National Library of Energy BETA

Sample records for bimetallic nanoparticle catalysts

  1. Reaction-Driven Restructuring of Bimetallic Nanoparticle Catalysts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reaction-Driven Restructuring of Bimetallic Nanoparticle Catalysts Reaction-Driven Restructuring of Bimetallic Nanoparticle Catalysts Print Wednesday, 28 January 2009 00:00 Catalytic systems based on bimetallic particles with controlled size, composition, and structure dispersed on a high-surface-area support are widely used for catalytic reforming, pollution control, alcohol oxidation, and electrocatalysis in fuel cells. Owing to the nanoscale size of the particles, the modification of the

  2. Reaction-Driven Restructuring of Bimetallic Nanoparticle Catalysts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reaction-Driven Restructuring of Bimetallic Nanoparticle Catalysts Print Catalytic systems based on bimetallic particles with controlled size, composition, and structure dispersed on a high-surface-area support are widely used for catalytic reforming, pollution control, alcohol oxidation, and electrocatalysis in fuel cells. Owing to the nanoscale size of the particles, the modification of the surface structure and composition that may occur when reaction conditions change can have dramatic

  3. Reaction-Driven Restructuring of Bimetallic Nanoparticle Catalysts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reaction-Driven Restructuring of Bimetallic Nanoparticle Catalysts Print Catalytic systems based on bimetallic particles with controlled size, composition, and structure dispersed on a high-surface-area support are widely used for catalytic reforming, pollution control, alcohol oxidation, and electrocatalysis in fuel cells. Owing to the nanoscale size of the particles, the modification of the surface structure and composition that may occur when reaction conditions change can have dramatic

  4. Reaction-Driven Restructuring of Bimetallic Nanoparticle Catalysts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reaction-Driven Restructuring of Bimetallic Nanoparticle Catalysts Print Catalytic systems based on bimetallic particles with controlled size, composition, and structure dispersed on a high-surface-area support are widely used for catalytic reforming, pollution control, alcohol oxidation, and electrocatalysis in fuel cells. Owing to the nanoscale size of the particles, the modification of the surface structure and composition that may occur when reaction conditions change can have dramatic

  5. Reaction-Driven Restructuring of Bimetallic Nanoparticle Catalysts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reaction-Driven Restructuring of Bimetallic Nanoparticle Catalysts Print Catalytic systems based on bimetallic particles with controlled size, composition, and structure dispersed on a high-surface-area support are widely used for catalytic reforming, pollution control, alcohol oxidation, and electrocatalysis in fuel cells. Owing to the nanoscale size of the particles, the modification of the surface structure and composition that may occur when reaction conditions change can have dramatic

  6. Reaction-Driven Restructuring of Bimetallic Nanoparticle Catalysts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reaction-Driven Restructuring of Bimetallic Nanoparticle Catalysts Print Catalytic systems based on bimetallic particles with controlled size, composition, and structure dispersed on a high-surface-area support are widely used for catalytic reforming, pollution control, alcohol oxidation, and electrocatalysis in fuel cells. Owing to the nanoscale size of the particles, the modification of the surface structure and composition that may occur when reaction conditions change can have dramatic

  7. Reaction-Driven Restructuring of Bimetallic Nanoparticle Catalysts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reaction-Driven Restructuring of Bimetallic Nanoparticle Catalysts Print Catalytic systems based on bimetallic particles with controlled size, composition, and structure dispersed on a high-surface-area support are widely used for catalytic reforming, pollution control, alcohol oxidation, and electrocatalysis in fuel cells. Owing to the nanoscale size of the particles, the modification of the surface structure and composition that may occur when reaction conditions change can have dramatic

  8. Reaction-Driven Restructuring of Bimetallic Nanoparticle Catalysts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reaction-Driven Restructuring of Bimetallic Nanoparticle Catalysts Print Catalytic systems based on bimetallic particles with controlled size, composition, and structure dispersed on a high-surface-area support are widely used for catalytic reforming, pollution control, alcohol oxidation, and electrocatalysis in fuel cells. Owing to the nanoscale size of the particles, the modification of the surface structure and composition that may occur when reaction conditions change can have dramatic

  9. Reaction-Driven Restructuring of Bimetallic Nanoparticle Catalysts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reaction-Driven Restructuring of Bimetallic Nanoparticle Catalysts Print Catalytic systems based on bimetallic particles with controlled size, composition, and structure dispersed on a high-surface-area support are widely used for catalytic reforming, pollution control, alcohol oxidation, and electrocatalysis in fuel cells. Owing to the nanoscale size of the particles, the modification of the surface structure and composition that may occur when reaction conditions change can have dramatic

  10. Reaction-Driven Restructuring of Bimetallic Nanoparticle Catalysts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reaction-Driven Restructuring of Bimetallic Nanoparticle Catalysts Print Catalytic systems based on bimetallic particles with controlled size, composition, and structure dispersed on a high-surface-area support are widely used for catalytic reforming, pollution control, alcohol oxidation, and electrocatalysis in fuel cells. Owing to the nanoscale size of the particles, the modification of the surface structure and composition that may occur when reaction conditions change can have dramatic

  11. Structural analysis of palladium-decorated gold nanoparticles as colloidal bimetallic catalysts.

    SciTech Connect (OSTI)

    Fang, Y. L.; Miller, J. T.; Guo, N.; Heck, K. N.; Alvarez, P. J. J.; Wong, M. S. (Chemical Sciences and Engineering Division); (Rice Univ.)

    2011-02-02

    Bimetallic palladium-decorated gold nanoparticle (Pd/Au NP) catalysts are significantly more active than palladium-only catalysts, but the mechanism for enhancement is not completely clear for most reactions, like the aqueous-phase hydrodechlorination of trichloroethene. In this study, we conducted X-ray absorption spectroscopy on carbon-supported Pd/Au NPs to obtain information about the local atomic environment (i.e., oxidation states, coordination numbers, and bond distances) of the two metals under different treatment conditions. The as-synthesized NPs were confirmed to have a Pd-shell/Au-core nanostructure, in which the Pd was found as surface ensembles. Upon exposure to room temperature in air, a portion of the Pd, but not the Au, was oxidized. In comparison, nearly the entire surface of monometallic Pd NPs was oxidized, suggesting that Au in Pd/Au NPs imparts oxidation resistance to Pd atoms. The surface Pd was found randomly distributed, presumably as a PdAu surface alloy, after reduction at 300 C. X-ray absorption spectroscopy provides direct evidence for the Pd-shell/Au-core structure of Pd/Au NPs, and suggests that metallic Pd in the Pd/Au NPs is a source for higher catalytic activity for aqueous-phase trichloroethene hydrodechlorination.

  12. From First Principles Design to Realization of Bimetallic Catalysts for Ultrahigh Selectivity - Final Project Report

    SciTech Connect (OSTI)

    Richard M. Crooks

    2007-04-11

    (A) Synthesis, Characterization, and Fundamental Properties of Bimetallic DENs. AuAg alloy and core/shell bimetallic DENs were synthesized and characterized. Selective extraction was used as a structural characterization tool for these bimetallic nanoparticles. This is significant because there are few easily accessible methods for structure elucidation of bimetallic nanoparticles in this size regime. As a first step towards the synthesis of catalytically active, bimetallic heterogeneous materials we reported the incorporation of Au and Pd monometallic DENs and AuPd bimetallic DENs into amorphous titania networks. The compositional fidelity of the original DENs, and to some extent their size, is retained following dendrimer removal. Gas-phase catalytic activity for CO oxidation is higher for the bimetallic catalysts than for the corresponding Pd-only and Au-only monometallics. (B) Electrocatalysts based on dendrimer-encapsulated nanoparticles. Platinum dendrimer-encapsulated nanoparticles (DENs) were prepared within fourth-generation, hydroxyl-terminated, poly(amidoamine) dendrimers and immobilized on glassy carbon electrodes using an electrochemical immobilization strategy. X-ray photoelectron spectroscopy, electron microscopy, and electrochemical experiments confirm that the Pt DENs are about 1.4 nm in diameter and that they remain within the dendrimer following surface immobilization. The resulting Pt DEN films were electrocatalytically active for the oxygen reduction reaction (ORR). The films are also robust, surviving up to 50 consecutive cyclic voltammograms and sonication. Monometallic Pd DENs were also prepared and found to have little catalytic activity for the ORR. However, PtPd bimetallic DENs had catalytic activity nearly identical to that found for Pt-only DENs. This indicates an overall catalytic enhancement for the bimetallic electrocatalysts.

  13. Neutral bimetallic transition metal phenoxyiminato catalysts and related polymerization methods

    DOE Patents [OSTI]

    Marks, Tobin J.; Rodriguez, Brandon A.; Delferro, Massimiliano

    2012-08-07

    A catalyst composition comprising a neutral bimetallic diphenoxydiiminate complex of group 10 metals or Ni, Pd or Pt is disclosed. The compositions can be used for the preparation of homo- and co-polymers of olefinic monomer compounds.

  14. Patched bimetallic surfaces are active catalysts for ammonia decomposition

    SciTech Connect (OSTI)

    Guo, Wei; Vlachos, Dionisios G.

    2015-10-07

    In this study, ammonia decomposition is often used as an archetypical reaction for predicting new catalytic materials and understanding the very reason of why some reactions are sensitive on material’s structure. Core–shell or surface-segregated bimetallic nanoparticles expose outstanding activity for many heterogeneously catalysed reactions but the reasons remain elusive owing to the difficulties in experimentally characterizing active sites. Here by performing multiscale simulations in ammonia decomposition on various nickel loadings on platinum (111), we show that the very high activity of core–shell structures requires patches of the guest metal to create and sustain dual active sites: nickel terraces catalyse N-H bond breaking and nickel edge sites drive atomic nitrogen association. The structure sensitivity on these active catalysts depends profoundly on reaction conditions due to kinetically competing relevant elementary reaction steps. We expose a remarkable difference in active sites between transient and steady-state studies and provide insights into optimal material design.

  15. Synthesis of supported bimetallic nanoparticles with controlled size and composition distributions for active site elucidation

    SciTech Connect (OSTI)

    Hakim, Sikander H.; Sener, Canan; Alba Rubio, Ana C.; Gostanian, Thomas M.; O'neill, Brandon J; Ribeiro, Fabio H.; Miller, Jeffrey T.; Dumesic, James A

    2015-08-01

    Elucidation of active sites in supported bimetallic catalysts is complicated by the high level of dispersity in the nanoparticle size and composition that is inherent in conventional methods of catalyst preparation. We present a synthesis strategy that leads to highly dispersed, bimetallic nanoparticles with uniform particle size and composition by means of controlled surface reactions. We demonstrate the synthesis of three systems, RhMo, PtMo, and RhRe, consisting of a highly reducible metal with an oxophilic promoter. These catalysts are characterized by FTIR, CO chemisorption, STEM/EDS, TPR, and XAS analysis. The catalytic properties of these bimetallic nanoparticles were probed for the selective CO hydrogenolysis of (hydroxymethyl)tetrahydropyran to produce 1,6 hexanediol. Based on the characterization results and reactivity trends, the active sites in the hydrogenolysis reaction are identified to be small ensembles of the more noble metal (Rh, Pt) adjacent to highly reduced moieties of the more oxophilic metal (Mo, Re).

  16. Glycerol Hydrogenolysis on Carbon-Supported PtRu and AuRu Bimetallic Catalysts

    SciTech Connect (OSTI)

    Maris,E.; Ketchie, W.; Murayama, M.; Davis, R.

    2007-01-01

    Bimetallic PtRu and AuRu catalysts were prepared by a surface redox method in which Pt or Au was deposited onto the surface of carbon-supported Ru nanoparticles with an average diameter of 2-3 nm. Characterization by H2 chemisorption, analytical TEM, and X-ray absorption spectroscopy at the Ru K-edge, Pt LIII-edge, and Au LIII-edge confirmed that Pt and Au were successfully deposited onto Ru without disrupting the Ru particles. Depression of the ethane hydrogenolysis rate over Ru after addition of Au provided further evidence of successful deposition. The bimetallic particles were subsequently evaluated in the aqueous-phase hydrogenolysis of glycerol at 473 K and 40 bar H2 at neutral and elevated pH. Although monometallic Pt and Ru exhibited different activities and selectivities to products, the bimetallic PtRu catalyst functioned more like Ru. A similar result was obtained for the AuRu bimetallic catalyst. The PtRu catalyst appeared to be stable under the aqueous-phase reaction conditions, whereas the AuRu catalyst was altered by the harsh conditions. Gold appeared to migrate off the Ru and agglomerate on the carbon during the reaction in liquid water.

  17. Correlating Extent of PtNi Bond Formation with Low-temperature Hydrogenation of Benzene and 1,3-butadiene over Supported Pt/Ni Bimetallic Catalysts

    SciTech Connect (OSTI)

    Lonergan, W.; Vlachos, D; Chen, J

    2010-01-01

    Low-temperature hydrogenation of benzene and 1,3-butadiene on supported Pt/Ni catalysts have been used as probe reactions to correlate hydrogenation activity with the extent of Pt-Ni bimetallic bond formation. Pt/Ni bimetallic and Pt and Ni monometallic catalysts were supported on {gamma}-Al{sub 2}O{sub 3} using incipient wetness impregnation. Two sets of bimetallic catalysts were synthesized: one set to study the effect of metal atomic ratio and the other to study the effect of impregnation sequence. Fourier transform infrared spectroscopy (FTIR) CO adsorption studies were performed to characterize the surface composition of the bimetallic nanoparticles, and transmission electron microscopy (TEM) was utilized to characterize the particle size distribution. Batch reactor studies with FTIR demonstrated that all bimetallic catalysts outperformed monometallic catalysts for both benzene and 1,3-butadiene hydrogenation. Within the two sets of bimetallic catalysts, it was found that catalysts with a smaller Pt:Ni ratio possessed higher hydrogenation activity and that catalysts synthesized using co-impregnation had greater activity than sequentially impregnated catalysts. Extended X-ray absorption fine structure (EXAFS) measurements were performed in order to verify the extent of Pt-Ni bimetallic bond formation, which was found to correlate with the hydrogenation activity.

  18. Patched bimetallic surfaces are active catalysts for ammonia decomposition

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Guo, Wei; Vlachos, Dionisios G.

    2015-10-07

    In this study, ammonia decomposition is often used as an archetypical reaction for predicting new catalytic materials and understanding the very reason of why some reactions are sensitive on material’s structure. Core–shell or surface-segregated bimetallic nanoparticles expose outstanding activity for many heterogeneously catalysed reactions but the reasons remain elusive owing to the difficulties in experimentally characterizing active sites. Here by performing multiscale simulations in ammonia decomposition on various nickel loadings on platinum (111), we show that the very high activity of core–shell structures requires patches of the guest metal to create and sustain dual active sites: nickel terraces catalyse N-Hmore » bond breaking and nickel edge sites drive atomic nitrogen association. The structure sensitivity on these active catalysts depends profoundly on reaction conditions due to kinetically competing relevant elementary reaction steps. We expose a remarkable difference in active sites between transient and steady-state studies and provide insights into optimal material design.« less

  19. Bimetallic complexes and polymerization catalysts therefrom

    DOE Patents [OSTI]

    Patton, Jasson T.; Marks, Tobin J.; Li, Liting

    2000-11-28

    Group 3-6 or Lanthanide metal complexes possessing two metal centers, catalysts derived therefrom by combining the same with strong Lewis acids, Bronsted acid salts, salts containing a cationic oxidizing agent or subjected to bulk electrolysis in the presence of compatible, inert non-coordinating anions and the use of such catalysts for polymerizing olefins, diolefins and/or acetylenically unsaturated monomers are disclosed.

  20. Thermal stability of bimetallic Au/Fe nanoparticles in silica matrix

    SciTech Connect (OSTI)

    Pannu, Compesh Singh, Udai B. Hooda, Sonu Kabiraj, D. Avasthi, D. K.

    2014-04-24

    Thin silica film containing Au and Fe bimetallic nanoparticles were prepared by atom beam cosputtering. The samples were annealed at different temperatures from 400 to 800° C to study the thermal stability of bimetallic nanoparticles using X ray diffraction. It is observed that at 800° C strong structural rearrangement took place leading to thermal decomposition of bimetallic nanoparticles.

  1. Low-temperature aqueous-phase reforming of ethanol on bimetallic PdZn catalysts

    SciTech Connect (OSTI)

    Xiong, Haifeng; DelaRiva, Andrew; Wang, Yong; Dayte, Abhaya

    2015-01-01

    Bimetallic PdZn catalysts supported on carbon black (CB) and carbon nanotubes (CNTs) were found to be selective for CO-free H-2 production from ethanol at low temperature (250 degrees C). On Pd, the H-2 yield was low (similar to 0.3 mol H-2/mol ethanol reacted) and the CH4/CO2 ratio was high (similar to 1.7). Addition of Zn to Pd formed the intermetallic PdZn beta phase (atomic ratio of Zn to Pd is 1) with increased H-2 yield (similar to 1.9 mol H-2/mol ethanol reacted) and CH4/CO2 ratio of <1. The higher H-2 yield and low CH4 formation was related to the improved dehydrogenation activity of the L1(0) PdZn beta phase. The TOF increased with particle size and the CNTs provided the most active and selective catalysts, which may be ascribed to pore-confinement effects. Furthermore, no significant changes in either the supports or the PdZn beta particles was found after aqueous-phase reforming (APR) indicating that the metal nanoparticles and the carbon support are hydrothermally stable in the aqueous phase at elevated temperatures and pressures (>200 degrees C, 65 bar). No CO was detected for all the catalysts performed in aqueous-phase reaction, indicating that both monometallic Pd and bimetallic PdZn catalysts have high water-gas shift activity during APR. However, the yield of H-2 is considerably lower than the theoretical value of 6 H-2 per mole ethanol which is due to the presence of oxygenated products and methane on the PdZn catalysts.

  2. Synthesis and Characterization of Cluster-Derived Supported Bimetallic Catalysts

    SciTech Connect (OSTI)

    Adams, Richard D; Amiridis, Michael D

    2008-10-10

    New procedures have been developed for synthesizing di- and tri-metallic cluster complexes. The chemical properties of the new complexes have been investigated, particularly toward the activation of molecular hydrogen. These complexes were then converted into bi- and tri-metallic nanoparticles on silica and alumina supports. These nanoparticles were characterized by electron microscopy and were then tested for their ability to produce catalytic hydrogenation of unsaturated hydrocarbons and for the preferential oxidation of CO in the presence of hydrogen. The bi- and tri-metallic nanoparticles exhibited far superior activity and selectivity as hydrogenation catalysts when compared to the individual metallic components. It was found that the addition of tin greatly improved the selectivity of the catalysts for the hydrogenation of polyolefins. The addition of iron improves the catalysts for the selective oxidation of CO by platinum in the presence of hydrogen. The observations should lead to the development of lower cost routes to molecules that can be used to produce polymers and plastics for use by the general public and for procedures to purify hydrogen for use as an alternative energy in the hydrogen economy of the future.

  3. Novel bimetallic dispersed catalysts for temperature-programmed coal liquefaction. Final report

    SciTech Connect (OSTI)

    Chunshan Song; Schobert, H.H.; Parfitt, D.P.

    1997-11-01

    Development of new catalysts is a promising approach to more efficient coal liquefaction. It has been recognized that dispersed catalysts are superior to supported catalysts for primary liquefaction of coals, because the control of initial coal dissolution or depolymerization requires intimate contact between the catalyst and coal. This research is a fundamental and exploratory study on catalytic coal liquefaction, with the emphasis on exploring novel bimetallic dispersed catalysts for coal liquefaction and the effectiveness of temperature-programmed liquefaction using dispersed catalysts. The primary objective of this research was to explore novel bimetallic dispersed catalysts from organometallic molecular precursors, that could be used in low concentrations but exhibit relatively high activity for efficient hydroliquefaction of coals under temperature-programmed conditions. We have synthesized and tested various catalyst precursors in liquefaction of subbituminous and bituminous coals and in model compound studies to examine how do the composition and structure of the catalytic precursors affect their effectiveness for coal liquefaction under different reaction conditions, and how do these factors affect their catalytic functions for hydrogenation of polyaromatic hydrocarbons, for cleavage of C-C bonds in polycyclic systems such as 4-(1-naphthylmethyl)bibenzyl, for hydrogenolysis of C-O bond such as that in dinaphthylether, for hydrodeoxygenation of phenolic compounds and other oxygen-containing compounds such as xanthene, and for hydrodesulfurization of polycyclic sulfur compounds such as dibenzothiophene. The novel bimetallic and monometallic precursors synthesized and tested in this project include various Mo- and Fe-based compounds.

  4. STEM-EDX tomography of bimetallic nanoparticles: A methodological investigation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Slater, Thomas J. A.; Janssen, Arne; Camargo, Pedro H. C.; Burke, M. Grace; Zaluzec, Nestor J.; Haigh, Sarah J.

    2015-10-22

    This paper presents an investigation of the limitations and optimization of energy dispersive X-ray (EDX) tomography within the scanning transmission electron microscope, focussing on application of the technique to characterising the 3D elemental distribution of bimetallic AgAu nanoparticles. The detector collection efficiency when using a standard tomography holder is characterised using a tomographic data set from a single nanoparticle and compared to a standard low background double tilt holder. Optical depth profiling is used to investigate the angles and origin of detector shadowing as a function of specimen field of view. A novel time-varied acquisition scheme is described to compensatemore » for variations in the intensity of spectrum images at each sample tilt. Lastly, the ability of EDX spectrum images to satisfy the projection requirement for nanoparticle samples is discussed, with consideration of the effect of absorption and shadowing variations« less

  5. STEM-EDX tomography of bimetallic nanoparticles: A methodological investigation

    SciTech Connect (OSTI)

    Slater, Thomas J. A.; Janssen, Arne; Camargo, Pedro H. C.; Burke, M. Grace; Zaluzec, Nestor J.; Haigh, Sarah J.

    2015-10-22

    This paper presents an investigation of the limitations and optimization of energy dispersive X-ray (EDX) tomography within the scanning transmission electron microscope, focussing on application of the technique to characterising the 3D elemental distribution of bimetallic AgAu nanoparticles. The detector collection efficiency when using a standard tomography holder is characterised using a tomographic data set from a single nanoparticle and compared to a standard low background double tilt holder. Optical depth profiling is used to investigate the angles and origin of detector shadowing as a function of specimen field of view. A novel time-varied acquisition scheme is described to compensate for variations in the intensity of spectrum images at each sample tilt. Lastly, the ability of EDX spectrum images to satisfy the projection requirement for nanoparticle samples is discussed, with consideration of the effect of absorption and shadowing variations

  6. Study of supported PtCu and PdAu bimetallic nanoparticles using in-situ x-ray tools.

    SciTech Connect (OSTI)

    Oxford, S. M.; Lee, P. L.; Chupas, P. J.; Chapman, K. W.; Kung, M. C.; Kung, H. H.; Northwestern Univ.

    2010-01-01

    A combination of two synchrotron X-ray techniques, X-ray absorption spectroscopy (XAS), and pair distribution function analysis (PDF) with complementary Fourier transform infrared (FTIR) spectroscopy measurement, was used to characterize the composition distributions of PdAu and PtCu bimetallic particles after treatment in H{sub 2} or CO and in the presence of these gases. This is the first reported application of PDF to the study of supported bimetallic nanoparticles. We found that XAS was informative in determining the component distribution of an initial sample, but PDF was better suited to following changes in the distribution upon changing the gas environment. Thus, the surface of a PtCu bimetallic particle of about 2.5 nm after treatment in H{sub 2} was found to be enriched in Cu, while the core was bimetallic. There was no evidence of a component-segregated core?shell structure. Treatment in CO caused enrichment of Pt to the surface layer, with a concomitant migration of Cu to the core. The average particle size remained the same. For the PdAu bimetallic particles, the surface and core compositions were similar after H{sub 2} treatment, and Pd was enriched in the surface after CO treatment. The X-ray results compared favorably to infrared spectroscopy results. The results demonstrated that the two X-ray techniques in combination can generate new information not available with either technique alone or other techniques, about the elemental distribution of bimetallic particles under conditions relevant to catalysis. They could provide new insight into structure-function relationships and time-on-stream behavior of bimetallic catalysts.

  7. Multimetallic nanoparticle catalysts with enhanced electrooxidation...

    Office of Scientific and Technical Information (OSTI)

    Title: Multimetallic nanoparticle catalysts with enhanced electrooxidation A new structure-control strategy to optimize nanoparticle catalysis is provided. The presence of Au in ...

  8. Characterization of Na+- beta-Zeolite Supported Pd and Pd Ag Bimetallic Catalysts using EXAFS, TEM and Flow Reactor

    SciTech Connect (OSTI)

    Huang,W.; Lobo, R.; Chen, J.

    2008-01-01

    Flow reactor studies of the selective hydrogenation of acetylene in the presence of ethylene have been performed on Na+ exchanged {beta}-zeolite supported Pd, Ag and PdAg catalysts, as an extension of our previous batch reactor studies [W. Huang, J.R. McCormick, R.F. Lobo, J.G. Chen, J. Catal. 246 (2007) 40-51]. Results from flow reactor studies show that the PdAg/Na+-{beta}-zeolite bimetallic catalyst has lower activity than Pd/Na+-{beta}-zeolite monometallic catalyst, while Ag/Na+-{beta}-zeolite does not show any activity for acetylene hydrogenation. However, the selectivity for the PdAg bimetallic catalyst is much higher than that for either the Pd catalyst or Ag catalyst. The selectivity to byproduct (ethane) is greatly inhibited on the PdAg bimetallic catalyst as well. The results from the current flow reactor studies confirmed the pervious results from batch reactor studies [W. Huang, J.R. McCormick, R.F. Lobo, J.G. Chen, J. Catal. 246 (2007) 40-51]. In addition, we used transmission electron microscope (TEM), extended X-ray absorption fine structure (EXAFS), and FTIR of CO adsorption to confirm the formation of Pd-Ag bimetallic alloy in the PdAg/Na+-{beta}-zeolite catalyst.

  9. CATALYSIS SCIENCE INITIATIVE: From First Principles Design to Realization of Bimetallic Catalysts for Enhanced Selectivity

    SciTech Connect (OSTI)

    MAVRIKAKIS, MANOS DUMESIC, JAMES A.

    2007-05-03

    In this project, we have integrated state-of-the-art Density Functional Theory (DFT) models of heterogeneous catalytic processes with high-throughput screening of bimetallic catalytic candidates for important industrial problems. We have studied a new class of alloys characterized by a surface composition different from the bulk composition, and investigated their stability and activity for the water-gas shift reaction and the oxygen reduction reaction. The former reaction is an essential part of hydrogen production; the latter is the rate-limiting step in low temperature H2 fuel cells. We have identified alloys that have remarkable stability and activity, while having a much lower material cost for both of these reactions. Using this knowledge of bimetallic interactions, we have also made progress in the industrially relevant areas of carbohydrate reforming and conversion of biomass to liquid alkanes. One aspect of this work is the conversion of glycerol (a byproduct of biodiesel production) to synthesis gas. We have developed a bifunctional supported Pt catalyst that can cleave the carbon-carbon bond while also performing the water-gas shift reaction, which allows us to better control the H2:CO ratio. Knowledge gained from the theoretical metal-metal interactions was used to develop bimetallic catalysts that perform this reaction at low temperature, allowing for an efficient coupling of this endothermic reaction with other reactions, such as Fischer-Tropsch or methanol synthesis. In our work on liquid alkane production from biomass, we have studied deactivation and selectivity in these areas as a function of metal-support interactions and reaction conditions, with an emphasis on the bifunctionality of the catalysts studied. We have identified a stable, active catalyst for this process, where the selectivity and yield can be controlled by the reaction conditions. While complete rational design of catalysts is still elusive, this work demonstrates the power of combining the insights gained from theoretical models and the work of experiments to develop new catalysts for current and future industrial challenges.

  10. Ordered Nanoparticle Catalysts article is an Energy Focus > Archived...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ordered Nanoparticle Catalysts article is an Energy Focus January 24th, 2013 A Nature Materials paper on ordered nanoparticle catalysts has been highlighted as an "Energy...

  11. NiW and NiRu Bimetallic Catalysts for Ethylene Steam Reforming: Alternative Mechanisms for Sulfur Resistance

    SciTech Connect (OSTI)

    Rangan, M.; Yung, M. M.; Medlin, J. W.

    2012-06-01

    Previous investigations of Ni-based catalysts for the steam reforming of hydrocarbons have indicated that the addition of a second metal can reduce the effects of sulfur poisoning. Two systems that have previously shown promise for such applications, NiW and NiRu, are considered here for the steam reforming of ethylene, a key component of biomass derived tars. Monometallic and bimetallic Al{sub 2}O{sub 3}-supported Ni and W catalysts were employed for ethylene steam reforming in the presence and absence of sulfur. The NiW catalysts were less active than Ni in the absence of sulfur, but were more active in the presence of 50 ppm H{sub 2}S. The mechanism for the W-induced improvements in sulfur resistance appears to be different from that for Ru in NiRu. To probe reasons for the sulfur resistance of NiRu, the adsorption of S and C{sub 2}H{sub 4} on several bimetallic NiRu alloy surfaces ranging from 11 to 33 % Ru was studied using density functional theory (DFT). The DFT studies reveal that sulfur adsorption is generally favored on hollow sites containing Ru. Ethylene preferentially adsorbs atop the Ru atom in all the NiRu (111) alloys investigated. By comparing trends across the various bimetallic models considered, sulfur adsorption was observed to be correlated with the density of occupied states near the Fermi level while C{sub 2}H{sub 4} adsorption was correlated with the number of unoccupied states in the d-band. The diverging mechanisms for S and C{sub 2}H{sub 4} adsorption allow for bimetallic surfaces such as NiRu that enhance ethylene binding without accompanying increases in sulfur binding energy. In contrast, bimetallics such as NiSn and NiW appear to decrease the affinity of the surface for both the reagent and the poison.

  12. Multimetallic nanoparticle catalysts with enhanced electrooxidation

    Office of Scientific and Technical Information (OSTI)

    (Patent) | SciTech Connect Patent: Multimetallic nanoparticle catalysts with enhanced electrooxidation Citation Details In-Document Search Title: Multimetallic nanoparticle catalysts with enhanced electrooxidation A new structure-control strategy to optimize nanoparticle catalysis is provided. The presence of Au in FePtAu facilitates FePt structure transformation from chemically disordered face centered cubic (fcc) structure to chemically ordered face centered tetragonal (fct) structure, and

  13. Novel bimetallic dispersed catalysts for temperature-programmed coal liquefaction. Technical progress report, October--December 1993

    SciTech Connect (OSTI)

    Schmidt, E.; Kirby, S.; Song, Chunshan; Schobert, H.H.

    1994-04-01

    Development of new catalysts is a promising approach to more, efficient coal liquefaction. It has been recognized that dispersed catalysts can be superior to supported catalysts for primary liquefaction of coals, because the control of initial coal dissolution or depolymerization requires infinite contact between the catalyst and coal. The primary objective of this research is to explore the potential of bimetallic dispersed catalysts from heterometallic molecular precursors in their use in model compound liquefaction reactions. This quarterly report describes the use of three precursors in model compound reactions. The first catalyst is a heterometallic complex consisting of two transition metals, Mo and Ni, and sulfur in a single molecule. The second is a thiocubane type complex consisting of cobalt, molybdenum and sulfur. The third is a thiocubane type cluster consisting of iron and sulfur and the fourth, the pure inorganic salt ammonium tetrathiomolybdate (ATM). It was found that the structure and the ligands in the model complexes affect the activity of the resulting catalyst significantly. The optimum reaction at a pressure of 6.9 MPa hydrogen gas varied for different catalysts. The bimetallic catalysts generated in situ from the organometallic precursor are more active than monometallic catalysts like ATTM and the thiocubane type cluster Fe{sub 4}. Main products are hydrogenated phenanthrene derivatives, like DBP, THP, sym-OHP, cis- and trans-unsym-OHP with minor isomerization products such as sym-OHA. Our results indicate that other transition metal and ligand combinations in the organometallic precursors and the use of another model compound could result in substantially higher conversion activity.

  14. Multimetallic nanoparticle catalysts with enhanced electrooxidation

    Office of Scientific and Technical Information (OSTI)

    (Patent) | SciTech Connect Patent: Multimetallic nanoparticle catalysts with enhanced electrooxidation Citation Details In-Document Search Title: Multimetallic nanoparticle catalysts with enhanced electrooxidation × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a public service. Visit OSTI to utilize additional information resources in energy science

  15. Reaction-Driven Restructuring of Bimetallic Nanoparticle Catalysts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    high-surface-area support are widely used for catalytic reforming, pollution control, alcohol oxidation, and electrocatalysis in fuel cells. Owing to the nanoscale size of the...

  16. Hollow Nanoparticles as Active and Durable Catalysts - Energy Innovation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Portal Hollow Nanoparticles as Active and Durable Catalysts Brookhaven National Laboratory Contact BNL About This Technology <p> Performance characteristics of the hollow nanoparticle catalysts for the oxygen-reduction reaction</p> Performance characteristics of the hollow nanoparticle catalysts for the oxygen-reduction reaction Technology Marketing Summary Platinum is an excellent catalyst for many reactions. However, it is also very expensive. The catalytic activity per gram of

  17. Bimetallic catalysts for CO.sub.2 hydrogenation and H.sub.2 generation from formic acid and/or salts thereof

    DOE Patents [OSTI]

    Hull, Jonathan F.; Himeda, Yuichiro; Fujita, Etsuko; Muckeman, James T.

    2015-08-04

    The invention relates to a ligand that may be used to create a catalyst including a coordination complex is formed by the addition of two metals; Cp, Cp* or an unsubstituted or substituted .pi.-arene; and two coordinating solvent species or solvent molecules. The bimetallic catalyst may be used in the hydrogenation of CO.sub.2 to form formic acid and/or salts thereof, and in the dehydrogenation of formic acid and/or salts thereof to form H.sub.2 and CO.sub.2.

  18. Structurally ordered Pt–Zn/C series nanoparticles as efficient anode catalysts for formic acid electrooxidation

    SciTech Connect (OSTI)

    Zhu, Jing; Zheng, Xin; Wang, Jie; Wu, Zexing; Han, Lili; Lin, Ruoqian; Xin, Huolin L.; Wang, Deli

    2015-09-15

    Controlling the size, composition, and structure of bimetallic nanoparticles is of particular interest in the field of electrocatalysts for fuel cells. In the present work, structurally ordered nanoparticles with intermetallic phases of Pt3Zn and PtZn have been successfully synthesized via an impregnation reduction method, followed by post heat-treatment. The Pt3Zn and PtZn ordered intermetallic nanoparticles are well dispersed on a carbon support with ultrasmall mean particle sizes of ~5 nm and ~3 nm in diameter, respectively, which are credited to the evaporation of the zinc element at high temperature. These catalysts are less susceptible to CO poisoning relative to Pt/C and exhibited enhanced catalytic activity and stability toward formic acid electrooxidation. The mass activities of the as-prepared catalysts were approximately 2 to 3 times that of commercial Pt at 0.5 V (vs. RHE). As a result, this facile synthetic strategy is scalable for mass production of catalytic materials.

  19. Structurally ordered Pt–Zn/C series nanoparticles as efficient anode catalysts for formic acid electrooxidation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhu, Jing; Zheng, Xin; Wang, Jie; Wu, Zexing; Han, Lili; Lin, Ruoqian; Xin, Huolin L.; Wang, Deli

    2015-09-15

    Controlling the size, composition, and structure of bimetallic nanoparticles is of particular interest in the field of electrocatalysts for fuel cells. In the present work, structurally ordered nanoparticles with intermetallic phases of Pt3Zn and PtZn have been successfully synthesized via an impregnation reduction method, followed by post heat-treatment. The Pt3Zn and PtZn ordered intermetallic nanoparticles are well dispersed on a carbon support with ultrasmall mean particle sizes of ~5 nm and ~3 nm in diameter, respectively, which are credited to the evaporation of the zinc element at high temperature. These catalysts are less susceptible to CO poisoning relative to Pt/Cmore » and exhibited enhanced catalytic activity and stability toward formic acid electrooxidation. The mass activities of the as-prepared catalysts were approximately 2 to 3 times that of commercial Pt at 0.5 V (vs. RHE). As a result, this facile synthetic strategy is scalable for mass production of catalytic materials.« less

  20. Carbon-Supported bimetallic Pd-Fe catalysts for vapor-phase hydrodeoxygenation of guaiacol

    SciTech Connect (OSTI)

    Sun, Junming; Karim, Ayman M.; Zhang, He; Kovarik, Libor; Li, Xiaohong S.; Hensley, Alyssa; McEwen, Jean-Sabin; Wang, Yong

    2013-10-01

    Abstract Carbon supported metal catalysts (Cu/C, Fe/C, Pd/C, Pt/C, PdFe/C and Ru/C) have been prepared, characterized and tested for vapor-phase hydrodeoxygenation (HDO) of guaiacol (GUA) at atmospheric pressure. Phenol was the major intermediate on all catalysts. Over the noble metal catalysts saturation of the aromatic ring was the major pathway observed at low temperature (250 C), forming predominantly cyclohexanone and cyclohexanol. Substantial ring opening reaction was observed on Pt/C and Ru/C at higher reaction temperatures (e.g., 350 C). Base metal catalysts, especially Fe/C, were found to exhibit high HDO activity without ring-saturation or ring-opening with the main products being benzene, phenol along with small amounts of cresol, toluene and trimethylbenzene (TMB). A substantial enhancement in HDO activity was observed on the PdFe/C catalysts. Compared with Fe/C, the yield to oxygen-free aromatic products (i.e., benzene/toluene/TMB) on PdFe/C increased by a factor of four at 350 C, and by approximately a factor of two (83.2% versus 43.3%) at 450 C. The enhanced activity of PdFe/C is attributed to the formation of PdFe alloy as evidenced by STEM, EDS and TPR.

  1. Supported catalysts using nanoparticles as the support material

    DOE Patents [OSTI]

    Wong, Michael S.; Wachs, Israel E.; Knowles, William V.

    2010-11-02

    A process for making a porous catalyst, comprises a) providing an aqueous solution containing a nanoparticle precursor, b) forming a composition containing nanoparticles, c) adding a first catalytic component or precursor thereof and a pore-forming agent to the composition containing nanoparticles and allowing the first catalytic component, the pore-forming agent, and the nanoparticles form an organic-inorganic structure, d) removing water from the organic-inorganic structure; and e) removing the pore-forming agent from the organic-inorganic structure so as to yield a porous catalyst.

  2. From First Principles Design to Realization of Bimetallic Catalysts for Enhanced Selectivity

    SciTech Connect (OSTI)

    Lobo, Raul F.; Crooks, Richard M.; Mavrikakis, Manos

    2014-04-08

    “Catalysis by design” has been a dream for decades. To specify the composition and structure of matter to effect a desired catalytic transformation with desired and predicted rate and selectivity remains a monumental challenge, especially in heterogeneous catalysis. Our research thrusts have been chosen not only for their practical and scientific relevance, e.g. for more efficient and sustainable chemicals and fuels production, but also because they provide a foundation for developing and exploring broadly applicable principles and strategies for catalyst design.

  3. Monodisperse Platinum and Rhodium Nanoparticles as Model Heterogeneous Catalysts

    SciTech Connect (OSTI)

    Coble, Inger M

    2008-08-15

    Model heterogeneous catalysts have been synthesized and studied to better understand how the surface structure of noble metal nanoparticles affects catalytic performance. In this project, monodisperse rhodium and platinum nanoparticles of controlled size and shape have been synthesized by solution phase polyol reduction, stabilized by polyvinylpyrrolidone (PVP). Model catalysts have been developed using these nanoparticles by two methods: synthesis of mesoporous silica (SBA-15) in the presence of nanoparticles (nanoparticle encapsulation, NE) to form a composite of metal nanoparticles supported on SBA-15 and by deposition of the particles onto a silicon wafer using Langmuir-Blodgett (LB) monolayer deposition. The particle shapes were analyzed by transmission electron microscopy (TEM) and high resolution TEM (HRTEM) and the sizes were determined by TEM, X-ray diffraction (XRD), and in the case of NE samples, room temperature H2 and CO adsorption isotherms. Catalytic studies were carried out in homebuilt gas-phase reactors. For the nanoparticles supported on SBA-15, the catalysts are in powder form and were studied using the homebuilt systems as plug-flow reactors. In the case of nanoparticles deposited on silicon wafers, the same systems were operated as batch reactors. This dissertation has focused on the synthesis, characterization, and reaction studies of model noble metal heterogeneous catalysts. Careful control of particle size and shape has been accomplished though solution phase synthesis of Pt and Rh nanoparticles in order to elucidate further structure-reactivity relationships in noble metal catalysis.

  4. Bimetallic Ni-Rh catalysts with low amounts of Rh for the steam and autothermal reforming of n-butane for fuel-cell applications.

    SciTech Connect (OSTI)

    Ferrandon, M.; Kropf, A. J.; Krause, T.; Chemical Sciences and Engineering Division

    2010-05-15

    Mono-metallic nickel and rhodium catalysts and bimetallic Ni-Rh catalysts supported on La-Al{sub 2}O{sub 3}, CeZrO{sub 2} and CeMgOx were prepared and evaluated for catalyzing the steam and autothermal reforming of n-butane. The binary Ni-Rh supported on La-Al{sub 2}O{sub 3} catalysts with low weight loading of rhodium exhibited higher H{sub 2} yields than Ni or Rh alone. The Ni-Rh/CeZrO{sub 2} catalyst exhibited higher performance and no coke formation, compared to the same metals on other supports. A NiAl{sub 2}O{sub 4} spinel phase was obtained on all Ni and Ni-Rh catalysts supported on La-Al{sub 2}O{sub 3}. The presence of rhodium stabilized the spinel phase as well as NiOx species upon reforming while Ni alone was mostly reduced into metallic species. Extended X-ray absorption fine-structure analysis showed evidence of Ni-Rh alloy during preparation and even further after an accelerated aging at 900C in a H{sub 2}/H{sub 2}O atmosphere.

  5. Metal nanoparticles as a conductive catalyst

    DOE Patents [OSTI]

    Coker, Eric N.

    2010-08-03

    A metal nanocluster composite material for use as a conductive catalyst. The metal nanocluster composite material has metal nanoclusters on a carbon substrate formed within a porous zeolitic material, forming stable metal nanoclusters with a size distribution between 0.6-10 nm and, more particularly, nanoclusters with a size distribution in a range as low as 0.6-0.9 nm.

  6. Multimetallic nanoparticle catalysts with enhanced electrooxidation

    DOE Patents [OSTI]

    Sun, Shouheng; Zhang, Sen; Zhu, Huiyuan; Guo, Shaojun

    2015-07-28

    A new structure-control strategy to optimize nanoparticle catalysis is provided. The presence of Au in FePtAu facilitates FePt structure transformation from chemically disordered face centered cubic (fcc) structure to chemically ordered face centered tetragonal (fct) structure, and further promotes formic acid oxidation reaction (FAOR). The fct-FePtAu nanoparticles show high CO poisoning resistance, achieve mass activity as high as about 2810 mA/mg Pt, and retain greater than 90% activity after a 13 hour stability test.

  7. Structural and Architectural Evaluation of Bimetallic Nanoparticles: A Case Study of Pt−Ru Core−Shell and Alloy Nanoparticles

    SciTech Connect (OSTI)

    Alayoglu, S.; Zavalij, P; Eichhorn, B; Wang, Q; Frenkel, A; Chupas, P

    2009-01-01

    A comprehensive structural/architectural evaluation of the PtRu (1:1) alloy and Ru at Pt core-shell nanoparticles (NPs) provides spatially resolved structural information on sub-5 nm NPs. A combination of extended X-ray absorption fine structure (EXAFS), X-ray absorption near edge structure (XANES), pair distribution function (PDF) analyses, Debye function simulations of X-ray diffraction (XRD), and field emission transmission electron microscopy/energy dispersive spectroscopy (FE-TEM/EDS) analyses provides complementary information used to construct a detailed picture of the core/shell and alloy nanostructures. The 4.4 nm PtRu (1:1) alloys are crystalline homogeneous random alloys with little twinning in a typical face-centered cubic (fcc) cell. The Pt atoms are predominantly metallic, whereas the Ru atoms are partially oxidized and are presumably located on the NP surface. The 4.0 nm Ru at Pt NPs have highly distorted hcp Ru cores that are primarily in the metallic state but show little order beyond 8 A. In contrast, the 1-2 monolayer thick Pt shells are relatively crystalline but are slightly distorted (compressed) relative to bulk fcc Pt. The homo- and heterometallic coordination numbers and bond lengths are equal to those predicted by the model cluster structure, showing that the Ru and Pt metals remain phase-separated in the core and shell components and that the interface between the core and shell is quite normal.

  8. AuRu/AC as an effective catalyst for hydrogenation reactions

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Villa, Alberto; Chan-Thaw, Carine E.; Campisi, Sebastiano; Bianchi, Claudia L.; Wang, Di; Kotula, Paul G.; Kübel, Christian; Prati, Laura

    2015-03-23

    AuRu bimetallic catalysts have been prepared by sequential deposition of Au on Ru or vice versa obtaining different nanostructures: when Ru has been deposited on Au, a Aucore–Rushell has been observed, whereas the deposition of Au on Ru leads to a bimetallic phase with Ru enrichment on the surface. In the latter case, the unexpected Ru enrichment could be attributed to the weak adhesion of Ru on the carbon support, thus allowing Ru particles to diffuse on Au particles. Both structures result very active in catalysing the liquid phase hydrogenolysis of glycerol and levulinic acid but the activity, the selectivitymore » and the stability depend on the structure of the bimetallic nanoparticles. Ru@Au/AC core–shell structure mostly behaved as the monometallic Ru, whereas the presence of bimetallic AuRu phase in Au@Ru/AC provides a great beneficial effect on both activity and stability.« less

  9. Mass-selected Nanoparticles of PtxY as Model Catalysts for Oxygen

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electroreduction | Stanford Synchrotron Radiation Lightsource Mass-selected Nanoparticles of PtxY as Model Catalysts for Oxygen Electroreduction Thursday, July 31, 2014 A team of researchers from the Technical University of Denmark and the SUNCAT Institute at the SLAC National Accelerator Laboratory and Stanford University has demonstrated the superior performance of nanoparticles of platinum-yttrium (PtxY) as catalysts for oxygen electroreduction. Polymer electrolyte membrane fuel cells

  10. BIMETALLIC NANOCATALYSTS IN MESOPOROUS SILICA FOR HYDROGEN PRODUCTION FROM COAL-DERIVED FUELS

    SciTech Connect (OSTI)

    Kuila, Debasish; Ilias, Shamsuddin

    2013-02-13

    In steam reforming reactions (SRRs) of alkanes and alcohols to produce H{sub 2}, noble metals such as platinum (Pt) and palladium (Pd) are extensively used as catalyst. These metals are expensive; so, to reduce noble-metal loading, bi-metallic nanocatalysts containing non-noble metals in MCM-41 (Mobil Composition of Material No. 41, a mesoporous material) as a support material with high-surface area were synthesized using one-pot hydrothermal procedure with a surfactant such as cetyltrimethylammonium bromide (CTAB) as a template. Bi-metallic nanocatalysts of Pd-Ni and Pd-Co with varying metal loadings in MCM-41 were characterized by x-ray diffraction (XRD), N{sub 2} adsorption, and Transmission electron microscopy (TEM) techniques. The BET surface area of MCM-41 (~1000 m{sup 2}/g) containing metal nanoparticles decreases with the increase in metal loading. The FTIR studies confirm strong interaction between Si-O-M (M = Pd, Ni, Co) units and successful inclusion of metal into the mesoporous silica matrix. The catalyst activities were examined in steam reforming of methanol (SRM) reactions to produce hydrogen. Reference tests using catalysts containing individual metals (Pd, Ni and Co) were also performed to investigate the effect of the bimetallic system on the catalytic behavior in the SRM reactions. The bimetallic system remarkably improves the hydrogen selectivity, methanol conversion and stability of the catalyst. The results are consistent with a synergistic behavior for the Pd-Ni-bimetallic system. The performance, durability and thermal stability of the Pd-Ni/MCM-41 and Pd-Co/MCM-41 suggest that these materials may be promising catalysts for hydrogen production from biofuels. A part of this work for synthesis and characterization of Pd-Ni-MCM-41 and its activity for SRM reactions has been published (“Development of Mesoporous Silica Encapsulated Pd-Ni Nanocatalyst for Hydrogen Production” in “Production and Purification of Ultraclean Transportation Fuels”; Hu, Y., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 2011.)

  11. Au-Pt heteroaggregate dendritic nanostructures and Au-Pt alloy nanoparticles and their use as catalysts

    DOE Patents [OSTI]

    Eichhorn, Bryan W.; Zhou, Shenghu; Jackson, Gregory Scott

    2011-10-18

    Au--Pt heteroaggregate dendritic nanostructures and AuPt alloy nanoparticles, and their use as anodic catalysts in fuel cells.

  12. Monodisperse metal nanoparticle catalysts on silica mesoporous supports: synthesis, characterizations, and catalytic reactions

    SciTech Connect (OSTI)

    Somorjai, G.A.

    2009-09-14

    The design of high performance catalyst achieving near 100% product selectivity at maximum activity is one of the most important goals in the modern catalytic science research. To this end, the preparation of model catalysts whose catalytic performances can be predicted in a systematic and rational manner is of significant importance, which thereby allows understanding of the molecular ingredients affecting the catalytic performances. We have designed novel 3-dimensional (3D) high surface area model catalysts by the integration of colloidal metal nanoparticles and mesoporous silica supports. Monodisperse colloidal metal NPs with controllable size and shape were synthesized using dendrimers, polymers, or surfactants as the surface stabilizers. The size of Pt, and Rh nanoparticles can be varied from sub 1 nm to 15 nm, while the shape of Pt can be controlled to cube, cuboctahedron, and octahedron. The 3D model catalysts were generated by the incorporation of metal nanoparticles into the pores of mesoporous silica supports via two methods: capillary inclusion (CI) and nanoparticle encapsulation (NE). The former method relies on the sonication-induced inclusion of metal nanoparticles into the pores of mesoporous silica, whereas the latter is performed by the encapsulation of metal nanoparticles during the hydrothermal synthesis of mesoporous silica. The 3D model catalysts were comprehensively characterized by a variety of physical and chemical methods. These catalysts were found to show structure sensitivity in hydrocarbon conversion reactions. The Pt NPs supported on mesoporous SBA-15 silica (Pt/SBA-15) displayed significant particle size sensitivity in ethane hydrogenolysis over the size range of 1-7 nm. The Pt/SBA-15 catalysts also exhibited particle size dependent product selectivity in cyclohexene hydrogenation, crotonaldehyde hydrogenation, and pyrrole hydrogenation. The Rh loaded SBA-15 silica catalyst showed structure sensitivity in CO oxidation reaction. In addition, Pt-mesoporous silica core-shell structured NPs (Pt{at}mSiO{sub 2}) were prepared, where the individual Pt NP is encapsulated by the mesoporous silica layer. The Pt{at}mSiO{sub 2} catalysts showed promising catalytic activity in high temperature CO oxidation. The design of catalytic structures with tunable parameters by rational synthetic methods presents a major advance in the field of catalyst synthesis, which would lead to uncover the structure-function relationships in heterogeneous catalytic reactions.

  13. Fischer–Tropsch Synthesis: Effect of Reducing Agent for Aqueous-Phase Synthesis Over Ru Nanoparticle and Supported Ru Catalysts

    SciTech Connect (OSTI)

    Pendyala, Venkat Ramana Rao; Shafer, Wilson D.; Jacobs, Gary; Graham, Uschi M.; Khalid, Syed; Davis, Burtron H.

