thermal energy storage, improving heat recovery steam generator performance, Kalina thermal cycle, performance of Kalina combined-cycle plants, and heat recovery in vapor generators.

DeMoss, T.B.

1996-07-01T23:59:59.000Z

355

Equilibrium, Stability and Orbital Evolution of Close Binary Systems  

E-Print Network (OSTI)

We present a new analytic study of the equilibrium and stability properties of close binary systems containing polytropic components. Our method is based on the use of ellipsoidal trial functions in an energy variational principle. We consider both synchronized and nonsynchronized systems, constructing the compressible generalizations of the classical Darwin and Darwin-Riemann configurations. Our method can be applied to a wide variety of binary models where the stellar masses, radii, spins, entropies, and polytropic indices are all allowed to vary over wide ranges and independently for each component. We find that both secular and dynamical instabilities can develop before a Roche limit or contact is reached along a sequence of models with decreasing binary separation. High incompressibility always makes a given binary system more susceptible to these instabilities, but the dependence on the mass ratio is more complicated. As simple applications, we construct models of double degenerate systems and of low-mass main-sequence-star binaries. We also discuss the orbital evolution of close binary systems under the combined influence of fluid viscosity and secular angular momentum losses from processes like gravitational radiation. We show that the existence of global fluid instabilities can have a profound effect on the terminal evolution of coalescing binaries. The validity of our analytic solutions is examined by means of detailed comparisons with the results of recent numerical fluid calculations in three dimensions.

D. Lai; F. A. Rasio; S. L. Shapiro

1993-07-22T23:59:59.000Z

356

Integrated gasification combined-cycle research development and demonstration activities  

Science Conference Proceedings (OSTI)

The United States Department of Energy (DOE) has selected six integrated gasification combined-cycle (IGCC) advanced power systems for demonstration in the Clean Coal Technology (CCT) Program. DOE`s Office of Fossil Energy, Morgantown Energy Technology Center, is managing a research development and demonstration (RD&D) program that supports the CCT program, and addresses long-term improvements in support of IGCC technology. This overview briefly describes the CCT projects and the supporting RD&D activities.

Ness, H.M.; Reuther, R.B.

1995-12-01T23:59:59.000Z

357

Technology Commercialization and Partnerships | BSA 12-01 ...  

We have an emerging technology with a nanostructure of amorphous hierarchical porous GeOx that has a very stable capacity for several hundreds of cycles. Have Questions?

358

Technology qualification for IGCC power plant with CO2 Capture.  

E-Print Network (OSTI)

?? Summary:This thesis presents the technology qualification plan for the integrated gasification combined cycle power plant (IGCC) with carbon dioxide capture based on DNV recommendations. (more)

Baig, Yasir

2011-01-01T23:59:59.000Z

359

Not-In-Kind Technologies for Residential and Commercial Unitary  

E-Print Network (OSTI)

. . . . . . . . . . . . . . . . . . . . . . 88 FUEL CELL POWERED RANKINE CYCLE 26. Fuel Cell Technologies (Lloyd 1999) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 Table 27. Calculated and Observed Efficiencies for Fuel Cell Powered Heat Pumps

Oak Ridge National Laboratory

360

NREL: Energy Analysis - Nuclear Power Results - Life Cycle Assessment  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Power Results - Life Cycle Assessment Harmonization Nuclear Power Results - Life Cycle Assessment Harmonization Over the last 30 years, analysts have conducted life cycle assessments on the environmental impacts associated with a variety of nuclear power technologies and systems. These life cycle assessments have had wide-ranging results. To better understand greenhouse gas (GHG) emissions from nuclear power systems, NREL completed a comprehensive review and analysis of life cycle assessments focused on light water reactors (LWRs)-including both boiling water reactors (BWRs) and pressurized water reactors (PWRs)-published between 1980 and 2010. NREL developed and applied a systematic approach to review life cycle assessment literature, identify primary sources of variability and, where possible, reduce variability in GHG emissions

Note: This page contains sample records for the topic "binary cycle technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Solar-thermal technology  

DOE Green Energy (OSTI)

Solar-thermal technology converts sunlight into thermal energy. It stands alongside other solar technologies including solar-electric and photovoltaic technologies, both of which convert sunlight into electricity. Photovoltaic technology converts by direct conversion, and solar-electric converts by using sunlight`s thermal energy in thermodynamic power cycles. The numerous up-and-running solar energy systems prove solar-thermal technology works. But when is it cost-effective, and how can HVAC engineers and facility owners quickly identify cost-effective applications? This article addresses these questions by guiding the reader through the basics of solar-thermal technology. The first section provides an overview of today`s technology including discussions of collectors and typical systems. The next section presents an easy method for identifying potentially cost-effective applications. This section also identifies sources for obtaining more information on the technology--collector ratings and performance, solar manufacturers, and solar design and analysis tools. The article discusses only those collectors and systems that are most often used. Many others are on the market--the article does not, by omission, mean to infer that one is better than the other.

Bennett, C. [Sandia National Labs., Albuquerque, NM (United States)

1995-09-01T23:59:59.000Z

362

Helium process cycle  

DOE Patents (OSTI)

A unique process cycle and apparatus design separates the consumer (cryogenic) load return flow from most of the recycle return flow of a refrigerator and/or liquefier process cycle. The refrigerator and/or liquefier process recycle return flow is recompressed by a multi-stage compressor set and the consumer load return flow is recompressed by an independent consumer load compressor set that maintains a desirable constant suction pressure using a consumer load bypass control valve and the consumer load return pressure control valve that controls the consumer load compressor's suction pressure. The discharge pressure of this consumer load compressor is thereby allowed to float at the intermediate pressure in between the first and second stage recycle compressor sets. Utilizing the unique gas management valve regulation, the unique process cycle and apparatus design in which the consumer load return flow is separate from the recycle return flow, the pressure ratios of each recycle compressor stage and all main pressures associated with the recycle return flow are allowed to vary naturally, thus providing a naturally regulated and balanced floating pressure process cycle that maintains optimal efficiency at design and off-design process cycle capacity and conditions automatically.

Ganni, Venkatarao (Yorktown, VA)

2007-10-09T23:59:59.000Z

363

Helium process cycle  

SciTech Connect

A unique process cycle and apparatus design separates the consumer (cryogenic) load return flow from most of the recycle return flow of a refrigerator and/or liquefier process cycle. The refrigerator and/or liquefier process recycle return flow is recompressed by a multi-stage compressor set and the consumer load return flow is recompressed by an independent consumer load compressor set that maintains a desirable constant suction pressure using a consumer load bypass control valve and the consumer load return pressure control valve that controls the consumer load compressor's suction pressure. The discharge pressure of this consumer load compressor is thereby allowed to float at the intermediate pressure in between the first and second stage recycle compressor sets. Utilizing the unique gas management valve regulation, the unique process cycle and apparatus design in which the consumer load return flow is separate from the recycle return flow, the pressure ratios of each recycle compressor stage and all main pressures associated with the recycle return flow are allowed to vary naturally, thus providing a naturally regulated and balanced floating pressure process cycle that maintains optimal efficiency at design and off-design process cycle capacity and conditions automatically.

Ganni, Venkatarao (Yorktown, VA)

2007-10-09T23:59:59.000Z

364

Helium process cycle  

DOE Patents (OSTI)

A unique process cycle and apparatus design separates the consumer (cryogenic) load return flow from most of the recycle return flow of a refrigerator and/or liquefier process cycle. The refrigerator and/or liquefier process recycle return flow is recompressed by a multi-stage compressor set and the consumer load return flow is recompressed by an independent consumer load compressor set that maintains a desirable constant suction pressure using a consumer load bypass control valve and the consumer load return pressure control valve that controls the consumer load compressor's suction pressure. The discharge pressure of this consumer load compressor is thereby allowed to float at the intermediate pressure in between the first and second stage recycle compressor sets. Utilizing the unique gas management valve regulation, the unique process cycle and apparatus design in which the consumer load return flow is separate from the recycle return flow, the pressure ratios of each recycle compressor stage and all main pressures associated with the recycle return flow are allowed to vary naturally, thus providing a naturally regulated and balanced floating pressure process cycle that maintains optimal efficiency at design and off-design process cycle capacity and conditions automatically.

Ganni, Venkatarao (Yorktown, VA)

2008-08-12T23:59:59.000Z

365

World Conference on Photovoltaic Conversion, Hawaii, May 8-12, 2006 QUANTIFYING THE LIFE-CYCLE ENVIRONMENTAL PROFILE OF PHOTOVOLTAICS  

E-Print Network (OSTI)

-CYCLE ENVIRONMENTAL PROFILE OF PHOTOVOLTAICS AND COMPARISONS WITH OTHER ELECTRICITY-GENERATING TECHNOLOGIES V impacts than the nuclear fuel cycle. Although solar electric is peak power and nuclear is a base-load one

366

Energy Efficient Commercial Technologies  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commercial Technologies April 11th, 2012 Presented by: Warren Willits Energy Solutions Center (202) 824-7150 www.ESCenter.org Federal Utility Partnership Working Group Spring 2012 Jekyll Island, GA Todays Energy Efficient Technologies  Water Heating  Heating  Air Conditioning  Humidity Control  CHP / Cogeneration Atmospheric Direct Vent High Efficiency .7 EF Atmospheric water heaters now available 97 % efficient tank water heaters now available Traditional Tank Style Water Heating  Tankless Water Heaters  EF = .82 Standard Unit  EF = .97 Condensing  Solar Water Heaters  With H.E. gas back up systems Newer Water Heaters Water Heater Life Cycle Cost Life Cycle Costs Electric Tank Water Heater Gas Water Heater

367

Stirling Engine Cycle Efficiency.  

E-Print Network (OSTI)

??ABSTRACT This study strives to provide a clear explanation of the Stirling engine and its efficiency using new automation technology and the Lab View software. (more)

Naddaf, Nasrollah

2012-01-01T23:59:59.000Z

368

Light and Life: Exotic Photosynthesis in Binary Star Systems  

E-Print Network (OSTI)

The potential for hosting photosynthetic life on Earth-like planets within binary/multiple stellar systems was evaluated by modelling the levels of photosynthetically active radiation (PAR) such planets receive. Combinations of M and G stars in: (i) close-binary systems; (ii) wide-binary systems and (iii) three-star systems were investigated and a range of stable radiation environments found to be possible. These environmental conditions allow for the possibility of familiar, but also more exotic forms of photosynthetic life, such as infrared photosynthesisers and organisms specialised for specific spectral niches.

O'Malley-James, J T; Cockell, C S; Greaves, J S

2011-01-01T23:59:59.000Z

369

Gasification Technology Status -- December 2008  

Science Conference Proceedings (OSTI)

Over the past 5 years, several major power companies have been developing and conducting detailed design studies of commercial-sized coal-based integrated gasification combined-cycle (IGCC) and pulverized coal (PC) projects. Integrated gasification combined-cycle (IGCC) plants can meet very stringent emissions targets, including those for mercury and CO2. This report covers current IGCC designs being offered and reviews the commercial status of gasification technologies, potential improvements, and lesso...

2008-12-18T23:59:59.000Z

370

Reprocessing in breeder fuel cycles  

SciTech Connect

Over the past decade, the United States has developed plans and carried out programs directed toward the demonstration of breeder fuel reprocessing in connection with early breeder demonstration reactors. Although subject to continuing debate, progress continued on the construction of the Clinch River Breeder Reactor (CRBR) with startup anticipated near the end of this decade, while plans for the CRBR and its associated fuel cycle are still being firmed up, the basic R and D programs required to carry out the demonstrations have continued. Policies call for breeder recycle to begin in the early to mid-1990s. An important objective of the reprocessing program is to develop advanced technology for the recovery of fissile materials in systems that minimize environmental emissions and doses to plant workers, and that also provide effective fissile material safeguards. Major improvements include technology for remote operation and maintenance, low-flow ventilation systems coupled with more effective off-gas treatment, and advanced process monitoring for control and safeguards.

