Powered by Deep Web Technologies
Note: This page contains sample records for the topic "binary cycle power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Binary Cycle Power Plant | Open Energy Information  

Open Energy Info (EERE)

Binary Cycle Power Plant Binary Cycle Power Plant (Redirected from Binary) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Binary Cycle Power Plant General List of Binary Plants Binary power plant process diagram - DOE EERE 2012 Binary cycle geothermal power generation plants differ from Dry Steam and Flash Steam systems in that the water or steam from the geothermal reservoir never comes in contact with the turbine/generator units. Low to moderately heated (below 400°F) geothermal fluid and a secondary (hence, "binary") fluid with a much lower boiling point that water pass through a heat exchanger. Heat from the geothermal fluid causes the secondary fluid to flash to vapor, which then drives the turbines and subsequently, the generators. Binary cycle power plants are closed-loop systems and virtually nothing

2

Binary Cycle Power Plant | Open Energy Information  

Open Energy Info (EERE)

Binary Cycle Power Plant Binary Cycle Power Plant (Redirected from Binary Cycle Power Plants) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Binary Cycle Power Plant General List of Binary Plants Binary power plant process diagram - DOE EERE 2012 Binary cycle geothermal power generation plants differ from Dry Steam and Flash Steam systems in that the water or steam from the geothermal reservoir never comes in contact with the turbine/generator units. Low to moderately heated (below 400°F) geothermal fluid and a secondary (hence, "binary") fluid with a much lower boiling point that water pass through a heat exchanger. Heat from the geothermal fluid causes the secondary fluid to flash to vapor, which then drives the turbines and subsequently, the generators.

3

Binary Cycle Power Plant | Open Energy Information  

Open Energy Info (EERE)

GEOTHERMAL ENERGYGeothermal Home GEOTHERMAL ENERGYGeothermal Home Binary Cycle Power Plant General List of Binary Plants Binary power plant process diagram - DOE EERE 2012 Binary cycle geothermal power generation plants differ from Dry Steam and Flash Steam systems in that the water or steam from the geothermal reservoir never comes in contact with the turbine/generator units. Low to moderately heated (below 400°F) geothermal fluid and a secondary (hence, "binary") fluid with a much lower boiling point that water pass through a heat exchanger. Heat from the geothermal fluid causes the secondary fluid to flash to vapor, which then drives the turbines and subsequently, the generators. Binary cycle power plants are closed-loop systems and virtually nothing (except water vapor) is emitted to the atmosphere. Resources below 400°F

4

A Flashing Binary Combined Cycle For Geothermal Power Generation | Open  

Open Energy Info (EERE)

Flashing Binary Combined Cycle For Geothermal Power Generation Flashing Binary Combined Cycle For Geothermal Power Generation Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: A Flashing Binary Combined Cycle For Geothermal Power Generation Details Activities (0) Areas (0) Regions (0) Abstract: The performance of a flashing binary combined cycle for geothermal power generation is analysed. It is proposed to utilize hot residual brine from the separator in flashing-type plants to run a binary cycle, thereby producing incremental power. Parametric variations were carried out to determine the optimum performance of the combined cycle. Comparative evaluation with the simple flashing plant was made to assess its thermodynamic potential and economic viability. Results of the analyses indicate that the combined cycle can generate 13-28% more power than the

5

Heber binary-cycle geothermal demonstration power plant: Startup and low-power testing: Special report  

SciTech Connect (OSTI)

In 1974 the geothermal industry recognized the need for binary cycle technology in the development of moderate temperature geothermal resources. The electric utilities further expressed a need to demonstrate the technology on a scale representative of commercial operation in order to resolve issues of performance cost and environmental acceptability, and to confirm the maturity of the technology. In response to the needs, EPRI conducted feasibility studies and a series of field experiments intended to culminate with the construction and demonstration of a nominal 50 MWe binary cycle power plant in cooperation with other interested organizations. The early work by EPRI, the Department of Energy and the San Diego Gas and Electric Company led to the formation of the present multi-sponsored project in late 1980. Construction of the demonstration plant was completed in June 1985 at the Heber geothermal field in the Imperial Valley of Southern California. The plant is rated at 46 MWe and converts the thermal energy from 360 F (182 C) geothermal fluid to electricity. Start-up of the plant was completed in December 1985 and the first extended run at low power was completed in June 1986. The results from this run and other tests associated with the plant and the geothermal production facilities during this period are contained in this report. During this period, the brine supply was lower than expected and the reinjection pressure higher than expected. The power cycle performed essentially as projected for the load levels at which the plant was tested.

Berning, J.; Bigger, J.E.; Fishbaugher, J.

1987-10-01T23:59:59.000Z

6

Heber Binary-Cycle Geothermal Demonstration Power Plant: Half-load testing, performance, and thermodynamics  

SciTech Connect (OSTI)

This report describes the project's activities during the period July 1986 through June 1987; and includes results of two annual outages and eight months of low power testing and operating. The Heber Binary-Cycle Geothermal Demonstration Power Plant is a 45 MWe electric power generating plant in the Imperial Valley of Southern California. The purpose of the Heber Binary Project is to demonstrate the capability of binary-cycle technology to economically utilize moderate-temperature (300/degree/F to 410/degree/F (150/degree/C to 210/degree/C)) geothermal resources for electric power production. The main objective of the project is to show performance, cost, and environmental acceptability of binary-cycle technology. Experience with demonstration plant and heat supply facilities is described. Details of equipment problems are included. Heat supply shortfall prevented the planned ascent to full power, but binary-cycle experience was favorable at power levels up to 50% of design. 68 refs., 80 figs., 34 tabs.

Berning, J.L.; Fishbaugher, J.R.

1988-08-01T23:59:59.000Z

7

Raft River binary-cycle geothermal pilot power plant final report  

SciTech Connect (OSTI)

The design and performance of a 5-MW(e) binary-cycle pilot power plant that used a moderate-temperature hydrothermal resource, with isobutane as a working fluid, are examined. Operating problems experienced and solutions found are discussed and recommendations are made for improvements to future power plant designs. The plant and individual systems are analyzed for design specification versus actual performance figures.

Bliem, C.J.; Walrath, L.F.

1983-04-01T23:59:59.000Z

8

Binary Cycle Geothermal Demonstration Power Plant New Developments  

SciTech Connect (OSTI)

San Diego Gas and Electric Company (SDG and E) has been associated with geothermal exploration and development in the Imperial Valley since 1971. SDG and E currently has interests in the four geothermal reservoirs shown. Major SDG and E activities have included drilling and flow testing geothermal exploration wells, feasibility and process flow studies, small-scale field testing of power processes and equipment, and pilot plant scale test facility design, construction and operation. Supporting activities have included geothermal leasing, acquisition of land and water rights, pursual of a major new transmission line to carry Imperial Valley geothermal and other sources of power to San Diego, and support of Magma Electric's 10 MW East Mesa Geothermal Power Plant.

Lacy, Robert G.; Jacobson, William O.

1980-12-01T23:59:59.000Z

9

Next Generation Geothermal Power Plants (NGGPP) process data for binary cycle plants  

SciTech Connect (OSTI)

The Next Generation Geothermal Power Plants (NGGPP) study provides the firm estimates - in the public domain - of the cost and performance of U.S. geothermal systems and their main components in the early 1990s. The study was funded by the U.S. Department of Energy Geothermal Research Program, managed for DOE by Evan Hughes of the Electric Power Research Institute, Palo Alto, CA, and conducted by John Brugman and others of the CE Holt Consulting Firm, Pasadena, CA. The printed NGGPP reports contain detailed data on the cost and performance for the flash steam cycles that were characterized, but not for the binary cycles. The nine Tables in this document are the detailed data sheets on cost and performance for the air cooled binary systems that were studied in the NGGPP.

Not Available

1996-10-02T23:59:59.000Z

10

High-potential Working Fluids for Next Generation Binary Cycle Geothermal Power Plants  

SciTech Connect (OSTI)

A thermo-economic model has been built and validated for prediction of project economics of Enhanced Geothermal Projects. The thermo-economic model calculates and iteratively optimizes the LCOE (levelized cost of electricity) for a prospective EGS (Enhanced Geothermal) site. It takes into account the local subsurface temperature gradient, the cost of drilling and reservoir creation, stimulation and power plant configuration. It calculates and optimizes the power plant configuration vs. well depth. Thus outputs from the model include optimal well depth and power plant configuration for the lowest LCOE. The main focus of this final report was to experimentally validate the thermodynamic properties that formed the basis of the thermo-economic model built in Phase 2, and thus build confidence that the predictions of the model could be used reliably for process downselection and preliminary design at a given set of geothermal (and/or waste heat) boundary conditions. The fluid and cycle downselected was based on a new proprietary fluid from a vendor in a supercritical ORC cycle at a resource condition of 200?C inlet temperature. The team devised and executed a series of experiments to prove the suitability of the new fluid in realistic ORC cycle conditions. Furthermore, the team performed a preliminary design study for a MW-scale turbo expander that would be used for a supercritical ORC cycle with this new fluid. The following summarizes the main findings in the investigative campaign that was undertaken: 1. Chemical compatibility of the new fluid with common seal/gasket/Oring materials was found to be problematic. Neoprene, Viton, and silicone materials were found to be incompatible, suffering chemical decomposition, swelling and/or compression set issues. Of the materials tested, only TEFLON was found to be compatible under actual ORC temperature and pressure conditions. 2. Thermal stability of the new fluid at 200?C and 40 bar was found to be acceptable after 399 hours of exposure?only 3% of the initial charge degraded into by products. The main degradation products being an isomer and a dimer. 3. In a comparative experiment between R245fa and the new fluid under subcritical conditions, it was found that the new fluid operated at 1 bar lower than R245fa for the same power output, which was also predicted in the Aspen HSYSY model. As a drop-in replacement fluid for R245fa, this new fluid was found to be at least as good as R245fa in terms of performance and stability. Further optimization of the subcritical cycle may lead to a significant improvement in performance for the new fluid. 4. For supercritical conditions, the experiment found a good match between the measured and model predicted state point property data and duties from the energy balance. The largest percent differences occurred with densities and evaporator duty (see Figure 78). It is therefore reasonable to conclude that the state point model was experimentally validated with a realistic ORC system. 5. The team also undertook a preliminary turbo-expander design study for a supercritical ORC cycle with the new working fluid. Variants of radial and axial turbo expander geometries went through preliminary design and rough costing. It was found that at 15MWe or higher power rating, a multi-stage axial turbine is most suitable providing the best performance and cost. However, at lower power ratings in the 5MWe range, the expander technology to be chosen depends on the application of the power block. For EGS power blocks, it is most optimal to use multi-stage axial machines. In conclusion, the predictions of the LCOE model that showed a supercritical cycle based on the new fluid to be most advantageous for geothermal power production at a resource temperature of ~ 200C have been experimentally validated. It was found that the cycle based on the new fluid is lower in LCOE and higher in net power output (for the same boundary conditions). The project, therefore has found a new optimal configuration for low temperature geothermal power production in the form of a su

Zia, Jalal [GE Global Research; Sevincer, Edip; Chen, Huijuan; Hardy, Ajilli; Wickersham, Paul; Kalra, Chiranjeev; Laursen, Anna Lis; Vandeputte, Thomas

2013-06-29T23:59:59.000Z

11

High-potential Working Fluids for Next Generation Binary Cycle Geothermal Power Plants  

Broader source: Energy.gov [DOE]

DOE Geothermal Peer Review 2010 - Presentation. Project objective: Find optimized working fluid/advanced cycle combination for EGS applications.

12

Geothermal Binary Power Generation System Using Unutilized Energy  

Science Journals Connector (OSTI)

Binary power generating system is based on the Rankine cycle with geothermal fluid as heating source and low boiling ... can generate electric power from low temperature (energy) source. Employing the binary powe...

Hiroaki Shibata; Hiroshi Oyama

2007-01-01T23:59:59.000Z

13

Bubble-Point Measurements of Eight Binary Mixtures for Organic Rankine Cycle Applications  

Science Journals Connector (OSTI)

Bubble-Point Measurements of Eight Binary Mixtures for Organic Rankine Cycle Applications ... These mixtures are of interest as working fluids in organic Rankine power cycles. ...

Stephanie L. Outcalt; Eric W. Lemmon

2013-05-24T23:59:59.000Z

14

Beowawe Binary Bottoming Cycle | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

generation from the nonconventional geothermal resources of 205F by extracting waste heat from the brine to power a binary power plant. lowmcdonaldbeowawebinarybottomingc...

15

Advanced binary cycles: Optimum working fluids  

SciTech Connect (OSTI)

A computer model (Cycle Analysis Simulation Tool, CAST) and a methodology have been developed to perform value analysis for small, low- to moderate-temperature binary geothermal power plants. The value analysis method allows for incremental changes in the levelized electricity cost (LEC) to be determined between a baseline plant and a modified plant. Thermodynamic cycle analyses and component sizing are carried out in the model followed by economic analysis which provides LEC results. The emphasis of the present work is on evaluating the effect of mixed working fluids instead of pure fluids on the LEC of a geothermal binary plant that uses a simple Organic Rankine Cycle. Four resources were studied spanning the range of 265 F to 375 F. A variety of isobutane and propane based mixtures, in addition to pure fluids, were used as working fluids. This study shows that the use of propane mixtures at a 265 F resource can reduce the LEC by 24% when compared to a base case value that utilizes commercial isobutane as its working fluid. The cost savings drop to 6% for a 375 F resource, where an isobutane mixture is favored. Supercritical cycles were found to have the lowest cost at all resources.

Gawlik, K.; Hassani, V. [National Renewable Energy Lab., Golden, CO (United States)

1997-12-31T23:59:59.000Z

16

Geothermal power plant R and D: an analysis of cost-performance tradeoffs and the Heber Binary-Cycle Demonstration Project  

SciTech Connect (OSTI)

A study of advancements in power plant designs for use at geothermal resources in the low to moderate (300 to 400F) temperature range is reported. In 3 case studies, the benefits of R and D to achieve these advancements are evaluated in terms of expected increases in installed geothermal generating capacity over the next 2 decades. A parametric sensitivity study is discussed which analyzes differential power development for combinations of power plant efficiency and capitol cost. Affordable tradeoffs between plant performance and capital costs are illustrated. The independent review and analysis of the expected costs of construction, operation and maintenance of the Heber Binary Cycle Geothermal Power Demonstration Plant are described. Included in this assessment is an analysis of each of the major cost components of the project, including (1) construction cost, (2) well field development costs, (3) fluid purchase costs, and (4) well field and power plant operation and maintenance costs. The total cost of power generated from the Heber Plant (in terms of mills per kWh) is then compared to the cost of power from alternative fossil-fueled base load units. Also evaluated are the provisions of both: (a) the Cooperative Agreement between the federal government and San Diego Gas and Electric (SDG and E); and (b) the Geothermal Heat Sales Contract with Union Oil Company.

Cassel, T.A.V.; Amundsen, C.B.; Blair, P.D.

1983-06-30T23:59:59.000Z

17

Power Plant Cycling Costs  

SciTech Connect (OSTI)

This report provides a detailed review of the most up to date data available on power plant cycling costs. The primary objective of this report is to increase awareness of power plant cycling cost, the use of these costs in renewable integration studies and to stimulate debate between policymakers, system dispatchers, plant personnel and power utilities.

Kumar, N.; Besuner, P.; Lefton, S.; Agan, D.; Hilleman, D.

2012-07-01T23:59:59.000Z

18

Mastering the pilot domestic binary combined-cycle plants  

Science Journals Connector (OSTI)

Results are presented from mastering the pilot binary combined-cycle plants of Type PGU-450T (installed at...

Yu. A. Radin

2006-07-01T23:59:59.000Z

19

Power Plant Cycling Costs  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Power Plant Cycling Costs Power Plant Cycling Costs April 2012 N. Kumar, P. Besuner, S. Lefton, D. Agan, and D. Hilleman Intertek APTECH Sunnyvale, California NREL Technical Monitor: Debra Lew Subcontract Report NREL/SR-5500-55433 July 2012 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 15013 Denver West Parkway Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 Power Plant Cycling Costs April 2012 N. Kumar, P. Besuner, S. Lefton, D. Agan, and D. Hilleman Intertek APTECH Sunnyvale, California NREL Technical Monitor: Debra Lew Prepared under Subcontract No. NFT-1-11325-01

20

Dixie Valley Bottoming Binary Cycle | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

objective: Prove the technical and economic feasibility of utilizing the available unused heat to generate additional electric power from a binary power plant from low-temperature...

Note: This page contains sample records for the topic "binary cycle power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Supersaturated Turbine Expansions for Binary Geothermal Power Plants  

SciTech Connect (OSTI)

The Heat Cycle Research project is developing the technology base that will permit a much greater utilization of the moderate-temperature, liquid-dominated geothermal resources, particularly for the generation of electrical power. The emphasis in the project has been the improvement of the performance of binary power cycles. The investigations have been examining concepts projected to improve the brine utilization by 20% relative to a ''Heber-type'' binary plant; these investigations are nearing completion. preparations are currently underway in the project to conduct field investigations of the condensation behavior of supersaturated turbine expansions. These investigations will evaluate whether the projected additional 8% to 10% improvement in brine utilization can be realized by allowing these expansions. Future program efforts will focus on the problems associated with heat rejection and on the transfer of the technology being developed to industry.

Bliem, C.J.; Mines, G.L.

1992-03-24T23:59:59.000Z

22

Dixie Valley Binary Cycle Production Data 2013 YTD  

SciTech Connect (OSTI)

Proving the technical and economic feasibility of utilizing the available unused heat to generate additional electric power from a binary power plant from the low-temperature brine at the Dixie Valley Geothermal Power Plant. Monthly data for Jan 2013-September 2013

Lee, Vitaly

2013-10-18T23:59:59.000Z

23

Life-Cycle Analysis Results of Geothermal Systems in Comparison to Other Power Systems  

Broader source: Energy.gov [DOE]

A life-cycle energy and greenhouse gas emissions analysis has been conducted with Argonne National Laboratory's GREET model for geothermal power-generating technologies, including enhanced geothermal, hydrothermal flash, and hydrothermal binary technologies.

24

Efficiency combined cycle power plant  

SciTech Connect (OSTI)

This patent describes a method of operating a combined cycle power plant. It comprises: flowing exhaust gas from a combustion turbine through a heat recovery steam generator (HRSG); flowing feed water through an economizer section of the HRSG at a flow rate and providing heated feed water; flowing a first portion of the heated feed water through an evaporator section of the HRSG and producing saturated steam at a production rate, the flow rate of the feed water through the economizer section being greater than required to sustain the production rate of steam in the evaporator section; flowing fuel for the turbine through a heat exchanger; and, flowing a second portion of the heated feed water provided by the economizer section through the heat exchanger then to an inlet of the economizer section, thereby heating the fuel flowing through the heat exchanger.

Pavel, J.; Meyers, G.A.; Baldwin, T.S.

1990-06-12T23:59:59.000Z

25

Coal-Fuelled Combined Cycle Power Plants  

Science Journals Connector (OSTI)

Combined cycle power plant, when used as a generic ... which converts heat into mechanical energy in a combined gas and steam turbine process. Combined cycle processes with coal gasification or coal combustion .....

Dr. Hartmut Spliethoff

2010-01-01T23:59:59.000Z

26

Variable pressure power cycle and control system  

DOE Patents [OSTI]

A variable pressure power cycle and control system that is adjustable to a variable heat source is disclosed. The power cycle adjusts itself to the heat source so that a minimal temperature difference is maintained between the heat source fluid and the power cycle working fluid, thereby substantially matching the thermodynamic envelope of the power cycle to the thermodynamic envelope of the heat source. Adjustments are made by sensing the inlet temperature of the heat source fluid and then setting a superheated vapor temperature and pressure to achieve a minimum temperature difference between the heat source fluid and the working fluid.

Goldsberry, Fred L. (Spring, TX)

1984-11-27T23:59:59.000Z

27

Project Profile: Brayton Cycle Baseload Power Tower  

Broader source: Energy.gov [DOE]

Wilson Solarpower, under the Baseload CSP FOA, is validating a proposed utility-scale, Brayton cycle baseload power tower system with a capacity factor of at least 75% and LCOE of $0.09/kWh.

28

Nuclear power and the fuel cycle  

Science Journals Connector (OSTI)

Due to rising energy costs and climate concerns, nuclear power is once again being seriously considered as an energy source by several countries. This revival of nuclear power is closely linked with the choice of fuel cycles available, and the intentions of countries pursuing nuclear power are likely to be, correctly or incorrectly, judged by the choice of fuel cycle they make. The needs and constraints of the emerging nuclear powers may, however, be different from the expectations of a segment of the world community. If this potential growth in nuclear power is not to be stifled, it is imperative that a climate of mutual trust is developed respecting every country's right to develop peaceful uses of nuclear power without leading to an atmosphere of mistrust regarding the 'intentions' behind the pursuit of peaceful nuclear power. While it will be a near impossibility to completely decouple the peaceful uses of nuclear power from its more destructive applications, it is important that aspiring countries develop a clear and transparent process. Technology-supplier countries also need to develop and follow clear and consistent treaties and national policies, avoiding ad hoc country-specific arrangements. We review here the state of interest in nuclear power and current policies and discuss fuel cycle options that may pave the way for the future growth of nuclear power.

Rizwan-uddin

2010-01-01T23:59:59.000Z

29

Life Cycle Analysis: Integrated Gasification Combined Cycle (IGCC) Power Plant  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Life Cycle Analysis: Integrated Life Cycle Analysis: Integrated Gasification Combined Cycle (IGCC) Power Plant Revision 2, March 2012 DOE/NETL-2012/1551 Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference therein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or

30

Combined cycle power plant incorporating coal gasification  

DOE Patents [OSTI]

A combined cycle power plant incorporating a coal gasifier as the energy source. The gases leaving the coal gasifier pass through a liquid couplant heat exchanger before being used to drive a gas turbine. The exhaust gases of the gas turbine are used to generate both high pressure and low pressure steam for driving a steam turbine, before being exhausted to the atmosphere.

Liljedahl, Gregory N. (Tariffville, CT); Moffat, Bruce K. (Simsbury, CT)

1981-01-01T23:59:59.000Z

31

High-power multi-stage Rankine cycles  

SciTech Connect (OSTI)

This paper presents an analysis of the multi-stage Rankine cycle aiming at optimizing the power output from low-temperature heat sources such as geothermal or waste heat. A design methodology based on finite-time thermodynamics and the maximum power concept is used in which the shape and the power output of the maximum power cycle are identified and utilized to compare and evaluate different Rankine cycle configurations. The maximum power cycle provides the upper-limit power obtained from any thermodynamic cycle for specified boundary conditions and heat exchanger characteristics. It also provides a useful tool for studying power cycles and forms the basis for making design improvements.

Ibrahim, O.M. [Univ. of Rhode Island, Kingston, RI (United States). Mechanical Engineering Dept.; Klein, S.A. [Univ. of Wisconsin, Madison, WI (United States). Mechanical Engineering Dept.

1995-09-01T23:59:59.000Z

32

Single stage rankine and cycle power plant  

SciTech Connect (OSTI)

The specification describes a Rankine cycle power plant of the single stage type energized by gasified freon, the latter being derived from freon in the liquid state in a boiler provided in the form of a radio frequency heating cell adapted at low energy input to effect a rapid change of state from liquid freon at a given temperature and pressure to gaseous freon of relatively large volume, thereby to drive a Rankine cycle type of engine recognized in the prior art as a steam engine type of engine of the piston or turbine type.

Closs, J.J.

1981-10-13T23:59:59.000Z

33

The thermodynamic efficiency of the condensing process circuits of binary combined-cycle plants with gas-assisted heating of cycle air  

Science Journals Connector (OSTI)

The thermal efficiencies of condensing-type circuits of binary combined-cycle plants containing one, two, and three ... gas turbine unit, and with preheating of cycle air are analyzed by way of comparison ... ini...

V. P. Kovalevskii

2011-09-01T23:59:59.000Z

34

SunShot Initiative: Brayton Cycle Baseload Power Tower  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Brayton Cycle Baseload Power Brayton Cycle Baseload Power Tower to someone by E-mail Share SunShot Initiative: Brayton Cycle Baseload Power Tower on Facebook Tweet about SunShot Initiative: Brayton Cycle Baseload Power Tower on Twitter Bookmark SunShot Initiative: Brayton Cycle Baseload Power Tower on Google Bookmark SunShot Initiative: Brayton Cycle Baseload Power Tower on Delicious Rank SunShot Initiative: Brayton Cycle Baseload Power Tower on Digg Find More places to share SunShot Initiative: Brayton Cycle Baseload Power Tower on AddThis.com... Concentrating Solar Power Systems Components Competitive Awards CSP Research & Development Thermal Storage CSP Recovery Act Baseload CSP SunShot Multidisciplinary University Research Initiative CSP Heat Integration for Baseload Renewable Energy Deployment

35

Parabolic Trough Organic Rankine Cycle Power Plant  

SciTech Connect (OSTI)

Arizona Public Service (APS) is required to generate a portion of its electricity from solar resources in order to satisfy its obligation under the Arizona Environmental Portfolio Standard (EPS). In recent years, APS has installed and operates over 4.5 MWe of fixed, tracking, and concentrating photovoltaic systems to help meet the solar portion of this obligation and to develop an understanding of which solar technologies provide the best cost and performance to meet utility needs. During FY04, APS began construction of a 1-MWe parabolic trough concentrating solar power plant. This plant represents the first parabolic trough plant to begin construction since 1991. The plant will also be the first commercial deployment of the Solargenix parabolic trough collector technology developed under contract to the National Renewable Energy Laboratory (NREL). The plant will use an organic Rankine cycle (ORC) power plant, provided by Ormat. The ORC power plant is much simpler than a conventional steam Rankine cycle power plant and allows unattended operation of the facility.

Canada, S.; Cohen, G.; Cable, R.; Brosseau, D.; Price, H.

2005-01-01T23:59:59.000Z

36

Natural Gas Combined Cycle Power Plant Integrated to Capture Plant  

Science Journals Connector (OSTI)

Natural Gas Combined Cycle Power Plant Integrated to Capture Plant ... A natural gas combined cycle (NGCC) power plant with capacity of about 430 MW integrated to a chemical solvent absorber/stripping capture plant is investigated. ... The natural gas combined cycle (NGCC) is an advanced power generation technology that improves the fuel efficiency of natural gas. ...

Mehdi Karimi; Magne Hillestad; Hallvard F. Svendsen

2012-01-19T23:59:59.000Z

37

Life-cycle analysis results of geothermal systems in comparison to other power systems.  

SciTech Connect (OSTI)

A life-cycle energy and greenhouse gas emissions analysis has been conducted with Argonne National Laboratory's expanded Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) model for geothermal power-generating technologies, including enhanced geothermal, hydrothermal flash, and hydrothermal binary technologies. As a basis of comparison, a similar analysis has been conducted for other power-generating systems, including coal, natural gas combined cycle, nuclear, hydroelectric, wind, photovoltaic, and biomass by expanding the GREET model to include power plant construction for these latter systems with literature data. In this way, the GREET model has been expanded to include plant construction, as well as the usual fuel production and consumption stages of power plant life cycles. For the plant construction phase, on a per-megawatt (MW) output basis, conventional power plants in general are found to require less steel and concrete than renewable power systems. With the exception of the concrete requirements for gravity dam hydroelectric, enhanced geothermal and hydrothermal binary used more of these materials per MW than other renewable power-generation systems. Energy and greenhouse gas (GHG) ratios for the infrastructure and other life-cycle stages have also been developed in this study per kilowatt-hour (kWh) of electricity output by taking into account both plant capacity and plant lifetime. Generally, energy burdens per energy output associated with plant infrastructure are higher for renewable systems than conventional ones. GHG emissions per kWh of electricity output for plant construction follow a similar trend. Although some of the renewable systems have GHG emissions during plant operation, they are much smaller than those emitted by fossil fuel thermoelectric systems. Binary geothermal systems have virtually insignificant GHG emissions compared to fossil systems. Taking into account plant construction and operation, the GREET model shows that fossil thermal plants have fossil energy use and GHG emissions per kWh of electricity output about one order of magnitude higher than renewable power systems, including geothermal power.

Sullivan, J. L.; Clark, C. E.; Han, J.; Wang, M.; Energy Systems

2010-10-11T23:59:59.000Z

38

NREL: Energy Analysis - Concentrating Solar Power Results - Life Cycle  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Concentrating Solar Power Results - Life Cycle Assessment Harmonization Concentrating Solar Power Results - Life Cycle Assessment Harmonization Life Cycle Greenhouse Gas Emissions from Concentrating Solar Power (Factsheet) Cover of the Life Cycle Greenhouse Gas Emissions from Concentrating Solar Power Download the Factsheet Flowchart that shows the life cycle stages for concentrating solar power systems. For help reading this chart, please contact the webmaster. Figure 1. Process flow diagram illustrating the life cycle stages for concentrating solar power (CSP) systems. The yellow box defined by the grey line shows the systems boundaries assumed in harmonization. Enlarge image NREL developed and applied a systematic approach to review literature on life cycle assessments of concentrating solar power (CSP) systems, identify

39

Terra-Gen Power and TAS Celebrate Innovative Binary Geothermal Technology |  

Open Energy Info (EERE)

and TAS Celebrate Innovative Binary Geothermal Technology and TAS Celebrate Innovative Binary Geothermal Technology Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Terra-Gen Power and TAS Celebrate Innovative Binary Geothermal Technology Abstract N/A Authors Terra-Gen Power and LLC Published Publisher Not Provided, Date Not Provided DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Terra-Gen Power and TAS Celebrate Innovative Binary Geothermal Technology Citation Terra-Gen Power, LLC. Terra-Gen Power and TAS Celebrate Innovative Binary Geothermal Technology [Internet]. [updated 2011;cited 2011]. Available from: http://www.terra-genpower.com/News/TERRA-GEN-POWER-AND-TAS-CELEBRATE-INNOVATIVE-BINAR.aspx Retrieved from "http://en.openei.org/w/index.php?title=Terra-Gen_Power_and_TAS_Celebrate_Innovative_Binary_Geothermal_Technology&oldid=682514

40

Potassium Rankine cycle nuclear power systems for spacecraft and lunar-mass surface power  

SciTech Connect (OSTI)

The potassium Rankine cycle has high potential for application to nuclear power systems for spacecraft and surface power on the moon and Mars. A substantial effort on the development of Rankine cycle space power systems was carried out in the 1960`s. That effort is summarized and the status of the technology today is presented. Space power systems coupling Rankine cycle power conversion to both the SP-100 reactor and thermionic reactors as a combined power cycle are described in the paper.

Holcomb, R.S.

1992-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "binary cycle power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

SUPERCRITICAL STEAM CYCLE FOR NUCLEAR POWER PLANT  

SciTech Connect (OSTI)

Revolutionary improvement of the nuclear plant safety and economy with light water reactors can be reached with the application of micro-fuel elements (MFE) directly cooled by a supercritical pressure light-water coolant-moderator. There are considerable advantages of the MFE as compared with the traditional fuel rods, such as: Using supercritical and superheated steam considerably increases the thermal efficiency of the Rankine cycle up to 44-45%. Strong negative coolant and void reactivity coefficients with a very short thermal delay time allow the reactor to shutdown quickly in the event of a reactivity or power excursion. Core melting and the creation of corium during severe accidents are impossible. The heat transfer surface area is larger by several orders of magnitude due to the small spherical dimensions of the MFE. The larger heat exchange surface significantly simplifies residual heat removal by natural convection and radiation from the core to a subsequent passive system of heat removal.

Tsiklauri, Georgi V.; Talbert, Robert J.; Schmitt, Bruce E.; Filippov, Gennady A.; Bogojavlensky, Roald G.; Grishanin, Evgeny I.

2005-07-01T23:59:59.000Z

42

The influence of lateral foot displacement on cycling efficiency and maximal cycling power.  

E-Print Network [OSTI]

??HARPER, SARA A., M.S., May 2014Exercise PhysiologyTHE INFLUENCE OF LATERAL PEDAL DISPLACEMENT ON CYCLING EFFICIENCY AND MAXIMAL CYCLING POWER (27 pp.)Director of Thesis: John McDaniel, (more)

Harper, Sara Anne

2014-01-01T23:59:59.000Z

43

Power Systems Life Cycle Analysis Tool (Power L-CAT).  

SciTech Connect (OSTI)

The Power Systems L-CAT is a high-level dynamic model that calculates levelized production costs and tracks environmental performance for a range of electricity generation technologies: natural gas combined cycle (using either imported (LNGCC) or domestic natural gas (NGCC)), integrated gasification combined cycle (IGCC), supercritical pulverized coal (SCPC), existing pulverized coal (EXPC), nuclear, and wind. All of the fossil fuel technologies also include an option for including carbon capture and sequestration technologies (CCS). The model allows for quick sensitivity analysis on key technical and financial assumptions, such as: capital, O&M, and fuel costs; interest rates; construction time; heat rates; taxes; depreciation; and capacity factors. The fossil fuel options are based on detailed life cycle analysis reports conducted by the National Energy Technology Laboratory (NETL). For each of these technologies, NETL's detailed LCAs include consideration of five stages associated with energy production: raw material acquisition (RMA), raw material transport (RMT), energy conversion facility (ECF), product transportation and distribution (PT&D), and end user electricity consumption. The goal of the NETL studies is to compare existing and future fossil fuel technology options using a cradle-to-grave analysis. The NETL reports consider constant dollar levelized cost of delivered electricity, total plant costs, greenhouse gas emissions, criteria air pollutants, mercury (Hg) and ammonia (NH3) emissions, water withdrawal and consumption, and land use (acreage).

Andruski, Joel; Drennen, Thomas E.

2011-01-01T23:59:59.000Z

44

A Revolutionary Hybrid Thermodynamic Cycle for Bianary Geothermal Power  

Broader source: Energy.gov [DOE]

A Revolutionary Hybrid Thermodynamic Cycle for Bianary Geothermal Power presentation at the April 2013 peer review meeting held in Denver, Colorado.

45

Insights for Quantitative Risk Assessment of Combined Cycle Power Plants  

Science Journals Connector (OSTI)

Traditional techniques of risk analysis have been fitted for the application to combined cycle power plants and the results of several...

Gabriele Ballocco; Andrea Carpignano

2004-01-01T23:59:59.000Z

46

August 17, 2000 ARIES: Fusion Power Core and Power Cycle Engineering/ARR 1  

E-Print Network [OSTI]

translates in lower COE and lower heat load · Brayton cycle is best near-term possibility of power conversion heat generation profiles used for thermal-hydraulic analyses #12;August 17, 2000 ARIES: Fusion PowerAugust 17, 2000 ARIES: Fusion Power Core and Power Cycle Engineering/ARR 1 ARIES: Fusion Power Core

Raffray, A. René

47

Experience with organic Rankine cycles in heat recovery power plants  

SciTech Connect (OSTI)

Over the last 30 years, organic Rankine cycles (ORC) have been increasingly employed to produce power from various heat sources when other alternatives were either technically not feasible or economical. These power plants have logged a total of over 100 million turbine hours of experience demonstrating the maturity and field proven technology of the ORC cycle. The cycle is well adapted to low to moderate temperature heat sources such as waste heat from industrial plants and is widely used to recover energy from geothermal resources. The above cycle technology is well established and applicable to heat recovery of medium size gas turbines and offers significant advantages over conventional steam bottoming cycles.

Bronicki, L.Y.; Elovic, A.; Rettger, P.

1996-11-01T23:59:59.000Z

48

NREL: Energy Analysis - Nuclear Power Results - Life Cycle Assessment  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Nuclear Power Results - Life Cycle Assessment Harmonization Nuclear Power Results - Life Cycle Assessment Harmonization Over the last 30 years, analysts have conducted life cycle assessments on the environmental impacts associated with a variety of nuclear power technologies and systems. These life cycle assessments have had wide-ranging results. To better understand greenhouse gas (GHG) emissions from nuclear power systems, NREL completed a comprehensive review and analysis of life cycle assessments focused on light water reactors (LWRs)-including both boiling water reactors (BWRs) and pressurized water reactors (PWRs)-published between 1980 and 2010. NREL developed and applied a systematic approach to review life cycle assessment literature, identify primary sources of variability and, where possible, reduce variability in GHG emissions

49

Life Cycle Greenhouse Gas Emissions from Concentrating Solar Power  

E-Print Network [OSTI]

Life Cycle Greenhouse Gas Emissions from Concentrating Solar Power Over the last thirty years, more than 100 life cycle assessments (LCAs) have been conducted and published for a variety of utility-scale concentrating solar power (CSP) systems. These LCAs have yielded wide-ranging results. Variation could

50

Hybrid solar central receiver for combined cycle power plant  

DOE Patents [OSTI]

A hybrid combined cycle power plant including a solar central receiver for receiving solar radiation and converting it to thermal energy. The power plant includes a molten salt heat transfer medium for transferring the thermal energy to an air heater. The air heater uses the thermal energy to preheat the air from the compressor of the gas cycle. The exhaust gases from the gas cycle are directed to a steam turbine for additional energy production.

Bharathan, Desikan (Lakewood, CO); Bohn, Mark S. (Golden, CO); Williams, Thomas A. (Arvada, CO)

1995-01-01T23:59:59.000Z

51

Fuel Cycle Comparison for Distributed Power Technologies  

Fuel Cell Technologies Publication and Product Library (EERE)

This report examines backup power and prime power systems and addresses the potential energy and environmental effects of substituting fuel cells for existing combustion technologies based on microtur

52

High efficiency carbonate fuel cell/turbine hybrid power cycle  

SciTech Connect (OSTI)

The hybrid power cycle studies were conducted to identify a high efficiency, economically competitive system. A hybrid power cycle which generates power at an LHV efficiency > 70% was identified that includes an atmospheric pressure direct carbonate fuel cell, a gas turbine, and a steam cycle. In this cycle, natural gas fuel is mixed with recycled fuel cell anode exhaust, providing water for reforming fuel. The mixed gas then flows to a direct carbonate fuel cell which generates about 70% of the power. The portion of the anode exhaust which is not recycled is burned and heat transferred through a heat exchanger (HX) to the compressed air from a gas turbine. The heated compressed air is then heated further in the gas turbine burner and expands through the turbine generating 15% of the power. Half the exhaust from the turbine provides air for the anode exhaust burner. All of the turbine exhaust eventually flows through the fuel cell cathodes providing the O2 and CO2 needed in the electrochemical reaction. Exhaust from the cathodes flows to a steam system (heat recovery steam generator, staged steam turbine generating 15% of the cycle power). Simulation of a 200 MW plant with a hybrid power cycle had an LHV efficiency of 72.6%. Power output and efficiency are insensitive to ambient temperature, compared to a gas turbine combined cycle; NOx emissions are 75% lower. Estimated cost of electricity for 200 MW is 46 mills/kWh, which is competitive with combined cycle where fuel cost is > $5.8/MMBTU. Key requirement is HX; in the 200 MW plant studies, a HX operating at 1094 C using high temperature HX technology currently under development by METC for coal gassifiers was assumed. A study of a near term (20 MW) high efficiency direct carbonate fuel cell/turbine hybrid power cycle has also been completed.

Steinfeld, G.; Maru, H.C. [Energy Research Corp., Danbury, CT (United States); Sanderson, R.A. [Sanderson (Robert) and Associates, Wethersfield, CT (United States)

1996-07-01T23:59:59.000Z

53

Aluto-Langano Geotermal Power Plant | Open Energy Information  

Open Energy Info (EERE)

System - Ethiopian Rift Valley Plant Information Facility Type Binary Cycle Power Plant, ORC Owner Ethiopian Electric Power Corporation Developer Ethiopian Electric Power...

54

Power Generation From Waste Heat Using Organic Rankine Cycle Systems  

E-Print Network [OSTI]

Many efforts are currently being pursued to develop and implement new energy technologies aimed at meeting our national energy goals The use of organic Rankine cycle engines to generate power from waste heat provides a near term means to greatly...

Prasad, A.

1980-01-01T23:59:59.000Z

55

Modeling and Performance Prediction of a Solar Powered Rankin Cycle/Gas Turbine Cycle  

Science Journals Connector (OSTI)

The present study is dealing with the development and implementation of an integrated solar combined cycle power plant in which heat ... its energy from the waste heat of a gas turbine unit in additional to solar

Mohammed A. Elhaj; Kassim K. Matrawy

2007-01-01T23:59:59.000Z

56

Life-Cycle Assessment of Electric Power Systems  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Life-Cycle Assessment of Electric Power Systems Life-Cycle Assessment of Electric Power Systems Title Life-Cycle Assessment of Electric Power Systems Publication Type Journal Article Year of Publication 2013 Authors Masanet, Eric R., Yuan Chang, Anand R. Gopal, Peter H. Larsen, William R. Morrow, Roger Sathre, Arman Shehabi, and Pei Zhai Journal Annual Review of Environment and Resources Volume 38 Date Published 2013 Keywords electricity, energy policy, environmental analysis, life-cycle impact, life-cycle inventory Abstract The application of life-cycle assessment (LCA) to electric power (EP) technologies is a vibrant research pursuit that is likely to continue as the world seeks ways to meet growing electricity demand with reduced environmental and human health impacts. While LCA is an evolving methodology with a number of barriers and challenges to its effective use, LCA studies to date have clearly improved our understanding of the life-cycle energy, GHG emissions, air pollutant emissions, and water use implications of EP technologies. With continued progress, LCA offers promise for assessing and comparing EP technologies in an analytically-thorough and environmentally-holistic manner for more robust deployment decisions. This article summarizes: (1) major challenges in applying LCA to EP technologies thus far, (2) LCA results to date on the various impacts of EP technologies, and (3) opportunities for improving LCAs as applied to EP technologies moving forward.

57

Cascading Closed Loop Cycle Power Generation  

E-Print Network [OSTI]

marketed as WOWGen. The WOW Energies patents represent the production of efficient power from low, medium and high temperature heat generated from the combustion of fuels; heat from renewable energy sources such as solar and geothermal heat; or waste heat...

Romero, M.

2008-01-01T23:59:59.000Z

58

Techno-economic modelling of integrated advanced power cycles  

Science Journals Connector (OSTI)

Concerns regarding the environmental impacts of power generation have stimulated interest in energy efficient cycles such as the integrated gasification combined cycle (IGCC) and the integrated gasification humid air turbine (IGHAT) cycle. These advanced power cycles are complex owing to the large number of units involved, interactions among the units, and the presence of streams of diverse compositions and properties. In this paper, techno-economic computer models of IGCC and IGHAT cycles are presented along with some sample results that illustrate the models' capabilities. The models, which were validated using actual data, provide performance predictions, inventories of capital and operating costs, as well as levels of gaseous emissions and solid wastes. While the models are simple enough for use in parametric, sensitivity and optimisation studies, they are responsive to variations in coal characteristics, design and operating conditions, part load operations and financial parameters.

A.O. Ong'iro; V.I. Ugursal; A.M. Al Taweel

2001-01-01T23:59:59.000Z

59

title Life Cycle Assessment of Electric Power Systems  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Life Cycle Assessment of Electric Power Systems Life Cycle Assessment of Electric Power Systems journal Annual Review of Environment and Resources volume year month abstract p The application of life cycle assessment LCA to electric power EP technologies is a vibrant research pursuit that is likely to continue as the world seeks ways to meet growing electricity demand with reduced environmental and human health impacts While LCA is an evolving methodology with a number of barriers and challenges to its effective use LCA studies to date have clearly improved our understanding of the life cycle energy GHG emissions air pollutant emissions and water use implications of EP technologies With continued progress LCA offers promise for assessing and comparing EP technologies in an analytically thorough and environmentally holistic manner for more robust deployment

60

NREL: Energy Analysis - Wind Power Results - Life Cycle Assessment  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Wind LCA Harmonization (Fact Sheet) Wind LCA Harmonization (Fact Sheet) Cover of the LWind LCA Harmonization Fact Sheet Download the Fact Sheet Wind Power Results - Life Cycle Assessment Harmonization To better understand the state of knowledge of greenhouse gas (GHG) emissions from utility-scale wind power systems, NREL developed and applied a systematic approach to review life cycle assessment literature, identify sources of variability and, where possible, reduce variability in GHG emissions estimates through a meta-analytical process called "harmonization." Over the last 30 years, several hundred life cycle assessments have been conducted for wind power technologies with wide-ranging results. Harmonization for onshore and offshore wind power systems was performed by adjusting published greenhouse gas estimates to achieve:

Note: This page contains sample records for the topic "binary cycle power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

NETL: Demonstration of a Novel Supercritical Carbon Dioxide Power Cycle  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Oxy-Combustion CO2 Emissions Control Oxy-Combustion CO2 Emissions Control Demonstration of a Novel Supercritical Carbon Dioxide Power Cycle Utilizing Pressurized Oxy-Combustion in Conjunction with Cryogenic Compression Project No.: DE-FE0009395 Southwest Research Institute (SwRI) is developing a novel supercritical carbon dioxide (sCO2) advanced power system utilizing pressurized oxy-combustion in conjunction with cryogenic compression. The proposed power system offers a leap in overall system efficiency while producing an output stream of sequestration ready CO2 at pipeline pressures. The system leverages developments in pressurized oxy-combustion technology and recent developments in sCO2 power cycles to achieve high net cycle efficiencies and produce CO2 at pipeline pressures without requiring additional compression of the flue gas.

62

ADVANCED CO2 CYCLE POWER GENERATION  

SciTech Connect (OSTI)

Research is being conducted under United States Department of Energy (DOE) Contract DE-FC26-02NT41621 to develop a conceptual design and determine the performance characteristics of a new IGCC plant configuration that facilitates CO{sub 2} removal for sequestration. This new configuration will be designed to achieve CO{sub 2} sequestration without the need for water gas shifting and CO{sub 2} separation, and may eliminate the need for a separate sequestration compressor. This research introduces a novel concept of using CO{sub 2} as a working fluid for an advanced coal gasification based power generation system, where it generates power with high system efficiency while concentrating CO{sub 2} for sequestration. This project supports the DOE research objective of development of concepts for the capture and storage of CO{sub 2}.

A. Nehrozoglu

2004-01-01T23:59:59.000Z

63

ADVANCED CO2 CYCLE POWER GENERATION  

SciTech Connect (OSTI)

Research is being conducted under United States Department of Energy (DOE) Contract DE-FC26-02NT41621 to develop a conceptual design and determine the performance characteristics of a new IGCC plant configuration that facilitates CO{sub 2} removal for sequestration. This new configuration will be designed to achieve CO{sub 2} sequestration without the need for water gas shifting and CO{sub 2} separation, and may eliminate the need for a separate sequestration compressor. This research introduces a novel concept of using CO{sub 2} as a working fluid for an advanced coal gasification based power generation system, where it generates power with high system efficiency while concentrating CO{sub 2} for sequestration. This project supports the DOE research objective of development of concepts for the capture and storage of CO{sub 2}.

A. Nehrozoglu

2003-10-01T23:59:59.000Z

64

Advanced Feed Water and Cooling Water Treatment at Combined Cycle Power Plant  

Science Journals Connector (OSTI)

Tokyo Gas Yokosuka Power Station is an IPP combined cycle power plant supplied by Fuji Electric Systems...

Ryo Takeishi; Kunihiko Hamada; Ichiro Myogan

2007-01-01T23:59:59.000Z

65

Implementation of a low power adaptive binary encoder  

E-Print Network [OSTI]

encoder is the BinaryEncoder block. This is the block which contains the most original design and the key to the adaptive portion for 30 P robability aout[5:0] bout[5:0] cout[5:0] dout[5:0] eout[5:0] fout[5:0] gout[5:0] newprob ttl& O'U 8 u- 0) I C... FIGURE 19 Probability symbol next countertotal d D countera counterb counterc counterd aout bout cout dout countere counterl counter tout gout FIGURE 20 Probability schematic 31 this adaptive binary encoder. Figure 21 shows the input...