    2014-12-27

    The effect of the reducing agent on the performance of a ruthenium nanoparticle catalyst was investigated during aqueous-phase Fischer–Tropsch synthesis using a 1 L stirred tank reactor in the batch mode of operation. For the purpose of comparison, the activity and selectivity of NaY zeolite supported Ru catalyst were also studied. NaBH4 and hydrogen were used as reducing agents in our study, and hydrogen reduced catalysts exhibited higher activities than the NaBH4 reduced catalysts, because of higher extent of reduction and a relatively lower tendency toward agglomeration of Ru particles. The Ru nanoparticle catalyst displayed higher activities than the NaY zeolite supported Ru catalyst for both reducing agents. NaBH4 reduced catalysts are less active and the carbon dioxide selectivity is higher than the hydrogen reduced catalysts. The activity of the supported Ru catalyst (Ru/NaY) was 75 % of that of the Ru nanoparticle catalyst, and has the benefit of easy wax/catalyst slurry separation by filtration. Finally, the hydrogen reduced supported Ru catalyst exhibited superior selectivity towards hydrocarbons (higher C5+ selectivity and lower selectivity to methane) than all other catalysts tested.

  14. Palladium was supported on superparamagnetic nanoparticles: A magnetically recoverable catalyst for Heck reaction

    SciTech Connect (OSTI)

    Zhang, Fengwei; Niu, Jianrui; Wang, Haibo; Yang, Honglei; Jin, Jun; Liu, Na; Zhang, Yubin; Li, Rong; Ma, Jiantai

    2012-02-15

    Highlights: Black-Right-Pointing-Pointer Palladium-based heterogeneous catalyst was prepared facilely via the co-precipitation method. Black-Right-Pointing-Pointer The particles are nearly spherical in shape with an average size of 20 {+-} 1.0 nm. Black-Right-Pointing-Pointer The developed magnetic catalyst showed high activity for Heck reaction. Black-Right-Pointing-Pointer The catalyst was easily recovered from the reaction mixture with external magnetic field. Black-Right-Pointing-Pointer The catalytic efficiency for Heck reaction remains unaltered even after 6 repeated cycles. -- Abstract: A novel and high-performance palladium-based catalyst for Heck reaction was prepared easily by the co-precipitation method. The catalyst was characterized by transmission electron microscopy (TEM), X-ray powder diffraction (XRD), vibrating sample magnetometry (VSM), X-ray photoelectron spectroscopy (XPS) and atomic absorption spectrophotometry (AAS). The catalyst afforded a fast conversion of the 4-bromonitrobenzene to 4-nitrostilbene at a catalyst loading of 5 mol%, and the efficiency of the catalyst remains unaltered even after 6 repeated cycles. The excellent catalytic performance of the Pd/Fe{sub 3}O{sub 4} catalyst might be attributed to the enhanced synergistic effect between Pd nanoparticles and magnetite.

  15. Dendrimer-Encapsulated Ruthenium Nanoparticles as Catalysts for Lithium-O2 Batteries

    SciTech Connect (OSTI)

    Bhattacharya, Priyanka; Nasybulin, Eduard N.; Engelhard, Mark H.; Kovarik, Libor; Bowden, Mark E.; Li, Shari; Gaspar, Daniel J.; Xu, Wu; Zhang, Jiguang

    2014-12-01

    Dendrimer-encapsulated ruthenium nanoparticles (DEN-Ru) have been used as catalysts in lithium-O2 batteries for the first time. Results obtained from UV-vis spectroscopy, electron microscopy and X-ray photoelectron spectroscopy show that the nanoparticles synthesized by the dendrimer template method are ruthenium oxide instead of metallic ruthenium reported earlier by other groups. The DEN-Ru significantly improve the cycling stability of lithium (Li)-O2 batteries with carbon black electrodes and decrease the charging potential even at low catalyst loading. The monodispersity, porosity and large number of surface functionalities of the dendrimer template prevent the aggregation of the ruthenium nanoparticles making their entire surface area available for catalysis. The potential of using DEN-Ru as stand-alone cathode materials for Li-O2 batteries is also explored.

  16. Dispersion enhanced metal/zeolite catalysts

    DOE Patents [OSTI]

    Sachtler, W.M.H.; Tzou, M.S.; Jiang, H.J.

    1987-03-31

    Dispersion stabilized zeolite supported metal catalysts are provided as bimetallic catalyst combinations. The catalyst metal is in a reduced zero valent form while the dispersion stabilizer metal is in an unreduced ionic form. Representative catalysts are prepared from platinum or nickel as the catalyst metal and iron or chromium dispersion stabilizer.

  17. Dispersion enhanced metal/zeolite catalysts

    DOE Patents [OSTI]

    Sachtler, Wolfgang M. H.; Tzou, Ming-Shin; Jiang, Hui-Jong

    1987-01-01

    Dispersion stabilized zeolite supported metal catalysts are provided as bimetallic catalyst combinations. The catalyst metal is in a reduced zero valent form while the dispersion stabilizer metal is in an unreduced ionic form. Representative catalysts are prepared from platinum or nickel as the catalyst metal and iron or chromium dispersion stabilizer.

  18. Improved Catalysts for Heavy Oil Upgrading Based on Zeolite Y Nanoparticles Encapsulated Stable Nanoporous Host

    SciTech Connect (OSTI)

    Conrad Ingram; Mark Mitchell

    2007-09-30

    The objective of this project is to synthesize nanocrystals of highly acidic zeolite Y nanoclusters, encapsulate them within the channels of mesoporous (nanoporous) silicates or nanoporous organosilicates, and evaluate the 'zeolite Y/Nanoporous host' composites as catalysts for the upgrading of heavy petroleum feedstocks. In comparison to conventionally-used zeolite Y catalysts of micron size particles, the nanocrystals (< 100 nm particle size) which contain shorter path lengths, are expected to allow faster diffusion of large hydrocarbon substrates and the catalysis products within and out of the zeolite's channels and cages (<1 nm size). This is expected to significantly reduce deactivation of the catalyst and to prolong their period of reactivity. Encapsulating zeolite Y nanocrystals within the nanoporous materials is expected to protect its external surfaces and pore entrances from being blocked by large hydrocarbon substrates, since these substrates will initially be converted to small molecules by the nanoporous host (a catalyst in its own right). The project consisted of four major tasks as follows: (1) synthesis of the nanoparticles of zeolite Y (of various chemical compositions) using various techniques such as the addition of organic additives to conventional zeolite Y synthesis mixtures to suppress zeolite Y crystal growth; (2) synthesis of nanoporous silicate host materials of up to 30 nm pore diameter, using poly (alkylene oxide) copolymers which when removed will yield a mesoporous material; (3) synthesis of zeolite Y/Nanoporous Host composite materials as potential catalysts; and (4) evaluation of the catalyst for the upgrading of heavy petroleum feedstocks.

  19. Structure-Property Relationship in Metal Carbides and Bimetallic Alloys

    SciTech Connect (OSTI)

    Chen, Jingguan

    2014-03-04

    The primary objective of our DOE/BES sponsored research is to use carbide and bimetallic catalysts as model systems to demonstrate the feasibility of tuning the catalytic activity, selectivity and stability. Our efforts involve three parallel approaches, with the aim at studying single crystal model surfaces and bridging the materials gap and pressure gap between fundamental surface science studies and real world catalysis. The utilization of the three parallel approaches has led to the discovery of many intriguing catalytic properties of carbide and bimetallic surfaces and catalysts. During the past funding period we have utilized these combined research approaches to explore the possibility of predicting and verifying bimetallic and carbide combinations with enhanced catalytic activity, selectivity and stability.

  20. A pathway for the growth of core-shell Pt-Pd nanoparticles

    SciTech Connect (OSTI)

    Narula, Chaitanya Kumar; Yang, Xiaofan; Li, Chen; Pennycook, Stephen J; Lupini, Andrew R

    2015-10-12

    In this study, the aging of both Pt-Pd nanoparticles and core-shell Pt-Pd nanoparticles has been reported to result in alloying of Pt with Pd. In comparison to monometallic Pt catalysts, the growth of Pd-Pt bimetallics is slower; however, the mechanism of growth of particles and the mechanism by which Pd improves the hydrothermal durability of bimetallic Pd-Pt particles remains uncertain. In our work on hydrothermal aging of core-shell Pt-Pd nanoparticles, synthesized by solution methods, with varying Pd:Pt ratio of 1:4, 1:1, and 4:1, we compare the growth of core-shell Pt-Pd nanoparticles and find that particles grow by migrating and joining together. The unique feature of the observed growth is that Pd shells from both particles open up and join, allowing the cores to merge. At high temperatures, alloying occurs in good agreement with reports by other workers.

  1. On the nature of the deactivation of supported palladium nanoparticle catalysts in the decarboxylation of fatty acids.

    SciTech Connect (OSTI)

    Ping, E. W.; Pierson, J.; Wallace, R.; Miller, J. T.; Fuller, T. F.; Jones, C. W.

    2011-04-15

    Supported palladium catalysts are effective catalysts for the hydrogen-free decarboxylation of fatty acids. However, the catalysts deactivate severely after one use. Here, the recyclability of a well-defined, mesoporous silica-supported palladium nanoparticle catalyst is evaluated in the batch decarboxylation of stearic acid at 300 C under inert atmosphere, producing n-heptadecane. The nature of the catalyst deactivation is examined in detail via an array of characterization techniques. X-ray photoelectron spectroscopy (XPS) demonstrates that little palladium surface oxidation occurs over the course of the reaction, and a combination of X-ray absorption spectroscopy and transmission electron microscopy (TEM) suggests negligible particle sintering or agglomeration. Physisorption and chemisorption measurements demonstrate substantial loss in total surface area and porosity as well as accessible palladium surface area with these losses attributed to significant organic deposition on the catalyst, as verified via thermogravimetric analysis. High temperature calcination is applied to combust and remove these residues, but resultant nanoparticle agglomeration is significant. Solid state nuclear magnetic resonance spectroscopy (NMR), Fourier transform infrared spectroscopy (FT-IR) and solid dissolution followed by organic extraction methodologies demonstrate that the carbonaceous deposits are not coke but rather strongly adsorbed reactants and products. Detrimental coke formation, as suggested by prior literature, is verified to be absent, as extraction of the surface-deposited organic species yields nearly complete recovery of the total surface area, pore volume, and active palladium surface area. Furthermore, the regenerated catalyst exhibits a corresponding significant recovery of decarboxylation activity.

  2. Palladium nanoparticles produced by fermentatively cultivated bacteria as catalyst for diatrizoate removal with biogenic hydrogen

    SciTech Connect (OSTI)

    Hennebel, T.; Fitts, J.; Nevel, S. V.; Verschuere, S.; DeCorte, S.; DeGusseme, B.; Cuvelier, C.; vanderLelie, D.; Boon, N.; Verstraete, W.

    2011-05-17

    A new biological inspired method to produce nanopalladium is the precipitation of Pd on a bacterium, i.e., bio-Pd. This bio-Pd can be applied as catalyst in dehalogenation reactions. However, large amounts of hydrogen are required as electron donor in these reactions resulting in considerable costs. This study demonstrates how bacteria, cultivated under fermentative conditions, can be used to reductively precipitate bio-Pd catalysts and generate the electron donor hydrogen. In this way, one could avoid the costs coupled to hydrogen supply. The catalytic activities of Pd(0) nanoparticles produced by different strains of bacteria (bio-Pd) cultivated under fermentative conditions were compared in terms of their ability to dehalogenate the recalcitrant aqueous pollutants diatrizoate and trichloroethylene. While all of the fermentative bio-Pd preparations followed first order kinetics in the dehalogenation of diatrizoate, the catalytic activity differed systematically according to hydrogen production and starting Pd(II) concentration in solution. Batch reactors with nanoparticles formed by Citrobacter braakii showed the highest diatrizoate dehalogenation activity with first order constants of 0.45 {+-} 0.02 h{sup -1} and 5.58 {+-} 0.6 h{sup -1} in batches with initial concentrations of 10 and 50 mg L{sup -1} Pd, respectively. Nanoparticles on C. braakii, used in a membrane bioreactor treating influent containing 20 mg L{sup -1} diatrizoate, were capable of dehalogenating 22 mg diatrizoate mg{sup -1} Pd over a period of 19 days before bio-Pd catalytic activity was exhausted. This study demonstrates the possibility to use the combination of Pd(II), a carbon source and bacteria under fermentative conditions for the abatement of environmental halogenated contaminants.

  3. AuRu/AC as an effective catalyst for hydrogenation reactions

    SciTech Connect (OSTI)

    Villa, Alberto; Chan-Thaw, Carine E.; Campisi, Sebastiano; Bianchi, Claudia L.; Wang, Di; Kotula, Paul G.; Kübel, Christian; Prati, Laura

    2015-03-23

    AuRu bimetallic catalysts have been prepared by sequential deposition of Au on Ru or vice versa obtaining different nanostructures: when Ru has been deposited on Au, a Aucore–Rushell has been observed, whereas the deposition of Au on Ru leads to a bimetallic phase with Ru enrichment on the surface. In the latter case, the unexpected Ru enrichment could be attributed to the weak adhesion of Ru on the carbon support, thus allowing Ru particles to diffuse on Au particles. Both structures result very active in catalysing the liquid phase hydrogenolysis of glycerol and levulinic acid but the activity, the selectivity and the stability depend on the structure of the bimetallic nanoparticles. Ru@Au/AC core–shell structure mostly behaved as the monometallic Ru, whereas the presence of bimetallic AuRu phase in Au@Ru/AC provides a great beneficial effect on both activity and stability.

  4. Hydrodechlorination of 1,2-Dichloroethane Catalyzedby Dendrimer-Derived Pt-Cu/SiO2 Catalysts

    SciTech Connect (OSTI)

    Xie, Hong; Howe, Jane Y; Schwartz, Viviane; Monnier, J. R.; Williams, Christopher T.; Ploehn, Harry J.

    2008-01-01

    Dendrimer-metal-nanocomposites (DMNs) were used as precursors to prepare SiO2 supported monometallic Pt, Cu and bimetallic Pt-Cu catalysts with Pt/Cu atomic ratios of 1:1 (Pt50Cu50) and 1:3 (Pt25Cu75). After impregnation of these DMNs onto the support, the catalysts were thermally treated and activated following an optimized protocol. Scanning transmission electron microscopy (STEM) shows that the metal nanoparticles in dendrimer-derived SiO2-supported catalysts are smaller and have a more narrow size distribution than those in conventional catalysts prepared using corresponding metal salts via the wet impregnation method. Slow deactivation was observed for hydrodechlorination of 1,2-dichloroethane over monometallic Cu catalysts, which showed an activity about one to two orders of magnitude lower than that of the Pt-containing catalysts. Hydrodechlorination of 1,2-dichloroethane over Pt and Pt50Cu50 catalysts mainly produces ethane and the selectivity towards ethane increases with temperature. For Pt25Cu75 catalyst, the selectivity towards ethane decreases in favor of ethylene. The overall activity decreases with increasing Cu loading in the catalysts. Activity based on surface Pt sites suggests the formation of bi-functional surfaces in Pt25Cu75 catalyst favoring C-Cl bond scission on Cu sites and hydrogenation of intermediate .CH2CH2. on Pt sites. Furthermore, kinetic analyses suggest different reaction mechanisms for hydrodechlorination of 1,2-dichloroethane over Pt and Cu-enriched surfaces in the Pt-Cu bimetallic catalysts.

  5. IMPROVED CATALYSTS FOR HEAVY OIL UPGRADING BASED ON ZEOLITE Y NANOPARTICLES ENCAPSULATED IN STABLE NANOPOROUS HOST

    SciTech Connect (OSTI)

    Conrad Ingram; Mark Mitchell

    2005-03-31

    The objectives of this project are to synthesis nanocrystals of highly acidic zeolite Y, encapsulate them within the channels of mesoporous (nanoporous) silicates or nanoporous organosilicates and evaluate the ''zeolite Y/Nanoporous host'' composites as catalysts for the upgrading of heavy petroleum feedstocks. Our results to date are summarized as follows. The synthesis of high surface ordered nanoporous silica of expanded pore diameter of 25 nm (larger than the standard size of 8.4 nm) using trimethylbenzene as a pore size expander was accomplished. The synthesis of zeolite Y nanoparticles with median pore size of approximately 50 nm (smaller than the 80 nm typically obtained with TMAOH) using combined TMABr/TMAOH as organic additives was also accomplished. The successful synthesis of zeoliteY/Nanoporous host composite materials by sequential combination of zeolite precursors and nanoporous material precursor mixtures was implied based on results from various characterization techniques such as X-Ray diffraction, infrared spectra, thermal analysis, porosimetry data. The resulting materials showed pore sizes up to 11 nm, and infrared band at 570 cm{sup -1} suggesting the presence of both phases. New results indicated that good quality highly ordered nanoporous silica host can be synthesized in the presence of zeolite Y seed precursor depending on the amount of precursor added. Preliminary research on the catalytic performance of the materials is underway. Probe acid catalyzed reactions, such as the cracking of cumene is currently being conducted. Work in the immediate future will be focused on the following three areas: (1) Further characterization of all-silica and aluminosilicate mesoporous materials with expanded pore sizes up to 30 nm will continue; (2) Research efforts to reduce the average particle size of zeolite nanoparticles down to 35-30 nm will continue; (3) Further synthesis of ZeoliteY/Nanoporous host composite catalysts of improved structural and physicochemical characteristics will be conducted by changing the amount and chemistry of the zeolitic precursors added; and (4) Investigation on the catalytic properties of the materials using probe catalytic reactions (such as cumene cracking), followed by catalytic testing for heavy oil conversion.

  6. IMPROVED CATALYSTS FOR HEAVY OIL UPGRADING BASED ON ZEOLITE Y NANOPARTICLES ENCAPSULATED STABLE NANOPOROUS HOST

    SciTech Connect (OSTI)

    Conrad Ingram; Mark Mitchell

    2005-03-21

    The objectives of this project are to synthesis nanocrystals of highly acidic zeolite Y, encapsulate them within the channels of mesoporous (nanoporous) silicates or nanoporous organosilicates and evaluate the ''zeolite Y/Nanoporous host'' composites as catalysts for the upgrading of heavy petroleum feedstocks. Our results to date are summarized as follows. The synthesis of high surface ordered nanoporous silica of expanded pore diameter of 25 nm (larger than the standard size of 8.4 nm) using trimethylbenzene as a pore size expander was accomplished. The synthesis of zeolite Y nanoparticles with median pore size of approximately 50 nm (smaller than the 80 nm typically obtained with TMAOH) using combined TMABr/TMAOH as organic additives was also accomplished. The successful synthesis of zeoliteY/Nanoporous host composite materials by sequential combination of zeolite precursors and nanoporous material precursor mixtures was implied based on results from various characterization techniques such as X-Ray diffraction, infrared spectra, thermal analysis, porosimetry data. The resulting materials showed pore sizes up to 11 nm, and infrared band at 570 cm{sup -1} suggesting the presence of both phases. Work in the immediate future will be focused on the following three areas: (1) Further characterization of all-silica and aluminosilicate mesoporous materials with expanded pore sizes up to 30 nm will continue; (2) Research efforts to reduce the average particle size of zeolite nanoparticles down to 35-30 nm will continue; (3) Further synthesis of polymer-SBA15 nanocomposites will be conducted by changing the amount and chemistry of the zeolitic precursors added; and (4) Investigation on the catalytic properties of the materials using probe catalytic reactions (such as cumene cracking), followed by catalytic testing for heavy oil conversion.

  7. An inorganic capping strategy for the seeded growth of versatile bimetallic nanostructures

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Pei, Yuchen; Maligal-Ganesh, Raghu V.; Xiao, Chaoxian; Goh, Tian -Wei; Brashler, Kyle; Gustafson, Jeffrey A.; Huang, Wenyu

    2015-09-11

    Metal nanostructures have attracted great attention in various fields due to their tunable properties through precisely tailored sizes, compositions and structures. Using mesoporous silica (mSiO2) as the inorganic capping agent and encapsulated Pt nanoparticles as the seeds, we developed a robust seeded growth method to prepare uniform bimetallic nanoparticles encapsulated in mesoporous silica shells (PtM@mSiO2, M = Pd, Rh, Ni and Cu). Unexpectedly, we found that the inorganic silica shell is able to accommodate an eight-fold volume increase in the metallic core by reducing its thickness. The bimetallic nanoparticles encapsulated in mesoporous silica shells showed enhanced catalytic properties and thermalmore » stabilities compared with those prepared with organic capping agents. As a result, this inorganic capping strategy could find a broad application in the synthesis of versatile bimetallic nanostructures with exceptional structural control and enhanced catalytic properties.« less

  8. Displacement of Hexanol by the Hexanoic Acid Overoxidation Product in Alcohol Oxidation on a Model Supported Palladium Nanoparticle Catalyst

    SciTech Connect (OSTI)

    Buchbinder, Avram M. [Northwestern Univ., Evanston, IL (United States). Dept. of Chemistry; Center for Catalysis and Surface Science; Inst. for Catalysis in Energy Processes; Ray, Natalie A. [Northwestern Univ., Evanston, IL (United States). Dept. of Chemistry; Center for Catalysis and Surface Science; Lu, Junling [Argonne National Lab. (ANL), Argonne, IL (United States). Energy System Division; Van Duyne, Richard P. [Northwestern Univ., Evanston, IL (United States). Dept. of Chemistry; Center for Catalysis and Surface Science; Inst. for Catalysis in Energy Processes; Stair, Peter C. [Northwestern Univ., Evanston, IL (United States). Dept. of Chemistry; Center for Catalysis and Surface Science; Inst. for Catalysis in Energy Processes; Argonne National Lab. (ANL), Argonne, IL (United States). Chemical Sciences and Engineering Division; Weitz, Eric [Northwestern Univ., Evanston, IL (United States). Dept. of Chemistry; Center for Catalysis and Surface Science; Inst. for Catalysis in Energy Processes; Geiger, Franz M. [Northwestern Univ., Evanston, IL (United States). Dept. of Chemistry; Center for Catalysis and Surface Science; Inst. for Catalysis in Energy Processes

    2011-11-09

    This work characterizes the adsorption, structure, and binding mechanism of oxygenated organic species from cyclohexane solution at the liquid/solid interface of optically flat alumina-supported palladium nanoparticle surfaces prepared by atomic layer deposition (ALD). The surface-specific nonlinear optical vibrational spectroscopy, sum-frequency generation (SFG), was used as a probe for adsorption and interfacial molecular structure. 1-Hexanoic acid is an overoxidation product and possible catalyst poison for the aerobic heterogeneous oxidation of 1-hexanol at the liquid/solid interface of Pd/Al?O? catalysts. Single component and competitive adsorption experiments show that 1-hexanoic acid adsorbs to both ALD-prepared alumina surfaces and alumina surfaces with palladium nanoparticles, that were also prepared by ALD, more strongly than does 1-hexanol. Furthermore, 1-hexanoic acid adsorbs with conformational order on ALD-prepared alumina surfaces, but on surfaces with palladium particles the adsorbates exhibit relative disorder at low surface coverage and become more ordered, on average, at higher surface coverage. Although significant differences in binding constant were not observed between surfaces with and without palladium nanoparticles, the palladium particles play an apparent role in controlling adsorbate structures. The disordered adsorption of 1-hexanoic acid most likely occurs on the alumina support, and probably results from modification of binding sites on the alumina, adjacent to the particles. In addition to providing insight on the possibility of catalyst poisoning by the overoxidation product and characterizing changes in its structure that result in only small adsorption energy changes, this work represents a step toward using surface science techniques that bridge the complexity gap between fundamental studies and realistic catalyst models.

  9. LSU EFRC - Center for Atomic Level Catalyst Design - Technical...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    "First principles-guided development of bimetallic nanocatalysts" 1 9:45 am: Ullie Diebold (TU Vienna): "Control of structures on complex catalyst supports" 10:15 am: Break...

  10. Rhodium Catalysts in the Oxidation of CO by O2 and NO: Shape, Composition, and Hot Electron Generation

    SciTech Connect (OSTI)

    Renzas, James R.

    2010-03-08

    It is well known that the activity, selectivity, and deactivation behavior of heterogeneous catalysts are strongly affected by a wide variety of parameters, including but not limited to nanoparticle size, shape, composition, support, pretreatment conditions, oxidation state, and electronic state. Enormous effort has been expended in an attempt to understand the role of these factors on catalytic behavior, but much still remains to be discovered. In this work, we have focused on deepening the present understanding of the role of nanoparticle shape, nanoparticle composition, and hot electrons on heterogeneous catalysis in the oxidation of carbon monoxide by molecular oxygen and nitric oxide. These reactions were chosen because they are important for environmental applications, such as in the catalytic converter, and because there is a wide range of experimental and theoretical insight from previous single crystal work as well as experimental data on nanoparticles obtained using new state-of-the-art techniques that aid greatly in the interpretation of results on complex nanoparticle systems. In particular, the studies presented in this work involve three types of samples: {approx} 6.5 nm Rh nanoparticles of different shapes, {approx} 15 nm Rh1-xPdx core-shell bimetallic polyhedra nanoparticles, and Rh ultra-thin film ({approx} 5 nm) catalytic nanodiodes. The colloidal nanoparticle samples were synthesized using a co-reduction of metal salts in alcohol and supported on silicon wafers using the Langmuir-Blodgett technique. This synthetic strategy enables tremendous control of nanoparticle size, shape, and composition. Nanoparticle shape was controlled through the use of different organic polymer capping layers. Bimetallic core-shell nanoparticles were synthesized by careful choice of metal salt precursors. Rh/TiO{sub x} and Rh/GaN catalytic nanodiodes were fabricated using a variety of thin film device fabrication techniques, including reactive DC magnetron sputtering, electron beam evaporation, and rapid thermal annealing. The combination of these techniques enabled control of catalytic nanodiode morphology, geometry, and electrical properties.

  11. A ship-in-a-bottle strategy to synthesize encapsulated intermetallic nanoparticle catalysts: Exemplified for furfural hydrogenation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Maligal-Ganesh, Raghu V.; Xiao, Chaoxian; Goh, Tian Wei; Wang, Lin -Lin; Gustafson, Jeffrey; Pei, Yuchen; Qi, Zhiyuan; Johnson, Duane D.; Zhang, Shiran; Tao, Franklin; et al

    2016-01-28

    In this paper, intermetallic compounds are garnering increasing attention as efficient catalysts for improved selectivity in chemical processes. Here, using a ship-in-a-bottle strategy, we synthesize single-phase platinum-based intermetallic nanoparticles (NPs) protected by a mesoporous silica (mSiO2) shell by heterogeneous reduction and nucleation of Sn, Pb, or Zn in mSiO2-encapsulated Pt NPs. For selective hydrogenation of furfural to furfuryl alcohol, a dramatic increase in activity and selectivity is observed when intermetallic NPs catalysts are used in comparison to Pt@mSiO2. Among the intermetallic NPs, PtSn@mSiO2 exhibits the best performance, requiring only one-tenth of the quantity of Pt used in Pt@mSiO2 for similarmore » activity and near 100% selectivity to furfuryl alcohol. A high-temperature oxidation–reduction treatment easily reverses any carbon deposition-induced catalyst deactivation. X-ray photoelectron spectroscopy shows the importance of surface composition to the activity, whereas density functional theory calculations reveal that the enhanced selectivity on PtSn compared to Pt is due to the different furfural adsorption configurations on the two surfaces.« less

  12. Improved Catalysts for Heavy Oil Upgrading Based on Zeolite Y Nanoparticles Encapsulated Stable Nanoporous Host

    SciTech Connect (OSTI)

    Conrad Ingram; Mark Mitchell

    2006-09-30

    The addition of hydrothermally-aged zeolite Y precursor to an SBA-15 synthesis mixture under a mildly acidic condition resulted in the formation of mesoporous aluminosilicate catalyst, Al-SBA-15, containing strong Broensted acid sites and aluminum (Al) stabilized in a totally tetrahedral coordination. The physicochemical characteristics of the catalyst varied as a function of the synthesis conditions. The catalyst possessed surface areas ranging between 690 and 850 m{sup 2}/g, pore sizes ranging from 5.6 to 7.5 nm, and pore volumes up 1.03 cm{sup 3}, which were comparable to the parent SBA-15 synthesized under similar conditions. Two wt% Al was present in the catalyst that was obtained from the reaction mixture that contained the highest Al content. The Al remained stable in totally tetrahedral coordination after calcination at 550 C. The Al-SBA-15 mesoporous catalyst showed significant catalytic activity for cumene dealkylation, and the activity increased as the amount of zeolite precursor added to the SBA-15 mixture was increased. In preparation for the final phase of the project, the catalyst was embedded into psuedoboemite alumina (catapal B) matrix and then formed into pellets. In the final phase of the project, the pelletized catalyst will be evaluated for the conversion of heavy petroleum feedstocks to naphtha and middle distillates.

  13. Improved Catalysts for Heavy Oil Upgrading Based on Zeolite Y Nanoparticles Encapsulated Stable Nanoporous Host

    SciTech Connect (OSTI)

    Conrad Ingram; Mark Mitchell

    2007-03-31

    The addition of hydrothermally-aged zeolite Y precursor to an SBA-15 synthesis mixture under a mildly acidic condition resulted in the formation of a mesoporous aluminosilicate catalyst, AlSBA-15. The Al-SBA-15 mesoporous catalyst contains strong Br{umlt o}nsted acid sites and aluminum (Al) stabilized in a totally tetrahedral coordination. The physicochemical characteristics of the catalyst varied as a function of the synthesis conditions. The catalyst possessed surface areas ranging between 690 and 850 m{sup 2}/g, pore sizes ranging from 5.6 to 7.5 nm, and pore volumes up 1.03 cm{sup 3}, which were comparable to the parent SBA-15 synthesized under similar conditions. Two wt % Al was present in the catalyst that was obtained from the reaction mixture that contained the highest Al content. The Al remained stable in totally tetrahedral coordination after calcination at a temperature of 550 C. The Al-SBA-15 mesoporous catalyst showed significant catalytic activity for cumene dealkylation, and the activity increased as the amount of zeolite precursor added to the SBA-15 mixture was increased. In preparation for the final phase of the project, the catalyst was embedded into a psuedoboemite alumina (catapal B) matrix and then formed into pellets. In the final phase of the project, the pelletized catalyst is being evaluated for the conversion of a heavy petroleum feedstock to naphtha and middle distillates. This phase was significantly delayed during the past six months due to a serious malfunction of the fume hoods in the Clark Atlanta University's Research Center for Science and Technology, where the project is being conducted. The fume hood system was repaired and the catalyst evaluation is now underway.

  14. Mass-selected Nanoparticles of PtxY as Model Catalysts for Oxygen...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    atoms in these alloys was found to be much higher than in pure Pt. However, the long-term stability of these catalysts is typically compromised by their tendency to degrade via...

  15. Uniform 2 nm gold nanoparticles supported on iron oxides as active catalysts for CO oxidation reaction: Structure-activity relationship

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Guo, Yu; Senanayake, Sanjaya; Gu, Dong; Jin, Zhao; Du, Pei -Pei; Si, Rui; Xu, Wen -Qian; Huang, Yu -Ying; Tao, Jing; Song, Qi -Sheng; et al

    2015-01-12

    Uniform Au nanoparticles (~2 nm) with narrow size-distribution (standard deviation: 0.5–0.6 nm) supported on both hydroxylated (Fe_OH) and dehydrated iron oxide (Fe_O) have been prepared by either deposition-precipitation (DP) or colloidal-deposition (CD) methods. Different structural and textural characterizations were applied to the dried, calcined and used gold-iron oxide samples. The transmission electron microscopy (TEM) and high-resolution TEM (HRTEM) described the high homogeneity in the supported Au nanoparticles. The ex-situ and in-situ X-ray absorption fine structure (XAFS) characterization monitored the electronic and short-range local structure of active gold species. The synchrotron-based in-situ X-ray diffraction (XRD), together with the corresponding temperature-programmed reductionmore » by hydrogen (H₂-TPR), indicated a structural evolution of the iron-oxide supports, correlating to their reducibility. An inverse order of catalytic activity between DP (Au/Fe_OH < Au/Fe_O) and CD (Au/Fe_OH > Au/Fe_O) was observed. Effective gold-support interaction results in a high activity for gold nanoparticles, locally generated by the sintering of dispersed Au atoms on the oxide support in the DP synthesis, while a hydroxylated surface favors the reactivity of externally introduced Au nanoparticles on Fe_OH support for the CD approach. This work reveals why differences in the synthetic protocol translate to differences in the catalytic performance of Au/FeOx catalysts with very similar structural characteristics in CO oxidation.« less

  16. Surface Structures of Cubo-octahedral Pt-Mo Catalyst Nanoparticles from Monte Carlo Simulations

    SciTech Connect (OSTI)

    Wang, Guofeng; Van Hove, M.A.; Ross, P.N.; Baskes, M.I.

    2005-03-31

    The surface structures of cubo-octahedral Pt-Mo nanoparticles have been investigated using the Monte Carlo method and modified embedded atom method potentials that we developed for Pt-Mo alloys. The cubo-octahedral Pt-Mo nanoparticles are constructed with disordered fcc configurations, with sizes from 2.5 to 5.0 nm, and with Pt concentrations from 60 to 90 at. percent. The equilibrium Pt-Mo nanoparticle configurations were generated through Monte Carlo simulations allowing both atomic displacements and element exchanges at 600 K. We predict that the Pt atoms weakly segregate to the surfaces of such nanoparticles. The Pt concentrations in the surface are calculated to be 5 to 14 at. percent higher than the Pt concentrations of the nanoparticles. Moreover, the Pt atoms preferentially segregate to the facet sites of the surface, while the Pt and Mo atoms tend to alternate along the edges and vertices of these nanoparticles. We found that decreasing the size or increasing the Pt concentration leads to higher Pt concentrations but fewer Pt-Mo pairs in the Pt-Mo nanoparticle surfaces.

  17. ZnO nanoparticle catalysts for use in biodiesel production and method of making

    DOE Patents [OSTI]

    Yan, Shuli; Salley, Steven O; Ng, K. Y. Simon

    2014-11-25

    A method of forming a biodiesel product and a heterogeneous catalyst system used to form said product that has a high tolerance for the presence of water and free fatty acids (FFA) in the oil feedstock is disclosed. This catalyst system may simultaneously catalyze both the esterification of FAA and the transesterification of triglycerides present in the oil feedstock. The catalyst system is comprised of a mixture of zinc oxide and a second metal oxide. The zinc oxide includes a mixture of amorphous zinc oxide and zinc oxide nanocrystals, the zinc nanocrystals having a mean grain size between about 20 and 80 nanometers with at least one of the nanocrystals including a mesopore having a diameter of about 5 to 15 nanometers. Preferably, the second metal oxide is a lanthanum oxide, the lanthanum oxide being selected as one from the group of La.sub.2CO.sub.5, LaOOH, and combinations or mixtures thereof.

  18. Identifying low-coverage surface species on supported noble metal nanoparticle catalysts by DNP-NMR

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Johnson, Robert L.; Perras, Frédéric A.; Kobayashi, Takeshi; Schwartz, Thomas J.; Dumesic, James A.; Shanks, Brent H.; Pruski, Marek

    2015-11-20

    DNP-NMR spectroscopy has been applied to enhance the signal for organic molecules adsorbed on γ-Al2O3-supported Pd nanoparticles. In addition, by offering >2500-fold time savings, the technique enabled the observation of 13C-13C cross-peaks for low coverage species, which were assigned to products from oxidative degradation of methionine adsorbed on the nanoparticle surface.

  19. Identifying low-coverage surface species on supported noble metal nanoparticle catalysts by DNP-NMR

    SciTech Connect (OSTI)

    Johnson, Robert L.; Perras, Frdric A.; Kobayashi, Takeshi; Schwartz, Thomas J.; Dumesic, James A.; Shanks, Brent H.; Pruski, Marek

    2015-11-20

    DNP-NMR spectroscopy has been applied to enhance the signal for organic molecules adsorbed on ?-Al2O3-supported Pd nanoparticles. In addition, by offering >2500-fold time savings, the technique enabled the observation of 13C-13C cross-peaks for low coverage species, which were assigned to products from oxidative degradation of methionine adsorbed on the nanoparticle surface.

  20. IMPROVED CATALYSTS FOR HEAVY OIL UPGRADING BASED ON ZEOLITE Y NANOPARTICLES ENCAPSULATED STABLE NANOPOROUS HOST

    SciTech Connect (OSTI)

    Conrad Ingram; Mark Mitchell

    2006-06-20

    Al-SBA-15 mesoporous catalysts with strong Broensted acid sites and Al stabilized in a totally tetrahedral coordination was synthesized from the addition of hydrothermally aged zeolite Y precursor to SBA-15 synthesis mixture under mildly acidic condition of pH 5.5. The materials possessed surface areas between 690 and 850 m{sup 2}/g, pore sizes ranging from 5.6 to 7.5 nm and pore volumes up 1.03 cm{sup 3}, which were comparable to parent SBA-15 synthesized under similar conditions. Up to 2 wt. % Al was present in the most aluminated sample that was investigated, and the Al remained stable in totally tetrahedral coordination, even after calcination at 550 C. The Al-SBA-15 mesoporous catalyst showed significant catalytic activity for cumene dealkylation, and activity increased as the amount of zeolite precursor added to the SBA-15 mixture was increased. The catalyst's activity was not affected by the aging time of the precursor for up to the 24 hr aging time investigated. This method of introducing Al and maintaining it in a total tetrahedral coordination is very effective, in comparison to other direct and post synthesis alumination methods reported. The catalytic performance of the zeolite Y/SBA-15 composite materials will be compared with that of pure SBA-15. The catalysts will then be evaluated for the conversion of heavy petroleum feedstocks.

  1. Zinc ferrite nanoparticle as a magnetic catalyst: Synthesis and dye degradation

    SciTech Connect (OSTI)

    Mahmoodi, Niyaz Mohammad

    2013-10-15

    Graphical abstract: Photocatalytic degradation of Reactive Red 198 and Reactive Red 120 by the synthesized zinc ferrite nanoparticle. - Highlights: Magnetic zinc ferrite nanoparticle was synthesized and characterized. Photocatalytic dye degradation by magnetic nanoparticle was studied. Formate, acetate and oxalate were detected as dominant dye degradation aliphatic intermediates. Nitrate and sulfate ions were detected as mineralization products of dyes. Zinc ferrite nanoparticle was an effective magnetic photocatalyst to degrade dyes. - Abstract: In this paper, magnetic zinc ferrite (ZnFe{sub 2}O{sub 4}) nanoparticle was synthesized and its photocatalytic dye degradation ability from colored wastewater was studied. Reactive Red 198 (RR198) and Reactive Red 120 (RR120) were used as model dyes. The characteristics of ZnFe{sub 2}O{sub 4} were investigated using Fourier transform infrared (FTIR), X-ray diffraction (XRD) and scanning electron microscope (SEM). Photocatalytic dye degradation by ZnFe{sub 2}O{sub 4} was studied by UVvis spectrophotometer and ion chromatography (IC). The effects of ZnFe{sub 2}O{sub 4} dosage, initial dye concentration and salt on dye degradation were evaluated. Formate, acetate and oxalate anions were detected as dominant aliphatic intermediate. Inorganic anions (nitrate and sulfate anions) were detected as dye mineralization products. The results indicated that ZnFe{sub 2}O{sub 4} could be used as a magnetic photocatalyst to degrade dyes from colored wastewater.

  2. A pathway for the growth of core-shell Pt-Pd nanoparticles

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Narula, Chaitanya Kumar; Yang, Xiaofan; Li, Chen; Pennycook, Stephen J; Lupini, Andrew R

    2015-10-12

    In this study, the aging of both Pt-Pd nanoparticles and core-shell Pt-Pd nanoparticles has been reported to result in alloying of Pt with Pd. In comparison to monometallic Pt catalysts, the growth of Pd-Pt bimetallics is slower; however, the mechanism of growth of particles and the mechanism by which Pd improves the hydrothermal durability of bimetallic Pd-Pt particles remains uncertain. In our work on hydrothermal aging of core-shell Pt-Pd nanoparticles, synthesized by solution methods, with varying Pd:Pt ratio of 1:4, 1:1, and 4:1, we compare the growth of core-shell Pt-Pd nanoparticles and find that particles grow by migrating and joiningmore » together. The unique feature of the observed growth is that Pd shells from both particles open up and join, allowing the cores to merge. At high temperatures, alloying occurs in good agreement with reports by other workers.« less

  3. Controlling bimetallic nanostructures by the microemulsion method with subnanometer resolution using a prediction model

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Buceta, David; Tojo, Concha; Vukmirovic, Miomir B.; Deepak, F. Leonard; Lopez-Quintela, M. Arturo

    2015-06-02

    In this study, we present a theoretical model to predict the atomic structure of Au/Pt nanoparticles synthesized in microemulsions. Excellent concordance with the experimental results shows that the structure of the nanoparticles can be controlled at sub-nanometer resolution simply by changing the reactants concentration. The results of this study not only offer a better understanding of the complex mechanisms governing reactions in microemulsions, but open up a simple new way to synthesize bimetallic nanoparticles with ad-hoc controlled nanostructures.

  4. IMPROVED CATALYSTS FOR HEAVY OIL UPGRADING BASED ON ZEOLITE Y NANOPARTICLES ENCAPSULATED IN STABLE NANOPOROUS HOSTS

    SciTech Connect (OSTI)

    Conrad Ingram; Mark Mitchell

    2004-06-30

    The focus of this project is to improve the catalytic performance of zeolite Y for heavy petroleum hydrocracking by synthesizing nanoparticles of the zeolite ({approx}20-30 nm) inside nanoporous silicate or aluminosilicate hosts of similar pore diameters. The encapsulated zeolite nanoparticles are expected to possess pores of reduced diffusional path lengths, hence hydrocarbon substrates will diffuse in, are converted and the products quickly diffused out. This is expected to prevent over-reaction, hence minimizing pore blockage and active sites deactivation. In this phase of the project, research activities were focused on refining procedures to: (a) improve the synthesis of ordered, high surface area nanoporous silica, such as SBA-15, with expanded pore size using trimethylbenzene as additive to the parent SBA-15 synthesis mixture; and (b) reduce the particle size of zeolite Y such that they can be effectively incorporated into the nanoporous silicas. The synthesis of high surface ordered nanoporous silica containing enlarged pores of diameter of 25 nm (larger than the standard size of 8.4 nm) using trimethylbenzene as a pore size expander was accomplished. The synthesis of zeolite Y nanoparticles with median pore size of approximately 50 nm (smaller than the 80 nm typically obtained with TMAOH) using combined TMABr/TMAOH as organic additives was also accomplished.

  5. IMPROVED CATALYSTS FOR HEAVY OIL UPGRADING BASED ON ZEOLITE Y NANOPARTICLES ENCAPSULATED IN STABLE NANOPOROUS HOSTS

    SciTech Connect (OSTI)

    Conrad Ingram

    2003-09-03

    The focus of this project is to improve the catalytic performance of zeolite Y for petroleum hydrocracking by synthesizing nanoparticles of the zeolite ({approx}20-25 nm) inside nanoporous silicate or aluminosilicate hosts. The encapsulated zeolite nanoparticles are expected to possess reduced diffusional path lengths, hence hydrocarbon substrates will diffuse in, are converted and the products quickly diffused out. This is expected to prevent over-reaction and the blocking of the zeolite pores and active sites will be minimized. In this phase of the project, procedures for the synthesis of ordered nanoporous silica, such as SBA-15, using block copolymers and nonionic surfactant were successful reproduced. Expansion of the pores sizes of the nanoporous silica using trimethylbenzene is suggested based on shift in the major X-Ray Diffraction peak in the products to lower 2 angles compared with the parent SBA-15 material. The synthesis of ordered nanoporous materials with aluminum incorporated in the predominantly silicate framework was attempted but is not yet successful, and the procedures needs will be repeated and modified as necessary. Nanoparticles of zeolite Y of particle sizes in the range 40 nm to 120 nm were synthesized in the presence of TMAOH as the particle size controlling additive.

  6. Non Platinum Bimetallic Cathode Electrocatalysts | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Non Platinum Bimetallic Cathode Electrocatalysts Part of a 100 million fuel cell award announced by DOE Secretary Bodman on Oct. 25, 2006. PDF icon 3anl.pdf More Documents & ...

  7. Non-Platinum Bimetallic Cathode Electrocatalysts

    Broader source: Energy.gov [DOE]

    This presentation, which focuses on non-platinum bimetallic cathode electrocatalysts, was given by Debbie Myers of Argonne National Laboratory at a February 2007 meeting on new fuel cell projects.

  8. Preparation of silver nanoparticles/graphene nanosheets as a catalyst for electrochemical oxidation of methanol

    SciTech Connect (OSTI)

    Han, Kun; Miao, Peng; Tang, Yuguo; Tong, Hui; Zhu, Xiaoli; Liu, Tao; Cheng, Wenbo

    2014-02-03

    In this report, silver nanoparticles (AgNPs) decorated graphene nanosheets have been prepared based on the reduction of Ag ions by hydroquinone, and their catalytic performance towards the electrochemical oxidation of methanol is investigated. The synthesis of the nano-composite is confirmed by transmission electron microscope measurements and UV-vis absorption spectra. Excellent electrocatalytic performance of the material is demonstrated by cyclic voltammograms. This material also contributes to the low peak potential of methanol oxidation compared with most of the other materials.

  9. Novel Pt/Mg(In)(Al)O catalysts for ethane and propane dehydrogenation

    SciTech Connect (OSTI)

    Sun, Pingping; Siddiqi, Georges; Vining, William C.; Chi, Miaofang; Bell, Alexis T.

    2011-10-28

    Catalysts for the dehydrogenation of light alkanes were prepared by dispersing Pt on the surface of a calcined hydrotalcite-like support containing indium, Mg(In)(Al)O. Upon reduction in H{sub 2} at temperatures above 673 K, bimetallic particles of PtIn are observed by TEM, which have an average diameter of 1 nm. Analysis of Pt LIII-edge extended X-ray absorption fine structure (EXAFS) data shows that the In content of the bimetallic particles increases with increasing bulk In/Pt ratio and reduction temperature. Pt LIII-edge X-ray absorption near edge structure (XANES) indicates that an increasing donation of electronic charge from In to Pt occurs with increasing In content in the PtIn particles. The activity and selectivity of the Pt/Mg(In)(Al)O catalysts for ethane and propane dehydrogenation reactions are strongly dependent on the bulk In/Pt ratio. For both reactants, maximum activity was achieved for a bulk In/Pt ratio of 0.48, and at this In/Pt ratio, the selectivity to alkene was nearly 100%. Coke deposition was observed after catalyst use for either ethane or propane dehydrogenation, and it was observed that the alloying of Pt with In greatly reduced the amount of coke deposited. Characterization of the deposit by Raman spectroscopy indicates that the coke is present as highly disordered graphite particles <30 nm in diameter. While the amount of coke deposited during ethane and propane dehydrogenation are comparable, the effects on activity are dependent on reactant composition. Coke deposition had no effect on ethane dehydrogenation activity, but caused a loss in propane dehydrogenation activity. This difference is attributed to the greater ease with which coke produced on the surface of PtIn nanoparticles migrates to the support during ethane dehydrogenation versus propane dehydrogenation.

  10. IMPROVED CATALYSTS FOR HEAVY OIL UPGRADING BASED ON ZEOLITE Y NANOPARTICLES ENCAPSULATED IN STABLE NANOPOROUS HOST

    SciTech Connect (OSTI)

    Conrad Ingram; Mark Mitchell

    2005-11-15

    Composite materials of SBA-15/zeolite Y were synthesized from zeolite Y precursor and a synthesis mixture of mesoporous silicate SBA-15 via a hydrothermal process in the presence of a slightly acidic media of pH 4-6 with 2M H{sub 2}SO{sub 4}. The SBA-15/ZY composites showed Type IV adsorption isotherms, narrow BJH average pore size distribution of 4.9 nm, surface areas up to 800 m{sup 2}2/g and pore volumes 1.03 cm{sup 3}, all comparable to pure SBA-15 synthesized under similar conditions. Chemical analysis revealed Si/Al ratio down to 8.5 in the most aluminated sample, and {sup 27}AlSS MAS NMR confirmed aluminum was in tetrahedral coordination. This method of introduction of Al in pure T{sub d} coordination is effective in comparison to other direct and post synthesis alumination methods. Bronsted acid sites were evident from a pyridinium peak at 1544 cm-1 in the FTIR spectrum after pyridine adsorption, and from NH{sub 3} -TPD experiments. SBA-15/ZY composites showed significant catalytic activities for the dealkylation of isopropylbenzene to benzene and propene, similar to those of commercial zeolite Y. It was observed that higher conversion for catalysts synthesized with high amount of ZY precursor mixture added to the SBA-15. Over all the composites has shown good catalytic activity. Further studies will be focused on gaining a better understand the nature of the precursor, and to characterize and to locate the acid sites in the composite material. The composite will also be evaluated for heavy oil conversion to naphtha and middle distillates.

  11. Hydrocarbon fuel reforming catalyst and use thereof

    DOE Patents [OSTI]

    Ming, Qimin; Healey, Todd; Irving, Patricia Marie

    2006-06-27

    The subject invention is a catalyst consisting of an oxide or mixed oxide support and bimetallic catalytically active compounds. The supporting oxide can be a single oxide, such as Al.sub.2O.sub.3; it also can be a mixture of oxides, such as Y.sub.2O.sub.3 stabilized ZrO.sub.2 (YSZ), Al.sub.2O.sub.3 with CeO.sub.2, Al.sub.2O.sub.3 with YSZ and others. The bimetallic compounds, acting as active components, are selected from platinum, and ruthenium, prepared in an appropriate ratio. The catalyst is used in the steam reforming of hydrocarbons to produce hydrogen for applications such as polymer electrolyte membrane fuel cells.

  12. Insight into the Catalytic Mechanism of Bimetallic Platinum–Copper Core–Shell Nanostructures for Nonaqueous Oxygen Evolution Reactions

    SciTech Connect (OSTI)

    Ma, Lu; Luo, Xiangyi; Kropf, A. Jeremy; Wen, Jianguo; Wang, Xiaoping; Lee, Sungsik; Myers, Deborah J.; Miller, Dean; Wu, Tianpin; Lu, Jun; Amine, Khalil

    2016-01-01

    The oxygen evolution reaction (OER) plays a critical role in multiple energy conversion and storage applications. However, its sluggish kinetics usually results in large voltage polarization and unnecessary energy loss. Therefore, designing efficient catalysts that could facilitate this process has become an emerging topic. Here, we present a unique Pt–Cu core–shell nanostructure for catalyzing the nonaqueous OER. The catalysts were systematically investigated with comprehensive spectroscopic techniques, and applied in nonaqueous Li–O2 electrochemical cells, which exhibited dramatically reduced charging overpotential (<0.2 V). The superior performance is explained by the robust Cu(I) surface sites stabilized by the Pt core in the nanostructure. The insights into the catalytic mechanism of the unique Pt–Cu core–shell nanostructure gained in this work are expected to serve as a guide for future design of other nanostructured bimetallic OER catalysts.

  13. Enhanced Dry Reforming of Methane on Ni and Ni-Pt Catalysts Synthesized by Atomic Layer Deposition

    SciTech Connect (OSTI)

    Gould, Troy D.; Montemore, Matthew M.; Lubers, Alia M.; Ellis, Lucas D.; Weimer, Alan; Falconer, John L.; Medlin, James W.

    2015-02-25

    Atomic layer deposition (ALD) was used to deposit Ni and Pt on alumina supports to form monometallic and bimetallic catalysts with initial particle sizes of 12.4 nm. The ALD catalysts were more active (per mass of metal) than catalysts prepared by incipient wetness (IW) for dry reforming of methane (DRM), and they did not form carbon whiskers during reaction due to their sufficiently small size. Catalysts modified by Pt ALD had higher rates of reaction per mass of metal and inhibited coking, whereas NiPt catalysts synthesized by IW still formed carbon whiskers. Temperature-programmed reduction of Ni catalysts modified by Pt ALD indicated the presence of bimetallic interaction. Density functional theory calculations suggested that under reaction conditions, the NiPt surfaces form Ni-terminated surfaces that are associated with higher DRM rates (due to their C and O adsorption energies, as well as the CO formation and CH4 dissociation energies).

  14. Oxidation catalyst

    DOE Patents [OSTI]

    Ceyer, Sylvia T.; Lahr, David L.