Burch, W.D.; Groenier, W.S.

1983-06-01T23:59:59.000Z

371

Power Plant Cycling Costs  

NLE Websites -- All DOE Office Websites (Extended Search)

Power Plant Cycling Costs Power Plant Cycling Costs April 2012 N. Kumar, P. Besuner, S. Lefton, D. Agan, and D. Hilleman Intertek APTECH Sunnyvale, California NREL Technical Monitor: Debra Lew Subcontract Report NREL/SR-5500-55433 July 2012 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 15013 Denver West Parkway Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 Power Plant Cycling Costs April 2012 N. Kumar, P. Besuner, S. Lefton, D. Agan, and D. Hilleman Intertek APTECH Sunnyvale, California NREL Technical Monitor: Debra Lew Prepared under Subcontract No. NFT-1-11325-01

372

Superfluid thermodynamic cycle refrigerator  

DOE Patents (OSTI)

This invention is comprised of a cryogenic refrigerator which cools a heat source by cyclically concentrating and diluting the amount of [sup 3]He in a single phase [sup 3]He/[sup 4]He solution. The [sup 3]He in superfluid [sup 4]He acts in a manner of an ideal gas in a vacuum. Thus, refrigeration is obtained using any conventional thermal cycle, but preferably a Stirling or Carnot cycle. A single phase solution of liquid [sup 3]He at an initial concentration in superfluid [sup 4]He is contained in a first variable volume connected to a second variable volume through a superleak device that enables free passage of [sup 4]He while restricting passage of [sup 3]He. The [sup 3]He is compressed (concentrated) and expanded (diluted) in a phased manner to carry out the selected thermal cycle to remove heat from the heat load for cooling below 1 K.

Swift, G.W.; Kotsubo, V.Y.

1991-04-02T23:59:59.000Z

373

Superfluid thermodynamic cycle refrigerator  

DOE Patents (OSTI)

A cryogenic refrigerator cools a heat source by cyclically concentrating and diluting the amount of [sup 3]He in a single phase [sup 3]He-[sup 4]He solution. The [sup 3]He in superfluid [sup 4]He acts in a manner of an ideal gas in a vacuum. Thus, refrigeration is obtained using any conventional thermal cycle, but preferably a Stirling or Carnot cycle. A single phase solution of liquid [sup 3]He at an initial concentration in superfluid [sup 4]He is contained in a first variable volume connected to a second variable volume through a superleak device that enables free passage of [sup 4]He while restricting passage of [sup 3]He. The [sup 3]He is compressed (concentrated) and expanded (diluted) in a phased manner to carry out the selected thermal cycle to remove heat from the heat load for cooling below 1 K. 12 figs.

Swift, G.W.; Kotsubo, V.Y.

1992-12-22T23:59:59.000Z

374

Superfluid thermodynamic cycle refrigerator  

DOE Patents (OSTI)

This invention is comprised of a cryogenic refrigerator which cools a heat source by cyclically concentrating and diluting the amount of {sup 3}He in a single phase {sup 3}He/{sup 4}He solution. The {sup 3}He in superfluid {sup 4}He acts in a manner of an ideal gas in a vacuum. Thus, refrigeration is obtained using any conventional thermal cycle, but preferably a Stirling or Carnot cycle. A single phase solution of liquid {sup 3}He at an initial concentration in superfluid {sup 4}He is contained in a first variable volume connected to a second variable volume through a superleak device that enables free passage of {sup 4}He while restricting passage of {sup 3}He. The {sup 3}He is compressed (concentrated) and expanded (diluted) in a phased manner to carry out the selected thermal cycle to remove heat from the heat load for cooling below 1 K.

Swift, G.W.; Kotsubo, V.Y.

1991-04-02T23:59:59.000Z

375

Superfluid thermodynamic cycle refrigerator  

DOE Patents (OSTI)

A cryogenic refrigerator cools a heat source by cyclically concentrating and diluting the amount of .sup.3 He in a single phase .sup.3 He-.sup.4 He solution. The .sup.3 He in superfluid .sup.4 He acts in a manner of an ideal gas in a vacuum. Thus, refrigeration is obtained using any conventional thermal cycle, but preferably a Stirling or Carnot cycle. A single phase solution of liquid .sup.3 He at an initial concentration in superfluid .sup.4 He is contained in a first variable volume connected to a second variable volume through a superleak device that enables free passage of .sup.4 He while restricting passage of .sup.3 He. The .sup.3 He is compressed (concentrated) and expanded (diluted) in a phased manner to carry out the selected thermal cycle to remove heat from the heat load for cooling below 1 K.

Swift, Gregory W. (Santa Fe, NM); Kotsubo, Vincent Y. (La Canada, CA)

1992-01-01T23:59:59.000Z

376

DOE Seeks to Invest up to $15 Million in Funding for Nuclear Fuel Cycle  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Seeks to Invest up to $15 Million in Funding for Nuclear Fuel Seeks to Invest up to $15 Million in Funding for Nuclear Fuel Cycle Technology Research and Development DOE Seeks to Invest up to $15 Million in Funding for Nuclear Fuel Cycle Technology Research and Development April 17, 2008 - 10:49am Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) today issued a Funding Opportunity Announcement (FOA) inviting universities, national laboratories, and industry to compete for up to $15 million to advance nuclear technologies closing the nuclear fuel cycle. These projects will provide necessary data and analyses to further U.S. nuclear fuel cycle technology development, as part of the Department's Advanced Fuel Cycle Initiative (AFCI), the domestic technology R&D component of the Global Nuclear Energy Partnership (GNEP). Studies resulting from this FOA will

377

DOE Seeks to Invest up to $15 Million in Funding for Nuclear Fuel Cycle  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Seeks to Invest up to $15 Million in Funding for Nuclear Fuel DOE Seeks to Invest up to $15 Million in Funding for Nuclear Fuel Cycle Technology Research and Development DOE Seeks to Invest up to $15 Million in Funding for Nuclear Fuel Cycle Technology Research and Development April 17, 2008 - 10:49am Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) today issued a Funding Opportunity Announcement (FOA) inviting universities, national laboratories, and industry to compete for up to $15 million to advance nuclear technologies closing the nuclear fuel cycle. These projects will provide necessary data and analyses to further U.S. nuclear fuel cycle technology development, as part of the Department's Advanced Fuel Cycle Initiative (AFCI), the domestic technology R&D component of the Global Nuclear Energy Partnership (GNEP). Studies resulting from this FOA will

378

Regional business cycles in Italy  

Science Conference Proceedings (OSTI)

There is clear evidence for differences in the structure of the Italian regional business cycle in the period 1951-2004: the relationship with the national business cycle is closer in the North than in the South. The interaction between regional cycles ... Keywords: Regional business cycles, Spectral analysis, Stylized facts

Camilla Mastromarco; Ulrich Woitek

2007-10-01T23:59:59.000Z

379

THE ASTROPHYSICS OF ULTRA-COMPACT BINARIES A WHITE PAPER FOR THE ASTRO2010 DECADAL REVIEW  

E-Print Network (OSTI)

THE ASTROPHYSICS OF ULTRA-COMPACT BINARIES A WHITE PAPER FOR THE ASTRO2010 DECADAL REVIEW G interact- ing AM CVn stars, ultra-compact X-ray binaries, detached double white dwarfs, double neutron stars, white dwarf/neutron star binaries and as yet unobserved binaries such as black holes with neutron

380

Filling Knowledge Gaps with Five Fuel Cycle Studies  

SciTech Connect

During FY 2010, five studies were conducted of technology families applicability to various fuel cycle strategies to fill in knowledge gaps in option space and to better understand trends and patterns. Here, a technology family is considered to be defined by a type of reactor and by selection of which actinides provide fuel. This report summarizes the higher-level findings; the detailed analyses and results are documented in five individual reports, as follows: Advanced once through with uranium fuel in fast reactors (SFR), Advanced once through (uranium fuel) or single recycle (TRU fuel) in high temperature gas cooled reactors (HTGR), Sustained recycle with Th/U-233 in light water reactors (LWRs), Sustained recycle with Th/U-233 in molten salt reactors (MSR), and Several fuel cycle missions with Fusion-Fission Hybrid (FFH). Each study examined how the designated technology family could serve one or more designated fuel cycle missions, filling in gaps in overall option space. Each study contains one or more illustrative cases that show how the technology family could be used to meet a fuel cycle mission, as well as broader information on the technology family such as other potential fuel cycle missions for which insufficient information was available to include with an illustrative case. None of the illustrative cases can be considered as a reference, baseline, or nominal set of parameters for judging performance; the assessments were designed to assess areas of option space and were not meant to be optimized. There is no implication that any of the cases or technology families are necessarily the best way to meet a given fuel cycle mission. The studies provide five examples of 1-year fuel cycle assessments of technology families. There is reasonable coverage in the five studies of the performance areas of waste management and uranium utilization. The coverage of economics, safety, and proliferation resistance and physical protection in the five studies was spotty. Some studies did not have existing or past work to draw on in one or more of these areas. Resource constraints limited the amount of new analyses that could be performed. Little or no assessment was done of how soon any of the technologies could be deployed and therefore how quickly they could impact domestic or international fuel cycle performance. There were six common R&D needs, such as the value of advanced fuels, cladding, coating, and structure that would survive high neutron fluence. When a technology family is considered for use in a new fuel cycle mission, fuel cycle performance characteristics are dependent on both the design choices and the fuel cycle approach. For example, the use of the sodium-cooled fast reactor to provide recycle in either breeder or burner mode has been studied for decades, but the SFR could be considered for once-through fuel cycle with the physical reactor design and fuel management parameters changed. In addition, the sustained recycle with Th/U-233 in LWR could be achieved with a heterogeneous assembly and derated power density. Therefore, it may or may not be adjustable for other fuel cycle missions although a reactor intended for one fuel cycle mission is built. Simple parameter adjustment in applying a technology family to a new fuel cycle mission should be avoided and, if observed, the results viewed with caution.

Steven J. Piet; Jess Gehin; William Halsey; Temitope Taiwo

2010-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "binary cycle technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Technology Transfer: Available Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Ion Sources and Beam Technologies Ion Sources and Beam Technologies GENERATORS AND DETECTORS Compact, Safe and Energy Efficient Neutron Generator Fast Pulsed Neutron Generator High Energy Gamma Generator Lithium-Drifted Silicon Detector with Segmented Contacts Low Power, High Energy Gamma Ray Detector Calibration Device Nested Type Coaxial Neutron Generator Neutron and Proton Generators: Cylindrical Neutron Generator with Nested Option, IB-1764 Neutron-based System for Nondestructive Imaging, IB-1794 Mini Neutron Tube, IB-1793a Ultra-short Ion and Neutron Pulse Production, IB-1707 Mini Neutron Generator, IB-1793b Compact Spherical Neutron Generator, IB-1675 Plasma-Driven Neutron/Gamma Generators Portable, Low-cost Gamma Source for Active Interrogation ION SOURCES WITH ANTENNAS External Antenna for Ion Sources

382

THE DISPERSAL OF PROTOPLANETARY DISKS AROUND BINARY STARS  

SciTech Connect

I present models of disk evolution around young binary stars. I show that the primary factor in determining circumbinary disk lifetimes is the rate of disk photoevaporation. I also find that photoevaporative clearing leaves a signature on the distribution of circumbinary disk lifetimes, with a sharp increase in disk lifetimes for binary separations a {approx}< 0.3-1 AU. Observations of young binary stars can therefore be used to test models of disk evolution, and I show that current data set a strong upper limit to the rate of on-going photoevaporation (<10{sup -9} M{sub Sun} yr{sup -1}). Finally I discuss the implications of these results for planet formation and suggest that circumbinary planets around close (a {approx}< 1 AU) binaries should be relatively common.

