Powered by Deep Web Technologies
Note: This page contains sample records for the topic "binary cycle power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Binary Cycle Power Plant | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarre Biomass FacilityOregon:Great EscapeBinary Cycle Power

2

Binary Cycle Power Plant | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarre Biomass FacilityOregon:Great EscapeBinary Cycle Power Plant

3

Binary Cycle Power Plant | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin: Energy ResourcesJersey: EnergyBerthoud,BiodieselRapids isBillMT) JumpBinary

4

Raft River binary-cycle geothermal pilot power plant final report  

SciTech Connect (OSTI)

The design and performance of a 5-MW(e) binary-cycle pilot power plant that used a moderate-temperature hydrothermal resource, with isobutane as a working fluid, are examined. Operating problems experienced and solutions found are discussed and recommendations are made for improvements to future power plant designs. The plant and individual systems are analyzed for design specification versus actual performance figures.

Bliem, C.J.; Walrath, L.F.

1983-04-01T23:59:59.000Z

5

Interim Report: Air-Cooled Condensers for Next Generation Geothermal Power Plants Improved Binary Cycle Performance  

SciTech Connect (OSTI)

As geothermal resources that are more expensive to develop are utilized for power generation, there will be increased incentive to use more efficient power plants. This is expected to be the case with Enhanced Geothermal System (EGS) resources. These resources will likely require wells drilled to depths greater than encountered with hydrothermal resources, and will have the added costs for stimulation to create the subsurface reservoir. It is postulated that plants generating power from these resources will likely utilize the binary cycle technology where heat is rejected sensibly to the ambient. The consumptive use of a portion of the produced geothermal fluid for evaporative heat rejection in the conventional flash-steam conversion cycle is likely to preclude its use with EGS resources. This will be especially true in those areas where there is a high demand for finite supplies of water. Though they have no consumptive use of water, using air-cooling systems for heat rejection has disadvantages. These systems have higher capital costs, reduced power output (heat is rejected at the higher dry-bulb temperature), increased parasitics (fan power), and greater variability in power generation on both a diurnal and annual basis (larger variation in the dry-bulb temperature). This is an interim report for the task ‘Air-Cooled Condensers in Next- Generation Conversion Systems’. The work performed was specifically aimed at a plant that uses commercially available binary cycle technologies with an EGS resource. Concepts were evaluated that have the potential to increase performance, lower cost, or mitigate the adverse effects of off-design operation. The impact on both cost and performance were determined for the concepts considered, and the scenarios identified where a particular concept is best suited. Most, but not all, of the concepts evaluated are associated with the rejection of heat. This report specifically addresses three of the concepts evaluated: the use of recuperation, the use of turbine reheat, and the non-consumptive use of EGS make-up water to supplement heat rejection

Daniel S. Wendt; Greg L. Mines

2010-09-01T23:59:59.000Z

6

Beowawe Binary Bottoming Cycle  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTie Ltd: ScopeDepartment ofEnergyBeowawe Binary Bottoming Cycle

7

Evaluation of Hybrid Air-Cooled Flash/Binary Power Cycle  

SciTech Connect (OSTI)

Geothermal binary power plants reject a significant portion of the heat removed from the geothermal fluid. Because of the relatively low temperature of the heat source (geothermal fluid), the performance of these plants is quite sensitive to the sink temperature to which heat is rejected. This is particularly true of air-cooled binary plants. Recent efforts by the geothermal industry have examined the potential to evaporatively cool the air entering the air-cooled condensers during the hotter portions of a summer day. While the work has shown the benefit of this concept, air-cooled binary plants are typically located in regions that lack an adequate supply of clean water for use in this evaporative cooling. In the work presented, this water issue is addressed by pre-flashing the geothermal fluid to produce a clean condensate that can be utilized during the hotter portions of the year to evaporatively cool the air. This study examines both the impact of this pre-flash on the performance of the binary plant, and the increase in power output due to the ability to incorporate an evaporative component to the heat rejection process.

Greg Mines

2005-10-01T23:59:59.000Z

8

High-potential Working Fluids for Next Generation Binary Cycle Geothermal Power Plants  

SciTech Connect (OSTI)

A thermo-economic model has been built and validated for prediction of project economics of Enhanced Geothermal Projects. The thermo-economic model calculates and iteratively optimizes the LCOE (levelized cost of electricity) for a prospective EGS (Enhanced Geothermal) site. It takes into account the local subsurface temperature gradient, the cost of drilling and reservoir creation, stimulation and power plant configuration. It calculates and optimizes the power plant configuration vs. well depth. Thus outputs from the model include optimal well depth and power plant configuration for the lowest LCOE. The main focus of this final report was to experimentally validate the thermodynamic properties that formed the basis of the thermo-economic model built in Phase 2, and thus build confidence that the predictions of the model could be used reliably for process downselection and preliminary design at a given set of geothermal (and/or waste heat) boundary conditions. The fluid and cycle downselected was based on a new proprietary fluid from a vendor in a supercritical ORC cycle at a resource condition of 200?C inlet temperature. The team devised and executed a series of experiments to prove the suitability of the new fluid in realistic ORC cycle conditions. Furthermore, the team performed a preliminary design study for a MW-scale turbo expander that would be used for a supercritical ORC cycle with this new fluid. The following summarizes the main findings in the investigative campaign that was undertaken: 1. Chemical compatibility of the new fluid with common seal/gasket/Oring materials was found to be problematic. Neoprene, Viton, and silicone materials were found to be incompatible, suffering chemical decomposition, swelling and/or compression set issues. Of the materials tested, only TEFLON was found to be compatible under actual ORC temperature and pressure conditions. 2. Thermal stability of the new fluid at 200?C and 40 bar was found to be acceptable after 399 hours of exposure?only 3% of the initial charge degraded into by products. The main degradation products being an isomer and a dimer. 3. In a comparative experiment between R245fa and the new fluid under subcritical conditions, it was found that the new fluid operated at 1 bar lower than R245fa for the same power output, which was also predicted in the Aspen HSYSY model. As a drop-in replacement fluid for R245fa, this new fluid was found to be at least as good as R245fa in terms of performance and stability. Further optimization of the subcritical cycle may lead to a significant improvement in performance for the new fluid. 4. For supercritical conditions, the experiment found a good match between the measured and model predicted state point property data and duties from the energy balance. The largest percent differences occurred with densities and evaporator duty (see Figure 78). It is therefore reasonable to conclude that the state point model was experimentally validated with a realistic ORC system. 5. The team also undertook a preliminary turbo-expander design study for a supercritical ORC cycle with the new working fluid. Variants of radial and axial turbo expander geometries went through preliminary design and rough costing. It was found that at 15MWe or higher power rating, a multi-stage axial turbine is most suitable providing the best performance and cost. However, at lower power ratings in the 5MWe range, the expander technology to be chosen depends on the application of the power block. For EGS power blocks, it is most optimal to use multi-stage axial machines. In conclusion, the predictions of the LCOE model that showed a supercritical cycle based on the new fluid to be most advantageous for geothermal power production at a resource temperature of ~ 200C have been experimentally validated. It was found that the cycle based on the new fluid is lower in LCOE and higher in net power output (for the same boundary conditions). The project, therefore has found a new optimal configuration for low temperature geothermal power production in the form of a su

Zia, Jalal [GE Global Research; Sevincer, Edip; Chen, Huijuan; Hardy, Ajilli; Wickersham, Paul; Kalra, Chiranjeev; Laursen, Anna Lis; Vandeputte, Thomas

2013-06-29T23:59:59.000Z

9

High-potential Working Fluids for Next Generation Binary Cycle Geothermal Power Plants  

Broader source: Energy.gov [DOE]

DOE Geothermal Peer Review 2010 - Presentation. Project objective: Find optimized working fluid/advanced cycle combination for EGS applications.

10

Annual Simulation Results for an Air-Cooled Binary Power Cycle Employing Flash Cooling Enhancement  

SciTech Connect (OSTI)

Objective is to perform detailed simulation of air cooled cycle with flash supplied cooling water using two types of evaporative enhancement, spray nozzels and evaporative media.

Buys, A.; Gladden, C.; Kutscher, C.

2006-01-01T23:59:59.000Z

11

E-Print Network 3.0 - advanced binary cycles Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

binary cycles Search Powered by Explorit Topic List Advanced Search Sample search results for: advanced binary cycles Page: << < 1 2 3 4 5 > >> 1 Version 11599 Summary of Chapter...

12

Geothermal power plant R and D: an analysis of cost-performance tradeoffs and the Heber Binary-Cycle Demonstration Project  

SciTech Connect (OSTI)

A study of advancements in power plant designs for use at geothermal resources in the low to moderate (300 to 400F) temperature range is reported. In 3 case studies, the benefits of R and D to achieve these advancements are evaluated in terms of expected increases in installed geothermal generating capacity over the next 2 decades. A parametric sensitivity study is discussed which analyzes differential power development for combinations of power plant efficiency and capitol cost. Affordable tradeoffs between plant performance and capital costs are illustrated. The independent review and analysis of the expected costs of construction, operation and maintenance of the Heber Binary Cycle Geothermal Power Demonstration Plant are described. Included in this assessment is an analysis of each of the major cost components of the project, including (1) construction cost, (2) well field development costs, (3) fluid purchase costs, and (4) well field and power plant operation and maintenance costs. The total cost of power generated from the Heber Plant (in terms of mills per kWh) is then compared to the cost of power from alternative fossil-fueled base load units. Also evaluated are the provisions of both: (a) the Cooperative Agreement between the federal government and San Diego Gas and Electric (SDG and E); and (b) the Geothermal Heat Sales Contract with Union Oil Company.

Cassel, T.A.V.; Amundsen, C.B.; Blair, P.D.

1983-06-30T23:59:59.000Z

13

Power Plant Cycling Costs  

SciTech Connect (OSTI)

This report provides a detailed review of the most up to date data available on power plant cycling costs. The primary objective of this report is to increase awareness of power plant cycling cost, the use of these costs in renewable integration studies and to stimulate debate between policymakers, system dispatchers, plant personnel and power utilities.

Kumar, N.; Besuner, P.; Lefton, S.; Agan, D.; Hilleman, D.

2012-07-01T23:59:59.000Z

14

Beowawe Binary Bottoming Cycle | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top Five EEREDepartment ofEnergy StevenHouseFieldBeowawe Binary Bottoming Cycle

15

Advanced binary geothermal power plants: Limits of performance  

SciTech Connect (OSTI)

The Heat Cycle Research Program is investigating potential improvements to power cycles utilizing moderate temperature geothermal resources to produce electrical power. Investigations have specifically examined Rankine cycle binary power systems. Binary Rankine cycles are more efficient than the flash steam cycles at moderate resource temperature, achieving a higher net brine effectiveness. At resource conditions similar to those at the Heber binary plant, it has been shown that mixtures of saturated hydrocarbons (alkanes) or halogenated hydrocarbons operating in a supercritical Rankine cycle gave improved performance over Rankine cycles with the pure working fluids executing single or dual boiling cycles or supercritical cycles. Recently, other types of cycles have been proposed for binary geothermal service. This report explores the feasible limits on efficiency of a plant given practical limits on equipment performance and discusses the methods used in these advanced concept plants to achieve the maximum possible efficiency. (Here feasible is intended to mean reasonably achievable and not cost-effective.) No direct economic analysis has been made because of the sensitivity of economic results to site specific input. The limit of performance of three advanced plants were considered in this report. The performance predictions were taken from the developers of each concept. The advanced plants considered appear to be approaching the feasible limit of performance. Ultimately, the plant designer must weigh the advantages and disadvantages of the the different cycles to find the best plant for a given service. In addition, this report presents a standard of comparison of the work which has been done in the Heat Cycle Research Program and in the industrial sector by Exergy, Inc. and Polythermal Technologies. 18 refs., 16 figs., 1 tab.

Bliem, C.J.; Mines, G.L.

1991-01-01T23:59:59.000Z

16

Power Plant Cycling Costs  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

(say, a trip) and such factors are not fully captured in this dataset. 9. Older combined cycle units were a step change in lower operating costs due to cycling...

17

Binary power multiplier for electromagnetic energy  

DOE Patents [OSTI]

A technique for converting electromagnetic pulses to higher power amplitude and shorter duration, in binary multiples, splits an input pulse into two channels, and subjects the pulses in the two channels to a number of binary pulse compression operations. Each pulse compression operation entails combining the pulses in both input channels and selectively steering the combined power to one output channel during the leading half of the pulses and to the other output channel during the trailing half of the pulses, and then delaying the pulse in the first output channel by an amount equal to half the initial pulse duration. Apparatus for carrying out each of the binary multiplication operation preferably includes a four-port coupler (such as a 3 dB hybrid), which operates on power inputs at a pair of input ports by directing the combined power to either of a pair of output ports, depending on the relative phase of the inputs. Therefore, by appropriately phase coding the pulses prior to any of the pulse compression stages, the entire pulse compression (with associated binary power multiplication) can be carried out solely with passive elements.

Farkas, Zoltan D. (203 Leland Ave., Menlo Park, CA 94025)

1988-01-01T23:59:59.000Z

18

Dixie Valley Binary Cycle Production Data 2013 YTD  

SciTech Connect (OSTI)

Proving the technical and economic feasibility of utilizing the available unused heat to generate additional electric power from a binary power plant from the low-temperature brine at the Dixie Valley Geothermal Power Plant. Monthly data for Jan 2013-September 2013

Lee, Vitaly

2013-10-18T23:59:59.000Z

19

Environmental assessmental, geothermal energy, Heber geothermal binary-cycle demonstration project: Imperial County, California  

SciTech Connect (OSTI)

The proposed design, construction, and operation of a commercial-scale (45 MWe net) binary-cycle geothermal demonstration power plant are described using the liquid-dominated geothermal resource at Heber, Imperial County, California. The following are included in the environmental assessment: a description of the affected environment, potential environmental consequences of the proposed action, mitigation measures and monitoring plans, possible future developmental activities at the Heber anomaly, and regulations and permit requirements. (MHR)

Not Available

1980-10-01T23:59:59.000Z

20

Variable pressure power cycle and control system  

DOE Patents [OSTI]

A variable pressure power cycle and control system that is adjustable to a variable heat source is disclosed. The power cycle adjusts itself to the heat source so that a minimal temperature difference is maintained between the heat source fluid and the power cycle working fluid, thereby substantially matching the thermodynamic envelope of the power cycle to the thermodynamic envelope of the heat source. Adjustments are made by sensing the inlet temperature of the heat source fluid and then setting a superheated vapor temperature and pressure to achieve a minimum temperature difference between the heat source fluid and the working fluid.

Goldsberry, Fred L. (Spring, TX)

1984-11-27T23:59:59.000Z

Note: This page contains sample records for the topic "binary cycle power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Combined cycle meets Thailand's growing power demands  

SciTech Connect (OSTI)

This article describes how an ample supply of natural gas led the Electricity Generating Authority of Thailand (EGAT) to choose gas-fired combustion turbines. Thailand's rapid industrialization, which began in the late 1980's, placed a great strain on the country's electricity supply system. The demand for electricity grew at an astonishing 14% annually. To deal with diminishing reserve capacity margins, the EGAT announced, in 1988, a power development program emphasizing gas-fired combined cycle power plants. Plans included six 320-MW combined cycle blocks at three sites, and an additional 600-MW gas- and oil-fired thermal plant at Bang Pakong. As electricity demand continued to increase, EGAT expanded its plans to include two additional 320-MW combined cycle blocks, a 600-MW combined cycle block, and a 650-MW gas- and oil-fired thermal plant. All are currently in various stages of design and construction.

Sheets, B.A. (Black and Veatch, Kansas City, MO (United States)); Takabut, K. (Electricity Generating Authority of Thailand, Nonthaburi (Thailand))

1993-08-01T23:59:59.000Z

22

Combined cycle power plant incorporating coal gasification  

DOE Patents [OSTI]

A combined cycle power plant incorporating a coal gasifier as the energy source. The gases leaving the coal gasifier pass through a liquid couplant heat exchanger before being used to drive a gas turbine. The exhaust gases of the gas turbine are used to generate both high pressure and low pressure steam for driving a steam turbine, before being exhausted to the atmosphere.

Liljedahl, Gregory N. (Tariffville, CT); Moffat, Bruce K. (Simsbury, CT)

1981-01-01T23:59:59.000Z

23

Effect of Mixed Working Fluid Composition on Binary Cycle Condenser Heat Transfer Coefficients  

SciTech Connect (OSTI)

Effect of Mixed Working Fluid Composition on Binary Cycle Condenser Heat Transfer Coefficients Dan Wendt, Greg Mines Idaho National Laboratory The use of mixed working fluids in binary power plants can provide significant increases in plant performance, provided the heat exchangers are designed to take advantage of these fluids non-isothermal phase changes. In the 1980's testing was conducted at DOE's Heat Cycle Research Facility (HCRF) where mixtures of different compositions were vaporized at supercritical pressures and then condensed. This testing had focused on using the data collected to verify that Heat Transfer Research Incorporated (HTRI) codes were suitable for the design of heat exchangers that could be used with mixtures. The HCRF data includes mixture compositions varying from 0% to 40% isopentane and condenser tube orientations of 15{sup o}, 60{sup o}, and 90{sup o} from horizontal. Testing was performed over a range of working fluid and cooling fluid conditions. Though the condenser used in this testing was water cooled, the working fluid condensation occurred on the tube-side of the heat exchanger. This tube-side condensation is analogous to that in an air-cooled condenser. Tube-side condensing heat transfer coefficient information gleaned from the HCRF testing is used in this study to assess the suitability of air-cooled condenser designs for use with mixtures. Results of an air-cooled binary plant process model performed with Aspen Plus indicate that that the optimal mixture composition (producing the maximum net power for the scenario considered) is within the range of compositions for which data exist. The HCRF data is used to assess the impact of composition, tube orientation, and process parameters on the condensing heat transfer coefficients. The sensitivity of the condensing coefficients to these factors is evaluated and the suitability of air-cooled condenser designs with mixtures is assessed. This paper summarizes the evaluation of the HCRF data and discusses the next steps in the project evaluation of air-cooled condenser designs that can take advantage of the performance gains possible with these fluids.

Dan Wendt; Greg Mines

2011-10-01T23:59:59.000Z

24

Design and operation of a geopressurized-geothermal hybrid cycle power plant  

SciTech Connect (OSTI)

Geopressured-geothermal resources can contribute significantly to the national electricity supply once technical and economic obstacles are overcome. Power plant performance under the harsh conditions of a geopressured resource was unproven, so a demonstration power plant was built and operated on the Pleasant Bayou geopressured resource in Texas. This one megawatt facility provided valuable data over a range of operating conditions. This power plant was a first-of-a-kind demonstration of the hybrid cycle concept. A hybrid cycle was used to take advantage of the fact that geopressured resources contain energy in more than one form -- hot water and natural gas. Studies have shown that hybrid cycles can yield thirty percent more power than stand-alone geothermal and fossil fuel power plants operating on the same resource. In the hybrid cycle at Pleasant Bayou, gas was burned in engines to generate electricity directly. Exhaust heat from the engines was then combined with heat from the brine to generate additional electricity in a binary cycle. Heat from the gas engine was available at high temperature, thus improving the efficiency of the binary portion of the hybrid cycle. Design power output was achieved, and 3445 MWh of power were sold to the local utility over the course of the test. Plant availability was 97.5% and the capacity factor was over 80% for the extended run at maximum power production. The hybrid cycle power plant demonstrated that there are no technical obstacles to electricity generation at Pleasant Bayou. 14 refs., 38 figs., 16 tabs.

Campbell, R.G.; Hattar, M.M.

1991-02-01T23:59:59.000Z

25

Life-cycle analysis results of geothermal systems in comparison to other power systems.  

SciTech Connect (OSTI)

A life-cycle energy and greenhouse gas emissions analysis has been conducted with Argonne National Laboratory's expanded Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) model for geothermal power-generating technologies, including enhanced geothermal, hydrothermal flash, and hydrothermal binary technologies. As a basis of comparison, a similar analysis has been conducted for other power-generating systems, including coal, natural gas combined cycle, nuclear, hydroelectric, wind, photovoltaic, and biomass by expanding the GREET model to include power plant construction for these latter systems with literature data. In this way, the GREET model has been expanded to include plant construction, as well as the usual fuel production and consumption stages of power plant life cycles. For the plant construction phase, on a per-megawatt (MW) output basis, conventional power plants in general are found to require less steel and concrete than renewable power systems. With the exception of the concrete requirements for gravity dam hydroelectric, enhanced geothermal and hydrothermal binary used more of these materials per MW than other renewable power-generation systems. Energy and greenhouse gas (GHG) ratios for the infrastructure and other life-cycle stages have also been developed in this study per kilowatt-hour (kWh) of electricity output by taking into account both plant capacity and plant lifetime. Generally, energy burdens per energy output associated with plant infrastructure are higher for renewable systems than conventional ones. GHG emissions per kWh of electricity output for plant construction follow a similar trend. Although some of the renewable systems have GHG emissions during plant operation, they are much smaller than those emitted by fossil fuel thermoelectric systems. Binary geothermal systems have virtually insignificant GHG emissions compared to fossil systems. Taking into account plant construction and operation, the GREET model shows that fossil thermal plants have fossil energy use and GHG emissions per kWh of electricity output about one order of magnitude higher than renewable power systems, including geothermal power.

Sullivan, J. L.; Clark, C. E.; Han, J.; Wang, M.; Energy Systems

2010-10-11T23:59:59.000Z

26

M. Bahrami ENSC 461 (S 11) Vapor Power Cycles 1 Vapor Power Cycles  

E-Print Network [OSTI]

is not a suitable model for steam power cycle since: The turbine has to handle steam with low quality which steam is condensed in the condenser 4 3 1 2 s T 1 2 34 s #12;M. Bahrami ENSC 461 (S 11) Vapor Power = 0 qin = h3 ­ h2 Turbine q = 0 wturbine,out = h3 ­ h4 Condenser w = 0 qout = h4 ­ h1 The thermal

Bahrami, Majid

27

Potassium Rankine cycle nuclear power systems for spacecraft and lunar-mass surface power  

SciTech Connect (OSTI)

The potassium Rankine cycle has high potential for application to nuclear power systems for spacecraft and surface power on the moon and Mars. A substantial effort on the development of Rankine cycle space power systems was carried out in the 1960`s. That effort is summarized and the status of the technology today is presented. Space power systems coupling Rankine cycle power conversion to both the SP-100 reactor and thermionic reactors as a combined power cycle are described in the paper.

Holcomb, R.S.

1992-07-01T23:59:59.000Z

28

The Kalina cycle and similar cycles for geothermal power production  

SciTech Connect (OSTI)

This report contains a brief discussion of the mechanics of the Kalina cycle and ideas to extend the concept to other somewhat different cycles. A modified cycle which has a potential heat rejection advantage but little or no performance improvement is discussed. Then, the results of the application of the Kalina cycle and the modified cycle to a geothermal application (360/degree/F resource) are discussed. The results are compared with published results for the Kalina cycle with high temperature sources and estimates about performance at the geothermal temperatures. Finally, the conclusions of this scoping work are given along with recommendations of the direction of future work in this area. 11 refs., 4 figs., 1 tab.

Bliem, C.J.

1988-09-01T23:59:59.000Z

29

M. Bahrami ENSC 461 (S 11) Carnot Cycle 1 Power Cycles  

E-Print Network [OSTI]

adiabatically through the turbine and work is developed. The steam temperature decreases from TH to TL 2-3: Two represent the net work of the idealized cycle. Remember that an ideal power cycle does not involve any a simple vapor power plant. Fig. 2-2: Carnot vapor cycle. 1-2: The steam exiting the boiler expands

Bahrami, Majid

30

Power Systems Life Cycle Analysis Tool (Power L-CAT).  

SciTech Connect (OSTI)

The Power Systems L-CAT is a high-level dynamic model that calculates levelized production costs and tracks environmental performance for a range of electricity generation technologies: natural gas combined cycle (using either imported (LNGCC) or domestic natural gas (NGCC)), integrated gasification combined cycle (IGCC), supercritical pulverized coal (SCPC), existing pulverized coal (EXPC), nuclear, and wind. All of the fossil fuel technologies also include an option for including carbon capture and sequestration technologies (CCS). The model allows for quick sensitivity analysis on key technical and financial assumptions, such as: capital, O&M, and fuel costs; interest rates; construction time; heat rates; taxes; depreciation; and capacity factors. The fossil fuel options are based on detailed life cycle analysis reports conducted by the National Energy Technology Laboratory (NETL). For each of these technologies, NETL's detailed LCAs include consideration of five stages associated with energy production: raw material acquisition (RMA), raw material transport (RMT), energy conversion facility (ECF), product transportation and distribution (PT&D), and end user electricity consumption. The goal of the NETL studies is to compare existing and future fossil fuel technology options using a cradle-to-grave analysis. The NETL reports consider constant dollar levelized cost of delivered electricity, total plant costs, greenhouse gas emissions, criteria air pollutants, mercury (Hg) and ammonia (NH3) emissions, water withdrawal and consumption, and land use (acreage).

Andruski, Joel; Drennen, Thomas E.

2011-01-01T23:59:59.000Z

31

Advanced Supercritical Carbon Dioxide Power Cycle Configurations for Use in Concentrating Solar Power Systems: Preprint  

SciTech Connect (OSTI)

The research will characterize and evaluate advanced S-CO2 Brayton cycle power generation with a modular power tower CSP system.

Ma, Z.; Turchi, C. S.

2011-03-01T23:59:59.000Z

32

August 17, 2000 ARIES: Fusion Power Core and Power Cycle Engineering/ARR 1  

E-Print Network [OSTI]

translates in lower COE and lower heat load · Brayton cycle is best near-term possibility of power conversion heat generation profiles used for thermal-hydraulic analyses #12;August 17, 2000 ARIES: Fusion PowerAugust 17, 2000 ARIES: Fusion Power Core and Power Cycle Engineering/ARR 1 ARIES: Fusion Power Core

Raffray, A. René

33

Hybrid solar central receiver for combined cycle power plant  

DOE Patents [OSTI]

A hybrid combined cycle power plant is described including a solar central receiver for receiving solar radiation and converting it to thermal energy. The power plant includes a molten salt heat transfer medium for transferring the thermal energy to an air heater. The air heater uses the thermal energy to preheat the air from the compressor of the gas cycle. The exhaust gases from the gas cycle are directed to a steam turbine for additional energy production. 1 figure.

Bharathan, D.; Bohn, M.S.; Williams, T.A.

1995-05-23T23:59:59.000Z

34

Hybrid solar central receiver for combined cycle power plant  

DOE Patents [OSTI]

A hybrid combined cycle power plant including a solar central receiver for receiving solar radiation and converting it to thermal energy. The power plant includes a molten salt heat transfer medium for transferring the thermal energy to an air heater. The air heater uses the thermal energy to preheat the air from the compressor of the gas cycle. The exhaust gases from the gas cycle are directed to a steam turbine for additional energy production.

Bharathan, Desikan (Lakewood, CO); Bohn, Mark S. (Golden, CO); Williams, Thomas A. (Arvada, CO)

1995-01-01T23:59:59.000Z

35

Fuel Cycle Comparison for Distributed Power Technologies  

Fuel Cell Technologies Publication and Product Library (EERE)

This report examines backup power and prime power systems and addresses the potential energy and environmental effects of substituting fuel cells for existing combustion technologies based on microtur

36

A Flashing Binary Combined Cycle For Geothermal Power Generation | Open  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 SouthWater Rights, Substantive(Sichuan, Sw China) | Openbeneath Butte,Energy

37

High efficiency carbonate fuel cell/turbine hybrid power cycle  

SciTech Connect (OSTI)

The hybrid power cycle studies were conducted to identify a high efficiency, economically competitive system. A hybrid power cycle which generates power at an LHV efficiency > 70% was identified that includes an atmospheric pressure direct carbonate fuel cell, a gas turbine, and a steam cycle. In this cycle, natural gas fuel is mixed with recycled fuel cell anode exhaust, providing water for reforming fuel. The mixed gas then flows to a direct carbonate fuel cell which generates about 70% of the power. The portion of the anode exhaust which is not recycled is burned and heat transferred through a heat exchanger (HX) to the compressed air from a gas turbine. The heated compressed air is then heated further in the gas turbine burner and expands through the turbine generating 15% of the power. Half the exhaust from the turbine provides air for the anode exhaust burner. All of the turbine exhaust eventually flows through the fuel cell cathodes providing the O2 and CO2 needed in the electrochemical reaction. Exhaust from the cathodes flows to a steam system (heat recovery steam generator, staged steam turbine generating 15% of the cycle power). Simulation of a 200 MW plant with a hybrid power cycle had an LHV efficiency of 72.6%. Power output and efficiency are insensitive to ambient temperature, compared to a gas turbine combined cycle; NOx emissions are 75% lower. Estimated cost of electricity for 200 MW is 46 mills/kWh, which is competitive with combined cycle where fuel cost is > $5.8/MMBTU. Key requirement is HX; in the 200 MW plant studies, a HX operating at 1094 C using high temperature HX technology currently under development by METC for coal gassifiers was assumed. A study of a near term (20 MW) high efficiency direct carbonate fuel cell/turbine hybrid power cycle has also been completed.

Steinfeld, G.; Maru, H.C. [Energy Research Corp., Danbury, CT (United States); Sanderson, R.A. [Sanderson (Robert) and Associates, Wethersfield, CT (United States)

1996-07-01T23:59:59.000Z

38

Life Cycle Greenhouse Gas Emissions from Concentrating Solar Power  

E-Print Network [OSTI]

Life Cycle Greenhouse Gas Emissions from Concentrating Solar Power Over the last thirty years, moreMineLand Rehabilitation · PowerGeneration · System/PlantOperation andMaintenance · AuxiliaryNaturalGas Combustion · Coal-scale concentrating solar power (CSP) systems. These LCAs have yielded wide-ranging results. Variation could

39

Power Generation From Waste Heat Using Organic Rankine Cycle Systems  

E-Print Network [OSTI]

Many efforts are currently being pursued to develop and implement new energy technologies aimed at meeting our national energy goals The use of organic Rankine cycle engines to generate power from waste heat provides a near term means to greatly...

Prasad, A.

1980-01-01T23:59:59.000Z

40

Brayton Cycle Baseload Power Tower CSP System  

Broader source: Energy.gov [DOE]

This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 23–25, 2013 near Phoenix, Arizona.

Note: This page contains sample records for the topic "binary cycle power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Cascading Closed Loop Cycle Power Generation  

E-Print Network [OSTI]

marketed as WOWGen®. The WOW Energies patents represent the production of efficient power from low, medium and high temperature heat generated from the combustion of fuels; heat from renewable energy sources such as solar and geothermal heat; or waste heat...

Romero, M.

2008-01-01T23:59:59.000Z

42

Carnot Cycle at Finite Power: Attainability of Maximal Efficiency  

E-Print Network [OSTI]

We want to understand whether and to which extent the maximal (Carnot) efficiency for heat engines can be reached at a finite power. To this end we generalize the Carnot cycle so that it is not restricted to slow processes. We show that for realistic (i.e. not purposefully-designed) engine-bath interactions, the work-optimal engine performing the generalized cycle close to the maximal efficiency has a long cycle time and hence vanishing power. This aspect is shown to relate to the theory of computational complexity. A physical manifestation of the same effect is the Levinthal's paradox in the protein folding problem. The resolution of this paradox for realistic proteins allows to construct engines that can extract at a finite power 40% of the maximally possible work reaching 90% of the maximal efficiency. For purposefully designed engine-bath interactions, the Carnot efficiency is achievable at a large power.

Armen E. Allahverdyan; Karen V. Hovhannisyan; Alexey V. Melkikh; Sasun G. Gevorkian

2013-12-12T23:59:59.000Z

43

INTEGRATED PYROLYSIS COMBINED CYCLE BIOMASS POWER SYSTEM CONCEPT DEFINITION  

SciTech Connect (OSTI)

Advanced power systems based on integrated gasification/combined cycles (IGCC) are often presented as a solution to the present shortcomings of biomass as fuel. Although IGCC has been technically demonstrated at full scale, it has not been adopted for commercial power generation. Part of the reason for this situation is the continuing low price for coal. However, another significant barrier to IGCC is the high level of integration of this technology: the gas output from the gasifier must be perfectly matched to the energy demand of the gas turbine cycle. We are developing an alternative to IGCC for biomass power: the integrated (fast) pyrolysis/ combined cycle (IPCC). In this system solid biomass is converted into liquid rather than gaseous fuel. This liquid fuel, called bio-oil, is a mixture of oxygenated organic compounds and water that serves as fuel for a gas turbine topping cycle. Waste heat from the gas turbine provides thermal energy to the steam turbine bottoming cycle. Advantages of the biomass-fueled IPCC system include: combined cycle efficiency exceeding 37 percent efficiency for a system as small as 7.6 MW{sub e}; absence of high pressure thermal reactors; decoupling of fuel processing and power generation; and opportunities for recovering value-added products from the bio-oil. This report provides a technical overview of the system including pyrolyzer design, fuel clean-up strategies, pyrolysate condenser design, opportunities for recovering pyrolysis byproducts, gas turbine cycle design, and Rankine steam cycle. The report also reviews the potential biomass fuel supply in Iowa, provide and economic analysis, and present a summery of benefits from the proposed system.

Eric Sandvig; Gary Walling; Robert C. Brown; Ryan Pletka; Desmond Radlein; Warren Johnson

2003-03-01T23:59:59.000Z

44

A Low-Power Correlation Detector For Binary FSK Direct-Conversion Receivers  

E-Print Network [OSTI]

A Low-Power Correlation Detector For Binary FSK Direct-Conversion Receivers J. Min, H-C. Liu, A detector, Tone detection, Correlation, Direct-conversion wireless receivers Abstract A multiplierless-suited for low-power direct-conversion receivers used in wireless communications systems employ- ing FSK

Arslan, HĂĽseyin

45

Nuclear power generation and fuel cycle report 1996  

SciTech Connect (OSTI)

This report presents the current status and projections through 2015 of nuclear capacity, generation, and fuel cycle requirements for all countries using nuclear power to generate electricity for commercial use. It also contains information and forecasts of developments in the worldwide nuclear fuel market. Long term projections of U.S. nuclear capacity, generation, and spent fuel discharges for two different scenarios through 2040 are developed. A discussion on decommissioning of nuclear power plants is included.

NONE

1996-10-01T23:59:59.000Z

46

Method of optimizing performance of Rankine cycle power plants  

DOE Patents [OSTI]

A method for efficiently operating a Rankine cycle power plant (10) to maximize fuel utilization efficiency or energy conversion efficiency or minimize costs by selecting a turbine (22) fluid inlet state which is substantially in the area adjacent and including the transposed critical temperature line (46).

Pope, William L. (Walnut Creek, CA); Pines, Howard S. (El Cerrito, CA); Doyle, Padraic A. (Oakland, CA); Silvester, Lenard F. (Richmond, CA)

1982-01-01T23:59:59.000Z

47

Novel Power Cycle for Combined-Cycle Systems and Utility Power Plants  

E-Print Network [OSTI]

wi th the Wes t inghouse SOlD gas turb ',ne, but also compared to combined-cycle sys terns wi th the advanced gas turbi ie 700lF of General Electric, despite qhe fact that the efficiency of the 7001.F gas turbine per se is higher than...

Kalina, A. L.

48

Supercritical Water Reactor Cycle for Medium Power Applications  

SciTech Connect (OSTI)

Scoping studies for a power conversion system based on a direct-cycle supercritical water reactor have been conducted. The electric power range of interest is 5-30 MWe with a design point of 20 MWe. The overall design objective is to develop a system that has minimized physical size and performs satisfactorily over a broad range of operating conditions. The design constraints are as follows: Net cycle thermal efficiency {ge}20%; Steam turbine outlet quality {ge}90%; and Pumping power {le}2500 kW (at nominal conditions). Three basic cycle configurations were analyzed. Listed in order of increased plant complexity, they are: (1) Simple supercritical Rankine cycle; (2) All-supercritical Brayton cycle; and (3) Supercritical Rankine cycle with feedwater preheating. The sensitivity of these three configurations to various parameters, such as reactor exit temperature, reactor pressure, condenser pressure, etc., was assessed. The Thermoflex software package was used for this task. The results are as follows: (a) The simple supercritical Rankine cycle offers the greatest hardware simplification, but its high reactor temperature rise and reactor outlet temperature may pose serious problems from the viewpoint of thermal stresses, stability and materials in the core. (b) The all-supercritical Brayton cycle is not a contender, due to its poor thermal efficiency. (c) The supercritical Rankine cycle with feedwater preheating affords acceptable thermal efficiency with lower reactor temperature rise and outlet temperature. (d) The use of a moisture separator improves the performance of the supercritical Rankine cycle with feedwater preheating and allows for a further reduction of the reactor outlet temperature, thus it was selected for the next step. Preliminary engineering design of the supercritical Rankine cycle with feedwater preheating and moisture separation was performed. All major components including the turbine, feedwater heater, feedwater pump, condenser, condenser pump and pipes were modeled with realistic assumptions using the PEACE module of Thermoflex. A three-dimensional layout of the plant was also generated with the SolidEdge software. The results of the engineering design are as follows: (i) The cycle achieves a net thermal efficiency of 24.13% with 350/460 C reactor inlet/outlet temperatures, {approx}250 bar reactor pressure and 0.75 bar condenser pressure. The steam quality at the turbine outlet is 90% and the total electric consumption of the pumps is about 2500 kWe at nominal conditions. (ii) The overall size of the plant is attractively compact and can be further reduced if a printed-circuit-heat-exchanger (vs shell-and-tube) design is used for the feedwater heater, which is currently the largest component by far. Finally, an analysis of the plant performance at off-nominal conditions has revealed good robustness of the design in handling large changes of thermal power and seawater temperature.

BD Middleton; J Buongiorno

2007-04-25T23:59:59.000Z

49

Life cycle assessment of a biomass gasification combined-cycle power system  

SciTech Connect (OSTI)

The potential environmental benefits from biomass power are numerous. However, biomass power may also have some negative effects on the environment. Although the environmental benefits and drawbacks of biomass power have been debated for some time, the total significance has not been assessed. This study serves to answer some of the questions most often raised in regard to biomass power: What are the net CO{sub 2} emissions? What is the energy balance of the integrated system? Which substances are emitted at the highest rates? What parts of the system are responsible for these emissions? To provide answers to these questions, a life cycle assessment (LCA) of a hypothetical biomass power plant located in the Midwest United States was performed. LCA is an analytical tool for quantifying the emissions, resource consumption, and energy use, collectively known as environmental stressors, that are associated with converting a raw material to a final product. Performed in conjunction with a technoeconomic feasibility study, the total economic and environmental benefits and drawbacks of a process can be quantified. This study complements a technoeconomic analysis of the same process, reported in Craig and Mann (1996) and updated here. The process studied is based on the concept of power Generation in a biomass integrated gasification combined cycle (BIGCC) plant. Broadly speaking, the overall system consists of biomass production, its transportation to the power plant, electricity generation, and any upstream processes required for system operation. The biomass is assumed to be supplied to the plant as wood chips from a biomass plantation, which would produce energy crops in a manner similar to the way food and fiber crops are produced today. Transportation of the biomass and other materials is by both rail and truck. The IGCC plant is sized at 113 MW, and integrates an indirectly-heated gasifier with an industrial gas turbine and steam cycle. 63 refs., 34 figs., 32 tabs.

Mann, M.K.; Spath, P.L.

1997-12-01T23:59:59.000Z

50

Power conversion system design for supercritical carbon dioxide cooled indirect cycle nuclear reactors  

E-Print Network [OSTI]

The supercritical carbon dioxide (S-CO?) cycle is a promising advanced power conversion cycle which couples nicely to many Generation IV nuclear reactors. This work investigates the power conversion system design and ...

Gibbs, Jonathan Paul

2008-01-01T23:59:59.000Z

51

Fuel-Cycle Analysis of Hydrogen-Powered Fuel-Cell Systems with...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Fuel-Cycle Analysis of Hydrogen-Powered Fuel-Cell Systems with the GREET Model Fuel-Cycle Analysis of Hydrogen-Powered Fuel-Cell Systems with the GREET Model This presentation by...

52

Model Predictive Control of Integrated Gasification Combined Cycle Power Plants  

SciTech Connect (OSTI)

The primary project objectives were to understand how the process design of an integrated gasification combined cycle (IGCC) power plant affects the dynamic operability and controllability of the process. Steady-state and dynamic simulation models were developed to predict the process behavior during typical transients that occur in plant operation. Advanced control strategies were developed to improve the ability of the process to follow changes in the power load demand, and to improve performance during transitions between power levels. Another objective of the proposed work was to educate graduate and undergraduate students in the application of process systems and control to coal technology. Educational materials were developed for use in engineering courses to further broaden this exposure to many students. ASPENTECH software was used to perform steady-state and dynamic simulations of an IGCC power plant. Linear systems analysis techniques were used to assess the steady-state and dynamic operability of the power plant under various plant operating conditions. Model predictive control (MPC) strategies were developed to improve the dynamic operation of the power plants. MATLAB and SIMULINK software were used for systems analysis and control system design, and the SIMULINK functionality in ASPEN DYNAMICS was used to test the control strategies on the simulated process. Project funds were used to support a Ph.D. student to receive education and training in coal technology and the application of modeling and simulation techniques.

B. Wayne Bequette; Priyadarshi Mahapatra

2010-08-31T23:59:59.000Z

53

Fuel cycle comparison of distributed power generation technologies.  

SciTech Connect (OSTI)

The fuel-cycle energy use and greenhouse gas (GHG) emissions associated with the application of fuel cells to distributed power generation were evaluated and compared with the combustion technologies of microturbines and internal combustion engines, as well as the various technologies associated with grid-electricity generation in the United States and California. The results were primarily impacted by the net electrical efficiency of the power generation technologies and the type of employed fuels. The energy use and GHG emissions associated with the electric power generation represented the majority of the total energy use of the fuel cycle and emissions for all generation pathways. Fuel cell technologies exhibited lower GHG emissions than those associated with the U.S. grid electricity and other combustion technologies. The higher-efficiency fuel cells, such as the solid oxide fuel cell (SOFC) and molten carbonate fuel cell (MCFC), exhibited lower energy requirements than those for combustion generators. The dependence of all natural-gas-based technologies on petroleum oil was lower than that of internal combustion engines using petroleum fuels. Most fuel cell technologies approaching or exceeding the DOE target efficiency of 40% offered significant reduction in energy use and GHG emissions.

Elgowainy, A.; Wang, M. Q.; Energy Systems

2008-12-08T23:59:59.000Z

54

Potassium Rankine cycle power conversion systems for lunar-Mars surface power  

SciTech Connect (OSTI)

The potassium Rankine cycle has good potential for application to nuclear power systems for surface power on the moon and Mars. A substantial effort on the development of the power conversion was carried out in the 1960`s which demonstrated successful operation of components made of stainless steel at moderate temperatures. This technology could be applied in the near term to produce a 360 kW(e) power system by coupling a stainless steel power conversion system to the SP-100 reactor. Improved performance could be realized in later systems by utilizing niobium or tantalum refractory metal alloys in the reactor and power conversion system. The design characteristics and estimated mass of power systems for each of three technology levels are presented in the paper. 8 refs.

Holcomb, R.S.

1992-07-01T23:59:59.000Z

55

Closed Brayton cycle power conversion systems for nuclear reactors :  

SciTech Connect (OSTI)

This report describes the results of a Sandia National Laboratories internally funded research program to study the coupling of nuclear reactors to gas dynamic Brayton power conversion systems. The research focused on developing integrated dynamic system models, fabricating a 10-30 kWe closed loop Brayton cycle, and validating these models by operating the Brayton test-loop. The work tasks were performed in three major areas. First, the system equations and dynamic models for reactors and Closed Brayton Cycle (CBC) systems were developed and implemented in SIMULINKTM. Within this effort, both steady state and dynamic system models for all the components (turbines, compressors, reactors, ducting, alternators, heat exchangers, and space based radiators) were developed and assembled into complete systems for gas cooled reactors, liquid metal reactors, and electrically heated simulators. Various control modules that use proportional-integral-differential (PID) feedback loops for the reactor and the power-conversion shaft speed were also developed and implemented. The simulation code is called RPCSIM (Reactor Power and Control Simulator). In the second task an open cycle commercially available Capstone C30 micro-turbine power generator was modified to provide a small inexpensive closed Brayton cycle test loop called the Sandia Brayton test-Loop (SBL-30). The Capstone gas-turbine unit housing was modified to permit the attachment of an electrical heater and a water cooled chiller to form a closed loop. The Capstone turbine, compressor, and alternator were used without modification. The Capstone systems nominal operating point is 1150 K turbine inlet temperature at 96,000 rpm. The annular recuperator and portions of the Capstone control system (inverter) and starter system also were reused. The rotational speed of the turbo-machinery is controlled by adjusting the alternator load by using the electrical grid as the load bank. The SBL-30 test loop was operated at the manufacturers site (Barber-Nichols Inc.) and installed and operated at Sandia. A sufficiently detailed description of the loop is provided in this report along with the design characteristics of the turbo-alternator-compressor set to allow other researchers to compare their results with those measured in the Sandia test-loop. The third task consisted of a validation effort. In this task the test loop was operated and compared with the modeled results to develop a more complete understanding of this electrically heated closed power generation system and to validate the model. The measured and predicted system temperatures and pressures are in good agreement, indicating that the model is a reasonable representation of the test loop. Typical deviations between the model and the hardware results are less than 10%. Additional tests were performed to assess the capability of the Brayton engine to continue to remove decay heat after the reactor/heater is shutdown, to develop safe and effective control strategies, and to access the effectiveness of gas inventory control as an alternative means to provide load following. In one test the heater power was turned off to simulate a rapid reactor shutdown, and the turbomachinery was driven solely by the sensible heat stored in the heater for over 71 minutes without external power input. This is an important safety feature for CBC systems as it means that the closed Brayton loop will keep cooling the reactor without the need for auxiliary power (other than that needed to circulate the waste heat rejection coolant) provided the heat sink is available.

Wright, Steven A.; Lipinski, Ronald J.; Vernon, Milton E.; Sanchez, Travis

2006-04-01T23:59:59.000Z

56

Use and recovery of ammonia in power plant cycles  

SciTech Connect (OSTI)

The paper presents some practical and theoretical aspects of the use of ammonia in power plant water/steam cycles. The plants considered are fully automated units with once-through boilers, which operate under complex conditions and are subject to frequent starts and load changes. The boilers are chemically conditioned with combined oxygen ammonia treatment and the condensate polishing plant is only operated during start-up, in the event of a condenser leak or to remove excess ammonia. The paper also covers the recovery of ammonia from the condensate polishing plant waste regenerants and reuse for conditioning the feedwater. In particular, the paper deals with the following points: theoretical analysis of the chemical equilibrium of ammonia and carbon dioxide in water, including calculation of the concentrations from the parameters normally measured, such as conductivities and pH; equipment for monitoring and controlling the amount of ammonia fed to the water/steam cycle, including the optimum positioning of the sampling and feed-points, the parameters suitable for feed control and their temperature dependence; the partial pressure and distribution coefficient of ammonia; the consumption and losses of ammonia through the water/steam cycle during operation; the recovery of ammonia from condensate polishing plant waste regenerants by steam stripping. The paper should be of interest to both planning engineers and plant operators.

Pflug, H.D.; Bettenworth, H.J.; Syring, H.A. [Preussen Elektra AG, Hanover (Germany)

1995-01-01T23:59:59.000Z

57

Shrinking binary and planetary orbits by Kozai cycles with tidal friction  

E-Print Network [OSTI]

At least two arguments suggest that the orbits of a large fraction of binary stars and extrasolar planets shrank by 1-2 orders of magnitude after formation: (i) the physical radius of a star shrinks by a large factor from birth to the main sequence, yet many main-sequence stars have companions orbiting only a few stellar radii away, and (ii) in current theories of planet formation, the region within ~0.1 AU of a protostar is too hot and rarefied for a Jupiter-mass planet to form, yet many "hot Jupiters" are observed at such distances. We investigate orbital shrinkage by the combined effects of secular perturbations from a distant companion star (Kozai oscillations) and tidal friction. We integrate the relevant equations of motion to predict the distribution of orbital elements produced by this process. Binary stars with orbital periods of 0.1 to 10 days, with a median of ~2 d, are produced from binaries with much longer periods (10 d to 10^5 d), consistent with observations indicating that most or all short-period binaries have distant companions (tertiaries). We also make two new testable predictions: (1) For periods between 3 and 10 d, the distribution of the mutual inclination between the inner binary and the tertiary orbit should peak strongly near 40 deg and 140 deg. (2) Extrasolar planets whose host stars have a distant binary companion may also undergo this process, in which case the orbit of the resulting hot Jupiter will typically be misaligned with the equator of its host star.

