National Library of Energy BETA

Sample records for bimetallic nanoparticle catalysts

  1. Reaction-Driven Restructuring of Bimetallic Nanoparticle Catalysts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reaction-Driven Restructuring of Bimetallic Nanoparticle Catalysts Reaction-Driven Restructuring of Bimetallic Nanoparticle Catalysts Print Wednesday, 28 January 2009 00:00 Catalytic systems based on bimetallic particles with controlled size, composition, and structure dispersed on a high-surface-area support are widely used for catalytic reforming, pollution control, alcohol oxidation, and electrocatalysis in fuel cells. Owing to the nanoscale size of the particles, the modification of the

  2. Reaction-Driven Restructuring of Bimetallic Nanoparticle Catalysts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reaction-Driven Restructuring of Bimetallic Nanoparticle Catalysts Print Catalytic systems based on bimetallic particles with controlled size, composition, and structure dispersed on a high-surface-area support are widely used for catalytic reforming, pollution control, alcohol oxidation, and electrocatalysis in fuel cells. Owing to the nanoscale size of the particles, the modification of the surface structure and composition that may occur when reaction conditions change can have dramatic

  3. Reaction-Driven Restructuring of Bimetallic Nanoparticle Catalysts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reaction-Driven Restructuring of Bimetallic Nanoparticle Catalysts Print Catalytic systems based on bimetallic particles with controlled size, composition, and structure dispersed on a high-surface-area support are widely used for catalytic reforming, pollution control, alcohol oxidation, and electrocatalysis in fuel cells. Owing to the nanoscale size of the particles, the modification of the surface structure and composition that may occur when reaction conditions change can have dramatic

  4. Reaction-Driven Restructuring of Bimetallic Nanoparticle Catalysts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reaction-Driven Restructuring of Bimetallic Nanoparticle Catalysts Print Catalytic systems based on bimetallic particles with controlled size, composition, and structure dispersed on a high-surface-area support are widely used for catalytic reforming, pollution control, alcohol oxidation, and electrocatalysis in fuel cells. Owing to the nanoscale size of the particles, the modification of the surface structure and composition that may occur when reaction conditions change can have dramatic

  5. Reaction-Driven Restructuring of Bimetallic Nanoparticle Catalysts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reaction-Driven Restructuring of Bimetallic Nanoparticle Catalysts Print Catalytic systems based on bimetallic particles with controlled size, composition, and structure dispersed on a high-surface-area support are widely used for catalytic reforming, pollution control, alcohol oxidation, and electrocatalysis in fuel cells. Owing to the nanoscale size of the particles, the modification of the surface structure and composition that may occur when reaction conditions change can have dramatic

  6. Reaction-Driven Restructuring of Bimetallic Nanoparticle Catalysts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reaction-Driven Restructuring of Bimetallic Nanoparticle Catalysts Print Catalytic systems based on bimetallic particles with controlled size, composition, and structure dispersed on a high-surface-area support are widely used for catalytic reforming, pollution control, alcohol oxidation, and electrocatalysis in fuel cells. Owing to the nanoscale size of the particles, the modification of the surface structure and composition that may occur when reaction conditions change can have dramatic

  7. Reaction-Driven Restructuring of Bimetallic Nanoparticle Catalysts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reaction-Driven Restructuring of Bimetallic Nanoparticle Catalysts Print Catalytic systems based on bimetallic particles with controlled size, composition, and structure dispersed on a high-surface-area support are widely used for catalytic reforming, pollution control, alcohol oxidation, and electrocatalysis in fuel cells. Owing to the nanoscale size of the particles, the modification of the surface structure and composition that may occur when reaction conditions change can have dramatic

  8. Reaction-Driven Restructuring of Bimetallic Nanoparticle Catalysts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reaction-Driven Restructuring of Bimetallic Nanoparticle Catalysts Print Catalytic systems based on bimetallic particles with controlled size, composition, and structure dispersed on a high-surface-area support are widely used for catalytic reforming, pollution control, alcohol oxidation, and electrocatalysis in fuel cells. Owing to the nanoscale size of the particles, the modification of the surface structure and composition that may occur when reaction conditions change can have dramatic

  9. Reaction-Driven Restructuring of Bimetallic Nanoparticle Catalysts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reaction-Driven Restructuring of Bimetallic Nanoparticle Catalysts Print Catalytic systems based on bimetallic particles with controlled size, composition, and structure dispersed on a high-surface-area support are widely used for catalytic reforming, pollution control, alcohol oxidation, and electrocatalysis in fuel cells. Owing to the nanoscale size of the particles, the modification of the surface structure and composition that may occur when reaction conditions change can have dramatic

  10. Reaction-Driven Restructuring of Bimetallic Nanoparticle Catalysts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reaction-Driven Restructuring of Bimetallic Nanoparticle Catalysts Print Catalytic systems based on bimetallic particles with controlled size, composition, and structure dispersed on a high-surface-area support are widely used for catalytic reforming, pollution control, alcohol oxidation, and electrocatalysis in fuel cells. Owing to the nanoscale size of the particles, the modification of the surface structure and composition that may occur when reaction conditions change can have dramatic

  11. Reaction-Driven Restructuring of Bimetallic Nanoparticle Catalysts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... of the value of x-ray microscopy in studying real-world catalysts. Core-shell structure of nanoparticles. Dependence of rhodium and palladium atomic fractions of ...

  12. Structural analysis of palladium-decorated gold nanoparticles as colloidal bimetallic catalysts.

    SciTech Connect (OSTI)

    Fang, Y. L.; Miller, J. T.; Guo, N.; Heck, K. N.; Alvarez, P. J. J.; Wong, M. S. (Chemical Sciences and Engineering Division); (Rice Univ.)

    2011-02-02

    Bimetallic palladium-decorated gold nanoparticle (Pd/Au NP) catalysts are significantly more active than palladium-only catalysts, but the mechanism for enhancement is not completely clear for most reactions, like the aqueous-phase hydrodechlorination of trichloroethene. In this study, we conducted X-ray absorption spectroscopy on carbon-supported Pd/Au NPs to obtain information about the local atomic environment (i.e., oxidation states, coordination numbers, and bond distances) of the two metals under different treatment conditions. The as-synthesized NPs were confirmed to have a Pd-shell/Au-core nanostructure, in which the Pd was found as surface ensembles. Upon exposure to room temperature in air, a portion of the Pd, but not the Au, was oxidized. In comparison, nearly the entire surface of monometallic Pd NPs was oxidized, suggesting that Au in Pd/Au NPs imparts oxidation resistance to Pd atoms. The surface Pd was found randomly distributed, presumably as a PdAu surface alloy, after reduction at 300 C. X-ray absorption spectroscopy provides direct evidence for the Pd-shell/Au-core structure of Pd/Au NPs, and suggests that metallic Pd in the Pd/Au NPs is a source for higher catalytic activity for aqueous-phase trichloroethene hydrodechlorination.

  13. Record activity and stability of dealloyed bimetallic catalysts...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Record activity and stability of dealloyed bimetallic catalysts for proton exchange membrane fuel cells Citation Details In-Document Search Title: Record activity ...

  14. Supported bimetallic PdAu nanoparticles with superior electrocatalytic...

    Office of Scientific and Technical Information (OSTI)

    nanoparticles with superior electrocatalytic activity towards methanol oxidation Citation Details In-Document Search Title: Supported bimetallic PdAu nanoparticles with superior ...

  15. From First Principles Design to Realization of Bimetallic Catalysts for Ultrahigh Selectivity - Final Project Report

    SciTech Connect (OSTI)

    Richard M. Crooks

    2007-04-11

    (A) Synthesis, Characterization, and Fundamental Properties of Bimetallic DENs. AuAg alloy and core/shell bimetallic DENs were synthesized and characterized. Selective extraction was used as a structural characterization tool for these bimetallic nanoparticles. This is significant because there are few easily accessible methods for structure elucidation of bimetallic nanoparticles in this size regime. As a first step towards the synthesis of catalytically active, bimetallic heterogeneous materials we reported the incorporation of Au and Pd monometallic DENs and AuPd bimetallic DENs into amorphous titania networks. The compositional fidelity of the original DENs, and to some extent their size, is retained following dendrimer removal. Gas-phase catalytic activity for CO oxidation is higher for the bimetallic catalysts than for the corresponding Pd-only and Au-only monometallics. (B) Electrocatalysts based on dendrimer-encapsulated nanoparticles. Platinum dendrimer-encapsulated nanoparticles (DENs) were prepared within fourth-generation, hydroxyl-terminated, poly(amidoamine) dendrimers and immobilized on glassy carbon electrodes using an electrochemical immobilization strategy. X-ray photoelectron spectroscopy, electron microscopy, and electrochemical experiments confirm that the Pt DENs are about 1.4 nm in diameter and that they remain within the dendrimer following surface immobilization. The resulting Pt DEN films were electrocatalytically active for the oxygen reduction reaction (ORR). The films are also robust, surviving up to 50 consecutive cyclic voltammograms and sonication. Monometallic Pd DENs were also prepared and found to have little catalytic activity for the ORR. However, PtPd bimetallic DENs had catalytic activity nearly identical to that found for Pt-only DENs. This indicates an overall catalytic enhancement for the bimetallic electrocatalysts.

  16. Neutral bimetallic transition metal phenoxyiminato catalysts and related polymerization methods

    DOE Patents [OSTI]

    Marks, Tobin J.; Rodriguez, Brandon A.; Delferro, Massimiliano

    2012-08-07

    A catalyst composition comprising a neutral bimetallic diphenoxydiiminate complex of group 10 metals or Ni, Pd or Pt is disclosed. The compositions can be used for the preparation of homo- and co-polymers of olefinic monomer compounds.

  17. Synthesis of supported bimetallic nanoparticles with controlled size and composition distributions for active site elucidation

    SciTech Connect (OSTI)

    Hakim, Sikander H.; Sener, Canan; Alba Rubio, Ana C.; Gostanian, Thomas M.; O'neill, Brandon J; Ribeiro, Fabio H.; Miller, Jeffrey T.; Dumesic, James A

    2015-08-01

    Elucidation of active sites in supported bimetallic catalysts is complicated by the high level of dispersity in the nanoparticle size and composition that is inherent in conventional methods of catalyst preparation. We present a synthesis strategy that leads to highly dispersed, bimetallic nanoparticles with uniform particle size and composition by means of controlled surface reactions. We demonstrate the synthesis of three systems, RhMo, PtMo, and RhRe, consisting of a highly reducible metal with an oxophilic promoter. These catalysts are characterized by FTIR, CO chemisorption, STEM/EDS, TPR, and XAS analysis. The catalytic properties of these bimetallic nanoparticles were probed for the selective CO hydrogenolysis of (hydroxymethyl)tetrahydropyran to produce 1,6 hexanediol. Based on the characterization results and reactivity trends, the active sites in the hydrogenolysis reaction are identified to be small ensembles of the more noble metal (Rh, Pt) adjacent to highly reduced moieties of the more oxophilic metal (Mo, Re).

  18. Patched bimetallic surfaces are active catalysts for ammonia decomposition

    SciTech Connect (OSTI)

    Guo, Wei; Vlachos, Dionisios G.

    2015-10-07

    In this study, ammonia decomposition is often used as an archetypical reaction for predicting new catalytic materials and understanding the very reason of why some reactions are sensitive on material’s structure. Core–shell or surface-segregated bimetallic nanoparticles expose outstanding activity for many heterogeneously catalysed reactions but the reasons remain elusive owing to the difficulties in experimentally characterizing active sites. Here by performing multiscale simulations in ammonia decomposition on various nickel loadings on platinum (111), we show that the very high activity of core–shell structures requires patches of the guest metal to create and sustain dual active sites: nickel terraces catalyse N-H bond breaking and nickel edge sites drive atomic nitrogen association. The structure sensitivity on these active catalysts depends profoundly on reaction conditions due to kinetically competing relevant elementary reaction steps. We expose a remarkable difference in active sites between transient and steady-state studies and provide insights into optimal material design.

  19. Carbon-Supported bimetallic Pd-Fe catalysts for vapor-phasehydrodeoxy...

    Office of Scientific and Technical Information (OSTI)

    Carbon-Supported bimetallic Pd-Fe catalysts for vapor-phase hydrodeoxygenation of guaiacol Citation Details In-Document Search Title: Carbon-Supported bimetallic Pd-Fe catalysts ...

  20. Glycerol Hydrogenolysis on Carbon-Supported PtRu and AuRu Bimetallic Catalysts

    SciTech Connect (OSTI)

    Maris,E.; Ketchie, W.; Murayama, M.; Davis, R.

    2007-01-01

    Bimetallic PtRu and AuRu catalysts were prepared by a surface redox method in which Pt or Au was deposited onto the surface of carbon-supported Ru nanoparticles with an average diameter of 2-3 nm. Characterization by H2 chemisorption, analytical TEM, and X-ray absorption spectroscopy at the Ru K-edge, Pt LIII-edge, and Au LIII-edge confirmed that Pt and Au were successfully deposited onto Ru without disrupting the Ru particles. Depression of the ethane hydrogenolysis rate over Ru after addition of Au provided further evidence of successful deposition. The bimetallic particles were subsequently evaluated in the aqueous-phase hydrogenolysis of glycerol at 473 K and 40 bar H2 at neutral and elevated pH. Although monometallic Pt and Ru exhibited different activities and selectivities to products, the bimetallic PtRu catalyst functioned more like Ru. A similar result was obtained for the AuRu bimetallic catalyst. The PtRu catalyst appeared to be stable under the aqueous-phase reaction conditions, whereas the AuRu catalyst was altered by the harsh conditions. Gold appeared to migrate off the Ru and agglomerate on the carbon during the reaction in liquid water.

  1. The catalytic behavior of precisely synthesized Pt–Pd bimetallic catalysts for use as diesel oxidation catalysts

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wong, Andrew P.; Kyriakidou, Eleni A.; Toops, Todd J.; Regalbuto, John R.

    2016-04-17

    The demands of stricter diesel engine emission regulations have created challenges for current exhaust systems. With advances in low-temperature internal combustion engines and their operations, advances must also be made in vehicle exhaust catalysts. Most current diesel oxidation catalysts use heavy amounts of precious group metals (PGMs) for hydrocarbon (HC), CO, and NO oxidation. These catalysts are expensive and are most often synthesized with poor bimetallic interaction and dispersion. In this paper, the goal was to study the effect of aging on diesel emission abatement of Pt–Pd bimetallic nanoparticles precisely prepared with different morphologies: well dispersed core–shell vs. well dispersedmore » homogeneously alloyed vs. poorly dispersed, poorly alloyed particles. Alumina and silica supports were studied. Particle morphology and dispersion were analyzed before and after hydrothermal treatments by XRD, EDX, and STEM. Reactivity as a function of aging was measured in simulated diesel engine exhaust. While carefully controlled bimetallic catalyst nanoparticle structure has a profound influence on initial or low temperature catalytic activity, the differences in behavior disappear with higher temperature aging as thermodynamic equilibrium is achieved. The metallic character of Pt-rich alumina-supported catalysts is such that behavior rather closely follows the Pt–Pd metal phase diagram. Nanoparticles disparately composed as well-dispersed core–shell (via seq-SEA), well-dispersed homogeneously alloyed (via co-SEA), and poorly dispersed, poorly alloyed (via co-DI) end up as well alloyed, large particles of almost the same size and activity. With Pd-rich systems, the oxidation of Pd also figures into the equilibrium, such that Pd-rich oxide phases appear in the high temperature forms along with alloyed metal cores. Finally, the small differences in activity after high temperature aging can be attributed to the synthesis methods, sequential SEA and co

  2. Correlating Extent of PtNi Bond Formation with Low-temperature Hydrogenation of Benzene and 1,3-butadiene over Supported Pt/Ni Bimetallic Catalysts

    SciTech Connect (OSTI)

    Lonergan, W.; Vlachos, D; Chen, J

    2010-01-01

    Low-temperature hydrogenation of benzene and 1,3-butadiene on supported Pt/Ni catalysts have been used as probe reactions to correlate hydrogenation activity with the extent of Pt-Ni bimetallic bond formation. Pt/Ni bimetallic and Pt and Ni monometallic catalysts were supported on {gamma}-Al{sub 2}O{sub 3} using incipient wetness impregnation. Two sets of bimetallic catalysts were synthesized: one set to study the effect of metal atomic ratio and the other to study the effect of impregnation sequence. Fourier transform infrared spectroscopy (FTIR) CO adsorption studies were performed to characterize the surface composition of the bimetallic nanoparticles, and transmission electron microscopy (TEM) was utilized to characterize the particle size distribution. Batch reactor studies with FTIR demonstrated that all bimetallic catalysts outperformed monometallic catalysts for both benzene and 1,3-butadiene hydrogenation. Within the two sets of bimetallic catalysts, it was found that catalysts with a smaller Pt:Ni ratio possessed higher hydrogenation activity and that catalysts synthesized using co-impregnation had greater activity than sequentially impregnated catalysts. Extended X-ray absorption fine structure (EXAFS) measurements were performed in order to verify the extent of Pt-Ni bimetallic bond formation, which was found to correlate with the hydrogenation activity.