Alexander, Richard, E-mail: richard.alexander@leicester.ac.uk [Department of Physics and Astronomy, University of Leicester, Leicester LE1 7RH (United Kingdom)

2012-10-01T23:59:59.000Z

383

Maximin D-optimal designs for binary longitudinal responses  

Science Conference Proceedings (OSTI)

Optimal design problems for logistic mixed effects models for binary longitudinal responses are considered. A function of the approximate information matrix under the framework of the Penalized Quasi Likelihood (PQL) and a generalized linear mixed model ...

Fetene B. Tekle; Frans E. S. Tan; Martijn P. F. Berger

2008-08-01T23:59:59.000Z

384

N-body integrators for planets in binary star systems  

E-Print Network (OSTI)

Symplectic integrators are the tool of choice for many researchers studying dynamical systems because of their good long-term energy conservation properties. For systems with a dominant central mass, symplectic integrators are also highly efficient. In this chapter, I describe the theory of symplectic integrators in terms of Lie series. I show how conventional symplectic algorithms have been adapted for use in binary-star systems to study problems such as the dynamical stability of multi-planet systems and the accretion of planets from planetesimals. This is achieved by devising new coordinate systems for the wide-binary and close-binary cases separately. I show how the performance of these algorithms can be improved at little extra cost using symplectic correctors. Finally, I discuss drawbacks of these algorithms, in particular in dealing with close encounters with one or both members of the binary, and the prospects for overcoming these problems.

Chambers, John E

2007-01-01T23:59:59.000Z

385

N-body integrators for planets in binary star systems  

E-Print Network (OSTI)

Symplectic integrators are the tool of choice for many researchers studying dynamical systems because of their good long-term energy conservation properties. For systems with a dominant central mass, symplectic integrators are also highly efficient. In this chapter, I describe the theory of symplectic integrators in terms of Lie series. I show how conventional symplectic algorithms have been adapted for use in binary-star systems to study problems such as the dynamical stability of multi-planet systems and the accretion of planets from planetesimals. This is achieved by devising new coordinate systems for the wide-binary and close-binary cases separately. I show how the performance of these algorithms can be improved at little extra cost using symplectic correctors. Finally, I discuss drawbacks of these algorithms, in particular in dealing with close encounters with one or both members of the binary, and the prospects for overcoming these problems.

John E. Chambers

2007-05-22T23:59:59.000Z

386

STAR HOPPERS: PLANET INSTABILITY AND CAPTURE IN EVOLVING BINARY SYSTEMS  

SciTech Connect

Many planets are observed in stellar binary systems, and their frequency may be comparable to that of planetary systems around single stars. Binary stellar evolution in such systems influences the dynamical evolution of the resident planets. Here, we study the evolution of a single planet orbiting one star in an evolving binary system. We find that stellar evolution can trigger dynamical instabilities that drive planets into chaotic orbits. This instability leads to planet-star collisions, exchange of the planet between the binary stars ('star hoppers'), and ejection of the planet from the system. The means by which planets can be recaptured is similar to the pull-down capture mechanism for irregular solar system satellites. Because planets often suffer close encounters with the primary on the asymptotic giant branch, captures during a collision with the stellar envelope are also possible for more massive planets. Such capture could populate the habitable zone around white dwarfs.

Kratter, Kaitlin M.; Perets, Hagai B. [Institute for Theory and Computation, Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

2012-07-01T23:59:59.000Z

387

Green's functions and hydrodynamics for isotopic binary diffusion  

E-Print Network (OSTI)

We study classical binary fluid mixtures in which densities vary on very short time (ps) and length (nm) scales, such that hydrodynamics does not apply. In a pure fluid with a localized heat pulse the breakdown of hydrodynamics was overcome using Green's functions which connect the initial densities to those at later times. Numerically it appeared that for long times the results from the Green's functions would approach hydrodynamics. In this paper we extend the Green's functions theory to binary mixtures. For the case of isothermal isobaric mutual diffusion in isotopic binary mixtures and ideal binary mixtures, which is easier to handle than heat conduction yet still non-trivial, we show analytically that in the Green's function approach one recovers hydrodynamic behaviour at long time scales provided the system reaches local equilibrium at long times. This is a first step toward giving the Green's function theory a firmer basis because it can for this case be considered as an extension of hydrodynamics.

R. van Zon; E. G. D. Cohen

2005-08-10T23:59:59.000Z

388

BinSlayer: accurate comparison of binary executables  

Science Conference Proceedings (OSTI)

As the volume of malware inexorably rises, comparison of binary code is of increasing importance to security analysts as a method of automatically classifying new malware samples; purportedly new examples of malware are frequently a simple evolution ...

Martial Bourquin; Andy King; Edward Robbins

2013-01-01T23:59:59.000Z

389

Tools & Technologies  

Energy.gov (U.S. Department of Energy (DOE))

Weprovide leadership for transforming workforce development through the power of technology. It develops corporate educational technology policy and enables the use of learning tools and...

390

Available Technologies  

The technologys subnanometer resolution is a result of superior ... Additional R&D will be required ... U.S. DEPARTMENT OF ENERGY OFFICE OF SCIENCE ...

391

DK And: Reclassification as EW Binary from CCD Observations  

E-Print Network (OSTI)

This paper describes the reclassification of DK And, formerly classified as a RRc type star, as EW binary. 1599 CCD unfiltered and filtered (V and R band) observations between 1999 and 2005 show, that the star is actually an eclipsing binary star with a period of P = 0.4892224 +/- 0.0000002 [d] with epoch E0 = 2451435.4353 +/- 0.0010 (if all historic data were taken into account). From our new observations 12 timings of minimum light are given.

F. -J. Hambsch; D. Husar

2006-07-26T23:59:59.000Z

392

Exploring the powering source of the TeV X-ray binary LS 5039  

E-Print Network (OSTI)

LS 5039 is one of the four TeV emitting X-ray binaries detected up to now. The powering source of its multi-wavelength emission can be accretion in a microquasar scenario or wind interaction in a young non-accreting pulsar scenario. These two scenarios predict different morphologic and peak position changes along the orbital cycle of 3.9 days, which can be tested at milliarcsecond scales using VLBI techniques. Here we present a campaign of 5 GHz VLBA observations conducted in June 2000 (2 runs five days apart). The results show a core component with a constant flux density, and a fast change in the morphology and the position angle of the elongated extended emission, but maintaining a stable flux density. These results are difficult to fit comfortably within a microquasar scenario, whereas they appear to be compatible with the predicted behavior for a non-accreting pulsar.

J. Moldon; M. Ribo; Josep M. Paredes; J. Marti; M. Massi

2008-12-04T23:59:59.000Z

393

Anisotropic mass ejection in binary mergers  

E-Print Network (OSTI)

We investigate the mass loss from a rotationally distorted envelope following the early, rapid in-spiral of a companion star inside a common envelope. For initially wide, massive binaries (M_1+M_2=20M_{\\odot}, P\\sim 10 yr), the primary has a convective envelope at the onset of mass transfer and is able to store much of the available orbital angular momentum in its expanded envelope. Three-dimensional smoothed particle hydrodynamics calculations show that mass loss is enhanced at mid-latitudes due to shock reflection from a torus-shaped outer envelope. Mass ejection in the equatorial plane is completely suppressed if the shock wave is too weak to penetrate the outer envelope in the equatorial direction (typically when the energy deposited in the star is less than about one-third of the binding energy of the envelope). We present a parameter study to show how the geometry of the ejecta depends on the angular momentum and the energy deposited in the envelope during a merging event. Applications to the nearly axisymmetric, but very non-spherical nebulae around SN1987A and Sheridan 25 are discussed, as well as possible links to RY Scuti and the Small Magellanic Cloud object R4.

T. Morris; Ph. Podsiadlowski

2005-02-15T23:59:59.000Z

394

NREL: Energy Analysis - Biomass Technology Analysis  

NLE Websites -- All DOE Office Websites (Extended Search)

Biomass Technology Analysis Biomass Technology Analysis Conducting full life-cycle assessments for biomass products, including electricity, biodiesel, and ethanol, is important for determining environmental benefits. NREL analysts use a life-cycle inventory modeling package and supporting databases to conduct life-cycle assessments. These tools can be applied on a global, regional, local, or project basis. Integrated system analyses, technoeconomic analyses, life-cycle assessments (LCAs), and other analysis tools are essential to our research and development efforts. They provide an understanding of the economic, technical, and even global impacts of renewable technologies. These analyses also provide direction, focus, and support to the development and commercialization of various biomass conversion technologies. The economic

395

royal institute of technology annual report 2007  

E-Print Network (OSTI)

(Committee Chairman) Dr. J. Patterson, Head of Fuel Cycle Technology, British Nuclear Fuels Professor C ..............................................................................................................................9 V Carbon Nanomaterials of Societies of Microscopy (2003-6). 3. Appointment of Andrew Briggs to the Professorship of Nanomaterials

Haviland, David

396

Microlensing Binaries Discovered through High-Magnification Channel  

E-Print Network (OSTI)

Microlensing can provide a useful tool to probe binary distributions down to low-mass limits of binary companions. In this paper, we analyze the light curves of 8 binary lensing events detected through the channel of high-magnification events during the seasons from 2007 to 2010. The perturbations, which are confined near the peak of the light curves, can be easily distinguished from the central perturbations caused by planets. However, the degeneracy between close and wide binary solutions cannot be resolved with a 3 \\sigma confidence level for 3 events, implying that the degeneracy would be an important obstacle in studying binary distributions. From investigating the dependence of the degeneracy on the lensing parameters, we find that the degeneracy becomes severe as the binary separation and the mass ratio deviate from the values of resonant caustics. The measured mass ratio of the event OGLE-2008-BLG-510/MOA-2008-BLG-369 is q~0.1, making the companion of the lens a strong brown-dwarf candidate.