    2010-11-09

    The present invention generally relates to catalyst systems and methods for oxidation of carbon monoxide. The invention involves catalyst compositions which may be advantageously altered by, for example, modification of the catalyst surface to enhance catalyst performance. Catalyst systems of the present invention may be capable of performing the oxidation of carbon monoxide at relatively lower temperatures (e.g., 200 K and below) and at relatively higher reaction rates than known catalysts. Additionally, catalyst systems disclosed herein may be substantially lower in cost than current commercial catalysts. Such catalyst systems may be useful in, for example, catalytic converters, fuel cells, sensors, and the like.

  15. LSU EFRC - Center for Atomic Level Catalyst Design - Project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    properties of supported Cu nanoparticles: Relevance for catalyst stability under methanol synthesis conditions", EMCAT 2nd International Symposium of Adv. Electron...

  16. Controlled Anisotropic Growth of Co-Fe-P from Co-Fe-O Nanoparticles

    SciTech Connect (OSTI)

    Mendoza-Garcia, Adriana; Zhu, Huiyuan; Yu, Yongsheng; Li, Qing; Zhou, Lin; Su, Dong; Kramer, Matthew J.; Sun, Shouheng

    2015-06-26

    Presented here is a facile approach to bimetallic phosphides, Co-Fe-P, via high-temperature (300C) reaction between Co-Fe-O nanoparticles and trioctylphosphine. The growth of Co-Fe-P from the Co-Fe-O is anisotropic. As a result, Co-Fe-P nanorods (from the polyhedral Co-Fe-O nanoparticles) and sea-urchin-like Co-Fe-P (from the cubic Co-Fe-O nanoparticles) are synthesized with both nanorod and the sea-urchin-arm dimensions controlled by Co/Fe ratios. The Co-Fe-P structure, especially the sea-urchin-like (Co0.54Fe0.46)2P, shows enhanced catalysis for oxygen evolution reaction in KOH with its catalytic efficiency surpassing Ir catalyst. Our synthesis is simple and may be readily extended to the preparation of other multimetallic phosphides for important catalysis and energy storage applications.

  17. Controlled Anisotropic Growth of Co-Fe-P from Co-Fe-O Nanoparticles

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Mendoza-Garcia, Adriana; Zhu, Huiyuan; Yu, Yongsheng; Li, Qing; Zhou, Lin; Su, Dong; Kramer, Matthew J.; Sun, Shouheng

    2015-06-26

    Presented here is a facile approach to bimetallic phosphides, Co-Fe-P, via high-temperature (300°C) reaction between Co-Fe-O nanoparticles and trioctylphosphine. The growth of Co-Fe-P from the Co-Fe-O is anisotropic. As a result, Co-Fe-P nanorods (from the polyhedral Co-Fe-O nanoparticles) and sea-urchin-like Co-Fe-P (from the cubic Co-Fe-O nanoparticles) are synthesized with both nanorod and the sea-urchin-arm dimensions controlled by Co/Fe ratios. The Co-Fe-P structure, especially the sea-urchin-like (Co0.54Fe0.46)2P, shows enhanced catalysis for oxygen evolution reaction in KOH with its catalytic efficiency surpassing Ir catalyst. Our synthesis is simple and may be readily extended to the preparation of other multimetallic phosphides for importantmore » catalysis and energy storage applications.« less

  18. Bimetallic strip for low temperature use

    DOE Patents [OSTI]

    Bussiere, Jean F.; Welch, David O.; Suenaga, Masaki

    1981-01-01

    There is provided a class of mechanically pre-stressed structures, suitably bi-layer strips comprising a layer of group 5 transition metals in intimate contact with a layer of an intermetallic compound of said transition metals with certain group 3A, 4A or 5A metals or metalloids suitably gallium, indium, silicon, germanium, tin, arsenic or antimony. The changes of Young's modulus of these bi-layered combinations at temperatures in the region of but somewhat above absolute zero provides a useful means of sensing temperature changes. Such bi-metallic strips may be used as control strips in thermostats, in direct dial reading instruments, or the like. The structures are made by preparing a sandwich of a group 5B transition metal strip between the substantially thicker strips of an alloy between copper and a predetermined group 3A, 4A or 5A metal or metalloid, holding the three layers of the sandwich in intimate contact heating the same, cooling the same and removing the copper alloy and then removing one of the two thus formed interlayer alloys between said transition metal and the metal previously alloyed with copper.

  19. Selective Hydrogenation of Acetylene in the Presence of Ethylene on K+ -beta-Zeolite Supported Pd and PdAg Catalysts

    SciTech Connect (OSTI)

    Huang,W.; Pyrz, W.; Lobo, R.; Chen, J.

    2007-01-01

    The selective hydrogenation of acetylene in the presence of ethylene has been studied on K+ exchanged {beta}-zeolite supported Pd and PdAg catalysts. Results from batch reactor studies with Fourier transform infrared spectroscopy (FTIR) have shown that the K+-{beta}-zeolite support is more selective than the Al2O3 or Na+-{beta}-zeolite supports toward the hydrogenation of acetylene. The rate and equilibrium constants for Pd/K+-{beta}-zeolite and PdAg/K+-{beta}-zeolite were determined using a Langmuir-Hinshelwood model. The selectivity of the PdAg bimetallic catalyst is twice of that of the Pd catalyst. Results from flow reactor studies show that the PdAg/K+-{beta}-zeolite catalyst has higher selectivity but lower activity toward acetylene hydrogenation than the Pd/K+-{beta}-zeolite catalyst. The selectivity to the undesirable ethane by-product is inhibited on the bimetallic catalyst. Extended X-ray absorption fine structure (EXAFS) studies and transmission electron microscope (TEM) analysis confirm the formation of Pd-Ag bimetallic bonds in the PdAg/K+-{beta}-zeolite catalyst.

  20. Oxyhydrochlorination catalyst

    DOE Patents [OSTI]

    Taylor, Charles E.; Noceti, Richard P.

    1992-01-01

    An improved catalyst and method for the oxyhydrochlorination of methane is disclosed. The catalyst includes a pyrogenic porous support on which is layered as active material, cobalt chloride in major proportion, and minor proportions of an alkali metal chloride and of a rare earth chloride. On contact of the catalyst with a gas flow of methane, HCl and oxygen, more than 60% of the methane is converted and of that converted more than 40% occurs as monochloromethane. Advantageously, the monochloromethane can be used to produce gasoline boiling range hydrocarbons with the recycle of HCl for further reaction. This catalyst is also of value for the production of formic acid as are analogous catalysts with lead, silver or nickel chlorides substituted for the cobalt chloride.

  1. Simulated study of plasmonic coupling in noble bimetallic alloy nanosphere arrays

    SciTech Connect (OSTI)

    Bansal, Amit Verma, S. S.

    2014-05-15

    The plasmonic coupling between the interacting noble metal nanoparticles plays an important role to influence the optical properties of arrays. In this work, we have extended the Mie theory results of our recent communication to include the effect of particle interactions between the alloy nanoparticles by varying interparticle distance and number of particles. The localized surface plasmon resonance (LSPR) peak position, full width at half maxima (FWHM) and scattering efficiency of one dimensional (1D) bimetallic alloy nanosphere (BANS) arrays of earlier optimized compositions i.e. Ag{sub 0.75}Au{sub 0.25}, Au{sub 0.25}Cu{sub 0.75} and Ag{sub 0.50}Cu{sub 0.50} have been studied presently by using discrete dipole approximation (DDA) simulations. Studies have been made to optimize size of the nanosphere, number of spheres in the arrays, material and the interparticle distance. It has been found that both the scattering efficiency and FWHM (bandwidth) can be controlled in the large region of the electromagnetic (EM) spectrum by varying the number of interacting particles and interparticle distance. In comparison to other alloy arrays, Ag{sub 0.50}Cu{sub 0.50} BANS arrays (each of particle radius 50 nm) shows larger tunability of LSPR with wide bandwidth (essential condition for plasmonic solar cells)

  2. Enhanced electrocatalytic activity and stability of Pd3V/C nanoparticles with a trace amount of Pt decoration for the oxygen reduction reaction

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Liu, Sufen; Han, Lili; Zhu, Jing; Xiao, Weiping; Wang, Jie; Liu, Hongfang; Xin, Huolin; Wang, Deli

    2015-09-14

    In this study, carbon supported Pd3V bimetallic alloy nanoparticles (Pd3V/C) have been successfully synthesized via a simple impregnation–reduction method, followed by high temperature treatment under a H2 atmosphere. Electrochemical tests reveal that the half-wave potential of Pd3V/C-500 shifts positively 40 mV compared with Pd/C. However, the catalytic activity of Pd3V/C-500 suffers from serious degradation after 1k cycles. By a spontaneous displacement reaction or co-reduction method, a trace amount of Pt was decorated on the surface or inside of the Pd3V/C nanoparticles. The catalytic activity and stability of the Pd3V@Pt/C and Pt-Pd3V/C catalysts for the oxygen reduction reaction (ORR) are enhancedmore » significantly, and are comparable to commercial Pt/C. In addition, the Pt mass activity of Pd3V@Pt/C and Pt-Pd3V/C improves by factors of 10.9 and 6.5 at 0.80 V relative to Pt/C. Moreover, Pt-decorated Pd3V/C nanoparticles show almost no obvious morphology change after durability tests, because the Pt-rich shell plays an important role in preventing degradation.« less

  3. Photo-oxidation catalysts

    DOE Patents [OSTI]

    Pitts, J. Roland; Liu, Ping; Smith, R. Davis

    2009-07-14

    Photo-oxidation catalysts and methods for cleaning a metal-based catalyst are disclosed. An exemplary catalyst system implementing a photo-oxidation catalyst may comprise a metal-based catalyst, and a photo-oxidation catalyst for cleaning the metal-based catalyst in the presence of light. The exposure to light enables the photo-oxidation catalyst to substantially oxidize absorbed contaminants and reduce accumulation of the contaminants on the metal-based catalyst. Applications are also disclosed.

  4. Correlation of Theory and Function in Well-Defined Bimetallic Electrocatalysts - Final Report

    SciTech Connect (OSTI)

    Crooks, Richard M.

    2014-06-05

    The objective of this research proposal was to correlate the structure of nanoparticles that are comprised of ~100-200 atoms to their electrocatalytic function. This objective was based on the growing body of evidence suggesting that catalytic properties can be tailored through controlled synthesis of nanoparticles. What has been missing from many of these studies, and what we are contributing, is a model catalyst that is sufficiently small, structurally well-defined, and well-characterized that its function can be directly predicted by theory. Specifically, our work seeks to develop a fundamental and detailed understanding of the relationship between the structure of nanoscopic oxygen-reduction catalysts and their function. We assembled a team with expertise in theory, synthesis, and advanced characterization methods to address the primary objective of this project. We anticipated the outcomes of the study to be: (1) a better theoretical understanding of how nanoparticle structure affects catalytic properties; (2) the development of advanced, in-situ and ex-situ, atomic-scale characterization methods that are appropriate for particles containing about 100 atoms; and (3) improved synthetic methods that produce unique nanoparticle structures that can be used to test theoretical predictions. During the project period, we have made excellent progress on all three fronts.

  5. Computational Chemistry-Based Identification of Ultra-Low Temperature Water-Gas-Shift Catalysts

    SciTech Connect (OSTI)

    Manos Mavrikakis

    2008-08-31

    The current work seeks to identify novel, catalytically-active, stable, poison-resistant LWGS catalysts that retain the superior activity typical of conventional Cu catalysts but can be operated at similar or lower temperatures. A database for the Binding Energies (BEs) of the LWGS relevant species, namely CO, O and OH on the most-stable, close-packed facets of a set of 17 catalytically relevant transition metals was established. This BE data and a database of previously established segregation energies was utilized to predict the stability of bimetallic NSAs that could be synthesized by combinations of the 17 parent transition metals. NSAs that were potentially stable both in vacuo and under the influence of strong-binding WGS intermediates were then selected for adsorption studies. A set of 40 NSAs were identified that satisfied all three screener criteria and the binding energies of CO, O and OH were calculated on a set of 66, 43 and 79 NSA candidates respectively. Several NSAs were found that bound intermediates weaker than the monometallic catalysts and were thus potentially poison-resistant. Finally, kinetic studies were performed and resulted in the discovery of a specific NSA-based bimetallic catalyst Cu/Pt that is potentially a promising LWGS catalyst. This stable Cu/Pt subsurface alloy is expected to provide facile H{sub 2}O activation and remain relatively resistant from the poisoning by CO, S and formate intermediates.

  6. Catalyst activator

    DOE Patents [OSTI]

    McAdon, Mark H.; Nickias, Peter N.; Marks, Tobin J.; Schwartz, David J.

    2001-01-01

    A catalyst activator particularly adapted for use in the activation of metal complexes of metals of Group 3-10 for polymerization of ethylenically unsaturated polymerizable monomers, especially olefins, comprising two Group 13 metal or metalloid atoms and a ligand structure including at least one bridging group connecting ligands on the two Group 13 metal or metalloid atoms.

  7. In-situ Studies of the Reactions of Bifunctional and Heterocyclic Molecules over Noble Metal Single Crystal and Nanoparticle Catalysts Studied with Kinetics and Sum-Frequency Generation Vibrational Spectroscopy

    SciTech Connect (OSTI)

    Kliewer, Christopher J.

    2009-06-30

    Sum frequency generation surface vibrational spectroscopy (SFG-VS) in combination with gas chromatography (GC) was used in-situ to monitor surface bound reaction intermediates and reaction selectivities for the hydrogenation reactions of pyrrole, furan, pyridine, acrolein, crotonaldehyde, and prenal over Pt(111), Pt(100), Rh(111), and platinum nanoparticles under Torr reactant pressures and temperatures of 300K to 450K. The focus of this work is the correlation between the SFG-VS observed surface bound reaction intermediates and adsorption modes with the reaction selectivity, and how this is affected by catalyst structure and temperature. Pyrrole hydrogenation was investigated over Pt(111) and Rh(111) single crystals at Torr pressures. It was found that pyrrole adsorbs to Pt(111) perpendicularly by cleaving the N-H bond and binding through the nitrogen. However, over Rh(111) pyrrole adsorbs in a tilted geometry binding through the {pi}-aromatic orbitals. A surface-bound pyrroline reaction intermediate was detected over both surfaces with SFG-VS. It was found that the ring-cracking product butylamine is a reaction poison over both surfaces studied. Furan hydrogenation was studied over Pt(111), Pt(100), 10 nm cubic platinum nanoparticles and 1 nm platinum nanoparticles. The product distribution was observed to be highly structure sensitive and the acquired SFG-VS spectra reflected this sensitivity. Pt(100) exhibited more ring-cracking to form butanol than Pt(111), while the nanoparticles yielded higher selectivities for the partially saturated ring dihydrofuran. Pyridine hydrogenation was investigated over Pt(111) and Pt(100). The {alpha}-pyridyl surface adsorption mode was observed with SFG-VS over both surfaces. 1,4-dihydropyridine was seen as a surface intermediate over Pt(100) but not Pt(111). Upon heating the surfaces to 350K, the adsorbed pyridine changes to a flat-lying adsorption mode. No evidence was found for the pyridinium cation. The hydrogenation of the {alpha},{beta}-unsaturated aldehydes acrolein, crotonaldehyde, and prenal were investigated over Pt(111) and Pt(100). The selectivity for the hydrogenation of the C=C bond was found to depend on the number of methyl groups added to the bond. The adsorption modes of the three aldehydes were determined. The hydrogenation of crotonaldehyde was found to be nearly structure insensitive as the TOF and selectivity were very close to the same over Pt(111) and Pt(100). SFG-VS indicated identical surface intermediates over the two crystal faces during crotonaldehyde hydrogenation.

  8. High performance, high durability non-precious metal fuel cell catalysts

    DOE Patents [OSTI]

    Wood, Thomas E.; Atanasoski, Radoslav; Schmoeckel, Alison K.

    2016-03-15

    This invention relates to non-precious metal fuel cell cathode catalysts, fuel cells that contain these catalysts, and methods of making the same. The fuel cell cathode catalysts are highly nitrogenated carbon materials that can contain a transition metal. The highly nitrogenated carbon materials can be supported on a nanoparticle substrate.

  9. Physical and Numerical Analysis of Extrusion Process for Production of Bimetallic Tubes

    SciTech Connect (OSTI)

    Misiolek, W.Z.; Sikka, V.K.

    2006-08-10

    Bimetallic tubes are used for very specific applications where one of the two metals provides strength and the other provides specific properties such as aqueous corrosion and carburization, coking resistance, and special electrical and thermal properties. Bimetallic tubes have application in pulp and paper industry for heat-recovery boilers, in the chemical industry for ethylene production, and in the petrochemical industry for deep oil well explorations. Although bimetallic tubes have major applications in energy-intensive industry, they often are not used because of their cost and manufacturing sources in the United States. This project was intended to address both of these issues.

  10. Method of making chalcogen catalysts for polymer electrolyte fuel cells

    DOE Patents [OSTI]

    Choi, Jong-Ho; Zelenay, Piotr; Wieckowski, Andrzej; Cao, Dianxue

    2010-12-14

    A method of making an electrode catalyst material using aqueous solutions. The electrode catalyst material includes a support comprising at least one transition metal and at least one chalcogen disposed on a surface of the transition metal. The method includes reducing a metal powder, mixing the metal powder with an aqueous solution containing at least one inorganic compound of the chalcogen to form a mixture, and providing a reducing agent to the mixture to form nanoparticles of the electrode catalyst. The electrode catalyst may be used in a membrane electrode assembly for a fuel cell.

  11. Synthesis and anti-bacterial activity of Cu, Ag and Cu-Ag alloy nanoparticles: A green approach

    SciTech Connect (OSTI)

    Valodkar, Mayur; Modi, Shefaly; Pal, Angshuman; Thakore, Sonal

    2011-03-15

    Research highlights: {yields} Synthesis of novel nanosized copper-silver alloys of different compositions. {yields} Completely green approach for synthesis of water soluble bimetallic nanoparticle. {yields} Interesting anti-bacterial activity of as synthesized metal and alloy nanoparticle. -- Abstract: Metallic and bimetallic nanoparticles of copper and silver in various proportions were prepared by microwave assisted chemical reduction in aqueous medium using the biopolymer, starch as a stabilizing agent. Ascorbic acid was used as the reducing agent. The silver and copper nanoparticles exhibited surface plasmon absorption resonance maxima (SPR) at 416 and 584 nm, respectively; while SPR for the Cu-Ag alloys appeared in between depending on the alloy composition. The SPR maxima for bimetallic nanoparticles changes linearly with increasing copper content in the alloy. Transmission electron micrograph (TEM) showed monodispersed particles in the range of 20 {+-} 5 nm size. Both silver and copper nanoparticles exhibited emission band at 485 and 645 nm, respectively. The starch-stabilized nanoparticles exhibited interesting antibacterial activity with both gram positive and gram negative bacteria at micromolar concentrations.

  12. EFFECT OF PRETREATMENT ON PT-CO/C CATHODE CATALYSTS FOR THE OXYGEN-REDUCTION REACTION

    SciTech Connect (OSTI)

    Fox, E.

    2009-05-13

    In order to reduce the precious metal loading without sacrificing activity and stability, a new method for the preparation of bimetallic catalysts is proposed. Currently, Pt-alloy particles, with 2 to 3 nm in diameter, are loaded on high surface area carbon supports. Of the Pt loaded, only the surface atoms interact with the reactants. In order to increase the Pt utilization per metal particle the new process for catalyst preparation will incorporate a non-noble transition metal core coated with a skin layer of Pt deposited on high surface area carbon. The effect of reducing agent strength during synthesis was also explored. It was determined that the Co addition has a higher impact on catalyst when used with NaBH4 as reducing agent as compared to NaCOOH.

  13. Electrochemical catalyst recovery method

    DOE Patents [OSTI]

    Silva, Laura J.; Bray, Lane A.

    1995-01-01

    A method of recovering catalyst material from latent catalyst material solids includes: a) combining latent catalyst material solids with a liquid acid anolyte solution and a redox material which is soluble in the acid anolyte solution to form a mixture; b) electrochemically oxidizing the redox material within the mixture into a dissolved oxidant, the oxidant having a potential for oxidation which is effectively higher than that of the latent catalyst material; c) reacting the oxidant with the latent catalyst material to oxidize the latent catalyst material into at least one oxidized catalyst species which is soluble within the mixture and to reduce the oxidant back into dissolved redox material; and d) recovering catalyst material from the oxidized catalyst species of the mixture. The invention is expected to be particularly useful in recovering spent catalyst material from petroleum hydroprocessing reaction waste products having adhered sulfides, carbon, hydrocarbons, and undesired metals, and as well as in other industrial applications.

  14. Electrochemical catalyst recovery method

    DOE Patents [OSTI]

    Silva, L.J.; Bray, L.A.

    1995-05-30

    A method of recovering catalyst material from latent catalyst material solids includes: (a) combining latent catalyst material solids with a liquid acid anolyte solution and a redox material which is soluble in the acid anolyte solution to form a mixture; (b) electrochemically oxidizing the redox material within the mixture into a dissolved oxidant, the oxidant having a potential for oxidation which is effectively higher than that of the latent catalyst material; (c) reacting the oxidant with the latent catalyst material to oxidize the latent catalyst material into at least one oxidized catalyst species which is soluble within the mixture and to reduce the oxidant back into dissolved redox material; and (d) recovering catalyst material from the oxidized catalyst species of the mixture. The invention is expected to be particularly useful in recovering spent catalyst material from petroleum hydroprocessing reaction waste products having adhered sulfides, carbon, hydrocarbons, and undesired metals, and as well as in other industrial applications. 3 figs.

  15. Catalytic Nonoxidation Dehydrogenation of Ethane Over Fe-Ni Catalysts Supported on Mg (Al)O to Produce Hydrogen and Easily Purified Carbon Nanotubes

    SciTech Connect (OSTI)

    Shen,W.; Wang, Y.; Shi, X.; Shah, N.; Huggins, F.; Bollineni, S.; Seehra, M.; Huffman, G.

    2007-01-01

    Nonoxidative decomposition of ethane was conducted over monometallic Ni and bimetallic Fe-Ni catalysts on basic Mg(Al)O support to produce H2 free of CO and CO2 and easily purified carbon nanotubes, a potentially valuable byproduct. The Mg(Al)O support was prepared by calcination of synthetic MgAl-hydrotalcite with a Mg to Al ratio of 5. The catalysts were prepared by incipient wetness with total metal loadings of 5 wt %. The dehydrogenation of undiluted ethane was conducted at temperatures of 500, 650, and 700 C. At 500 C, the Ni/Mg(Al)O catalyst was highly active and very stable with 100% conversion of ethane to 20 vol % H2 and 80 vol % CH4. However, the bimetallic Fe-Ni/Mg(Al)O exhibited its best performance at 650 C, yielding 65 vol % H2, 10 vol % CH4, and 25 vol % unreacted ethane. The product carbon was in the form of carbon nanotubes (CNT) at all three reaction temperatures, but the morphology of the CNT depended on both the catalyst composition and reaction temperature. The CNTs were formed by a tip-growth mechanism over the Mg(Al)O supported catalysts and were easily purified by a one-step dilute nitric acid treatment. Mossbauer spectroscopy, X-ray absorption fine structure spectroscopy, N2 adsorption-desorption isotherms, TEM, STEM, TGA, and XRD were used to characterize the catalysts and the CNT, revealing the catalytic mechanisms.

  16. Thermally stable nanoparticles on supports

    DOE Patents [OSTI]

    Roldan Cuenya, Beatriz; Naitabdi, Ahmed R.; Behafarid, Farzad

    2012-11-13

    An inverse micelle-based method for forming nanoparticles on supports includes dissolving a polymeric material in a solvent to provide a micelle solution. A nanoparticle source is dissolved in the micelle solution. A plurality of micelles having a nanoparticle in their core and an outer polymeric coating layer are formed in the micelle solution. The micelles are applied to a support. The polymeric coating layer is then removed from the micelles to expose the nanoparticles. A supported catalyst includes a nanocrystalline powder, thin film, or single crystal support. Metal nanoparticles having a median size from 0.5 nm to 25 nm, a size distribution having a standard deviation .ltoreq.0.1 of their median size are on or embedded in the support. The plurality of metal nanoparticles are dispersed and in a periodic arrangement. The metal nanoparticles maintain their periodic arrangement and size distribution following heat treatments of at least 1,000.degree. C.

  17. Enhanced electrocatalytic activity and stability of Pd3V/C nanoparticles with a trace amount of Pt decoration for the oxygen reduction reaction

    SciTech Connect (OSTI)

    Liu, Sufen; Han, Lili; Zhu, Jing; Xiao, Weiping; Wang, Jie; Liu, Hongfang; Xin, Huolin; Wang, Deli

    2015-09-14

    In this study, carbon supported Pd3V bimetallic alloy nanoparticles (Pd3V/C) have been successfully synthesized via a simple impregnation–reduction method, followed by high temperature treatment under a H2 atmosphere. Electrochemical tests reveal that the half-wave potential of Pd3V/C-500 shifts positively 40 mV compared with Pd/C. However, the catalytic activity of Pd3V/C-500 suffers from serious degradation after 1k cycles. By a spontaneous displacement reaction or co-reduction method, a trace amount of Pt was decorated on the surface or inside of the Pd3V/C nanoparticles. The catalytic activity and stability of the Pd3V@Pt/C and Pt-Pd3V/C catalysts for the oxygen reduction reaction (ORR) are enhanced significantly, and are comparable to commercial Pt/C. In addition, the Pt mass activity of Pd3V@Pt/C and Pt-Pd3V/C improves by factors of 10.9 and 6.5 at 0.80 V relative to Pt/C. Moreover, Pt-decorated Pd3V/C nanoparticles show almost no obvious morphology change after durability tests, because the Pt-rich shell plays an important role in preventing degradation.

  18. Rare earth oxide fluoride nanoparticles and hydrothermal method for forming nanoparticles

    DOE Patents [OSTI]

    Fulton, John L. [Richland, WA; Hoffmann, Markus M. [Richland, WA

    2001-11-13

    A hydrothermal method for forming nanoparticles of a rare earth element, oxygen and fluorine has been discovered. Nanoparticles comprising a rare earth element, oxygen and fluorine are also described. These nanoparticles can exhibit excellent refractory properties as well as remarkable stability in hydrothermal conditions. The nanoparticles can exhibit excellent properties for numerous applications including fiber reinforcement of ceramic composites, catalyst supports, and corrosion resistant coatings for high-temperature aqueous solutions.

  19. Rare Earth Oxide Fluoride Nanoparticles And Hydrothermal Method For Forming Nanoparticles

    DOE Patents [OSTI]

    Fulton, John L.; Hoffmann, Markus M.

    2003-12-23

    A hydrothermal method for forming nanoparticles of a rare earth element, oxygen and fluorine has been discovered. Nanoparticles comprising a rare earth element, oxygen and fluorine are also described. These nanoparticles can exhibit excellent refractory properties as well as remarkable stability in hydrothermal conditions. The nanoparticles can exhibit excellent properties for numerous applications including fiber reinforcement of ceramic composites, catalyst supports, and corrosion resistant coatings for high-temperature aqueous solutions.

  20. Vibrational spectroscopic studies of adsorbates on bimetallic surfaces. Doctoral thesis

    SciTech Connect (OSTI)

    Kuhn, W.K.

    1992-12-01

    In this work, well-defined bimetallic surfaces have been studied using carbon monoxide adsorption in conjunction with infrared reflection absorption spectroscopy (IRAS). These studies have indicated that for CO adsorbed on Cu overlayers, the bond between the CO and the Cu adatoms is comprised of both pi-back-donation and polarization interaction components. The sum of the contributions from these effects determines the observed bond strength with the observed CO stretching frequency being determined by the relative contributions of the components. In addition, it was determined that IR spectra of adsorbed CO show a remarkable sensitivity to surface structure. Three-dimensional Cu clusters, well-ordered two dimensional Cu islands and isolated Cu atoms are distinctively characterized by their CO IR peaks. In addition, both disorder-order and order-order transitions are observed for the metal overlayers on the single crystal metal substrates. It was also observed that localized segregation and ordering of mixed Co and S overlayers on a Mo(110) substrate occurs upon annealing.

  1. Catalyst Cartography: 3D Super-Resolution Mapping of Catalytic Activity |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Ames Laboratory Catalyst Cartography: 3D Super-Resolution Mapping of Catalytic Activity Thanks to a groundbreaking new method, scientists have created the first 3D super-resolution maps of catalytic activity on an individual catalytic nanoparticle while reactions are occurring. Catalysts are used in manufacturing everything from stain remover to rocket fuel; they make production more efficient by facilitating chemical reactions. Each catalyst being studied is only about 200 nanometers in

  2. System for reactivating catalysts

    DOE Patents [OSTI]

    Ginosar, Daniel M.; Thompson, David N.; Anderson, Raymond P.

    2010-03-02

    A method of reactivating a catalyst, such as a solid catalyst or a liquid catalyst is provided. The method comprises providing a catalyst that is at least partially deactivated by fouling agents. The catalyst is contacted with a fluid reactivating agent that is at or above a critical point of the fluid reactivating agent and is of sufficient density to dissolve impurities. The fluid reactivating agent reacts with at least one fouling agent, releasing the at least one fouling agent from the catalyst. The at least one fouling agent becomes dissolved in the fluid reactivating agent and is subsequently separated or removed from the fluid reactivating agent so that the fluid reactivating agent may be reused. A system for reactivating a catalyst is also disclosed.

  3. Lattice-Strain Control of Exceptional Activity in Dealloyed Core-Shell Fuel Cell Catalysts

    SciTech Connect (OSTI)

    Strasser, Peter

    2011-08-19

    We present a combined experimental and theoretical approach to demonstrate how lattice strain can be used to continuously tune the catalytic activity of the oxygen reduction reaction (ORR) on bimetallic nanoparticles that have been dealloyed. The sluggish kinetics of the ORR is a key barrier to the adaptation of fuel cells and currently limits their widespread use. Dealloyed Pt-Cu bimetallic nanoparticles, however, have been shown to exhibit uniquely high reactivity for this reaction. We first present evidence for the formation of a core-shell structure during dealloying, which involves removal of Cu from the surface and subsurface of the precursor nanoparticles. We then show that the resulting Pt-rich surface shell exhibits compressive strain that depends on the composition of the precursor alloy. We next demonstrate the existence of a downward shift of the Pt d-band, resulting in weakening of the bond strength of intermediate oxygenated species due to strain. Finally, we combine synthesis, strain, and catalytic reactivity in an experimental/theoretical reactivity-strain relationship which provides guidelines for the rational design of strained oxygen reduction electrocatalysts. The stoichiometry of the precursor, together with the dealloying conditions, provides experimental control over the resulting surface strain and thereby allows continuous tuning of the surface electrocatalytic reactivity - a concept that can be generalized to other catalytic reactions.

  4. Catalyst by Design - Theoretical, Nanostructural, and Experimental...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Oxidation Catalyst for Diesel Engine Emission Treatment Catalyst by Design - Theoretical, ... More Documents & Publications Catalyst by Design - Theoretical, Nanostructural, and ...

  5. High Impact Technology Catalyst: Technology Deployment Strategies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Catalyst: Technology Deployment Strategies High Impact Technology Catalyst: Technology Deployment Strategies The Energy Department released the High Impact Technology Catalyst: ...

  6. Strategies for Probing Nanometer-Scale Electrocatalysts: From Single Particles to Catalyst-Membrane Architectures

    SciTech Connect (OSTI)

    Korzeniewski, Carol

    2014-01-20

    The project primary objectives are to prepare and elucidate the promoting properties of materials that possess high activity for the conversion of hydrogen and related small molecules (water, oxygen, carbon monoxide and methanol) in polymer electrolyte fuel cells. One area of research has focused on the study of catalyst materials. Protocols were developed for probing the structure and benchmarking the activity of Pt and Pt bimetallic nanometer-scale catalyst against Pt single crystal electrode standards. A second area has targeted fuel cell membrane and the advancement of simple methods mainly based on vibrational spectroscopy that can be applied broadly in the study of membrane structure and transport properties. Infrared and Raman methods combined with least-squares data modeling were applied to investigate and assist the design of robust, proton conductive membranes, which resist reactant crossover.

  7. Size and alloying induced shift in core and valence bands of Pd-Ag and Pd-Cu nanoparticles

    SciTech Connect (OSTI)

    Sengar, Saurabh K.; Mehta, B. R.; Govind

    2014-03-28

    In this report, X-ray photoelectron spectroscopy studies have been carried out on Pd, Ag, Cu, Pd-Ag, and Pd-Cu nanoparticles having identical sizes corresponding to mobility equivalent diameters of 60, 40, and 20 nm. The nanoparticles were prepared by the gas phase synthesis method. The effect of size on valence and core levels in metal and alloy nanoparticles has been studied by comparing the values to those with the 60 nm nanoparticles. The effect of alloying has been investigated by comparing the valence and core level binding energies of Pd-Cu and Pd-Ag alloy nanoparticles with the corresponding values for Pd, Ag, and Cu nanoparticles of identical sizes. These effects have been explained in terms of size induced lattice contractions, alloying induced charge transfer, and hybridization effects. The observation of alloying and size induced binding energy shifts in bimetallic nanoparticles is important from the point of view of hydrogen reactivity.

  8. Methods of making textured catalysts

    DOE Patents [OSTI]

    Werpy, Todd; Frye, Jr., John G.; Wang, Yong; Zacher, Alan H.

    2010-08-17

    A textured catalyst having a hydrothermally-stable support, a metal oxide and a catalyst component is described. Methods of conducting aqueous phase reactions that are catalyzed by a textured catalyst are also described. The invention also provides methods of making textured catalysts and methods of making chemical products using a textured catalyst.

  9. Liquefaction with microencapsulated catalysts

    DOE Patents [OSTI]

    Weller, Sol W. (Williamsville, NY)

    1985-01-01

    A method of dispersing a liquefaction catalyst within coal or other carbonaceous solids involves providing a suspension in oil of microcapsules containing the catalyst. An aqueous solution of a catalytic metal salt is emulsified in the water-immiscible oil and the resulting minute droplets microencapsulated in polymeric shells by interfacial polycondensation. The catalyst is subsequently blended and dispersed throughout the powdered carbonaceous material to be liquefied. At liquefaction temperatures the polymeric microcapsules are destroyed and the catalyst converted to minute crystallites in intimate contact with the carbonaceous material.

  10. Plasma/ion-controlled metal catalyst saturation: Enabling simultaneous growth of carbon nanotube/nanocone arrays

    SciTech Connect (OSTI)

    Levchenko, I.; Ostrikov, K.

    2008-02-11

    It is shown that the simultaneous saturation of Ni nanoparticles used as catalyst for vertically aligned carbon nanotube and nanocone arrays can be improved in low-temperature plasma- or ion-assisted processes compared with neutral gas-based routes. The results of hybrid multiscale numerical simulations of the catalyst nanoarrays (particle sizes of 2 and 10 nm) saturation with carbon show the possibility of reducing the difference in catalyst incubation times for smallest and largest catalyst particles by up to a factor of 2. This approach is generic and provides process conditions for simultaneous nucleation and growth of uniform arrays of vertically aligned nanostructures.

  11. Laser Catalyst - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Find More Like This Return to Search Laser Catalyst Idaho National Laboratory Contact INL About This Technology Technology Marketing Summary INL's Laser Catalyst is a method for ...

  12. Reducible oxide based catalysts

    DOE Patents [OSTI]

    Thompson, Levi T.; Kim, Chang Hwan; Bej, Shyamal K.

    2010-04-06

    A catalyst is disclosed herein. The catalyst includes a reducible oxide support and at least one noble metal fixed on the reducible oxide support. The noble metal(s) is loaded on the support at a substantially constant temperature and pH.

  13. Nanostructured catalyst supports

    DOE Patents [OSTI]

    Zhu, Yimin; Goldman, Jay L.; Qian, Baixin; Stefan, Ionel C.

    2015-09-29

    The present invention relates to SiC nanostructures, including SiC nanopowder, SiC nanowires, and composites of SiC nanopowder and nanowires, which can be used as catalyst supports in membrane electrode assemblies and in fuel cells. The present invention also relates to composite catalyst supports comprising nanopowder and one or more inorganic nanowires for a membrane electrode assembly.

  14. Nanostructured catalyst supports

    DOE Patents [OSTI]

    Zhu, Yimin; Goldman, Jay L.; Qian, Baixin; Stefan, Ionel C.

    2012-10-02

    The present invention relates to SiC nanostructures, including SiC nanopowder, SiC nanowires, and composites of SiC nanopowder and nanowires, which can be used as catalyst supports in membrane electrode assemblies and in fuel cells. The present invention also relates to composite catalyst supports comprising nanopowder and one or more inorganic nanowires for a membrane electrode assembly.

  15. Validation of Two Hydrocodes with a Bi-Metallic Shaped Charge Experiment

    SciTech Connect (OSTI)

    Ingraham, Daniel J.

    2012-08-16

    Staggered grid (SGH) and cell-centered (CCH) Lagrangian Hydro are two approaches to modeling high explosives (HE) experiments. HE experiments involve complex flows. For example, the discontinuity in the tangential velocity across a frictionless contact surface. In this work, the SGH and CCH schemes with a contact surface algorithm are used to simulate a bimetallic shaped charge experiment using FLAG. Experiment will be performed at LANL in the coming year and used to validate the SGH and CCH schemes results.

  16. Increasing FCC regenerator catalyst level

    SciTech Connect (OSTI)

    Wong, R.F. )

    1993-11-01

    A Peruvian FCC unit's operations were improved by increasing the regenerator's catalyst level. This increase resulted in lower stack losses, an improved temperature profile, increased catalyst activity and a lower catalyst consumption rate. A more stable operation saved this Peruvian refiner over $131,000 per year in catalyst alone. These concepts and data may be suitable for your FCC unit as well.

  17. Catalyst for microelectromechanical systems microreactors

    DOE Patents [OSTI]

    Morse, Jeffrey D.; Sopchak, David A.; Upadhye, Ravindra S.; Reynolds, John G.; Satcher, Joseph H.; Gash, Alex E.

    2011-11-15

    A microreactor comprising a silicon wafer, a multiplicity of microchannels in the silicon wafer, and a catalyst coating the microchannels. In one embodiment the catalyst coating the microchannels comprises a nanostructured material. In another embodiment the catalyst coating the microchannels comprises an aerogel. In another embodiment the catalyst coating the microchannels comprises a solgel. In another embodiment the catalyst coating the microchannels comprises carbon nanotubes.

  18. Catalyst for microelectromechanical systems microreactors

    DOE Patents [OSTI]

    Morse, Jeffrey D.; Sopchak, David A.; Upadhye, Ravindra S.; Reynolds, John G.; Satcher, Joseph H.; Gash, Alex E.

    2010-06-29

    A microreactor comprising a silicon wafer, a multiplicity of microchannels in the silicon wafer, and a catalyst coating the microchannels. In one embodiment the catalyst coating the microchannels comprises a nanostructured material. In another embodiment the catalyst coating the microchannels comprises an aerogel. In another embodiment the catalyst coating the microchannels comprises a solgel. In another embodiment the catalyst coating the microchannels comprises carbon nanotubes.

  19. Catalysts and method

    DOE Patents [OSTI]

    Taylor, Charles E.; Noceti, Richard P.

    1991-01-01

    An improved catlayst and method for the oxyhydrochlorination of methane is disclosed. The catalyst includes a pyrogenic porous support on which is layered as active material, cobalt chloride in major proportion, and minor proportions of an alkali metal chloride and of a rare earth chloride. On contact of the catalyst with a gas flow of methane, HC1 and oxygen, more than 60% of the methane is converted and of that converted more than 40% occurs as monochloromethane. Advantageously, the monochloromethane can be used to produce gasoline boiling range hydrocarbons with the recycle of HCl for further reaction. This catalyst is also of value for the production of formic acid as are analogous catalysts with lead, silver or nickel chlorides substituted for the cobalt chloride.

  20. DOE Catalyst Demo Day

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy is organizing Catalyst Demo Day at the Franklin Institute in Philadelphia to showcase the next big startups in building energy efficiency and solar energy. Demo Day...

  1. Epoxidation catalyst and process

    DOE Patents [OSTI]

    Linic, Suljo; Christopher, Phillip

    2010-10-26

    Disclosed herein is a catalytic method of converting alkenes to epoxides. This method generally includes reacting alkenes with oxygen in the presence of a specific silver catalyst under conditions suitable to produce a yield of the epoxides. The specific silver catalyst is a silver nanocrystal having a plurality of surface planes, a substantial portion of which is defined by Miller indices of (100). The reaction is performed by charging a suitable reactor with this silver catalyst and then feeding the reactants to the reactor under conditions to carry out the reaction. The reaction may be performed in batch, or as a continuous process that employs a recycle of any unreacted alkenes. The specific silver catalyst has unexpectedly high selectivity for epoxide products. Consequently, this general method (and its various embodiments) will result in extraordinarily high epoxide yields heretofore unattainable.

  2. Crystalline titanate catalyst supports

    DOE Patents [OSTI]

    Anthony, Rayford G. (Bryan, TX); Dosch, Robert G. (Albuquerque, NM)

    1993-01-01

    A series of new crystalline titanates (CT) are shown to have considerable potential as catalyst supports. For Pd supported catalyst, the catalytic activity for pyrene hydrogenation was substantially different depending on the type of CT, and one was substantially more active than Pd on hydrous titanium oxide (HTO). For 1-hexene hydrogenation the activities of the new CTs were approximately the same as for the hydrous metal oxide supports.

  3. Plasmatron-catalyst system

    DOE Patents [OSTI]

    Bromberg, Leslie; Cohn, Daniel R.; Rabinovich, Alexander; Alexeev, Nikolai

    2004-09-21

    A plasmatron-catalyst system. The system generates hydrogen-rich gas and comprises a plasmatron and at least one catalyst for receiving an output from the plasmatron to produce hydrogen-rich gas. In a preferred embodiment, the plasmatron receives as an input air, fuel and water/steam for use in the reforming process. The system increases the hydrogen yield and decreases the amount of carbon monoxide.

  4. Plasmatron-catalyst system

    DOE Patents [OSTI]

    Bromberg, Leslie; Cohn, Daniel R.; Rabinovich, Alexander; Alexeev, Nikolai

    2007-10-09

    A plasmatron-catalyst system. The system generates hydrogen-rich gas and comprises a plasmatron and at least one catalyst for receiving an output from the plasmatron to produce hydrogen-rich gas. In a preferred embodiment, the plasmatron receives as an input air, fuel and water/steam for use in the reforming process. The system increases the hydrogen yield and decreases the amount of carbon monoxide.

  5. Crystalline titanate catalyst supports

    DOE Patents [OSTI]

    Anthony, R.G.; Dosch, R.G.

    1993-01-05

    A series of new crystalline titanates (CT) are shown to have considerable potential as catalyst supports. For Pd supported catalyst, the catalytic activity for pyrene hydrogenation was substantially different depending on the type of CT, and one was substantially more active than Pd on hydrous titanium oxide (HTO). For 1-hexene hydrogenation the activities of the new CTs were approximately the same as for the hydrous metal oxide supports.

  6. Catalyst system comprising a first catalyst system tethered to a supported catalyst

    DOE Patents [OSTI]

    Angelici, R.J.; Gao, H.

    1998-08-04

    The present invention provides new catalyst formats which comprise a supported catalyst tethered to a second and different catalyst by a suitable tethering ligand. A preferred system comprises a heterogeneous supported metal catalyst tethered to a homogeneous catalyst. This combination of homogeneous and heterogeneous catalysts has a sufficient lifetime and unusually high catalytic activity in arene hydrogenations, and potentially many other reactions as well, including, but not limited to hydroformylation, hydrosilication, olefin oxidation, isomerization, hydrocyanidation, olefin metathesis, olefin polymerization, carbonylation, enantioselective catalysis and photoduplication. These catalysts are easily separated from the products, and can be reused repeatedly, making these systems very economical. 2 figs.

  7. Catalyst system comprising a first catalyst system tethered to a supported catalyst

    DOE Patents [OSTI]

    Angelici, Robert J.; Gao, Hanrong

    1998-08-04

    The present invention provides new catalyst formats which comprise a supported catalyst tethered to a second and different catalyst by a suitable tethering ligand. A preferred system comprises a heterogeneous supported metal catalyst tethered to a homogeneous catalyst. This combination of homogeneous and heterogeneous catalysts has a sufficient lifetime and unusually high catalytic activity in arene hydrogenations, and potentially many other reactions as well, including, but not limited to hydroformylation, hydrosilation, olefin oxidation, isomerization, hydrocyanation, olefin metathesis, olefin polymerization, carbonylation, enantioselective catalysis and photoduplication. These catalysts are easily separated from the products, and can be reused repeatedly, making these systems very economical.

  8. MgO-Supported Cluster Catalysts with Pt-Ru Interactions Prepared from Pt3Ru6(CO)21(u3-H)(u-H)3

    SciTech Connect (OSTI)

    Chotisuwan,S.; Wittapyakun, J.; Lobo-Lapidus, R.; Gates, B.

    2007-01-01

    Bimetallic MgO-supported catalysts were prepared by adsorption of Pt{sub 3}Ru{sub 6}(CO){sub 21}({mu}{sub 3}-H)({mu}-H){sub 3} on porous MgO. Characterization of the supported clusters by infrared (IR) spectroscopy showed that the adsorbed species were still in the form of metal carbonyls. The supported clusters were decarbonylated by treatment in flowing helium at 300 C, as shown by IR and extended X-ray absorption fine structure (EXAFS) data, and the resulting supported PtRu clusters were shown by EXAFS spectroscopy to have metal frames that retained Pt-Ru bonds but were slightly restructured relative to those of the precursor; the average cluster size was almost unchanged as a result of the decarbonylation. These are among the smallest reported bimetallic clusters of group-8 metals. The decarbonylated sample catalyzed ethylene hydrogenation with an activity similar to that reported previously for {gamma}-Al{sub 2}O{sub 3}-supported clusters prepared in nearly the same way and having nearly the same structure. Both samples were also active for n-butane hydrogenolysis, with the MgO-supported catalyst being more active than the {gamma}-Al{sub 2}O{sub 3}-supported catalyst.

  9. YIA1 - Chen > Young Investigator Program > Research > The Energy Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center at Cornell Using a microfluidic device to synthesize bimetallic nanoparticle catalysts with desired phase and size: An improvement of the nanoparticle-KCl matrix method With efforts from Hao Chen (DiSalvo), Deli Wang (Abruña) and Joshua Tokuda (Pollack), this research is looking to improve the nanoparticle-KCl matrix method. A great effort at emc2 has been focused on synthesizing bimetallic nanoparticle (Np) catalysts for oxygen reduction reactions. Recently, we developed a Np-KCl

  10. Degradation of Bimetallic Model Electrocatalysts ___ an in situ XAS Study

    SciTech Connect (OSTI)

    Friebel, Daniel

    2011-06-22

    One of the major challenges in the development of clean energy fuel cells is the performance degradation of the electrocatalyst, which, apart from poisoning effects, can suffer from corrosion due to its exposure to a harsh environment under high potentials. In this communication, we demonstrate how interactions of Pt with a transition metal support affect not only, as commonly intended, the catalytic activity, but also the reactivity of Pt towards oxide formation or dissolution. We use two well-defined single-crystal model systems, Pt/Rh(111) and Pt/Au(111) and a unique x-ray spectroscopy technique with enhanced energy resolution to monitor the potential-dependent oxidation state of Pt, and find two markedly different oxidation mechanisms on the two different substrates. This information can be of great significance for future design of more active and more stable catalysts. We have studied the potential-induced degradation of Pt monolayer model electrocatalysts on Rh(111) and Au(111) single-crystal substrates. The anodic formation of Pt oxides was monitored using in situ high energy resolution fluorescence detection x-ray absorption spectroscopy (HERFD XAS). Although Pt was deposited on both substrates in a three-dimensional island growth mode, we observed remarkable differences during oxide formation that can only be understood in terms of strong Pt-substrate interactions throughout the Pt islands. Anodic polarization of Pt/Rh(111) up to +1.6 V vs. RHE (reversible hydrogen electrode) leads to formation an incompletely oxidized passive layer, whereas formation of PtO2 and partial Pt dissolution is observed for Pt/Au(111).

  11. Transition metal carbides, nitrides and borides, and their oxygen containing analogs useful as water gas shift catalysts

    DOE Patents [OSTI]

    Thompson, Levi T.; Patt, Jeremy; Moon, Dong Ju; Phillips, Cory

    2003-09-23

    Mono- and bimetallic transition metal carbides, nitrides and borides, and their oxygen containing analogs (e.g. oxycarbides) for use as water gas shift catalysts are described. In a preferred embodiment, the catalysts have the general formula of M1.sub.A M2.sub.B Z.sub.C O.sub.D, wherein M1 is selected from the group consisting of Mo, W, and combinations thereof; M2 is selected from the group consisting of Fe, Ni, Cu, Co, and combinations thereof; Z is selected from the group consisting of carbon, nitrogen, boron, and combinations thereof; A is an integer; B is 0 or an integer greater than 0; C is an integer; O is oxygen; and D is 0 or an integer greater than 0. The catalysts exhibit good reactivity, stability, and sulfur tolerance, as compared to conventional water shift gas catalysts. These catalysts hold promise for use in conjunction with proton exchange membrane fuel cell powered systems.

  12. Nanoscale Chemical Imaging of a Working Catalyst

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanoscale Chemical Imaging of a Working Catalyst Nanoscale Chemical Imaging of a Working Catalyst Print Wednesday, 28 January 2009 00:00 The heterogeneous catalysts used in most ...

  13. Shape transformation of bimetallic Au–Pd core–shell nanocubes to multilayered Au–Pd–Au core–shell hexagonal platelets

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bhattarai, Nabraj; Prozorov, Tanya

    2015-11-05

    Transformation of metallic or bimetallic (BM) nanoparticles (NPs) from one shape to another desired shape is of importance to nanoscience and nanotechnology, where new morphologies of NPs lead to enhancement of their exploitable properties. In this report, we present the shape transformation of Au octahedral NPs to Au–Pd core–shell nanocubes, followed by their transformation to nanostars and finally to multilayered Au–Pd–Au core–shell hexagonal platelets in the presence of T30 DNA. The weaker binding affinity of T30 DNA directs the growth to favor the formation of lower energy {111} facets, changing the morphology from nanocubes to nanostar. The nanostars, exhibiting unusualmore » intermediate morphologies, are comprised two sets of shell layers and have Au core, Pd intermediate shell, and Au outer shell. Similarly, the hexagonal platelets, which also have Au core and inner Pd shell, are encased in an external gold shell. As a result, the formation of multilayered Au–Pd–Au core–shell hexagonal platelets from Au–Pd core–shell nanocubes via the multilayered nanostars is monitored using scanning/transmission electron microscopy analysis.« less

  14. Final Technical Report on DE-SC00002460 [Bimetallic or trimetallic materials with structural metal centers based on Mn, Fe or V

    SciTech Connect (OSTI)

    Takeuchi, Esther Sans; Takeuchi, Kenneth James; Marschilok, Amy Catherine

    2013-07-26

    Bimetallic or trimetallic materials with structural metal centers based on Mn, Fe or V were investigated under this project. These metal centers are the focus of this research as they have high earth abundance and have each shown success as cathode materials in lithium batteries. Silver ion, Ag{sup +}, was initially selected as the displacement material as reduction of this center should result in increased conductivity as Ag{sup 0} metal particles are formed in-situ upon electrochemical reduction. The in-situ formation of metal nanoparticles upon electrochemical reduction has been previously noted, and more recently, we have investigated the resulting increase in conductivity. Layered materials as well as materials with tunnel or channel type structures were selected. Layered materials are of interest as they can provide 2-dimensional ion mobility. Tunnel or channel structures are also of interest as they provide a rigid framework that should remain stable over many discharge/charge cycles. We describe some examples of materials we have synthesized that demonstrate promising electrochemistry.