Daniel Fabrycky; Scott Tremaine

2007-05-30T23:59:59.000Z

58

Evaluation and Optimization of a Supercritical Carbon Dioxide Power Conversion Cycle for Nuclear Applications  

SciTech Connect (OSTI)

There have been a number of studies involving the use of gases operating in the supercritical mode for power production and process heat applications. Supercritical carbon dioxide (CO2) is particularly attractive because it is capable of achieving relatively high power conversion cycle efficiencies in the temperature range between 550°C and 750°C. Therefore, it has the potential for use with any type of high-temperature nuclear reactor concept, assuming reactor core outlet temperatures of at least 550°C. The particular power cycle investigated in this paper is a supercritical CO2 Recompression Brayton Cycle. The CO2 Recompression Brayton Cycle can be used as either a direct or indirect power conversion cycle, depending on the reactor type and reactor outlet temperature. The advantage of this cycle when compared to the helium Brayton Cycle is the lower required operating temperature; 550°C versus 850°C. However, the supercritical CO2 Recompression Brayton Cycle requires an operating pressure in the range of 20 MPa, which is considerably higher than the required helium Brayton cycle operating pressure of 8 MPa. This paper presents results of analyses performed using the UniSim process analyses software to evaluate the performance of the supercritical CO2 Brayton Recompression Cycle for different reactor outlet temperatures. The UniSim model assumed a 600 MWt reactor power source, which provides heat to the power cycle at a maximum temperature of between 550°C and 750°C. The UniSim model used realistic component parameters and operating conditions to model the complete power conversion system. CO2 properties were evaluated, and the operating range for the cycle was adjusted to take advantage of the rapidly changing conditions near the critical point. The UniSim model was then optimized to maximize the power cycle thermal efficiency at the different maximum power cycle operating temperatures. The results of the analyses showed that power cycle thermal efficiencies in the range of 40 to 50% can be achieved.

Edwin A. Harvego; Michael G. McKellar

2011-05-01T23:59:59.000Z

59

Membranes for H2 generation from nuclear powered thermochemical cycles.  

SciTech Connect (OSTI)

In an effort to produce hydrogen without the unwanted greenhouse gas byproducts, high-temperature thermochemical cycles driven by heat from solar energy or next-generation nuclear power plants are being explored. The process being developed is the thermochemical production of Hydrogen. The Sulfur-Iodide (SI) cycle was deemed to be one of the most promising cycles to explore. The first step of the SI cycle involves the decomposition of H{sub 2}SO{sub 4} into O{sub 2}, SO{sub 2}, and H{sub 2}O at temperatures around 850 C. In-situ removal of O{sub 2} from this reaction pushes the equilibrium towards dissociation, thus increasing the overall efficiency of the decomposition reaction. A membrane is required for this oxygen separation step that is capable of withstanding the high temperatures and corrosive conditions inherent in this process. Mixed ionic-electronic perovskites and perovskite-related structures are potential materials for oxygen separation membranes owing to their robustness, ability to form dense ceramics, capacity to stabilize oxygen nonstoichiometry, and mixed ionic/electronic conductivity. Two oxide families with promising results were studied: the double-substituted perovskite A{sub x}Sr{sub 1-x}Co{sub 1-y}B{sub y}O{sub 3-{delta}} (A=La, Y; B=Cr-Ni), in particular the family La{sub x}Sr{sub 1-x}Co{sub 1-y}Mn{sub y}O{sub 3-{delta}} (LSCM), and doped La{sub 2}Ni{sub 1-x}M{sub x}O{sub 4} (M = Cu, Zn). Materials and membranes were synthesized by solid state methods and characterized by X-ray and neutron diffraction, SEM, thermal analyses, calorimetry and conductivity. Furthermore, we were able to leverage our program with a DOE/NE sponsored H{sub 2}SO{sub 4} decomposition reactor study (at Sandia), in which our membranes were tested in the actual H{sub 2}SO{sub 4} decomposition step.

Nenoff, Tina Maria; Ambrosini, Andrea; Garino, Terry J.; Gelbard, Fred; Leung, Kevin; Navrotsky, Alexandra (University of California, Davis, CA); Iyer, Ratnasabapathy G. (University of California, Davis, CA); Axness, Marlene

2006-11-01T23:59:59.000Z

60

Brayton-Cycle Baseload Power Tower CSP System  

SciTech Connect (OSTI)

The primary objectives of Phase 2 of this Project were: 1. Engineer, fabricate, and conduct preliminary testing on a low-pressure, air-heating solar receiver capable of powering a microturbine system to produce 300kWe while the sun is shining while simultaneously storing enough energy thermally to power the system for up to 13 hours thereafter. 2. Cycle-test a high-temperature super alloy, Haynes HR214, to determine its efficacy for the system’s high-temperature heat exchanger. 3. Engineer the thermal energy storage system This Phase 2 followed Wilson’s Phase 1, which primarily was an engineering feasibility study to determine a practical and innovative approach to a full Brayton-cycle system configuration that could meet DOE’s targets. Below is a summary table of the DOE targets with Wilson’s Phase 1 Project results. The results showed that a Brayton system with an innovative (low pressure) solar receiver with ~13 hours of dry (i.e., not phase change materials or molten salts but rather firebrick, stone, or ceramics) has the potential to meet or exceed DOE targets. Such systems would consist of pre-engineered, standardized, factory-produced modules to minimize on-site costs while driving down costs through mass production. System sizes most carefully analyzed were in the range of 300 kWe to 2 MWe. Such systems would also use off-the-shelf towers, blowers, piping, microturbine packages, and heliostats. Per DOE’s instructions, LCOEs are based on the elevation and DNI levels of Daggett, CA, for a 100 MWe power plant following 2 GWe of factory production of the various system components. Success criteria DOE targets Wilson system LCOE DOE’s gas price $6.75/MBtu 9 cents/kWh 7.7 cents/kWh LCOE Current gas price $4.71/MBtu NA 6.9 cents/kWh Capacity factor 75% (6500hr) 75-100% Solar fraction 85% (5585hr) >5585hr Receiver cost $170/kWe $50/kWe Thermal storage cost $20/kWhth $13/kWhth Heliostat cost $120/m2 $89.8/m2

Anderson, Bruce

2013-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "binary cycle power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Coal-fired open cycle magnetohydrodynamic power plant emissions and energy efficiences  

E-Print Network [OSTI]

This study is a review of projected emissions and energy efficiencies of coal-fired open cycle MHD power plants. Ideally one

Gruhl, Jim

62

A new semidefinite programming hierarchy for cycles in binary matroids and cuts in graphs  

E-Print Network [OSTI]

The theta bodies of a polynomial ideal are a series of semidefinite programming relaxations of the convex hull of the real variety of the ideal. In this paper we construct the theta bodies of the vanishing ideal of cycles ...

Gouveia, Joăo

63

Indirect-fired gas turbine dual fuel cell power cycle  

DOE Patents [OSTI]

A fuel cell and gas turbine combined cycle system which includes dual fuel cell cycles combined with a gas turbine cycle wherein a solid oxide fuel cell cycle operated at a pressure of between 6 to 15 atms tops the turbine cycle and is used to produce CO.sub.2 for a molten carbonate fuel cell cycle which bottoms the turbine and is operated at essentially atmospheric pressure. A high pressure combustor is used to combust the excess fuel from the topping fuel cell cycle to further heat the pressurized gas driving the turbine. A low pressure combustor is used to combust the excess fuel from the bottoming fuel cell to reheat the gas stream passing out of the turbine which is used to preheat the pressurized air stream entering the topping fuel cell before passing into the bottoming fuel cell cathode. The CO.sub.2 generated in the solid oxide fuel cell cycle cascades through the system to the molten carbonate fuel cell cycle cathode.

Micheli, Paul L. (Sacramento, CA); Williams, Mark C. (Morgantown, WV); Sudhoff, Frederick A. (Morgantown, WV)

1996-01-01T23:59:59.000Z

64

Swinging between rotation and accretion power in a millisecond binary pulsar  

E-Print Network [OSTI]

Radio pulsars are neutron stars that emit radiation modulated and powered by the rotation of their magnetic field, and which consequently decelerate (Pacini, 1967). The very fast millisecond spin periods measured in old radio pulsars (Backer et al. 1982) are thought to be the outcome of an earlier X-ray bright phase, during which the neutron star accretes matter and angular momentum from a low mass companion star in a binary system (Alpar et al. 1982; Radhakrishnan & Srinivasan 1982). This evolutionary scenario has been supported by the detection of X-ray millisecond pulsations from several accreting neutron stars in the past fifteen years (Wijnands & van der Klis 1998), as well as by the indirect evidence for the presence of a disk in the past around a millisecond radio pulsar now powered by rotation (Archibald et al. 2009). However, a transition between a rotation-powered and an accretion-powered state was never observed. Here we present the detection of millisecond X-ray pulsations from an accretin...

Papitto, A; Bozzo, E; Rea, N; Pavan, L; Campana, S; Romano, P; Burderi, L; Di Salvo, T; Riggio, A; Torres, D F; Falanga, M; Hessels, J W T; Burgay, M; Sarkissian, J M; Wieringa, M H; Filipovi?, M D; Wong, G F

2013-01-01T23:59:59.000Z

65

A Comparison of Supercritical Carbon Dioxide Power Cycle Configurations with an Emphasis on CSP Applications (Presentation)  

SciTech Connect (OSTI)

Recent research suggests that an emerging power cycle technology using supercritical carbon dioxide (s-CO2) operated in a closed-loop Brayton cycle offers the potential of equivalent or higher cycle efficiency versus supercritical or superheated steam cycles at temperatures relevant for CSP applications. Preliminary design-point modeling suggests that s-CO2 cycle configurations can be devised that have similar overall efficiency but different temperature and/or pressure characteristics. This paper employs a more detailed heat exchanger model than previous work to compare the recompression and partial cooling cycles, two cycles with high design-point efficiencies, and illustrates the potential advantages of the latter. Integration of the cycles into CSP systems is studied, with a focus on sensible heat thermal storage and direct s-CO2 receivers. Results show the partial cooling cycle may offer a larger temperature difference across the primary heat exchanger, thereby potentially reducing heat exchanger cost and improving CSP receiver efficiency.

Neises, T.; Turchi, C.

2013-09-01T23:59:59.000Z

66

Optimization and Comparison of Direct and Indirect Supercritical Carbon Dioxide Power Plant Cycles for Nuclear Applications  

SciTech Connect (OSTI)

There have been a number of studies involving the use of gases operating in the supercritical mode for power production and process heat applications. Supercritical carbon dioxide (CO2) is particularly attractive because it is capable of achieving relatively high power conversion cycle efficiencies in the temperature range between 550 C and 750 C. Therefore, it has the potential for use with any type of high-temperature nuclear reactor concept, assuming reactor core outlet temperatures of at least 550 C. The particular power cycle investigated in this paper is a supercritical CO2 Recompression Brayton Cycle. The CO2 Recompression Brayton Cycle can be used as either a direct or indirect power conversion cycle, depending on the reactor type and reactor outlet temperature. The advantage of this cycle when compared to the helium Brayton cycle is the lower required operating temperature; 550 C versus 850 C. However, the supercritical CO2 Recompression Brayton Cycle requires an operating pressure in the range of 20 MPa, which is considerably higher than the required helium Brayton cycle operating pressure of 8 MPa. This paper presents results of analyses performed using the UniSim process analyses software to evaluate the performance of both a direct and indirect supercritical CO2 Brayton Recompression cycle for different reactor outlet temperatures. The direct supercritical CO2 cycle transferred heat directly from a 600 MWt reactor to the supercritical CO2 working fluid supplied to the turbine generator at approximately 20 MPa. The indirect supercritical CO2 cycle assumed a helium-cooled Very High Temperature Reactor (VHTR), operating at a primary system pressure of approximately 7.0 MPa, delivered heat through an intermediate heat exchanger to the secondary indirect supercritical CO2 Brayton Recompression cycle, again operating at a pressure of about 20 MPa. For both the direct and indirect cycles, sensitivity calculations were performed for reactor outlet temperature between 550 C and 850 C. The UniSim models used realistic component parameters and operating conditions to model the complete reactor and power conversion systems. CO2 properties were evaluated, and the operating ranges of the cycles were adjusted to take advantage of the rapidly changing properties of CO2 near the critical point. The results of the analyses showed that, for the direct supercritical CO2 power cycle, thermal efficiencies in the range of 40 to 50% can be achieved. For the indirect supercritical CO2 power cycle, thermal efficiencies were approximately 10% lower than those obtained for the direct cycle over the same reactor outlet temperature range.

Edwin A. Harvego; Michael G. McKellar

2011-11-01T23:59:59.000Z

67

DESIGN OF HYBRID POWER GENERATION CYCLES EMPLOYING AMMONIA-WATER-CARBON DIOXIDE MIXTURES  

SciTech Connect (OSTI)

A power cycle generates electricity from the heat of combustion of fossil fuels. Its efficiency is governed by the cycle configuration, the operating parameters, and the working fluid. Typical. designs use pure water as the fluid. in the last two decades, hybrid cycles based on ammonia-water, and carbon-dioxide mixtures as the working fluid have been proposed. These cycles may improve the power generation efficiency of Rankine cycles by 15%. Improved efficiency is important for two reasons: it lowers the cost of electricity being produced, and by reducing the consumption of fossil fuels per unit power, it reduces the generation of environmental pollutants. The goal of this project is to develop a computational optimization-based method for the design and analysis of hybrid bottoming power cycles to minimize the usage of fossil fuels. The development of this methodology has been achieved by formulating this task as that of selecting the least cost power cycle design from all possible configurations. They employ a detailed thermodynamic property prediction package they have developed under a DOE-FETC grant to model working fluid mixtures. Preliminary results from this work suggest that a pure NH{sub 3} cycle outperforms steam or the expensive Kalina cycle.

Ashish Gupta

2002-06-01T23:59:59.000Z

68

The investigation of exhaust powered, automotive air cycle air conditioning  

E-Print Network [OSTI]

domestic automobiles and trucks because of its proven success. This system requires approximately 4 hp (2. 983 kW)[3] for operation snd employs a pressurized fluorinated hydrocarbon (R-12), hereafter fluorocarbon, as a refrigerant. Most of the research... extraction and avoid the use of a fluorocarbon refrigerant. The maJority of work involved with the new units has associated itself in the area of utilizing an absorption cycle or air cycle. The absorption air conditioning unit differs significantly from...

Holley, James Andrew

1978-01-01T23:59:59.000Z

69

Carnot Cycle at Finite Power: Attainability of Maximal Efficiency Armen E. Allahverdyan,1  

E-Print Network [OSTI]

are not efficient, since they have to be powerful; e.g., the efficiency of Diesel engines amounts to 35Carnot Cycle at Finite Power: Attainability of Maximal Efficiency Armen E. Allahverdyan,1 Karen V and to what extent the maximal (Carnot) efficiency for heat engines can be reached at a finite power

70

Steam Oxidation of Fossil Power Plant Materials: Collaborative Research to Enable Advanced Steam Power Cycles  

DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

Research into improved materials systems and associated manufacturing and reliability issues is a major part of initiatives to produce cleaner and cheaper energy systems in the UK and the USA. Under the auspices of a Memorandum of Understanding on Energy R&D, a work programme concerned with steam oxidation has been conducted. The focus was on the generation of definitive information regarding the oxidation behaviour in steam of current and developmental ferritic steels, austenitic steels, and nickelbased alloys required to enable advanced steam power cycles. The results were intended to provide a basis for quantifying the rate of metal loss expected under advanced steam cycle conditions, as well as understanding of the evolution of oxide scale morphologies with time and temperature to identify features that could influence scale exfoliation characteristics. This understanding and acquired data were used to develop and validate models of oxide growth and loss by exfoliation. This paper provides an overview of the activity and highlights a selection of the results coming from the programme.

A. T. Fry; I. G Wright; N. J Simms; B. McGhee; G. R. Holcomb

2013-11-19T23:59:59.000Z

71

Techno-economic analysis of pressurized oxy-fuel combustion power cycle for CO? capture  

E-Print Network [OSTI]

Growing concerns over greenhouse gas emissions have driven extensive research into new power generation cycles that enable carbon dioxide capture and sequestration. In this regard, oxy-fuel combustion is a promising new ...

Hong, Jongsup

2009-01-01T23:59:59.000Z

72

Feasibility Study of a Multi-Purpose Computer Program for Optimizing Heat Rates in Power Cycles  

E-Print Network [OSTI]

A study of currently available commercial codes which evaluate the thermal performance of turbine cycles in power plants is presented. The analytical basis, capabilities, and possible applications of these codes are described. A survey of some user...

Menuchin, Y.; Singh, K. P.; Hirota, N.

1981-01-01T23:59:59.000Z

73

Cycle Analysis on Ocean Geothermal Power Generation using Multi-staged Turbine  

E-Print Network [OSTI]

Cycle Analysis on Ocean Geothermal Power Generation using Multi-staged Turbine 2013. 09. 11 Korea ORC #12;Cycle simulation Solver : HYSYS Basic simulation design T-S diagram Pump Turbine Evaporator & turbine : iso-entropic process Pump Turbine Evaporator Condenser 4 1 2 3 Geothermal water Deep seawater

74

Nuclear power generation and fuel cycle report 1997  

SciTech Connect (OSTI)

Nuclear power is an important source of electric energy and the amount of nuclear-generated electricity continued to grow as the performance of nuclear power plants improved. In 1996, nuclear power plants supplied 23 percent of the electricity production for countries with nuclear units, and 17 percent of the total electricity generated worldwide. However, the likelihood of nuclear power assuming a much larger role or even retaining its current share of electricity generation production is uncertain. The industry faces a complex set of issues including economic competitiveness, social acceptance, and the handling of nuclear waste, all of which contribute to the uncertain future of nuclear power. Nevertheless, for some countries the installed nuclear generating capacity is projected to continue to grow. Insufficient indigenous energy resources and concerns over energy independence make nuclear electric generation a viable option, especially for the countries of the Far East.

NONE

1997-09-01T23:59:59.000Z

75

EXPERIMENTAL AND THEORETICAL INVESTIGATIONS OF NEW POWER CYCLES AND ADVANCED FALLING FILM HEAT EXCHANGERS  

SciTech Connect (OSTI)

The final report for the DOE/UNM grant number DE-FG26-98FT40148 discusses the accomplishments of both the theoretical analysis of advanced power cycles and experimental investigation of advanced falling film heat exchangers. This final report also includes the progress report for the third year (period of October 1, 2000 to September 30, 2001). Four new cycles were studied and two cycles were analyzed in detail based on the second law of thermodynamics. The first cycle uses a triple combined cycle, which consists of a topping cycle (Brayton/gas), an intermediate cycle (Rankine/steam), and a bottoming cycle (Rankine/ammonia). This cycle can produce high efficiency and reduces the irreversibility of the Heat Recovery Steam Generator (HRSC) of conventional combined power cycles. The effect of important system parameters on the irreversibility distribution of all components in the cycle under reasonable practical constraints was evaluated. The second cycle is a combined cycle, which consists of a topping cycle (Brayton/gas) and a bottoming cycle (Rankine/ammonia) with integrated compressor inlet air cooling. This innovative cycle can produce high power and efficiency. This cycle is also analyzed and optimized based on the second the second law to obtain the irreversibility distribution of all components in the cycle. The results of the studies have been published in peer reviewed journals and ASME conference proceeding. Experimental investigation of advanced falling film heat exchangers was conducted to find effective additives for steam condensation. Four additives have been selected and tested in a horizontal tube steam condensation facility. It has been observed that heat transfer additives have been shown to be an effective way to increase the efficiency of conventional tube bundle condenser heat exchangers. This increased condensation rate is due to the creation of a disturbance in the liquid condensate surround the film. The heat transfer through such a film has increased due to the onset of Maranogni convection as well as the population of ''dropwise-like'' condensation increased. The results have been published in peer reviewed journals.

Arsalan Razani; Kwang J. Kim

2001-12-01T23:59:59.000Z

76

Composite turbine blade design options for Claude (open) cycle OTEC power systems  

SciTech Connect (OSTI)

Small-scale turbine rotors made from composites offer several technical advantages for a Claude (open) cycle ocean thermal energy conversion (OTEC) power system. Westinghouse Electric Corporation has designed a composite turbine rotor/disk using state-of-the-art analysis methods for large-scale (100-MW/sub e/) open cycle OTEC applications. Near-term demonstrations using conventional low-pressure turbine blade shapes with composite material would achieve feasibility and modern credibility of the open cycle OTEC power system. Application of composite blades for low-pressure turbo-machinery potentially improves the reliability of conventional metal blades affected by stress corrosion.

Penney, T.R.

1985-11-01T23:59:59.000Z

77

Thermonuclear inverse magnetic pumping power cycle for stellarator reactor  

DOE Patents [OSTI]

The plasma column in a stellarator is compressed and expanded alternatively in minor radius. First a plasma in thermal balance is compressed adiabatically. The volume of the compressed plasma is maintained until the plasma reaches a new thermal equilibrium. The plasma is then expanded to its original volume. As a result of the way a stellarator works, the plasma pressure during compression is less than the corresponding pressure during expansion. Therefore, negative work is done on the plasma over a complete cycle. This work manifests itself as a back-voltage in the toroidal field coils. Direct electrical energy is obtained from this voltage. Alternatively, after the compression step, the plasma can be expanded at constant pressure. The cycle can be made self-sustaining by operating a system of two stellarator reactors in tandem. Part of the energy derived from the expansion phase of a first stellarator reactor is used to compress the plasma in a second stellarator reactor.

Ho, Darwin D. (Pleasanton, CA); Kulsrud, Russell M. (Princeton, NJ)

1991-01-01T23:59:59.000Z

78

Optimum Heat Power Cycles for Process Industrial Plants  

E-Print Network [OSTI]

Electric power cogeneration is compared with direct mechanical drives emphasizing the technical aspects having the greatest impact on energy economics. Both steam and gas turbine applications are discussed and practical methods of developing...

Waterland, A. F.

1982-01-01T23:59:59.000Z

79

Modeling and experimental results for condensing supercritical CO2 power cycles.  

SciTech Connect (OSTI)

This Sandia supported research project evaluated the potential improvement that 'condensing' supercritical carbon dioxide (S-CO{sub 2}) power cycles can have on the efficiency of Light Water Reactors (LWR). The analytical portion of research project identified that a S-CO{sub 2} 'condensing' re-compression power cycle with multiple stages of reheat can increase LWR power conversion efficiency from 33-34% to 37-39%. The experimental portion of the project used Sandia's S-CO{sub 2} research loop to show that the as designed radial compressor could 'pump' liquid CO{sub 2} and that the gas-cooler's could 'condense' CO{sub 2} even though both of these S-CO{sub 2} components were designed to operate on vapor phase S-CO{sub 2} near the critical point. There is potentially very high value to this research as it opens the possibility of increasing LWR power cycle efficiency, above the 33-34% range, while lowering the capital cost of the power plant because of the small size of the S-CO{sub 2} power system. In addition it provides a way to incrementally build advanced LWRs that are optimally designed to couple to S-CO{sub 2} power conversion systems to increase the power cycle efficiency to near 40%.

Wright, Steven Alan; Conboy, Thomas M.; Radel, Ross F.; Rochau, Gary Eugene

2011-01-01T23:59:59.000Z

80

Increased efficiency of topping cycle PCFB power plants  

SciTech Connect (OSTI)

Pressurized circulating fluidized bed (PCFB) power plants offer the power industry significantly increased efficiencies with reduced costs of electricity and lower emissions. When topping combustion is incorporated in the plant, these advantages are enhanced. In the plant, coal is fed to a pressurized carbonizer that produces a low-Btu fuel gas and char. After passing through a cyclone and ceramic barrier filter to remove gas-entrained particulates and a packed bed of emathelite pellets to remove alkali vapors. the fuel gas is burned in a topping combustor to produce the energy required to drive a gas turbine. The gas turbine drives a generator combustor, and a fluidized bed heat exchanger (FBHE). The carbonizer char is burned in the PCFB and the exhaust gas passes through its own cyclone, ceramic barrier filter, and alkali getter and supports combustion of the fuel gas in the topping combustor. Steam generated in a heat-recovery steam generator (HRSG) downstream of the gas turbine and in the FBHE associated with the PCFB drives the steam turbine generator that furnishes the balance of electric power delivered by the plant.

Robertson, A.; Domeracki, W.; Horazak, D. [and others

1996-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "binary cycle power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Exxon Chemical's Coal-Fired Combined Cycle Power Technology  

E-Print Network [OSTI]

turbine arrangement with indirect heating of the air in the boile; convection section. The turbine exhaust is then used as pre-heated combustion air for the boiler. The air coil heats the 150 psig air from the standard gas turbine axial compressor... premium fuel (up to 2000 0 F permissible gas turbine tempera ture), CAT-PAC savings would double to 20%. Today, in an industrial coal-fired cogeneration plant, CAT-PAC can produce up to 75% more power for a given steam load, while maintaining...

Guide, J. J.

82

Combined-cycle gas and steam turbine power plants. 2. edition  

SciTech Connect (OSTI)

First published in 1991, this book is the leading reference on technical and economic factors of combined-cycle applications now leading the trend toward merchant plants and the peaking power needed in newly deregulated markets around the world, this long-awaited second edition is more important than ever. In it, Kehlhofer -- an internationally recognized authority in the field of new combined-cycle power plants -- and his co-authors widen the scope and detail found in the first edition. Included are tips on system layout, details on controls and automation, and operating instructions. Loaded with case studies, reference tables, and more than 150 figures, this text offers solid advice on system layout, controls and automation, and operating and maintenance instructions. The author provides real-world examples to apply to one`s own applications. The contents include: Introduction; The electricity market; Thermodynamic principles of combined-cycle plants; Combined-cycle concepts; Applications of combined-cycle; Components; Control and automation; Operating and part load behavior; Environmental considerations; Developmental trends; Typical combined-cycle plants already built; Conclusion; Appendices; Conversions; Calculation of the operating performance of combined-cycle installations; Definitions of terms and symbols; Bibliography; and Index.

Kehlhofer, R.; Bachmann, R.; Nielson, H.; Warner, J.

1999-01-01T23:59:59.000Z

83

Staging Rankine Cycles Using Ammonia for OTEC Power Production  

SciTech Connect (OSTI)

Recent focus on renewable power production has renewed interest in looking into ocean thermal energy conversion (OTEC) systems. Early studies in OTEC applicability indicate that the island of Hawaii offers a potential market for a nominal 40-MWe system. a 40-MWe system represents a large leap in the current state of OTEC technology. Lockheed Martin Inc. is currently pursuing a more realistic goal of developing a 10-MWe system under U.S. Navy funding (Lockheed 2009). It is essential that the potential risks associated with the first-of-its-kind plant should be minimized for the project's success. Every means for reducing costs must also be pursued without increasing risks. With this in mind, the potential for increasing return on the investment is assessed both in terms of effective use of the seawater resource and of reducing equipment costs.

Bharathan, D.

2011-03-01T23:59:59.000Z

84

Catalytic combustor for integrated gasification combined cycle power plant  

DOE Patents [OSTI]

A gasification power plant 10 includes a compressor 32 producing a compressed air flow 36, an air separation unit 22 producing a nitrogen flow 44, a gasifier 14 producing a primary fuel flow 28 and a secondary fuel source 60 providing a secondary fuel flow 62 The plant also includes a catalytic combustor 12 combining the nitrogen flow and a combustor portion 38 of the compressed air flow to form a diluted air flow 39 and combining at least one of the primary fuel flow and secondary fuel flow and a mixer portion 78 of the diluted air flow to produce a combustible mixture 80. A catalytic element 64 of the combustor 12 separately receives the combustible mixture and a backside cooling portion 84 of the diluted air flow and allows the mixture and the heated flow to produce a hot combustion gas 46 provided to a turbine 48. When fueled with the secondary fuel flow, nitrogen is not combined with the combustor portion.

Bachovchin, Dennis M. (Mauldin, SC); Lippert, Thomas E. (Murrysville, PA)

2008-12-16T23:59:59.000Z

85

Method of optimizing performance of Rankine cycle power plants. [US DOE Patent  

DOE Patents [OSTI]

A method is described for efficiently operating a Rankine cycle power plant to maximize fuel utilization efficiency or energy conversion efficiency or minimize costs by selecting a turbine fluid inlet state which is substantially on the area adjacent and including the transposed critical temperature line.

Pope, W.L.; Pines, H.S.; Doyle, P.A.; Silvester, L.F.

1980-06-23T23:59:59.000Z

86

Electric power generating plant having direct-coupled steam and compressed-air cycles  

DOE Patents [OSTI]

An electric power generating plant is provided with a Compressed Air Energy Storage (CAES) system which is directly coupled to the steam cycle of the generating plant. The CAES system is charged by the steam boiler during off peak hours, and drives a separate generator during peak load hours. The steam boiler load is thereby levelized throughout an operating day.

Drost, M.K.

1981-01-07T23:59:59.000Z

87

Electric power generating plant having direct coupled steam and compressed air cycles  

DOE Patents [OSTI]

An electric power generating plant is provided with a Compressed Air Energy Storage (CAES) system which is directly coupled to the steam cycle of the generating plant. The CAES system is charged by the steam boiler during off peak hours, and drives a separate generator during peak load hours. The steam boiler load is thereby levelized throughout an operating day.

Drost, Monte K. (Richland, WA)

1982-01-01T23:59:59.000Z

88

Life-cycle analysis results for geothermal systems in comparison to other power systems: Part II.  

SciTech Connect (OSTI)

A study has been conducted on the material demand and life-cycle energy and emissions performance of power-generating technologies in addition to those reported in Part I of this series. The additional technologies included concentrated solar power, integrated gasification combined cycle, and a fossil/renewable (termed hybrid) geothermal technology, more specifically, co-produced gas and electric power plants from geo-pressured gas and electric (GPGE) sites. For the latter, two cases were considered: gas and electricity export and electricity-only export. Also modeled were cement, steel and diesel fuel requirements for drilling geothermal wells as a function of well depth. The impact of the construction activities in the building of plants was also estimated. The results of this study are consistent with previously reported trends found in Part I of this series. Among all the technologies considered, fossil combustion-based power plants have the lowest material demand for their construction and composition. On the other hand, conventional fossil-based power technologies have the highest greenhouse gas (GHG) emissions, followed by the hybrid and then two of the renewable power systems, namely hydrothermal flash power and biomass-based combustion power. GHG emissions from U.S. geothermal flash plants were also discussed, estimates provided, and data needs identified. Of the GPGE scenarios modeled, the all-electric scenario had the highest GHG emissions. Similar trends were found for other combustion emissions.

Sullivan, J.L.; Clark, C.E.; Yuan, L.; Han, J.; Wang, M. (Energy Systems)

2012-02-08T23:59:59.000Z

89

Novel Supercritical Carbon Dioxide Power Cycle Utilizing Pressured Oxy-combustion in Conjunction with Cryogenic Compression  

SciTech Connect (OSTI)

The team of Southwest Research Institute® (SwRI) and Thar Energy LLC (Thar) applied technology engineering and economic analysis to evaluate two advanced oxy-combustion power cycles, the Cryogenic Pressurized Oxy-combustion Cycle (CPOC), and the Supercritical Oxy-combustion Cycle. This assessment evaluated the performance and economic cost of the two proposed cycles with carbon capture, and included a technology gap analysis of the proposed technologies to determine the technology readiness level of the cycle and the cycle components. The results of the engineering and economic analysis and the technology gap analysis were used to identify the next steps along the technology development roadmap for the selected cycle. The project objectives, as outlined in the FOA, were 90% CO{sub 2} removal at no more than a 35% increase in cost of electricity (COE) as compared to a Supercritical Pulverized Coal Plant without CO{sub 2} capture. The supercritical oxy-combustion power cycle with 99% carbon capture achieves a COE of $121/MWe. This revised COE represents a 21% reduction in cost as compared to supercritical steam with 90% carbon capture ($137/MWe). However, this represents a 49% increase in the COE over supercritical steam without carbon capture ($80.95/MWe), exceeding the 35% target. The supercritical oxy-combustion cycle with 99% carbon capture achieved a 37.9% HHV plant efficiency (39.3% LHV plant efficiency), when coupling a supercritical oxy-combustion thermal loop to an indirect supercritical CO{sub 2} (sCO{sub 2}) power block. In this configuration, the power block achieved 48% thermal efficiency for turbine inlet conditions of 650°C and 290 atm. Power block efficiencies near 60% are feasible with higher turbine inlet temperatures, however a design tradeoff to limit firing temperature to 650°C was made in order to use austenitic stainless steels for the high temperature pressure vessels and piping and to minimize the need for advanced turbomachinery features such as blade cooling. The overall technical readiness of the supercritical oxy-combustion cycle is TRL 2, Technology Concept, due to the maturity level of the supercritical oxy-combustor for solid fuels, and several critical supporting components, as identified in the Technical Gap Analysis. The supercritical oxycombustor for solid fuels operating at pressures near 100 atm is a unique component of the supercritical oxy-combustion cycle. In addition to the low TRL supercritical oxy-combustor, secondary systems were identified that would require adaptation for use with the supercritical oxycombustion cycle. These secondary systems include the high pressure pulverized coal feed, high temperature cyclone, removal of post-combustion particulates from the high pressure cyclone underflow stream, and micro-channel heat exchangers tolerant of particulate loading. Bench scale testing was utilized to measure coal combustion properties at elevated pressures in a CO{sub 2} environment. This testing included coal slurry preparation, visualization of coal injection into a high pressure fluid, and modification of existing test equipment to facilitate the combustion properties testing. Additional bench scale testing evaluated the effectiveness of a rotary atomizer for injecting a coal-water slurry into a fluid with similar densities, as opposed to the typical application where the high density fluid is injected into a low density fluid. The swirl type supercritical oxy-combustor was developed from initial concept to an advanced design stage through numerical simulation using FLUENT and Chemkin to model the flow through the combustor and provide initial assessment of the coal combustion reactions in the flow path. This effort enabled the initial combustor mechanical layout, initial pressure vessel design, and the conceptual layout of a pilot scale test loop. A pilot scale demonstration of the supercritical oxy-combustion cycle is proposed as the next step in the technology development. This demonstration would advance the supercritical oxy-combustion cycle and the supercritical

Brun, Klaus; McClung, Aaron; Davis, John

2014-03-31T23:59:59.000Z

90

Constant power cycling for accelerated ageing of supercapacitors Kreczanik Paul, Martin Christian, Venet Pascal, Clerc Guy, Rojat Gerard, Zitouni Younes  

E-Print Network [OSTI]

Constant power cycling for accelerated ageing of supercapacitors Kreczanik Paul, Martin Christian the competitive pole (Lyon Urban Truck and Bus 2015). Keywords «Supercapacitor», «Power cycling», «Lifetime», «Accelerated ageing», «Ageing law» Abstract This paper deals with the lifetime of supercapacitors used

Paris-Sud XI, Université de

91

Implications of Near-Term Coal Power Plant Retirement for SO2 and NOX and Life Cycle GHG Emissions  

E-Print Network [OSTI]

Implications of Near-Term Coal Power Plant Retirement for SO2 and NOX and Life Cycle GHG Emissions emissions in the U.S. will likely result in coal plant retirement in the near-term. Life cycle assessment for electricity generation, by comparing systems that consist of individual natural gas and coal power plants

Jaramillo, Paulina

92

Production cost and air emissions impacts of coal cycling in power systems with large-scale wind penetration  

E-Print Network [OSTI]

Production cost and air emissions impacts of coal cycling in power systems with large-scale wind emissions impacts of coal cycling in power systems with large-scale wind penetration David Luke Oates, and SO2 emissions as well as for the profitability of coal plants, as calculated by our dispatch model

Jaramillo, Paulina

93

Life Cycle Greenhouse Gas Emissions of Utility-Scale Wind Power: Systematic Review and Harmonization  

SciTech Connect (OSTI)

A systematic review and harmonization of life cycle assessment (LCA) literature of utility-scale wind power systems was performed to determine the causes of and, where possible, reduce variability in estimates of life cycle greenhouse gas (GHG) emissions. Screening of approximately 240 LCAs of onshore and offshore systems yielded 72 references meeting minimum thresholds for quality, transparency, and relevance. Of those, 49 references provided 126 estimates of life cycle GHG emissions. Published estimates ranged from 1.7 to 81 grams CO{sub 2}-equivalent per kilowatt-hour (g CO{sub 2}-eq/kWh), with median and interquartile range (IQR) both at 12 g CO{sub 2}-eq/kWh. After adjusting the published estimates to use consistent gross system boundaries and values for several important system parameters, the total range was reduced by 47% to 3.0 to 45 g CO{sub 2}-eq/kWh and the IQR was reduced by 14% to 10 g CO{sub 2}-eq/kWh, while the median remained relatively constant (11 g CO{sub 2}-eq/kWh). Harmonization of capacity factor resulted in the largest reduction in variability in life cycle GHG emission estimates. This study concludes that the large number of previously published life cycle GHG emission estimates of wind power systems and their tight distribution suggest that new process-based LCAs of similar wind turbine technologies are unlikely to differ greatly. However, additional consequential LCAs would enhance the understanding of true life cycle GHG emissions of wind power (e.g., changes to other generators operations when wind electricity is added to the grid), although even those are unlikely to fundamentally change the comparison of wind to other electricity generation sources.

Dolan, S. L.; Heath, G. A.

2012-04-01T23:59:59.000Z

94

Cycle Evaluations of Reversible Chemical Reactions for Solar Thermochemical Energy Storage in Support of Concentrating Solar Power Generation Systems  

SciTech Connect (OSTI)

The production and storage of thermochemical energy is a possible route to increase capacity factors and reduce the Levelized Cost of Electricity from concentrated solar power generation systems. In this paper, we present the results of cycle evaluations for various thermochemical cycles, including a well-documented ammonia closed-cycle along with open- and closed-cycle versions of hydrocarbon chemical reactions. Among the available reversible hydrocarbon chemical reactions, catalytic reforming-methanation cycles are considered; specifically, various methane-steam reforming cycles are compared to the ammonia cycle. In some cases, the production of an intermediate chemical, methanol, is also included with some benefit being realized. The best case, based on overall power generation efficiency and overall plant capacity factor, was found to be an open cycle including methane-steam reforming, using concentrated solar energy to increase the chemical energy content of the reacting stream, followed by combustion to generate heat for the heat engine.

Krishnan, Shankar; Palo, Daniel R.; Wegeng, Robert S.

2010-07-25T23:59:59.000Z

95

Optimization of waste heat recovery boiler of a combined cycle power plant  

SciTech Connect (OSTI)

This paper describes the details of a procedure developed for optimization of a waste heat recovery boiler (WHRB) of a combined cycle power plant (CCPP) using the program for performance prediction of a typical CCPP, details of which have been presented elsewhere (Seyedan et al., 1994). In order to illustrate the procedure, the optimum design of a WHRB for a typical CCPP (employing dual-pressure bottoming cycle) built by a prominent Indian company, has been carried out. The present design of a WHRB is taken as the base design and the newer designs generated by this procedure are compared with it to assess the extent of cost reduction possible.

Seyedan, B.; Dhar, P.L.; Gaur, R.R. [Indian Inst. of Tech., New Delhi (India). Dept. of Mechanical Engineering; Bindra, G.S. [Bharat Heavy Electrical Ltd., New Delhi (India)

1996-07-01T23:59:59.000Z

96

Advanced fusion MHD power conversion using the CFAR (compact fusion advanced Rankine) cycle concept  

SciTech Connect (OSTI)

The CFAR (compact fusion advanced Rankine) cycle concept for a tokamak reactor involves the use of a high-temperature Rankine cycle in combination with microwave superheaters and nonequilibrium MHD disk generators to obtain a compact, low-capital-cost power conversion system which fits almost entirely within the reactor vault. The significant savings in the balance-of-plant costs are expected to result in much lower costs of electricity than previous concepts. This paper describes the unique features of the CFAR cycle and a high- temperature blanket designed to take advantage of it as well as the predicted performance of the MHD disk generators using mercury seeded with cesium. 40 refs., 8 figs., 3 tabs.

Hoffman, M.A.; Campbell, R.; Logan, B.G. (California Univ., Davis, CA (USA); Lawrence Livermore National Lab., CA (USA))

1988-10-01T23:59:59.000Z

97

Next Generation Geothermal Power Plants  

SciTech Connect (OSTI)

A number of current and prospective power plant concepts were investigated to evaluate their potential to serve as the basis of the next generation geothermal power plant (NGGPP). The NGGPP has been envisaged as a power plant that would be more cost competitive (than current geothermal power plants) with fossil fuel power plants, would efficiently use resources and mitigate the risk of reservoir under-performance, and minimize or eliminate emission of pollutants and consumption of surface and ground water. Power plant concepts were analyzed using resource characteristics at ten different geothermal sites located in the western United States. Concepts were developed into viable power plant processes, capital costs were estimated and levelized busbar costs determined. Thus, the study results should be considered as useful indicators of the commercial viability of the various power plants concepts that were investigated. Broadly, the different power plant concepts that were analyzed in this study fall into the following categories: commercial binary and flash plants, advanced binary plants, advanced flash plants, flash/binary hybrid plants, and fossil/geothed hybrid plants. Commercial binary plants were evaluated using commercial isobutane as a working fluid; both air-cooling and water-cooling were considered. Advanced binary concepts included cycles using synchronous turbine-generators, cycles with metastable expansion, and cycles utilizing mixtures as working fluids. Dual flash steam plants were used as the model for the commercial flash cycle. The following advanced flash concepts were examined: dual flash with rotary separator turbine, dual flash with steam reheater, dual flash with hot water turbine, and subatmospheric flash. Both dual flash and binary cycles were combined with other cycles to develop a number of hybrid cycles: dual flash binary bottoming cycle, dual flash backpressure turbine binary cycle, dual flash gas turbine cycle, and binary gas turbine cycle. Results of this study indicate that dual flash type plants are preferred at resources with temperatures above 400 F. Closed loop (binary type) plants are preferred at resources with temperatures below 400 F. A rotary separator turbine upstream of a dual flash plant can be beneficial at Salton Sea, the hottest resource, or at high temperature resources where there is a significant variance in wellhead pressures from well to well. Full scale demonstration is required to verify cost and performance. Hot water turbines that recover energy from the spent brine in a dual flash cycle improve that cycle's brine efficiency. Prototype field tests of this technology have established its technical feasibility. If natural gas prices remain low, a combustion turbine/binary hybrid is an economic option for the lowest temperature sites. The use of mixed fluids appear to be an attractive low risk option. The synchronous turbine option as prepared by Barber-Nichols is attractive but requires a pilot test to prove cost and performance. Dual flash binary bottoming cycles appear promising provided that scaling of the brine/working fluid exchangers is controllable. Metastable expansion, reheater, Subatmospheric flash, dual flash backpressure turbine, and hot dry rock concepts do not seem to offer any cost advantage over the baseline technologies. If implemented, the next generation geothermal power plant concept may improve brine utilization but is unlikely to reduce the cost of power generation by much more than 10%. Colder resources will benefit more from the development of a next generation geothermal power plant than will hotter resources. All values presented in this study for plant cost and for busbar cost of power are relative numbers intended to allow an objective and meaningful comparison of technologies. The goal of this study is to assess various technologies on an common basis and, secondarily, to give an approximate idea of the current costs of the technologies at actual resource sites. Absolute costs at a given site will be determined by the specifics of a given pr

Brugman, John; Hattar, Mai; Nichols, Kenneth; Esaki, Yuri

1995-09-01T23:59:59.000Z

98

Hybrid Cooling for Geothermal Power Plants: Final ARRA Project...  

Office of Scientific and Technical Information (OSTI)

(NREL) at www.nrel.govpublications. Executive Summary Many binary-cycle geothermal power plants use air as the heat rejection medium. An air-cooled condenser (ACC) system is...

99

Is Integrated Gasification Combined Cycle with Carbon Capture-Storage the Solution for Conventional Coal Power Plants  

E-Print Network [OSTI]

? Nuclear Power Plants ? Solar Power Plants ? Wind Power Plants ? Geothermal Power Plants 1.2.2 Based on the Function Performed Three main types of power plants are categorized according to the functions they perform. These are called “base load..., Temperature and Efficiency for PC Technologies. Reprinted from Hermine Nalbandian 2009. Energia – Center for Applied Energy Research With the extensive favorable experience in Europe, Japan and Korea using supercritical (SC) steam cycles over the past...

Kundi, Manish

2011-12-16T23:59:59.000Z

100

Effect of Gas Turbine Exhaust Temperature, Stack Temperature and Ambient Temperature on Overall Efficiency of Combine Cycle Power Plant  

E-Print Network [OSTI]

Abstract—The gas turbine exhaust temperature, stack temperature and ambient temperature play a very important role during the predication of the performance of combine cycle power plant. This paper covers parametric analysis of effects of gas turbine exhaust temperature, stack temperature and ambient temperature on the overall efficiency of combine cycle power plant keeping the gas turbine efficiency as well as steam turbine efficiency constant. The results shows that out of three variables i.e. turbine exhaust temperature, stack temperature and ambient temperature, the most dominating factor of increasing the overall efficiency of the combine cycle power plant is the stack temperature.

unknown authors

Note: This page contains sample records for the topic "binary cycle power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Nuclear Power and Its Fuel Cycle No technological system more dramatically illustrates the central themes of this book-  

E-Print Network [OSTI]

109 7 Nuclear Power and Its Fuel Cycle No technological system more dramatically illustrates of ignoring the social, political, and environmental dimensions of innovation - than nuclear power. Once widely seen as an energy source of almost unlimited potential, nuclear power is today expanding in just

Kammen, Daniel M.

102

ECONOMICS AND FEASIBILITY OF RANKINE CYCLE IMPROVEMENTS FOR COAL FIRED POWER PLANTS  

SciTech Connect (OSTI)

ALSTOM Power Inc.'s Power Plant Laboratories (ALSTOM) has teamed with the U.S. Department of Energy National Energy Technology Laboratory (DOE NETL), American Electric Company (AEP) and Parsons Energy and Chemical Group to conduct a comprehensive study evaluating coal fired steam power plants, known as Rankine Cycles, equipped with three different combustion systems: Pulverized Coal (PC), Circulating Fluidized Bed (CFB), and Circulating Moving Bed (CMB{trademark}). Five steam cycles utilizing a wide range of steam conditions were used with these combustion systems. The motivation for this study was to establish through engineering analysis, the most cost-effective performance potential available through improvement in the Rankine Cycle steam conditions and combustion systems while at the same time ensuring that the most stringent emission performance based on CURC (Coal Utilization Research Council) 2010 targets are met: > 98% sulfur removal; < 0.05 lbm/MM-Btu NO{sub x}; < 0.01 lbm/MM-Btu Particulate Matter; and > 90% Hg removal. The final report discusses the results of a coal fired steam power plant project, which is comprised of two parts. The main part of the study is the analysis of ten (10) Greenfield steam power plants employing three different coal combustion technologies: Pulverized Coal (PC), Circulating Fluidized Bed (CFB), and Circulating Moving Bed (CMB{trademark}) integrated with five different steam cycles. The study explores the technical feasibility, thermal performance, environmental performance, and economic viability of ten power plants that could be deployed currently, in the near, intermediate, and long-term time frame. For the five steam cycles, main steam temperatures vary from 1,000 F to 1,292 F and pressures from 2,400 psi to 5,075 psi. Reheat steam temperatures vary from 1,000 F to 1,328 F. The number of feedwater heaters varies from 7 to 9 and the associated feedwater temperature varies from 500 F to 626 F. The main part of the study therefore determines the steam cycle parameters and combustion technology that would yield the lowest cost of electricity (COE) for the next generation of coal-fired steam power plants. The second part of the study (Repowering) explores the means of upgrading the efficiency and output of an older existing coal fired steam power plant. There are currently more than 1,400 coal-fired units in operation in the United States generating about 54 percent of the electricity consumed. Many of these are modern units are clean and efficient. Additionally, there are many older units in excellent condition and still in service that could benefit from this repowering technology. The study evaluates the technical feasibility, thermal performance, and economic viability of this repowering concept.

Richard E. Waryasz; Gregory N. Liljedahl

2004-09-08T23:59:59.000Z

103

Air bottoming cycle: Use of gas turbine waste heat for power generation  

SciTech Connect (OSTI)

This paper presents a thermodynamic analysis of the Air Bottoming Cycle (ABC) as well as the results of a feasibility study for using the Air Bottoming Cycle for gas turbine waste heat recovery/power generation on oil/gas platforms in the North Sea. The basis for the feasibility study was to utilize the exhaust gas heat from an LM2500PE gas turbine. Installation of the ABC on both a new and an existing platform have been considered. A design reference case is presented, and the recommended ABC is a two-shaft engine with two compressor intercoolers. The compression pressure ratio was found optimal at 8:1. The combined gas turbine and ABC shaft efficiency wa/s calculated to 46.6 percent. The LM2500PE gas turbine contributes with 36.1 percent while the ABC adds 10.5 percent points to the gas turbine efficiency. The ABC shaft power output is 6.6 MW when utilizing the waste heat of an LM2500PE gas turbine. A preliminary thermal and hydraulic design of the ABC main components (compressor, turbine, intercoolers, and recuperator) was carried out. The recuperator is the largest and heaviest component (45 tons). A weight and cost breakdown of the ABC is presented. The total weight of the ABC package was calculated to 154 metric tons, and the ABC package cost to 9.4 million US$. An economical examination for three different cases was carried out. The results show that the ABC alternative (LM2500PE + ABC) is economical, with a rather good margin, compared to the other alternatives. The conclusion is that the Air Bottoming Cycle is an economical alternative for power generation on both new platforms and on existing platforms with demand for more power.