Shin, I -G; Park, S -Y; Han, C; Allen, W; Bos, M; Christie, G W; Depoy, D L; Dong, S; Drummond, J; Gal-Yam, A; Gaudi, B S; Gould, A; Hung, L -W; Janczak, J; Kaspi, S; Lee, C -U; Mallia, F; Maoz, D; Maury, A; McCormick, J; Monard, L A G; Moorhouse, D; Munoz, J A; Natusch, T; Nelson, C; Park, B -G; Pogge, R W; Polishook, D; Shvartzvald, Y; Shporer, A; Thornley, G; Yee, J C; Abe, F; Bennett, D P; Bond, I A; Botzler, C S; Fukui, A; Furusawa, K; Hayashi, F; Hearnshaw, J B; Hosaka, S; Itow, Y; Kamiya, K; Kilmartin, P M; Kobara, S; Korpela, A; Lin, W; Ling, C H; Makita, S; Masuda, K; Matsubara, Y; Miyake, N; Muraki, Y; Nagaya, M; Nishimoto, K; Ohnishi, K; Okumura, T; Omori, K; Perrott, Y C; Rattenbury, N; Saito, To; Skuljan, L; Sullivan, D J; Sumi, T; Suzuki, D; Sweatman, W L; Tristram, P J; Wada, K; Yock, P C M; Szymanski, M K; Kubiak, M; Pietrzynski, G; Soszynski, I; Szewczyk, O; Udalski, A; Ulaczyk, K; Wyrzykowski, L; Albrow, M D; Batista, V; Beaulieu, J -P; Brillant, S; Cassan, A; Cole, A; Corrales, E; Coutures, Ch; Dieters, S; Prester, D Dominis; Donatowicz, J; Fouque, P; Greenhill, J; Kane, S R; Menzies, J; Sahu, K C; Wambsganss, J; Williams, A; Zub, M; Allan, A; Bramich, D M; Browne, P; Dominik, M; Horne, K; Kains, N; Snodgrass, C; Steele, I; Street, R; Tsapras, Y; Bozza, V; Burgdorf, M J; Novati, S Calchi; Dreizler, S; Finet, F; Glitrup, M; Grundahl, F; Harpsoe, K; Hinse, T C; Hundertmark, M; Jorgensen, U G; Liebig, C; Maier, G; Mancini, L; Mathiasen, M; Rahvar, S; Ricci, D; Scarpetta, G; Skottfelt, J; Surdej, J; Southworth, J; Zimmer, F

2011-01-01T23:59:59.000Z

397

Vehicle Technologies Office: Vehicle Technologies Office Organization...  

NLE Websites -- All DOE Office Websites (Extended Search)

Organization and Contacts Organization Chart for the Vehicle Technologies Program Fuel Technologies and Deployment, Technology Managers Advanced Combustion Engines, Technology...

398

Fuel Cell Technologies Office: Technology Validation  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Information Technology Validation Search Search Help Technology Validation EERE Fuel Cell Technologies Office Technology Validation Printable Version Share this resource...

399

Life Cycle Environmental Assessment of the Internet: The Benefits and  

NLE Websites -- All DOE Office Websites (Extended Search)

Life Cycle Environmental Assessment of the Internet: The Benefits and Life Cycle Environmental Assessment of the Internet: The Benefits and Impacts of Innovative Technologies Speaker(s): Oliver Jolliet Date: July 15, 2004 - 12:00pm Location: Bldg. 90 Seminar Host/Point of Contact: Thomas McKone This seminar starts by providing a short introduction to the field of Environmental Life Cycle Assessment (LCA) through a practical example of packaging. It will then develop the case of the Life Cycle Benefits and Impacts of the Internet; raising the different scientific challenges that LCA faces to provide relevant results for innovative technologies.--The rapid development of the Internet and the related potential impacts on and benefits for the environment deserves attention. The infrastructure that supports a university's use of the Internet has been comprehensively

400

NREL: Energy Analysis - Ocean Energy Results - Life Cycle Assessment  

NLE Websites -- All DOE Office Websites (Extended Search)

Ocean Energy Results - Life Cycle Assessment Review Ocean Energy Results - Life Cycle Assessment Review For more information, visit: Special Report on Renewable Energy Sources and Climate Change Mitigation: Ocean Energy OpenEI: Data, Visualization, and Bibliographies Chart that shows life cycle greenhouse gas emissions for ocean power technologies. For help reading this chart, please contact the webmaster. Estimates of life cycle greenhouse gas emissions of wave and tidal range technologies. Credit: Lewis, A., S. Estefen, J. Huckerby, W. Musial, T. Pontes, J. Torres-Martinez, 2011: Ocean Energy. In IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation [O. Edenhofer, R. Pichs-Madruga, Y. Sokona, K. Seyboth, P. Matschoss, S. Kadner, T. Zwickel, P. Eickemeier, G. Hansen, S. Schlömer, C. von Stechow (eds)], Cambridge University Press. Figure 6.11 Enlarge image

Note: This page contains sample records for the topic "binary cycle technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Environmental Energy Technologies Division News  

NLE Websites -- All DOE Office Websites (Extended Search)

0, No. 2 [http://eetd.lbl.gov/newsletter/nl37/] 0, No. 2 [http://eetd.lbl.gov/newsletter/nl37/] Environmental Energy Technologies Division News [http://eetd.lbl.gov/newsletter/] © 2011 Environmental Energy Technologies Division [http://eetd.lbl.gov/] E.O. Lawrence Berkeley National Laboratory [http://www.lbl.gov/] Disclaimer [http://www.lbl.gov/Disclaimers.html] FALL 2011: VOL. 10, NO. 2 Carbon Cycle 2.0 Analysis Team Carbon Sequestration Study Materials Genome Project Increased Building Ventilation VOC Cleaning Technology Fort Irwin Lighting Testbed Tracking the Sun IV Cool Coatings for Cars Research Highlights Sources and Credits Understanding how effectively new technologies can save energy, water, and materials-as well as reduce energy costs and greenhouse gas emissions-is the goal of the Carbon Cycle 2.0 Energy and

402

Analysis of Biomass/Coal Co-Gasification for Integrated Gasification Combined Cycle (IGCC) Systems with Carbon Capture.  

E-Print Network (OSTI)

?? In recent years, Integrated Gasification Combined Cycle Technology (IGCC) has become more common in clean coal power operations with carbon capture and sequestration (CCS). (more)

Long, Henry A, III

2011-01-01T23:59:59.000Z

403

Chemistry - Technology Transfer: Available Technologies  

Please refer to the list of technologies below for licensing and research collaboration availability. If you can't find the technology you ...

404

Technology Analysis - Heavy Vehicle Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

the GPRA benefits estimates for EERE's Vehicle Technologies Program's heavy vehicle technology research activities. Argonne researchers develop the benefits analysis using four...

405

Water Use in Electricity Generation Technologies  

Science Conference Proceedings (OSTI)

Water use is increasingly viewed as an important sustainability metric for electricity generation technologies. Most of the attention on the link between electricity generation and water use focuses on the water used in cooling thermoelectric power plants during operations. This is warranted given the size of these withdrawals; however, all electricity generation technologies, including those that do not rely on thermoelectric generation, use water throughout their life cycles. Each life cycle stage cont...

2012-05-23T23:59:59.000Z

406

Liquid fossil-fuel technology. Quarterly technical progress report, October-December 1982  

Science Conference Proceedings (OSTI)

Progress accomplished for the quarter ending December 1982 is reported for the following research areas: liquid fossil fuel cycle; extraction (technology assessment, gas research, oil research); liquid processing (characterization, thermodynamics, processing technology); utilization; and project integration and technology transfer. (ATT)

Linville, B. (ed.)

1982-01-01T23:59:59.000Z

407

Impact of actinide recycle on nuclear fuel cycle health risks  

SciTech Connect

The purpose of this background paper is to summarize what is presently known about potential impacts on the impacts on the health risk of the nuclear fuel cycle form deployment of the Advanced Liquid Metal Reactor (ALMR){sup 1} and Integral Fast Reactor (IF){sup 2} technology as an actinide burning system. In a companion paper the impact on waste repository risk is addressed in some detail. Therefore, this paper focuses on the remainder of the fuel cycle.

Michaels, G.E.

1992-06-01T23:59:59.000Z

408

National Benefits of a Closed-Cycle Cooling Retrofit Requirement  

Science Conference Proceedings (OSTI)

The Electric Power Research Institute (EPRI) has investigated the implications of a potential U.S. Environmental Protection Agency (EPA) Clean Water Act 316(b) rulemaking if it establishes closed-cycle cooling retrofits for facilities with once-through cooling as best technology available (BTA) for fish protection. This report provides the results of a study to estimate the benefits of reducing impingement and entrainment mortality that would be achieved should EPA designate closed-cycle cooling as BTA.

2011-08-16T23:59:59.000Z

409

Available Technologies  

APPLICATIONS OF TECHNOLOGY: Thermal management for: microelectronic devices; solar cells and solar energy management systems ; refrigerators

410

Available Technologies  

Energy Storage and Recovery; Renewable Energy; Environmental Technologies. Monitoring and Imaging; Remediation; Modeling; Imaging & Lasers.

411

Vehicle Technologies Office: Benchmarking  

NLE Websites -- All DOE Office Websites (Extended Search)

Benchmarking Benchmarking Research funded by the Vehicle Technologies Office produces a great deal of valuable data, but it is important to compare those research results with similar work done elsewhere in the world. Through laboratory testing, researchers can compare vehicles and components to validate models, support technical target-setting, and provide data to help guide technology development tasks. Benchmarking activities fall into two primary areas: Vehicle and component testing, in which researchers test and analyze emerging technologies obtained from sources throughout the world. The results are used to continually assess program efforts. Model validation, in which researchers use test data to validate the accuracy of vehicle and component computer models including: overall measures such as fuel economy, state-of-charge energy storage across the driving cycle, and transient component behavior, such as fuel rate and torque.

412

Fuel Cycle Subcommittee  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Report to NEAC Report to NEAC Fuel Cycle Subcommittee Meeting of April 23, 2013 Washington D.C. June 13, 2013 Burton Richter (Chair), Margaret Chu, Darleane Hoffman, Raymond Juzaitis, Sekazi K Mtingwa, Ronald P Omberg, Joy L Rempe, Dominique Warin 2 I Introduction and Summary The Fuel Cycle Subcommittee of NEAC met in Washington on April 23, 2013. The meeting focused on issues relating to the NE advanced reactor program (sections II, III, and IV), and on storage and transportation issues (section V) related to a possible interim storage program that is the first step in moving toward a new permanent repository as recommended by the Blue Ribbon Commission (BRC) and discussed in the recent response by DOE to Congress on the BRC report 1 . The agenda is given in

413

A Comparison of Supercritical Carbon Dioxide Power Cycle Configurations with an Emphasis on CSP Applications (Presentation)  

SciTech Connect

Recent research suggests that an emerging power cycle technology using supercritical carbon dioxide (s-CO2) operated in a closed-loop Brayton cycle offers the potential of equivalent or higher cycle efficiency versus supercritical or superheated steam cycles at temperatures relevant for CSP applications. Preliminary design-point modeling suggests that s-CO2 cycle configurations can be devised that have similar overall efficiency but different temperature and/or pressure characteristics. This paper employs a more detailed heat exchanger model than previous work to compare the recompression and partial cooling cycles, two cycles with high design-point efficiencies, and illustrates the potential advantages of the latter. Integration of the cycles into CSP systems is studied, with a focus on sensible heat thermal storage and direct s-CO2 receivers. Results show the partial cooling cycle may offer a larger temperature difference across the primary heat exchanger, thereby potentially reducing heat exchanger cost and improving CSP receiver efficiency.

Neises, T.; Turchi, C.

2013-09-01T23:59:59.000Z

414

Stirling cycle engine  

DOE Patents (OSTI)

In a Stirling cycle engine having a plurality of working gas charges separated by pistons reciprocating in cylinders, the total gas content is minimized and the mean pressure equalization among the serial cylinders is improved by using two piston rings axially spaced at least as much as the piston stroke and by providing a duct in the cylinder wall opening in the space between the two piston rings and leading to a source of minimum or maximum working gas pressure.

Lundholm, Gunnar (Lund, SE)

1983-01-01T23:59:59.000Z

415

The Energy Strategy Cycle  

E-Print Network (OSTI)

Effective long-range energy planning begins with a reflective analysis that encompasses the complexity of today's energy reality and sets a course for activity to achieve long-range continuing advancement. This strategy approach involves an interrelated 'cycle' that once started and controlled in the proper direction is almost self-building in improvement. Energy conservation is the driving force to create additive progress involving system flexibility, process integration, and less energy dependence.