  3. Patched bimetallic surfaces are active catalysts for ammonia decomposition

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Guo, Wei; Vlachos, Dionisios G.

    2015-10-07

    In this study, ammonia decomposition is often used as an archetypical reaction for predicting new catalytic materials and understanding the very reason of why some reactions are sensitive on material’s structure. Core–shell or surface-segregated bimetallic nanoparticles expose outstanding activity for many heterogeneously catalysed reactions but the reasons remain elusive owing to the difficulties in experimentally characterizing active sites. Here by performing multiscale simulations in ammonia decomposition on various nickel loadings on platinum (111), we show that the very high activity of core–shell structures requires patches of the guest metal to create and sustain dual active sites: nickel terraces catalyse N-Hmore » bond breaking and nickel edge sites drive atomic nitrogen association. The structure sensitivity on these active catalysts depends profoundly on reaction conditions due to kinetically competing relevant elementary reaction steps. We expose a remarkable difference in active sites between transient and steady-state studies and provide insights into optimal material design.« less

  4. Bimetallic complexes and polymerization catalysts therefrom

    DOE Patents [OSTI]

    Patton, Jasson T.; Marks, Tobin J.; Li, Liting

    2000-11-28

    Group 3-6 or Lanthanide metal complexes possessing two metal centers, catalysts derived therefrom by combining the same with strong Lewis acids, Bronsted acid salts, salts containing a cationic oxidizing agent or subjected to bulk electrolysis in the presence of compatible, inert non-coordinating anions and the use of such catalysts for polymerizing olefins, diolefins and/or acetylenically unsaturated monomers are disclosed.

  5. Thermal stability of bimetallic Au/Fe nanoparticles in silica matrix

    SciTech Connect (OSTI)

    Pannu, Compesh Singh, Udai B. Hooda, Sonu Kabiraj, D. Avasthi, D. K.

    2014-04-24

    Thin silica film containing Au and Fe bimetallic nanoparticles were prepared by atom beam cosputtering. The samples were annealed at different temperatures from 400 to 800° C to study the thermal stability of bimetallic nanoparticles using X ray diffraction. It is observed that at 800° C strong structural rearrangement took place leading to thermal decomposition of bimetallic nanoparticles.

  6. Low-temperature aqueous-phase reforming of ethanol on bimetallic PdZn catalysts

    SciTech Connect (OSTI)

    Xiong, Haifeng; DelaRiva, Andrew; Wang, Yong; Dayte, Abhaya

    2015-01-01

    Bimetallic PdZn catalysts supported on carbon black (CB) and carbon nanotubes (CNTs) were found to be selective for CO-free H-2 production from ethanol at low temperature (250 degrees C). On Pd, the H-2 yield was low (similar to 0.3 mol H-2/mol ethanol reacted) and the CH4/CO2 ratio was high (similar to 1.7). Addition of Zn to Pd formed the intermetallic PdZn beta phase (atomic ratio of Zn to Pd is 1) with increased H-2 yield (similar to 1.9 mol H-2/mol ethanol reacted) and CH4/CO2 ratio of <1. The higher H-2 yield and low CH4 formation was related to the improved dehydrogenation activity of the L1(0) PdZn beta phase. The TOF increased with particle size and the CNTs provided the most active and selective catalysts, which may be ascribed to pore-confinement effects. Furthermore, no significant changes in either the supports or the PdZn beta particles was found after aqueous-phase reforming (APR) indicating that the metal nanoparticles and the carbon support are hydrothermally stable in the aqueous phase at elevated temperatures and pressures (>200 degrees C, 65 bar). No CO was detected for all the catalysts performed in aqueous-phase reaction, indicating that both monometallic Pd and bimetallic PdZn catalysts have high water-gas shift activity during APR. However, the yield of H-2 is considerably lower than the theoretical value of 6 H-2 per mole ethanol which is due to the presence of oxygenated products and methane on the PdZn catalysts.

  7. Synthesis and Characterization of Cluster-Derived Supported Bimetallic Catalysts

    SciTech Connect (OSTI)

    Adams, Richard D; Amiridis, Michael D

    2008-10-10

    New procedures have been developed for synthesizing di- and tri-metallic cluster complexes. The chemical properties of the new complexes have been investigated, particularly toward the activation of molecular hydrogen. These complexes were then converted into bi- and tri-metallic nanoparticles on silica and alumina supports. These nanoparticles were characterized by electron microscopy and were then tested for their ability to produce catalytic hydrogenation of unsaturated hydrocarbons and for the preferential oxidation of CO in the presence of hydrogen. The bi- and tri-metallic nanoparticles exhibited far superior activity and selectivity as hydrogenation catalysts when compared to the individual metallic components. It was found that the addition of tin greatly improved the selectivity of the catalysts for the hydrogenation of polyolefins. The addition of iron improves the catalysts for the selective oxidation of CO by platinum in the presence of hydrogen. The observations should lead to the development of lower cost routes to molecules that can be used to produce polymers and plastics for use by the general public and for procedures to purify hydrogen for use as an alternative energy in the hydrogen economy of the future.

  8. STEM-EDX tomography of bimetallic nanoparticles: A methodological investigation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Slater, Thomas J. A.; Janssen, Arne; Camargo, Pedro H. C.; Burke, M. Grace; Zaluzec, Nestor J.; Haigh, Sarah J.

    2015-10-22

    This paper presents an investigation of the limitations and optimization of energy dispersive X-ray (EDX) tomography within the scanning transmission electron microscope, focussing on application of the technique to characterising the 3D elemental distribution of bimetallic AgAu nanoparticles. The detector collection efficiency when using a standard tomography holder is characterised using a tomographic data set from a single nanoparticle and compared to a standard low background double tilt holder. Optical depth profiling is used to investigate the angles and origin of detector shadowing as a function of specimen field of view. A novel time-varied acquisition scheme is described to compensatemore » for variations in the intensity of spectrum images at each sample tilt. Lastly, the ability of EDX spectrum images to satisfy the projection requirement for nanoparticle samples is discussed, with consideration of the effect of absorption and shadowing variations« less

  9. STEM-EDX tomography of bimetallic nanoparticles: A methodological investigation

    SciTech Connect (OSTI)

    Slater, Thomas J. A.; Janssen, Arne; Camargo, Pedro H. C.; Burke, M. Grace; Zaluzec, Nestor J.; Haigh, Sarah J.

    2015-10-22

    This paper presents an investigation of the limitations and optimization of energy dispersive X-ray (EDX) tomography within the scanning transmission electron microscope, focussing on application of the technique to characterising the 3D elemental distribution of bimetallic AgAu nanoparticles. The detector collection efficiency when using a standard tomography holder is characterised using a tomographic data set from a single nanoparticle and compared to a standard low background double tilt holder. Optical depth profiling is used to investigate the angles and origin of detector shadowing as a function of specimen field of view. A novel time-varied acquisition scheme is described to compensate for variations in the intensity of spectrum images at each sample tilt. Lastly, the ability of EDX spectrum images to satisfy the projection requirement for nanoparticle samples is discussed, with consideration of the effect of absorption and shadowing variations

  10. Study of supported PtCu and PdAu bimetallic nanoparticles using in-situ x-ray tools.

    SciTech Connect (OSTI)

    Oxford, S. M.; Lee, P. L.; Chupas, P. J.; Chapman, K. W.; Kung, M. C.; Kung, H. H.; Northwestern Univ.

    2010-01-01

    A combination of two synchrotron X-ray techniques, X-ray absorption spectroscopy (XAS), and pair distribution function analysis (PDF) with complementary Fourier transform infrared (FTIR) spectroscopy measurement, was used to characterize the composition distributions of PdAu and PtCu bimetallic particles after treatment in H{sub 2} or CO and in the presence of these gases. This is the first reported application of PDF to the study of supported bimetallic nanoparticles. We found that XAS was informative in determining the component distribution of an initial sample, but PDF was better suited to following changes in the distribution upon changing the gas environment. Thus, the surface of a PtCu bimetallic particle of about 2.5 nm after treatment in H{sub 2} was found to be enriched in Cu, while the core was bimetallic. There was no evidence of a component-segregated core?shell structure. Treatment in CO caused enrichment of Pt to the surface layer, with a concomitant migration of Cu to the core. The average particle size remained the same. For the PdAu bimetallic particles, the surface and core compositions were similar after H{sub 2} treatment, and Pd was enriched in the surface after CO treatment. The X-ray results compared favorably to infrared spectroscopy results. The results demonstrated that the two X-ray techniques in combination can generate new information not available with either technique alone or other techniques, about the elemental distribution of bimetallic particles under conditions relevant to catalysis. They could provide new insight into structure-function relationships and time-on-stream behavior of bimetallic catalysts.

  11. Novel bimetallic dispersed catalysts for temperature-programmed coal liquefaction. Final report

    SciTech Connect (OSTI)

    Chunshan Song; Schobert, H.H.; Parfitt, D.P.

    1997-11-01

    Development of new catalysts is a promising approach to more efficient coal liquefaction. It has been recognized that dispersed catalysts are superior to supported catalysts for primary liquefaction of coals, because the control of initial coal dissolution or depolymerization requires intimate contact between the catalyst and coal. This research is a fundamental and exploratory study on catalytic coal liquefaction, with the emphasis on exploring novel bimetallic dispersed catalysts for coal liquefaction and the effectiveness of temperature-programmed liquefaction using dispersed catalysts. The primary objective of this research was to explore novel bimetallic dispersed catalysts from organometallic molecular precursors, that could be used in low concentrations but exhibit relatively high activity for efficient hydroliquefaction of coals under temperature-programmed conditions. We have synthesized and tested various catalyst precursors in liquefaction of subbituminous and bituminous coals and in model compound studies to examine how do the composition and structure of the catalytic precursors affect their effectiveness for coal liquefaction under different reaction conditions, and how do these factors affect their catalytic functions for hydrogenation of polyaromatic hydrocarbons, for cleavage of C-C bonds in polycyclic systems such as 4-(1-naphthylmethyl)bibenzyl, for hydrogenolysis of C-O bond such as that in dinaphthylether, for hydrodeoxygenation of phenolic compounds and other oxygen-containing compounds such as xanthene, and for hydrodesulfurization of polycyclic sulfur compounds such as dibenzothiophene. The novel bimetallic and monometallic precursors synthesized and tested in this project include various Mo- and Fe-based compounds.

  12. Bimetallic Nb-Mo carbide hydroprocessing catalysts: Synthesis, characterization, and activity studies

    SciTech Connect (OSTI)

    Yu, C.C.; Ramanathan, S.; Dhandapani, B.; Oyama, S.T.; Chen, J.G.

    1997-01-23

    A series of bimetallic carbides, Nb{sub 1.0}Mo{sub x}OC (x = 0.67-2.0), hydroprocessing catalysts, were synthesized from oxide precursors and were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, near-edge X-ray absorption fine structure, elemental analysis, CO chemisorption, surface area measurements, and temperature-programmed reduction. The catalysts were active for quinoline hydrodenitrogenation and showed highest hydrodesulfurization at Nb{sub 1.0}Mo{sub 1.75}OC. The bimetallic compounds showed enhancement in activity and stability as compared with their monometallic carbides. The spent catalysts did not show any sulfide, oxide, or metal peaks, indicating that the catalysts were stable and tolerant to sulfur. 35 refs., 10 figs., 5 tabs.

  13. Characterization of Na+- beta-Zeolite Supported Pd and Pd Ag Bimetallic Catalysts using EXAFS, TEM and Flow Reactor

    SciTech Connect (OSTI)

    Huang,W.; Lobo, R.; Chen, J.

    2008-01-01

    Flow reactor studies of the selective hydrogenation of acetylene in the presence of ethylene have been performed on Na+ exchanged {beta}-zeolite supported Pd, Ag and PdAg catalysts, as an extension of our previous batch reactor studies [W. Huang, J.R. McCormick, R.F. Lobo, J.G. Chen, J. Catal. 246 (2007) 40-51]. Results from flow reactor studies show that the PdAg/Na+-{beta}-zeolite bimetallic catalyst has lower activity than Pd/Na+-{beta}-zeolite monometallic catalyst, while Ag/Na+-{beta}-zeolite does not show any activity for acetylene hydrogenation. However, the selectivity for the PdAg bimetallic catalyst is much higher than that for either the Pd catalyst or Ag catalyst. The selectivity to byproduct (ethane) is greatly inhibited on the PdAg bimetallic catalyst as well. The results from the current flow reactor studies confirmed the pervious results from batch reactor studies [W. Huang, J.R. McCormick, R.F. Lobo, J.G. Chen, J. Catal. 246 (2007) 40-51]. In addition, we used transmission electron microscope (TEM), extended X-ray absorption fine structure (EXAFS), and FTIR of CO adsorption to confirm the formation of Pd-Ag bimetallic alloy in the PdAg/Na+-{beta}-zeolite catalyst.

  14. CATALYSIS SCIENCE INITIATIVE: From First Principles Design to Realization of Bimetallic Catalysts for Enhanced Selectivity

    SciTech Connect (OSTI)

    MAVRIKAKIS, MANOS DUMESIC, JAMES A.

    2007-05-03

    In this project, we have integrated state-of-the-art Density Functional Theory (DFT) models of heterogeneous catalytic processes with high-throughput screening of bimetallic catalytic candidates for important industrial problems. We have studied a new class of alloys characterized by a surface composition different from the bulk composition, and investigated their stability and activity for the water-gas shift reaction and the oxygen reduction reaction. The former reaction is an essential part of hydrogen production; the latter is the rate-limiting step in low temperature H2 fuel cells. We have identified alloys that have remarkable stability and activity, while having a much lower material cost for both of these reactions. Using this knowledge of bimetallic interactions, we have also made progress in the industrially relevant areas of carbohydrate reforming and conversion of biomass to liquid alkanes. One aspect of this work is the conversion of glycerol (a byproduct of biodiesel production) to synthesis gas. We have developed a bifunctional supported Pt catalyst that can cleave the carbon-carbon bond while also performing the water-gas shift reaction, which allows us to better control the H2:CO ratio. Knowledge gained from the theoretical metal-metal interactions was used to develop bimetallic catalysts that perform this reaction at low temperature, allowing for an efficient coupling of this endothermic reaction with other reactions, such as Fischer-Tropsch or methanol synthesis. In our work on liquid alkane production from biomass, we have studied deactivation and selectivity in these areas as a function of metal-support interactions and reaction conditions, with an emphasis on the bifunctionality of the catalysts studied. We have identified a stable, active catalyst for this process, where the selectivity and yield can be controlled by the reaction conditions. While complete rational design of catalysts is still elusive, this work demonstrates the power of

  15. Ordered Nanoparticle Catalysts article is an Energy Focus > Archived...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ordered Nanoparticle Catalysts article is an Energy Focus January 24th, 2013 A Nature Materials paper on ordered nanoparticle catalysts has been highlighted as an "Energy...