Bolland, O.; Foerde, M. [Norwegian Univ. of Science and Technology, Trondheim (Norway). Div. of Thermal Energy and Hydropower; Haande, B. [Oil Engineering Consultants, Sandvika (Norway)

1996-04-01T23:59:59.000Z

104

Numerical relativity reaching into post-Newtonian territory: a compact-object binary simulation spanning 350 gravitational-wave cycles  

E-Print Network [OSTI]

We present the first numerical-relativity simulation of a compact-object binary whose gravitational waveform is long enough to cover the entire frequency band of advanced gravitational-wave detectors, such as LIGO, Virgo and KAGRA, for mass ratio 7 and total mass as low as $45.5\\,M_\\odot$. We find that effective-one-body models, either uncalibrated or calibrated against substantially shorter numerical-relativity waveforms at smaller mass ratios, reproduce our new waveform remarkably well, with a negligible loss in detection rate due to modeling error. In contrast, post-Newtonian inspiral waveforms and existing calibrated phenomenological inspiral-merger-ringdown waveforms display greater disagreement with our new simulation. The disagreement varies substantially depending on the specific post-Newtonian approximant used.

Szilagyi, Bela; Buonanno, Alessandra; Taracchini, Andrea; Pfeiffer, Harald P; Scheel, Mark A; Chu, Tony; Kidder, Lawrence E; Pan, Yi

2015-01-01T23:59:59.000Z

105

Numerical relativity reaching into post-Newtonian territory: a compact-object binary simulation spanning 350 gravitational-wave cycles  

E-Print Network [OSTI]

We present the first numerical-relativity simulation of a compact-object binary whose gravitational waveform is long enough to cover the entire frequency band of advanced gravitational-wave detectors, such as LIGO, Virgo and KAGRA, for mass ratio 7 and total mass as low as $45.5\\,M_\\odot$. We find that effective-one-body models, either uncalibrated or calibrated against substantially shorter numerical-relativity waveforms at smaller mass ratios, reproduce our new waveform remarkably well, with a negligible loss in detection rate due to modeling error. In contrast, post-Newtonian inspiral waveforms and existing calibrated phenomenological inspiral-merger-ringdown waveforms display greater disagreement with our new simulation. The disagreement varies substantially depending on the specific post-Newtonian approximant used.

Bela Szilagyi; Jonathan Blackman; Alessandra Buonanno; Andrea Taracchini; Harald P. Pfeiffer; Mark A. Scheel; Tony Chu; Lawrence E. Kidder; Yi Pan

2015-02-17T23:59:59.000Z

106

Dynamic modeling and control strategies for a micro-CSP plant with thermal storage powered by the Organic Rankine cycle  

E-Print Network [OSTI]

Organic Rankine cycle (ORC) systems are gaining ground as a means of effectively providing sustainable energy. Coupling small-scale ORCs powered by scroll expander- generators with solar thermal collectors and storage can ...

Ireland, Melissa Kara

2014-01-01T23:59:59.000Z

107

A 48-month extended fuel cycle for the B and W mPower{sup TM} small modular nuclear reactor  

SciTech Connect (OSTI)

The B and W mPower{sup TM} reactor is a small, rail-shippable pressurized water reactor (PWR) with an integral once-through steam generator and an electric power output of 150 MW, which is intended to replace aging fossil power plants of similar output. The core is composed of 69 reduced-height, but otherwise standard, PWR assemblies with the familiar 17 x 17 fuel rod array on a 21.5 cm inter-assembly pitch. The B and W mPower core design and cycle management plan, which were performed using the Studsvik core design code suite, follow the pattern of a typical nuclear reactor fuel cycle design and analysis performed by most nuclear fuel management organizations, such as fuel vendors and utilities. However, B and W is offering a core loading and cycle management plan for four years of continuous power operations without refueling and without the hurdles of chemical shim. (authors)

Erighin, M. A. [Babcock and Wilcox Company, 109 Ramsey Place, Lynchburg, VA 24502 (United States)

2012-07-01T23:59:59.000Z

108

KEPLER CYCLE 1 OBSERVATIONS OF LOW-MASS STARS: NEW ECLIPSING BINARIES, SINGLE STAR ROTATION RATES, AND THE NATURE AND FREQUENCY OF STARSPOTS  

SciTech Connect (OSTI)

We have analyzed Kepler light curves for 849 stars with T{sub eff} {<=} 5200 K from our Cycle 1 Guest Observer program. We identify six new eclipsing binaries, one of which has an orbital period of 29.91 days and two of which are probably W UMa variables. In addition, we identify a candidate 'warm Jupiter' exoplanet. We further examine a subset of 670 sources for variability. Of these objects, 265 stars clearly show periodic variability that we assign to rotation of the low-mass star. At the photometric precision level provided by Kepler, 251 of our objects showed no evidence for variability. We were unable to determine periods for 154 variable objects. We find that 79% of stars with T{sub eff} {<=} 5200 K are variable. The rotation periods we derive for the periodic variables span the range 0.31 days {<=} P{sub rot} {<=} 126.5 days. A considerable number of stars with rotation periods similar to the solar value show activity levels that are 100 times higher than the Sun. This is consistent with results for solar-like field stars. As has been found in previous studies, stars with shorter rotation periods generally exhibit larger modulations. This trend flattens beyond P{sub rot} = 25 days, demonstrating that even long-period binaries may still have components with high levels of activity and investigating whether the masses and radii of the stellar components in these systems are consistent with stellar models could remain problematic. Surprisingly, our modeling of the light curves suggests that the active regions on these cool stars are either preferentially located near the rotational poles, or that there are two spot groups located at lower latitudes, but in opposing hemispheres.

Harrison, T. E.; Coughlin, J. L.; Ule, N. M. [Department of Astronomy, New Mexico State University, Box 30001, MSC 4500, Las Cruces, NM 88003-8001 (United States); Lopez-Morales, M., E-mail: tharriso@nmsu.edu, E-mail: jlcough@nmsu.edu, E-mail: nmule@nmsu.edu, E-mail: mlopez@ieec.uab.es [Institut de Ciencies de L'Espai (CSIC-IEEC), Campus UAB, Fac. Ciencies. Torre C5 parell 2, 08193 Bellaterra, Barcelona (Spain)

2012-01-15T23:59:59.000Z

109

Metal corrosion in a supercritical carbon dioxide - liquid sodium power cycle.  

SciTech Connect (OSTI)

A liquid sodium cooled fast reactor coupled to a supercritical carbon dioxide Brayton power cycle is a promising combination for the next generation nuclear power production process. For optimum efficiency, a microchannel heat exchanger, constructed by diffusion bonding, can be used for heat transfer from the liquid sodium reactor coolant to the supercritical carbon dioxide. In this work, we have reviewed the literature on corrosion of metals in liquid sodium and carbon dioxide. The main conclusions are (1) pure, dry CO{sub 2} is virtually inert but can be highly corrosive in the presence of even ppm concentrations of water, (2) carburization and decarburization are very significant mechanism for corrosion in liquid sodium especially at high temperature and the mechanism is not well understood, and (3) very little information could be located on corrosion of diffusion bonded metals. Significantly more research is needed in all of these areas.

Moore, Robert Charles; Conboy, Thomas M.

2012-02-01T23:59:59.000Z

110

The Nuclear Cycle that Powers the Stars: Fusion, Gravitational Collapse and Dissociation  

E-Print Network [OSTI]

The finding of an unexpectedly large source of energy from repulsive interactions between neutrons in the 2,850 known nuclides has challenged the assumption that H-fusion is the main source of energy that powers the Sun and other stars. Neutron repulsion in compact objects produced by the collapse of stars and collisions between galaxies may power more energetic cosmological events (quasars, gamma ray bursts, and active galactic centers) that had been attributed to black holes before neutron repulsion was recognized. On a cosmological scale, nuclear matter cycles between fusion, gravitational collapse, and dissociation (including neutron emission) rather than evolve in one direction by fusion. The similarity Bohr noted between atomic and planetary structures may extend to a similarity nuclear and stellar structures.

O. Manuel; Michael Mozina; Hilton Ratcliffe

2005-11-12T23:59:59.000Z

111

Application of the integrated gasification combined cycle technology and BGL gasification design for power generation  

SciTech Connect (OSTI)

Integrated gasification combined cycle (IGCC) technology promises to be the power generation technology of choice in the late 1990s and beyond. Based on the principle that almost any fuel can be burned more cleanly and efficiently if first turned into a gas, an IGCC plant extracts more electricity from a ton of coal by burning it as a gas in a turbine rather than as a solid in a boiler. Accordingly, coal gasification is the process of converting coal to a clean-burning synthetic gas. IGCC technology is the integration of the coal-gasification plant with a conventional combined-cycle plant to produce electricity. The benefits of this technology merger are many and result in a highly efficient and environmentally superior energy production facility. The lGCC technology holds significant implications for Asia-Pacific countries and for other parts of the world. High-growth regions require additional baseload capacity. Current low prices for natural gas and minimal emissions that result from its use for power generation favor its selection as the fuel source for new power generation capacity. However, fluctuations in fuel price and fuel availability are undermining the industry`s confidence in planning future capacity based upon gas-fueled generation. With the world`s vast coal reserves, there is a continuing effort to provide coal-fueled power generation technologies that use coal cleanly and efficiently. The lGCC technology accomplishes this objective. This chapter provides a summary of the status of lGCC technology and lGCC projects known to date. It also will present a technical overview of the British Gas/Lurgi (BGL) technology, one of the leading and most promising coal gasifier designs.

Edmonds, R.F. Jr.; Hulkowich, G.J.

1993-12-31T23:59:59.000Z

112

Kepler Cycle 1 Observations of Low Mass Stars: New Eclipsing Binaries, Single Star Rotation Rates, and the Nature and Frequency of Starspots  

E-Print Network [OSTI]

We have analyzed Kepler light curves for 849 stars with T_eff < 5200 K from our Cycle 1 Guest Observer program. We identify six new eclipsing binaries, one of which has an orbital period of 29.91 d, and two of which are probably W UMa variables. In addition, we identify a candidate "warm Jupiter" exoplanet. We further examine a subset of 670 sources for variability. Of these objects, 265 stars clearly show periodic variability that we assign to rotation of the low-mass star. At the photometric precision level provided by Kepler, 251 of our objects showed no evidence for variability. We were unable to determine periods for 154 variable objects. We find that 79% of stars with T_eff < 5200 K are variable. The rotation periods we derive for the periodic variables span the range 0.31 < P_rot < 126.5 d. A considerable number of stars with rotation periods similar to the solar value show activity levels that are 100 times higher than the Sun. This is consistent with results for solar-like field stars. As...

Harrison, T E; Ule, N M; Lopez-Morales, M

2011-01-01T23:59:59.000Z

113

ENERGY-DEPENDENT POWER SPECTRAL STATES AND ORIGIN OF APERIODIC VARIABILITY IN BLACK HOLE BINARIES  

SciTech Connect (OSTI)

We found that the black hole candidate MAXI J1659-152 showed distinct power spectra, i.e., power-law noise (PLN) versus band-limited noise (BLN) plus quasi-periodic oscillations (QPOs) below and above about 2 keV, respectively, in observations with Swift and the Rossi X-ray Timing Explorer during the 2010 outburst, indicating a high energy cutoff of the PLN and a low energy cutoff of the BLN and QPOs around 2 keV. The emergence of the PLN and the fading of the BLN and QPOs initially took place below 2 keV when the source entered the hard intermediate state and settled in the soft state three weeks later. The evolution was accompanied by the emergence of the disk spectral component and decreases in the amplitudes of variability in the soft and hard X-ray bands. Our results indicate that the PLN is associated with an optically thick disk in both hard and intermediate states, and the power spectral state is independent of the X-ray energy spectral state in a broadband view. We suggest that in the hard or intermediate state, the BLN and QPOs emerge from the innermost hot flow subjected to Comptonization, while the PLN originates from the optically thick disk farther out. The energy cutoffs of the PLN and the BLN or QPOs then follow the temperature of the seed photons from the inner edge of the optically thick disk, while the high frequency cutoff of the PLN follows the orbital frequency of the inner edge of the optically thick disk as well.

Yu Wenfei; Zhang Wenda, E-mail: wenfei@shao.ac.cn [Key Laboratory for Research in Galaxies and Cosmology, Shanghai Astronomical Observatory, Chinese Academy of Sciences, 80 Nandan Road, Shanghai 200030 (China)

2013-06-20T23:59:59.000Z

114

Microalgae Production from Power Plant Flue Gas: Environmental Implications on a Life Cycle Basis  

SciTech Connect (OSTI)

Power-plant flue gas can serve as a source of CO{sub 2} for microalgae cultivation, and the algae can be cofired with coal. This life cycle assessment (LCA) compared the environmental impacts of electricity production via coal firing versus coal/algae cofiring. The LCA results demonstrated lower net values for the algae cofiring scenario for the following using the direct injection process (in which the flue gas is directly transported to the algae ponds): SOx, NOx, particulates, carbon dioxide, methane, and fossil energy consumption. Carbon monoxide, hydrocarbons emissions were statistically unchanged. Lower values for the algae cofiring scenario, when compared to the burning scenario, were observed for greenhouse potential and air acidification potential. However, impact assessment for depletion of natural resources and eutrophication potential showed much higher values. This LCA gives us an overall picture of impacts across different environmental boundaries, and hence, can help in the decision-making process for implementation of the algae scenario.

Kadam, K. L.

2001-06-22T23:59:59.000Z

115

Meta-Analysis of Estimates of Life Cycle Greenhouse Gas Emissions from Concentrating Solar Power: Preprint  

SciTech Connect (OSTI)

In reviewing life cycle assessment (LCA) literature of utility-scale CSP systems, this analysis focuses on clarifying central tendency and reducing variability in estimates of life cycle greenhouse gas (GHG) emissions through a meta-analytical process called harmonization. From 125 references reviewed, 10 produced 36 independent GHG emission estimates passing screens for quality and relevance: 19 for parabolic trough technology and 17 for power tower technology. The interquartile range (IQR) of published GHG emission estimates was 83 and 20 g CO2eq/kWh for trough and tower, respectively, with medians of 26 and 38 g CO2eq/kWh. Two levels of harmonization were applied. Light harmonization reduced variability in published estimates by using consistent values for key parameters pertaining to plant design and performance. Compared to the published estimates, IQR was reduced by 69% and median increased by 76% for troughs. IQR was reduced by 26% for towers, and median was reduced by 34%. A second level of harmonization was applied to five well-documented trough LC GHG emission estimates, harmonizing to consistent values for GHG emissions embodied in materials and from construction activities. As a result, their median was further reduced by 5%, while the range increased by 6%. In sum, harmonization clarified previous results.

Heath, G. A.; Burkhardt, J. J.

2011-09-01T23:59:59.000Z

116

Life Cycle Assessment of a Parabolic Trough Concentrating Solar Power Plant and Impacts of Key Design Alternatives: Preprint  

SciTech Connect (OSTI)

Climate change and water scarcity are important issues for today's power sector. To inform capacity expansion decisions, hybrid life cycle assessment is used to evaluate a reference design of a parabolic trough concentrating solar power (CSP) facility located in Daggett, California, along four sustainability metrics: life cycle greenhouse gas (GHG) emissions, water consumption, cumulative energy demand (CED), and energy payback time (EPBT). This wet-cooled, 103 MW plant utilizes mined nitrate salts in its two-tank, thermal energy storage (TES) system. Design alternatives of dry-cooling, a thermocline TES, and synthetically-derived nitrate salt are evaluated. During its life cycle, the reference CSP plant is estimated to emit 26 g CO2eq per kWh, consume 4.7 L/kWh of water, and demand 0.40 MJeq/kWh of energy, resulting in an EPBT of approximately 1 year. The dry-cooled alternative is estimated to reduce life cycle water consumption by 77% but increase life cycle GHG emissions and CED by 8%. Synthetic nitrate salts may increase life cycle GHG emissions by 52% compared to mined. Switching from two-tank to thermocline TES configuration reduces life cycle GHG emissions, most significantly for plants using synthetically-derived nitrate salts. CSP can significantly reduce GHG emissions compared to fossil-fueled generation; however, dry-cooling may be required in many locations to minimize water consumption.

Heath, G. A.; Burkhardt, J. J.; Turchi, C. S.

2011-09-01T23:59:59.000Z

117

Watts Bar Unit 1 Cycle Zero Power Physics Tests Analysis with VERA-CS  

SciTech Connect (OSTI)

The Consortium for Advanced Simulation of Light Water Reactors (CASL) is developing a collection of methods and software products known as VERA, the Virtual Environment for Reactor Applications, including a core simulation capability called VERA-CS. A key milestone for this endeavor is to validate VERA against measurements from operating nuclear power reactors. The first step in validation against plant data is to determine the ability of VERA to accurately simulate the initial startup physics tests for Watts Bar Nuclear Power Station, Unit 1 (WBN1) cycle 1. VERA-CS calculations were performed with the Insilico code developed at ORNL using cross section processing from the SCALE system and the transport capabilities within the Denovo transport code using the SPN method. The calculations were performed with ENDF/B-VII.0 cross sections in 252 groups (collapsed to 23 groups for the 3D transport solution). The key results of the comparison of calculations with measurements include initial criticality, control rod worth critical configurations, control rod worth, differential boron worth, and isothermal temperature reactivity coefficient (ITC). The VERA results for these parameters show good agreement with measurements, with the exception of the ITC, which requires additional investigation. Results are also compared to those obtained with Monte Carlo methods and a current industry core simulator.

Gehin, Jess C [ORNL; Godfrey, Andrew T [ORNL; Evans, Thomas M [ORNL; Hamilton, Steven P [ORNL; Francheschini, F. [Westinghouse Electric Company, Cranberry Township

2014-01-01T23:59:59.000Z

118

Variation in p-mode power over solar cycle 23 as seen from BiSON and GOLF observations  

E-Print Network [OSTI]

We analyzed BiSON and GOLF/SoHO data with a new technique, to investigate p-mode power variation over solar cycle 23. We found a decrease in the mean velocity power of about 20% for BiSON during the ascending phase, in agreement with previous findings. We also found that GOLF, during the red-wing configuration, seems to be working at a different height than the theoretically computed one.

R. Simoniello; D. Salabert; R. A. Garcia

2008-10-10T23:59:59.000Z

119

Did geomagnetic activity challenge electric power reliability during solar cycle 23? Evidence from the PJM regional transmission  

E-Print Network [OSTI]

Did geomagnetic activity challenge electric power reliability during solar cycle 23? Evidence from through 30 April 2004. During this time period PJM coordinated the movement of wholesale electricity of challenged reliability is the incidence of out-of-economic-merit order dispatching due to adverse reactive

Schrijver, Karel

120

An extended conventional fuel cycle for the B and W mPower{sup TM} small modular nuclear reactor  

SciTech Connect (OSTI)

The B and W mPower{sup TM} reactor is a small pressurized water reactor (PWR) with an integral once-through steam generator and a thermal output of about 500 MW; it is intended to replace aging fossil power plants of similar output. The core is composed of 69 reduced-height PWR assemblies with the familiar 17 x 17 fuel rod array. The Babcock and Wilcox Company (B and W) is offering a core loading and cycle management plan for a four-year cycle based on its presumed attractiveness to potential customers. This option is a once-through fuel cycle in which the entire core is discharged and replaced after four years. In addition, a conventional fuel utilization strategy, employing a periodic partial reload and shuffle, was developed as an alternative to the four-year once-through fuel cycle. This study, which was performed using the Studsvik core design code suite, is a typical multi-cycle projection analysis of the type performed by most fuel management organizations such as fuel vendors and utilities. In the industry, the results of such projections are used by the financial arms of these organizations to assist in making long-term decisions. In the case of the B and W mPower reactor, this analysis demonstrates flexibility for customers who consider the once-through fuel cycle unacceptable from a fuel utilization standpoint. As expected, when compared to the once-through concept, reloads of the B and W mPower reactor will achieve higher batch average discharge exposure, will have adequate shut-down margin, and will have a relatively flat hot excess reactivity trend at the expense of slightly increased peaking. (authors)

Scarangella, M. J. [Babcock and Wilcox Company, 109 Ramsey Place, Lynchburg, VA 24502 (United States)

2012-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "binary cycle power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

CoalFleet RD&D augmentation plan for integrated gasification combined cycle (IGCC) power plants  

SciTech Connect (OSTI)

To help accelerate the development, demonstration, and market introduction of integrated gasification combined cycle (IGCC) and other clean coal technologies, EPRI formed the CoalFleet for Tomorrow initiative, which facilitates collaborative research by more than 50 organizations from around the world representing power generators, equipment suppliers and engineering design and construction firms, the U.S. Department of Energy, and others. This group advised EPRI as it evaluated more than 120 coal-gasification-related research projects worldwide to identify gaps or critical-path activities where additional resources and expertise could hasten the market introduction of IGCC advances. The resulting 'IGCC RD&D Augmentation Plan' describes such opportunities and how they could be addressed, for both IGCC plants to be built in the near term (by 2012-15) and over the longer term (2015-25), when demand for new electric generating capacity is expected to soar. For the near term, EPRI recommends 19 projects that could reduce the levelized cost-of-electricity for IGCC to the level of today's conventional pulverized-coal power plants with supercritical steam conditions and state-of-the-art environmental controls. For the long term, EPRI's recommended projects could reduce the levelized cost of an IGCC plant capturing 90% of the CO{sub 2} produced from the carbon in coal (for safe storage away from the atmosphere) to the level of today's IGCC plants without CO{sub 2} capture. EPRI's CoalFleet for Tomorrow program is also preparing a companion RD&D augmentation plan for advanced-combustion-based (i.e., non-gasification) clean coal technologies (Report 1013221). 7 refs., 30 figs., 29 tabs., 4 apps.

NONE

2007-01-15T23:59:59.000Z

122

Dixie Valley Bottoming Binary Cycle  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat Pump Models |Conduct, Parent(CRADA and DOW AreaJune 2015 < prev next >

123

Optimization of a solar powered absorption cycle under Abu Dhabi's weather conditions  

SciTech Connect (OSTI)

In order for the solar absorption air conditioners to become a real alternative to the conventional vapour compression systems, their performance has to be improved and their total cost has to be reduced. A solar powered absorption cycle is modeled using the Transient System Simulation (TRNSYS) program and Typical Meteorological Year 2 data of Abu Dhabi. It uses evacuated tube collectors to drive a 10 kW ammonia-water absorption chiller. Firstly, the system performance and its total cost are optimized separately using single objective optimization algorithms. The design variables considered are: the collector slope, the collector mass flow rate, the collector area and the storage tank volume. The single objective optimization results show that MATLAB global optimization methods agree with the TRNSYS optimizer. Secondly, MATLAB is used to solve a multi-objective optimization problem to improve the system's performance and cost, simultaneously. The optimum designs are presented using Pareto curve and show the potential improvements of the baseline system. (author)

Al-Alili, A.; Hwang, Y.; Radermacher, R. [Department of Mechanical Engineering, University of Maryland, College Park, MD (United States); Kubo, I. [Department of Mechanical Engineering, The Petroleum Institute, Abu Dhabi (United Arab Emirates)

2010-12-15T23:59:59.000Z

124

Preliminary reliability and availability analysis of the Heber geothermal binary demonstration plant. Final report  

SciTech Connect (OSTI)

An assessment is presented of the reliability and availability of the Heber Geothermal Binary Demonstration Plant on the basis of preliminary design information. It also identifies and ranks components of the plant in order of their criticality to system operation and their contribution to system unavailability. The sensitivity of the various components to uncertainties of data and the potential for reliability growth are also examined. The assessment results were obtained through the adaptation and application of an existing reliability and availability methodology to the Heber plant design. These preliminary assessments were made to assist (1) in evaluating design alternatives for the plant and (2) in demonstrating that the closed-loop, multiple-fluid, binary cycle geothermal concept is competitive with the more conventional flashed steam cycle technology. The Heber Geothermal Binary Demonstration Plant Project is a cooperative effort directed toward accelerating geothermal development for power generation and establishing the binary cycle technology as a proven alternative to the flashed steam cycle for moderate temperature hydrothermal resources. The binary power plant would have a capacity of 45 MW/sub e/ net and would derive its energy from the low salinity (14,000 ppM), moderate temperature (360/sup 0/F, 182/sup 0/C) fluid from the Heber reservoir in southern California.

Himpler, H.; White, J.; Witt, J.

1981-10-01T23:59:59.000Z

125

Integrated Gasification Combined Cycle (IGCC) demonstration project, Polk Power Station -- Unit No. 1. Annual report, October 1993--September 1994  

SciTech Connect (OSTI)

This describes the Tampa Electric Company`s Polk Power Station Unit 1 (PPS-1) Integrated Gasification Combined Cycle (IGCC) demonstration project which will use a Texaco pressurized, oxygen-blown, entrained-flow coal gasifier to convert approximately 2,300 tons per day of coal (dry basis) coupled with a combined cycle power block to produce a net 250 MW electrical power output. Coal is slurried in water, combined with 95% pure oxygen from an air separation unit, and sent to the gasifier to produce a high temperature, high pressure, medium-Btu syngas with a heat content of about 250 Btu/scf (LHV). The syngas then flows through a high temperature heat recovery unit which cools the syngas prior to its entering the cleanup systems. Molten coal ash flows from the bottom of the high temperature heat recovery unit into a water-filled quench chamber where it solidifies into a marketable slag by-product.

NONE

1995-05-01T23:59:59.000Z

126

MULTIPARAMETER OPTIMIZATION STUDIES ON GEOTHERMAL ENERGY CYCLES  

E-Print Network [OSTI]

of Practical Cycles for Geothermal Power Plants." GeneralDesign and Optimize Geothermal Power Cycles." Presented atof Practical Cycles for Geothermal Power Plants." General

Pope, W.L.

2011-01-01T23:59:59.000Z

127

THE TRANSPOSED CRITICAL TEMPERATURE RANKINE THERMODYNAMIC CYCLE  

E-Print Network [OSTI]

Process Program for Geothermal Power Plant Cycles,'*for a Rankine Cycle Geothermal Power Plant," Proceedings,Design and Optimize Geothermal Power Cycles," presented at

Pope, William L.

2012-01-01T23:59:59.000Z

128

Development of a dynamic simulator for a natural gas combined cycle (NGCC) power plant with post-combustion carbon capture  

SciTech Connect (OSTI)

The AVESTAR Center located at the U.S. Department of Energy’s National Energy Technology Laboratory and West Virginia University is a world-class research and training environment dedicated to using dynamic process simulation as a tool for advancing the safe, efficient and reliable operation of clean energy plants with CO{sub 2} capture. The AVESTAR Center was launched with a high-fidelity dynamic simulator for an Integrated Gasification Combined Cycle (IGCC) power plant with pre-combustion carbon capture. The IGCC dynamic simulator offers full-scope Operator Training Simulator (OTS) Human Machine Interface (HMI) graphics for realistic, real-time control room operation and is integrated with a 3D virtual Immersive Training Simulator (ITS), thus allowing joint control room and field operator training. The IGCC OTS/ITS solution combines a “gasification with CO{sub 2} capture” process simulator with a “combined cyclepower simulator into a single high-performance dynamic simulation framework. This presentation will describe progress on the development of a natural gas combined cycle (NGCC) dynamic simulator based on the syngas-fired combined cycle portion of AVESTAR’s IGCC dynamic simulator. The 574 MW gross NGCC power plant design consisting of two advanced F-class gas turbines, two heat recovery steam generators (HRSGs), and a steam turbine in a multi-shaft 2x2x1 configuration will be reviewed. Plans for integrating a post-combustion carbon capture system will also be discussed.

Liese, E.; Zitney, S.

2012-01-01T23:59:59.000Z

129

CONCEPTUAL DESIGN AND ECONOMICS OF THE ADVANCED CO2 HYBRID POWER CYCLE  

SciTech Connect (OSTI)

Research has been conducted under United States Department of Energy Contract DEFC26-02NT41621 to analyze the feasibility of a new type of coal-fired plant for electric power generation. This new type of plant, called the Advanced CO{sub 2} Hybrid Power Plant, offers the promise of efficiencies nearing 36 percent, while concentrating CO{sub 2} for 100% sequestration. Other pollutants, such as SO{sub 2} and NOx, are sequestered along with the CO{sub 2} yielding a zero emissions coal plant. The CO{sub 2} Hybrid is a gas turbine-steam turbine combined cycle plant that uses CO{sub 2} as its working fluid to facilitate carbon sequestration. The key components of the plant are a cryogenic air separation unit (ASU), a pressurized circulating fluidized bed gasifier, a CO{sub 2} powered gas turbine, a circulating fluidized bed boiler, and a super-critical pressure steam turbine. The gasifier generates a syngas that fuels the gas turbine and a char residue that, together with coal, fuels a CFB boiler to power the supercritical pressure steam turbine. Both the gasifier and the CFB boiler use a mix of ASU oxygen and recycled boiler flue gas as their oxidant. The resulting CFB boiler flue gas is essentially a mixture of oxygen, carbon dioxide and water. Cooling the CFB flue gas to 80 deg. F condenses most of the moisture and leaves a CO{sub 2} rich stream containing 3%v oxygen. Approximately 30% of this flue gas stream is further cooled, dried, and compressed for pipeline transport to the sequestration site (the small amount of oxygen in this stream is released and recycled to the system when the CO{sub 2} is condensed after final compression and cooling). The remaining 70% of the flue gas stream is mixed with oxygen from the ASU and is ducted to the gas turbine compressor inlet. As a result, the gas turbine compresses a mixture of carbon dioxide (ca. 64%v) and oxygen (ca. 32.5%v) rather than air. This carbon dioxide rich mixture then becomes the gas turbine working fluid and also becomes the oxidant in the gasification and combustion processes. As a result, the plant provides CO{sub 2} for sequestration without the performance and economic penalties associated with water gas shifting and separating CO{sub 2} from gas streams containing nitrogen. The cost estimate of the reference plant (the Foster Wheeler combustion hybrid) was based on a detailed prior study of a nominal 300 MWe demonstration plant with a 6F turbine. Therefore, the reference plant capital costs were found to be 30% higher than an estimate for a 425 MW fully commercial IGCC with an H class turbine (1438 $/kW vs. 1111 $/kW). Consequently, the capital cost of the CO{sub 2} hybrid plant was found to be 25% higher than that of the IGCC with pre-combustion CO{sub 2} removal (1892 $/kW vs. 1510 $/kW), and the levelized cost of electricity (COE) was found to be 20% higher (7.53 c/kWh vs. 6.26 c/kWh). Although the final costs for the CO{sub 2} hybrid are higher, the study confirms that the relative change in cost (or mitigation cost) will be lower. The conceptual design of the plant and its performance and cost, including losses due to CO{sub 2} sequestration, is reported. Comparison with other proposed power plant CO{sub 2} removal techniques reported by a December 2000 EPRI report is shown. This project supports the DOE research objective of development of concepts for the capture and storage of CO{sub 2}.

A. Nehrozoglu

2004-12-01T23:59:59.000Z

130

Life Cycle GHG Emissions from Conventional Natural Gas Power Generation: Systematic Review and Harmonization (Presentation)  

SciTech Connect (OSTI)

This research provides a systematic review and harmonization of the life cycle assessment (LCA) literature of electricity generated from conventionally produced natural gas. We focus on estimates of greenhouse gases (GHGs) emitted in the life cycle of electricity generation from conventionally produced natural gas in combustion turbines (NGCT) and combined-cycle (NGCC) systems. A process we term "harmonization" was employed to align several common system performance parameters and assumptions to better allow for cross-study comparisons, with the goal of clarifying central tendency and reducing variability in estimates of life cycle GHG emissions. This presentation summarizes preliminary results.

Heath, G.; O'Donoughue, P.; Whitaker, M.

2012-12-01T23:59:59.000Z

131

The importance of combined cycle generating plants in integrating large levels of wind power generation  

SciTech Connect (OSTI)

Integration of high wind penetration levels will require fast-ramping combined cycle and steam cycles that, due to higher operating costs, will require proper pricing of ancillary services or other forms of compensation to remain viable. Several technical and policy recommendations are presented to help realign the generation mix to properly integrate the wind. (author)

Puga, J. Nicolas

2010-08-15T23:59:59.000Z

132

Space reactor/Stirling cycle systems for high power Lunar applications  

SciTech Connect (OSTI)

NASA`s Space Exploration Initiative (SEI) has proposed the use of high power nuclear power systems on the lunar surface as a necessary alternative to solar power. Because of the long lunar night ({approximately} 14 earth days) solar powered systems with the requisite energy storage in the form of regenerative fuel cells or batteries becomes prohibitively heavy at high power levels ({approximately} 100 kWe). At these high power levels nuclear power systems become an enabling technology for variety of missions. One way of producing power on the lunar surface is with an SP-100 class reactor coupled with Stirling power converters. In this study, analysis and characterization of the SP-100 class reactor coupled with Free Piston Stirling Power Conversion (FPSPC) system will be performed. Comparison of results with previous studies of other systems, particularly Brayton and Thermionic, are made.

Schmitz, P.D. [Sverdrup Technology, Inc., Brook Park, OH (United States). Lewis Research Center Group; Mason, L.S. [National Aeronautics and Space Administration, Cleveland, OH (United States). Lewis Research Center

1994-09-01T23:59:59.000Z

133

Application of high temperature air heaters to advanced power generation cycles  

SciTech Connect (OSTI)

Recent developments in ceramic composite materials open up the possibility of recuperative air heaters heating air to temperatures well above the feasible with metal tubes. A high temperature air heater (HTAH) has long been recognized as a requirement for the most efficient MHD plants in order to reach high combustor flame temperatures. The application of gas turbines in coal-fired plants of all types has been impeded because of the problems in cleaning exhaust gas sufficiently to avoid damage to the turbine. With a possibility of a HTAH, such plants may become feasible on the basis of air turbine cycles, in which air is compressed and heated in the HTAH before being applied to turbine. The heat exchanger eliminates the need for the hot gas cleanup system. The performance improvement potential of advanced cycles with HTAH application including the air turbine cycle in several variations such as the DOE program on ``Coal-Fired Air Furnace Combined Cycle...,`` variations originated by the authors, and the MHD combined cycle are presented. The status of development of ceramic air heater technology is included.

Thompson, T R [Tennessee Valley Authority, Chattanooga, TN (United States)] [Tennessee Valley Authority, Chattanooga, TN (United States); Boss, W H; Chapman, J N [Tennessee Univ., Tullahoma, TN (United States). Space Inst.] [Tennessee Univ., Tullahoma, TN (United States). Space Inst.

1992-03-01T23:59:59.000Z

134

A Cycle-Based Formulation and Valid Inequalities for DC Power ...  

E-Print Network [OSTI]

Dec 19, 2014 ... Abstract: It is well-known that optimizing network topology by switching on and off transmission lines improves the efficiency of power delivery in ...

Burak Kocuk

2014-12-19T23:59:59.000Z

135

Life Cycle Greenhouse Gas Emissions of Trough and Tower Concentrating Solar Power Electricity Generation: Systematic Review and Harmonization  

SciTech Connect (OSTI)

In reviewing life cycle assessment (LCA) literature of utility-scale concentrating solar power (CSP) systems, this analysis focuses on reducing variability and clarifying the central tendency of published estimates of life cycle greenhouse gas (GHG) emissions through a meta-analytical process called harmonization. From 125 references reviewed, 10 produced 36 independent GHG emissions estimates passing screens for quality and relevance: 19 for parabolic trough (trough) technology and 17 for power tower (tower) technology. The interquartile range (IQR) of published estimates for troughs and towers were 83 and 20 grams of carbon dioxide equivalent per kilowatt-hour (g CO2-eq/kWh),1 respectively; median estimates were 26 and 38 g CO2-eq/kWh for trough and tower, respectively. Two levels of harmonization were applied. Light harmonization reduced variability in published estimates by using consistent values for key parameters pertaining to plant design and performance. The IQR and median were reduced by 87% and 17%, respectively, for troughs. For towers, the IQR and median decreased by 33% and 38%, respectively. Next, five trough LCAs reporting detailed life cycle inventories were identified. The variability and central tendency of their estimates are reduced by 91% and 81%, respectively, after light harmonization. By harmonizing these five estimates to consistent values for global warming intensities of materials and expanding system boundaries to consistently include electricity and auxiliary natural gas combustion, variability is reduced by an additional 32% while central tendency increases by 8%. These harmonized values provide useful starting points for policy makers in evaluating life cycle GHG emissions from CSP projects without the requirement to conduct a full LCA for each new project.

Burkhardt, J. J.; Heath, G.; Cohen, E.

2012-04-01T23:59:59.000Z

136

Life Cycle Greenhouse Gas Emissions from Concentrating Solar Power (Fact Sheet)  

SciTech Connect (OSTI)

The National Renewable Energy Laboratory (NREL) recently led the Life Cycle Assessment (LCA) Harmonization Project, a study that makes great strides in clarifying inconsistent and conflicting GHG emission estimates in the published literature while providing more precise estimates of GHG emissions from utility-scale CSP systems.

Not Available

2012-11-01T23:59:59.000Z

137

Fuel-Cycle Analysis of Hydrogen-Powered Fuel-Cell Systems with the GREET Model  

E-Print Network [OSTI]

fuels (petroleum, NG and coal) Petroleum Coal NG · GREET and its documents are available at http Coal/biomass co-feeding for FT diesel production Various corn ethanol plant types with different and electric forklifts FC distributed power generation vs. conventional distributed power generation

138

Organic fluids in a supercritical Rankine cycle for low temperature power generation  

SciTech Connect (OSTI)

This paper presents a performance analysis of a supercritical organic Rankine cycle (SORC) with various working fluids with thermal energy provided from a geothermal energy source. In the present study, a number of pure fluids (R23, R32, R125, R143a, R134a, R218, and R170) are analyzed to identify the most suitable fluids for different operating conditions. The source temperature is varied between 125 C and 200 C, to study its effect on the efficiency of the cycle for fixed and variable pressure ratios. The energy and exergy efficiencies for each working fluid are obtained and the optimum fluid is selected. It is found that thermal efficiencies as high as 21% can be obtained with 200 C source temperature and 10 C cooling water temperature considered in this study. For medium source temperatures (125 150 C), thermal efficiencies higher than 12% are obtained.

Vidhi, Rachana [University of South Florida, Tampa; Kuravi, Sarada [University of South Florida, Tampa; Goswami, Yogi D. [University of South Florida, Tampa; Stefanakos, Elias [University of South Florida, Tampa; Sabau, Adrian S [ORNL

2013-01-01T23:59:59.000Z

139

Dual-temperature Kalina cycle for geothermal-solar hybrid power systems  

E-Print Network [OSTI]

This thesis analyzes the thermodynamics of a power system coupling two renewable heat sources: low-temperature geothermal and a high-temperature solar. The process, referred to as a dual-temperature geothermal-solar Kalina ...

Boghossian, John G

2011-01-01T23:59:59.000Z

140

Analysis of environmental factors impacting the life cycle cost analysis of conventional and fuel cell/battery-powered passenger vehicles. Final report  

SciTech Connect (OSTI)

This report presents the results of the further developments and testing of the Life Cycle Cost (LCC) Model previously developed by Engineering Systems Management, Inc. (ESM) on behalf of the U.S. Department of Energy (DOE) under contract No. DE-AC02-91CH10491. The Model incorporates specific analytical relationships and cost/performance data relevant to internal combustion engine (ICE) powered vehicles, battery powered electric vehicles (BPEVs), and fuel cell/battery-powered electric vehicles (FCEVs).

NONE

1995-01-31T23:59:59.000Z

Note: This page contains sample records for the topic "binary cycle power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Exergy method of power plant systems analysis and its application to a pressurized fluidized bed coal-fired combined-cycle power plant  

SciTech Connect (OSTI)

This thesis surveys the concepts of exergy and extends the exergy method of analysis from the standpoint of its applications to the power plant systems. After a brief historical review of exergy concepts, the general exergy equation is derived from the combined equation of First and Second Law, and it is shown that any special case of exergy equation is a simplified form of the general exergy equation. The mathematical method for the exergy analysis of a steady-state, steady-flow system, analogous to that of the First Law, is given. The exergy losses in a power plant are discussed. Then in order to examine these losses, the Second Law performance of major processes of combustion, compression, heat transfer, mixing and throttling have been analyzed analytically, and the exergy efficiencies are defined that accurately assess the thermodynamic performance of the corresponding processes. The methods for computation of exergy loss and exergy efficiency are given and simplified for practical cases of the corresponding processes. Analytical methods for evaluating the exergy of coal, pure substances (air and water), and combustion gases are presented and the energy-exergy tables for corresponding working substances are constructed. Finally, a comprehensive thermodynamic analysis, with emphasis on the Second Law (exergy) consideration, of an actual coal-fired, combined-cycle (CFCC) power plant, being designed by the General Electric Company, is carried out and suggestions are made as to what (and where), if any, improvement might be made in the design.

Ghamarian, A.

1981-01-01T23:59:59.000Z

142

Model predictive control system and method for integrated gasification combined cycle power generation  

DOE Patents [OSTI]

Control system and method for controlling an integrated gasification combined cycle (IGCC) plant are provided. The system may include a controller coupled to a dynamic model of the plant to process a prediction of plant performance and determine a control strategy for the IGCC plant over a time horizon subject to plant constraints. The control strategy may include control functionality to meet a tracking objective and control functionality to meet an optimization objective. The control strategy may be configured to prioritize the tracking objective over the optimization objective based on a coordinate transformation, such as an orthogonal or quasi-orthogonal projection. A plurality of plant control knobs may be set in accordance with the control strategy to generate a sequence of coordinated multivariable control inputs to meet the tracking objective and the optimization objective subject to the prioritization resulting from the coordinate transformation.

Kumar, Aditya; Shi, Ruijie; Kumar, Rajeeva; Dokucu, Mustafa

2013-04-09T23:59:59.000Z

143

Technical and economic feasibility of a Thermal Gradient Utilization Cycle (TGUC) power plant  

E-Print Network [OSTI]

Energy Conversion unit mass mass flow rate life of system Ocean Thermal Energy Conversion power pressure heat flow Rl R4 TGUC TP T2 total primary energy subsidy expressed as BTU input per 1000 BTU output thermal energy subsidy expressed... has grown in energy technologies that use renewable resources such as solar (thermal conversion, ocean thermal energy conversion, photovoltaics, wind and biomass conversion), geothermal and magnetohydrodynamics (MHD) . A new concept that can...

Raiji, Ashok

1980-01-01T23:59:59.000Z

144

Small-Particle Solar Receiver for High-Temperature Brayton Power Cycles  

Broader source: Energy.gov [DOE]

This fact sheet describes a scattering solar thermal concentrators project awarded under the DOE's 2012 SunShot Concentrating Solar Power R&D award program. The team, led by San Diego State University, is working to validate, through on-sun testing, the viability of the Small Particle Heat Exchange Receiver concept. If successful, this project team would build the first large-scale, pressurized, high-temperature, gas-cooled solar receiver capable of being deployed commercially.

145

Life-Cycle Analysis Results of Geothermal Systems in Comparison to Other Power Systems  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office0-72.pdfGeorgeDoesn't Happen toLeveraging National Laboratories toPower Systems |vii

146

Conceptual design of an open-cycle ocean thermal energy conversion net power-producing experiment (OC-OTEC NPPE)  

SciTech Connect (OSTI)

This report describes the conceptual design of an experiment to investigate heat and mass transfer and to assess the viability of open-cycle ocean thermal energy conversion (OC-OTEC). The experiment will be developed in two stages, the Heat- and Mass-Transfer Experimental Apparatus (HMTEA) and the Net Power-Producing Experiment (NPPE). The goal for the HMTEA is to test heat exchangers. The goal for the NPPE is to experimentally verify OC-OTEC's feasibility by installing a turbine and testing the power-generating system. The design effort met the goals of both the HMTEA and the NPPE, and duplication of hardware was minimal. The choices made for the design resource water flow rates are consistent with the availability of cold and warm seawater as a result of the seawater systems upgrade carried out by the US Department of Energy (DOE), the state of Hawaii, and the Pacific International Center for High Technology Research. The choices regarding configuration of the system were made based on projected performance, degree of technical risk, schedule, and cost. The cost for the future phase of the design and the development of the HMTEA/NPPE is consistent with the projected future program funding levels. The HMTEA and NPPE were designed cooperatively by PICHTR, Argonne National Laboratory, and Solar Energy Research Institute under the guidance of DOE. The experiment will be located at the DOE's Seacoast Test Facility at the Natural Energy Laboratory of Hawaii, Kailua-Kona, Hawaii. 71 refs., 41 figs., 34 tabs.

Bharathan, D.; Green, H.J.; Link, H.F.; Parsons, B.K.; Parsons, J.M.; Zangrando, F.

1990-07-01T23:59:59.000Z

147

Combined cycle power plant of SVZ Schwarze Pumpe GmbH operating experience gained with low calorific value fuel resulting from gasification processes  

SciTech Connect (OSTI)

Supported by experience gained over many years, Schwarze Pumpe GmbH (SVZ), the secondary raw material recycling centre, operates autothermal compression-type gasification plants with oxygen according to the fixed-bed and the entrained flow process, in which apart from lignite as the fuel to be gasified, residues containing C/H of varying consistency are gasified in an environmentally friendly manner. The purified gas acquired after scrubbing, partial conversion and desulfurization is mainly used as a synthesis gas for methanol synthesis and thus provided with a material use. For covering auxiliary requirements in electrical and process power, a combined-cycle power plant is operated, the main fuel of which is a low calorific value dual-process gas, primarily consisting of purified and purge gas. The volumes of purified and purge gases available to the combined-cycle power plant from the SVZ process equipment and their grades cannot be influenced by the combined-cycle power plant. It is shown that from a targeted modification of the dual-process gas temperature the Wobbe Index of dual-process gases with considerably varying parameters (calorific value, density) can be brought into the range required for running the gas turbine. Furthermore what is also shown is the operating strategy and control concept by which the combined-cycle power plant can maintain the pressure in the SVZ purified gas system and thus ultimately the gasification reactor operating pressure.

Kotschenreuther, H.; Hauptmann, W.

1998-07-01T23:59:59.000Z

148

Accepted for publication in Energy Policy Greenhouse-gas Emissions from Solar Electric-and Nuclear Power: A Life-cycle  

E-Print Network [OSTI]

Accepted for publication in Energy Policy Greenhouse-gas Emissions from Solar Electric- and Nuclear, photovoltaic, nuclear, life cycle 1 #12;Introduction The production of energy by burning fossil fuels generates, it is envisioned that expanding generation technologies based on nuclear power and renewable energy sources would

149

Evaluation of technical feasibility of closed-cycle non-equilibrium MHD power generation with direct coal firing. Final report, Task 1  

SciTech Connect (OSTI)

Program accomplishments in a continuing effort to demonstrate the feasibility of direct coal fired, closed cycle, magnetohydrodynamic power generation are detailed. These accomplishments relate to all system aspects of a CCMHD power generation system including coal combustion, heat transfer to the MHD working fluid, MHD power generation, heat and cesium seed recovery and overall systems analysis. Direct coal firing of the combined cycle has been under laboratory development in the form of a high slag rejection, regeneratively air cooled cyclone coal combustor concept, originated within this program. A hot bottom ceramic regenerative heat exchanger system was assembled and test fired with coal for the purposes of evaluating the catalytic effect of alumina on NO/sub x/ emission reduction and operability of the refractory dome support system. Design, procurement, fabrication and partial installation of a heat and seed recovery flow apparatus was accomplished and was based on a stream tube model of the full scale system using full scale temperatures, tube sizes, rates of temperature change and tube geometry. Systems analysis capability was substantially upgraded by the incorporation of a revised systems code, with emphasis on ease of operator interaction as well as separability of component subroutines. The updated code was used in the development of a new plant configuration, the Feedwater Cooled (FCB) Brayton Cycle, which is superior to the CCMHD/Steam cycle both in performance and cost. (WHK)

Not Available

1981-11-01T23:59:59.000Z

150

A Fast Search Technique for Binary Pulsars  

E-Print Network [OSTI]

I describe a computationally simple, efficient, and sensitive method to search long observations for pulsars in binary systems. The technique looks for orbitally induced sidebands in the power spectrum around a nominal spin frequency, enabling it to detect pulsars in high- or low-mass binaries with short orbital periods (P_orb <~ 5 h).