Korich, R. D.

1983-01-01T23:59:59.000Z

416

USCEA fuel cycle '93  

SciTech Connect

The US Council for Energy Awareness sponsored the Fuel Cycle '93 conference in Dallas, Texas, on March 21-24, 1993. Over 250 participants attended, numerous papers were presented, and several panel discussions were held. The focus of most industry participants remains the formation of USEC and the pending US-Russian HEU agreement. Following are brief summaries of two key papers and the Fuel Market Issues panel discussion.

Not Available

1993-04-01T23:59:59.000Z

417

Building Life-Cycle Cost (BLCC) Program | Open Energy Information  

Open Energy Info (EERE)

Building Life-Cycle Cost (BLCC) Program Building Life-Cycle Cost (BLCC) Program Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Building Life-Cycle Cost (BLCC) Program Agency/Company /Organization: United States Department of Energy Partner: National Institute of Standards and Technology Sector: Energy Focus Area: Buildings, Energy Efficiency Phase: Create a Vision, Determine Baseline, Evaluate Options, Develop Goals, Prepare a Plan Topics: Finance, Pathways analysis Resource Type: Software/modeling tools User Interface: Desktop Application Website: www1.eere.energy.gov/femp/information/download_blcc.html Cost: Free OpenEI Keyword(s): EERE tool, Building Life-Cycle Cost, BLCC References: Building Life-Cycle Cost (BLCC) Programs[1] Building Energy Software Tools Directory: BLCC[2]

418

Diverse spreading behavior of binary polymer nanodroplets.  

SciTech Connect

Molecular dynamics simulations are used to study the spreading of binary polymer nanodroplets in a cylindrical geometry. The polymers, described by the bead-spring model, spread on a flat surface with a surface-coupled Langevin thermostat to mimic the effects of a corrugated surface. Each droplet consists of chains of length 10 or 100 monomers with {approx}350,000 monomers total. The qualitative features of the spreading dynamics are presented for differences in chain length, surface interaction strength, and composition. When the components of the droplet differ only in the surface interaction strength, the more strongly wetting component forms a monolayer film on the surface even when both materials are above or below the wetting transition. In the case where the only difference is the polymer chain length, the monolayer film beneath the droplet is composed of an equal amount of short chain and long chain monomers even when one component (the shorter chain length) is above the wetting transition and the other is not. The fraction of short and long chains in the precursor foot depends on whether both the short and the long chains are in the wetting regime. Diluting the concentration of the strongly wetting component in a mixture with a weakly wetting component decreases the rate of diffusion of the wetting material from the bulk to the surface and limits the spreading rate of the precursor foot, but the bulk spreading rate actually increases when both components are present. This may be due to the strongly wetting material pushing out the weakly wetting material as it moves toward the precursor foot.

Webb, Edmund Blackburn, III; Grest, Gary Stephen; Heine, David R.

2005-01-01T23:59:59.000Z

419

Evaluation of the Impact of Off-Design Operation on an Air-Cooled Binary Power Plant  

DOE Green Energy (OSTI)

Geothermal power plants are designed and constructed to provide a rated power output at specific resource and ambient conditions. Due to both diurnal and seasonal changes in the ambient air temperature, as well as a decline in resource productivity over time, plants seldom operate at these ''design'' conditions. This paper examines the impact of ''off- design'' operation of an air-cooled binary geothermal power plant. An available energy analysis is used to evaluate operation at these conditions. This evaluation identifies those portions of the power cycle that are most sensitive to changing resource and ambient conditions, as well as where improvements in cycle component or system performance would have the largest impact in increasing power output.

Mines, G.L.

2002-06-17T23:59:59.000Z

420

Fuel Cell Technologies Office: Technology Validation  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Cell Technologies Office: Technology Validation to someone by E-mail Share Fuel Cell Technologies Office: Technology Validation on Facebook Tweet about Fuel Cell Technologies...

Note: This page contains sample records for the topic "binary cycle technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Meta-Analysis of Estimates of Life Cycle GHG Emissions from Electricity  

NLE Websites -- All DOE Office Websites (Extended Search)

Meta-Analysis of Estimates of Life Cycle GHG Emissions from Electricity Meta-Analysis of Estimates of Life Cycle GHG Emissions from Electricity Generation Technologies Speaker(s): Garvin Heath Date: April 11, 2011 - 10:00am Location: 90-3075 Seminar Host/Point of Contact: Eric Masanet One barrier to the full support and deployment of alternative energy systems and the development of a sustainable energy policy is the lack of robust conclusions about the life cycle environmental impacts of energy technologies. A significant number of life cycle assessments (LCA) of energy technologies have been published, far greater than many are aware. However, there is a view held by many decision-makers that the state of the science in LCA of energy technologies is inconclusive because of perceived and real variability and uncertainty in published estimates of life cycle

422

"Integrated Gasification Combined Cycle"  

U.S. Energy Information Administration (EIA) Indexed Site

Status of technologies and components modeled by EIA" Status of technologies and components modeled by EIA" ,"Revolutionary","Evolutionary","Mature" "Pulverized Coal",,,"X" "Pulverized Coal with CCS" " - Non-CCS portion of Pulverized Coal Plant",,,"X" " - CCS","X" "Integrated Gasification Combined Cycle" " - Advanced Combustion Turbine",,"X" " - Heat Recovery Steam Generator",,,"X" " - Gasifier",,"X" " - Balance of Plant",,,"X" "Conventional Natural Gas Combined Cycle" " - Conventional Combustion Turbine",,,"X" " - Heat Recovery Steam Generator",,,"X" " - Balance of Plant",,,"X"

423

The United States Department of Energy Office of Industrial Technology`s Technology Benefits Recording System  

SciTech Connect

The U.S. Department of Energy (DOE) Office of Industrial Technology`s (OIT`s) Technology Benefits Recording System (TBRS) was developed by Pacific Northwest Laboratory (PNL). The TBRS is used to organize and maintain records of the benefits accrued from the use of technologies developed with the assistance of OIT. OIT has had a sustained emphasis on technology deployment. While individual program managers have specific technology deployment goals for each of their ongoing programs, the Office has also established a separate Technology Deployment Division whose mission is to assist program managers and research and development partners commercialize technologies. As part of this effort, the Technology Deployment Division developed an energy-tracking task which has been performed by PNL since 1977. The goal of the energy-tracking task is to accurately assess the energy savings impact of OIT-developed technologies. In previous years, information on OIT-sponsored technologies existed in a variety of forms--first as a hardcopy, then electronically in several spreadsheet formats that existed in multiple software programs. The TBRS was created in 1993 for OIT and was based on information collected in all previous years from numerous industrial contacts, vendors, and plants that have installed OIT-sponsored technologies. The TBRS contains information on technologies commercialized between 1977 and the present, as well as information on emerging technologies in the late development/early commercialization stage of the technology life cycle. For each technology, details on the number of units sold and the energy saved are available on a year-by-year basis. Information regarding environmental benefits, productivity and competitiveness benefits, or impact that the technology may have had on employment is also available.

Hughes, K.R.; Moore, N.L.

1994-09-01T23:59:59.000Z

424

Dynamic Mercury Cycling Model Upgrade  

Science Conference Proceedings (OSTI)

This technical update describes the status of activities to upgrade the Dynamic Mercury Cycling Model (D-MCM), an EPRI simulation model that predicts mercury cycling and bioaccumulation in lakes.

2008-12-17T23:59:59.000Z

425

Innovative Separations Technologies  

Science Conference Proceedings (OSTI)

Reprocessing used nuclear fuel (UNF) is a multi-faceted problem involving chemistry, material properties, and engineering. Technology options are available to meet a variety of processing goals. A decision about which reprocessing method is best depends significantly on the process attributes considered to be a priority. New methods of reprocessing that could provide advantages over the aqueous Plutonium Uranium Reduction Extraction (PUREX) and Uranium Extraction + (UREX+) processes, electrochemical, and other approaches are under investigation in the Fuel Cycle Research and Development (FCR&D) Separations Campaign. In an attempt to develop a revolutionary approach to UNF recycle that may have more favorable characteristics than existing technologies, five innovative separations projects have been initiated. These include: (1) Nitrogen Trifluoride for UNF Processing; (2) Reactive Fluoride Gas (SF6) for UNF Processing; (3) Dry Head-end Nitration Processing; (4) Chlorination Processing of UNF; and (5) Enhanced Oxidation/Chlorination Processing of UNF. This report provides a description of the proposed processes, explores how they fit into the Modified Open Cycle (MOC) and Full Recycle (FR) fuel cycles, and identifies performance differences when compared to 'reference' advanced aqueous and fluoride volatility separations cases. To be able to highlight the key changes to the reference case, general background on advanced aqueous solvent extraction, advanced oxidative processes (e.g., volumetric oxidation, or 'voloxidation,' which is high temperature reaction of oxide UNF with oxygen, or modified using other oxidizing and reducing gases), and fluorination and chlorination processes is provided.

J. Tripp; N. Soelberg; R. Wigeland

2011-05-01T23:59:59.000Z

426

Life Cycle Greenhouse Gas Emissions from Electricity Generation (Fact Sheet), NREL (National Renewable Energy Laboratory)  

NLE Websites -- All DOE Office Websites (Extended Search)

LCA can help determine environmental burdens from "cradle LCA can help determine environmental burdens from "cradle to grave" and facilitate more consistent comparisons of energy technologies. Figure 1. Generalized life cycle stages for energy technologies Source: Sathaye et al. (2011) Life cycle GHG emissions from renewable electricity generation technologies are generally less than those from fossil fuel-based technologies, based on evidence assembled by this project. Further, the proportion of GHG emissions from each life cycle stage differs by technology. For fossil-fueled technologies, fuel combustion during operation of the facility emits the vast majority of GHGs. For nuclear and renewable energy technologies, the majority of GHG emissions occur upstream of operation. LCA of Energy Systems

427

Hydrothermal Energy Conversion Technology  

SciTech Connect

The goal of the Hydrothermal Program is to develop concepts which allow better utilization of geothermal energy to reduce the life-cycle cost of producing electricity from liquid-dominated, hydrothermal resources. Research in the program is currently ongoing in three areas: (1) Heat Cycle Research, which is looking at methods to increase binary plant efficiencies; (2) Materials Development, which is developing materials for use in geothermal associated environments; and (3) Advanced Brine Chemistry, with work taking place in both the brine chemistry modeling area and waste disposal area. The presentations during this session reviewed the accomplishments and activities taking place in the hydrothermal energy conversion program. Lawrence Kukacka, Brookhaven National Laboratory, discussed advancements being made to develop materials for use in geothermal applications. This research has identified a large number of potential materials for use in applications from pipe liners that inhibit scale buildup and reduce corrosion to elastomers for downhole use. Carl J. Bliem, Idaho National Engineering Laboratory, discussed preparations currently underway to conduct field investigations of the condensation behavior of supersaturated turbine expansions. The research will evaluate whether the projected 8% to 10% improvement in brine utilization can be realized by allowing these expansions. Eugene T. Premuzic, Brookhaven National Laboratory, discussed advancements being made using biotechnology for treatment of geothermal residual waste; the various process options were discussed in terms of biotreatment variables. A treatment scenario and potential disposal costs were presented. John H. Weare, University of California, San Diego, discussed the present capabilities of the brine chemistry model he has developed for geothermal applications and the information it can provide a user. This model is available to industry. The accomplishments from the research projects presented in this session have been many. It is hoped that these accomplishments can be integrated into industrial geothermal power plant sites to assist in realizing the goal of reducing the cost of energy produced from the geothermal resource.