Herrin, Scott W

2012-06-07T23:59:59.000Z

66

Nuclear Power Generation and Fuel Cycle Report 1997  

Gasoline and Diesel Fuel Update (EIA)

7) 7) Distribution Category UC-950 Nuclear Power Generation and Fuel Cycle Report 1997 September 1997 Energy Information Administration Office of Coal, Nuclear, Electric and Alternate Fuels U.S. Department of Energy Washington, DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the Department of Energy. The information contained herein should not be construed as advocating or reflecting any policy position of the Department of Energy or of any other organization. Contacts Energy Information Administration/ Nuclear Power Generation and Fuel Cycle Report 1997 ii The Nuclear Power Generation and Fuel Cycle Report is prepared by the U.S. Department of Energy's Energy Information Administration. Questions and comments concerning the contents of the report may be directed to:

67

Power production from a moderate temperature geothermal resource with regenerative Organic Rankine Cycles  

Science Journals Connector (OSTI)

Much remains to be done in binary geothermal power plant technology, especially for exploiting low-enthalpy resources. Due to the great variability of available resources (temperature, pressure, chemical composition), it is really difficult to standardize the technology.The problem involves many different variables: working fluid selection, heat recovery system definition, heat transfer surfaces sizing and auxiliary systems consumption. Electricity generation from geothermal resources is convenient if temperature of geothermal resources is higher than 130C. Extension of binary power technology to use low-temperature geothermal resources has received much attention in the last years. This paper analyzes and discusses the exploitation of low temperature, water-dominated geothermal fields with a specific attention to regenerative Organic Rankine Cycles (ORC). The geothermal fluid inlet temperatures considered are in the 100130C range, while the return temperature of the brine is assumed to be between 70 and 100C. The performances of different configurations, two basic cycle configurations and two recuperated cycles are analyzed and compared using dry organic fluids as the working fluids. The dry organic fluids for this study are R134a, isobutane, n-pentane and R245fa. Effects of the operating parameters such as turbine inlet temperature and pressure on the thermal efficiency, exergy destruction rate and Second Law efficiency are evaluated. The possible advantages of recuperated configurations in comparison with basic configurations are analyzed, showing that in a lot of cases the advantage in terms of performance increase is minimal but significant reductions in cooling systems surface area can be obtained (up to 20%).

Alessandro Franco

2011-01-01T23:59:59.000Z

68

Performance improvement of combined cycle power plant based on the optimization of the bottom cycle and heat recuperation  

Science Journals Connector (OSTI)

Many F class gas turbine combined cycle (GTCC) power plants are built in ... the efficiency improvement of GTCC plant. A combined cycle with three-pressure reheat heat recovery steam ... HRSG inlet gas temperatur...

Wenguo Xiang; Yingying Chen

2007-03-01T23:59:59.000Z

69

Energy Conversion Advanced Heat Transport Loop and Power Cycle  

SciTech Connect (OSTI)

The Department of Energy and the Idaho National Laboratory are developing a Next Generation Nuclear Plant (NGNP) to serve as a demonstration of state-of-the-art nuclear technology. The purpose of the demonstration is two fold 1) efficient low cost energy generation and 2) hydrogen production. Although a next generation plant could be developed as a single-purpose facility, early designs are expected to be dual-purpose. While hydrogen production and advanced energy cycles are still in its early stages of development, research towards coupling a high temperature reactor, electrical generation and hydrogen production is under way. Many aspects of the NGNP must be researched and developed in order to make recommendations on the final design of the plant. Parameters such as working conditions, cycle components, working fluids, and power conversion unit configurations must be understood. Three configurations of the power conversion unit were demonstrated in this study. A three-shaft design with 3 turbines and 4 compressors, a combined cycle with a Brayton top cycle and a Rankine bottoming cycle, and a reheated cycle with 3 stages of reheat were investigated. An intermediate heat transport loop for transporting process heat to a High Temperature Steam Electrolysis (HTSE) hydrogen production plant was used. Helium, CO2, and an 80% nitrogen, 20% helium mixture (by weight) were studied to determine the best working fluid in terms cycle efficiency and development cost. In each of these configurations the relative component size were estimated for the different working fluids. The relative size of the turbomachinery was measured by comparing the power input/output of the component. For heat exchangers the volume was computed and compared. Parametric studies away from the baseline values of the three-shaft and combined cycles were performed to determine the effect of varying conditions in the cycle. This gives some insight into the sensitivity of these cycles to various operating conditions as well as trade offs between efficiency and capital cost. Prametric studies were carried out on reactor outlet temperature, mass flow, pressure, and turbine cooling. Recommendations on the optimal working fluid for each configuration were made. A steady state model comparison was made with a Closed Brayton Cycle (CBC) power conversion system developed at Sandia National Laboratory (SNL). A preliminary model of the CBC was developed in HYSYS for comparison. Temperature and pressure ratio curves for the Capstone turbine and compressor developed at SNL were implemented into the HYSYS model. A comparison between the HYSYS model and SNL loop demonstrated power output predicted by HYSYS was much larger than that in the experiment. This was due to a lack of a model for the electrical alternator which was used to measure the power from the SNL loop. Further comparisons of the HYSYS model and the CBC data are recommended. Engineering analyses were performed for several configurations of the intermediate heat transport loop that transfers heat from the nuclear reactor to the hydrogen production plant. The analyses evaluated parallel and concentric piping arrangements and two different working fluids, including helium and a liquid salt. The thermal-hydraulic analyses determined the size and insulation requirements for the hot and cold leg pipes in the different configurations. Economic analyses were performed to estimate the cost of the va

Oh, C. H.

2006-08-01T23:59:59.000Z

70

Supercritical Water Reactor Cycle for Medium Power Applications  

SciTech Connect (OSTI)

Scoping studies for a power conversion system based on a direct-cycle supercritical water reactor have been conducted. The electric power range of interest is 5-30 MWe with a design point of 20 MWe. The overall design objective is to develop a system that has minimized physical size and performs satisfactorily over a broad range of operating conditions. The design constraints are as follows: Net cycle thermal efficiency {ge}20%; Steam turbine outlet quality {ge}90%; and Pumping power {le}2500 kW (at nominal conditions). Three basic cycle configurations were analyzed. Listed in order of increased plant complexity, they are: (1) Simple supercritical Rankine cycle; (2) All-supercritical Brayton cycle; and (3) Supercritical Rankine cycle with feedwater preheating. The sensitivity of these three configurations to various parameters, such as reactor exit temperature, reactor pressure, condenser pressure, etc., was assessed. The Thermoflex software package was used for this task. The results are as follows: (a) The simple supercritical Rankine cycle offers the greatest hardware simplification, but its high reactor temperature rise and reactor outlet temperature may pose serious problems from the viewpoint of thermal stresses, stability and materials in the core. (b) The all-supercritical Brayton cycle is not a contender, due to its poor thermal efficiency. (c) The supercritical Rankine cycle with feedwater preheating affords acceptable thermal efficiency with lower reactor temperature rise and outlet temperature. (d) The use of a moisture separator improves the performance of the supercritical Rankine cycle with feedwater preheating and allows for a further reduction of the reactor outlet temperature, thus it was selected for the next step. Preliminary engineering design of the supercritical Rankine cycle with feedwater preheating and moisture separation was performed. All major components including the turbine, feedwater heater, feedwater pump, condenser, condenser pump and pipes were modeled with realistic assumptions using the PEACE module of Thermoflex. A three-dimensional layout of the plant was also generated with the SolidEdge software. The results of the engineering design are as follows: (i) The cycle achieves a net thermal efficiency of 24.13% with 350/460 C reactor inlet/outlet temperatures, {approx}250 bar reactor pressure and 0.75 bar condenser pressure. The steam quality at the turbine outlet is 90% and the total electric consumption of the pumps is about 2500 kWe at nominal conditions. (ii) The overall size of the plant is attractively compact and can be further reduced if a printed-circuit-heat-exchanger (vs shell-and-tube) design is used for the feedwater heater, which is currently the largest component by far. Finally, an analysis of the plant performance at off-nominal conditions has revealed good robustness of the design in handling large changes of thermal power and seawater temperature.

BD Middleton; J Buongiorno

2007-04-25T23:59:59.000Z

71

Life cycle assessment of a biomass gasification combined-cycle power system  

SciTech Connect (OSTI)

The potential environmental benefits from biomass power are numerous. However, biomass power may also have some negative effects on the environment. Although the environmental benefits and drawbacks of biomass power have been debated for some time, the total significance has not been assessed. This study serves to answer some of the questions most often raised in regard to biomass power: What are the net CO{sub 2} emissions? What is the energy balance of the integrated system? Which substances are emitted at the highest rates? What parts of the system are responsible for these emissions? To provide answers to these questions, a life cycle assessment (LCA) of a hypothetical biomass power plant located in the Midwest United States was performed. LCA is an analytical tool for quantifying the emissions, resource consumption, and energy use, collectively known as environmental stressors, that are associated with converting a raw material to a final product. Performed in conjunction with a technoeconomic feasibility study, the total economic and environmental benefits and drawbacks of a process can be quantified. This study complements a technoeconomic analysis of the same process, reported in Craig and Mann (1996) and updated here. The process studied is based on the concept of power Generation in a biomass integrated gasification combined cycle (BIGCC) plant. Broadly speaking, the overall system consists of biomass production, its transportation to the power plant, electricity generation, and any upstream processes required for system operation. The biomass is assumed to be supplied to the plant as wood chips from a biomass plantation, which would produce energy crops in a manner similar to the way food and fiber crops are produced today. Transportation of the biomass and other materials is by both rail and truck. The IGCC plant is sized at 113 MW, and integrates an indirectly-heated gasifier with an industrial gas turbine and steam cycle. 63 refs., 34 figs., 32 tabs.

Mann, M.K.; Spath, P.L.

1997-12-01T23:59:59.000Z

72

Nuclear Power Generation and Fuel Cycle Report 1996  

Gasoline and Diesel Fuel Update (EIA)

6) 6) Distribution Category UC-950 Nuclear Power Generation and Fuel Cycle Report 1996 October 1996 Energy Information Administration Office of Coal, Nuclear, Electric and Alternate Fuels U.S. Department of Energy Washington, DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the Department of Energy. The information contained herein should not be construed as advocating or reflecting any policy position of the Department of Energy or of any other organization. Energy Information Administration/ Nuclear Power Generation and Fuel Cycle Report 1996 ii Contacts This report was prepared in the Office of Coal, Nuclear, report should be addressed to the following staff Electric and Alternate Fuels by the Analysis and Systems

73

The investigation of exhaust powered, automotive air cycle air conditioning  

E-Print Network [OSTI]

Pressure Ratio Net Power Test Apparatus Available Turbocompressors Turbine and Compressor Wheels Mounted to Shaft Turbocompressor Mounted. to Exhaust Line Total System Test Rig Full Throttle Performance Curves Subscript 'c' Corrected Results 13 13... an automotive air cycle unit which employed a rotary- vaned compressor. The prototype unit developed. cooling over various engine speeds because of the compressor being a positive displacement type which developed fairly high pressures on the order of 40 psia...

Holley, James Andrew

1978-01-01T23:59:59.000Z

74

Thermodynamics of combined-cycle electric power plants  

Science Journals Connector (OSTI)

Published data imply an average thermal efficiency of about 0.34 for U.S. electricity generating plants. With clever use of thermodynamics and technology modern gas and steam turbines can be coupled to effect dramatic efficiency increases. These combined-cycle power plants now reach thermal efficiencies in excess of 0.60. It is shown how the laws of thermodynamics make this possible.

Harvey S. Leff

2012-01-01T23:59:59.000Z

75

Parametric Optimization of Vapor Power and Cooling Cycle  

Science Journals Connector (OSTI)

Abstract The proposed solar thermal based combined power and cooling cycle can be operated from low grade energy such as heat and well suited for domestic and industrial needs. The hybridization of vapour absorption refrigeration (VAR) and Kalina cycle system (KCS) results power in addition to cooling. The proposed plant has two turbines with super heater and reheater to recover more heat from the solar thermal collectors. The refrigerant vapour from the high pressure turbine is reheated for low pressure turbine which gives 9.3kW of extra power. The total power and cooling are 14.05kW and 73.58kW respectively at 0.42 absorber concentration and 99% of turbine concentration and 150C of solar collector temperature. The invention also highlights the flexibility in the operation of system on only power mode or on only cooling mode. Thermodynamic analysis has been carried out with a focus on separator temperature and turbine concentration.

R. Shankar; T. Srinivas

2014-01-01T23:59:59.000Z

76

Power conversion system design for supercritical carbon dioxide cooled indirect cycle nuclear reactors  

E-Print Network [OSTI]

The supercritical carbon dioxide (S-CO?) cycle is a promising advanced power conversion cycle which couples nicely to many Generation IV nuclear reactors. This work investigates the power conversion system design and ...

Gibbs, Jonathan Paul

2008-01-01T23:59:59.000Z

77

Fuel-Cycle Analysis of Hydrogen-Powered Fuel-Cell Systems with...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Fuel-Cycle Analysis of Hydrogen-Powered Fuel-Cell Systems with the GREET Model Fuel-Cycle Analysis of Hydrogen-Powered Fuel-Cell Systems with the GREET Model This presentation by...

78

Model Predictive Control of Integrated Gasification Combined Cycle Power Plants  

SciTech Connect (OSTI)

The primary project objectives were to understand how the process design of an integrated gasification combined cycle (IGCC) power plant affects the dynamic operability and controllability of the process. Steady-state and dynamic simulation models were developed to predict the process behavior during typical transients that occur in plant operation. Advanced control strategies were developed to improve the ability of the process to follow changes in the power load demand, and to improve performance during transitions between power levels. Another objective of the proposed work was to educate graduate and undergraduate students in the application of process systems and control to coal technology. Educational materials were developed for use in engineering courses to further broaden this exposure to many students. ASPENTECH software was used to perform steady-state and dynamic simulations of an IGCC power plant. Linear systems analysis techniques were used to assess the steady-state and dynamic operability of the power plant under various plant operating conditions. Model predictive control (MPC) strategies were developed to improve the dynamic operation of the power plants. MATLAB and SIMULINK software were used for systems analysis and control system design, and the SIMULINK functionality in ASPEN DYNAMICS was used to test the control strategies on the simulated process. Project funds were used to support a Ph.D. student to receive education and training in coal technology and the application of modeling and simulation techniques.

B. Wayne Bequette; Priyadarshi Mahapatra

2010-08-31T23:59:59.000Z

79

Life-Cycle Assessment of Electric Power Systems  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Life-Cycle Life-Cycle Assessment of Electric Power Systems Eric Masanet, 1 Yuan Chang, 1 Anand R. Gopal, 2 Peter Larsen, 2,3 William R. Morrow III, 2 Roger Sathre, 2 Arman Shehabi, 2 and Pei Zhai 2 1 McCormick School of Engineering and Applied Science, Northwestern University, Evanston, Illinois 60208; email: eric.masanet@northwestern.edu, yuan.chang@northwestern.edu 2 Environmental Energy Technologies Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720; email: argopal@lbl.gov, wrmorrow@lbl.gov, rsathre@lbl.gov, ashehabi@lbl.gov, pzhai@lbl.gov 3 Management Science and Engineering Department, Stanford University, Stanford, California 94305; email: phlarsen@lbl.gov Annu. Rev. Environ. Resour. 2013. 38:107-36 First published online as a Review in Advance on August 7, 2013 The Annual Review of Environment and Resources is online at http://environ.annualreviews.org

80

C-CAMP, A closed cycle alkali metal power system  

SciTech Connect (OSTI)

A concept is presented for a Closed-Cycle Alkali Metal (C-CAMP) power systems which utilizes the heat of reaction of an alkali metal and halogen compound to vaporize an alkali metal turbine fluid for a Rankine cycle. Unique features of the concept are (1) direct contact (heat exchange) between the reaction products and turbine fluid, and (2) a flow-through chemical reactor/boiler. The principal feasibility issues of the concept relate to the degree of cross-mixing of product and turbine fluid streams within the reactor-boiler. If proven feasible, the concept may be adapted to a range of fuel and turbine fluids and ultimately lead to thermal efficiencies in excess of 35%.

Wichner, R.P.; Hoffman, H.W.

1988-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "binary cycle power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Fuel cycle comparison of distributed power generation technologies.  

SciTech Connect (OSTI)

The fuel-cycle energy use and greenhouse gas (GHG) emissions associated with the application of fuel cells to distributed power generation were evaluated and compared with the combustion technologies of microturbines and internal combustion engines, as well as the various technologies associated with grid-electricity generation in the United States and California. The results were primarily impacted by the net electrical efficiency of the power generation technologies and the type of employed fuels. The energy use and GHG emissions associated with the electric power generation represented the majority of the total energy use of the fuel cycle and emissions for all generation pathways. Fuel cell technologies exhibited lower GHG emissions than those associated with the U.S. grid electricity and other combustion technologies. The higher-efficiency fuel cells, such as the solid oxide fuel cell (SOFC) and molten carbonate fuel cell (MCFC), exhibited lower energy requirements than those for combustion generators. The dependence of all natural-gas-based technologies on petroleum oil was lower than that of internal combustion engines using petroleum fuels. Most fuel cell technologies approaching or exceeding the DOE target efficiency of 40% offered significant reduction in energy use and GHG emissions.

Elgowainy, A.; Wang, M. Q.; Energy Systems

2008-12-08T23:59:59.000Z

82

Retrofitting the Strogino district heat supply station with construction of a 260-MW combined-cycle power plant (Consisting of two PGU-130 combined-cycle power units)  

Science Journals Connector (OSTI)

The retrofitting carried out at the Strogino district heat supply station and the specific features of works accomplished in the course of constructing the thermal power station based on a combined-cycle power pl...

V. F. Aleksandrov

2010-02-01T23:59:59.000Z

83

Characterization of high-power lithium-ion cells during constant current cycling. Part I. Cycle performance and electrochemical diagnostics  

SciTech Connect (OSTI)

Twelve-cm{sup 2} pouch type lithium-ion cells were assembled with graphite anodes, LiNi{sub 0.8}Co{sub 0.15}Al{sub 0.05}O{sub 2} cathodes and 1M LiPF{sub 6}/EC/DEC electrolyte. These pouch cells were cycled at different depths of discharge (100 percent and 70 percent DOD) at room temperature to investigate cycle performance and pulse power capability. The capacity loss and power fade of the cells cycled over 100 percent DOD was significantly faster than the cell cycled over 70 percent DOD. The overall cell impedance increased with cycling, although the ohmic resistance from the electrolyte was almost constant. From electrochemical analysis of each electrode after cycling, structural and/or impedance changes in the cathode are responsible for most of the capacity and power fade, not the consumption of cycleable Li from side-reactions.

Shim, Joongpyo; Striebel, Kathryn A.

2003-01-24T23:59:59.000Z

84

Dynamic modeling of steam power cycles: Part II Simulation of a small simple Rankine cycle system  

Science Journals Connector (OSTI)

This paper presents the second part of the work concerning the dynamic simulation of small steam cycle plants for power generation. The work is part of the preliminary study for a 600kWe biomass fired steam power plant for which the complete open-loop, lumped parameter dynamic model of the steam cycle has been developed using the SimECS software described in Part I of this work. For these low-power plants, a dynamic simulation tool is especially useful because these systems must be designed to operate in transient mode for most of the time. The plant model presented here consists of the following components: feedwater pump, economizer, evaporator, superheater, impulse turbine, electrical generator and condenser. The primary heat source is modeled as a flue gas flow and no combustion models are incorporated yet to model the furnace. A description of the various components forming the complete steam cycle is given to illustrate the capabilities and modularity of the developed modeling technique. The model is first validated quantitatively against steady-state values obtained using a well known, reliable steady-state process modeling software. Subsequently, the dynamic validation is presented. Results can only be discussed based on the qualitative assessment of the observed trends because measurements are not available, being the plant in the preliminary design phase. The qualitative validation is based on four dynamic simulations involving three small step disturbances of different magnitude imposed on the pump rotational speed and on the flue gas mass flow and a single large ramp disturbance on the flue gas mass flow.

H. van Putten; P. Colonna

2007-01-01T23:59:59.000Z

85

Use and recovery of ammonia in power plant cycles  

SciTech Connect (OSTI)

The paper presents some practical and theoretical aspects of the use of ammonia in power plant water/steam cycles. The plants considered are fully automated units with once-through boilers, which operate under complex conditions and are subject to frequent starts and load changes. The boilers are chemically conditioned with combined oxygen ammonia treatment and the condensate polishing plant is only operated during start-up, in the event of a condenser leak or to remove excess ammonia. The paper also covers the recovery of ammonia from the condensate polishing plant waste regenerants and reuse for conditioning the feedwater. In particular, the paper deals with the following points: theoretical analysis of the chemical equilibrium of ammonia and carbon dioxide in water, including calculation of the concentrations from the parameters normally measured, such as conductivities and pH; equipment for monitoring and controlling the amount of ammonia fed to the water/steam cycle, including the optimum positioning of the sampling and feed-points, the parameters suitable for feed control and their temperature dependence; the partial pressure and distribution coefficient of ammonia; the consumption and losses of ammonia through the water/steam cycle during operation; the recovery of ammonia from condensate polishing plant waste regenerants by steam stripping. The paper should be of interest to both planning engineers and plant operators.

Pflug, H.D.; Bettenworth, H.J.; Syring, H.A. [Preussen Elektra AG, Hanover (Germany)

1995-01-01T23:59:59.000Z

86

A binary ACO for controlling all-electric power take off system in wave energy converters  

Science Journals Connector (OSTI)

This paper describes a metaheuristic algorithm for controlling all-electric power take off (PTO) system of wave energy converters. It provides optimal parameter values to the controller following the instantaneously changing sea state. The output of the algorithm is used to tune the electrical control systems in the PTO system in order to provide sufficient time for the point absorber to achieve desired heaving resonance compare with the ocean wave. This maximises the power extraction capability of WECs. The method consists of a binary ant colony optimisation algorithm capable of performing optimisation in continuous space. A binary encoding method is introduced to enhance its search exploration feature, hence allowing it to find optimal solution in short time.

Phen Chiak See; Vin Cent Tai; Marta Molinas

2013-01-01T23:59:59.000Z

87

Shrinking binary and planetary orbits by Kozai cycles with tidal friction  

E-Print Network [OSTI]

At least two arguments suggest that the orbits of a large fraction of binary stars and extrasolar planets shrank by 1-2 orders of magnitude after formation: (i) the physical radius of a star shrinks by a large factor from birth to the main sequence, yet many main-sequence stars have companions orbiting only a few stellar radii away, and (ii) in current theories of planet formation, the region within ~0.1 AU of a protostar is too hot and rarefied for a Jupiter-mass planet to form, yet many "hot Jupiters" are observed at such distances. We investigate orbital shrinkage by the combined effects of secular perturbations from a distant companion star (Kozai oscillations) and tidal friction. We integrate the relevant equations of motion to predict the distribution of orbital elements produced by this process. Binary stars with orbital periods of 0.1 to 10 days, with a median of ~2 d, are produced from binaries with much longer periods (10 d to 10^5 d), consistent with observations indicating that most or all short-period binaries have distant companions (tertiaries). We also make two new testable predictions: (1) For periods between 3 and 10 d, the distribution of the mutual inclination between the inner binary and the tertiary orbit should peak strongly near 40 deg and 140 deg. (2) Extrasolar planets whose host stars have a distant binary companion may also undergo this process, in which case the orbit of the resulting hot Jupiter will typically be misaligned with the equator of its host star.

Daniel Fabrycky; Scott Tremaine

2007-05-30T23:59:59.000Z

88

Evaluation and Optimization of a Supercritical Carbon Dioxide Power Conversion Cycle for Nuclear Applications  

SciTech Connect (OSTI)

There have been a number of studies involving the use of gases operating in the supercritical mode for power production and process heat applications. Supercritical carbon dioxide (CO2) is particularly attractive because it is capable of achieving relatively high power conversion cycle efficiencies in the temperature range between 550C and 750C. Therefore, it has the potential for use with any type of high-temperature nuclear reactor concept, assuming reactor core outlet temperatures of at least 550C. The particular power cycle investigated in this paper is a supercritical CO2 Recompression Brayton Cycle. The CO2 Recompression Brayton Cycle can be used as either a direct or indirect power conversion cycle, depending on the reactor type and reactor outlet temperature. The advantage of this cycle when compared to the helium Brayton Cycle is the lower required operating temperature; 550C versus 850C. However, the supercritical CO2 Recompression Brayton Cycle requires an operating pressure in the range of 20 MPa, which is considerably higher than the required helium Brayton cycle operating pressure of 8 MPa. This paper presents results of analyses performed using the UniSim process analyses software to evaluate the performance of the supercritical CO2 Brayton Recompression Cycle for different reactor outlet temperatures. The UniSim model assumed a 600 MWt reactor power source, which provides heat to the power cycle at a maximum temperature of between 550C and 750C. The UniSim model used realistic component parameters and operating conditions to model the complete power conversion system. CO2 properties were evaluated, and the operating range for the cycle was adjusted to take advantage of the rapidly changing conditions near the critical point. The UniSim model was then optimized to maximize the power cycle thermal efficiency at the different maximum power cycle operating temperatures. The results of the analyses showed that power cycle thermal efficiencies in the range of 40 to 50% can be achieved.

Edwin A. Harvego; Michael G. McKellar

2011-05-01T23:59:59.000Z

89

Rankine cycle power plant with improved organic working fluid  

SciTech Connect (OSTI)

In a Rankine cycle power plant having a boiler for vaporizing an organic working fluid which is applied to a turbine in which vaporized working fluid produced by the boiler expands and produces work, a condenser for condensing expanded vaporized working fluid exhausted by the turbine and producing condensate, and means for returning the condensate to the boiler, the improvement is described comprising: (a) operating the boiler so that the organic fluid vaporizes at substantially constant pressure and a temperature not exceeding 400/sup 0/C; (b) applying only vaporized working fluid to the turbine; and (c) using as the working fluid, a compound selected from the group consisting of bicyclic hydrocarbons, substituted bicyclic aromatic hydrocarbons, heterobicyclic aromatic hydrocarbons, substituted heterobicyclic aromatic hydrocarbons, bicyclic compounds where one ring is aromatic and the other condensed ring is nonaromatic, and their mixtures.

Yogev, A.; Mahlab, D.

1988-08-02T23:59:59.000Z

90

Life Cycle Assessment for Emerging Technologies: Case Studies for Photovoltaic and Wind Power (11 pp)  

Science Journals Connector (OSTI)

The life cycle inventory analysis for photovoltaic power shows that each production ... be important for specific elementary flows. A life cycle impact assessment (LCIA) shows that there ... Material consumption...

Niels Jungbluth; Christian Bauer

2005-01-01T23:59:59.000Z

91

Gas Turbine Based Power Cycles - A State-of-the-Art Review  

Science Journals Connector (OSTI)

Gas turbines have been used in wide ranging applications ... This paper provides the historical evolution of the gas turbine (GT) based power cycles. A detailed ... , modified Brayton cycles under development by ...

R. K. Bhargava; M. Bianchi; A. De Pascale

2007-01-01T23:59:59.000Z

92

Testing and Thermodynamic Analysis of Low-Grade Heat Power Generation System Using Organic Rankine Cycle  

Science Journals Connector (OSTI)

Low grade heat power generation system using Organic Rankine Cycle (ORC) was introduced in this work. ... system behaved better in thermodynamic efficiency than stream-Rankine cycle. Numerical thermodynamic model...

Wei Gu; Yiwu Weng; Guangyi Cao

2007-01-01T23:59:59.000Z

93

Studies of the thermal circuit of an advanced integrated gasification combined-cycle power plant  

Science Journals Connector (OSTI)

The results obtained from a study of the thermal circuit of a combined-cycle plant with coal gasification are presented, and ... of producer gas and calculated values of the combined-cycle power plant efficiency ...

D. G. Grigoruk; A. V. Turkin

2010-02-01T23:59:59.000Z

94

Combined Cycle (CC) and Combined Heat and Power (CHP) Systems: An Introduction  

Science Journals Connector (OSTI)

Combined Cycle (CC)...is a power plant system in which two types of turbines, namely a gas turbine and a steam turbine, are used to generate electricity. Moreover the turbines are combined in one cycle

Andrzej W. Ordys MScEE; PhD; A. W. Pike

1994-01-01T23:59:59.000Z

95

Mathematical Modeling and Computer Simulation of a Combined Cycle Power Plant  

Science Journals Connector (OSTI)

This paper presents the simulation procedure developed to predict the performance of a combined cycle power plant from given performance characteristics of ... . Effects of gas turbine and steam turbine cycle par...

Nikhil Dev; Samsher; S. S. Kachhwaha; Mohit

2012-01-01T23:59:59.000Z

96

An update technology for integrated biomass gasification combined cycle power plant  

Science Journals Connector (OSTI)

A discussion is presented on the technical analysis of a 6.4 MWe integrated biomass gasification combined cycle (IBGCC) plant. It features three numbers ... producing 5.85 MW electrical power in open cycle and 55...

Paritosh Bhattacharya; Suman Dey

2014-01-01T23:59:59.000Z

97

Brayton-Cycle Baseload Power Tower CSP System  

SciTech Connect (OSTI)

The primary objectives of Phase 2 of this Project were: 1. Engineer, fabricate, and conduct preliminary testing on a low-pressure, air-heating solar receiver capable of powering a microturbine system to produce 300kWe while the sun is shining while simultaneously storing enough energy thermally to power the system for up to 13 hours thereafter. 2. Cycle-test a high-temperature super alloy, Haynes HR214, to determine its efficacy for the systems high-temperature heat exchanger. 3. Engineer the thermal energy storage system This Phase 2 followed Wilsons Phase 1, which primarily was an engineering feasibility study to determine a practical and innovative approach to a full Brayton-cycle system configuration that could meet DOEs targets. Below is a summary table of the DOE targets with Wilsons Phase 1 Project results. The results showed that a Brayton system with an innovative (low pressure) solar receiver with ~13 hours of dry (i.e., not phase change materials or molten salts but rather firebrick, stone, or ceramics) has the potential to meet or exceed DOE targets. Such systems would consist of pre-engineered, standardized, factory-produced modules to minimize on-site costs while driving down costs through mass production. System sizes most carefully analyzed were in the range of 300 kWe to 2 MWe. Such systems would also use off-the-shelf towers, blowers, piping, microturbine packages, and heliostats. Per DOEs instructions, LCOEs are based on the elevation and DNI levels of Daggett, CA, for a 100 MWe power plant following 2 GWe of factory production of the various system components. Success criteria DOE targets Wilson system LCOE DOEs gas price $6.75/MBtu 9 cents/kWh 7.7 cents/kWh LCOE Current gas price $4.71/MBtu NA 6.9 cents/kWh Capacity factor 75% (6500hr) 75-100% Solar fraction 85% (5585hr) >5585hr Receiver cost $170/kWe $50/kWe Thermal storage cost $20/kWhth $13/kWhth Heliostat cost $120/m2 $89.8/m2

Anderson, Bruce

2013-12-31T23:59:59.000Z

98

Adaptive hybrid predictive control for a combined cycle power plant optimization .  

E-Print Network [OSTI]

??The design and development of an adaptive hybrid predictive controller for the optimization of a real combined cycle power plant (CCPP) are presented. The real (more)

Sez, D.

2008-01-01T23:59:59.000Z

99

Investigations of supercritical CO2 Rankine cycles for geothermal power plants  

SciTech Connect (OSTI)

Supercritical CO2 Rankine cycles are investigated for geothermal power plants. The system of equations that describe the thermodynamic cycle is solved using a Newton-Rhapson method. This approach allows a high computational efficiency of the model when thermophysical properties of the working fluid depend strongly on the temperature and pressure. Numerical simulation results are presented for different cycle configurations in order to assess the influences of heat source temperature, waste heat rejection temperatures and internal heat exchanger design on cycle efficiency. The results show that thermodynamic cycle efficiencies above 10% can be attained with the supercritical brayton cycle while lower efficiencies can be attained with the transcritical CO2 Rankine cycle.

Sabau, Adrian S [ORNL; Yin, Hebi [ORNL; Qualls, A L [ORNL; McFarlane, Joanna [ORNL

2011-01-01T23:59:59.000Z

100

Application of quantum-inspired binary gravitational search algorithm for thermal unit commitment with wind power integration  

Science Journals Connector (OSTI)

Abstract As the application of wind power energy is rapidly developing, it is very important to analyze the effects of wind power fluctuation on power system operation. In this paper, a model of thermal unit commitment problem with wind power integration is established and chance constrained programming is applied to simulate the effects of wind power fluctuation. Meanwhile, a combination of quantum-inspired binary gravitational search algorithm and chance constrained programming is proposed to solve the thermal unit commitment problem with wind power integration. In order to reduce the searching time and avoid the premature convergence, a priority list of thermal units and a local mutation adjustment strategy are utilized during the optimization process. The priority list of thermal units is based on the weight between average full-load cost and maximal power output. Then, a stochastic simulation technique is used to deal with the probabilistic constraints. In addition, heuristic search strategies are used to handle deterministic constraints of thermal units. Furthermore, the impacts of different confidence levels and different prediction errors of wind fluctuation on system operation are analyzed respectively. The feasibility and effectiveness of the proposed method are verified by the test system with wind power integration, and the results are compared with those using binary gravitational search algorithm and binary particle swarm optimization. The simulation results demonstrate that the proposed quantum-inspired binary gravitational search algorithm has a higher efficiency in solving thermal unit commitment problem with wind power integration.

Bin Ji; Xiaohui Yuan; Xianshan Li; Yuehua Huang; Wenwu Li

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "binary cycle power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

The Origin of Power-Law Emergent Scaling in Large Binary Networks  

E-Print Network [OSTI]

In this paper we study the macroscopic conduction properties of large but finite binary networks with conducting bonds. By taking a combination of a spectral and an averaging based approach we derive asymptotic formulae for the conduction in terms of the component proportions p and the total number of components N. These formulae correctly identify both the percolation limits and also the emergent power law behaviour between the percolation limits and show the interplay between the size of the network and the deviation of the proportion from the critical value of p = 1/2. The results compare excellently with a large number of numerical simulations.

D. P. Almond; C. J. Budd; M. A. Freitag; G. W. Hunt; N. J. McCullen; N. D. Smith

2012-04-25T23:59:59.000Z

102

Use of combined-cycle power units at cogeneration plants  

Science Journals Connector (OSTI)

Indices of reconstructed and new cogeneration plants (CPs) using combined cycle units (CCPUs) are considered. The conclusions...

V. M. Batenin; Yu. A. Zeigarnik; V. M. Maslennikov; Yu. L. Shekhter

2008-12-01T23:59:59.000Z

103

The Prospects for Closed Cycle M.P.D. Power Generation  

Science Journals Connector (OSTI)

...P.D. Power Generation B. C. Lindley...cycles (direct nuclear, indirect nuclear...on combustion or nuclear energy, to the...restrictions. Nuclear reactors to provide temperatures...p.d. power generation is mainly in progress...

1967-01-01T23:59:59.000Z

104

Slag-washing water of blast furnace power station with supercritical organic Rankine cycle  

Science Journals Connector (OSTI)

Organic Rankine cycle (ORC) power plant operating with supercritical ... of a supercritical power plant. Two typical organic fluids with sufficiently low critical parameters were ... study the efficiency of the s...

Song Xiao ??; Shu-ying Wu ???; Dong-sheng Zheng ???

2013-03-01T23:59:59.000Z

105

Feasibility Study of a Multi-Purpose Computer Program for Optimizing Heat Rates in Power Cycles  

E-Print Network [OSTI]

and future needs of the power industry follows. The discussion is restricted to steam turbine cycles of fossil or nuclear power plants, although some ECC's can be employed to a wider range of applications, such as analysis of different heat sources... and future needs of the power industry follows. The discussion is restricted to steam turbine cycles of fossil or nuclear power plants, although some ECC's can be employed to a wider range of applications, such as analysis of different heat sources...

Menuchin, Y.; Singh, K. P.; Hirota, N.

1981-01-01T23:59:59.000Z

106

RF-Powered Variable Duty Cycle Wireless Sensor Daniel Costinett, Erez Falkenstein, Regan Zane, Zoya Popovic  

E-Print Network [OSTI]

is monitored, and the duty cycle for wireless data transmission adaptively adjusted through use of a low-power with optimizing the interface between the power reception device, and typical low-power sensor loads to achieve presents an optimal DC load to the energy storage device, which provides power to the microcontroller

Popovic, Zoya

107

Indirect-fired gas turbine dual fuel cell power cycle  

DOE Patents [OSTI]

A fuel cell and gas turbine combined cycle system which includes dual fuel cell cycles combined with a gas turbine cycle wherein a solid oxide fuel cell cycle operated at a pressure of between 6 to 15 atms tops the turbine cycle and is used to produce CO.sub.2 for a molten carbonate fuel cell cycle which bottoms the turbine and is operated at essentially atmospheric pressure. A high pressure combustor is used to combust the excess fuel from the topping fuel cell cycle to further heat the pressurized gas driving the turbine. A low pressure combustor is used to combust the excess fuel from the bottoming fuel cell to reheat the gas stream passing out of the turbine which is used to preheat the pressurized air stream entering the topping fuel cell before passing into the bottoming fuel cell cathode. The CO.sub.2 generated in the solid oxide fuel cell cycle cascades through the system to the molten carbonate fuel cell cycle cathode.

Micheli, Paul L. (Sacramento, CA); Williams, Mark C. (Morgantown, WV); Sudhoff, Frederick A. (Morgantown, WV)

1996-01-01T23:59:59.000Z

108

Magnesium energy cycle system for the power product  

Science Journals Connector (OSTI)

The energy storage of solar radiation with magnesium as an energy reservoir is proposed for renewable energy cycle. Magnesium reaction with water generating hydrogen and residual...

Sakurai, Yasutaka; Yabe, Takashi; Ikuta, Kazunari; Ishioka, Manabu; Ogata, Yoichi; Sato, Yuji

2007-01-01T23:59:59.000Z

109

Weight and power optimization of steam bottoming cycle for offshore oil and gas installations  

Science Journals Connector (OSTI)

Abstract Offshore oil and gas installations are mostly powered by simple cycle gas turbines. To increase the efficiency, a steam bottoming cycle could be added to the gas turbine. One of the keys to the implementation of combined cycles on offshore oil and gas installations is for the steam cycle to have a low weight-to-power ratio. In this work, a detailed combined cycle model and numerical optimization tools were used to develop designs with minimum weight-to-power ratio. Within the work, single-objective optimization was first used to determine the solution with minimum weight-to-power ratio, then multi-objective optimization was applied to identify the Pareto frontier of solutions with maximum power and minimum weight. The optimized solution had process variables leading to a lower weight of the heat recovery steam generator while allowing for a larger steam turbine and condenser to achieve a higher steam cycle power output than the reference cycle. For the multi-objective optimization, the designs on the Pareto front with a weight-to-power ratio lower than in the reference cycle showed a high heat recovery steam generator gas-side pressure drop and a low condenser pressure.

Lars O. Nord; Emanuele Martelli; Olav Bolland

2014-01-01T23:59:59.000Z

110

Thermodynamic modelling of three-stage combined cycle power systems utilising ammonia-water mixture as a working fluid in bottoming cycle  

Science Journals Connector (OSTI)

In this study, two three-stage combined power cycles with ammonia-water mixture in bottoming cycle are introduced; one with variable ammonia fraction and the other with constant ammonia fraction. Energy and exergy analyses are carried out and optimal parameters of the proposed cycles are compared with the conventional power cycles. The second law efficiency of three-stage cycles with variable and constant ammonia fraction are 4.71% and 5.15% higher than steam-gas combined power cycle, respectively. Exergy flow diagram for each cycle is presented and exergy destruction of all components is investigated. Results quantitatively highlight the thermodynamic advantages of the proposed cycles in comparison with the conventional cycles. Three-stage cycle with constant ammonia fraction has the best performance in comparison with the others.

Amin Momeni; Hossein Shokouhmand

2014-01-01T23:59:59.000Z

111

Parametric study for the penetration of combined cycle technologies into Cyprus power system  

Science Journals Connector (OSTI)

In this work, a parametric study concerning the use of combined cycle technologies for power generation, by independent power producers in Cyprus, is carried out. The costbenefit analysis is carried out using the Independent Power Producers optimization algorithm in which the electricity unit cost is calculated. Various conventional generation options are examined, such as, steam turbines and open cycle gas turbines, and compared with a parametric study (variations in fuel type, capital cost and efficiency) for combined cycle technologies. The results indicate that the future use of combined cycle technology with natural gas as fuel is recommended. Furthermore, it is estimated that by the use of natural gas combined cycle, the CO2 emissions environmental indicator of Cyprus power industry would be significantly reduced.

Andreas Poullikkas

2004-01-01T23:59:59.000Z

112

Coordinated optimization of the parameters of the cooled gas-turbine flow path and the parameters of gas-turbine cycles and combined-cycle power plants  

Science Journals Connector (OSTI)

In the present paper, we evaluate the effectiveness of the coordinated solution to the optimization problem for the parameters of cycles in gas turbine and combined cycle power plants and to the optimization prob...

A. M. Kler; Yu. B. Zakharov; Yu. M. Potanina

2014-06-01T23:59:59.000Z

113

Assessment of Projected Life-Cycle Costs for Wave, Tidal, Ocean Current, and In-Stream Hydrokinetic Power  

Broader source: Energy.gov [DOE]

Assessment of Projected Life-Cycle Costs for Wave, Tidal, Ocean Current, and In-Stream Hydrokinetic Power

114

Performance and emission characteristics of natural gas combined cycle power generation system with steam injection and oxyfuel combustion.  

E-Print Network [OSTI]

??Natural gas combined cycle power generation systems are gaining popularity due to their high power generation efficiency and reduced emission. In the present work, combined (more)

Varia, Nitin

2014-01-01T23:59:59.000Z

115

Using energy balances for processing the results from tests of a single-shaft combined-cycle power plant  

Science Journals Connector (OSTI)

Application of the balance method for dividing the overall power output produced by a single-shaft combined-cycle power plant between the steam turbine and...

G. G. Olkhovskii

2012-09-01T23:59:59.000Z

116

Steam Oxidation of Fossil Power Plant Materials: Collaborative Research to Enable Advanced Steam Power Cycles  

DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

Research into improved materials systems and associated manufacturing and reliability issues is a major part of initiatives to produce cleaner and cheaper energy systems in the UK and the USA. Under the auspices of a Memorandum of Understanding on Energy R&D, a work programme concerned with steam oxidation has been conducted. The focus was on the generation of definitive information regarding the oxidation behaviour in steam of current and developmental ferritic steels, austenitic steels, and nickelbased alloys required to enable advanced steam power cycles. The results were intended to provide a basis for quantifying the rate of metal loss expected under advanced steam cycle conditions, as well as understanding of the evolution of oxide scale morphologies with time and temperature to identify features that could influence scale exfoliation characteristics. This understanding and acquired data were used to develop and validate models of oxide growth and loss by exfoliation. This paper provides an overview of the activity and highlights a selection of the results coming from the programme.

A. T. Fry; I. G Wright; N. J Simms; B. McGhee; G. R. Holcomb

2013-11-19T23:59:59.000Z

117

A combined power and ejector refrigeration cycle for low temperature heat sources  

SciTech Connect (OSTI)

A combined power and ejector refrigeration cycle for low temperature heat sources is under investigation in this paper. The proposed cycle combines the organic Rankine cycle and the ejector refrigeration cycle. The ejector is driven by the exhausts from the turbine to produce power and refrigeration simultaneously. A simulation was carried out to analyze the cycle performance using R245fa as the working fluid. A thermal efficiency of 34.1%, an effective efficiency of 18.7% and an exergy efficiency of 56.8% can be obtained at a generating temperature of 395 K, a condensing temperature of 298 K and an evaporating temperature of 280 K. Simulation results show that the proposed cycle has a big potential to produce refrigeration and most exergy losses take place in the ejector. (author)

Zheng, B.; Weng, Y.W. [School of Mechanical Engineering, Shanghai Jiaotong University, Shanghai 200240 (China)

2010-05-15T23:59:59.000Z

118

NREL: News - NREL Calculates Emissions and Costs of Power Plant Cycling  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

013 013 NREL Calculates Emissions and Costs of Power Plant Cycling Necessary for Increased Wind and Solar in the West September 24, 2013 New research from the Energy Department's National Renewable Energy Laboratory (NREL) quantifies the potential impacts of increasing wind and solar power generation on the operators of fossil-fueled power plants in the West. To accommodate higher amounts of wind and solar power on the electric grid, utilities must ramp down and ramp up or stop and start conventional generators more frequently to provide reliable power for their customers - a practice called cycling. The study finds that the carbon emissions induced by more frequent cycling are negligible (<0.2%) compared with the carbon reductions achieved through the wind and solar power generation evaluated in the study. Sulfur dioxide

119

Optimizing the start-up operations of combined cycle power plants using soft computing methods  

Science Journals Connector (OSTI)

......Fast Start-up of a Combined-Cycle Power Plant: a Simulation Study with Modelica. In: Proceedings 5th International Modelica Conference (2006) 3-10. Modelica Association eds. [4] Zimmerman HJ . Fuzzy set theory (1991) Kluwer Academic......

Ilaria Bertini; Matteo De Felice; Alessandro Pannicelli; Stefano Pizzuti

2012-08-01T23:59:59.000Z

120

Harmonization of initial estimates of shale gas life cycle greenhouse gas emissions for electric power generation  

Science Journals Connector (OSTI)

...initial estimates of shale gas life cycle greenhouse gas emissions for electric power generation 10.1073/pnas.1309334111...of unconventional natural gas, particularly shale gas...best-performing coal-fired generation under certain...

Garvin A. Heath; Patrick ODonoughue; Douglas J. Arent; Morgan Bazilian

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "binary cycle power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Fuzzy Optimization of Start-Up Operations for Combined Cycle Power Plants  

Science Journals Connector (OSTI)

In this paper we present a study on the application of fuzzy sets for the start-up optimisation of a combined cycle power plant. We fuzzyfy the output process variables and then we properly combine the resulting ...

Ilaria Bertini; Alessandro Pannicelli

2010-01-01T23:59:59.000Z

122

Discussion of the Key Problems on Designing 350 MW-Class Combined Cycle Power Plant  

Science Journals Connector (OSTI)

With adjustment of energy structure and enhancement of environmental protection standard, gas-steam combined cycle power plants will be erupt gradually, especially...gas being moved from WEST to EAST and liquefie...

Tai Lu; Sike Hu; Wenrui Wu

2007-01-01T23:59:59.000Z

123

Kalex Advanced Low Temp Geothemal Power Cycle | Department of...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Chena Hot Springs Resort - Electric Power Generation Using Geothermal Fluid Coproduced from Oil andor Gas Wells Single-well Low Temperature CO2- based Engineered Geothemal System...