  15. Shape transformation of bimetallic Au–Pd core–shell nanocubes to multilayered Au–Pd–Au core–shell hexagonal platelets

    SciTech Connect (OSTI)

    Bhattarai, Nabraj; Prozorov, Tanya

    2015-11-05

    Transformation of metallic or bimetallic (BM) nanoparticles (NPs) from one shape to another desired shape is of importance to nanoscience and nanotechnology, where new morphologies of NPs lead to enhancement of their exploitable properties. In this report, we present the shape transformation of Au octahedral NPs to Au–Pd core–shell nanocubes, followed by their transformation to nanostars and finally to multilayered Au–Pd–Au core–shell hexagonal platelets in the presence of T30 DNA. The weaker binding affinity of T30 DNA directs the growth to favor the formation of lower energy {111} facets, changing the morphology from nanocubes to nanostar. The nanostars, exhibiting unusual intermediate morphologies, are comprised two sets of shell layers and have Au core, Pd intermediate shell, and Au outer shell. Similarly, the hexagonal platelets, which also have Au core and inner Pd shell, are encased in an external gold shell. As a result, the formation of multilayered Au–Pd–Au core–shell hexagonal platelets from Au–Pd core–shell nanocubes via the multilayered nanostars is monitored using scanning/transmission electron microscopy analysis.

  16. Numerical simulation of carbon arc discharge for nanoparticle synthesis

    SciTech Connect (OSTI)

    Kundrapu, M.; Keidar, M.

    2012-07-15

    Arc discharge with catalyst-filled carbon anode in helium background was used for the synthesis of carbon nanoparticles. In this paper, we present the results of numerical simulation of carbon arc discharges with arc current varying from 10 A to 100 A in a background gas pressure of 68 kPa. Anode sublimation rate and current voltage characteristics are compared with experiments. Distribution of temperature and species density, which is important for the estimation of the growth of nanoparticles, is obtained. The probable location of nanoparticle growth region is identified based on the temperature range for the formation of catalyst clusters.

  17. DNA-guided nanoparticle assemblies

    DOE Patents [OSTI]

    Gang, Oleg; Nykypanchuk, Dmytro; Maye, Mathew; van der Lelie, Daniel

    2013-07-16

    In some embodiments, DNA-capped nanoparticles are used to define a degree of crystalline order in assemblies thereof. In some embodiments, thermodynamically reversible and stable body-centered cubic (bcc) structures, with particles occupying <.about.10% of the unit cell, are formed. Designs and pathways amenable to the crystallization of particle assemblies are identified. In some embodiments, a plasmonic crystal is provided. In some aspects, a method for controlling the properties of particle assemblages is provided. In some embodiments a catalyst is formed from nanoparticles linked by nucleic acid sequences and forming an open crystal structure with catalytically active agents attached to the crystal on its surface or in interstices.

  18. Supported organoiridium catalysts for alkane dehydrogenation

    DOE Patents [OSTI]

    Baker, R. Thomas; Sattelberger, Alfred P.; Li, Hongbo

    2013-09-03

    Solid supported organoiridium catalysts, a process for preparing such solid supported organoiridium catalysts, and the use of such solid supported organoiridium catalysts in dehydrogenation reactions of alkanes is provided. The catalysts can be easily recovered and recycled.

  19. Carbon nanotube forests growth using catalysts from atomic layer deposition

    SciTech Connect (OSTI)

    Chen, Bingan; Zhang, Can; Esconjauregui, Santiago; Xie, Rongsi; Zhong, Guofang; Robertson, John; Bhardwaj, Sunil; Cepek, Cinzia

    2014-04-14

    We have grown carbon nanotubes using Fe and Ni catalyst films deposited by atomic layer deposition. Both metals lead to catalytically active nanoparticles for growing vertically aligned nanotube forests or carbon fibres, depending on the growth conditions and whether the substrate is alumina or silica. The resulting nanotubes have narrow diameter and wall number distributions that are as narrow as those grown from sputtered catalysts. The state of the catalyst is studied by in-situ and ex-situ X-ray photoemission spectroscopy. We demonstrate multi-directional nanotube growth on a porous alumina foam coated with Fe prepared by atomic layer deposition. This deposition technique can be useful for nanotube applications in microelectronics, filter technology, and energy storage.

  20. Oxygen Reduction at Very Low Overpotential on Nanoporous Ag Catalysts

    SciTech Connect (OSTI)

    Zhou, Yang; Lu, Qi; Zhuang, Zhongbin; Hutchings, Gregory S.; Kattel, Shyam; Yan, Yushan; Chen, Jingguang G.; Xiao, John Q.; Jiao, Feng

    2015-05-07

    Here we report a monolithic nanoporous Ag (np-Ag) material, synthesized using the dealloying method, as high-performance catalysts for ORR in alkaline media. As shown in Scheme 1, when there is insufficient potential input, the O2 molecules are more likely to rebound off from a planar electrode surface (i.e. bulk polycrystalline metal, films made from nanoparticles or nanowires) before they could be reduced. In contrast, they are more likely to be trapped inside the monolithic nanoporous structure, contacting with catalytic surface for multiple time, which greatly enhances the chance for them to be fully reduced. As a result, the np-Ag catalyst is able to achieve an equivalent or better ORR performance than the state-of the-art Pt/C catalyst at low overpotentials, which is most desired in electrochemical energy applications for maximizing efficiency.

  1. Partial oxidation catalyst

    DOE Patents [OSTI]

    Krumpelt, Michael; Ahmed, Shabbir; Kumar, Romesh; Doshi, Rajiv

    2000-01-01

    A two-part catalyst comprising a dehydrogenation portion and an oxide-ion conducting portion. The dehydrogenation portion is a group VIII metal and the oxide-ion conducting portion is selected from a ceramic oxide crystallizing in the fluorite or perovskite structure. There is also disclosed a method of forming a hydrogen rich gas from a source of hydrocarbon fuel in which the hydrocarbon fuel contacts a two-part catalyst comprising a dehydrogenation portion and an oxide-ion conducting portion at a temperature not less than about 400.degree. C. for a time sufficient to generate the hydrogen rich gas while maintaining CO content less than about 5 volume percent. There is also disclosed a method of forming partially oxidized hydrocarbons from ethanes in which ethane gas contacts a two-part catalyst comprising a dehydrogenation portion and an oxide-ion conducting portion for a time and at a temperature sufficient to form an oxide.

  2. Catalyst, Method Of Making, And Reactions Using The Catalyst

    DOE Patents [OSTI]

    Tonkovich, Anna Lee Y.; Wang, Yong; Gao, Yufei

    2004-07-13

    The present invention includes a catalyst having a layered structure with, (1) a porous support, (2) a buffer layer, (3) an interfacial layer, and optionally (4) a catalyst layer. The invention also provides a process in which a reactant is converted to a product by passing through a reaction chamber containing the catalyst.

  3. Catalyst, method of making, and reactions using the catalyst

    DOE Patents [OSTI]

    Tonkovich, Anna Lee Y [Pasco, WA; Wang, Yong [Richland, WA; Gao, Yufei [Kennewick, WA

    2009-03-03

    The present invention includes a catalyst having a layered structure with, (1) a porous support, (2) a buffer layer, (3) an interfacial layer, and optionally (4) a catalyst layer. The invention also provides a process in which a reactant is converted to a product by passing through a reaction chamber containing the catalyst.

  4. Catalyst, method of making, and reactions using the catalyst

    DOE Patents [OSTI]

    Tonkovich, Anna Lee Y [Pasco, WA; Wang, Yong [Richland, WA; Gao, Yufei [Kennewick, WA

    2002-08-27

    The present invention includes a catalyst having a layered structure with, (1) a porous support, (2) a buffer layer, (3) an interfacial layer, and optionally (4) a catalyst layer. The invention also provides a process in which a reactant is converted to a product by passing through a reaction chamber containing the catalyst.

  5. Reaction selectivity studies on nanolithographically-fabricated platinum model catalyst arrays

    SciTech Connect (OSTI)

    Grunes, Jeffrey Benjamin

    2004-05-15

    In an effort to understand the molecular ingredients of catalytic activity and selectivity toward the end of tuning a catalyst for 100% selectivity, advanced nanolithography techniques were developed and utilized to fabricate well-ordered two-dimensional model catalyst arrays of metal nanostructures on an oxide support for the investigation of reaction selectivity. In-situ and ex-situ surface science techniques were coupled with catalytic reaction data to characterize the molecular structure of the catalyst systems and gain insight into hydrocarbon conversion in heterogeneous catalysis. Through systematic variation of catalyst parameters (size, spacing, structure, and oxide support) and catalytic reaction conditions (hydrocarbon chain length, temperature, pressures, and gas composition), the data presented in this dissertation demonstrate the ability to direct a reaction by rationally adjusting, through precise control, the design of the catalyst system. Electron beam lithography (EBL) was employed to create platinum nanoparticles on an alumina (Al{sub 2}O{sub 3}) support. The Pt nanoparticle spacing (100-150-nm interparticle distance) was varied in these samples, and they were characterized using x-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and atomic force microscopy (AFM), both before and after reactions. The TEM studies showed the 28-nm Pt nanoparticles with 100 and 150-nm interparticle spacing on alumina to be polycrystalline in nature, with crystalline sizes of 3-5 nm. The nanoparticle crystallites increased significantly after heat treatment. The nanoparticles were still mostly polycrystalline in nature, with 2-3 domains. The 28-nm Pt nanoparticles deposited on alumina were removed by the AFM tip in contact mode with a normal force of approximately 30 nN. After heat treatment at 500 C in vacuum for 3 hours, the AFM tip, even at 4000 nN, could not remove the platinum nanoparticles. The increase of adhesion upon heat treatment indicates stronger bonding between the Pt and the support at the metal-oxide interface.

  6. Aerogel derived catalysts

    SciTech Connect (OSTI)

    Reynolds, J. G., LLNL

    1996-12-11

    Aerogels area class of colloidal materials which have high surface areas and abundant mesoporous structure. SiO{sub 2} aerogels show unique physical, optical and structural properties. When catalytic metals are incorporated in the aerogel framework, the potential exists for new and very effective catalysts for industrial processes. Three applications of these metal-containing SiO{sub 2} aerogels as catalysts are briefly reviewed in this paper--NO{sub x} reduction, volatile organic compound destruction, and partial oxidation of methane.

  7. Method to prepare nanoparticles on porous mediums

    DOE Patents [OSTI]

    Vieth, Gabriel M. [Knoxville, TN; Dudney, Nancy J. [Oak Ridge, TN; Dai, Sheng [Knoxville, TN

    2010-08-10

    A method to prepare porous medium decorated with nanoparticles involves contacting a suspension of nanoparticles in an ionic liquid with a porous medium such that the particles diffuse into the pores of the medium followed by heating the resulting composition to a temperature equal to or greater than the thermal decomposition temperature of the ionic liquid resulting in the removal of the liquid portion of the suspension. The nanoparticles can be a metal, an alloy, or a metal compound. The resulting compositions can be used as catalysts, sensors, or separators.

  8. Nickel supported on nitrogen-doped carbon nanotubes as hydrogen oxidation reaction catalyst in alkaline electrolyte

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhuang, Zhongbin; Giles, Stephen A.; Zheng, Jie; Jenness, Glen R.; Caratzoulas, Stavros; Vlachos, Dionisios G.; Yan, Yushan

    2016-01-14

    The development of a low-cost, high-performance platinum-group-metal-free hydroxide exchange membrane fuel cell is hindered by the lack of a hydrogen oxidation reaction catalyst at the anode. Here we report that a composite catalyst, nickel nanoparticles supported on nitrogen-doped carbon nanotubes, has hydrogen oxidation activity similar to platinum-group metals in alkaline electrolyte. Although nitrogen-doped carbon nanotubes are a very poor hydrogen oxidation catalyst, as a support, it increases the catalytic performance of nickel nanoparticles by a factor of 33 (mass activity) or 21 (exchange current density) relative to unsupported nickel nanoparticles. Density functional theory calculations indicate that the nitrogen-doped support stabilizesmore » the nanoparticle against reconstruction, while nitrogen located at the edge of the nanoparticle tunes local adsorption sites by affecting the d-orbitals of nickel. Here, owing to its high activity and low cost, our catalyst shows significant potential for use in low-cost, high-performance fuel cells.« less

  9. Multifunctional mesoporous silica catalyst

    DOE Patents [OSTI]

    Lin, Victor Shang-Yi; Tsai, Chih-Hsiang; Chen, Hung-Ting; Pruski, Marek; Kobayashi, Takeshi

    2015-03-31

    The present invention provides bifunctional silica mesoporous materials, including mesoporous silica nanoparticles ("MSN"), having pores modified with diarylammonium triflate and perfluoroaryl moieties, that are useful for the acid-catalyzed esterification of organic acids with organic alcohols.

  10. Zinc sulfide liquefaction catalyst

    DOE Patents [OSTI]

    Garg, Diwakar

    1984-01-01

    A process for the liquefaction of carbonaceous material, such as coal, is set forth wherein coal is liquefied in a catalytic solvent refining reaction wherein an activated zinc sulfide catalyst is utilized which is activated by hydrogenation in a coal derived process solvent in the absence of coal.

  11. Hydrogen evolution reaction catalyst

    DOE Patents [OSTI]

    Subbaraman, Ram; Stamenkovic, Vojislav; Markovic, Nenad; Tripkovic, Dusan

    2016-02-09

    Systems and methods for a hydrogen evolution reaction catalyst are provided. Electrode material includes a plurality of clusters. The electrode exhibits bifunctionality with respect to the hydrogen evolution reaction. The electrode with clusters exhibits improved performance with respect to the intrinsic material of the electrode absent the clusters.

  12. Molybdenum sulfide/carbide catalysts

    DOE Patents [OSTI]

    Alonso, Gabriel; Chianelli, Russell R.; Fuentes, Sergio; Torres, Brenda

    2007-05-29

    The present invention provides methods of synthesizing molybdenum disulfide (MoS.sub.2) and carbon-containing molybdenum disulfide (MoS.sub.2-xC.sub.x) catalysts that exhibit improved catalytic activity for hydrotreating reactions involving hydrodesulfurization, hydrodenitrogenation, and hydrogenation. The present invention also concerns the resulting catalysts. Furthermore, the invention concerns the promotion of these catalysts with Co, Ni, Fe, and/or Ru sulfides to create catalysts with greater activity, for hydrotreating reactions, than conventional catalysts such as cobalt molybdate on alumina support.

  13. SHAPE SELECTIVE NANO-CATALYSTS: TOWARD DIRECT METHANOL FUEL CELLS APPLICATIONS

    SciTech Connect (OSTI)

    Murph, S.

    2010-06-16

    A series of bimetallic core-shell-alloy type Au-Pt nanomaterials with various morphologies, aspect ratios and compositions, were produced in a heterogenous epitaxial fashion. Gold nanoparticles with well-controlled particle size and shape, e.g. spheres, rods and cubes, were used as 'seeds' for platinum growth in the presence of a mild reducing agent, ascorbic acid and a cationic surfactant cethyltrimethyl ammonium bromide (CTAB). The reactions take place in air and water, and are quick, economical and amenable for scaling up. The synthesized nanocatalysts were characterized by electron microscopy techniques and energy dispersive X-ray analysis. Nafion membranes were embedded with the Au-Pt nanomaterials and analyzed by atomic force microscopy (AFM) and scanning electron microscopy (SEM) for their potential in direct methanol fuel cells applications.

  14. Binary ferrihydrite catalysts

    DOE Patents [OSTI]

    Huffman, Gerald P.; Zhao, Jianmin; Feng, Zhen

    1996-01-01

    A method of preparing a catalyst precursor comprises dissolving an iron salt and a salt of an oxoanion forming agent, in water so that a solution of the iron salt and oxoanion forming agent salt has a ratio of oxoanion/Fe of between 0.0001:1 to 0.5:1. Next is increasing the pH of the solution to 10 by adding a strong base followed by collecting of precipitate having a binary ferrihydrite structure. A binary ferrihydrite catalyst precursor is also prepared by dissolving an iron salt in water. The solution is brought to a pH of substantially 10 to obtain ferrihydrite precipitate. The precipitate is then filtered and washed with distilled water and subsequently admixed with a hydroxy carboxylic acid solution. The admixture is mixed/agitated and the binary ferrihydrite precipitate is then filtered and recovered.

  15. Binary ferrihydrite catalysts

    DOE Patents [OSTI]

    Huffman, G.P.; Zhao, J.; Feng, Z.

    1996-12-03

    A method of preparing a catalyst precursor comprises dissolving an iron salt and a salt of an oxoanion forming agent, in water so that a solution of the iron salt and oxoanion forming agent salt has a ratio of oxoanion/Fe of between 0.0001:1 to 0.5:1. Next is increasing the pH of the solution to 10 by adding a strong base followed by collecting of precipitate having a binary ferrihydrite structure. A binary ferrihydrite catalyst precursor is also prepared by dissolving an iron salt in water. The solution is brought to a pH of substantially 10 to obtain ferrihydrite precipitate. The precipitate is then filtered and washed with distilled water and subsequently admixed with a hydroxy carboxylic acid solution. The admixture is mixed/agitated and the binary ferrihydrite precipitate is then filtered and recovered. 3 figs.

  16. Fluorination process using catalyst

    DOE Patents [OSTI]

    Hochel, Robert C.; Saturday, Kathy A.

    1985-01-01

    A process for converting an actinide compound selected from the group consisting of uranium oxides, plutonium oxides, uranium tetrafluorides, plutonium tetrafluorides and mixtures of said oxides and tetrafluorides, to the corresponding volatile actinide hexafluoride by fluorination with a stoichiometric excess of fluorine gas. The improvement involves conducting the fluorination of the plutonium compounds in the presence of a fluoride catalyst selected from the group consisting of CoF.sub.3, AgF.sub.2 and NiF.sub.2, whereby the fluorination is significantly enhanced. The improvement also involves conducting the fluorination of one of the uranium compounds in the presence of a fluoride catalyst selected from the group consisting of CoF.sub.3 and AgF.sub.2, whereby the fluorination is significantly enhanced.

  17. Fluorination process using catalysts

    DOE Patents [OSTI]

    Hochel, R.C.; Saturday, K.A.

    1983-08-25

    A process is given for converting an actinide compound selected from the group consisting of uranium oxides, plutonium oxides, uranium tetrafluorides, plutonium tetrafluorides and mixtures of said oxides and tetrafluorides, to the corresponding volatile actinide hexafluoride by fluorination with a stoichiometric excess of fluorine gas. The improvement involves conducting the fluorination of the plutonium compounds in the presence of a fluoride catalyst selected from the group consisting of CoF/sub 3/, AgF/sub 2/ and NiF/sub 2/, whereby the fluorination is significantly enhanced. The improvement also involves conducting the fluorination of one of the uranium compounds in the presence of a fluoride catalyst selected from the group consisting of CoF/sub 3/ and AgF/sub 2/, whereby the fluorination is significantly enhanced.

  18. Method for forming thermally stable nanoparticles on supports

    DOE Patents [OSTI]

    Roldan Cuenya, Beatriz; Naitabdi, Ahmed R.; Behafarid, Farzad

    2013-08-20

    An inverse micelle-based method for forming nanoparticles on supports includes dissolving a polymeric material in a solvent to provide a micelle solution. A nanoparticle source is dissolved in the micelle solution. A plurality of micelles having a nanoparticle in their core and an outer polymeric coating layer are formed in the micelle solution. The micelles are applied to a support. The polymeric coating layer is then removed from the micelles to expose the nanoparticles. A supported catalyst includes a nanocrystalline powder, thin film, or single crystal support. Metal nanoparticles having a median size from 0.5 nm to 25 nm, a size distribution having a standard deviation .ltoreq.0.1 of their median size are on or embedded in the support. The plurality of metal nanoparticles are dispersed and in a periodic arrangement. The metal nanoparticles maintain their periodic arrangement and size distribution following heat treatments of at least 1,000.degree. C.

  19. Steam reforming catalyst

    DOE Patents [OSTI]

    Kramarz, Kurt W.; Bloom, Ira D.; Kumar, Romesh; Ahmed, Shabbir; Wilkenhoener, Rolf; Krumpelt, Michael

    2001-01-01

    A method of forming a hydrogen rich gas from a source of hydrocarbon fuel. A vapor of the hydrocarbon fuel and steam is brought in contact with a two-part catalyst having a dehydrogenation powder portion and an oxide-ion conducting powder portion at a temperature not less than about 770.degree.C. for a time sufficient to generate the hydrogen rich. The H.sub.2 content of the hydrogen gas is greater than about 70 percent by volume. The dehydrogenation portion of the catalyst includes a group VIII metal, and the oxide-ion conducting portion is selected from a ceramic oxide from the group crystallizing in the fluorite or perovskite structure and mixtures thereof. The oxide-ion conducting portion of the catalyst is a ceramic powder of one or more of ZrO.sub.2, CeO.sub.2, Bi.sub.2 O.sub.3, (BiVO).sub.4, and LaGaO.sub.3.

  20. Thermal plasma synthesis of Fe{sub 1?x}Ni{sub x} alloy nanoparticles

    SciTech Connect (OSTI)

    Raut, Suyog A.; Kanhe, Nilesh S.; Bhoraskar, S. V.; Mathe, V. L.; Das, A. K.

    2014-04-24

    Fe-Ni alloy nanoparticles are of great interest because of diverse practical applications in the fields such as magnetic fluids, high density recording media, catalysis and medicine. We report the synthesis of Fe-Ni nanoparticles via thermal plasma route. Thermal plasma assisted synthesis is a high temperature process and gives high yields of production. Here, we have used direct arc thermal plasma plume of 6kw as a source of energy at operating pressure 500 Torr. The mixture of Fe-Ni powder in required proportion (Fe{sub 1?x}Ni{sub x}; x=0.30, 0.32, 0.34, 0.36, 0.38 and 0.40) was made to evaporate simultaneously from the graphite anode in thermal plasma reactor to form Fe-Ni bimetallic nanoparticles. The as synthesized particles were characterized by X-Ray Diffraction (XRD), Thermo-Gravimetric Analysis/Differential Scanning Calorimtry (TGA/DSC)

  1. Catalysts for emerging energy applications

    SciTech Connect (OSTI)

    Bruce C. Gates; George W. Huber; Christopher L. Marshall; Phillip N. Ross; Jeffrey Siirola; Yong Wang

    2008-04-15

    Catalysis is the essential technology for chemical transformation, including production of fuels from the fossil resources petroleum, natural gas, and coal. Typical catalysts for these conversions are robust porous solids incorporating metals, metal oxides, and/or metal sulfides. As efforts are stepping up to replace fossil fuels with biomass, new catalysts for the conversion of the components of biomass will be needed. Although the catalysts for biomass conversion might be substantially different from those used in the conversion of fossil feedstocks, the latter catalysts are a starting point in today's research. Major challenges lie ahead in the discovery of efficient biomass conversion catalysts, as well as in the discovery of catalysts for conversion of CO{sub 2} and possibly water into liquid fuels. 16 refs., 6 figs., 1 tab.

  2. ?-Fe{sub 2}O{sub 3} nanoparticles: An easily recoverable effective photo-catalyst for the degradation of rose bengal and methylene blue dyes in the waste-water treatment plant

    SciTech Connect (OSTI)

    Dutta, Amit Kumar; Maji, Swarup Kumar; Adhikary, Bibhutosh

    2014-01-01

    Graphical abstract: - Highlights: ?-Fe{sub 2}O{sub 3} NPs from a single-source precursor and characterized by XRD, TEM, UVvis spectra. The NPs were tested as effective photocatalyst toward degradation of RB and MB dyes. The possible pathway of the photocatalytic decomposition process has been discussed. The active species, OH, was detected by TA photoluminescence probing techniques. - Abstract: ?-Fe{sub 2}O{sub 3} nanoparticles (NPs) were synthesized from a single-source precursor complex [Fe{sub 3}O(C{sub 6}H{sub 5}COO){sub 6}(H{sub 2}O){sub 3}]NO{sub 3} by a simple thermal decomposition process and have been characterized by X-ray diffraction analysis (XRD), transmission electron microscopy (TEM) and UVvis spectroscopic techniques. The NPs were highly pure and well crystallized having hexagonal morphology with an average particle size of 35 nm. The prepared ?-Fe{sub 2}O{sub 3} (maghemite) NPs show effective photo-catalytic activity toward the degradation of rose bengal (RB) and methylene blue (MB) dyes under visible light irradiation and can easily be recoverable in the presence of magnetic field for successive re-uses. The possible photo-catalytic decomposition mechanism is discussed through the detection of hydroxyl radical (OH) by terephthalic acid photo-luminescence probing technique.

  3. Oxygen-reducing catalyst layer

    DOE Patents [OSTI]

    O'Brien, Dennis P.; Schmoeckel, Alison K.; Vernstrom, George D.; Atanasoski, Radoslav; Wood, Thomas E.; Yang, Ruizhi; Easton, E. Bradley; Dahn, Jeffrey R.; O'Neill, David G.

    2011-03-22

    An oxygen-reducing catalyst layer, and a method of making the oxygen-reducing catalyst layer, where the oxygen-reducing catalyst layer includes a catalytic material film disposed on a substrate with the use of physical vapor deposition and thermal treatment. The catalytic material film includes a transition metal that is substantially free of platinum. At least one of the physical vapor deposition and the thermal treatment is performed in a processing environment comprising a nitrogen-containing gas.

  4. Development of GREET Catalyst Module

    SciTech Connect (OSTI)

    Wang, Zhichao; Benavides, Pahola T.; Dunn, Jennifer B.; Cronauer, Donald C.

    2015-09-01

    In this report, we develop energy and material flows for the production of five different catalysts (tar reforming, alcohol synthesis, Zeolite Socony Mobil-5 [ZSM-5], Mo/Co/ γ-Al2O3, and Pt/ γ-Al2O3) and two chemicals (olivine, dimethyl ether of polyethylene glycol [DEPG]). These compounds and catalysts are now included in the Greenhouse Gases, Regulated Emissions and Energy Use in Transportation (GREET™) catalyst module.

  5. Catalyst systems and uses thereof

    DOE Patents [OSTI]

    Ozkan, Umit S.; Holmgreen, Erik M.; Yung, Matthew M.

    2012-07-24

    A method of carbon monoxide (CO) removal comprises providing an oxidation catalyst comprising cobalt supported on an inorganic oxide. The method further comprises feeding a gaseous stream comprising CO, and oxygen (O.sub.2) to the catalyst system, and removing CO from the gaseous stream by oxidizing the CO to carbon dioxide (CO.sub.2) in the presence of the oxidation catalyst at a temperature between about 20 to about 200.degree. C.

  6. High Impact Technology (HIT) Catalyst

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Impact Technology (HIT) Catalyst Images courtesy CREE, True Manufacturing, A.O. Smith, Bernstein Associates, Cambridge Engineering, Alliance Laundry Systems, NREL Commercial ...

  7. Mixed Alcohol Synthesis Catalyst Screening

    SciTech Connect (OSTI)

    Gerber, Mark A.; White, James F.; Stevens, Don J.

    2007-09-03

    National Renewable Energy Laboratory (NREL) and Pacific Northwest National Laboratory (PNNL) are conducting research to investigate the feasibility of producing mixed alcohols from biomass-derived synthesis gas (syngas). PNNL is tasked with obtaining commercially available or preparing promising mixed-alcohol catalysts and screening them in a laboratory-scale reactor system. Commercially available catalysts and the most promising experimental catalysts are provided to NREL for testing using a slipstream from a pilot-scale biomass gasifier. From the standpoint of producing C2+ alcohols as the major product, it appears that the rhodium catalyst is the best choice in terms of both selectivity and space-time yield (STY). However, unless the rhodium catalyst can be improved to provide minimally acceptable STYs for commercial operation, mixed alcohol synthesis will involve significant production of other liquid coproducts. The modified Fischer-Tropsch catalyst shows the most promise for providing both an acceptable selectivity to C2+ alcohols and total liquid STY. However, further optimization of the Fischer-Tropsch catalysts to improve selectivity to higher alcohols is highly desired. Selection of a preferred catalyst will likely entail a decision on the preferred coproduct slate. No other catalysts tested appear amenable to the significant improvements needed for acceptable STYs.

  8. Molecular water oxidation catalyst

    DOE Patents [OSTI]

    Gratzel, Michael; Munavalli, Shekhar; Pern, Fu-Jann; Frank, Arthur J.

    1993-01-01

    A dimeric composition of the formula: ##STR1## wherein L', L", L'", and L"" are each a bidentate ligand having at least one functional substituent, the ligand selected from bipyridine, phenanthroline, 2-phenylpyridine, bipyrimidine, and bipyrazyl and the functional substituent selected from carboxylic acid, ester, amide, halogenide, anhydride, acyl ketone, alkyl ketone, acid chloride, sulfonic acid, phosphonic acid, and nitro and nitroso groups. An electrochemical oxidation process for the production of the above functionally substituted bidentate ligand diaqua oxo-bridged ruthenium dimers and their use as water oxidation catalysts is described.

  9. Metal nanoparticle deposited inorganic nanostructure hybrids, uses thereof and processes for their preparation

    DOE Patents [OSTI]

    Tenne, Reshef; Tsverin, Yulia; Burghaus, Uwe; Komarneni, Mallikharjuna Rao

    2016-01-26

    This invention relates to a hybrid component comprising at least one nanoparticle of inorganic layered compound (in the form of fullerene-like structure or nanotube), and at least one metal nanoparticle, uses thereof as a catalyst, (e.g. photocatalysis) and processes for its preparation.

  10. Size Effect of Ruthenium Nanoparticles in Catalytic Carbon Monoxide Oxidation

    SciTech Connect (OSTI)

    Joo, Sang Hoon; Park, Jeong Y.; Renzas, J. Russell; Butcher, Derek R.; Huang, Wenyu; Somorjai, Gabor A.

    2010-04-04

    Carbon monoxide oxidation over ruthenium catalysts has shown an unusual catalytic behavior. Here we report a particle size effect on CO oxidation over Ru nanoparticle (NP) catalysts. Uniform Ru NPs with a tunable particle size from 2 to 6 nm were synthesized by a polyol reduction of Ru(acac){sub 3} precursor in the presence of poly(vinylpyrrolidone) stabilizer. The measurement of catalytic activity of CO oxidation over two-dimensional Ru NPs arrays under oxidizing reaction conditions (40 Torr CO and 100 Torr O{sub 2}) showed an activity dependence on the Ru NP size. The CO oxidation activity increases with NP size, and the 6 nm Ru NP catalyst shows 8-fold higher activity than the 2 nm catalysts. The results gained from this study will provide the scientific basis for future design of Ru-based oxidation catalysts.

  11. Nanoscale Chemical Imaging of a Working Catalyst

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanoscale Chemical Imaging of a Working Catalyst Print The heterogeneous catalysts used in most chemical processes typically consist of nanoscale metal or metal oxide particles ...

  12. Refiners Increasingly Employing Catalyst Regeneration as Alternative...

    Open Energy Info (EERE)

    million by the end of 2019. Refiners Benefit from Catalyst Regeneration Technology via Price Reductions and Lower Maintenance Costs The catalyst regeneration technology is the...

  13. Solid Catalyst - Alkylation - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    is a method used to reactivate solidliquid catalysts used in INL's super critical process to produce alkylates. The method brings the catalyst into contact with the designated...

  14. Oxford Catalysts Group plc | Open Energy Information

    Open Energy Info (EERE)

    Oxford Catalysts Group plc Place: Oxford, United Kingdom Zip: OX2 6UD Sector: Hydro, Hydrogen Product: Developer of catalysts for room-temperature hydrogen production, hot steam...

  15. Catalysts for low temperature oxidation

    DOE Patents [OSTI]

    Toops, Todd J.; Parks, III, James E.; Bauer, John C.

    2016-03-01

    The invention provides a composite catalyst containing a first component and a second component. The first component contains nanosized gold particles. The second component contains nanosized platinum group metals. The composite catalyst is useful for catalyzing the oxidation of carbon monoxide, hydrocarbons, oxides of nitrogen, and other pollutants at low temperatures.

  16. Doped palladium containing oxidation catalysts

    DOE Patents [OSTI]

    Mohajeri, Nahid

    2014-02-18

    A supported oxidation catalyst includes a support having a metal oxide or metal salt, and mixed metal particles thereon. The mixed metal particles include first particles including a palladium compound, and second particles including a precious metal group (PMG) metal or PMG metal compound, wherein the PMG metal is not palladium. The oxidation catalyst may also be used as a gas sensor.

  17. Transition metal sulfide loaded catalyst

    DOE Patents [OSTI]

    Maroni, Victor A.; Iton, Lennox E.; Pasterczyk, James W.; Winterer, Markus; Krause, Theodore R.

    1994-01-01

    A zeolite based catalyst for activation and conversion of methane. A zeolite support includes a transition metal (Mo, Cr or W) sulfide disposed within the micropores of the zeolite. The catalyst allows activation and conversion of methane to C.sub.2 + hydrocarbons in a reducing atmosphere, thereby avoiding formation of oxides of carbon.

  18. Transition metal sulfide loaded catalyst

    DOE Patents [OSTI]

    Maroni, V.A.; Iton, L.E.; Pasterczyk, J.W.; Winterer, M.; Krause, T.R.

    1994-04-26

    A zeolite-based catalyst is described for activation and conversion of methane. A zeolite support includes a transition metal (Mo, Cr or W) sulfide disposed within the micropores of the zeolite. The catalyst allows activation and conversion of methane to C[sub 2]+ hydrocarbons in a reducing atmosphere, thereby avoiding formation of oxides of carbon.

  19. Catalyst Characterization | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    09 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. PDF icon pmp_19_watkins.pdf More Documents & Publications Catalyst Characterization Accelerated Thermal Aging of Fe-Zeolite SCR Catalysts Using an Engine-Based Systems Approach Degradation Mechanisms of Urea Selective Catalytic Reduction Technology

  20. Oxygen Reduction at Very Low Overpotential on Nanoporous Ag Catalysts

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhou, Yang; Lu, Qi; Zhuang, Zhongbin; Hutchings, Gregory S.; Kattel, Shyam; Yan, Yushan; Chen, Jingguang G.; Xiao, John Q.; Jiao, Feng

    2015-05-07

    Here we report a monolithic nanoporous Ag (np-Ag) material, synthesized using the dealloying method, as high-performance catalysts for ORR in alkaline media. As shown in Scheme 1, when there is insufficient potential input, the O2 molecules are more likely to rebound off from a planar electrode surface (i.e. bulk polycrystalline metal, films made from nanoparticles or nanowires) before they could be reduced. In contrast, they are more likely to be trapped inside the monolithic nanoporous structure, contacting with catalytic surface for multiple time, which greatly enhances the chance for them to be fully reduced. As a result, the np-Ag catalystmore » is able to achieve an equivalent or better ORR performance than the state-of the-art Pt/C catalyst at low overpotentials, which is most desired in electrochemical energy applications for maximizing efficiency.« less

  1. Activity and Stability of Nanoscale Oxygen Reduction Catalysts

    SciTech Connect (OSTI)

    Shao-Horn, Yang

    2015-07-28

    Design of highly active and stable nanoscale catalysts for electro-oxidation of small organic molecules is of great importance to the development of efficient fuel cells. The amount and instability of Pt-based catalysts in the cathode limits the cost, efficiency and lifetime of proton exchange membrane fuel cells. We developed a microscopic understanding of the factors governing activity and stability in Pt and PtM alloys. Experimental efforts were focused on probing the size and shape dependence of ORR activity of Pt-based nanoparticles supported on carbon nanotubes. A microscopic understanding of the activity was achieved by correlating voltammetry and rotating ring disk electrodes to surface atomic and electronic structures, which were elucidated predominantly by high-resolution transmission electron microscopy (HRTEM), Scanning transmission electron microscopy energy dispersive X-ray Spectroscopy (STEM-EDS) and synchrotron X-ray absorption spectroscopy (XAS).

  2. Deactivation of methanol synthesis catalysts

    SciTech Connect (OSTI)

    Roberts, G.W.; Brown, D.M.; Hsiung, T.H.; Lewnard, J.J. (Air Products and Chemicals, Inc., Allentown, PA (United States))

    1993-08-01

    A novel methanol synthesis process, the liquid-phase methanol (LPMEOH) process, has been developed and scaled up to a nominal 380 kg/h (10 ton/day) pilot plant. The process is based on a gas-sparged slurry reactor instead of a conventional, fixed-bed reactor. The use of slurry reactors, which are essentially gradientless, greatly facilitated the interpretation and quantification of catalyst deactivation phenomena. With a poison-free, CO-rich feedstream, the rate of deactivation of the Cu/ZnO catalyst increased rapidly with temperature. At constant temperature, in the absence of poisons, the decline with time in the rate constant for methanol synthesis correlated with the loss of BET surface area. Iron carbonyl, nickel carbonyl, and carbonyl sulfide are severe and highly specific poisons for methanol-synthesis catalyst. There was a linear relationship between the catalyst activity loss and the concentration of metal or sulfur on the catalyst.

  3. Supported molten-metal catalysts

    DOE Patents [OSTI]

    Datta, Ravindra; Singh, Ajeet; Halasz, Istvan; Serban, Manuela

    2001-01-01

    An entirely new class of catalysts called supported molten-metal catalysts, SMMC, which can replace some of the existing precious metal catalysts used in the production of fuels, commodity chemicals, and fine chemicals, as well as in combating pollution. SMMC are based on supporting ultra-thin films or micro-droplets of the relatively low-melting (<600.degree. C.), inexpensive, and abundant metals and semimetals from groups 1, 12, 13, 14, 15 and 16, of the periodic table, or their alloys and intermetallic compounds, on porous refractory supports, much like supported microcrystallites of the traditional solid metal catalysts. It thus provides orders of magnitude higher surface area than is obtainable in conventional reactors containing molten metals in pool form and also avoids corrosion. These have so far been the chief stumbling blocks in the application of molten metal catalysts.

  4. Goldpromoted structurally ordered intermetallic palladium cobalt nanoparticles for the oxygen reduction reaction

    SciTech Connect (OSTI)

    Kuttiyiel, Kurian A.; Sasaki, Kotaro; Su, Dong; Wu, Lijun; Zhu, Yimei; Adzic, Radoslav R.

    2014-11-06

    Considerable efforts to make palladium and palladium alloys active catalysts and a possible replacement for platinum have had a marginal success. Here, we report on a structurally ordered Au??Pd??Co?? catalyst that exhibits comparable activity to conventional platinum catalysts in both acid and alkaline media. Electron microscopic techniques demonstrate that via addition of gold atoms PdCo nanoparticles undergo at elevated temperatures an atomic structural transition from core-shell to a rare intermetallic ordered structure with twin boundaries forming stable {111}, {110} and {100} facets. The superior stability of this catalyst compared to platinum after 10,000 potential cycles in alkaline media is attributed to the atomic structural order of PdCo nanoparticles along with protective effect of clusters of gold atoms on the surface. This strategy of making ordered palladium intermetallic alloy nanoparticles can be used in diverse heterogeneous catalysis where particle size and structural stability matters.

  5. Stereospecific olefin polymerization catalysts

    DOE Patents [OSTI]

    Bercaw, John E.; Herzog, Timothy A.

    1998-01-01

    A metallocene catalyst system for the polymerization of .alpha.-olefins to yield stereospecific polymers including syndiotactic, and isotactic polymers. The catalyst system includes a metal and a ligand of the formula ##STR1## wherein: R.sup.1, R.sup.2, and R.sup.3 are independently selected from the group consisting of hydrogen, C.sub.1 to C.sub.10 alkyl, 5 to 7 membered cycloalkyl, which in turn may have from 1 to 3 C.sub.1 to C.sub.10 alkyls as a substituent, C.sub.6 to C.sub.15 aryl or arylalkyl in which two adjacent radicals may together stand for cyclic groups having 4 to 15 carbon atoms which in turn may be substituted, or Si(R.sup.8).sub.3 where R.sup.8 is selected from the group consisting of C.sub.1 to C.sub.10 alkyl, C.sub.6 to C.sub.15 aryl or C.sub.3 to C.sub.10 cycloalkyl; R.sup.4 and R.sup.6 are substituents both having van der Waals radii larger than the van der Waals radii of groups R.sup.1 and R.sup.3 ; R.sup.5 is a substituent having a van der Waals radius less than about the van der Waals radius of a methyl group; E.sup.1, E.sup.2 are independently selected from the group consisting of Si(R.sup.9).sub.2, Si(R.sup.9).sub.2 --Si(R.sup.9).sub.2, Ge(R.sup.9).sub.2, Sn(R.sup.9).sub.2, C(R.sup.9).sub.2, C(R.sup.9).sub.2 --C(R.sup.9).sub.2, where R.sup.9 is C.sub.1 to C.sub.10 alkyl, C.sub.6 to C.sub.15 aryl or C.sub.3 to C.sub.10 cycloalkyl; and the ligand may have C.sub.S or C.sub.1 -symmetry. Preferred metals are selected from the group consisting of group III, group IV, group V or lanthanide group elements. The catalysts are used to prepare stereoregular polymers including polypropylene from .alpha.-olefin monomers.

  6. Stereospecific olefin polymerization catalysts

    DOE Patents [OSTI]

    Bercaw, J.E.; Herzog, T.A.

    1998-01-13

    A metallocene catalyst system is described for the polymerization of {alpha}-olefins to yield stereospecific polymers including syndiotactic, and isotactic polymers. The catalyst system includes a metal and a ligand of the formula shown wherein: R{sup 1}, R{sup 2}, and R{sup 3} are independently selected from the group consisting of hydrogen, C{sub 1} to C{sub 10} alkyl, 5 to 7 membered cycloalkyl, which in turn may have from 1 to 3 C{sub 1} to C{sub 10} alkyls as a substituent, C{sub 6} to C{sub 15} aryl or arylalkyl in which two adjacent radicals may together stand for cyclic groups having 4 to 15 carbon atoms which in turn may be substituted, or Si(R{sup 8}){sub 3} where R{sup 8} is selected from the group consisting of C{sub 1} to C{sub 10} alkyl, C{sub 6} to C{sub 15} aryl or C{sub 3} to C{sub 10} cycloalkyl; R{sup 4} and R{sup 6} are substituents both having van der Waals radii larger than the van der Waals radii of groups R{sup 1} and R{sup 3}; R{sup 5} is a substituent having a van der Waals radius less than about the van der Waals radius of a methyl group; E{sup 1}, E{sup 2} are independently selected from the group consisting of Si(R{sup 9}){sub 2}, Si(R{sup 9}){sub 2}--Si(R{sup 9}){sub 2}, Ge(R{sup 9}){sub 2}, Sn(R{sup 9}){sub 2}, C(R{sup 9}){sub 2}, C(R{sup 9}){sub 2}--C(R{sup 9}){sub 2}, where R{sup 9} is C{sub 1} to C{sub 10} alkyl, C{sub 6} to C{sub 15} aryl or C{sub 3} to C{sub 10} cycloalkyl; and the ligand may have C{sub S} or C{sub 1}-symmetry. Preferred metals are selected from the group consisting of group III, group IV, group V or lanthanide group elements. The catalysts are used to prepare stereoregular polymers including polypropylene from {alpha}-olefin monomers.

  7. Gold Nanoparticles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Science Perspective Chemistry World 16 December 2007 Structure of a Coated Gold Nanoparticle summary written by Amber Dance, SLAC Communication Office A team of...

  8. High Impact Technology Catalyst | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Catalyst High Impact Technology Catalyst High Impact Technology Catalyst Lead Performers: -- Argonne National Laboratory (ANL) - Lemont, IL -- Lawrence Berkeley National Laboratory (LBNL) - Berkeley, CA -- National Renewable Energy Laboratory (NREL) - Golden, CO -- Oak Ridge National Laboratory (ORNL) - Oak Ridge, TN -- Pacific Northwest National Laboratory (PNNL) - Richland, WA Project Term: Ongoing Program Funding Type: Direct Lab Funding Program Webpage: High Impact Technology Catalyst

  9. Chalcogen catalysts for polymer electrolyte fuel cell

    DOE Patents [OSTI]

    Alonso-Vante, Nicolas (Buxerolles, FR); Zelenay, Piotr (Los Alamos, NM); Choi, Jong-Ho (Los Alamos, NM); Wieckowski, Andrzej (Champaign, IL); Cao, Dianxue (Urbana, IL)

    2009-09-15

    A methanol-tolerant cathode catalyst and a membrane electrode assembly for fuel cells that includes such a cathode catalyst. The cathode catalyst includes a support having at least one transition metal in elemental form and a chalcogen disposed on the support. Methods of making the cathode catalyst and membrane electrode assembly are also described.

  10. Chalcogen catalysts for polymer electrolyte fuel cell

    DOE Patents [OSTI]

    Zelenay, Piotr; Choi, Jong-Ho; Alonso-Vante, Nicolas; Wieckowski, Andrzej; Cao, Dianxue

    2010-08-24

    A methanol-tolerant cathode catalyst and a membrane electrode assembly for fuel cells that includes such a cathode catalyst. The cathode catalyst includes a support having at least one transition metal in elemental form and a chalcogen disposed on the support. Methods of making the cathode catalyst and membrane electrode assembly are also described.

  11. Catalysts via First Principles | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    11 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon pm011_narula_2011_o.pdf More Documents & Publications Catalysts via First Principles Catalyst by Design - Theoretical, Nanostructural, and Experimental Studies of Emission Treatment Catalyst Catalysts via First Principles (Agreement ID:10635)

  12. Textured catalysts, methods of making textured catalysts, and methods of catalyzing reactions conducted in hydrothermal conditions

    DOE Patents [OSTI]

    Werpy, Todd [West Richland, WA; Wang, Yong [Richland, WA

    2003-12-30

    A textured catalyst having a hydrothermally-stable support, a metal oxide and a catalyst component is described. Methods of conducting aqueous phase reactions that are catalyzed by a textured catalyst are also described. The invention also provides methods of making textured catalysts and methods of making chemical products using a textured catalyst.

  13. Intermetallic nanoparticles

    DOE Patents [OSTI]

    Singh, Dileep; Yusufoglu, Yusuf; Timofeeva, Elena; Routbort, Jules

    2015-07-14

    A process for preparing intermetallic nanoparticles of two or more metals is provided. In particular, the process includes the steps: a) dispersing nanoparticles of a first metal in a solvent to prepare a first metal solution, b) forming a reaction mixture with the first metal solution and a reducing agent, c) heating the reaction mixture to a reaction temperature; and d) adding a second metal solution containing a salt of a second metal to the reaction mixture. During this process, intermetallic nanoparticles, which contain a compound with the first and second metals are formed. The intermetallic nanoparticles with uniform size and a narrow size distribution is also provided. An electrochemical device such as a battery with the intermetallic nanoparticles is also provided.

  14. Intermetallic nanoparticles

    DOE Patents [OSTI]

    Singh, Dileep; Yusufoglu, Yusuf; Timofeeva, Elena; Routbort, Jules L.

    2015-11-20

    A process for preparing intermetallic nanoparticles of two or more metals is provided. In particular, the process includes the steps: a) dispersing nanoparticles of a first metal in a solvent to prepare a first metal solution, b) forming a reaction mixture with the first metal solution and a reducing agent, c) heating the reaction mixture to a reaction temperature; and d) adding a second metal solution containing a salt of a second metal to the reaction mixture. During this process, intermetallic nanoparticles, which contain a compound with the first and second metals are formed. The intermetallic nanoparticles with uniform size and a narrow size distribution is also provided. An electrochemical device such as a battery with the intermetallic nanoparticles is also provided.

  15. Bimetallic strip for low temperature use. [4-300/sup 0/K

    DOE Patents [OSTI]

    Bussiee, J.F.; Welch, D.O.; Suenaga, M.

    A class of mechanically pre-stressed structures is provided suitably bi-layer strips, consisting of a layer of group 5 transition metals in intimate contact with a layer of an intermetallic compound of transition metals with certain group 3A, 4A or 5A metals or metalloids such as Ga, In, Si, Ge, Sn, As or Sb. The changes of Young's modulus of these bi-layered combinations at temperatures in the region of somewhat above absolute zero provides a useful means of sensing temperature changes. Such bi-metallic strips may be used as control strips in thermostats, or in direct dial reading instruments. The structures are made by preparing a sandwich of a group 5B transition metal strip between the substantially thicker strips of an alloy between copper and a predetermined group 3A, 4A or 5A metal or metalloid, holding the three layers are heated, cooled the copper alloys and is removed. Removing one of the two formed interlayer alloys between the transition metal and the metal previously alloyed with copper remain.

  16. Secret Lives of Catalysts Revealed

    ScienceCinema (OSTI)

    Miquel Salmeron and Gabor Somorjai

    2010-01-08

    Miquel Salmeron and Gabor Somorjai of Berkeley Lab's Materials Sciences Division discuss the first-ever glimpse of nanoscale catalysts in action. More information: http://newscenter.lbl.gov/press-relea...

  17. SunShot Catalyst Program

    Broader source: Energy.gov [DOE]

    The SunShot Catalyst program is actively reaching out to communities of software and business innovators across the country to find individuals with startup ideas to make solar faster, more...

  18. Tunable Catalysts - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vehicles and Fuels Vehicles and Fuels Advanced Materials Advanced Materials Find More Like This Return to Search Tunable Catalysts Lawrence Berkeley National Laboratory Contact LBL About This Technology Technology Marketing Summary For automobile manufacturers using expensive noble metals to make vehicle catalytic converters, often with limited lifetimes, Berkeley Lab Tunable Catalysts, made with affordable metals, utilize graphene to electrically tune the converting rate efficacy and efficiency

  19. Rational Catalyst Design Applied to Development of Advanced Oxidation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Rational Catalyst Design Applied to Development of Advanced Oxidation Catalysts for Diesel Emission Control Rational Catalyst Design Applied to Development of Advanced Oxidation ...

  20. Overcoming Hydrocarbon Inhibition on Pd-based Diesel Oxidation Catalysts with Rational Catalyst Design Approach

    Broader source: Energy.gov [DOE]

    Discusses results of a project focused on overcoming hydrocarbon inhibition on Pd-based diesel oxidation catalysts by using a rational catalyst design approach.

  1. Material property evaluations of bimetallic welds, stainless steel saw fusion lines, and materials affected by dynamic strain aging

    SciTech Connect (OSTI)

    Rudland, D.; Scott, P.; Marschall, C.; Wilkowski, G.

    1997-04-01

    Pipe fracture analyses can often reasonably predict the behavior of flawed piping. However, there are material applications with uncertainties in fracture behavior. This paper summarizes work on three such cases. First, the fracture behavior of bimetallic welds are discussed. The purpose of the study was to determine if current fracture analyses can predict the response of pipe with flaws in bimetallic welds. The weld joined sections of A516 Grade 70 carbon steel to F316 stainless steel. The crack was along the carbon steel base metal to Inconel 182 weld metal fusion line. Material properties from tensile and C(T) specimens were used to predict large pipe response. The major conclusion from the work is that fracture behavior of the weld could be evaluated with reasonable accuracy using properties of the carbon steel pipe and conventional J-estimation analyses. However, results may not be generally true for all bimetallic welds. Second, the toughness of austenitic steel submerged-arc weld (SAW) fusion lines is discussed. During large-scale pipe tests with flaws in the center of the SAW, the crack tended to grow into the fusion line. The fracture toughness of the base metal, the SAW, and the fusion line were determined and compared. The major conclusion reached is that although the fusion line had a higher initiation toughness than the weld metal, the fusion-line J-R curve reached a steady-state value while the SAW J-R curve increased. Last, carbon steel fracture experiments containing circumferential flaws with periods of unstable crack jumps during steady ductile tearing are discussed. These instabilities are believed to be due to dynamic strain aging (DSA). The paper discusses DSA, a screening criteria developed to predict DSA, and the ability of the current J-based methodologies to assess the effect of these crack instabilities. The effect of loading rate on the strength and toughness of several different carbon steel pipes at LWR temperatures is also discussed.

  2. Catalyst for coal liquefaction process

    DOE Patents [OSTI]

    Huibers, Derk T. A.; Kang, Chia-Chen C.