Robertson, David W.; LaSala, Raymond J.

1992-03-24T23:59:59.000Z

428

Testing of a Stirling cycle cooler  

Science Conference Proceedings (OSTI)

Stirling cycle coolers have long been used as low temperature refrigeration devices. They are relatively compact, reliable, commercially available, and use helium as the working fluid. The Stirling cycle, in principle, can be used for household refrigeration and heat pumping applications as well. Currently, these applications are almost entirely provided by the vapor compression technology using chlorofluorocarbons (CFCs) as working fluids. It has been known that CFCs cause depletion of the ozone layer that protects the earth against harmful levels of ultraviolet radiation from the sun. A recent report of a ''hole'' in the ozone layer above Antarctica and of possible environmental and health consequences from ozone depletion aroused public attention. The urgent need to reduce the future used of CFCs should instigate investigation of non-CFC alternative technologies. The Stirling cooler technology, which does not use CFCs, could be a viable alternative. A laboratory test of the performance of a Stirling cooler is reported and its implications for household refrigeration are explored. 11 refs., 6 figs., 2 tabs.

Chen, F.C.; Keshock, E.G.; Murphy, R.W.

1988-09-01T23:59:59.000Z

429

Closed cycle cogeneration for the future  

Science Conference Proceedings (OSTI)

While present energy needs can be met with available supplies of fossil fuels, the need to plan for the eventual elimination of dependence on premium fuels in utility and industrial applications remains urgent. One of the most promising power conversion technologies for these needs is the closed cycle gas turbine (CCGT) configured for power and heat production. Closed cycle gas turbines have been in commercial use, principally in Europe, for over four decades. That experience base, combined with emerging awareness of potential CCGT applications, could lead to the operation of coal-fired CCGT cogeneration systems in the U.S. within the next decade. This paper discusses the multi-fuel capability of the CCGT and compares its performance as a flexible cogeneration system with that of a more conventional steam turbine system.

Crim, W.M.; Fraize, W.E.; Kinney, G.; Malone, G.A.

1984-06-01T23:59:59.000Z

430

Thin shell morphology in the circumstellar medium of massive binaries  

E-Print Network (OSTI)

We investigate the morphology of the collision front between the stellar winds of binary components in two long-period binary systems, one consisting of a hydrogen rich Wolf-Rayet star (WNL) and an O-star and the other of a Luminous Blue Variable (LBV) and an O-star. Specifically, we follow the development and evolution of instabilities that form in such a shell, if it is sufficiently compressed, due to both the wind interaction and the orbital motion. We use MPI-AMRVAC to time-integrate the equations of hydrodynamics, combined with optically thin radiative cooling, on an adaptive mesh 3D grid. Using parameters for generic binary systems, we simulate the interaction between the winds of the two stars. The WNL+O star binary shows a typical example of an adiabatic wind collision. The resulting shell is thick and smooth, showing no instabilities. On the other hand, the shell created by the collision of the O star wind with the LBV wind, combined with the orbital motion of the binary components, is susceptible to...

van Marle, Allard Jan; Meliani, Zakaria

2010-01-01T23:59:59.000Z

431

DOUBLE-LINED SPECTROSCOPIC BINARY STARS IN THE RAVE SURVEY  

Science Conference Proceedings (OSTI)

We devise a new method for the detection of double-lined binary stars in a sample of the Radial Velocity Experiment (RAVE) survey spectra. The method is both tested against extensive simulations based on synthetic spectra and compared to direct visual inspection of all RAVE spectra. It is based on the properties and shape of the cross-correlation function, and is able to recover {approx}80% of all binaries with an orbital period of order 1 day. Systems with periods up to 1 yr are still within the detection reach. We have applied the method to 25,850 spectra of the RAVE second data release and found 123 double-lined binary candidates, only eight of which are already marked as binaries in the SIMBAD database. Among the candidates, there are seven that show spectral features consistent with the RS CVn type (solar type with active chromosphere) and seven that might be of W UMa type (over-contact binaries). One star, HD 101167, seems to be a triple system composed of three nearly identical G-type dwarfs. The tested classification method could also be applicable to the data of the upcoming Gaia mission.

Matijevic, G.; Zwitter, T. [Faculty of Mathematics and Physics, University of Ljubljana, Ljubljana (Slovenia); Munari, U.; Siviero, A. [INAF Osservatorio Astronomico di Padova, Asiago (Italy); Bienayme, O.; Siebert, A. [Observatorie de Strasbourg, Strasbourg (France); Binney, J. [Rudolf Pierls Center for Theoretical Physics, University of Oxford, Oxford (United Kingdom); Bland-Hawthorn, J. [Sydney Institute for Astronomy, School of Physics, University of Sydney, Sydney (Australia); Boeche, C.; Steinmetz, M. [Astrophysikalisches Institut Potsdam, Potsdam (Germany); Campbell, R. [Western Kentucky University, Bowling Green, KY (United States); Freeman, K. C. [RSAA, Australian National University, Camberra (Australia); Gibson, B. [University of Central Lancashire, Preston (United Kingdom); Gilmore, G. [Institute of Astronomy, Cambridge (United Kingdom); Grebel, E. K. [Astronomisches Rechen-Institut, Zentrum fuer Astronomie der Universitaet Heidelberg, Heidelberg (Germany); Helmi, A. [Kapteyn Astronomical Institute, University of Groningen, Groningen (Netherlands); Navarro, J. F. [University of Victoria, Victoria (Canada); Parker, Q. A. [Macquarie University, Sydney (Australia); Seabroke, G. M. [e2v Centre for Electronic Imaging, Planetary and Space Sciences Research Institute, Open University, Walton Hall, Milton Keynes (United Kingdom); Watson, F. G., E-mail: gal.matijevic@fmf.uni-lj.s [Anglo-Australian Observatory, Sydney (Australia)

2010-07-15T23:59:59.000Z

432

Mergers of binary neutron stars with realistic spin  

E-Print Network (OSTI)

Simulations of binary neutron stars have seen great advances in terms of physical detail and numerical quality. However, the spin of the neutron stars, one of the simplest global parameters of binaries, remains mostly unstudied. We present the first, fully nonlinear general relativistic dynamical evolutions of the last three orbits for constraint satisfying initial data of spinning neutron star binaries, with astrophysically realistic spins aligned and anti-aligned to the orbital angular momentum. The initial data is computed with the constant rotational velocity approach. The dynamics of the systems is analyzed in terms of gauge-invariant binding energy vs. orbital angular momentum curves. By comparing to a binary black hole configuration we can estimate the different tidal and spin contributions to the binding energy for the first time. First results on the gravitational wave forms are presented. The phase evolution during the orbital motion is significantly affected by spin-orbit interactions, leading to delayed or early mergers. Furthermore, a frequency shift in the main emission mode of the hyper massive neutron star is observed. Our results suggest that a detailed modeling of merger waveforms requires the inclusion of spin, even for the moderate magnitudes observed in binary neutron star systems.

Sebastiano Bernuzzi; Tim Dietrich; Wolfgang Tichy; Bernd Bruegmann

2013-11-18T23:59:59.000Z

433

Binary Pulsar Shock Emissions as Galactic Gamma-Ray Sources  

E-Print Network (OSTI)

We address several issues regarding the interpretation of galactic \\ggg-ray sources. We consider powerful pulsars in binaries producing X-ray and gamma-ray {\\it unpulsed} emission from the shock interaction of relativistic pulsar winds with circumbinary material. Nebular mass outflows from companion stars of binary pulsars can provide the right {\\it calorimeters} to transform a fraction of the electromagnetic and kinetic energy of pulsar winds into high energy radiation. We discuss the physics of interaction of relativistic pulsar winds with gaseous material and show that the conditions in pulsar binary systems might be ideal to constrain shock acceleration mechanisms and pulsar wind composition and structure. We briefly discuss the example of the 47~ms pulsar PSR~1259-63 orbiting around a massive Be~star companion and monitored by X-ray and gamma-ray instruments during its recent periastron passage. In addition to young pulsars in massive binaries, also a class of recycled millisecond pulsars in low-mass binaries can be interesting high energy emitters.

M. Tavani

1995-02-10T23:59:59.000Z

434

Processing Technology  

Science Conference Proceedings (OSTI)

Aug 5, 2013... relevant polymers and hybrid nanocomposite material systems. ... technology to perform lightweight manufacturing of car components.

435

Technology Transfer  

A new search feature has been implemented, which allows searching of technology transfer information across the Department of Energy Laboratories.

436

Technology Transfer  

Science Conference Proceedings (OSTI)

... get started on understanding accessibility in elections and voting technology. ... bibliography was created by the Georgia Tech Research Institute ...

2013-09-17T23:59:59.000Z

437

Optimum cycle parameters of coal fired closed cycle gas turbine in regenerative and combined cycle configurations  

Science Conference Proceedings (OSTI)

This paper presents the methodology developed for the estimation of thermodynamic performance and reports the optimum cycle parameters of coal fired CCGT in regenerative and combined cycle configurations using air, helium and carbon dioxide as working gases. A rigorous approach has been followed for the determination of the cycle efficiency by assuming the specific heat of working gases as a continuous function of temperature for accurate estimation of cycle parameters. 14 refs.

Rao, J.S.

1982-01-01T23:59:59.000Z

438

Modular Trough Power Plant Cycle and Systems Analysis  

DOE Green Energy (OSTI)

This report summarizes an analysis to reduce the cost of power production from modular concentrating solar power plants through a relatively new and exciting concept that merges two mature technologies to produce distributed modular electric power in the range of 500 to 1,500 kWe. These are the organic Rankine cycle (ORC) power plant and the concentrating solar parabolic (CSP) trough technologies that have been developed independent of each other over many years.

Price, H.; Hassani, V.

2002-01-01T23:59:59.000Z

439

Fuel cycle and waste management demonstration in the IFR Program  

Science Conference Proceedings (OSTI)

Argonne's National Laboratory's Integral Fast Reactor (IFR) is the main element in the US advanced reactor development program. A unique fuel cycle and waste process technology is being developed for the IFR. Demonstration of this technology at engineering scale will begin within the next year at the EBR-II test facility complex in Idaho. This paper describes the facility being readied for this demonstration, the process to be employed, the equipment being built, and the waste management approach.

Lineberry, M.J.; Phipps, R.D.; Benedict, R.W. (Argonne National Lab., Idaho Falls, ID (United States)); Laidler, J.J.; Battles, J.E.; Miller, W.E. (Argonne National Lab., IL (United States))

1992-01-01T23:59:59.000Z

440

Fuel cycle and waste management demonstration in the IFR Program  

SciTech Connect

Argonne`s National Laboratory`s Integral Fast Reactor (IFR) is the main element in the US advanced reactor development program. A unique fuel cycle and waste process technology is being developed for the IFR. Demonstration of this technology at engineering scale will begin within the next year at the EBR-II test facility complex in Idaho. This paper describes the facility being readied for this demonstration, the process to be employed, the equipment being built, and the waste management approach.

Lineberry, M.J.; Phipps, R.D.; Benedict, R.W. [Argonne National Lab., Idaho Falls, ID (United States); Laidler, J.J.; Battles, J.E.; Miller, W.E. [Argonne National Lab., IL (United States)

1992-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "binary cycle technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Decision Framework for Evaluating Advanced Nuclear Fuel Cycle Options  

Science Conference Proceedings (OSTI)

EPRI is working to develop tools to support long-term strategic planning for research, development, and demonstration (RD&D) of advanced nuclear fuel cycle technologies for electricity generation. The development of a decision framework to help guide the eventual deployment of advanced nuclear technologies represents a key component of this effort. This interim report describes the structure of a prototypical EPRI decision framework and illustrates how that framework can be applied to assess nuclear fuel...