124

Life cycle cost analysis of wind power considering stochastic uncertainties  

Science Journals Connector (OSTI)

Abstract This paper presents a long-term cost analysis of wind power and compares its competitiveness to non-renewable generating technologies. The analysis considers several important attributes related to wind intermittency that are sometimes ignored in traditional generation planning or LCOE (levelized cost of energy) studies, including the need for more nameplate capacity due to intermittency, hourly fluctuations in wind outputs and cost for reserves. The competitiveness of wind power is assessed by evaluating four scenarios: 1) adding natural gas generating capacity to the power grid; 2) adding coal generating capacity to the power grid; 3) adding wind capacity to the power grid; and, 4) adding wind capacity and energy storage to the power grid where an energy storage device is used to cover wind intermittency. A case study in the state of Michigan is presented to demonstrate the use of the proposed methodology, in which a time horizon from 2010 to 2040 is considered. The results show that wind energy will still be more expensive than natural gas power plants in the next three decades, but will be cheaper than coal capacities if wind intermittency is mitigated. Furthermore, if the costs of carbon emissions and environmental externalities are considered, wind generation will be a competitive option for grid capacity expansion.

Chiao-Ting Li; Huei Peng; Jing Sun

2014-01-01T23:59:59.000Z

125

Thermonuclear inverse magnetic pumping power cycle for stellarator reactor  

DOE Patents [OSTI]

The plasma column in a stellarator is compressed and expanded alternatively in minor radius. First a plasma in thermal balance is compressed adiabatically. The volume of the compressed plasma is maintained until the plasma reaches a new thermal equilibrium. The plasma is then expanded to its original volume. As a result of the way a stellarator works, the plasma pressure during compression is less than the corresponding pressure during expansion. Therefore, negative work is done on the plasma over a complete cycle. This work manifests itself as a back-voltage in the toroidal field coils. Direct electrical energy is obtained from this voltage. Alternatively, after the compression step, the plasma can be expanded at constant pressure. The cycle can be made self-sustaining by operating a system of two stellarator reactors in tandem. Part of the energy derived from the expansion phase of a first stellarator reactor is used to compress the plasma in a second stellarator reactor.

Ho, Darwin D. (Pleasanton, CA); Kulsrud, Russell M. (Princeton, NJ)

1991-01-01T23:59:59.000Z

126

The Effect of Temperature on Capacity and Power in Cycled Lithium Ion Batteries  

SciTech Connect (OSTI)

The Idaho National Laboratory (INL) tested six Saft America HP-12 (Generation 2000), 12-Ah lithium ion cells to evaluate cycle life performance as a power assist vehicle battery. The cells were tested to investigate the effects of temperature on capacity and power fade. Test results showed that five of the six cells were able to meet the Power Assist Power and Energy Goals at the beginning of test and after 300,000 cycles using a Battery Size Factor of 44.3 cells. The initial Static Capacity tests showed that the capacities of the cells were stable for three discharges and had an average of 16.4 Ah. All the cells met the Self-Discharge goal, but failed to meet the Cold Cranking goal. As is typical for lithium ion cells, both power and capacity were diminished during the low-temperature Thermal Performance test and increased during the high-temperature Thermal Performance test. Capacity faded as expected over the course of 300,000 life cycles and showed a weak inverse relationship to increasing temperature. Power fade was mostly a result of cycling while temperature had a minor effect compared to cycle life testing. Consequently, temperature had very little effect on capacity and power fade for the proprietary G4 chemistry.

Jeffrey R. Belt

2005-03-01T23:59:59.000Z

127

Optimum Heat Power Cycles for Process Industrial Plants  

E-Print Network [OSTI]

Electric power cogeneration is compared with direct mechanical drives emphasizing the technical aspects having the greatest impact on energy economics. Both steam and gas turbine applications are discussed and practical methods of developing...

Waterland, A. F.

1982-01-01T23:59:59.000Z

128

A new Rankine cycle for hydrogen-fired power generation plants and its exergetic efficiency  

Science Journals Connector (OSTI)

A novel power generation cycle is proposed in this paper taking hydrogen as fuel and using steam generated by hydrogen firing as working fluid. The progress of the development work and side issues such as the application of hydrogen combustion turbines to environmentally clean fossil fuel power plants for early commercialisation of the system are reviewed. We propose the hydrogen-fired Rankine cycle as similar to (C) type developed earlier by Hisadome et al. and Sugishita et al. and then making a new design of it by increasing the performance characteristics and efficiencies with (reheating, regenerative and recuperation) of the working fluid of the bottoming cycle respectively, and in this case we present two types (C1 and C2). In the case of type C2 the cycle is called the ''New Rankine Cycle''. These cycles are also compared with the Rankine cycle of type (C) for hydrogen-fired to show the advantages of the performance characteristics of the new design at which the highest value of exergetic efficiency reaches 63.58% as HHV at 1700°C of the combustor discharge temperature. These cycles are analysed through thermodynamics, particularly by exergy analysis, and the performance characteristics of the cycles are also studied.

Mohammed Ghiyath Soufi; Terushige Fujii; Katsumi Sugimoto; Hitoshi Asano

2004-01-01T23:59:59.000Z

129

Selective Exhaust Gas Recycle with Membranes for CO2 Capture from Natural Gas Combined Cycle Power Plants  

Science Journals Connector (OSTI)

The combination of the combustion turbine (Brayton cycle) and steam turbine (Rankine cycle) yields a combined cycle power plant with efficiencies as high as 50%55% (compared to 35%40% in a typical subcritical pulverized coal power plant). ... Of course, it is also possible to combine these designs so that both parallel and series membranes are used. ...

Timothy C. Merkel; Xiaotong Wei; Zhenjie He; Lloyd S. White; J. G. Wijmans; Richard W. Baker

2012-11-27T23:59:59.000Z

130

ADVANCED CO{sub 2} CYCLE POWER GENERATION  

SciTech Connect (OSTI)

Research is being conducted under United States Department of Energy (DOE) Contract DE-FC26-02NT41621 to develop a conceptual design and determine the performance characteristics of a new IGCC plant configuration that facilitates CO{sub 2} removal for sequestration. This new configuration will be designed to achieve CO{sub 2} sequestration without the need for water gas shifting and CO{sub 2} separation, and may eliminate the need for a separate sequestration compressor. This research introduces a novel concept of using CO{sub 2} as a working fluid for an advanced coal gasification based power generation system, where it generates power with high system efficiency while concentrating CO{sub 2} for sequestration. This project supports the DOE research objective of development of concepts for the capture and storage of CO{sub 2}.

A. Nehrozoglu

2003-07-01T23:59:59.000Z

131

Solar-powered/fuel-assisted Rankine-cycle power and cooling system: Simulation method and seasonal performance  

SciTech Connect (OSTI)

The subject of this analysis is a solar cooling system based on a novel hybrid steam Rankine cycle. Steam is generated by the use of solar energy collected at about 100/sup 0/C, and it is then superheated to about 600/sup 0/C in a fossil-fuel-fired superheater. The addition of about 20-26 percent of fuel doubles the power cycle's efficiencyas compared to organic Rankine cycles operating at similar collector temperatures. A comprehensive computer program was developed to analyze the operation and performance of the entire power/cooling system. Transient simulation was performed on an hourly basis over a cooling season in two representative climatic regions (Washington, D.C. and Phoenix, Ariz.). One of the conclusions is that the seasonal system COP is 0.82 for the design configuration and that the use of watercooled condensers and flat-plate collectors of higher efficiency increases this value to 1.35.

Lior, N.; Koai, K.

1984-05-01T23:59:59.000Z

132

A Comparison of Supercritical Carbon Dioxide Power Cycle Configurations with an Emphasis on CSP Applications  

Science Journals Connector (OSTI)

Abstract Recent research suggests that an emerging power cycle technology using supercritical carbon dioxide (s-CO2) operated in a closed-loop Brayton cycle offers the potential of equivalent or higher cycle efficiency versus supercritical or superheated steam cycles at temperatures relevant for CSP applications. Preliminary design-point modeling suggests that s-CO2 cycle configurations can be devised that have similar overall efficiency but different temperature and/or pressure characteristics. This paper employs a more detailed heat exchanger model than previous work to compare the recompression and partial cooling cycles, two cycles with high design-point efficiencies, and illustrates the potential advantages of the latter. Integration of the cycles into CSP systems is studied, with a focus on sensible heat thermal storage and direct s-CO2 receivers. Results show the partial cooling cycle may offer a larger temperature difference across the primary heat exchanger, thereby potentially reducing heat exchanger cost and improving CSP receiver efficiency.

T. Neises; C. Turchi

2014-01-01T23:59:59.000Z

133

Optimization of Fog Inlet Air Cooling System for Combined Cycle Power Plants using Genetic Algorithm  

Science Journals Connector (OSTI)

Abstract In this research paper, a comprehensive thermodynamic modeling of a combined cycle power plant is first conducted and the effects of gas turbine inlet fogging system on the first and second law efficiencies and net power outputs of combined cycle power plants are investigated. The combined cycle power plant (CCPP) considered for this study consist of a double pressure heat recovery steam generator (HRSG) to utilize the energy of exhaust leaving the gas turbine and produce superheated steam to generate electricity in the Rankine cycle. In order to enhance understanding of this research and come up with optimum performance assessment of the plant, a complete optimization is using a genetic algorithm conducted. In order to achieve this goal, a new objective function is defined for the system optimization including social cost of air pollution for the power generation systems. The objective function is based on the first law efficiency, energy cost and the external social cost of air pollution for an operational system. It is concluded that using inlet air cooling system for the CCPP system and its optimization results in an increase in the average output power, first and second law efficiencies by 17.24%, 3.6% and 3.5%, respectively, for three warm months of year.

Mehdi A. Ehyaei; Mojtaba Tahani; Pouria Ahmadi; M. Esfandiari

2014-01-01T23:59:59.000Z

134

Thermodynamic evaluation of solar integration into a natural gas combined cycle power plant  

Science Journals Connector (OSTI)

Abstract The term integrated solar combined-cycle (ISCC) has been used to define the combination of solar thermal energy into a natural gas combined-cycle (NGCC) power plant. Based on a detailed thermodynamic cycle model for a reference ISCC plant, the impact of solar addition is thoroughly evaluated for a wide range of input parameters such as solar thermal input and ambient temperature. It is shown that solar hybridization into an NGCC plant may give rise to a substantial benefit from a thermodynamic point of view. The work here also indicates that a significant solar contribution may be achieved in an ISCC plant, thus implying substantial fuel savings and environmental benefits.

Guangdong Zhu; Ty Neises; Craig Turchi; Robin Bedilion

2015-01-01T23:59:59.000Z

135

Combined-cycle gas and steam turbine power plants. 2. edition  

SciTech Connect (OSTI)

First published in 1991, this book is the leading reference on technical and economic factors of combined-cycle applications now leading the trend toward merchant plants and the peaking power needed in newly deregulated markets around the world, this long-awaited second edition is more important than ever. In it, Kehlhofer -- an internationally recognized authority in the field of new combined-cycle power plants -- and his co-authors widen the scope and detail found in the first edition. Included are tips on system layout, details on controls and automation, and operating instructions. Loaded with case studies, reference tables, and more than 150 figures, this text offers solid advice on system layout, controls and automation, and operating and maintenance instructions. The author provides real-world examples to apply to one`s own applications. The contents include: Introduction; The electricity market; Thermodynamic principles of combined-cycle plants; Combined-cycle concepts; Applications of combined-cycle; Components; Control and automation; Operating and part load behavior; Environmental considerations; Developmental trends; Typical combined-cycle plants already built; Conclusion; Appendices; Conversions; Calculation of the operating performance of combined-cycle installations; Definitions of terms and symbols; Bibliography; and Index.

Kehlhofer, R.; Bachmann, R.; Nielson, H.; Warner, J.

1999-01-01T23:59:59.000Z

136

Performance evaluation of an Organic Rankine Cycle (ORC) for power applications from low grade heat sources  

Science Journals Connector (OSTI)

Abstract In this paper the performance of an Organic Rankine Cycle (ORC) module, which was designed and built for a specific power application, is experimentally characterized. The ORC tested satisfies the main specifications for an efficient power system, highlighting a volumetric expander with large built-in volume ratio. For tests development, a monitored test bench has been used and adapted to the planned test procedure, which consisted of varying the thermal power input for different condensing conditions. Thereby, 10 steady state points are achieved and analyzed according to thermal power input, gross and net electrical powers, electrical cycle efficiencies and expander effectiveness. The results show that the ORC performances are improved for higher thermal oil temperatures, capturing more thermal power, producing more electricity and achieving better cycle efficiencies. The maximum gross electrical efficiency obtained is 12.32%, for a heat source temperature about 155C and a direct dissipation to the ambient. Moreover, the expander reaches an electrical isentropic effectiveness about 65% for an optimum pressure ratio around 7, being a suitable system for power applications from low grade heat sources.

Bernardo Peris; Joaqun Navarro-Esbr; Francisco Mols; Roberto Collado; Adrin Mota-Babiloni

2014-01-01T23:59:59.000Z

137

An integrated solar thermal power system using intercooled gas turbine and Kalina cycle  

Science Journals Connector (OSTI)

A new solar tower thermal power system integrating the intercooled gas turbine top cycle and the Kalina bottoming cycle is proposed in the present paper. The thermodynamic performance of the proposed system is investigated, and the irreversibility of energy conversion is disclosed using the energyutilization diagram method. On the top cycle of the proposed system, the compressed air after being intercooled is heated at 1000C or higher at the solar tower receiver and is used to drive the gas turbine to generate power. The ammoniawater mixture as the working substance of the bottom cycle recovers the waste heat from the gas turbine to generate power. A concise analytical formula of solar-to-electric efficiency of the proposed system is developed. As a result, the peak solar-to-electric efficiency of the proposed system is 27.5% at a gas turbine inlet temperature of 1000C under the designed solar direct normal irradiance of 800W/m2. Compared with a conventional solar power tower plant, the proposed integrated system conserves approximately 69% of consumed water. The results obtained in the current study provide an approach to improve solar-to-electric efficiency and offer a potential to conserve water for solar thermal power plants in arid area.

Shuo Peng; Hui Hong; Hongguang Jin; Zhifeng Wang

2012-01-01T23:59:59.000Z

138

Performance analysis of an absorption power cycle for ocean thermal energy conversion  

Science Journals Connector (OSTI)

Abstract An absorption power cycle with two ejectors is proposed for ocean thermal energy conversion. The ammoniawater is used as the working fluid. The ejectors are driven by vapor and solution from the sub-generator. Based on the first and second law, the mathematical model for this cycle is developed and theoretical analysis is conducted to evaluate the effects of thermodynamic parameters on the performance of this cycle. Results show that the absorption temperature is increased by 2.06.5C by employing the two-stage ejector sub-cycle, which indicates that this proposed cycle can be driven with a lower temperature difference. Further, the thermal efficiency, net thermal efficiency and exergy efficiency of this cycle can reach to 4.17%, 3.10% and 39.92% respectively. Besides, the generation pressure, the heating source temperature, the solution concentration, and the expansion ratio, as well as the entrainment ratio of the first stage ejector have significant effects on the absorption temperature, the thermal efficiency, the exergy efficiency and the exergy loss of this cycle. In addition, 49.80% of exergy loss in this proposed cycle occurs in the generators and reheater, followed by the ejectors of 36.12%.

Han Yuan; Ning Mei; Peilin Zhou

2014-01-01T23:59:59.000Z

139

Catalytic combustor for integrated gasification combined cycle power plant  

DOE Patents [OSTI]

A gasification power plant 10 includes a compressor 32 producing a compressed air flow 36, an air separation unit 22 producing a nitrogen flow 44, a gasifier 14 producing a primary fuel flow 28 and a secondary fuel source 60 providing a secondary fuel flow 62 The plant also includes a catalytic combustor 12 combining the nitrogen flow and a combustor portion 38 of the compressed air flow to form a diluted air flow 39 and combining at least one of the primary fuel flow and secondary fuel flow and a mixer portion 78 of the diluted air flow to produce a combustible mixture 80. A catalytic element 64 of the combustor 12 separately receives the combustible mixture and a backside cooling portion 84 of the diluted air flow and allows the mixture and the heated flow to produce a hot combustion gas 46 provided to a turbine 48. When fueled with the secondary fuel flow, nitrogen is not combined with the combustor portion.

Bachovchin, Dennis M. (Mauldin, SC); Lippert, Thomas E. (Murrysville, PA)

2008-12-16T23:59:59.000Z

140

Innovative biomass to power conversion systems based on cascaded supercritical CO2 Brayton cycles  

Science Journals Connector (OSTI)

Abstract In the small to medium power range the main technologies for the conversion of biomass sources into electricity are based either on reciprocating internal combustion or organic Rankine cycle engines. Relatively low energy conversion efficiencies are obtained in both systems due to the thermodynamic losses in the conversion of biomass into syngas in the former, and to the high temperature difference in the heat transfer between combustion gases and working fluid in the latter. The aim of this paper is to demonstrate that higher efficiencies in the conversion of biomass sources into electricity can be obtained using systems based on the supercritical closed CO2 Brayton cycles (s-CO2). The s-CO2 system analysed here includes two cascaded supercritical CO2 cycles which enable to overcome the intrinsic limitation of the single cycle in the effective utilization of the whole heat available from flue gases. Both part-flow and simple supercritical CO2 cycle configurations are considered and four boiler arrangements are investigated to explore the thermodynamic performance of such systems. These power plant configurations, which were never explored in the literature for biomass conversion into electricity, are demonstrated here to be viable options to increase the energy conversion efficiency of small-to-medium biomass fired power plants. Results of the optimization procedure show that a maximum biomass to electricity conversion efficiency of 36% can be achieved using the cascaded configuration including a part flow topping cycle, which is approximately 10%-points higher than that of the existing biomass power plants in the small to medium power range.

Giovanni Manente; Andrea Lazzaretto

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "binary cycle power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Electricity generation from coal with CO2 capture by means of a novel power cycle  

SciTech Connect (OSTI)

Climate modelers have estimated that anthropogenic emissions of CO2 must be reduced substantially from the present rate to stabilize atmospheric concentration. To achieve this, electricity generation from fossil fuels with CO2 capture and direct sequestration may play an important role. If so, it will be worthwhile to consider power cycles that are designed to minimize atmospheric CO2 emissions and deliver CO2 ready for pipeline transport in addition to providing other desirable attributes of environmental performance and efficiency. One such novel approach, named the Matiant cycle, employs self generated CO2 as the working fluid with both Bryton and Rankine cycle turbines. Process modeling studies are being conducted at the NETL to investigate the promise of this cycle. In the work to be reported, synthesis gas is provided to the Matiant cycle by oxygen-blown dry coal entrained gasification. Oxygen for both the gasifier and the Matiant cycle is provided by use of an Ion Transport Membrane (ITM). ITM is a revolutionary approach for producing high purity oxygen from a high temperature pressurized air stream. ASPEC Plus is used as the simulation tool to compute energy balances and system performance. Two flowsheets are analyzed, the difference being the treatment of the low oxygen content raffinate stream from the ITM. Computed thermal efficiencies of the ITM/Matiant cycle are comparable to those of conventional IGCC without carbon capture. Specific carbon emissions per net MWh are many times lower for the new cycle than for other approaches being developed for power generation with CO2 capture, however. As much as 99.5% of the carbon in synthesis gas fed to the Matiant cycle could be recovered and removed in a pipeline as a high pressure liquid. Such high capture efficiencies at large central generating stations could allow use of fossil fuels without capture at smaller installations or by mobile sources, yielding a modest overall rate of CO2 emissions.

Ruether, J.; Le, P.; White, C.

2000-07-01T23:59:59.000Z

142

Chapter 4 - Natural Gasfired Gas Turbines and Combined Cycle Power Plants  

Science Journals Connector (OSTI)

Abstract Gas turbines can burn a range of liquid and gaseous fuels but most burn natural gas. Power plants based on gas turbines are one of the cheapest types of plant to build, but the cost of their electricity depends heavily on the cost of their fuel. Two types of gas turbine are used for power generation: aero-derivative gas turbines and heavy-duty gas turbines. The former are used to provide power to the grid at times of peak demand. The latter are most often found in combined cycle power stations. These are capable of more than 60% efficiency. There are a number of ways of modifying the gas turbine cycle to improve efficiency, including reheating and intercooling. Micro-turbines have been developed for very small-scale generation of both electricity and heat. The main atmospheric emissions from gas turbines are carbon dioxide and nitrogen oxide.

Paul Breeze

2014-01-01T23:59:59.000Z

143

Performance Diagnosis using Optical Torque Sensor for Selection of a Steam Supply Plant among Advanced Combined Cycle Power Plants  

Science Journals Connector (OSTI)

A newly developed optical torque sensor was applied to select a steam supply plant among advanced combined cycle, i.e. ACC, power plants of...

Shuichi Umezawa

2007-01-01T23:59:59.000Z

144

Value analysis of advanced heat rejection systems for geothermal power plants  

SciTech Connect (OSTI)

A computer model is developed to evaluate the performance of the binary geothermal power plants (Organic Rankine Cycles) with various heat rejection systems and their impact on the levelized cost of electricity. The computer model developed in this work is capable of simulating the operation of a geothermal power plant which consists mainly of an Organic Rankine Cycle (binary plants) with different types of working fluids such as pure hydrocarbons and some binary mixtures of the most promising combinations of hydrocarbons.

Bliem, C. [CJB Consulting, Longmont, CO (United States); Zangrando, F.; Hassani, V. [National Renewable Energy Lab., Golden, CO (United States)

1996-04-10T23:59:59.000Z

145

Development of advanced off-design models for supercritical carbon dioxide power cycles  

SciTech Connect (OSTI)

In the search for increased efficiency of utility-scale electricity generation, Brayton cycles operating with supercritical carbon dioxide (S-CO{sub 2}) have found considerable interest. There are two main advantages of a S-CO{sub 2} Brayton cycle compared to a Rankine cycle: 1) equal or greater thermal efficiencies can be realized using significantly smaller turbomachinery, and 2) heat rejection is not limited by the saturation temperature of the working fluid, which has the potential to reduce or completely eliminate the need for cooling water and instead allow dry cooling. While dry cooling is especially advantageous for power generation in arid climates, a reduction of water consumption in any location will be increasingly beneficial as tighter environmental regulations are enacted in the future. Because daily and seasonal weather variations may result in a plant operating away from its design point, models that are capable of predicting the off-design performance of S-CO{sub 2} power cycles are necessary for characterizing and evaluating cycle configurations and turbomachinery designs on an annual basis. To this end, an off-design model of a recuperated Brayton cycle was developed based on the radial turbomachinery currently being investigated by Sandia National Laboratory. (authors)

Dyreby, J. J.; Klein, S. A.; Nellis, G. F.; Reindl, D. T. [Univ. of Wisconsin-Madison, Solar Energy Laboratory, 1343 Engineering Research Building, 1500 Engineering Drive, Madison, WI 53706 (United States)

2012-07-01T23:59:59.000Z

146

Exergetic analysis and evaluation of coal-fired supercritical thermal power plant and natural gas-fired combined cycle power plant  

Science Journals Connector (OSTI)

The present work has been undertaken for energetic and exergetic analysis of coal-fired supercritical thermal power plant and natural gas-fired combined cycle power plant. Comparative analysis has been conducted ...

V. Siva Reddy; S. C. Kaushik; S. K. Tyagi

2014-03-01T23:59:59.000Z

147

Optimizing the start-up operations of combined cycle power plants using soft computing methods  

Science Journals Connector (OSTI)

......megawatts. Industrial turbines produce high-quality...recovered to improve the efficiency of power generation...steam and drive a steam turbine in a combined-cycle...either gas or steam turbine alone because it performs...generation by their high efficiency and possibility to operate......

Ilaria Bertini; Matteo De Felice; Alessandro Pannicelli; Stefano Pizzuti

2012-08-01T23:59:59.000Z

148

Harmonization of initial estimates of shale gas life cycle greenhouse gas emissions for electric power generation  

Science Journals Connector (OSTI)

...thermal efficiency, fuel heating value, power plant...natural gas as a bridge fuel . Clim Change 118 : 609...emissions and freshwater consumption of Marcellus shale gas...following Fig. S1) for the fuel cycle of shale gas...water, and/or oil) Vessel and pipeline blowdowns...

Garvin A. Heath; Patrick ODonoughue; Douglas J. Arent; Morgan Bazilian

2014-01-01T23:59:59.000Z

149

Electric power generation from a geothermal source utilizing a low-temperature organic Rankine cycle turbine  

SciTech Connect (OSTI)

A demonstration project to generate electricity with a geothermal source and low-temperature organic Rankine cycle turbine in a rural Alaskan location is described. Operating data and a set of conclusions are presented detailing problems and recommendations for others contemplating this approach to electric power generation.

Aspnes, J.D.; Zarling, J.P.

1982-12-01T23:59:59.000Z

150

Electric power generating plant having direct-coupled steam and compressed-air cycles  

DOE Patents [OSTI]

An electric power generating plant is provided with a Compressed Air Energy Storage (CAES) system which is directly coupled to the steam cycle of the generating plant. The CAES system is charged by the steam boiler during off peak hours, and drives a separate generator during peak load hours. The steam boiler load is thereby levelized throughout an operating day.

Drost, M.K.

1981-01-07T23:59:59.000Z

151

Electric power generating plant having direct coupled steam and compressed air cycles  

DOE Patents [OSTI]

An electric power generating plant is provided with a Compressed Air Energy Storage (CAES) system which is directly coupled to the steam cycle of the generating plant. The CAES system is charged by the steam boiler during off peak hours, and drives a separate generator during peak load hours. The steam boiler load is thereby levelized throughout an operating day.

Drost, Monte K. (Richland, WA)

1982-01-01T23:59:59.000Z

152

Method of optimizing performance of Rankine cycle power plants. [US DOE Patent  

DOE Patents [OSTI]

A method is described for efficiently operating a Rankine cycle power plant to maximize fuel utilization efficiency or energy conversion efficiency or minimize costs by selecting a turbine fluid inlet state which is substantially on the area adjacent and including the transposed critical temperature line.

Pope, W.L.; Pines, H.S.; Doyle, P.A.; Silvester, L.F.

1980-06-23T23:59:59.000Z

153

Life-cycle analysis results for geothermal systems in comparison to other power systems: Part II.  

SciTech Connect (OSTI)

A study has been conducted on the material demand and life-cycle energy and emissions performance of power-generating technologies in addition to those reported in Part I of this series. The additional technologies included concentrated solar power, integrated gasification combined cycle, and a fossil/renewable (termed hybrid) geothermal technology, more specifically, co-produced gas and electric power plants from geo-pressured gas and electric (GPGE) sites. For the latter, two cases were considered: gas and electricity export and electricity-only export. Also modeled were cement, steel and diesel fuel requirements for drilling geothermal wells as a function of well depth. The impact of the construction activities in the building of plants was also estimated. The results of this study are consistent with previously reported trends found in Part I of this series. Among all the technologies considered, fossil combustion-based power plants have the lowest material demand for their construction and composition. On the other hand, conventional fossil-based power technologies have the highest greenhouse gas (GHG) emissions, followed by the hybrid and then two of the renewable power systems, namely hydrothermal flash power and biomass-based combustion power. GHG emissions from U.S. geothermal flash plants were also discussed, estimates provided, and data needs identified. Of the GPGE scenarios modeled, the all-electric scenario had the highest GHG emissions. Similar trends were found for other combustion emissions.

Sullivan, J.L.; Clark, C.E.; Yuan, L.; Han, J.; Wang, M. (Energy Systems)

2012-02-08T23:59:59.000Z

154

Tsiklauri-Durst combined cycle (T-D Cycle{trademark}) application for nuclear and fossil-fueled power generating plants  

SciTech Connect (OSTI)

The Tsiklauri-Durst combined cycle is a combination of the best attributes of both nuclear power and combined cycle gas power plants. A technology patented in 1994 by Battelle Memorial Institute offers a synergistic approach to power generation. A typical combined cycle is defined as the combination of gas turbine Brayton Cycle, topping steam turbine Rankine Cycle. Exhaust from the gas turbine is used in heat recovery steam generators to produce steam for a steam turbine. In a standard combined cycle gas turbine-steam turbine application, the gas turbine generates about 65 to 70 percent of system power. The thermal efficiency for such an installation is typically about 45 to 50 percent. A T-D combined cycle takes a new, creative approach to combined cycle design by directly mixing high enthalpy steam from the heat recovery steam generator, involving the steam generator at more than one pressure. Direct mixing of superheated and saturated steam eliminates the requirement for a large heat exchanger, making plant modification simple and economical.

Tsiklauri, B.; Korolev, V.N.; Durst, B.M.; Shen, P.K.

1998-07-01T23:59:59.000Z

155

Plant Design and Cost Assessment of Forced Circulation Lead-Bismuth Cooled Reactor with Conventional Power Conversion Cycles  

E-Print Network [OSTI]

Cost of electricity is the key factor that determines competitiveness of a power plant. Thus the proper selection, design and optimization of the electric power generating cycle is of main importance. This report makes an ...

Dostal, Vaclav

156

Novel Supercritical Carbon Dioxide Power Cycle Utilizing Pressured Oxy-combustion in Conjunction with Cryogenic Compression  

SciTech Connect (OSTI)

The team of Southwest Research Institute (SwRI) and Thar Energy LLC (Thar) applied technology engineering and economic analysis to evaluate two advanced oxy-combustion power cycles, the Cryogenic Pressurized Oxy-combustion Cycle (CPOC), and the Supercritical Oxy-combustion Cycle. This assessment evaluated the performance and economic cost of the two proposed cycles with carbon capture, and included a technology gap analysis of the proposed technologies to determine the technology readiness level of the cycle and the cycle components. The results of the engineering and economic analysis and the technology gap analysis were used to identify the next steps along the technology development roadmap for the selected cycle. The project objectives, as outlined in the FOA, were 90% CO{sub 2} removal at no more than a 35% increase in cost of electricity (COE) as compared to a Supercritical Pulverized Coal Plant without CO{sub 2} capture. The supercritical oxy-combustion power cycle with 99% carbon capture achieves a COE of $121/MWe. This revised COE represents a 21% reduction in cost as compared to supercritical steam with 90% carbon capture ($137/MWe). However, this represents a 49% increase in the COE over supercritical steam without carbon capture ($80.95/MWe), exceeding the 35% target. The supercritical oxy-combustion cycle with 99% carbon capture achieved a 37.9% HHV plant efficiency (39.3% LHV plant efficiency), when coupling a supercritical oxy-combustion thermal loop to an indirect supercritical CO{sub 2} (sCO{sub 2}) power block. In this configuration, the power block achieved 48% thermal efficiency for turbine inlet conditions of 650C and 290 atm. Power block efficiencies near 60% are feasible with higher turbine inlet temperatures, however a design tradeoff to limit firing temperature to 650C was made in order to use austenitic stainless steels for the high temperature pressure vessels and piping and to minimize the need for advanced turbomachinery features such as blade cooling. The overall technical readiness of the supercritical oxy-combustion cycle is TRL 2, Technology Concept, due to the maturity level of the supercritical oxy-combustor for solid fuels, and several critical supporting components, as identified in the Technical Gap Analysis. The supercritical oxycombustor for solid fuels operating at pressures near 100 atm is a unique component of the supercritical oxy-combustion cycle. In addition to the low TRL supercritical oxy-combustor, secondary systems were identified that would require adaptation for use with the supercritical oxycombustion cycle. These secondary systems include the high pressure pulverized coal feed, high temperature cyclone, removal of post-combustion particulates from the high pressure cyclone underflow stream, and micro-channel heat exchangers tolerant of particulate loading. Bench scale testing was utilized to measure coal combustion properties at elevated pressures in a CO{sub 2} environment. This testing included coal slurry preparation, visualization of coal injection into a high pressure fluid, and modification of existing test equipment to facilitate the combustion properties testing. Additional bench scale testing evaluated the effectiveness of a rotary atomizer for injecting a coal-water slurry into a fluid with similar densities, as opposed to the typical application where the high density fluid is injected into a low density fluid. The swirl type supercritical oxy-combustor was developed from initial concept to an advanced design stage through numerical simulation using FLUENT and Chemkin to model the flow through the combustor and provide initial assessment of the coal combustion reactions in the flow path. This effort enabled the initial combustor mechanical layout, initial pressure vessel design, and the conceptual layout of a pilot scale test loop. A pilot scale demonstration of the supercritical oxy-combustion cycle is proposed as the next step in the technology development. This demonstration would advance the supercritical oxy-combustion cycle and the supercritical

Brun, Klaus; McClung, Aaron; Davis, John

2014-03-31T23:59:59.000Z

157

Life-cycle energy and emission analysis of power generation from forest biomass  

Science Journals Connector (OSTI)

Abstract Forest harvest residues, which include limbs, branches, and tree tops, have the potential to generate energy. This paper uses a life-cycle assessment to determine the energy input-to-output ratios for each unit operation in the use of these residues for power generation. Two preparation options for obtaining the biomass were evaluated. For Option 1, the forest residues were chipped at the landing, while for Option 2 they were bundled and chipped at the power plant. Energy use and greenhouse gas (GHG) emissions were found for power plants sizes ranging from 10 to 300MW. For power plants with capacities greater than 30MW, the transportation of either bundles or woodchips to the power plant used the most energy, especially at larger power plant sizes. Option 1 used less energy than Option 2 for all power plant sizes, with the difference between the two becoming smaller for larger power plants. For the life-cycle GHG emissions, Option 1 ranges from 14.71 to 19.51g-CO2eq/kWh depending on the power plant size. Option 2 ranges from 21.42 to 20.90g-CO2eq/kWh. The results are not linear and are close to equal at larger power plant sizes. The GHG emissions increase with increasing moisture content. For a 300MW power plant with chipping at the landing, the GHG emissions range from 11.17 to 22.24g-CO2eq/kWh for moisture contents from 15% to 50%. The sensitivity analysis showed both energy use and GHG emissions are most sensitive to moisture content and then plant lifetime. For the equipment, both the energy use and GHG emissions are most sensitive to changes in the fuel consumption and load capacity of the chip van and the log-haul truck used to transport either bundles or wood chips to the power plant.

Amit Thakur; Christina E. Canter; Amit Kumar

2014-01-01T23:59:59.000Z

158

POWER CYCLE AND STRESS ANALYSES FOR HIGH TEMPERATURE GAS-COOLED REACTOR  

SciTech Connect (OSTI)

The Department of Energy and the Idaho National Laboratory are developing a Next Generation Nuclear Plant (NGNP) to serve as a demonstration of state-of-the-art nuclear technology. The purpose of the demonstration is two fold 1) efficient low cost energy generation and 2) hydrogen production. Although a next generation plant could be developed as a single-purpose facility, early designs are expected to be dual-purpose. While hydrogen production and advanced energy cycles are still in its early stages of development, research towards coupling a high temperature reactor, electrical generation and hydrogen production is under way. Many aspects of the NGNP must be researched and developed in order to make recommendations on the final design of the plant. Parameters such as working conditions, cycle components, working fluids, and power conversion unit configurations must be understood. Three configurations of the power conversion unit were demonstrated in this study. A three-shaft design with three turbines and four compressors, a combined cycle with a Brayton top cycle and a Rankine bottoming cycle, and a reheated cycle with three stages of reheat were investigated. An intermediate heat transport loop for transporting process heat to a High Temperature Steam Electrolysis (HTSE) hydrogen production plant was used. Helium, CO2, and a 80% nitrogen, 20% helium mixture (by weight) were studied to determine the best working fluid in terms cycle efficiency and development cost. In each of these configurations the relative component size were estimated for the different working fluids. The relative size of the turbomachinery was measured by comparing the power input/output of the component. For heat exchangers the volume was computed and compared. Parametric studies away from the baseline values of the three-shaft and combined cycles were performed to determine the effect of varying conditions in the cycle. This gives some insight into the sensitivity of these cycles to various operating conditions as well as trade offs between efficiency and capital cost. Parametric studies were carried out on reactor outlet temperature, mass flow, pressure, and turbine cooling. Recommendations on the optimal working fluid for each configuration were made. Engineering analyses were performed for several configurations of the intermediate heat transport loop that transfers heat from the nuclear reactor to the hydrogen production plant. The analyses evaluated parallel and concentric piping arrangements and two different working fluids, including helium and a liquid salt. The thermal-hydraulic analyses determined the size and insulation requirements for the hot and cold leg pipes in the different configurations. Mechanical analyses were performed to determine hoop stresses and thermal expansion characteristics for the different configurations. Economic analyses were performed to estimate the cost of the various configurations.

Oh, Chang H; Davis, Cliff; Hawkes, Brian D; Sherman, Steven R

2007-05-01T23:59:59.000Z

159

Exergoeconomic analysis of a biomass post-firing combined-cycle power plant  

Science Journals Connector (OSTI)

Abstract Biomass can be converted thermo- and bio-chemically to solid, liquid and gaseous biofuels. In this paper, energy, exergy and exergoeconomic analyses are applied to a biomass integrated post-firing combined-cycle power plant. The energy and exergy efficiencies of the cycle are found to be maximized at specific compressor pressure ratio values, and that higher pressure ratios reduce the total unit product cost. Increasing the gas turbine inlet temperature and decreasing the compressor pressure ratio decreases the CO2 mole fraction exiting the power plant. The exergoeconomic factor for the biomass integrated post-firing combined-cycle power plant at the optimum energy/exergy efficiency is 0.39. This implies that the major cost rate of this power plant configuration is attributable to the exergy destruction cost rate. Increasing the compressor pressure ratio decreases the mass of air per mass of steam in the power plant, implying a reduction in the gas turbine plant size. Increasing both the compressor pressure ratio and the heat recovery steam generator inlet gas temperature increases the capital investment cost compared with the exergy destruction cost. However, increasing the gas turbine inlet temperature decreases this ratio.

Hassan Athari; Saeed Soltani; Seyed Mohammad Seyed Mahmoudi; Marc A. Rosen; Tatiana Morosuk

2014-01-01T23:59:59.000Z

160

Implications of Near-Term Coal Power Plant Retirement for SO2 and NOX and Life Cycle GHG Emissions  

Science Journals Connector (OSTI)

Implications of Near-Term Coal Power Plant Retirement for SO2 and NOX and Life Cycle GHG Emissions ... Life cycle GHG emissions were found to decrease by less than 4% in almost all scenarios modeled. ... Resulting changes in fuel use, life cycle greenhouse gas (GHG) emissions, and emissions of sulfur and nitrogen oxides are estimated. ...

Aranya Venkatesh; Paulina Jaramillo; W. Michael Griffin; H. Scott Matthews

2012-08-13T23:59:59.000Z

Note: This page contains sample records for the topic "binary cycle power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Combined-Cycle Power Generation A Promising Alternative for the Generation of Electric Power from Coal  

Science Journals Connector (OSTI)

The classic concept of generating electric power from a fossil energy source (coal, oil, gas) comprises the following essential process steps (Fig. 1): Combustion of coal and g...

Eberhard Nitschke

1987-01-01T23:59:59.000Z

162

Life Cycle Greenhouse Gas Emissions of Utility-Scale Wind Power: Systematic Review and Harmonization  

SciTech Connect (OSTI)

A systematic review and harmonization of life cycle assessment (LCA) literature of utility-scale wind power systems was performed to determine the causes of and, where possible, reduce variability in estimates of life cycle greenhouse gas (GHG) emissions. Screening of approximately 240 LCAs of onshore and offshore systems yielded 72 references meeting minimum thresholds for quality, transparency, and relevance. Of those, 49 references provided 126 estimates of life cycle GHG emissions. Published estimates ranged from 1.7 to 81 grams CO{sub 2}-equivalent per kilowatt-hour (g CO{sub 2}-eq/kWh), with median and interquartile range (IQR) both at 12 g CO{sub 2}-eq/kWh. After adjusting the published estimates to use consistent gross system boundaries and values for several important system parameters, the total range was reduced by 47% to 3.0 to 45 g CO{sub 2}-eq/kWh and the IQR was reduced by 14% to 10 g CO{sub 2}-eq/kWh, while the median remained relatively constant (11 g CO{sub 2}-eq/kWh). Harmonization of capacity factor resulted in the largest reduction in variability in life cycle GHG emission estimates. This study concludes that the large number of previously published life cycle GHG emission estimates of wind power systems and their tight distribution suggest that new process-based LCAs of similar wind turbine technologies are unlikely to differ greatly. However, additional consequential LCAs would enhance the understanding of true life cycle GHG emissions of wind power (e.g., changes to other generators operations when wind electricity is added to the grid), although even those are unlikely to fundamentally change the comparison of wind to other electricity generation sources.

Dolan, S. L.; Heath, G. A.

2012-04-01T23:59:59.000Z

163

Did geomagnetic activity challenge electric power reliability during solar cycle 23? Evidence from the PJM regional transmission  

E-Print Network [OSTI]

Did geomagnetic activity challenge electric power reliability during solar cycle 23? Evidence from of America, Washington, DC, 20064 USA Chris.StCyr@nasa.gov #12;Abstract During Solar Cycle 22, a very intense geomagnetic storm on 13 March 1989 contributed to the collapse of the Hydro-Quebec power system in Canada

Schrijver, Karel

164

Optimization of waste heat recovery boiler of a combined cycle power plant  

SciTech Connect (OSTI)

This paper describes the details of a procedure developed for optimization of a waste heat recovery boiler (WHRB) of a combined cycle power plant (CCPP) using the program for performance prediction of a typical CCPP, details of which have been presented elsewhere (Seyedan et al., 1994). In order to illustrate the procedure, the optimum design of a WHRB for a typical CCPP (employing dual-pressure bottoming cycle) built by a prominent Indian company, has been carried out. The present design of a WHRB is taken as the base design and the newer designs generated by this procedure are compared with it to assess the extent of cost reduction possible.

Seyedan, B.; Dhar, P.L.; Gaur, R.R. [Indian Inst. of Tech., New Delhi (India). Dept. of Mechanical Engineering; Bindra, G.S. [Bharat Heavy Electrical Ltd., New Delhi (India)

1996-07-01T23:59:59.000Z

165

Comparative evaluation of three alternative power cycles for waste heat recovery from the exhaust of adiabatic diesel engines  

SciTech Connect (OSTI)

Three alternative power cycles were compared in application as an exhaust-gas heat-recovery system for use with advanced ''adiabatic'' diesel engines. The power cycle alternatives considered were steam Rankine, organic Rankine with RC-1 as the working fluid, and variations of an air Brayton cycle. The comparison was made in terms of fuel economy and economic payback potential for heavy-duty trucks operating in line-haul service. The results indicate that, in terms of engine rated specific fuel consumption, a diesel/alternative-power-cycle engine offers a significant improvement over the turbocompound diesel used as the baseline for comparison. The maximum improvement resulted from the use of a Rankine cycle heat-recovery system in series with turbocompounding. The air Brayton cycle alternatives studied, which included both simple-cycle and compression-intercooled configurations, were less effective and provided about half the fuel consumption improvement of the Rankine cycle alternatives under the same conditions. Capital and maintenance cost estimates were also developed for each of the heat-recovery power cycle systems. These costs were integrated with the fuel savings to identify the time required for net annual savings to pay back the initial capital investment. The sensitivity of capital payback time to arbitrary increases in fuel price, not accompanied by corresponding hardware cost inflation, was also examined. The results indicate that a fuel price increase is required for the alternative power cycles to pay back capital within an acceptable time period.

Bailey, M.M.

1985-07-01T23:59:59.000Z

166

Optimization and the effect of steam turbine outlet quality on the output power of a combined cycle power plant  

Science Journals Connector (OSTI)

Abstract A narrow path exists to a sustainable solution which passes through careful steps of efficiency improvement (resource management) and provides environmental friendly energies. Thermal power plants are more common in many power production sites around the world. Therefore, in this current research study a comprehensive thermodynamic modeling of a combined cycle power plant with dual pressure heat recovery steam generator is presented. Since the steam turbine outlet quality is a restrictive parameter, optimization of three cases with different steam quality are conducted and discussed. In other hand, energy and exergy analysis of each components for these three different cases estimated and compared. Obtained results show that it is really important to keep the quality of the vapor at turbine outlet constant in 88% for the results to be more realistic and also optimization and data are more technically feasible and applicable.

A. Ganjehkaviri; M.N. Mohd Jaafar; S.E. Hosseini

2015-01-01T23:59:59.000Z

167

Task report No. 3. Systems analysis of organic Rankine bottoming cycles. [Fuel cell power plant  

SciTech Connect (OSTI)

A model was developed that predicts the design performance and cost of a Fuel Cell/Rankine cycle powerplant. The Rankine cycle utilizes the rejected heat of an 11.3 MW phosphoric acid fuel cell powerplant. Improvements in the total plant heat rate and efficiency of up to 10% were attainalbe, using ammonia as the working fluid. The increase in total plant cost divided by the increase in total plant power ranged from $296/kW to $1069/kW for the cases run, and was a strong function of ambient temperature. The concept appears to be capable of producing substantial energy savings in large fuel cell powerplants, at reasonable costs. However, a much more detailed study that includes such factors as duty cycle, future cost of fuel and site meteorology needs to be done to prove the design for any potential site.

Bloomfield, D.; Fried, S.

1980-12-01T23:59:59.000Z

168

Advanced fusion MHD power conversion using the CFAR (compact fusion advanced Rankine) cycle concept  

SciTech Connect (OSTI)

The CFAR (compact fusion advanced Rankine) cycle concept for a tokamak reactor involves the use of a high-temperature Rankine cycle in combination with microwave superheaters and nonequilibrium MHD disk generators to obtain a compact, low-capital-cost power conversion system which fits almost entirely within the reactor vault. The significant savings in the balance-of-plant costs are expected to result in much lower costs of electricity than previous concepts. This paper describes the unique features of the CFAR cycle and a high- temperature blanket designed to take advantage of it as well as the predicted performance of the MHD disk generators using mercury seeded with cesium. 40 refs., 8 figs., 3 tabs.

Hoffman, M.A.; Campbell, R.; Logan, B.G. (California Univ., Davis, CA (USA); Lawrence Livermore National Lab., CA (USA))

1988-10-01T23:59:59.000Z

169

An assessment of solar-powered organic Rankine cycle systems for combined heating and power in UK domestic applications  

Science Journals Connector (OSTI)

Abstract Performance calculations are presented for a small-scale combined solar heat and power (CSHP) system based on an Organic Rankine Cycle (ORC), in order to investigate the potential of this technology for the combined provision of heating and power for domestic use in the UK. The system consists of a solar collector array of total area equivalent to that available on the roof of a typical UK home, an ORC engine featuring a generalised positive-displacement expander and a water-cooled condenser, and a hot water storage cylinder. Preheated water from the condenser is sent to the domestic hot water cylinder, which can also receive an indirect heating contribution from the solar collector. Annual simulations of the system are performed. The electrical power output from concentrating parabolic-trough (PTC) and non-concentrating evacuated-tube (ETC) collectors of the same total array area are compared. A parametric analysis and a life-cycle cost analysis are also performed, and the annual performance of the system is evaluated according to the total electrical power output and cost per unit generating capacity. A best-case average electrical power output of 89W (total of 776kWh/year) plus a hot water provision capacity equivalent to ?80% of the total demand are demonstrated, for a whole system capital cost of 27003900. Tracking \\{PTCs\\} are found to be very similar in performance to non-tracking \\{ETCs\\} with an average power output of 89W (776kWh/year) vs. 80W (701kWh/year).