Scott M. Ransom

1999-11-05T23:59:59.000Z

151

Preliminary studies on the heat exchanger option for S-CO{sub 2} power conversion cycle coupled to water cooled SMR  

SciTech Connect (OSTI)

For more than a half century, the steam Rankine cycle had been the major power conversion cycle for a nuclear power plant. However, as the interest on the next generation reactors grows, a variety of alternative power conversion systems have been studied. Among them, the S-CO{sub 2} cycle (Supercritical carbon dioxide Brayton cycle) is considered as a promising candidate due to several benefits such as 1) Relatively high thermal efficiency at relatively low turbine inlet temperature, 2) High efficiency with simple lay-out 3) Compactness of turbo-machineries. 4) Compactness of total cycle combined with PCHE (Printed Circuit Heat Exchanger). According to the conventional classification of heat exchangers (HE), there are three kind of HE, 1) Tubular HEs, 2) Plate-type HEs, 3) Extended surface HEs. So far, the researcher has mostly assumed PCHE type HE for the S-CO{sub 2} cycle due to its compactness with reasonably low pressure drop. However, PCHE is currently one of the most expensive components in the cycle, which can have a negative effect on the economics of the cycle. Therefore, an alternative for the HE should be seriously investigated. By comparing the operating condition (pressure and temperature) there are three kind of HE in the S-CO{sub 2} cycle, 1) IHX (Intermediate Heat exchanger) 2) Recuperator and 3) Pre-cooler. In each heat exchanger, hot side and cold side coolants are different, i.e. reactor coolant to S-CO{sub 2} (IHX), S-CO{sub 2} to S-CO{sub 2}(Recuperator), S-CO{sub 2} to water (Pre-cooler). By considering all the attributes mentioned above, all existing types of heat exchangers are compared to find a possible alternative to PCHE. The comparing factors are 1) Size(volume), 2) Cost. Plate fin type HEs are considered to be the most competitive heat exchanger regarding the size and the cost after some improvements on the design limit are made. (authors)

Ahn, Y.; Lee, J. [Dept. of Nuclear and Quantum Engineering, Korea Advanced Inst. of Science and Technology, 373-1 Guseong-dong Yuseong-gu, Daejeon, 305-701 (Korea, Republic of); Lee, J. I. [Dept. of Nuclear and Quantum Engineering, Korea Advanced Inst. of Science and Technology, 373-1 Guseong-dong Yuseong-gu, Daejeon, 305-701 (Korea, Republic of); Dept. of Nuclear Engineering, Khalifa Univ. of Science, Technology and Research (KUSTAR), P.O.Box 127788, Abu Dhabi (United Arab Emirates)

2012-07-01T23:59:59.000Z

152

Alternative Geothermal Power Production Scenarios  

SciTech Connect (OSTI)

The information given in this file pertains to Argonne LCAs of the plant cycle stage for a set of ten new geothermal scenario pairs, each comprised of a reference and improved case. These analyses were conducted to compare environmental performances among the scenarios and cases. The types of plants evaluated are hydrothermal binary and flash and Enhanced Geothermal Systems (EGS) binary and flash plants. Each scenario pair was developed by the LCOE group using GETEM as a way to identify plant operational and resource combinations that could reduce geothermal power plant LCOE values. Based on the specified plant and well field characteristics (plant type, capacity, capacity factor and lifetime, and well numbers and depths) for each case of each pair, Argonne generated a corresponding set of material to power ratios (MPRs) and greenhouse gas and fossil energy ratios.

Sullivan, John

2014-03-14T23:59:59.000Z

153

Alternative Geothermal Power Production Scenarios  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The information given in this file pertains to Argonne LCAs of the plant cycle stage for a set of ten new geothermal scenario pairs, each comprised of a reference and improved case. These analyses were conducted to compare environmental performances among the scenarios and cases. The types of plants evaluated are hydrothermal binary and flash and Enhanced Geothermal Systems (EGS) binary and flash plants. Each scenario pair was developed by the LCOE group using GETEM as a way to identify plant operational and resource combinations that could reduce geothermal power plant LCOE values. Based on the specified plant and well field characteristics (plant type, capacity, capacity factor and lifetime, and well numbers and depths) for each case of each pair, Argonne generated a corresponding set of material to power ratios (MPRs) and greenhouse gas and fossil energy ratios.

Sullivan, John

154

Life Cycle Environmental Impacts Resulting from the Manufacture of the Heliostat Field for a Reference Power Tower Design in the United States: Preprint  

SciTech Connect (OSTI)

Life cycle assessment (LCA) is recognized as a useful analytical approach for quantifying environmental impacts of renewable energy technologies, including concentrating solar power (CSP). An LCA accounts for impacts from all stages in the development, operation, and decommissioning of a CSP plant, including such upstream stages as the extraction of raw materials used in system components, manufacturing of those components, and construction of the plant. The National Renewable Energy Laboratory is conducting a series of LCA studies for various CSP technologies. This paper contributes to a thorough LCA of a 100 MWnet molten salt power tower CSP plant by estimating the environmental impacts resulting from the manufacture of heliostats. Three life cycle metrics are evaluated: greenhouse gas emissions, water consumption, and cumulative energy demand. The heliostat under consideration (the 148 m2 Advanced Thermal Systems heliostat) emits 5,300 kg CO2eq, consumes 274 m3 of water, and requires 159,000 MJeq during its manufacture. Future work will incorporate the results from this study into the LCA model used to estimate the life cycle impacts of the entire 100 MWnet power tower CSP plant.

Heath, G.; Burkhardt, J.; Turchi, C.

2012-10-01T23:59:59.000Z

155

AN ASSESSMENT OF THE BRAYTON CYCLE FOR HIGH PERFORMANCE POWER PLANTS R. Schleicher A. R. Raffray C. P. Wong  

E-Print Network [OSTI]

and the risk associated with oil lubricated bearings.2 Interest in nuclear CCGTs was revived in the 1990s effectiveness and cycle fractional pressure loss. The compression ratio is also important because for fusion because due to non-competitive economics, mainly attributed to the lack of high effectiveness recuperators

Raffray, A. René

156

AN ASSESSMENT OF THE BRAYTON CYCLE FOR HIGH PERFORMANCE POWER PLANTS R. Schleicher A. R. Raffray C. P. Wong  

E-Print Network [OSTI]

and the risk associated with oil lubricated bearings. 2 Interest in nuclear CCGTs was revived in the 1990s effectiveness and cycle fractional pressure loss. The compression ratio is also important because for fusion because due to non-competitive economics, mainly attributed to the lack of high effectiveness recuperators

California at San Diego, University of

157

Advanced Organic Vapor Cycles for Improving Thermal Conversion Efficiency in Renewable Energy Systems  

E-Print Network [OSTI]

1997. [15] R DiPippo, Geothermal Power Plants: Principles,Kalina, "New Binary Geothermal Power System," in ProceedingsConference on Geothermal Power Engineering, Sochi, Russia,

Ho, Tony

2012-01-01T23:59:59.000Z

158

Switchgrass as an Alternate Feedstock for Power Generation: Integrated Environmental, Energy, and Economic Life-Cycle Analysis  

E-Print Network [OSTI]

virgatum) as a replacement for coal in power generation. To examine the effects of such a substitution1 Switchgrass as an Alternate Feedstock for Power Generation: Integrated Environmental, Energy into modules. The greenhouse gas (GHG) mitigation during co-firing of switchgrass with coal is found

McCarl, Bruce A.

159

Analysis and optimization of the Graz cycle : a coal fired power generation scheme with near-zero carbon dioxide emissions  

E-Print Network [OSTI]

Humans are releasing record amounts of carbon dioxide into the atmosphere through the combustion of fossil fuels in power generation plants. With mounting evidence that this carbon dioxide is a leading cause of global ...

Alexander, Brentan R

2007-01-01T23:59:59.000Z

160

Techno-economic analysis of sour gas oxy-fuel combustion power cycles for carbon capture and sequestration  

E-Print Network [OSTI]

The world's growing energy demand coupled with the problem of global warming have led us to investigate new energy sources that can be utilized in a way to reduce carbon dioxide emissions than traditional fossil fuel power ...

Chakroun, Nadim Walid

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "binary cycle power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Plant Design and Cost Estimation of a Natural Circulation Lead-Bismuth Reactor with Helium Power Conversion Cycle  

E-Print Network [OSTI]

The analysis of an indirect helium power conversion system with lead-bismuth natural circulation primary system has been performed. The work of this report is focused on 1) identifying the allowable design region for the ...

Kim, D.

162

Plant Design and Cost Estimation of a Natural Circulation Lead-Bismuth Reactor with Steam Power Conversion Cycle  

E-Print Network [OSTI]

The analysis of an indirect steam power conversion system with lead-bismuth natural circulation primary system has been performed. The work of this report is focused on 1) identifying the allowable design region for the ...

Kim, D.

163

Development of a quiet Stirling cycle multi-fuel engine for electric power generation. Final report Feb-Aug 82  

SciTech Connect (OSTI)

The work described in this report summarizes a six-month study to develop a lightweight, tactical electric power plant with a low level of aural, I. R., and visual detectability, based on a Stirling engine. The conceptual design presented was analyzed and predicted to have power output qualities exceeding those specified by the Army for tactical generators. The unit promises to have maintenance and overhaul requirement characteristics superior to any generator system in current use.

Mercer, J.E.; Emigh, S.G.; Riggle, P.; Tremoulet, O.L.; White, M.A.

1982-08-01T23:59:59.000Z

164

E-Print Network 3.0 - acetonitril-water binary mixture Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

acetonitril-water binary mixture Search Powered by Explorit Topic List Advanced Search Sample search results for: acetonitril-water binary mixture Page: << < 1 2 3 4 5 > >> 1...

165

E-Print Network 3.0 - acetonitrile-water binary mixtures Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

acetonitrile-water binary mixtures Search Powered by Explorit Topic List Advanced Search Sample search results for: acetonitrile-water binary mixtures Page: << < 1 2 3 4 5 > >> 1...

166

System study of an MHD/gas turbine combined-cycle baseload power plant. HTGL report No. 134  

SciTech Connect (OSTI)

The MHD/gas turbine combined-cycle system has been designed specifically for applications where the availability of cooling water is very limited. The base case systems which were studied consisted of an MHD plant with a gas turbine bottoming plant, and required no cooling water. The gas turbine plant uses only air as its working fluid and receives its energy input from the MHD exhaust gases by means of metal tube heat exchangers. In addition to the base case systems, vapor cycle variation systems were considered which included the addition of a vapor cycle bottoming plant to improve the thermal efficiency. These systems required a small amount of cooling water. The MHD/gas turbine systems were modeled with sufficient detail, using realistic component specifications and costs, so that the thermal and economic performance of the system could be accurately determined. Three cases of MHD/gas turbine systems were studied, with Case I being similar to an MHD/steam system so that a direct comparison of the performances could be made, with Case II being representative of a second generation MHD system, and with Case III considering oxygen enrichment for early commercial applications. The systems are nominally 800 MW/sub e/ to 1000 MW/sub e/ in size. The results show that the MHD/gas turbine system has very good thermal and economic performances while requiring either little or no cooling water. Compared to the MHD/steam system which has a cooling tower heat load of 720 MW, the Base Case I MHD/gas turbine system has a heat rate which is 13% higher and a cost of electricity which is only 7% higher while requiring no cooling water. Case II results show that an improved performance can be expected from second generation MHD/gas turbine systems. Case III results show that an oxygen enriched MHD/gas turbine system may be attractive for early commercial applications in dry regions of the country.

Annen, K.D.

1981-08-01T23:59:59.000Z

167

A Revolutionary Hybrid Thermodynamic Cycle for Bianary Geothermal...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

A Revolutionary Hybrid Thermodynamic Cycle for Bianary Geothermal Power A Revolutionary Hybrid Thermodynamic Cycle for Bianary Geothermal Power A Revolutionary Hybrid Thermodynamic...

168

La Spezia power plant: Conversion of units 1 and 2 to combined cycle with modification of steam turbines from cross compound to tandem compound  

SciTech Connect (OSTI)

Units 1 and 2 of ENEL's La Spezia power plant, rated 310 and 325 MW respectively, are going to be converted to combined cycle. This project will be accomplished by integrating components such as gas turbines and HRSGs with some of the existing components, particularly the steam turbines, which are of the cross compound type. Since the total power of each converted unit has to be kept at 335 MW because of permitting limitations, the power delivered by the steam turbine will be limited to about 115 MW. For this reason a study was carried out to verify the possibility of having only one shaft and modifying the turbine to tandem compound. As additional investments are required for this modification, a balance was performed that also took into account the incremental heat rate and, on the other hand, the benefits from decreased maintenance and increased availability and reliability calculated for the expected useful life. The result of this balance was in favor of the modification, and a decision was taken accordingly. The turbine modification will involve replacing the whole HP section with a new combined HP-IP section while retaining the corresponding LP rotor and cylinder and making the needed changes in the valve arrangements and piping. Work on the site began in the spring of 1997 by dismantling the existing boiler so as to have the space needed to install the GTs and HRSGs. The first synchronization of the converted unit 1 is scheduled for November 1999

Magneschi, P.; Gabiccini, S.; Bracaloni, N.; Fiaschi, C.

1998-07-01T23:59:59.000Z

169

Life-Cycle Energy Demand of Computational Logic: From High-Performance 32nm CPU to Ultra-Low-Power 130nm MCU  

E-Print Network [OSTI]

Boyd et al. : “Life-cycle energy demand and global warmingLife-Cycle Energy Demand of Computational Logic: From High-to assess the life-cycle energy demand of its products for

Bol, David; Boyd, Sarah; Dornfeld, David

2011-01-01T23:59:59.000Z

170

Life-Cycle Energy Demand of Computational Logic: From High-Performance 32nm CPU to Ultra-Low-Power 130nm MCU  

E-Print Network [OSTI]

Boyd et al. : “Life-cycle energy demand and global warmingLife-Cycle Energy Demand of Computational Logic: From High-to assess the life-cycle energy demand of its products for

Bol, David; Boyd, Sarah; Dornfeld, David

2011-01-01T23:59:59.000Z

171

Life Cycle Water Consumption and Water Resource Assessment for Utility-Scale Geothermal Systems: An In-Depth Analysis of Historical and Forthcoming EGS Projects  

SciTech Connect (OSTI)

This report is the third in a series of reports sponsored by the U.S. Department of Energy Geothermal Technologies Program in which a range of water-related issues surrounding geothermal power production are evaluated. The first report made an initial attempt at quantifying the life cycle fresh water requirements of geothermal power-generating systems and explored operational and environmental concerns related to the geochemical composition of geothermal fluids. The initial analysis of life cycle fresh water consumption of geothermal power-generating systems identified that operational water requirements consumed the vast majority of water across the life cycle. However, it relied upon limited operational water consumption data and did not account for belowground operational losses for enhanced geothermal systems (EGSs). A second report presented an initial assessment of fresh water demand for future growth in utility-scale geothermal power generation. The current analysis builds upon this work to improve life cycle fresh water consumption estimates and incorporates regional water availability into the resource assessment to improve the identification of areas where future growth in geothermal electricity generation may encounter water challenges. This report is divided into nine chapters. Chapter 1 gives the background of the project and its purpose, which is to assess the water consumption of geothermal technologies and identify areas where water availability may present a challenge to utility-scale geothermal development. Water consumption refers to the water that is withdrawn from a resource such as a river, lake, or nongeothermal aquifer that is not returned to that resource. The geothermal electricity generation technologies evaluated in this study include conventional hydrothermal flash and binary systems, as well as EGSs that rely on engineering a productive reservoir where heat exists, but where water availability or permeability may be limited. Chapter 2 describes the approach and methods for this work and identifies the four power plant scenarios evaluated: a 20-MW EGS binary plant, a 50-MW EGS binary plant, a 10-MW hydrothermal binary plant, and a 50-MW hydrothermal flash plant. The methods focus on (1) the collection of data to improve estimation of EGS stimulation volumes, aboveground operational consumption for all geothermal technologies, and belowground operational consumption for EGS; and (2) the mapping of the geothermal and water resources of the western United States to assist in the identification of potential water challenges to geothermal growth. Chapters 3 and 4 present the water requirements for the power plant life cycle. Chapter 3 presents the results of the current data collection effort, and Chapter 4 presents the normalized volume of fresh water consumed at each life cycle stage per lifetime energy output for the power plant scenarios evaluated. Over the life cycle of a geothermal power plant, from construction through 30 years of operation, the majority of water is consumed by plant operations. For the EGS binary scenarios, where dry cooling was assumed, belowground operational water loss is the greatest contributor depending upon the physical and operational conditions of the reservoir. Total life cycle water consumption requirements for air-cooled EGS binary scenarios vary between 0.22 and 1.85 gal/kWh, depending upon the extent of belowground operational water consumption. The air-cooled hydrothermal binary and flash plants experience far less fresh water consumption over the life cycle, at 0.04 gal/kWh. Fresh water requirements associated with air- cooled binary operations are primarily from aboveground water needs, including dust control, maintenance, and domestic use. Although wet-cooled hydrothermal flash systems require water for cooling, these plants generally rely upon the geofluid, fluid from the geothermal reservoir, which typically has high salinity and total dissolved solids concentration and is much warmer than normal groundwater sources, for their cooling water needs; thus,

Clark, Corrie E. [Environmental Science Division] [Environmental Science Division; Harto, Christopher B. [Environmental Science Division] [Environmental Science Division; Schroeder, Jenna N. [Environmental Science Division] [Environmental Science Division; Martino, Louis E. [Environmental Science Division] [Environmental Science Division; Horner, Robert M. [Environmental Science Division] [Environmental Science Division

2013-11-05T23:59:59.000Z

172

Transport Properties of He-N{sub 2} Binary Gas Mixtures for CBC Space Applications  

SciTech Connect (OSTI)

In order to reduce the size and mass of the single-shaft turbo-machines, with little impact on the size of the heat transfer components in the CBC loop, He-Xe binary mixture with a molecular weight of 40 g/mole has been the working fluid of choice in space nuclear reactor power systems with Close Brayton Cycle (CBC) for energy conversion. This working fluid is also a suitable coolant for the fission reactors heat source designed with fast neutron energy spectra. For space nuclear reactors with thermal neutron energy spectra, however, the high capture neutron cross-section of Xe will reduce the beginning-of-life excess reactivity of the reactor, decreasing its effective operation lifetime. In addition, the neutron activation of Xe in the reactor will introduce a radioactivity source term in the CBC loop. Alternative working fluids with no activation concerns and comparable performance are N{sub 2} and the binary mixtures of He-N{sub 2}. This paper calculates the transport properties of these working fluids and compares their values to those of noble gas binary mixtures at the temperatures and pressures expected in CBC space reactor power system applications. Also investigated is the impact of using these working fluids on the pressure losses, heat transfer coefficient, and the aerodynamic loading of the blades in the CBC turbo-machines.

Tournier, Jean-Michel P.; El-Genk, Mohamed S. [Institute for Space and Nuclear Power Studies and Chemical and Nuclear Engineering Department, University of New Mexico, Albuquerque, NM 87131 (United States)

2008-01-21T23:59:59.000Z

173

Design considerations of a power supply system for fast cycling superconducting accelerator magnets of 2 Tesla b-field generated by a conductor of 100 kA current  

SciTech Connect (OSTI)

Recently proposed fast cycling accelerators for proton drivers (SF-SPS, CERN and SF-MR, SF-BOOSTER, FNAL) neutrino sources require development of new magnet technology. In support of this magnet development a power supply system will need to be developed that can support the high current and high rate of power swing required by the fast cycling (1 sec rise and fall in the SF-MR, 5Hz in Booster). This paper will outline a design concept for a +/- 2000 V and 100,000 A fast ramping power supply system. This power supply design is in support of a 6.44 km magnet system at 0.020 H and 330 m 5 Hz, 0.00534 H superconducting loads. The design description will include the layout and plan for extending the present FNAL Main Injector style ramping power supply to the higher currents needed for this operation. This will also include the design for a harmonic filter and power factor corrector that will be needed to control the large power swings caused by the fast cycle time. A conceptual design for the current regulation system and control will also be outlined. The power circuit design will include the bridge, filter and transformer plan based on existing designs.

Hays, Steve; Piekarz, Henryk; Pfeffer, Howie; Claypool, Brad; /Fermilab

2007-06-01T23:59:59.000Z

174

Open-cycle magnetohydrodynamic power plant based upon direct-contact closed-loop high-temperature heat exchanger  

DOE Patents [OSTI]

A magnetohydrodynamic (MHD) power generating system in which ionized combustion gases with slag and seed are discharged from an MHD combustor and pressurized high temperature inlet air is introduced into the combustor for supporting fuel combustion at high temperatures necessary to ionize the combustion gases, and including a heat exchanger in the form of a continuous loop with a circulating heat transfer liquid such as copper oxide. The heat exchanger has an upper horizontal channel for providing direct contact between the heat transfer liquid and the combustion gases to cool the gases and condense the slag which thereupon floats on the heat transfer liquid and can be removed from the channel, and a lower horizontal channel for providing direct contact between the heat transfer liquid and pressurized air for preheating the inlet air. The system further includes a seed separator downstream of the heat exchanger.

Berry, Gregory F. (Naperville, IL); Minkov, Vladimir (Skokie, IL); Petrick, Michael (Joliet, IL)

1988-01-01T23:59:59.000Z

175

Open-cycle magnetohydrodynamic power plant based upon direct-contact closed-loop high-temperature heat exchanger  

DOE Patents [OSTI]

A magnetohydrodynamic (MHD) power generating system is described in which ionized combustion gases with slag and seed are discharged from an MHD combustor and pressurized high temperature inlet air is introduced into the combustor for supporting fuel combustion at high temperatures necessary to ionize the combustion gases, and including a heat exchanger in the form of a continuous loop with a circulating heat transfer liquid such as copper oxide. The heat exchanger has an upper horizontal channel for providing direct contact between the heat transfer liquid and the combustion gases to cool the gases and condense the slag which thereupon floats on the heat transfer liquid and can be removed from the channel, and a lower horizontal channel for providing direct contact between the heat transfer liquid and pressurized air for preheating the inlet air. The system further includes a seed separator downstream of the heat exchanger.

Berry, G.F.; Minkov, V.; Petrick, M.

1981-11-02T23:59:59.000Z

176

Oscillating red-giant stars in eccentric binary systems  

E-Print Network [OSTI]

The unparalleled photometric data obtained by NASA's Kepler Space Telescope has led to improved understanding of red-giant stars and binary stars. We discuss the characterization of known eccentric system, containing a solar-like oscillating red-giant primary component. We also report several new binary systems that are candidates for hosting an oscillating companion. A powerful approach to study binary stars is to combine asteroseimic techniques with light curve fitting. Seismology allows us to deduce the properties of red giants. In addition, by modeling the ellipsoidal modulations we can constrain the parameters of the binary system. An valuable independent source are ground-bases, high-resolution spectrographs.

Beck, P G; Vos, J; Kallinger, T; Garcia, R A; Mathur, S; Houmani, K

2014-01-01T23:59:59.000Z

177

Test Requirements and Conceptual Design for a Potassium Test Loop to Support an Advanced Potassium Rankine Cycle Power Conversion Systems  

SciTech Connect (OSTI)

Parameters for continuing the design and specification of an experimental potassium test loop are identified in this report. Design and construction of a potassium test loop is part of the Phase II effort of the project ''Technology Development Program for an Advanced Potassium Rankine Power Conversion System''. This program is supported by the National Aeronautics and Space Administration. Design features for the potassium test loop and its instrumentation system, specific test articles, and engineered barriers for ensuring worker safety and protection of the environment are described along with safety and environmental protection requirements to be used during the design process. Information presented in the first portion of this report formed the basis to initiate the design phase of the program; however, the report is a living document that can be changed as necessary during the design process, reflecting modifications as additional design details are developed. Some portions of the report have parameters identified as ''to be determined'' (TBD), reflecting the early stage of the overall process. In cases where specific design values are presently unknown, the report attempts to document the quantities that remain to be defined in order to complete the design of the potassium test loop and supporting equipment.

Yoder, JR.G.L.

2006-03-08T23:59:59.000Z

178

Physics of Binary Information  

E-Print Network [OSTI]

Basic concepts of theoretical particle physics, including quantum mechanics and Poincar\\'e invariance, the leptonic mass spectrum and the proton mass, can be derived, without reference to first principles, from intrinsic properties of the simplest elements of information represented by binary data. What we comprehend as physical reality is, therefore, a reflection of mathematically determined logical structures, built from elements of binary data.

Walter Smilga

2005-05-05T23:59:59.000Z

179

Very Cool Close Binaries  

E-Print Network [OSTI]

We present new observations of cool <6000K and low mass <1Msun binary systems that have been discovered by searching several modern stellar photometric databases. The search has led to a factor of 10 increase in the number of known cool close eclipsing binary systems.

J. Scott Shaw; Mercedes Lopez-Morales

2006-03-28T23:59:59.000Z

180

Cycle isolation monitoring  

SciTech Connect (OSTI)

There are many factors to monitor in power plants, but one that is frequently overlooked is cycle isolation. Often this is an area where plant personnel can find 'low hanging fruit' with great return on investment, especially high energy valve leakage. This type of leakage leads to increased heat rate, potential valve damage and lost generation. The fundamental question to ask is 'What is 100 Btu/kW-hr of heat rate worth to your plant? On a 600 MW coal-fired power plant, a 1% leakage can lead to an 81 Btu/kW-hr impact on the main steam cycle and a 64 Btu/kW-hr impact on the hot reheat cycle. The article gives advice on methods to assist in detecting leaking valves and to monitor cycle isolation. A software product, TP. Plus-CIM was designed to estimate flow rates of potentially leaking valves.

Svensen, L.M. III; Zeigler, J.R.; Todd, F.D.; Alder, G.C. [Santee Copper, Moncks Corner, SC (United States)

2009-07-15T23:59:59.000Z

Note: This page contains sample records for the topic "binary cycle power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Regenerative Heater Optimization for Steam Turbo-Generation Cycles of Generation IV Nuclear Power Plants with a Comparison of Two Concepts for the Westinghouse International Reactor Innovative and Secure (IRIS)  

SciTech Connect (OSTI)

The intent of this study is to discuss some of the many factors involved in the development of the design and layout of a steam turbo-generation unit as part of a modular Generation IV nuclear power plant. Of the many factors involved in the design and layout, this research will cover feed water system layout and optimization issues. The research is arranged in hopes that it can be generalized to any Generation IV system which uses a steam powered turbo-generation unit. The research is done using the ORCENT-II heat balance codes and the Salisbury methodology to be reviewed herein. The Salisbury methodology is used on an original cycle design by Famiani for the Westinghouse IRIS and the effects due to parameter variation are studied. The vital parameters of the Salisbury methodology are the incremental heater surface capital cost (S) in $/ft{sup 2}, the value of incremental power (I) in $/kW, and the overall heat transfer coefficient (U) in Btu/ft{sup 2}-degrees Fahrenheit-hr. Each is varied in order to determine the effects on the cycles overall heat rate, output, as well as, the heater surface areas. The effects of each are shown. Then the methodology is then used to compare the optimized original Famiani design consisting of seven regenerative feedwater heaters with an optimized new cycle concept, INRC8, containing four regenerative heaters. The results are shown. It can be seen that a trade between the complexity of the seven stage regenerative Famiani cycle and the simplicity of the INRC8 cycle can be made. It is desired that this methodology can be used to show the ability to evaluate modularity through the value of size a complexity of the system as well as the performance. It also shows the effectiveness of the Salisbury methodology in the optimization of regenerative cycles for such an evaluation.

Williams, W.C.

2002-08-01T23:59:59.000Z

182

Dynamic simulation and load-following control of an integrated gasification combined cycle (IGCC) power plant with CO{sub 2} capture  

SciTech Connect (OSTI)

Load-following control of future integrated gasification combined cycle (IGCC) plants with pre-combustion CO{sub 2} capture is expected to be far more challenging as electricity produced by renewable energy is connected to the grid and strict environmental limits become mandatory requirements. To study control performance during load following, a plant-wide dynamic simulation of a coal-fed IGCC plant with CO{sub 2} capture has been developed. The slurry-fed gasifier is a single-stage, downward-fired, oxygen-blown, entrained-flow type with a radiant syngas cooler (RSC). The syngas from the outlet of the RSC goes to a scrubber followed by a two-stage sour shift process with inter-stage cooling. The acid gas removal (AGR) process is a dual-stage physical solvent-based process for selective removal of H{sub 2}S in the first stage and CO{sub 2} in the second stage. Sulfur is recovered using a Claus unit with tail gas recycle to the AGR. The recovered CO{sub 2} is compressed by a split-shaft multistage compressor and sent for sequestration after being treated in an absorber with triethylene glycol for dehydration. The clean syngas is sent to two advanced “F”-class gas turbines (GTs) partially integrated with an elevated-pressure air separation unit. A subcritical steam cycle is used for heat recovery steam generation. A treatment unit for the sour water strips off the acid gases for utilization in the Claus unit. The steady-state model developed in Aspen Plus® is converted to an Aspen Plus Dynamics® simulation and integrated with MATLAB® for control studies. The results from the plant-wide dynamic model are compared qualitatively with the data from a commercial plant having different configuration, operating condition, and feed quality than what has been considered in this work. For load-following control, the GT-lead with gasifier-follow control strategy is considered. A modified proportional–integral–derivative (PID) control is considered for the syngas pressure control. For maintaining the desired CO{sub 2} capture rate while load-following, a linear model predictive controller (LMPC) is implemented in MATLAB®. A combined process and disturbance model is identified by considering a number of model forms and choosing the final model based on an information-theoretic criterion. The performance of the LMPC is found to be superior to the conventional PID control for maintaining CO{sub 2} capture rates in an IGCC power plant while load following.

Bhattacharyya, D,; Turton, R.; Zitney, S.

2012-01-01T23:59:59.000Z

183

Nexant Parabolic Trough Solar Power Plant Systems Analysis; Task 2: Comparison of Wet and Dry Rankine Cycle Heat Rejection, 20 January 2005 - 31 December 2005  

SciTech Connect (OSTI)

Subcontract report by Nexant, Inc., regarding a system analysis comparing solar parabolic trough plants with wet and dry rankine cycle heat rejection.

Kelly, B.

2006-07-01T23:59:59.000Z

184

Producer-Focused Life Cycle Assessment of Thin-Film Silicon Photovoltaic Systems  

E-Print Network [OSTI]

Dornfeld, Chair Life cycle assessment (LCA) is a powerful1 Introduction Life cycle assessment (LCA) aids consumers inDefinition Life cycle assessment (LCA) is a holistic method

Zhang, Teresa Weirui

2011-01-01T23:59:59.000Z

185

Power Conversion APEX Interim Report November, 1999  

E-Print Network [OSTI]

, the combined efficiency of the topping cycle and bottoming cycle will be less than the single cycle along. POWER CONVERSION 17.1 Steam Cycle Different steam cycles have been well developed. A study by EPRI summarized the various advanced steam cycles which maybe available for an advanced coal power plant

California at Los Angeles, University of

186

Rethinking the light water reactor fuel cycle  

E-Print Network [OSTI]

The once through nuclear fuel cycle adopted by the majority of countries with operating commercial power reactors imposes a number of concerns. The radioactive waste created in the once through nuclear fuel cycle has to ...

Shwageraus, Evgeni, 1973-

2004-01-01T23:59:59.000Z

187

Hypervelocity binary stars: smoking gun of massive binary black holes  

E-Print Network [OSTI]

The hypervelocity stars recently found in the Galactic halo are expelled from the Galactic center through interactions between binary stars and the central massive black hole or between single stars and a hypothetical massive binary black hole. In this paper, we demonstrate that binary stars can be ejected out of the Galactic center with velocities up to 10^3 km/s, while preserving their integrity, through interactions with a massive binary black hole. Binary stars are unlikely to attain such high velocities via scattering by a single massive black hole or through any other mechanisms. Based on the above theoretical prediction, we propose a search for binary systems among the hypervelocity stars. Discovery of hypervelocity binary stars, even one, is a definitive evidence of the existence of a massive binary black hole in the Galactic center.

Youjun Lu; Qingjuan Yu; D. N. C. Lin

2007-07-22T23:59:59.000Z

188

Binary ferrihydrite catalysts  

DOE Patents [OSTI]

A method of preparing a catalyst precursor comprises dissolving an iron salt and a salt of an oxoanion forming agent, in water so that a solution of the iron salt and oxoanion forming agent salt has a ratio of oxoanion/Fe of between 0.0001:1 to 0.5:1. Next is increasing the pH of the solution to 10 by adding a strong base followed by collecting of precipitate having a binary ferrihydrite structure. A binary ferrihydrite catalyst precursor is also prepared by dissolving an iron salt in water. The solution is brought to a pH of substantially 10 to obtain ferrihydrite precipitate. The precipitate is then filtered and washed with distilled water and subsequently admixed with a hydroxy carboxylic acid solution. The admixture is mixed/agitated and the binary ferrihydrite precipitate is then filtered and recovered. 3 figs.

Huffman, G.P.; Zhao, J.; Feng, Z.

1996-12-03T23:59:59.000Z

189

Binary ferrihydrite catalysts  

DOE Patents [OSTI]

A method of preparing a catalyst precursor comprises dissolving an iron salt and a salt of an oxoanion forming agent, in water so that a solution of the iron salt and oxoanion forming agent salt has a ratio of oxoanion/Fe of between 0.0001:1 to 0.5:1. Next is increasing the pH of the solution to 10 by adding a strong base followed by collecting of precipitate having a binary ferrihydrite structure. A binary ferrihydrite catalyst precursor is also prepared by dissolving an iron salt in water. The solution is brought to a pH of substantially 10 to obtain ferrihydrite precipitate. The precipitate is then filtered and washed with distilled water and subsequently admixed with a hydroxy carboxylic acid solution. The admixture is mixed/agitated and the binary ferrihydrite precipitate is then filtered and recovered.

Huffman, Gerald P. (Lexington, KY); Zhao, Jianmin (Lexington, KY); Feng, Zhen (Lexington, KY)

1996-01-01T23:59:59.000Z

190

Sensor placement algorithm development to maximize the efficiency of acid gas removal unit for integrated gasification combined cycle (IGCC) power plant with CO{sub 2} capture  

SciTech Connect (OSTI)

Future integrated gasification combined cycle (IGCC) power plants with CO{sub 2} capture will face stricter operational and environmental constraints. Accurate values of relevant states/outputs/disturbances are needed to satisfy these constraints and to maximize the operational efficiency. Unfortunately, a number of these process variables cannot be measured while a number of them can be measured, but have low precision, reliability, or signal-to-noise ratio. In this work, a sensor placement (SP) algorithm is developed for optimal selection of sensor location, number, and type that can maximize the plant efficiency and result in a desired precision of the relevant measured/unmeasured states. In this work, an SP algorithm is developed for an selective, dual-stage Selexol-based acid gas removal (AGR) unit for an IGCC plant with pre-combustion CO{sub 2} capture. A comprehensive nonlinear dynamic model of the AGR unit is developed in Aspen Plus Dynamics® (APD) and used to generate a linear state-space model that is used in the SP algorithm. The SP algorithm is developed with the assumption that an optimal Kalman filter will be implemented in the plant for state and disturbance estimation. The algorithm is developed assuming steady-state Kalman filtering and steady-state operation of the plant. The control system is considered to operate based on the estimated states and thereby, captures the effects of the SP algorithm on the overall plant efficiency. The optimization problem is solved by Genetic Algorithm (GA) considering both linear and nonlinear equality and inequality constraints. Due to the very large number of candidate sets available for sensor placement and because of the long time that it takes to solve the constrained optimization problem that includes more than 1000 states, solution of this problem is computationally expensive. For reducing the computation time, parallel computing is performed using the Distributed Computing Server (DCS®) and the Parallel Computing® toolbox from Mathworks®. In this presentation, we will share our experience in setting up parallel computing using GA in the MATLAB® environment and present the overall approach for achieving higher computational efficiency in this framework.

Paul, P.; Bhattacharyya, D.; Turton, R.; Zitney, S.

2012-01-01T23:59:59.000Z

191

Polymer Expansions for Cycle LDPC Codes  

E-Print Network [OSTI]

We prove that the Bethe expression for the conditional input-output entropy of cycle LDPC codes on binary symmetric channels above the MAP threshold is exact in the large block length limit. The analysis relies on methods from statistical physics. The finite size corrections to the Bethe expression are expressed through a polymer expansion which is controlled thanks to expander and counting arguments.

Nicolas Macris; Marc Vuffray

2012-02-13T23:59:59.000Z

192

Galactic microlensing with rotating binaries  

E-Print Network [OSTI]

The influence of rotating binary systems on the light curves of galactic microlensing events is studied. Three different rotating binary systems are discussed: a rotating binary lens, a rotating binary source, and the motion of the earth around the sun (parallax effect). The most dramatic effects arise from the motion of a binary lens because of the changes of the caustic structure with time. I discuss when the treatment of a microlensing event with a static binary model is appropriate. It is shown that additional constraints on the unknown physical quantities of the lens system arise from a fit with a rotating binary lens as well as from the earth-around-sun motion. For the DUO#2 event, a fit with a rotating binary lens is presented.

M. Dominik

1997-09-09T23:59:59.000Z

193

Kenya geothermal private power project: A prefeasibility study  

SciTech Connect (OSTI)

Twenty-eight geothermal areas in Kenya were evaluated and prioritized for development. The prioritization was based on the potential size, resource temperature, level of exploration risk, location, and exploration/development costs for each geothermal area. Suswa, Eburru and Arus are found to offer the best short-term prospects for successful private power development. It was found that cost per kill developed are significantly lower for the larger (50MW) than for smaller-sized (10 or 20 NW) projects. In addition to plant size, the cost per kill developed is seen to be a function of resource temperature, generation mode (binary or flash cycle) and transmission distance.

Not Available

1992-10-01T23:59:59.000Z

194

Dynamical resonance locking in tidally interacting binary systems  

E-Print Network [OSTI]

We examine the dynamics of resonance locking in detached, tidally interacting binary systems. In a resonance lock, a given stellar or planetary mode is trapped in a highly resonant state for an extended period of time, during which the spin and orbital frequencies vary in concert to maintain the resonance. This phenomenon is qualitatively similar to resonance capture in planetary dynamics. We show that resonance locks can accelerate the course of tidal evolution in eccentric systems and also efficiently couple spin and orbital evolution in circular binaries. Previous analyses of resonance locking have not treated the mode amplitude as a fully dynamical variable, but rather assumed the adiabatic (i.e. Lorentzian) approximation valid only in the limit of relatively strong mode damping. We relax this approximation, analytically derive conditions under which the fixed point associated with resonance locking is stable, and further check these analytic results using numerical integrations of the coupled mode, spin, and orbital evolution equations. These show that resonance locking can sometimes take the form of complex limit cycles or even chaotic trajectories. We provide simple analytic formulae that define the binary and mode parameter regimes in which resonance locks of some kind occur (stable, limit cycle, or chaotic). We briefly discuss the astrophysical implications of our results for white dwarf and neutron star binaries as well as eccentric stellar binaries.

Joshua Burkart; Eliot Quataert; Phil Arras

2014-10-25T23:59:59.000Z

195

X-ray binaries  

E-Print Network [OSTI]

We review the nuclear astrophysics aspects of accreting neutron stars in X-ray binaries. We summarize open astrophysical questions in light of recent observations and their relation to the underlying nuclear physics. Recent progress in the understanding of the nuclear physics, especially of X-ray bursts, is also discussed.

H. Schatz; K. E. Rehm

2006-08-01T23:59:59.000Z

196

M. Bahrami ENSC 461 (S 11) Brayton Cycle 1 Open GasTurbine Cycle  

E-Print Network [OSTI]

generation. High thermal efficiencies up to 44%. Suitable for combined cycles (with steam power plantM. Bahrami ENSC 461 (S 11) Brayton Cycle 1 Open GasTurbine Cycle Fig.1: Schematic for an open gas-turbine cycle. Working Principal Fresh air enters the compressor at ambient temperature where its pressure

Bahrami, Majid

197

Rankine and Brayton Cycle Cogeneration for Glass Melting  

E-Print Network [OSTI]

Comparisons are made of the performance and installation costs of Rankine and Brayton power cycles when applied to waste heat recovery from a 350 ton/day container glass furnace. The power cycles investigation included: a) a conventional steam...

Hnat, J. G.; Patten, J. S.; Sheth, P. R.

1981-01-01T23:59:59.000Z

198

Life-Cycle Analysis Results of Geothermal Systems in Comparison...  

Energy Savers [EERE]

Life-Cycle Analysis Results of Geothermal Systems in Comparison to Other Power Systems Life-Cycle Analysis Results of Geothermal Systems in Comparison to Other Power Systems A...

199

Extension of the supercritical carbon dioxide brayton cycle to low reactor power operation: investigations using the coupled anl plant dynamics code-SAS4A/SASSYS-1 liquid metal reactor code system.  

SciTech Connect (OSTI)

Significant progress has been made on the development of a control strategy for the supercritical carbon dioxide (S-CO{sub 2}) Brayton cycle enabling removal of power from an autonomous load following Sodium-Cooled Fast Reactor (SFR) down to decay heat levels such that the S-CO{sub 2} cycle can be used to cool the reactor until decay heat can be removed by the normal shutdown heat removal system or a passive decay heat removal system such as Direct Reactor Auxiliary Cooling System (DRACS) loops with DRACS in-vessel heat exchangers. This capability of the new control strategy eliminates the need for use of a separate shutdown heat removal system which might also use supercritical CO{sub 2}. It has been found that this capability can be achieved by introducing a new control mechanism involving shaft speed control for the common shaft joining the turbine and two compressors following reduction of the load demand from the electrical grid to zero. Following disconnection of the generator from the electrical grid, heat is removed from the intermediate sodium circuit through the sodium-to-CO{sub 2} heat exchanger, the turbine solely drives the two compressors, and heat is rejected from the cycle through the CO{sub 2}-to-water cooler. To investigate the effectiveness of shaft speed control, calculations are carried out using the coupled Plant Dynamics Code-SAS4A/SASSYS-1 code for a linear load reduction transient for a 1000 MWt metallic-fueled SFR with autonomous load following. No deliberate motion of control rods or adjustment of sodium pump speeds is assumed to take place. It is assumed that the S-CO{sub 2} turbomachinery shaft speed linearly decreases from 100 to 20% nominal following reduction of grid load to zero. The reactor power is calculated to autonomously decrease down to 3% nominal providing a lengthy window in time for the switchover to the normal shutdown heat removal system or for a passive decay heat removal system to become effective. However, the calculations reveal that the compressor conditions are calculated to approach surge such that the need for a surge control system for each compressor is identified. Thus, it is demonstrated that the S-CO{sub 2} cycle can operate in the initial decay heat removal mode even with autonomous reactor control. Because external power is not needed to drive the compressors, the results show that the S-CO{sub 2} cycle can be used for initial decay heat removal for a lengthy interval in time in the absence of any off-site electrical power. The turbine provides sufficient power to drive the compressors. Combined with autonomous reactor control, this represents a significant safety advantage of the S-CO{sub 2} cycle by maintaining removal of the reactor power until the core decay heat falls to levels well below those for which the passive decay heat removal system is designed. The new control strategy is an alternative to a split-shaft layout involving separate power and compressor turbines which had previously been identified as a promising approach enabling heat removal from a SFR at low power levels. The current results indicate that the split-shaft configuration does not provide any significant benefits for the S-CO{sub 2} cycle over the current single-shaft layout with shaft speed control. It has been demonstrated that when connected to the grid the single-shaft cycle can effectively follow the load over the entire range. No compressor speed variation is needed while power is delivered to the grid. When the system is disconnected from the grid, the shaft speed can be changed as effectively as it would be with the split-shaft arrangement. In the split-shaft configuration, zero generator power means disconnection of the power turbine, such that the resulting system will be almost identical to the single-shaft arrangement. Without this advantage of the split-shaft configuration, the economic benefits of the single-shaft arrangement, provided by just one turbine and lower losses at the design point, are more important to the overall cycle performance. Therefore, the single-shaft

Moisseytsev, A.; Sienicki, J. J. (Nuclear Engineering Division)

2012-05-10T23:59:59.000Z

200

Nuclear proliferation and civilian nuclear power. Report of the Nonproliferation Alternative Systems Assessment Program. Volume IX. Reactor and fuel cycle description  

SciTech Connect (OSTI)

The Nonproliferation Alterntive Systems Assessment Program (NASAP) has characterized and assessed various reactor/fuel-cycle systems. Volume IX provides, in summary form, the technical descriptions of the reactor/fuel-cycle systems studied. This includes the status of the system technology, as well as a discussion of the safety, environmental, and licensing needs from a technical perspective. This information was then used in developing the research, development, and demonstration (RD and D) program, including its cost and time frame, to advance the existing technology to the level needed for commercial use. Wherever possible, the cost data are given as ranges to reflect the uncertainties in the estimates.

Not Available

1980-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "binary cycle power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Accretion in Compact Binaries  

E-Print Network [OSTI]

Compact binaries have long been a paradigm for accretion theory. Much of our present view of how accretion occurs comes directly from the comparison of theory with observations of these sources. Since theory differs little for other objects such as active galaxies, increasing efforts have recently gone into searching for correspondences in observed behaviour. This chapter aims at giving a concise summary of the field, with particular emphasis on new developments since the previous edition of this book. These developments have been significant. Much of the earlier literature implicitly assumed that accreting binaries were fairly steady sources accreting most of the mass entering their vicinity, often with main-sequence companions, and radiating the resulting accretion luminosity in rough isotropy. We shall see that in reality these assumptions fail for the majority of systems. Most are transient; mass ejection in winds and jets is extremely common; a large (sometimes dominant) fraction of even short-period systems have evolved companions whose structure deviates significantly from the zero-age main sequence; and the radiation pattern of many objects is significantly anisotropic. It is now possible to give a complete characterization of the observed incidence of transient and persistent sources in terms of the disc instability model and formation constraints. X-ray populations in external galaxies, particularly the ultraluminous sources, are revealing important new insights into accretion processes and compact binary evolution.

Andrew R. King

2003-03-26T23:59:59.000Z

202

Apparatus and methods of reheating gas turbine cooling steam and high pressure steam turbine exhaust in a combined cycle power generating system  

DOE Patents [OSTI]

In a combined cycle system having a multi-pressure heat recovery steam generator, a gas turbine and steam turbine, steam for cooling gas turbine components is supplied from the intermediate pressure section of the heat recovery steam generator supplemented by a portion of the steam exhausting from the HP section of the steam turbine, steam from the gas turbine cooling cycle and the exhaust from the HP section of the steam turbine are combined for flow through a reheat section of the HRSG. The reheated steam is supplied to the IP section inlet of the steam turbine. Thus, where gas turbine cooling steam temperature is lower than optimum, a net improvement in performance is achieved by flowing the cooling steam exhausting from the gas turbine and the exhaust steam from the high pressure section of the steam turbine in series through the reheater of the HRSG for applying steam at optimum temperature to the IP section of the steam turbine.

Tomlinson, Leroy Omar (Niskayuna, NY); Smith, Raub Warfield (Ballston Lake, NY)

2002-01-01T23:59:59.000Z

203

Astrophysics of white dwarf binaries  

E-Print Network [OSTI]

White dwarf binaries are the most common compact binaries in the Universe and are especially important for low-frequency gravitational wave detectors such as LISA. There are a number of open questions about binary evolution and the Galactic population of white dwarf binaries that can be solved using gravitational wave data and at the same time, our ever improving knowledge about these binaries will help to predict the signals that can be expected for LISA. In addition a number of white dwarf binaries will serve as verification sources for the instrument. I will discuss these issues and report recent, surprising, developments in this field. Finally I report calculations about the feasibility of complementary electro-magnetic observations which unfortunately cannot reproduce the optimistic results of Cooray et al. (2004).

G. Nelemans

2007-03-13T23:59:59.000Z

204

Geothermal Life Cycle Calculator  

SciTech Connect (OSTI)

This calculator is a handy tool for interested parties to estimate two key life cycle metrics, fossil energy consumption (Etot) and greenhouse gas emission (ghgtot) ratios, for geothermal electric power production. It is based solely on data developed by Argonne National Laboratory for DOE’s Geothermal Technologies office. The calculator permits the user to explore the impact of a range of key geothermal power production parameters, including plant capacity, lifetime, capacity factor, geothermal technology, well numbers and depths, field exploration, and others on the two metrics just mentioned. Estimates of variations in the results are also available to the user.