  16. NiW and NiRu Bimetallic Catalysts for Ethylene Steam Reforming: Alternative Mechanisms for Sulfur Resistance

    SciTech Connect (OSTI)

    Rangan, M.; Yung, M. M.; Medlin, J. W.

    2012-06-01

    Previous investigations of Ni-based catalysts for the steam reforming of hydrocarbons have indicated that the addition of a second metal can reduce the effects of sulfur poisoning. Two systems that have previously shown promise for such applications, NiW and NiRu, are considered here for the steam reforming of ethylene, a key component of biomass derived tars. Monometallic and bimetallic Al{sub 2}O{sub 3}-supported Ni and W catalysts were employed for ethylene steam reforming in the presence and absence of sulfur. The NiW catalysts were less active than Ni in the absence of sulfur, but were more active in the presence of 50 ppm H{sub 2}S. The mechanism for the W-induced improvements in sulfur resistance appears to be different from that for Ru in NiRu. To probe reasons for the sulfur resistance of NiRu, the adsorption of S and C{sub 2}H{sub 4} on several bimetallic NiRu alloy surfaces ranging from 11 to 33 % Ru was studied using density functional theory (DFT). The DFT studies reveal that sulfur adsorption is generally favored on hollow sites containing Ru. Ethylene preferentially adsorbs atop the Ru atom in all the NiRu (111) alloys investigated. By comparing trends across the various bimetallic models considered, sulfur adsorption was observed to be correlated with the density of occupied states near the Fermi level while C{sub 2}H{sub 4} adsorption was correlated with the number of unoccupied states in the d-band. The diverging mechanisms for S and C{sub 2}H{sub 4} adsorption allow for bimetallic surfaces such as NiRu that enhance ethylene binding without accompanying increases in sulfur binding energy. In contrast, bimetallics such as NiSn and NiW appear to decrease the affinity of the surface for both the reagent and the poison.

  17. Novel bimetallic dispersed catalysts for temperature-programmed coal liquefaction. Technical progress report, October--December 1993

    SciTech Connect (OSTI)

    Schmidt, E.; Kirby, S.; Song, Chunshan; Schobert, H.H.

    1994-04-01

    Development of new catalysts is a promising approach to more, efficient coal liquefaction. It has been recognized that dispersed catalysts can be superior to supported catalysts for primary liquefaction of coals, because the control of initial coal dissolution or depolymerization requires infinite contact between the catalyst and coal. The primary objective of this research is to explore the potential of bimetallic dispersed catalysts from heterometallic molecular precursors in their use in model compound liquefaction reactions. This quarterly report describes the use of three precursors in model compound reactions. The first catalyst is a heterometallic complex consisting of two transition metals, Mo and Ni, and sulfur in a single molecule. The second is a thiocubane type complex consisting of cobalt, molybdenum and sulfur. The third is a thiocubane type cluster consisting of iron and sulfur and the fourth, the pure inorganic salt ammonium tetrathiomolybdate (ATM). It was found that the structure and the ligands in the model complexes affect the activity of the resulting catalyst significantly. The optimum reaction at a pressure of 6.9 MPa hydrogen gas varied for different catalysts. The bimetallic catalysts generated in situ from the organometallic precursor are more active than monometallic catalysts like ATTM and the thiocubane type cluster Fe{sub 4}. Main products are hydrogenated phenanthrene derivatives, like DBP, THP, sym-OHP, cis- and trans-unsym-OHP with minor isomerization products such as sym-OHA. Our results indicate that other transition metal and ligand combinations in the organometallic precursors and the use of another model compound could result in substantially higher conversion activity.

  18. Positional control of catalyst nanoparticles for the synthesis...

    Office of Scientific and Technical Information (OSTI)

    Positional control of catalyst nanoparticles for the synthesis of high density carbon nanofiber arrays Citation Details In-Document Search Title: Positional control of catalyst ...

  19. Surface plasmon polariton assisted optical switching in noble bimetallic nanoparticle system

    SciTech Connect (OSTI)

    Dhara, Sandip E-mail: chenkh@pub.iams.sinica.edu.tw; Lu, C.-Y.; Tu, W.-S.; Magudapathy, P.; Huang, Y.-F.; Chen, K.-H. E-mail: chenkh@pub.iams.sinica.edu.tw

    2015-01-12

    Photoresponse of bimetallic Au-Ag nanoparticle embedded soda glass (Au-Ag@SG) substrate is reported for surface plasmon assisted optical switching using 808 nm excitation. Au-Ag@SG system is made by an ion beam technique where Ag{sup +} is introduced first in the soda glass matrix by ion exchange technique. Subsequently, 400 keV Au{sup +} is implanted in the sample for different fluences, which is followed by an ion beam annealing process using 1 MeV Si{sup +} at a fixed fluence of 2 × 10{sup 16} ions·cm{sup −2}. Characteristic surface plasmon resonance (SPR) peaks around 400 and 550 nm provided evidence for the presence of Au and Ag nanoparticles. An optical switching in the Au-Ag@SG system with 808 nm, which is away from the characteristic SPR peaks of Ag and Au nanoparticles, suggests the possible role of two photon absorption (TPA) owing to the presence of interacting electric dipole in these systems. The role of surface plasmon polariton is emphasized for the propagation of electronic carrier belonging to the conduction electron of Au-Ag system in understanding the observed photoresponse. Unique excitation dependent photoresponse measurements confirm the possible role of TPA process. A competitive interband and intraband transitions in the bimetallic system of Au and Ag, which may be primarily responsible for the observation, are validated qualitatively using finite difference time domain calculations where inter-particle separation of Au and Ag plays an important role. Thus, a smart way of optical switching can be envisaged in noble bimetallic nanocluster system where long wavelength with higher skin depth can be used for communication purpose.

  20. How the shape of catalyst nanoparticles determines their crystallograp...

    Office of Scientific and Technical Information (OSTI)

    nanoparticles determines their crystallographic orientation during carbon nanofiber growth Citation Details In-Document Search Title: How the shape of catalyst nanoparticles ...

  1. Hollow Nanoparticles as Active and Durable Catalysts - Energy Innovation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Portal Hollow Nanoparticles as Active and Durable Catalysts Brookhaven National Laboratory Contact BNL About This Technology <p> Performance characteristics of the hollow nanoparticle catalysts for the oxygen-reduction reaction</p> Performance characteristics of the hollow nanoparticle catalysts for the oxygen-reduction reaction Technology Marketing Summary Platinum is an excellent catalyst for many reactions. However, it is also very expensive. The catalytic activity per gram of

  2. Structurally ordered Pt–Zn/C series nanoparticles as efficient anode catalysts for formic acid electrooxidation

    SciTech Connect (OSTI)

    Zhu, Jing; Zheng, Xin; Wang, Jie; Wu, Zexing; Han, Lili; Lin, Ruoqian; Xin, Huolin L.; Wang, Deli

    2015-09-15

    Controlling the size, composition, and structure of bimetallic nanoparticles is of particular interest in the field of electrocatalysts for fuel cells. In the present work, structurally ordered nanoparticles with intermetallic phases of Pt3Zn and PtZn have been successfully synthesized via an impregnation reduction method, followed by post heat-treatment. The Pt3Zn and PtZn ordered intermetallic nanoparticles are well dispersed on a carbon support with ultrasmall mean particle sizes of ~5 nm and ~3 nm in diameter, respectively, which are credited to the evaporation of the zinc element at high temperature. These catalysts are less susceptible to CO poisoning relative to Pt/C and exhibited enhanced catalytic activity and stability toward formic acid electrooxidation. The mass activities of the as-prepared catalysts were approximately 2 to 3 times that of commercial Pt at 0.5 V (vs. RHE). As a result, this facile synthetic strategy is scalable for mass production of catalytic materials.

  3. Structurally ordered Pt–Zn/C series nanoparticles as efficient anode catalysts for formic acid electrooxidation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhu, Jing; Zheng, Xin; Wang, Jie; Wu, Zexing; Han, Lili; Lin, Ruoqian; Xin, Huolin L.; Wang, Deli

    2015-09-15

    Controlling the size, composition, and structure of bimetallic nanoparticles is of particular interest in the field of electrocatalysts for fuel cells. In the present work, structurally ordered nanoparticles with intermetallic phases of Pt3Zn and PtZn have been successfully synthesized via an impregnation reduction method, followed by post heat-treatment. The Pt3Zn and PtZn ordered intermetallic nanoparticles are well dispersed on a carbon support with ultrasmall mean particle sizes of ~5 nm and ~3 nm in diameter, respectively, which are credited to the evaporation of the zinc element at high temperature. These catalysts are less susceptible to CO poisoning relative to Pt/Cmore » and exhibited enhanced catalytic activity and stability toward formic acid electrooxidation. The mass activities of the as-prepared catalysts were approximately 2 to 3 times that of commercial Pt at 0.5 V (vs. RHE). As a result, this facile synthetic strategy is scalable for mass production of catalytic materials.« less

  4. Bimetallic catalysts for CO.sub.2 hydrogenation and H.sub.2 generation from formic acid and/or salts thereof

    DOE Patents [OSTI]

    Hull, Jonathan F.; Himeda, Yuichiro; Fujita, Etsuko; Muckeman, James T.

    2015-08-04

    The invention relates to a ligand that may be used to create a catalyst including a coordination complex is formed by the addition of two metals; Cp, Cp* or an unsubstituted or substituted .pi.-arene; and two coordinating solvent species or solvent molecules. The bimetallic catalyst may be used in the hydrogenation of CO.sub.2 to form formic acid and/or salts thereof, and in the dehydrogenation of formic acid and/or salts thereof to form H.sub.2 and CO.sub.2.

  5. The Effects of Oxide Supports on the Low Temperature Hydrogenation Activity of Acetone over Pt/Ni Bimetallic Catalysts on SiO2 gamma-Al2O3 and TiO2

    SciTech Connect (OSTI)

    S Qi; B Cheney; R Zheng; W Lonergan; W Yu; J Chen

    2011-12-31

    Low temperature (308 K) hydrogenation of acetone was used as a probe reaction to investigate the support effect on the hydrogenation activity of Pt/Ni bimetallic catalysts supported on TiO{sub 2}, SiO{sub 2} and {gamma}-Al{sub 2}O{sub 3}. The oxide supports significantly affected the catalytic properties of Pt/Ni catalysts, in which Pt/Ni/SiO2 bimetallic catalysts exhibited significantly higher activity than the other two bimetallic catalysts. TEM measurements revealed that the three supported Pt/Ni bimetallic catalysts have similar particle size distribution, while CO chemisorption measurements showed very different chemisorption capacity. Extended X-Ray absorption fine structure (EXAFS) measurements of the Pt L{sub III}-edge indicated that Pt atoms were fully reduced and the Pt-Ni bimetallic bonds were formed on all three catalysts. The extent of Pt-Ni bond formation followed the trend of SiO{sub 2} > {gamma}-Al{sub 2}O{sub 3} > TiO{sub 2}, which correlated very well with the hydrogenation activity.

  6. Carbon-Supported bimetallic Pd-Fe catalysts for vapor-phase hydrodeoxygenation of guaiacol

    SciTech Connect (OSTI)

    Sun, Junming; Karim, Ayman M.; Zhang, He; Kovarik, Libor; Li, Xiaohong S.; Hensley, Alyssa; McEwen, Jean-Sabin; Wang, Yong

    2013-10-01

    Abstract Carbon supported metal catalysts (Cu/C, Fe/C, Pd/C, Pt/C, PdFe/C and Ru/C) have been prepared, characterized and tested for vapor-phase hydrodeoxygenation (HDO) of guaiacol (GUA) at atmospheric pressure. Phenol was the major intermediate on all catalysts. Over the noble metal catalysts saturation of the aromatic ring was the major pathway observed at low temperature (250 C), forming predominantly cyclohexanone and cyclohexanol. Substantial ring opening reaction was observed on Pt/C and Ru/C at higher reaction temperatures (e.g., 350 C). Base metal catalysts, especially Fe/C, were found to exhibit high HDO activity without ring-saturation or ring-opening with the main products being benzene, phenol along with small amounts of cresol, toluene and trimethylbenzene (TMB). A substantial enhancement in HDO activity was observed on the PdFe/C catalysts. Compared with Fe/C, the yield to oxygen-free aromatic products (i.e., benzene/toluene/TMB) on PdFe/C increased by a factor of four at 350 C, and by approximately a factor of two (83.2% versus 43.3%) at 450 C. The enhanced activity of PdFe/C is attributed to the formation of PdFe alloy as evidenced by STEM, EDS and TPR.

  7. Novel Supported Bimetallic Carbide Catalysts for Coprocessing of Coal with Waste Materials

    SciTech Connect (OSTI)

    C. Song; D. F. Cox; F. Allen; S. T. Oyama.

    1998-03-30

    The effect of phosphorus on Mo2C supported on [gamma]-Al2O3 and activated carbon was studied. The catalysts were characterized by CO chemisorption, BET surface area measurements, x-ray diffraction (XRD), x-ray photoelectron spectroscopy (XPS), and tested for their reactivity for hydroprocessing reactions, particularly hydrogenation (HYD), hydrodesulfurization (HDS) and hydrodenitrogenation (HDN), using model liquid compounds. The P-containing catalysts had higher reactivity for HDN than those without P. HDS was higher when the Mo2 C was synthesized on [gamma]-Al2 O3 previously treated with P than when the Mo component and P were added together on [gamma]-Al2O3. Post reaction characterization indicates that the catalysts were tolerant of sulfur.

  8. Novel Supported Bimetallic Carbide Catalysts for Coprocessing of Coal with Waste Materials

    SciTech Connect (OSTI)

    C. Song; D. F. Cox; F. Allen; S. T. Oyama

    1998-03-30

    The effect of phosphorus on Mo2C supported on {gamma}-Al2O3 and activated carbon was studied. The catalysts were characterized by CO chemisorption, BET surface area measurements, x-ray diffraction (XRD), x-ray photoelectron spectroscopy (XPS), and tested for their reactivity for hydroprocessing reactions, particularly hydrogenation (HYD), hydrodesulfurization (HDS) and hydrodenitrogenation (HDN), using model liquid compounds. The P-containing catalysts had higher reactivity for HDN than those without P. HDS was higher when the Mo2 C was synthesized on {gamma}-Al2 O3 previously treated with P than when the Mo component and P were added together on {gamma}-Al2O3. Post reaction characterization indicates that the catalysts were tolerant of sulfur.

  9. Supported catalysts using nanoparticles as the support material

    DOE Patents [OSTI]

    Wong, Michael S.; Wachs, Israel E.; Knowles, William V.

    2010-11-02

    A process for making a porous catalyst, comprises a) providing an aqueous solution containing a nanoparticle precursor, b) forming a composition containing nanoparticles, c) adding a first catalytic component or precursor thereof and a pore-forming agent to the composition containing nanoparticles and allowing the first catalytic component, the pore-forming agent, and the nanoparticles form an organic-inorganic structure, d) removing water from the organic-inorganic structure; and e) removing the pore-forming agent from the organic-inorganic structure so as to yield a porous catalyst.