2011-12-13T23:59:59.000Z

442

Technology Strategies  

Science Conference Proceedings (OSTI)

From the Book:PrefaceTechnology as the Strategic AdvantageWhen I began writing this book I struggled with the direction I wanted it to take. Is this book to be about business, technology, or even the business of technology? I ...

Cooper Smith

2001-07-01T23:59:59.000Z

443

Russell Hulse, the First Binary Pulsar, and Science Education  

NLE Websites -- All DOE Office Websites (Extended Search)

Russell Hulse, the First Binary Pulsar, and Science Education Russell Hulse, the First Binary Pulsar, and Science Education Resources with Additional Information 'Dr. Russell A. Hulse of Princeton University, the discoverer of the first binary pulsar and co-recipient of the 1993 Nobel Prize in physics, will affiliate with The University of Texas at Dallas (UTD) as a visiting professor of physics and of science and math education, beginning in January 2004. Russell Hulse Courtesy Princeton Plasma Physics Laboratory Hulse will be involved with developing innovative science and mathematics education programs for primary and secondary schools, including those in several Texas school districts, as well as with developing activities in more informal settings, such as libraries. During his appointment at UTD, Hulse will retain his affiliation with Princeton University, where he is a principal research physicist at the U.S. Department of Energy's Princeton Plasma Physics Laboratory.

444

Short period eclipsing binary candidates identified using SuperWASP  

E-Print Network (OSTI)

We present light curves and periods of 53 candidates for short period eclipsing binary stars identified by SuperWASP. These include 48 newly identified objects with periods <2x10^4 seconds (~0.23d), as well as the shortest period binary known with main sequence components (GSC2314-0530 = 1SWASP J022050.85+332047.6) and four other previously known W UMa stars (although the previously reported periods for two of these four are shown to be incorrect). The period distribution of main sequence contact binaries shows a sharp cut-off at a lower limit of around 0.22d, but until now, very few systems were known close to this limit. These new candidates will therefore be important for understanding the evolution of low mass stars and to allow investigation of the cause of the period cut-off.

Norton, A J; Evans, T; West, R G; Wheatley, P J; Anderson, D R; Barros, S C C; Butters, O W; Cameron, A Collier; Christian, D J; Enoch, B; Faedi, F; Haswell, C A; Hellier, C; Holmes, S; Horne, K D; Lister, T A; Maxted, P F L; Parley, N; Pollacco, D; Simpson, E K; Skillen, I; Smalley, B; Southworth, J; Street, R A

2011-01-01T23:59:59.000Z

445

Determining the Porosity and Saturated Hydraulic Conductivity of Binary Mixtures  

SciTech Connect

Gravels and coarse sands make up significant portions of some environmentally important sediments, while the hydraulic properties of the sediments are typically obtained in the laboratory using only the fine fraction (e.g., <2 mm or 4.75 mm). Researchers have found that the content of gravel has significant impacts on the hydraulic properties of the bulk soils. Laboratory experiments were conducted to measure the porosity and the saturated hydraulic conductivity of binary mixtures with different fractions of coarse and fine components. We proposed a mixing-coefficient model to estimate the porosity and a power-averaging method to determine the effective particle diameter and further to predict the saturated hydraulic conductivity of binary mixtures. The proposed methods could well estimate the porosity and saturated hydraulic conductivity of the binary mixtures for the full range of gravel contents and was successfully applied to two data sets in the literature.

Zhang, Z. F.; Ward, Anderson L.; Keller, Jason M.

2009-09-27T23:59:59.000Z

446

Determining the Porosity and Saturated Hydraulic Conductivity of Binary Mixtures  

SciTech Connect

Gravels and coarse sands make up significant portions of some environmentally important sediments, while the hydraulic properties of the sediments are typically obtained in the laboratory using only the fine fraction (e.g., <2 mm or 4.75 mm). Researchers have found that the content of gravel has significant impacts on the hydraulic properties of the bulk soils. Laboratory experiments were conducted to measure the porosity and the saturated hydraulic conductivity of binary mixtures with different fractions of coarse and fine components. We proposed a mixing-coefficient model to estimate the porosity and a power-averaging method to determine the effective particle diameter and further to predict the saturated hydraulic conductivity of binary mixtures. The proposed methods could well estimate the porosity and saturated hydraulic conductivity of the binary mixtures for the full range of gravel contents and was successfully applied to two data sets in the literature.

Zhang, Z. F.; Ward, Anderson L.; Keller, Jason M.

2011-02-14T23:59:59.000Z

447

Mock LISA data challenge for the Galactic white dwarf binaries  

SciTech Connect

We present data analysis methods used in the detection and estimation of parameters of gravitational-wave signals from the white dwarf binaries in the mock LISA data challenge. Our main focus is on the analysis of challenge 3.1, where the gravitational-wave signals from more than 6x10{sup 7} Galactic binaries were added to the simulated Gaussian instrumental noise. The majority of the signals at low frequencies are not resolved individually. The confusion between the signals is strongly reduced at frequencies above 5 mHz. Our basic data analysis procedure is the maximum likelihood detection method. We filter the data through the template bank at the first step of the search, then we refine parameters using the Nelder-Mead algorithm, we remove the strongest signal found and we repeat the procedure. We detect reliably and estimate parameters accurately of more than ten thousand signals from white dwarf binaries.

Blaut, Arkadiusz; Babak, Stanislav; Krolak, Andrzej [Institute of Theoretical Physics, University of Wroclaw, Pl. Maxa Borna 9, Pl-50-204 Wroclaw (Poland); Albert Einstein Institute, Am Muchlenberg 1, D-14476 Golm (Germany); Institute of Mathematics, Polish Academy of Sciences, Sniadeckich 8, 00-950 Warsaw (Poland) and Andrzej Soltan Institute for Nuclear Studies, 05-400 Swierk-Otwock (Poland)

2010-03-15T23:59:59.000Z

448

Kinetics of pyroprocesses in ATW fuel cycles  

SciTech Connect

Accelerator-driven transmutation of waste (ATW) combines the technologies of accelerators and reactors to treat the nuclear waste problem. An ATW system uses a high-current accelerator to generate spallation neutrons to initiate the transmutation of actinides and select fission products in a subcritical nuclear assembly surrounding the target volume. For high burnup and efficient operation, an ATW system requires simple, reliable, and efficient fuel preparation and cleanup procedures to periodically remove {open_quotes}neutron poisons.{close_quotes} We have identified several fuel cycles based on pyroprocessing.

Li, Ning; Hu, Y.C.; Park, B.G. [Los Alamos National Lab., NM (United States)

1997-12-01T23:59:59.000Z

449

Rankine bottoming cycle safety analysis. Final report  

SciTech Connect

Vector Engineering Inc. conducted a safety and hazards analysis of three Rankine Bottoming Cycle Systems in public utility applications: a Thermo Electron system using Fluorinal-85 (a mixture of 85 mole % trifluoroethanol and 15 mole % water) as the working fluid; a Sundstrand system using toluene as the working fluid; and a Mechanical Technology system using steam and Freon-II as the working fluids. The properties of the working fluids considered are flammability, toxicity, and degradation, and the risks to both plant workers and the community at large are analyzed.

Lewandowski, G.A.

1980-02-01T23:59:59.000Z

450

New Regenerative Cycle for Vapor Compression Refrigeration  

SciTech Connect

The main objective of this project is to confirm on a well-instrumented prototype the theoretically derived claims of higher efficiency and coefficient of performance for geothermal heat pumps based on a new regenerative thermodynamic cycle as comparing to existing technology. In order to demonstrate the improved performance of the prototype, it will be compared to published parameters of commercially available geothermal heat pumps manufactured by US and foreign companies. Other objectives are to optimize the design parameters and to determine the economic viability of the new technology. Background (as stated in the proposal): The proposed technology closely relates to EERE mission by improving energy efficiency, bringing clean, reliable and affordable heating and cooling to the residential and commercial buildings and reducing greenhouse gases emission. It can provide the same amount of heating and cooling with considerably less use of electrical energy and consequently has a potential of reducing our nations dependence on foreign oil. The theoretical basis for the proposed thermodynamic cycle was previously developed and was originally called a dynamic equilibrium method. This theory considers the dynamic equations of state of the working fluid and proposes the methods for modification of T-S trajectories of adiabatic transformation by changing dynamic properties of gas, such as flow rate, speed and acceleration. The substance of this proposal is a thermodynamic cycle characterized by the regenerative use of the potential energy of two-phase flow expansion, which in traditional systems is lost in expansion valves. The essential new features of the process are: (1) The application of two-step throttling of the working fluid and two-step compression of its vapor phase. (2) Use of a compressor as the initial step compression and a jet device as a second step, where throttling and compression are combined. (3) Controlled ratio of a working fluid at the first and second step of compression. In the proposed system, the compressor compresses the vapor only to 50-60% of the final pressure, while the additional compression is provided by a jet device using internal potential energy of the working fluid flow. Therefore, the amount of mechanical energy required by a compressor is significantly reduced, resulting in the increase of efficiency (either COP or EER). The novelty of the cycle is in the equipment and in the way the multi-staging is accomplished. The anticipated result will be a new refrigeration system that requires less energy to accomplish a cooling task. The application of this technology will be for more efficient designs of: (1) Industrial chillers, (2) Refrigeration plants, (3) Heat pumps, (4) Gas Liquefaction plants, (5) Cryogenic systems.

Mark J. Bergander

2005-08-29T23:59:59.000Z

451

Future nuclear fuel cycles: prospects and challenges  

Science Conference Proceedings (OSTI)

Solvent extraction has played, from the early steps, a major role in the development of nuclear fuel cycle technologies, both in the front end and back end. Today's stakes in the field of energy enhance further than before the need for a sustainable management of nuclear materials. Recycling actinides appears as a main guideline, as much for saving resources as for minimizing the final waste impact, and many options can be considered. Strengthened by the important and outstanding performance of recent PUREX processing plants, solvent-extraction processes seem a privileged route to meet the new and challenging requirements of sustainable future nuclear systems. (author)

Boullis, Bernard [Commissariat a l'Energie Atomique, Direction de l'Energie Nucleaire, Centre de Saclay, 91191, Gif-sur-Yvette cedex (France)

2008-07-01T23:59:59.000Z

452

The promise of the Kalina cycle  

SciTech Connect

New technologies come and go, but the Rankine steam cycle goes on forever - or so it seemed until Alexander I. Kalina found a better way. Power engineers have known for years that heat can be generated more efficiently in a boiler if a mixture like ammonia and water is used as the working fluid, but no one had figured out how to condense the working fluid mixture at normal heat rejection temperatures. Kalina solved the problem, at least in theory. Now it must be determined whether his theory holds up in practice. In the Rankine steam cycle, water is used in a boiler to produce high-pressure vapor, which is expanded through a turbine to produce power. The expanded vapor is subsequently condensed and is pumped back to the boiler in liquid form to repeat the cycle. In the Kalina cycle, a mixture of approximately 70 percent ammonia and 30 percent water is used in a boiler to produce superheated vapor. The ammonia begins to boil first, having the lower boiling point. As the ammonia boils off, the concentration of ammonia in the remaining mixture decreases, and the mixture's boiling point increases. The boiling point keeps changing as the ammonia-water ratio changes, and the fluid mixture is gradually depleted. This leads to a better match in temperature profiles and permits more energy to be transferred to the working fluid. Overall, more of the available heat is utilized in vapor production than in the steam cycle, and more vapor means more power output from the turbine-generator.