Sullivan, John

2014-03-11T23:59:59.000Z

205

Geothermal Life Cycle Calculator  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

This calculator is a handy tool for interested parties to estimate two key life cycle metrics, fossil energy consumption (Etot) and greenhouse gas emission (ghgtot) ratios, for geothermal electric power production. It is based solely on data developed by Argonne National Laboratory for DOE’s Geothermal Technologies office. The calculator permits the user to explore the impact of a range of key geothermal power production parameters, including plant capacity, lifetime, capacity factor, geothermal technology, well numbers and depths, field exploration, and others on the two metrics just mentioned. Estimates of variations in the results are also available to the user.

Sullivan, John

206

General syllabus for third-cycle studies in Thermal Power Engineering This syllabus has been adopted by the Board of LTH, 3 November 2008  

E-Print Network [OSTI]

with fuel cells and partly in connection with the so-called CO2-free processes. 2. Aim of third Engineering is the development of methods for the analysis and optimization of thermal power plants in both

207

Dynamic Tides in Close Binaries  

E-Print Network [OSTI]

The basic theory of dynamic tides in close binaries is reviewed. Particular attention is paid to resonances between dynamic tides and free oscillation modes and to the role of the apsidal-motion rate in probing the internal structure of binary components. The discussed effects are generally applicable to stars across the entire Hertzsprung-Russell diagram, including the binary OB-stars discussed at this meeting.

B. Willems

2005-11-10T23:59:59.000Z

208

Chaos in Binary Category Computation  

E-Print Network [OSTI]

Category computation theory deals with a web-based systemic processing that underlies the morphic webs, which constitute the basis of categorial logical calculus. It is proven that, for these structures, algorithmically incompressible binary patterns can be morphically compressed, with respect to the local connectivities, in a binary morphic program. From the local connectivites, there emerges a global morphic connection that can be characterized by a low length binary string, leading to the identification of chaotic categorial dynamics, underlying the algorithmically random pattern. The work focuses on infinite binary chains of C2, which is a category that implements an X-OR-based categorial logical calculus.

Carlos Pedro Gonçalves

2010-11-21T23:59:59.000Z

209

Cycle cover with short cycles Nicole Immorlica  

E-Print Network [OSTI]

Introduction Given a graph and a subset of marked elements (nodes, edges, or some combination thereof), a cycleCycle cover with short cycles Nicole ImmorlicaÂŁ Mohammad MahdianÂŁ Vahab S. MirrokniÂŁ Abstract Cycle for variants of cycle covering problems which bound the size and/or length of the covering cycles

Immorlica, Nicole

210

Advanced Organic Vapor Cycles for Improving Thermal Conversion Efficiency in Renewable Energy Systems  

E-Print Network [OSTI]

Optimization," in ASME International Joint Power Generationfor Solar Rankine Power Generation," ASME Journal of SolarBrayton-Cycle Solar Power Towers," ASME Journal of Solar

Ho, Tony

2012-01-01T23:59:59.000Z

211

Dixie Valley Bottoming Binary Cycle | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: TopEnergy DOEDealingVehicle1 Guidance for Agency-SpecificMarch 2015 <8

212

A fractal set from the binary reflected Gray code  

E-Print Network [OSTI]

The permutation associated with the decimal expression of the binary reflected Gray code with $N$ bits is considered. Its cycle structure is studied. Considered as a set of points, its self-similarity is pointed out. As a fractal, it is shown to be the attractor of a IFS. For large values of $N$ the set is examined from the point of view of time series analysis

J. A. Oteo; J. Ros

2005-10-14T23:59:59.000Z

213

Hyperbolic capture of compact binaries  

E-Print Network [OSTI]

Hyperbolic encounters of compact objects are common interactions in dense environments. During this process a significant amount of gravitational radiation is emitted depending on the parameters of the system. Here we give a parametric description of the radial motion valid for general binary orbits and the radiative energy and angular momentum losses for binaries with spinning components.

Mátyás Vasúth

2014-09-23T23:59:59.000Z

214

Locating Restricted Facilities on Binary Maps  

E-Print Network [OSTI]

welfare optimization, when the area map is encoded as a binary (0,1) mxn matrix. ... of connected components in binary maps and in Section 7 we conclude.

Mugurel

2008-09-20T23:59:59.000Z

215

Effect of Ambient Design Temperature on Air-Cooled Binary Plant Output  

SciTech Connect (OSTI)

Air-cooled binary plants are designed to provide a specified level of power production at a particular air temperature. Nominally this air temperature is the annual mean or average air temperature for the plant location. This study investigates the effect that changing the design air temperature has on power generation for an air-cooled binary plant producing power from a resource with a declining production fluid temperature and fluctuating ambient temperatures. This analysis was performed for plants operating both with and without a geothermal fluid outlet temperature limit. Aspen Plus process simulation software was used to develop optimal air-cooled binary plant designs for specific ambient temperatures as well as to rate the performance of the plant designs at off-design operating conditions. Results include calculation of annual and plant lifetime power generation as well as evaluation of plant operating characteristics, such as improved power generation capabilities during summer months when electric power prices are at peak levels.

Dan Wendt; Greg Mines

2011-10-01T23:59:59.000Z

216

Impact of Advanced Technologies on Fusion Power Plant Characteristics  

E-Print Network [OSTI]

Reliable Power Source: · Closed tritium fuel cycle on site; · Ability to operate at partial load conditions

California at San Diego, University of

217

Some comments on the electrodynamics of binary pulsars  

E-Print Network [OSTI]

We consider the electrodynamics of in-spiraling binary pulsars, showing that there are two distinct ways in which they may emit radiation. On the one hand, even if the pulsars do not rotate, we show that in vacuo orbital rotation generates magnetic quadrupole emission, which, in the late stages of the binary evolution becomes nearly as effective as magnetic dipole emission by a millisecond pulsar. On the other hand, we show that interactions of the two magnetic fields generate powerful induction electric fields, which cannot be screened by a suitable distribution of charges and currents like they are in isolated pulsars. We compute approximate electromotive forces for this case.

Sobacchi, Emanuele

2015-01-01T23:59:59.000Z

218

Detecting gravitational waves from highly eccentric compact binaries  

E-Print Network [OSTI]

In dense stellar regions, highly eccentric binaries of black holes and neutron stars can form through various n-body interactions. Such a binary could emit a significant fraction of its binding energy in a sequence of largely isolated gravitational wave bursts prior to merger. Given expected black hole and neutron star masses, many such systems will emit these repeated bursts at frequencies within the sensitive band of contemporary ground-based gravitational wave detectors. Unfortunately, existing gravitational wave searches are ill-suited to detect these signals. In this work, we adapt a "power stacking" method to the detection of gravitational wave signals from highly eccentric binaries. We implement this method as an extension of the Q-transform, a projection onto a multiresolution basis of windowed complex exponentials that has previously been used to analyze data from the network of LIGO/Virgo detectors. Our method searches for excess power over an ensemble of time-frequency tiles. We characterize the performance of our method using Monte Carlo experiments with signals injected in simulated detector noise. Our results indicate that the power stacking method achieves substantially better sensitivity to eccentric binary signals than existing localized burst searches.

Kai Sheng Tai; Sean T. McWilliams; Frans Pretorius

2014-03-30T23:59:59.000Z

219

Generation-IV Roadmap Report of the Fuel Cycle Crosscut Group...  

Broader source: Energy.gov (indexed) [DOE]

Charter of the Generation IV Roadmap Fuel Cycle Crosscut Group (FCCG) is to (1) examine the fuel cycle implications for alternative nuclear power scenarios in terms of Generation...

220

Advanced Organic Vapor Cycles for Improving Thermal Conversion Efficiency in Renewable Energy Systems  

E-Print Network [OSTI]

organic Rankine cycle," Renewable Energy, vol. 4, pp. 1196-power cycle driven by renewable energy sources," Energy,geothermal resources," Renewable Energy, vol. 37, pp. 364-

Ho, Tony

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "binary cycle power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Orbital Resonance and Solar Cycles  

E-Print Network [OSTI]

We present an analysis of planetary moves, encoded in DE406 ephemerides. We show resonance cycles between most planets in Solar System, of differing quality. The most precise resonance - between Earth and Venus, which not only stabilizes orbits of both planets, locks planet Venus rotation in tidal locking, but also affects the Sun: This resonance group (E+V) also influences Sunspot cycles - the position of syzygy between Earth and Venus, when the barycenter of the resonance group most closely approaches the Sun and stops for some time, relative to Jupiter planet, well matches the Sunspot cycle of 11 years, not only for the last 400 years of measured Sunspot cycles, but also in 1000 years of historical record of "severe winters". We show, how cycles in angular momentum of Earth and Venus planets match with the Sunspot cycle and how the main cycle in angular momentum of the whole Solar system (854-year cycle of Jupiter/Saturn) matches with climatologic data, assumed to show connection with Solar output power and insolation. We show the possible connections between E+V events and Solar global p-Mode frequency changes. We futher show angular momentum tables and charts for individual planets, as encoded in DE405 and DE406 ephemerides. We show, that inner planets orbit on heliocentric trajectories whereas outer planets orbit on barycentric trajectories.

P. A. Semi

2009-03-29T23:59:59.000Z

222

Determining the Porosity and Saturated Hydraulic Conductivity of Binary Mixtures  

SciTech Connect (OSTI)

Gravels and coarse sands make up significant portions of some environmentally important sediments, while the hydraulic properties of the sediments are typically obtained in the laboratory using only the fine fraction (e.g., <2 mm or 4.75 mm). Researchers have found that the content of gravel has significant impacts on the hydraulic properties of the bulk soils. Laboratory experiments were conducted to measure the porosity and the saturated hydraulic conductivity of binary mixtures with different fractions of coarse and fine components. We proposed a mixing-coefficient model to estimate the porosity and a power-averaging method to determine the effective particle diameter and further to predict the saturated hydraulic conductivity of binary mixtures. The proposed methods could well estimate the porosity and saturated hydraulic conductivity of the binary mixtures for the full range of gravel contents and was successfully applied to two data sets in the literature.

Zhang, Z. F.; Ward, Anderson L.; Keller, Jason M.

2009-09-27T23:59:59.000Z

223

Advanced Fuel Cycle Economic Sensitivity Analysis  

SciTech Connect (OSTI)

A fuel cycle economic analysis was performed on four fuel cycles to provide a baseline for initial cost comparison using the Gen IV Economic Modeling Work Group G4 ECON spreadsheet model, Decision Programming Language software, the 2006 Advanced Fuel Cycle Cost Basis report, industry cost data, international papers, the nuclear power related cost study from MIT, Harvard, and the University of Chicago. The analysis developed and compared the fuel cycle cost component of the total cost of energy for a wide range of fuel cycles including: once through, thermal with fast recycle, continuous fast recycle, and thermal recycle.

David Shropshire; Kent Williams; J.D. Smith; Brent Boore

2006-12-01T23:59:59.000Z

224

Concentrating Solar Power Commercial Application Study  

E-Print Network [OSTI]

Towers....................................................................... 9 Dish/Engine Systems, and dish/engine. Parabolic troughs are the most commercially available technology. Linear Fresnel and power Rankine steam cycles, similar to those used for coal and nuclear plants. Steam cycle power plants require

Laughlin, Robert B.

225

Proceedings of a Topical Meeting On Small Scale Geothermal Power Plants and Geothermal Power Plant Projects  

SciTech Connect (OSTI)

These proceedings describe the workshop of the Topical Meeting on Small Scale Geothermal Power Plants and Geothermal Power Plant Projects. The projects covered include binary power plants, rotary separator, screw expander power plants, modular wellhead power plants, inflow turbines, and the EPRI hybrid power system. Active projects versus geothermal power projects were described. In addition, a simple approach to estimating effects of fluid deliverability on geothermal power cost is described starting on page 119. (DJE-2005)

None

1986-02-12T23:59:59.000Z

226

COMPACT BINARY PROGENITORS OF SHORT GAMMA-RAY BURSTS  

SciTech Connect (OSTI)

In recent years, detailed observations and accurate numerical simulations have provided support to the idea that mergers of compact binaries containing either two neutron stars (NSs) or an NS and a black hole (BH) may constitute the central engine of short gamma-ray bursts (SGRBs). The merger of such compact binaries is expected to lead to the production of a spinning BH surrounded by an accreting torus. Several mechanisms can extract energy from this system and power the SGRBs. Here we connect observations and numerical simulations of compact binary mergers, and use the current sample of SGRBs with measured energies to constrain the mass of their powering tori. By comparing the masses of the tori with the results of fully general-relativistic simulations, we are able to infer the properties of the binary progenitors that yield SGRBs. By assuming a constant efficiency in converting torus mass into jet energy, {epsilon}{sub jet} = 10%, we find that most of the tori have masses smaller than 0.01 M{sub Sun }, favoring 'high-mass' binary NSs mergers, i.e., binaries with total masses {approx}> 1.5 the maximum mass of an isolated NS. This has important consequences for the gravitational wave signals that may be detected in association with SGRBs, since 'high-mass' systems do not form a long-lived hypermassive NS after the merger. While NS-BH systems cannot be excluded to be the engine of at least some of the SGRBs, the BH would need to have an initial spin of {approx}0.9 or higher.

Giacomazzo, Bruno [JILA, University of Colorado and National Institute of Standards and Technology, Boulder, CO 80309 (United States); Perna, Rosalba [JILA and Department of Astrophysical and Planetary Sciences, University of Colorado, Boulder, CO 80309 (United States); Rezzolla, Luciano [Max-Planck-Institut fuer Gravitationsphysik, Albert-Einstein-Institut, Potsdam D-14476 (Germany); Troja, Eleonora [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Lazzati, Davide [Department of Physics, NC State University, 2401 Stinson Drive, Raleigh, NC 27695-8202 (United States)

2013-01-10T23:59:59.000Z

227

Binary Pulsar Shock Emissions as Galactic Gamma-Ray Sources  

E-Print Network [OSTI]

We address several issues regarding the interpretation of galactic \\ggg-ray sources. We consider powerful pulsars in binaries producing X-ray and gamma-ray {\\it unpulsed} emission from the shock interaction of relativistic pulsar winds with circumbinary material. Nebular mass outflows from companion stars of binary pulsars can provide the right {\\it calorimeters} to transform a fraction of the electromagnetic and kinetic energy of pulsar winds into high energy radiation. We discuss the physics of interaction of relativistic pulsar winds with gaseous material and show that the conditions in pulsar binary systems might be ideal to constrain shock acceleration mechanisms and pulsar wind composition and structure. We briefly discuss the example of the 47~ms pulsar PSR~1259-63 orbiting around a massive Be~star companion and monitored by X-ray and gamma-ray instruments during its recent periastron passage. In addition to young pulsars in massive binaries, also a class of recycled millisecond pulsars in low-mass binaries can be interesting high energy emitters.

M. Tavani

1995-02-13T23:59:59.000Z

228

Methodology Guidelines on Life Cycle Assessment of Photovoltaic Electricity  

E-Print Network [OSTI]

1 Methodology Guidelines on Life Cycle Assessment of Photovoltaic Electricity of Photovoltaic Electricity #12;IEA-PVPS-TASK 12 Methodology Guidelines on Life Cycle Assessment of Photovoltaic Electricity INTERNATIONAL ENERGY AGENCY PHOTOVOLTAIC POWER SYSTEMS PROGRAMME Methodology

229

Short Gamma Ray Bursts as possible electromagnetic counterpart of coalescing binary systems  

E-Print Network [OSTI]

Coalescing binary systems, consisting of two collapsed objects, are among the most promising sources of high frequency gravitational waves signals detectable, in principle, by ground-based interferometers. Binary systems of Neutron Star or Black Hole/Neutron Star mergers should also give rise to short Gamma Ray Bursts, a subclass of Gamma Ray Bursts. Short-hard-Gamma Ray Bursts might thus provide a powerful way to infer the merger rate of two-collapsed object binaries. Under the hypothesis that most short Gamma Ray Bursts originate from binaries of Neutron Star or Black Hole/Neutron Star mergers, we outline here the possibility to associate short Gamma Ray Bursts as electromagnetic counterpart of coalescing binary systems.

S. Capozziello; M. De Laurentis; I. De Martino; M. Formisano

2010-04-27T23:59:59.000Z

230

DIRECT CONTACT HEAT EXCHANGER 10 kW POWER LOOP. SECTION 1: EXECUTIVE SUMMARY. SECTION 2: TEST SERIES NO. 1. SECTION 3; TEST SERIES NO. 2  

E-Print Network [OSTI]

Heat Exchangers to Geothermal Power Production Cycles",Heat Exchanger to Geothermal Power Production Cycles",4057702. o m SUMMARY The geothermal power loop was modified

Engineering, Barber-Nicholas

2011-01-01T23:59:59.000Z

231

Uncertainty Analyses of Advanced Fuel Cycles  

SciTech Connect (OSTI)

The Department of Energy is developing technology, experimental protocols, computational methods, systems analysis software, and many other capabilities in order to advance the nuclear power infrastructure through the Advanced Fuel Cycle Initiative (AFDI). Our project, is intended to facilitate will-informed decision making for the selection of fuel cycle options and facilities for development.

Laurence F. Miller; J. Preston; G. Sweder; T. Anderson; S. Janson; M. Humberstone; J. MConn; J. Clark

2008-12-12T23:59:59.000Z

232

VISION: Verifiable Fuel Cycle Simulation Model  

SciTech Connect (OSTI)

The nuclear fuel cycle is a very complex system that includes considerable dynamic complexity as well as detail complexity. In the nuclear power realm, there are experts and considerable research and development in nuclear fuel development, separations technology, reactor physics and waste management. What is lacking is an overall understanding of the entire nuclear fuel cycle and how the deployment of new fuel cycle technologies affects the overall performance of the fuel cycle. The Advanced Fuel Cycle Initiative’s systems analysis group is developing a dynamic simulation model, VISION, to capture the relationships, timing and delays in and among the fuel cycle components to help develop an understanding of how the overall fuel cycle works and can transition as technologies are changed. This paper is an overview of the philosophy and development strategy behind VISION. The paper includes some descriptions of the model and some examples of how to use VISION.

Jacob J. Jacobson; Abdellatif M. Yacout; Gretchen E. Matthern; Steven J. Piet; David E. Shropshire

2009-04-01T23:59:59.000Z

233

Sensitivity comparison of searches for binary black hole coalescences with ground-based gravitational-wave detectors  

E-Print Network [OSTI]

Searches for gravitational-wave transients from binary black hole coalescences typically rely on one of two approaches: matched filtering with templates and morphology-independent excess power searches. Multiple algorithmic ...

Mohapatra, Satya

234

Cycle Track Lessons Learned  

E-Print Network [OSTI]

Cycle Track Lessons Learned #12;Presentation Overview · Bicycling trends · Cycle track lessons learned · What is a "Cycle track"? · Essential design elements of cycle tracks Separation Width Crossing driveways & low-volume streets Signalized intersections #12;Trend in kilometers cycled per year

Bertini, Robert L.

235

E-Print Network 3.0 - atmospheric water cycle Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

cycle power plant's water demand is to meet... cooling water makeup requirements. Cooling towers reject heat from a power ... Source: California Energy Commission Collection:...

236

Advanced Nuclear Fuel Cycle Options  

SciTech Connect (OSTI)

A systematic evaluation has been conducted of the potential for advanced nuclear fuel cycle strategies and options to address the issues ascribed to the use of nuclear power. Issues included nuclear waste management, proliferation risk, safety, security, economics and affordability, and sustainability. The two basic strategies, once-through and recycle, and the range of possibilities within each strategy, are considered for all aspects of the fuel cycle including options for nuclear material irradiation, separations if needed, and disposal. Options range from incremental changes to today’s implementation to revolutionary concepts that would require the development of advanced nuclear technologies.

Roald Wigeland; Temitope Taiwo; Michael Todosow; William Halsey; Jess Gehin

2010-06-01T23:59:59.000Z

237

Urey Prize Lecture: Binary Minor Planets  

E-Print Network [OSTI]

in the Kuiper belt is uncertain by an order of magnitude due to poor knowledge of albedo/density. Distribution Binary objects detected by lightcurve are not included in this chart. Over 50 binary minor planets can

Margot, Jean-Luc

238

Spectral analysis of X-ray binaries  

E-Print Network [OSTI]

In this thesis, I present work from three separate research projects associated with observations of X-ray binaries. Two of those revolve around spectral characteristics of neutron star low-mass X-ray binaries (NS-LMXBs), ...

Fridriksson, Joel Karl

2011-01-01T23:59:59.000Z

239

A tapering window for time-domain templates and simulated signals in the detection of gravitational waves from coalescing compact binaries  

E-Print Network [OSTI]

Inspiral signals from binary black holes, in particular those with masses in the range $10M_\\odot \\lsim M \\lsim 1000 M_\\odot,$ may last for only a few cycles within a detector's most sensitive frequency band. The spectrum of a square-windowed time-domain signal could contain unwanted power that can cause problems in gravitational wave data analysis, particularly when the waveforms are of short duration. There may be leakage of power into frequency bins where no such power is expected, causing an excess of false alarms. We present a method of tapering the time-domain waveforms that significantly reduces unwanted leakage of power, leading to a spectrum that agrees very well with that of a long duration signal. Our tapered window also decreases the false alarms caused by instrumental and environmental transients that are picked up by templates with spurious signal power. The suppression of background is an important goal in noise-dominated searches and can lead to an improvement in the detection efficiency of the search algorithms.

D. J. A. McKechan; C. Robinson; B. S. Sathyaprakash

2010-03-15T23:59:59.000Z

240

Statistical properties of chaotic binary sequences  

E-Print Network [OSTI]

Mean value and cross-covariance function of chaotic binary sequences are evaluated for chaotic maps with specific properties. We also take into account the effect of fixed- and floating-point representations on statistical properties of chaotic generators. Thus, one is able to obtain possible candidates for pseudo-random binary sequences generation. Results of statistical tests applied to chaotic binary sequences are presented. The chaotic binary sequences thus obtained could be used for security improvement in IEEE 802.11 standard.

Bogdan Cristea

2008-05-28T23:59:59.000Z

Note: This page contains sample records for the topic "binary cycle power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Fossil fuel combined cycle power system  

DOE Patents [OSTI]

A system for converting fuel energy to electricity includes a reformer for converting a higher molecular weight gas into at least one lower molecular weight gas, at least one turbine to produce electricity from expansion of at least one of the lower molecular weight gases, and at least one fuel cell. The system can further include at least one separation device for substantially dividing the lower molecular weight gases into at least two gas streams prior to the electrochemical oxidization step. A nuclear reactor can be used to supply at least a portion of the heat the required for the chemical conversion process.

Labinov, Solomon Davidovich; Armstrong, Timothy Robert; Judkins, Roddie Reagan

2006-10-10T23:59:59.000Z

242

Fossil fuel combined cycle power generation method  

DOE Patents [OSTI]

A method for converting fuel energy to electricity includes the steps of converting a higher molecular weight gas into at least one mixed gas stream of lower average molecular weight including at least a first lower molecular weight gas and a second gas, the first and second gases being different gases, wherein the first lower molecular weight gas comprises H.sub.2 and the second gas comprises CO. The mixed gas is supplied to at least one turbine to produce electricity. The mixed gas stream is divided after the turbine into a first gas stream mainly comprising H.sub.2 and a second gas stream mainly comprising CO. The first and second gas streams are then electrochemically oxidized in separate fuel cells to produce electricity. A nuclear reactor can be used to supply at least a portion of the heat the required for the chemical conversion process.

Labinov, Solomon D [Knoxville, TN; Armstrong, Timothy R [Clinton, TN; Judkins, Roddie R [Knoxville, TN

2008-10-21T23:59:59.000Z

243

Wood Burning Combined Cycle Power Plant  

E-Print Network [OSTI]

. Portland General Electric ~f Portland, Oregon was sponsored to perform the design study with project management provided by F. W. Braun Engineers of Hillsboro, Oregon. rpe Fern Engineering Division of Thomassen U.S. of Bourne, Massachusetts provided... the gas turbin~, process evaluation and control support. Hauge International of Portland, Maine provided tre design input for the ceramic heat exchanger. 782 ESL-IE-84-04-136 Proceedings from the Sixth Annual Industrial Energy Technology Conference...

Culley, J. W.; Bourgeois, H. S.

1984-01-01T23:59:59.000Z

244

Tools for supercritical carbon dioxide cycle analysis and the cycle's applicability to sodium fast reactors  

E-Print Network [OSTI]

The Sodium-Cooled Fast Reactor (SFR) and the Supercritical Carbon Dioxide (S-C0?) Recompression cycle are two technologies that have the potential to impact the power generation landscape of the future. In order for their ...

Ludington, Alexander R. (Alexander Rockwell)

2009-01-01T23:59:59.000Z

245

MHD Integrated Topping Cycle Project  

SciTech Connect (OSTI)

The Magnetohydrodynamics (MHD) Integrated Topping Cycle (ITC) Project represents the culmination of the proof-of-concept (POC) development stage in the US Department of Energy (DOE) program to advance MHD technology to early commercial development stage utility power applications. The project is a joint effort, combining the skills of three topping cycle component developers: TRW, Avco/TDS, and Westinghouse. TRW, the prime contractor and system integrator, is responsible for the 50 thermal megawatt (50 MW{sub t}) slagging coal combustion subsystem. Avco/TDS is responsible for the MHD channel subsystem (nozzle, channel, diffuser, and power conditioning circuits), and Westinghouse is responsible for the current consolidation subsystem. The ITC Project will advance the state-of-the-art in MHD power systems with the design, construction, and integrated testing of 50 MW{sub t} power train components which are prototypical of the equipment that will be used in an early commercial scale MHD utility retrofit. Long duration testing of the integrated power train at the Component Development and Integration Facility (CDIF) in Butte, Montana will be performed, so that by the early 1990's, an engineering data base on the reliability, availability, maintainability and performance of the system will be available to allow scaleup of the prototypical designs to the next development level. This Sixteenth Quarterly Technical Progress Report covers the period May 1, 1991 to July 31, 1991.

Not Available

1992-03-01T23:59:59.000Z

246

Beowawe Bottoming Binary Unit - Final Technical Report for EE0002856  

SciTech Connect (OSTI)

This binary plant is the first high-output refrigeration based waste heat recovery cycle in the industry. Its working fluid is environmentally friendly and as such, the permits that would be required with a butane based cycle are not necessary. The unit is modularized, meaning that the unit’s individual skids were assembled in another location and were shipped via truck to the plant site. This project proves the technical feasibility of using low temperature brine The development of the unit led to the realization of low temperature, high output, and environmentally friendly heat recovery systems through domestic research and engineering. The project generates additional renewable energy for Nevada, resulting in cleaner air and reduced carbon dioxide emissions. Royalty and tax payments to governmental agencies will increase, resulting in reduced financial pressure on local entities. The major components of the unit were sourced from American companies, resulting in increased economic activity throughout the country.

McDonald, Dale Edward

2013-02-12T23:59:59.000Z

247

GEODOC - THE GRID DOCUMENT FILE, RECORD STRUCTURE and DATA ELEMENT DESCRIPTION  

E-Print Network [OSTI]

Process Heat Agricultural Heat Power Production Corrosion Scaling Evaluation Binary Cycle Power Land-Use Factors Exploration and

Trippe, T.

2010-01-01T23:59:59.000Z

248

Technical and economic assessment of the use of ammonia expanders for energy recovery in air-cooled power plants  

SciTech Connect (OSTI)

Binary cycle power plants have been the subject of much discussion among engineers and scientists for nearly 100 years. Current economic and environmental concerns have stimulated new interest and research. Ammonia has been recommended by other studies as the leading contender for use as simply the heat rejection medium in an air-cooled power plant. This study investigates the technical feasibility and economic potential of including an expander in the heat rejection system of an air-cooled power plant. The expander would be used during certain parts of the year to increase the total output of the power plant. Five different plant locations (Miami, San Francisco, Bakersfield, Chicago, Anchorage) were investigated to show the effect which climate has on the economic potential of this ammonia bottoming cycle. The study shows that the expected energy costs for the bottoming cycle only will be less than 50 mills/kWh for any of the five plant locations. This cost assumes that an ammonia phase-change heat rejection system is already a part of the existing plant. The colder climates of Chicago and Anchorage demonstrate an even smaller energy cost of less than 15 mills/kWh. Further investigation of the concept is merited to substantiate these costs and determine the needed technology.

Hauser, S.G.; Hane, G.J.; Johnson, B.M.

1982-07-01T23:59:59.000Z

249

International nuclear fuel cycle fact book. Revision 6  

SciTech Connect (OSTI)

The International Fuel Cycle Fact Book has been compiled in an effort to provide (1) an overview of worldwide nuclear power and fuel cycle programs and (2) current data concerning fuel cycle and waste management facilities, R and D programs and key personnel. Additional information on each country's program is available in the International Source Book: Nuclear Fuel Cycle Research and Development, PNL-2478, Rev. 2.

Harmon, K.M.; Lakey, L.T.; Leigh, I.W.; Jeffs, A.G.

1986-01-01T23:59:59.000Z

250

Wavelet Analysis of Cycle-to-Cycle Pressure Variations in an Internal Combustion Engine  

E-Print Network [OSTI]

Using a continuous wavelet transform we have analyzed the cycle-to-cycle variations of pressure in an internal combustion engine. The time series of maximum pressure variations are examined for different loading and their wavelet power spectrum is calculated for each load. From the wavelet power spectrum we detected the presence of long, intermediate and short-term periodicities in the pressure signal. It is found that depending on the load, the long and intermediate-term periodicities may span several cycles, whereas the short-period oscillations tend to appear intermittently. Knowledge of these periodicities may be useful to develop effective control strategies for efficient combustion.

Asok K. Sen; Grzegorz Litak; Rodolfo Taccani; Robert Radu

2006-07-19T23:59:59.000Z

251

MHD Integrated Topping Cycle Project  

SciTech Connect (OSTI)

The overall objective of the project is to design and construct prototypical hardware for an integrated MHD topping cycle, and conduct long duration proof-of-concept tests of integrated system at the US DOE Component Development and Integration Facility in Butte, Montana. The results of the long duration tests will augment the existing engineering design data base on MHD power train reliability, availability, maintainability, and performance, and will serve as a basis for scaling up the topping cycle design to the next level of development, an early commercial scale power plant retrofit. The components of the MHD power train to be designed, fabricated, and tested include: A slagging coal combustor with a rated capacity of 50 MW thermal input, capable of operation with an Eastern (Illinois {number sign}6) or Western (Montana Rosebud) coal, a segmented supersonic nozzle, a supersonic MHD channel capable of generating at least 1.5 MW of electrical power, a segmented supersonic diffuser section to interface the channel with existing facility quench and exhaust systems, a complete set of current control circuits for local diagonal current control along the channel, and a set of current consolidation circuits to interface the channel with the existing facility inverter.

Not Available

1992-01-01T23:59:59.000Z

252

Combined rankine and vapor compression cycles  

DOE Patents [OSTI]

An organic rankine cycle system is combined with a vapor compression cycle system with the turbine generator of the organic rankine cycle generating the power necessary to operate the motor of the refrigerant compressor. The vapor compression cycle is applied with its evaporator cooling the inlet air into a gas turbine, and the organic rankine cycle is applied to receive heat from a gas turbine exhaust to heat its boiler within one embodiment, a common condenser is used for the organic rankine cycle and the vapor compression cycle, with a common refrigerant, R-245a being circulated within both systems. In another embodiment, the turbine driven generator has a common shaft connected to the compressor to thereby eliminate the need for a separate motor to drive the compressor. In another embodiment, an organic rankine cycle system is applied to an internal combustion engine to cool the fluids thereof, and the turbo charged air is cooled first by the organic rankine cycle system and then by an air conditioner prior to passing into the intake of the engine.

Radcliff, Thomas D.; Biederman, Bruce P.; Brasz, Joost J.

2005-04-19T23:59:59.000Z

253

Water Use in the Development and Operations of Geothermal Power...  

Energy Savers [EERE]

Operations of Geothermal Power Plants Water Use in the Development and Operations of Geothermal Power Plants This report summarizes what is currently known about the life cycle...

254

Water Use in the Development and Operation of Geothermal Power...  

Energy Savers [EERE]

Operation of Geothermal Power Plants Water Use in the Development and Operation of Geothermal Power Plants This report summarizes what is currently known about the life cycle water...

255

Detecting Eccentric Globular Cluster Binaries with LISA  

E-Print Network [OSTI]

The energy carried in the gravitational wave signal from an eccentric binary is spread across several harmonics of the orbital frequency. The inclusion of the harmonics in the analysis of the gravitational wave signal increases the signal-to-noise ratio of the detected signal for binaries whose fundamental frequency is below the galactic confusion-limited noise cut-off. This can allow for an improved angular resolution for sources whose orbital period is greater than 2000 s. Globular cluster sources include possible binary black holes and neutron stars which may have high eccentricities. Cluster dynamics may also enhance the eccentricities of double white dwarf binaries and white dwarf-neutron star binaries over the galactic sources. Preliminary results of the expected signal-to-noise ratio for selected globular cluster binaries are presented.

M. Benacquista

2001-06-05T23:59:59.000Z

256

The Carnot efficiencybetween these temperatures is: This provides an absolute upper limit to the Rankine cycle effi-  

E-Print Network [OSTI]

to the Rankine cycle effi- ciency. Heat Absorbed from Stream 3 Power Produced by Steam Turbine Required Power a steam cycle alongsidethe gas turbine cycle. LITERATURE CITED Christodoulou,K., Diploma Thesis, N Output of Gas Turbine For the Gas Turbine Cycle Calculated for Case 2, Upper Exhaust Temperature T6

Liu, Y. A.

257

Water use in the development and operation of geothermal power plants.  

SciTech Connect (OSTI)

Geothermal energy is increasingly recognized for its potential to reduce carbon emissions and U.S. dependence on foreign oil. Energy and environmental analyses are critical to developing a robust set of geothermal energy technologies. This report summarizes what is currently known about the life cycle water requirements of geothermal electric power-generating systems and the water quality of geothermal waters. It is part of a larger effort to compare the life cycle impacts of large-scale geothermal electricity generation with other power generation technologies. The results of the life cycle analysis are summarized in a companion report, Life Cycle Analysis Results of Geothermal Systems in Comparison to Other Power Systems. This report is divided into six chapters. Chapter 1 gives the background of the project and its purpose, which is to inform power plant design and operations. Chapter 2 summarizes the geothermal electricity generation technologies evaluated in this study, which include conventional hydrothermal flash and binary systems, as well as enhanced geothermal systems (EGS) that rely on engineering a productive reservoir where heat exists but water availability or permeability may be limited. Chapter 3 describes the methods and approach to this work and identifies the four power plant scenarios evaluated: a 20-MW EGS plant, a 50-MW EGS plant, a 10-MW binary plant, and a 50-MW flash plant. The two EGS scenarios include hydraulic stimulation activities within the construction stage of the life cycle and assume binary power generation during operations. The EGS and binary scenarios are assumed to be air-cooled power plants, whereas the flash plant is assumed to rely on evaporative cooling. The well field and power plant design for the scenario were based on simulations using DOE's Geothermal Economic Technology Evaluation Model (GETEM). Chapter 4 presents the water requirements for the power plant life cycle for the scenarios evaluated. Geology, reservoir characteristics, and local climate have various effects on elements such as drilling rate, the number of production wells, and production flow rates. Over the life cycle of a geothermal power plant, from construction through 30 years of operation, plant operations is where the vast majority of water consumption occurs. Water consumption refers to the water that is withdrawn from a resource such as a river, lake, or non-geothermal aquifer that is not returned to that resource. For the EGS scenarios, plant operations consume between 0.29 and 0.72 gal/kWh. The binary plant experiences similar operational consumption, at 0.27 gal/kWh. Far less water, just 0.01 gal/kWh, is consumed during operations of the flash plant because geofluid is used for cooling and is not replaced. While the makeup water requirements are far less for a hydrothermal flash plant, the long-term sustainability of the reservoir is less certain due to estimated evaporative losses of 14.5-33% of produced geofluid at operating flash plants. For the hydrothermal flash scenario, the average loss of geofluid due to evaporation, drift, and blowdown is 2.7 gal/kWh. The construction stage requires considerably less water: 0.001 gal/kWh for both the binary and flash plant scenarios and 0.01 gal/kWh for the EGS scenarios. The additional water requirements for the EGS scenarios are caused by a combination of factors, including lower flow rates per well, which increases the total number of wells needed per plant, the assumed well depths, and the hydraulic stimulation required to engineer the reservoir. Water quality results are presented in Chapter 5. The chemical composition of geofluid has important implications for plant operations and the potential environmental impacts of geothermal energy production. An extensive dataset containing more than 53,000 geothermal geochemical data points was compiled and analyzed for general trends and statistics for typical geofluids. Geofluid composition was found to vary significantly both among and within geothermal fields. Seven main chemical constituents were found to

Clark, C. E.; Harto, C. B.; Sullivan, J. L.; Wang, M. Q. (Energy Systems); ( EVS)

2010-09-17T23:59:59.000Z

258

Advanced Organic Vapor Cycles for Improving Thermal Conversion Efficiency in Renewable Energy Systems  

E-Print Network [OSTI]

Closed- Brayton-Cycle Solar Power Towers," ASME Journal ofNaF-NaBF4) cooled solar power tower plant is presented;high temperature solar power tower designs to date.

Ho, Tony

2012-01-01T23:59:59.000Z

259

Edgeworth cycles revisited  

E-Print Network [OSTI]

Some gasoline markets exhibit remarkable price cycles, where price spikes are followed by a series of small price declines: a pattern consistent with a model of Edgeworth cycles described by Maskin and Tirole. We extend ...

Doyle, Joseph J.

260

Photovoltaics Life Cycle Analysis  

E-Print Network [OSTI]

1 Photovoltaics Life Cycle Analysis Vasilis Fthenakis Center of Life Cycle Analysis Earth & Environmental Engineering Department Columbia University and National Photovoltaic (PV) EHS Research Center (air, water, solid) M, Q E PV array Photovoltaic modules Balance of System (BOS) (Inverters

Note: This page contains sample records for the topic "binary cycle power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Monte Carlo reactor calculation with substantially reduced number of cycles  

SciTech Connect (OSTI)

A new Monte Carlo (MC) eigenvalue calculation scheme that substantially reduces the number of cycles is introduced with the aid of coarse mesh finite difference (CMFD) formulation. First, it is confirmed in terms of pin power errors that using extremely many particles resulting in short active cycles is beneficial even in the conventional MC scheme although wasted operations in inactive cycles cannot be reduced with more particles. A CMFD-assisted MC scheme is introduced as an effort to reduce the number of inactive cycles and the fast convergence behavior and reduced inter-cycle effect of the CMFD assisted MC calculation is investigated in detail. As a practical means of providing a good initial fission source distribution, an assembly based few-group condensation and homogenization scheme is introduced and it is shown that efficient MC eigenvalue calculations with fewer than 20 total cycles (including inactive cycles) are possible for large power reactor problems. (authors)

Lee, M. J.; Joo, H. G. [Seoul National Univ., 599 Gwanak-ro, Gwanak-gu, Seoul, 151-744 (Korea, Republic of); Lee, D. [Ulsan National Inst. of Science and Technology, UNIST-gil 50, Eonyang-eup, Ulju-gun, Ulsan, 689-798 (Korea, Republic of); Smith, K. [Massachusetts Inst. of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139-4307 (United States)

2012-07-01T23:59:59.000Z

262

Vehicle-to-Grid Power: Battery, Hybrid, and Fuel Cell Vehicles as Resources for Distributed Electric Power in California  

E-Print Network [OSTI]

Battery cycle life (cycles) c Battery calendar life (years) Battery costin the battery during its life cycle in kWh, C B is cost ofBattery cycle life (cycles) Battery calendar life (years) Maximum electrical power output to motor (kW) Battery cost

Kempton, Willett; Tomic, Jasna; Letendre, Steven; Brooks, Alec; Lipman, Timothy

2001-01-01T23:59:59.000Z

263

mathematics single cycle  

E-Print Network [OSTI]

47 mathematics education single cycle master's study programme #12;48 single cycle master's study program in Mathematics Education #12;49 single cycle master's study program in Mathematics Education MATHEMATICS EDUCATION The program is in tune with the principles of the Bologna Declaration. · Academic title

Â?umer, Slobodan

264

A novel thermomechanical energy conversion cycle Ian M. McKinley, Felix Y. Lee, Laurent Pilon  

E-Print Network [OSTI]

A novel thermomechanical energy conversion cycle Ian M. McKinley, Felix Y. Lee, Laurent Pilon of a novel cycle converting thermal and mechanical energy directly into electrical energy. The new cycle is adaptable to changing thermal and mechanical conditions. The new cycle can generate electrical power

Pilon, Laurent

265

Cycle to Cycle Manufacturing Process Control  

E-Print Network [OSTI]

Most manufacturing processes produce parts that can only be correctly measured after the process cycle has been completed. Even if in-process measurement and control is possible, it is often too expensive or complex to ...

Hardt, David E.

266

On the invertibility of the XOR rotations of a binary word  

E-Print Network [OSTI]

We prove the following result regarding operations on a binary word whose length is a power of two: computing the exclusive-or of a number of rotated versions of the word is an invertible (one-to-one) operation if and only ...

Rivest, Ronald L.

267

Binary Interpolation Search for Solution Mapping on Broadcast and Ondemand Channels in a Mobile  

E-Print Network [OSTI]

Computing Environment Jiun­Long Huang, Wen­Chih Peng and Ming­Syan Chen Department of Electrical Engineering search problem. In light of the theoretical properties derived, we devise an algorithm based on binary power source, and the Permission to make digital or hard copies of all or part of this work for personal

Chen, Ming-Syan

268

The apsidal motion in close binary stars  

E-Print Network [OSTI]

It is usually accepted to consider an apsidal motion in binary stars as a direct confirmation that a substance inside stars is not uniformly distributed. It is shown in this paper that the apsidal motion in binary systems observation data is in a good agreement with an existence of uniform plasma cores inside stars if they consist of hydrogen-deuterium-helium mixture.

B. V. Vasiliev

2001-10-10T23:59:59.000Z

269

The Evolution of Compact Binary Star Systems  

E-Print Network [OSTI]

We review the formation and evolution of compact binary stars consisting of white dwarfs (WDs), neutron stars (NSs), and black holes (BHs). Mergings of compact binary stars are expected to be the most important sources for the forthcoming gravitational-wave (GW) astronomy. In the first part of the review, we discuss observational manifestations of close binary stars with NS and/or black components and their merger rate, crucial points in the formation and evolution of compact stars in binary systems, including the treatment of the natal kicks which NSs and BHs acquire during the core collapse of massive stars and the common envelope phase of binary evolution, which are most relevant to the merging rates of NS-NS, NS-BH and BH-BH binaries. The second part of the review is devoted mainly to formation and evolution of binary WDs and their observational manifestations, including their role as progenitors of cosmologically important thermonuclear SN Ia. We also consider AM CVn-stars which are thought to be the best verification binary GW sources for future low-frequency GW space interferometers.

Konstantin Postnov; Lev Yungelson

2014-03-21T23:59:59.000Z

270

Microsoft PowerPoint - Steve_Spinner  

Office of Environmental Management (EM)

facilities 2.0 billion - for "front end" nuclear fuel cycle facilities 8.0 billion - coal based power generation, industrial gasification & carbon capture & sequestration...

271

Environmental life cycle assessment as a decision making tool  

E-Print Network [OSTI]

· Bi-objective optimization to consider environmental and economic metrics · Steam and Power Plant and Heijungs (2002). Handbook on Life Cycle Assessment. Kluwer Academic Publ. #12;PASI 2011 Potential #12;PASI 2011 Steam and power plant #12;PASI 2011 Steam and power demands #12;Martínez P. and Eliceche

Grossmann, Ignacio E.

272

EIS-0409: Kemper County Integrated Gasification Combined Cycle Project, Mississippi  

Broader source: Energy.gov [DOE]

This EIS analyzes DOE's decision to provide funding for the Kemper County Integrated Gasification Combined Cycle Project in Kemper County, Mississippi to assess the potential environmental impacts associated with the construction and operation of a project proposed by Southern Power Company, through its affiliate Mississippi Power Company, which has been selected by DOE for consideration under the Clean Coal Power Initiative (CCPI) program.

273

Genetic Algorithm Based Damage Control For Shipboard Power Systems  

E-Print Network [OSTI]

Power system level. The proposed method used a constrained binary genetic algorithm to find an optimal network configuration. An optimal network configuration is a configuration which restores all of the de-energized loads that are possible...

Amba, Tushar

2010-07-14T23:59:59.000Z

274

Cost Effective Waste Heat Organic Rankine Cycle Applications and Systems Designs  

E-Print Network [OSTI]

Conceptually, the Organic Rankine Cycle (ORC) power cycle has been well known to the engineering community for many years. Despite the rapid escalation of energy costs during the past decade, and a concerted, though somewhat belated, effort towards...

Rohrer, J. W.; Bronicki, L. Y.

1980-01-01T23:59:59.000Z

275

Assessment of Projected Life-Cycle Costs for Wave, Tidal, Ocean...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Assessment of Projected Life-Cycle Costs for Wave, Tidal, Ocean Current, and In-Stream Hydrokinetic Power Assessment of Projected Life-Cycle Costs for Wave, Tidal, Ocean Current,...

276

Multi-cycle boiling water reactor fuel cycle optimization  

SciTech Connect (OSTI)

In this work a new computer code, BWROPT (Boiling Water Reactor Optimization), is presented. BWROPT uses the Parallel Simulated Annealing (PSA) algorithm to solve the out-of-core optimization problem coupled with an in-core optimization that determines the optimum fuel loading pattern. However it uses a Haling power profile for the depletion instead of optimizing the operating strategy. The result of this optimization is the optimum new fuel inventory and the core loading pattern for the first cycle considered in the optimization. Several changes were made to the optimization algorithm with respect to other nuclear fuel cycle optimization codes that use PSA. Instead of using constant sampling probabilities for the solution perturbation types throughout the optimization as is usually done in PSA optimizations the sampling probabilities are varied to get a better solution and/or decrease runtime. The new fuel types available for use can be sorted into an array based on any number of parameters so that each parameter can be incremented or decremented, which allows for more precise fuel type selection compared to random sampling. Also, the results are sorted by the new fuel inventory of the first cycle for ease of comparing alternative solutions. (authors)

Ottinger, K.; Maldonado, G.I. [University of Tennessee, 311 Pasqua Engineering Building, Knoxville, TN 37996-2300 (United States)

2013-07-01T23:59:59.000Z

277

Tailored Working Fluids for Enhanced Binary Geothermal Power Plants  

Broader source: Energy.gov [DOE]

DOE Geothermal Program Peer Review 2010 - Presentation. Project Objective: To improve the utilization of available energy in geothermal resources and increase the energy conversion efficiency of systems employed by a) tailoring the subcritical and/or supercritical glide of enhanced working fluids to best match thermal resources, and b) identifying appropriate thermal system and component designs for the down-selected working fluids.

278

Low chemical concentrating steam generating cycle  

DOE Patents [OSTI]

A steam cycle for a nuclear power plant having two optional modes of operation. A once-through mode of operation uses direct feed of coolant water to an evaporator avoiding excessive chemical concentration buildup. A recirculation mode of operation uses a recirculation loop to direct a portion of flow from the evaporator back through the evaporator to effectively increase evaporator flow.

Mangus, James D. (Greensburg, PA)

1983-01-01T23:59:59.000Z

279

Investigation into Greedy Exhaustive Dual Binary Swaps (GEDBS) for the optimization of core configuration in pressurized water reactors  

E-Print Network [OSTI]

In order to promote nuclear power production as an attractive option for power generation, measures must be taken to ensure that the process is both safe and economical. One aspect of the nuclear fuel cycle that contributes ...

Hammond, Jessica L

2012-01-01T23:59:59.000Z

280

Stirling-cycle refrigerator  

SciTech Connect (OSTI)

A Stirling-cycle refrigerator comprises a plurality of Stirling-cycle refrigerator units each having a displacer defining an expansion chamber, a piston defining a compression chamber, and a circuit including a heater and a cooler and interconnecting the expansion chamber and the compression chamber, and a heat exchanger shared by the circuits and disposed between the coolers and the heaters for effecting heat exchange between working gases in the circuits. The heat exchanger may comprise a countercurrent heat exchanger, and the Stirling-cycle refrigerator units are operated in cycles which are 180/sup 0/ out of phase with each other.

Nakamura, K.