  10. Monodisperse Platinum and Rhodium Nanoparticles as Model Heterogeneous Catalysts

    SciTech Connect (OSTI)

    Coble, Inger M

    2008-08-15

    Model heterogeneous catalysts have been synthesized and studied to better understand how the surface structure of noble metal nanoparticles affects catalytic performance. In this project, monodisperse rhodium and platinum nanoparticles of controlled size and shape have been synthesized by solution phase polyol reduction, stabilized by polyvinylpyrrolidone (PVP). Model catalysts have been developed using these nanoparticles by two methods: synthesis of mesoporous silica (SBA-15) in the presence of nanoparticles (nanoparticle encapsulation, NE) to form a composite of metal nanoparticles supported on SBA-15 and by deposition of the particles onto a silicon wafer using Langmuir-Blodgett (LB) monolayer deposition. The particle shapes were analyzed by transmission electron microscopy (TEM) and high resolution TEM (HRTEM) and the sizes were determined by TEM, X-ray diffraction (XRD), and in the case of NE samples, room temperature H2 and CO adsorption isotherms. Catalytic studies were carried out in homebuilt gas-phase reactors. For the nanoparticles supported on SBA-15, the catalysts are in powder form and were studied using the homebuilt systems as plug-flow reactors. In the case of nanoparticles deposited on silicon wafers, the same systems were operated as batch reactors. This dissertation has focused on the synthesis, characterization, and reaction studies of model noble metal heterogeneous catalysts. Careful control of particle size and shape has been accomplished though solution phase synthesis of Pt and Rh nanoparticles in order to elucidate further structure-reactivity relationships in noble metal catalysis.

  11. From First Principles Design to Realization of Bimetallic Catalysts for Enhanced Selectivity

    SciTech Connect (OSTI)

    Lobo, Raul F.; Crooks, Richard M.; Mavrikakis, Manos

    2014-04-08

    “Catalysis by design” has been a dream for decades. To specify the composition and structure of matter to effect a desired catalytic transformation with desired and predicted rate and selectivity remains a monumental challenge, especially in heterogeneous catalysis. Our research thrusts have been chosen not only for their practical and scientific relevance, e.g. for more efficient and sustainable chemicals and fuels production, but also because they provide a foundation for developing and exploring broadly applicable principles and strategies for catalyst design.

  12. Bimetallic Ni-Rh catalysts with low amounts of Rh for the steam and autothermal reforming of n-butane for fuel-cell applications.

    SciTech Connect (OSTI)

    Ferrandon, M.; Kropf, A. J.; Krause, T.; Chemical Sciences and Engineering Division

    2010-05-15

    Mono-metallic nickel and rhodium catalysts and bimetallic Ni-Rh catalysts supported on La-Al{sub 2}O{sub 3}, CeZrO{sub 2} and CeMgOx were prepared and evaluated for catalyzing the steam and autothermal reforming of n-butane. The binary Ni-Rh supported on La-Al{sub 2}O{sub 3} catalysts with low weight loading of rhodium exhibited higher H{sub 2} yields than Ni or Rh alone. The Ni-Rh/CeZrO{sub 2} catalyst exhibited higher performance and no coke formation, compared to the same metals on other supports. A NiAl{sub 2}O{sub 4} spinel phase was obtained on all Ni and Ni-Rh catalysts supported on La-Al{sub 2}O{sub 3}. The presence of rhodium stabilized the spinel phase as well as NiOx species upon reforming while Ni alone was mostly reduced into metallic species. Extended X-ray absorption fine-structure analysis showed evidence of Ni-Rh alloy during preparation and even further after an accelerated aging at 900C in a H{sub 2}/H{sub 2}O atmosphere.

  13. Multimetallic nanoparticle catalysts with enhanced electrooxidation...

    Office of Scientific and Technical Information (OSTI)

    The fct-FePtAu nanoparticles show high CO poisoning resistance, achieve mass activity as high as about 2810 mAmg Pt, and retain greater than 90% activity after a 13 hour stability ...

  14. Metal nanoparticles as a conductive catalyst

    SciTech Connect (OSTI)

    Coker, Eric N.

    2010-08-03

    A metal nanocluster composite material for use as a conductive catalyst. The metal nanocluster composite material has metal nanoclusters on a carbon substrate formed within a porous zeolitic material, forming stable metal nanoclusters with a size distribution between 0.6-10 nm and, more particularly, nanoclusters with a size distribution in a range as low as 0.6-0.9 nm.

  15. Multimetallic nanoparticle catalysts with enhanced electrooxidation

    DOE Patents [OSTI]

    Sun, Shouheng; Zhang, Sen; Zhu, Huiyuan; Guo, Shaojun

    2015-07-28

    A new structure-control strategy to optimize nanoparticle catalysis is provided. The presence of Au in FePtAu facilitates FePt structure transformation from chemically disordered face centered cubic (fcc) structure to chemically ordered face centered tetragonal (fct) structure, and further promotes formic acid oxidation reaction (FAOR). The fct-FePtAu nanoparticles show high CO poisoning resistance, achieve mass activity as high as about 2810 mA/mg Pt, and retain greater than 90% activity after a 13 hour stability test.

  16. Structural and Architectural Evaluation of Bimetallic Nanoparticles: A Case Study of Pt−Ru Core−Shell and Alloy Nanoparticles

    SciTech Connect (OSTI)

    Alayoglu, S.; Zavalij, P; Eichhorn, B; Wang, Q; Frenkel, A; Chupas, P

    2009-01-01

    A comprehensive structural/architectural evaluation of the PtRu (1:1) alloy and Ru at Pt core-shell nanoparticles (NPs) provides spatially resolved structural information on sub-5 nm NPs. A combination of extended X-ray absorption fine structure (EXAFS), X-ray absorption near edge structure (XANES), pair distribution function (PDF) analyses, Debye function simulations of X-ray diffraction (XRD), and field emission transmission electron microscopy/energy dispersive spectroscopy (FE-TEM/EDS) analyses provides complementary information used to construct a detailed picture of the core/shell and alloy nanostructures. The 4.4 nm PtRu (1:1) alloys are crystalline homogeneous random alloys with little twinning in a typical face-centered cubic (fcc) cell. The Pt atoms are predominantly metallic, whereas the Ru atoms are partially oxidized and are presumably located on the NP surface. The 4.0 nm Ru at Pt NPs have highly distorted hcp Ru cores that are primarily in the metallic state but show little order beyond 8 A. In contrast, the 1-2 monolayer thick Pt shells are relatively crystalline but are slightly distorted (compressed) relative to bulk fcc Pt. The homo- and heterometallic coordination numbers and bond lengths are equal to those predicted by the model cluster structure, showing that the Ru and Pt metals remain phase-separated in the core and shell components and that the interface between the core and shell is quite normal.

  17. AuRu/AC as an effective catalyst for hydrogenation reactions

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Villa, Alberto; Chan-Thaw, Carine E.; Campisi, Sebastiano; Bianchi, Claudia L.; Wang, Di; Kotula, Paul G.; Kübel, Christian; Prati, Laura

    2015-03-23

    AuRu bimetallic catalysts have been prepared by sequential deposition of Au on Ru or vice versa obtaining different nanostructures: when Ru has been deposited on Au, a Aucore–Rushell has been observed, whereas the deposition of Au on Ru leads to a bimetallic phase with Ru enrichment on the surface. In the latter case, the unexpected Ru enrichment could be attributed to the weak adhesion of Ru on the carbon support, thus allowing Ru particles to diffuse on Au particles. Both structures result very active in catalysing the liquid phase hydrogenolysis of glycerol and levulinic acid but the activity, the selectivitymore » and the stability depend on the structure of the bimetallic nanoparticles. Ru@Au/AC core–shell structure mostly behaved as the monometallic Ru, whereas the presence of bimetallic AuRu phase in Au@Ru/AC provides a great beneficial effect on both activity and stability.« less

  18. Mass-selected Nanoparticles of PtxY as Model Catalysts for Oxygen

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electroreduction | Stanford Synchrotron Radiation Lightsource Mass-selected Nanoparticles of PtxY as Model Catalysts for Oxygen Electroreduction Thursday, July 31, 2014 A team of researchers from the Technical University of Denmark and the SUNCAT Institute at the SLAC National Accelerator Laboratory and Stanford University has demonstrated the superior performance of nanoparticles of platinum-yttrium (PtxY) as catalysts for oxygen electroreduction. Polymer electrolyte membrane fuel cells

  19. Au-Pt heteroaggregate dendritic nanostructures and Au-Pt alloy nanoparticles and their use as catalysts

    DOE Patents [OSTI]

    Eichhorn, Bryan W.; Zhou, Shenghu; Jackson, Gregory Scott

    2011-10-18

    Au--Pt heteroaggregate dendritic nanostructures and AuPt alloy nanoparticles, and their use as anodic catalysts in fuel cells.

  20. Bimetallic Nanocatalysts in Mesoporous Silica for Hydrogen Production from Coal-Derived Fuels

    SciTech Connect (OSTI)

    Kuila, Debasish; Ilias, Shamsuddin

    2013-02-13

    In steam reforming reactions (SRRs) of alkanes and alcohols to produce H2, noble metals such as platinum (Pt) and palladium (Pd) are extensively used as catalyst. These metals are expensive; so, to reduce noble-metal loading, bi-metallic nanocatalysts containing non-noble metals in MCM-41 (Mobil Composition of Material No. 41, a mesoporous material) as a support material with high-surface area were synthesized using one-pot hydrothermal procedure with a surfactant such as cetyltrimethylammonium bromide (CTAB) as a template. Bi-metallic nanocatalysts of Pd-Ni and Pd-Co with varying metal loadings in MCM-41 were characterized by x-ray diffraction (XRD), N2 adsorption, and Transmission electron microscopy (TEM) techniques. The BET surface area of MCM-41 (~1000 m2/g) containing metal nanoparticles decreases with the increase in metal loading. The FTIR studies confirm strong interaction between Si-O-M (M = Pd, Ni, Co) units and successful inclusion of metal into the mesoporous silica matrix. The catalyst activities were examined in steam reforming of methanol (SRM) reactions to produce hydrogen. Reference tests using catalysts containing individual metals (Pd, Ni and Co) were also performed to investigate the effect of the bimetallic system on the catalytic behavior in the SRM reactions. The bimetallic system remarkably improves the hydrogen selectivity, methanol conversion and stability of the catalyst. The results are consistent with a synergistic behavior for the Pd-Ni-bimetallic system. The performance, durability and thermal stability of the Pd-Ni/MCM-41 and Pd-Co/MCM-41 suggest that these materials may be promising catalysts for hydrogen production from biofuels. A part of this work for synthesis and characterization of Pd-Ni-MCM-41 and its activity for SRM reactions has been published (“Development of Mesoporous Silica Encapsulated Pd-Ni Nanocatalyst for Hydrogen Production” in “Production and Purification of Ultraclean

  1. Monodisperse metal nanoparticle catalysts on silica mesoporous supports: synthesis, characterizations, and catalytic reactions

    SciTech Connect (OSTI)

    Somorjai, G.A.

    2009-09-14

    The design of high performance catalyst achieving near 100% product selectivity at maximum activity is one of the most important goals in the modern catalytic science research. To this end, the preparation of model catalysts whose catalytic performances can be predicted in a systematic and rational manner is of significant importance, which thereby allows understanding of the molecular ingredients affecting the catalytic performances. We have designed novel 3-dimensional (3D) high surface area model catalysts by the integration of colloidal metal nanoparticles and mesoporous silica supports. Monodisperse colloidal metal NPs with controllable size and shape were synthesized using dendrimers, polymers, or surfactants as the surface stabilizers. The size of Pt, and Rh nanoparticles can be varied from sub 1 nm to 15 nm, while the shape of Pt can be controlled to cube, cuboctahedron, and octahedron. The 3D model catalysts were generated by the incorporation of metal nanoparticles into the pores of mesoporous silica supports via two methods: capillary inclusion (CI) and nanoparticle encapsulation (NE). The former method relies on the sonication-induced inclusion of metal nanoparticles into the pores of mesoporous silica, whereas the latter is performed by the encapsulation of metal nanoparticles during the hydrothermal synthesis of mesoporous silica. The 3D model catalysts were comprehensively characterized by a variety of physical and chemical methods. These catalysts were found to show structure sensitivity in hydrocarbon conversion reactions. The Pt NPs supported on mesoporous SBA-15 silica (Pt/SBA-15) displayed significant particle size sensitivity in ethane hydrogenolysis over the size range of 1-7 nm. The Pt/SBA-15 catalysts also exhibited particle size dependent product selectivity in cyclohexene hydrogenation, crotonaldehyde hydrogenation, and pyrrole hydrogenation. The Rh loaded SBA-15 silica catalyst showed structure sensitivity in CO oxidation reaction. In

  2. Fischer–Tropsch Synthesis: Effect of Reducing Agent for Aqueous-Phase Synthesis Over Ru Nanoparticle and Supported Ru Catalysts

    SciTech Connect (OSTI)

    Pendyala, Venkat Ramana Rao; Shafer, Wilson D.; Jacobs, Gary; Graham, Uschi M.; Khalid, Syed; Davis, Burtron H.

    2014-12-27

    The effect of the reducing agent on the performance of a ruthenium nanoparticle catalyst was investigated during aqueous-phase Fischer–Tropsch synthesis using a 1 L stirred tank reactor in the batch mode of operation. For the purpose of comparison, the activity and selectivity of NaY zeolite supported Ru catalyst were also studied. NaBH4 and hydrogen were used as reducing agents in our study, and hydrogen reduced catalysts exhibited higher activities than the NaBH4 reduced catalysts, because of higher extent of reduction and a relatively lower tendency toward agglomeration of Ru particles. The Ru nanoparticle catalyst displayed higher activities than the NaY zeolite supported Ru catalyst for both reducing agents. NaBH4 reduced catalysts are less active and the carbon dioxide selectivity is higher than the hydrogen reduced catalysts. The activity of the supported Ru catalyst (Ru/NaY) was 75 % of that of the Ru nanoparticle catalyst, and has the benefit of easy wax/catalyst slurry separation by filtration. Finally, the hydrogen reduced supported Ru catalyst exhibited superior selectivity towards hydrocarbons (higher C5+ selectivity and lower selectivity to methane) than all other catalysts tested.

  3. Palladium was supported on superparamagnetic nanoparticles: A magnetically recoverable catalyst for Heck reaction

    SciTech Connect (OSTI)

    Zhang, Fengwei; Niu, Jianrui; Wang, Haibo; Yang, Honglei; Jin, Jun; Liu, Na; Zhang, Yubin; Li, Rong; Ma, Jiantai

    2012-02-15

    Highlights: Black-Right-Pointing-Pointer Palladium-based heterogeneous catalyst was prepared facilely via the co-precipitation method. Black-Right-Pointing-Pointer The particles are nearly spherical in shape with an average size of 20 {+-} 1.0 nm. Black-Right-Pointing-Pointer The developed magnetic catalyst showed high activity for Heck reaction. Black-Right-Pointing-Pointer The catalyst was easily recovered from the reaction mixture with external magnetic field. Black-Right-Pointing-Pointer The catalytic efficiency for Heck reaction remains unaltered even after 6 repeated cycles. -- Abstract: A novel and high-performance palladium-based catalyst for Heck reaction was prepared easily by the co-precipitation method. The catalyst was characterized by transmission electron microscopy (TEM), X-ray powder diffraction (XRD), vibrating sample magnetometry (VSM), X-ray photoelectron spectroscopy (XPS) and atomic absorption spectrophotometry (AAS). The catalyst afforded a fast conversion of the 4-bromonitrobenzene to 4-nitrostilbene at a catalyst loading of 5 mol%, and the efficiency of the catalyst remains unaltered even after 6 repeated cycles. The excellent catalytic performance of the Pd/Fe{sub 3}O{sub 4} catalyst might be attributed to the enhanced synergistic effect between Pd nanoparticles and magnetite.