Jurgen, R.K.

1986-04-01T23:59:59.000Z

453

Binary fish passage models for uniform and nonuniform flows  

Science Conference Proceedings (OSTI)

Binary fish passage models are considered by many fisheries managers to be the best 21 available practice for culvert inventory assessments and for fishway and barrier design. 22 Misunderstandings between different binary passage modeling approaches often arise, 23 however, due to differences in terminology, application and presentation. In this paper 24 one-dimensional binary fish passage models are reviewed and refined to clarify their 25 origins and applications. For uniform flow, a simple exhaustion-threshold (ET) model 26 equation is derived that predicts the flow speed threshold in a fishway or velocity barrier 27 that causes exhaustion at a given maximum distance of ascent. Flow speeds at or above 28 the threshold predict failure to pass (exclusion). Flow speeds below the threshold predict 29 passage. The binary ET model is therefore intuitive and easily applied to predict passage 30 or exclusion. It is also shown to be consistent with the distance-maximizing model. The 31 ET model s limitation to uniform flow is addressed by deriving a passage model that 32 accounts for nonuniform flow conditions more commonly found in the field, including 33 backwater profiles and drawdown curves. Comparison of these models with 34 experimental observations of volitional passage for Gambusia affinis in uniform and 35 nonuniform flows indicates reasonable prediction of binary outcomes (passage or 36 exclusion) if the flow speed is not near the threshold flow velocity. More research is 37 needed on fish behavior, passage strategies under nonuniform flow regimes and 38 stochastic methods that account for individual differences in swimming performance at or 39 near the threshold flow speed. Future experiments should track and measure ground 40 speeds of ascending fish to test nonuniform flow passage strategies and to improve model 41 predictions. Stochastic models, such as Monte-Carlo techniques, that account for 42 different passage performance among individuals and allow prediction of the percentage 43 of fish passing would be particularly useful near flow speed thresholds where binary 44 passage models are clearly limited.

Neary, Vincent S [ORNL

2011-01-01T23:59:59.000Z

454

COMPACT BINARY PROGENITORS OF SHORT GAMMA-RAY BURSTS  

SciTech Connect

In recent years, detailed observations and accurate numerical simulations have provided support to the idea that mergers of compact binaries containing either two neutron stars (NSs) or an NS and a black hole (BH) may constitute the central engine of short gamma-ray bursts (SGRBs). The merger of such compact binaries is expected to lead to the production of a spinning BH surrounded by an accreting torus. Several mechanisms can extract energy from this system and power the SGRBs. Here we connect observations and numerical simulations of compact binary mergers, and use the current sample of SGRBs with measured energies to constrain the mass of their powering tori. By comparing the masses of the tori with the results of fully general-relativistic simulations, we are able to infer the properties of the binary progenitors that yield SGRBs. By assuming a constant efficiency in converting torus mass into jet energy, {epsilon}{sub jet} = 10%, we find that most of the tori have masses smaller than 0.01 M{sub Sun }, favoring 'high-mass' binary NSs mergers, i.e., binaries with total masses {approx}> 1.5 the maximum mass of an isolated NS. This has important consequences for the gravitational wave signals that may be detected in association with SGRBs, since 'high-mass' systems do not form a long-lived hypermassive NS after the merger. While NS-BH systems cannot be excluded to be the engine of at least some of the SGRBs, the BH would need to have an initial spin of {approx}0.9 or higher.

Giacomazzo, Bruno [JILA, University of Colorado and National Institute of Standards and Technology, Boulder, CO 80309 (United States); Perna, Rosalba [JILA and Department of Astrophysical and Planetary Sciences, University of Colorado, Boulder, CO 80309 (United States); Rezzolla, Luciano [Max-Planck-Institut fuer Gravitationsphysik, Albert-Einstein-Institut, Potsdam D-14476 (Germany); Troja, Eleonora [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Lazzati, Davide [Department of Physics, NC State University, 2401 Stinson Drive, Raleigh, NC 27695-8202 (United States)

2013-01-10T23:59:59.000Z

455

On the spin-up/spin-down transitions in accreting X-ray binaries  

E-Print Network (OSTI)

Accreting X-Ray Binaries display a wide range of behaviours. Some of them are observed to spin up steadily, others to alternate between spin-up and spin-down states, sometimes superimposed on a longer trend of either spin up or spin down. Here we interpret this rich phenomenology within a new model of the disk-magnetosphere interaction. Our model, based on the simplest version of a purely material torque, accounts for the fact that, when a neutron star is in the propeller regime, a fraction of the ejected material does not receive enough energy to completely unbind, and hence falls back into the disk. We show that the presence of this feedback mass component causes the occurrence of multiple states available to the system, for a given, constant value of the mass accretion rate dot{M}_* from the companion star. If the angle chi of the magnetic dipole axis with respect to the perpendicular to the disk is larger than a critical value chi_crit, the system eventually settles in a cycle of spin-up/spin-down transitions for a constant value of dot{M}_* and independent of the initial conditions. No external perturbations are required to induce the torque reversals. The transition from spin up to spin down is often accompanied by a large drop in luminosity. The frequency range spanned in each cycle and the timescale for torque reversals depend on dot{M}_*, the magnetic field of the star, the magnetic colatitude chi, and the degree of elasticity regulating the magnetosphere-disk interaction. The critical angle chi_crit ranges from \\~25-30 deg for a completely elastic interaction to ~40-45 deg for a totally anelastic one. For chi ~< chi_crit, cycles are no longer possible and the long-term evolution of the system is a pure spin up. We specifically illustrate our model in the cases of the X-ray binaries GX 1+4 and 4U 1626-67.

Rosalba Perna; Enrico Bozzo; Luigi Stella

2005-11-09T23:59:59.000Z

456

Power Systems Life Cycle Analysis Tool (Power L-CAT).  

SciTech Connect

The Power Systems L-CAT is a high-level dynamic model that calculates levelized production costs and tracks environmental performance for a range of electricity generation technologies: natural gas combined cycle (using either imported (LNGCC) or domestic natural gas (NGCC)), integrated gasification combined cycle (IGCC), supercritical pulverized coal (SCPC), existing pulverized coal (EXPC), nuclear, and wind. All of the fossil fuel technologies also include an option for including carbon capture and sequestration technologies (CCS). The model allows for quick sensitivity analysis on key technical and financial assumptions, such as: capital, O&M, and fuel costs; interest rates; construction time; heat rates; taxes; depreciation; and capacity factors. The fossil fuel options are based on detailed life cycle analysis reports conducted by the National Energy Technology Laboratory (NETL). For each of these technologies, NETL's detailed LCAs include consideration of five stages associated with energy production: raw material acquisition (RMA), raw material transport (RMT), energy conversion facility (ECF), product transportation and distribution (PT&D), and end user electricity consumption. The goal of the NETL studies is to compare existing and future fossil fuel technology options using a cradle-to-grave analysis. The NETL reports consider constant dollar levelized cost of delivered electricity, total plant costs, greenhouse gas emissions, criteria air pollutants, mercury (Hg) and ammonia (NH3) emissions, water withdrawal and consumption, and land use (acreage).

Andruski, Joel; Drennen, Thomas E.

2011-01-01T23:59:59.000Z

457

Power Systems Life Cycle Analysis Tool (Power L-CAT).  

SciTech Connect

The Power Systems L-CAT is a high-level dynamic model that calculates levelized production costs and tracks environmental performance for a range of electricity generation technologies: natural gas combined cycle (using either imported (LNGCC) or domestic natural gas (NGCC)), integrated gasification combined cycle (IGCC), supercritical pulverized coal (SCPC), existing pulverized coal (EXPC), nuclear, and wind. All of the fossil fuel technologies also include an option for including carbon capture and sequestration technologies (CCS). The model allows for quick sensitivity analysis on key technical and financial assumptions, such as: capital, O&M, and fuel costs; interest rates; construction time; heat rates; taxes; depreciation; and capacity factors. The fossil fuel options are based on detailed life cycle analysis reports conducted by the National Energy Technology Laboratory (NETL). For each of these technologies, NETL's detailed LCAs include consideration of five stages associated with energy production: raw material acquisition (RMA), raw material transport (RMT), energy conversion facility (ECF), product transportation and distribution (PT&D), and end user electricity consumption. The goal of the NETL studies is to compare existing and future fossil fuel technology options using a cradle-to-grave analysis. The NETL reports consider constant dollar levelized cost of delivered electricity, total plant costs, greenhouse gas emissions, criteria air pollutants, mercury (Hg) and ammonia (NH3) emissions, water withdrawal and consumption, and land use (acreage).

Andruski, Joel; Drennen, Thomas E.

2011-01-01T23:59:59.000Z

458

Design and operation of a geopressurized-geothermal hybrid cycle power plant  

DOE Green Energy (OSTI)

Geopressured-geothermal resources can contribute significantly to the national electricity supply once technical and economic obstacles are overcome. Power plant performance under the harsh conditions of a geopressured resource was unproven, so a demonstration power plant was built and operated on the Pleasant Bayou geopressured resource in Texas. This one megawatt facility provided valuable data over a range of operating conditions. This power plant was a first-of-a-kind demonstration of the hybrid cycle concept. A hybrid cycle was used to take advantage of the fact that geopressured resources contain energy in more than one form -- hot water and natural gas. Studies have shown that hybrid cycles can yield thirty percent more power than stand-alone geothermal and fossil fuel power plants operating on the same resource. In the hybrid cycle at Pleasant Bayou, gas was burned in engines to generate electricity directly. Exhaust heat from the engines was then combined with heat from the brine to generate additional electricity in a binary cycle. Heat from the gas engine was available at high temperature, thus improving the efficiency of the binary portion of the hybrid cycle. Design power output was achieved, and 3445 MWh of power were sold to the local utility over the course of the test. Plant availability was 97.5% and the capacity factor was over 80% for the extended run at maximum power production. The hybrid cycle power plant demonstrated that there are no technical obstacles to electricity generation at Pleasant Bayou. 14 refs., 38 figs., 16 tabs.

Campbell, R.G.; Hattar, M.M.

1991-02-01T23:59:59.000Z

459

Interacting black holes on the brane: the seeding of binaries  

E-Print Network (OSTI)

We consider the evolution of sub-horizon-sized black holes which are formed during the high energy phase of the braneworld scenario. These black holes are long-lived due to modified evaporation and accretion of radiation during the radiation dominated era. We argue that an initial mass difference between any two neighbouring black holes is always amplified because of their exchange of energy with the surrounding radiation. We present a scheme of binary formation based on mass differences suggesting that such a scenario could lead to binaries with observable signatures.

A. S. Majumdar; A. Mehta; J. M. Luck

2003-11-06T23:59:59.000Z

460

Bounding the mass of the graviton using binary pulsar observations  

E-Print Network (OSTI)

The close agreement between the predictions of dynamical general relativity for the radiated power of a compact binary system and the observed orbital decay of the binary pulsars PSR B1913+16 and PSR B1534+12 allows us to bound the graviton mass to be less than 7.6 x 10^{-20} eV with 90% confidence. This bound is the first to be obtained from dynamic, as opposed to static-field, relativity. The resulting limit on the graviton mass is within two orders of magnitude of that from solar system measurements, and can be expected to improve with further observations.

Lee Samuel Finn; Patrick J. Sutton

2001-09-13T23:59:59.000Z