1985-06-11T23:59:59.000Z

Note: This page contains sample records for the topic "binary cycle power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Process system optimization for life cycle improvement  

SciTech Connect (OSTI)

Life Cycle Assessment (LCA) is an analytic tool for quantifying the environmental impacts of all processes used in converting raw materials into a final product. The LCA consists of three parts. Life cycle inventory quantifies all material and energy use, and environmental emissions for the entire product life cycle, while impact assessment evaluates actual and potential environmental and human health consequences of the activities identified in the inventory phase. Most importantly, life cycle improvement aims at reducing the risk of these consequences occurring to make the product more benign. when the LCA is performed in conjunction with a technoeconomic analysis, the total economic and environmental benefits and shortcomings of a product or process can be quantified. A methodology has been developed incorporating process performance, economics, and life cycle inventory data to synthesize process systems, which meet life cycle impact-improvement targets at least cost. The method relies on a systematic description of the product life cycle and utilizes successive Linear Programming to formulate and optimize the non-linear, constrained problem which results. The practicality and power of this approach have been demonstrated by examining options for the reduction of emissions of the greenhouse gas CO{sub 2} from petroleum-based fuels.

Marano, J.J.; Rogers, S.

1999-12-31T23:59:59.000Z

282

Planetary Nebulae Principles & Paradigms: Binaries, Accretion, Magnetic Fields  

E-Print Network [OSTI]

Observations suggest that many, if not all, post AGB systems evolve through an aspherical outflow phase. Such outflows require a sufficient engine rotational energy which binaries can provide. Via common envelope evolution, binaries can directly eject equatorial outflows or produce poloidal outflows from magnetized accretion disks around the primary or secondary. We discuss how accretion driven magnetohydrodynamic outflow models all make similar predictions for the outflow power and speed and we distinguish between the launch vs. propagation regimes of such outflows. We suggest that the high velocity bipolar outflows observed in planetary nebulae (PNe) and the lower velocity but higher power bipolar outflows observed in pre-PNe (pPNe) are kinematically consistent with time dependent accretion onto a white dwarf (WD) within a depleting envelope. Since the WD primary core is always present in all post-AGB systems, accretion onto this core is potentially common. Previous work has focused on core accretion from sub-stellar companions, but low mass stellar companions may be more important, and further work is needed.

Eric G. Blackman; Jason T. Nordhaus

2007-10-01T23:59:59.000Z

283

An effectual template bank for the detection of gravitational waves from inspiralling compact binaries with generic spins  

E-Print Network [OSTI]

We report the construction of a three-dimensional template bank for the search for gravitational waves from inspiralling binaries consisting of spinning compact objects. The parameter space consists of two dimensions describing the mass parameters and one "reduced-spin" parameter, which describes the secular (non-precessing) spin effects in the waveform. The template placement is based on an efficient stochastic algorithm and makes use of the semi-analytical computation of a metric in the parameter space. We demonstrate that for "low-mass" ($m_1 + m_2 \\lesssim 12\\,M_\\odot$) binaries, this template bank achieves effective fitting factors $\\sim0.92$--$0.99$ towards signals from generic spinning binaries in the advanced detector era over the entire parameter space of interest (including binary neutron stars, binary black holes, and black hole-neutron star binaries). This provides a powerful and viable method for searching for gravitational waves from generic spinning low-mass compact binaries. Under the assumption that spin magnitudes of black-holes [neutron-stars] are uniformly distributed between 0--0.98 [0 -- 0.4] and spin angles are isotropically distributed, the expected improvement in the average detection volume (at a fixed signal-to-noise-ratio threshold) of a search using this reduced-spin bank is $\\sim20-52\\%$, as compared to a search using a non-spinning bank.

P. Ajith; N. Fotopoulos; S. Privitera; A. Neunzert; N. Mazumder; A. J. Weinstein

2014-05-21T23:59:59.000Z

284

Improving the quality and transparency of building life cycle assessment  

E-Print Network [OSTI]

Life cycle assessment, or LCA, is a powerful method for measuring and reducing a building's environmental impacts. Its widespread adoption among designers would allow the environmental component of sustainability to gain ...

Hsu, Sophia Lisbeth

2011-01-01T23:59:59.000Z

285

Working on new gas turbine cycle for heat pump drive  

E-Print Network [OSTI]

Working on new gas turbine cycle for heat pump drive FILE COPY TAP By Irwin Stambler, Field Editor, is sized for a 10-ton heat pump system - will be scaled to power a commercial product line ranging from 7 of the cycle- as a heat pump drive for commercial installations. Company is testing prototype gas turbine

Oak Ridge National Laboratory

286

Power Plant Power Plant  

E-Print Network [OSTI]

Basin Center for Geothermal Energy at University of Nevada, Reno (UNR) 2 Nevada Geodetic LaboratoryStillwater Power Plant Wabuska Power Plant Casa Diablo Power Plant Glass Mountain Geothermal Area Lassen Geothermal Area Coso Hot Springs Power Plants Lake City Geothermal Area Thermo Geothermal Area

Tingley, Joseph V.

287

Advanced thermochemical hydrogen cycles  

SciTech Connect (OSTI)

The overall objective of this program is to contribute to the development of practical thermochemical cycles for the production of hydrogen from water. Specific goals are: investigate and evaluate the technical and economic viability of thermochemical cycles as an advanced technology for producing hydrogen from water; investigate and evaluate the engineering principles involved in interfacing individual thermochemical cycles with the different thermal energy sources (high temperature fission, solar, and fusion); and conduct a continuing research and development effort to evaluate the use of solid sulfates, oxides and other compounds as potentially advanced cycles and as alternates to H/sub 2/SO/sub 4/ based cycles. Basic thermochemistry studies have been completed for two different steps in the decomposition of bismuth sulfate. Two different bismuth sulfate cycles have been defined for different sulfuric acid strengths. The eventual best cycle will depend on energy required to form sulfuric acid at different concentrations. A solids decomposition facility has been constructed and practical studies of solid decompositions are being conducted. The facility includes a rotary kiln system and a dual-particle fluidized bed system. Evaluation of different types of cycles for coupling with different heat sources is continuing.

Hollabaugh, C.M.; Bowman, M.G.

1981-01-01T23:59:59.000Z

288

Life Cycle Cost Estimate  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

Life-cycle costs (LCCs) are all the anticipated costs associated with a project or program alternative throughout its life. This includes costs from pre-operations through operations or to the end of the alternative.This chapter discusses life cycle costs and the role they play in planning.

1997-03-28T23:59:59.000Z

289

Microlensing Detections of Planets in Binary Stellar Systems  

E-Print Network [OSTI]

We demonstrate that microlensing can be used for detecting planets in binary stellar systems. This is possible because in the geometry of planetary binary systems where the planet orbits one of the binary component and the other binary star is located at a large distance, both planet and secondary companion produce perturbations at a common region around the planet-hosting binary star and thus the signatures of both planet and binary companion can be detected in the light curves of high-magnification lensing events. We find that identifying planets in binary systems is optimized when the secondary is located in a certain range which depends on the type of the planet. The proposed method can detect planets with masses down to one tenth of the Jupiter mass in binaries with separations planet mass and binary separation are not covered by other methods and thus microlensing would be able to make the planetary binary sample richer.

Dong-Wook Lee; Chung-Uk Lee; Byeong-Gon Park; Sun-Ju Chung; Young-Soo Kim; Ho-Il Kim; Cheongho Han

2007-09-13T23:59:59.000Z

290

The elements of nuclear power  

SciTech Connect (OSTI)

An introduction to the principles of nuclear fission power generation. Describes the physical processes which occur in a nuclear reactor and discusses the theory behind the calculations. Also covers heat transfer in reactors, thermodynamic power cycles, reactor operators, and radiation shielding. Material covered includes topics on the effects of nuclear radiation on humans, the safety of nuclear reactors and of those parts of the nuclear fuel cycle which deal with fuel element manufacture and the reprocessing of irradiated fuel.

Bennet, D.J.; Thomson, J.R.

1989-01-01T23:59:59.000Z

291

Power Factor Reactive Power  

E-Print Network [OSTI]

power: 130 watts Induction motor PSERC Incandescent lights 0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0 power: 150 watts #12;Page 4 PSERC Incandescent Lights PSERC Induction motor with no load #12;Page 5 Incandescent Lights #12;Page 7 PSERC Incandescent lights power: Power = 118 V x 1.3 A = 153 W = 0.15 kW = power

292

Incorporating HVDC's into monitoring and power system analysis  

E-Print Network [OSTI]

This thesis attempts to study the effect of incorporating HVDC's into monitoring and power system analysis. Power system analysis, including load flow and stability studies, and monitoring defines a complete cycle of the impact of HVDC in a power...

Krishnaswamy, Vikram

2002-01-01T23:59:59.000Z

293

FUEL CYCLE POTENTIAL WASTE FOR DISPOSITION  

SciTech Connect (OSTI)

The United States (U.S.) currently utilizes a once-through fuel cycle where used nuclear fuel (UNF) is stored on-site in either wet pools or in dry storage systems with ultimate disposal in a deep mined geologic repository envisioned. Within the Department of Energy's (DOE) Office of Nuclear Energy (DOE-NE), the Fuel Cycle Research and Development Program (FCR&D) develops options to the current commercial fuel cycle management strategy to enable the safe, secure, economic, and sustainable expansion of nuclear energy while minimizing proliferation risks by conducting research and development of advanced fuel cycles, including modified open and closed cycles. The safe management and disposition of used nuclear fuel and/or nuclear waste is a fundamental aspect of any nuclear fuel cycle. Yet, the routine disposal of used nuclear fuel and radioactive waste remains problematic. Advanced fuel cycles will generate different quantities and forms of waste than the current LWR fleet. This study analyzes the quantities and characteristics of potential waste forms including differing waste matrices, as a function of a variety of potential fuel cycle alternatives including: (1) Commercial UNF generated by uranium fuel light water reactors (LWR). Four once through fuel cycles analyzed in this study differ by varying the assumed expansion/contraction of nuclear power in the U.S; (2) Four alternative LWR used fuel recycling processes analyzed differ in the reprocessing method (aqueous vs. electro-chemical), complexity (Pu only or full transuranic (TRU) recovery) and waste forms generated; (3) Used Mixed Oxide (MOX) fuel derived from the recovered Pu utilizing a single reactor pass; and (4) Potential waste forms generated by the reprocessing of fuels derived from recovered TRU utilizing multiple reactor passes.

Jones, R.; Carter, J.

2010-10-13T23:59:59.000Z

294

FUEL CYCLE POTENTIAL WASTE FOR DISPOSITION  

SciTech Connect (OSTI)

The United States (U.S.) currently utilizes a once-through fuel cycle where used nuclear fuel (UNF) is stored on-site in either wet pools or in dry storage systems with ultimate disposal in a deep mined geologic repository envisioned. Within the Department of Energy's (DOE) Office of Nuclear Energy (DOE-NE), the Fuel Cycle Research and Development Program (FCR&D) develops options to the current commercial fuel cycle management strategy to enable the safe, secure, economic, and sustainable expansion of nuclear energy while minimizing proliferation risks by conducting research and development of advanced fuel cycles, including modified open and closed cycles. The safe management and disposition of used nuclear fuel and/or nuclear waste is a fundamental aspect of any nuclear fuel cycle. Yet, the routine disposal of used nuclear fuel and radioactive waste remains problematic. Advanced fuel cycles will generate different quantities and forms of waste than the current LWR fleet. This study analyzes the quantities and characteristics of potential waste forms including differing waste matrices, as a function of a variety of potential fuel cycle alternatives including: (1) Commercial UNF generated by uranium fuel light water reactors (LWR). Four once through fuel cycles analyzed in this study differ by varying the assumed expansion/contraction of nuclear power in the U.S. (2) Four alternative LWR used fuel recycling processes analyzed differ in the reprocessing method (aqueous vs. electro-chemical), complexity (Pu only or full transuranic (TRU) recovery) and waste forms generated. (3) Used Mixed Oxide (MOX) fuel derived from the recovered Pu utilizing a single reactor pass. (4) Potential waste forms generated by the reprocessing of fuels derived from recovered TRU utilizing multiple reactor passes.

Carter, J.

2011-01-03T23:59:59.000Z

295

BAYESIAN RESIDUAL ANALYSIS FOR BINARY RESPONSE  

E-Print Network [OSTI]

of Mathematics and Statistics Bowling Green State University, Bowling Green, 43403 USA Siddhartha Chib Olin School of Business Washington University, St. Louis 63130 USA March, 1994 Summary In a binary response

Albert, James H.

296

Optimization of naďve dynamic binary instrumentation Tools/  

E-Print Network [OSTI]

The proliferation of dynamic program analysis tools has done much to ease the burden of developing complex software. However, creating such tools remains a challenge. Dynamic binary instrumentation frameworks such as ...

Kleckner, Reid (Reid N.)

2011-01-01T23:59:59.000Z

297

New bounds on optimal binary search trees  

E-Print Network [OSTI]

Binary search trees (BSTs) are a class of simple data structures used to store and access keys from an ordered set. They have been around for about half a century. Despite their ubiquitous use in practical programs, ...

Harmon, Dion (Dion Kane)

2006-01-01T23:59:59.000Z

298

Binary mixture flammability characteristics for hazard assessment  

E-Print Network [OSTI]

calculations and UNIFAC, a theoretical model that does not require experimental binary interaction parameters, are employed in the mixture flash point predictions, which are validated with experimental data. MFPB is successfully predicted using the UNIFAC model...

Vidal Vazquez, Migvia del C.

2005-11-01T23:59:59.000Z

299

Gravitational waves from merging compact binaries  

E-Print Network [OSTI]

Largely motivated by the development of highly sensitive gravitational-wave detectors, our understanding of merging compact binaries and the gravitational waves they generate has improved dramatically in recent years. ...

Hughes, Scott A.

300

Advanced Organic Vapor Cycles for Improving Thermal Conversion Efficiency in Renewable Energy Systems  

E-Print Network [OSTI]

Nonconventional Fluids," ASME Jour of Engineering for Power,fluids for Organic Rankine Cycles," Applied Thermal Engineering,fluid in waste heat recovery," Applied Thermal Engineering,

Ho, Tony

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "binary cycle power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Advanced Organic Vapor Cycles for Improving Thermal Conversion Efficiency in Renewable Energy Systems  

E-Print Network [OSTI]

Systems for Industrial Waste Heat Recovery. c DanielCycle for Cement Kiln Waste Heat Recovery Power Plants. ”and high temperature waste heat reclamation and solar

Ho, Tony

2012-01-01T23:59:59.000Z

302

Detection Rates for Close Binaries Via Microlensing  

E-Print Network [OSTI]

Microlensing is one of the most promising methods of reconstructing the stellar mass function down to masses even below the hydrogen-burning limit. The fundamental limit to this technique is the presence of unresolved binaries, which can in principle significantly alter the inferred mass function. Here we quantify the fraction of binaries that can be detected using microlensing, considering specifically the mass ratio and separation of the binary. We find that almost all binary systems with separations greater than $b \\sim 0.4$ of their combined Einstein ring radius are detectable assuming a detection threshold of $3\\%$. For two M dwarfs, this corresponds to a limiting separation of $\\gsim 1 \\au$. Since very few observed M dwarfs have companions at separations $\\lsim 1 \\au$, we conclude that close binaries will probably not corrupt the measurements of the mass function. We find that the detectability depends only weakly on the mass ratio. For those events for which individual masses can be determined, we find that binaries can be detected down to $b \\sim 0.2$.

B. Scott Gaudi; Andrew Gould

1996-06-17T23:59:59.000Z

303

Low Power Silicon Devices Dieter K. Schroder  

E-Print Network [OSTI]

dissipation, and 3. con- servation of power in desktop systems where a com- petitive life cycle cost-to-performance ratio demands low power for reduced power supply and cooling costs.3 Lower power consumption leads electronics where cooling in the unit is more difficult and batteries have limited lifetime. DRAM cir- cuits

Schroder, Dieter K.

304

SELF-REGULATED SHOCKS IN MASSIVE STAR BINARY SYSTEMS  

SciTech Connect (OSTI)

In an early-type, massive star binary system, X-ray bright shocks result from the powerful collision of stellar winds driven by radiation pressure on spectral line transitions. We examine the influence of the X-rays from the wind-wind collision shocks on the radiative driving of the stellar winds using steady-state models that include a parameterized line force with X-ray ionization dependence. Our primary result is that X-ray radiation from the shocks inhibits wind acceleration and can lead to a lower pre-shock velocity, and a correspondingly lower shocked plasma temperature, yet the intrinsic X-ray luminosity of the shocks, L{sub X}, remains largely unaltered, with the exception of a modest increase at small binary separations. Due to the feedback loop between the ionizing X-rays from the shocks and the wind driving, we term this scenario as self-regulated shocks. This effect is found to greatly increase the range of binary separations at which a wind-photosphere collision is likely to occur in systems where the momenta of the two winds are significantly different. Furthermore, the excessive levels of X-ray ionization close to the shocks completely suppress the line force, and we suggest that this may render radiative braking less effective. Comparisons of model results against observations reveal reasonable agreement in terms of log (L{sub X}/L{sub bol}). The inclusion of self-regulated shocks improves the match for kT values in roughly equal wind momenta systems, but there is a systematic offset for systems with unequal wind momenta (if considered to be a wind-photosphere collision).

Parkin, E. R.; Sim, S. A., E-mail: parkin@mso.anu.edu.au, E-mail: s.sim@qub.ac.uk [Research School of Astronomy and Astrophysics, Australian National University, ACT 2611 (Australia)

2013-04-20T23:59:59.000Z

305

Compressor and Turbine Models of Brayton Units for Space Nuclear Power Systems  

SciTech Connect (OSTI)

Closed Brayton Cycles with centrifugal flow, single-shaft turbo-machines are being considered, with gas cooled nuclear reactors, to provide 10's to 100's of electrical power to support future space exploration missions and Lunar and Mars outposts. Such power system analysis is typically based on the cycle thermodynamics, for given operating pressures and temperatures and assumed polytropic efficiencies of the compressor and turbine of the Brayton energy conversion units. Thus the analysis results not suitable for modeling operation transients such as startup and changes in the electric load. To simulate these transients, accurate models of the turbine and compressor in the Brayton rotating unit, which calculate the changes in the compressor and turbine efficiencies with system operation are needed. This paper presents flow models that account for the design and dimensions of the compressor impeller and diffuser, and the turbine stator and rotor blades. These models calculate the various enthalpy losses and the polytropic efficiencies along with the pressure ratios of the turbine and compressor. The predictions of these models compare well with reported performance data of actual hardware. In addition, the results of a parametric analysis to map the operations of the compressor and turbine, as functions of the rotating shaft speed and inlet Mach number of the gas working fluid, are presented and discussed. The analysis used a binary mixture of He-Xe with a molecular weight of 40 g/mole as the working fluid.

Gallo, Bruno M.; El-Genk, Mohamed S.; Tournier, Jean-Michel [Institute for Space and Nuclear Power Studies, University of New Mexico, Albuquerque, NM, 87131 (United States); Chemical and Nuclear Engineering Department, University of New Mexico, Albuquerque, NM, 87131 (United States)

2007-01-30T23:59:59.000Z

306

Malone cycle refrigerator development  

SciTech Connect (OSTI)

This paper describes the progress made in demonstrating a Malone Cycle Refrigerator/Freezer. The Malone cycle is similar to the Stirling cycle but uses a supercritical fluid in place of real gas. In the approach, solid-metal diaphragms are used to seal and sweep the working volumes against the high working fluid pressures required in Malone cycle machines. This feature eliminates the friction and leakage that accounted for nearly half the losses in the best piston-defined Malone cycle machines built to date. The authors successfully built a Malone cycle refrigerator that: (1) used CO{sub 2} as the working fluid, (2) operated at pressures up to 19.3 Mpa (2,800 psi), (3) achieved a cold end metal temperatures of {minus}29 C ({minus}20 F), and (4) produced over 400 Watts of cooling at near ambient temperatures. The critical diaphragm components operated flawlessly throughout characterization and performance testing, supporting the conclusion of high reliability based on analysis of fatigue date and actual strain measurements.

Shimko, M.A.; Crowley, C.J.

1999-07-01T23:59:59.000Z

307

Design, Analysis and Optimization of the Power Conversion System for the Modular Pebble Bed Reactor System  

E-Print Network [OSTI]

Pebble Bed Reactor system (MPBR) requires a gas turbine cycle (Brayton cycle) as the power conversion for the gas turbine cycle. The development of an initial reference design for an indirect helium cycle has for the system. Load transients simulations show that the indirect, three-shaft arrangement gas turbine power

308

Properties of planets in binary systems. The role of binary separation  

E-Print Network [OSTI]

The statistical properties of planets in binaries were investigated. Any difference to planets orbiting single stars can shed light on the formation and evolution of planetary systems. As planets were found around components of binaries with very different separation and mass ratio, it is particularly important to study the characteristics of planets as a function of the effective gravitational influence of the companion. A compilation of planets in binary systems was made; a search for companions orbiting stars recently shown to host planets was performed, resulting in the addition of two further binary planet hosts (HD 20782 and HD 109749). The probable original properties of the three binary planet hosts with white dwarfs companions were also investigated. Using this updated sample of planets in binaries we performed a statistical analysis of the distributions of planet mass, period, and eccentricity, fraction of multiplanet systems, and stellar metallicity for planets orbiting components of tight and wide binaries and single stars. The only highly significant difference revealed by our analysis concerns the mass distribution of short-period planets. Massive planets in short period orbits are found in most cases around the components of rather tight binaries. The properties of exoplanets orbiting the components of wide binaries are compatible with those of planets orbiting single stars, except for a possible greater abundance of high-eccentricity planets. The previously suggested lack of massive planets with P>100 days in binaries is not confirmed. We conclude that the presence of a stellar companion with separation smaller than 100-300 AU is able to modify the formation and/or migration and/or the dynamical evolution history of giant planets while wide companions play a more limited role

S. Desidera; M. Barbieri

2006-10-20T23:59:59.000Z

309

Controlled motion of Janus particles in periodically phase-separating binary fluids  

E-Print Network [OSTI]

We numerically investigate the propelled motions of a Janus particle in a periodically phase-separating binary fluid mixture. In this study, the surface of the particle tail prefers one of the binary fluid components and the particle head is neutral in the wettability. During the demixing period, the more wettable phase is selectively adsorbed to the particle tail. Growths of the adsorbed domains induce the hydrodynamic flow in the vicinity of the particle tail, and this asymmetric pumping flow drives the particle toward the particle head. During the mixing period, the particle motion almost ceases because the mixing primarily occurs via diffusion and the resulting hydrodynamic flow is negligibly small. Repeating this cycle unboundedly moves the Janus particle toward the head. The dependencies of the composition and the repeat frequency on the particle motion are discussed.

Takeaki Araki; Shintaro Fukai

2015-04-03T23:59:59.000Z

310

Soil metagenomics and carbon cycling  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Soil metagenomics and carbon cycling Soil metagenomics and carbon cycling Establishing a foundational understanding of the microbial and ecosystem factors that control carbon...

311

Control strategies for supercritical carbon dioxide power conversion systems  

E-Print Network [OSTI]

The supercritical carbon dioxide (S-C02) recompression cycle is a promising advanced power conversion cycle which couples well to numerous advanced nuclear reactor designs. This thesis investigates the dynamic simulation ...

Carstens, Nathan, 1978-

2007-01-01T23:59:59.000Z

312

Investigating Dark Energy with Black Hole Binaries  

E-Print Network [OSTI]

The accelerated expansion of the universe is ascribed to the existence of dark energy. Black holes accretion of dark energy induces a mass change proportional to the energy density and pressure of the background dark energy fluid. The time scale during which the mass of black holes changes considerably is too long relative to the age of the universe, thus beyond detection possibilities. We propose to take advantage of the modified black hole masses for exploring the equation of state $w[z]$ of dark energy, by investigating the evolution of supermassive black hole binaries on a dark energy background. Deriving the signatures of dark energy accretion on the evolution of binaries, we find that dark energy imprints on the emitted gravitational radiation and on the changes in the orbital radius of the binary can be within detection limits for certain supermassive black hole binaries. In this talk I describe how binaries can provide a useful tool in obtaining complementary information on the nature of dark energy, based on the work done with A.Kelleher.

Laura Mersini-Houghton; Adam Kelleher

2009-06-08T23:59:59.000Z

313

Alternative Energy Development and China's Energy Future  

E-Print Network [OSTI]

for Geothermal Power Development energy development. Geothermal Power Technology OverviewChina, the binary cycle geothermal power plant is assumed to

Zheng, Nina

2012-01-01T23:59:59.000Z

314

High efficiency Brayton cycles using LNG  

DOE Patents [OSTI]

A modified, closed-loop Brayton cycle power conversion system that uses liquefied natural gas as the cold heat sink media. When combined with a helium gas cooled nuclear reactor, achievable efficiency can approach 68 76% (as compared to 35% for conventional steam cycle power cooled by air or water). A superheater heat exchanger can be used to exchange heat from a side-stream of hot helium gas split-off from the primary helium coolant loop to post-heat vaporized natural gas exiting from low and high-pressure coolers. The superheater raises the exit temperature of the natural gas to close to room temperature, which makes the gas more attractive to sell on the open market. An additional benefit is significantly reduced costs of a LNG revaporization plant, since the nuclear reactor provides the heat for vaporization instead of burning a portion of the LNG to provide the heat.

Morrow, Charles W. (Albuquerque, NM)

2006-04-18T23:59:59.000Z

315

Helium process cycle  

DOE Patents [OSTI]

A unique process cycle and apparatus design separates the consumer (cryogenic) load return flow from most of the recycle return flow of a refrigerator and/or liquefier process cycle. The refrigerator and/or liquefier process recycle return flow is recompressed by a multi-stage compressor set and the consumer load return flow is recompressed by an independent consumer load compressor set that maintains a desirable constant suction pressure using a consumer load bypass control valve and the consumer load return pressure control valve that controls the consumer load compressor's suction pressure. The discharge pressure of this consumer load compressor is thereby allowed to float at the intermediate pressure in between the first and second stage recycle compressor sets. Utilizing the unique gas management valve regulation, the unique process cycle and apparatus design in which the consumer load return flow is separate from the recycle return flow, the pressure ratios of each recycle compressor stage and all main pressures associated with the recycle return flow are allowed to vary naturally, thus providing a naturally regulated and balanced floating pressure process cycle that maintains optimal efficiency at design and off-design process cycle capacity and conditions automatically.

Ganni, Venkatarao (Yorktown, VA)

2008-08-12T23:59:59.000Z

316

Helium process cycle  

DOE Patents [OSTI]

A unique process cycle and apparatus design separates the consumer (cryogenic) load return flow from most of the recycle return flow of a refrigerator and/or liquefier process cycle. The refrigerator and/or liquefier process recycle return flow is recompressed by a multi-stage compressor set and the consumer load return flow is recompressed by an independent consumer load compressor set that maintains a desirable constant suction pressure using a consumer load bypass control valve and the consumer load return pressure control valve that controls the consumer load compressor's suction pressure. The discharge pressure of this consumer load compressor is thereby allowed to float at the intermediate pressure in between the first and second stage recycle compressor sets. Utilizing the unique gas management valve regulation, the unique process cycle and apparatus design in which the consumer load return flow is separate from the recycle return flow, the pressure ratios of each recycle compressor stage and all main pressures associated with the recycle return flow are allowed to vary naturally, thus providing a naturally regulated and balanced floating pressure process cycle that maintains optimal efficiency at design and off-design process cycle capacity and conditions automatically.

Ganni, Venkatarao (Yorktown, VA)

2007-10-09T23:59:59.000Z

317

Understanding white dwarf binary evolution with white dwarf/main sequence binaries: first results from SEGUE  

E-Print Network [OSTI]

Close white dwarf binaries make up a wide variety of objects such as double white dwarf binaries, which are possible SN Ia progenitors, cataclysmic variables, super soft sources, or AM CVn stars. The evolution and formation of close white dwarf binaries crucially depends on the rate at which angular momentum is extracted from the binary orbit. The two most important sources of angular momentum loss are the common envelope phase and magnetic braking. Both processes are so far poorly understood. Observational population studies of white dwarf/main sequence binaries provide the potential to significantly progress with this situation and to clearly constrain magnetic braking and the CE-phase. However, the current population of white dwarf/main sequence binaries is highly incomplete and heavily biased towards young systems containing hot white dwarfs. The SDSSII/SEGUE collaboration awarded us with 5 fibers per plate pair in order to fill this gap and to identify the required unbiased sample of old white dwarf/main sequence binaries. The success rate of our selection criteria exceeds 65% and during the first 10 months we have identified 41 new systems, most of them belonging to the missed old population.

M. R. Schreiber; A. Nebot Gomez-Moran; A. D. Schwope

2006-11-15T23:59:59.000Z

318

Biennial Assessment of the Fifth Power Plan Gas Turbine Power Plant Planning Assumptions  

E-Print Network [OSTI]

from the heat recovery steam generator powers an additional steam turbine, providing extra electricBiennial Assessment of the Fifth Power Plan Gas Turbine Power Plant Planning Assumptions October 17, 2006 Simple- and combined-cycle gas turbine power plants fuelled by natural gas are among the bulk

319

Binary Capture Rates for Massive Protostars  

E-Print Network [OSTI]

The high multiplicity of massive stars in dense, young clusters is established early in their evolution. The mechanism behind this remains unresolved. Recent results suggest that massive protostars may capture companions through disk interactions with much higher efficiency than their solar mass counterparts. However, this conclusion is based on analytic determinations of capture rates and estimates of the robustness of the resulting binaries. We present the results of coupled n-body and SPH simulations of star-disk encounters to further test the idea that disk-captured binaries contribute to the observed multiplicity of massive stars.

Nickolas Moeckel; John Bally

2007-04-09T23:59:59.000Z

320

Binary Evolution in World Wide Web  

E-Print Network [OSTI]

We present a WWW-version of the {\\it Scenario Machine} - a computer code designed to calculate the evolution of close binary stellar systems. The Internet users can directly access to the code and calculate binary evolutionary tracks with parameters at the user's will. The program is running on the {\\it Pentium} server of the Division of the Relativistic Astrophysics of the Sternberg Astronimical Institute (http://xray.sai.msu.su/ ). The results are presented both in the form of tables and graphic diagrams. The work is always in progress. More possibilities for Internet users are intended to become available in the near future.

S. N. Nazin; V. M. Lipunov; I. E. Panchenko; K. A. Postnov; M. E. Prokhorov; S. B. Popov

1996-05-29T23:59:59.000Z

Note: This page contains sample records for the topic "binary cycle power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Superfluid thermodynamic cycle refrigerator  

DOE Patents [OSTI]

A cryogenic refrigerator cools a heat source by cyclically concentrating and diluting the amount of .sup.3 He in a single phase .sup.3 He-.sup.4 He solution. The .sup.3 He in superfluid .sup.4 He acts in a manner of an ideal gas in a vacuum. Thus, refrigeration is obtained using any conventional thermal cycle, but preferably a Stirling or Carnot cycle. A single phase solution of liquid .sup.3 He at an initial concentration in superfluid .sup.4 He is contained in a first variable volume connected to a second variable volume through a superleak device that enables free passage of .sup.4 He while restricting passage of .sup.3 He. The .sup.3 He is compressed (concentrated) and expanded (diluted) in a phased manner to carry out the selected thermal cycle to remove heat from the heat load for cooling below 1 K.

Swift, Gregory W. (Santa Fe, NM); Kotsubo, Vincent Y. (La Canada, CA)

1992-01-01T23:59:59.000Z

322

Superfluid thermodynamic cycle refrigerator  

DOE Patents [OSTI]

A cryogenic refrigerator cools a heat source by cyclically concentrating and diluting the amount of [sup 3]He in a single phase [sup 3]He-[sup 4]He solution. The [sup 3]He in superfluid [sup 4]He acts in a manner of an ideal gas in a vacuum. Thus, refrigeration is obtained using any conventional thermal cycle, but preferably a Stirling or Carnot cycle. A single phase solution of liquid [sup 3]He at an initial concentration in superfluid [sup 4]He is contained in a first variable volume connected to a second variable volume through a superleak device that enables free passage of [sup 4]He while restricting passage of [sup 3]He. The [sup 3]He is compressed (concentrated) and expanded (diluted) in a phased manner to carry out the selected thermal cycle to remove heat from the heat load for cooling below 1 K. 12 figs.

Swift, G.W.; Kotsubo, V.Y.

1992-12-22T23:59:59.000Z

323

Modelling cycle to cycle variations in an SI engine with detailed chemical kinetics  

SciTech Connect (OSTI)

This paper presents experimental results and a new computational model that investigate cycle to cycle variations (CCV) in a spark ignition (SI) engine. An established stochastic reactor model (SRM) previously used to examine homogeneous charge compression ignition (HCCI) combustion has been extended by spark initiation, flame propagation and flame termination sub-models in order to simulate combustion in SI engines. The model contains a detailed chemical mechanism but relatively short computation times are achieved. The flame front is assumed to be spherical and centred at the spark location, and a pent roof and piston bowl geometry are accounted for. The model is validated by simulating the pressure profile and emissions from an iso-octane fuelled single cylinder research engine that showed low CCV. The effects of key parameters are investigated. Experimental results that show cycle to cycle fluctuations in a four-cylinder naturally aspirated gasoline fuelled SI engine are presented. The model is then coupled with GT-Power, a one-dimensional engine simulation tool, which is used to simulate the breathing events during a multi-cycle simulation. This allows an investigation of the cyclic fluctuations in peak pressure. The source and magnitude of nitric oxide (NO) emissions produced by different cycles are then investigated. It was found that faster burning cycles result in increased NO emissions compared with cycles that have a slower rate of combustion and that more is produced in the early stages of combustion compared with later in the cycle. The majority of NO was produced via the thermal mechanism just after combustion begins. (author)

Etheridge, Jonathan; Mosbach, Sebastian; Kraft, Markus [Department of Chemical Engineering and Biotechnology, University of Cambridge (United Kingdom); Wu, Hao; Collings, Nick [Department of Engineering, University of Cambridge (United Kingdom)

2011-01-15T23:59:59.000Z

324

Understanding the petrochemical cycle  

SciTech Connect (OSTI)

The presentation will examine the nature of the supply, demand and profitability cycles that appear to be endemic in the petrochemical industry. The focus will be on the underlying factors that cause cyclicality. Data for ethylene and first line derivatives will be used both to provide quantitative illustrations of the magnitude of the cyclical effects and to give an improved perspective on the forces that drive cylicality. We will also examine to what extent cycle timing may be predictable, and present some scenario based projections.

Sedriks, W. [SRI Consulting, Melno Park, CA (United States)

1996-10-01T23:59:59.000Z

325

S and H Cycle Engine  

SciTech Connect (OSTI)

Our thirst for energy is increasing at an astounding rate. World population growth is estimated to increase by 40% (to 8.5 billion) by 2050, with annual electrical energy usage estimated increase by 100% (to 25 terawatt-hours). We must find new means and fuels as well as significantly improve the efficiency of current power plants to accommodate this growing electrical energy demand. This demand is also growing in the field of space flight. Present energy and propulsion systems are limited in the amount of power (energy) that can be generated by today's technology. This limits the distance that can be safely traveled by manned and un-manned space systems. Space flight is primarily governed by two factors: time and energy. Increasing energy of space propulsion systems will decrease flight time or allow reaching farther out into space safely for manned exploration of our solar system. For example, a round trip manned mission to Mars would take about 400 days with a NERVA type thermal nuclear rocket. To reduce the 400 days to 80 days would require an increase of energy by a factor of five. We need to develop space propulsion systems with much greater energy capability than we have today to satisfy the expansion of space exploration. The S and H Cycle nuclear engine provides a revolutionary technological approach that can contribute significantly toward solving the World electrical energy and the space travel energy requirements. (authors)

Strobl, William C. [2906 Via Pepita, Carlsbad, Ca. 92009 (United States); Holland, Joe P. [10671 Jasper Ave., Redlands, Ca. 92374 (United States)

2002-07-01T23:59:59.000Z

326

Summary of Historical Production for Nevada Binary Facilities  

SciTech Connect (OSTI)

The analysis described was initiated to validate inputs used in the US Department of Energy’s (DOE) economic modeling tool GETEM (Geothermal Electricity Technology Evaluation Model) by using publically available data to identify production trends at operating geothermal binary facilities in the state of Nevada. Data required for this analysis was obtained from the Nevada Bureau of Mines and Geology (NBMG), whom received the original operator reports from the Nevada Division of Minerals (NDOM). The data from the NBMG was inputted into Excel files that have been uploaded to the DOE’s National Geothermal Data System (NGDS). Once data was available in an Excel format, production trends for individual wells and facilities could be established for the periods data was available (thru 2009). Additionally, this analysis identified relationships existing between production (temperature and flow rates), power production and plant conversion efficiencies. The data trends showed that temperature declines have a significant impact on power production, and that in some instances operators increased production flow rate to offset power declines. The production trends with time that were identified are being used to update GETEM’s default inputs.

Mines, Greg; Hanson, Hillary

2014-09-01T23:59:59.000Z

327

Summary of Historical Production for Nevada Binary Facilities  

SciTech Connect (OSTI)

The analysis described was initiated to validate inputs used in the US Department of Energy’s (DOE) economic modeling tool GETEM (Geothermal Electricity Technology Evaluation Model) by using publically available data to identify production trends at operating geothermal binary facilities in the state of Nevada. Data required for this analysis was obtained from the Nevada Bureau of Mines and Geology (NBMG), whom received the original operator reports from the Nevada Division of Minerals (NDOM). The data from the NBMG was inputted into Excel files that have been uploaded to the DOE’s National Geothermal Data System (NGDS). Once data was available in an Excel format, production trends for individual wells and facilities could be established for the periods data was available (thru 2009). Additionally, this analysis identified relationships existing between production (temperature and flow rates), power production and plant conversion efficiencies. The data trends showed that temperature declines have a significant impact on power production, and that in some instances operators increased production flow rate to offset power declines. The production trends with time that were identified are being used to update GETEM’s default inputs.

Mines, Greg; Hanson, Hillary

2001-09-01T23:59:59.000Z

328

Reliability assessment of electrical power systems using genetic algorithms  

E-Print Network [OSTI]

of the dissertation, a GA based method for state sampling of composite generation-transmission power systems is introduced. Binary encoded GA is used as a state sampling tool for the composite power system network states. A linearized optimization load flow model...

Samaan, Nader Amin Aziz

2004-11-15T23:59:59.000Z

329

Power converters for parabolic dishes  

SciTech Connect (OSTI)

The development status of receivers and power conversion units to be used with parabolic dish concentrators is presented. Applications are identified, and the key role played by the power converter element of the collector module is emphasized. The electrical output of the 11-meter-diameter dish modules which are being developed varies up to a maximum of about 25 kilowatts, depending on the thermodynamic cycle of the power converter. Three power conversion units are being developed: an organic Rankine, an air Brayton, and a Stirling. The development program for the receivers and the power conversion units is described in detail.

Truscello, V.C.; Williams, A.N.

1981-01-01T23:59:59.000Z

330

RESEARCH Open Access Multi-non-binary turbo codes  

E-Print Network [OSTI]

RESEARCH Open Access Multi-non-binary turbo codes Horia Balta1,2 , Catherine Douillard3 and Radu Lucaciu1* Abstract This paper presents a new family of turbo codes called multi-non-binary turbo codes (MNBTCs) that generalizes the concept of turbo codes to multi-non-binary (MNB) parallel concatenated

Paris-Sud XI, Université de

331

Binary Codes In this lesson, you will study  

E-Print Network [OSTI]

Coded Decimal (BCD), Error detection codes, Character codes 2. Coding versus binary conversion. Binary Decimal (BCD) code which corresponds to the first 10 binary representations of the decimal digits 0-9. The BCD code requires 4 bits to represent the 10 decimal digits. Since 4 bits may have up to 16 different

Bouhraoua, Abdelhafid

332

Generator powered electrically heated diesel particulate filter  

DOE Patents [OSTI]

A control circuit for a vehicle powertrain includes a switch that selectivity interrupts current flow between a first terminal and a second terminal. A first power source provides power to the first terminal and a second power source provides power to the second terminal and to a heater of a heated diesel particulate filter (DPF). The switch is opened during a DPF regeneration cycle to prevent the first power source from being loaded by the heater while the heater is energized.

Gonze, Eugene V; Paratore, Jr., Michael J

2014-03-18T23:59:59.000Z

333

Constraining the Equation of State of Neutron Stars from Binary Mergers  

E-Print Network [OSTI]

Determining the equation of state of matter at nuclear density and hence the structure of neutron stars has been a riddle for decades. We show how the imminent detection of gravitational waves from merging neutron star binaries can be used to solve this riddle. Using a large number of accurate numerical-relativity simulations of binaries with nuclear equations of state, we find that the postmerger emission is characterized by two distinct and robust spectral features. While the high-frequency peak has already been associated with the oscillations of the hypermassive neutron star produced by the merger and depends on the equation of state, a new correlation emerges between the low-frequency peak, related to the merger process, and the total compactness of the stars in the binary. More importantly, such a correlation is essentially universal, thus providing a powerful tool to set tight constraints on the equation of state. If the mass of the binary is known from the inspiral signal, the combined use of the two frequency peaks sets four simultaneous constraints to be satisfied. Ideally, even a single detection would be sufficient to select one equation of state over the others. We test our approach with simulated data and verify it works well for all the equations of state considered.

Kentaro Takami; Luciano Rezzolla; Luca Baiotti

2014-03-22T23:59:59.000Z

334

Spectral properties of the post-merger gravitational-wave signal from binary neutron stars  

E-Print Network [OSTI]

Extending previous work by a number of authors, we have recently presented a new approach in which the detection of gravitational waves from merging neutron star binaries can be used to determine the equation of state of matter at nuclear density and hence the structure of neutron stars. In particular, after performing a large number of numerical-relativity simulations of binaries with nuclear equations of state, we have found that the post-merger emission is characterized by two distinct and robust spectral features. While the high-frequency peak was already shown to be associated with the oscillations of the hypermassive neutron star produced by the merger and to depend on the equation of state, we have highlighted that the low-frequency peak is related to the merger process and to the total compactness of the stars in the binary. This relation is essentially universal and provides a powerful tool to set tight constraints on the equation of state. We here provide additional information on the extensive analysis performed, illustrating the methods used, the tests considered, and the robustness of the results. We also discuss additional relations that can be deduced when exploring the data and how these correlate with various properties of the binary. Finally, we present a simple mechanical toy model that explains the main spectral features of the post-merger signal and can even reproduce analytically the complex waveforms emitted right after the merger.

Kentaro Takami; Luciano Rezzolla; Luca Baiotti

2014-12-10T23:59:59.000Z

335

GENERAL CIRCULATION Energy Cycle  

E-Print Network [OSTI]

process. PE is useful for global energy balance. Solar radiant energy does not reach the Earth equally everywhere. On average, the tropics receive and absorb far more solar energy annually than the polar regionsGENERAL CIRCULATION Contents Energy Cycle Mean Characteristics Momentum Budget Overview Energy

Grotjahn, Richard

336

CLASS DESCRIPTIONS CYCLING SERIES  

E-Print Network [OSTI]

will utilize concepts from the 50-minute cycling class while going the distance to optimal health. Whether you're an avid cyclist, triathlete, or desire a longer class for a greater challenge, join us for this 75-minute AN URBANATHLETE Are you registered to compete in an adventure race like the Men's Health Urbanathlon, Warrior Dash

Pittendrigh, Barry

337

Life cycle assessment  

SciTech Connect (OSTI)

Life-Cycle Assessment (LCA) is a technical, data-based and holistic approach to define and subsequently reduce the environmental burdens associated with a product, process, or activity by identifying and quantifying energy and material usage and waste discharges, assessing the impact of those wastes on the environment, and evaluating and implementing opportunities to effect environmental improvements. The assessment includes the entire life-cycle of the product, process or activity encompassing extraction and processing of raw materials, manufacturing, transportation and distribution, use/reuse, recycling and final disposal. LCA is a useful tool for evaluating the environmental consequences of a product, process, or activity, however, current applications of LCA have not been performed in consistent or easily understood ways. This inconsistency has caused increased criticism of LCA. The EPA recognized the need to develop an LCA framework which could be used to provide consistent use across the board. Also, additional research is needed to enhance the understanding about the steps in the performance of an LCA and its appropriate usage. This paper will present the research activities of the EPA leading toward the development of an acceptable method for conducting LCA`s. This research has resulted in the development of two guidance manuals. The first manual is intended to be a practical guide to conducting and interpreting the life-cycle inventory. A nine-step approach to performing a comprehensive inventory is presented along with the general issues to be addressed. The second manual addresses life-cycle design.

Curran, M.A. [Environmental Protection Agency, Cincinnati, OH (United States)

1994-12-31T23:59:59.000Z

338

Combined Cycle Combustion Turbines  

E-Print Network [OSTI]

Combined Cycle Combustion Turbines Steven Simmons February 27 2014 1 #12;CCCT Today's Discussion 1 Meeting Pricing of 4 advanced units using information from Gas Turbine World Other cost estimates from E E3 EIA Gas Turbine World California Energy Commission Date 2010 Oct 2012, Dec 2013 Apr 2013 2013 Apr

339

The Formation of Population III Binaries  

E-Print Network [OSTI]

We explore the possibility for the formation of Population III binaries. The collapse of a rotating cylinder is simulated with a three-dimensional, high-resolution nested grid, assuming the thermal history of primordial gas. The simulations are done with dimensionless units, and the results are applicable to low-mass as well as massive systems by scaling with the initial density. We find that if the initial angular momentum is as small as $\\beta \\approx 0.1$, where $\\beta$ is the ratio of centrifugal force to pressure force, then the runaway collapse of the cloud stops to form a rotationally-supported disk. After the accretion of the envelope, the disk undergoes a ring instability, eventually fragmenting into a binary. If the initial angular momentum is relatively large, a bar-type instability arises, resulting in the collapse into a single star through rapid angular momentum transfer. The present results show that a significant fraction of Pop III stars are expected to form in binary systems, even if they are quite massive or less massive. The cosmological implications of Population III binaries are briefly discussed.

Kazuya Saigo; Tomoaki Matsumoto; Masayuki Umemura

2004-10-29T23:59:59.000Z

340

Supermassive Black Hole Binaries: The Search Continues  

E-Print Network [OSTI]

Gravitationally bound supermassive black hole binaries (SBHBs) are thought to be a natural product of galactic mergers and growth of the large scale structure in the universe. They however remain observationally elusive, thus raising a question about characteristic observational signatures associated with these systems. In this conference proceeding I discuss current theoretical understanding and latest advances and prospects in observational searches for SBHBs.

Tamara Bogdanovic

2014-06-19T23:59:59.000Z

Note: This page contains sample records for the topic "binary cycle power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Binary Tomography with Deblurring Stefan Weber1  

E-Print Network [OSTI]

two scenarios of limited-angle binary tomography with data distorted with an unknown convolution: Either the projec- tion data are taken from a blurred object, or the projection data them- selves the projection data before reconstruction (let us call them preprocessing) and then the reconstruction

Schnörr, Christoph

342

CSP for binary conservative relational structures  

E-Print Network [OSTI]

We prove that whenever A is a 3-conservative relational structure with only binary and unary relations then the algebra of polymorphisms of A either has no Taylor operation (i.e. CSP(A) is NP-complete), or generates a congruence meet semidistributive variety (i.e. CSP(A) has bounded width).

Kazda, Alexandr

2011-01-01T23:59:59.000Z

343

Principal Components Analysis for Binary Data  

E-Print Network [OSTI]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix CHAPTER I INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Formulations of Principal Components Analysis . . . . . . . . 2 1.2 Generalization of Sparse Principal Components Analysis to Binary Variables... . . . . . . . . . . . . . . . . . . . . . . . . 8 1.3 Review of Estimation Procedures . . . . . . . . . . . . . . . . 11 1.4 Overview of Dissertation . . . . . . . . . . . . . . . . . . . . . 18 II SPARSE PRINCIPAL COMPONENTS ANALYSIS FOR BI- NARY DATA...

Lee, Seokho

2010-07-14T23:59:59.000Z

344

REQUEST BY SIEMENS WESTINGHOUSE POWER CORPORATION FOR AN ADVANCE...  

Broader source: Energy.gov (indexed) [DOE]

a pressurized tubular solid oxide fuel cell (PSOFC) coupled with conventional gas turbine technology in a completely dry (i.e., no boiler or steam bottoming power cycle)...

345

Sensitivity Comparison of Searches for Binary Black Hole Coalescences with Ground-based Gravitational-Wave Detectors  

E-Print Network [OSTI]

Searches for gravitational-wave transients from binary black hole coalescences typically rely on one of two approaches: matched filtering with templates and morphology-independent excess power searches. Multiple algorithmic implementations in the analysis of data from the first generation of ground-based gravitational wave interferometers have used different strategies for the suppression of non-Gaussian noise transients, and targeted different regions of the binary black hole parameter space. In this paper we compare the sensitivity of three such algorithms: matched filtering with full coalescence templates, matched filtering with ringdown templates and a morphology-independent excess power search. The comparison is performed at a fixed false alarm rate and relies on Monte-carlo simulations of binary black hole coalescences for spinning, non-precessing systems with total mass 25-350 solar mass, which covers the parameter space of stellar mass and intermediate mass black hole binaries. We find that in the mass range of 25 -100 solar mass the sensitive distance of the search, marginalized over source parameters, is best with matched filtering to full waveform templates, to within 10 percent at a false alarm rate of 3 events per year. In the mass range of 100-350 solar mass, the same comparison favors the morphology-independent excess power search to within 20 percent. The dependence on mass and spin is also explored.