  4. Dendrimer-Encapsulated Ruthenium Nanoparticles as Catalysts for Lithium-O2 Batteries

    SciTech Connect (OSTI)

    Bhattacharya, Priyanka; Nasybulin, Eduard N.; Engelhard, Mark H.; Kovarik, Libor; Bowden, Mark E.; Li, Shari; Gaspar, Daniel J.; Xu, Wu; Zhang, Jiguang

    2014-12-01

    Dendrimer-encapsulated ruthenium nanoparticles (DEN-Ru) have been used as catalysts in lithium-O2 batteries for the first time. Results obtained from UV-vis spectroscopy, electron microscopy and X-ray photoelectron spectroscopy show that the nanoparticles synthesized by the dendrimer template method are ruthenium oxide instead of metallic ruthenium reported earlier by other groups. The DEN-Ru significantly improve the cycling stability of lithium (Li)-O2 batteries with carbon black electrodes and decrease the charging potential even at low catalyst loading. The monodispersity, porosity and large number of surface functionalities of the dendrimer template prevent the aggregation of the ruthenium nanoparticles making their entire surface area available for catalysis. The potential of using DEN-Ru as stand-alone cathode materials for Li-O2 batteries is also explored.

  5. A new bimetallic plasmonic photocatalyst consisting of gold(core)-copper(shell) nanoparticle and titanium(IV) oxide support

    SciTech Connect (OSTI)

    Sato, Yuichi; Naya, Shin-ichi; Tada, Hiroaki

    2015-10-01

    Ultrathin Cu layers (∼2 atomic layers) have been selectively formed on the Au surfaces of Au nanoparticle-loaded rutile TiO{sub 2} (Au@Cu/TiO{sub 2}) by a deposition precipitation-photodeposition technique. Cyclic voltammetry and photochronopotentiometry measurements indicate that the reaction proceeds via the underpotential deposition. The ultrathin Cu shell drastically increases the activity of Au/TiO{sub 2} for the selective oxidation of amines to the corresponding aldehydes under visible-light irradiation (λ > 430 nm). Photochronoamperometry measurements strongly suggest that the striking Cu shell effect stems from the enhancement of the charge separation in the localized surface plasmon resonance-excited Au/TiO{sub 2}.

  6. Improved Catalysts for Heavy Oil Upgrading Based on Zeolite Y Nanoparticles Encapsulated Stable Nanoporous Host

    SciTech Connect (OSTI)

    Conrad Ingram; Mark Mitchell

    2007-09-30

    The objective of this project is to synthesize nanocrystals of highly acidic zeolite Y nanoclusters, encapsulate them within the channels of mesoporous (nanoporous) silicates or nanoporous organosilicates, and evaluate the 'zeolite Y/Nanoporous host' composites as catalysts for the upgrading of heavy petroleum feedstocks. In comparison to conventionally-used zeolite Y catalysts of micron size particles, the nanocrystals (< 100 nm particle size) which contain shorter path lengths, are expected to allow faster diffusion of large hydrocarbon substrates and the catalysis products within and out of the zeolite's channels and cages (<1 nm size). This is expected to significantly reduce deactivation of the catalyst and to prolong their period of reactivity. Encapsulating zeolite Y nanocrystals within the nanoporous materials is expected to protect its external surfaces and pore entrances from being blocked by large hydrocarbon substrates, since these substrates will initially be converted to small molecules by the nanoporous host (a catalyst in its own right). The project consisted of four major tasks as follows: (1) synthesis of the nanoparticles of zeolite Y (of various chemical compositions) using various techniques such as the addition of organic additives to conventional zeolite Y synthesis mixtures to suppress zeolite Y crystal growth; (2) synthesis of nanoporous silicate host materials of up to 30 nm pore diameter, using poly (alkylene oxide) copolymers which when removed will yield a mesoporous material; (3) synthesis of zeolite Y/Nanoporous Host composite materials as potential catalysts; and (4) evaluation of the catalyst for the upgrading of heavy petroleum feedstocks.

  7. Dispersion enhanced metal/zeolite catalysts

    DOE Patents [OSTI]

    Sachtler, Wolfgang M. H.; Tzou, Ming-Shin; Jiang, Hui-Jong

    1987-01-01

    Dispersion stabilized zeolite supported metal catalysts are provided as bimetallic catalyst combinations. The catalyst metal is in a reduced zero valent form while the dispersion stabilizer metal is in an unreduced ionic form. Representative catalysts are prepared from platinum or nickel as the catalyst metal and iron or chromium dispersion stabilizer.

  8. Dispersion enhanced metal/zeolite catalysts

    DOE Patents [OSTI]

    Sachtler, W.M.H.; Tzou, M.S.; Jiang, H.J.

    1987-03-31

    Dispersion stabilized zeolite supported metal catalysts are provided as bimetallic catalyst combinations. The catalyst metal is in a reduced zero valent form while the dispersion stabilizer metal is in an unreduced ionic form. Representative catalysts are prepared from platinum or nickel as the catalyst metal and iron or chromium dispersion stabilizer.

  9. The properties of metal-based nanoparticle catalysts will be calculated

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    with unprecedented accuracy using massively parallel first-principles calculations. These calculations will provide fundamentally new insights into the electronic structure and b | Argonne Leadership Computing Facility The properties of metal-based nanoparticle catalysts will be calculated with unprecedented accuracy using massively parallel first-principles calculations. These calculations will provide fundamentally new insights into the electronic structure and b PI Name: Jeffrey Greeley

  10. Structure-Property Relationship in Metal Carbides and Bimetallic Alloys

    SciTech Connect (OSTI)

    Chen, Jingguan

    2014-03-04

    The primary objective of our DOE/BES sponsored research is to use carbide and bimetallic catalysts as model systems to demonstrate the feasibility of tuning the catalytic activity, selectivity and stability. Our efforts involve three parallel approaches, with the aim at studying single crystal model surfaces and bridging the materials gap and pressure gap between fundamental surface science studies and real world catalysis. The utilization of the three parallel approaches has led to the discovery of many intriguing catalytic properties of carbide and bimetallic surfaces and catalysts. During the past funding period we have utilized these combined research approaches to explore the possibility of predicting and verifying bimetallic and carbide combinations with enhanced catalytic activity, selectivity and stability.

  11. A pathway for the growth of core-shell Pt-Pd nanoparticles

    SciTech Connect (OSTI)

    Narula, Chaitanya Kumar; Yang, Xiaofan; Li, Chen; Pennycook, Stephen J; Lupini, Andrew R

    2015-10-12

    In this study, the aging of both Pt-Pd nanoparticles and core-shell Pt-Pd nanoparticles has been reported to result in alloying of Pt with Pd. In comparison to monometallic Pt catalysts, the growth of Pd-Pt bimetallics is slower; however, the mechanism of growth of particles and the mechanism by which Pd improves the hydrothermal durability of bimetallic Pd-Pt particles remains uncertain. In our work on hydrothermal aging of core-shell Pt-Pd nanoparticles, synthesized by solution methods, with varying Pd:Pt ratio of 1:4, 1:1, and 4:1, we compare the growth of core-shell Pt-Pd nanoparticles and find that particles grow by migrating and joining together. The unique feature of the observed growth is that Pd shells from both particles open up and join, allowing the cores to merge. At high temperatures, alloying occurs in good agreement with reports by other workers.

  12. On the nature of the deactivation of supported palladium nanoparticle catalysts in the decarboxylation of fatty acids.

    SciTech Connect (OSTI)

    Ping, E. W.; Pierson, J.; Wallace, R.; Miller, J. T.; Fuller, T. F.; Jones, C. W.

    2011-04-15

    Supported palladium catalysts are effective catalysts for the hydrogen-free decarboxylation of fatty acids. However, the catalysts deactivate severely after one use. Here, the recyclability of a well-defined, mesoporous silica-supported palladium nanoparticle catalyst is evaluated in the batch decarboxylation of stearic acid at 300 C under inert atmosphere, producing n-heptadecane. The nature of the catalyst deactivation is examined in detail via an array of characterization techniques. X-ray photoelectron spectroscopy (XPS) demonstrates that little palladium surface oxidation occurs over the course of the reaction, and a combination of X-ray absorption spectroscopy and transmission electron microscopy (TEM) suggests negligible particle sintering or agglomeration. Physisorption and chemisorption measurements demonstrate substantial loss in total surface area and porosity as well as accessible palladium surface area with these losses attributed to significant organic deposition on the catalyst, as verified via thermogravimetric analysis. High temperature calcination is applied to combust and remove these residues, but resultant nanoparticle agglomeration is significant. Solid state nuclear magnetic resonance spectroscopy (NMR), Fourier transform infrared spectroscopy (FT-IR) and solid dissolution followed by organic extraction methodologies demonstrate that the carbonaceous deposits are not coke but rather strongly adsorbed reactants and products. Detrimental coke formation, as suggested by prior literature, is verified to be absent, as extraction of the surface-deposited organic species yields nearly complete recovery of the total surface area, pore volume, and active palladium surface area. Furthermore, the regenerated catalyst exhibits a corresponding significant recovery of decarboxylation activity.

  13. Palladium nanoparticles produced by fermentatively cultivated bacteria as catalyst for diatrizoate removal with biogenic hydrogen

    SciTech Connect (OSTI)

    Hennebel, T.; Fitts, J.; Nevel, S. V.; Verschuere, S.; DeCorte, S.; DeGusseme, B.; Cuvelier, C.; vanderLelie, D.; Boon, N.; Verstraete, W.

    2011-05-17

    A new biological inspired method to produce nanopalladium is the precipitation of Pd on a bacterium, i.e., bio-Pd. This bio-Pd can be applied as catalyst in dehalogenation reactions. However, large amounts of hydrogen are required as electron donor in these reactions resulting in considerable costs. This study demonstrates how bacteria, cultivated under fermentative conditions, can be used to reductively precipitate bio-Pd catalysts and generate the electron donor hydrogen. In this way, one could avoid the costs coupled to hydrogen supply. The catalytic activities of Pd(0) nanoparticles produced by different strains of bacteria (bio-Pd) cultivated under fermentative conditions were compared in terms of their ability to dehalogenate the recalcitrant aqueous pollutants diatrizoate and trichloroethylene. While all of the fermentative bio-Pd preparations followed first order kinetics in the dehalogenation of diatrizoate, the catalytic activity differed systematically according to hydrogen production and starting Pd(II) concentration in solution. Batch reactors with nanoparticles formed by Citrobacter braakii showed the highest diatrizoate dehalogenation activity with first order constants of 0.45 {+-} 0.02 h{sup -1} and 5.58 {+-} 0.6 h{sup -1} in batches with initial concentrations of 10 and 50 mg L{sup -1} Pd, respectively. Nanoparticles on C. braakii, used in a membrane bioreactor treating influent containing 20 mg L{sup -1} diatrizoate, were capable of dehalogenating 22 mg diatrizoate mg{sup -1} Pd over a period of 19 days before bio-Pd catalytic activity was exhausted. This study demonstrates the possibility to use the combination of Pd(II), a carbon source and bacteria under fermentative conditions for the abatement of environmental halogenated contaminants.

  14. Molybdenum carbide nanoparticles as catalysts for oil sands upgrading: Dynamics and free-energy profiles

    SciTech Connect (OSTI)

    Liu, Xingchen; Salahub, Dennis R.

    2015-12-31

    There is no doubt that a huge gap exists in understanding heterogeneous catalysis between a cluster model of a few atoms and a bulk model of periodic slabs. Nanoparticles, which are crucial in heterogeneous catalysis in industry, lie in the middle of the gap. We present here our work on the computational modelling of molybdenum carbide nanoparticles (MCNPs) as the catalysts for the upgrading of oil sands in the in-situ environment, using benzene hydrogenation as a model reaction. With a cluster model, efforts were first made to understand the mechanism of the reaction with a density functional theory (DFT) study on the adsorption of benzene and its hydrogenation product – cyclohexane, as well as the cyclic hydrogenation reaction intermediates on the Mo{sub 2}C(0001) surface. From the thermodynamic data, along with literature information, it was found that the benzene hydrogenation reaction on molybdenum carbide happens most likely through a Langmuir-Hinshelwood mechanism with the gradual lifting up of the benzene molecule. The electron localization function (ELF) was then used to help understand the nature of the interactions between the MCNPs, identifying strong multi-center interactions between the adsorbates and the MCNPs. To enable the treatment of larger nanoparticles, a fast semi-empirical density functional tight-binding (DFTB) method was parameterized. With this method, the potential energy profiles of benzene hydrogenation reactions on different sizes of MCNPs are calculated. The study was then extended to consider a MCNP embedded in solvent (benzene), using a quantum mechanical (DFTB) / molecular mechanical approach. Calculations on the free energies profiles with the umbrella sampling method show that the entropy of the MCNPs and the solvent are essential in understanding the catalytic activity of the transition metal related nanoparticles for solid/liquid heterogeneous catalysis.

  15. AuRu/AC as an effective catalyst for hydrogenation reactions

    SciTech Connect (OSTI)

    Villa, Alberto; Chan-Thaw, Carine E.; Campisi, Sebastiano; Bianchi, Claudia L.; Wang, Di; Kotula, Paul G.; Kübel, Christian; Prati, Laura

    2015-03-23

    AuRu bimetallic catalysts have been prepared by sequential deposition of Au on Ru or vice versa obtaining different nanostructures: when Ru has been deposited on Au, a Aucore–Rushell has been observed, whereas the deposition of Au on Ru leads to a bimetallic phase with Ru enrichment on the surface. In the latter case, the unexpected Ru enrichment could be attributed to the weak adhesion of Ru on the carbon support, thus allowing Ru particles to diffuse on Au particles. Both structures result very active in catalysing the liquid phase hydrogenolysis of glycerol and levulinic acid but the activity, the selectivity and the stability depend on the structure of the bimetallic nanoparticles. Ru@Au/AC core–shell structure mostly behaved as the monometallic Ru, whereas the presence of bimetallic AuRu phase in Au@Ru/AC provides a great beneficial effect on both activity and stability.

  16. Hydrodechlorination of 1,2-Dichloroethane Catalyzedby Dendrimer-Derived Pt-Cu/SiO2 Catalysts

    SciTech Connect (OSTI)

    Xie, Hong; Howe, Jane Y; Schwartz, Viviane; Monnier, J. R.; Williams, Christopher T.; Ploehn, Harry J.

    2008-01-01

    Dendrimer-metal-nanocomposites (DMNs) were used as precursors to prepare SiO2 supported monometallic Pt, Cu and bimetallic Pt-Cu catalysts with Pt/Cu atomic ratios of 1:1 (Pt50Cu50) and 1:3 (Pt25Cu75). After impregnation of these DMNs onto the support, the catalysts were thermally treated and activated following an optimized protocol. Scanning transmission electron microscopy (STEM) shows that the metal nanoparticles in dendrimer-derived SiO2-supported catalysts are smaller and have a more narrow size distribution than those in conventional catalysts prepared using corresponding metal salts via the wet impregnation method. Slow deactivation was observed for hydrodechlorination of 1,2-dichloroethane over monometallic Cu catalysts, which showed an activity about one to two orders of magnitude lower than that of the Pt-containing catalysts. Hydrodechlorination of 1,2-dichloroethane over Pt and Pt50Cu50 catalysts mainly produces ethane and the selectivity towards ethane increases with temperature. For Pt25Cu75 catalyst, the selectivity towards ethane decreases in favor of ethylene. The overall activity decreases with increasing Cu loading in the catalysts. Activity based on surface Pt sites suggests the formation of bi-functional surfaces in Pt25Cu75 catalyst favoring C-Cl bond scission on Cu sites and hydrogenation of intermediate .CH2CH2. on Pt sites. Furthermore, kinetic analyses suggest different reaction mechanisms for hydrodechlorination of 1,2-dichloroethane over Pt and Cu-enriched surfaces in the Pt-Cu bimetallic catalysts.