James Freeman; Klaus Hellgardt; Christos N. Markides

2015-01-01T23:59:59.000Z

170

Fuel-Cycle Analysis of Hydrogen-Powered Fuel-Cell Systems with the GREET Model  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Cycle Analysis of Hydrogen-Powered Cycle Analysis of Hydrogen-Powered Fuel-Cell Systems with the GREET Model Michael Wang Argonne National Laboratory June 10, 2008 Project ID # AN2 This presentation does not contain any proprietary, confidential, or otherwise restricted information 2 Overview * Project start date: Oct. 2002 * Project end date: Continuous * Percent complete: N/A * Inconsistent data, assumptions, and guidelines * Suite of models and tools * Unplanned studies and analyses * Total project funding from DOE: $2.04 million through FY08 * Funding received in FY07: $450k * Funding for FY08: $840k Budget * H2A team * PSAT team * NREL * Industry stakeholders Partners Timeline Barriers to Address 3 Objectives * Expand and update the GREET model for hydrogen production pathways and for applications of FCVs and other FC systems

171

A concept of power generator using wind turbine, hydrodynamic retarder, and organic Rankine cycle drive  

Science Journals Connector (OSTI)

This paper describes a concept of electric power generating system that uses a wind turbine to generate kinetic energy which converts heat through a hydrodynamic retarder. The heat so generated is utilized to drive an organic Rankine cycle that converts thermal energy into electricity power for continuous and undisrupted supply during the year. A hydrodynamic retarder converts kinetic energy into heat through hot fluid by directing the flow of the fluid into the hydrodynamic retarder in a manner that resists rotation of blades of the wind turbine. The hot fluid circulating in the hydrodynamic retarder is a thermal heat source for vapor regeneration of organic heat exchange fluid mixture(s) used in the Rankine cycle. The expansion of the organic heat exchange fluid gets converted into rotation of the generator rotor.

Samuel Sami

2013-01-01T23:59:59.000Z

172

A life cycle co-benefits assessment of wind power in China  

Science Journals Connector (OSTI)

Abstract Wind power can help ensure regional energy security and also mitigate both global greenhouse gas and local air pollutant emissions, leading to co-benefits. With rapid installation of wind power equipment, it is critical to uncover the embodied emissions of greenhouse gas and air pollutants from wind power sector so that emission mitigation costs can be compared with a typical coal-fired power plant. In order to reach such a target, we conduct a life cycle analysis for wind power sector by using the Chinese inventory standards. Wind farms only release 1/40 of the total CO2 emissions that would be produced by the coal power system for the same amount of power generation, which is equal to 97.48% of CO2 emissions reduction. Comparing with coal power system, wind farms can also significantly reduce air pollutants (SO2, NOX and PM10), leading to 80.38%, 57.31% and 30.91% of SO2, NOX and PM10 emissions reduction, respectively. By considering both recycling and disposal, wind power system could reduce 2.74104t of CO2 emissions, 5.65104kg of NOX emissions, 2.95105kg of SO2 emissions and 7.97104kg of PM10 emissions throughout its life cycle. In terms of mitigation cost, a wind farm could benefit 37.14 US$ from mitigating 1ton of CO2 emissions. The mitigation cost rates of air pollutants were 7.94 US$/kg of SO2, 10.79 US$/kg of NOx, and 80.79 US$/kg of PM10.Our research results strongly support the development of wind power so that more environmental benefits can be gained. However, decentralized wind power developers should consider not only project locations close to the demand of electricity and wind resources, but also the convenient transportation for construction and recycling, while centralized wind power developers should focus on incorporating wind power into the grids in order to avoid wind power loss.

Bing Xue; Zhixiao Ma; Yong Geng; Peter Heck; Wanxia Ren; Mario Tobias; Achim Maas; Ping Jiang; Jose A. Puppim de Oliveira; Tsuyoshi Fujita

2015-01-01T23:59:59.000Z

173

TY JOUR T1 Life Cycle Assessment of Electric Power Systems JF Annual Review of Environment and Resources  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Life Cycle Assessment of Electric Power Systems Life Cycle Assessment of Electric Power Systems JF Annual Review of Environment and Resources A1 Eric R Masanet A1 Yuan Chang A1 Anand R Gopal A1 Peter H Larsen A1 William R Morrow A1 Roger Sathre A1 Arman Shehabi A1 Pei Zhai KW electricity KW energy policy KW environmental analysis KW life cycle impact KW life cycle inventory AB p The application of life cycle assessment LCA to electric power EP technologies is a vibrant research pursuit that is likely to continue as the world seeks ways to meet growing electricity demand with reduced environmental and human health impacts While LCA is an evolving methodology with a number of barriers and challenges to its effective use LCA studies to date have clearly improved our understanding of the life cycle energy

174

Technical and Economic Analysis of Chemical Looping Combustion with Humid Air Turbine Power Cycle  

Science Journals Connector (OSTI)

Abstract Chemical looping combustion (CLC) is an innovative concept that offers potentially attractive option to capture CO2 with appreciably lower thermal efficiency penalties when compared to the tradition approaches. This paper presents process simulation, technical and economic analysis of the CLC integrated with humid air turbine (HAT) cycle for natural gas-fired power plant with CO2 capture. Aspen Plus process simulator and Aspen Process Economic Analyzer were employed for technical and economic analysis of the CLC-HAT and conventional HAT cycle.The analysis shows the CLC- HAT cycle has a thermal efficiency of 57 % at oxidizing temperature of 1,200 oC and reducer inlet temperature of 530 oC. The economic evaluation performed shows that a 50MWth CLC-HAT plant with a projected lifetime of 30 y has a payback period of 6 y compared to 7 y for conventional HAT cycle. This indicates that CLC-HAT cycle is commercially viable with respect to CO2 capture cost.

Akeem Olaleye; Meihong Wang

2014-01-01T23:59:59.000Z

175

Supercritical Rankine Cycle Coupled with Ground Cooling for Low Temperature Power Generation  

Science Journals Connector (OSTI)

Abstract This paper presents an application of an earth-air-heat-exchanger (EAHE) as condenser in low to medium temperature power generation plants. A supercritical Rankine cycle (SRC) utilizing organic refrigerants as working fluids was used as the power cycle for the plant. The heat source temperature was varied from 125-1750C. The condenser was coupled to an EAHE system buried at a depth of 2 m under the surface of the earth. Its effect on the power cycle efficiency over a period of six months has been studied. It was observed that the soil temperature 10cm from the surface (horizontal direction) of the underground pipe increased by almost 20C during this time. This temperature change decreased with distance from the pipe. The soil temperature profile varied with time, distance from the pipe and location along the length of the pipe. The efficiency of the SRC increased by 1% and the daily fluctuations were reduced when EAHE was used.

Rachana Vidhi; D. Yogi Goswami; Elias Stefanakos

2014-01-01T23:59:59.000Z

176

Hybrid Cooling for Geothermal Power Plants: Final ARRA Project...  

Office of Scientific and Technical Information (OSTI)

(NREL) at www.nrel.govpublications. Executive Summary Many binary-cycle geothermal power plants use air as the heat rejection medium. An air-cooled condenser (ACC) system is...

177

Optimization of power generation from a set of low-temperature abandoned gas wells, using organic Rankine cycle  

Science Journals Connector (OSTI)

This research article deals with the employment of organic Rankine cycle (ORC) to generate electricity from a set of low-temperature abandoned gas wells in Iran. At first a thermodynamic analysis was performed to select an appropriate power cycle; consequently organic Rankine cycle was chosen. Then a comprehensive investigation was carried out to find a typical low-temperature abandoned gas reservoir so an abandoned gas reservoir in the central part of Iran was considered. The next step was selecting the working fluid; in this regard a vast range of common organic fluids were studied and R125 was chosen. Finally the gas well and the power plant were simulated and then a parametric optimization of the ORC plant was performed in order to achieve optimum power generation and also to compute generated power at different operational parameters of gas wells and power cycle.

Mahyar Ebrahimi; Seyed Ebrahim Moussavi Torshizi

2012-01-01T23:59:59.000Z

178

Analysis of a new thermodynamic cycle for combined power and cooling using low and mid temperature solar collectors  

SciTech Connect (OSTI)

A combined thermal power and cooling cycle is proposed which combines the Rankine and absorption refrigeration cycles. It can provide power output as well as refrigeration with power generation as a primary goal. Ammonia-water mixture is used as a working fluid. The boiling temperature of the ammonia-water mixture increases as the boiling process proceeds until all liquid is vaporized, so that a better thermal match is obtained in the boiler. The proposed cycle takes advantage of the low boiling temperature of ammonia vapor so that it can be expanded to a low temperature while it is still in a vapor state or a high quality two phase state. This cycle is ideally suited for solar thermal power using low cost concentrating collectors, with the potential to reduce the capital cost of a solar thermal power plant. The cycle can also be used as a bottoming cycle for any thermal power plant. This paper presents a parametric analysis of the proposed cycle.

Goswami, D.Y.; Xu, F. [Univ. of Florida, Gainesville, FL (United States). Solar Energy and Energy Conversion Lab.

1999-05-01T23:59:59.000Z

179

Coal-gasification/MHD/steam-turbine combined-cycle (GMS) power generation  

SciTech Connect (OSTI)

The coal-gasification/MHD/steam-turbine combined cycle (GMS) refers to magnetohydrodynamic (MHD) systems in which coal gasification is used to supply a clean fuel (free of mineral matter and sulfur) for combustion in an MHD electrical power plant. Advantages of a clean-fuel system include the elimination of mineral matter or slag from all components other than the coal gasifier and gas cleanup system; reduced wear and corrosion on components; and increased seed recovery resulting from reduced exposure of seed to mineral matter or slag. Efficiencies in some specific GMS power plants are shown to be higher than for a comparably sized coal-burning MHD power plant. The use of energy from the MHD exhaust gas to gasify coal (rather than the typical approach of burning part of the coal) results in these higher efficiencies.

Lytle, J.M.; Marchant, D.D.

1980-11-01T23:59:59.000Z

180

Air bottoming cycle: Use of gas turbine waste heat for power generation  

SciTech Connect (OSTI)

This paper presents a thermodynamic analysis of the Air Bottoming Cycle (ABC) as well as the results of a feasibility study for using the Air Bottoming Cycle for gas turbine waste heat recovery/power generation on oil/gas platforms in the North Sea. The basis for the feasibility study was to utilize the exhaust gas heat from an LM2500PE gas turbine. Installation of the ABC on both a new and an existing platform have been considered. A design reference case is presented, and the recommended ABC is a two-shaft engine with two compressor intercoolers. The compression pressure ratio was found optimal at 8:1. The combined gas turbine and ABC shaft efficiency wa/s calculated to 46.6 percent. The LM2500PE gas turbine contributes with 36.1 percent while the ABC adds 10.5 percent points to the gas turbine efficiency. The ABC shaft power output is 6.6 MW when utilizing the waste heat of an LM2500PE gas turbine. A preliminary thermal and hydraulic design of the ABC main components (compressor, turbine, intercoolers, and recuperator) was carried out. The recuperator is the largest and heaviest component (45 tons). A weight and cost breakdown of the ABC is presented. The total weight of the ABC package was calculated to 154 metric tons, and the ABC package cost to 9.4 million US$. An economical examination for three different cases was carried out. The results show that the ABC alternative (LM2500PE + ABC) is economical, with a rather good margin, compared to the other alternatives. The conclusion is that the Air Bottoming Cycle is an economical alternative for power generation on both new platforms and on existing platforms with demand for more power.

Bolland, O.; Foerde, M. [Norwegian Univ. of Science and Technology, Trondheim (Norway). Div. of Thermal Energy and Hydropower; Haande, B. [Oil Engineering Consultants, Sandvika (Norway)

1996-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "binary cycle power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Accretion-powered pulsations in an apparently quiescent neutron star binary  

E-Print Network [OSTI]

Accreting millisecond X-ray pulsars are an important subset of low-mass X-ray binaries in which coherent X-ray pulsations can be observed during occasional, bright outbursts (X-ray luminosity $L_X\\sim 10^{36}$ erg s$^{-1}$). These pulsations show that matter is being channeled onto the neutron star's magnetic poles. However, such sources spend most of their time in a low-luminosity, quiescent state ($L_X\\lesssim 10^{34}$ erg s$^{-1}$), where the nature of the accretion flow onto the neutron star (if any) is not well understood. Here we report that the millisecond pulsar/low-mass X-ray binary transition object PSR J1023+0038 intermittently shows coherent X-ray pulsations at luminosities nearly 100 times fainter than observed in any other accreting millisecond X-ray pulsar. We conclude that in spite of its low luminosity PSR J1023+0038 experiences episodes of channeled accretion, a discovery that challenges existing models for accretion onto magnetized neutron stars.

Archibald, Anne M; Patruno, Alessandro; Hessels, Jason W T; Deller, Adam T; Bassa, Cees; Janssen, Gemma H; Kaspi, Vicky M; Lyne, Andrew G; Stappers, Ben W; Tendulkar, Shriharsh P; D'Angelo, Caroline R; Wijnands, Rudy

2014-01-01T23:59:59.000Z

182

The Combined Otto and Stirling Cycle Prime-Mover-Based Power Plant.  

E-Print Network [OSTI]

?? An exploratory study of the combined Otto and Stirling cycle prime mover is presented. The Stirling cycle acts as the bottoming cycle on the (more)

Cullen, Barry, (Thesis)

2011-01-01T23:59:59.000Z

183

Exergetic analysis of solar concentrator aided natural gas fired combined cycle power plant  

Science Journals Connector (OSTI)

This article deals with comparative energy and exergetic analysis for evaluation of natural gas fired combined cycle power plant and solar concentrator aided (feed water heating and low pressure steam generation options) natural gas fired combined cycle power plant. Heat Transfer analysis of Linear Fresnel reflecting solar concentrator (LFRSC) is used to predict the effect of focal distance and width of reflector upon the reflecting surface area. Performance analysis of LFRSC with energetic and exergetic methods and the effect, of concentration ratio and inlet temperature of the fluid is carried out to determine, overall heat loss coefficient of the circular evacuated tube absorber at different receiver temperatures. An instantaneous increase in power generation capacity of about 10% is observed by substituting solar thermal energy for feed water heater and low pressure steam generation. It is observed that the utilization of solar energy for feed water heating and low pressure steam generation is more effective based on exergetic analysis rather than energetic analysis. Furthermore, for a solar aided feed water heating and low pressure steam generation, it is found that the land area requirement is 7ha/MW for large scale solar thermal storage system to run the plant for 24h.

V. Siva Reddy; S.C. Kaushik; S.K. Tyagi

2012-01-01T23:59:59.000Z

184

Status of Rankine-cycle technology for space nuclear power applications  

SciTech Connect (OSTI)

A substantial effort on the development of the liquid metal Rankine cycle space nuclear power system was carried out in programs jointly sponsored by the National Aeronautics and Space Administration (NASA) and the Atomic Energy Commission (AEC) during the period of 1960--1972. Component tests were conducted which have established a considerable technology base for the concept. The development effort and technology status of each component are presented. The key technology issues remaining for development of the system are: refractory metal parts fabrication, turbine blade endurance, turbine bearings and seals, and generator winding seal. 5 refs.

Holcomb, R.S.

1991-01-01T23:59:59.000Z

185

KEPLER CYCLE 1 OBSERVATIONS OF LOW-MASS STARS: NEW ECLIPSING BINARIES, SINGLE STAR ROTATION RATES, AND THE NATURE AND FREQUENCY OF STARSPOTS  

SciTech Connect (OSTI)

We have analyzed Kepler light curves for 849 stars with T{sub eff} {<=} 5200 K from our Cycle 1 Guest Observer program. We identify six new eclipsing binaries, one of which has an orbital period of 29.91 days and two of which are probably W UMa variables. In addition, we identify a candidate 'warm Jupiter' exoplanet. We further examine a subset of 670 sources for variability. Of these objects, 265 stars clearly show periodic variability that we assign to rotation of the low-mass star. At the photometric precision level provided by Kepler, 251 of our objects showed no evidence for variability. We were unable to determine periods for 154 variable objects. We find that 79% of stars with T{sub eff} {<=} 5200 K are variable. The rotation periods we derive for the periodic variables span the range 0.31 days {<=} P{sub rot} {<=} 126.5 days. A considerable number of stars with rotation periods similar to the solar value show activity levels that are 100 times higher than the Sun. This is consistent with results for solar-like field stars. As has been found in previous studies, stars with shorter rotation periods generally exhibit larger modulations. This trend flattens beyond P{sub rot} = 25 days, demonstrating that even long-period binaries may still have components with high levels of activity and investigating whether the masses and radii of the stellar components in these systems are consistent with stellar models could remain problematic. Surprisingly, our modeling of the light curves suggests that the active regions on these cool stars are either preferentially located near the rotational poles, or that there are two spot groups located at lower latitudes, but in opposing hemispheres.

Harrison, T. E.; Coughlin, J. L.; Ule, N. M. [Department of Astronomy, New Mexico State University, Box 30001, MSC 4500, Las Cruces, NM 88003-8001 (United States); Lopez-Morales, M., E-mail: tharriso@nmsu.edu, E-mail: jlcough@nmsu.edu, E-mail: nmule@nmsu.edu, E-mail: mlopez@ieec.uab.es [Institut de Ciencies de L'Espai (CSIC-IEEC), Campus UAB, Fac. Ciencies. Torre C5 parell 2, 08193 Bellaterra, Barcelona (Spain)

2012-01-15T23:59:59.000Z

186

Life cycle assessment of CO2 emissions from wind power plants: Methodology and case studies  

Science Journals Connector (OSTI)

Wind energy plays an increasingly important role in the worlds electricity market with rapid growth projected in the future. In order to evaluate the potential for wind energy to mitigate the effects of climate change by reducing CO2 intensity of the energy sector, this study developed a new direct and simple method for estimating CO2 emissions per kWh produced during the life cycle of four representative wind power plants (three in developed countries and one in China). The life cycle analysis focuses on the wind power plant as the basic functional object instead of a single wind turbine. Our results show that present-day wind power plants have a lifetime emission intensity of 5.08.2gCO2/kWh electricity, a range significantly lower than estimates in previous studies. Our estimate suggests that wind is currently the most desirable renewable energy in terms of minimizing CO2 emissions per kWh of produced electricity. The production phase contributes the most to overall CO2 emissions, while recycling after decommission could reduce emissions by nearly half, representing an advantage of wind when compared with other energy generation technologies such as nuclear. Compared with offshore wind plants, onshore plants have lower CO2 emissions per kWh electricity and require less transmission infrastructure. Analysis of a case in China indicates that a large amount of CO2 emissions could be saved in the transport phase in large countries by using shorter alternative routes of transportation. As the worlds fastest growing market for wind power, China could potentially save 780Mtons of CO2 emissions annually by 2030 with its revised wind development target. However, there is still ample room for even more rapid development of wind energy in China, accompanied by significant opportunities for reducing overall CO2 emissions.

Yuxuan Wang; Tianye Sun

2012-01-01T23:59:59.000Z

187

Application of the integrated gasification combined cycle technology and BGL gasification design for power generation  

SciTech Connect (OSTI)

Integrated gasification combined cycle (IGCC) technology promises to be the power generation technology of choice in the late 1990s and beyond. Based on the principle that almost any fuel can be burned more cleanly and efficiently if first turned into a gas, an IGCC plant extracts more electricity from a ton of coal by burning it as a gas in a turbine rather than as a solid in a boiler. Accordingly, coal gasification is the process of converting coal to a clean-burning synthetic gas. IGCC technology is the integration of the coal-gasification plant with a conventional combined-cycle plant to produce electricity. The benefits of this technology merger are many and result in a highly efficient and environmentally superior energy production facility. The lGCC technology holds significant implications for Asia-Pacific countries and for other parts of the world. High-growth regions require additional baseload capacity. Current low prices for natural gas and minimal emissions that result from its use for power generation favor its selection as the fuel source for new power generation capacity. However, fluctuations in fuel price and fuel availability are undermining the industry`s confidence in planning future capacity based upon gas-fueled generation. With the world`s vast coal reserves, there is a continuing effort to provide coal-fueled power generation technologies that use coal cleanly and efficiently. The lGCC technology accomplishes this objective. This chapter provides a summary of the status of lGCC technology and lGCC projects known to date. It also will present a technical overview of the British Gas/Lurgi (BGL) technology, one of the leading and most promising coal gasifier designs.

Edmonds, R.F. Jr.; Hulkowich, G.J.

1993-12-31T23:59:59.000Z

188

Life Cycle Assessment of a Parabolic Trough Concentrating Solar Power Plant and the Impacts of Key Design Alternatives  

Science Journals Connector (OSTI)

To inform capacity expansion decisions, hybrid life cycle assessment is used to evaluate a reference design of a parabolic trough concentrating solar power (CSP) facility located in Daggett, CA, along four sustainability metrics: life cycle (LC) greenhouse gas (GHG) emissions, water consumption, cumulative energy demand (CED), and energy payback time (EPBT). ... Power plant system: components typically associated with the power block (e.g., turbine generator set), in addition to other balance-of-plant components, such as buildings, roads, and parking lots. ... The majority of the remaining water consumption is attributed to water consumed during the manufacturing phase (10% of LC or 0.47 L/kWh). ...

John J. Burkhardt; III; Garvin A. Heath; Craig S. Turchi

2011-02-23T23:59:59.000Z

189

Method for recovering power according to a cascaded rankine cycle by gasifying liquefied natural gas and utilizing the cold potential  

SciTech Connect (OSTI)

The present invention discloses a method for recovering effective energy as power between liquefied natural gas and a high temperature source by cascading two kinds of Rankine cycles when the liquefied natural gas is re-gasified. The method is characterized in that a first medium performs a first Rankine cycle with the liquefied natural gas as a low temperature source, the first medium being mainly a mixture of hydrocarbons having 1-6 carbon atoms or a mixture of halogenated hydrocarbons of boiling points close to those of said hydrocarbons, the first medium having compositions according to which the vapor curve of gasifying the liquefied natural gas substantially corresponds to the low pressure cooling curve of the first medium, the power generated thereby is recovered by a first turbine during the first Rankine cycle, a second medium having a higher boiling point than said first medium performs a second Rankine cycle with part of said first Rankine cycle as the low temperature source, the second medium, being a single hydrocarbon component having 1-6 carbon atoms or a mixture thereof, a single halogenated hydrocarbon whose boiling point is close to that of this hydrocarbon or a mixture thereof, or ammonia, whose low pressure cooling curve substantially corresponds to the vapor curve of the high pressure first medium, said first and second Rankine cycles are cascaded, and a second turbine is disposed to recover power during the second Rankine cycle.

Matsumoto, O.; Aoki, I.

1984-04-24T23:59:59.000Z

190

Kepler Cycle 1 Observations of Low Mass Stars: New Eclipsing Binaries, Single Star Rotation Rates, and the Nature and Frequency of Starspots  

E-Print Network [OSTI]

We have analyzed Kepler light curves for 849 stars with T_eff < 5200 K from our Cycle 1 Guest Observer program. We identify six new eclipsing binaries, one of which has an orbital period of 29.91 d, and two of which are probably W UMa variables. In addition, we identify a candidate "warm Jupiter" exoplanet. We further examine a subset of 670 sources for variability. Of these objects, 265 stars clearly show periodic variability that we assign to rotation of the low-mass star. At the photometric precision level provided by Kepler, 251 of our objects showed no evidence for variability. We were unable to determine periods for 154 variable objects. We find that 79% of stars with T_eff < 5200 K are variable. The rotation periods we derive for the periodic variables span the range 0.31 < P_rot < 126.5 d. A considerable number of stars with rotation periods similar to the solar value show activity levels that are 100 times higher than the Sun. This is consistent with results for solar-like field stars. As...

Harrison, T E; Ule, N M; Lopez-Morales, M

2011-01-01T23:59:59.000Z

191

Meta-Analysis of Estimates of Life Cycle Greenhouse Gas Emissions from Concentrating Solar Power: Preprint  

SciTech Connect (OSTI)

In reviewing life cycle assessment (LCA) literature of utility-scale CSP systems, this analysis focuses on clarifying central tendency and reducing variability in estimates of life cycle greenhouse gas (GHG) emissions through a meta-analytical process called harmonization. From 125 references reviewed, 10 produced 36 independent GHG emission estimates passing screens for quality and relevance: 19 for parabolic trough technology and 17 for power tower technology. The interquartile range (IQR) of published GHG emission estimates was 83 and 20 g CO2eq/kWh for trough and tower, respectively, with medians of 26 and 38 g CO2eq/kWh. Two levels of harmonization were applied. Light harmonization reduced variability in published estimates by using consistent values for key parameters pertaining to plant design and performance. Compared to the published estimates, IQR was reduced by 69% and median increased by 76% for troughs. IQR was reduced by 26% for towers, and median was reduced by 34%. A second level of harmonization was applied to five well-documented trough LC GHG emission estimates, harmonizing to consistent values for GHG emissions embodied in materials and from construction activities. As a result, their median was further reduced by 5%, while the range increased by 6%. In sum, harmonization clarified previous results.

Heath, G. A.; Burkhardt, J. J.

2011-09-01T23:59:59.000Z

192

Study of Gas-steam Combined Cycle Power Plants Integrated with MCFC for Carbon Dioxide Capture  

Science Journals Connector (OSTI)

Abstract In the field of fossil-fuel based technologies, natural gas combined cycle (NGCC) power plants are currently the best option for electricity generation, having an efficiency close to 60%. However, they produce significant CO2 emissions, amounting to around 0.4 tonne/MWh for new installations. Among the carbon capture and sequestration (CCS) technologies, the process based on chemical absorption is a well-established technology, but markedly reduces the NGCC performances. On the other side, the integration of molten carbonate fuel cells (MCFCs) is recognized as an attractive option to overcome the main drawbacks of traditional CCS technologies. If the cathode side is fed by NGCC exhaust gases, the MCFC operates as a CO2 concentrator, beside providing an additional generating capacity. In this paper the integration of MCFC into a two pressure levels combined cycle is investigated through an energy analysis. To improve the efficiency of MCFC and its integration within the NGCC, plant configurations based on two different gas recirculation options are analyzed. The first is a traditional recirculation of exhaust gases at the compressor inlet; the second, mainly involving the MCFC stack, is based on recirculating a fraction of anode exhaust gases at the cathode inlet. Effects of MCFC operating conditions on energy and environmental performances of the integrated system are evaluated.

Roberto Carapellucci; Roberto Saia; Lorena Giordano

2014-01-01T23:59:59.000Z

193

Investigation of thermal stability of fluorinol-85 and 2-methylpyridine/water as Rankine Cycle Power Systems working fluids  

SciTech Connect (OSTI)

Results of the experimental investigation to date, indicate that Fluorinol-85 could be utilized in Organic Rankine Cycle Power Systems (ORCPS) to a maximum cycle temperature of 550/sup 0/F without any discernable decomposition over an extended period of time. However, at 575/sup 0/F, Fluorinol-85 could possibly decompose between 1 and 3% per year depending upon system design considerations. 2-methyl-pyridine/water could have possibly less than a 2% annual decomposition rate at 600/sup 0/F maximum cycle temperature.

Jain, M.L.; Demirgian, J.; Hillis, D.L.

1984-01-01T23:59:59.000Z

194

Life Cycle Assessment of a Parabolic Trough Concentrating Solar Power Plant and Impacts of Key Design Alternatives: Preprint  

SciTech Connect (OSTI)

Climate change and water scarcity are important issues for today's power sector. To inform capacity expansion decisions, hybrid life cycle assessment is used to evaluate a reference design of a parabolic trough concentrating solar power (CSP) facility located in Daggett, California, along four sustainability metrics: life cycle greenhouse gas (GHG) emissions, water consumption, cumulative energy demand (CED), and energy payback time (EPBT). This wet-cooled, 103 MW plant utilizes mined nitrate salts in its two-tank, thermal energy storage (TES) system. Design alternatives of dry-cooling, a thermocline TES, and synthetically-derived nitrate salt are evaluated. During its life cycle, the reference CSP plant is estimated to emit 26 g CO2eq per kWh, consume 4.7 L/kWh of water, and demand 0.40 MJeq/kWh of energy, resulting in an EPBT of approximately 1 year. The dry-cooled alternative is estimated to reduce life cycle water consumption by 77% but increase life cycle GHG emissions and CED by 8%. Synthetic nitrate salts may increase life cycle GHG emissions by 52% compared to mined. Switching from two-tank to thermocline TES configuration reduces life cycle GHG emissions, most significantly for plants using synthetically-derived nitrate salts. CSP can significantly reduce GHG emissions compared to fossil-fueled generation; however, dry-cooling may be required in many locations to minimize water consumption.

Heath, G. A.; Burkhardt, J. J.; Turchi, C. S.

2011-09-01T23:59:59.000Z

195

Watts Bar Unit 1 Cycle Zero Power Physics Tests Analysis with VERA-CS  

SciTech Connect (OSTI)

The Consortium for Advanced Simulation of Light Water Reactors (CASL) is developing a collection of methods and software products known as VERA, the Virtual Environment for Reactor Applications, including a core simulation capability called VERA-CS. A key milestone for this endeavor is to validate VERA against measurements from operating nuclear power reactors. The first step in validation against plant data is to determine the ability of VERA to accurately simulate the initial startup physics tests for Watts Bar Nuclear Power Station, Unit 1 (WBN1) cycle 1. VERA-CS calculations were performed with the Insilico code developed at ORNL using cross section processing from the SCALE system and the transport capabilities within the Denovo transport code using the SPN method. The calculations were performed with ENDF/B-VII.0 cross sections in 252 groups (collapsed to 23 groups for the 3D transport solution). The key results of the comparison of calculations with measurements include initial criticality, control rod worth critical configurations, control rod worth, differential boron worth, and isothermal temperature reactivity coefficient (ITC). The VERA results for these parameters show good agreement with measurements, with the exception of the ITC, which requires additional investigation. Results are also compared to those obtained with Monte Carlo methods and a current industry core simulator.

Gehin, Jess C [ORNL; Godfrey, Andrew T [ORNL; Evans, Thomas M [ORNL; Hamilton, Steven P [ORNL; Francheschini, F. [Westinghouse Electric Company, Cranberry Township

2014-01-01T23:59:59.000Z

196

Gamma-ray binaries  

E-Print Network [OSTI]

Recent observations have shown that some compact stellar binaries radiate the highest energy light in the universe. The challenge has been to determine the nature of the compact object and whether the very high energy gamma-rays are ultimately powered by pulsar winds or relativistic jets. Multiwavelength observations have shown that one of the three gamma-ray binaries known so far, PSR B1259-63, is a neutron star binary and that the very energetic gamma-rays from this source and from another gamma-ray binary, LS I +61 303, may be produced by the interaction of pulsar winds with the wind from the companion star. At this time it is an open question whether the third gamma-ray binary, LS 5039, is also powered by a pulsar wind or a microquasar jet, where relativistic particles in collimated jets would boost the energy of the wind from the stellar companion to TeV energies.

I. F. Mirabel

2006-10-24T23:59:59.000Z

197

Is Integrated Gasification Combined Cycle with Carbon Capture-Storage the Solution for Conventional Coal Power Plants  

E-Print Network [OSTI]

Engineering Management Field Project Is Integrated Gasification Combined Cycle with Carbon Capture-Storage the Solution for Conventional Coal Power Plants By Manish Kundi Fall Semester, 2011 An EMGT Field Project report... 2.4 Environmental Aspects-Emissions 23 3.0 Procedure & Methodology 3.1 Working technology Conventional Coal Plants 30 3.2 Working technology IGCC Power Plants 32 3.3 Carbon Capture and Storage 35 3...

Kundi, Manish

2011-12-16T23:59:59.000Z

198

First results from operation of the Adler thermal power station equipped with two PGU-180 combined-cycle power units  

Science Journals Connector (OSTI)

We present technical characteristics of the equipment used in the PGU-180 power units of the Adler thermal power station (a branch of OGK-2) commissioned in November 2012 after the entire power plant had succe...

Yu. A. Radin; S. N. Lenev; O. N. Nikandrov; D. V. Rudenko

2013-09-01T23:59:59.000Z

199

Operation of CANDU power reactor in thorium self-sufficient fuel cycle  

Science Journals Connector (OSTI)

This paper presents the results of calculations for CANDU reactor operation in thorium fuel cycle. Calculations...233U and mode of operation in self-sufficient cycle. For the mode of accumulation of 233U it was a...

B. R. Bergelson; A. S. Gerasimov; G. V. Tikhomirov

2007-02-01T23:59:59.000Z

200

Effect of nanoparticle dispersion on specific heat capacity of a binary nitrate salt eutectic for concentrated solar power applications  

Science Journals Connector (OSTI)

In this study we investigate nanoparticle dispersions in a molten binary nitrate salt eutectic. It has been recently reported that nanoparticle dispersions in molten salt mixtures can significantly enhance the specific heat capacity of the salt mixtures. These molten salt mixtures can be used as heat transfer fluid (HTF)/thermal energy storage (TES) in a concentrated solar power (CSP) plant and enhancing their specific heat capacity can significantly reduce the cost of electricity produced by CSP. However, the mechanism for the enhanced specific heat capacity is still under investigation and has not been clearly explained. In this paper, we investigate the effect of nanoparticle size on the specific heat capacity of nanoparticle/molten salt eutectic mixture. Four different sizes of nanoparticles (5nm, 10nm, 30nm, and 60nm) were dispersed in a molten nitrate salt eutectic at 1% concentration by weight. The molten nitrate salt eutectic consisted of sodium nitrate (NaNO3) and potassium nitrate (KNO3) at compositions of 60% and 40% by weight. A modulated differential scanning calorimeter (MDSC) was employed to measure the specific heat capacity of the pure molten salt eutectic and the nanomaterials (pure molten salt eutectic mixed with nanoparticles). The specific heat capacity of the nanomaterials was enhanced with increase of nanoparticle size. The observed enhancement was found to be 8% for 5nm, 12% for 10nm, 19% for 30nm and 27% for the 60nm. Material characterization analyses were carried out to investigate microstructural change of the nanomaterials. It was observed that special nanostructures were formed by molten salt mixtures in the nanomaterial samples and the amount of observed nanostructures was increased with the measured specific heat capacity. This indicates that nanostructures formed in the nanomaterials may be responsible for the enhanced specific heat capacity of the nanomaterials.

Bharath Dudda; Donghyun Shin

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "binary cycle power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Harmonization of initial estimates of shale gas life cycle greenhouse gas emissions for electric power generation  

Science Journals Connector (OSTI)

...and conventional gas are not significantly...harmonized estimates of life cycle GHG emissions...unconventional gas used for electricity...combined cycle turbine (NGCC) compared...explanation of the remaining harmonization...evaluated shale gas LCAs: inclusion of missing life cycle stages...

Garvin A. Heath; Patrick ODonoughue; Douglas J. Arent; Morgan Bazilian

2014-01-01T23:59:59.000Z

202

CoalFleet RD&D augmentation plan for integrated gasification combined cycle (IGCC) power plants  

SciTech Connect (OSTI)

To help accelerate the development, demonstration, and market introduction of integrated gasification combined cycle (IGCC) and other clean coal technologies, EPRI formed the CoalFleet for Tomorrow initiative, which facilitates collaborative research by more than 50 organizations from around the world representing power generators, equipment suppliers and engineering design and construction firms, the U.S. Department of Energy, and others. This group advised EPRI as it evaluated more than 120 coal-gasification-related research projects worldwide to identify gaps or critical-path activities where additional resources and expertise could hasten the market introduction of IGCC advances. The resulting 'IGCC RD&D Augmentation Plan' describes such opportunities and how they could be addressed, for both IGCC plants to be built in the near term (by 2012-15) and over the longer term (2015-25), when demand for new electric generating capacity is expected to soar. For the near term, EPRI recommends 19 projects that could reduce the levelized cost-of-electricity for IGCC to the level of today's conventional pulverized-coal power plants with supercritical steam conditions and state-of-the-art environmental controls. For the long term, EPRI's recommended projects could reduce the levelized cost of an IGCC plant capturing 90% of the CO{sub 2} produced from the carbon in coal (for safe storage away from the atmosphere) to the level of today's IGCC plants without CO{sub 2} capture. EPRI's CoalFleet for Tomorrow program is also preparing a companion RD&D augmentation plan for advanced-combustion-based (i.e., non-gasification) clean coal technologies (Report 1013221). 7 refs., 30 figs., 29 tabs., 4 apps.

NONE

2007-01-15T23:59:59.000Z

203

Optimization of a solar powered absorption cycle under Abu Dhabi's weather conditions  

SciTech Connect (OSTI)

In order for the solar absorption air conditioners to become a real alternative to the conventional vapour compression systems, their performance has to be improved and their total cost has to be reduced. A solar powered absorption cycle is modeled using the Transient System Simulation (TRNSYS) program and Typical Meteorological Year 2 data of Abu Dhabi. It uses evacuated tube collectors to drive a 10 kW ammonia-water absorption chiller. Firstly, the system performance and its total cost are optimized separately using single objective optimization algorithms. The design variables considered are: the collector slope, the collector mass flow rate, the collector area and the storage tank volume. The single objective optimization results show that MATLAB global optimization methods agree with the TRNSYS optimizer. Secondly, MATLAB is used to solve a multi-objective optimization problem to improve the system's performance and cost, simultaneously. The optimum designs are presented using Pareto curve and show the potential improvements of the baseline system. (author)

Al-Alili, A.; Hwang, Y.; Radermacher, R. [Department of Mechanical Engineering, University of Maryland, College Park, MD (United States); Kubo, I. [Department of Mechanical Engineering, The Petroleum Institute, Abu Dhabi (United Arab Emirates)

2010-12-15T23:59:59.000Z

204

Integrated Gasification Combined Cycle (IGCC) demonstration project, Polk Power Station -- Unit No. 1. Annual report, October 1993--September 1994  

SciTech Connect (OSTI)

This describes the Tampa Electric Company`s Polk Power Station Unit 1 (PPS-1) Integrated Gasification Combined Cycle (IGCC) demonstration project which will use a Texaco pressurized, oxygen-blown, entrained-flow coal gasifier to convert approximately 2,300 tons per day of coal (dry basis) coupled with a combined cycle power block to produce a net 250 MW electrical power output. Coal is slurried in water, combined with 95% pure oxygen from an air separation unit, and sent to the gasifier to produce a high temperature, high pressure, medium-Btu syngas with a heat content of about 250 Btu/scf (LHV). The syngas then flows through a high temperature heat recovery unit which cools the syngas prior to its entering the cleanup systems. Molten coal ash flows from the bottom of the high temperature heat recovery unit into a water-filled quench chamber where it solidifies into a marketable slag by-product.

NONE

1995-05-01T23:59:59.000Z

205

MULTIPARAMETER OPTIMIZATION STUDIES ON GEOTHERMAL ENERGY CYCLES  

E-Print Network [OSTI]

of Practical Cycles for Geothermal Power Plants." GeneralDesign and Optimize Geothermal Power Cycles." Presented atof Practical Cycles for Geothermal Power Plants." General

Pope, W.L.

2011-01-01T23:59:59.000Z

206

THE TRANSPOSED CRITICAL TEMPERATURE RANKINE THERMODYNAMIC CYCLE  

E-Print Network [OSTI]

Process Program for Geothermal Power Plant Cycles,'*for a Rankine Cycle Geothermal Power Plant," Proceedings,Design and Optimize Geothermal Power Cycles," presented at

Pope, William L.

2012-01-01T23:59:59.000Z

207

Alkali metal Rankine cycle boiler technology challenges and some potential solutions for space nuclear power and propulsion applications  

SciTech Connect (OSTI)

Alkali metal boilers are of interest for application to future space Rankine cycle power conversion systems. Significant progress on such boilers was accomplished in the 1960's and early 1970's, but development was not continued to operational systems since NASA's plans for future space missions were drastically curtailed in the early 1970's. In particular, piloted Mars missions were indefinitely deferred. With the announcement of the Space Exploration Initiative (SEI) in July 1989 by President Bush, interest was rekindled in challenging space missions and, consequently in space nuclear power and propulsion. Nuclear electric propulsion (NEP) and nuclear thermal propulsion (NTP) were proposed for interplanetary space vehicles, particularly for Mars missions. The potassium Rankine power conversion cycle became of interest to provide electric power for NEP vehicles and for 'dual-mode' NTP vehicles, where the same reactor could be used directly for propulsion and (with an additional coolant loop) for power. Although the boiler is not a major contributor to system mass, it is of critical importance because of its interaction with the rest of the power conversion system; it can cause problems for other components such as excess liquid droplets entering the turbine, thereby reducing its life, or more critically, it can drive instabilities-some severe enough to cause system failure. Funding for the SEI and its associated technology program from 1990 to 1993 was not sufficient to support significant new work on Rankine cycle boilers for space applications. In Fiscal Year 1994, funding for these challenging missions and technologies has again been curtailed, and planning for the future is very uncertain. The purpose of this paper is to review the technologies developed in the 1960's and 1970's in the light of the recent SEI applications. In this way, future Rankine cycle boiler programs may be conducted most efficiently.

Stone, J.R.

1994-07-01T23:59:59.000Z

208

Development of a dynamic simulator for a natural gas combined cycle (NGCC) power plant with post-combustion carbon capture  

SciTech Connect (OSTI)

The AVESTAR Center located at the U.S. Department of Energys National Energy Technology Laboratory and West Virginia University is a world-class research and training environment dedicated to using dynamic process simulation as a tool for advancing the safe, efficient and reliable operation of clean energy plants with CO{sub 2} capture. The AVESTAR Center was launched with a high-fidelity dynamic simulator for an Integrated Gasification Combined Cycle (IGCC) power plant with pre-combustion carbon capture. The IGCC dynamic simulator offers full-scope Operator Training Simulator (OTS) Human Machine Interface (HMI) graphics for realistic, real-time control room operation and is integrated with a 3D virtual Immersive Training Simulator (ITS), thus allowing joint control room and field operator training. The IGCC OTS/ITS solution combines a gasification with CO{sub 2} capture process simulator with a combined cycle power simulator into a single high-performance dynamic simulation framework. This presentation will describe progress on the development of a natural gas combined cycle (NGCC) dynamic simulator based on the syngas-fired combined cycle portion of AVESTARs IGCC dynamic simulator. The 574 MW gross NGCC power plant design consisting of two advanced F-class gas turbines, two heat recovery steam generators (HRSGs), and a steam turbine in a multi-shaft 2x2x1 configuration will be reviewed. Plans for integrating a post-combustion carbon capture system will also be discussed.

Liese, E.; Zitney, S.

2012-01-01T23:59:59.000Z

209

Preliminary reliability and availability analysis of the Heber geothermal binary demonstration plant. Final report  

SciTech Connect (OSTI)

An assessment is presented of the reliability and availability of the Heber Geothermal Binary Demonstration Plant on the basis of preliminary design information. It also identifies and ranks components of the plant in order of their criticality to system operation and their contribution to system unavailability. The sensitivity of the various components to uncertainties of data and the potential for reliability growth are also examined. The assessment results were obtained through the adaptation and application of an existing reliability and availability methodology to the Heber plant design. These preliminary assessments were made to assist (1) in evaluating design alternatives for the plant and (2) in demonstrating that the closed-loop, multiple-fluid, binary cycle geothermal concept is competitive with the more conventional flashed steam cycle technology. The Heber Geothermal Binary Demonstration Plant Project is a cooperative effort directed toward accelerating geothermal development for power generation and establishing the binary cycle technology as a proven alternative to the flashed steam cycle for moderate temperature hydrothermal resources. The binary power plant would have a capacity of 45 MW/sub e/ net and would derive its energy from the low salinity (14,000 ppM), moderate temperature (360/sup 0/F, 182/sup 0/C) fluid from the Heber reservoir in southern California.

Himpler, H.; White, J.; Witt, J.

1981-10-01T23:59:59.000Z

210

CONCEPTUAL DESIGN AND ECONOMICS OF THE ADVANCED CO2 HYBRID POWER CYCLE  

SciTech Connect (OSTI)

Research has been conducted under United States Department of Energy Contract DEFC26-02NT41621 to analyze the feasibility of a new type of coal-fired plant for electric power generation. This new type of plant, called the Advanced CO{sub 2} Hybrid Power Plant, offers the promise of efficiencies nearing 36 percent, while concentrating CO{sub 2} for 100% sequestration. Other pollutants, such as SO{sub 2} and NOx, are sequestered along with the CO{sub 2} yielding a zero emissions coal plant. The CO{sub 2} Hybrid is a gas turbine-steam turbine combined cycle plant that uses CO{sub 2} as its working fluid to facilitate carbon sequestration. The key components of the plant are a cryogenic air separation unit (ASU), a pressurized circulating fluidized bed gasifier, a CO{sub 2} powered gas turbine, a circulating fluidized bed boiler, and a super-critical pressure steam turbine. The gasifier generates a syngas that fuels the gas turbine and a char residue that, together with coal, fuels a CFB boiler to power the supercritical pressure steam turbine. Both the gasifier and the CFB boiler use a mix of ASU oxygen and recycled boiler flue gas as their oxidant. The resulting CFB boiler flue gas is essentially a mixture of oxygen, carbon dioxide and water. Cooling the CFB flue gas to 80 deg. F condenses most of the moisture and leaves a CO{sub 2} rich stream containing 3%v oxygen. Approximately 30% of this flue gas stream is further cooled, dried, and compressed for pipeline transport to the sequestration site (the small amount of oxygen in this stream is released and recycled to the system when the CO{sub 2} is condensed after final compression and cooling). The remaining 70% of the flue gas stream is mixed with oxygen from the ASU and is ducted to the gas turbine compressor inlet. As a result, the gas turbine compresses a mixture of carbon dioxide (ca. 64%v) and oxygen (ca. 32.5%v) rather than air. This carbon dioxide rich mixture then becomes the gas turbine working fluid and also becomes the oxidant in the gasification and combustion processes. As a result, the plant provides CO{sub 2} for sequestration without the performance and economic penalties associated with water gas shifting and separating CO{sub 2} from gas streams containing nitrogen. The cost estimate of the reference plant (the Foster Wheeler combustion hybrid) was based on a detailed prior study of a nominal 300 MWe demonstration plant with a 6F turbine. Therefore, the reference plant capital costs were found to be 30% higher than an estimate for a 425 MW fully commercial IGCC with an H class turbine (1438 $/kW vs. 1111 $/kW). Consequently, the capital cost of the CO{sub 2} hybrid plant was found to be 25% higher than that of the IGCC with pre-combustion CO{sub 2} removal (1892 $/kW vs. 1510 $/kW), and the levelized cost of electricity (COE) was found to be 20% higher (7.53 c/kWh vs. 6.26 c/kWh). Although the final costs for the CO{sub 2} hybrid are higher, the study confirms that the relative change in cost (or mitigation cost) will be lower. The conceptual design of the plant and its performance and cost, including losses due to CO{sub 2} sequestration, is reported. Comparison with other proposed power plant CO{sub 2} removal techniques reported by a December 2000 EPRI report is shown. This project supports the DOE research objective of development of concepts for the capture and storage of CO{sub 2}.

A. Nehrozoglu

2004-12-01T23:59:59.000Z

211

World experience with development of combined-cycle and gas turbine technologies and prospects for employing them in the thermal power engineering of Russia using the capacities of the countrys industry producing power machinery and equipment  

Science Journals Connector (OSTI)

World experience gained from using combined-cycle and gas-turbine technologies in power engineering is analyzed. The technical and production capacities of the Russian industry constructing power machinery and...

O. N. Favorskii; V. L. Polishchuk; I. M. Livshits

2007-09-01T23:59:59.000Z

212

Life Cycle GHG Emissions from Conventional Natural Gas Power Generation: Systematic Review and Harmonization (Presentation)  

SciTech Connect (OSTI)

This research provides a systematic review and harmonization of the life cycle assessment (LCA) literature of electricity generated from conventionally produced natural gas. We focus on estimates of greenhouse gases (GHGs) emitted in the life cycle of electricity generation from conventionally produced natural gas in combustion turbines (NGCT) and combined-cycle (NGCC) systems. A process we term "harmonization" was employed to align several common system performance parameters and assumptions to better allow for cross-study comparisons, with the goal of clarifying central tendency and reducing variability in estimates of life cycle GHG emissions. This presentation summarizes preliminary results.