Satya Mohapatra; Laura Cadonati; Sarah Caudill; James Clark; Chad Hanna; Sergey Klimenko; Chris Pankow; Ruslan Vaulin; Gabriele Vedovato; Salvatore Vitale

2014-05-26T23:59:59.000Z

346

Non-binary Entanglement-assisted Stabilizer Quantum Codes  

E-Print Network [OSTI]

In this paper, we show how to construct non-binary entanglement-assisted stabilizer quantum codes by using pre-shared entanglement between the sender and receiver. We also give an algorithm to determine the circuit for non-binary entanglement-assisted stabilizer quantum codes and some illustrated examples. The codes we constructed do not require the dual-containing constraint, and many non-binary classical codes, like non-binary LDPC codes, which do not satisfy the condition, can be used to construct non-binary entanglement-assisted stabilizer quantum codes.

Leng Riguang; Ma Zhi

2011-05-30T23:59:59.000Z

347

Analysis of Biomass/Coal Co-Gasification for Integrated Gasification Combined Cycle (IGCC) Systems with Carbon Capture.  

E-Print Network [OSTI]

?? In recent years, Integrated Gasification Combined Cycle Technology (IGCC) has become more common in clean coal power operations with carbon capture and sequestration (CCS).… (more)

Long, Henry A, III

2011-01-01T23:59:59.000Z

348

THE ELM SURVEY. V. MERGING MASSIVE WHITE DWARF BINARIES  

SciTech Connect (OSTI)

We present the discovery of 17 low-mass white dwarfs (WDs) in short-period (P {<=} 1 day) binaries. Our sample includes four objects with remarkable log g {approx_equal} 5 surface gravities and orbital solutions that require them to be double degenerate binaries. All of the lowest surface gravity WDs have metal lines in their spectra implying long gravitational settling times or ongoing accretion. Notably, six of the WDs in our sample have binary merger times <10 Gyr. Four have {approx}>0.9 M{sub Sun} companions. If the companions are massive WDs, these four binaries will evolve into stable mass transfer AM CVn systems and possibly explode as underluminous supernovae. If the companions are neutron stars, then these may be millisecond pulsar binaries. These discoveries increase the number of detached, double degenerate binaries in the ELM Survey to 54; 31 of these binaries will merge within a Hubble time.

Brown, Warren R.; Kenyon, Scott J. [Smithsonian Astrophysical Observatory, 60 Garden St, Cambridge, MA 02138 (United States); Kilic, Mukremin; Gianninas, A. [Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, 440 W. Brooks St., Norman, OK, 73019 (United States); Allende Prieto, Carlos, E-mail: wbrown@cfa.harvard.edu, E-mail: skenyon@cfa.harvard.edu, E-mail: kilic@ou.edu, E-mail: alexg@nhn.ou.edu, E-mail: callende@iac.es [Instituto de Astrofisica de Canarias, E-38205, La Laguna, Tenerife (Spain)

2013-05-20T23:59:59.000Z

349

Systems Analyses of Advanced Brayton Cycles  

SciTech Connect (OSTI)

The main objective is to identify and assess advanced improvements to the Brayton Cycle (such as but not limited to firing temperature, pressure ratio, combustion techniques, intercooling, fuel or combustion air augmentation, enhanced blade cooling schemes) that will lead to significant performance improvements in coal based power systems. This assessment is conducted in the context of conceptual design studies (systems studies) that advance state-of-art Brayton cycles and result in coal based efficiencies equivalent to 65% + on natural gas basis (LHV), or approximately an 8% reduction in heat rate of an IGCC plant utilizing the H class steam cooled gas turbine. H class gas turbines are commercially offered by General Electric and Mitsubishi for natural gas based combined cycle applications with 60% efficiency (LHV) and it is expected that such machine will be offered for syngas applications within the next 10 years. The studies are being sufficiently detailed so that third parties will be able to validate portions or all of the studies. The designs and system studies are based on plants for near zero emissions (including CO{sub 2}). Also included in this program is the performance evaluation of other advanced technologies such as advanced compression concepts and the fuel cell based combined cycle. The objective of the fuel cell based combined cycle task is to identify the desired performance characteristics and design basis for a gas turbine that will be integrated with an SOFC in Integrated Gasification Fuel Cell (IGFC) applications. The goal is the conceptualization of near zero emission (including CO{sub 2} capture) integrated gasification power plants producing electricity as the principle product. The capability of such plants to coproduce H{sub 2} is qualitatively addressed. Since a total systems solution is critical to establishing a plant configuration worthy of a comprehensive market interest, a baseline IGCC plant scheme is developed and used to study how alternative process schemes and power cycles might be used and integrated to achieve higher systems efficiency. To achieve these design results, the total systems approach is taken requiring creative integration of the various process units within the plant. Advanced gas turbine based cycles for Integrated gasification Combined cycle (IGCC) applications are identified by a screening analysis and the more promising cycles recommended for detailed systems analysis. In the case of the IGFC task, the main objective is met by developing a steady-state simulation of the entire plant and then using dynamic simulations of the hybrid Solid Oxide Fuel Cell (SOFC)/Gas Turbine sub-system to investigate the turbo-machinery performance. From these investigations the desired performance characteristics and a basis for design of turbo-machinery for use in a fuel cell gas turbine power block is developed.

A.D. Rao; D.J. Francuz; J.D. Maclay; J. Brouwer; A. Verma; M. Li; G.S. Samuelsen

2008-09-30T23:59:59.000Z

350

Answering Key Fuel Cycle Questions  

SciTech Connect (OSTI)

The Advanced Fuel Cycle Initiative (AFCI) program has both “outcome” and “process” goals because it must address both waste already accumulating as well as completing the fuel cycle in connection with advanced nuclear power plant concepts. The outcome objectives are waste geological repository capacity and cost, energy security and sustainability, proliferation resistance, fuel cycle economics, and safety. The process objectives are readiness to proceed and adaptability and robustness in the face of uncertainties. A classic decision-making approach to such a multi-attribute problem would be to weight individual quantified criteria and calculate an overall figure of merit. This is inappropriate for several reasons. First, the goals are not independent. Second, the importance of different goals varies among stakeholders. Third, the importance of different goals is likely to vary with time, especially the “energy future.” Fourth, some key considerations are not easily or meaningfully quantifiable at present. Instead, at this point, we have developed 16 questions the AFCI program should answer and suggest an approach of determining for each whether relevant options improve meeting each of the program goals. We find that it is not always clear which option is best for a specific question and specific goal; this helps identify key issues for future work. In general, we suggest attempting to create as many win-win decisions (options that are attractive or neutral to most goals) as possible. Thus, to help clarify why the program is exploring the options it is, and to set the stage for future narrowing of options, we have developed 16 questions, as follows: · What are the AFCI program goals? · Which potential waste disposition approaches do we plan for? · What are the major separations, transmutation, and fuel options? · How do we address proliferation resistance? · Which potential energy futures do we plan for? · What potential external triggers do we plan for? · Should we separate uranium? · If we separate uranium, should we recycle it, store it or dispose of it? · Is it practical to plan to fabricate and handle “hot” fuel? · Which transuranic elements (TRU) should be separated and transmuted? · Of those TRU separated, which should be transmuted together? · Should we separate and/or transmute Cs and Sr isotopes that dominate near-term repository heating? · Should we separate and/or transmute very long-lived Tc and I isotopes? · Which separation technology? · What mix of transmutation technologies? · What fuel technology best supports the above decisions?

Steven J. Piet; Brent W. Dixon; J. Stephen Herring; David E. Shropshire; Mary Lou Dunzik-Gougar

2003-10-01T23:59:59.000Z

351

Emissions-critical charge cooling using an organic rankine cycle  

DOE Patents [OSTI]

The disclosure provides a system including a Rankine power cycle cooling subsystem providing emissions-critical charge cooling of an input charge flow. The system includes a boiler fluidly coupled to the input charge flow, an energy conversion device fluidly coupled to the boiler, a condenser fluidly coupled to the energy conversion device, a pump fluidly coupled to the condenser and the boiler, an adjuster that adjusts at least one parameter of the Rankine power cycle subsystem to change a temperature of the input charge exiting the boiler, and a sensor adapted to sense a temperature characteristic of the vaporized input charge. The system includes a controller that can determine a target temperature of the input charge sufficient to meet or exceed predetermined target emissions and cause the adjuster to adjust at least one parameter of the Rankine power cycle to achieve the predetermined target emissions.

Ernst, Timothy C.; Nelson, Christopher R.

2014-07-15T23:59:59.000Z

352

Stirling cycle engine  

DOE Patents [OSTI]

In a Stirling cycle engine having a plurality of working gas charges separated by pistons reciprocating in cylinders, the total gas content is minimized and the mean pressure equalization among the serial cylinders is improved by using two piston rings axially spaced at least as much as the piston stroke and by providing a duct in the cylinder wall opening in the space between the two piston rings and leading to a source of minimum or maximum working gas pressure.

Lundholm, Gunnar (Lund, SE)

1983-01-01T23:59:59.000Z

353

Global Simulations of the Interaction of Microquasar Jets with a Stellar Wind in High-Mass X-ray Binaries  

E-Print Network [OSTI]

Jets powered by high-mass X-ray binaries must traverse the powerful wind of the companion star. We present the first global 3D simulations of jet-wind interaction in high-mass X-ray binaries. We show that the wind momentum flux intercepted by the jet can lead to significant bending of the jet and that jets propagating through a spherical wind will be bent to an asymptotic angle $\\psi_{\\infty}$. We derive simple expressions for $\\psi_{\\infty}$ as a function of jet power and wind thrust. For known wind parameters, measurements of $\\psi_{\\infty}$ can be used to constrain the jet power. In the case of Cygnus X-1, the lack of jet precession as a function of orbital phase observed by the VLBA can be used to put a lower limit on the jet power of $L_{\\rm jet} \\gtrsim 10^{36}\\,{\\rm ergs\\,s^{-1}}$. We further discuss the case where the initial jet is inclined relative to the binary orbital axis. We also analyze the case of Cygnus X-3 and show that jet bending is likely negligible unless the jet is significantly less po...

Yoon, Doosoo

2015-01-01T23:59:59.000Z

354

Encouraging Combined Heat and Power in California Buildings  

E-Print Network [OSTI]

incentive ($/W) wind turbine waste heat to power pressurewind turbines, fuel cells, organic rankine cycle/waste heat capture, pressure reduction turbines, advanced energy storage, and combined heat and power

Stadler, Michael

2014-01-01T23:59:59.000Z

355

Power electronics cooling apparatus  

DOE Patents [OSTI]

A semiconductor cooling arrangement wherein a semiconductor is affixed to a thermally and electrically conducting carrier such as by brazing. The coefficient of thermal expansion of the semiconductor and carrier are closely matched to one another so that during operation they will not be overstressed mechanically due to thermal cycling. Electrical connection is made to the semiconductor and carrier, and a porous metal heat exchanger is thermally connected to the carrier. The heat exchanger is positioned within an electrically insulating cooling assembly having cooling oil flowing therethrough. The arrangement is particularly well adapted for the cooling of high power switching elements in a power bridge.

Sanger, Philip Albert (Monroeville, PA); Lindberg, Frank A. (Baltimore, MD); Garcen, Walter (Glen Burnie, MD)

2000-01-01T23:59:59.000Z

356

Power electronics cooling apparatus  

SciTech Connect (OSTI)

A semiconductor cooling arrangement wherein a semiconductor is affixed to a thermally and electrically conducting carrier such as by brazing. The coefficient of thermal expansion of the semiconductor and carrier are closely matched to one another so that during operation they will not be overstressed mechanically due to thermal cycling. Electrical connection is made to the semiconductor and carrier, and a porous metal heat exchanger is thermally connected to the carrier. The heat exchanger is positioned within an electrically insulating cooling assembly having cooling oil flowing therethrough. The arrangement is particularly well adapted for the cooling of high power switching elements in a power bridge.

Sanger, P.A.; Lindberg, F.A.; Garcen, W.

2000-01-18T23:59:59.000Z

357

ZERO EMISSION POWER GENERATION TECHNOLOGY DEVELOPMENT  

SciTech Connect (OSTI)

Clean Energy Systems (CES) was previously funded by DOE's ''Vision 21'' program. This program provided a proof-of-concept demonstration that CES' novel gas generator (combustor) enabled production of electrical power from fossil fuels without pollution. CES has used current DOE funding for additional design study exercises which established the utility of the CES-cycle for retrofitting existing power plants for zero-emission operations and for incorporation in zero-emission, ''green field'' power plant concepts. DOE funding also helped define the suitability of existing steam turbine designs for use in the CES-cycle and explored the use of aero-derivative turbines for advanced power plant designs. This work is of interest to the California Energy Commission (CEC) and the Norwegian Ministry of Petroleum & Energy. California's air quality districts have significant non-attainment areas in which CES technology can help. CEC is currently funding a CES-cycle technology demonstration near Bakersfield, CA. The Norwegian government is supporting conceptual studies for a proposed 40 MW zero-emission power plant in Stavager, Norway which would use the CES-cycle. The latter project is called Zero-Emission Norwegian Gas (ZENG). In summary, current engineering studies: (1) supported engineering design of plant subsystems applicable for use with CES-cycle zero-emission power plants, and (2) documented the suitability and availability of steam turbines for use in CES-cycle power plants, with particular relevance to the Norwegian ZENG Project.

Ronald Bischoff; Stephen Doyle

2005-01-20T23:59:59.000Z

358

Geothermal Water Use: Life Cycle Water Consumption, Water Resource Assessment, and Water Policy Framework  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

This report examines life cycle water consumption for various geothermal technologies to better understand factors that affect water consumption across the life cycle (e.g., power plant cooling, belowground fluid losses) and to assess the potential water challenges that future geothermal power generation projects may face. Previous reports in this series quantified the life cycle freshwater requirements of geothermal power-generating systems, explored operational and environmental concerns related to the geochemical composition of geothermal fluids, and assessed future water demand by geothermal power plants according to growth projections for the industry. This report seeks to extend those analyses by including EGS flash, both as part of the life cycle analysis and water resource assessment. A regional water resource assessment based upon the life cycle results is also presented. Finally, the legal framework of water with respect to geothermal resources in the states with active geothermal development is also analyzed.

Schroeder, Jenna N.

359

Geothermal Water Use: Life Cycle Water Consumption, Water Resource Assessment, and Water Policy Framework  

SciTech Connect (OSTI)

This report examines life cycle water consumption for various geothermal technologies to better understand factors that affect water consumption across the life cycle (e.g., power plant cooling, belowground fluid losses) and to assess the potential water challenges that future geothermal power generation projects may face. Previous reports in this series quantified the life cycle freshwater requirements of geothermal power-generating systems, explored operational and environmental concerns related to the geochemical composition of geothermal fluids, and assessed future water demand by geothermal power plants according to growth projections for the industry. This report seeks to extend those analyses by including EGS flash, both as part of the life cycle analysis and water resource assessment. A regional water resource assessment based upon the life cycle results is also presented. Finally, the legal framework of water with respect to geothermal resources in the states with active geothermal development is also analyzed.

Schroeder, Jenna N.

2014-06-10T23:59:59.000Z

360

Monitoring the chemistry and materials of the Magma binary-cycle generating plant  

SciTech Connect (OSTI)

This monitoring program includes studies of the following areas: chemistry of the geothermal brine, chemistry of the cooling water, corrosion of materials in both water systems, scale formation, suspended solids in th brine, and methods and instruments to monitor corrosion and chemistry. (MHR)

Shannon, D.W.; Elmore, R.P.; Pierce, D.D.

1981-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "binary cycle power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Carbon dioxide release from ocean thermal energy conversion (OTEC) cycles  

SciTech Connect (OSTI)

This paper presents the results of recent measurements of CO{sub 2} release from an open-cycle ocean thermal energy conversion (OTEC) experiment. Based on these data, the rate of short-term CO{sub 2} release from future open-cycle OTEC plants is projected to be 15 to 25 times smaller than that from fossil-fueled electric power plants. OTEC system that incorporate subsurface mixed discharge are expected to result in no long-term release. OTEC plants can significantly reduce CO{sub 2} emissions when substituted for fossil-fueled power generation. 12 refs., 4 figs., 3 tabs.

Green, H.J. (Solar Energy Research Inst., Golden, CO (USA)); Guenther, P.R. (Scripps Institution of Oceanography, La Jolla, CA (USA))

1990-09-01T23:59:59.000Z

362

Power generating system and method utilizing hydropyrolysis  

DOE Patents [OSTI]

A vapor transmission cycle is described which burns a slurry of coal and water with some of the air from the gas turbine compressor, cools and cleans the resulting low-Btu fuel gas, burns the clean fuel gas with the remaining air from the compressor, and extracts the available energy in the gas turbine. The cycle lends itself to combined-cycle cogeneration for the production of steam, absorption cooling, and electric power.

Tolman, R.

1986-12-30T23:59:59.000Z

363

HEURISTIC SEARCH FOR HAMILTON CYCLES  

E-Print Network [OSTI]

by combining it with the remaining cycles. The following is the description of the main part of the algorithmHEURISTIC SEARCH FOR HAMILTON CYCLES IN CUBIC GRAPHS Janez ALES, Bojan MOHAR and Tomaz PISANSKI. A successful heuristic algorithm for nding Hamilton cycles in cubic graphs is described. Several graphs from

Mohar, Bojan

364

Edinburgh Research Explorer Money Cycles  

E-Print Network [OSTI]

Edinburgh Research Explorer Money Cycles Citation for published version: Clausen, A & Strub, C 2014 'Money Cycles' Edinburgh School of Economics Discussion Paper Series. Link: Link to publication record date: 11. Dec. 2014 #12;Edinburgh School of Economics Discussion Paper Series Number 249 Money Cycles

Millar, Andrew J.

365

Calibration of the pre-main sequence RS Cha binary system  

E-Print Network [OSTI]

Context: The calibration of binary systems with accurately known masses and/or radii provides powerful tools to test stellar structure and evolution theory and to determine the age and helium content of stars. We study the eclipsing double-lined spectroscopic binary system RS Cha, for which we have accurate observations of the parameters of both stars (masses, radii, luminosities, effective temperatures and metallicity). Aims: We have calculated several sets of stellar models for the components of the RS Cha system, with the aim of reproducing simultaneously the available observational constraints and to estimate the age and initial helium abundance of the system. Methods: Using the CESAM stellar evolution code, we model both components starting from the initial mass and metallicity and adjusting the input parameters and physics in order to satisfy the observational constraints. Results: We find that the observations cannot be reproduced if we assume that the abundance ratios are solar but they are satisfied ...

Alecian, E; Lebreton, Y; Dupret, M A; Catala, C

2006-01-01T23:59:59.000Z

366

Efficient binary sources of working-body vapor for thermionic converters  

SciTech Connect (OSTI)

The objective of this investigation was an experimental determination of the parameters of a cylindrical thermionic converter (TC), with the binary system being cesium with bismuth, antimony, selenium, and germanium. In all devices, the emitter was a layer of tungsten, and the collector consisted of niobium or an alloy of molybdenum with ruthenium. The system characteristics of each binary system were studied, with the interaction kinetics of the cesium vapor with the active sorbent being examined by the gravimetric method. For each TC, the current-voltage characteristics were investigated as was the work function. For each case investigated, there was a 25-30% higher TC power output due to the presence of the active additive.

Kalandarishvili, A.G.; Kashiya, V.G.

1994-06-01T23:59:59.000Z

367

V405 Peg (RBS 1955): A Nearby, Low-Luminosity Cataclysmic Binary  

E-Print Network [OSTI]

(Abridged). The cataclysmic binary V405 Peg, originally discovered as ROSAT Bright Source (RBS) 1955 (= 1RXS J230949.6+213523), shows a strong contribution from a late-type secondary star in its optical spectrum, which led Schwope et al. to suggest it to be among the nearest cataclysmic binaries. We present extensive optical observations of V405 Peg. Time-series spectroscopy shows the orbital period, Porb, to be 0.1776469(7) d (= 4.2635 hr), or 5.629 cycle/d. We classify the secondary as M3 - M4.5. Astrometry with the MDM 2.4m telescope gives a parallax 7.2 +- 1.1 milli-arcsec, and a relative proper motion of 58 mas/yr. Our best estimate of the distance yields d = 149 (+26, -20) pc. The secondary stars's radial velocity has K2 = 92 +- 3 km/s, indicating a fairly low orbital inclination if the masses are typical. Extensive I-band time-series observations in the show the system varying between a minimum brightness level of I = 14.14 and states of enhanced activity about 0.2 mag brighter. While the low-state sho...

Thorstensen, J R; Schwope, A D; Staude, A; Vogel, J; Krumpe, M; Kohnert, J; Gomez-Moran, A Nebot

2009-01-01T23:59:59.000Z

368

Phenomenological gravitational waveforms from spinning coalescing binaries  

E-Print Network [OSTI]

An accurate knowledge of the coalescing binary gravitational waveform is crucial for experimental searches as the ones performed by the LIGO-Virgo collaboration. Following an earlier paper by the same authors we refine the construction of analytical phenomenological waveforms describing the signal sourced by generically spinning binary systems. The gap between the initial inspiral part of the waveform, described by spin-Taylor approximants, and its final ring-down part, described by damped exponentials, is bridged by a phenomenological phase calibrated by comparison with the dominant spherical harmonic mode of a set of waveforms including both numerical and phenomenological waveforms of different type. All waveforms considered describe equal mass systems. The Advanced LIGO noise-weighted overlap integral between the numerical and phenomenological waveforms presented here ranges between 0.95 and 0.99 for a wide span of mass values.

R. Sturani; S. Fischetti; L. Cadonati; G. M. Guidi; J. Healy; D. Shoemaker; A. Vicere'

2011-06-23T23:59:59.000Z

369

Concentrated Solar Thermoelectric Power (Fact Sheet)  

SciTech Connect (OSTI)

Massachusetts Institute of Technology (MIT) is one of the 2012 SunShot CSP R&D awardees for their advanced power cycles. This fact sheet explains the motivation, description, and impact of the project.

Not Available

2012-09-01T23:59:59.000Z

370

Automated pupil remapping with binary optics  

DOE Patents [OSTI]

Methods and apparatuses for pupil remapping employing non-standard lenslet shapes in arrays; divergence of lenslet focal spots from on-axis arrangements; use of lenslet arrays to resize two-dimensional inputs to the array; and use of lenslet arrays to map an aperture shape to a different detector shape. Applications include wavefront sensing, astronomical applications, optical interconnects, keylocks, and other binary optics and diffractive optics applications.

Neal, Daniel R. (Tijeras, NM); Mansell, Justin (Albuquerque, NM)

1999-01-01T23:59:59.000Z

371

Automated pupil remapping with binary optics  

DOE Patents [OSTI]

Methods and apparatuses are disclosed for pupil remapping employing non-standard lenslet shapes in arrays; divergence of lenslet focal spots from on-axis arrangements; use of lenslet arrays to resize two-dimensional inputs to the array; and use of lenslet arrays to map an aperture shape to a different detector shape. Applications include wavefront sensing, astronomical applications, optical interconnects, keylocks, and other binary optics and diffractive optics applications. 24 figs.

Neal, D.R.; Mansell, J.

1999-01-26T23:59:59.000Z

372

The Formation of Population III Binaries  

E-Print Network [OSTI]

We explore the possibility for the formation of Population III binaries. The collapse of a rotating cylinder is simulated with a three-dimensional, high-resolution nested grid, assuming the thermal history of primordial gas. The simulations are done with dimensionless units, and the results are applicable to low-mass as well as massive systems by scaling with the initial density. We find that if the initial angular momentum is as small as $\\beta \\approx 0.1$, where $\\beta$ is the ratio of centrifugal force to pressure force, then the runaway collapse of the cloud stops to form a rotationally-supported disk. After the accretion of the envelope, the disk undergoes a ring instability, eventually fragmenting into a binary. If the initial angular momentum is relatively large, a bar-type instability arises, resulting in the collapse into a single star through rapid angular momentum transfer. The present results show that a significant fraction of Pop III stars are expected to form in binary systems, even if they ar...

Saigo, K; Umemura, M; Saigo, Kazuya; Matsumoto, Tomoaki; Umemura, Masayuki

2004-01-01T23:59:59.000Z

373

Phase equilibrium measurements on twelve binary mixtures  

SciTech Connect (OSTI)

Phase equilibrium measurements have been performed on twelve binary mixtures. The PTx method was used to obtain vapor-liquid equilibrium data for the following binary systems at two temperatures each: ethanethiol + propylene; nitrobenzene + methanol; pyridine + ethyl acetate; octane + tert-amyl methyl ether; diisopropyl ether + butane; 1,3-dichloro-2-propanol + epichlorohydrin; 2,3-dichloro-1-propanol + epichlorohydrin; 2,3-epoxy-1-propanol + epichlorohydrin; 3-chloro-1,2-propanediol + epichlorohydrin; methanol + hydrogen cyanide. For these systems, equilibrium vapor and liquid phase compositions were derived from the PTx data using the Soave equation of state to represent the vapor phase and the Wilson, NRTL, or Redlich-Kister activity coefficient model to represent the liquid phase. The infinite dilution activity coefficient of methylamine in N-methyl-2-pyrrolidone was determined at three temperatures by performing PTx measurements on the N-methyl-2-pyrrolidone was determined at three temperatures by performing PTx measurements on the N-methyl-2-pyrrolidone-rich half of the binary. Liquid-liquid equilibrium studies were made on the triethylene glycol + 1-pentene system at two temperatures by directly analyzing samples taken from each liquid phase.

Giles, N.F. [Wiltec Research Co., Inc., Provo, UT (United States)] [Wiltec Research Co., Inc., Provo, UT (United States); Wilson, H.L.; Wilding, W.V. [Brigham Young Univ., Provo, UT (United States). Chemical Engineering Dept.] [Brigham Young Univ., Provo, UT (United States). Chemical Engineering Dept.

1996-11-01T23:59:59.000Z

374

Gravitational lensing in eclipsing binary stars  

E-Print Network [OSTI]

I consider the effect of the gravitational deflection of light upon the light curves of eclipsing binary stars, focussing mainly upon systems containing at least one white dwarf component. In absolute terms the effects are small, however they are strongest at the time of secondary eclipse when the white dwarf transits its companion, and act to reduce the depth of this feature. If not accounted for, this may lead to under-estimation of the radius of the white dwarf compared to that of its companion. I show that the effect is significant for plausible binary parameters, and that it leads to ~25% reduction in the transit depth in the system KPD 1930+2752. The reduction of eclipse depth is degenerate with the stellar radius ratio, and therefore cannot be used to establish the existence of lensing. A second order effect of the light bending is to steepen the ingress and egress features of the secondary eclipse relative to the primary eclipse, although it will be difficult to see this in practice. I consider also binaries containing neutron stars and black-holes. I conclude that, although relatively large effects are possible in such systems, a combination of rarity, faintness and intrinsic variability make it unlikely that lensing will be detectable in them.

T. R. Marsh

2000-12-18T23:59:59.000Z

375

MHD Integrated Topping Cycle Project  

SciTech Connect (OSTI)

This fourteenth quarterly technical progress report of the MHD Integrated Topping Cycle Project presents the accomplishments during the period November 1, 1990 to January 31, 1991. Testing of the High Pressure Cooling Subsystem electrical isolator was completed. The PEEK material successfully passed the high temperature, high pressure duration tests (50 hours). The Combustion Subsystem drawings were CADAM released. The procurement process is in progress. An equipment specification and RFP were prepared for the new Low Pressure Cooling System (LPCS) and released for quotation. Work has been conducted on confirmation tests leading to final gas-side designs and studies to assist in channel fabrication.The final cathode gas-side design and the proposed gas-side designs of the anode and sidewall are presented. Anode confirmation tests and related analyses of anode wear mechanisms used in the selection of the proposed anode design are presented. Sidewall confirmation tests, which were used to select the proposed gas-side design, were conducted. The design for the full scale CDIF system was completed. A test program was initiated to investigate the practicality of using Avco current controls for current consolidation in the power takeoff (PTO) regions and to determine the cause of past current consolidation failures. Another important activity was the installation of 1A4-style coupons in the 1A1 channel. A description of the coupons and their location with 1A1 channel is presented herein.

Not Available

1992-02-01T23:59:59.000Z

376

Life-cycle Assessment of Semiconductors  

E-Print Network [OSTI]

life-cycle energy requirements (e total ) and global warmingtotal life-cycle global warming impacts. Chapter 3 Life-cycle Energy and Global

Boyd, Sarah B.

2009-01-01T23:59:59.000Z

377

Quantum thermodynamic cooling cycle  

E-Print Network [OSTI]

The quantum-mechanical and thermodynamic properties of a 3-level molecular cooling cycle are derived. An inadequacy of earlier models is rectified in accounting for the spontaneous emission and absorption associated with the coupling to the coherent driving field via an environmental reservoir. This additional coupling need not be dissipative, and can provide a thermal driving force - the quantum analog of classical absorption chillers. The dependence of the maximum attainable cooling rate on temperature, at ultra-low temperatures, is determined and shown to respect the recently-established fundamental bound based on the second and third laws of thermodynamics.

Palao, J P; Gordon, J M; Palao, Jose P.; Kosloff, Ronnie; Gordon, Jeffrey M.

2001-01-01T23:59:59.000Z

378

Quantum thermodynamic cooling cycle  

E-Print Network [OSTI]

The quantum-mechanical and thermodynamic properties of a 3-level molecular cooling cycle are derived. An inadequacy of earlier models is rectified in accounting for the spontaneous emission and absorption associated with the coupling to the coherent driving field via an environmental reservoir. This additional coupling need not be dissipative, and can provide a thermal driving force - the quantum analog of classical absorption chillers. The dependence of the maximum attainable cooling rate on temperature, at ultra-low temperatures, is determined and shown to respect the recently-established fundamental bound based on the second and third laws of thermodynamics.

Jose P. Palao; Ronnie Kosloff; Jeffrey M. Gordon

2001-06-08T23:59:59.000Z

379

Practitioner Perspectives Matter: Public Policy and Private Investment in the U.S. Electric Power Sector  

E-Print Network [OSTI]

a boom-bust cycle in wind power plant investment in the U.S.tax credit for wind turbine power plants is an ineffectivewind power and became comfortable with turbine technology and plant

Barradale, Merrill Jones

2010-01-01T23:59:59.000Z

380

Collisional Hardening of Compact Binaries in Globular Clusters  

E-Print Network [OSTI]

We consider essential mechanisms for orbit-shrinkage or "hardening" of compact binaries in globular clusters to the point of Roche-lobe contact and X-ray emission phase, focussing on the process of collisional hardening due to encounters between binaries and single stars in the cluster core. The interplay between this kind of hardening and that due to emission of gravitational radiation produces a characteristic scaling of the orbit-shrinkage time with the single-star binary encounter rate $\\gamma$ in the cluster which we introduce, clarify, and explore. We investigate possible effects of this scaling on populations of X-ray binaries in globular clusters within the framework of a simple "toy" scheme for describing the evolution of pre-X-ray binaries in globular clusters. We find the expected qualitative trends sufficiently supported by data on X-ray binaries in galactic globular clusters to encourage us toward a more quantitative study.

S. Banerjee; P. Ghosh

2006-09-29T23:59:59.000Z

Note: This page contains sample records for the topic "binary cycle power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Computers and Chemical Engineering 31 (2007) 712721 Optimal operation of simple refrigeration cycles  

E-Print Network [OSTI]

cooling duty) the compressor power is set. Furthermore, it is usually optimal to maximize the heat sub-cooling is optimal. For a simple ammonia cycle, sub-cooling gives savings in compressor power and cooling are widely used and their power ranges from less than 1 kW to above 100 MW. In both cases vapour

Skogestad, Sigurd

382

Where are the binary source galactic microlensing events?  

E-Print Network [OSTI]

Though there have been some galactic microlensing events which show a clear signature of a binary lens, no event has yet been claimed as due to lensing of a binary source. Here I argue that this may be due to the fact that most of the binary source events show light curves which can be fitted with the simpler model of a blended single source.

M. Dominik

1998-01-13T23:59:59.000Z

383

Kouchoul cycle implication in the Tailer engine cycle  

SciTech Connect (OSTI)

The author presents here the study of the Tailer engine modified cycle using the concept of load transfer for the Kouchoul cycle. Theoretical equations and numerical simulation of the Tailer engine modified cycle implicating the Kouchoul cycle are developed. The Tailer engine modified cycle can be improved by approaching cycles of spark plug engines by the addition of a phase of cooling of gases to the bottom dead center (bdc). This is possible only by putting a reservoir of cooled gas in communication with the cylinder to the bottom dead center. So as not to complicate the kinematic of the engine, the communication between cylinder and cooled reservoir is executed by some holes of 1 mm distributed on the whole periphery of the cylinder at the bdc.

Arques, P.

1996-12-31T23:59:59.000Z

384

Benefits and concerns of a closed nuclear fuel cycle  

SciTech Connect (OSTI)

Nuclear power can play an important role in our energy future, contributing to increasing electricity demand while at the same time decreasing carbon dioxide emissions. However, the nuclear fuel cycle in the United States today is unsustainable. As stated in the 1982 Nuclear Waste Policy Act, the U.S. Department of Energy is responsible for disposing of spent nuclear fuel generated by commercial nuclear power plants operating in a “once-through” fuel cycle in the deep geologic repository located at Yucca Mountain. However, unyielding political opposition to the site has hindered the commissioning process to the extant that the current administration has recently declared the unsuitability of the Yucca Mountain site. In light of this the DOE is exploring other options, including closing the fuel cycle through recycling and reprocessing of spent nuclear fuel. The possibility of closing the fuel cycle is receiving special attention because of its ability to minimize the final high level waste (HLW) package as well as recover additional energy value from the original fuel. The technology is, however, still very controversial because of the increased cost and proliferation risk it can present. To lend perspective on the closed fuel cycle alternative, this presents the arguments for and against closing the fuel cycle with respect to sustainability, proliferation risk, commercial viability, waste management, and energy security.

Widder, Sarah H.

2010-11-17T23:59:59.000Z

385

International nuclear fuel cycle fact book. Revision 4  

SciTech Connect (OSTI)

This Fact Book has been compiled in an effort to provide (1) an overview of worldwide nuclear power and fuel cycle programs and (2) current data concerning fuel cycle and waste management facilities, R and D programs, and key personnel in countries other than the United States. Additional information on each country's program is available in the International Source Book: Nuclear Fuel Cycle Research and Development, PNL-2478, Rev. 2. The Fact Book is organized as follows: (1) Overview section - summary tables which indicate national involvement in nuclear reactor, fuel cycle, and waste management development activities; (2) national summaries - a section for each country which summarizes nuclear policy, describes organizational relationships and provides addresses, names of key personnel, and facilities information; (3) international agencies - a section for each of the international agencies which has significant fuel cycle involvement; (4) energy supply and demand - summary tables, including nuclear power projections; (5) fuel cycle - summary tables; and (6) travel aids - international dialing instructions, international standard time chart, passport and visa requirements, and currency exchange rate.

Harmon, K.M.; Lakey, L.T.; Leigh, I.W.

1984-03-01T23:59:59.000Z

386

International Nuclear Fuel Cycle Fact Book. Revision 5  

SciTech Connect (OSTI)

This Fact Book has been compiled in an effort to provide: (1) an overview of worldwide nuclear power and fuel cycle programs; and (2) current data concerning fuel cycle and waste management facilities, R and D programs, and key personnel in countries other than the United States. Additional information on each country's program is available in the International Source Book: Nuclear Fuel Cycle Research and Development, PNL-2478, Rev. 2. The Fact Book is organized as follows: (1) Overview section - summary tables which indicate national involvement in nuclear reactor, fuel cycle, and waste management development activities; (2) national summaries - a section for each country which summarizes nuclear policy, describes organizational relationships and provides addresses, names of key personnel, and facilities information; (3) international agencies - a section for each of the international agencies which has significant fuel cycle involvement; (4) energy supply and demand - summary tables, including nuclear power projections; (5) fuel cycle - summary tables; and (6) travel aids international dialing instructions, international standard time chart, passport and visa requirements, and currency exchange rate.

Harmon, K.M.; Lakey, L.T.; Leigh, I.W.; Jeffs, A.G.

1985-01-01T23:59:59.000Z

387

Binary Decision Rules for Multistage Adaptive Mixed-Integer ...  

E-Print Network [OSTI]

Aug 20, 2014 ... In the first test series, we compared the performance of the binary decision rules versus the non- ..... involving indicator functions is NP-hard.

2014-08-20T23:59:59.000Z

388

Unifying set-copositive formulations of binary problems and ...  

E-Print Network [OSTI]

by a factor less than two. Summarizing, the ... The conversion of the common formulations of binary programs was studied allowing for set- completely positive

2014-05-06T23:59:59.000Z

389

The binary gravitational lens and its extreme cases  

E-Print Network [OSTI]

The transition of the binary gravitational lens from the equal mass case to small (planetary) mass ratios q is studied. It is shown how the limit of a (pure shear) Chang-Refsdal lens is approached, under what conditions the Chang-Refsdal approximation is valid, and how the 3 different topologies of the critical curves and caustics for a binary lens are mapped onto the 2 different topologies for a Chang-Refsdal lens with pure shear. It is shown that for wide binaries, the lensing in the vicinity of both lens objects can be described by a Taylor-expansion of the deflection term due to the other object, where the Chang-Refsdal approximation corresponds to a truncation of this series. For close binaries, only the vicinity of the secondary, less massive, object can be described in this way. However, for image distances much larger than the separation of the lens objects, any binary lens can be approximated by means of multipole expansion, where the first non-trivial term is the quadrupole term. It is shown that an ambiguity exists between wide and close binary lenses, where the shear at one of the objects due to the other object for the wide binary is equal to the absolute value of the eigenvalues of the quadrupole moment for the close binary. This analysis provides the basis for a classification of binary lens microlensing events, especially of planetary events, and an understanding of present ambiguities.

M. Dominik

1999-09-10T23:59:59.000Z

390

High power terahertz generation using 1550?nm plasmonic photomixers  

SciTech Connect (OSTI)

We present a 1550?nm plasmonic photomixer operating under pumping duty cycles below 10%, which offers significantly higher terahertz radiation power levels compared to previously demonstrated photomixers. The record-high terahertz radiation powers are enabled by enhancing the device quantum efficiency through use of plasmonic contact electrodes, and by mitigating thermal breakdown at high optical pump power levels through use of a low duty cycle optical pump. The repetition rate of the optical pump can be specifically selected at a given pump duty cycle to control the spectral linewidth of the generated terahertz radiation. At an average optical pump power of 150 mW with a pump modulation frequency of 1 MHz and pump duty cycle of 2%, we demonstrate up to 0.8 mW radiation power at 1 THz, within each continuous wave radiation cycle.

Berry, Christopher W. [Electrical Engineering and Computer Science Department, University of Michigan, Ann Arbor, Michigan 48109 (United States); Hashemi, Mohammad R.; Jarrahi, Mona [Electrical Engineering and Computer Science Department, University of Michigan, Ann Arbor, Michigan 48109 (United States); Electrical Engineering Department, University of California Los Angeles, Los Angeles, California 90095 (United States); Preu, Sascha [Department of Electrical Engineering and Information Technology, Technical University Darmstadt, D-64283 Darmstadt (Germany); Lu, Hong; Gossard, Arthur C. [Materials Department, University of California, Santa Barbara, California 93106 (United States)

2014-07-07T23:59:59.000Z

391

Life Cycle Inventory of a CMOS Chip  

E-Print Network [OSTI]

are shown. Keywords- Life Cycle Assessment (LCA); Life Cycleindustry, and Life Cycle Assessment (LCA) is emerging as a

Boyd, Sarah; Dornfeld, David; Krishnan, Nikhil

2006-01-01T23:59:59.000Z

392

Supercritical carbon dioxide cycle control analysis.  

SciTech Connect (OSTI)

This report documents work carried out during FY 2008 on further investigation of control strategies for supercritical carbon dioxide (S-CO{sub 2}) Brayton cycle energy converters. The main focus of the present work has been on investigation of the S-CO{sub 2} cycle control and behavior under conditions not covered by previous work. An important scenario which has not been previously calculated involves cycle operation for a Sodium-Cooled Fast Reactor (SFR) following a reactor scram event and the transition to the primary coolant natural circulation and decay heat removal. The Argonne National Laboratory (ANL) Plant Dynamics Code has been applied to investigate the dynamic behavior of the 96 MWe (250 MWt) Advanced Burner Test Reactor (ABTR) S-CO{sub 2} Brayton cycle following scram. The timescale for the primary sodium flowrate to coast down and the transition to natural circulation to occur was calculated with the SAS4A/SASSYS-1 computer code and found to be about 400 seconds. It is assumed that after this time, decay heat is removed by the normal ABTR shutdown heat removal system incorporating a dedicated shutdown heat removal S-CO{sub 2} pump and cooler. The ANL Plant Dynamics Code configured for the Small Secure Transportable Autonomous Reactor (SSTAR) Lead-Cooled Fast Reactor (LFR) was utilized to model the S-CO{sub 2} Brayton cycle with a decaying liquid metal coolant flow to the Pb-to-CO{sub 2} heat exchangers and temperatures reflecting the decaying core power and heat removal by the cycle. The results obtained in this manner are approximate but indicative of the cycle transient performance. The ANL Plant Dynamics Code calculations show that the S-CO{sub 2} cycle can operate for about 400 seconds following the reactor scram driven by the thermal energy stored in the reactor structures and coolant such that heat removal from the reactor exceeds the decay heat generation. Based on the results, requirements for the shutdown heat removal system may be defined. In particular, the peak heat removal capacity of the shutdown heat removal loop may be specified to be 1.1 % of the nominal reactor power. An investigation of the oscillating cycle behavior calculated by the ANL Plant Dynamics Code under specific conditions has been carried out. It has been found that the calculation of unstable operation of the cycle during power reduction to 0 % may be attributed to the modeling of main compressor operation. The most probable reason for such instabilities is the limit of applicability of the currently used one-dimensional compressor performance subroutines which are based on empirical loss coefficients. A development of more detailed compressor design and performance models is required and is recommended for future work in order to better investigate and possibly eliminate the calculated instabilities. Also, as part of such model development, more reliable surge criteria should be developed for compressor operation close to the critical point. It is expected that more detailed compressor models will be developed as a part of validation of the Plant Dynamics Code through model comparison with the experiment data generated in the small S-CO{sub 2} loops being constructed at Barber-Nichols Inc. and Sandia National Laboratories (SNL). Although such a comparison activity had been planned to be initiated in FY 2008, data from the SNL compression loop currently in operation at Barber Nichols Inc. has not yet become available by the due date of this report. To enable the transient S-CO{sub 2} cycle investigations to be carried out, the ANL Plant Dynamics Code for the S-CO{sub 2} Brayton cycle was further developed and improved. The improvements include further optimization and tuning of the control mechanisms as well as an adaptation of the code for reactor systems other than the Lead-Cooled Fast Reactor (LFR). Since the focus of the ANL work on S-CO{sub 2} cycle development for the majority of the current year has been on the applicability of the cycle to SFRs, work has started on modification of the ANL Plant Dynamics Code to allow

Moisseytsev, A.; Sienicki, J. J. (Nuclear Engineering Division)

2011-04-11T23:59:59.000Z

393

Open cycle thermoacoustics  

SciTech Connect (OSTI)

A new type of thermodynamic device combining a thermodynamic cycle with the externally applied steady flow of an open thermodynamic process is discussed and experimentally demonstrated. The gas flowing through this device can be heated or cooled in a series of semi-open cyclic steps. The combination of open and cyclic flows makes possible the elimination of some or all of the heat exchangers (with their associated irreversibility). Heat is directly exchanged with the process fluid as it flows through the device when operating as a refrigerator, producing a staging effect that tends to increase First Law thermodynamic efficiency. An open-flow thermoacoustic refrigerator was built to demonstrate this concept. Several approaches are presented that describe the physical characteristics of this device. Tests have been conducted on this refrigerator with good agreement with a proposed theory.

Reid, Robert Stowers

2000-01-01T23:59:59.000Z

394

Stirling cycle rotary engine  

SciTech Connect (OSTI)

A Stirling cycle rotary engine for producing mechanical energy from heat generated by a heat source external to the engine, the engine including: an engine housing having an interior toroidal cavity with a central housing axis for receiving a working gas, the engine housing further having a cool as inlet port, a compressed gas outlet port, a heated compressed gas inlet port, and a hot exhaust gas outlet port at least three rotors each fixedly mounted to a respective rotor shaft and independently rotatable within the toroidal cavity about the central axis; each of the rotors including a pair of rotor blocks spaced radially on diametrically opposing sides of the respective rotor shaft, each rotor block having a radially fixed curva-linear outer surface for sealed rotational engagement with the engine housing.

Chandler, J.A.

1988-06-28T23:59:59.000Z

395

Design for, and Evaluation of Life Cycle Performance  

E-Print Network [OSTI]

?. DESIGN FOR, AND EVALUATION OF LIFE CYCLE PERFORMANCE David J. Ahner Eldon W. Hall GENERAL ELECTRIC COMPANY SCHENECTADY, NEW YORK ABSTRACT EQUIPMENT DEGRADATION Project evaluation necessarily requires performance estimates over..., operating procedures, equipment availabilities, etc. This paper discusses the general nature, and the ther mal interaction of power plant components as individual equipment degradation occurs, describing overall plant performance trends and quant...

Ahner, D. J.; Hall, E. W.

396

LMFBR operation in the nuclear cycle without fuel reprocessing  

SciTech Connect (OSTI)

Substantiation is given to expediency of investigation of nuclear power (NP) development with fast reactors cooled by lead-bismuth alloy operating during extended time in the open nuclear fuel cycle with slightly enriched or depleted uranium make-up. 9 refs., 1 fig., 6 tabs.

Toshinsky, S.I. [Institute of Physics and Power Engineering, Kaluga (Russian Federation)

1997-12-01T23:59:59.000Z

397

Advanced regenerative absorption refrigeration cycles  

DOE Patents [OSTI]

Multi-effect regenerative absorption cycles which provide a high coefficient of performance (COP) at relatively high input temperatures. An absorber-coupled double-effect regenerative cycle (ADR cycle) (10) is provided having a single-effect absorption cycle (SEA cycle) (11) as a topping subcycle and a single-effect regenerative absorption cycle (1R cycle) (12) as a bottoming subcycle. The SEA cycle (11) includes a boiler (13), a condenser (21), an expansion device (28), an evaporator (31), and an absorber (40), all operatively connected together. The 1R cycle (12) includes a multistage boiler (48), a multi-stage resorber (51), a multisection regenerator (49) and also uses the condenser (21), expansion device (28) and evaporator (31) of the SEA topping subcycle (11), all operatively connected together. External heat is applied to the SEA boiler (13) for operation up to about 500 degrees F., with most of the high pressure vapor going to the condenser (21) and evaporator (31) being generated by the regenerator (49). The substantially adiabatic and isothermal functioning of the SER subcycle (12) provides a high COP. For higher input temperatures of up to 700 degrees F., another SEA cycle (111) is used as a topping subcycle, with the absorber (140) of the topping subcycle being heat coupled to the boiler (13) of an ADR cycle (10). The 1R cycle (12) itself is an improvement in that all resorber stages (50b-f) have a portion of their output pumped to boiling conduits (71a-f) through the regenerator (49), which conduits are connected to and at the same pressure as the highest pressure stage (48a) of the 1R multistage boiler (48).

Dao, Kim (14 Nace Ave., Piedmont, CA 94611)

1990-01-01T23:59:59.000Z

398

Short Gamma-Ray Bursts and Gravitational Waves from Dynamically Formed Merging Binaries  

E-Print Network [OSTI]

Merging binary systems consisting of two collapsed objects are among the most promising sources of high frequency gravitational wave, GW, signals for ground based interferometers. Double neutron star or black hole/neutron star mergers are also believed to give rise to short hard bursts, SHBs, a subclass of gamma ray bursts. SHBs might thus provide a powerful way to infer the merger rate of two-collapsed object binaries. Under the hypothesis that most SHBs originate from double neutron star or black hole/neutron star mergers, we outline here a method to estimate the incidence of merging events from dynamically formed binaries in globular clusters and infer the corresponding GW event rate that can be detected with Advanced LIGO/Virgo. In particular a sizeable fraction of detectable GW events is expected to be coincident with SHBs. The beaming and redshift distribution of SHBs are reassessed and their luminosity function constrained by using the results from recent SHBs observations. We confirm that a substantial fraction of SHBs goes off at low redshifts, where the merging of systems formed in globular clusters through dynamical interactions is expected.