  17. IMPROVED CATALYSTS FOR HEAVY OIL UPGRADING BASED ON ZEOLITE Y NANOPARTICLES ENCAPSULATED IN STABLE NANOPOROUS HOST

    SciTech Connect (OSTI)

    Conrad Ingram; Mark Mitchell

    2005-03-31

    The objectives of this project are to synthesis nanocrystals of highly acidic zeolite Y, encapsulate them within the channels of mesoporous (nanoporous) silicates or nanoporous organosilicates and evaluate the ''zeolite Y/Nanoporous host'' composites as catalysts for the upgrading of heavy petroleum feedstocks. Our results to date are summarized as follows. The synthesis of high surface ordered nanoporous silica of expanded pore diameter of 25 nm (larger than the standard size of 8.4 nm) using trimethylbenzene as a pore size expander was accomplished. The synthesis of zeolite Y nanoparticles with median pore size of approximately 50 nm (smaller than the 80 nm typically obtained with TMAOH) using combined TMABr/TMAOH as organic additives was also accomplished. The successful synthesis of zeoliteY/Nanoporous host composite materials by sequential combination of zeolite precursors and nanoporous material precursor mixtures was implied based on results from various characterization techniques such as X-Ray diffraction, infrared spectra, thermal analysis, porosimetry data. The resulting materials showed pore sizes up to 11 nm, and infrared band at 570 cm{sup -1} suggesting the presence of both phases. New results indicated that good quality highly ordered nanoporous silica host can be synthesized in the presence of zeolite Y seed precursor depending on the amount of precursor added. Preliminary research on the catalytic performance of the materials is underway. Probe acid catalyzed reactions, such as the cracking of cumene is currently being conducted. Work in the immediate future will be focused on the following three areas: (1) Further characterization of all-silica and aluminosilicate mesoporous materials with expanded pore sizes up to 30 nm will continue; (2) Research efforts to reduce the average particle size of zeolite nanoparticles down to 35-30 nm will continue; (3) Further synthesis of ZeoliteY/Nanoporous host composite catalysts of improved structural and

  18. IMPROVED CATALYSTS FOR HEAVY OIL UPGRADING BASED ON ZEOLITE Y NANOPARTICLES ENCAPSULATED STABLE NANOPOROUS HOST

    SciTech Connect (OSTI)

    Conrad Ingram; Mark Mitchell

    2005-03-21

    The objectives of this project are to synthesis nanocrystals of highly acidic zeolite Y, encapsulate them within the channels of mesoporous (nanoporous) silicates or nanoporous organosilicates and evaluate the ''zeolite Y/Nanoporous host'' composites as catalysts for the upgrading of heavy petroleum feedstocks. Our results to date are summarized as follows. The synthesis of high surface ordered nanoporous silica of expanded pore diameter of 25 nm (larger than the standard size of 8.4 nm) using trimethylbenzene as a pore size expander was accomplished. The synthesis of zeolite Y nanoparticles with median pore size of approximately 50 nm (smaller than the 80 nm typically obtained with TMAOH) using combined TMABr/TMAOH as organic additives was also accomplished. The successful synthesis of zeoliteY/Nanoporous host composite materials by sequential combination of zeolite precursors and nanoporous material precursor mixtures was implied based on results from various characterization techniques such as X-Ray diffraction, infrared spectra, thermal analysis, porosimetry data. The resulting materials showed pore sizes up to 11 nm, and infrared band at 570 cm{sup -1} suggesting the presence of both phases. Work in the immediate future will be focused on the following three areas: (1) Further characterization of all-silica and aluminosilicate mesoporous materials with expanded pore sizes up to 30 nm will continue; (2) Research efforts to reduce the average particle size of zeolite nanoparticles down to 35-30 nm will continue; (3) Further synthesis of polymer-SBA15 nanocomposites will be conducted by changing the amount and chemistry of the zeolitic precursors added; and (4) Investigation on the catalytic properties of the materials using probe catalytic reactions (such as cumene cracking), followed by catalytic testing for heavy oil conversion.

  19. An inorganic capping strategy for the seeded growth of versatile bimetallic nanostructures

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Pei, Yuchen; Maligal-Ganesh, Raghu V.; Xiao, Chaoxian; Goh, Tian -Wei; Brashler, Kyle; Gustafson, Jeffrey A.; Huang, Wenyu

    2015-09-11

    Metal nanostructures have attracted great attention in various fields due to their tunable properties through precisely tailored sizes, compositions and structures. Using mesoporous silica (mSiO2) as the inorganic capping agent and encapsulated Pt nanoparticles as the seeds, we developed a robust seeded growth method to prepare uniform bimetallic nanoparticles encapsulated in mesoporous silica shells (PtM@mSiO2, M = Pd, Rh, Ni and Cu). Unexpectedly, we found that the inorganic silica shell is able to accommodate an eight-fold volume increase in the metallic core by reducing its thickness. The bimetallic nanoparticles encapsulated in mesoporous silica shells showed enhanced catalytic properties and thermalmore » stabilities compared with those prepared with organic capping agents. As a result, this inorganic capping strategy could find a broad application in the synthesis of versatile bimetallic nanostructures with exceptional structural control and enhanced catalytic properties.« less

  20. Displacement of Hexanol by the Hexanoic Acid Overoxidation Product in Alcohol Oxidation on a Model Supported Palladium Nanoparticle Catalyst

    SciTech Connect (OSTI)

    Buchbinder, Avram M. [Northwestern Univ., Evanston, IL (United States). Dept. of Chemistry; Center for Catalysis and Surface Science; Inst. for Catalysis in Energy Processes; Ray, Natalie A. [Northwestern Univ., Evanston, IL (United States). Dept. of Chemistry; Center for Catalysis and Surface Science; Lu, Junling [Argonne National Lab. (ANL), Argonne, IL (United States). Energy System Division; Van Duyne, Richard P. [Northwestern Univ., Evanston, IL (United States). Dept. of Chemistry; Center for Catalysis and Surface Science; Inst. for Catalysis in Energy Processes; Stair, Peter C. [Northwestern Univ., Evanston, IL (United States). Dept. of Chemistry; Center for Catalysis and Surface Science; Inst. for Catalysis in Energy Processes; Argonne National Lab. (ANL), Argonne, IL (United States). Chemical Sciences and Engineering Division; Weitz, Eric [Northwestern Univ., Evanston, IL (United States). Dept. of Chemistry; Center for Catalysis and Surface Science; Inst. for Catalysis in Energy Processes; Geiger, Franz M. [Northwestern Univ., Evanston, IL (United States). Dept. of Chemistry; Center for Catalysis and Surface Science; Inst. for Catalysis in Energy Processes

    2011-11-09

    This work characterizes the adsorption, structure, and binding mechanism of oxygenated organic species from cyclohexane solution at the liquid/solid interface of optically flat alumina-supported palladium nanoparticle surfaces prepared by atomic layer deposition (ALD). The surface-specific nonlinear optical vibrational spectroscopy, sum-frequency generation (SFG), was used as a probe for adsorption and interfacial molecular structure. 1-Hexanoic acid is an overoxidation product and possible catalyst poison for the aerobic heterogeneous oxidation of 1-hexanol at the liquid/solid interface of Pd/Al?O? catalysts. Single component and competitive adsorption experiments show that 1-hexanoic acid adsorbs to both ALD-prepared alumina surfaces and alumina surfaces with palladium nanoparticles, that were also prepared by ALD, more strongly than does 1-hexanol. Furthermore, 1-hexanoic acid adsorbs with conformational order on ALD-prepared alumina surfaces, but on surfaces with palladium particles the adsorbates exhibit relative disorder at low surface coverage and become more ordered, on average, at higher surface coverage. Although significant differences in binding constant were not observed between surfaces with and without palladium nanoparticles, the palladium particles play an apparent role in controlling adsorbate structures. The disordered adsorption of 1-hexanoic acid most likely occurs on the alumina support, and probably results from modification of binding sites on the alumina, adjacent to the particles. In addition to providing insight on the possibility of catalyst poisoning by the overoxidation product and characterizing changes in its structure that result in only small adsorption energy changes, this work represents a step toward using surface science techniques that bridge the complexity gap between fundamental studies and realistic catalyst models.

  1. Controlling Bimetallic Nanostructures by the Microemulsion Method with Subnanometer Resolution Using a Prediction Model

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Buceta, D.; Tojo, C.; Vukmirovic, M.; Deepak, F. L.; Arturo Lopez-Quintela, M.

    2015-07-14

    We present a theoretical model to predict the atomic structure of Au/Pt nanoparticles synthesized in microemulsions. Excellent concordance with the experimental results shows that the structure of the nanoparticles can be controlled at sub-nanometer resolution simply by changing the reactants concentration. The results of this study not only offer a better understanding of the complex mechanisms governing reactions in microemulsions, but open up a simple new way to synthesize bimetallic nanoparticles with ad-hoc controlled nanostructures.

  2. Rhodium Catalysts in the Oxidation of CO by O2 and NO: Shape, Composition, and Hot Electron Generation

    SciTech Connect (OSTI)

    Renzas, James R.

    2010-03-08

    It is well known that the activity, selectivity, and deactivation behavior of heterogeneous catalysts are strongly affected by a wide variety of parameters, including but not limited to nanoparticle size, shape, composition, support, pretreatment conditions, oxidation state, and electronic state. Enormous effort has been expended in an attempt to understand the role of these factors on catalytic behavior, but much still remains to be discovered. In this work, we have focused on deepening the present understanding of the role of nanoparticle shape, nanoparticle composition, and hot electrons on heterogeneous catalysis in the oxidation of carbon monoxide by molecular oxygen and nitric oxide. These reactions were chosen because they are important for environmental applications, such as in the catalytic converter, and because there is a wide range of experimental and theoretical insight from previous single crystal work as well as experimental data on nanoparticles obtained using new state-of-the-art techniques that aid greatly in the interpretation of results on complex nanoparticle systems. In particular, the studies presented in this work involve three types of samples: {approx} 6.5 nm Rh nanoparticles of different shapes, {approx} 15 nm Rh1-xPdx core-shell bimetallic polyhedra nanoparticles, and Rh ultra-thin film ({approx} 5 nm) catalytic nanodiodes. The colloidal nanoparticle samples were synthesized using a co-reduction of metal salts in alcohol and supported on silicon wafers using the Langmuir-Blodgett technique. This synthetic strategy enables tremendous control of nanoparticle size, shape, and composition. Nanoparticle shape was controlled through the use of different organic polymer capping layers. Bimetallic core-shell nanoparticles were synthesized by careful choice of metal salt precursors. Rh/TiO{sub x} and Rh/GaN catalytic nanodiodes were fabricated using a variety of thin film device fabrication techniques, including reactive DC magnetron sputtering

  3. A ship-in-a-bottle strategy to synthesize encapsulated intermetallic nanoparticle catalysts: Exemplified for furfural hydrogenation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Maligal-Ganesh, Raghu V.; Xiao, Chaoxian; Goh, Tian Wei; Wang, Lin -Lin; Gustafson, Jeffrey; Pei, Yuchen; Qi, Zhiyuan; Johnson, Duane D.; Zhang, Shiran; Tao, Franklin; et al

    2016-01-28

    In this paper, intermetallic compounds are garnering increasing attention as efficient catalysts for improved selectivity in chemical processes. Here, using a ship-in-a-bottle strategy, we synthesize single-phase platinum-based intermetallic nanoparticles (NPs) protected by a mesoporous silica (mSiO2) shell by heterogeneous reduction and nucleation of Sn, Pb, or Zn in mSiO2-encapsulated Pt NPs. For selective hydrogenation of furfural to furfuryl alcohol, a dramatic increase in activity and selectivity is observed when intermetallic NPs catalysts are used in comparison to Pt@mSiO2. Among the intermetallic NPs, PtSn@mSiO2 exhibits the best performance, requiring only one-tenth of the quantity of Pt used in Pt@mSiO2 for similarmore » activity and near 100% selectivity to furfuryl alcohol. A high-temperature oxidation–reduction treatment easily reverses any carbon deposition-induced catalyst deactivation. X-ray photoelectron spectroscopy shows the importance of surface composition to the activity, whereas density functional theory calculations reveal that the enhanced selectivity on PtSn compared to Pt is due to the different furfural adsorption configurations on the two surfaces.« less

  4. Improved Catalysts for Heavy Oil Upgrading Based on Zeolite Y Nanoparticles Encapsulated Stable Nanoporous Host

    SciTech Connect (OSTI)

    Conrad Ingram; Mark Mitchell

    2006-09-30

    The addition of hydrothermally-aged zeolite Y precursor to an SBA-15 synthesis mixture under a mildly acidic condition resulted in the formation of mesoporous aluminosilicate catalyst, Al-SBA-15, containing strong Broensted acid sites and aluminum (Al) stabilized in a totally tetrahedral coordination. The physicochemical characteristics of the catalyst varied as a function of the synthesis conditions. The catalyst possessed surface areas ranging between 690 and 850 m{sup 2}/g, pore sizes ranging from 5.6 to 7.5 nm, and pore volumes up 1.03 cm{sup 3}, which were comparable to the parent SBA-15 synthesized under similar conditions. Two wt% Al was present in the catalyst that was obtained from the reaction mixture that contained the highest Al content. The Al remained stable in totally tetrahedral coordination after calcination at 550 C. The Al-SBA-15 mesoporous catalyst showed significant catalytic activity for cumene dealkylation, and the activity increased as the amount of zeolite precursor added to the SBA-15 mixture was increased. In preparation for the final phase of the project, the catalyst was embedded into psuedoboemite alumina (catapal B) matrix and then formed into pellets. In the final phase of the project, the pelletized catalyst will be evaluated for the conversion of heavy petroleum feedstocks to naphtha and middle distillates.

  5. Improved Catalysts for Heavy Oil Upgrading Based on Zeolite Y Nanoparticles Encapsulated Stable Nanoporous Host

    SciTech Connect (OSTI)

    Conrad Ingram; Mark Mitchell

    2007-03-31

    The addition of hydrothermally-aged zeolite Y precursor to an SBA-15 synthesis mixture under a mildly acidic condition resulted in the formation of a mesoporous aluminosilicate catalyst, AlSBA-15. The Al-SBA-15 mesoporous catalyst contains strong Br{umlt o}nsted acid sites and aluminum (Al) stabilized in a totally tetrahedral coordination. The physicochemical characteristics of the catalyst varied as a function of the synthesis conditions. The catalyst possessed surface areas ranging between 690 and 850 m{sup 2}/g, pore sizes ranging from 5.6 to 7.5 nm, and pore volumes up 1.03 cm{sup 3}, which were comparable to the parent SBA-15 synthesized under similar conditions. Two wt % Al was present in the catalyst that was obtained from the reaction mixture that contained the highest Al content. The Al remained stable in totally tetrahedral coordination after calcination at a temperature of 550 C. The Al-SBA-15 mesoporous catalyst showed significant catalytic activity for cumene dealkylation, and the activity increased as the amount of zeolite precursor added to the SBA-15 mixture was increased. In preparation for the final phase of the project, the catalyst was embedded into a psuedoboemite alumina (catapal B) matrix and then formed into pellets. In the final phase of the project, the pelletized catalyst is being evaluated for the conversion of a heavy petroleum feedstock to naphtha and middle distillates. This phase was significantly delayed during the past six months due to a serious malfunction of the fume hoods in the Clark Atlanta University's Research Center for Science and Technology, where the project is being conducted. The fume hood system was repaired and the catalyst evaluation is now underway.

  6. Mass-selected Nanoparticles of PtxY as Model Catalysts for Oxygen...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    atoms in these alloys was found to be much higher than in pure Pt. However, the long-term stability of these catalysts is typically compromised by their tendency to degrade via...