Heath, G.; O'Donoughue, P.; Whitaker, M.

2012-12-01T23:59:59.000Z

213

THERMODYNAMIC MODELLING OF BIOMASS INTEGRATED GASIFICATION COMBINED CYCLE (BIGCC) POWER GENERATION SYSTEM.  

E-Print Network [OSTI]

??An attractive and practicable possibility of biomass utilization for energy production is gasification integrated with a combined cycle. This technology seems to have the possibility (more)

Desta, Melaku

2011-01-01T23:59:59.000Z

214

Economic comparison between coal-fired and liquefied natural gas combined cycle power plants considering carbon tax: Korean case  

Science Journals Connector (OSTI)

Economic growth is main cause of environmental pollution and has been identified as a big threat to sustainable development. Considering the enormous role of electricity in the national economy, it is essential to study the effect of environmental regulations on the electricity sector. This paper aims at making an economic analysis of Korea's power plant utilities by comparing electricity generation costs from coal-fired power plants and liquefied natural gas (LNG) combined cycle power plants with environmental consideration. In this study, the levelized generation cost method (LGCM) is used for comparing economic analysis of power plant utilities. Among the many pollutants discharged during electricity generation, this study principally deals with control costs related only to CO2 and NO2, since the control costs of SO2 and total suspended particulates (TSP) are already included in the construction cost of utilities. The cost of generating electricity in a coal-fired power plant is compared with such cost in a LNG combined cycle power plant. Moreover, a sensitivity analysis with computer simulation is performed according to fuel price, interest rates and carbon tax. In each case, these results can help in deciding which utility is economically justified in the circumstances of environmental regulations.

Suk-Jae Jeong; Kyung-Sup Kim; Jin-Won Park; Dong-soon Lim; Seung-moon Lee

2008-01-01T23:59:59.000Z

215

Erosion-corrosion modelling of gas turbine materials for coal-fired combined cycle power generation  

Science Journals Connector (OSTI)

The development of coal-fired combined cycle power generation systems is receiving considerable worldwide interest. The successful development and commercialisation of these new systems require that all the component parts are manufactured from appropriate materials and that these materials give predictable in-service performance. Corrosion and erosion-corrosion, resulting from coal derived particulates, deposition and gaseous species, have been identified as potential life limiting factors for these systems. Models to predict these modes of materials degradation are under active development. This paper outlines the development and testing of models suitable for use in gas turbine environments. The complexity of the corrosion processes means that an empirical approach to model development is required whereas a more mechanistic approach can be applied to erosion processes. For hot corrosion conditions, statistically based corrosion models have been produced using laboratory tests for two coatings and a base alloy at typical type I and type II hot corrosion temperatures (900 and 700C). These models use the parameters of alkali sulphate deposition flux and \\{SOx\\} partial pressure (at each temperature and for set \\{HCl\\} partial pressures), to predict the rate of the most likely localised damage associated with hot corrosion reactions. For erosion-corrosion modelling, a series of laboratory tests have been carried out to investigate erosion behaviour in corrosive conditions appropriate to coal-fired gas turbines. Materials performance data have been obtained from samples located in the hot gas path of the Grimethorpe PFBC pilot plant, under well characterised conditions, for testing the corrosion and erosion-corrosion models. The models successfully predict the materials damage observed in the pilot plant environments.

N.J. Simms; J.E. Oakey; D.J. Stephenson; P.J. Smith; J.R. Nicholls

1995-01-01T23:59:59.000Z

216

Off-Design Performance of Power Plants: An Integrated Gasification Combined-Cycle Example  

Science Journals Connector (OSTI)

...that of a normal natural gas-fired combined-cycle...for operation in the natural gas-fired combined-cycle...inlet flow around the high-pressure section of the turbine...when converting from natural gas firing to IGCC opera-tion...

M. R. ERBES; J. N. PHILLIPS; M. S. JOHNSON; J. PAFFENBARGER; M. GLUCKMAN; R. H. EUSTIS

1987-07-24T23:59:59.000Z

217

The importance of combined cycle generating plants in integrating large levels of wind power generation  

SciTech Connect (OSTI)

Integration of high wind penetration levels will require fast-ramping combined cycle and steam cycles that, due to higher operating costs, will require proper pricing of ancillary services or other forms of compensation to remain viable. Several technical and policy recommendations are presented to help realign the generation mix to properly integrate the wind. (author)

Puga, J. Nicolas

2010-08-15T23:59:59.000Z

218

Diagrams of regimes of cogeneration steam turbines for combined-cycle power plants  

Science Journals Connector (OSTI)

General considerations regarding the form of the steam-consumption diagram for a three-loop cogeneration-type combined-cycle plant are formulated on the basis of ... 12.4 steam turbine for the PGU-410 combined-cycle

A. Yu. Kultyshev; M. Yu. Stepanov; T. Yu. Linder

2012-12-01T23:59:59.000Z

219

Space reactor/Stirling cycle systems for high power Lunar applications  

SciTech Connect (OSTI)

NASA`s Space Exploration Initiative (SEI) has proposed the use of high power nuclear power systems on the lunar surface as a necessary alternative to solar power. Because of the long lunar night ({approximately} 14 earth days) solar powered systems with the requisite energy storage in the form of regenerative fuel cells or batteries becomes prohibitively heavy at high power levels ({approximately} 100 kWe). At these high power levels nuclear power systems become an enabling technology for variety of missions. One way of producing power on the lunar surface is with an SP-100 class reactor coupled with Stirling power converters. In this study, analysis and characterization of the SP-100 class reactor coupled with Free Piston Stirling Power Conversion (FPSPC) system will be performed. Comparison of results with previous studies of other systems, particularly Brayton and Thermionic, are made.

Schmitz, P.D. [Sverdrup Technology, Inc., Brook Park, OH (United States). Lewis Research Center Group; Mason, L.S. [National Aeronautics and Space Administration, Cleveland, OH (United States). Lewis Research Center

1994-09-01T23:59:59.000Z

220

Influence of resistive load on power output and fatigue during intermittent sprint cycling exercise in children  

Science Journals Connector (OSTI)

A modified friction-loaded cycle ergometer (Monark, model 864, Monark ... stored on a computer. Instantaneous flywheel velocity data were low-pass filtered (4th order Reverse ... inertia was calculated from decel...

Gregory C. Bogdanis; Aggeliki Papaspyrou

2007-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "binary cycle power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Predicting Battery Pack Thermal and Electrical Performance in a Vehicle Using Realistic Drive Cycle Power Profiles  

Science Journals Connector (OSTI)

The heat generated during battery charge and discharge cycles is a major ... issue, particularly since the performance of a battery depends on its operating temperature. As a consequence, robust thermal managemen...

Allen Curran; Scott Peck

2013-01-01T23:59:59.000Z

222

Investigation of coal fired combined-cycle cogeneration plants for power, heat, syngas, and hydrogen  

Science Journals Connector (OSTI)

The methodology for determination of technical and economic efficiency of coal fired combined-cycle cogeneration plant (CCCP) with low-pressure ... steam-gas generator and continuous flow gasifier at combined pro...

V. E. Nakoryakov; G. V. Nozdrenko; A. G. Kuzmin

2009-12-01T23:59:59.000Z

223

Beowawe Bottoming Binary Project Geothermal Project | Open Energy  

Open Energy Info (EERE)

Beowawe Bottoming Binary Project Geothermal Project Beowawe Bottoming Binary Project Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Beowawe Bottoming Binary Project Project Type / Topic 1 Recovery Act: Geothermal Technologies Program Project Type / Topic 2 Geothermal Energy Production from Low Temperature Resources, Coproduced Fluids from Oil and Gas Wells, and Geopressured Resources Project Type / Topic 3 Low Temperature Resources Project Description The proposed two-year project supports the DOE GTP's goal of promoting the development and commercial application of energy production from low-temperature geothermal fluids, i.e., between 150°F and 300°F. State Nevada Objectives Demonstrate the technical and economic feasibility of electricity generation from nonconventional geothermal resources of 205°F using the first commercial use of a cycle at a geothermal power plant inlet temperature of less than 300°F.

224

Evaluation of technical feasibility of closed-cycle non-equilibrium MHD power generation with direct coal firing. Final report, Task I  

SciTech Connect (OSTI)

Program accomplishments in a continuing effort to demonstrate the feasibility of direct coal-fired, closed-cycle MHD power generation are reported. This volume contains the following appendices: (A) user's manual for 2-dimensional MHD generator code (2DEM); (B) performance estimates for a nominal 30 MW argon segmented heater; (C) the feedwater cooled Brayton cycle; (D) application of CCMHD in an industrial cogeneration environment; (E) preliminary design for shell and tube primary heat exchanger; and (F) plant efficiency as a function of output power for open and closed cycle MHD power plants. (WHK)

Not Available

1981-11-01T23:59:59.000Z

225

DOE`s high performance power systems program: Development of advanced coal-fired combined-cycle systems  

SciTech Connect (OSTI)

Coal currently provides more than one third of the world`s electricity and more than one half of the US`s electricity. However, for coal to be the fuel of choice in the future, highly efficient, environmentally acceptable, and economically competitive, coal-fired power plants are needed. The US Department of Energy, Federal Energy Technology Center, under its High Performance Power Systems (HIPPS) Program, has two contracts in place, one with Foster Wheeler Development Corporation and one with United Technologies Research Center, to develop advanced power generation systems. Based on an indirectly fired cycle, HIPPS uses a combined cycle for power generation at efficiencies of 47--50% (HHV) with superior environmental performance (1/10 of New Source Performance Standards) and a lower cost-of-electricity (10% reduction relative to current coal-fired plants). HIPPS, scheduled to be ready for commercialization by the year 2005, could provide a solution to the anticipated worldwide demand for clean, efficient electricity generation. In this paper, the two HIPPS designs are reviewed and on-going research is discussed.

Ruth, L.; Plasynski, S.; Shaffer, F. [Dept. of Energy, Pittsburgh, PA (United States). Federal Energy Technology Center; Ramezan, M. [Burns and Roe Services Corp., Pittsburgh, PA (United States)

1997-09-01T23:59:59.000Z

226

The Prospects for Closed Cycle M.P.D. Power Generation  

Science Journals Connector (OSTI)

...P.D. Power Generation B. C. Lindley...indirect fired) which could...commercial power stations...the working gas plasma, emphasis...employing certain gases as the working...an indirect fired heat exchanger...p.d. power generation is mainly...

1967-01-01T23:59:59.000Z

227

Influence of steam injection and hot gas bypass on the performance and operation of a combined heat and power system using a recuperative cycle gas turbine  

Science Journals Connector (OSTI)

The influence of steam injection and hot gas bypass on the performance and operation of ... power (CHP) system using a recuperative cycle gas turbine was investigated. A full off-design analysis ... in steam gene...

Soo Young Kang; Jeong Ho Kim; Tong Seop Kim

2013-08-01T23:59:59.000Z

228

Fuel-Cycle Analysis of Hydrogen-Powered Fuel-Cell Systems with the GREET Model  

Broader source: Energy.gov [DOE]

This presentation by Michael Wang of Argonne National Laboratory provides information about an analysis of hydrogen-powered fuel-cell systems.

229

A Cycle-Based Formulation and Valid Inequalities for DC Power ...  

E-Print Network [OSTI]

Dec 19, 2014 ... Abstract: It is well-known that optimizing network topology by switching on and off transmission lines improves the efficiency of power delivery in...

Burak Kocuk

2014-12-19T23:59:59.000Z

230

Life Cycle Greenhouse Gas Emissions of Trough and Tower Concentrating Solar Power Electricity Generation: Systematic Review and Harmonization  

SciTech Connect (OSTI)

In reviewing life cycle assessment (LCA) literature of utility-scale concentrating solar power (CSP) systems, this analysis focuses on reducing variability and clarifying the central tendency of published estimates of life cycle greenhouse gas (GHG) emissions through a meta-analytical process called harmonization. From 125 references reviewed, 10 produced 36 independent GHG emissions estimates passing screens for quality and relevance: 19 for parabolic trough (trough) technology and 17 for power tower (tower) technology. The interquartile range (IQR) of published estimates for troughs and towers were 83 and 20 grams of carbon dioxide equivalent per kilowatt-hour (g CO2-eq/kWh),1 respectively; median estimates were 26 and 38 g CO2-eq/kWh for trough and tower, respectively. Two levels of harmonization were applied. Light harmonization reduced variability in published estimates by using consistent values for key parameters pertaining to plant design and performance. The IQR and median were reduced by 87% and 17%, respectively, for troughs. For towers, the IQR and median decreased by 33% and 38%, respectively. Next, five trough LCAs reporting detailed life cycle inventories were identified. The variability and central tendency of their estimates are reduced by 91% and 81%, respectively, after light harmonization. By harmonizing these five estimates to consistent values for global warming intensities of materials and expanding system boundaries to consistently include electricity and auxiliary natural gas combustion, variability is reduced by an additional 32% while central tendency increases by 8%. These harmonized values provide useful starting points for policy makers in evaluating life cycle GHG emissions from CSP projects without the requirement to conduct a full LCA for each new project.

Burkhardt, J. J.; Heath, G.; Cohen, E.

2012-04-01T23:59:59.000Z

231

Harmonization of initial estimates of shale gas life cycle greenhouse gas emissions for electric power generation  

Science Journals Connector (OSTI)

...throughout the fuel cycle (both intentional...production in the price environment of...50). When the effect of coproduct...comparison with other fuel sources...for coal is, on average, only ?5% from...given that the effect of harmonizing...thermal efficiency, fuel heating value...

Garvin A. Heath; Patrick ODonoughue; Douglas J. Arent; Morgan Bazilian

2014-01-01T23:59:59.000Z

232

Life Cycle Greenhouse Gas Emissions from Concentrating Solar Power (Fact Sheet)  

SciTech Connect (OSTI)

The National Renewable Energy Laboratory (NREL) recently led the Life Cycle Assessment (LCA) Harmonization Project, a study that makes great strides in clarifying inconsistent and conflicting GHG emission estimates in the published literature while providing more precise estimates of GHG emissions from utility-scale CSP systems.

Not Available

2012-11-01T23:59:59.000Z

233

X-ray power density spectra of black hole binaries : a new deadtime model for the RXTE PCA  

E-Print Network [OSTI]

The power density spectrum is an essential tool for determining the frequency content of X-ray radiation from astronomical sources. For neutron star systems, power density spectra reveal coherent oscillations for those ...

Wei, Dennis

2006-01-01T23:59:59.000Z

234

Life Cycle Environmental and Economic Tradeoffs of Using Fast Pyrolysis Products for Power Generation  

Science Journals Connector (OSTI)

ash ... To find favorable locations for a 200 dry metric ton/day fast pyrolysis plant in Pennsylvania (PA), analysis was undertaken using GIS tools that considered locations and the availability of corn farms, fuel oil-fired power plants, and coal-fired power plants in the state. ...

Ghasideh Pourhashem; Sabrina Spatari; Akwasi A. Boateng; Andrew J. McAloon; Charles A. Mullen

2013-03-19T23:59:59.000Z

235

Energy and Economic Analysis of the CO2 Capture from Flue Gas of Combined Cycle Power Plants  

Science Journals Connector (OSTI)

Abstract Carbon capture and storage is considered as one of the key strategies for reducing the emissions of carbon dioxide from power generation facilities. Although post-combustion capture via chemical absorption is now a mature technology, the separation of CO2 from flue gases shows many issues, including the solvent degradation and the high regeneration energy requirement, that in turn reduces the power plant performances. Focusing on a triple pressure and reheat combined cycle with exhaust gas recirculation, this paper aims to evaluate the potential impacts of integrating a post-combustion capture system, based on an absorption process with monoethanolamine solvent. Energy and economic performances of the integrated system are evaluated varying the exhaust gas recirculation fraction and the CO2 capture ratio. The different configurations examined are then compared in terms of efficiency and rated capacity of the integrated system, as well as considering the cost of electricity generated and the cost of CO2 avoided.

Maura Vaccarelli; Roberto Carapellucci; Lorena Giordano

2014-01-01T23:59:59.000Z

236

Closed Brayton cycle power system with a high temperature pellet bed reactor heat source for NEP applications  

Science Journals Connector (OSTI)

Capitalizing on past and future development of high temperature gas reactor (HTGR) technology a low mass 15 MWe closed gas turbine cycle power system using a pellet bed reactor heating helium working fluid is proposed for Nuclear Electric Propulsion (NEP) applications. Although the design of this directly coupled system architecture comprising the reactor/power system/space radiator subsystems is presented in conceptual form sufficient detail is included to permit an assessment of overall system performance and mass. Furthermore an attempt is made to show how tailoring of the main subsystem design characteristics can be utilized to achieve synergistic system level advantages that can lead to improved reliability and enhanced system life while reducing the number of parasitic load driven peripheral subsystems.

Albert J. Juhasz; Mohamed S. El?Genk; William Harper

1993-01-01T23:59:59.000Z

237

Life cycle analysis of distributed concentrating solar combined heat and power: economics, global warming potential and water  

Science Journals Connector (OSTI)

We report on life cycle assessment (LCA) of the economics, global warming potential and water (both for desalination and water use in operation) for a distributed concentrating solar combined heat and power (DCS-CHP) system. Detailed simulation of system performance across 1020 sites in the US combined with a sensible cost allocation scheme informs this LCA. We forecast a levelized cost of $0.25kWh?1 electricity and $0.03kWh?1 thermal, for a system with a life cycle global warming potential of ~80gCO2eqkWh?1 of electricity and ~10gCO2eqkWh?1 thermal, sited in Oakland, California. On the basis of the economics shown for air cooling, and the fact that any combined heat and power system reduces the need for cooling while at the same time boosting the overall solar efficiency of the system, DCS-CHP compares favorably to other electric power generation systems in terms of minimization of water use in the maintenance and operation of the plant. The outlook for water desalination coupled with distributed concentrating solar combined heat and power is less favorable. At a projected cost of $1.40m?3, water desalination with DCS-CHP would be economical and practical only in areas where water is very scarce or moderately expensive, primarily available through the informal sector, and where contaminated or salt water is easily available as feed-water. It is also interesting to note that $0.40$1.90m?3 is the range of water prices in the developed world, so DCS-CHP desalination systems could also be an economical solution there under some conditions.

Zack Norwood; Daniel Kammen

2012-01-01T23:59:59.000Z

238

Harmonization of initial estimates of shale gas life cycle greenhouse gas emissions for electric power generation  

Science Journals Connector (OSTI)

...emissions of utility-scale wind power: Systematic review...workover can refer to well maintenance without hydraulic fracturing...compressor blowdowns Engines/turbines Hydraulic fracturing* Pneumatic...recompletion* Engines/turbines Compressors and compressor...

Garvin A. Heath; Patrick ODonoughue; Douglas J. Arent; Morgan Bazilian

2014-01-01T23:59:59.000Z

239

Organic Rankine-cycle power systems working fluids study: Topical report No. 1: Fluorinol 85. [85 mole % trofluoroethanol in water  

SciTech Connect (OSTI)

An investigation to experimentally determine the thermal stability limits and degradation rates of Fluorinol 85 as a function of maximum cycle temperatures was initiated in 1982. Following the design and construction of a dynamic test loop capable of simulating the thermodynamic conditions of possible prototypical organic Rankine-cycle (ORC) power systems, several test runs were completed. The Fluorinol 85 test loop was operated for about 3800 h, covering a temperature range of 525-600/sup 0/F. Both liquid and noncondensable vapor (gas) samples were drawn periodically and analyzed using capillary column gas chromatography, gas chromatography/mass spectrometry and mass spectrometry. Results indicate that Fluorinol 85 would not decompose significantly over an extended period of time, up to a maximum cycle temperature of 550/sup 0/F. However, 506-h data at 575/sup 0/F show initiation of significant degradation. The 770-h data at 600/sup 0/F, using a fresh charge of Fluorinol 85, indicate an annual degradation rate of more than 17.2%. The most significant degradation product observed is hydrofluoric acid, which could cause severe corrosion in an ORC system. Devices to remove the hydrofluoric acid and prevent extreme temperature excursions are necessary for any ORC system using Fluorinol 85 as a working fluid.

Jain, M.L.; Demirgian, J.C.; Cole, R.L.

1986-09-01T23:59:59.000Z

240

Comparative life cycle energy, emission, and economic analysis of 100kW nameplate wind power generation  

Science Journals Connector (OSTI)

This study compares three configurations of wind turbines to produce a nameplate power of 100kW applying LCA methodology over a lifetime of 25 years. Alternatives under study are: installing twenty Endurance (EN) 5kW, or five Jacobs (JA) 20kW, or one Northern Power (NP) 100kW turbines in the Halkirk region of Alberta, Canada. The comparison has been done taking life cycle energy, environment and economic aspects into consideration. Each parameter has been quantified corresponding to a functional unit (FU) of 1kWh. Life cycle energy requirement for NP is found to be 133.3kJ/kWh, which is about 69% and 41% less than EN and JA respectively. Global warming impact from NP is found to be 17.8gCO2eq/kWh, which is around 58% and 29% less respective to EN and JA. The acidification (SO2eq/kWh) and ground level ozone [(VOC+NOx)/kWh] impacts from NP are also found significantly less compared to EN and JA configuration. The difference in relative environmental impacts from configurations is found to be less while performing uncertainty analysis, but does not alter the ranking of configurations. At 10% internal rate of return (IRR), electricity price for NP is 0.21$/kWh, whereas EN and JA prices are 65% and 16% higher respectively.

Md Ruhul Kabir; Braden Rooke; G.D. Malinga Dassanayake; Brian A. Fleck

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "binary cycle power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Integration of the steam cycle and CO2 capture process in a decarbonization power plant  

Science Journals Connector (OSTI)

Abstract A new integrated system with power generation and CO2 capture to achieve higher techno-economic performance is proposed in this study. In the new system, three measures are adopted to recover the surplus energy from the CO2 capture process. The three measures are as follows: (1) using a portion of low-pressure steam instead of high-pressure extracted steam by installing the steam ejector, (2) mixing a portion of flash-off water with the extracted steam to utilize the superheat degree of the extracted steam, and (3) recycling the low-temperature waste heat from the CO2 capture process to heat the condensed water. As a result, the power output of the new integrated system is 107.61MW higher than that of a decarbonization power plant without integration. The efficiency penalty of CO2 capture is expected to decrease by 4.91%-points. The increase in investment produced by the new system is 3.25M$, which is only 0.88% more than the total investment of a decarbonization power plant without integration. Lastly, the cost of electricity and CO2 avoided is 15.14% and 33.1% lower than that of a decarbonization power generation without integration, respectively. The promising results obtained in this study provide a new approach for large-scale CO2 removal with low energy penalty and economic cost.

Gang Xu; Yue Hu; Baoqiang Tang; Yongping Yang; Kai Zhang; Wenyi Liu

2014-01-01T23:59:59.000Z

242

Life cycle assessment of a community hydroelectric power system in rural Thailand  

Science Journals Connector (OSTI)

Rural electrification and the provision of low cost, low emission technology in developing countries require decision makers to be well informed on the costs, appropriateness and environmental credentials of all available options. While cost and appropriateness are often shaped by observable local considerations, environmental considerations are increasingly influenced by global concerns which are more difficult to identify and convey to all stakeholders. Life cycle assessment is an iterative process used to analyse a product or system. This study iteratively applies life cycle assessment (LCA) to a 3kW community hydroelectric system located in Huai Kra Thing (HKT) village in rural Thailand. The cradle to grave analysis models the hydropower schemes construction, operation and end of life phases over a period of twenty years and includes all relevant equipment, materials and transportation. The study results in the enumeration of the environmental credentials of the HKT hydropower system and highlights the need to place environmental performance, and LCA itself, in a proper context. In the broadest sense, LCA results for the HKT hydropower system are found to reflect a common trend reported in hydropower LCA literature, namely that smaller hydropower systems have a greater environmentally impact per kWh perform less well environmentally - than larger systems. Placed within a rural electrification context, however, the HKT hydropower system yields better environmental and financial outcomes than diesel generator and grid connection alternatives.

Andrew Pascale; Tania Urmee; Andrew Moore

2011-01-01T23:59:59.000Z

243

Harmonization of initial estimates of shale gas life cycle greenhouse gas emissions for electric power generation  

Science Journals Connector (OSTI)

...warming potential (GWP) for methane (28). In addition, we perform...GWP Power plant efficiency (HHV) Coproduct allocation EUR (bcf) CH...Description of published methane emission rates and the harmonization...to all GHG emissions except methane leakage, e.g., CO 2 emissions...

Garvin A. Heath; Patrick ODonoughue; Douglas J. Arent; Morgan Bazilian

2014-01-01T23:59:59.000Z

244

From jet fuel to electric power using a mesoscale, efficient Stirling cycle  

E-Print Network [OSTI]

combustor coupled with a free-piston Stirling engine. The design and development of a catalytic combustor ratios varying in the 0.35­0.70 range. The combustor is interfaced with a free-piston Stirling engine combustion; Electrospray; Catalytic; Free-piston Stirling engine 1. Introduction Power generation is often

Gomez, Alessandro

245

Harmonization of initial estimates of shale gas life cycle greenhouse gas emissions for electric power generation  

Science Journals Connector (OSTI)

...production activities to the oil produced from associated...of production in the price environment...for transportation and heating should be...study (51%, higher heating value basis). 1 Olmstead...reductions in natural gas prices for emissions of CO2 from the US power...

Garvin A. Heath; Patrick ODonoughue; Douglas J. Arent; Morgan Bazilian

2014-01-01T23:59:59.000Z

246

Optimizing the start-up operations of combined cycle power plants using soft computing methods  

Science Journals Connector (OSTI)

......Energy, New technologies and sustainable Economic development Agency...Detection in Gas Turbines using Fuzzy...fusion for gas turbine power plants...Research Development Center Technical...Energy, New technologies and sustainable Economic development Agency...combination of a gas turbine and a steam......

Ilaria Bertini; Matteo De Felice; Alessandro Pannicelli; Stefano Pizzuti

2012-08-01T23:59:59.000Z

247

Analysis of environmental factors impacting the life cycle cost analysis of conventional and fuel cell/battery-powered passenger vehicles. Final report  

SciTech Connect (OSTI)

This report presents the results of the further developments and testing of the Life Cycle Cost (LCC) Model previously developed by Engineering Systems Management, Inc. (ESM) on behalf of the U.S. Department of Energy (DOE) under contract No. DE-AC02-91CH10491. The Model incorporates specific analytical relationships and cost/performance data relevant to internal combustion engine (ICE) powered vehicles, battery powered electric vehicles (BPEVs), and fuel cell/battery-powered electric vehicles (FCEVs).

NONE

1995-01-31T23:59:59.000Z

248

Microsoft PowerPoint - NEAC Rpt of Fuel Cycle comm slides  

Broader source: Energy.gov (indexed) [DOE]

t t f th F l C l Report of the Fuel Cycle Research and Development p Subcommittee of NEAC B Ri h (Ch i ) Burton Richter (Chairman) Margaret Chu Darleane Hoffman Ray Juzaitis Ray Juzaitis Sekazi Mtingwa Ronald P. Omberg Joy L. Rempe Joy L. Rempe Dominique Warin June 12, 2012 Washington, D.C. Context for the Meeting Context for the Meeting * Fukushima - Increased fault tolerance for Fukushima Increased fault tolerance for reactor systems * Used Fuel Disposal - Response to BRC is being Used Fuel Disposal Response to BRC is being developed, but it is not ready. Nonetheless, there are many things that can be done * Review of some things that were already in the works (Systems Study; Separation & Waste Form * Budget was not available at time of meeting

249

Model predictive control system and method for integrated gasification combined cycle power generation  

SciTech Connect (OSTI)

Control system and method for controlling an integrated gasification combined cycle (IGCC) plant are provided. The system may include a controller coupled to a dynamic model of the plant to process a prediction of plant performance and determine a control strategy for the IGCC plant over a time horizon subject to plant constraints. The control strategy may include control functionality to meet a tracking objective and control functionality to meet an optimization objective. The control strategy may be configured to prioritize the tracking objective over the optimization objective based on a coordinate transformation, such as an orthogonal or quasi-orthogonal projection. A plurality of plant control knobs may be set in accordance with the control strategy to generate a sequence of coordinated multivariable control inputs to meet the tracking objective and the optimization objective subject to the prioritization resulting from the coordinate transformation.

Kumar, Aditya; Shi, Ruijie; Kumar, Rajeeva; Dokucu, Mustafa

2013-04-09T23:59:59.000Z

250

The Cost of Carbon Capture and Storage for Natural Gas Combined Cycle Power Plants  

Science Journals Connector (OSTI)

Historically, natural gas has been used to provide peak-load power at a relatively high cost per kilowatt-hour during the daytime intervals when electricity demands peak and cannot be supplied wholly by baseload generators. ... (1) This share is projected to grow to 47% by 2035, with natural gas accounting for 60% of new generating capacity additions between 2010 and 2035 in the Department of Energys reference case scenario. ... To answer this question we use the LCOE results above to generate a probabilistic difference in cost, recognizing that some parameters should have the same value for plants with and without CCS, such as the power block capital cost, natural gas price, and the plant labor rate. ...

Edward S. Rubin; Haibo Zhai

2012-02-14T23:59:59.000Z

251

Filter system cost comparison for integrated gasification combined cycle and pressurized fluidized-bed combustion power systems  

SciTech Connect (OSTI)

To assess the relative cost of components and sub-systems for a hot gas particulate cleanup system a cost comparison between the filter systems for two advanced coal-based power plants was conducted. Assessing component and sub-system costs permits the most beneficial areas for product improvement to be identified. The results from this study are presented. The filter system is based on a Westinghouse Advanced Particulate Filter Concept which is designed to operate with ceramic candle filters. The Foster Wheeler second Generation 453 MWe (net) Pressurized Fluidized-Bed Combustor (PFBC) and the KRW 458 MWe (net) Integrated Gasification Combined Cycle (IGCC) power plants are used for the comparison. The comparison presents the general differences of the two power plants and the process related filtration conditions for PFBC and IGCC systems. The results present the conceptual designs for the PFBC and IGCC filter systems as well as a cost summary comparison. The cost summary comparison includes the total plant cost, the fixed operating and maintenance cost, the variable operating and maintenance cost and the effect on the cost of electricity for the two filter systems. The most beneficial areas for product improvement are identified.

Dennis, R.A.; McDaniel, H.M. [Dept. of Energy, Morgantown, WV (United States). Morgantown Energy Technology Center; Buchanan, T.; Chen, H.; Harbaugh, L.B.; Klett, M.; Zaharchuk, R. [Gilbert/Commonwealth, Reading, PA (United States)

1995-12-31T23:59:59.000Z

252

High efficiency direct fuel cell hybrid power cycle for near term application  

SciTech Connect (OSTI)

Direct carbonate fuel cells being developed by Energy Research Corporation can generate power at an efficiency approaching 60% LHV. This unique fuel cell technology can consume natural gas and other hydrocarbon based fuels directly without requiring an external reformer, thus providing a simpler and inherently efficient power generation system. A 2 MW power plant demonstration of this technology has been initiated at an installation in the city of Santa Clara in California. A 2.85 MW commercial configuration shown in Figure 1 is presently being developed. The complete plant includes the carbonate fuel cell modules, an inverter, transformer and switchgear, a heat recovery unit and supporting instrument air and water treatment systems. The emission levels for this 2.85 MW plant are projected to be orders of magnitude below existing or proposed standards. The 30 year levelized cost of electricity, without inflation, is projected to be approximately 5{cents}/kW-h assuming capital cost for the carbonate fuel cell system of $1000/kW.

Steinfeld, G.; Maru, H.C. [Energy Research Corp., Danbury, CT (United States); Sanderson, R.A. [Fuel Cell Systems Consultant, Wethersfield, CT (United States)

1996-12-31T23:59:59.000Z

253

Microsoft PowerPoint - 6_Rowe-Future Challenges for Global Fuel Cycle Material Accounting Final_Updated.pptx  

National Nuclear Security Administration (NNSA)

Future Challenges Future Challenges for Global Fuel Cycle Material Accounting Nathan Rowe Chris Pickett Oak Ridge National Laboratory Nuclear Materials Management & Safeguards System Users Annual Training Meeting May 20-23, 2013 St. Louis, Missouri 2 Future Challenges for Global Fuel Cycle Material Accounting Introduction * Changing Nuclear Fuel Cycle Activities * Nuclear Security Challenges * How to Respond? - Additional Protocol - State-Level Concept - Continuity of Knowledge * Conclusion 3 Future Challenges for Global Fuel Cycle Material Accounting Nuclear Fuel Cycle Source: International Atomic Energy Agency (IAEA), Nuclear Fuel Cycle Information System (NFCIS) web site IAEA Safeguards Begins Here 4 Future Challenges for Global Fuel Cycle Material Accounting Nuclear Weapons Cycle Conversion

254

How to quantify uncertainty and variability in life cycle assessment: the case of greenhouse gas emissions of gas power generation in the US  

Science Journals Connector (OSTI)

This study quantified the contributions of uncertainty and variability to the range of life-cycle greenhouse gas (LCGHG) emissions associated with conventional gas-fired electricity generation in the US. Whereas uncertainty is defined as lack of knowledge and can potentially be reduced by additional research, variability is an inherent characteristic of supply chains and cannot be reduced without physically modifying the system. The life-cycle included four stages: production, processing, transmission and power generation, and utilized a functional unit of 1 kWh of electricity generated at plant. Technological variability requires analyses of life cycles of individual power plants, e.g. combined cycle plants or boilers. Parameter uncertainty was modeled via Monte Carlo simulation. Our approach reveals that technological differences are the predominant cause for the range of LCGHG emissions associated with gas power, primarily due to variability in plant efficiencies. Uncertainties in model parameters played a minor role for 100 year time horizon. Variability in LCGHG emissions was a factor of 1.4 for combined cycle plants, and a factor of 1.3 for simple cycle plants (95% CI, 100 year horizon). The results can be used to assist decision-makers in assessing factors that contribute to LCGHG emissions despite uncertainties in parameters employed to estimate those emissions.

M Hauck; Z J N Steinmann; I J Laurenzi; R Karuppiah; M A J Huijbregts

2014-01-01T23:59:59.000Z

255

Electric Power Monthly  

U.S. Energy Information Administration (EIA) Indexed Site

Other HY Hydroelectric Turbine (including turbines associated with delivery of water by pipeline) BT Turbines Used in a Binary Cycle (including those used for geothermal...

256

Modeling of the rock bed thermal energy storage system of a combined cycle solar thermal power plant in South Africa  

Science Journals Connector (OSTI)

Abstract A thermocline-based rock bed thermal energy storage system potentially offers a cheap and simple way of achieving dispatchability in an air-cooled central receiver CSP plant. In order to efficiently match heliostat field size, storage dimensions, back-up fuel consumption and turbine sizes for non-stop power generation and economic feasibility, year-long power plant simulations have to be run. This paper focuses on the storage as the center of in- and outgoing thermal energy. The derived storage model has one spatial dimension which is justified by the high tube-to-particle diameter ratio and because yearly aggregated and not momentary values are of interest. A validation of the correlations with data from the literature shows acceptable agreement. Sensitivity analyses indicate that, due to low costs of the storage system, above certain minimum storage dimensions, the influence on energetic and monetary performance indicators is marginal. The calculated LCOE is in the range of 0.110.18EUR/kWh and in agreement with other studies on combined cycle CSP plants.

Lukas Heller; Paul Gauch

2013-01-01T23:59:59.000Z

257

Accepted for publication in Energy Policy Greenhouse-gas Emissions from Solar Electric-and Nuclear Power: A Life-cycle  

E-Print Network [OSTI]

Accepted for publication in Energy Policy Greenhouse-gas Emissions from Solar Electric- and Nuclear, photovoltaic, nuclear, life cycle 1 #12;Introduction The production of energy by burning fossil fuels generates, it is envisioned that expanding generation technologies based on nuclear power and renewable energy sources would

258

Thermo economic evaluation of oxy fuel combustion cycle in Kazeroon power plant considering enhanced oil recovery revenues  

Science Journals Connector (OSTI)

Oxy fuel combustion and conventional cycle (currently working cycle ... for enhanced oil recovery in the various oil price indices is conducted and indices net present ... models reveal that gross efficiency of t...

Ehsan Torabnejad; Ramin Haghighi-Khoshkhoo

2014-03-01T23:59:59.000Z

259

Creation of equipment for combined-cycle installationsOne of the priority problems facing power-machinery builders  

Science Journals Connector (OSTI)

Offers of OAO Silovye Mashiny for delivery of equipment for combined-cycle installations (CCIs) of reconstructed and newly...

A. S. Lebedev; G. L. Butalov

2007-04-01T23:59:59.000Z

260

Energy and exergy analyses of an externally fired gas turbine (EFGT) cycle integrated with biomass gasifier for distributed power generation  

Science Journals Connector (OSTI)

Biomass based decentralized power generation using externally fired gas turbine (EFGT) can be a technically feasible option. In this work, thermal performance and sizing of such plants have been analyzed at different cycle pressure ratio (rp=2?8), turbine inlet temperature (TIT=10501350K) and the heat exchanger cold end temperature difference (CETD=200300K). It is found that the thermal efficiency of the EFGT plant reaches a maximum at an optimum pressure ratio depending upon the TIT and heat exchanger CETD. For a particular pressure ratio, thermal efficiency increases either with the increase in TIT or with the decrease in heat exchanger CETD. The specific air flow, associated with the size of the plant equipment, decreases with the increase in pressure ratio. This decrease is rapid at the lower end of the pressure ratio (rp<4) but levels-off at higher rp values. An increase in the TIT reduces the specific air flow, while a change in the heat exchanger CETD has no influence on it. Based on this comparison, the performance of a 100kW EFGT plant has been analyzed for three sets of operating parameters and a trade-off in the operating condition is reached.

Amitava Datta; Ranjan Ganguly; Luna Sarkar

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "binary cycle power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Energy and exergy analyses of a solar driven MgCl hybrid thermochemical cycle for co-production of power and hydrogen  

Science Journals Connector (OSTI)

Abstract Analysis and performance assessment of a solar driven hydrogen production plant running on an MgCl cycle, are conducted through energy and exergy methods. The proposed system consists of (a) a concentrating solar power cycle with thermal energy storage, (b) a steam power plant with reheating and regeneration, and (c) a hybrid thermochemical MgCl hydrogen production cycle. The results show that higher steam to magnesium molar ratios are required for full yield of reactants at the hydrolysis step. This ratio even increases at low temperatures, although lowering the highest temperatures appears to be more favorable for linking such a cycle to lower temperature energy sources. Reducing the maximum cycle temperature decreases the plant energy and exergy efficiencies and may cause some undesirable reactions and effects. The overall system energy and exergy efficiencies are found to be 18.8% and 19.9%, respectively, by considering a solar heat input. These efficiencies are improved to 26.9% and 40.7% when the heat absorbed by the molten salt is considered and used as a main energy input to the system. The highest exergy destruction rate occurs in the solar field which accounts for 79% of total exergy destruction of the integrated system.

Hasan Ozcan; Ibrahim Dincer

2014-01-01T23:59:59.000Z

262

Evaluation of technical feasibility of closed-cycle non-equilibrium MHD power generation with direct coal firing. Final report, Task 1  

SciTech Connect (OSTI)

Program accomplishments in a continuing effort to demonstrate the feasibility of direct coal fired, closed cycle, magnetohydrodynamic power generation are detailed. These accomplishments relate to all system aspects of a CCMHD power generation system including coal combustion, heat transfer to the MHD working fluid, MHD power generation, heat and cesium seed recovery and overall systems analysis. Direct coal firing of the combined cycle has been under laboratory development in the form of a high slag rejection, regeneratively air cooled cyclone coal combustor concept, originated within this program. A hot bottom ceramic regenerative heat exchanger system was assembled and test fired with coal for the purposes of evaluating the catalytic effect of alumina on NO/sub x/ emission reduction and operability of the refractory dome support system. Design, procurement, fabrication and partial installation of a heat and seed recovery flow apparatus was accomplished and was based on a stream tube model of the full scale system using full scale temperatures, tube sizes, rates of temperature change and tube geometry. Systems analysis capability was substantially upgraded by the incorporation of a revised systems code, with emphasis on ease of operator interaction as well as separability of component subroutines. The updated code was used in the development of a new plant configuration, the Feedwater Cooled (FCB) Brayton Cycle, which is superior to the CCMHD/Steam cycle both in performance and cost. (WHK)

Not Available

1981-11-01T23:59:59.000Z

263

Preliminary studies on the heat exchanger option for S-CO{sub 2} power conversion cycle coupled to water cooled SMR  

SciTech Connect (OSTI)

For more than a half century, the steam Rankine cycle had been the major power conversion cycle for a nuclear power plant. However, as the interest on the next generation reactors grows, a variety of alternative power conversion systems have been studied. Among them, the S-CO{sub 2} cycle (Supercritical carbon dioxide Brayton cycle) is considered as a promising candidate due to several benefits such as 1) Relatively high thermal efficiency at relatively low turbine inlet temperature, 2) High efficiency with simple lay-out 3) Compactness of turbo-machineries. 4) Compactness of total cycle combined with PCHE (Printed Circuit Heat Exchanger). According to the conventional classification of heat exchangers (HE), there are three kind of HE, 1) Tubular HEs, 2) Plate-type HEs, 3) Extended surface HEs. So far, the researcher has mostly assumed PCHE type HE for the S-CO{sub 2} cycle due to its compactness with reasonably low pressure drop. However, PCHE is currently one of the most expensive components in the cycle, which can have a negative effect on the economics of the cycle. Therefore, an alternative for the HE should be seriously investigated. By comparing the operating condition (pressure and temperature) there are three kind of HE in the S-CO{sub 2} cycle, 1) IHX (Intermediate Heat exchanger) 2) Recuperator and 3) Pre-cooler. In each heat exchanger, hot side and cold side coolants are different, i.e. reactor coolant to S-CO{sub 2} (IHX), S-CO{sub 2} to S-CO{sub 2}(Recuperator), S-CO{sub 2} to water (Pre-cooler). By considering all the attributes mentioned above, all existing types of heat exchangers are compared to find a possible alternative to PCHE. The comparing factors are 1) Size(volume), 2) Cost. Plate fin type HEs are considered to be the most competitive heat exchanger regarding the size and the cost after some improvements on the design limit are made. (authors)

Ahn, Y.; Lee, J. [Dept. of Nuclear and Quantum Engineering, Korea Advanced Inst. of Science and Technology, 373-1 Guseong-dong Yuseong-gu, Daejeon, 305-701 (Korea, Republic of); Lee, J. I. [Dept. of Nuclear and Quantum Engineering, Korea Advanced Inst. of Science and Technology, 373-1 Guseong-dong Yuseong-gu, Daejeon, 305-701 (Korea, Republic of); Dept. of Nuclear Engineering, Khalifa Univ. of Science, Technology and Research (KUSTAR), P.O.Box 127788, Abu Dhabi (United Arab Emirates)

2012-07-01T23:59:59.000Z

264

Design of the ORC (organic Rankine cycle) condensation temperature with respect to the expander characteristics for domestic CHP (combined heat and power) applications  

Science Journals Connector (OSTI)

Abstract Domestic CHP (combined heat and power) generation is one new application of the ORC (organic Rankine cycle). An environment temperature fluctuation of 40C through the year is common in many areas, where the consumer's demand on heat follows a seasonal cycle. In no demand periods the ORC shall work under lower condensation temperature for more efficient power generation. Off-design operation will be executed, accompanied with a degraded performance of the ORC components especially the expander. The design of the condensation temperature herein becomes crucial. It influences the ORC efficiency in both the CHP and SPG (solo power generation) modes. If the condensation temperature is designed simply based on the CHP mode, the power conversion in the SPG mode will suffer from low expander efficiency. An optimum design of the condensation temperature involves a compromise between the power outputs in the two modes. This paper aims to determine the optimum design condensation temperature for the ORC-CHP system. A new concept, namely the threshold condensation temperature, is introduced and found to be important to the design and operation strategies of the system. The results indicate that via a careful design of the condensation temperature, the annual power output can be increased by 50%.

Jing Li; Gang Pei; Jie Ji; Xiaoman Bai; Pengcheng Li; Lijun Xia

2014-01-01T23:59:59.000Z

265

A Fast Search Technique for Binary Pulsars  

E-Print Network [OSTI]

I describe a computationally simple, efficient, and sensitive method to search long observations for pulsars in binary systems. The technique looks for orbitally induced sidebands in the power spectrum around a nominal spin frequency, enabling it to detect pulsars in high- or low-mass binaries with short orbital periods (P_orb <~ 5 h).

Scott M. Ransom

1999-11-05T23:59:59.000Z

266

Alternative Geothermal Power Production Scenarios  

SciTech Connect (OSTI)

The information given in this file pertains to Argonne LCAs of the plant cycle stage for a set of ten new geothermal scenario pairs, each comprised of a reference and improved case. These analyses were conducted to compare environmental performances among the scenarios and cases. The types of plants evaluated are hydrothermal binary and flash and Enhanced Geothermal Systems (EGS) binary and flash plants. Each scenario pair was developed by the LCOE group using GETEM as a way to identify plant operational and resource combinations that could reduce geothermal power plant LCOE values. Based on the specified plant and well field characteristics (plant type, capacity, capacity factor and lifetime, and well numbers and depths) for each case of each pair, Argonne generated a corresponding set of material to power ratios (MPRs) and greenhouse gas and fossil energy ratios.

Sullivan, John

2014-03-14T23:59:59.000Z

267

The role of Life Cycle Assessment in identifying and reducing environmental impacts of CCS  

E-Print Network [OSTI]

Integrated Gasification Combined Cycle (IGCC) Power Plant.Analysis: Natural Gas Combined Cycle (NGCC) Power Plant.assessment of natural gas combined cycle power plant with

Sathre, Roger

2011-01-01T23:59:59.000Z

268

Determination of Thermal-Degradation Rates of Some Candidate Rankine-Cycle Organic Working Fluids for Conversion of Industrial Waste Heat Into Power  

E-Print Network [OSTI]

DETERMINATION OF THERMAL-DEGRADATION RATES OF SOME CANDIDATE RANKINE-CYCLE ORGANIC WORKING FLUIDS FOR CONVERSION OF INDUSTRIAL WASTE HEAT INTO POWER Mohan L. Jain, Jack Demirgian, John L. Krazinski, and H. Bushby Argonne National Laboratory..., Argonne, Illinois Howard Mattes and John Purcell U.S. Department of Energy ABSTRACT Serious concerns over the long-term thermal In a previous study [1] based on systems stability of organic working fluids and its effect analysis and covering...

Jain, M. L.; Demirgian, J.; Krazinski, J. L.; Bushby, H.; Mattes, H.; Purcell, J.

1984-01-01T23:59:59.000Z

269

Life Cycle Environmental Impacts Resulting from the Manufacture of the Heliostat Field for a Reference Power Tower Design in the United States: Preprint  

SciTech Connect (OSTI)

Life cycle assessment (LCA) is recognized as a useful analytical approach for quantifying environmental impacts of renewable energy technologies, including concentrating solar power (CSP). An LCA accounts for impacts from all stages in the development, operation, and decommissioning of a CSP plant, including such upstream stages as the extraction of raw materials used in system components, manufacturing of those components, and construction of the plant. The National Renewable Energy Laboratory is conducting a series of LCA studies for various CSP technologies. This paper contributes to a thorough LCA of a 100 MWnet molten salt power tower CSP plant by estimating the environmental impacts resulting from the manufacture of heliostats. Three life cycle metrics are evaluated: greenhouse gas emissions, water consumption, and cumulative energy demand. The heliostat under consideration (the 148 m2 Advanced Thermal Systems heliostat) emits 5,300 kg CO2eq, consumes 274 m3 of water, and requires 159,000 MJeq during its manufacture. Future work will incorporate the results from this study into the LCA model used to estimate the life cycle impacts of the entire 100 MWnet power tower CSP plant.