    1984-01-01

    An improved catalyst for a coal liquefaction process; e.g., the H-Coal Process, for converting coal into liquid fuels, and where the conversion is carried out in an ebullated-catalyst-bed reactor wherein the coal contacts catalyst particles and is converted, in addition to liquid fuels, to gas and residual oil which includes preasphaltenes and asphaltenes. The improvement comprises a catalyst selected from the group consisting of the oxides of nickel molybdenum, cobalt molybdenum, cobalt tungsten, and nickel tungsten on a carrier of alumina, silica, or a combination of alumina and silica. The catalyst has a total pore volume of about 0.500 to about 0.900 cc/g and the pore volume comprises micropores, intermediate pores and macropores, the surface of the intermediate pores being sufficiently large to convert the preasphaltenes to asphaltenes and lighter molecules. The conversion of the asphaltenes takes place on the surface of micropores. The macropores are for metal deposition and to prevent catalyst agglomeration. The micropores have diameters between about 50 and about 200 angstroms (.ANG.) and comprise from about 50 to about 80% of the pore volume, whereas the intermediate pores have diameters between about 200 and 2000 angstroms (.ANG.) and comprise from about 10 to about 25% of the pore volume, and the macropores have diameters between about 2000 and about 10,000 angstroms (.ANG.) and comprise from about 10 to about 25% of the pore volume. The catalysts are further improved where they contain promoters. Such promoters include the oxides of vanadium, tungsten, copper, iron and barium, tin chloride, tin fluoride and rare earth metals.

  3. Precision Nanoparticles

    ScienceCinema (OSTI)

    John Hemminger

    2010-01-08

    A revolutionary technology that efficiently produces nanoparticles in uniform and prescribed sizes (1-100 nanometers) using supercritical fluids. INL researcher Robert Fox was joined by Idaho State University researchers Rene Rodriquez and Joshua Pak in d

  4. Rh-Based Mixed Alcohol Synthesis Catalysts: Characterization and Computational Report

    SciTech Connect (OSTI)

    Albrecht, Karl O.; Glezakou, Vassiliki Alexandra; Rousseau, Roger J.; Engelhard, Mark H.; Varga, Tamas; Colby, Robert J.; Jaffe, John E.; Li, Xiaohong S.; Mei, Donghai; Windisch, Charles F.; Kathmann, Shawn M.; Lemmon, Teresa L.; Gray, Michel J.; Hart, Todd R.; Thompson, Becky L.; Gerber, Mark A.

    2013-08-01

    The U.S. Department of Energy is conducting a program focused on developing a process for the conversion of biomass to bio-based fuels and co-products. Biomass-derived syngas is converted thermochemically within a temperature range of 240 to 330C and at elevated pressure (e.g., 1200 psig) over a catalyst. Ethanol is the desired reaction product, although other side compounds are produced, including C3 to C5 alcohols; higher (i.e., greater than C1) oxygenates such as methyl acetate, ethyl acetate, acetic acid and acetaldehyde; and higher hydrocarbon gases such as methane, ethane/ethene, propane/propene, etc. Saturated hydrocarbon gases (especially methane) are undesirable because they represent a diminished yield of carbon to the desired ethanol product and represent compounds that must be steam reformed at high energy cost to reproduce CO and H2. Ethanol produced by the thermochemical reaction of syngas could be separated and blended directly with gasoline to produce a liquid transportation fuel. Additionally, higher oxygenates and unsaturated hydrocarbon side products such as olefins also could be further processed to liquid fuels. The goal of the current project is the development of a Rh-based catalyst with high activity and selectivity to C2+ oxygenates. This report chronicles an effort to characterize numerous supports and catalysts to identify particular traits that could be correlated with the most active and/or selective catalysts. Carbon and silica supports and catalysts were analyzed. Generally, analyses provided guidance in the selection of acceptable catalyst supports. For example, supports with high surface areas due to a high number of micropores were generally found to be poor at producing oxygenates, possibly because of mass transfer limitations of the products formed out of the micropores. To probe fundamental aspects of the complicated reaction network of CO with H2, a computational/ theoretical investigation using quantum mechanical and ab initio molecular dynamics calculations was initiated in 2009. Computational investigations were performed first to elucidate understanding of the nature of the catalytically active site. Thermodynamic calculations revealed that Mn likely exists as a metallic alloy with Rh in Rh-rich environments under reducing conditions at the temperatures of interest. After determining that reduced Rh-Mn alloy metal clusters were in a reduced state, the activation energy barriers of numerous transition state species on the catalytically active metal particles were calculated to compute the activation barriers of several reaction pathways that are possible on the catalyst surface. Comparison of calculations with a Rh nanoparticle versus a Rh-Mn nanoparticle revealed that the presence of Mn enabled the reaction pathway of CH with CO to form an adsorbed CHCO species, which was a precursor to C2+ oxygenates. The presence of Mn did not have a significant effect on the rate of CH4 production. Ir was observed during empirical catalyst screening experiments to improve the activity and selectivity of Rh-Mn catalysts. Thus, the addition of Ir to the Rh-Mn nanoparticles also was probed computationally. Simulations of Rh-Mn-Ir nanoparticles revealed that, with sufficient Ir concentrations, the Rh, Mn and Ir presumably would be well mixed within a nanoparticle. Activation barriers were calculated for Rh-Mn-Ir nanoparticles for several C-, H-, and O-containing transitional species on the nanoparticle surface. It was found that the presence of Ir opened yet another reactive pathway whereby HCO is formed and may undergo insertion with CHx surface moieties. The reaction pathway opened by the presence of Ir is in addition to the CO + CH pathway opened by the presence of Mn. Similar to Mn, the presence of Ir was not found to not affect the rate of CH4 production.

  5. Platinum-alloy nanostructured thin film catalysts for the oxygen reduction reaction.

    SciTech Connect (OSTI)

    van der Vliet, D.; Wang, C.; Debe, M.; Atanasoski, R.; Markovic, N. M.; Stamenkovic, V. R.

    2011-01-01

    In an effort to study advanced catalytic materials for the oxygen reduction reaction (ORR), a number of metallic alloy nanostructured thin film (NSTF) catalysts have been characterized by rotating disk electrode (RDE). Optimal loadings for the ORR and activity enhancement compared to conventional carbon supported nanoparticles (Pt/C) were established. The most efficient catalyst was found to be PtNi alloy with 55 wt% of Pt. The enhancement in specific activity is more than one order of magnitude, while the improvement factor in mass activity is 2.5 compared to Pt/C. Further lowering of the platinum to nickel ratio in NSTF catalysts did not lead to increased mass activity values.

  6. Catalyst containing oxygen transport membrane

    DOE Patents [OSTI]

    Christie, Gervase Maxwell; Wilson, Jamie Robyn; van Hassel, Bart Antonie

    2012-12-04

    A composite oxygen transport membrane having a dense layer, a porous support layer and an intermediate porous layer located between the dense layer and the porous support layer. Both the dense layer and the intermediate porous layer are formed from an ionic conductive material to conduct oxygen ions and an electrically conductive material to conduct electrons. The porous support layer has a high permeability, high porosity, and a high average pore diameter and the intermediate porous layer has a lower permeability and lower pore diameter than the porous support layer. Catalyst particles selected to promote oxidation of a combustible substance are located in the intermediate porous layer and in the porous support adjacent to the intermediate porous layer. The catalyst particles can be formed by wicking a solution of catalyst precursors through the porous support toward the intermediate porous layer.

  7. Catalysts for carbon and coal gasification

    DOE Patents [OSTI]

    McKee, Douglas W.; Spiro, Clifford L.; Kosky, Philip G.

    1985-01-01

    Catalyst for the production of methane from carbon and/or coal by means of catalytic gasification. The catalyst compostion containing at least two alkali metal salts. A particulate carbonaceous substrate or carrier is used.

  8. Novel Fischer-Tropsch catalysts. [DOE patent

    DOE Patents [OSTI]

    Vollhardt, K.P.C.; Perkins, P.

    Novel compounds are described which are used as improved Fischer-Tropsch catalysts particularly for the conversion of CO + H/sub 2/ to gaseous and liquid hydrocarbons at milder conditions than with prior catalysts.

  9. Nanoscale Chemical Imaging of a Working Catalyst

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in point. The complex chemistry associated with the iron-based catalyst has made even the identity of the active catalyst at work an unsolved mystery. At the ALS, de Smit et al....

  10. High Impact Technology Catalyst: Technology Deployment Strategies |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Catalyst: Technology Deployment Strategies High Impact Technology Catalyst: Technology Deployment Strategies The Energy Department released the High Impact Technology Catalyst: Technology Deployment Strategies to serve as an overview of the HIT Catalyst program activities, including a summary of the selection process undertaken to identify, evaluate and prioritize the current HITs, descriptions of the technologies and markets for each HIT, and plans for deployment. PDF

  11. Nanoscale Chemical Imaging of a Working Catalyst

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanoscale Chemical Imaging of a Working Catalyst Nanoscale Chemical Imaging of a Working Catalyst Print Wednesday, 28 January 2009 00:00 The heterogeneous catalysts used in most chemical processes typically consist of nanoscale metal or metal oxide particles dispersed on high-surface-area supports. While these particles are the active elements of the catalyst, the overall performance depends not only on their size and composition but also on their multiple interactions with the support,

  12. Characterization and Hydrodesulfurization Properties of Catalysts...

    Office of Scientific and Technical Information (OSTI)

    Characterization and Hydrodesulfurization Properties of Catalysts Derived from Amorphous ... The resulting materials were characterized by a range of techniques, including ...

  13. Pyrochem Catalysts for Diesel Fuel Reforming

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pyrochem Catalysts for Diesel Fuel Reforming Success Story Converting heavy hydrocarbons, such as diesel and coal-based fuels, into hydrogen-rich synthesis gas is a necessary step for fuel cells and other applications. The high sulfur and aromatic content of these fuels poses a major technical challenge since these components can deactivate reforming catalysts. Taking on this challenge, NETL researchers invented a novel fuel-reforming catalyst that overcomes limitations of current catalysts by

  14. Biomass Catalyst Characterization Laboratory (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-07-01

    This fact sheet provides information about Biomass Catalyst Characterization Laboratory (BCCL) capabilities and applications at NREL's National Bioenergy Center.

  15. Attrition resistant catalysts and sorbents based on heavy metal poisoned FCC catalysts

    DOE Patents [OSTI]

    Gangwal, Santosh (Cary, NC); Jothimurugesan, Kandaswamy (Hampton, VA)

    1999-01-01

    A heavy metal poisoned, spent FCC catalyst is treated by chemically impregnating the poisoned catalyst with a new catalytic metal or metal salt to provide an attrition resistant catalyst or sorbent for a different catalytic or absorption processes, such as catalysts for Fischer-Tropsh Synthesis, and sorbents for removal of sulfur gasses from fuel gases and flue-gases. The heavy metal contaminated FCC catalyst is directly used as a support for preparing catalysts having new catalytic properties and sorbents having new sorbent properties, without removing or "passivating" the heavy metals on the spent FCC catalyst as an intermediate step.

  16. Attrition resistant catalysts and sorbents based on heavy metal poisoned FCC catalysts

    DOE Patents [OSTI]

    Gangwal, S.; Jothimurugesan, K.

    1999-07-27

    A heavy metal poisoned, spent FCC catalyst is treated by chemically impregnating the poisoned catalyst with a new catalytic metal or metal salt to provide an attrition resistant catalyst or sorbent for a different catalytic or absorption process, such as catalysts for Fischer-Tropsh Synthesis, and sorbents for removal of sulfur gases from fuel gases and flue-gases. The heavy metal contaminated FCC catalyst is directly used as a support for preparing catalysts having new catalytic properties and sorbents having new sorbent properties, without removing or passivating the heavy metals on the spent FCC catalyst as an intermediate step.

  17. Silver doped catalysts for treatment of exhaust

    DOE Patents [OSTI]

    Park, Paul Worn; Hester, Virgil Raymond; Ragle, Christie Susan; Boyer, Carrie L.

    2009-06-02

    A method of making an exhaust treatment element includes washcoating a substrate with a slurry that includes a catalyst support material. At least some of the catalyst support material from the slurry may be transferred to the substrate, and silver metal (Ag) is dispersed within the catalyst support material.

  18. Catalysts for coal liquefaction processes

    DOE Patents [OSTI]

    Garg, D.

    1986-10-14

    Improved catalysts for catalytic solvent refining or hydroliquefaction of non-anthracitic coal at elevated temperatures under hydrogen pressure in a hydrogen donor solvent comprise a combination of zinc or copper, or a compound thereof, and a Group VI or non-ferrous Group VIII metal, or a compound thereof.

  19. Perovskite catalysts for oxidative coupling

    DOE Patents [OSTI]

    Campbell, Kenneth D.

    1991-01-01

    Perovskites of the structure A.sub.2 B.sub.2 C.sub.3 O.sub.10 are useful as catalysts for the oxidative coupling of lower alkane to heavier hydrocarbons. A is alkali metal; B is lanthanide or lanthanum, cerium, neodymium, samarium, praseodymium, gadolinium or dysprosium; and C is titanium.

  20. Perovskite catalysts for oxidative coupling

    DOE Patents [OSTI]

    Campbell, K.D.

    1991-06-25

    Perovskites of the structure A[sub 2]B[sub 2]C[sub 3]O[sub 10] are useful as catalysts for the oxidative coupling of lower alkane to heavier hydrocarbons. A is alkali metal; B is lanthanide or lanthanum, cerium, neodymium, samarium, praseodymium, gadolinium or dysprosium; and C is titanium.

  1. Catalysts for coal liquefaction processes

    DOE Patents [OSTI]

    Garg, Diwakar (Macungie, PA)

    1986-01-01

    Improved catalysts for catalytic solvent refining or hydroliquefaction of non-anthracitic coal at elevated temperatures under hydrogen pressure in a hydrogen donor solvent comprise a combination of zinc or copper, or a compound thereof, and a Group VI or non-ferrous Group VIII metal, or a compound thereof.

  2. Toward Molecular Catalysts by Computer

    SciTech Connect (OSTI)

    Raugei, Simone; DuBois, Daniel L.; Rousseau, Roger J.; Chen, Shentan; Ho, Ming-Hsun; Bullock, R. Morris; Dupuis, Michel

    2015-02-17

    Rational design of molecular catalysts requires a systematic approach to designing ligands with specific functionality and precisely tailored electronic and steric properties. It then becomes possible to devise computer protocols to predict accurately the required properties and ultimately to design catalysts by computer. In this account we first review how thermodynamic properties such as oxidation-reduction potentials (E0), acidities (pKa), and hydride donor abilities (ΔGH-) form the basis for a systematic design of molecular catalysts for reactions that are critical for a secure energy future (hydrogen evolution and oxidation, oxygen and nitrogen reduction, and carbon dioxide reduction). We highlight how density functional theory allows us to determine and predict these properties within “chemical” accuracy (~ 0.06 eV for redox potentials, ~ 1 pKa unit for pKa values, and ~ 1.5 kcal/mol for hydricities). These quantities determine free energy maps and profiles associated with catalytic cycles, i.e. the relative energies of intermediates, and help us distinguish between desirable and high-energy pathways and mechanisms. Good catalysts have flat profiles that avoid high activation barriers due to low and high energy intermediates. We illustrate how the criterion of a flat energy profile lends itself to the prediction of design points by computer for optimum catalysts. This research was carried out in the Center for Molecular Electro-catalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences. Pacific Northwest National Laboratory (PNNL) is operated for the DOE by Battelle.

  3. Engineering catalytic activity via ion beam bombardment of catalyst supports for vertically aligned carbon nanotube growth

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Islam, A. E.; Zakharov, D.; Stach, E. A.; Nikoleav, P.; Amama, P. B.; Sargent, G.; Saber, S.; Huffman, D.; Erford, M.; Semiatin, S. L.; et al

    2015-09-16

    Carbon nanotube growth depends on the catalytic activity of metal nanoparticles on alumina or silica supports. The control on catalytic activity is generally achieved by variations in water concentration, carbon feed, and sample placement on a few types of alumina or silica catalyst supports obtained via thin film deposition. We have recently expanded the choice of catalyst supports by engineering inactive substrates like c-cut sapphire via ion beam bombardment. The deterministic control on the structure and chemistry of catalyst supports obtained by tuning the degree of beam-induced damage have enabled better regulation of the activity of Fe catalysts only inmore » the ion beam bombarded areas and hence enabled controllable super growth of carbon nanotubes. A wide range of surface characterization techniques were used to monitor the catalytically active surface engineered via ion beam bombardment. The proposed method offers a versatile way to control carbon nanotube growth in patterned areas and also enhances the current understanding of the growth process. As a result, with the right choice of water concentration, carbon feed and sample placement, engineered catalyst supports may extend the carbon nanotube growth yield to a level that is even higher than the ones reported here, and thus offers promising applications of carbon nanotubes in electronics, heat exchanger, and energy storage.« less

  4. Engineering catalytic activity via ion beam bombardment of catalyst supports for vertically aligned carbon nanotube growth

    SciTech Connect (OSTI)

    Islam, A. E.; Zakharov, D.; Stach, E. A.; Nikoleav, P.; Amama, P. B.; Sargent, G.; Saber, S.; Huffman, D.; Erford, M.; Semiatin, S. L.; Maruyama, B.

    2015-09-16

    Carbon nanotube growth depends on the catalytic activity of metal nanoparticles on alumina or silica supports. The control on catalytic activity is generally achieved by variations in water concentration, carbon feed, and sample placement on a few types of alumina or silica catalyst supports obtained via thin film deposition. We have recently expanded the choice of catalyst supports by engineering inactive substrates like c-cut sapphire via ion beam bombardment. The deterministic control on the structure and chemistry of catalyst supports obtained by tuning the degree of beam-induced damage have enabled better regulation of the activity of Fe catalysts only in the ion beam bombarded areas and hence enabled controllable super growth of carbon nanotubes. A wide range of surface characterization techniques were used to monitor the catalytically active surface engineered via ion beam bombardment. The proposed method offers a versatile way to control carbon nanotube growth in patterned areas and also enhances the current understanding of the growth process. As a result, with the right choice of water concentration, carbon feed and sample placement, engineered catalyst supports may extend the carbon nanotube growth yield to a level that is even higher than the ones reported here, and thus offers promising applications of carbon nanotubes in electronics, heat exchanger, and energy storage.

  5. Autothermal reforming catalyst having perovskite structure

    DOE Patents [OSTI]

    Krumpel, Michael; Liu, Di-Jia

    2009-03-24

    The invention addressed two critical issues in fuel processing for fuel cell application, i.e. catalyst cost and operating stability. The existing state-of-the-art fuel reforming catalyst uses Rh and platinum supported over refractory oxide which add significant cost to the fuel cell system. Supported metals agglomerate under elevated temperature during reforming and decrease the catalyst activity. The catalyst is a perovskite oxide or a Ruddlesden-Popper type oxide containing rare-earth elements, catalytically active firs row transition metal elements, and stabilizing elements, such that the catalyst is a single phase in high temperature oxidizing conditions and maintains a primarily perovskite or Ruddlesden-Popper structure under high temperature reducing conditions. The catalyst can also contain alkaline earth dopants, which enhance the catalytic activity of the catalyst, but do not compromise the stability of the perovskite structure.

  6. Multilayered and complex nanoparticle architectures through plasma synthesis

    SciTech Connect (OSTI)

    Phillips, Jonathan; Wakeland, Stephen; Cui, Yuehua; Knapp, Angela; Richard, Monique; Luhrs, Claudia

    2009-01-01

    Using the Aerosol Through Plasma (ATP) method in conjunction with simple chemical techniques a variety of complex and novel nanoparticle architectures were created. A TP was used to make metal-core/carbon shell nanoparticles (ca. 50 nm diameter) of SnlCarbon and AI/Carbon. These have, respectively, potential for application as battery anode (for hybrid and electric vehicles) and high energy fuel In one example of post processing, the Sn-core/carbon-shell material is treated in acidic solution and yields a true nano-sized hollow carbon shell. These shells have potential application as catalyst supports, gas storage, a neutral buoyancy material for applications as varied as proppants, and slow release capsules for pharmaceutical or agricultural applications. A different set of post-A-T-P processes were used to make three layer nanoparticles with a metal core, graphite inner shell and ceramic outer shell. This method extends the range of achievable nanoparticles architectures, hence enabling new applications.

  7. Catalyst for selective conversion of synthesis gas and method of making the catalyst

    DOE Patents [OSTI]

    Dyer, Paul N.; Pierantozzi, Ronald

    1986-01-01

    A Fischer-Tropsch (F-T) catalyst, a method of making the catalyst and an F-T process utilizing the catalyst by which synthesis gas, particularly carbon-monoxide rich synthesis gas is selectively converted to higher hydrocarbons of relatively narrow carbon number range. In general, the selective and notably stable catalyst, consists of an inert carrier first treated with a Group IV B metal compound (such as zirconium or titanium), preferably an alkoxide compound, and subsequently treated with an organic compound of an F-T metal catalyst, such as cobalt, iron or ruthenium carbonyl. Reactions with air and water and calcination are specifically avoided in the catalyst preparation procedure.

  8. Supported fischer-tropsch catalyst and method of making the catalyst

    DOE Patents [OSTI]

    Dyer, Paul N.; Pierantozzi, Ronald; Withers, Howard P.

    1987-01-01

    A Fischer-Tropsch catalyst and a method of making the catalyst for a Fischer-Tropsch process utilizing the catalyst by which synthesis gas, particularly carbon-monoxide rich synthesis gas, is selectively converted to higher hydrocarbons of relatively narrow carbon number range is disclosed. In general, the selective and notably stable catalyst, consist of an inert carrier first treated with a Group IV B metal compound (such as zirconium or titanium), preferably an alkoxide compound, and subsequently treated with an organic compound of a Fischer-Tropsch metal catalyst, such as cobalt, iron or ruthenium carbonyl. Reactions with air and water and calcination are specifically avoided in the catalyst preparation procedure.

  9. Catalyst for hydrotreating carbonaceous liquids

    DOE Patents [OSTI]

    Berg, Lloyd; McCandless, Frank P.; Ramer, Ronald J.

    1982-01-01

    A catalyst for denitrogenating and desulfurating carbonaceous liquid such as solvent refined coal includes catalytic metal oxides impregnated within a porous base of mostly alumina with relatively large pore diameters, surface area and pore volume. The base material includes pore volumes of 0.7-0.85 ml/g, surface areas of 200-350 m.sup.2 /g and pore diameters of 85-200 Angstroms. The catalytic metals impregnated into these base materials include the oxides of Group VI metals, molybdenum and tungsten, and the oxides of Group VIII metals, nickel and cobalt, in various combinations. These catalysts and bases in combination have effectively promoted the removal of chemically combined sulfur and nitrogen within a continuous flowing mixture of carbonaceous liquid and hydrogen gas.

  10. Copper-containing zeolite catalysts

    DOE Patents [OSTI]

    Price, Geoffrey L.; Kanazirev, Vladislav

    1996-01-01

    A catalyst useful in the conversion of nitrogen oxides or in the synthesis of nitriles or imines from amines, formed by preparing an intimate mechanical mixture of a copper (II)-containing species, such as CuO or CuCl.sub.2, or elemental copper, with a zeolite having a pore mouth comprising 10 oxygen atoms, such as ZSM-5, converting the elemental copper or copper (II) to copper (I), and driving the copper (I) into the zeolite.

  11. Supercritical/Solid Catalyst (SSC)

    ScienceCinema (OSTI)

    None

    2013-05-28

    INL's patented, continuous-flow Supercritical/Solid Catalyst (SSC) produces the highest ASTM-quality B-100 biodiesel from waste fats, oils, and greases at the site of waste generation. SSC delivers low-cost transportation fuel, avoids significant landfill costs for municipalities, and reduces potent methane and other emissions produced in landfills from these wastes. You can learn more about INL's energy research programs at http://www.facebook.com/idahonationallaboratory.

  12. Supercritical/Solid Catalyst (SSC)

    SciTech Connect (OSTI)

    2010-01-01

    INL's patented, continuous-flow Supercritical/Solid Catalyst (SSC) produces the highest ASTM-quality B-100 biodiesel from waste fats, oils, and greases at the site of waste generation. SSC delivers low-cost transportation fuel, avoids significant landfill costs for municipalities, and reduces potent methane and other emissions produced in landfills from these wastes. You can learn more about INL's energy research programs at http://www.facebook.com/idahonationallaboratory.

  13. Copper-containing zeolite catalysts

    DOE Patents [OSTI]

    Price, G.L.; Kanazirev, V.

    1996-12-10

    A catalyst useful in the conversion of nitrogen oxides or in the synthesis of nitriles or imines from amines, is formed by preparing an intimate mechanical mixture of a copper (II)-containing species, such as CuO or CuCl{sub 2}, or elemental copper, with a zeolite having a pore mouth comprising 10 oxygen atoms, such as ZSM-5, converting the elemental copper or copper (II) to copper (I), and driving the copper (I) into the zeolite.

  14. Catalyst Characterization | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    The second cycle of the Catalyst Prize Program is moving forward. The Business Innovation contest-designed to help teams form and explore software solutions to the most compelling problems facing building energy efficiency-is complete and finalists have been selected for the next competition phase, the Prototyping contest. The buildings finalists are: Building DataCloud, Livable Analytics, BuiltSpectrum, Inc., Kinetic Buildings, and One Oak Systems. These teams will represent the first

  15. Catalysts for Fischer-Tropsch

    SciTech Connect (OSTI)

    Srivastava, R.D. ); Rao, V.U.S.; Cinquegrane, G.; Stiegel, G.J. )

    1990-02-01

    The slurry-phase Fischer-Tropsch (F-T) process has attracted considerable attention recently. The process can make liquid fuels by reacting hydrogen-lean synthesis gas produced from modern energy-efficient gasifiers. continuing assessment of Fischer-Tropsch Synthesis (FTS) has a high priority within an indirect liquefaction program, a part of the liquid fuels program sponsored by the U.S. Department of Energy (DOE) and executed by the Pittsburgh Energy Technology Center (PETC). Funding for the indirect liquefaction program in 1990:0090 is anticipated to be about $8.5 million compared to $6.6 million in 1989 and a like amount in the year before. The studies within the program are conducted by industry, universities, national laboratories and in-house PETC research and development. This article reviews preparation and properties of iron-based catalysts, including recent patent activities and in-depth process analysis of slurry-phase FTS. The review provides an analysis of Fischer-Tropsch catalyst research and development trends and describes options to increase selectivity for iron-based catalysts in a slurry phase.

  16. Ultra-high-performance core–shell structured Ru@Pt/C catalyst prepared by a facile pulse electrochemical deposition method

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Chen, Dan; Li, Yuexia; Liao, Shijun; Su, Dong; Song, Huiyu; Li, Yingwei; Yang, Lijun; Li, Can

    2015-08-03

    Core–shell structured catalysts, made by placing either a monolayer or a thin layer of a noble metal on relatively cheap core-metal nanoparticles, are fascinating and promising fuel cell catalysts due to their high utilization of noble metals. Here, we report our development of a core–shell structured catalyst, Ru@Pt/C, generated by a novel and facile pulse electrochemical deposition (PED) approach. We demonstrate that compared with a commercial Pt/C catalyst, this novel catalyst achieves over four times higher mass activity towards the anodic oxidation of methanol, and 3.6 times higher mass activity towards the cathodic reduction of oxygen. Importantly, we find thatmore » the intrinsic activity of Pt in this Ru@Pt/C catalyst is doubled due to the formation of the core–shell structure. The catalyst also shows superior stability: even after 2000 scans, it still retains up to 90% of the peak current. As a result, our findings demonstrate that this novel PED approach is a promising method for preparing high-performance core–shell catalysts for fuel cell applications.« less

  17. Ultra-high-performance core–shell structured Ru@Pt/C catalyst prepared by a facile pulse electrochemical deposition method

    SciTech Connect (OSTI)

    Chen, Dan; Li, Yuexia; Liao, Shijun; Su, Dong; Song, Huiyu; Li, Yingwei; Yang, Lijun; Li, Can

    2015-08-03

    Core–shell structured catalysts, made by placing either a monolayer or a thin layer of a noble metal on relatively cheap core-metal nanoparticles, are fascinating and promising fuel cell catalysts due to their high utilization of noble metals. Here, we report our development of a core–shell structured catalyst, Ru@Pt/C, generated by a novel and facile pulse electrochemical deposition (PED) approach. We demonstrate that compared with a commercial Pt/C catalyst, this novel catalyst achieves over four times higher mass activity towards the anodic oxidation of methanol, and 3.6 times higher mass activity towards the cathodic reduction of oxygen. Importantly, we find that the intrinsic activity of Pt in this Ru@Pt/C catalyst is doubled due to the formation of the core–shell structure. The catalyst also shows superior stability: even after 2000 scans, it still retains up to 90% of the peak current. As a result, our findings demonstrate that this novel PED approach is a promising method for preparing high-performance core–shell catalysts for fuel cell applications.

  18. Low temperature catalysts for methanol production

    DOE Patents [OSTI]

    Sapienza, R.S.; Slegeir, W.A.; O'Hare, T.E.; Mahajan, D.

    1986-09-30

    A catalyst and process useful at low temperatures (below about 160 C) and preferably in the range 80--120 C used in the production of methanol from carbon monoxide and hydrogen are disclosed. The catalyst is used in slurry form and comprises a complex reducing agent derived from the component structure NaH--RONa-M(OAc)[sub 2] where M is selected from the group consisting of Ni, Pd, and Co and R is a lower alkyl group containing 1--6 carbon atoms. This catalyst is preferably used alone but is also effective in combination with a metal carbonyl of a group VI (Mo, Cr, W) metal. The preferred catalyst precursor is Nic (where M = Ni and R = tertiary amyl). Mo(CO)[sub 6] is the preferred metal carbonyl if such component is used. The catalyst is subjected to a conditioning or activating step under temperature and pressure, similar to the parameters given above, to afford the active catalyst.

  19. Nanoscale Chemical Imaging of a Working Catalyst

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanoscale Chemical Imaging of a Working Catalyst Print The heterogeneous catalysts used in most chemical processes typically consist of nanoscale metal or metal oxide particles dispersed on high-surface-area supports. While these particles are the active elements of the catalyst, the overall performance depends not only on their size and composition but also on their multiple interactions with the support, reactants, and products. Probing this chemical soup in real time under realistic reaction

  20. Nanoscale Chemical Imaging of a Working Catalyst

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanoscale Chemical Imaging of a Working Catalyst Print The heterogeneous catalysts used in most chemical processes typically consist of nanoscale metal or metal oxide particles dispersed on high-surface-area supports. While these particles are the active elements of the catalyst, the overall performance depends not only on their size and composition but also on their multiple interactions with the support, reactants, and products. Probing this chemical soup in real time under realistic reaction

  1. Nanoscale Chemical Imaging of a Working Catalyst

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanoscale Chemical Imaging of a Working Catalyst Print The heterogeneous catalysts used in most chemical processes typically consist of nanoscale metal or metal oxide particles dispersed on high-surface-area supports. While these particles are the active elements of the catalyst, the overall performance depends not only on their size and composition but also on their multiple interactions with the support, reactants, and products. Probing this chemical soup in real time under realistic reaction

  2. Nanoscale Chemical Imaging of a Working Catalyst

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanoscale Chemical Imaging of a Working Catalyst Print The heterogeneous catalysts used in most chemical processes typically consist of nanoscale metal or metal oxide particles dispersed on high-surface-area supports. While these particles are the active elements of the catalyst, the overall performance depends not only on their size and composition but also on their multiple interactions with the support, reactants, and products. Probing this chemical soup in real time under realistic reaction

  3. Improvement of microbead cracking catalyst manufacture

    SciTech Connect (OSTI)

    Mirskii, Ya.B.; Kosolapova, A.P.; Meged, N.F.

    1986-11-01

    In order to improve the manufacturing process for KMTsR microbead catalyst for use in new cracking units, the authors consider the method of increasing the content of aluminum oxide in its amorphous part. A microbead catalyst of zeolite, containing rare-earth elements of the KMTsR type was obtained by spray-drying a slurry prepared by mechanical dispersion of hydrogel beads, with the subsequent molding and processing operations the same as in the production of bead catalyst.

  4. Catalysts for Dehydrogenation of ammonia boranes

    SciTech Connect (OSTI)

    Heinekey, Dennis M.

    2014-12-19

    Several effective homogeneous catalysts for the dehydrogenation of amine boranes have been developed. The best catalyst uses an iridium complex, and is capable of dehydrogenating H3NBH3 (AB) and CH3NH2BH3 (MeAB) at comparable rates. Thermodynamic measurements using this catalyst demonstrate that the dehydrogenation of AB and MeAB is substantially exothermic, which has important implications for regeneration.

  5. High Impact Technology Catalyst | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Commercial Buildings » High Impact Technology Catalyst High Impact Technology Catalyst High impact technologies (HITs) are cost-effective, underutilized energy-efficient commercial building technologies. Through the High Impact Technology Catalyst program, initiated in 2014, the U.S. Department of Energy (DOE) identifies and guides HITs through their early market introduction phases, ultimately leading them to the broader market through partnerships with the commercial buildings industry via

  6. Nanoscale Chemical Imaging of a Working Catalyst

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanoscale Chemical Imaging of a Working Catalyst Print The heterogeneous catalysts used in most chemical processes typically consist of nanoscale metal or metal oxide particles dispersed on high-surface-area supports. While these particles are the active elements of the catalyst, the overall performance depends not only on their size and composition but also on their multiple interactions with the support, reactants, and products. Probing this chemical soup in real time under realistic reaction

  7. Nanoscale Chemical Imaging of a Working Catalyst

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanoscale Chemical Imaging of a Working Catalyst Print The heterogeneous catalysts used in most chemical processes typically consist of nanoscale metal or metal oxide particles dispersed on high-surface-area supports. While these particles are the active elements of the catalyst, the overall performance depends not only on their size and composition but also on their multiple interactions with the support, reactants, and products. Probing this chemical soup in real time under realistic reaction

  8. Nanoscale Chemical Imaging of a Working Catalyst

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanoscale Chemical Imaging of a Working Catalyst Print The heterogeneous catalysts used in most chemical processes typically consist of nanoscale metal or metal oxide particles dispersed on high-surface-area supports. While these particles are the active elements of the catalyst, the overall performance depends not only on their size and composition but also on their multiple interactions with the support, reactants, and products. Probing this chemical soup in real time under realistic reaction

  9. Nanoscale Chemical Imaging of a Working Catalyst

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanoscale Chemical Imaging of a Working Catalyst Print The heterogeneous catalysts used in most chemical processes typically consist of nanoscale metal or metal oxide particles dispersed on high-surface-area supports. While these particles are the active elements of the catalyst, the overall performance depends not only on their size and composition but also on their multiple interactions with the support, reactants, and products. Probing this chemical soup in real time under realistic reaction

  10. Nanoscale Chemical Imaging of a Working Catalyst

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanoscale Chemical Imaging of a Working Catalyst Print The heterogeneous catalysts used in most chemical processes typically consist of nanoscale metal or metal oxide particles dispersed on high-surface-area supports. While these particles are the active elements of the catalyst, the overall performance depends not only on their size and composition but also on their multiple interactions with the support, reactants, and products. Probing this chemical soup in real time under realistic reaction

  11. New Catalyst Converts CO₂ to Fuel

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Catalyst Converts CO₂ to Fuel New Catalyst Converts CO₂ to Fuel Calculations run at NERSC help confirm University of Illinois breakthrough September 5, 2014 Contact: Kathy Kincade, +1 510 495 2124, kkincade@lbl.gov Scientists from the University of Illinois at Chicago have synthesized a catalyst that improves their system for converting waste carbon dioxide (CO₂) into syngas, a precursor of gasoline and other energy-rich products, bringing the process closer to commercial viability.

  12. In situ XANES Spectroscopic Investigation of the Pre-Reduction of Iron-Based Catalysts for Non-Oxidative Alkane Dehydrogenation

    SciTech Connect (OSTI)

    Huggins, F.; Shen, W; Cprek, N; Shah, N; Marinkovic, N; Huffman, G

    2008-01-01

    The reduction in a methane atmosphere of two as-prepared ferric oxide catalysts for the non-oxidative dehydrogenation of alkanes has been investigated by in situ X-ray absorption near-edge structure (XANES) spectroscopy using a novel X-ray transmission reaction cell. The two catalysts were prepared by different synthesis methods (incipient wetness and nanoparticle impregnation) and were supported on Al-substituted magnesium oxide obtained by decomposition of a synthetic hydrotalcite. The reduction of the ferric oxides by methane was followed by iron XANES spectroscopy at temperatures up to 650 C complemented by a residual gas analyzer (RGA) used to track changes in the product gas. Results showed that the ferric oxides in the two catalysts underwent a stepwise reduction to first ferrous oxide, releasing mainly H{sub 2}O in the case of the nanoparticle catalyst but H{sub 2} and CO in the case of the incipient wetness formulation at temperatures between 200 and 550 C, and then more slowly to metallic iron at higher temperatures. Reaction of the ferrous oxide with the support to form magnesiowstite also occurred in conjunction with the reduction. This in situ investigation confirms that metallic iron is the active catalytic phase for alkane dehydrogenation and that observations of ferric iron in samples investigated at room temperature after reduction and reaction are most likely due to re-oxidation of the iron in the catalyst upon exposure to air rather than incomplete reduction of the original ferric iron in the catalyst.

  13. Nanoscale Chemical Imaging of a Working Catalyst

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    catalysts for maximum selectivity and efficiency in a wide range of chemical processes. ... The measurements generated chemical contour maps for the species present. Quantitative ...

  14. Developing Intermetallic Catalysts | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1: Precious metals and metal alloys are important heterogeneous catalysts for renewable energies and materials. However, both of them have their limitations. Precious metals have...

  15. Highly Dispersed Metal Catalyst - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrogen and Fuel Cell Hydrogen and Fuel Cell Advanced Materials Advanced Materials Find More Like This Return to Search Highly Dispersed Metal Catalyst Method for full dispersion...

  16. Highly Dispersed Alloy Cathode Catalyst for Durability

    Broader source: Energy.gov [DOE]

    This presentation, which focuses on alloy cathode catalysts, was given by T. D. Jarvi of UTC Power at a February 2007 meeting on new fuel cell projects.

  17. Bifunctional Catalysts for the Selective Catalytic Reduction...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for the Selective Catalytic Reduction of NO by Hydrocarbons Development of Optimal Catalyst Designs and Operating Strategies for Lean NOx Reduction in Coupled LNT-SCR Systems

  18. Process for coal liquefaction using electrodeposited catalyst

    DOE Patents [OSTI]

    Moore, Raymond H. (Richland, WA)

    1978-01-01

    A process for the liquefaction of solid hydrocarbonaceous materials is disclosed. Particles of such materials are electroplated with a metal catalyst and are then suspended in a hydrocarbon oil and subjected to hydrogenolysis to liquefy the solid hydrocarbonaceous material. A liquid product oil is separated from residue solid material containing char and the catalyst metal. The catalyst is recovered from the solid material by electrolysis for reuse. A portion of the product oil can be employed as the hydrocarbon oil for suspending additional particles of catalyst coated solid carbonaceous material for hydrogenolysis.

  19. Characterization of Catalysts for Aftertreatment and Biomass...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Aftertreatment and Biomass-derived Fuels: Success Stories from the High Temperature Materials Laboratory (HTML) User Program Characterization of Catalysts for Aftertreatment...

  20. Catalyst Support Interactions | Argonne Leadership Computing...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    on the reactivity of metal catalyst particles. The research team will also study the adhesion properties by simulating the interactions between metal particles of different sizes...

  1. Nitrogen oxides storage catalysts containing cobalt

    DOE Patents [OSTI]

    Lauterbach, Jochen; Snively, Christopher M.; Vijay, Rohit; Hendershot, Reed; Feist, Ben

    2010-10-12

    Nitrogen oxides (NO.sub.x) storage catalysts comprising cobalt and barium with a lean NO.sub.x storage ratio of 1.3 or greater. The NO.sub.x storage catalysts can be used to reduce NO.sub.x emissions from diesel or gas combustion engines by contacting the catalysts with the exhaust gas from the engines. The NO.sub.x storage catalysts can be one of the active components of a catalytic converter, which is used to treat exhaust gas from such engines.

  2. Biomass Deconstruction: Catalyst Development and Testing Presentation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... system Upgrade pyrolysis vapors fcn temp, DCR conditions Demonstrate vapor and oil production Catalyst down select for 2017 DCR training at Zeton, WR Grace Oil ...

  3. Polyfunctional catalyst for processiing benzene fractions

    SciTech Connect (OSTI)

    G. Byakov; B.D. Zubitskii; B.G. Tryasunov; I.Ya. Petrov

    2009-05-15

    A by-product of the coke industry is a raw benzene fraction benzene- 1 which may serve as for catalytic processes. The paper reports a study on the influence of the composition and temperatures on the activity and selectivity of NiO-V{sub 2}O{sub 6}-MoO{sub 3}/{gamma}-Al{sub 2}O{sub 3} catalysts and the corresponding binary and tertiary subsystems are studied by a pulse method in model reactions; the hydrodealkylating of toluene and the hydrodesulfurizing of thioprhene. The optimal catalyst composition is established. The new catalyst is compared with industrial catalysts.

  4. Bifunctional Catalysts for the Selective Catalytic Reduction...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Publications Bifunctional Catalysts for the Selective Catalytic Reduction of NO by Hydrocarbons Selectlive Catalytic Reducution of NOx wilth Diesel-Based Fuels as Reductants...

  5. Hydrocarbon synthesis catalyst and method of preparation

    DOE Patents [OSTI]

    Sapienza, Richard S.; Sansone, Michael J.; Slegeir, William A. R.

    1983-08-02

    A catalyst for the synthesis of hydrocarbons from carbon monoxide and hydrogen composed of palladium or platinum and cobalt supported on a solid phase is disclosed. The catalyst is prepared by heating a heterogeneous component of the palladium or platinum deposited on the solid support in a solution of cobalt carbonyl or precursors thereof. The catalyst exhibits excellent activity, stability in air, and produces highly desirable product fractions even with dilute gaseous reactants. The catalyst is preferably used in dilute slurry form, which is desirable from a heat transfer standpoint.

  6. Hydrocarbon synthesis catalyst and method of preparation

    DOE Patents [OSTI]

    Sapienza, R.S.; Sansone, M.J.; Slegeir, W.A.R.

    1983-08-02

    A catalyst for the synthesis of hydrocarbons from carbon monoxide and hydrogen composed of palladium or platinum and cobalt supported on a solid phase is disclosed. The catalyst is prepared by heating a heterogeneous component of the palladium or platinum deposited on the solid support in a solution of cobalt carbonyl or precursors thereof. The catalyst exhibits excellent activity, stability in air, and produces highly desirable product fractions even with dilute gaseous reactants. The catalyst is preferably used in dilute slurry form, which is desirable from a heat transfer standpoint. 9 figs.

  7. Low Temperature Catalyst for Fuel Injection System

    Broader source: Energy.gov [DOE]

    A low temperature oxidation catalyst applied to a DOC and DPF combined with a unique fuel injection system remove soot from a diesel exhaust system.

  8. High Impact Technology Catalyst | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    non-profits, utilities and efficiency organizations. HIT Catalyst also serves as the umbrella program under which all of the Commercial Buildings Integration program's technology...

  9. Ethanol oxidation on metal oxide-supported platinum catalysts

    SciTech Connect (OSTI)

    L. M. Petkovic 090468; Sergey N. Rashkeev; D. M. Ginosar

    2009-09-01

    Ethanol is a renewable fuel that can be used as an additive to gasoline (or its substitute) with the advantage of octane enhancement and reduced carbon monoxide exhaust emissions. However, on Ethanol is a renewable fuel that can be used as an additive to gasoline (or its substitute) with the advantage of octane enhancement and reduced carbon monoxide exhaust emissions. However, on the standard three-way catalysts, the conversion of unburned ethanol is low because both ethanol and some of its partially oxidized derivatives are highly resistant to oxidation. A combination of first-principles density-functional theory (DFT) based calculations and in-situ diffuse reflectance infrared spectroscopy (DRIFTS) analysis was applied to uncover some of the fundamental phenomena associated with ethanol oxidation on Pt containing catalysts. In particular, the objective was to analyze the role of the oxide (i.e., ?-Al2O3 or SiO2) substrate on the ethanol oxidation activity. The results showed that Pt nanoparticles trap and accumulate oxygen at their surface and perimeter sites and play the role of stoves that burn ethanol molecules and their partially oxidized derivatives to the final products. The ?-Al2O3 surfaces provided higher mobility of the fragments of ethanol molecules than the SiO2 surface and hence increased the supply rate of these objects to the Pt particles. This will in turn produce a higher conversion rate of unburned ethanol.and some of its partially oxidized derivatives are highly resistant to oxidation. A combination of first-principles density-functional theory (DFT) based calculations and in-situ diffuse reflectance infrared spectroscopy (DRIFTS) analysis was applied to uncover some of the fundamental phenomena associated with ethanol oxidation on Pt containing catalysts. In particular, the objective was to analyze the role of the oxide (i.e., ?-Al2O3 or SiO2) substrate on the ethanol oxidation activity. The results showed that Pt nanoparticles trap and accumulate oxygen at their surface and perimeter sites and play the role of stoves that burn ethanol molecules and their partially oxidized derivatives to the final products. The ?-Al2O3 surfaces provided higher mobility of the fragments of ethanol molecules than the SiO2 surface and hence increased the supply rate of these objects to the Pt particles. This will in turn produce a higher conversion rate of unburned ethanol.

  10. Understanding the Distributed Intra-Catalyst Impact of Sulfation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    on Water Gas Shift in a Lean NOx Trap Catalyst Understanding the Distributed Intra-Catalyst Impact of Sulfation on Water Gas Shift in a Lean NOx Trap Catalyst The Lean NOx Trap ...

  11. SunShot Catalyst Prize Rules | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Catalyst Prize Rules SunShot Catalyst Prize Rules SunShot Catalyst is an open innovation program that aims to catalyze the rapid creation and development of products and solutions ...

  12. Attrition resistant fluidizable reforming catalyst

    DOE Patents [OSTI]

    Parent, Yves O.; Magrini, Kim; Landin, Steven M.; Ritland, Marcus A.

    2011-03-29

    A method of preparing a steam reforming catalyst characterized by improved resistance to attrition loss when used for cracking, reforming, water gas shift and gasification reactions on feedstock in a fluidized bed reactor, comprising: fabricating the ceramic support particle, coating a ceramic support by adding an aqueous solution of a precursor salt of a metal selected from the group consisting of Ni, Pt, Pd, Ru, Rh, Cr, Co, Mn, Mg, K, La and Fe and mixtures thereof to the ceramic support and calcining the coated ceramic in air to convert the metal salts to metal oxides.

  13. Thermodynamic Properties of Supported Catalysts

    SciTech Connect (OSTI)

    Gorte, Raymond J.

    2014-03-26

    The goals of this work were to develop Coulometric Titration as a method for characterizing the thermodynamic redox properties of oxides and to apply this technique to the characterization of ceria- and vanadia-based catalysts. The redox properties of ceria and vanadia are a major part of what makes these materials catalytically active but their properties are also dependent on their structure and the presence of other oxides. Quantifying these properties through the measurement of oxidation energetics was the goal of this work.

  14. Formation of alcohol conversion catalysts

    DOE Patents [OSTI]

    Wachs, Israel E.; Cai, Yeping

    2001-01-01

    The method of the present invention involves a composition containing an intimate mixture of (a) metal oxide support particles and (b) a catalytically active metal oxide from Groups VA, VIA, or VIIA, its method of manufacture, and its method of use for converting alcohols to aldehydes. During the conversion process, catalytically active metal oxide from the discrete catalytic metal oxide particles migrates to the oxide support particles and forms a monolayer of catalytically active metal oxide on the oxide support particle to form a catalyst composition having a higher specific activity than the admixed particle composition.

  15. Tungsten carbide/porous carbon composite as superior support for platinum catalyst toward methanol electro-oxidation

    SciTech Connect (OSTI)

    Jiang, Liming; Fu, Honggang; Wang, Lei; Mu, Guang; Jiang, Baojiang; Zhou, Wei; Wang, Ruihong

    2014-01-01

    Graphical abstract: The WC nanoparticles are well dispersed in the carbon matrix. The size of WC nanoparticles is about 30 nm. It can be concluded that tungsten carbide and carbon composite was successfully prepared by the present synthesis conditions. - Highlights: The WC/PC composite with high specific surface area was prepared by a simple way. The Pt/WC/PC catalyst has superior performance toward methanol electro-oxidation. The current density for methanol electro-oxidation is as high as 595.93 A g{sup ?1} Pt. The Pt/WC/PC catalyst shows better durability and stronger CO electro-oxidation. The performance of Pt/WC/PC is superior to the commercial Pt/C (JM) catalyst. - Abstract: Tungsten carbide/porous carbon (WC/PC) composites have been successfully synthesized through a surfactant assisted evaporation-induced-assembly method, followed by a thermal treatment process. In particular, WC/PC-35-1000 composite with tungsten content of 35% synthesized at the carbonized temperature of 1000 C, exhibited a specific surface area (S{sub BET}) of 457.92 m{sup 2} g{sup ?1}. After loading Pt nanoparticles (NPs), the obtained Pt/WC/PC-35-1000 catalyst exhibits the highest unit mass electroactivity (595.93 A g{sup ?1} Pt) toward methanol electro-oxidation, which is about 2.6 times as that of the commercial Pt/C (JM) catalyst. Furthermore, the Pt/WC/PC-35-1000 catalyst displays much stronger resistance to CO poisoning and better durability toward methanol electrooxidation compared with the commercial Pt/C (JM) catalyst. The high electrocatalytic activity, strong poison-resistivity and good stability of Pt/WC/PC-35-1000 catalyst are attributed to the porous structures and high specific surface area of WC/PC support could facilitate the rapid mass transportation. Moreover, synergistic effect between WC and Pt NPs is favorable to the higher catalytic performance.

  16. Nanosegregated Surfaces as Catalysts for Fuel Cells | Argonne...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanosegregated Surfaces as Catalysts for Fuel Cells Technology available for licensing: A method for creating a new class of platinum multi-metallic catalysts that are not only...

  17. Development of Optimal Catalyst Designs and Operating Strategies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Development of Optimal Catalyst Designs and Operating Strategies for Lean NOx Reduction in Coupled LNT-SCR Systems Development of Optimal Catalyst Designs and Operating Strategies ...

  18. Mechanisms of Hydrocarbon Poisoning of A Urea SCR Catalyst |...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrocarbon Poisoning of A Urea SCR Catalyst Mechanisms of Hydrocarbon Poisoning of A Urea SCR Catalyst Understanding what reactions and which catalytic functions are affected by ...

  19. Table III: Technical Targets for Catalyst Coated Membranes (CCMs...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    III: Technical Targets for Catalyst Coated Membranes (CCMs): Stationary Table III: Technical Targets for Catalyst Coated Membranes (CCMs): Stationary Technical targets for CCMs in ...

  20. Ultra-High Resolution Electron Microscopy for Catalyst Characterizatio...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Resolution Electron Microscopy for Catalyst Characterization Ultra-High Resolution Electron Microscopy for Catalyst Characterization 2011 DOE Hydrogen and Fuel Cells Program, ...

  1. Ultra-high Resolution Electron Microscopy for Catalyst Characterizatio...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    high Resolution Electron Microscopy for Catalyst Characterization Ultra-high Resolution Electron Microscopy for Catalyst Characterization 2009 DOE Hydrogen Program and Vehicle ...

  2. Reaction Rates and Catalysts in Ethanol Production (1 Activity...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reaction Rates and Catalysts in Ethanol Production (1 Activity) Reaction Rates and Catalysts in Ethanol Production (1 Activity) Below is information about the student activity...

  3. BTO Catalyst Seeks Entries, Webinars and Jamathons Scheduled...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Catalyst Seeks Entries, Webinars and Jamathons Scheduled BTO Catalyst Seeks Entries, Webinars and Jamathons Scheduled July 20, 2015 - 1:29pm Addthis This funding opportunity is ...

  4. Toward Catalyst Design from Theoretical Calculations (464th Brookhaven...

    Office of Scientific and Technical Information (OSTI)

    Toward Catalyst Design from Theoretical Calculations (464th Brookhaven Lecture) Citation Details In-Document Search Title: Toward Catalyst Design from Theoretical Calculations...

  5. Novel Approach to Advanced Direct Methanol Fuel Cell Anode Catalysts...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Approach to Advanced Direct Methanol Fuel Cell Anode Catalysts Novel Approach to Advanced Direct Methanol Fuel Cell Anode Catalysts Presented at the Department of Energy Fuel Cell ...

  6. Novel Vertimass Catalyst for Conversion of Ethanol and Other...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Novel Vertimass Catalyst for Conversion of Ethanol and Other Alcohols into Fungible Gasoline, Jet, and Diesel Fuel Blend Stocks Novel Vertimass Catalyst for Conversion of Ethanol ...