  7. Uniform 2 nm gold nanoparticles supported on iron oxides as active catalysts for CO oxidation reaction: Structure-activity relationship

    SciTech Connect (OSTI)

    Guo, Yu; Senanayake, Sanjaya; Gu, Dong; Jin, Zhao; Du, Pei -Pei; Si, Rui; Xu, Wen -Qian; Huang, Yu -Ying; Tao, Jing; Song, Qi -Sheng; Jia, Chun -Jia; Schueth, Ferdi

    2015-01-12

    Uniform Au nanoparticles (~2 nm) with narrow size-distribution (standard deviation: 0.5–0.6 nm) supported on both hydroxylated (Fe_OH) and dehydrated iron oxide (Fe_O) have been prepared by either deposition-precipitation (DP) or colloidal-deposition (CD) methods. Different structural and textural characterizations were applied to the dried, calcined and used gold-iron oxide samples. The transmission electron microscopy (TEM) and high-resolution TEM (HRTEM) described the high homogeneity in the supported Au nanoparticles. The ex-situ and in-situ X-ray absorption fine structure (XAFS) characterization monitored the electronic and short-range local structure of active gold species. The synchrotron-based in-situ X-ray diffraction (XRD), together with the corresponding temperature-programmed reduction by hydrogen (H₂-TPR), indicated a structural evolution of the iron-oxide supports, correlating to their reducibility. An inverse order of catalytic activity between DP (Au/Fe_OH < Au/Fe_O) and CD (Au/Fe_OH > Au/Fe_O) was observed. Effective gold-support interaction results in a high activity for gold nanoparticles, locally generated by the sintering of dispersed Au atoms on the oxide support in the DP synthesis, while a hydroxylated surface favors the reactivity of externally introduced Au nanoparticles on Fe_OH support for the CD approach. This work reveals why differences in the synthetic protocol translate to differences in the catalytic performance of Au/FeOx catalysts with very similar structural characteristics in CO oxidation.

  8. Uniform 2 nm gold nanoparticles supported on iron oxides as active catalysts for CO oxidation reaction: Structure-activity relationship

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Guo, Yu; Senanayake, Sanjaya; Gu, Dong; Jin, Zhao; Du, Pei -Pei; Si, Rui; Xu, Wen -Qian; Huang, Yu -Ying; Tao, Jing; Song, Qi -Sheng; et al

    2015-01-12

    Uniform Au nanoparticles (~2 nm) with narrow size-distribution (standard deviation: 0.5–0.6 nm) supported on both hydroxylated (Fe_OH) and dehydrated iron oxide (Fe_O) have been prepared by either deposition-precipitation (DP) or colloidal-deposition (CD) methods. Different structural and textural characterizations were applied to the dried, calcined and used gold-iron oxide samples. The transmission electron microscopy (TEM) and high-resolution TEM (HRTEM) described the high homogeneity in the supported Au nanoparticles. The ex-situ and in-situ X-ray absorption fine structure (XAFS) characterization monitored the electronic and short-range local structure of active gold species. The synchrotron-based in-situ X-ray diffraction (XRD), together with the corresponding temperature-programmed reductionmore » by hydrogen (H₂-TPR), indicated a structural evolution of the iron-oxide supports, correlating to their reducibility. An inverse order of catalytic activity between DP (Au/Fe_OH < Au/Fe_O) and CD (Au/Fe_OH > Au/Fe_O) was observed. Effective gold-support interaction results in a high activity for gold nanoparticles, locally generated by the sintering of dispersed Au atoms on the oxide support in the DP synthesis, while a hydroxylated surface favors the reactivity of externally introduced Au nanoparticles on Fe_OH support for the CD approach. This work reveals why differences in the synthetic protocol translate to differences in the catalytic performance of Au/FeOx catalysts with very similar structural characteristics in CO oxidation.« less

  9. Surface Structures of Cubo-octahedral Pt-Mo Catalyst Nanoparticles from Monte Carlo Simulations

    SciTech Connect (OSTI)

    Wang, Guofeng; Van Hove, M.A.; Ross, P.N.; Baskes, M.I.

    2005-03-31

    The surface structures of cubo-octahedral Pt-Mo nanoparticles have been investigated using the Monte Carlo method and modified embedded atom method potentials that we developed for Pt-Mo alloys. The cubo-octahedral Pt-Mo nanoparticles are constructed with disordered fcc configurations, with sizes from 2.5 to 5.0 nm, and with Pt concentrations from 60 to 90 at. percent. The equilibrium Pt-Mo nanoparticle configurations were generated through Monte Carlo simulations allowing both atomic displacements and element exchanges at 600 K. We predict that the Pt atoms weakly segregate to the surfaces of such nanoparticles. The Pt concentrations in the surface are calculated to be 5 to 14 at. percent higher than the Pt concentrations of the nanoparticles. Moreover, the Pt atoms preferentially segregate to the facet sites of the surface, while the Pt and Mo atoms tend to alternate along the edges and vertices of these nanoparticles. We found that decreasing the size or increasing the Pt concentration leads to higher Pt concentrations but fewer Pt-Mo pairs in the Pt-Mo nanoparticle surfaces.

  10. ZnO nanoparticle catalysts for use in biodiesel production and method of making

    DOE Patents [OSTI]

    Yan, Shuli; Salley, Steven O; Ng, K. Y. Simon

    2014-11-25

    A method of forming a biodiesel product and a heterogeneous catalyst system used to form said product that has a high tolerance for the presence of water and free fatty acids (FFA) in the oil feedstock is disclosed. This catalyst system may simultaneously catalyze both the esterification of FAA and the transesterification of triglycerides present in the oil feedstock. The catalyst system is comprised of a mixture of zinc oxide and a second metal oxide. The zinc oxide includes a mixture of amorphous zinc oxide and zinc oxide nanocrystals, the zinc nanocrystals having a mean grain size between about 20 and 80 nanometers with at least one of the nanocrystals including a mesopore having a diameter of about 5 to 15 nanometers. Preferably, the second metal oxide is a lanthanum oxide, the lanthanum oxide being selected as one from the group of La.sub.2CO.sub.5, LaOOH, and combinations or mixtures thereof.

  11. Identifying low-coverage surface species on supported noble metal nanoparticle catalysts by DNP-NMR

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Johnson, Robert L.; Perras, Frédéric A.; Kobayashi, Takeshi; Schwartz, Thomas J.; Dumesic, James A.; Shanks, Brent H.; Pruski, Marek

    2015-11-20

    DNP-NMR spectroscopy has been applied to enhance the signal for organic molecules adsorbed on γ-Al2O3-supported Pd nanoparticles. In addition, by offering >2500-fold time savings, the technique enabled the observation of 13C-13C cross-peaks for low coverage species, which were assigned to products from oxidative degradation of methionine adsorbed on the nanoparticle surface.

  12. Identifying low-coverage surface species on supported noble metal nanoparticle catalysts by DNP-NMR

    SciTech Connect (OSTI)

    Johnson, Robert L.; Perras, Frdric A.; Kobayashi, Takeshi; Schwartz, Thomas J.; Dumesic, James A.; Shanks, Brent H.; Pruski, Marek

    2015-11-20

    DNP-NMR spectroscopy has been applied to enhance the signal for organic molecules adsorbed on ?-Al2O3-supported Pd nanoparticles. In addition, by offering >2500-fold time savings, the technique enabled the observation of 13C-13C cross-peaks for low coverage species, which were assigned to products from oxidative degradation of methionine adsorbed on the nanoparticle surface.

  13. IMPROVED CATALYSTS FOR HEAVY OIL UPGRADING BASED ON ZEOLITE Y NANOPARTICLES ENCAPSULATED STABLE NANOPOROUS HOST

    SciTech Connect (OSTI)

    Conrad Ingram; Mark Mitchell

    2006-06-20

    Al-SBA-15 mesoporous catalysts with strong Broensted acid sites and Al stabilized in a totally tetrahedral coordination was synthesized from the addition of hydrothermally aged zeolite Y precursor to SBA-15 synthesis mixture under mildly acidic condition of pH 5.5. The materials possessed surface areas between 690 and 850 m{sup 2}/g, pore sizes ranging from 5.6 to 7.5 nm and pore volumes up 1.03 cm{sup 3}, which were comparable to parent SBA-15 synthesized under similar conditions. Up to 2 wt. % Al was present in the most aluminated sample that was investigated, and the Al remained stable in totally tetrahedral coordination, even after calcination at 550 C. The Al-SBA-15 mesoporous catalyst showed significant catalytic activity for cumene dealkylation, and activity increased as the amount of zeolite precursor added to the SBA-15 mixture was increased. The catalyst's activity was not affected by the aging time of the precursor for up to the 24 hr aging time investigated. This method of introducing Al and maintaining it in a total tetrahedral coordination is very effective, in comparison to other direct and post synthesis alumination methods reported. The catalytic performance of the zeolite Y/SBA-15 composite materials will be compared with that of pure SBA-15. The catalysts will then be evaluated for the conversion of heavy petroleum feedstocks.

  14. Zinc ferrite nanoparticle as a magnetic catalyst: Synthesis and dye degradation

    SciTech Connect (OSTI)

    Mahmoodi, Niyaz Mohammad

    2013-10-15

    Graphical abstract: Photocatalytic degradation of Reactive Red 198 and Reactive Red 120 by the synthesized zinc ferrite nanoparticle. - Highlights: Magnetic zinc ferrite nanoparticle was synthesized and characterized. Photocatalytic dye degradation by magnetic nanoparticle was studied. Formate, acetate and oxalate were detected as dominant dye degradation aliphatic intermediates. Nitrate and sulfate ions were detected as mineralization products of dyes. Zinc ferrite nanoparticle was an effective magnetic photocatalyst to degrade dyes. - Abstract: In this paper, magnetic zinc ferrite (ZnFe{sub 2}O{sub 4}) nanoparticle was synthesized and its photocatalytic dye degradation ability from colored wastewater was studied. Reactive Red 198 (RR198) and Reactive Red 120 (RR120) were used as model dyes. The characteristics of ZnFe{sub 2}O{sub 4} were investigated using Fourier transform infrared (FTIR), X-ray diffraction (XRD) and scanning electron microscope (SEM). Photocatalytic dye degradation by ZnFe{sub 2}O{sub 4} was studied by UVvis spectrophotometer and ion chromatography (IC). The effects of ZnFe{sub 2}O{sub 4} dosage, initial dye concentration and salt on dye degradation were evaluated. Formate, acetate and oxalate anions were detected as dominant aliphatic intermediate. Inorganic anions (nitrate and sulfate anions) were detected as dye mineralization products. The results indicated that ZnFe{sub 2}O{sub 4} could be used as a magnetic photocatalyst to degrade dyes from colored wastewater.

  15. A pathway for the growth of core-shell Pt-Pd nanoparticles

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Narula, Chaitanya Kumar; Yang, Xiaofan; Li, Chen; Pennycook, Stephen J; Lupini, Andrew R

    2015-10-12

    In this study, the aging of both Pt-Pd nanoparticles and core-shell Pt-Pd nanoparticles has been reported to result in alloying of Pt with Pd. In comparison to monometallic Pt catalysts, the growth of Pd-Pt bimetallics is slower; however, the mechanism of growth of particles and the mechanism by which Pd improves the hydrothermal durability of bimetallic Pd-Pt particles remains uncertain. In our work on hydrothermal aging of core-shell Pt-Pd nanoparticles, synthesized by solution methods, with varying Pd:Pt ratio of 1:4, 1:1, and 4:1, we compare the growth of core-shell Pt-Pd nanoparticles and find that particles grow by migrating and joiningmore » together. The unique feature of the observed growth is that Pd shells from both particles open up and join, allowing the cores to merge. At high temperatures, alloying occurs in good agreement with reports by other workers.« less

  16. Controlling bimetallic nanostructures by the microemulsion method with subnanometer resolution using a prediction model

    SciTech Connect (OSTI)

    Buceta, David; Tojo, Concha; Vukmirovic, Miomir B.; Deepak, F. Leonard; Lopez-Quintela, M. Arturo

    2015-06-02

    In this study, we present a theoretical model to predict the atomic structure of Au/Pt nanoparticles synthesized in microemulsions. Excellent concordance with the experimental results shows that the structure of the nanoparticles can be controlled at sub-nanometer resolution simply by changing the reactants concentration. The results of this study not only offer a better understanding of the complex mechanisms governing reactions in microemulsions, but open up a simple new way to synthesize bimetallic nanoparticles with ad-hoc controlled nanostructures.

  17. IMPROVED CATALYSTS FOR HEAVY OIL UPGRADING BASED ON ZEOLITE Y NANOPARTICLES ENCAPSULATED IN STABLE NANOPOROUS HOSTS

    SciTech Connect (OSTI)

    Conrad Ingram; Mark Mitchell

    2004-06-30

    The focus of this project is to improve the catalytic performance of zeolite Y for heavy petroleum hydrocracking by synthesizing nanoparticles of the zeolite ({approx}20-30 nm) inside nanoporous silicate or aluminosilicate hosts of similar pore diameters. The encapsulated zeolite nanoparticles are expected to possess pores of reduced diffusional path lengths, hence hydrocarbon substrates will diffuse in, are converted and the products quickly diffused out. This is expected to prevent over-reaction, hence minimizing pore blockage and active sites deactivation. In this phase of the project, research activities were focused on refining procedures to: (a) improve the synthesis of ordered, high surface area nanoporous silica, such as SBA-15, with expanded pore size using trimethylbenzene as additive to the parent SBA-15 synthesis mixture; and (b) reduce the particle size of zeolite Y such that they can be effectively incorporated into the nanoporous silicas. The synthesis of high surface ordered nanoporous silica containing enlarged pores of diameter of 25 nm (larger than the standard size of 8.4 nm) using trimethylbenzene as a pore size expander was accomplished. The synthesis of zeolite Y nanoparticles with median pore size of approximately 50 nm (smaller than the 80 nm typically obtained with TMAOH) using combined TMABr/TMAOH as organic additives was also accomplished.

  18. IMPROVED CATALYSTS FOR HEAVY OIL UPGRADING BASED ON ZEOLITE Y NANOPARTICLES ENCAPSULATED IN STABLE NANOPOROUS HOSTS

    SciTech Connect (OSTI)

    Conrad Ingram

    2003-09-03

    The focus of this project is to improve the catalytic performance of zeolite Y for petroleum hydrocracking by synthesizing nanoparticles of the zeolite ({approx}20-25 nm) inside nanoporous silicate or aluminosilicate hosts. The encapsulated zeolite nanoparticles are expected to possess reduced diffusional path lengths, hence hydrocarbon substrates will diffuse in, are converted and the products quickly diffused out. This is expected to prevent over-reaction and the blocking of the zeolite pores and active sites will be minimized. In this phase of the project, procedures for the synthesis of ordered nanoporous silica, such as SBA-15, using block copolymers and nonionic surfactant were successful reproduced. Expansion of the pores sizes of the nanoporous silica using trimethylbenzene is suggested based on shift in the major X-Ray Diffraction peak in the products to lower 2 angles compared with the parent SBA-15 material. The synthesis of ordered nanoporous materials with aluminum incorporated in the predominantly silicate framework was attempted but is not yet successful, and the procedures needs will be repeated and modified as necessary. Nanoparticles of zeolite Y of particle sizes in the range 40 nm to 120 nm were synthesized in the presence of TMAOH as the particle size controlling additive.

  19. Non Platinum Bimetallic Cathode Electrocatalysts | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Non Platinum Bimetallic Cathode Electrocatalysts Part of a 100 million fuel cell award announced by DOE Secretary Bodman on Oct. 25, 2006. PDF icon 3anl.pdf More Documents & ...

  20. Preparation of silver nanoparticles/graphene nanosheets as a catalyst for electrochemical oxidation of methanol

    SciTech Connect (OSTI)

    Han, Kun; Miao, Peng; Tang, Yuguo; Tong, Hui; Zhu, Xiaoli; Liu, Tao; Cheng, Wenbo

    2014-02-03

    In this report, silver nanoparticles (AgNPs) decorated graphene nanosheets have been prepared based on the reduction of Ag ions by hydroquinone, and their catalytic performance towards the electrochemical oxidation of methanol is investigated. The synthesis of the nano-composite is confirmed by transmission electron microscope measurements and UV-vis absorption spectra. Excellent electrocatalytic performance of the material is demonstrated by cyclic voltammograms. This material also contributes to the low peak potential of methanol oxidation compared with most of the other materials.