Heath, G.; Burkhardt, J.; Turchi, C.

2012-10-01T23:59:59.000Z

270

Microsoft PowerPoint - NEAC on Science Based Fuel Cycle R&D.PPT [Compatibility Mode]  

Broader source: Energy.gov (indexed) [DOE]

Advanced Advanced Fuel Cycle Initiative The Advanced Fuel Cycle Initiative Science Based Fuel Cycle y Research and Development Phillip Finck Idaho National Laboratory June 9, 2009 Former Programmatic Approach Incremental improvement of existing technologies to allow for short-term (~20 years) deployment, driven by better utilization of Yucca Mountain y ) p y , y - Specific choice of technologies and integrated system (dictated by time frame and Yucca Mountain characteristics) - Challenges were well identified - Engineering approaches were chosen to address these challenges - Fundamental challenges had also been identified (2006 workshops), but were marginally acted upon (e.g., modeling and simulation) The industrial approach resulted in very limited investment in the tools needed

271

Waste Heat-to-Power in Small Scale Industry Using Scroll Expander for Organic Rankine Bottoming Cycle  

Broader source: Energy.gov [DOE]

The project objective is to develop the scroll expander for Organic Rankine cycle (ORC) systems to be used in medium-grade waste heat recovery applications, and to validate and quantify the benefits of the prototype system.

272

The Western Wind and Solar Integration Study: The Effects of Wind and Solar Power…Induced Cycling on Wear-and-Tear Costs and Emissions (Fact Sheet), NREL (National Renewable Energy Laboratory)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Wind and Solar Power- Wind and Solar Power- Induced Cycling on Wear-and-Tear Costs and Emissions Results From the Western Wind and Solar Integration Study Phase 2 The electric grid is a highly complex, interconnected machine. Changing one part of the grid can have consequences elsewhere. Adding variable renewable generation such as wind and solar power affects the operation of conventional power plants, and adding high penetrations can induce cycling of fossil-fueled generators. Cycling leads to wear-and-tear costs and changes in emissions. Phase 2 of the Western Wind and Solar Integration Study (WWSIS-2) was initiated to determine the wear-and-tear costs and emissions impacts of cycling and to simulate grid operations to investigate the detailed impact of wind and solar power on

273

Thermodynamic performance analysis of a combined power cycle using low grade heat source and LNG cold energy  

Science Journals Connector (OSTI)

Abstract Thermodynamic analysis of a combined cycle using a low grade heat source and LNG cold energy was carried out. The combined cycle consisted of an ammoniawater Rankine cycle with and without regeneration and a LNG Rankine cycle. A parametric study was conducted to examine the effects of the key parameters, such as ammonia mass fraction, turbine inlet pressure, condensation temperature. The effects of the ammonia mass fraction on the temperature distributions of the hot and cold streams in heat exchangers were also investigated. The characteristic diagram of the exergy efficiency and heat transfer capability was proposed to consider the system performance and expenditure of the heat exchangers simultaneously. The simulation showed that the system performance is influenced significantly by the parameters with the ammonia mass fraction having largest effect. The net work output of the ammoniawater cycle may have a peak value or increase monotonically with increasing ammonia mass fraction, which depends on turbine inlet pressure or condensation temperature. The exergy efficiency may decrease or increase or have a peak value with turbine inlet pressure depending on the ammonia mass fraction.

Kyoung Hoon Kim; Kyung Chun Kim

2014-01-01T23:59:59.000Z

274

Integrating solar Organic Rankine Cycle into a coal-fired power plant with amine-based chemical absorption for CO2 capture  

Science Journals Connector (OSTI)

Abstract A novel system integrating solar Organic Rankine Cycle (ORC) into a power plant with amine-based chemical absorption for CO2 capture is proposed. The condensation heat of ORC provides the required heat for solvent regeneration, which avoids the energy penalty caused by the steam extraction traditionally. The cascade utilization of solar energy is realized through a combined supply of power generation and condensation heat. From the aspects of technology and economics, a performance analysis is presented to compare the proposed system and three other systems based on a 300MWe power plant. The proposed system shows better performance than that of reference systems in the power generation and emission reductions. Economic evaluation was conducted in terms of levelized costs of electricity (LCOE) and cost of CO2 removed (COR). In order to achieve lower LCOE and COR compared to the power plant integrated with solar assisted post-combustion CO2 capture (PCC), the price of ORC has to be lower than 1284.46USD/kW under the conditions that the price of the solar field is 120USD/m2. It is believed that the proposed system has a satisfied potential to meet the thermal demand for the solvent regeneration in the power plant with PCC.

Li Zhao; Ruikai Zhao; Shuai Deng; Yuting Tan; Yinan Liu

2014-01-01T23:59:59.000Z

275

Multiple Rankine topping cycles  

SciTech Connect (OSTI)

The efficiency of a Rankine cycle is primarily determined by the temperatures of heat addition and rejection. However, no working fluid has been identified which will operate in a Rankine cycle over an extremely wide temperature range. Multiple Rankine topping cycles offer a technique for achieving high thermal efficiencies in power plants by allowing the use of several working fluids. This paper gives a history of Rankine topping cycles, presents an analysis for the calculation of the overall efficiency of a three-module multiple Rankine cycle, and presents results from a case study for a sodium-mercury-water cycle.

McWhirter, J.D. [Argonne National Lab., Idaho Falls, ID (United States). Engineering Div.]|[Idaho State Univ., Pocatello, ID (United States). Coll. of Engineering

1995-07-01T23:59:59.000Z

276

Enhanced arrangement for recuperators in supercritical CO2 Brayton power cycle for energy conversion in fusion reactors  

Science Journals Connector (OSTI)

Abstract A domestic research program called TECNO_FUS was launched in Spain in 2009 to support technological developments related to a dual coolant breeding blanket concept for fusion reactors. This concept of blanket uses Helium (300C/400C) to cool part of it and a liquid metal (480C/700C) to cool the rest; it also includes high temperature (700C/800C) and medium temperature (566C/700C) Helium cooling circuits for divertor. This paper proposes a new layout of the classical recompression supercritical CO2 Brayton cycle which replaces one of the recuperators (the one with the highest temperature) by another which by-passes the low temperature blanket source. This arrangement allows reaching high turbine inlet temperatures (around 600C) with medium pressures (around 225bar) and achieving high cycle efficiencies (close to 46.5%). So, the proposed cycle reveals as a promising design because it integrates all the available thermal sources in a compact layout achieving high efficiencies with the usual parameters prescribed in classical recompression supercritical CO2 Brayton cycles.

I.P. Serrano; J.I. Linares; A. Cantizano; B.Y. Moratilla

2014-01-01T23:59:59.000Z

277

A Binary Linear Programming Approach for LCA System Boundary Identification  

Science Journals Connector (OSTI)

One of the very first steps in conducting life cycle assessment (LCA) is system boundaries identification. A binary ... boundary between significant and insignificant processes in a LCA study. The proposed model ...

Feri Afrinaldi; Hong-Chao Zhang

2013-01-01T23:59:59.000Z

278

Analysis of Membrane and Adsorbent Processes for Warm Syngas Cleanup in Integrated Gasification Combined-Cycle Power with CO2 Capture and Sequestration  

Science Journals Connector (OSTI)

Analysis of Membrane and Adsorbent Processes for Warm Syngas Cleanup in Integrated Gasification Combined-Cycle Power with CO2 Capture and Sequestration ... The clean syngas is diluted with N2 from the ASU and enters the gas turbine burner. ... The amount of N2 diluent to be added is determined by the requirement of maintaining the appropriate lower heating value of the syngas feeding into the gas turbine burner to achieve sufficiently low NOx emissions (1535 ppmv at 15% O2)(36) and to keep the temperature of the gas low enough to avoid blade failure. ...

David J. Couling; Kshitij Prakash; William H. Green

2011-08-11T23:59:59.000Z

279

Advanced Organic Vapor Cycles for Improving Thermal Conversion Efficiency in Renewable Energy Systems  

E-Print Network [OSTI]

1997. [15] R DiPippo, Geothermal Power Plants: Principles,Kalina, "New Binary Geothermal Power System," in ProceedingsConference on Geothermal Power Engineering, Sochi, Russia,

Ho, Tony

2012-01-01T23:59:59.000Z

280

The development of a high reliability auxiliary power system for a coal-fired cycling generating station  

SciTech Connect (OSTI)

An auxiliary system for a fossil generating station is evolved based on operating and reliability criteria including the capabilities of switchgear and standard auxiliary transformer impedances. These criteria are used to design a flexible and reliable auxiliary power system for a cyclic duty power generating station. The effect of mechanical equipment selection on the auxiliary power system design is discussed. An economic comparison of single voltage versus dual-voltage is made. A one-line diagram of the resulting proposed system is included.

Jackowski, M.; Bailey, M.

1983-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "binary cycle power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Dynamic power systems for power generation  

SciTech Connect (OSTI)

The characteristics of dynamic power systems have considerable potential value, especially for the space station. The base of technology that makes these dynamic power systems practical is reviewed. The following types of power-generating systems are examined herein: organic Rankine cycle, potassium Rankine cycle, Brayton cycle, and Stirling cycle.

English, R.E.

1984-04-01T23:59:59.000Z

282

Analysis and optimization of the Graz cycle : a coal fired power generation scheme with near-zero carbon dioxide emissions  

E-Print Network [OSTI]

Humans are releasing record amounts of carbon dioxide into the atmosphere through the combustion of fossil fuels in power generation plants. With mounting evidence that this carbon dioxide is a leading cause of global ...

Alexander, Brentan R

2007-01-01T23:59:59.000Z

283

Techno-economic analysis of sour gas oxy-fuel combustion power cycles for carbon capture and sequestration  

E-Print Network [OSTI]

The world's growing energy demand coupled with the problem of global warming have led us to investigate new energy sources that can be utilized in a way to reduce carbon dioxide emissions than traditional fossil fuel power ...

Chakroun, Nadim Walid

2014-01-01T23:59:59.000Z

284

Life cycle considerations of the flue gas desulphurization system at a lignite-fired power plant in Thailand  

Science Journals Connector (OSTI)

The Flue Gas Desulphurization (FGD) system has been installed at the biggest lignite-fired power generation plant in Thailand to reduce the large...2...emission. In order to understand the costs and benefits, bot...

Sate Sampattagul; Seizo Kato

2004-11-01T23:59:59.000Z

285

Dynamic simulation of an oxygen mixed conducting membrane-based gas turbine power cycle for CO2 capture  

Science Journals Connector (OSTI)

This paper investigates the transient behaviour of an oxygen mixed conducting membrane (OMCM)-based gas turbine (GT) power plant. Several operation and material constraints limit the operability of the power plant. For part-load operation two strategies are analysed: (i) reduction in mass flow of air to the GT in conjunction with reduced fuel supply to the afterburner while keeping the turbine exit temperature (TET) constant (TET control strategy), and (ii) reduction of fuel supply to the afterburner at constant air supply to the GT while the TET is allowed to vary (turbine inlet temperature (TIT) control strategy). Simulation reveals that this GT power plant shows rather slow dynamics because of the recirculation of large amount of gas. The OMCM-based GT power plant is compared to a simple GT power plant with respect to design, off-design as well as transient behaviour during load reduction. Information about controlled and manipulated variables in the GT power plant is given for the development of control strategy.

Konrad Eichhorn Colombo; Olav Bolland

2009-01-01T23:59:59.000Z

286

System study of an MHD/gas turbine combined-cycle baseload power plant. HTGL report No. 134  

SciTech Connect (OSTI)

The MHD/gas turbine combined-cycle system has been designed specifically for applications where the availability of cooling water is very limited. The base case systems which were studied consisted of an MHD plant with a gas turbine bottoming plant, and required no cooling water. The gas turbine plant uses only air as its working fluid and receives its energy input from the MHD exhaust gases by means of metal tube heat exchangers. In addition to the base case systems, vapor cycle variation systems were considered which included the addition of a vapor cycle bottoming plant to improve the thermal efficiency. These systems required a small amount of cooling water. The MHD/gas turbine systems were modeled with sufficient detail, using realistic component specifications and costs, so that the thermal and economic performance of the system could be accurately determined. Three cases of MHD/gas turbine systems were studied, with Case I being similar to an MHD/steam system so that a direct comparison of the performances could be made, with Case II being representative of a second generation MHD system, and with Case III considering oxygen enrichment for early commercial applications. The systems are nominally 800 MW/sub e/ to 1000 MW/sub e/ in size. The results show that the MHD/gas turbine system has very good thermal and economic performances while requiring either little or no cooling water. Compared to the MHD/steam system which has a cooling tower heat load of 720 MW, the Base Case I MHD/gas turbine system has a heat rate which is 13% higher and a cost of electricity which is only 7% higher while requiring no cooling water. Case II results show that an improved performance can be expected from second generation MHD/gas turbine systems. Case III results show that an oxygen enriched MHD/gas turbine system may be attractive for early commercial applications in dry regions of the country.

Annen, K.D.

1981-08-01T23:59:59.000Z

287

Organic Rankine-Cycle Power Systems Working Fluids Study: Topical report No. 3, 2-methylpyridine/water  

SciTech Connect (OSTI)

A mixture of 35 mole percent (mol %) 2-methylpyridine and 65 mol % water was tested at 575, 625, and 675/degree/F in a dynamic loop. Samples of the degraded fluid were chemically analyzed to determine the identities of major degradation products and the quantity of degradation. Computed degradation rates were found to be higher than those for Fluorinol 85 or toluene. For this reason (and other reasons, related to fluid handling), other fluids are recommended as the first choice for service in organic Rankine-cycle systems in preference to 2-methylpyridine/water. 7 refs., 39 figs., 39 tabs.

Cole, R.L.; Demirgian, J.C.; Allen, J.W.

1987-09-01T23:59:59.000Z

288

D-Cycle - 4-Differential -Stroke Cycle | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

-Stroke Cycle The D-Cycle offers the opportunity to use less fuel and gain more power while being able to be retrofit to an OEM and aftermarket engines deer09conti.pdf...

289

Advanced Organic Vapor Cycles for Improving Thermal Conversion Efficiency in Renewable Energy Systems  

E-Print Network [OSTI]

DL Chase and PT Kehoe, "GE Combined-Cycle Product Line andand W Stenze, "Combined Cycle Heat Recovery Optimization,"bottoming cycle FOR combined cycle power plants," Applied

Ho, Tony

2012-01-01T23:59:59.000Z

290

A Revolutionary Hybrid Thermodynamic Cycle for Bianary Geothermal...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

A Revolutionary Hybrid Thermodynamic Cycle for Bianary Geothermal Power A Revolutionary Hybrid Thermodynamic Cycle for Bianary Geothermal Power A Revolutionary Hybrid Thermodynamic...

291

Technical-economic evaluation of O2/CO2 recycle combustion power plant based on life-cycle  

Science Journals Connector (OSTI)

In this study, a detailed technical-economic analysis on a O2/CO2 recycle combustion power plant (Oxy-combustion plant) retrofitted from the existing coal-fired plant (with a capacity of 2300...2 emissions, inve...

Yun Wang; YongChun Zhao; JunYing Zhang

2010-12-01T23:59:59.000Z

292

Environmental Implications of United States Coal Exports: A Comparative Life Cycle Assessment of Future Power System Scenarios  

Science Journals Connector (OSTI)

Stricter emissions requirements on coal-fired power plants together with low natural gas prices have contributed to a recent decline in the use of coal for electricity generation in the United States. Faced with a shrinking domestic market, many coal ...

Barrett Bohnengel; Dalia Patio-Echeverri; Joule Bergerson

2014-07-15T23:59:59.000Z

293

La Spezia power plant: Conversion of units 1 and 2 to combined cycle with modification of steam turbines from cross compound to tandem compound  

SciTech Connect (OSTI)

Units 1 and 2 of ENEL's La Spezia power plant, rated 310 and 325 MW respectively, are going to be converted to combined cycle. This project will be accomplished by integrating components such as gas turbines and HRSGs with some of the existing components, particularly the steam turbines, which are of the cross compound type. Since the total power of each converted unit has to be kept at 335 MW because of permitting limitations, the power delivered by the steam turbine will be limited to about 115 MW. For this reason a study was carried out to verify the possibility of having only one shaft and modifying the turbine to tandem compound. As additional investments are required for this modification, a balance was performed that also took into account the incremental heat rate and, on the other hand, the benefits from decreased maintenance and increased availability and reliability calculated for the expected useful life. The result of this balance was in favor of the modification, and a decision was taken accordingly. The turbine modification will involve replacing the whole HP section with a new combined HP-IP section while retaining the corresponding LP rotor and cylinder and making the needed changes in the valve arrangements and piping. Work on the site began in the spring of 1997 by dismantling the existing boiler so as to have the space needed to install the GTs and HRSGs. The first synchronization of the converted unit 1 is scheduled for November 1999

Magneschi, P.; Gabiccini, S.; Bracaloni, N.; Fiaschi, C.

1998-07-01T23:59:59.000Z

294

Life-Cycle Energy Demand of Computational Logic:From High-Performance 32nm CPU to Ultra-Low-Power 130nm MCU  

E-Print Network [OSTI]

Boyd et al. : Life-cycle energy demand and global warmingLife-Cycle Energy Demand of Computational Logic: From High-to assess the life-cycle energy demand of its products for

Bol, David; Boyd, Sarah; Dornfeld, David

2011-01-01T23:59:59.000Z

295

Life-Cycle Energy Demand of Computational Logic: From High-Performance 32nm CPU to Ultra-Low-Power 130nm MCU  

E-Print Network [OSTI]

Boyd et al. : Life-cycle energy demand and global warmingLife-Cycle Energy Demand of Computational Logic: From High-to assess the life-cycle energy demand of its products for

Bol, David; Boyd, Sarah; Dornfeld, David

2011-01-01T23:59:59.000Z

296

Application of Hybrid Life Cycle Approaches to Emerging Energy Technologies The Case of Wind Power in the UK  

Science Journals Connector (OSTI)

The unit process requirements (physical inputs) of a 2-MW offshore wind power plant were used as a substitute for real company data, assuming that this type of wind turbine most closely represents the situation in the UK in the near future. ... Based on process analysis, the wind turbine manufacturer Vestas reports LCIs for CO2 of about 5 to 8 g/kWh for different sizes of wind turbines. ...

Thomas O. Wiedmann; Sangwon Suh; Kuishuang Feng; Manfred Lenzen; Adolf Acquaye; Kate Scott; John R. Barrett

2011-06-08T23:59:59.000Z

297

THE TRANSPOSED CRITICAL TEMPERATURE RANKINE THERMODYNAMIC CYCLE  

E-Print Network [OSTI]

Combined Diesel-Organic Rankine Cycle Power Plant", in25OoC) closed simple organic Rankine cycle geothermal powerthe simple closed organic Rankine cycle for a given set of

Pope, William L.

2012-01-01T23:59:59.000Z

298

Design considerations of a power supply system for fast cycling superconducting accelerator magnets of 2 Tesla b-field generated by a conductor of 100 kA current  

SciTech Connect (OSTI)

Recently proposed fast cycling accelerators for proton drivers (SF-SPS, CERN and SF-MR, SF-BOOSTER, FNAL) neutrino sources require development of new magnet technology. In support of this magnet development a power supply system will need to be developed that can support the high current and high rate of power swing required by the fast cycling (1 sec rise and fall in the SF-MR, 5Hz in Booster). This paper will outline a design concept for a +/- 2000 V and 100,000 A fast ramping power supply system. This power supply design is in support of a 6.44 km magnet system at 0.020 H and 330 m 5 Hz, 0.00534 H superconducting loads. The design description will include the layout and plan for extending the present FNAL Main Injector style ramping power supply to the higher currents needed for this operation. This will also include the design for a harmonic filter and power factor corrector that will be needed to control the large power swings caused by the fast cycle time. A conceptual design for the current regulation system and control will also be outlined. The power circuit design will include the bridge, filter and transformer plan based on existing designs.

Hays, Steve; Piekarz, Henryk; Pfeffer, Howie; Claypool, Brad; /Fermilab

2007-06-01T23:59:59.000Z

299

Open-cycle magnetohydrodynamic power plant based upon direct-contact closed-loop high-temperature heat exchanger  

DOE Patents [OSTI]

A magnetohydrodynamic (MHD) power generating system in which ionized combustion gases with slag and seed are discharged from an MHD combustor and pressurized high temperature inlet air is introduced into the combustor for supporting fuel combustion at high temperatures necessary to ionize the combustion gases, and including a heat exchanger in the form of a continuous loop with a circulating heat transfer liquid such as copper oxide. The heat exchanger has an upper horizontal channel for providing direct contact between the heat transfer liquid and the combustion gases to cool the gases and condense the slag which thereupon floats on the heat transfer liquid and can be removed from the channel, and a lower horizontal channel for providing direct contact between the heat transfer liquid and pressurized air for preheating the inlet air. The system further includes a seed separator downstream of the heat exchanger.

Berry, Gregory F. (Naperville, IL); Minkov, Vladimir (Skokie, IL); Petrick, Michael (Joliet, IL)

1988-01-01T23:59:59.000Z

300

Combined cycle power plants: A comparison between two different dynamic models to evaluate transient behaviour and residual life  

Science Journals Connector (OSTI)

Abstract The deregulated energy market and the increasing quota of electrical capacity covered by non-predictable renewable sources require strongly irregular and discontinuous operation of thermoelectric plants to satisfy users demand and compensate the variability of renewable sources. As a consequence, due to thermo-mechanical fatigue, creep and corrosion, a lifetime reduction of the most critical components occurs. The availability of a procedure able to predict the residual life of plant devices is necessary to assist the management decisions about power plants operation and maintenance scheduling. The first step of this procedure is the capability of simulating the plant behaviour versus time by evaluating the trends of the main thermodynamic parameters that describe the plant operation during different transient periods. In this context, the main contribution of the present paper is to propose a complete procedure able to simulate the plant dynamic behaviour and estimate the residual life reduction of some components. Indeed, two different models, developed by two different research groups, of the same single pressure heat recovery steam generator unit are presented and utilized to characterize the dynamic behaviour of the above mentioned power plant. The main thermodynamic variables during different transient operation conditions are predicted and good correspondence between the two methods is obtained. It can be also noted that, when the geometry and size of the devices are considered, the thermal inertia related to heat exchangers tubes, pipes and other physical masses causes a delay in the system response. Moreover, a residual life estimation of the most stressed component is presented.

Alberto Benato; Anna Stoppato; Stefano Bracco

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "binary cycle power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Advanced Organic Vapor Cycles for Improving Thermal Conversion Efficiency in Renewable Energy Systems  

E-Print Network [OSTI]

FOR A COMBINED POWER AND COOLING CYCLE," University ofcycle for combined power and cooling using low and midS Lu, "Novel combined power and cooling thermodynamic cycle

Ho, Tony

2012-01-01T23:59:59.000Z

302

Oscillating red-giant stars in eccentric binary systems  

E-Print Network [OSTI]

The unparalleled photometric data obtained by NASA's Kepler Space Telescope has led to improved understanding of red-giant stars and binary stars. We discuss the characterization of known eccentric system, containing a solar-like oscillating red-giant primary component. We also report several new binary systems that are candidates for hosting an oscillating companion. A powerful approach to study binary stars is to combine asteroseimic techniques with light curve fitting. Seismology allows us to deduce the properties of red giants. In addition, by modeling the ellipsoidal modulations we can constrain the parameters of the binary system. An valuable independent source are ground-bases, high-resolution spectrographs.

Beck, P G; Vos, J; Kallinger, T; Garcia, R A; Mathur, S; Houmani, K

2014-01-01T23:59:59.000Z

303

Design of advanced fossil-fuel systems (DAFFS): a study of three developing technologies for coal-fired, base-load electric power generation. Integrated coal gasification/combined cycle power plant with Texaco gasification process  

SciTech Connect (OSTI)

The objectives of this report are to present the facility description, plant layouts and additional information which define the conceptual engineering design, and performance and cost estimates for the Texaco Integrated Gasification Combined Cycle (IGCC) power plant. Following the introductory comments, the results of the Texaco IGCC power plant study are summarized in Section 2. In Section 3, a description of plant systems and facilities is provided. Section 4 includes pertinent performance information and assessments of availability, natural resource requirements and environmental impact. Estimates of capital costs, operation and maintenance costs and cost of electricity are presented in Section 5. A Bechtel Group, Inc. assessment and comments on the designs provided by Burns and Roe-Humphreys and Glasgow Synthetic Fuel, Inc. are included in Section 6. The design and cost estimate reports which were prepared by BRHG for those items within their scope of responsibility are included as Appendices A and B, respectively. Appendix C is an equipment list for items within the BGI scope. The design and cost estimate classifications chart referenced in Section 5 is included as Appendix D. 8 references, 17 figures, 15 tables.

Not Available

1983-06-01T23:59:59.000Z

304

Physics of Binary Information  

E-Print Network [OSTI]

Basic concepts of theoretical particle physics, including quantum mechanics and Poincar\\'e invariance, the leptonic mass spectrum and the proton mass, can be derived, without reference to first principles, from intrinsic properties of the simplest elements of information represented by binary data. What we comprehend as physical reality is, therefore, a reflection of mathematically determined logical structures, built from elements of binary data.

Walter Smilga

2005-05-05T23:59:59.000Z

305

Very Cool Close Binaries  

E-Print Network [OSTI]

We present new observations of cool <6000K and low mass <1Msun binary systems that have been discovered by searching several modern stellar photometric databases. The search has led to a factor of 10 increase in the number of known cool close eclipsing binary systems.

J. Scott Shaw; Mercedes Lopez-Morales

2006-03-28T23:59:59.000Z

306

A technical, economical and market review of organic Rankine cycles for the conversion of low-grade heat for power generation  

Science Journals Connector (OSTI)

This paper presents an overview of the technical and economic aspects, as well as the market evolution of the Organic Rankine Cycle (ORC). This is an unconventional but very promising technology for the conversion of thermal energy, at low and medium temperatures, into electrical and/or mechanical energy on a small scale. As it makes a greater and/or more intensive use of its energy source, this technology could facilitate an electricity supply to unconnected areas, the self-production of energy, the desalination of seawater for human consumption, or even to increase the energy efficiency in the industrial sector respecting the environment. A look at the scientific publications on this topic shows an open research line, namely the selection of a suitable working fluid for these systems, since there is as yet none that provides all aspects that must be taken into account in ORCs. Furthermore, a description and an analysis of the applications of the proposed technology is carried out, specifying the main providers, which at the present time is limited mainly to the range 0.22MWe with a cost of around 1 and 4נ103/kWe. Lower powers are in pre-commercial status.

Fredy Vlez; Jos J. Segovia; M. Carmen Martn; Gregorio Antoln; Farid Chejne; Ana Quijano

2012-01-01T23:59:59.000Z

307

Optimization of the Mode of the Uranium-233 Accumulation for Application in Thorium Self-Sufficient Fuel Cycle of Candu Power Reactor  

SciTech Connect (OSTI)

Results of calculation studies of the first stage of self-sufficient thorium cycle for CANDU reactor are presented in the paper. The first stage is preliminary accumulation of {sup 233}U in the CANDU reactor itself. Parameters of active core and scheme of fuel reloading were accepted the same as those for CANDU reactor. It was assumed for calculations, that enriched {sup 235}U or plutonium was used as additional fissile material to provide neutrons for {sup 233}U production. Parameters of 10 different variants of the elementary cell of active core were calculated for the lattice pitch, geometry of fuel channels, and fuel assembly of the CANDU reactor. The results presented in the paper allow to determine the time of accumulation of the required amount of {sup 233}U and corresponding number of targets going into processing for {sup 233}U extraction. Optimum ratio of the accumulation time to number of processed targets can be determined using the cost of electric power produced by the reactor and cost of targets along with their processing. (authors)

Bergelson, Boris; Gerasimov, Alexander [Institute of Theoretical and Experimental Physics, B. Cheremushkinskaya 25, 117259 Moscow (Russian Federation); Tikhomirov, Georgy [Moscow Engineering Physics Institute, Kashirskoe Shosse 31, Moscow (Russian Federation)

2006-07-01T23:59:59.000Z

308

Small geothermal binary plants in Mexico  

SciTech Connect (OSTI)

In Mexico, Comision Federal de Electricidad (CFE Federal Commission of Electricity) has identified several low enthalpy sites related with thermal water, at shallow depths. Some of those geothermal prospects are located far from the electrical national grid. In some cases, the population solve their electricity needs by internal combustion engines with very high operating costs. CFE has started a project oriented to use the energy contained in the thermal waters with off-grid binary plants. The two first projects are in the state of Chihuahua at the north of the country: San Antonio El Bravo and Maguarichic. At both places CFE will install a 300 kW, unattended binary power units.

Lopez-Diaz, M.

1996-12-31T23:59:59.000Z

309

Dynamic simulation and load-following control of an integrated gasification combined cycle (IGCC) power plant with CO{sub 2} capture  

SciTech Connect (OSTI)

Load-following control of future integrated gasification combined cycle (IGCC) plants with pre-combustion CO{sub 2} capture is expected to be far more challenging as electricity produced by renewable energy is connected to the grid and strict environmental limits become mandatory requirements. To study control performance during load following, a plant-wide dynamic simulation of a coal-fed IGCC plant with CO{sub 2} capture has been developed. The slurry-fed gasifier is a single-stage, downward-fired, oxygen-blown, entrained-flow type with a radiant syngas cooler (RSC). The syngas from the outlet of the RSC goes to a scrubber followed by a two-stage sour shift process with inter-stage cooling. The acid gas removal (AGR) process is a dual-stage physical solvent-based process for selective removal of H{sub 2}S in the first stage and CO{sub 2} in the second stage. Sulfur is recovered using a Claus unit with tail gas recycle to the AGR. The recovered CO{sub 2} is compressed by a split-shaft multistage compressor and sent for sequestration after being treated in an absorber with triethylene glycol for dehydration. The clean syngas is sent to two advanced F-class gas turbines (GTs) partially integrated with an elevated-pressure air separation unit. A subcritical steam cycle is used for heat recovery steam generation. A treatment unit for the sour water strips off the acid gases for utilization in the Claus unit. The steady-state model developed in Aspen Plus is converted to an Aspen Plus Dynamics simulation and integrated with MATLAB for control studies. The results from the plant-wide dynamic model are compared qualitatively with the data from a commercial plant having different configuration, operating condition, and feed quality than what has been considered in this work. For load-following control, the GT-lead with gasifier-follow control strategy is considered. A modified proportionalintegralderivative (PID) control is considered for the syngas pressure control. For maintaining the desired CO{sub 2} capture rate while load-following, a linear model predictive controller (LMPC) is implemented in MATLAB. A combined process and disturbance model is identified by considering a number of model forms and choosing the final model based on an information-theoretic criterion. The performance of the LMPC is found to be superior to the conventional PID control for maintaining CO{sub 2} capture rates in an IGCC power plant while load following.

Bhattacharyya, D,; Turton, R.; Zitney, S.

2012-01-01T23:59:59.000Z

310

Nexant Parabolic Trough Solar Power Plant Systems Analysis; Task 2: Comparison of Wet and Dry Rankine Cycle Heat Rejection, 20 January 2005 - 31 December 2005  

SciTech Connect (OSTI)

Subcontract report by Nexant, Inc., regarding a system analysis comparing solar parabolic trough plants with wet and dry rankine cycle heat rejection.

Kelly, B.

2006-07-01T23:59:59.000Z

311

Advanced Organic Vapor Cycles for Improving Thermal Conversion Efficiency in Renewable Energy Systems.  

E-Print Network [OSTI]

??The Organic Flash Cycle (OFC) is proposed as a vapor power cycle that could potentially increase power generation and improve the utilization efficiency of renewable (more)

Ho, Tony

2012-01-01T23:59:59.000Z

312

Rethinking the light water reactor fuel cycle  

E-Print Network [OSTI]

The once through nuclear fuel cycle adopted by the majority of countries with operating commercial power reactors imposes a number of concerns. The radioactive waste created in the once through nuclear fuel cycle has to ...

Shwageraus, Evgeni, 1973-

2004-01-01T23:59:59.000Z

313

Power Conversion APEX Interim Report November, 1999  

E-Print Network [OSTI]

, the combined efficiency of the topping cycle and bottoming cycle will be less than the single cycle along. POWER CONVERSION 17.1 Steam Cycle Different steam cycles have been well developed. A study by EPRI summarized the various advanced steam cycles which maybe available for an advanced coal power plant

California at Los Angeles, University of

314

Sensor placement algorithm development to maximize the efficiency of acid gas removal unit for integrated gasification combined cycle (IGCC) power plant with CO{sub 2} capture  

SciTech Connect (OSTI)

Future integrated gasification combined cycle (IGCC) power plants with CO{sub 2} capture will face stricter operational and environmental constraints. Accurate values of relevant states/outputs/disturbances are needed to satisfy these constraints and to maximize the operational efficiency. Unfortunately, a number of these process variables cannot be measured while a number of them can be measured, but have low precision, reliability, or signal-to-noise ratio. In this work, a sensor placement (SP) algorithm is developed for optimal selection of sensor location, number, and type that can maximize the plant efficiency and result in a desired precision of the relevant measured/unmeasured states. In this work, an SP algorithm is developed for an selective, dual-stage Selexol-based acid gas removal (AGR) unit for an IGCC plant with pre-combustion CO{sub 2} capture. A comprehensive nonlinear dynamic model of the AGR unit is developed in Aspen Plus Dynamics (APD) and used to generate a linear state-space model that is used in the SP algorithm. The SP algorithm is developed with the assumption that an optimal Kalman filter will be implemented in the plant for state and disturbance estimation. The algorithm is developed assuming steady-state Kalman filtering and steady-state operation of the plant. The control system is considered to operate based on the estimated states and thereby, captures the effects of the SP algorithm on the overall plant efficiency. The optimization problem is solved by Genetic Algorithm (GA) considering both linear and nonlinear equality and inequality constraints. Due to the very large number of candidate sets available for sensor placement and because of the long time that it takes to solve the constrained optimization problem that includes more than 1000 states, solution of this problem is computationally expensive. For reducing the computation time, parallel computing is performed using the Distributed Computing Server (DCS) and the Parallel Computing toolbox from Mathworks. In this presentation, we will share our experience in setting up parallel computing using GA in the MATLAB environment and present the overall approach for achieving higher computational efficiency in this framework.

Paul, P.; Bhattacharyya, D.; Turton, R.; Zitney, S.

2012-01-01T23:59:59.000Z

315

Hypervelocity binary stars: smoking gun of massive binary black holes  

E-Print Network [OSTI]

The hypervelocity stars recently found in the Galactic halo are expelled from the Galactic center through interactions between binary stars and the central massive black hole or between single stars and a hypothetical massive binary black hole. In this paper, we demonstrate that binary stars can be ejected out of the Galactic center with velocities up to 10^3 km/s, while preserving their integrity, through interactions with a massive binary black hole. Binary stars are unlikely to attain such high velocities via scattering by a single massive black hole or through any other mechanisms. Based on the above theoretical prediction, we propose a search for binary systems among the hypervelocity stars. Discovery of hypervelocity binary stars, even one, is a definitive evidence of the existence of a massive binary black hole in the Galactic center.

Youjun Lu; Qingjuan Yu; D. N. C. Lin

2007-07-12T23:59:59.000Z

316

Rankine cycle leak detection via continuous monitoring  

SciTech Connect (OSTI)

Rankine cycle power plants operate on a closed cycle in which heat is transferred from a high temperature reservoir to a low temperature sink while performing useful work. leaks in this cycle cause the loss of working fluid and/or corrosion of the power plant. Both of these constitute a loss of capital assets. A severe leak can reduce the efficiency of the cycle to the extent of creating an operating loss. PNL is undertaking the development of continuous monitoring techniques to protect rankine cycle plants from such losses. The location of these continuous monitors on an organic rankine cycle is described and shown schematically.

Kindle, Cecil H.

1982-10-08T23:59:59.000Z

317

Nuclear proliferation and civilian nuclear power. Report of the Nonproliferation Alternative Systems Assessment Program. Volume IX. Reactor and fuel cycle description  

SciTech Connect (OSTI)

The Nonproliferation Alterntive Systems Assessment Program (NASAP) has characterized and assessed various reactor/fuel-cycle systems. Volume IX provides, in summary form, the technical descriptions of the reactor/fuel-cycle systems studied. This includes the status of the system technology, as well as a discussion of the safety, environmental, and licensing needs from a technical perspective. This information was then used in developing the research, development, and demonstration (RD and D) program, including its cost and time frame, to advance the existing technology to the level needed for commercial use. Wherever possible, the cost data are given as ranges to reflect the uncertainties in the estimates.

Not Available

1980-06-01T23:59:59.000Z

318

X-ray binaries  

E-Print Network [OSTI]

We review the nuclear astrophysics aspects of accreting neutron stars in X-ray binaries. We summarize open astrophysical questions in light of recent observations and their relation to the underlying nuclear physics. Recent progress in the understanding of the nuclear physics, especially of X-ray bursts, is also discussed.

H. Schatz; K. E. Rehm

2006-08-01T23:59:59.000Z

319

Extension of the supercritical carbon dioxide brayton cycle to low reactor power operation: investigations using the coupled anl plant dynamics code-SAS4A/SASSYS-1 liquid metal reactor code system.  

SciTech Connect (OSTI)

Significant progress has been made on the development of a control strategy for the supercritical carbon dioxide (S-CO{sub 2}) Brayton cycle enabling removal of power from an autonomous load following Sodium-Cooled Fast Reactor (SFR) down to decay heat levels such that the S-CO{sub 2} cycle can be used to cool the reactor until decay heat can be removed by the normal shutdown heat removal system or a passive decay heat removal system such as Direct Reactor Auxiliary Cooling System (DRACS) loops with DRACS in-vessel heat exchangers. This capability of the new control strategy eliminates the need for use of a separate shutdown heat removal system which might also use supercritical CO{sub 2}. It has been found that this capability can be achieved by introducing a new control mechanism involving shaft speed control for the common shaft joining the turbine and two compressors following reduction of the load demand from the electrical grid to zero. Following disconnection of the generator from the electrical grid, heat is removed from the intermediate sodium circuit through the sodium-to-CO{sub 2} heat exchanger, the turbine solely drives the two compressors, and heat is rejected from the cycle through the CO{sub 2}-to-water cooler. To investigate the effectiveness of shaft speed control, calculations are carried out using the coupled Plant Dynamics Code-SAS4A/SASSYS-1 code for a linear load reduction transient for a 1000 MWt metallic-fueled SFR with autonomous load following. No deliberate motion of control rods or adjustment of sodium pump speeds is assumed to take place. It is assumed that the S-CO{sub 2} turbomachinery shaft speed linearly decreases from 100 to 20% nominal following reduction of grid load to zero. The reactor power is calculated to autonomously decrease down to 3% nominal providing a lengthy window in time for the switchover to the normal shutdown heat removal system or for a passive decay heat removal system to become effective. However, the calculations reveal that the compressor conditions are calculated to approach surge such that the need for a surge control system for each compressor is identified. Thus, it is demonstrated that the S-CO{sub 2} cycle can operate in the initial decay heat removal mode even with autonomous reactor control. Because external power is not needed to drive the compressors, the results show that the S-CO{sub 2} cycle can be used for initial decay heat removal for a lengthy interval in time in the absence of any off-site electrical power. The turbine provides sufficient power to drive the compressors. Combined with autonomous reactor control, this represents a significant safety advantage of the S-CO{sub 2} cycle by maintaining removal of the reactor power until the core decay heat falls to levels well below those for which the passive decay heat removal system is designed. The new control strategy is an alternative to a split-shaft layout involving separate power and compressor turbines which had previously been identified as a promising approach enabling heat removal from a SFR at low power levels. The current results indicate that the split-shaft configuration does not provide any significant benefits for the S-CO{sub 2} cycle over the current single-shaft layout with shaft speed control. It has been demonstrated that when connected to the grid the single-shaft cycle can effectively follow the load over the entire range. No compressor speed variation is needed while power is delivered to the grid. When the system is disconnected from the grid, the shaft speed can be changed as effectively as it would be with the split-shaft arrangement. In the split-shaft configuration, zero generator power means disconnection of the power turbine, such that the resulting system will be almost identical to the single-shaft arrangement. Without this advantage of the split-shaft configuration, the economic benefits of the single-shaft arrangement, provided by just one turbine and lower losses at the design point, are more important to the overall cycle performance. Therefore, the single-shaft

Moisseytsev, A.; Sienicki, J. J. (Nuclear Engineering Division)

2012-05-10T23:59:59.000Z

320

Energy Department Report Calculates Emissions and Costs of Power...  

Broader source: Energy.gov (indexed) [DOE]

and Costs of Power Plant Cycling Necessary for Increased Wind and Solar in the West Energy Department Report Calculates Emissions and Costs of Power Plant Cycling Necessary for...

Note: This page contains sample records for the topic "binary cycle power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Apparatus and methods of reheating gas turbine cooling steam and high pressure steam turbine exhaust in a combined cycle power generating system  

DOE Patents [OSTI]

In a combined cycle system having a multi-pressure heat recovery steam generator, a gas turbine and steam turbine, steam for cooling gas turbine components is supplied from the intermediate pressure section of the heat recovery steam generator supplemented by a portion of the steam exhausting from the HP section of the steam turbine, steam from the gas turbine cooling cycle and the exhaust from the HP section of the steam turbine are combined for flow through a reheat section of the HRSG. The reheated steam is supplied to the IP section inlet of the steam turbine. Thus, where gas turbine cooling steam temperature is lower than optimum, a net improvement in performance is achieved by flowing the cooling steam exhausting from the gas turbine and the exhaust steam from the high pressure section of the steam turbine in series through the reheater of the HRSG for applying steam at optimum temperature to the IP section of the steam turbine.

Tomlinson, Leroy Omar (Niskayuna, NY); Smith, Raub Warfield (Ballston Lake, NY)

2002-01-01T23:59:59.000Z

322

Environmental implications and institutional challenges of Chinas wind power development: integrating input-output analysis and life cycle analysis.  

E-Print Network [OSTI]

??Wind power in China has been experiencing substantial growths in the past decade. Accumulated generation capacity increased from 381.2 MW in 2001 to 62,364.2 MW (more)

Li, Xin

2012-01-01T23:59:59.000Z

323

Geothermal Life Cycle Calculator  

SciTech Connect (OSTI)

This calculator is a handy tool for interested parties to estimate two key life cycle metrics, fossil energy consumption (Etot) and greenhouse gas emission (ghgtot) ratios, for geothermal electric power production. It is based solely on data developed by Argonne National Laboratory for DOEs Geothermal Technologies office. The calculator permits the user to explore the impact of a range of key geothermal power production parameters, including plant capacity, lifetime, capacity factor, geothermal technology, well numbers and depths, field exploration, and others on the two metrics just mentioned. Estimates of variations in the results are also available to the user.

Sullivan, John

2014-03-11T23:59:59.000Z

324

Economic evaluations of coal-based combustion and gasification power plants with post-combustion CO2 capture using calcium looping cycle  

Science Journals Connector (OSTI)

Abstract Coal-based power generation sector is facing important changes to implement energy efficient carbon capture technologies to comply with emission reduction targets for transition to low carbon economy. This paper assesses CaL (Calcium Looping) as one of the innovative carbon capture options able to deliver low energy and cost penalties. The work evaluates how the integration of post-combustion calcium looping influences the economics of power plants providing up-dated techno-economic indicators. Coal-based combustion plants operated in both sub- and super-critical steam conditions were evaluated, as well as coal gasification plant using an oxygen-blown entrained-flow gasifier. As benchmark options used to quantify the carbon capture energy and cost penalties, the same power generation technologies were evaluated without CCS (Carbon capture and storage). The power plant concepts investigated in the paper generates around 545560MW net power with at least 90% carbon capture rate. Introduction of CaL technology for CO2 capture results in a 2442% increase of specific capital investment, the O&M costs are increasing with 2430% and the electricity cost with 3948% (all compared to non-CCS cases). As the techno-economic results suggest, CaL has good application potential in combustion-based power generation.

Calin-Cristian Cormos

2014-01-01T23:59:59.000Z

325

Cycle cover with short cycles Nicole Immorlica  

E-Print Network [OSTI]

Introduction Given a graph and a subset of marked elements (nodes, edges, or some combination thereof), a cycleCycle cover with short cycles Nicole Immorlica£ Mohammad Mahdian£ Vahab S. Mirrokni£ Abstract Cycle for variants of cycle covering problems which bound the size and/or length of the covering cycles

Immorlica, Nicole

326

The effect of political cycles on power investment decisions: Expectations over the repeal and reinstatement of carbon policy mechanisms in Australia  

Science Journals Connector (OSTI)

Abstract Political uncertainty over global greenhouse gas (GHG) mitigation policy is likely to defer investment in cleaner technologies. It may also incentivise short-lived, high-cost interim investments while businesses wait for the uncertainty to subside. The range of possible policy responses to the issue has created uncertainty over the future of national mitigation pathways. Given that the electricity sector, globally, is a major emitter of GHGs, this represents a systematic risk to investment in electricity generation assets. This paper uses a real options analysis framework informed by a survey of experts conducted in Australia used as a proxy to model the degree of the uncertainty to investigate the optimal timing for investment in the conversion of a coal plant to a combined cycle gas turbine plant using the American-style option valuation method. The effect of market and political uncertainty is studied for the Clean Energy Act 2011 in Australia. Political uncertainty is addressed bi-modally in terms of: (1) uncertainty over the repeal of the carbon pricing policy, and (2) if it is repealed, uncertainty over the reinstatement of the policy, to represent the effect of electoral cycles and the possibility of more stringent future global mitigation efforts. Results of the analysis show that although political uncertainty with respect to GHG mitigation policy may delay investment in the conversion of the coal plant, expectations over the reinstatement of the carbon pricing reduces the amount of option premium to defer the conversion decision.

Mahdi ShahNazari; Adam McHugh; Bryan Maybee; Jonathan Whale

2014-01-01T23:59:59.000Z

327

PowerPoint Presentation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

low power situations there's a mechanism: lBurst mode deep cycles e-caps, which can overheat them, and cause wearout quicker. lAlso, at low power the converters are less...

328

Carbon Cycle  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Carbon Cycle Carbon Cycle Latest Global Carbon Budget Estimates Including CDIAC Estimates Terrestrial Carbon Management Data Sets and Analyses Carbon Dioxide Emissions from Fossil-Fuel Consumption and Cement Manufacture, (2011) Annual Fossil-Fuel CO2 Emissions: Mass of Emissions Gridded by One Degree Latitude by One Degree Longitude (2012) Monthly Fossil-Fuel CO2 Emissions: Mass of Emissions Gridded by One Degree Latitude by One Degree Longitude (2012) Annual Fossil-Fuel CO2 Emissions: Global Stable Carbon Isotopic Signature (2012) Monthly Fossil-Fuel CO2 Emissions: Isomass (δ 13C) of Emissions Gridded by One Degree Latitude by One Degree Longitude (2012) AmeriFlux - Terrestrial Carbon Dioxide, Water Vapor, and Energy Balance Measurements Estimates of Monthly CO2 Emissions and Associated 13C/12C Values

329

Locating Restricted Facilities on Binary Maps  

E-Print Network [OSTI]

welfare optimization, when the area map is encoded as a binary (0,1) mxn matrix. ... of connected components in binary maps and in Section 7 we conclude.