  7. Functionality of Commercial NOx Storage-Reduction Catalysts and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Functionality of Commercial NOx Storage-Reduction Catalysts and the Development of a Representative Model Functionality of Commercial NOx Storage-Reduction Catalysts and the ...

  8. Dynamometer Evaluation of Plasma-Catalyst for Diesel NOx Reduction...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Evaluation of Plasma-Catalyst for Diesel NOx Reduction Dynamometer Evaluation of Plasma-Catalyst for Diesel NOx Reduction 2003 DEER Conference Presentation: Ford Motor Company PDF ...

  9. Two Catalyst Formulations - One Solution for NOx After-treatment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Catalyst Formulations - One Solution for NOx After-treatment Systems Two Catalyst Formulations - One Solution for NOx After-treatment Systems Low-temperature SCR combined with ...

  10. Selective ammonia slip catalyst enabling highly efficient NOx...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    slip catalyst enabling highly efficient NOx removal requirements of the future Selective ammonia slip catalyst enabling highly efficient NOx removal requirements of the future A ...

  11. Transmural Catalysis - High Efficiency Catalyst Systems for NOx...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transmural Catalysis - High Efficiency Catalyst Systems for NOx Adsorbers and SCR Transmural Catalysis - High Efficiency Catalyst Systems for NOx Adsorbers and SCR Presentation ...

  12. New Developments in Titania-Based Catalysts for Selective Catalytic...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Developments in Titania-Based Catalysts for Selective Catalytic Reduction of NOx New Developments in Titania-Based Catalysts for Selective Catalytic Reduction of NOx Presentation ...

  13. Home Improvement Catalyst: Sequencing Upgrades and Engaging Homeowners...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Improvement Catalyst: Sequencing Upgrades and Engaging Homeowners Over Time (201) Home Improvement Catalyst: Sequencing Upgrades and Engaging Homeowners Over Time (201) Better ...

  14. Understanding the Deactivation Mechanisms of Cu/Zeolite SCR Catalysts...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Deactivation Mechanisms of CuZeolite SCR Catalysts in Diesel Application Understanding the Deactivation Mechanisms of CuZeolite SCR Catalysts in Diesel Application To understand ...

  15. Investigation of Sulfur Deactivation on Cu/Zeolite SCR Catalysts...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sulfur Deactivation on CuZeolite SCR Catalysts in Diesel Application Investigation of Sulfur Deactivation on CuZeolite SCR Catalysts in Diesel Application Investigation of Sulfur ...

  16. Ultra-High Resolution Electron Microscopy for Catalyst Characterizatio...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    pm029allard2010p.pdf More Documents & Publications Ultra-High Resolution Electron Microscopy for Catalyst Characterization Ultra-high Resolution Electron Microscopy for Catalyst...

  17. Improved catalyst can clear the air

    SciTech Connect (OSTI)

    Pritchard, S.

    2006-05-15

    Catalyst technology can make clean coal plants look as clean as they are. This article examines the need and available methods for SO{sub 2} control with a specific focus on a catalyst technology developed by Cormetech. It also presents the results of commercial operating experience. 1 fig., 2 tabs.

  18. Membrane catalyst layer for fuel cells

    DOE Patents [OSTI]

    Wilson, Mahlon S.

    1993-01-01

    A gas reaction fuel cell incorporates a thin catalyst layer between a solid polymer electrolyte (SPE) membrane and a porous electrode backing. The catalyst layer is preferably less than about 10 .mu.m in thickness with a carbon supported platinum catalyst loading less than about 0.35 mgPt/cm.sup.2. The film is formed as an ink that is spread and cured on a film release blank. The cured film is then transferred to the SPE membrane and hot pressed into the surface to form a catalyst layer having a controlled thickness and catalyst distribution. Alternatively, the catalyst layer is formed by applying a Na.sup.+ form of a perfluorosulfonate ionomer directly to the membrane, drying the film at a high temperature, and then converting the film back to the protonated form of the ionomer. The layer has adequate gas permeability so that cell performance is not affected and has a density and particle distribution effective to optimize proton access to the catalyst and electronic continuity for electron flow from the half-cell reaction occurring at the catalyst.

  19. Catalyst and method for production of methylamines

    DOE Patents [OSTI]

    Klier, Kamil; Herman, Richard G.; Vedage, Gamini A.

    1987-01-01

    This invention relates to an improved catalyst and method for the selective production of methylamines. More particularly, it is concerned with the preparation of stable highly active catalysts for producing methylamines by a catalytic reaction of ammonia or substituted amines and binary synthesis gas (CO+H.sub.2).

  20. Ligand iron catalysts for selective hydrogenation

    DOE Patents [OSTI]

    Casey, Charles P.; Guan, Hairong

    2010-11-16

    Disclosed are iron ligand catalysts for selective hydrogenation of aldehydes, ketones and imines. A catalyst such as dicarbonyl iron hydride hydroxycyclopentadiene) complex uses the OH on the five member ring and hydrogen linked to the iron to facilitate hydrogenation reactions, particularly in the presence of hydrogen gas.

  1. Thin film hydrous metal oxide catalysts

    DOE Patents [OSTI]

    Dosch, Robert G. (Albuquerque, NM); Stephens, Howard P. (Albuquerque, NM)

    1995-01-01

    Thin film (<100 nm) hydrous metal oxide catalysts are prepared by 1) synthesis of a hydrous metal oxide, 2) deposition of the hydrous metal oxide upon an inert support surface, 3) ion exchange with catalytically active metals, and 4) activating the hydrous metal oxide catalysts.

  2. Integrated current collector and catalyst support

    DOE Patents [OSTI]

    Bregoli, L.J.

    1984-10-17

    An integrated current collecting electrode for a molten carbonate fuel cell includes a corrugated metal conductive strip positioned in contact with a catalyst layer. The corrugations of the metal strip form a plurality of gas channels immediately adjacent the surface of the catalyst through which a reactant gas flows. Each channel is filled with a particulate material to maintain separation between the metal strip and the catalyst in ensuring gas channel integrity. The catalyst may be in the form of a compacted, particulate material provided the particle size of the material within the gas channels is larger than that of the catalyst particles to prevent catalyst migration to the metal conductor and provide reactant gas access to the catalyst layer. The gas channels formed by the corrugations of the metal strip are arranged in an offset pattern along the direction of gas flow for improved reactant gas distribution to the catalyst layer. The particulate material positioned within the gas flow channels may be a ceramic conductor such as a perovskite or a spinel for enhanced current collection.

  3. Integrated current collector and catalyst support

    DOE Patents [OSTI]

    Bregoli, Lawrence J.

    1985-10-22

    An integrated current collecting electrode for a molten carbonate fuel cell includes a corrugated metal conductive strip positioned in contact with a catalyst layer. The corrugations of the metal strip form a plurality of gas channels immediately adjacent the surface of the catalyst through which a reactant gas flows. Each channel is filled with a particulate material to maintain separation between the metal strip and the catalyst in ensuring gas channel integrity. The catalyst may be in the form of a compacted, particulate material provided the particle size of the material within the gas channels is larger than that of the catalyst particles to prevent catalyst migration to the metal conductor and provide reactant gas access to the catalyst layer. The gas channels formed by the corrugations of the metal strip are arranged in an offset pattern along the direction of gas flow for improved reactant gas distribution to the catalyst layer. The particulate material positioned within the gas flow channels may be a ceramic conductor such as a perovskite or a spinel for enhanced current collection.

  4. Improved catalysts for carbon and coal gasification

    DOE Patents [OSTI]

    McKee, D.W.; Spiro, C.L.; Kosky, P.G.

    1984-05-25

    This invention relates to improved catalysts for carbon and coal gasification and improved processes for catalytic coal gasification for the production of methane. The catalyst is composed of at least two alkali metal salts and a particulate carbonaceous substrate or carrier is used. 10 figures, 2 tables.

  5. Method for reactivating catalysts and a method for recycling supercritical fluids used to reactivate the catalysts

    DOE Patents [OSTI]

    Ginosar, Daniel M.; Thompson, David N.; Anderson, Raymond P.

    2008-08-05

    A method of reactivating a catalyst, such as a solid catalyst or a liquid catalyst. The method comprises providing a catalyst that is at least partially deactivated by fouling agents. The catalyst is contacted with a fluid reactivating agent that is at or above a critical point of the fluid reactivating agent and is of sufficient density to dissolve impurities. The fluid reactivating agent reacts with at least one fouling agent, releasing the at least one fouling agent from the catalyst. The at least one fouling agent becomes dissolved in the fluid reactivating agent and is subsequently separated or removed from the fluid reactivating agent so that the fluid reactivating agent may be reused. A system for reactivating a catalyst is also disclosed.

  6. Environmental Transmission Electron Microscopy Study of the Origins of Anomalous Particle Size Distributions in Supported Metal Catalysts

    SciTech Connect (OSTI)

    Benavidez, Angelica D.; Kovarik, Libor; Genc, Arda; Agrawal, Nitin; Larsson, Elin M.; Hansen, Thomas W.; Karim, Ayman M.; Datye, Abhaya K.

    2012-10-31

    In this Environmental TEM (ETEM) study of supported Pt and Pd model catalysts, individual nanoparticles were tracked during heat treatments at temperatures up to 600C in H2, O2, and vacuum. We found anomalous growth of nanoparticles occurred during the early stages of catalyst sintering wherein some particles started to grow significantly larger than the mean, resulting in a broadening of the particle size distribution. We can rule out sample non-uniformity as a cause for the growth of these large particles, since images were recorded prior to heat treatments. The anomalous growth of these particles may help explain particle size distributions in heterogeneous catalysts which often show particles that are significantly larger than the mean, resulting in a long tail to the right. It has been suggested that particle migration and coalescence could be the likely cause for the broad size distributions. This study shows that anomalous growth of nanoparticles can occur under conditions where Ostwald ripening is the primary sintering mechanism.

  7. A general method for multimetallic platinum alloy nanowires as highly active and stable oxygen reduction catalysts

    SciTech Connect (OSTI)

    Bu, Lingzheng; Ding, Jiabao; Yao, Jianlin; Huang, Xiaoqing; Guo, Shaojun; Zhang, Xu; Lu, Gang; Su, Dong; Zhu, Xing; Guo, Jun

    2015-10-13

    The production of inorganic nanoparticles (NPs) with precise control over structures has always been a central target in various fields of chemistry and physics because the properties of NPs can be desirably manipulated by their structure.[1-4] There has been an intense search for high-performance noble metal NP catalysts particular for Pt.[5-9] Precious platinum (Pt) NPs are active catalysts for various heterogeneous reactions and show particularly superior performance in both the anodic oxidation reaction and the cathodic ORR in the fuel cells, but their rare content and high cost largely impede the practical application.[10-12] A potential strategy to address this tremendous challenge is alloying Pt NPs with the transition metals (TM).[13-16]

  8. Modeling carbon nanotube growth on the catalyst-substrate surface subjected to reactive plasma [

    SciTech Connect (OSTI)

    Tewari, Aarti; Sharma, Suresh C.

    2014-06-15

    The paper presents a theoretical model to study the growth of the carbon nanotube (CNT) on the catalyst substrate surface subjected to reactive plasma. The charging rate of the CNT, kinetics of electron, ions and neutral atoms, the growth rate of the CNT because of diffusion and accretion of ions on the catalyst nanoparticle inclusion of the issue of the plasma sheath is undertaken in the present model. Numerical calculations on the effect of ion density and temperature and the substrate bias on the growth of the CNT have been carried out for typical glow discharge plasma parameters. It is found that the height of CNT increases with the ion density of carbon ions and radius of CNT decreases with hydrogen ion density. The substrate bias also affects the growth rate of the CNT. The field emission characteristics from the CNTs can be analyzed from the results obtained.

  9. A general method for multimetallic platinum alloy nanowires as highly active and stable oxygen reduction catalysts

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bu, Lingzheng; Ding, Jiabao; Yao, Jianlin; Huang, Xiaoqing; Guo, Shaojun; Zhang, Xu; Lu, Gang; Su, Dong; Zhu, Xing; Guo, Jun

    2015-10-13

    The production of inorganic nanoparticles (NPs) with precise control over structures has always been a central target in various fields of chemistry and physics because the properties of NPs can be desirably manipulated by their structure.[1-4] There has been an intense search for high-performance noble metal NP catalysts particular for Pt.[5-9] Precious platinum (Pt) NPs are active catalysts for various heterogeneous reactions and show particularly superior performance in both the anodic oxidation reaction and the cathodic ORR in the fuel cells, but their rare content and high cost largely impede the practical application.[10-12] A potential strategy to address this tremendousmore » challenge is alloying Pt NPs with the transition metals (TM).[13-16]« less

  10. Process for magnetic beneficiating petroleum cracking catalyst

    DOE Patents [OSTI]

    Doctor, Richard D.

    1993-01-01

    A process for beneficiating a particulate zeolite petroleum cracking catalyst having metal values in excess of 1000 ppm nickel equivalents. The particulate catalyst is passed through a magnetic field in the range of from about 2 Tesla to about 5 Tesla generated by a superconducting quadrupole open-gradient magnetic system for a time sufficient to effect separation of said catalyst into a plurality of zones having different nickel equivalent concentrations. A first zone has nickel equivalents of about 6,000 ppm and greater, a second zone has nickel equivalents in the range of from about 2000 ppm to about 6000 ppm, and a third zone has nickel equivalents of about 2000 ppm and less. The zones of catalyst are separated and the second zone material is recycled to a fluidized bed of zeolite petroleum cracking catalyst. The low nickel equivalent zone is treated while the high nickel equivalent zone is discarded.

  11. Process for magnetic beneficiating petroleum cracking catalyst

    DOE Patents [OSTI]

    Doctor, R.D.

    1993-10-05

    A process is described for beneficiating a particulate zeolite petroleum cracking catalyst having metal values in excess of 1000 ppm nickel equivalents. The particulate catalyst is passed through a magnetic field in the range of from about 2 Tesla to about 5 Tesla generated by a superconducting quadrupole open-gradient magnetic system for a time sufficient to effect separation of said catalyst into a plurality of zones having different nickel equivalent concentrations. A first zone has nickel equivalents of about 6,000 ppm and greater, a second zone has nickel equivalents in the range of from about 2000 ppm to about 6000 ppm, and a third zone has nickel equivalents of about 2000 ppm and less. The zones of catalyst are separated and the second zone material is recycled to a fluidized bed of zeolite petroleum cracking catalyst. The low nickel equivalent zone is treated while the high nickel equivalent zone is discarded. 1 figures.

  12. Relating adatom emission to improved durability of Pt-Pd diesel oxidation catalysts

    SciTech Connect (OSTI)

    Johns, Tyne Richele; Goeke, Ronald S.; Ashbacher, Valerie; Thune, Peter C.; Niemantsverdriet, J. W.; Kiefer, Boris; Kim, Chang H.; Balogh, Michael P.; Datye, Abhaya K.

    2015-06-05

    Sintering of nanoparticles is an important contributor to loss of activity in heterogeneous catalysts, such as those used for controlling harmful emissions from automobiles. But mechanistic details, such as the rates of atom emission or the nature of the mobile species, remain poorly understood. Herein we report a novel approach that allows direct measurement of atom emission from nanoparticles. We use model catalyst samples and a novel reactor that allows the same region of the sample to be observed after short-term heat treatments (seconds) under conditions relevant to diesel oxidation catalysts (DOCs). Monometallic Pd is very stable and does not sinter when heated in air (T ≤ 800 °C). Pt sinters readily in air, and at high temperatures (≥800 °C) mobile Pt species emitted to the vapor phase cause the formation of large, faceted particles. In Pt–Pd nanoparticles, Pd slows the rate of emission of atoms to the vapor phase due to the formation of an alloy. However, the role of Pd in Pt DOCs in air is quite complex: at low temperatures, Pt enhances the rate of Pd sintering (which otherwise would be stable as an oxide), while at higher temperature Pd helps to slow the rate of Pt sintering. DFT calculations show that the barrier for atom emission to the vapor phase is much greater than the barrier for emitting atoms to the support. Thus, vapor-phase transport becomes significant only at high temperatures while diffusion of adatoms on the support dominates at lower temperatures.

  13. Relating adatom emission to improved durability of Pt-Pd diesel oxidation catalysts

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Johns, Tyne Richele; Goeke, Ronald S.; Ashbacher, Valerie; Thune, Peter C.; Niemantsverdriet, J. W.; Kiefer, Boris; Kim, Chang H.; Balogh, Michael P.; Datye, Abhaya K.

    2015-06-05

    Sintering of nanoparticles is an important contributor to loss of activity in heterogeneous catalysts, such as those used for controlling harmful emissions from automobiles. But mechanistic details, such as the rates of atom emission or the nature of the mobile species, remain poorly understood. Herein we report a novel approach that allows direct measurement of atom emission from nanoparticles. We use model catalyst samples and a novel reactor that allows the same region of the sample to be observed after short-term heat treatments (seconds) under conditions relevant to diesel oxidation catalysts (DOCs). Monometallic Pd is very stable and does notmore » sinter when heated in air (T ≤ 800 °C). Pt sinters readily in air, and at high temperatures (≥800 °C) mobile Pt species emitted to the vapor phase cause the formation of large, faceted particles. In Pt–Pd nanoparticles, Pd slows the rate of emission of atoms to the vapor phase due to the formation of an alloy. However, the role of Pd in Pt DOCs in air is quite complex: at low temperatures, Pt enhances the rate of Pd sintering (which otherwise would be stable as an oxide), while at higher temperature Pd helps to slow the rate of Pt sintering. DFT calculations show that the barrier for atom emission to the vapor phase is much greater than the barrier for emitting atoms to the support. Thus, vapor-phase transport becomes significant only at high temperatures while diffusion of adatoms on the support dominates at lower temperatures.« less

  14. Converting Homogeneous to Heterogeneous in Electrophilic Catalysis using Monodisperse Metal Nanoparticles

    SciTech Connect (OSTI)

    Witham, Cole A.; Huang, Wenyu; Tsung, Chia-Kuang; Kuhn, John N.; Somorjai, Gabor A.; Toste, F. Dean

    2009-10-15

    A continuing goal in catalysis is the transformation of processes from homogeneous to heterogeneous. To this end, nanoparticles represent a new frontier in heterogeneous catalysis, where this conversion is supplemented by the ability to obtain new or divergent reactivity and selectivity. We report a novel method for applying heterogeneous catalysts to known homogeneous catalytic reactions through the design and synthesis of electrophilic platinum nanoparticles. These nanoparticles are selectively oxidized by the hypervalent iodine species PhICl{sub 2}, and catalyze a range of {pi}-bond activation reactions previously only homogeneously catalyzed. Multiple experimental methods are utilized to unambiguously verify the heterogeneity of the catalytic process. The discovery of treatments for nanoparticles that induce the desired homogeneous catalytic activity should lead to the further development of reactions previously inaccessible in heterogeneous catalysis. Furthermore, our size and capping agent study revealed that Pt PAMAM dendrimer-capped nanoparticles demonstrate superior activity and recyclability compared to larger, polymer-capped analogues.

  15. Airbrushed Nickel Nanoparticles for Large-Area

    SciTech Connect (OSTI)

    Sarac, Mehmet; ANDERSON, BRYAN; Pearce, Ryan; Railsback, Justin; Oni, Adedapo; White, Ryan M.; Hensley, Dale K; Lebeau, James M; Melechko, Anatoli; Tracy, Joseph B

    2013-01-01

    Vertically aligned carbon nanofibers (VACNFs) were grown by plasma-enhanced chemical vapor deposition (PECVD) using Ni nanoparticle (NP) catalysts that were deposited by airbrushing onto Si, Al, Cu, and Ti substrates. Airbrushing is a simple method for depositing catalyst NPs over large areas that is compatible with roll-to-roll processing. The distribution and morphology of VACNFs are affected by the airbrushing parameters and the composition of the metal foil. Highly concentrated Ni NPs in heptane give more uniform distributions than pentane and hexanes, resulting in more uniform coverage of VACNFs. For VACNF growth on metal foils, Si micropowder was added as a precursor for Si-enriched coatings formed in situ on the VACNFs that impart mechanical rigidity. Interactions between the catalyst NPs and the metal substrates impart control over the VACNF morphology. Growth of carbon nanostructures on Cu is particularly noteworthy because the miscibility of Ni with Cu poses challenges for VACNF growth, and carbon nanostructures anchored to Cu substrates are desired as anode materials for Li-ion batteries and for thermal interface materials.

  16. SISGR-Fundamental Experimental and Theoretical Studies on a Novel Family of Oxide Catalyst Supports for Water Electrolysis

    SciTech Connect (OSTI)

    Kumta, Prashant

    2014-10-03

    Identification and development of non-noble metal based electro-catalysts or electro-catalysts with significant reduction of expensive noble metal contents (E.g. IrO2, Pt) with comparable electrochemical performance as the standard noble metal/metal oxide for proton exchange membrane (PEM) based water electrolysis would constitute a major breakthrough in the generation of hydrogen by water electrolysis. Accomplishing such a system would not only result reduction of the overall capital costs of PEM based water electrolyzers, but also help attain the targeted hydrogen production cost [< $ 3.0 / gallon gasoline equivalent (gge)] comparable to conventional liquid fuels. In line with these goals, it was demonstrated that fluorine doped IrO2 thin films and nanostructured high surface area powders display remarkably higher electrochemical activity, and comparable durability as pure IrO2 electro-catalyst for the oxygen evolution reaction (OER) in PEM based water electrolysis. Furthermore, corrosion resistant SnO2 and NbO2 support has been doped with F and coupled with IrO2 or RuO2 for use as an OER electro-catalyst. A solid solution of SnO2:F or NbO2:F with only 20 - 30 mol.% IrO2 or RuO2 yielding a rutile structure in the form of thin films and bulk nanoparticles displays similar electrochemical activity and stability as pure IrO2/RuO2. This would lead to more than 70 mol.% reduction in the noble metal oxide content. Novel nanostructured ternary (Ir,Sn,Nb)O2 thin films of different compositions FUNDAMENTAL STUDY OF NANOSTRUCTURED ELECTRO-CATALYSTS WITH REDUCED NOBLE METAL CONTENT FOR PEM BASED WATER ELECTROLYSIS 4 have also been studied. It has been shown that (Ir0.40Sn0.30Nb0.30)O2 shows similar electrochemical activity and enhanced chemical robustness as compared to pure IrO2. F doping of the ternary (Ir,Sn,Nb)O2 catalyst helps in further decreasing the noble metal oxide content of the catalyst. As a result, these reduced noble metal oxide catalyst systems would potentially be preferred as OER electro-catalysts for PEM electrolysis. The excellent performance of the catalysts coupled with its robustness would make them great candidates for contributing to significant reduction in the overall capital costs of PEM based water electrolyzers. This s.thesis provides a detailed fundamental study of the synthesis, materials, characterization, theoretical studies and detailed electrochemical response and potential mechanisms of these novel electro-catalysts for OER processes.

  17. Sulfur-mediated palladium catalyst immobilized on a GaAs surface

    SciTech Connect (OSTI)

    Shimoda, M. [Surface Physics and Structure Unit, Surface Physics Group, National Institute for Materials Science, 1-2-1, Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Konishi, T. [Anan National College of Technology, 265 Aoki, Minobayashi-cho, Anan, Tokushima 774-0017 (Japan); Nishiwaki, N. [School of Environmental and Engineering, Kochi University of Technology, Tosayamada, Kami, Kochi 782-8502 (Japan); Yamashita, Y.; Yoshikawa, H. [Synchrotron X-ray Station at SPring-8, National Institute for Materials Science, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148 (Japan)

    2012-06-15

    We present a hard x-ray photoelectron spectroscopy study on the preparation process of palladium catalyst immobilized on an S-terminated GaAs(100) surface. It is revealed that Pd(II) species are reduced on the GaAs surface and yield Pd nanoparticles during the process of Pd immobilization and the subsequent heat treatment. A comparison with the results on GaAs without S-termination suggests that the reduction of Pd is promoted by hydroxy groups during the Pd immobilization and by S during the heat treatment.

  18. Synthesis and characterization of model MgO supported catalyst with Pt-Mo interactions.

    SciTech Connect (OSTI)

    Alexeev, O.; Kawi, S.; Gates, B.C. [Univ. of California, Davis, CA (United States)] [Univ. of California, Davis, CA (United States); Shelef, M. [Ford Motor Co., Dearborn, MI (United States)] [Ford Motor Co., Dearborn, MI (United States)

    1996-01-04

    MgO supported platinum and platinum-molybdenum catalysts were prepared from organometallic precursors and charaterized structurally to determine how the nature of the bimetallic precursors and the treatment conditions affected the interaction between the two metals. Samples were prepared from [PtCl{sub 2}(PhCN){sub 2}], [PtCl{sub 2}(PhCN){sub 2}] + [Mo(CO){sub 6}], and [C@Pt[Mo(CO){sub 3}(C{sub 5}H{sub 5})]{sub 2}(PhCN){sub 2}] BC@ characterized by infrared and extended X-ray absorption fine structure (EXAFS) spectroscopies, tranmission electron microscopy, and chemisorption of H{sub 2}, CO, and O{sub 2}. The samples were treated in H{sub 2} at 400{degree}C prior to most of the characterizatons. Incorporation of Mo reduced the chemisorption of CO and of H{sub 2}. EXAFS spectra measured at the Pt L{sub III} edge and at the Mo K edge showed substantial Pt-Mo contributions with a Pt-Mo cordination number of about 2 and an average distance of 2.63 A for the sample prepared from [C@Pt[Mo(CO){sub 3}(C{sub 5}H{sub 5})]{sub 2}(PhCN){sub 2}] BC@. In constract, no significant Pt-Mo contribution was observed for the sample prepared from [PtCl{sub 2}(PhCN){sub 2}]+ [Mo(CO){sub 6}]. Electron micrographs and EXAFS results show that interaction between Pt and Mo ions in the former sample helped to maintain the platinum in a highly dispersed form, with supported platinum clusters being smaller than about 10 A. 53 refs., 9 figs., 9 tabs.

  19. Electrochemical synthesis of elongated noble metal nanoparticles, such as nanowires and nanorods, on high-surface area carbon supports

    DOE Patents [OSTI]

    Adzic, Radoslav; Blyznakov, Stoyan; Vukmirovic, Miomir

    2015-08-04

    Elongated noble-metal nanoparticles and methods for their manufacture are disclosed. The method involves the formation of a plurality of elongated noble-metal nanoparticles by electrochemical deposition of the noble metal on a high surface area carbon support, such as carbon nanoparticles. Prior to electrochemical deposition, the carbon support may be functionalized by oxidation, thus making the manufacturing process simple and cost-effective. The generated elongated nanoparticles are covalently bound to the carbon support and can be used directly in electrocatalysis. The process provides elongated noble-metal nanoparticles with high catalytic activities and improved durability in combination with high catalyst utilization since the nanoparticles are deposited and covalently bound to the carbon support in their final position and will not change in forming an electrode assembly.

  20. Catalyst for producing lower alcohols

    DOE Patents [OSTI]

    Rathke, Jerome W.; Klingler, Robert J.; Heiberger, John J.

    1987-01-01

    A process and system for the production of the lower alcohols such as methanol, ethanol and propanol involves the reaction of carbon monoxide and water in the presence of a lead salt and an alkali metal formate catalyst combination. The lead salt is present as solid particles such as lead titanate, lead molybdate, lead vanadate, lead zirconate, lead tantalate and lead silicates coated or in slurry within molten alkali metal formate. The reactants, carbon monoxide and steam are provided in gas form at relatively low pressures below 100 atmospheres and at temperatures of 200-400.degree. C. The resulted lower alcohols can be separated into boiling point fractions and recovered from the excess reactants by distillation.

  1. New hydroprocessing catalysts prepared from molecular complexes

    SciTech Connect (OSTI)

    Ho, T.C.

    1994-12-31

    Current commercial hydroprocessing catalysts are transition metal sulfides (TMS) based on Group 8 and 11 metals. They are prepared by dispersing MoO{sub 3} and a promoter metal oxide, either CoO or NiO, on {gamma}-Al{sub 2}O{sub 3} or SiO{sub 2}-modified Al{sub 2}O{sub 3}. This is followed by sulfiding with a sulfur-bearing stream such as H{sub 2}S at high temperatures. The thus formed MoS{sub 2} crystallites are the backbone of the working catalysts. A potentially fruitful approach to new catalysts would be to molecularly incorporate promoter metals into the structure of MoS{sub 2} edge planes. As a first step, it would seem reasonable to exploit the use of heterometallic metal sulfur complexes as hydroprocessing catalyst precursors. The authors have developed several families of new catalysts along this line. In this paper the authors restrict themselves to the metal amine thiomolybdate-derived catalysts. Specifically, they give an overview of the performance of the bulk (unsupported) FeMo sulfide prepared from MAT. This low-surface-area catalyst shows a high HDN-to-HDS volumetric activity ratio and is also active for HDA. While most of the results are taken from their previous publications, some new results are reported here.

  2. Novel Fischer-Tropsch catalysts

    DOE Patents [OSTI]

    Vollhardt, Kurt P. C.; Perkins, Patrick

    1980-01-01

    Novel polymer-supported metal complexes of the formula: PS --R Me(CO).sub.n H.sub.m where: PS represents a divinylbenzene crosslinked polystyrene in which the divinylbenzene crosslinking is greater than 1% and less than about 18%; R represents a cycloalkadienyl radical of 4 through 6 carbon atoms; Me represents a Group VIII metal; CO represents a carbonyl radical; H represents hydrogen; n represents an integer varying from 0 through 3; m represents an integer varying from 0 through 2 inclusively with the further provision that 2n+m must total 18 when added to the electrons in R and Me, or n+m must total 0; are prepared by: brominating PS --H by treating same with bromine in the presence of a thallium salt in a partially or fully halogenated solvent to form PS --Br; treating said PS --Br so produced with a lithium alkyl of 1 through 12 carbon atoms in an aromatic solvent to produce PS --Li; substituting said PS-- Li so produced by reaction with a 2-cycloalkenone of 4 to 6 carbon atoms in the presence of an ether solvent and using a water work-up to form a cycloalkenylalcohol-substituted PS ; dehydrating said alcohol so produced by heating under a vacuum to produce a cycloalkadienyl-substituted PS ; reacting the cycloalkadienyl-substituted PS with metal carbonyl in the presence of a partially or fully halogenated hydrocarbon, aromatic hydrocarbon of 6 through 8 carbon atoms, ethers, or esters of 4 through 10 carbon atoms as a solvent to produce a polystyrene-supported cycloalkadienyl metal carbonyl. The novel compounds are used as improved Fischer-Tropsch catalysts particularly for the conversion of CO+H.sub.2 to gaseous and liquid hydrocarbons at milder conditions than with prior catalysts.

  3. Novel Fischer-Tropsch catalysts

    DOE Patents [OSTI]

    Vollhardt, Kurt P. C.; Perkins, Patrick

    1981-01-01

    Novel polymer-supported metal complexes of the formula PS -R Me(CO).sub.n H.sub.m where: PS represents a divinylbenzene crosslinked polystyrene in which the divinylbenzene crosslinking is greater than 1% and less than about 18%; R represents a cycloalkadienyl radical of 4 through 6 carbon atoms; Me represents a Group VIII metal; CO represents a carbonyl radical; H represents hydrogen; n represents an integer varying from 0 through 3; m represents an integer varying from 0 through 2 inclusively with the further provision that 2n+m must total 18 when added to the electrons in R and Me, or n+m must total 0; are prepared by: brominating PS -H by treating same with bromine in the presence of a thallium salt in a partially or fully halogenated solvent to form PS -Br; treating said PS -Br so produced with a lithium alkyl of 1 through 12 carbon atoms in an aromatic solvent to produce PS -Li; substituting said PS - Li so produced by reaction with a 2-cycloalkenone of 4 to 6 carbon atoms in the presence of an ether solvent and using a water work-up to form a cycloalkenylalcohol-substituted PS ; dehydrating said alcohol so produced by heating under a vacuum to produce a cycloalkadienyl-substituted PS ; reacting the cycloalkadienyl-substituted PS with metal carbonyl in the presence of a partially or fully halogenated hydrocarbon, aromatic hydrocarbon of 6 through 8 carbon atoms, ethers, or esters of 4 through 10 carbon atoms as a solvent to produce a polystyrene-supported cycloalkadienyl metal carbonyl. The novel compounds are used as improved Fischer-Tropsch catalysts particularly for the conversion of CO+H.sub.2 to gaseous and liquid hydrocarbons at milder conditions than with prior catalysts.

  4. Novel Fischer-Tropsch catalysts

    DOE Patents [OSTI]

    Vollhardt, Kurt P. C.; Perkins, Patrick

    1981-01-01

    Novel polymer-supported metal complexes of the formula: PS --R Me(CO).sub.n H.sub.m where: PS represents a divinylbenzene crosslinked polystyrene in which the divinylbenzene crosslinking is greater than 1% and less than about 18%; R represents a cycloalkadienyl radical of 4 through 6 carbon atoms; Me represents a Group VIII metal; CO represents a carbonyl radical; H represents hydrogen; n represents an integer varying from 0 through 3; m represents an integer varying from 0 through 2 inclusively with the further provision that 2n+m must total 18 when added to the electrons in R and Me, or n+m must total 0; are prepared by: brominating PS --H by treating same with bromine in the presence of a thallium salt in a partially or fully halogenated solvent to form PS --Br; treating said PS --Br so produced with a lithium alkyl of 1 through 12 carbon atoms in an aromatic solvent to produce PS --Li; substituting said PS-- Li so produced by reaction with a 2-cycloalkenone of 4 to 6 carbon atoms in the presence of an ether solvent and using a water work-up to form a cycloalkenylalcohol-substituted PS ; dehydrating said alcohol so produced by heating under a vacuum to produce a cycloalkadienyl-substituted PS ; reacting the cycloalkadienyl-substituted PS with metal carbonyl in the presence of a partially or fully halogenated hydrocarbon, aromatic hydrocarbon of 6 through 8 carbon atoms, ethers, or esters of 4 through 10 carbon atoms as a solvent to produce a polystyrene-supported cycloalkadienyl metal carbonyl. The novel compounds are used as improved Fischer-Tropsch catalysts particularly for the conversion of CO+H.sub.2 to gaseous and liquid hydrocarbons at milder conditions than with prior catalysts.

  5. Hydrodesulfurization catalyst by Chevrel phase compounds

    DOE Patents [OSTI]

    McCarty, K.F.; Schrader, G.L.

    1985-05-20

    A process is disclosed for the hydrodesulfurization of sulfur-containing hydrocarbon fuel with reduced ternary molybdenum sulfides, known as Chevrel phase compounds. Chevrel phase compounds of the general composition M/sub x/Mo/sub 6/S/sub 8/, with M being Ho, Pb, Sn, Ag, In, Cu, Fe, Ni, or Co, were found to have hydrodesulfurization activities comparable to model unpromoted and cobalt-promoted MoS/sub 2/ catalysts. The most active catalysts were the ''large'' cation compounds (Ho, Pb, Sn), and the least active catalysts were the ''small'' cation compounds (Cu, Fe, Ni, Co.).

  6. Formic acid fuel cells and catalysts

    DOE Patents [OSTI]

    Masel, Richard I.; Larsen, Robert; Ha, Su Yun

    2010-06-22

    An exemplary fuel cell of the invention includes a formic acid fuel solution in communication with an anode (12, 134), an oxidizer in communication with a cathode (16, 135) electrically linked to the anode, and an anode catalyst that includes Pd. An exemplary formic acid fuel cell membrane electrode assembly (130) includes a proton-conducting membrane (131) having opposing first (132) and second surfaces (133), a cathode catalyst on the second membrane surface, and an anode catalyst including Pd on the first surface.

  7. Formic acid fuel cells and catalysts

    DOE Patents [OSTI]

    Masel, Richard I.; Larsen, Robert; Ha, Su Yun

    2010-06-22

    An exemplary fuel cell of the invention includes a formic acid fuel solution in communication with an anode (12, 134), an oxidizer in communication with a cathode (16, 135) electrically linked to the anode, and an anode catalyst that includes Pd. An exemplary formic acid fuel cell membrane electrode assembly (130) includes a proton-conducting membrane (131) having opposing first (132) and second surfaces (133), a cathode catalyst on the second membrane surface, and an anode catalyst including Pd on the first surface.

  8. Synthesis of iron based hydrocracking catalysts

    DOE Patents [OSTI]

    Farcasiu, Malvina (Pittsburgh, PA); Eldredge, Patricia A. (Barboursville, VA); Ladner, Edward P. (Pittsburgh, PA)

    1993-01-01

    A method of preparing a fine particle iron based hydrocracking catalyst and the catalyst prepared thereby. An iron (III) oxide powder and elemental sulfur are reacted with a liquid hydrogen donor having a hydroaromatic structure present in the range of from about 5 to about 50 times the weight of iron (III) oxide at a temperature in the range of from about 180.degree. C. to about 240.degree. C. for a time in the range of from about 0 to about 8 hours. Various specific hydrogen donors are disclosed. The catalysts are active at low temperature (<350.degree. C.) and low pressure.

  9. Supported catalyst systems and method of making biodiesel products using such catalysts

    DOE Patents [OSTI]

    Kim, Manhoe; Yan, Shuli; Salley, Steven O.; Ng, K. Y. Simon

    2015-10-20

    A heterogeneous catalyst system, a method of preparing the catalyst system and a method of forming a biodiesel product via transesterification reactions using the catalyst system is disclosed. The catalyst system according to one aspect of the present disclosure represents a class of supported mixed metal oxides that include at least calcium oxide and another metal oxide deposited on a lanthanum oxide or cerium oxide support. Preferably, the catalysts include CaO--CeO.sub.2ZLa.sub.2O.sub.3 or CaO--La.sub.2O.sub.3/CeO.sub.2. Optionally, the catalyst may further include additional metal oxides, such as CaO--La.sub.2O.sub.3--GdOxZLa.sub.2O.sub.3.

  10. Palladium catalysts synthesized by atomic layer deposition for methanol decomposition.

    SciTech Connect (OSTI)

    Elam, J. W.; Feng, H.; Stair, P. C.; Libera, J. A.; Setthapun, W.; Northwestern Univ.

    2010-05-25

    Atomic layer deposition (ALD) palladium films were deposited at 200 C on various ALD metal oxide surfaces using sequential exposures to Pd(II) hexafluoroacetylacetonate (Pd(hfac)2) and formalin. In situ quartz crystal microbalance measurements as well as ex situ measurements performed on planar substrates revealed that the Pd growth begins with a relatively slow nucleation process and accelerates once an adequate amount of Pd has deposited on the surface. Furthermore, the Pd nucleation is faster on ALD ZnO surfaces compared to ALD Al2O3 surfaces. ALD was utilized to synthesize highly dispersed, uniform Pd nanoparticles (1 to 2 nm in diameter) on ALD ZnO and Al2O3 coated mesoporous silica gel, and the catalytic performances of these samples were compared in the methanol decomposition reaction. The ALD Pd-Al2O3 showed high activity and hydrogen selectivity at relatively low temperatures while the ALD Pd-ZnO showed very low activity as well as quick deactivation. In situ extended X-ray absorption fine structure (EXAFS) measurement revealed that the Pd supported on ZnO 'dissolves' into the substrate during the methanol decomposition reaction which accounts for the gradual disappearance of its catalytic activity. By applying one cycle of ALD Al2O3 on top of the Pd-ZnO catalyst, the activity was enhanced and the catalyst deactivation was mitigated. This Al2O3 overcoating method stabilizes the Pd-ZnO and effectively prevents the dissolution of Pd into the ZnO substrate.

  11. Methods for providing bond activation catalysts and related catalysts, systems, and methods

    DOE Patents [OSTI]

    Goddard, III, William A.; Cheng, Mu-Jeng; Fu, Ross

    2016-04-12

    Described herein are catalysts for activation of an R--H bond in a R--H substrate and related catalytic matrices, compositions, methods and systems.

  12. Enhanced catalyst for conversion of syngas to liquid motor fuels

    DOE Patents [OSTI]

    Coughlin, P.K.; Rabo, J.A.

    1985-12-03

    Synthesis gas comprising carbon monoxide and hydrogen is converted to C[sub 5][sup +] hydrocarbons suitable for use as liquid motor fuels by contact with a dual catalyst system capable of enhancing the selectivity of said conversion to motor fuel range hydrocarbons and the quality of the resulting motor fuel product. The catalyst composition employs a Fischer-Tropsch catalyst, together with a co-catalyst/support component comprising a SAPO silicoaluminophosphate, non-zeolitic molecular sieve catalyst.

  13. Enhanced catalyst for conversion of syngas to liquid motor fuels

    DOE Patents [OSTI]

    Coughlin, Peter K.; Rabo, Jule A.

    1985-01-01

    Synthesis gas comprising carbon monoxide and hydrogen is converted to C.sub.5.sup.+ hydrocarbons suitable for use as liquid motor fuels by contact with a dual catalyst system capable of enhancing the selectivity of said conversion to motor fuel range hydrocarbons and the quality of the resulting motor fuel product. The catalyst composition employs a Fischer-Tropsch catalyst, together with a co-catalyst/support component comprising SAPO silicoaluminophosphate, non-zeolitic molecular sieve catalyst.

  14. Toward Catalyst Design from Theoretical Calculations (464th Brookhaven

    Office of Scientific and Technical Information (OSTI)

    Lecture) (Conference) | SciTech Connect Conference: Toward Catalyst Design from Theoretical Calculations (464th Brookhaven Lecture) Citation Details In-Document Search Title: Toward Catalyst Design from Theoretical Calculations (464th Brookhaven Lecture) Catalysts have been used to speed up chemical reactions as long as yeast has been used to make bread rise. Today, catalysts are used everywhere from home kitchens to industrial chemical factories. In the near future, new catalysts being

  15. Catalyst by Design - Theoretical, Nanostructural, and Experimental Studies

    Broader source: Energy.gov (indexed) [DOE]

    of Emission Treatment Catalyst | Department of Energy Poster presented at the 16th Directions in Engine-Efficiency and Emissions Research (DEER) Conference in Detroit, MI, September 27-30, 2010. PDF icon p-08_narula.pdf More Documents & Publications Catalyst by Design - Theoretical, Nanostructural, and Experimental Studies of Oxidation Catalyst for Diesel Engine Emission Treatment Catalysts via First Principles Catalysts via First Principles

  16. Catalyst by Design - Theoretical, Nanostructural, and Experimental Studies

    Broader source: Energy.gov (indexed) [DOE]

    of Oxidation Catalyst for Diesel Engine Emission Treatment | Department of Energy The overlap among theory, structure, and fully formed catalysts form the foundation of this study PDF icon deer09_narula.pdf More Documents & Publications Catalyst by Design - Theoretical, Nanostructural, and Experimental Studies of Emission Treatment Catalyst Catalysis by Design: Bridging the Gap Between Theory and Experiments at Nanoscale Level Catalysts via First Principles (Agreement ID:10635)

  17. Catalyst regeneration process including metal contaminants removal

    DOE Patents [OSTI]

    Ganguli, Partha S.

    1984-01-01

    Spent catalysts removed from a catalytic hydrogenation process for hydrocarbon feedstocks, and containing undesired metals contaminants deposits, are regenerated. Following solvent washing to remove process oils, the catalyst is treated either with chemicals which form sulfate or oxysulfate compounds with the metals contaminants, or with acids which remove the metal contaminants, such as 5-50 W % sulfuric acid in aqueous solution and 0-10 W % ammonium ion solutions to substantially remove the metals deposits. The acid treating occurs within the temperature range of 60.degree.-250.degree. F. for 5-120 minutes at substantially atmospheric pressure. Carbon deposits are removed from the treated catalyst by carbon burnoff at 800.degree.-900.degree. F. temperature, using 1-6 V % oxygen in an inert gas mixture, after which the regenerated catalyst can be effectively reused in the catalytic process.

  18. Extended Platinum Nanotubes as Fuel Cell Catalysts

    SciTech Connect (OSTI)

    Alia, S.; Pivovar, B. S.; Yan, Y.

    2012-01-01

    Energy consumption has relied principally on fossil fuels as an energy source; fuel cells, however, can provide a clean and sustainable alternative, an answer to the depletion and climate change concerns of fossil fuels. Within proton exchange membrane fuel cells, high catalyst cost and poor durability limit the commercial viability of the device. Recently, platinum nanotubes (PtNTs) were studied as durable, active catalysts, providing a platform to meet US Department of Energy vehicular activity targets.[1] Porous PtNTs were developed to increase nanotube surface area, improving mass activity for oxygen reduction without sacrificing durability.[2] Subsurface platinum was then replaced with palladium, forming platinum-coated palladium nanotubes.[3] By forming a core shell structure, platinum utilization was increased, reducing catalyst cost. Alternative substrates have also been examined, modifying platinum surface facets and increasing oxygen reduction specific activity. Through modification of the PtNT platform, catalyst limitations can be reduced, ensuring a commercially viable device.

  19. Moderated ruthenium fischer-tropsch synthesis catalyst

    DOE Patents [OSTI]

    Abrevaya, Hayim (Wilmette, IL)

    1991-01-01

    The subject Fischer-Tropsch catalyst comprises moderated ruthenium on an inorganic oxide support. The preferred moderator is silicon. Preferably the moderator is effectively positioned in relationship to ruthenium particles through simultaneous placement on the support using reverse micelle impregnation.

  20. Nanoscale Chemical Imaging of a Working Catalyst

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    P.J. Kooyman, H.W. Zandbergen, C. Morin, B.M. Weckhuysen, and F.M.F. de Groot, "Nanoscale chemical imaging of a working catalyst by scanning transmission X-ray microscopy," Nature...

  1. High Impact Technology Catalyst Industry Roundtable

    Broader source: Energy.gov [DOE]

    Please join the Department of Energy Commercial Buildings Integration Program for an Industry Roundtable discussion on the High Impact Technology Catalyst. The Roundtable will be part of the BTO...

  2. Pf/Zeolite Catalyst for Tritium Stripping

    SciTech Connect (OSTI)

    Hsu, R.H.

    2001-03-26

    This report described promising hydrogen (protium and tritium) stripping results obtained with a Pd/zeolite catalyst at ambient temperature. Preliminary results show 90-99+ percent tritium stripping efficiency may be obtained, with even better performance expected as bed configuration and operating conditions are optimized. These results suggest that portable units with single beds of the Pd/zeolite catalyst may be utilized as ''catalytic absorbers'' to clean up both tritium gas and tritiated water. A cart-mounted prototype stripper utilizing this catalyst has been constructed for testing. This portable stripper has potential applications in maintenance-type jobs such as tritium line breaks. This catalyst can also potentially be utilized in an emergency stripper for the Replacement Tritium Facility.

  3. Home Improvement Catalyst | Department of Energy

    Energy Savers [EERE]

    of Energy Score: Program Update for Interested Stakeholders Home Energy Score: Program Update for Interested Stakeholders PDF icon program_update_webinar7-23-12.pdf More Documents & Publications Home Energy Score: Program Update for Interested Stakeholders Home Energy Score Program: Update and Overview for Potential Partners Know the Score: Hear the Latest on Home Energy Score from DOE and Utility Partners (Presentation Slides)

    Improvement Catalyst Home Improvement Catalyst Lead

  4. Characterization and Hydrodesulfurization Properties of Catalysts Derived

    Office of Scientific and Technical Information (OSTI)

    from Amorphous Metal-Boron Materials (Journal Article) | SciTech Connect Characterization and Hydrodesulfurization Properties of Catalysts Derived from Amorphous Metal-Boron Materials Citation Details In-Document Search Title: Characterization and Hydrodesulfurization Properties of Catalysts Derived from Amorphous Metal-Boron Materials Unsupported and silica-supported amorphous metal-boron materials (Ni-B, Mo-O-B, and Ni-Mo-O-B) were prepared by NaBH{sub 4} reduction of aqueous or

  5. Catalyst and method for aqueous phase reactions

    DOE Patents [OSTI]

    Elliott, Douglas C.; Hart, Todd R.

    1999-01-01

    The present invention is a catalyst in the form of a plurality of porous particles wherein each particle is a support having nickel metal catalytic phase or reduced nickel deposited thereon in a first dispersed phase and an additional metal deposited onto the support in a second dispersed phase. The additional metal is effective in retarding or reducing agglomeration or sintering of the nickel metal catalytic phase without substantially affecting the catalytic activity, thereby increasing the life time of the catalyst.

  6. Single-layer transition metal sulfide catalysts

    DOE Patents [OSTI]

    Thoma, Steven G.

    2011-05-31

    Transition Metal Sulfides (TMS), such as molybdenum disulfide (MoS.sub.2), are the petroleum industry's "workhorse" catalysts for upgrading heavy petroleum feedstocks and removing sulfur, nitrogen and other pollutants from fuels. We have developed an improved synthesis technique to produce SLTMS catalysts, such as molybdenum disulfide, with potentially greater activity and specificity than those currently available. Applications for this technology include heavy feed upgrading, in-situ catalysis, bio-fuel conversion and coal liquefaction.

  7. Vanadium catalysts break down biomass for fuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vanadium catalysts break down biomass for fuels Vanadium catalysts break down biomass into useful components Breaking down biomass could help in converting biomass to fuels. March 26, 2012 Biomass Due to diminishing petroleum reserves, non-food biomass (lignocellulose) is an attractive alternative as a feedstock for the production of renewable chemicals and fuels. Get Expertise Researcher Susan Hanson Inorganic Isotope & Actinide Chem Email Researcher Ruilian Wu Bioenergy & Environmental

  8. Advanced Cathode Catalysts | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    This presentation, which focuses on advanced cathode catalysts, was given by Piotr Zelenay of Los Alamos National laboratory at a February 2007 meeting on new fuel cell projects. PDF icon new_fc_zelenay_lanl.pdf More Documents & Publications Advanced Cathode Catalysts and Supports for PEM Fuel Cells CARISMA: A Networking Project for High Temperature PEMFC MEA Activities in Europe Catalysis Working Group Kick-Off Meeting Agenda

  9. Thermally Stable Nanocatalyst for High Temperature Reactions: Pt-Mesoporous Silica Core-Shell Nanoparticles

    SciTech Connect (OSTI)

    Joo, Sang Hoon; Park, J.Y.; Tsung, C.-K.; Yamada, Y.; Yang, P.; Somorjai, G.A.

    2008-10-25

    Recent advances in colloidal synthesis enabled the precise control of size, shape and composition of catalytic metal nanoparticles, allowing their use as model catalysts for systematic investigations of the atomic-scale properties affecting catalytic activity and selectivity. The organic capping agents stabilizing colloidal nanoparticles, however, often limit their application in high-temperature catalytic reactions. Here we report the design of a high-temperature stable model catalytic system that consists of Pt metal core coated with a mesoporous silica shell (Pt{at}mSiO{sub 2}). While inorganic silica shells encaged the Pt cores up to 750 C in air, the mesopores directly accessible to Pt cores made the Pt{at}mSiO{sub 2} nanoparticles as catalytically active as bare Pt metal for ethylene hydrogenation and CO oxidation. The high thermal stability of Pt{at}mSiO{sub 2} nanoparticles permitted high-temperature CO oxidation studies, including ignition behavior, which was not possible for bare Pt nanoparticles because of their deformation or aggregation. The results suggest that the Pt{at}mSiO{sub 2} nanoparticles are excellent nanocatalytic systems for high-temperature catalytic reactions or surface chemical processes, and the design concept employed in the Pt{at}mSiO{sub 2} core-shell catalyst can be extended to other metal-metal oxide compositions.

  10. Gold–promoted structurally ordered intermetallic palladium cobalt nanoparticles for the oxygen reduction reaction

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kuttiyiel, Kurian A.; Sasaki, Kotaro; Su, Dong; Wu, Lijun; Zhu, Yimei; Adzic, Radoslav R.