Dafne Guetta; Luigi Stella

2008-11-10T23:59:59.000Z

399

FUEL CELL/MICRO-TURBINE COMBINED CYCLE  

SciTech Connect (OSTI)

A wide variety of conceptual design studies have been conducted that describe ultra-high efficiency fossil power plant cycles. The most promising of these ultra-high efficiency cycles incorporate high temperature fuel cells with a gas turbine. Combining fuel cells with a gas turbine increases overall cycle efficiency while reducing per kilowatt emissions. This study has demonstrated that the unique approach taken to combining a fuel cell and gas turbine has both technical and economic merit. The approach used in this study eliminates most of the gas turbine integration problems associated with hybrid fuel cell turbine systems. By using a micro-turbine, and a non-pressurized fuel cell the total system size (kW) and complexity has been reduced substantially from those presented in other studies, while maintaining over 70% efficiency. The reduced system size can be particularly attractive in the deregulated electrical generation/distribution environment where the market may not demand multi-megawatt central stations systems. The small size also opens up the niche markets to this high efficiency, low emission electrical generation option.

Larry J. Chaney; Mike R. Tharp; Tom W. Wolf; Tim A. Fuller; Joe J. Hartvigson

1999-12-01T23:59:59.000Z

400

Virtuous Cycle Cycles of activity and software projects  

E-Print Network [OSTI]

Inspection #12;Programming Cycle - single bug Selected Bug Shared Code Fix Bug Continuous Integration ~8 cycle cvscheck compilation style checking testing javadocs documentation jumble quality of unit testing #12;NetValue Development cvscheck - Source Code Control and Build Shared Centralized Automatic

Pfahringer, Bernhard

Note: This page contains sample records for the topic "binary cycle power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Faint Thermonuclear Supernovae from AM Canum Venaticorum Binaries  

E-Print Network [OSTI]

Helium that accretes onto a Carbon/Oxygen white dwarf in the double white dwarf AM Canum Venaticorum (AM CVn) binaries undergoes unstable thermonuclear flashes when the orbital period is in the 3.5-25 minute range. At the shortest orbital periods (and highest accretion rates, Mdot > 10^-7 Msol/yr), the flashes are weak and likely lead to the Helium equivalent of classical nova outbursts. However, as the orbit widens and Mdot drops, the mass required for the unstable ignition increases, leading to progressively more violent flashes up to a final flash with Helium shell mass ~ 0.02-0.1 Msol. The high pressures of these last flashes allow the burning to produce the radioactive elements 48Cr, 52Fe, and 56Ni that power a faint (M_V in the range of -15 to -18) and rapidly rising (few days) thermonuclear supernova. Current galactic AM CVn space densities imply one such explosion every 5,000-15,000 years in 10^11 Msol of old stars (~ 2-6% of the Type Ia rate in E/SO galaxies). These ".Ia" supernovae (one-tenth as bright for one-tenth the time as a Type Ia supernovae) are excellent targets for deep (e.g. V=24) searches with nightly cadences, potentially yielding an all-sky rate of 1,000 per year.

Lars Bildsten; Ken J. Shen; Nevin N. Weinberg; Gijs Nelemans

2007-05-06T23:59:59.000Z

402

Dynamic response of the supercritical C0? Brayton recompression cycle to various system transients  

E-Print Network [OSTI]

The supercritical carbon dioxide (SC0?) power conversion system has been suggested for use with many of the Generation IV nuclear reactors. The SC0? cycle is highly attractive because of its low operating temperatures and ...

Trinh, Tri Q. (Tri Quang)

2009-01-01T23:59:59.000Z

403

Evaluating energy dissipation during expansion in a refrigeration cycle using flue pipe acoustic resonators  

E-Print Network [OSTI]

This research evaluates the feasibility of using a flue pipe acoustic resonator to dissipate energy from a refrigerant stream in order to achieve greater cooling power from a cryorefrigeration cycle. Two models of the ...

Luckyanova, Maria N. (Maria Nickolayevna)

2008-01-01T23:59:59.000Z

404

Combining thorium with burnable poison for reactivity control of a very long cycle BWR  

E-Print Network [OSTI]

The effect of utilizing thorium together with gadolinium, erbium, or boron burnable absorber in BWR fuel assemblies for very long cycle is investigated. Nuclear characteristics such as reactivity and power distributions ...

Inoue, Yuichiro, 1969-

2004-01-01T23:59:59.000Z

405

A Super Critical Carbon Dioxide Cycle for Next Generation Nuclear Reactors  

E-Print Network [OSTI]

A systematic, detailed major component and system design evaluation and multiple-parameter optimization under practical constraints has been performed of the family of supercritical CO[subscript 2] Brayton power cycles for ...

Dostal, Vaclav

406

Development and application of a steady state code for supercritical carbon dioxide cycles  

E-Print Network [OSTI]

The supercritical CO2 power conversion system is of interest for advanced nuclear reactor applications because the same efficiencies are obtained as for the most developed of the closed gas-turbine cycles (helium-Brayton), ...

Legault, David M. (David Michael)

2006-01-01T23:59:59.000Z

407

A novel power block for CSP systems  

SciTech Connect (OSTI)

Concentrating Solar Thermal Power (CSP) and in particular parabolic trough, is a proven large-scale solar power technology. However, CSP cost is not yet competitive with conventional alternatives unless subsidized. Current CSP plants typically include a condensing steam cycle power block which was preferably designed for a continuous operation and higher operating conditions and therefore, limits the overall plant cost effectiveness and deployment. The drawbacks of this power block are as follows: (i) no power generation during low insolation periods (ii) expensive, large condenser (typically water cooled) due to the poor extracted steam properties (high specific volume, sub-atmospheric pressure) and (iii) high installation and operation costs. In the current study, a different power block scheme is proposed to eliminate these obstacles. This power block includes a top Rankine cycle with a back pressure steam turbine and a bottoming Kalina cycle comprising another back pressure turbine and using ammonia-water mixture as a working fluid. The bottoming (moderate temperature) cycle allows power production during low insolation periods. Because of the superior ammonia-water vapor properties, the condensing system requirements are much less demanding and the operation costs are lowered. Accordingly, air cooled condensers can be used with lower economical penalty. Another advantage is that back pressure steam turbines have a less complex design than condensing steam turbines which make their costs lower. All of these improvements could make the combined cycle unit more cost effective. This unit can be applicable in both parabolic trough and central receiver (solar tower) plants. The potential advantage of the new power block is illustrated by a detailed techno-economical analysis of two 50 MW parabolic trough power plants, comparing between the standard and the novel power block. The results indicate that the proposed plant suggests a 4-11% electricity cost saving. (author)

Mittelman, Gur [ASP Ltd., Advanced Solar Power, Industrial Zone, Be'er Tuviyya (Israel); Epstein, Michael [Solar Research Facilities Unit, Weizmann Institute of Science (Israel)

2010-10-15T23:59:59.000Z

408

MODELING AND CONTROL OF A O2/CO2 GAS TURBINE CYCLE FOR CO2 CAPTURE  

E-Print Network [OSTI]

MODELING AND CONTROL OF A O2/CO2 GAS TURBINE CYCLE FOR CO2 CAPTURE Lars Imsland Dagfinn Snarheim and control of a semi-closed O2/CO2 gas turbine cycle for CO2 capture. In the first part the process predictive control, Gas turbines, CO2 capture 1. INTRODUCTION Gas turbines are widely used for power

Foss, Bjarne A.

409

Design, analysis and optimization of the power conversion system for the Modular Pebble Bed Reactor System  

E-Print Network [OSTI]

The Modular Pebble Bed Reactor system (MPBR) requires a gas turbine cycle (Brayton cycle) as the power conversion system for it to achieve economic competitiveness as a GenIV nuclear system. The availability of controllable ...

Wang, Chunyun, 1968-

2003-01-01T23:59:59.000Z

410

Electrodeposition of binary iron-group alloys  

SciTech Connect (OSTI)

Thin films of NiCo and CoFe have been galvanostatically electroplated onto a platinum rotating disk electrode from simple sulfate baths containing 0.5M of the more noble metal sulfate and 0.1M of the less noble metal sulfate. The experimental results are compared to those of previous studies of NiFe codeposition in order to study the anomalous codeposition behavior of the binary iron-group alloys. Comparison of the electrodeposition results indicates that codeposition of these binary alloys is not totally analogous. It was found that codeposition of NiCo and NiFe show more mass-transfer effects than does CoFe deposition within the range of current densities studied. A model of anomalous codeposition put forth previously for NiFe was applied to the electrodeposition of NiCo and CoFe to determine the extensibility of the model, which assumes metal mono hydroxides, MOH{sup +}, are the important charge-transfer species. This model was unable to characterize fully either NiCo or CoFe electrodeposition. However, with minor changes to the hydrolysis constants used in the model, the model predictions were found to agree with the data for CoFe codeposition and greatly, improve the fit for the NiCo results.

Sasaki, K.Y.; Talbot, J.B. [Univ. of California, San Diego, La Jolla, CA (United States)

1995-03-01T23:59:59.000Z

411

Industrial Steam Power Cycles Final End-Use Classification  

E-Print Network [OSTI]

Final end uses of steam include two major classifications: those uses that condense the steam against heat transfer surfaces to provide heat to an item of process or service equipment; and those that require a mass flow of steam for stripping...

Waterland, A. F.

1983-01-01T23:59:59.000Z

412

alternative power cycles: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

rays is used. Photovoltaics currently relies on three technologies. Monocrystalline and polycrystalline cells are silicon-based. Thin-film cells use semi-conductor materials....

413

Kalex Advanced Low Temp Geothemal Power Cycle | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe10 DOEWashington, DC 20585on notice ofThe52009

414

A Revolutionary Hybrid Thermodynamic Cycle for Bianary Geothermal Power |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment(October-DecemberBasedToward a More

415

Project Profile: Brayton Cycle Baseload Power Tower | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d FNEPA/309Department ofDepartmentProjectat HighDepartment ofBrayton

416

Life Cycle Assessment of Coal-fired Power Production  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinan antagonist Journal Article: Crystal structureComposite--FORRemarksHEATINGI _ _++,J 'ULand

417

Surface tension in a reactive binary mixture of incompressible fluids  

E-Print Network [OSTI]

Surface tension in a reactive binary mixture of incompressible fluids Henning Struchtrup Institute with a distributed form of surface tension. The model describes chemistry, diffusion, viscosity and heat transfer tension at the front. Keywords: Binary mixtures, Surface tension, Irreversible thermodynamics, Hele

Struchtrup, Henning

418

ccsd00004127, ON THE SURFACE TENSIONS OF BINARY MIXTURES  

E-Print Network [OSTI]

ccsd­00004127, version 1 ­ 2 Feb 2005 ON THE SURFACE TENSIONS OF BINARY MIXTURES JEAN RUIZ Abstract tensions and the concentrations are brie y reviewed. Key Words: Surface tensions, binary mixtures the corresponding surface tension depends on the composition of the mixture. Some relationship is expected which

419

Note on the size of binary Armstrong codes Aart Blokhuis  

E-Print Network [OSTI]

Note on the size of binary Armstrong codes Aart Blokhuis , Andries Brouwer, Attila Sali April 19, 2012 Abstract We show for binary Armstrong codes Arm(2, k, n) that asymptotically n/k 1.224, while) for all admissible n. Keywords: coding theory; databases; Armstrong codes AMS subject classification: 94B

Brouwer, Andries E.

420

Note on the size of binary Armstrong codes Aart Blokhuis  

E-Print Network [OSTI]

Note on the size of binary Armstrong codes Aart Blokhuis , Andries Brouwer, Attila Sali February 20, 2012 Abstract We show for binary Armstrong codes Arm(2, k, n) that asymptotically n/k 1.224, while) for all admissible n. Keywords: coding theory; databases; Armstrong codes AMS subject classification: 94B

Brouwer, Andries E.

Note: This page contains sample records for the topic "binary cycle power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Modeling Spatial-Temporal Binary Data Using Markov Random Fields  

E-Print Network [OSTI]

Modeling Spatial-Temporal Binary Data Using Markov Random Fields Jun Zhu Department of Statistics to the autologistic model for spatial-temporal binary data. The model we propose is a Markov chain across time, where discuss the generality of our approach for modeling other types of spatial-temporal lattice data. Keywords

Huang, Su-Yun

422

k-PROTECTED VERTICES IN BINARY SEARCH TREES MIKLOS BONA  

E-Print Network [OSTI]

k-PROTECTED VERTICES IN BINARY SEARCH TREES MIKL´OS B´ONA Abstract. We show that for every k, the probability that a randomly selected vertex of a random binary search tree on n nodes is at distance k - 1. In another model, leaves may represent end-users (customers) of a company, and in that case, it may

Bona, Miklos

423

On Binary Methods Kim Bruce, Luca Cardelli, Giuseppe Castagna,  

E-Print Network [OSTI]

On Binary Methods Kim Bruce, Luca Cardelli, Giuseppe Castagna, The Hopkins Objects Group, Gary T 50011­1040, USA #12; On Binary Methods Kim Bruce \\Lambda Department of Computer Science, Williams­ dations of Object­Oriented Languages, which was spon­ sored by NSF and ESPRIT and held in Paris in June

Trifonov, Valery

424

Improved Capacity Bounds for the Binary Energy Harvesting Channel  

E-Print Network [OSTI]

Improved Capacity Bounds for the Binary Energy Harvesting Channel Kaya Tutuncuoglu1 , Omur Ozel2 of Maryland, College Park, MD 20742 Abstract--We consider a binary energy harvesting channel (BEHC) where is asymptotically optimal for small energy harvesting rates. We then present a novel upper bounding technique, which

Yener, Aylin

425

A Combined Decimal and Binary Floating-point Divider  

E-Print Network [OSTI]

to most recent decimal divider designs, which are based on the Binary Coded Decimal (BCD) encoding, our Integer Decimal (BID) encoding. DPD is a compressed form of the Binary Coded Decimal (BCD) encoding on the BCD encoding [3],[4],[5], using the DPD encoding for floating-point and the BCD encoding for fixed

Nannarelli, Alberto

426

Disk Evolution in Young Binaries: from Observations to Theory  

E-Print Network [OSTI]

The formation of a binary system surrounded by disks is the most common outcome of stellar formation. Hence studying and understanding the formation and the evolution of binary systems and associated disks is a cornerstone of star formation science. Moreover, since the components within binary systems are coeval and the sizes of their disks are fixed by the tidal truncation of their companion, binary systems provide an ideal "laboratory" in which to study disk evolution under well defined boundary conditions. In this paper, we review observations of several inner disk diagnostics in multiple systems, including hydrogen emission lines (indicative of ongoing accretion), $K-L$ and $K-N$ color excesses (evidence of warm inner disks), and polarization (indicative of the relative orientations of the disks around each component). We examine to what degree these properties are correlated within binary systems and how this degree of correlation depends on parameters such as separation and binary mass ratio. These findings will be interpreted both in terms of models that treat each disk as an isolated reservoir and those in which the disks are subject to re-supply from some form of circumbinary reservoir, the observational evidence for which we will also critically review. The planet forming potential of multiple star systems is discussed in terms of the relative lifetimes of disks around single stars, binary primaries and binary secondaries. Finally, we summarize several potentially revealing observational problems and future projects that could provide further insight into disk evolution in the coming decade

J. -L. Monin; C. J. Clarke; L. Prato; C. McCabe

2006-04-03T23:59:59.000Z

427

Layered Binary-Dielectrics for Energy Applications: Limitations and Potentials  

SciTech Connect (OSTI)

In this Letter, an attempt is made to illustrate how performance of an electrically insulating material, a dielectric, can be improved by constructing a layered binary-dielectric structure that employs a weak insulator with high dielectric permittivity. It is shown that layered binary-dielectrics could have a signicant impact on energy storage and electrical insulation.

Tuncer, Enis [ORNL

2012-01-01T23:59:59.000Z

428

Dispersal of planets hosted in binaries, transitional members of multiple star systems  

E-Print Network [OSTI]

This paper explains why planets in binary star systems might have a lower frequency. A transient triple state of the binary causes the dispersal of planets.

F. Marzari; M. Barbieri

2007-07-04T23:59:59.000Z

429

E-Print Network 3.0 - accuracy binary black Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

binary search tree with one extra bit of storage per node... of the tree. A binary search tree is a ... Source: Belohlavek, Radim - Department of Computer Science, Palack...

430

Biomass Gasification Combined Cycle  

SciTech Connect (OSTI)

Gasification combined cycle continues to represent an important defining technology area for the forest products industry. The ''Forest Products Gasification Initiative'', organized under the Industry's Agenda 2020 technology vision and supported by the DOE ''Industries of the Future'' program, is well positioned to guide these technologies to commercial success within a five-to ten-year timeframe given supportive federal budgets and public policy. Commercial success will result in significant environmental and renewable energy goals that are shared by the Industry and the Nation. The Battelle/FERCO LIVG technology, which is the technology of choice for the application reported here, remains of high interest due to characteristics that make it well suited for integration with the infrastructure of a pulp production facility. The capital cost, operating economics and long-term demonstration of this technology area key input to future economically sustainable projects and must be verified by the 200 BDT/day demonstration facility currently operating in Burlington, Vermont. The New Bern application that was the initial objective of this project is not currently economically viable and will not be implemented at this time due to several changes at and around the mill which have occurred since the inception of the project in 1995. The analysis shows that for this technology, and likely other gasification technologies as well, the first few installations will require unique circumstances, or supportive public policies, or both to attract host sites and investors.

Judith A. Kieffer

2000-07-01T23:59:59.000Z

431

Life Cycle Asset Management  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

(The following directives are deleted or consolidated into this Order and shall be phased out as noted in Paragraph 2: DOE 1332.1A; DOE 4010.1A; DOE 4300.1C; DOE 4320.1B; DOE 4320.2A; DOE 4330.4B; DOE 4330.5; DOE 4540.1C; DOE 4700.1). This Order supersedes specific project management provisions within DOE O 430.1A, LIFE CYCLE ASSET MANAGEMENT. The specific paragraphs canceled by this Order are 6e(7); 7a(3); 7b(11) and (14); 7c(4),(6),(7),(11), and (16); 7d(4) and (8); 7e(3),(10), and (17); Attachment 1, Definitions (item 30 - Line Item Project, item 42 - Project, item 48 - Strategic System); and Attachment 2, Contractor Requirements Document (paragraph 1d regarding a project management system). The remainder of DOE O 430.1A remains in effect. Cancels DOE O 430.1. Canceled by DOE O 413.3.

1998-10-14T23:59:59.000Z

432

Design considerations of translmission line superconductors for fast-cycling accelerator magnets  

SciTech Connect (OSTI)

Novel design options of HTS and LTS superconductor lines for fast-cycling accelerator magnets are presented. The cryogenic power losses in using these conductors in transmission line application to energize the accelerator magnet string are discussed. A test arrangement to measure power loss of the proposed superconductor lines operating up to 2 T/s ramp rate and 0.5 Hz repetition cycle is described.

Piekarz, H.; /Fermilab

2008-07-01T23:59:59.000Z

433

Extreme Financial cycles$ B. Candelonb,  

E-Print Network [OSTI]

Extreme Financial cycles$ B. Candelonb, , G. Gauliera , C. Hurlinb aUniversity Maastricht proposes a new approach to date extreme financial cycles. Elabo- rating on recent methods in extreme value theory, it elaborates an extension of the famous calculus rule to detect extreme peaks and troughs

Paris-Sud XI, Université de

434

Binary classification of items of interest in a repeatable process  

DOE Patents [OSTI]

A system includes host and learning machines in electrical communication with sensors positioned with respect to an item of interest, e.g., a weld, and memory. The host executes instructions from memory to predict a binary quality status of the item. The learning machine receives signals from the sensor(s), identifies candidate features, and extracts features from the candidates that are more predictive of the binary quality status relative to other candidate features. The learning machine maps the extracted features to a dimensional space that includes most of the items from a passing binary class and excludes all or most of the items from a failing binary class. The host also compares the received signals for a subsequent item of interest to the dimensional space to thereby predict, in real time, the binary quality status of the subsequent item of interest.

Abell, Jeffrey A.; Spicer, John Patrick; Wincek, Michael Anthony; Wang, Hui; Chakraborty, Debejyo

2014-06-24T23:59:59.000Z

435

MODELLING AND CONTROL OF CO-GENERATION POWER PLANTS UNDER CONSIDERATION OF  

E-Print Network [OSTI]

MODELLING AND CONTROL OF CO-GENERATION POWER PLANTS UNDER CONSIDERATION OF LIFETIME CONSUMPTION of a combined cycle power plant under consideration of the real cost of lifetime usage is accomplished behavior of a combined cycle power plant. In order to model both the continuous/discrete dynamics

Ferrari-Trecate, Giancarlo

436

Response Surface Energy Modeling of an Electric Vehicle over a Reduced Composite Drive Cycle  

SciTech Connect (OSTI)

Response surface methodology (RSM) techniques were applied to develop a predictive model of electric vehicle (EV) energy consumption over the Environmental Protection Agency's (EPA) standardized drive cycles. The model is based on measurements from a synthetic composite drive cycle. The synthetic drive cycle is a minimized statistical composite of the standardized urban (UDDS), highway (HWFET), and US06 cycles. The composite synthetic drive cycle is 20 minutes in length thereby reducing testing time of the three standard EPA cycles by over 55%. Vehicle speed and acceleration were used as model inputs for a third order least squared regression model predicting vehicle battery power output as a function of the drive cycle. The approach reduced three cycles and 46 minutes of drive time to a single test of 20 minutes. Application of response surface modeling to the synthetic drive cycle is shown to predict energy consumption of the three EPA cycles within 2.6% of the actual measured values. Additionally, the response model may be used to predict energy consumption of any cycle within the speed/acceleration envelope of the synthetic cycle. This technique results in reducing test time, which additionally provides a model that may be used to expand the analysis and understanding of the vehicle under consideration.

Jehlik, Forrest [Argonne National Laboratory (ANL)] [Argonne National Laboratory (ANL); LaClair, Tim J [ORNL] [ORNL

2014-01-01T23:59:59.000Z

437

A Carbon Dioxide Gas Turbine Direct Cycle with Partial Condensation for Nuclear Reactors  

SciTech Connect (OSTI)

A carbon dioxide gas turbine power generation system with a partial condensation cycle has been proposed for thermal and fast nuclear reactors, in which compression is done partly in the liquid phase and partly in the gas phase. This cycle achieves higher cycle efficiency than a He direct cycle mainly due to reduced compressor work of the liquid phase and of the carbon dioxide real gas effect, especially in the vicinity of the critical point. If this cycle is applied to a thermal reactor, efficiency of this cycle is about 55% at a reactor outlet temperature of 900 deg. C and pressure of 12.5 MPa, which is higher by about 10% than a typical helium direct gas turbine cycle plant (PBMR) at 900 deg. C and 8.4 MPa; this cycle also provides comparable cycle efficiency at the moderate core outlet temperature of 600 deg. C with that of the helium cycle at 900 deg. C. If this cycle is applied to a fast reactor, it is anticipated to be an alternative to liquid metal cooled fast reactors that can provide slightly higher cycle efficiency at the same core outlet temperature; it would eliminate safety problems, simplify the heat transport system and simplify plant maintenance. A passive decay heat removal system is realized by connecting a liquid carbon dioxide storage tank with the reactor vessel and by supplying carbon dioxide gasified from the tank to the core in case of depressurization event. (authors)

Yasuyoshi Kato; Takeshi Nitawaki; Yoshio Yoshizawa [Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo, 152-8550 (Japan)

2002-07-01T23:59:59.000Z

438

Observational Techniques for Detecting Planets in Binary Systems  

E-Print Network [OSTI]

Searches for planets in close binary systems explore the degree to which stellar multiplicity inhibits or promotes planet formation. There is a degeneracy between planet formation models when only systems with single stars are studied--several mechanisms appear to be able to produce such a final result. This degeneracy is lifted by searching for planets in binary systems; the resulting detections (or evidence of non-existence) of planets in binaries isolates which models may contribute to how planets form in nature. In this chapter, we consider observational efforts to detect planetary companions to binary stars in two types of hierarchical planet-binary configurations: first ``S-type'' planets which orbit just one of the stars, with the binary period being much longer than the planet's; second, ``P-type'' or circumbinary planets, where the planet simultaneously orbits both stars, and the planetary orbital period is much longer than that of the binary. The S-type planet finding techniques are different for binaries that can or cannot be spatially resolved. For wider systems, techniques reviewed include dualstar interferometric differential astrometry and precision radial velocities. Alternatively, unresolved binaries can be studied using modified dualstar "PHASES-style" differential astrometry or a modification of the radial velocity technique for composite spectra. Should a fortunately aligned--but still long period--binary be found, eclipse timing can also reveal the presence of S-type planets. Methods for detecting P-type planets include the composite-spectra variant of the radial velocity technique and eclipse timing.

Matthew W. Muterspaugh; Maciej Konacki; Benjamin F. Lane; Eric Pfahl

2007-05-21T23:59:59.000Z

439

The spectroscopic binary system Gl 375. I. Orbital parameters and chromospheric activity  

E-Print Network [OSTI]

We study the spectroscopic binary system Gl 375. We employ medium resolution echelle spectra obtained at the 2.15 m telescope at the Argentinian observatory CASLEO and photometric observations obtained from the ASAS database. We separate the composite spectra into those corresponding to both components. The separated spectra allow us to confirm that the spectral types of both components are similar (dMe3.5) and to obtain precise measurements of the orbital period (P = 1.87844 days), minimum masses (M_1 sin^3 i = 0.35 M_sun and M_2 sin^3 i =0.33 M_sun) and other orbital parameters. The photometric observations exhibit a sinusoidal variation with the same period as the orbital period. We interpret this as signs of active regions carried along with rotation in a tidally synchronized system, and study the evolution of the amplitude of the modulation in longer timescales. Together with the mean magnitude, the modulation exhibits a roughly cyclic variation with a period of around 800 days. This periodicity is also found in the flux of the Ca II K lines of both components, which seem to be in phase. The periodic changes in the three observables are interpreted as a sign of a stellar activity cycle. Both components appear to be in phase, which implies that they are magnetically connected. The measured cycle of approximately 2.2 years (800 days) is consistent with previous determinations of activity cycles in similar stars.

Rodrigo F. Díaz; Jorge F. González; Carolina Cincunegui; Pablo J. D. Mauas

2007-08-15T23:59:59.000Z

440

The chromospherically active binary star EI Eridani II. Long-term Doppler imaging  

E-Print Network [OSTI]

Data from 11 years of continuous spectroscopic observations of the active RS CVn-type binary star EI Eridani - gained at NSO/McMath-Pierce, KPNO/Coude Feed and during the MUSICOS 98 campaign - were used to obtain 34 Doppler maps in three spectroscopic lines for 32 epochs, 28 of which are independent of each other. Various parameters are extracted from our Doppler maps: average temperature, fractional spottedness, and longitudinal and latitudinal spot-occurrence functions. We find that none of these parameters show a distinct variation nor a correlation with the proposed activity cycle as seen from photometric long-term observations. This suggests that the photometric brightness cycle may not necessarily be due to just a cool spot cycle. The general morphology of the spot pattern remains persistent over the whole period of 11 years. A large cap-like polar spot was recovered from all our images. A high degree of variable activity was noticed near latitudes of approx. 60-70 degrees where the appendages of the polar spot emerged and dissolved.

A. Washuettl; K. G. Strassmeier; M. Weber

2008-11-19T23:59:59.000Z

Note: This page contains sample records for the topic "binary cycle power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Reactive power compensator  

DOE Patents [OSTI]

A system and method for determining and providing reactive power compensation for an inductive load. A reactive power compensator (50,50') monitors the voltage and current flowing through each of three distribution lines (52a, 52b, 52c), which are supplying three-phase power to one or more inductive loads. Using signals indicative of the current on each of these lines when the voltage waveform on the line crosses zero, the reactive power compensator determines a reactive power compensator capacitance that must be connected to the lines to maintain a desired VAR level, power factor, or line voltage. Alternatively, an operator can manually select a specific capacitance for connection to each line, or the capacitance can be selected based on a time schedule. The reactive power compensator produces control signals, which are coupled through optical fibers (102/106) to a switch driver (110, 110') to select specific compensation capacitors (112) for connections to each line. The switch driver develops triggering signals that are supplied to a plurality of series-connected solid state switches (350), which control charge current in one direction in respect to ground for each compensation capacitor. During each cycle, current flows from ground to charge the capacitors as the voltage on the line begins to go negative from its positive peak value. The triggering signals are applied to gate the solid state switches into a conducting state when the potential on the lines and on the capacitors reaches a negative peak value, thereby minimizing both the potential difference and across the charge current through the switches when they begin to conduct. Any harmonic distortion on the potential and current carried by the lines is filtered out from the current and potential signals used by the reactive power compensator so that it does not affect the determination of the required reactive compensation.

El-Sharkawi, Mohamed A. (Renton, WA); Venkata, Subrahmanyam S. (Woodinville, WA); Chen, Mingliang (Kirkland, WA); Andexler, George (Everett, WA); Huang, Tony (Seattle, WA)

1992-01-01T23:59:59.000Z

442

Reactive Power Compensator.  

DOE Patents [OSTI]

A system and method for determining and providing reactive power compensation for an inductive load. A reactive power compensator (50,50') monitors the voltage and current flowing through each of three distribution lines (52a, 52b, 52c), which are supplying three-phase power to one or more inductive loads. Using signals indicative of the current on each of these lines when the voltage waveform on the line crosses zero, the reactive power compensator determines a reactive power compensator capacitance that must be connected to the lines to maintain a desired VAR level, power factor, or line voltage. Alternatively, an operator can manually select a specific capacitance for connection to each line, or the capacitance can be selected based on a time schedule. The reactive power compensator produces control signals, which are coupled through optical fibers (102/106) to a switch driver (110, 110') to select specific compensation capacitors (112) for connections to each line. The switch driver develops triggering signals that are supplied to a plurality of series-connected solid state switches (350), which control charge current in one direction in respect to ground for each compensation capacitor. During each cycle, current flows from ground to charge the capacitors as the voltage on the line begins to go negative from its positive peak value. The triggering signals are applied to gate the solid state switches into a conducting state when the potential on the lines and on the capacitors reaches a negative peak value, thereby minimizing both the potential difference and across the charge current through the switches when they begin to conduct. Any harmonic distortion on the potential and current carried by the lines is filtered out from the current and potential signals used by the reactive power compensator so that it does not affect the determination of the required reactive compensation. 26 figs.

El-Sharkawi, M.A.; Venkata, S.S.; Chen, M.; Andexler, G.; Huang, T.

1992-07-28T23:59:59.000Z

443

Binary versus non-binary information in real time series: empirical results and maximum-entropy matrix models  

E-Print Network [OSTI]

The dynamics of complex systems, from financial markets to the brain, can be monitored in terms of time series of activity of their fundamental elements (such as stocks or neurons respectively). While the main focus of time series analysis is on the magnitude of temporal increments, a significant piece of information is encoded into the binary projection (i.e. the sign) of such increments. In this paper we provide further evidence of this by showing strong nonlinear relationships between binary and non-binary properties of financial time series. We then introduce an information-theoretic approach to the analysis of the binary signature of single and multiple time series. Through the definition of maximum-entropy ensembles of binary matrices, we quantify the information encoded into the simplest binary properties of real time series and identify the most informative property given a set of measurements. Our formalism is able to replicate the observed binary/non-binary relations very well, and to mathematically...

Almog, Assaf

2014-01-01T23:59:59.000Z

444

DISCOVERY OF THE DISTURBED RADIO MORPHOLOGY IN THE INTERACTING BINARY QUASAR FIRST J164311.3+315618  

SciTech Connect (OSTI)

We report the high-resolution radio observations and the subsequent analysis of the radio-loud compact steep spectrum quasar FIRST J164311.3+315618, one of the members of a binary system. The second component of the system is a radio-quiet active galactic nucleus. The projected separation of this pair is 2.''3 (15 kpc); it is one of the smallest-known-separation binary quasars. The multi-band images of this binary system made with the Hubble Space Telescope show that the host galaxy of the radio-loud quasar is highly disturbed. The radio observations presented here were made with the Multi-Element Radio-Linked interferometer network (MERLIN) at 1.66 GHz and 5 GHz. We show that the radio morphology of FIRST J164311.3+315618 is complex on both frequencies and exhibits four components that indicate the intermittent activity with a possible rapid change of the jet direction and/or restarting of the jet due to the interaction with the companion. The radio components that are no longer powered by the jet can quickly fade away. We suggest that this makes the potential distortions of the radio structure short-lived phenomena. Our numerical simulations show that the influence of the companion can lead to prolonged current and future activities. FIRST J164311.3+315618 is an unusual and statistically very rare low redshift binary quasar wherein the first close encounter is probably just taking place.

Kunert-Bajraszewska, Magdalena [Torun Centre for Astronomy, Nicolaus Copernicus University, 87-100 Torun (Poland); Janiuk, Agnieszka, E-mail: magda@astro.uni.torun.pl [Center for Theoretical Physics, Polish Academy of Sciences, Aleja Lotnikow 32/46, 02-668 Warsaw (Poland)

2011-08-01T23:59:59.000Z

445

Power supply  

DOE Patents [OSTI]

A modular, low weight impedance dropping power supply with battery backup is disclosed that can be connected to a high voltage AC source and provide electrical power at a lower voltage. The design can be scaled over a wide range of input voltages and over a wide range of output voltages and delivered power.

Yakymyshyn, Christopher Paul (Seminole, FL); Hamilton, Pamela Jane (Seminole, FL); Brubaker, Michael Allen (Loveland, CO)

2007-12-04T23:59:59.000Z

446

World nuclear capacity and fuel cycle requirements, November 1993  

SciTech Connect (OSTI)

This analysis report presents the current status and projections of nuclear capacity, generation, and fuel cycle requirements for all countries in the world using nuclear power to generate electricity for commercial use. Long-term projections of US nuclear capacity, generation, fuel cycle requirements, and spent fuel discharges for three different scenarios through 2030 are provided in support of the Department of Energy`s activities pertaining to the Nuclear Waste Policy Act of 1982 (as amended in 1987). The projections of uranium requirements also support the Energy Information Administration`s annual report, Domestic Uranium Mining and Milling Industry: Viability Assessment.

Not Available

1993-11-30T23:59:59.000Z

447

Strengthening the nuclear-reactor fuel cycle against proliferation  

SciTech Connect (OSTI)

Argonne National Laboratory (ANL) conducts several research programs that serve to reduce the risks of fissile-material diversion from the nuclear-reactor fuel cycle. The objectives are to provide economical and efficient neutron or power generation with the minimum of inherent risks, and to further minimize risks by utilizing sophisticated techniques to detect attempts at material diversion. This paper will discuss the Reduced Enrichment Research and Test Reactor (RERTR) Program, the Isotope Correlation Technique (ICT), and Proliferation-Resistant Closed-Cycle Reactors. The first two are sponsored by the DOE Office of Arms Control and Nonproliferation.

Travelli, A.; Snelgrove, J.; Persiani, P. [Argonne National Lab., IL (United States). Arms Control and Nonproliferation Program

1992-12-31T23:59:59.000Z

448

New Clean Coal Cycle Optimized Using Pinch Technology  

E-Print Network [OSTI]

NEW CLEAN COAL CYCLE OPTIMIZED USING PINCH TECHNOLOGY A. P. ROSSITER, Linnhoff March I 0'00 ' nc., Houston, TX J. J. NNELL, The M. W. Kellogg Company, Houston, TX High thermal efficiency and low levels of environmental emissions...~en incorporated in the present des1gn, some of them could be of use in later generations of the process. CONCLUSIONS The hybrid cycle is a very promising new clean coal power plant technology. Its benefits include: ? Very low NO and SOx emission levels...

Rossiter, A. P.; O'Donnell, J. J.

449

Phase equilibrium measurements on nine binary mixtures  

SciTech Connect (OSTI)

Phase equilibrium measurements have been performed on nine binary mixtures. The PTx method was used to obtain vapor-liquid equilibrium data for the following systems at two temperatures each: (aminoethyl)piperazine + diethylenetriamine; 2-butoxyethyl acetate + 2-butoxyethanol; 2-methyl-2-propanol + 2-methylbutane; 2-methyl-2-propanol + 2-methyl-2-butene; methacrylonitrile + methanol; 1-chloro-1,1-difluoroethane + hydrogen chloride; 2-(hexyloxy)ethanol + ethylene glycol; butane + ammonia; propionaldehyde + butane. Equilibrium vapor and liquid phase compositions were derived form the PTx data using the Soave equation of state to represent the vapor phase and the Wilson or the NRTL activity coefficient model to represent the liquid phase. A large immiscibility region exists in the butane + ammonia system at 0 C. Therefore, separate vapor-liquid-liquid equilibrium measurements were performed on this system to more precisely determine the miscibility limits and the composition of the vapor phase in equilibrium with the two liquid phases.

Wilding, W.V. [Brigham Young Univ., Provo, UT (United States). Chemical Engineering Dept.] [Brigham Young Univ., Provo, UT (United States). Chemical Engineering Dept.; Giles, N.F.; Wilson, L.C. [Wiltec Research Co. Inc., Provo, UT (United States)] [Wiltec Research Co. Inc., Provo, UT (United States)

1996-11-01T23:59:59.000Z

450

Oscillating fluid power generator  

SciTech Connect (OSTI)

A system and method for harvesting the kinetic energy of a fluid flow for power generation with a vertically oriented, aerodynamic wing structure comprising one or more airfoil elements pivotably attached to a mast. When activated by the moving fluid stream, the wing structure oscillates back and forth, generating lift first in one direction then in the opposite direction. This oscillating movement is converted to unidirectional rotational movement in order to provide motive power to an electricity generator. Unlike other oscillating devices, this device is designed to harvest the maximum aerodynamic lift forces available for a given oscillation cycle. Because the system is not subjected to the same intense forces and stresses as turbine systems, it can be constructed less expensively, reducing the cost of electricity generation. The system can be grouped in more compact clusters, be less evident in the landscape, and present reduced risk to avian species.

Morris, David C

2014-02-25T23:59:59.000Z

451

HUMID AIR TURBINE CYCLE TECHNOLOGY DEVELOPMENT PROGRAM  

SciTech Connect (OSTI)

The Humid Air Turbine (HAT) Cycle Technology Development Program focused on obtaining HAT cycle combustor technology that will be the foundation of future products. The work carried out under the auspices of the HAT Program built on the extensive low emissions stationary gas turbine work performed in the past by Pratt & Whitney (P&W). This Program is an integral part of technology base development within the Advanced Turbine Systems Program at the Department of Energy (DOE) and its experiments stretched over 5 years. The goal of the project was to fill in technological data gaps in the development of the HAT cycle and identify a combustor configuration that would efficiently burn high moisture, high-pressure gaseous fuels with low emissions. The major emphasis will be on the development of kinetic data, computer modeling, and evaluations of combustor configurations. The Program commenced during the 4th Quarter of 1996 and closed in the 4th Quarter of 2001. It teamed the National Energy Technology Laboratory (NETL) with P&W, the United Technologies Research Center (UTRC), and a subcontractor on-site at UTRC, kraftWork Systems Inc. The execution of the program started with bench-top experiments that were conducted at UTRC for extending kinetic mechanisms to HAT cycle temperature, pressure, and moisture conditions. The fundamental data generated in the bench-top experiments was incorporated into the analytical tools available at P&W to design the fuel injectors and combustors. The NETL then used the hardware to conduct combustion rig experiments to evaluate the performance of the combustion systems at elevated pressure and temperature conditions representative of the HAT cycle. The results were integrated into systems analysis done by kraftWork to verify that sufficient understanding of the technology had been achieved and that large-scale technological application and demonstration could be undertaken as follow-on activity. An optional program extended the experimental combustion evaluations to several specific technologies that can be used with HAT technology. After 5 years of extensive research and development, P&W is pleased to report that the HAT Technology Development Program goals have been achieved. With 0 to 10 percent steam addition, emissions achieved during this program featured less than 8 ppm NO{sub x}, less than 16 ppm CO, and unburned hydrocarbons corrected to 15 percent O{sub 2} for an FT8 engine operating between 0 and 120 F with 65 to 100 percent power at any day.

Richard Tuthill

2002-07-18T23:59:59.000Z

452

Rapid thermal cycling of metal-supported solid oxide fuel cellmembranes  

SciTech Connect (OSTI)

Solid oxide fuel cell (SOFC) membranes were developed in which zirconia-based electrolyte thin films were supported by a composite metal/ceramic electrode, and were subjected to rapid thermal cycling between 200 and 800 C. The effects of this cycling on membrane performance were evaluated. The membranes, not yet optimized for performance, showed a peak power density of 350mW/cm2at 900 C in laboratory-sized SOFCs that was not affected by the thermal cycling. This resistance to cycling degradation is attributed to the close matching of thermal expansion coefficient of the cermet support electrode with that of the zirconia electrolyte.

Matus, Yuriy B.; De Jonghe, Lutgard C.; Jacobson, Craig P.; Visco, Steven J.

2004-01-02T23:59:59.000Z

453

Collision of two identical hypersonic stellar winds in binary systems  

E-Print Network [OSTI]

We investigate the hydrodynamics of two identical hypersonic stellar winds in a binary system. The interaction of these winds manifests itself in the form of two shocks and a contact surface between them. We neglect the binary rotation and assume that the gas flow ahead of the shocks is spherically symmetrical. In this case the contact surface that separates the gas emanated from the different stars coincides with the midplane of the binary components. In the shock the gas is heated and flows away nearly along the contact surface. We find the shock shape and the hot gas parameters in the shock layer between the shock and the contact surface.

Nikolay N. Pilyugin; Vladimir V. Usov

2006-10-13T23:59:59.000Z

454

Collision of two identical hypersonic stellar winds in binary systems  

E-Print Network [OSTI]

We investigate the hydrodynamics of two identical hypersonic stellar winds in a binary system. The interaction of these winds manifests itself in the form of two shocks and a contact surface between them. We neglect the binary rotation and assume that the gas flow ahead of the shocks is spherically symmetrical. In this case the contact surface that separates the gas emanated from the different stars coincides with the midplane of the binary components. In the shock the gas is heated and flows away nearly along the contact surface. We find the shock shape and the hot gas parameters in the shock layer between the shock and the contact surface.

Pilyugin, N N; Pilyugin, Nikolay N.; Usov, Vladimir V.

2006-01-01T23:59:59.000Z

455

Massive binaries, Wolf-Rayet stars and supernova progenitors  

E-Print Network [OSTI]

Binary stars are important for a full understanding of stellar evolution. We present a summary of how predictions of the relative supernova rates varies between single and binary stars. We also show how the parameter space of different supernova types differs between single and binary stars. We then consider an important question of how to infer a supernova progenitor's properties from pre-explosion imaging and present rescent work of producing synthe tic colours for our stellar models to make a direct comparison with any detections or limits obtained on supernova progentiors from pre-explosion images.

J. J. Eldridge

2006-12-17T23:59:59.000Z

456

The dominant X-ray wind in massive star binaries  

E-Print Network [OSTI]

We investigate which shocked wind is responsible for the majority of the X-ray emission in colliding wind binaries, an issue where there is some confusion in the literature, and which we show is more complicated than has been assumed. We find that where both winds rapidly cool (typically close binaries), the ratio of the wind speeds is often more important than the momentum ratio, because it controls the energy flux ratio, and the faster wind is generally the dominant emitter. When both winds are largely adiabatic (typically long-period binaries), the slower and denser wind will cool faster and the stronger wind generally dominates the X-ray luminosity.

J. M. Pittard; I. R. Stevens

2002-04-15T23:59:59.000Z

457

Light and Life: Exotic Photosynthesis in Binary Star Systems  

E-Print Network [OSTI]

The potential for hosting photosynthetic life on Earth-like planets within binary/multiple stellar systems was evaluated by modelling the levels of photosynthetically active radiation (PAR) such planets receive. Combinations of M and G stars in: (i) close-binary systems; (ii) wide-binary systems and (iii) three-star systems were investigated and a range of stable radiation environments found to be possible. These environmental conditions allow for the possibility of familiar, but also more exotic forms of photosynthetic life, such as infrared photosynthesisers and organisms specialised for specific spectral niches.

O'Malley-James, J T; Cockell, C S; Greaves, J S

2011-01-01T23:59:59.000Z

458

Optimization of Air Conditioning Cycling  

E-Print Network [OSTI]

on a 3-ton residential air conditioner are then presented to intuitively understand the effect of expansion valve and evaporator fan cycling in a real system. A real time optimization method is explored and the feasibility, recommendations for a...

Seshadri, Swarooph

2012-10-19T23:59:59.000Z

459

American business cycles and innovation  

E-Print Network [OSTI]

Economists have long studied innovation and its effects on business cycles. Economist Joseph Alois Schumpeter (1883-1950) was the first economist to thoroughly discuss these ideas in his Theorie der wirtschaftlichen Entwicklung, published in 1911...

Hood, Michael

2013-02-22T23:59:59.000Z

460

Waste Heat-to-Power in Small Scale Industry Using Scroll Expander...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Waste Heat-to-Power in Small Scale Industry Using Scroll Expander for Organic Rankine Bottoming Cycle Development of an Efficient, Cost- Effective System to Recover Medium- Grade...

Note: This page contains sample records for the topic "binary cycle power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Life Cycle Inventory of a CMOS Chip  

E-Print Network [OSTI]

Reichl, H. “Life cycle inventory analysis and identificationAllen, D.T. ; “Life cycle inventory development for waferLife Cycle Inventory of a CMOS Chip Sarah Boyd and David

Boyd, Sarah; Dornfeld, David; Krishnan, Nikhil

2006-01-01T23:59:59.000Z

462

Life-cycle Assessment of Semiconductors  

E-Print Network [OSTI]

yield. A hybrid life cycle assessment (LCA) model is used;more accurate life-cycle assessment (LCA) of electronicthe purposes of life-cycle assessment (LCA). While it may be

Boyd, Sarah B.

2009-01-01T23:59:59.000Z

463

Hydraulic Hybrid and Conventional Parcel Delivery Vehicles' Measured Laboratory Fuel Economy on Targeted Drive Cycles  

SciTech Connect (OSTI)

This research project compares laboratory-measured fuel economy of a medium-duty diesel powered hydraulic hybrid vehicle drivetrain to both a conventional diesel drivetrain and a conventional gasoline drivetrain in a typical commercial parcel delivery application. Vehicles in this study included a model year 2012 Freightliner P100H hybrid compared to a 2012 conventional gasoline P100 and a 2012 conventional diesel parcel delivery van of similar specifications. Drive cycle analysis of 484 days of hybrid parcel delivery van commercial operation from multiple vehicles was used to select three standard laboratory drive cycles as well as to create a custom representative cycle. These four cycles encompass and bracket the range of real world in-use data observed in Baltimore United Parcel Service operations. The NY Composite cycle, the City Suburban Heavy Vehicle Cycle cycle, and the California Air Resources Board Heavy Heavy-Duty Diesel Truck (HHDDT) cycle as well as a custom Baltimore parcel delivery cycle were tested at the National Renewable Energy Laboratory's Renewable Fuels and Lubricants Laboratory. Fuel consumption was measured and analyzed for all three vehicles. Vehicle laboratory results are compared on the basis of fuel economy. The hydraulic hybrid parcel delivery van demonstrated 19%-52% better fuel economy than the conventional diesel parcel delivery van and 30%-56% better fuel economy than the conventional gasoline parcel delivery van on cycles other than the highway-oriented HHDDT cycle.

Lammert, M. P.; Burton, J.; Sindler, P.; Duran, A.

2014-10-01T23:59:59.000Z

464

Performance improvement options for the supercritical carbon dioxide brayton cycle.  

SciTech Connect (OSTI)

The supercritical carbon dioxide (S-CO{sub 2}) Brayton cycle is under development at Argonne National Laboratory as an advanced power conversion technology for Sodium-Cooled Fast Reactors (SFRs) as well as other Generation IV advanced reactors as an alternative to the traditional Rankine steam cycle. For SFRs, the S-CO{sub 2} Brayton cycle eliminates the need to consider sodium-water reactions in the licensing and safety evaluation, reduces the capital cost of the SFR plant, and increases the SFR plant efficiency. Even though the S-CO{sub 2} cycle has been under development for some time and optimal sets of operating parameters have been determined, those earlier development and optimization studies have largely been directed at applications to other systems such as gas-cooled reactors which have higher operating temperatures than SFRs. In addition, little analysis has been carried out to investigate cycle configurations deviating from the selected 'recompression' S-CO{sub 2} cycle configuration. In this work, several possible ways to improve S-CO{sub 2} cycle performance for SFR applications have been identified and analyzed. One set of options incorporates optimization approaches investigated previously, such as variations in the maximum and minimum cycle pressure and minimum cycle temperature, as well as a tradeoff between the component sizes and the c