Mugurel

2008-09-20T23:59:59.000Z

330

Hyperbolic capture of compact binaries  

E-Print Network [OSTI]

Hyperbolic encounters of compact objects are common interactions in dense environments. During this process a significant amount of gravitational radiation is emitted depending on the parameters of the system. Here we give a parametric description of the radial motion valid for general binary orbits and the radiative energy and angular momentum losses for binaries with spinning components.

Mtys Vasth

2014-09-23T23:59:59.000Z

331

Evolutionary Memory in Binary Systems?  

E-Print Network [OSTI]

Correlation between the spins (rotational velocities) in binaries has previously been established. We now continue and show that the degree of spin correlation is independent of the components' separation. Such a result might be related for example to Zhang's non-linear model for the formation of binary stars from a nebula.

Netzach Farbiash; Raphael Steinitz

2004-12-08T23:59:59.000Z

332

Cumulative energy, emissions, and water consumption for geothermal electric power production  

Science Journals Connector (OSTI)

A life cycle analysis has been conducted on geothermal electricity generation. The technologies covered in the study include flash binary enhanced geothermal systems (EGS) and coproduced gas and electricity plants. The life cycle performance metrics quantified in the study include materials water and energy use and greenhouse gas (GHG) emissions. The life cycle stages taken into account were the plant and fuel cycle stages the latter of which includes fuel production and fuel use (operational). The plant cycle includes the construction of the plant wells and above ground piping and the production of the materials that comprise those systems. With the exception of geothermal flash plants GHG emissions from the plant cycle are generally small and the only such emissions from geothermal plants. Some operational GHGs arise from flash plants and though substantial when compared to other geothermal power plants these are nonetheless considerably smaller than those emitted from fossil fuel fired plants. For operational geothermal emissions an emission rate (g/kW h) distribution function vs. cumulative capacity was developed using California plant data. Substantial GHG emissions arise from coproduced facilities and two other renewable power plants but these are almost totally due to the production and use of natural gas and biofuels. Nonetheless those GHGs are still much less than those from fossil fuel fired plants. Though significant amounts of water are consumed for plant and well construction especially for well field stimulation of EGS plants they are small in comparison to estimated water consumed during plant operation. This also applies to air cooled plants which nominally should consume no water during operation. Considering that geothermal operational water use data are scarce our estimates show the lowest water consumption for flash and coproduced plants and the highest for EGS though the latter must be considered provisional due to the absence of field data. The EGS estimate was based on binary plant data.

J. L. Sullivan; C. Clark; J. Han; C. Harto; M. Wang

2013-01-01T23:59:59.000Z

333

An introduction to the Kalina cycle  

SciTech Connect (OSTI)

This paper is intended as a primer on the Kalina cycle--a novel, efficient power cycle that uses an ammonia-water mixture as the working fluid. The reader needs no more than a basic understanding of conventional water based Rankine cycle power plants to comprehend the basic thermodynamics, principles and arrangements of Kalina cycle power plants presented in this paper. The Kalina cycle is principally a modified Rankine cycle. The transformation starts with an important process change to the Rankine cycle--changing the working fluid in the cycle from a pure component (typically water) to a mixture of ammonia and water. The modifications that complete the transformation of the cycle from Rankine to Kalina consist of proprietary system designs that specifically exploit the virtues of the ammonia-water working fluid. These special designs, either applied individually or integrated together in a number of different combinations, comprise a family of unique Kalina cycle systems. This is somewhat analogous to the Rankine cycle which, in fact, has many design options such as reheat, regenerative heating, supercritical pressure, dual pressure, etc. all of which can be applied in a number of different combinations in a particular plant.

Micak, H.A.

1996-12-31T23:59:59.000Z

334

PowerPoint Presentation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Association Association S.2900 Reducing the Electric Power Carbon Footprint October 20, 2010 Richard S. Tuthill, Chair Board of Directors Gas Turbine Association 2 * Alstom Power * Florida Turbine Technologies * General Electric * Rolls Royce * Siemens Energy * Solar Turbines * Strategic Power Systems * United Technologies * Vibro Meter Gas Turbine Association 3 S.2900 * Introduced By Senator Kirsten Gillibrand (D-NY) * Prime Objective is to Fund Ground Power Gas Turbine Technologies - Raise Natural Gas Fired Gas Turbine Efficiencies ○ Phase One - Combined Cycle > 62%, Simple Cycle > 47% ○ Phase Two - Combined Cycle > 65%, Simple Cycle > 50% - Authorizes $340M Over Four Years ($85M per Year) - Combined Cycle, Simple Cycle, CHP, All Engine Sizes * Similar Bill Has Passed the US House (Under Suspension of Rules)

335

CANDU fuel cycle flexibility  

SciTech Connect (OSTI)

High neutron economy, on-power refuelling, and a simple bundle design provide a high degree of flexibility that enables CANDU (CANada Deuterium Uranium; registered trademark) reactors to be fuelled with a wide variety of fuel types. Near-term applications include the use of slightly enriched uranium (SEU), and recovered uranium (RU) from reprocessed spent Light Water Reactor (LWR) fuel. Plutonium and other actinides arising from various sources, including spent LWR fuel, can be accommodated, and weapons-origin plutonium could be destroyed by burning in CANDU. In the DUPIC fuel cycle, a dry processing method would convert spent Pressurized Water Reactor (PWR) fuel to CANDU fuel. The thorium cycle remains of strategic interest in CANDU to ensure long-term resource availability, and would be of specific interest to those countries possessing large thorium reserves, but limited uranium resources.

Torgerson, D.F.; Boczar, P.G. [Chalk River Lab., Ontario (Canada); Dastur, A.R. [AECL CANDU, Mississauga, Ontario (Canada)

1994-12-31T23:59:59.000Z

336

Thermodynamic and economic optimizations of a waste heat to power plant driven by a subcritical ORC (Organic Rankine Cycle) using pure or zeotropic working fluid  

Science Journals Connector (OSTI)

Abstract This paper carried out the thermodynamic and economic optimizations of a subcritical ORC (Organic Rankine Cycle) using a pure or a zeotropic mixture working fluid. Two pure organic compounds, i.e. n-pentane and R245fa, and their mixtures with various concentrations were used as ORC working fluid for this study. Two optimizations, i.e. exergy efficiency maximization and LCOE (Levelized Cost of Electricity) minimization, were performed to find out the optimum operating conditions of the system and to determine the best working fluid from the studied media. Hot water at temperature of 150C and pressure of 5bars was used to simulate the heat source medium. Whereas, cooling water at temperature of 20C was considered to be the heat sink medium. The mass flow rate of heat source is fixed at 50kg/s for the optimizations. According to the results, the n-pentane-based ORC showed the highest maximized exergy efficiency (53.2%) and the lowest minimized LCOE (0.0863 $/kWh). Regarding \\{ORCs\\} using zeotropic working fluids, 0.05 and 0.1 \\{R245fa\\} mass fraction mixtures present the comparable economic features and thermodynamic performances to the system using n-pentane at minimum LCOE. The ORC using \\{R245fa\\} represents the least profitable system.

Van Long Le; Abdelhamid Kheiri; Michel Feidt; Sandrine Pelloux-Prayer

2014-01-01T23:59:59.000Z

337

Advanced Fuel Cycle Economic Sensitivity Analysis  

SciTech Connect (OSTI)

A fuel cycle economic analysis was performed on four fuel cycles to provide a baseline for initial cost comparison using the Gen IV Economic Modeling Work Group G4 ECON spreadsheet model, Decision Programming Language software, the 2006 Advanced Fuel Cycle Cost Basis report, industry cost data, international papers, the nuclear power related cost study from MIT, Harvard, and the University of Chicago. The analysis developed and compared the fuel cycle cost component of the total cost of energy for a wide range of fuel cycles including: once through, thermal with fast recycle, continuous fast recycle, and thermal recycle.

David Shropshire; Kent Williams; J.D. Smith; Brent Boore

2006-12-01T23:59:59.000Z

338

Audio Binary Halftone Watermarking Algorithm  

Science Journals Connector (OSTI)

Conventional audio watermarking method has the following deficiencies: the embedded watermarking signal bits are too less; the image watermarking pre-process is too simple which reduce the security; the embedded audio watermarking is meaningless binary sequence. To address these problems, we propose a robust audio watermarking algorithm based on audio binary halftone pre-process. The meaningful audio watermarking can be preprocessed to high-fidelity binary audio. The variable dimension operation is used to scramble the host audio. Experiments show the proposed algorithm has big embedding quantity, high security, strong practicability and robustness in enduring common attacks.

Huan Li; Zheng Qin; Xuanping Zhang; Xu Wang

2011-01-01T23:59:59.000Z

339

Concentrating Solar Power Commercial Application Study  

E-Print Network [OSTI]

Towers....................................................................... 9 Dish/Engine Systems, and dish/engine. Parabolic troughs are the most commercially available technology. Linear Fresnel and power Rankine steam cycles, similar to those used for coal and nuclear plants. Steam cycle power plants require

Laughlin, Robert B.

340

Magnetic fields of neutron stars in X-ray binaries  

E-Print Network [OSTI]

A substantial fraction of the known neutron stars resides in X-ray binaries -- systems in which one compact object accretes matter from a companion star. Neutron stars in X-ray binaries have magnetic fields among the highest found in the Universe, spanning at least the range from $\\sim10^8$ to several 10$^{13}$ G. The magnetospheres around these neutron stars have a strong influence on the accretion process, which powers most of their emission. The magnetic field intensity and geometry, are among the main factors responsible for the large variety of spectral and timing properties observed in the X-ray energy range, making these objects unique laboratories to study the matter behavior and the radiation processes in magnetic fields unaccessible on Earth. In this paper we review the main observational aspects related to the presence of magnetic fields in neutron star X-ray binaries and some methods that are used to estimate their strength.

Revnivtsev, Mikhail

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "binary cycle power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Determining the Porosity and Saturated Hydraulic Conductivity of Binary Mixtures  

SciTech Connect (OSTI)

Gravels and coarse sands make up significant portions of some environmentally important sediments, while the hydraulic properties of the sediments are typically obtained in the laboratory using only the fine fraction (e.g., <2 mm or 4.75 mm). Researchers have found that the content of gravel has significant impacts on the hydraulic properties of the bulk soils. Laboratory experiments were conducted to measure the porosity and the saturated hydraulic conductivity of binary mixtures with different fractions of coarse and fine components. We proposed a mixing-coefficient model to estimate the porosity and a power-averaging method to determine the effective particle diameter and further to predict the saturated hydraulic conductivity of binary mixtures. The proposed methods could well estimate the porosity and saturated hydraulic conductivity of the binary mixtures for the full range of gravel contents and was successfully applied to two data sets in the literature.

Zhang, Z. F.; Ward, Anderson L.; Keller, Jason M.

2009-09-27T23:59:59.000Z

342

Organic Rankine Cycle for Light Duty Passenger Vehicles  

Broader source: Energy.gov [DOE]

Dynamic model of organic Rankine cycle with R245fa working fluid and conservative component efficiencies predict power generation in excess of electrical accessory load demand under highway drive cycle

343

Proceedings of a Topical Meeting On Small Scale Geothermal Power Plants and Geothermal Power Plant Projects  

SciTech Connect (OSTI)

These proceedings describe the workshop of the Topical Meeting on Small Scale Geothermal Power Plants and Geothermal Power Plant Projects. The projects covered include binary power plants, rotary separator, screw expander power plants, modular wellhead power plants, inflow turbines, and the EPRI hybrid power system. Active projects versus geothermal power projects were described. In addition, a simple approach to estimating effects of fluid deliverability on geothermal power cost is described starting on page 119. (DJE-2005)

None

1986-02-12T23:59:59.000Z

344

COMPACT BINARY PROGENITORS OF SHORT GAMMA-RAY BURSTS  

SciTech Connect (OSTI)

In recent years, detailed observations and accurate numerical simulations have provided support to the idea that mergers of compact binaries containing either two neutron stars (NSs) or an NS and a black hole (BH) may constitute the central engine of short gamma-ray bursts (SGRBs). The merger of such compact binaries is expected to lead to the production of a spinning BH surrounded by an accreting torus. Several mechanisms can extract energy from this system and power the SGRBs. Here we connect observations and numerical simulations of compact binary mergers, and use the current sample of SGRBs with measured energies to constrain the mass of their powering tori. By comparing the masses of the tori with the results of fully general-relativistic simulations, we are able to infer the properties of the binary progenitors that yield SGRBs. By assuming a constant efficiency in converting torus mass into jet energy, {epsilon}{sub jet} = 10%, we find that most of the tori have masses smaller than 0.01 M{sub Sun }, favoring 'high-mass' binary NSs mergers, i.e., binaries with total masses {approx}> 1.5 the maximum mass of an isolated NS. This has important consequences for the gravitational wave signals that may be detected in association with SGRBs, since 'high-mass' systems do not form a long-lived hypermassive NS after the merger. While NS-BH systems cannot be excluded to be the engine of at least some of the SGRBs, the BH would need to have an initial spin of {approx}0.9 or higher.

Giacomazzo, Bruno [JILA, University of Colorado and National Institute of Standards and Technology, Boulder, CO 80309 (United States); Perna, Rosalba [JILA and Department of Astrophysical and Planetary Sciences, University of Colorado, Boulder, CO 80309 (United States); Rezzolla, Luciano [Max-Planck-Institut fuer Gravitationsphysik, Albert-Einstein-Institut, Potsdam D-14476 (Germany); Troja, Eleonora [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Lazzati, Davide [Department of Physics, NC State University, 2401 Stinson Drive, Raleigh, NC 27695-8202 (United States)

2013-01-10T23:59:59.000Z

345

STM Power Inc | Open Energy Information  

Open Energy Info (EERE)

Develops, designs, assembles and sells ultra low emissions, external combustion, combined heat and power generators using Stirling-cycle engines. References: STM Power Inc1 This...

346

Ultraviolet studies of interacting binaries  

E-Print Network [OSTI]

Interacting Binaries consist of a variety of stellar objects in different stages of evolution and those containing accreting compact objects still represent a major challenge to our understanding of not only close binary evolution but also of the chemical evolution of the Galaxy. These end-points of binary star evolution are ideal laboratories for the study of accretion and outflow processes, and provide insight on matter under extreme physical conditions. One of the key-questions of fundamental relevance is the nature of SNIa progenitors. The study of accreting compact binary systems relies on observations over the entire electromagnetic spectrum and we outline here those unresolved questions for which access to the ultraviolet range is vital, as they cannot be addressed by observations in any other spectral region.

B. T. Gaensicke; D. de Martino; T. R. Marsh; C. A. Haswell; C. Knigge; K. S. Long; S. N. Shore

2005-10-04T23:59:59.000Z

347

Multiple Rankine topping cycles offer high efficiency  

SciTech Connect (OSTI)

The efficiency of a Rankine cycle is primarily determined by the temperatures of heat addition and heat rejection. However, no working fluid has been identified that will operate in a Rankine cycle over an extremely wide temperature range. Multiple Rankine topping cycles offer a technique for achieving high thermal efficiencies in power plants by allowing the use of several working fluids to span larger temperature ranges.

McWhirter, J.D. [Idaho State Univ., Pocatello, ID (United States)

1997-10-01T23:59:59.000Z

348

Short Gamma Ray Bursts as possible electromagnetic counterpart of coalescing binary systems  

E-Print Network [OSTI]

Coalescing binary systems, consisting of two collapsed objects, are among the most promising sources of high frequency gravitational waves signals detectable, in principle, by ground-based interferometers. Binary systems of Neutron Star or Black Hole/Neutron Star mergers should also give rise to short Gamma Ray Bursts, a subclass of Gamma Ray Bursts. Short-hard-Gamma Ray Bursts might thus provide a powerful way to infer the merger rate of two-collapsed object binaries. Under the hypothesis that most short Gamma Ray Bursts originate from binaries of Neutron Star or Black Hole/Neutron Star mergers, we outline here the possibility to associate short Gamma Ray Bursts as electromagnetic counterpart of coalescing binary systems.

S. Capozziello; M. De Laurentis; I. De Martino; M. Formisano

2010-04-27T23:59:59.000Z

349

DIRECT CONTACT HEAT EXCHANGER 10 kW POWER LOOP. SECTION 1: EXECUTIVE SUMMARY. SECTION 2: TEST SERIES NO. 1. SECTION 3; TEST SERIES NO. 2  

E-Print Network [OSTI]

Heat Exchangers to Geothermal Power Production Cycles",Heat Exchanger to Geothermal Power Production Cycles",4057702. o m SUMMARY The geothermal power loop was modified

Engineering, Barber-Nicholas

2011-01-01T23:59:59.000Z

350

Uncertainty Analyses of Advanced Fuel Cycles  

SciTech Connect (OSTI)

The Department of Energy is developing technology, experimental protocols, computational methods, systems analysis software, and many other capabilities in order to advance the nuclear power infrastructure through the Advanced Fuel Cycle Initiative (AFDI). Our project, is intended to facilitate will-informed decision making for the selection of fuel cycle options and facilities for development.

Laurence F. Miller; J. Preston; G. Sweder; T. Anderson; S. Janson; M. Humberstone; J. MConn; J. Clark

2008-12-12T23:59:59.000Z

351

VISION: Verifiable Fuel Cycle Simulation Model  

SciTech Connect (OSTI)

The nuclear fuel cycle is a very complex system that includes considerable dynamic complexity as well as detail complexity. In the nuclear power realm, there are experts and considerable research and development in nuclear fuel development, separations technology, reactor physics and waste management. What is lacking is an overall understanding of the entire nuclear fuel cycle and how the deployment of new fuel cycle technologies affects the overall performance of the fuel cycle. The Advanced Fuel Cycle Initiatives systems analysis group is developing a dynamic simulation model, VISION, to capture the relationships, timing and delays in and among the fuel cycle components to help develop an understanding of how the overall fuel cycle works and can transition as technologies are changed. This paper is an overview of the philosophy and development strategy behind VISION. The paper includes some descriptions of the model and some examples of how to use VISION.

Jacob J. Jacobson; Abdellatif M. Yacout; Gretchen E. Matthern; Steven J. Piet; David E. Shropshire

2009-04-01T23:59:59.000Z

352

Enel Green Power- Innovative Geothermal Power for Nevada | Open Energy  

Open Energy Info (EERE)

Enel Green Power- Innovative Geothermal Power for Nevada Enel Green Power- Innovative Geothermal Power for Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Periodical: Enel Green Power- Innovative Geothermal Power for Nevada Abstract Two binary geothermal power plants inaugurated today with a total capacity of 65 MW: They will generate enough energy to meet the needs of some 40 thousand American households. Author Hank Sennott Published Press Release, 04/15/2009 DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Enel Green Power- Innovative Geothermal Power for Nevada Citation Hank Sennott. 04/15/2009. Enel Green Power- Innovative Geothermal Power for Nevada. Press Release. 1-2. Retrieved from "http://en.openei.org/w/index.php?title=Enel_Green_Power-_Innovative_Geothermal_Power_for_Nevada&oldid=680547"

353

Life Cycle Exergy Analysis of Wind Energy Systems.  

E-Print Network [OSTI]

?? Wind power capacity is currently growing fast around the world. At the same time different forms of life cycle analysis are becoming common for (more)

Davidsson, Simon

2011-01-01T23:59:59.000Z

354

Integrated Gasification Combined Cycle Based on Pressurized Fluidized Bed Gasification  

Science Journals Connector (OSTI)

Enviropower Inc. has developed a modern power plant concept based on an integrated pressurized fluidized bed gasification and gas turbine combined cycle (IGCC)....

Kari Salo; J. G. Patel

1997-01-01T23:59:59.000Z

355

Thermal Cycling Combined with Dynamic Mechanical Load: Preliminary...  

Office of Environmental Management (EM)

Load: Preliminary Report This PowerPoint presentation summarizes the efforts of the team led by ESPEC Corp. to investigate thermal cycling combined with dynamic mechanical load, a...

356

Off-design Simulations of Offshore Combined Cycles.  

E-Print Network [OSTI]

?? This thesis presents an off-design simulation of offshore combined cycles. Offshore installations have a substantial power demand to facilitate the oil and gas production. (more)

Flateb, ystein

2012-01-01T23:59:59.000Z

357

Three-dimensional off-design numerical analysis of an organic Rankine cycle radial-inflow turbine  

Science Journals Connector (OSTI)

Abstract Optimisation of organic Rankine cycles (ORCs) for binary cycle applications could play a major role in determining the competitiveness of low to moderate renewable sources. An important aspect of the optimisation is to maximise the turbine output power for a given resource. This requires careful attention to the turbine design notably through numerical simulations. Challenges in the numerical modelling of radial-inflow turbines using high-density working fluids still need to be addressed in order to improve the turbine design and better optimise ORCs. This paper presents preliminary 3D numerical simulations of a high-density radial-inflow ORC turbine in sensible geothermal conditions. Following extensive investigation of the operating conditions and thermodynamic cycle analysis, the refrigerant \\{R143a\\} is chosen as the high-density working fluid. The 1D design of the candidate radial-inflow turbine is presented in details. Furthermore, commercially-available software Ansys-CFX is used to perform preliminary steady-state 3D CFD simulations of the candidate \\{R143a\\} radial-inflow turbine for a number of operating conditions including off-design conditions. The real-gas properties are obtained using the PengRobinson equations of state. The thermodynamic ORC cycle is presented. The preliminary design created using dedicated radial-inflow turbine software Concepts-Rital is discussed and the 3D CFD results are presented and compared against the meanline analysis.

Emilie Sauret; Yuantong Gu

2014-01-01T23:59:59.000Z

358

Cycle Track Lessons Learned  

E-Print Network [OSTI]

Cycle Track Lessons Learned #12;Presentation Overview · Bicycling trends · Cycle track lessons learned · What is a "Cycle track"? · Essential design elements of cycle tracks Separation Width Crossing driveways & low-volume streets Signalized intersections #12;Trend in kilometers cycled per year

Bertini, Robert L.

359

Photovoltaics Life Cycle Analysis  

E-Print Network [OSTI]

Metrics of Life-Cycle Performance Energy Payback Times (EPBT) Greenhouse Gas Emissions (GHG) Toxic Gases #12;6 Life Cycle GHG Emissions ­EuropeLife Cycle GHG Emissions ­Europe Insolation: 1700 kwh/m2-yr 0 10 #12;7 Life Cycle GHG Emissions ­Comparison with Conventional Technologies Life Cycle GHG Emissions

360

Closed cycle liquid helium refrigerators  

Science Journals Connector (OSTI)

We have developed closed cycle liquid helium refrigerators using a Joule Thomson circuit precooled by commercially available two staged Gifford Mac Mahon cryocoolers. The Joule Thomson counterflow heat exchangers are modular and have been thermo-hydraulically characterized. Fully automatic cool down and operation are achieved by two pneumatically driven by pass and expansion valves. Several apparatus have been built or are under assembly with cooling power ranging from 100 mW up to 5 Watt, for temperature ranging from 2.8 K up to 4.5 K. A trouble free operation with several warm up and cool down cycles has been proven over 7000 hours.

G. Claudet; R. Lagnier; A. Ravex

1992-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "binary cycle power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Fuel Cell Power Model Elucidates Life-Cycle Costs for Fuel Cell-Based Combined Heat, Hydrogen, and Power (CHHP) Production Systems (Fact Sheet), Hydrogen and Fuel Cell Technical Highlights (HFCTH)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3 * November 2010 3 * November 2010 Electricity Natural Gas Power Heat Natural Gas or Biogas Tri-Generation Fuel Cell Hydrogen Natural Gas Converted to hydrogen on site via steam-methane reforming electrolyzer peak burner heat sink FC SYSTEM + H 2 Renewables H 2 -FC H 2 -storage 0 2 4 6 8 10 12 14 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Electricity Demand (kW) Heat Demand (kW) Hydrogen Demand (kW) 0 2 4 6 8 10 12 14 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Electricity Demand (kW) Heat Demand (kW) Hydrogen Demand (kW) 0 2 4 6 8 10 12 14 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Electricity Demand (kW) Heat Demand (kW) Hydrogen Demand (kW) 0 2 4 6 8 10 12 14 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Electricity Demand (kW) Heat Demand (kW) Hydrogen Demand (kW) * Grid electricity (hourly) * Fuel prices * Water price 0 2 4

362

Binary black hole mergers in gaseous environments: 'Binary Bondi' and 'binary Bondi-Hoyle-Lyttleton' accretion  

SciTech Connect (OSTI)

Merging supermassive black hole-black hole binaries produced in galaxy mergers are promising sources of detectable gravitational waves. If such a merger takes place in a gaseous environment, there is a possibility of a simultaneous detection of electromagnetic and gravitational radiation, as the stirring, shock heating, and accretion of the gas may produce variability and enhancements in the electromagnetic flux. Such a simultaneous detection can provide a wealth of opportunities to study gravitational physics, accretion physics, and cosmology. We investigate this scenario by performing fully general-relativistic, hydrodynamic simulations of merging, equal-mass, nonspinning black hole-black hole binaries embedded in gas clouds. We evolve the metric using the Baumgarte-Shapiro-Shibata-Nakamura formulation with standard moving puncture gauge conditions and handle the hydrodynamics via a high-resolution shock-capturing scheme. We consider both 'binary Bondi accretion' in which the binary is at rest relative to the ambient gas cloud, as well as 'binary Bondi-Hoyle-Lyttleton accretion' in which the binary moves relative to the gas cloud. The gas cloud is assumed to be homogeneous far from the binary and governed by a {Gamma}-law equation of state. We vary {Gamma} between 4/3 and 5/3. For each simulation, we compute the gas flow and accretion rate and estimate the electromagnetic luminosity due to bremsstrahlung and synchrotron emission. We find evidence for significant enhancements in both the accretion rate and luminosity over values for a single black hole of the same mass as the binary. We estimate that this luminosity enhancement should be detectable by the Large Synoptic Survey Telescope for a 10{sup 6}M{sub {center_dot}}binary in a hot gas cloud of density n{approx}10 cm{sup -3} and temperature T{approx}10{sup 6} K at z=1, reaching a maximum of L{approx}3x10{sup 43} erg s{sup -1}, with the emission peaking in the visible band, and lasting for {approx}1 hour.

Farris, Brian D.; Liu, Yuk Tung; Shapiro, Stuart L. [Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States)

2010-04-15T23:59:59.000Z

363

Offshore Rankine Cycles.  

E-Print Network [OSTI]

?? The title of the thesis - "Offshore Rankine Cycles" - is very general and cover a large range of engineering fields, e.g. thermodynamic cycles (more)

Brandsar, Jo

2012-01-01T23:59:59.000Z

364

The Organic Rankine Cycle  

Science Journals Connector (OSTI)

Chap. 3 is dedicated to Rankine cycles with organic fluids: the so-called organic Rankine cycles (ORC), which in recent years have ... of the use of...

Costante Mario Invernizzi

2013-01-01T23:59:59.000Z

365

Searching for gravitational waves from binary coalescence  

E-Print Network [OSTI]

We describe the implementation of a search for gravitational waves from compact binary coalescences in LIGO and Virgo data. This all-sky, all-time, multidetector search for binary coalescence has been used to search data ...

Vaulin, Ruslan

366

Urey Prize Lecture: Binary Minor Planets  

E-Print Network [OSTI]

in the Kuiper belt is uncertain by an order of magnitude due to poor knowledge of albedo/density. Distribution Binary objects detected by lightcurve are not included in this chart. Over 50 binary minor planets can

Margot, Jean-Luc

367

Optimization of Air Conditioning Cycling  

E-Print Network [OSTI]

Benchmark Long Cycle .............................................................................................. 95 5.46 System Pressures and Temperatures Valve Part Cycle Vs Benchmark Long Cycle...

Seshadri, Swarooph

2012-10-19T23:59:59.000Z

368

Wood Burning Combined Cycle Power Plant  

E-Print Network [OSTI]

ESL-IE-84-04-136 Proceedings from the Sixth Annual Industrial Energy Technology Conference Volume II, Houston, TX, April 15-18, 1984 _ HEAT EXCHANGER RETURN AIR mlM SPILL FLOW INNER PIPE INSULATiON 1737'F HEATSHIELD Illlll'F \\ ...~.......- 826... ESL-IE-84-04-136 Proceedings from the Sixth Annual Industrial Energy Technology Conference Volume II, Houston, TX, April 15-18, 1984 _ HEAT EXCHANGER RETURN AIR mlM SPILL FLOW INNER PIPE INSULATiON 1737'F HEATSHIELD Illlll'F \\ ...~.......- 826...

Culley, J. W.; Bourgeois, H. S.

1984-01-01T23:59:59.000Z

369

Fossil fuel combined cycle power generation method  

DOE Patents [OSTI]

A method for converting fuel energy to electricity includes the steps of converting a higher molecular weight gas into at least one mixed gas stream of lower average molecular weight including at least a first lower molecular weight gas and a second gas, the first and second gases being different gases, wherein the first lower molecular weight gas comprises H.sub.2 and the second gas comprises CO. The mixed gas is supplied to at least one turbine to produce electricity. The mixed gas stream is divided after the turbine into a first gas stream mainly comprising H.sub.2 and a second gas stream mainly comprising CO. The first and second gas streams are then electrochemically oxidized in separate fuel cells to produce electricity. A nuclear reactor can be used to supply at least a portion of the heat the required for the chemical conversion process.

Labinov, Solomon D [Knoxville, TN; Armstrong, Timothy R [Clinton, TN; Judkins, Roddie R [Knoxville, TN

2008-10-21T23:59:59.000Z

370

Technoeconomic Analysis and Life Cycle Assessment of an Integrated Biomass Gasification Combined Cycle System  

Science Journals Connector (OSTI)

A biomass gasification combined-cycle power plant, consisting of a low pressure......Economic analyses were then performed to determine the levelized cost of electricity. The economic viability and efficiency of...

M. K. Mann; P. L. Spath

1997-01-01T23:59:59.000Z

371

Design and Exergy Analysis of Combined Rankine Cycle Using LNG Cold Energy  

Science Journals Connector (OSTI)

Abstract In this study, a 90MWe combined Rankine cycle utilizing LNG cold exergy was proposed. Utilizing LNG cold exergy and waste heat from the conventional steam cycle, this process was able to generate additional power in the CO2 organic Rankine cycle (ORC). A conventional steam cycle generates only 42MW electric power; this combined Rankine cycle produced more than twice as much power as the conventional steam cycle while consuming the same amount of fossil fuel. Through parameter sensitivity analysis and exergy analysis, the optimum design and operating conditions were also determined. Finally, reduction of the power plant de-rate by introducing a CO2 capture process was also analyzed.

Ung Lee; Chonghun Han

2014-01-01T23:59:59.000Z

372

MHD Integrated Topping Cycle Project  

SciTech Connect (OSTI)

The Magnetohydrodynamics (MHD) Integrated Topping Cycle (ITC) Project represents the culmination of the proof-of-concept (POC) development stage in the US Department of Energy (DOE) program to advance MHD technology to early commercial development stage utility power applications. The project is a joint effort, combining the skills of three topping cycle component developers: TRW, Avco/TDS, and Westinghouse. TRW, the prime contractor and system integrator, is responsible for the 50 thermal megawatt (50 MW{sub t}) slagging coal combustion subsystem. Avco/TDS is responsible for the MHD channel subsystem (nozzle, channel, diffuser, and power conditioning circuits), and Westinghouse is responsible for the current consolidation subsystem. The ITC Project will advance the state-of-the-art in MHD power systems with the design, construction, and integrated testing of 50 MW{sub t} power train components which are prototypical of the equipment that will be used in an early commercial scale MHD utility retrofit. Long duration testing of the integrated power train at the Component Development and Integration Facility (CDIF) in Butte, Montana will be performed, so that by the early 1990's, an engineering data base on the reliability, availability, maintainability and performance of the system will be available to allow scaleup of the prototypical designs to the next development level. This Sixteenth Quarterly Technical Progress Report covers the period May 1, 1991 to July 31, 1991.

Not Available

1992-03-01T23:59:59.000Z

373

Beowawe Bottoming Binary Unit - Final Technical Report for EE0002856  

SciTech Connect (OSTI)

This binary plant is the first high-output refrigeration based waste heat recovery cycle in the industry. Its working fluid is environmentally friendly and as such, the permits that would be required with a butane based cycle are not necessary. The unit is modularized, meaning that the units individual skids were assembled in another location and were shipped via truck to the plant site. This project proves the technical feasibility of using low temperature brine The development of the unit led to the realization of low temperature, high output, and environmentally friendly heat recovery systems through domestic research and engineering. The project generates additional renewable energy for Nevada, resulting in cleaner air and reduced carbon dioxide emissions. Royalty and tax payments to governmental agencies will increase, resulting in reduced financial pressure on local entities. The major components of the unit were sourced from American companies, resulting in increased economic activity throughout the country.

McDonald, Dale Edward

2013-02-12T23:59:59.000Z

374

GEODOC - THE GRID DOCUMENT FILE, RECORD STRUCTURE and DATA ELEMENT DESCRIPTION  

E-Print Network [OSTI]

Process Heat Agricultural Heat Power Production Corrosion Scaling Evaluation Binary Cycle Power Land-Use Factors Exploration and

Trippe, T.

2010-01-01T23:59:59.000Z

375

Investigation of the effect of organic working fluids on thermodynamic performance of combined cycle Stirling-ORC  

Science Journals Connector (OSTI)

This paper presents thermodynamic investigation and environmental consideration of combined Stirling-organic Rankine cycle (ORC) power cycle. Combined cycle can be assisted by solar energy and ... side heat rejec...

Mohammad Bahrami; Ali A Hamidi

2013-02-01T23:59:59.000Z

376

MHK Technologies/Kalina Cycle OTEC | Open Energy Information  

Open Energy Info (EERE)

Kalina Cycle OTEC Kalina Cycle OTEC < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Kalina Cycle OTEC.jpg Technology Profile Primary Organization Ocean Engineering and Energy Systems Technology Resource Click here OTEC Technology Type Click here OTEC - Closed Cycle Technology Description Kalina Cycle The Kalina Cycle is a variation of the more conventional closed cycle OTEC system incorporating aqueous ammonia ammonia water mixture as the working fluid instead of the conventional ammonia or propylene working fluid employed in earlier designs of closed cycle OTEC power systems The Kalina Cycle is a break through technology for OTEC power systems providing a nearly 80 increase in efficiency over previous closed cycle designs Because the ammonia water concentrations can be varied throughout the system to optimize according to system temperatures sort of a designer working fluid and by adding an extra component the recuperator heat losses generally experienced in other closed cycle designs can be minimized and recovered thereby improving the overall efficiency of the power cycle

377

Power Gas and Combined Cycles: Clean Power from Fossil Fuels  

Science Journals Connector (OSTI)

...in the 1930's. It is a "gravitating bed" gasifier, manufactured by Lurgi Gesellshaft fiir Mineraloltechnik...Godel is planning to test a new design for a gasifier in early 1973. A coal gasifier called the Ignifluid boiler was devel-oped...

William D. Metz

1973-01-05T23:59:59.000Z

378

Power Gas and Combined Cycles: Clean Power from Fossil Fuels  

Science Journals Connector (OSTI)

...from Mining Although coal is so plentiful the...of miners. Deep mining is one of the most...techniques for deep mining are very inefficient...European methods. Deep mining causes subsidence...apparent throughout Appalachia, and severe pollution...can be. Demand for coal from western states...

William D. Metz

1973-01-05T23:59:59.000Z

379

Power Gas and Combined Cycles: Clean Power from Fossil Fuels  

Science Journals Connector (OSTI)

...a "gravitating bed" gasifier, manufactured by Lurgi...in diameter, and the size of the gasification unit...test a new design for a gasifier in early 1973. A coal...differently. The City College gasifier would be shaped so that...composed of larger coal sizes. The City College gasi-fier...

William D. Metz

1973-01-05T23:59:59.000Z

380

Power Gas and Combined Cycles: Clean Power from Fossil Fuels  

Science Journals Connector (OSTI)

...gas has such a low heating value that it cannot...from residual fuel oil (the relatively...Oil Residual fuel oil with a low sulfur...stations in Maryland, Connecticut, and New York-has...low-sulfur residual fuel oil is growing and its price is rising. Residual...

William D. Metz

1973-01-05T23:59:59.000Z

Note: This page contains sample records for the topic "binary cycle power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

MHD Integrated Topping Cycle Project  

SciTech Connect (OSTI)

The overall objective of the project is to design and construct prototypical hardware for an integrated MHD topping cycle, and conduct long duration proof-of-concept tests of integrated system at the US DOE Component Development and Integration Facility in Butte, Montana. The results of the long duration tests will augment the existing engineering design data base on MHD power train reliability, availability, maintainability, and performance, and will serve as a basis for scaling up the topping cycle design to the next level of development, an early commercial scale power plant retrofit. The components of the MHD power train to be designed, fabricated, and tested include: A slagging coal combustor with a rated capacity of 50 MW thermal input, capable of operation with an Eastern (Illinois {number sign}6) or Western (Montana Rosebud) coal, a segmented supersonic nozzle, a supersonic MHD channel capable of generating at least 1.5 MW of electrical power, a segmented supersonic diffuser section to interface the channel with existing facility quench and exhaust systems, a complete set of current control circuits for local diagonal current control along the channel, and a set of current consolidation circuits to interface the channel with the existing facility inverter.

Not Available

1992-01-01T23:59:59.000Z

382

A Review of Hazardous Chemical Species Associated with CO2 Capture from Coal-Fired Power Plants and Their Potential Fate in CO2 Geologic Storage  

E-Print Network [OSTI]

Integrated Gasification Combined Cycle Technology: IGCC.integrated gasification combined cycle (IGCC) power plants (output. Integrated gas combined cycle (IGCC) plants are

Apps, J.A.

2006-01-01T23:59:59.000Z

383

Geothermal slim holes for small off-grid power projects  

Science Journals Connector (OSTI)

Economically viable, small (100 kWe to 1000 kWe), geothermal power generation units using slim holes are available for the production of electrical power in remote areas and for rural electrification in developing countries. Based on borehole data from geothermal fields in the United States and Japan, slim holes have been proven as adequate fuel sources for small-scale geothermal power plants (SSGPPs) and can deliver enough geothermal fluid to the wellhead in a baseload mode to be of practical interest for off-grid electrification projects. The electrical generating capacity of geothermal fluids which can be produced from typical slim holes (150-mm diameter or less), both by conventional, self-discharge, flash-steam methods for hotter geothermal reservoirs, and by binary-cycle technology with downhole pumps for low- to moderate-temperature reservoirs are estimated using a simplified theoretical approach. Depending mainly on reservoir temperature, the numerical simulations indicate that electrical capacities from a few hundred kilowatts to over one megawatt per slim hole are possible. In addition to the advantage of price per kilowatt-hour in off-grid applications, \\{SSGPPs\\} fueled by slim holes are far more environmentally benign than fossil-burning power plants, which is crucial in view of current worldwide climate-change concerns and burgeoning electricity demand in the less-developed and developing countries.

Jim Combs; Sabodh K Garg; John W Pritchett

1997-01-01T23:59:59.000Z

384

SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT  

E-Print Network [OSTI]

Power Plant Solar Power Ideal Gas Turbine Topping Braytonefficiency of a solar power plant with gas-turbine toppingfor a solar power plant with Brayton-cycle gas turbine

Baldwin, Thomas F.

2011-01-01T23:59:59.000Z

385

Water Use in the Development and Operations of Geothermal Power...  

Energy Savers [EERE]

Operations of Geothermal Power Plants Water Use in the Development and Operations of Geothermal Power Plants This report summarizes what is currently known about the life cycle...

386

Water Use in the Development and Operation of Geothermal Power...  

Energy Savers [EERE]

Operation of Geothermal Power Plants Water Use in the Development and Operation of Geothermal Power Plants This report summarizes what is currently known about the life cycle water...

387

NREL: Energy Analysis: Life Cycle Assessment Harmonization  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Life Cycle Assessment Harmonization Life Cycle Assessment Harmonization Life cycle assessment (LCA) harmonization helps lenders, utility executives, and lawmakers get the best, most precise information on greenhouse gas emissions from various sources of energy. LCA has been used to estimate and compare GHG emissions from utility-scale power systems for three decades, often with considerable variability in results. Harmonization provides more exact estimates of greenhouse-gas emissions for renewable and conventional electricity generation technologies, clarifying inconsistent and conflicting estimates in the published literature and reducing uncertainty. Highlights of Recent Studies Chart that compares published and harmonized lifecycle greenhouse gas emissions. For help reading this chart, please contact the webmaster.

388

Quantifying Carbon Cycle Feedbacks  

Science Journals Connector (OSTI)

Perturbations to the carbon cycle could constitute large feedbacks on future changes in atmospheric CO2 concentration and climate. This paper demonstrates how carbon cycle feedback can be expressed in formally similar ways to climate feedback, ...

J. M. Gregory; C. D. Jones; P. Cadule; P. Friedlingstein

2009-10-01T23:59:59.000Z

389

Edgeworth cycles revisited  

E-Print Network [OSTI]

Some gasoline markets exhibit remarkable price cycles, where price spikes are followed by a series of small price declines: a pattern consistent with a model of Edgeworth cycles described by Maskin and Tirole. We extend ...

Doyle, Joseph J.

390

The combined cycle  

Science Journals Connector (OSTI)

Any combination of at least two cyclic processes converting thermal energy (heat) to work forms a combined cycle. In principle, the potential number of ... number of options reduces to a variety of cycles consi...

R. U. Pitt

1995-01-01T23:59:59.000Z

391

Water Cycle Pilot Study  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 Water Cycle Pilot Study To learn more about Earth's water cycle, the U.S. Department of Energy (DOE) has established a multi-laboratory science team representing five DOE...

392

Advanced Organic Vapor Cycles for Improving Thermal Conversion Efficiency in Renewable Energy Systems  

E-Print Network [OSTI]

Closed- Brayton-Cycle Solar Power Towers," ASME Journal ofNaF-NaBF4) cooled solar power tower plant is presented;high temperature solar power tower designs to date.

Ho, Tony

2012-01-01T23:59:59.000Z

393

mathematics single cycle  

E-Print Network [OSTI]

47 mathematics education single cycle master's study programme #12;48 single cycle master's study program in Mathematics Education #12;49 single cycle master's study program in Mathematics Education MATHEMATICS EDUCATION The program is in tune with the principles of the Bologna Declaration. · Academic title

?umer, Slobodan

394

Triple-effect absorption chiller cycle: A step beyond double-effect cycles  

SciTech Connect (OSTI)

Many advanced'' absorption cycles have been proposed during the current century. Of the hundreds of absorption cycles which have been patented throughout the world, all commercially manufactured products for air conditioning buildings have been variations of just two basic absorption cycles: single-effect and condenser-coupled double-effect cycles. The relatively low cooling coefficients of performance (COPs) inherent in single-effect and double-effect cycles limits the economic applicability of absorption air conditioners (chillers) in the United States. A triple-effect absorption chiller cycle is discussed. This cycle uses two condensers and two absorbers to achieve the triple effect.'' Depending on the absorption fluids selected, this triple-effect cycle is predicted to improve cooling COPs by 18% to 60% compared with the equivalent double-effect cycle. This performance improvement is obtained without increasing the total amount of heat-transfer surface area needed for the heat exchangers. A comparison between the calculated performances of a double-effect cycle and a triple-effect cycle (both using ammonia-water (NH{sub 3}/H{sub 2}O) as the absorption fluid pair) is presented. The triple-effect cycle is predicted to have an 18% higher cooling COP (1.41 compared with 1.2 for a double-effect), lower pressure (47.70 atm (701 psi) instead of 68.05 atm (1000 psi)), significantly reduced pumping power (less than one-half that of the double-effect cycle), and potentially lower construction cost (33% less total heat exchange needed). Practical implications for this triple-effect cycle are discussed. 16 refs., 5 figs., 1 tab.

DeVault, R.C.

1990-01-01T23:59:59.000Z

395

Cycle to Cycle Manufacturing Process Control  

E-Print Network [OSTI]

Most manufacturing processes produce parts that can only be correctly measured after the process cycle has been completed. Even if in-process measurement and control is possible, it is often too expensive or complex to ...

Hardt, David E.

396

Integration of coal utilization and environmental control in integrated gasification combined cycle systems  

Science Journals Connector (OSTI)

Integration of coal utilization and environmental control in integrated gasification combined cycle systems ... The Cost of Carbon Capture and Storage for Natural Gas Combined Cycle Power Plants ... The Cost of Carbon Capture and Storage for Natural Gas Combined Cycle Power Plants ...

H. Christopher Frey; Edward S. Rubin

1992-10-01T23:59:59.000Z

397

Natural Gas Combined Cycle  

E-Print Network [OSTI]

The Coal Ash Corrosion Resistant Materials Testing Program is being conducted by B&W at Reliant Energys Niles plant in Niles, Ohio. The total estimated cost of $1,864,603 is co-funded by DOE contributing 37.5%, OCDO providing 33.3 % and B&W providing 17%. The remaining 12 % is in-kind contributions by Reliant Energy and tubing suppliers. Materials development is important to the power industry, and to the use of coal. Figure 1 compares the cost of electricity for subcritical and supercritical coal-fired plants with a natural gas combined cycle (NGCC) plant based on an 85 % capacity factor. This shows that at $1.20/MBtu for fuel, coal is competitive with NGCC when gas is at $3.40/MBtu or higher. An 85 % capacity factor is realistic for a coal-fired plant, but NGCC plants are currently only achieving about 60%. This gives coal an advantage if compared on the basis of cost per kW generated per year. When subcritical and supercritical plants are compared,

Dennis K. Mcdonald; Subcritical Coal Plant; Supercritical Coal Plant

398

A novel thermomechanical energy conversion cycle Ian M. McKinley, Felix Y. Lee, Laurent Pilon  

E-Print Network [OSTI]

A novel thermomechanical energy conversion cycle Ian M. McKinley, Felix Y. Lee, Laurent Pilon of a novel cycle converting thermal and mechanical energy directly into electrical energy. The new cycle is adaptable to changing thermal and mechanical conditions. The new cycle can generate electrical power

Pilon, Laurent

399

Parametric study of a silica gel-water adsorption refrigeration cycle -- The influence of thermal capacitance and heat exchanger UA-values on cooling capacity, power density, and COP  

SciTech Connect (OSTI)

The influence of heat exchanger UA-values (adsorber/desorber, evaporator, and condenser) is investigated for an adsorption chiller, with consideration given to the thermal capacitance of the adsorber/desorber by means of a lumped-parameter cycle simulation model developed by the authors and co-workers for the single-stage silica gel-water adsorption chiller. The closed-cycle-type chiller, for use in air conditioning, is driven by low-grade waste heat (85 C [185 F]) and cooled by water at 31 C (88 F) and operates on relatively short cycle times (420 seconds adsorption/desorption; 30 second adsorber/desorber sensible cooling and heating). The results showed cycle performance to be considerably affected by the thermal capacitance and UA-value of the adsorber/desorber, which is attributed to the severe sensible cooling/heating requirements resulting from batched cycle operation. The model is also sensitive to the evaporator UA-value--but to a lesser extent. The condenser UA-value is the least sensitive parameter due to the working pair adsorption behavior in the temperature range defined for desorption and condensation.