    2014-11-06

    Considerable efforts to make palladium and palladium alloys active catalysts and a possible replacement for platinum have had a marginal success. Here, we report on a structurally ordered Au₁₀Pd₄₀Co₅₀ catalyst that exhibits comparable activity to conventional platinum catalysts in both acid and alkaline media. Electron microscopic techniques demonstrate that via addition of gold atoms PdCo nanoparticles undergo at elevated temperatures an atomic structural transition from core-shell to a rare intermetallic ordered structure with twin boundaries forming stable {111}, {110} and {100} facets. The superior stability of this catalyst compared to platinum after 10,000 potential cycles in alkaline media is attributedmore » to the atomic structural order of PdCo nanoparticles along with protective effect of clusters of gold atoms on the surface. This strategy of making ordered palladium intermetallic alloy nanoparticles can be used in diverse heterogeneous catalysis where particle size and structural stability matters.« less

  11. Low temperature catalysts for methanol production

    DOE Patents [OSTI]

    Sapienza, Richard S.; Slegeir, William A.; O'Hare, Thomas E.; Mahajan, Devinder

    1986-01-01

    A catalyst and process useful at low temperatures (below about 160.degree. C.) and preferably in the range 80.degree.-120.degree. C. used in the production of methanol from carbon monoxide and hydrogen is disclosed. The catalyst is used in slurry form and comprises a complex reducing agent derived from the component structure NaH--RONa--M(OAc).sub.2 where M is selected from the group consisting of Ni, Pd, and Co and R is a lower alkyl group containing 1-6 carbon atoms. This catalyst is preferably used alone but is also effective in combination with a metal carbonyl of a group VI (Mo, Cr, W) metal. The preferred catalyst precursor is Nic (where M=Ni and R=tertiary amyl). Mo(CO).sub.6 is the preferred metal carbonyl if such component is used. The catalyst is subjected to a conditioning or activating step under temperature and pressure, similar to the parameters given above, to afford the active catalyst.

  12. Low temperature catalysts for methanol production

    DOE Patents [OSTI]

    Sapienza, R.S.; Slegeir, W.A.; O'Hare, T.E.; Mahajan, D.

    1985-03-12

    A catalyst and process useful at low temperatures (below about 160/sup 0/C) and preferably in the range 80 to 120/sup 0/C used in the production of methanol from carbon monoxide and hydrogen is disclosed. The catalyst is used in slurry form and comprises a complex reducing agent derived from the component structure NaH-RONa-M(OAc)/sub 2/ where M is selected from the group consisting of Ni, Pd, and Co and R is a lower alkyl group containing 1 to 6 carbon atoms. This catalyst is preferably used alone but is also effective in combination with a metal carbonyl of a group VI (Mo, Cr, W) metal. The preferred catalyst precursor is Nic (where M = Ni and R = tertiary amyl). Mo(CO)/sub 6/ is the preferred metal carbonyl if such component is used. The catalyst is subjected to a conditioning or activating step under temperature and pressure, similar to the parameters given above, to afford the active catalyst.

  13. Low temperature catalysts for methanol production

    DOE Patents [OSTI]

    Sapienza, R.S.; Slegeir, W.A.; O'Hare, T.E.; Mahajan, D.

    1986-10-28

    A catalyst and process useful at low temperatures (below about 160 C) and preferably in the range 80--120 C used in the production of methanol from carbon monoxide and hydrogen are disclosed. The catalyst is used in slurry form and comprises a complex reducing agent derived from the component structure NaH--RONa-M(OAc)[sub 2] where M is selected from the group consisting of Ni, Pd, and Co and R is a lower alkyl group containing 1-6 carbon atoms. This catalyst is preferably used alone but is also effective in combination with a metal carbonyl of a group VI (Mo, Cr, W) metal. The preferred catalyst precursor is NiC (where M = Ni and R = tertiary amyl). Mo(CO)[sub 6] is the preferred metal carbonyl if such component is used. The catalyst is subjected to a conditioning or activating step under temperature and pressure, similar to the parameters given above, to afford the active catalyst.

  14. Hydroprocessing catalysts for heavy oil and coal

    SciTech Connect (OSTI)

    Satriana, M.J.

    1982-01-01

    Hydroprocessing catalysts, as described in over 230 processes covered in this book, are hydrogenation catalysts used in the upgrading of heavy crudes and coal to products expected to be in great demand as the world's primary oil supplies gradually dwindle. The techniques employed in hydroprocessing result in the removal of contaminants, the transformation of lower grade materials such as heavy crudes to valuable fuels, or the conversion of hydrocarbonaceous solids into gaseous or liquid fuel products. All of these techniques are, of course, carried out in the presence of hydrogen. Some of the brightest energy prospects for the future lie in heavy oil reservoirs and coal reserves. Heavy oils, defined in this book as having gravities of < 20/sup 0/API, are crudes so thick that they are not readily extracted from their reservoirs. However, processing of these crudes is of great importance, because the US resource alone is enormous. The main types of processing catalysts covered in the book are hydrorefining catalysts plus some combinations of the two. Catalysts for the conversion of hydrocarbonaceous materials to gaseous or liquid fuels are also covered. The primary starting material for these conversions is coal, but wood, lignin, oil shale, tar sands, and peat are other possibilities. The final chapter describes the preparation of various catalyst support systems.

  15. Cheaper catalyst may lower fuel costs for hydrogen-powered cars...

    National Nuclear Security Administration (NNSA)

    Cheaper catalyst may lower fuel costs for hydrogen-powered cars | National Nuclear ... Home NNSA Blog Cheaper catalyst may lower fuel costs for ... Cheaper catalyst may ...

  16. Templated synthesis of nickel nanoparticles: Toward heterostructured nanocomposites for efficient hydrogen storage

    SciTech Connect (OSTI)

    Nelson, Nicholas Cole

    2013-05-07

    The world is currently facing an energy and environmental crisis for which new technologies are needed. Development of cost-competitive materials for catalysis and hydrogen storage on-board motor vehicles is crucial to lead subsequent generations into a more sustainable and energy independent future. This thesis presents work toward the scalable synthesis of bimetallic heterostructures that can enable hydrogen to compete with carbonaceous fuels by meeting the necessary gravimetric and volumetric energy densities and by enhancing hydrogen sorption/desorption kinetics near ambient temperatures and pressures. Utilizing the well-known phenomenon of hydrogen spillover, these bimetallic heterostructures could work by lowering the activation energy for hydrogenation and dehydrogenation of metals. Herein, we report a novel method for the scalable synthesis of silica templated zero-valent nickel particles (Ni⊂SiO{sub 2}) that hold promise for the synthesis of nickel nanorods for use in bimetallic heterostructures for hydrogen storage. Our synthesis proceeds by chemical reduction of a nickel-hydrazine complex with sodium borohydride followed by calcination under hydrogen gas to yield silica encapsulated nickel particles. Transmission electron microscopy and powder X-ray diffraction were used to characterize the general morphology of the resultant nanocapsules as well as the crystalline phases of the incorporated Ni{sup 0} nanocrystals. The structures display strong magnetic behavior at room temperature and preliminary data suggests nickel particle size can be controlled by varying the amount of nickel precursor used in the synthesis. Calcination under different environments and TEM analysis provides evidence for an atomic migration mechanism of particle formation. Ni⊂SiO{sub 2} nanocapsules were used as seeds to induce heterogeneous nucleation and subsequent growth within the nanocapsule via electroless nickel plating. Nickel nanoparticle growth occurs under high temperature alkaline conditions, however silica nanocapsule integrity is not maintained due to the incompatibility of silica with the growth conditions. Silica nanocapsule integrity is maintained under low temperature neutral conditions, but nickel particle growth is not observed. Through FTIR and UV/Vis analysis, we show the degree of crosslinking and condensation increases in calcined silica compared to as-synthesized silica. We propose the increased density of the silica nanocapsule hinders mass transfer of the bulky nickel precursor complex from solution and onto the surface of the “catalytic” zero-valent nickel seed within the nanocapsule cavity. Decreasing the density of the silica nanocapsule can be achieved through co-condensation of tetraethylorthosilicate with an alkyl functionalized silane followed by calcination to remove the organic component or by chemical etching in alkaline solution, but will not be addressed in this thesis.

  17. De-alloyed platinum nanoparticles

    DOE Patents [OSTI]

    Strasser, Peter; Koh, Shirlaine; Mani, Prasanna; Ratndeep, Srivastava

    2011-08-09

    A method of producing de-alloyed nanoparticles. In an embodiment, the method comprises admixing metal precursors, freeze-drying, annealing, and de-alloying the nanoparticles in situ. Further, in an embodiment de-alloyed nanoparticle formed by the method, wherein the nanoparticle further comprises a core-shell arrangement. The nanoparticle is suitable for electrocatalytic processes and devices.

  18. Synthesis, Characterization and Properties of Nanoparticles of Intermetallic Compounds

    SciTech Connect (OSTI)

    DiSalvo, Francis J.

    2015-03-12

    The research program from 2010 to the end of the grant focused on understanding the factors important to the synthesis of single phase intermetallic nano-particles (NPs), their size, crystalline order, surface properties and electrochemical activity. The synthetic method developed is a co-reduction of mixtures of single metal precursors by strong, soluble reducing agents in a non-protic solvent, tetrahydrofuran (THF). With some exceptions, the particles obtained by room temperature reduction are random alloys that need to be annealed at modest temperatures (200 to 600 °C) in order to develop an ordered structure. To avoid significant particle size growth and agglomeration, the particles must be protected by surface coatings. We developed a novel method of coating the metal nanoparticles with KCl, a by-product of the reduction reaction if the proper reducing agents are employed. In that case, a composite product containing individual metal nanoparticles in a KCl matrix is obtained. The composite can be heated to at least 600 °C without significant agglomeration or growth in particle size. Washing the annealed product in the presence of catalyst supports in ethylene glycol removes the KCl and deposits the particles on the support. Six publications present the method and its application to producing and studying new catalyst/support combinations for fuel cell applications. Three publications concern the use of related methods to explore new lithium-sulfur battery concepts.

  19. Homogeneous catalysts in hypersonic combustion

    SciTech Connect (OSTI)

    Harradine, D.M.; Lyman, J.L.; Oldenborg, R.C.; Pack, R.T.; Schott, G.L.

    1989-01-01

    Density and residence time both become unfavorably small for efficient combustion of hydrogen fuel in ramjet propulsion in air at high altitude and hypersonic speed. Raising the density and increasing the transit time of the air through the engine necessitates stronger contraction of the air flow area. This enhances the kinetic and thermodynamic tendency of H/sub 2/O to form completely, accompanied only by N/sub 2/ and any excess H/sub 2/(or O/sub 2/). The by-products to be avoided are the energetically expensive fragment species H and/or O atoms and OH radicals, and residual (2H/sub 2/ plus O/sub 2/). However, excessive area contraction raises air temperature and consequent combustion-product temperature by adiabatic compression. This counteracts and ultimately overwhelms the thermodynamic benefit by which higher density favors the triatomic product, H/sub 2/O, over its monatomic and diatomic alternatives. For static pressures in the neighborhood of 1 atm, static temperature must be kept or brought below ca. 2400 K for acceptable stability of H/sub 2/O. Another measure, whose requisite chemistry we address here, is to extract propulsive work from the combustion products early in the expansion. The objective is to lower the static temperature of the combustion stream enough for H/sub 2/O to become adequately stable before the exhaust flow is massively expanded and its composition ''frozen.'' We proceed to address this mechanism and its kinetics, and then examine prospects for enhancing its rate by homogeneous catalysts. 9 refs.

  20. Method of depositing a catalyst on a fuel cell electrode

    DOE Patents [OSTI]

    Dearnaley, Geoffrey; Arps, James H.

    2000-01-01

    Fuel cell electrodes comprising a minimal load of catalyst having maximum catalytic activity and a method of forming such fuel cell electrodes. The method comprises vaporizing a catalyst, preferably platinum, in a vacuum to form a catalyst vapor. A catalytically effective amount of the catalyst vapor is deposited onto a carbon catalyst support on the fuel cell electrode. The electrode preferably is carbon cloth. The method reduces the amount of catalyst needed for a high performance fuel cell electrode to about 0.3 mg/cm.sup.2 or less.

  1. Process and catalyst for carbonylating olefins

    DOE Patents [OSTI]

    Zoeller, J.R.

    1998-06-02

    Disclosed is an improved catalyst system and process for preparing aliphatic carbonyl compounds such as aliphatic carboxylic acids, alkyl esters of aliphatic carboxylic acids and anhydrides of aliphatic carboxylic acids by carbonylating olefins in the presence of a catalyst system comprising (1) a first component selected from at least one Group 6 metal, i.e., chromium, molybdenum, and/or tungsten and (2) a second component selected from at least one of certain halides and tertiary and quaternary compounds of a Group 15 element, i.e., nitrogen, phosphorus and/or arsenic, and (3) as a third component, a polar, aprotic solvent. The process employing the improved catalyst system is carried out under carbonylating conditions of pressure and temperature discussed herein. The process constitutes and improvement over known processes since it can be carried out at moderate carbonylation conditions without the necessity of using an expensive noble metal catalyst, volatile, toxic materials such as nickel tetracarbonyl, formic acid or a formate ester. Further, the addition of a polar, aprotic solvent to the catalyst system significantly increases, or accelerates, the rate at which the carbonylation takes place.

  2. Molecular-level Design of Heterogeneous Chiral Catalysts

    SciTech Connect (OSTI)

    Gellman, Andrew John; Sholl, David S.; Tysoe, Wilfred T.; Zaera, Francisco

    2013-04-28

    Understanding and controlling selectivity is one of the key challenges in heterogeneous catalysis. Among problems in catalytic selectivity enantioselectivity is perhaps the most the most challenging. The primary goal of the project on Molecular-level Design of Heterogeneous Chiral Catalysts is to understand the origins of enantioselectivity on chiral heterogeneous surfaces and catalysts. The efforts of the project team include preparation of chiral surfaces, characterization of chiral surfaces, experimental detection of enantioselectivity on such surfaces and computational modeling of the interactions of chiral probe molecules with chiral surfaces. Over the course of the project period the team of PIs has made some of the most detailed and insightful studies of enantioselective chemistry on chiral surfaces. This includes the measurement of fundamental interactions and reaction mechanisms of chiral molecules on chiral surfaces and leads all the way to rationale design and synthesis of chiral surfaces and materials for enantioselective surface chemistry. The PIs have designed and prepared new materials for enantioselective adsorption and catalysis. Naturally Chiral Surfaces Completion of a systematic study of the enantiospecific desorption kinetics of R-3-methylcyclohexanone (R-3-MCHO) on 9 achiral and 7 enantiomeric pairs of chiral Cu surfaces with orientations that span the stereographic triangle. Discovery of super-enantioselective tartaric acid (TA) and aspartic acid (Asp) decomposition as a result of a surface explosion mechanism on Cu(643)R&S. Systematic study of super-enantiospecific TA and Asp decomposition on five enantiomeric pairs of chiral Cu surfaces. Initial observation of the enantiospecific desorption of R- and S-propylene oxide (PO) from Cu(100) imprinted with {3,1,17} facets by L-lysine adsorption. Templated Chiral Surfaces Initial observation of the enantiospecific desorption of R- and S-PO from Pt(111) and Pd(111) modified by a variety of chiral templates. Demonstrated enantioselective separation of racemic PO on chemically synthesized chiral gold nanoparticles. Discovery of zwitterionic adsorption states of amino acids on Pd(111). First structure determinations of adsorbed amino acids and identification of tetrameric chiral template structures. Exploration of the enantiospecific interaction of PO and R-3-MCHO adsorption on chirally modified Cu(100), Cu(110) and Cu(111). One-to-One Interactions Determination of cinchona orientation on Pt surfaces in situ at the solid-liquid interface using FT-IRAS. Systematic study of the influence of solution properties on the adsorption of modified cinchonas alkaloids onto Pt surfaces. Correlation of cinchona adsorption with catalytic activity, as affected by concentration, the nature of the solvent, and dissolved gases in the liquid phase. Measurement of enantioselective chemisorption on 1-(1-naphthyl) ethylamine (NEA) modified Pt(111) and Pd(111) surfaces. Imaging of chiral docking complexes between NEA and methyl pyruvate on Pd(111). Chiral Catalyst Synthesis Anchoring of cinchona alkaloid to surfaces Synthesis of chiral Au nanoparticles and demonstration of their enantiospecific interactions with R- and S-PO. Elucidation of the driving forces for chiral imprinting of Cu(100) by L- and D-lysine to form Cu(3,1,17)R&S facets.

  3. Method for making nanotubes and nanoparticles

    DOE Patents [OSTI]

    Zettl, Alexander Karlwalter; Cohen, Marvin Lou

    2000-01-01

    The present invention is an apparatus and method for producing nano-scale tubes and particles. The apparatus comprises novel electrodes for use in arc discharge techniques. The electrodes have interior conduits for delivery and withdrawal of material from the arc region where product is formed. In one embodiment, the anode is optionally made from more than one material and is termed a compound anode. The materials used in the compound anode assist in the reaction that forms product in the arc region of the apparatus. The materials assist either by providing reaction ingredients, catalyst, or affecting the reaction kinetics. Among other uses, the inventive apparatus is used to produce nanotubes and nanoparticles having a variety of electrical and mechanical properties.

  4. Method for producing catalysts from coal

    DOE Patents [OSTI]

    Farcasiu, M.; Derbyshire, F.; Kaufman, P.B.; Jagtoyen, M.

    1998-02-24

    A method for producing catalysts from coal is provided comprising mixing an aqueous alkali solution with the coal, heating the aqueous mixture to treat the coal, drying the now-heated aqueous mixture, reheating the mixture to form carbonized material, cooling the mixture, removing excess alkali from the carbonized material, and recovering the carbonized material, wherein the entire process is carried out in controlled atmospheres, and the carbonized material is a hydrocracking or hydrodehalogenation catalyst for liquid phase reactions. The invention also provides for a one-step method for producing catalysts from coal comprising mixing an aqueous alkali solution with the coal to create a mixture, heating the aqueous mixture from an ambient temperature to a predetermined temperature at a predetermined rate, cooling the mixture, and washing the mixture to remove excess alkali from the treated and carbonized material, wherein the entire process is carried out in a controlled atmosphere. 1 fig.

  5. Low temperature catalyst system for methanol production

    DOE Patents [OSTI]

    Sapienza, R.S.; Slegeir, W.A.; O'Hare, T.E.

    1984-04-20

    This patent discloses a catalyst and process useful at low temperatures (150/sup 0/C) and preferably in the range 80 to 120/sup 0/C used in the production of methanol from carbon monoxide and hydrogen. The catalyst components are used in slurry form and comprise (1) a complex reducing agent derived from the component structure NaH-ROH-M(OAc)/sub 2/ where M is selected from the group consisting of Ni, Pd, and Co and R is a lower alkyl group containing 1 to 6 carbon atoms and (2) a metal carbonyl of a group VI (Mo, Cr, W) metal. For the first component, Nic is preferred (where M = Ni and R = tertiary amyl). For the second component, Mo(CO)/sub 6/ is preferred. The mixture is subjected to a conditioning or activating step under temperature and pressure, similar to the parameters given above, to afford the active catalyst.

  6. Process for the regeneration of metallic catalysts

    DOE Patents [OSTI]

    Katzer, James R.; Windawi, Hassan

    1981-01-01

    A method for the regeneration of metallic hydrogenation catalysts from the class consisting of Ni, Rh, Pd, Ir, Pt and Ru poisoned with sulfur, with or without accompanying carbon deposition, comprising subjecting the catalyst to exposure to oxygen gas in a concentration of about 1-10 ppm. intermixed with an inert gas of the group consisting of He, A, Xe, Kr, N.sub.2 and air substantially free of oxygen to an extent such that the total oxygen molecule throughout is in the range of about 10 to 20 times that of the hydrogen sulfide molecular exposure producing the catalyst poisoning while maintaining the temperature in the range of about 300.degree. to 500.degree. C.

  7. Protein Scaffolding for Small Molecule Catalysts

    SciTech Connect (OSTI)

    Baker, David

    2014-09-14

    We aim to design hybrid catalysts for energy production and storage that combine the high specificity, affinity, and tunability of proteins with the potent chemical reactivities of small organometallic molecules. The widely used Rosetta and RosettaDesign methodologies will be extended to model novel protein / small molecule catalysts in which one or many small molecule active centers are supported and coordinated by protein scaffolding. The promise of such hybrid molecular systems will be demonstrated with the nickel-phosphine hydrogenase of DuBois et. al.We will enhance the hydrogenase activity of the catalyst by designing protein scaffolds that incorporate proton relays and systematically modulate the local environment of the catalyticcenter. In collaboration with DuBois and Shaw, the designs will be experimentally synthesized and characterized.

  8. Pyrochlore catalysts for hydrocarbon fuel reforming

    DOE Patents [OSTI]

    Berry, David A.; Shekhawat, Dushyant; Haynes, Daniel; Smith, Mark; Spivey, James J.

    2012-08-14

    A method of catalytically reforming a reactant gas mixture using a pyrochlore catalyst material comprised of one or more pyrochlores having the composition A2B2-y-zB'yB"zO7-.DELTA., where y>0 and z.gtoreq.0. Distribution of catalytically active metals throughout the structure at the B site creates an active and well dispersed metal locked into place in the crystal structure. This greatly reduces the metal sintering that typically occurs on supported catalysts used in reforming reactions, and reduces deactivation by sulfur and carbon. Further, oxygen mobility may also be enhanced by elemental exchange of promoters at sites in the pyrochlore. The pyrochlore catalyst material may be utilized in catalytic reforming reactions for the conversion of hydrocarbon fuels into synthesis gas (H2+CO) for fuel cells, among other uses.

  9. Method for dispersing catalyst onto particulate material

    DOE Patents [OSTI]

    Utz, Bruce R. (Pittsburgh, PA); Cugini, Anthony V. (Pittsburgh, PA)

    1992-01-01

    A method for dispersing finely divided catalyst precursors onto the surface of coal or other particulate material includes the steps of forming a wet paste mixture of the particulate material and a liquid solution containing a dissolved transition metal salt, for instance a solution of ferric nitrate. The wet paste mixture is in a state of incipient wetness with all of this solution adsorbed onto the surfaces of the particulate material without the presence of free moisture. On adding a precipitating agent such as ammonia, a catalyst precursor such as hydrated iron oxide is deposited on the surfaces of the coal. The catalyst is activated by converting it to the sulfide form for the hydrogenation or direct liquefaction of the coal.

  10. Homogeneous catalyst formulations for methanol production

    DOE Patents [OSTI]

    Mahajan, Devinder; Sapienza, Richard S.; Slegeir, William A.; O'Hare, Thomas E.

    1990-01-01

    There is disclosed synthesis of CH.sub.3 OH from carbon monoxide and hydrogen using an extremely active homogeneous catalyst for methanol synthesis directly from synthesis gas. The catalyst operates preferably between 100.degree.-150.degree. C. and preferably at 100-150 psia synthesis gas to produce methanol. Use can be made of syngas mixtures which contain considerable quantities of other gases, such as nitrogen, methane or excess hydrogen. The catalyst is composed of two components: (a) a transition metal carbonyl complex and (b) an alkoxide component. In the simplest formulation, component (a) is a complex of nickel tetracarbonyl and component (b) is methoxide (CH.sub.3 O.sup.13 ), both being dissolved in a methanol solvent system. The presence of a co-solvent such as p-dioxane, THF, polyalcohols, ethers, hydrocarbons, and crown ethers accelerates the methanol synthesis reaction.

  11. Homogeneous catalyst formulations for methanol production

    DOE Patents [OSTI]

    Mahajan, Devinder; Sapienza, Richard S.; Slegeir, William A.; O'Hare, Thomas E.

    1991-02-12

    There is disclosed synthesis of CH.sub.3 OH from carbon monoxide and hydrogen using an extremely active homogeneous catalyst for methanol synthesis directly from synthesis gas. The catalyst operates preferably between 100.degree.-150.degree. C. and preferably at 100-150 psia synthesis gas to produce methanol. Use can be made of syngas mixtures which contain considerable quantities of other gases, such as nitrogen, methane or excess hydrogen. The catalyst is composed of two components: (a) a transition metal carbonyl complex and (b) an alkoxide component. In the simplest formulation, component (a) is a complex of nickel tetracarbonyl and component (b) is methoxide (CH.sub.3 O.sup.-), both being dissolved in a methanol solvent system. The presence of a co-solvent such as p-dioxane, THF, polyalcohols, ethers, hydrocarbons, and crown ethers accelerates the methanol synthesis reaction.

  12. Ship-in-a-bottle catalysts

    DOE Patents [OSTI]

    Haw, James F.; Song, Weiguo

    2006-07-18

    In accordance with the present invention there is provided a novel catalyst system in which the catalytic structure is tailormade at the nanometer scale using the invention's novel ship-in-a-bottle synthesis techniques. The invention describes modified forms of solid catalysts for use in heterogeneous catalysis that have a microporous structure defined by nanocages. Examples include zeolites, SAPOs, and analogous materials that have the controlled pore dimensions and hydrothermal stability required for many industrial processes. The invention provides for modification of these catalysts using reagents that are small enough to pass through the windows used to access the cages. The small reagents are then reacted to form larger molecules in the cages.

  13. Calcium and lanthanum solid base catalysts for transesterification

    DOE Patents [OSTI]

    Ng, K. Y. Simon; Yan, Shuli; Salley, Steven O.

    2015-07-28

    In one aspect, a heterogeneous catalyst comprises calcium hydroxide and lanthanum hydroxide, wherein the catalyst has a specific surface area of more than about 10 m.sup.2/g. In another aspect, a heterogeneous catalyst comprises a calcium compound and a lanthanum compound, wherein the catalyst has a specific surface area of more than about 10 m.sup.2/g, and a total basicity of about 13.6 mmol/g. In further another aspect, a heterogeneous catalyst comprises calcium oxide and lanthanum oxide, wherein the catalyst has a specific surface area of more than about 10 m.sup.2/g. In still another aspect, a process for preparing a catalyst comprises introducing a base precipitant, a neutral precipitant, and an acid precipitant to a solution comprising a first metal ion and a second metal ion to form a precipitate. The process further comprises calcining the precipitate to provide the catalyst.

  14. Development of Ultra-low Platinum Alloy Cathode Catalyst for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ultra-low Platinum Alloy Cathode Catalyst for PEM Fuel Cells Development of Ultra-low Platinum Alloy Cathode Catalyst for PEM Fuel Cells These slides were presented at the 2010 New ...

  15. Photodriving Water Oxidation Catalysts: Extending Hole Lifetimes | ANSER

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center | Argonne-Northwestern National Laboratory Photodriving Water Oxidation Catalysts: Extending Hole Lifetimes Home > Research > ANSER Research Highlights > Photodriving Water Oxidation Catalysts: Extending Hole Lifetimes

  16. Enhancement of alkylation catalysts for improved supercritical fluid regeneration

    DOE Patents [OSTI]

    Ginosar, Daniel M. (Idaho Falls, ID); Petkovic, Lucia (Idaho Falls, ID)

    2009-09-22

    A method of modifying an alkylation catalyst to reduce the formation of condensed hydrocarbon species thereon. The method comprises providing an alkylation catalyst comprising a plurality of active sites. The plurality of active sites on the alkylation catalyst may include a plurality of weakly acidic active sites, intermediate acidity active sites, and strongly acidic active sites. A base is adsorbed to a portion of the plurality of active sites, such as the strongly acidic active sites, selectively poisoning the strongly acidic active sites. A method of modifying the alkylation catalyst by providing an alkylation catalyst comprising a pore size distribution that sterically constrains formation of the condensed hydrocarbon species on the alkylation catalyst or by synthesizing the alkylation catalyst to comprise a decreased number of strongly acidic active sites is also disclosed, as is a method of improving a regeneration efficiency of the alkylation catalyst.

  17. Enhancement of alkylation catalysts for improved supercritical fluid regeneration

    DOE Patents [OSTI]

    Ginosar, Daniel M. (Idaho Falls, ID); Petkovic, Lucia M. (Idaho Falls, ID)

    2010-12-28

    A method of modifying an alkylation catalyst to reduce the formation of condensed hydrocarbon species thereon. The method comprises providing an alkylation catalyst comprising a plurality of active sites. The plurality of active sites on the alkylation catalyst may include a plurality of weakly acidic active sites, intermediate acidity active sites, and strongly acidic active sites. A base is adsorbed to a portion of the plurality of active sites, such as the strongly acidic active sites, selectively poisoning the strongly acidic active sites. A method of modifying the alkylation catalyst by providing an alkylation catalyst comprising a pore size distribution that sterically constrains formation of the condensed hydrocarbon species on the alkylation catalyst or by synthesizing the alkylation catalyst to comprise a decreased number of strongly acidic active sites is also disclosed, as is a method of improving a regeneration efficiency of the alkylation catalyst.

  18. Los Alamos catalyst could jumpstart e-cars, green energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Catalyst could jumpstart e-cars, green energy Los Alamos catalyst could jumpstart e-cars, green energy The new material has the highest oxygen reduction reaction (ORR) activity in...

  19. Carbon-Based and Carbon-Supported Heterogeneous Catalysts for...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Carbon-Based and Carbon-Supported Heterogeneous Catalysts for the Conversion of Biomass Carbon-based heterogeneous catalysts play a central role in the conversion of biomass to...

  20. Catalysts for oxidation of mercury in flue gas

    DOE Patents [OSTI]

    Granite, Evan J.; Pennline, Henry W.

    2010-08-17

    Two new classes of catalysts for the removal of heavy metal contaminants, especially mercury (Hg) from effluent gases. Both of these classes of catalysts are excellent absorbers of HCl and Cl.sub.2 present in effluent gases. This adsorption of oxidizing agents aids in the oxidation of heavy metal contaminants. The catalysts remove mercury by oxidizing the Hg into mercury (II) moieties. For one class of catalysts, the active component is selected from the group consisting of iridium (Ir) and iridum-platinum (Ir/Pt) alloys. The Ir and Ir/Pt alloy catalysts are especially corrosion resistant. For the other class of catalyst, the active component is partially combusted coal or "Thief" carbon impregnated with Cl.sub.2. Untreated Thief carbon catalyst can be self-activating in the presence of effluent gas streams. The Thief carbon catalyst is disposable by means of capture from the effluent gas stream in a particulate collection device (PCD).

  1. Volatility of Vanadia from Vanadia-Based SCR Catalysts under...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vanadia from Vanadia-Based SCR Catalysts under Accelerated Aging Conditions Volatility of Vanadia from Vanadia-Based SCR Catalysts under Accelerated Aging Conditions TiO2-supported ...

  2. Method of performing sugar dehydration and catalyst treatment

    DOE Patents [OSTI]

    Hu, Jianli [Kennewick, WA; Holladay, Johnathan E [Kennewick, WA; Zhang, Xinjie [Burlington, MA; Wang, Yong [Richland, WA

    2010-06-01

    The invention includes a method of treating a solid acid catalyst. After exposing the catalyst to a mixture containing a sugar alcohol, the catalyst is washed with an organic solvent and is then exposed to a second reaction mixture. The invention includes a process for production of anhydrosugar alcohol. A solid acid catalyst is provided to convert sugar alcohol in a first sample to an anhydrosugar alcohol. The catalyst is then washed with an organic solvent and is subsequently utilized to expose a second sample. The invention includes a method for selective production of an anhydrosugar. A solid acid catalyst is provided within a reactor and anhydrosugar alcohol is formed by flowing a starting sugar alcohol into the reactor. The acid catalyst is then exposed to an organic solvent which allows a greater amount of additional anhydrosugar to be produced than would occur without exposing the acid catalyst to the organic solvent.

  3. Resin catalysts and method of preparation

    DOE Patents [OSTI]

    Smith, L.A. Jr.

    1986-12-16

    Heat stabilized catalyst compositions are prepared from nuclear sulfonic acid, for example, macroporous crosslinked polyvinyl aromatic compounds containing sulfonic acid groups are neutralized with a metal of Al, Fe, Zn, Cu, Ni, ions or mixtures and alkali, alkaline earth metals or ammonium ions by contacting the resin containing the sulfonic acid with aqueous solutions of the metals salts and alkali, alkaline earth metal or ammonium salts. The catalysts have at least 50% of the sulfonic acid groups neutralized with metal ions and the balance of the sulfonic acid groups neutralized with alkali, alkaline earth ions or ammonium ions.

  4. Method for producing iron-based catalysts

    DOE Patents [OSTI]

    Farcasiu, Malvina (Pittsburgh, PA); Kaufman, Phillip B. (Library, PA); Diehl, J. Rodney (Pittsburgh, PA); Kathrein, Hendrik (McMurray, PA)

    1999-01-01

    A method for preparing an acid catalyst having a long shelf-life is provided comprising doping crystalline iron oxides with lattice-compatible metals and heating the now-doped oxide with halogen compounds at elevated temperatures. The invention also provides for a catalyst comprising an iron oxide particle having a predetermined lattice structure, one or more metal dopants for said iron oxide, said dopants having an ionic radius compatible with said lattice structure; and a halogen bound with the iron and the metal dopants on the surface of the particle.

  5. Resin catalysts and method of preparation

    DOE Patents [OSTI]

    Smith, Jr., Lawrence A.

    1986-01-01

    Heat stabilized catalyst compositions are prepared from nuclear sulfonic acid, for example, macroporous crosslinked polyvinyl aromatic compounds containing sulfonic acid groups are neutralized with a metal of Al, Fe, Zn, Cu, Ni, ions or mixtures and alkali, alkaline earth metals or ammonium ions by contacting the resin containing the sulfonic acid with aqueous solutions of the metals salts and alkali, alkaline earth metal or ammonium salts. The catalysts have at least 50% of the sulfonic acid groups neutralized with metal ions and the balance of the sulfonic acid groups neutralized with alkali, alkaline earth ions or ammonium ions.

  6. Catalysts For Lean Burn Engine Exhaust Abatement

    DOE Patents [OSTI]

    Ott, Kevin C.; Clark, Noline C.; Paffett, Mark T.

    2004-04-06

    The present invention provides a process for catalytically reducing nitrogen oxides in an exhaust gas stream containing nitrogen oxides and a reductant material by contacting the gas stream under conditions effective to catalytically reduce the nitrogen oxides with a catalyst comprising a aluminum-silicate type material and a minor amount of a metal, the catalyst characterized as having sufficient catalytic activity so as to reduce the nitrogen oxides by at least 60 percent under temperatures within the range of from about 200.degree. C. to about 400.degree. C.

  7. Catalysts for lean burn engine exhaust abatement

    DOE Patents [OSTI]

    Ott, Kevin C.; Clark, Noline C.; Paffett, Mark T.

    2003-01-01

    The present invention provides a process for catalytically reducing nitrogen oxides in an exhaust gas stream containing nitrogen oxides and a reductant material by contacting the gas stream under conditions effective to catalytically reduce the nitrogen oxides with a catalyst comprising a aluminum-silicate type material and a minor amount of a metal, the catalyst characterized as having sufficient catalytic activity so as to reduce the nitrogen oxides by at least 60 percent under temperatures within the range of from about 200.degree. C. to about 400.degree. C.

  8. Catalysts for lean burn engine exhaust abatement

    DOE Patents [OSTI]

    Ott, Kevin C.; Clark, Noline C.; Paffett, Mark T.

    2006-08-01

    The present invention provides a process for catalytically reducing nitrogen oxides in an exhaust gas stream containing nitrogen oxides and a reductant material by contacting the gas stream under conditions effective to catalytically reduce the nitrogen oxides with a catalyst comprising a aluminum-silicate type material and a minor amount of a metal, the catalyst characterized as having sufficient catalytic activity so as to reduce the nitrogen oxides by at least 60 percent under temperatures within the range of from about 200.degree. C. to about 400.degree. C.

  9. Dispersed metal cluster catalysts by design. Synthesis, characterization, structure, and performance

    SciTech Connect (OSTI)

    Arslan, Ilke; Dixon, David A.; Gates, Bruce C.; Katz, Alexander

    2015-09-30

    To understand the class of metal cluster catalysts better and to lay a foundation for the prediction of properties leading to improved catalysts, we have synthesized metal catalysts with well-defined structures and varied the cluster structures and compositions systematicallyincluding the ligands bonded to the metals. These ligands include supports and bulky organics that are being tuned to control both the electron transfer to or from the metal and the accessibility of reactants to influence catalytic properties. We have developed novel syntheses to prepare these well-defined catalysts with atomic-scale control the environment by choice and placement of ligands and applied state-of-the art spectroscopic, microscopic, and computational methods to determine their structures, reactivities, and catalytic properties. The ligands range from nearly flat MgO surfaces to enveloping zeolites to bulky calixarenes to provide controlled coverages of the metal clusters, while also enforcing unprecedented degrees of coordinative unsaturation at the metal sitethereby facilitating bonding and catalysis events at exposed metal atoms. With this wide range of ligand properties and our arsenal of characterization tools, we worked to achieve a deep, fundamental understanding of how to synthesize robust supported and ligand-modified metal clusters with controlled catalytic properties, thereby bridging the gap between active site structure and function in unsupported and supported metal catalysts. We used methods of organometallic and inorganic chemistry combined with surface chemistry for the precise synthesis of metal clusters and nanoparticles, characterizing them at various stages of preparation and under various conditions (including catalytic reaction conditions) and determining their structures and reactivities and how their catalytic properties depend on their compositions and structures. Key characterization methods included IR, NMR, and EXAFS spectroscopies to identify ligands on the metals and their reactions; EXAFS spectroscopy and high-resolution STEM to determine cluster framework structures and changes resulting from reactant treatment and locations of metal atoms on support surfaces; X-ray diffraction crystallography to determine full structures of cluster-ligand combinations in the absence of a support, and TEM with tomographic methods to observe individual metal atoms and determine three-dimensional structures of catalysts. Electronic structure calculations were used to verify and interpret spectra and extend the understanding of reactivity beyond what is measurable experimentally.

  10. Impact of Fuel Metal Impurities on Diesel Exhaust Catalysts

    Broader source: Energy.gov [DOE]

    Investigates impact of metal impurities in biodiesel on full useful life durability of catalysts in diesel exhaust aftertreatment systems

  11. SUNSHOT - CATALYST ENERGY INNOVATION PRIZE | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SUNSHOT - CATALYST ENERGY INNOVATION PRIZE SUNSHOT - CATALYST ENERGY INNOVATION PRIZE The Catalyst Energy Innovation Prize is an open innovation program in the Energy Department's (DOE) Office of Energy Efficiency and Renewable Energy and aims to catalyze the rapid creation and development of products and solutions that address near-term challenges in the U.S. solar and energy efficiency marketplaces. Through a series of contests, Catalyst makes it faster and easier for American innovators to

  12. Substituted pyridine ligands and related water-soluble catalysts

    DOE Patents [OSTI]

    Emrick, Todd S.

    2011-06-14

    Versatile Group VIII metathesis catalysts, as can be used in a range of polymerization reactions and other chemical methodologies.

  13. The Effects of Hydrothermal Agingon a Commercial Cu SCR Catalyst

    Broader source: Energy.gov [DOE]

    Examines the effect of hydrothermal aging on the Nox reduction over a commercial Cu-zeolite SCR catalyst.

  14. Catalyst for converting synthesis gas to liquid motor fuels

    DOE Patents [OSTI]

    Coughlin, Peter K.

    1986-01-01

    The addition of an inert metal component, such as gold, silver or copper, to a Fischer-Tropsch catalyst comprising cobalt enables said catalyst to convert synthesis gas to liquid motor fuels at about 240.degree.-370.degree. C. with advantageously reduced selectivity of said cobalt for methane in said conversion. The catalyst composition can advantageously include a support component, such as a molecular sieve, co-catalyst/support component or a combination of such support components.

  15. The Challenges for PEMFC Catalysts in Automotive Applications

    Broader source: Energy.gov [DOE]

    Presentation by Stephen Campbell for the 2013 DOE Catalysis Working Group Meeting on PEMFC catalysts in automotive applications.

  16. Catalyst structure and method of fischer-tropsch synthesis

    DOE Patents [OSTI]

    Wang, Yong [Richland, WA; Vanderwiel, David P [Richland, WA; Tonkovich, Anna Lee Y [Pasco, WA; Gao, Yufei [Kennewick, WA; Baker, Eddie G [Pasco, WA

    2002-12-10

    The present invention includes Fischer-Tropsch catalysts, reactions using Fischer-Tropsch catalysts, methods of making Fischer-Tropsch catalysts, processes of hydrogenating carbon monoxide, and fuels made using these processes. The invention provides the ability to hydrogenate carbon monoxide with low contact times, good conversion rates and low methane selectivities. In a preferred method, the catalyst is made using a metal foam support.

  17. Catalyst structure and method of Fischer-Tropsch synthesis

    DOE Patents [OSTI]

    Wang, Yong; Vanderwiel, David P.; Tonkovich, Anna Lee Y.; Gao, Yufei; Baker, Eddie G.

    2004-06-15

    The present invention includes Fischer-Tropsch catalysts, reactions using Fischer-Tropsch catalysts, methods of making Fischer-Tropsch catalysts, processes of hydrogenating carbon monoxide, and fuels made using these processes. The invention provides the ability to hydrogenate carbon monoxide with low contact times, good conversion rates and low methane selectivities. In a preferred method, the catalyst is made using a metal foam support.

  18. An Atomic-Level Understanding of Copper-Based Catalysts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    An Atomic-Level Understanding of Copper-Based Catalysts Print Copper-based catalysts are widely used in chemical industries to convert water and carbon monoxide to hydrogen, carbon dioxide, and methanol. There are theoretical models used to explain this reaction, but a complete understanding of the process has been lacking. However, recent research at the ALS has shed light on the process, giving scientists key data about how copper-based catalysts function at the atomic level. These catalysts

  19. 90 Seconds of Discovery: Biofuel Catalyst Life and Plugs

    SciTech Connect (OSTI)

    Zacher, Alan; Olarte, Mariefel

    2014-06-11

    Scientist at PNNL are working to extend the life of the catalysts used in the production of biomass fuels.

  20. Los Alamos catalyst could jumpstart e-cars, green energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Catalyst could jumpstart e-cars, green energy Los Alamos catalyst could jumpstart e-cars, green energy The new material has the highest oxygen reduction reaction (ORR) activity in alkaline media of any non-precious metal catalyst developed to date. June 4, 2013 A high-resolution microscopic image of a new type of nanostructured-carbon-based catalyst developed at Los Alamos National Laboratory that could pave the way for reliable, economical next-generation batteries and alkaline fuel cells.

  1. Los Alamos catalyst could jumpstart e-cars, green energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Catalyst could jumpstart e-cars, green energy Los Alamos catalyst could jumpstart e-cars, green energy The new material has the highest oxygen reduction reaction (ORR) activity in alkaline media of any non-precious metal catalyst developed to date. June 4, 2013 A high-resolution microscopic image of a new type of nanostructured-carbon-based catalyst developed at Los Alamos National Laboratory that could pave the way for reliable, economical next-generation batteries and alkaline fuel cells.

  2. Cooperative Catalyst leads to Transformative Results | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cooperative Catalyst leads to Transformative Results Capitalizing on the concept that everything proceeds faster with a little cooperation, researchers showed how designing cooperation into solid catalysts leads to enormous benefits.Catalysts attached to a porous solid support are preferred industrially because they are easier to separate from liquid products and reuse. But, these bound catalysts typically do not perform as well and probing their interiors to figure out how to improve them has

  3. Los Alamos catalyst could jumpstart e-cars, green energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Catalyst could jumpstart e-cars, green energy Los Alamos catalyst could jumpstart e-cars, green energy The new material has the highest oxygen reduction reaction (ORR) activity in alkaline media of any non-precious metal catalyst developed to date. June 4, 2013 A high-resolution microscopic image of a new type of nanostructured-carbon-based catalyst developed at Los Alamos National Laboratory that could pave the way for reliable, economical next-generation batteries and alkaline fuel cells.

  4. 90 Seconds of Discovery: Biofuel Catalyst Life and Plugs

    ScienceCinema (OSTI)

    Zacher, Alan; Olarte, Mariefel

    2014-06-12

    Scientist at PNNL are working to extend the life of the catalysts used in the production of biomass fuels.

  5. Thief carbon catalyst for oxidation of mercury in effluent stream

    DOE Patents [OSTI]

    Granite, Evan J.; Pennline, Henry W.

    2011-12-06

    A catalyst for the oxidation of heavy metal contaminants, especially mercury (Hg), in an effluent stream is presented. The catalyst facilitates removal of mercury through the oxidation of elemental Hg into mercury (II) moieties. The active component of the catalyst is partially combusted coal, or "Thief" carbon, which can be pre-treated with a halogen. An untreated Thief carbon catalyst can be self-promoting in the presence of an effluent gas streams entrained with a halogen.

  6. Supercomputers Help a Catalyst Reach its Full Potential

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Help a Catalyst Reach its Full Potential Supercomputers Help a Catalyst Reach its Full Potential Placing Protons Prevents Wasteful Profligate Reactions April 23, 2013 Contact: Linda Vu, lvu@lbl.gov +1 510 495 2402 protondeliverystory.jpg While one configuration (endo/endo) of a popular nickel catalyst can produce thousands of hydrogen molecules a second, the other forms that place the proton farther from the center are slower and less efficient. Chemical reactions facilitated by catalysts are

  7. Breakout Group 1: Catalysts and Supports | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1: Catalysts and Supports Breakout Group 1: Catalysts and Supports Report from Breakout Group 1 of the Fuel Cell Pre-Solicitation Workshop, January 23-24, 2008 PDF icon fc_pre-solicitation_workshop_catalysts_supports.pdf More Documents & Publications Breakout Group 2: Membrane Electrode Assemblies DOE Fuel Cell Pre-Solicitation Workshop - Breakout Group 1: Catalysts DOE Fuel Cell Pre-Solicitation Workshop - Breakout Group 5: Long-Term Innovative Technologies

  8. An Atomic-Level Understanding of Copper-Based Catalysts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    An Atomic-Level Understanding of Copper-Based Catalysts Print Copper-based catalysts are widely used in chemical industries to convert water and carbon monoxide to hydrogen, carbon dioxide, and methanol. There are theoretical models used to explain this reaction, but a complete understanding of the process has been lacking. However, recent research at the ALS has shed light on the process, giving scientists key data about how copper-based catalysts function at the atomic level. These catalysts

  9. Tethered catalysts for the hydration of carbon dioxide

    DOE Patents [OSTI]

    Valdez, Carlos A; Satcher, Jr., Joe H; Aines, Roger D; Wong, Sergio E; Baker, Sarah E; Lightstone, Felice C; Stolaroff, Joshuah K

    2014-11-04

    A system is provided that substantially increases the efficiency of CO.sub.2 capture and removal by positioning a catalyst within an optimal distance from the air-liquid interface. The catalyst is positioned within the layer determined to be the highest concentration of carbon dioxide. A hydrophobic tether is attached to the catalyst and the hydrophobic tether modulates the position of the catalyst within the liquid layer containing the highest concentration of carbon dioxide.

  10. Nanoparticle toxicity testing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    submit Nanoparticle toxicity testing Assessing the potential health hazards of nanotechnology March 25, 2013 Robot In the search for more accurate and efficient techniques to...

  11. Hydrogen catalysis and scavenging action of Pd-POSS nanoparticles

    SciTech Connect (OSTI)

    Maiti, A; Gee, R H; Maxwell, R; Saab, A

    2007-02-01

    Prompted by the need for a self-supported, chemically stable, and functionally flexible catalytic nanoparticle system, we explore a system involving Pd clusters coated with a monolayer of polyhedral oligomeric silsesquioxane (POSS) cages. With an initial theoretical focus on hydrogen catalysis and sequestration in the Pd-POSS system, we report Density Functional Theory (DFT) results on POSS binding energies to the Pd(110) surface, hydrogen storing ability of POSS, and possible pathways of hydrogen radicals from the catalyst surface to unsaturated bonds away from the surface.

  12. Nano Catalysts for Diesel Engine Emission Remediation

    SciTech Connect (OSTI)

    Narula, Chaitanya Kumar; Yang, Xiaofan; Debusk, Melanie Moses; Mullins, David R; Mahurin, Shannon Mark; Wu, Zili

    2012-06-01

    The objective of this project was to develop durable zeolite nanocatalysts with broader operating temperature windows to treat diesel engine emissions to enable diesel engine based equipment and vehicles to meet future regulatory requirements. A second objective was to improve hydrothermal durability of zeolite catalysts to at least 675 C. The results presented in this report show that we have successfully achieved both objectives. Since it is accepted that the first step in NO{sub x} conversion under SCR (selective catalytic reduction) conditions involves NO oxidation to NO{sub 2}, we reasoned that catalyst modification that can enhance NO oxidation at low-temperatures should facilitate NO{sub x} reduction at low temperatures. Considering that Cu-ZSM-5 is a more efficient catalyst than Fe-ZSM-5 at low-temperature, we chose to modify Cu-ZSM-5. It is important to point out that the poor low-temperature efficiency of Fe-ZSM-5 has been shown to be due to selective absorption of NH{sub 3} at low-temperatures rather than poor NO oxidation activity. In view of this, we also reasoned that an increased electron density on copper in Cu-ZSM-5 would inhibit any bonding with NH{sub 3} at low-temperatures. In addition to modified Cu-ZSM-5, we synthesized a series of new heterobimetallic zeolites, by incorporating a secondary metal cation M (Sc{sup 3+}, Fe{sup 3+}, In{sup 3+}, and La{sup 3+}) in Cu exchanged ZSM-5, zeolite-beta, and SSZ-13 zeolites under carefully controlled experimental conditions. Characterization by diffuse-reflectance ultra-violet-visible spectroscopy (UV-Vis), X-ray powder diffraction (XRD), extended X-ray absorption fine structure spectroscopy (EXAFS) and electron paramagnetic resonance spectroscopy (EPR) does not permit conclusive structural determination but supports the proposal that M{sup 3+} has been incorporated in the vicinity of Cu(II). The protocols for degreening catalysts, testing under various operating conditions, and accelerated aging conditions were provided by our collaborators at John Deere Power Systems. Among various zeolites reported here, CuFe-SSZ-13 offers the best NO{sub x} conversion activity in 150-650 C range and is hydrothermally stable when tested under accelerated aging conditions. It is important to note that Cu-SSZ-13 is now a commercial catalyst for NO{sub x} treatment on diesel passenger vehicles. Thus, our catalyst performs better than the commercial catalyst under fast SCR conditions. We initially focused on fast SCR tests to enable us to screen catalysts rapidly. Only the catalysts that exhibit high NO{sub x} conversion at low temperatures are selected for screening under varying NO{sub 2}:NO{sub x} ratio. The detailed tests of CuFe-SSZ-13 show that CuFe-SSZ-13 is more effective than commercial Cu-SSZ-13 even at NO{sub 2}:NO{sub x} ratio of 0.1. The mechanistic studies, employing stop-flow diffuse reflectance FTIR spectroscopy (DRIFTS), suggest that high concentration of NO{sup +}, generated by heterobimetallic zeolites, is probably responsible for their superior low temperature NO{sub x} activity. The results described in this report clearly show that we have successfully completed the first step in a new emission treatment catalyst which is synthesis and laboratory testing employing simulated exhaust. The next step in the catalyst development is engine testing. Efforts are in progress to obtain follow-on funding to carry out scale-up and engine testing to facilitate commercialization of this technology.

  13. Reaction Rates and Catalysts in Ethanol Production (1 Activity)

    K-12 Energy Lesson Plans and Activities Web site (EERE)

    Students will have the opportunity to investigate alternative catalysts for the degradation of hydrogen peroxide, which will be used as a model system for the breaking down of cellulose into sugar. After identifying other potential catalysts, students will develop their own research question about catalysts and conduct an additional experiment of their own design to investigate their question.

  14. Attrition resistant Fischer-Tropsch catalyst and support

    DOE Patents [OSTI]

    Singleton, Alan H.; Oukaci, Rachid; Goodwin, James G.

    2004-05-25

    A catalyst support having improved attrition resistance and a catalyst produced therefrom. The catalyst support is produced by a method comprising the step of treating calcined .gamma.-alumina having no catalytic material added thereto with an acidic aqueous solution having an acidity level effective for increasing the attrition resistance of the calcined .gamma.-alumina.

  15. Supported metal catalysts for alcohol/sugar alcohol steam reforming

    SciTech Connect (OSTI)

    Davidson, Stephen; Zhang, He; Sun, Junming; Wang, Yong

    2014-08-21

    Despite extensive studies on hydrogen production via steam reforming of alcohols and sugar alcohols, catalysts typically suffer a variety of issues from poor hydrogen selectivity to rapid deactivation. Here, we summarize recent advances in fundamental understanding of functionality and structure of catalysts for alcohol/sugar alcohol steam reforming, and provide perspectives on further development required to design highly efficient steam reforming catalysts.

  16. Cobalt Fischer-Tropsch catalysts having improved selectivity

    DOE Patents [OSTI]

    Miller, James G.; Rabo, Jule A.

    1989-01-01

    The promoter(s) Mn oxide or Mn oxide and Zr oxide are added to a cobalt Fischer-Tropsch catalyst combined with the molecular sieve TC-103 or TC-123 such that the resultant catalyst demonstrates improved product selectivity, stability and catalyst life. The improved selectivity is evidenced by lower methane production, higher C5+ yield and increased olefin production.

  17. Separation of catalyst from Fischer-Tropsch slurry

    SciTech Connect (OSTI)

    White, C.M.; Quiring, M.S.; Jensen, K.L.; Hickey, R.F.; Gillham, L.D.

    1998-04-01

    This paper describes a process for the separation of catalysts used in Fischer-Tropsch synthesis. The separation is accomplished by extraction in which the organic compounds in the wax are dissolved and carried away from the insoluble inorganic catalyst particles that are primarily inorganic. The purified catalyst can be upgraded by various methods.

  18. Metallocene catalyst containing bulky organic group

    DOE Patents [OSTI]

    Marks, T.J.; Ja, L.; Yang, X.

    1996-03-26

    An ionic metallocene catalyst for olefin polymerization which comprises: (1) a cyclopentadienyl-type ligand, a Group IVB transition metal, and alkyl, aryl, or hydride substituents, as a cation, and (2) a weakly coordinating anion comprising boron substituted with halogenated, such as tetrafluoro-aryl substituents preferably containing silylalkyl substitution, such as para-silyl t-butyldimethyl.

  19. Supported metal catalysts: Preparation, characterization, and function

    SciTech Connect (OSTI)

    Jackson, S.D.; Leeming, P. [ICI Katalco, Cleveland (United Kingdom)] [ICI Katalco, Cleveland (United Kingdom); Webb, G. [Univ. of Glasgow (United Kingdom)] [Univ. of Glasgow (United Kingdom)

    1996-05-01

    The sorptive properties of supported platinum catalysts has been studied for the adsorption of carbonyl sulfide and hydrogen sulfide. It was observed that hydrogen sulfide adsorption disallowed carbon monoxide adsorption. Dissociation chemistry was probed using labelled compounds. 32 refs., 8 tabs.

  20. Fuel cells and fuel cell catalysts

    DOE Patents [OSTI]

    Masel, Richard I.; Rice, Cynthia A.; Waszczuk, Piotr; Wieckowski, Andrzej

    2006-11-07

    A direct organic fuel cell includes a formic acid fuel solution having between about 10% and about 95% formic acid. The formic acid is oxidized at an anode. The anode may include a Pt/Pd catalyst that promotes the direct oxidation of the formic acid via a direct reaction path that does not include formation of a CO intermediate.

  1. Nitrated metalloporphyrins as catalysts for alkane oxidation

    DOE Patents [OSTI]

    Ellis, Jr., Paul E.; Lyons, James E.

    1994-01-01

    Compositions of matter comprising nitro-substituted metal complexes of porphyrins are catalysts for the oxidation of alkanes. The metal is iron, chromium, manganese, ruthenium, copper or cobalt. The porphyrin ring has nitro groups attached thereto in meso and/or .beta.-pyrrolic positions.

  2. Nitrated metalloporphyrins as catalysts for alkane oxidation

    DOE Patents [OSTI]

    Ellis, Jr., Paul E.; Lyons, James E.

    1992-01-01

    Alkanes are oxidized by contact with oxygen-containing gas in the presence as catalyst of a metalloporphyrin in which hydrogen atoms in the porphyrin ring have been replaced with one or more nitro groups. Hydrogen atoms in the porphyrin ring may also be substituted with halogen atoms.

  3. Attrition resistant gamma-alumina catalyst support

    DOE Patents [OSTI]

    Singleton, Alan H.; Oukaci, Rachid; Goodwin, James G.

    2006-03-14

    A .gamma.-alumina catalyst support having improved attrition resistance produced by a method comprising the steps of treating a particulate .gamma.-alumina material with an acidic aqueous solution comprising water and nitric acid and then, prior to adding any catalytic material thereto, calcining the treated .gamma.-alumina.

  4. Regeneration of zinc chloride hydrocracking catalyst

    DOE Patents [OSTI]

    Zielke, Clyde W.

    1979-01-01

    Improved rate of recovery of zinc values from the solids which are carried over by the effluent vapors from the oxidative vapor phase regeneration of spent zinc chloride catalyst is achieved by treatment of the solids with both hydrogen chloride and calcium chloride to selectively and rapidly recover the zinc values as zinc chloride.

  5. Prealloyed catalyst for growing silicon carbide whiskers

    DOE Patents [OSTI]

    Shalek, Peter D. (Los Alamos, NM); Katz, Joel D. (Niagara Falls, NY); Hurley, George F. (Los Alamos, NM)

    1988-01-01

    A prealloyed metal catalyst is used to grow silicon carbide whiskers, especially in the .beta. form. Pretreating the metal particles to increase the weight percentages of carbon or silicon or both carbon and silicon allows whisker growth to begin immediately upon reaching growth temperature.

  6. Hydrous oxide ion-exchange compound catalysts

    DOE Patents [OSTI]

    Dosch, Robert G. (Albuquerque, NM); Stephens, Howard P. (Albuquerque, NM)

    1990-01-01

    A catalytic material of improved activity which comprises a hydrous, alkali metal or alkaline earth metal or quaternary ammonium titanate, zirconate, niobate, or tantalate, in which the metal or ammonium cations have been exchange with a catalytically effective quantity of a catalyst metal, and which has been subsequently treated with a solution of a Bronsted acid.

  7. Metallocene catalyst containing bulky organic group

    DOE Patents [OSTI]

    Marks, Tobin J.; Ja, Li; Yang, Xinmin

    1996-03-26

    An ionic metallocene catalyst for olefin polymerization which comprises: (1) a cyclopentadienyl-type ligand, a Group IVB transition metal, and alkyl, aryl, or hydride substituents, as a cation, and (2) a weakly coordinating anion comprising boron substituted with halogenated, such as tetra fluoro, aryl substituents preferably containing silylalkyl substitution, such as para-silyl t-butyldimethyl.

  8. Nanotube/Nanowire Based ORR Catalyst

    Broader source: Energy.gov [DOE]

    Presentation about nanotube or nanowire-based oxygen reduction reaction (ORR) catalysts, presented by Yushan Yan, University of Delaware, at the kick-off meeting of the U.S. Department of Energy Fuel Cell Technologies Program's Catalysis Working Group, held May 14, 2012, in Arlington, Virginia.

  9. Catalysts compositions for use in fuel cells

    DOE Patents [OSTI]

    Chuang, Steven S.C.

    2015-12-01

    The present invention generally relates to the generation of electrical energy from a solid-state fuel. In one embodiment, the present invention relates to a solid-oxide fuel cell for generating electrical energy from a carbon-based fuel, and to catalysts for use in a solid-oxide fuel cell.

  10. Advanced Cathode Catalysts | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Part of a $100 million fuel cell award announced by DOE Secretary Bodman on Oct. 25, 2006. PDF icon 3_lanl.pdf More Documents & Publications Advanced Cathode Catalysts Science Magazine Highlight: Moving Towards Near Zero Platinum Fuel Cells 2011 Alkaline Membrane Fuel Cell Workshop Final Report

  11. Nitrated metalloporphyrins as catalysts for alkane oxidation

    DOE Patents [OSTI]

    Ellis, P.E. Jr.; Lyons, J.E.

    1994-01-18

    Compositions of matter comprising nitro-substituted metal complexes of porphyrins are catalysts for the oxidation of alkanes. The metal is iron, chromium, manganese, ruthenium, copper or cobalt. The porphyrin ring has nitro groups attached thereto in meso and/or [beta]-pyrrolic positions.

  12. Catalyst Activity Comparison of Alcohols over Zeolites

    SciTech Connect (OSTI)

    Ramasamy, Karthikeyan K.; Wang, Yong

    2013-01-01

    Alcohol transformation to transportation fuel range hydrocarbon on HZSM-5 (SiO2 / Al2O3 = 30) catalyst was studied at 360oC and 300psig. Product distributions and catalyst life were compared using methanol, ethanol, 1-propanol or 1-butanol as a feed. The catalyst life for 1-propanol and 1-butanol was more than double compared to that for methanol and ethanol. For all the alcohols studied, the product distributions (classified to paraffin, olefin, napthene, aromatic and naphthalene compounds) varied with time on stream (TOS). At 24 hours TOS, liquid product from 1-propanol and 1-butanol transformation primarily contains higher olefin compounds. The alcohol transformation process to higher hydrocarbon involves a complex set of reaction pathways such as dehydration, oligomerization, dehydrocyclization, and hydrogenation. Compared to ethylene generated from methanol and ethanol, oligomerization of propylene and butylene has a lower activation energy and can readily take place on weaker acidic sites. On the other hand, dehydrocyclization of propylene and butylene to form the cyclic compounds requires the sits with stronger acid strength. Combination of the above mentioned reasons are the primary reasons for olefin rich product generated in the later stage of the time on stream and for the extended catalyst life time for 1 propanol and 1 butanol compared to methanol and ethanol conversion over HZSM-5.

  13. Catalysts compositions for use in fuel cells

    SciTech Connect (OSTI)

    Chuang, Steven S.C.

    2015-12-02

    The present invention generally relates to the generation of electrical energy from a solid-state fuel. In one embodiment, the present invention relates to a solid-oxide fuel cell for generating electrical energy from a carbon-based fuel, and to catalysts for use in a solid-oxide fuel cell.

  14. Importance of Size and Distribution of Ni Nanoparticles for the Hydrodeoxygenation of Microalgae Oil

    SciTech Connect (OSTI)

    Song, Wenji; Zhao, Chen; Lercher, Johannes A.

    2013-07-22

    Improved synthetic approaches for preparing small-sized Ni nanoparticles (d=3 nm) supported on HBEA zeolite have been explored and compared with the traditional impregnation method. The formation of surface nickel silicate/aluminate involved in the two precipitation processes are inferred to lead to the stronger interaction between the metal and the support. The lower Brnsted acid concentrations of these two Ni/HBEA catalysts compared with the parent zeolite caused by the partial exchange of Brnsted acid sites by Ni2+ cations do not influence the hydrodeoxygenation rates, but alter the product selectivity. Higher initial rates and higher stability have been achieved with these optimized catalysts for the hydrodeoxygenation of stearic acid and microalgae oil. Small metal particles facilitate high initial catalytic activity in the fresh sample and size uniformity ensures high catalyst stability.

  15. Catalysts for conversion of syngas to liquid motor fuels

    DOE Patents [OSTI]

    Rabo, Jule A.; Coughlin, Peter K.

    1987-01-01

    Synthesis gas comprising carbon monoxide and hydrogen is converted to C.sub.5.sup.+ hydrocarbons suitable for use as liquid motor fuels by contact with a dual catalyst composition capable of ensuring the production of only relatively minor amounts of heavy products boiling beyond the diesel oil range. The catalyst composition, having desirable stability during continuous production operation, employs a Fischer-Tropsch catalyst, together with a co-catalyst/support component. The latter component is a steam-stabilized zeolite Y catalyst of hydrophobic character, desirably in acid-extracted form.

  16. Process of activation of a palladium catalyst system

    DOE Patents [OSTI]

    Sobolevskiy, Anatoly; Rossin, Joseph A.; Knapke, Michael J.

    2011-08-02

    Improved processes for activating a catalyst system used for the reduction of nitrogen oxides are provided. In one embodiment, the catalyst system is activated by passing an activation gas stream having an amount of each of oxygen, water vapor, nitrogen oxides, and hydrogen over the catalyst system and increasing a temperature of the catalyst system to a temperature of at least 180.degree. C. at a heating rate of from 1-20.degree./min. Use of activation processes described herein leads to a catalyst system with superior NOx reduction capabilities.

  17. CdO-CdS nano-composites as improved photo-catalysts for the generation of hydrogen from water

    SciTech Connect (OSTI)

    Kahane, Shital V.; Mahamuni, Shailaja; Sasikala, R.; Sudarsan, V.

    2014-04-24

    CdO-CdS nanocomposites were prepared by polyol method followed by heating at 300C. XRD study confirmed the atomic scale mixing of CdO and CdS nanoparticles, leading to the formation of CdSO{sub 3} phase at the interfacial region between CdO and CdS. The enhancement in photo-catalytic activity for hydrogen generation from water is observed in case of CdO-CdS nanocomposites compared to individual CdS and CdO nanoparticles. Based on XRD, steady state and time resolved luminescence studies and surface area measurements, it is determined that, the fine mixing of CdS and CdO, higher surface area of the composite sample and increase in lifetime of the charge carriers are responsible for the observed increase in hydrogen yield from water when composite sample was used as the photo-catalyst compared to individual components.

  18. Fischer–Tropsch Synthesis: Characterization Rb Promoted Iron Catalyst

    SciTech Connect (OSTI)

    Sarkar,A.; Jacobs, G.; Ji, Y.; Hamdeh, H.; Davis, B.

    2008-01-01

    Rubidium promoted iron Fischer-Tropsch synthesis (FTS) catalysts were prepared with two Rb/Fe atomic ratios (1.44/100 and 5/100) using rubidium nitrate and rubidium carbonate as rubidium precursors. Results of catalytic activity and deactivation studies in a CSTR revealed that rubidium promoted catalysts result in a steady conversion with a lower deactivation rate than that of the corresponding unpromoted catalyst although the initial activity of the promoted catalyst was almost half that of the unpromoted catalyst. Rubidium promotion results in lower methane production, and higher CO2, alkene and 1-alkene fraction in FTS products. M{umlt o}ssbauer spectroscopic measurements of CO activated and working catalyst samples indicated that the composition of the iron carbide phase formed after carbidization was -Fe5 C2 for both promoted and unpromoted catalysts. However, in the case of the rubidium promoted catalyst, '-Fe2.2C became the predominant carbidic phase as FTS continued and the overall catalyst composition remained carbidic in nature. In contrast, the carbide content of the unpromoted catalyst was found to decline very quickly as a function of synthesis time. Results of XANES and EXAFS measurements suggested that rubidium was present in the oxidized state and that the compound most prevalent in the active catalyst samples closely resembled that of rubidium carbonate.

  19. Hydrocarbon reforming catalyst material and configuration of the same

    DOE Patents [OSTI]

    Singh, P.; Shockling, L.A.; George, R.A.; Basel, R.A.

    1996-06-18

    A hydrocarbon reforming catalyst material comprising a catalyst support impregnated with catalyst is provided for reforming hydrocarbon fuel gases in an electrochemical generator. Elongated electrochemical cells convert the fuel to electrical power in the presence of an oxidant, after which the spent fuel is recirculated and combined with a fresh hydrocarbon feed fuel forming the reformable gas mixture which is fed to a reforming chamber containing a reforming catalyst material, where the reforming catalyst material includes discrete passageways integrally formed along the length of the catalyst support in the direction of reformable gas flow. The spent fuel and/or combusted exhaust gases discharged from the generator chamber transfer heat to the catalyst support, which in turn transfers heat to the reformable gas and to the catalyst, preferably via a number of discrete passageways disposed adjacent one another in the reforming catalyst support. The passageways can be slots extending inwardly from an outer surface of the support body, which slots are partly defined by an exterior confining wall. According to a preferred embodiment, the catalyst support is non-rigid, porous, fibrous alumina, wherein the fibers are substantially unsintered and compressible, and the reforming catalyst support is impregnated, at least in the discrete passageways with Ni and MgO, and has a number of internal slot passageways for reformable gas, the slot passageways being partly closed by a containing outer wall. 5 figs.

  20. Hydrocarbon reforming catalyst material and configuration of the same

    DOE Patents [OSTI]

    Singh, Prabhakar; Shockling, Larry A.; George, Raymond A.; Basel, Richard A.

    1996-01-01

    A hydrocarbon reforming catalyst material comprising a catalyst support impregnated with catalyst is provided for reforming hydrocarbon fuel gases in an electrochemical generator. Elongated electrochemical cells convert the fuel to electrical power in the presence of an oxidant, after which the spent fuel is recirculated and combined with a fresh hydrocarbon feed fuel forming the reformable gas mixture which is fed to a reforming chamber containing a reforming catalyst material, where the reforming catalyst material includes discrete passageways integrally formed along the length of the catalyst support in the direction of reformable gas flow. The spent fuel and/or combusted exhaust gases discharged from the generator chamber transfer heat to the catalyst support, which in turn transfers heat to the reformable gas and to the catalyst, preferably via a number of discrete passageways disposed adjacent one another in the reforming catalyst support. The passageways can be slots extending inwardly from an outer surface of the support body, which slots are partly defined by an exterior confining wall. According to a preferred embodiment, the catalyst support is non-rigid, porous, fibrous alumina, wherein the fibers are substantially unsintered and compressible, and the reforming catalyst support is impregnated, at least in the discrete passageways with Ni and MgO, and has a number of internal slot passageways for reformable gas, the slot passageways being partly closed by a containing outer wall.

  1. Nanoparticles > Complex Oxides > Research > The Energy Materials...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanoparticles The nanoparticle synthesis efforts at EMC2 mostly take place in the Frank DiSalvo group, and focus on preparing useful fuel cell electrocatalysts in nanoparticle...

  2. With Nanoparticles, Slower May Be Better

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    With Nanoparticles, Slower May Be Better With Nanoparticles, Slower May Be Better Molecular dynamics simulations provide unprecedented understanding of nanoparticle structure and...

  3. Synthesis and characterization of NiFe{sub 2}O{sub 4}Pd magnetically recyclable catalyst for hydrogenation reaction

    SciTech Connect (OSTI)

    Karao?lu, E.; zel, U.; Caner, C.; Baykal, A.; Summak, M.M.; Szeri, H.

    2012-12-15

    Graphical abstract: Display Omitted Highlights: ? Novel superparamagnetic NiFe{sub 2}O{sub 4}Pd magnetically recyclable catalyst was fabricated through co-precipitation. ? It could be reused several times without significant loss in catalytic activity for hydrogenation reaction. ? No further modification of the NiFe{sub 2}O{sub 4}Pd magnetically recyclable catalyst is necessary for utilization as catalyst. -- Abstract: Herein we report the fabrication and characterization magnetically recyclable catalysts of NiFe{sub 2}O{sub 4}Pd nanocomposite as highly effective catalysts for reduction reactions in liquid phase. The reduction Pd{sup 2+} was accomplished with polyethylene glycol 400 (PEG-400) instead of sodium borohydride (NaBH{sub 4}) and NiFe{sub 2}O{sub 4} nanoparticles was prepared by sonochemically using FeCI{sub 3}6H{sub 2}O and NiCl{sub 2}. The chemical characterization of the product was done with X-ray diffractometry, Infrared spectroscopy, transmission electron microscopy, UVVis spectroscopy, thermal gravimetry and inductively coupled plasma. Thus formed NiFe{sub 2}O{sub 4}Pd MRCs showed a very high activity in reduction reactions of 4-nitro aniline and 1,3-dinitrobenzene in liquid phase. It was found out that the catalytic activity of NiFe{sub 2}O{sub 4}Pd MRCs on the reduction of 4-nitro aniline and 1,3-dinitrobenzene in liquid phase are between 9993% and 9893%, respectively. Magnetic character of this system allowed recovery and multiple use without significant loss of its catalytic activity. It is found that NiFe{sub 2}O{sub 4}Pd MRCs showed very efficient catalytic activity and multiple usability.

  4. Novel Attrition-Resistant Fischer Tropsch Catalyst

    SciTech Connect (OSTI)

    Weast, Logan, E.; Staats, William, R.

    2009-05-01

    There is a strong national interest in the Fischer-Tropsch synthesis process because it offers the possibility of making liquid hydrocarbon fuels from reformed natural gas or coal and biomass gasification products. This project explored a new approach that had been developed to produce active, attrition-resistant Fischer-Tropsch catalysts that are based on glass-ceramic materials and technology. This novel approach represented a promising solution to the problem of reducing or eliminating catalyst attrition and maximizing catalytic activity, thus reducing costs. The technical objective of the Phase I work was to demonstrate that glass-ceramic based catalytic materials for Fischer-Tropsch synthesis have resistance to catalytic deactivation and reduction of particle size superior to traditional supported Fischer-Tropsch catalyst materials. Additionally, these novel glass-ceramic-based materials were expected to exhibit catalytic activity similar to the traditional materials. If successfully developed, the attrition-resistant Fischer-Tropsch catalyst materials would be expected to result in significant technical, economic, and social benefits for both producers and public consumers of Fischer-Tropsch products such as liquid fuels from coal or biomass gasification. This program demonstrated the anticipated high attrition resistance of the glass-ceramic materials. However, the observed catalytic activity of the materials was not sufficient to justify further development at this time. Additional testing documented that a lack of pore volume in the glass-ceramic materials limited the amount of surface area available for catalysis and consequently limited catalytic activity. However, previous work on glass-ceramic catalysts to promote other reactions demonstrated that commercial levels of activity can be achieved, at least for those reactions. Therefore, we recommend that glass-ceramic materials be considered again as potential Fischer-Tropsch catalysts if it can be demonstrated that materials with adequate pore volume can be produced. During the attrition resistance tests, it was learned that the glass-ceramic materials are very abrasive. Attention should be paid in any further developmental efforts to the potential for these hard, abrasive materials to damage reactors.

  5. Predict carbonation rate on iron catalyst

    SciTech Connect (OSTI)

    Dry, M.E.

    1980-02-01

    On solely thermodynamic grounds, the main hydrocarbon product of the Fischer-Tropsch reaction should be methane; in practice, however, carbon is frequently produced as well and deposited on the iron catalyst, fouling the active surface sites. South African Coal, Oil and Gas Corp., Ltd.'s experiments with a fluidized Fischer-Tropsch catalyst bed demonstrate that the rate of carbon deposition is strongly dependent on the hydrogen partial pressure in the reactor, much less dependent on the CO pressure, and not affected at all by the pressure of CO/sub 2/. A suggested reaction scheme for the Fischer-Tropsch synthesis explains these observations and provides a basis for a correlation useful in predicting carbon-deposition rates.

  6. Catalyst for reduction of nitrogen oxides

    DOE Patents [OSTI]

    Ott, Kevin C.

    2010-04-06

    A Selective Catalytic Reduction (SCR) catalyst was prepared by slurry coating ZSM-5 zeolite onto a cordierite monolith, then subliming an iron salt onto the zeolite, calcining the monolith, and then dipping the monolith either into an aqueous solution of manganese nitrate and cerium nitrate and then calcining, or by similar treatment with separate solutions of manganese nitrate and cerium nitrate. The supported catalyst containing iron, manganese, and cerium showed 80 percent conversion at 113 degrees Celsius of a feed gas containing nitrogen oxides having 4 parts NO to one part NO.sub.2, about one equivalent ammonia, and excess oxygen; conversion improved to 94 percent at 147 degrees Celsius. N.sub.2O was not detected (detection limit: 0.6 percent N.sub.2O).

  7. Understanding catalyst behavior during in situ heating through simultaneous secondary and transmitted electron imaging

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Howe, Jane Y.; Allard, Jr., Lawrence Frederick; Demers, Hendrix; Bigelow, Wilbur C.; Steven H. Overbury

    2014-11-14

    In situ heating study via a simultaneous secondary electron (SE) and transmitted electron (TE) microscopy is extremely insightful because information from the surface (SE) and bulk (TE) can be readily obtained. The leached Au/Fe2O3 catalyst has voids on the surface of Fe2O3. Upon heating to 500 °C, voids shrank and disappeared, while internal Au species diffused to the surface to form new nanoparticles. Heating in vacuum reduced Fe2O3 to Fe3O4. Heating at 700 °C caused coalescence and growth of Au particles and formation of faceted Fe3O4 surfaces. We achieved 1.1 nm resolution in SE imaging during in situ heating.

  8. Nanostructured Water Oxidation Catalysts - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industrial Technologies Industrial Technologies Advanced Materials Advanced Materials Find More Like This Return to Search Nanostructured Water Oxidation Catalysts Lawrence Berkeley National Laboratory Contact LBL About This Technology Technology Marketing SummaryHeinz Frei and Feng Jiao of Berkeley Lab have developed a visible light driven catalytic system for oxidizing water. Efficient catalytic water oxidation is a critical step for any artificial sunlight-to-fuel conversion system.

  9. Intermediate Ethanol Blends Catalyst Durability Program

    SciTech Connect (OSTI)

    West, Brian H; Sluder, Scott; Knoll, Keith; Orban, John; Feng, Jingyu

    2012-02-01

    In the summer of 2007, the U.S. Department of Energy (DOE) initiated a test program to evaluate the potential impacts of intermediate ethanol blends (also known as mid-level blends) on legacy vehicles and other engines. The purpose of the test program was to develop information important to assessing the viability of using intermediate blends as a contributor to meeting national goals for the use of renewable fuels. Through a wide range of experimental activities, DOE is evaluating the effects of E15 and E20 - gasoline blended with 15% and 20% ethanol - on tailpipe and evaporative emissions, catalyst and engine durability, vehicle driveability, engine operability, and vehicle and engine materials. This report provides the results of the catalyst durability study, a substantial part of the overall test program. Results from additional projects will be reported separately. The principal purpose of the catalyst durability study was to investigate the effects of adding up to 20% ethanol to gasoline on the durability of catalysts and other aspects of the emissions control systems of vehicles. Section 1 provides further information about the purpose and context of the study. Section 2 describes the experimental approach for the test program, including vehicle selection, aging and emissions test cycle, fuel selection, and data handling and analysis. Section 3 summarizes the effects of the ethanol blends on emissions and fuel economy of the test vehicles. Section 4 summarizes notable unscheduled maintenance and testing issues experienced during the program. The appendixes provide additional detail about the statistical models used in the analysis, detailed statistical analyses, and detailed vehicle specifications.

  10. Catalyst material and method of making

    DOE Patents [OSTI]

    Matson, D.W.; Fulton, J.L.; Linehan, J.C.; Bean, R.M.; Brewer, T.D.; Werpy, T.A.; Darab, J.G.

    1997-07-29

    The material of the present invention is a mixture of catalytically active material and carrier materials, which may be catalytically active themselves. Hence, the material of the present invention provides a catalyst particle that has catalytically active material throughout its bulk volume as well as on its surface. The presence of the catalytically active material throughout the bulk volume is achieved by chemical combination of catalytically active materials with carrier materials prior to or simultaneously with crystallite formation. 7 figs.

  11. Catalyst material and method of making

    DOE Patents [OSTI]

    Matson, Dean W.; Fulton, John L.; Linehan, John C.; Bean, Roger M.; Brewer, Thomas D.; Werpy, Todd A.; Darab, John G.

    1997-01-01

    The material of the present invention is a mixture of catalytically active material and carrier materials, which may be catalytically active themselves. Hence, the material of the present invention provides a catalyst particle that has catalytically active material throughout its bulk volume as well as on its surface. The presence of the catalytically active material throughout the bulk volume is achieved by chemical combination of catalytically active materials with carrier materials prior to or simultaneously with crystallite formation.

  12. Autothermal hydrodesulfurizing reforming method and catalyst

    DOE Patents [OSTI]

    Krumpelt, Michael; Kopasz, John P.; Ahmed, Shabbir; Kao, Richard Li-chih; Randhava, Sarabjit Singh

    2005-11-22

    A method for reforming a sulfur-containing carbonaceous fuel in which the sulfur-containing carbonaceous fuel is mixed with H.sub.2 O and an oxidant, forming a fuel/H.sub.2 O/oxidant mixture. The fuel H.sub.2 O/oxidant mixture is brought into contact with a catalyst composition comprising a dehydrogenation portion, an oxidation portion and a hydrodesulfurization portion, resulting in formation of a hydrogen-containing gas stream.

  13. STUDY OF SOLVENT AND CATALYST INTERACTIONS IN DIRECT COAL LIQUEFACTION

    SciTech Connect (OSTI)

    Michael T. Klein

    1998-10-01

    Major objectives of the present project are to develop a better understanding of the roles of the catalyst and the liquefaction solvent in the coal liquefaction process. An open question concerning the role of the catalyst is whether intimate contact between the catalyst and the coal particles is important or required. To answer this question, it had been planned to coat an active catalyst with a porous silica coating which was found to retain catalyst activity while preventing actual contact between catalyst and coal. Consultation with people in DuPont who coat catalysts for increasing abrasion resistance have indicated that only portions of the catalyst are coated by their process (spray drying) and that sections of uncoated catalyst remain. For that reason, it was decided to suspend the catalyst in a basket separated from the coal in the reactor. The basket walls were to be permeable to the liquefaction solvent but not to the coal particles. Several such baskets were constructed of stainless steel with holes which would not permit passage of coal particles larger than 30 mesh. Liquefactions run with the coal of greater than 30 mesh size gave normal conversion of coal to liquid in the absence of catalyst in the basket, but substantially increased conversion when Ni/Mo on alumina catalyst was in the basket. While this result is interesting and suggestive of some kind of mass transfer of soluble material occurring between the catalyst and the coal, it does not eliminate the possibility of breakdown of the coal particle into particle sizes permeable to the basket. Indeed, a small amount of fine coal has been found inside the basket. To determine whether fine coal from breakdown of the coal particles is responsible for the conversion, a new basket is being prepared with 0.5{micro}m pore size.

  14. Hydroprocessing of solvent-refined coal: catalyst-screening results

    SciTech Connect (OSTI)

    Stiegel, G.J.; Tischer, R.E.; Polinski, L.M.

    1982-03-01

    This report presents the results of screening four catalysts for hydroprocessing a 50 wt% mixture of SRC-I in a prehydrogenated creosote oil using a continuous flow unit. All catalysts employed were nickel-molybdates with varying properties. Reaction conditions were 2000 psi, 8 SCFH of hydrogen, volume hourly space velocity of 0.6 to 1.0 cc of SRC-I/hr/cc of catalyst, and 48 hours at 750/sup 0/F followed by 72 hours at 780/sup 0/F. The results indicate that the Shell 324 catalyst is best for hydrogenation of the feedstock but only marginally better than CB 81-44 for denitrogenation. The CB 81-44 catalyst may be slightly better than Shell 324 for the conversion of the +850/sup 0/F fraction of the feedstock. Desulfurization was uniformly high for all catalysts. Catalysts with a bimodal pore size distribution (i.e., SMR7-6137(1)) appear to be better for denitrogenation than unimodal catalysts (i.e., SMR7-6137(4)) containing the same metals loading. Unimodal catalysts (i.e., Shell 324) with higher metals loadings are comparable to bimodal catalysts (i.e., CB 81-44) containing less metals. The results indicate that pore size distribution and metals loading are important parameters for high activity. Catalysts with a unimodal pore volume distribution are capable of being restored to their original state, while bimodal ones experience a loss in surface area and pore volume and an increase in pellet density. This is attributed to the more efficient use of the interior surface area of the catalyst, which results in higher accumulation of coke and metals. Since coke can be removed via controlled oxidation, the irreversible loss is due to the higher concentrations of metals in the catalyst.

  15. Highly Dispersed Alloy Catalyst for Durability

    SciTech Connect (OSTI)

    Vivek S. Murthi , Elise Izzo, Wu Bi, Sandra Guerrero and Lesia Protsailo

    2013-01-08

    Achieving DOE?¢????s stated 5000-hr durability goal for light-duty vehicles by 2015 will require MEAs with characteristics that are beyond the current state of the art. Significant effort was placed on developing advanced durable cathode catalysts to arrive at the best possible electrode for high performance and durability, as well as developing manufacturing processes that yield significant cost benefit. Accordingly, the overall goal of this project was to develop and construct advanced MEAs that will improve performance and durability while reducing the cost of PEMFC stacks. The project, led by UTC Power, focused on developing new catalysts/supports and integrating them with existing materials (membranes and gas diffusion layers (GDLs)) using state-of-the-art fabrication methods capable of meeting the durability requirements essential for automotive applications. Specifically, the project work aimed to lower platinum group metals (PGM) loading while increasing performance and durability. Appropriate catalysts and MEA configuration were down-selected that protects the membrane, and the layers were tailored to optimize the movements of reactants and product water through the cell to maximize performance while maintaining durability.

  16. Surface faceting and elemental diffusion behaviour at atomic scale for alloy nanoparticles during in situ annealing

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Chi, Miaofang; Wang, Chao; Lei, Yinkai; Wang, Guofeng; Li, Dongguo; More, Karren L.; Lupini, Andrew; Allard, Lawrence F.; Markovic, Nenad M.; Stamenkovic, Vojislav R.

    2015-11-18

    The catalytic performance of nanoparticles is primarily determined by the precise nature of the surface and near-surface atomic configurations, which can be tailored by post-synthesis annealing effectively and straightforwardly. Understanding the complete dynamic response of surface structure and chemistry to thermal treatments at the atomic scale is imperative for the rational design of catalyst nanoparticles. Here, by tracking the same individual Pt3Co nanoparticles during in situ annealing in a scanning transmission electron microscope, we directly discern five distinct stages of surface elemental rearrangements in Pt3Co nanoparticles at the atomic scale: initial random (alloy) elemental distribution; surface platinum-skin-layer formation; nucleation ofmore » structurally ordered domains; ordered framework development and, finally, initiation of amorphization. Furthermore, a comprehensive interplay among phase evolution, surface faceting and elemental inter-diffusion is revealed, and supported by atomistic simulations. Furthermore, this work may pave the way towards designing catalysts through post-synthesis annealing for optimized catalytic performance.« less

  17. Colloidal synthesis and characterization of carbon-supported Pd-Cu nanoparticle oxygen reduction electrocatalysts.

    SciTech Connect (OSTI)

    Kariuki, N. N.; Wang, X.; Mawdsley, J. R.; Ferrandon, M. S.; Niyogi, S. G.; Vaughey, J. T.; Myers, D. J.; Chemical Sciences and Engineering Division

    2010-07-27

    The ability to control the size and composition of metal or alloys nanoparticles is important in preparing catalysts. This paper reports a colloidal synthesis methodology for the preparation of monodisperse palladium-copper (Pd-Cu) alloy nanoparticles with an average diameter of 3 nm for the as-prepared particles and 5-10 nm upon removal of the capping agents. Our approach involves the use of metal precursors, capping agents, and reducing agents in controlled ratios for nanoparticle formation in a single organic phase, followed by deposition of the capped nanoparticles on high surface area carbon and removal of the capping agents via heat treatment in either oxidizing or reducing atmosphere. The results of characterizations using transmission electron microscopy-energy dispersive X-ray analysis (TEM-EDX), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR), temperature programmed oxidation and reduction combined with mass spectrometry (TPO/TPR-MS), powder X-ray diffraction (XRD), and cyclic voltammetry (CV) are discussed. The resulting high-surface-area-carbon-supported Pd-Cu catalysts (PdCu/C) showed high activity for the oxygen reduction reaction (ORR) in acidic electrolyte. Our study revealed composition and heat-treatment dependent ORR activity.

  18. Magnetic nanoparticle temperature estimation

    SciTech Connect (OSTI)

    Weaver, John B.; Rauwerdink, Adam M.; Hansen, Eric W.

    2009-05-15

    The authors present a method of measuring the temperature of magnetic nanoparticles that can be adapted to provide in vivo temperature maps. Many of the minimally invasive therapies that promise to reduce health care costs and improve patient outcomes heat tissue to very specific temperatures to be effective. Measurements are required because physiological cooling, primarily blood flow, makes the temperature difficult to predict a priori. The ratio of the fifth and third harmonics of the magnetization generated by magnetic nanoparticles in a sinusoidal field is used to generate a calibration curve and to subsequently estimate the temperature. The calibration curve is obtained by varying the amplitude of the sinusoidal field. The temperature can then be estimated from any subsequent measurement of the ratio. The accuracy was 0.3 deg. K between 20 and 50 deg. C using the current apparatus and half-second measurements. The method is independent of nanoparticle concentration and nanoparticle size distribution.

  19. One-Dimensional Ceria as Catalyst for the Low-Temperature Water-Gas Shift Reaction

    SciTech Connect (OSTI)

    Han, W.; Wen, W; Hanson, J; Teng, X; Marinkovic, N; Rodriguez, J

    2009-01-01

    Synchrotron-based in situ time-resolved X-ray diffraction and X-ray absorption spectroscopy were used to study pure ceria and Pd-loaded ceria nanotubes and nanorods (1D-ceria) as catalysts for the water-gas shift (WGS) reaction. While bulk ceria is very poor as WGS catalysts, pure 1D-ceria displayed catalytic activity at a temperature as low as 300 C. The reduction of the pure 1D-ceria in pure hydrogen started at 150 C, which is a much lower temperature than those previously reported for the reduction of 3D ceria nanoparticles. This low reduction temperature reflects the novel morphology of the oxide systems and may be responsible for the low-temperature WGS catalytic activity seen for the 1D-ceria. Pd-loaded 1D ceria displayed significant WGS activity starting at 200 C. During pretreatment in H{sub 2}, the ceria lattice parameter increased significantly around 60 C, which indicates that Pd-oxygen interactions may facilitate the reduction of Pd-loaded 1D-ceria. Pd and ceria both participate in the formation of the active sites for the catalytic reactions. The low-temperature hydrogen pretreatment results in higher WGS activity for Pd-loaded 1D-ceria.

  20. The Chemical Composition and Structure of Supported Sulfated Zirconia with Regulated Size Nanoparticles

    SciTech Connect (OSTI)

    Kanazhevskiy, V. V.; Shmachkova, V. P.; Kotsarenko, N. S.; Kochubey, D. I.; Vedrine, J. C.

    2007-02-02

    A set of model skeletal isomerization catalysts - sulfated zirconia nanoparticles of controlled thickness anchored on different supports - was prepared using colloidal solutions of Zr salt on titania as support. The nanoparticles of zirconia (1-5 nm) are epitaxially connected to the support surface, with S/Zr ratio equals to 1.3-1.5. It was shown by EXAFS that nanoparticles of non-stoichiometric zirconium sulfate Zr(SO4)1+x, where x<0.5, are formed on the support surface. Its structure looks like half-period shifted counterdirected chains built-up by zirconium atoms linked by triangle pyramids of sulfate groups. Considering catalytic data of skeletal n-butane isomerisation at 150 deg. C, one can suggest that these species behave as the active component of sulfated zirconia. They are formed in subsurface layers as zirconium hydroxide undergoes sulfation followed by thermal treatment.

  1. Synthetic catalysts that separate CO.sub.2 from the atmosphere and gas mixtures

    DOE Patents [OSTI]

    Lightstone, Felice C; Wong, Sergio E; Lau, Edmond Y; Satcher, Jr., Joe H; Aines, Roger D

    2015-02-24

    The creation of a catalyst that can be used for a wide variety of applications including the steps of developing preliminary information regarding the catalyst, using the preliminary information to produce a template of the catalyst, and using the template of the catalyst to produce the catalyst.

  2. Method For Reactivating Solid Catalysts Used For Alklation Reactions

    DOE Patents [OSTI]

    Ginosar, Daniel M.; Thompson, David N.; Coates, Kyle; Zalewski, David J.; Fox, Robert V.

    2005-05-03

    A method for reactivating a solid alkylation catalyst is provided which can be performed within a reactor that contains the alkylation catalyst or outside the reactor. Effective catalyst reactivation is achieved whether the catalyst is completely deactivated or partially deactivated. A fluid reactivating agent is employed to dissolve catalyst fouling agents and also to react with such agents and carry away the reaction products. The deactivated catalyst is contacted with the fluid reactivating agent under pressure and temperature conditions such that the fluid reactivating agent is dense enough to effectively dissolve the fouling agents and any reaction products of the fouling agents and the reactivating agent. Useful pressures and temperatures for reactivation include near-critical, critical, and supercritical pressures and temperatures for the reactivating agent. The fluid reactivating agent can include, for example, a branched paraffin containing at least one tertiary carbon atom, or a compound that can be isomerized to a molecule containing at least one tertiary carbon atom.

  3. Method for reactivating solid catalysts used in alkylation reactions

    DOE Patents [OSTI]

    Ginosar, Daniel M.; Thompson, David N.; Coates, Kyle; Zalewski, David J.; Fox, Robert V.

    2003-06-17

    A method for reactivating a solid alkylation catalyst is provided which can be performed within a reactor that contains the alkylation catalyst or outside the reactor. Effective catalyst reactivation is achieved whether the catalyst is completely deactivated or partially deactivated. A fluid reactivating agent is employed to dissolve catalyst fouling agents and also to react with such agents and carry away the reaction products. The deactivated catalyst is contacted with the fluid reactivating agent under pressure and temperature conditions such that the fluid reactivating agent is dense enough to effectively dissolve the fouling agents and any reaction products of the fouling agents and the reactivating agent. Useful pressures and temperatures for reactivation include near-critical, critical, and supercritical pressures and temperatures for the reactivating agent. The fluid reactivating agent can include, for example, a branched paraffin containing at least one tertiary carbon atom, or a compound that can be isomerized to a molecule containing at least one tertiary carbon atom.

  4. TECHNOLOGY DEVELOPMENT FOR IRON FISCHER-TROPSCH CATALYSTS

    SciTech Connect (OSTI)

    Davis, B.H.

    1998-07-22

    The goal of the proposed work described in this Final Report was the development of iron-based Fischer-Tropsch catalysts that combined high activity, selectivity and life with physical robustness for slurry phase reactors that will produce either low-alpha or high-alpha products. The work described here has optimized the catalyst composition and pretreatment operation for a low-alpha catalyst. In parallel, work has been conducted to design a high-alpha iron catalyst that is suitable for slurry phase synthesis. Studies have been conducted to define the chemical phases present at various stages of the pretreatment and synthesis stages and to define the course of these changes. The oxidation/reduction cycles that are anticipated to occur in large, commercial reactors have been studied at the laboratory scale. Catalyst performance has been determined for catalysts synthesized in this program for activity, selectivity and aging characteristics.

  5. Method for regeneration and activity improvement of syngas conversion catalyst

    DOE Patents [OSTI]

    Lucki, Stanley J.; Brennan, James A.

    1980-01-01

    A method is disclosed for the treatment of single particle iron-containing syngas (synthes.s gas) conversion catalysts comprising iron, a crystalline acidic aluminosilicate zeolite having a silica to alumina ratio of at least 12, a pore size greater than about 5 Angstrom units and a constraint index of about 1-12 and a matrix. The catalyst does not contain promoters and the treatment is applicable to either the regeneration of said spent single particle iron-containing catalyst or for the initial activation of fresh catalyst. The treatment involves air oxidation, hydrogen reduction, followed by a second air oxidation and contact of the iron-containing single particle catalyst with syngas prior to its use for the catalytic conversion of said syngas. The single particle iron-containing catalysts are prepared from a water insoluble organic iron compound.

  6. Decorating multi-walled carbon nanotubes with nickel nanoparticles for selective hydrogenation of citral

    SciTech Connect (OSTI)

    Tang Yuechao; Yang Dong; Qin Feng; Hu Jianhua; Wang Changchun; Xu Hualong

    2009-08-15

    The nanocomposites of multi-walled carbon nanotubes (MWNTs) decorated with nickel nanoparticles were conveniently prepared by a chemical reduction of nickel salt in the present of poly(acrylic acid) grafted MWNTs (PAA-g-MWNTs). Due to the strong interaction between Ni{sup 2+} and -COOH, PAA-g-MWNTs became an excellent supporting material for Ni nanoparticles. The morphology and distribution of Ni nanoparticles on the surface of MWNTs were greatly influenced by the reduction temperatures, the experimental results also showed that the distribution of Ni nanoparticles was greatly improved while the MWNTs were modified by poly(acrylic acid) (PAA). The hydrogenation activity and selectivity of MWNTs decorated with Ni nanoparticles (Ni-MWNTs) for alpha, beta-unsaturated aldehyde (citral) were also studied, and the experimental results showed that the citronellal, an important raw material for flavoring and perfumery industries, is the favorable product with a percentage as high as 86.9%, which is 7 times higher than that of catalyst by Ni-supported active carbon (Ni-AC). - Abstract: Nickel nanoparticles decorated multi-walled carbon nanotubes (Ni-MWNTs) nanocomposites were conveniently prepared by a chemical reduction of nickel salt in the present of poly(acrylic acid) grafted MWNTs (PAA-g-MWNTs). These nanocomposites possessed excellent catalytic activity and selectivity for hydrogenation of citral.

  7. Homogeneously dispersed, multimetal oxygen-evolving catalysts (Journal

    Office of Scientific and Technical Information (OSTI)

    Article) | SciTech Connect Homogeneously dispersed, multimetal oxygen-evolving catalysts Citation Details In-Document Search This content will become publicly available on March 24, 2017 Title: Homogeneously dispersed, multimetal oxygen-evolving catalysts Earth-abundant first-row (3d) transition-metal-based catalysts have been developed for the oxygen-evolution reaction (OER); however, they operate at overpotentials significantly above thermodynamic requirements. Density functional theory

  8. Heterogeneous Catalyst for Improved Selectivity of Biomass-Derived

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Molecules - Energy Innovation Portal Biomass and Biofuels Biomass and Biofuels Advanced Materials Advanced Materials Find More Like This Return to Search Heterogeneous Catalyst for Improved Selectivity of Biomass-Derived Molecules University of Colorado Contact CU About This Technology Publications: PDF Document Publication CU2380B (Heterogenous Catalyst) Marketing Summary (137 KB) Technology Marketing Summary In today's industrial processes, heterogeneous catalysts are widely used because

  9. Stabilization of Pt monolayer catalysts under harsh conditions of fuel

    Office of Scientific and Technical Information (OSTI)

    cells (Journal Article) | SciTech Connect Stabilization of Pt monolayer catalysts under harsh conditions of fuel cells Citation Details In-Document Search Title: Stabilization of Pt monolayer catalysts under harsh conditions of fuel cells We employed density functional theory (DFT) to explore the stability of core (M = Cu, Ru, Rh, Pd, Ag, Os, Ir, Au)-shell (Pt) catalysts under harsh conditions, including solutions and reaction intermediates involved in the oxygen reduction reaction (ORR) in

  10. BTO Catalyst Seeks Entries, Webinars and Jamathons Scheduled | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Catalyst Seeks Entries, Webinars and Jamathons Scheduled BTO Catalyst Seeks Entries, Webinars and Jamathons Scheduled July 20, 2015 - 1:29pm Addthis This funding opportunity is closed. The DOE Building Technologies Office (BTO) is partnering with the successful SunShot Catalyst crowdsourcing competition to find software solutions to key challenges in the area of building operations, with over $1.5 million in total prize awards on the table! In the second 'Business Innovation' phase

  11. Enhanced catalyst for converting synthesis gas to liquid motor fuels

    DOE Patents [OSTI]

    Coughlin, Peter K.

    1986-01-01

    The conversion of synthesis gas to liquid molar fuels by means of a cobalt Fischer-Tropsch catalyst composition is enhanced by the addition of molybdenum, tungsten or a combination thereof as an additional component of said composition. The presence of the additive component increases the olefinic content of the hydrocarbon products produced. The catalyst composition can advantageously include a support component, such as a molecular sieve, co-catalyst/support component or a combination of such support components.

  12. EERE Success Story-BASF Catalysts Opens Cathode Production Facility |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy BASF Catalysts Opens Cathode Production Facility EERE Success Story-BASF Catalysts Opens Cathode Production Facility March 5, 2015 - 6:27pm Addthis BASF Catalysts, a battery component manufacturer, is running the largest cathode materials manufacturing facility in the country with support from EERE's Vehicle Technologies Office (VTO). The factory was supported by a $25 million American Recovery and Reinvestment Act project. Located in Elyria, Ohio, the facility at full

  13. Home Improvement Catalyst (HI-Cat) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Improvement Catalyst (HI-Cat) Home Improvement Catalyst (HI-Cat) The Home Improvement Catalyst (HI-Cat) is a new DOE initiative focused on high impact opportunities to achieve energy savings in home improvements already planned or being undertaken by homeowners. The home improvement market represents $150 billion in annual investment, with over 14 million projects that involve replacement or upgrades of heating and cooling systems, windows, siding and roofs, insulation and other measures.

  14. Activation of catalysts for synthesizing methanol from synthesis gas

    DOE Patents [OSTI]

    Blum, David B.; Gelbein, Abraham P.

    1985-01-01

    A method for activating a methanol synthesis catalyst is disclosed. In this method, the catalyst is slurried in an inert liquid and is activated by a reducing gas stream. The activation step occurs in-situ. That is, it is conducted in the same reactor as is the subsequent step of synthesizing methanol from a methanol gas stream catalyzed by the activated catalyst still dispersed in a slurry.

  15. Novel catalysts for hydrogen fuel cell applications:Final report

    Office of Scientific and Technical Information (OSTI)

    (FY03-FY05). (Technical Report) | SciTech Connect Technical Report: Novel catalysts for hydrogen fuel cell applications:Final report (FY03-FY05). Citation Details In-Document Search Title: Novel catalysts for hydrogen fuel cell applications:Final report (FY03-FY05). The goal of this project was to develop novel hydrogen-oxidation electrocatalyst materials that contain reduced platinum content compared to traditional catalysts by developing flexible synthesis techniques to fabricate supported

  16. Catalyst functionalized buffer sorbent pebbles for rapid separation of

    Office of Scientific and Technical Information (OSTI)

    carbon dioxide from gas mixtures (Patent) | DOEPatents Catalyst functionalized buffer sorbent pebbles for rapid separation of carbon dioxide from gas mixtures Title: Catalyst functionalized buffer sorbent pebbles for rapid separation of carbon dioxide from gas mixtures A method for separating CO.sub.2 from gas mixtures uses a slurried media impregnated with buffer compounds and coating the solid media with a catalyst or enzyme that promotes the transformation of CO.sub.2 to carbonic acid.

  17. Cooling of stripped catalyst prior to regeneration in cracking process

    Office of Scientific and Technical Information (OSTI)

    (Patent) | SciTech Connect Cooling of stripped catalyst prior to regeneration in cracking process Citation Details In-Document Search Title: Cooling of stripped catalyst prior to regeneration in cracking process A process is described for controlling the fluid catalytic cracking of a feedstock containing hydrocarbons, comprising the steps of: passing a mixture comprising catalyst and the feedstock through a riser conversion zone under fluid catalytic cracking conditions to crack the

  18. Enhanced catalyst stability for cyclic co methanation operations

    DOE Patents [OSTI]

    Risch, Alan P.; Rabo, Jule A.

    1983-01-01

    Carbon monoxide-containing gas streams are passed over a catalyst to deposit a surface layer of active surface carbon thereon essentially without the formation of inactive coke. The active carbon is thereafter reacted with steam or hydrogen to form methane. Enhanced catalyst stability for long term, cyclic operation is obtained by the incorporation of an alkali or alkaline earth dopant in a silica binding agent added to the catalyst-support additive composition.

  19. Redox Active Catalysts Utilizing Earth Abundant Metals | Center for

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bio-Inspired Solar Fuel Production Redox Active Catalysts Utilizing Earth Abundant Metals 14 Mar 2014 Ryan Trovitch has recently joined the team of the BISfuel PIs. He is an Assistant Professor at the Department of Chemistry and Biochemistry, Arizona State University. Focus of his research group is design of homogeneous catalysts that can be used in a wide range of energy- and sustainability-focused initiatives. "My group is working to develop redox-active ligand supported catalysts

  20. Instruments for preparation of heterogeneous catalysts by an impregnation method

    SciTech Connect (OSTI)

    Yamada, Yusuke; Akita, Tomoki; Ueda, Atsushi; Shioyama, Hiroshi; Kobayashi, Tetsuhiko

    2005-06-15

    Instruments for the preparation of heterogeneous catalysts in powder form have been developed. The instruments consist of powder dispensing robot and an automated liquid handling machine equipped with an ultrasonic and a vortex mixer. The combination of these two instruments achieves the catalyst preparation by incipient wetness and ion exchange methods. The catalyst library prepared with these instruments were tested for dimethyl ether steam reforming and characterized by transmission electron microscopy observations.