Boelman, E.C.; Saha, B.B.; Kashiwagi, Takao [Tokyo Univ. of Agriculture and Technology (Japan). Dept. of Mechanical Systems Engineering

1997-12-31T23:59:59.000Z

400

On the invertibility of the XOR rotations of a binary word  

E-Print Network [OSTI]

We prove the following result regarding operations on a binary word whose length is a power of two: computing the exclusive-or of a number of rotated versions of the word is an invertible (one-to-one) operation if and only ...

Rivest, Ronald L.

Note: This page contains sample records for the topic "binary cycle power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

MHD Integrated Topping Cycle Project  

SciTech Connect (OSTI)

This eighteenth quarterly technical progress report of the MHD Integrated Topping cycle Project presents the accomplishments during the period November 1, 1991 to January 31, 1992. The precombustor is fully assembled. Manufacturing of all slagging stage components has been completed. All cooling panels were welded in place and the panel/shell gap was filled with RTV. Final combustor assembly is in progress. The low pressure cooling subsystem (LPCS) was delivered to the CDIF. Second stage brazing issues were resolved. The construction of the two anode power cabinets was completed.

Not Available

1992-07-01T23:59:59.000Z

402

EIS-0409: Kemper County Integrated Gasification Combined Cycle Project, Mississippi  

Broader source: Energy.gov [DOE]

This EIS analyzes DOE's decision to provide funding for the Kemper County Integrated Gasification Combined Cycle Project in Kemper County, Mississippi to assess the potential environmental impacts associated with the construction and operation of a project proposed by Southern Power Company, through its affiliate Mississippi Power Company, which has been selected by DOE for consideration under the Clean Coal Power Initiative (CCPI) program.

403

Population synthesis of wide binary millisecond pulsars  

Science Journals Connector (OSTI)

......from our population synthesis code are in good agreement with those...s1, respectively. In model NS2, the maximum amount of mass...using a rapid binary evolution code based on the analytical approximation...adopted in our binary evolution code. We assume mass transfer to......

B. Willems; U. Kolb

2002-12-11T23:59:59.000Z

404

The Evolution of Compact Binary Star Systems  

E-Print Network [OSTI]

We review the formation and evolution of compact binary stars consisting of white dwarfs (WDs), neutron stars (NSs), and black holes (BHs). Mergings of compact binary stars are expected to be the most important sources for the forthcoming gravitational-wave (GW) astronomy. In the first part of the review, we discuss observational manifestations of close binary stars with NS and/or black components and their merger rate, crucial points in the formation and evolution of compact stars in binary systems, including the treatment of the natal kicks which NSs and BHs acquire during the core collapse of massive stars and the common envelope phase of binary evolution, which are most relevant to the merging rates of NS-NS, NS-BH and BH-BH binaries. The second part of the review is devoted mainly to formation and evolution of binary WDs and their observational manifestations, including their role as progenitors of cosmologically important thermonuclear SN Ia. We also consider AM CVn-stars which are thought to be the best verification binary GW sources for future low-frequency GW space interferometers.

Konstantin Postnov; Lev Yungelson

2014-03-21T23:59:59.000Z

405

VISION - Verifiable Fuel Cycle Simulation of Nuclear Fuel Cycle Dynamics  

SciTech Connect (OSTI)

The U.S. DOE Advanced Fuel Cycle Initiatives (AFCI) fundamental objective is to provide technology options that - if implemented - would enable long-term growth of nuclear power while improving sustainability and energy security. The AFCI organization structure consists of four areas; Systems Analysis, Fuels, Separations and Transmutations. The Systems Analysis Working Group is tasked with bridging the program technical areas and providing the models, tools, and analyses required to assess the feasibility of design and deployment options and inform key decision makers. An integral part of the Systems Analysis tool set is the development of a system level model that can be used to examine the implications of the different mixes of reactors, implications of fuel reprocessing, impact of deployment technologies, as well as potential "exit" or "off ramp" approaches to phase out technologies, waste management issues and long-term repository needs. The Verifiable Fuel Cycle Simulation Model (VISION) is a computer-based simulation model that allows performing dynamic simulations of fuel cycles to quantify infrastructure requirements and identify key trade-offs between alternatives. It is based on the current AFCI system analysis tool "DYMOND-US" functionalities in addition to economics, isotopic decay, and other new functionalities. VISION is intended to serve as a broad systems analysis and study tool applicable to work conducted as part of the AFCI and Generation IV reactor development studies.

Steven J. Piet; A. M. Yacout; J. J. Jacobson; C. Laws; G. E. Matthern; D. E. Shropshire

2006-02-01T23:59:59.000Z

406

SOFC combined cycle systems for distributed generation  

SciTech Connect (OSTI)

The final phase of the tubular SOFC development program will focus on the development and demonstration of pressurized solid oxide fuel cell (PSOFC)/gas turbine (GT) combined cycle power systems for distributed power applications. The commercial PSOFC/GT product line will cover the power range 200 kWe to 50 MWe, and the electrical efficiency for these systems will range from 60 to 75% (net AC/LHV CH4), the highest of any known fossil fueled power generation technology. The first demonstration of a pressurized solid oxide fuel cell/gas turbine combined cycle will be a proof-of-concept 250 kWe PSOFC/MTG power system consisting of a single 200 kWe PSOFC module and a 50 kWe microturbine generator (MTG). The second demonstration of this combined cycle will be 1.3 MWe fully packaged, commercial prototype PSOFC/GT power system consisting of two 500 kWe PSOFC modules and a 300 kWe gas turbine.

Brown, R.A.

1997-05-01T23:59:59.000Z

407

E-Print Network 3.0 - atp catalytic cycle Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

cycle Search Powered by Explorit Topic List Advanced Search Sample search results for: atp catalytic cycle Page: << < 1 2 3 4 5 > >> 1 Encyclopedia of Molecular Biology Thomas E....

408

Assessment of Projected Life-Cycle Costs for Wave, Tidal, Ocean...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Assessment of Projected Life-Cycle Costs for Wave, Tidal, Ocean Current, and In-Stream Hydrokinetic Power Assessment of Projected Life-Cycle Costs for Wave, Tidal, Ocean Current,...

409

Cost Effective Waste Heat Organic Rankine Cycle Applications and Systems Designs  

E-Print Network [OSTI]

Conceptually, the Organic Rankine Cycle (ORC) power cycle has been well known to the engineering community for many years. Despite the rapid escalation of energy costs during the past decade, and a concerted, though somewhat belated, effort towards...

Rohrer, J. W.; Bronicki, L. Y.

1980-01-01T23:59:59.000Z

410

Pipeline bottoming cycle study. Final report  

SciTech Connect (OSTI)

The technical and economic feasibility of applying bottoming cycles to the prime movers that drive the compressors of natural gas pipelines was studied. These bottoming cycles convert some of the waste heat from the exhaust gas of the prime movers into shaft power and conserve gas. Three typical compressor station sites were selected, each on a different pipeline. Although the prime movers were different, they were similar enough in exhaust gas flow rate and temperature that a single bottoming cycle system could be designed, with some modifications, for all three sites. Preliminary design included selection of the bottoming cycle working fluid, optimization of the cycle, and design of the components, such as turbine, vapor generator and condensers. Installation drawings were made and hardware and installation costs were estimated. The results of the economic assessment of retrofitting bottoming cycle systems on the three selected sites indicated that profitability was strongly dependent upon the site-specific installation costs, how the energy was used and the yearly utilization of the apparatus. The study indicated that the bottoming cycles are a competitive investment alternative for certain applications for the pipeline industry. Bottoming cycles are technically feasible. It was concluded that proper design and operating practices would reduce the environmental and safety hazards to acceptable levels. The amount of gas that could be saved through the year 2000 by the adoption of bottoming cycles for two different supply projections was estimated as from 0.296 trillion ft/sup 3/ for a low supply projection to 0.734 trillion ft/sup 3/ for a high supply projection. The potential market for bottoming cycle equipment for the two supply projections varied from 170 to 500 units of varying size. Finally, a demonstration program plan was developed.

Not Available

1980-06-01T23:59:59.000Z

411

Data Center Power Consumption  

Broader source: Energy.gov (indexed) [DOE]

Center Power Consumption Center Power Consumption A new look at a growing problem Fact - Data center power density up 10x in the last 10 years 2.1 kW/rack (1992); 14 kW/rack (2007) Racks are not fully populated due to power/cooling constraints Fact - Increasing processor power Moore's law Fact - Energy cost going up 3 yr. energy cost equivalent to acquisition cost Fact - Iterative power life cycle Takes as much energy to cool computers as it takes to power them. Fact - Over-provisioning Most data centers are over-provisioned with cooling and still have hot spots November 2007 SubZero Engineering An Industry at the Crossroads Conflict between scaling IT demands and energy efficiency Server Efficiency is improving year after year Performance/Watt doubles every 2 years Power Density is Going Up

412

Optimal operation of simple vapour compression cycles  

E-Print Network [OSTI]

to a high temperature level. The first application, in 1834, was cooling to produce ice for storage of food for heating and cooling are widely used in many applications and their power ranges from less than 1 k to operate in both heating and cooling mode. A schematic drawing of a simple cycle is shown in Figure 1

Skogestad, Sigurd

413

Tailored Working Fluids for Enhanced Binary Geothermal Power Plants  

Broader source: Energy.gov [DOE]

DOE Geothermal Program Peer Review 2010 - Presentation. Project Objective: To improve the utilization of available energy in geothermal resources and increase the energy conversion efficiency of systems employed by a) tailoring the subcritical and/or supercritical glide of enhanced working fluids to best match thermal resources, and b) identifying appropriate thermal system and component designs for the down-selected working fluids.

414

Tailored Working Fluids for Enhanced Binary Geothermal Power...  

Broader source: Energy.gov (indexed) [DOE]

R245fa R245fa Concepts Optimization Demonstration 2 | US DOE Geothermal Program eere.energy.gov * Timeline - Project started on December 29, 2009, ends April 21, 2012 -...

415

NREL: TroughNet - Parabolic Trough Power Plant System Technology  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Parabolic Trough Power Plant System Technology Parabolic Trough Power Plant System Technology A parabolic trough solar power plant uses a large field of collectors to supply thermal energy to a conventional power plant. Because they use conventional power cycles, parabolic trough power plants can be hybridized-other fuels can be used to back up the solar power. Like all power cycles, trough power plants also need a cooling system to transfer waste heat to the environment. Parabolic trough power plant technologies include: Direct steam generation Fossil-fired (hybrid) backup Operation and maintenance Power cycles Steam Rankine Organic Rankine Combined Wet and dry cooling Power Cycles A photo of an aerial view of a power plant in the middle of a solar field with rows and rows of parabolic troughs tracking. The cooling towers can be seen with the water plume rising into the air. The white water tanks can be seen in the background.

416

High-efficiency solar dynamic space power generation system  

SciTech Connect (OSTI)

Space power technologies have undergone significant advances over the past few years, and great emphasis is being placed on the development of dynamic power systems at this time. A design study has been conducted to evaluate the applicability of a combined cycle concept-closed Brayton cycle and organic Rankine cycle coupling-for solar dynamic space power generation systems. In the concept presented in this paper (solar dynamic combined cycle), the waste heat rejected by the closed Brayton cycle working fluid is utilized to heat the organic working fluid of an organic Rankine cycle system. This allows the solar dynamic combined cycle efficiency to be increased compared to the efficiencies of two subsystems (closed Brayton cycle and organic fluid cycle). Also, for small-size space power systems (up to 50 kW), the efficiency of the solar dynamic combined cycle can be comparable with Stirling engine performance. The closed Brayton cycle and organic Rankine cycle designs are based on a great deal of maturity assessed in much previous work on terrestrial and solar dynamic power systems. This is not yet true for the Stirling cycles. The purpose of this paper is to analyze the performance of the new space power generation system (solar dynamic combined cycle). The significant benefits of the solar dynamic combined cycle concept such as efficiency increase, mass reduction, specific area-collector and radiator-reduction, are presented and discussed for a low earth orbit space station application.

Massardo, A. (Dept. di Ingegneria Energetica, Univ. di Genova, 16145 Genova (IT))

1991-08-01T23:59:59.000Z

417

PowerPoint Presentation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Oxy-Combustion Oxygen Transport Membrane Development Wladimir Sarmiento-Darkin July 11 th , 2013 1 | Praxair Business Confidential | 7/16/2013 2 ...if we didn't need to go this big OTM is a modular solution that may enable future low cost syngas production at small scales ...it would be easier to maximize NG value creation Praxair - OTM for Industrial Applications NT43088 Program Overview: DOE NT43088 Phase 1 May'07 to Dec'09 * OTM integrated coal power plant * Advanced oxy-combustion cycle * Process economic evaluation * Membrane performance improvement Phase 2 Jan'10 to Jun'12 * OTM integrated coal power plant * Advanced oxy-combustion cycle

418

Investigation into Greedy Exhaustive Dual Binary Swaps (GEDBS) for the optimization of core configuration in pressurized water reactors  

E-Print Network [OSTI]

In order to promote nuclear power production as an attractive option for power generation, measures must be taken to ensure that the process is both safe and economical. One aspect of the nuclear fuel cycle that contributes ...

Hammond, Jessica L

2012-01-01T23:59:59.000Z

419

Thermal Cycling Combined with Dynamic Mechanical Load: Preliminary Report  

Broader source: Energy.gov [DOE]

This PowerPoint presentation summarizes the efforts of the team led by ESPEC Corp. to investigate thermal cycling combined with dynamic mechanical load, a solar project funded by the SunShot Initiative.

420

Energy-based analysis of biochemical cycles using bond graphs  

Science Journals Connector (OSTI)

...encouragement to embark on a new research direction...Hill, TL . 1989 Free energy transduction and biochemical cycle kinetics. New York, NY: Springer...cellular systems. New York, NY: Chapman Hall...D . 1977 Power and energy in linearized physical...

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "binary cycle power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Organic Rankine Cycles for the Petro-Chemical Industry  

E-Print Network [OSTI]

considered to the limits of economic feasibility. However, both economic and technical feasibility limit the use of waste heat flows with conventional approaches in the 250 F to 350 F range. A packaged organic Rankine power cycle can technically...

Rose, R. K.; Colosimo, D. D.

1979-01-01T23:59:59.000Z

422

Working on new gas turbine cycle for heat pump drive  

E-Print Network [OSTI]

Working on new gas turbine cycle for heat pump drive FILE COPY TAP By Irwin Stambler, Field Editor, is sized for a 10-ton heat pump system - will be scaled to power a commercial product line ranging from 7 of the cycle- as a heat pump drive for commercial installations. Company is testing prototype gas turbine

Oak Ridge National Laboratory

423

Life Cycle Cost Estimate  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

Life-cycle costs (LCCs) are all the anticipated costs associated with a project or program alternative throughout its life. This includes costs from pre-operations through operations or to the end of the alternative.This chapter discusses life cycle costs and the role they play in planning.

1997-03-28T23:59:59.000Z

424

Power Plant Power Plant  

E-Print Network [OSTI]

Basin Center for Geothermal Energy at University of Nevada, Reno (UNR) 2 Nevada Geodetic LaboratoryStillwater Power Plant Wabuska Power Plant Casa Diablo Power Plant Glass Mountain Geothermal Area Lassen Geothermal Area Coso Hot Springs Power Plants Lake City Geothermal Area Thermo Geothermal Area

Tingley, Joseph V.

425

Comparison of subcritical and supercritical Rankine cycles for application to the geopressured geothermal resource  

SciTech Connect (OSTI)

There are several features unique to the geopressure geothermal resource which narrow the range of power cycle alternatives. The thermodynamic and operating restrictions which appear to favor the application of a supercritical Rankine power cycle utilizing propane for the recovery of thermal energy from the geopressure geothermal resource are described. This power cycle can be integrated into a natural gas recovery scheme that conserves reservoir pressure for brine disposal and produces gas at pipeline pressure.

Goldsberry, F.L.

1981-10-01T23:59:59.000Z

426

An effectual template bank for the detection of gravitational waves from inspiralling compact binaries with generic spins  

E-Print Network [OSTI]

We report the construction of a three-dimensional template bank for the search for gravitational waves from inspiralling binaries consisting of spinning compact objects. The parameter space consists of two dimensions describing the mass parameters and one "reduced-spin" parameter, which describes the secular (non-precessing) spin effects in the waveform. The template placement is based on an efficient stochastic algorithm and makes use of the semi-analytical computation of a metric in the parameter space. We demonstrate that for "low-mass" ($m_1 + m_2 \\lesssim 12\\,M_\\odot$) binaries, this template bank achieves effective fitting factors $\\sim0.92$--$0.99$ towards signals from generic spinning binaries in the advanced detector era over the entire parameter space of interest (including binary neutron stars, binary black holes, and black hole-neutron star binaries). This provides a powerful and viable method for searching for gravitational waves from generic spinning low-mass compact binaries. Under the assumption that spin magnitudes of black-holes [neutron-stars] are uniformly distributed between 0--0.98 [0 -- 0.4] and spin angles are isotropically distributed, the expected improvement in the average detection volume (at a fixed signal-to-noise-ratio threshold) of a search using this reduced-spin bank is $\\sim20-52\\%$, as compared to a search using a non-spinning bank.

P. Ajith; N. Fotopoulos; S. Privitera; A. Neunzert; N. Mazumder; A. J. Weinstein

2014-05-21T23:59:59.000Z

427

Fuel Cycle Research & Development Documents | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Initiatives » Fuel Cycle Technologies » Fuel Cycle Research & Initiatives » Fuel Cycle Technologies » Fuel Cycle Research & Development » Fuel Cycle Research & Development Documents Fuel Cycle Research & Development Documents November 8, 2011 2011 Fuel Cycle Technologies Annual Review Meeting As the largest domestic source of low-carbon energy, nuclear power is making major contributions toward meeting our nation's current and future energy demands. The United States must continue to ensure improvements and access to this technology so we can meet our economic, environmental and energy security goals. We rely on nuclear energy because it provides a consistent, reliable and stable source of base load electricity with an excellent safety record in the United States. July 11, 2011 Nuclear Separations Technologies Workshop Report

428

Role of Recycling in the Life Cycle of Batteries  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ROLE OF RECYCLING IN THE LIFE CYCLE OF BATTERIES ROLE OF RECYCLING IN THE LIFE CYCLE OF BATTERIES J.L. Sullivan, L. Gaines, and A. Burnham Argonne National Laboratory, Energy Systems Division Keywords: battery, materials, recycling, energy Abstract Over the last few decades, rechargeable battery production has increased substantially. Applications including phones, computers, power tools, power storage, and electric-drive vehicles are either commonplace or will be in the next decade or so. Because advanced rechargeable batteries, like those

429

FUEL CYCLE POTENTIAL WASTE FOR DISPOSITION  

SciTech Connect (OSTI)

The United States (U.S.) currently utilizes a once-through fuel cycle where used nuclear fuel (UNF) is stored on-site in either wet pools or in dry storage systems with ultimate disposal in a deep mined geologic repository envisioned. Within the Department of Energy's (DOE) Office of Nuclear Energy (DOE-NE), the Fuel Cycle Research and Development Program (FCR&D) develops options to the current commercial fuel cycle management strategy to enable the safe, secure, economic, and sustainable expansion of nuclear energy while minimizing proliferation risks by conducting research and development of advanced fuel cycles, including modified open and closed cycles. The safe management and disposition of used nuclear fuel and/or nuclear waste is a fundamental aspect of any nuclear fuel cycle. Yet, the routine disposal of used nuclear fuel and radioactive waste remains problematic. Advanced fuel cycles will generate different quantities and forms of waste than the current LWR fleet. This study analyzes the quantities and characteristics of potential waste forms including differing waste matrices, as a function of a variety of potential fuel cycle alternatives including: (1) Commercial UNF generated by uranium fuel light water reactors (LWR). Four once through fuel cycles analyzed in this study differ by varying the assumed expansion/contraction of nuclear power in the U.S. (2) Four alternative LWR used fuel recycling processes analyzed differ in the reprocessing method (aqueous vs. electro-chemical), complexity (Pu only or full transuranic (TRU) recovery) and waste forms generated. (3) Used Mixed Oxide (MOX) fuel derived from the recovered Pu utilizing a single reactor pass. (4) Potential waste forms generated by the reprocessing of fuels derived from recovered TRU utilizing multiple reactor passes.

Carter, J.

2011-01-03T23:59:59.000Z

430

FUEL CYCLE POTENTIAL WASTE FOR DISPOSITION  

SciTech Connect (OSTI)

The United States (U.S.) currently utilizes a once-through fuel cycle where used nuclear fuel (UNF) is stored on-site in either wet pools or in dry storage systems with ultimate disposal in a deep mined geologic repository envisioned. Within the Department of Energy's (DOE) Office of Nuclear Energy (DOE-NE), the Fuel Cycle Research and Development Program (FCR&D) develops options to the current commercial fuel cycle management strategy to enable the safe, secure, economic, and sustainable expansion of nuclear energy while minimizing proliferation risks by conducting research and development of advanced fuel cycles, including modified open and closed cycles. The safe management and disposition of used nuclear fuel and/or nuclear waste is a fundamental aspect of any nuclear fuel cycle. Yet, the routine disposal of used nuclear fuel and radioactive waste remains problematic. Advanced fuel cycles will generate different quantities and forms of waste than the current LWR fleet. This study analyzes the quantities and characteristics of potential waste forms including differing waste matrices, as a function of a variety of potential fuel cycle alternatives including: (1) Commercial UNF generated by uranium fuel light water reactors (LWR). Four once through fuel cycles analyzed in this study differ by varying the assumed expansion/contraction of nuclear power in the U.S; (2) Four alternative LWR used fuel recycling processes analyzed differ in the reprocessing method (aqueous vs. electro-chemical), complexity (Pu only or full transuranic (TRU) recovery) and waste forms generated; (3) Used Mixed Oxide (MOX) fuel derived from the recovered Pu utilizing a single reactor pass; and (4) Potential waste forms generated by the reprocessing of fuels derived from recovered TRU utilizing multiple reactor passes.

Jones, R.; Carter, J.

2010-10-13T23:59:59.000Z

431

Power Factor Reactive Power  

E-Print Network [OSTI]

power: 130 watts Induction motor PSERC Incandescent lights 0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0 power: 150 watts #12;Page 4 PSERC Incandescent Lights PSERC Induction motor with no load #12;Page 5 Incandescent Lights #12;Page 7 PSERC Incandescent lights power: Power = 118 V x 1.3 A = 153 W = 0.15 kW = power

432

E-Print Network 3.0 - annual cycle energy system Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Summary: Summary A new type of microelectromechanical system (MEMS ) high efficiency heat energy converter... the energy generation cycle with minimal power loss, leading to...

433

Constructing the Russian combined-cycle cogeneration plant and mastering its operation  

Science Journals Connector (OSTI)

The main results obtained from the development, construction, mastering, and operation of the PGU-450T combined-cycle power plant are described.

P. A. Berezinets; V. M. Grinenko; I. V. Dolinin; V. N. Kondratev

2011-06-01T23:59:59.000Z

434

Advanced Organic Vapor Cycles for Improving Thermal Conversion Efficiency in Renewable Energy Systems  

E-Print Network [OSTI]

Nonconventional Fluids," ASME Jour of Engineering for Power,fluids for Organic Rankine Cycles," Applied Thermal Engineering,fluid in waste heat recovery," Applied Thermal Engineering,

Ho, Tony

2012-01-01T23:59:59.000Z

435

Advanced Organic Vapor Cycles for Improving Thermal Conversion Efficiency in Renewable Energy Systems  

E-Print Network [OSTI]

Systems for Industrial Waste Heat Recovery. c DanielCycle for Cement Kiln Waste Heat Recovery Power Plants. and high temperature waste heat reclamation and solar

Ho, Tony

2012-01-01T23:59:59.000Z

436

Binary mixture flammability characteristics for hazard assessment  

E-Print Network [OSTI]

calculations and UNIFAC, a theoretical model that does not require experimental binary interaction parameters, are employed in the mixture flash point predictions, which are validated with experimental data. MFPB is successfully predicted using the UNIFAC model...

Vidal Vazquez, Migvia del C.

2005-11-01T23:59:59.000Z

437

Black hole binary inspiral and trajectory dominance  

E-Print Network [OSTI]

Gravitational waves emitted during the inspiral, plunge and merger of a black hole binary carry linear momentum. This results in an astrophysically important recoil to the final merged black hole, a kick that can eject ...

Price, Richard H.

438

Optimization of nave dynamic binary instrumentation Tools/  

E-Print Network [OSTI]

The proliferation of dynamic program analysis tools has done much to ease the burden of developing complex software. However, creating such tools remains a challenge. Dynamic binary instrumentation frameworks such as ...

Kleckner, Reid (Reid N.)

2011-01-01T23:59:59.000Z

439

New bounds on optimal binary search trees  

E-Print Network [OSTI]

Binary search trees (BSTs) are a class of simple data structures used to store and access keys from an ordered set. They have been around for about half a century. Despite their ubiquitous use in practical programs, ...

Harmon, Dion (Dion Kane)

2006-01-01T23:59:59.000Z

440

ROTATIONAL DOPPLER BEAMING IN ECLIPSING BINARIES  

SciTech Connect (OSTI)

In eclipsing binaries the stellar rotation of the two components will cause a rotational Doppler beaming during eclipse ingress and egress when only part of the eclipsed component is covered. For eclipsing binaries with fast spinning components this photometric analog of the well-known spectroscopic Rossiter-McLaughlin effect can exceed the strength of the orbital effect. Example light curves are shown for a detached double white dwarf binary, a massive O-star binary and a transiting exoplanet case, similar to WASP-33b. Inclusion of the rotational Doppler beaming in eclipsing systems is a prerequisite for deriving the correct stellar parameters from fitting high-quality photometric light curves and can be used to determine stellar obliquities as well as, e.g., an independent measure of the rotational velocity in those systems that may be expected to be fully synchronized.

Groot, Paul J., E-mail: pgroot@astro.ru.nl [Cahill Center for Astronomy and Astrophysics, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125 (United States)

2012-01-20T23:59:59.000Z

Note: This page contains sample records for the topic "binary cycle power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Combined gas turbine-Rankine turbine power plant  

SciTech Connect (OSTI)

A combined gas turbine-Rankine cycle powerplant with improved part load efficiency is disclosed. The powerplant has a gas turbine with an organic fluid Rankine bottoming cycle which features an inter-cycle regenerator acting between the superheated vapor leaving the Rankine turbine and the compressor inlet air. The regenerator is used selectively as engine power level is reduced below maximum rated power.

Earnest, E.R.

1981-05-19T23:59:59.000Z

442

Interactions between Electric-drive Vehicles and the Power Sector in California  

E-Print Network [OSTI]

Power; NGCC = Natural gas combined-cycle; NGCT = Natural gasSouthwest. Natural gas combined cycle and combined heat andNGCT), and natural gas combined cycle (NGCC) plants are

McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

2009-01-01T23:59:59.000Z

443

Detection Rates for Close Binaries Via Microlensing  

E-Print Network [OSTI]

Microlensing is one of the most promising methods of reconstructing the stellar mass function down to masses even below the hydrogen-burning limit. The fundamental limit to this technique is the presence of unresolved binaries, which can in principle significantly alter the inferred mass function. Here we quantify the fraction of binaries that can be detected using microlensing, considering specifically the mass ratio and separation of the binary. We find that almost all binary systems with separations greater than $b \\sim 0.4$ of their combined Einstein ring radius are detectable assuming a detection threshold of $3\\%$. For two M dwarfs, this corresponds to a limiting separation of $\\gsim 1 \\au$. Since very few observed M dwarfs have companions at separations $\\lsim 1 \\au$, we conclude that close binaries will probably not corrupt the measurements of the mass function. We find that the detectability depends only weakly on the mass ratio. For those events for which individual masses can be determined, we find that binaries can be detected down to $b \\sim 0.2$.

B. Scott Gaudi; Andrew Gould

1996-06-17T23:59:59.000Z

444

Diesel organic Rankine bottoming-cycle powerplant program: Volume III. Appendices. Final report. [Using Fluorinol-85 as working fluid  

SciTech Connect (OSTI)

The final report on organic Rankine cycle power systems used to recover energy either from the waste heat of power-generating diesel engines or from waste heat from industrial plants has the following appendices which are included in this volume: major component specifications; test plan for the power conversion subsystem of the Diesel-Organic Rankine-Cycle Power Plant; environmental assessment of Fluorinol-85 which is the working fluid in the Rankine Cycle System; and applicable regulations and codes. (LCL)

Not Available

1981-10-01T23:59:59.000Z

445

The Carbon Cycle  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The Carbon Cycle The Carbon Cycle The global carbon cycle involves the carbon in and exchanging between the earth's atmosphere, fossil fuels, the oceans, and the vegetation and soils of the earth's terrestrial ecosystems. image Each year, the world's terrestrial ecosystems withdraw carbon from the atmosphere through photosynthesis and add it again through respiration and decay. A more detailed look at the global carbon cycle for the 1990s is shown below. The main annual fluxes in GtC yr-1 are: pre-industrial "natural" fluxes in black and "anthropogenic" fluxes in red (modified from Sarmiento and Gruber, 2006, with changes in pool sizes from Sabine et al., 2004a). The net terrestrial loss of -39 GtC is inferred from cumulative fossil fuel emissions minus atmospheric increase minus ocean storage. The loss of

446

Wetland (peat) Carbon Cycle  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Wetland (peat) Carbon Cycle Methane (CH4) is an important greenhouse gas, twenty times more potent than CO2, but atmospheric concentrations of CH4 under future climate change are...

447

IFR fuel cycle  

SciTech Connect (OSTI)

The next major milestone of the IFR program is engineering-scale demonstration of the pyroprocess fuel cycle. The EBR-II Fuel Cycle Facility has just entered a startup phase, which includes completion of facility modifications and installation and cold checkout of process equipment. This paper reviews the development of the electrorefining pyroprocess, the design and construction of the facility for the hot demonstration, the design and fabrication of the equipment, and the schedule and initial plan for its operation.

Battles, J.E.; Miller, W.E. [Argonne National Lab., IL (United States); Lineberry, M.J.; Phipps, R.D. [Argonne National Lab., Idaho Falls, ID (United States)

1992-04-01T23:59:59.000Z

448

Avestar® - Integrated Gasification Combined Cycle (IGCC) Dynamic Simulator  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Integrated Gasification Combined Cycle (IGCC) Dynamic Simulator Integrated Gasification Combined Cycle (IGCC) Dynamic Simulator The AVESTAR® center offers courses using the Integrated Gasification Combined Cycle (IGCC) Dynamic Simulator. The IGCC simulator builds on and reaches beyond existing combined-cycle and conventional-coal power plant simulators to combine--for the first time--a Gasification with CO2 Capture process simulator with a Combined-Cycle power simulator together in a single dynamic simulation framework. The AVESTAR® center IGCC courses provide unique, comprehensive training on all aspects of an IGCC plant, illustrating the high-efficiency aspects of the gasifier, gas turbine, and steam turbine integration. IGCC Operator training station HMI display for overview of IGCC Plant - Train A Reference:

449

Malone cycle refrigerator development  

SciTech Connect (OSTI)

This paper describes the progress made in demonstrating a Malone Cycle Refrigerator/Freezer. The Malone cycle is similar to the Stirling cycle but uses a supercritical fluid in place of real gas. In the approach, solid-metal diaphragms are used to seal and sweep the working volumes against the high working fluid pressures required in Malone cycle machines. This feature eliminates the friction and leakage that accounted for nearly half the losses in the best piston-defined Malone cycle machines built to date. The authors successfully built a Malone cycle refrigerator that: (1) used CO{sub 2} as the working fluid, (2) operated at pressures up to 19.3 Mpa (2,800 psi), (3) achieved a cold end metal temperatures of {minus}29 C ({minus}20 F), and (4) produced over 400 Watts of cooling at near ambient temperatures. The critical diaphragm components operated flawlessly throughout characterization and performance testing, supporting the conclusion of high reliability based on analysis of fatigue date and actual strain measurements.

Shimko, M.A.; Crowley, C.J.

1999-07-01T23:59:59.000Z

450

Biomass: Potato Power  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

POTATO POWER POTATO POWER Curriculum: Biomass Power (organic chemistry, chemical/carbon cycles, plants, energy resources/transformations) Grade Level: Grades 2 to 3 Small groups (3 to 4) Time: 30 to 40 minutes Summary: Students assemble a potato battery that will power a digital clock. This shows the connection between renewable energy from biomass and its application. Provided by the Department of Energy's National Renewable Energy Laboratory and BP America Inc. BIOPOWER - POTATO POWER Purpose: Can a potato power a clock? Materials:  A potato  A paper plate  Two pennies  Two galvanized nails  Three 8 inch insulated copper wire, with 2 inches of the insulation removed from the ends  A digital clock (with places for wire attachment)

451

The use of sustainable combined cycle technologies in Cyprus: a case study for the use of LOTHECO cycle  

Science Journals Connector (OSTI)

In this work, a costbenefit analysis concerning the use of the low temperature heat combined cycle (LOTHECO cycle) in Cyprus is carried out. Also, the expected main emissions from the LOTHECO cycle are compared with existing commercial technologies. In particular, the future generation system of Cyprus power industry is simulated by the independent power producers optimization algorithm and by the long-term expansion software Wien Automatic System Planning. Various conventional generation options are examined and compared with LOTHECO cycle parametric studies. The economic analysis, based on the assumptions used and the candidate technologies examined, indicated that in the case of conventional technologies the least cost solution is the natural gas combined cycle. Additional computer runs with the various LOTHECO cycle parametric studies indicated that for efficiencies greater than 60% and capital cost between 700 and 900 /kW, LOTHECO cycle is the least cost generation technology. Furthermore, the current state and future improvements of the environmental indicators of the power industry in Cyprus are presented. It is estimated that by the use of LOTHECO cycle instead of the business as usual scenario, the principal environmental indicators would be reduced by the year 2010 by approximately ?23% instead of ?8%. Further, the carbon dioxide environmental indicator will be reduced by +24% instead of +68%.

Andreas Poullikkas; Adonis Kellas

2004-01-01T23:59:59.000Z

452

Compressor and Turbine Models of Brayton Units for Space Nuclear Power Systems  

SciTech Connect (OSTI)

Closed Brayton Cycles with centrifugal flow, single-shaft turbo-machines are being considered, with gas cooled nuclear reactors, to provide 10's to 100's of electrical power to support future space exploration missions and Lunar and Mars outposts. Such power system analysis is typically based on the cycle thermodynamics, for given operating pressures and temperatures and assumed polytropic efficiencies of the compressor and turbine of the Brayton energy conversion units. Thus the analysis results not suitable for modeling operation transients such as startup and changes in the electric load. To simulate these transients, accurate models of the turbine and compressor in the Brayton rotating unit, which calculate the changes in the compressor and turbine efficiencies with system operation are needed. This paper presents flow models that account for the design and dimensions of the compressor impeller and diffuser, and the turbine stator and rotor blades. These models calculate the various enthalpy losses and the polytropic efficiencies along with the pressure ratios of the turbine and compressor. The predictions of these models compare well with reported performance data of actual hardware. In addition, the results of a parametric analysis to map the operations of the compressor and turbine, as functions of the rotating shaft speed and inlet Mach number of the gas working fluid, are presented and discussed. The analysis used a binary mixture of He-Xe with a molecular weight of 40 g/mole as the working fluid.

Gallo, Bruno M.; El-Genk, Mohamed S.; Tournier, Jean-Michel [Institute for Space and Nuclear Power Studies, University of New Mexico, Albuquerque, NM, 87131 (United States); Chemical and Nuclear Engineering Department, University of New Mexico, Albuquerque, NM, 87131 (United States)

2007-01-30T23:59:59.000Z

453

Models for multimegawatt space power systems  

SciTech Connect (OSTI)

This report describes models for multimegawatt, space power systems which Sandia's Advanced Power Systems Division has constructed to help evaluate space power systems for SDI's Space Power Office. Five system models and models for associated components are presented for both open (power system waste products are exhausted into space) and closed (no waste products) systems: open, burst mode, hydrogen cooled nuclear reactor -- turboalternator system; open, hydrogen-oxygen combustion turboalternator system; closed, nuclear reactor powered Brayton cycle system; closed, liquid metal Rankine cycle system; and closed, in-core, reactor therminonic system. The models estimate performance and mass for the components in each of these systems. 17 refs., 8 figs., 15 tabs.

Edenburn, M.W.

1990-06-01T23:59:59.000Z

454

Avestar® - Syngas-Fired Combined Cycle Dynamic Simulator  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Syngas-Fired Combined Cycle Dynamic Simulator Syngas-Fired Combined Cycle Dynamic Simulator The AVESTAR® center offers courses using the Combined Cycle Simulator, focusing on the power generation process after gasification. This simulator is well-suited for concentrated training on operation and control of the gas and steam turbines; condensate, feed water, and circulating water systems; heat recovery steam generator; and selective catalytic reduction (SCR) unit. Combined cycle simulator startup operations include bringing up the gas turbine to rated speed on natural gas and then switching over to the firing of synthesis gas. Key capabilities of the Combined Cycle Simulator include: Combined Cycle Simulator Operator training station HMI display for overview of Gas Turbine - Train A Normal base load operation

455

Control strategies for supercritical carbon dioxide power conversion systems  

E-Print Network [OSTI]

The supercritical carbon dioxide (S-C02) recompression cycle is a promising advanced power conversion cycle which couples well to numerous advanced nuclear reactor designs. This thesis investigates the dynamic simulation ...

Carstens, Nathan, 1978-

2007-01-01T23:59:59.000Z

456

GENERALIZED HEEGNER CYCLES AND p-ADIC RANKIN L-SERIES  

E-Print Network [OSTI]

GENERALIZED HEEGNER CYCLES AND p-ADIC RANKIN L-SERIES MASSIMO BERTOLINI, HENRI DARMON, and KARTIK cycles under the p-adic Abel­Jacobi map to the special values of certain p-adic Rankin L-called generalized Heegner cycles in the product of a Kuga­Sato variety with a power of a CM elliptic curve. Its main

Prasanna, Kartik

457

The distrust of nuclear power  

Science Journals Connector (OSTI)

...using a cancer risk of 2 x 10-1...the fuel cycle risk. Srhe figure...for dam failure risk based on all...attributable to coal power plants. **This estimate...with military terrorism in a situation...ofalter-native uses of nuclear power was almost...

C Hohenemser; R Kasperson; R Kates

1977-04-01T23:59:59.000Z

458

Characterizing spinning black hole binaries in eccentric orbits with LISA  

SciTech Connect (OSTI)

The Laser Interferometer Space Antenna (LISA) is designed to detect gravitational wave signals from astrophysical sources, including those from coalescing binary systems of compact objects such as black holes. Colliding galaxies have central black holes that sink to the center of the merged galaxy and begin to orbit one another and emit gravitational waves. Some galaxy evolution models predict that the binary black hole system will enter the LISA band with significant orbital eccentricity, while other models suggest that the orbits will already have circularized. Using a full 17 parameter waveform model that includes the effects of orbital eccentricity, spin precession, and higher harmonics, we investigate how well the source parameters can be inferred from simulated LISA data. Defining the reference eccentricity as the value one year before merger, we find that for typical LISA sources, it will be possible to measure the eccentricity to an accuracy of parts in a thousand. The accuracy with which the eccentricity can be measured depends only very weakly on the eccentricity, making it possible to distinguish circular orbits from those with very small eccentricities. LISA measurements of the orbital eccentricity can help constraints theories of galaxy mergers in the early universe. Failing to account for the eccentricity in the waveform modeling can lead to a loss of signal power and bias the estimation of parameters such as the black hole masses and spins.

Key, Joey Shapiro; Cornish, Neil J. [Department of Physics, Montana State University, Bozeman, Montana 59717 (United States)

2011-04-15T23:59:59.000Z

459

High efficiency Brayton cycles using LNG  

DOE Patents [OSTI]

A modified, closed-loop Brayton cycle power conversion system that uses liquefied natural gas as the cold heat sink media. When combined with a helium gas cooled nuclear reactor, achievable efficiency can approach 68 76% (as compared to 35% for conventional steam cycle power cooled by air or water). A superheater heat exchanger can be used to exchange heat from a side-stream of hot helium gas split-off from the primary helium coolant loop to post-heat vaporized natural gas exiting from low and high-pressure coolers. The superheater raises the exit temperature of the natural gas to close to room temperature, which makes the gas more attractive to sell on the open market. An additional benefit is significantly reduced costs of a LNG revaporization plant, since the nuclear reactor provides the heat for vaporization instead of burning a portion of the LNG to provide the heat.

Morrow, Charles W. (Albuquerque, NM)

2006-04-18T23:59:59.000Z

460

Helium process cycle  

DOE Patents [OSTI]

A unique process cycle and apparatus design separates the consumer (cryogenic) load return flow from most of the recycle return flow of a refrigerator and/or liquefier process cycle. The refrigerator and/or liquefier process recycle return flow is recompressed by a multi-stage compressor set and the consumer load return flow is recompressed by an independent consumer load compressor set that maintains a desirable constant suction pressure using a consumer load bypass control valve and the consumer load return pressure control valve that controls the consumer load compressor's suction pressure. The discharge pressure of this consumer load compressor is thereby allowed to float at the intermediate pressure in between the first and second stage recycle compressor sets. Utilizing the unique gas management valve regulation, the unique process cycle and apparatus design in which the consumer load return flow is separate from the recycle return flow, the pressure ratios of each recycle compressor stage and all main pressures associated with the recycle return flow are allowed to vary naturally, thus providing a naturally regulated and balanced floating pressure process cycle that maintains optimal efficiency at design and off-design process cycle capacity and conditions automatically.

Ganni, Venkatarao (Yorktown, VA)

2008-08-12T23:59:59.000Z

Note: This page contains sample records for the topic "binary cycle power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Helium process cycle  

DOE Patents [OSTI]

A unique process cycle and apparatus design separates the consumer (cryogenic) load return flow from most of the recycle return flow of a refrigerator and/or liquefier process cycle. The refrigerator and/or liquefier process recycle return flow is recompressed by a multi-stage compressor set and the consumer load return flow is recompressed by an independent consumer load compressor set that maintains a desirable constant suction pressure using a consumer load bypass control valve and the consumer load return pressure control valve that controls the consumer load compressor's suction pressure. The discharge pressure of this consumer load compressor is thereby allowed to float at the intermediate pressure in between the first and second stage recycle compressor sets. Utilizing the unique gas management valve regulation, the unique process cycle and apparatus design in which the consumer load return flow is separate from the recycle return flow, the pressure ratios of each recycle compressor stage and all main pressures associated with the recycle return flow are allowed to vary naturally, thus providing a naturally regulated and balanced floating pressure process cycle that maintains optimal efficiency at design and off-design process cycle capacity and conditions automatically.

Ganni, Venkatarao (Yorktown, VA)

2007-10-09T23:59:59.000Z

462

Nuclear reactors and the nuclear fuel cycle  

SciTech Connect (OSTI)

According to the author, the first sustained nuclear fission chain reaction was not at the University of Chicago, but at the Oklo site in the African country of Gabon. Proof of this phenomenon is provided by mass spectrometric and analytical chemical measurements by French scientists. The U.S. experience in developing power-producing reactors and their related fuel and fuel cycles is discussed.

Pearlman, H

1989-11-01T23:59:59.000Z

463

Optimal Selection of Working Fluid for the Organic Rankine Cycle Driven by Low-Temperature Geothermal Heat  

Science Journals Connector (OSTI)

To select the optimal organic working fluid for organic Rankine cycles driven by low-temperature geothermal heat, the ... thermal performances of low-temperature geothermal heat powered organic Rankine cycles usi...

Wang Hui-tao; Wang Hua; Ge Zhong

2012-01-01T23:59:59.000Z

464

Analysis of design and part load performance of micro gas turbine/organic Rankine cycle combined systems  

Science Journals Connector (OSTI)

This study analyzes the design and part load performance of a power generation system combining a micro gas turbine (MGT) and an organic Rankine cycle (ORC). Design performances of cycles adopting several differe...

Joon Hee Lee; Tong Seop Kim

2006-09-01T23:59:59.000Z

465

Design and evaluation of a nuclear-electric hybrid power/propulsion system  

E-Print Network [OSTI]

INTRODUCTION Page Motivation Literature Search Contributions. . . . . . . Organization of the Thesis II SYSTEM DESCRIPTION AND MODELING Conventional Cycles Hybrid Cycle Cycle Components System Integration 6 10 10 29 III TRAJECTORY MODEL . 33 IV... investigating and comparing various closed and open cycles. El ? Genk et al. ' have investiga, ted three different cycles: A potassium Rankine cycle, a. closed and an open Brayton cycle. These systems v'ere optimized for a power level of 160 MWe and compared...

Keil, Ralph

2012-06-07T23:59:59.000Z

466

Alternative Energy Development and China's Energy Future  

E-Print Network [OSTI]

for Geothermal Power Development energy development. Geothermal Power Technology OverviewChina, the binary cycle geothermal power plant is assumed to

Zheng, Nina

2012-01-01T23:59:59.000Z

467

Life Cycle Greenhouse Gas Emissions and Freshwater Consumption of Marcellus Shale Gas  

Science Journals Connector (OSTI)

Life Cycle Greenhouse Gas Emissions and Freshwater Consumption of Marcellus Shale Gas ... We present results of a life cycle assessment (LCA) of Marcellus shale gas used for power generation. ... The analysis employs the most extensive data set of any LCA of shale gas to date, encompassing data from actual gas production and power generation operations. ...

Ian J. Laurenzi; Gilbert R. Jersey

2013-04-02T23:59:59.000Z

468

Solar thermal organic rankine cycle for micro-generation  

Science Journals Connector (OSTI)

The conceptual design of an Organic Rankine Cycle (ORC) driven by solar thermal energy is developed for the decentralized production of electricity of up to 50 kW. Conventional Rankine Cycle uses water as the working fluid whereas ORC uses organic compound as the working fluid and it is particularly suitable for low temperature applications. The ORC and the solar collector will be sized according to the solar flux distribution in the Republic of Yemen for the required power output of 50 kW. This will be a micro power generation system that consists of two cycles the solar thermal cycle that harness solar energy and the power cycle which is the ORC that generates electricity. As for the solar thermal cycle heat transfer fluid (HTF) circulates the cycle while absorbing thermal energy from the sun through a parabolic trough collector and then storing it in a thermal storage to increase system efficiency and maintains system operation during low radiation. The heat is then transferred to the organic fluid in the ORC via a heat exchanger. The organic fluids to be used and analyzed in the ORC are hydrocarbons R600a and R290.

2012-01-01T23:59:59.000Z

469

Cascade utilization of chemical energy of natural gas in an improved CRGT cycle  

Science Journals Connector (OSTI)

In this paper three advanced power systems: the chemically recuperated gas turbine (CRGT) cycle, the steam injected gas turbine (STIG) cycle and the combined cycle (CC), are investigated and compared by means of exergy analysis. Making use of the energy level concept, cascaded use of the chemical exergy of natural gas in a CRGT cycle is clarified, and its performance of the utilization of chemical energy is evaluated. Based on this evaluation, a new CRGT cycle is designed to convert the exergy of natural gas more efficiently into electrical power. As a result, the exergy efficiency of the new CRGT cycle is about 55%, which is 8 percentage points higher than that of the reference CRGT cycle. The analysis gave a better interpretation of the inefficiencies of the CRGT cycle and suggested improvement options. This new approach can be used to design innovative energy systems.

Wei Han; Hongguang Jin; Na Zhang; Xiaosong Zhang

2007-01-01T23:59:59.000Z