  1. Non-Platinum Bimetallic Cathode Electrocatalysts | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Platinum Bimetallic Cathode Electrocatalysts Non-Platinum Bimetallic Cathode Electrocatalysts This presentation, which focuses on non-platinum bimetallic cathode electrocatalysts, was given by Debbie Myers of Argonne National Laboratory at a February 2007 meeting on new fuel cell projects. new_fc_myers_argonne.pdf (1.74 MB) More Documents & Publications Non Platinum Bimetallic Cathode Electrocatalysts Catalysis Working Group Meeting: June 2015 Catalysis Working Group Meeting: January

  2. Novel Pt/Mg(In)(Al)O catalysts for ethane and propane dehydrogenation

    SciTech Connect (OSTI)

    Sun, Pingping; Siddiqi, Georges; Vining, William C.; Chi, Miaofang; Bell, Alexis T.

    2011-10-28

    Catalysts for the dehydrogenation of light alkanes were prepared by dispersing Pt on the surface of a calcined hydrotalcite-like support containing indium, Mg(In)(Al)O. Upon reduction in H{sub 2} at temperatures above 673 K, bimetallic particles of PtIn are observed by TEM, which have an average diameter of 1 nm. Analysis of Pt LIII-edge extended X-ray absorption fine structure (EXAFS) data shows that the In content of the bimetallic particles increases with increasing bulk In/Pt ratio and reduction temperature. Pt LIII-edge X-ray absorption near edge structure (XANES) indicates that an increasing donation of electronic charge from In to Pt occurs with increasing In content in the PtIn particles. The activity and selectivity of the Pt/Mg(In)(Al)O catalysts for ethane and propane dehydrogenation reactions are strongly dependent on the bulk In/Pt ratio. For both reactants, maximum activity was achieved for a bulk In/Pt ratio of 0.48, and at this In/Pt ratio, the selectivity to alkene was nearly 100%. Coke deposition was observed after catalyst use for either ethane or propane dehydrogenation, and it was observed that the alloying of Pt with In greatly reduced the amount of coke deposited. Characterization of the deposit by Raman spectroscopy indicates that the coke is present as highly disordered graphite particles <30 nm in diameter. While the amount of coke deposited during ethane and propane dehydrogenation are comparable, the effects on activity are dependent on reactant composition. Coke deposition had no effect on ethane dehydrogenation activity, but caused a loss in propane dehydrogenation activity. This difference is attributed to the greater ease with which coke produced on the surface of PtIn nanoparticles migrates to the support during ethane dehydrogenation versus propane dehydrogenation.

  3. IMPROVED CATALYSTS FOR HEAVY OIL UPGRADING BASED ON ZEOLITE Y NANOPARTICLES ENCAPSULATED IN STABLE NANOPOROUS HOST

    SciTech Connect (OSTI)

    Conrad Ingram; Mark Mitchell

    2005-11-15

    Composite materials of SBA-15/zeolite Y were synthesized from zeolite Y precursor and a synthesis mixture of mesoporous silicate SBA-15 via a hydrothermal process in the presence of a slightly acidic media of pH 4-6 with 2M H{sub 2}SO{sub 4}. The SBA-15/ZY composites showed Type IV adsorption isotherms, narrow BJH average pore size distribution of 4.9 nm, surface areas up to 800 m{sup 2}2/g and pore volumes 1.03 cm{sup 3}, all comparable to pure SBA-15 synthesized under similar conditions. Chemical analysis revealed Si/Al ratio down to 8.5 in the most aluminated sample, and {sup 27}AlSS MAS NMR confirmed aluminum was in tetrahedral coordination. This method of introduction of Al in pure T{sub d} coordination is effective in comparison to other direct and post synthesis alumination methods. Bronsted acid sites were evident from a pyridinium peak at 1544 cm-1 in the FTIR spectrum after pyridine adsorption, and from NH{sub 3} -TPD experiments. SBA-15/ZY composites showed significant catalytic activities for the dealkylation of isopropylbenzene to benzene and propene, similar to those of commercial zeolite Y. It was observed that higher conversion for catalysts synthesized with high amount of ZY precursor mixture added to the SBA-15. Over all the composites has shown good catalytic activity. Further studies will be focused on gaining a better understand the nature of the precursor, and to characterize and to locate the acid sites in the composite material. The composite will also be evaluated for heavy oil conversion to naphtha and middle distillates.

  4. Durable Catalysts for Fuel Cell Protection during Transient Conditions

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    OER catalyst as a separate phase - as nanoparticles. 2. Inhibition of the ORR on the anode ... Structural considerations Discrete nanoparticles in order to minimize blocking of the ...

  5. Nanoparticle Technology for Biorefinery of Non-Food Source Feedstocks

    Broader source: Energy.gov [DOE]

    Fact Sheet About Development of Microalgae-produced Biofuels Utilizing Mesoporous Nanoparticle Catalysts

  6. Final Technical Report: First Principles Investigations for the Ensemble Effects of PdAu and PtAu Bimetallic Nanocatalysts

    SciTech Connect (OSTI)

    Ruqian Wu

    2012-05-18

    Bimetallic surfaces with tunable chemical properties have attracted broad attention in recent years due to their ample potential for heterogeneous catalysis applications. The local chemical properties of constituents are strongly altered from their parent metals by 'ligand effect', a term encompassing the influences of charge transfer, orbital rehybridization and lattice strain. In comparison to the aforementioned, the 'ensemble effect' associated with particular arrangements of the active constituents have received much less attention, despite their notable importance towards the determination of reactivity and selectivity of bimetallic catalysts. We performed theoretical studies for understanding the ensemble effects on bimetallic catalysis: (i) simulations for the formation of different ensembles on PdAu and PtAu nanoclusters; (ii) studies of the size, shape, and substrate dependence of their electronic properties; and (iii) simulations for model reactions such as CO oxidation, methanol, ethylene and water dehydrogenation on PdAu and PtAu nanoclusters. In close collaboration with leading experimental groups, our theoretical research elucidated the fundamentals of Au based bimetallic nanocatalysts.

  7. Hydrocarbon fuel reforming catalyst and use thereof

    DOE Patents [OSTI]

    Ming, Qimin; Healey, Todd; Irving, Patricia Marie

    2006-06-27

    The subject invention is a catalyst consisting of an oxide or mixed oxide support and bimetallic catalytically active compounds. The supporting oxide can be a single oxide, such as Al.sub.2O.sub.3; it also can be a mixture of oxides, such as Y.sub.2O.sub.3 stabilized ZrO.sub.2 (YSZ), Al.sub.2O.sub.3 with CeO.sub.2, Al.sub.2O.sub.3 with YSZ and others. The bimetallic compounds, acting as active components, are selected from platinum, and ruthenium, prepared in an appropriate ratio. The catalyst is used in the steam reforming of hydrocarbons to produce hydrogen for applications such as polymer electrolyte membrane fuel cells.

  8. Highly porous non-precious bimetallic electrocatalysts for efficient hydrogen evolution

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lu, Qi; Hutchings, Gregory S.; Yu, Weiting; Zhou, Yang; Forest, Robert V.; Tao, Runzhe; Rosen, Jonathan; Yonemoto, Bryan T.; Cao, Zeyuan; Zheng, Haimei; et al

    2015-03-16

    One of the key components of carbon dioxide-free hydrogen production is a robust and efficient non-precious metal catalyst for the hydrogen evolution reaction. We report that a hierarchical nanoporous copper-titanium bimetallic electrocatalyst is able to produce hydrogen from water under a mild overpotential at more than twice the rate of state-of-the- art carbon-supported platinum catalyst. Although both copper and titanium are known to be poor hydrogen evolution catalysts, the combination of these two elements creates unique copper-copper-titanium hollow sites, which have a hydrogen-binding energy very similar to that of platinum, resulting in an exceptional hydrogen evolution activity. Moreover, the hierarchicalmore » porosity of the nanoporous-copper titanium catalyst also contributes to its high hydrogen evolution activity, because it provides a large-surface area for electrocatalytic hydrogen evolution, and improves the mass transport properties. Moreover, the catalyst is self-supported, eliminating the overpotential associated with the catalyst/support interface.« less

  9. Highly porous non-precious bimetallic electrocatalysts for efficient hydrogen evolution

    SciTech Connect (OSTI)

    Lu, Qi; Hutchings, Gregory S.; Yu, Weiting; Zhou, Yang; Forest, Robert V.; Tao, Runzhe; Rosen, Jonathan; Yonemoto, Bryan T.; Cao, Zeyuan; Zheng, Haimei; Xiao, John Q.; Jiao, Feng; Chen, Jingguang G.

    2015-03-16

    One of the key components of carbon dioxide-free hydrogen production is a robust and efficient non-precious metal catalyst for the hydrogen evolution reaction. We report that a hierarchical nanoporous copper-titanium bimetallic electrocatalyst is able to produce hydrogen from water under a mild overpotential at more than twice the rate of state-of-the- art carbon-supported platinum catalyst. Although both copper and titanium are known to be poor hydrogen evolution catalysts, the combination of these two elements creates unique copper-copper-titanium hollow sites, which have a hydrogen-binding energy very similar to that of platinum, resulting in an exceptional hydrogen evolution activity. Moreover, the hierarchical porosity of the nanoporous-copper titanium catalyst also contributes to its high hydrogen evolution activity, because it provides a large-surface area for electrocatalytic hydrogen evolution, and improves the mass transport properties. Moreover, the catalyst is self-supported, eliminating the overpotential associated with the catalyst/support interface.

  10. Stainless Steel to Titanium Bimetallic Transitions

    SciTech Connect (OSTI)

    Kaluzny, J. A.; Grimm, C.; Passarelli, D.

    2015-01-01

    In order to use stainless steel piping in an LCLS-II (Linac Coherent Light Source Upgrade) cryomodule, stainless steel to titanium bimetallic transitions are needed to connect the stainless steel piping to the titanium cavity helium vessel. Explosion bonded stainless steel to titanium transition pieces and bimetallic transition material samples have been tested. A sample transition tube was subjected to tests and x-ray examinations between tests. Samples of the bonded joint material were impact and tensile tested at room temperature as well as liquid helium temperature. The joint has been used successfully in horizontal tests of LCLS-II cavity helium vessels and is planned to be used in LCLS-II cryomodules. Results of material sample and transition tube tests will be presented.

  11. Non-Platinum Bimetallic Cathode Electrocatalysts

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bimetallic Cathode Electrocatalysts Debbie Myers - Argonne National Laboratory William A. Goddard, III - California Institute of Technology Clemens Heske - University of Nevada - Las Vegas Karren More - Oak Ridge National Laboratory John R. Regalbuto - University of Illinois - Chicago Piotr Zelenay - Los Alamos National Laboratory (beginning FY'08) Hydrogen, Fuel Cells & Infrastructure Technologies New Project Kick-Off Meeting Washington, D.C., February 13-14, 2007 This presentation does not

  12. Insight into the Catalytic Mechanism of Bimetallic Platinum–Copper Core–Shell Nanostructures for Nonaqueous Oxygen Evolution Reactions

    SciTech Connect (OSTI)

    Ma, Lu; Luo, Xiangyi; Kropf, A. Jeremy; Wen, Jianguo; Wang, Xiaoping; Lee, Sungsik; Myers, Deborah J.; Miller, Dean; Wu, Tianpin; Lu, Jun; Amine, Khalil

    2016-01-01

    The oxygen evolution reaction (OER) plays a critical role in multiple energy conversion and storage applications. However, its sluggish kinetics usually results in large voltage polarization and unnecessary energy loss. Therefore, designing efficient catalysts that could facilitate this process has become an emerging topic. Here, we present a unique Pt–Cu core–shell nanostructure for catalyzing the nonaqueous OER. The catalysts were systematically investigated with comprehensive spectroscopic techniques, and applied in nonaqueous Li–O2 electrochemical cells, which exhibited dramatically reduced charging overpotential (<0.2 V). The superior performance is explained by the robust Cu(I) surface sites stabilized by the Pt core in the nanostructure. The insights into the catalytic mechanism of the unique Pt–Cu core–shell nanostructure gained in this work are expected to serve as a guide for future design of other nanostructured bimetallic OER catalysts.

  13. Enhanced Dry Reforming of Methane on Ni and Ni-Pt Catalysts Synthesized by Atomic Layer Deposition

    SciTech Connect (OSTI)

    Gould, Troy D.; Montemore, Matthew M.; Lubers, Alia M.; Ellis, Lucas D.; Weimer, Alan; Falconer, John L.; Medlin, James W.

    2015-02-25

    Atomic layer deposition (ALD) was used to deposit Ni and Pt on alumina supports to form monometallic and bimetallic catalysts with initial particle sizes of 12.4 nm. The ALD catalysts were more active (per mass of metal) than catalysts prepared by incipient wetness (IW) for dry reforming of methane (DRM), and they did not form carbon whiskers during reaction due to their sufficiently small size. Catalysts modified by Pt ALD had higher rates of reaction per mass of metal and inhibited coking, whereas NiPt catalysts synthesized by IW still formed carbon whiskers. Temperature-programmed reduction of Ni catalysts modified by Pt ALD indicated the presence of bimetallic interaction. Density functional theory calculations suggested that under reaction conditions, the NiPt surfaces form Ni-terminated surfaces that are associated with higher DRM rates (due to their C and O adsorption energies, as well as the CO formation and CH4 dissociation energies).

  14. Oxidation catalyst

    DOE Patents [OSTI]

    Ceyer, Sylvia T.; Lahr, David L.

    2010-11-09

    The present invention generally relates to catalyst systems and methods for oxidation of carbon monoxide. The invention involves catalyst compositions which may be advantageously altered by, for example, modification of the catalyst surface to enhance catalyst performance. Catalyst systems of the present invention may be capable of performing the oxidation of carbon monoxide at relatively lower temperatures (e.g., 200 K and below) and at relatively higher reaction rates than known catalysts. Additionally, catalyst systems disclosed herein may be substantially lower in cost than current commercial catalysts. Such catalyst systems may be useful in, for example, catalytic converters, fuel cells, sensors, and the like.

  15. The Science And Engineering of Duralbe Ultralow PGM Catalysts

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... And Characterization Of New Geometry PGM Catalysts - Synthesis of Novel Pt Nanoparticles (UCR, UNM, LANL) - Synthesis of Pt Nanotubes (UCR) - Synthesis of Pt Nanowires (UCR ...

  16. Supported bimetallic PdAu nanoparticles with superior electrocatalytic...

    Office of Scientific and Technical Information (OSTI)

    DOE Contract Number: DE-AC05-00OR22725 Resource Type: Journal Article Resource Relation: Journal Name: Journal of Materials Chemistry. A; Journal Volume: 1; Journal Issue: 32 ...

  17. Controlled Anisotropic Growth of Co-Fe-P from Co-Fe-O Nanoparticles

    SciTech Connect (OSTI)

    Mendoza-Garcia, Adriana; Zhu, Huiyuan; Yu, Yongsheng; Li, Qing; Zhou, Lin; Su, Dong; Kramer, Matthew J.; Sun, Shouheng

    2015-06-26

    Presented here is a facile approach to bimetallic phosphides, Co-Fe-P, via high-temperature (300C) reaction between Co-Fe-O nanoparticles and trioctylphosphine. The growth of Co-Fe-P from the Co-Fe-O is anisotropic. As a result, Co-Fe-P nanorods (from the polyhedral Co-Fe-O nanoparticles) and sea-urchin-like Co-Fe-P (from the cubic Co-Fe-O nanoparticles) are synthesized with both nanorod and the sea-urchin-arm dimensions controlled by Co/Fe ratios. The Co-Fe-P structure, especially the sea-urchin-like (Co0.54Fe0.46)2P, shows enhanced catalysis for oxygen evolution reaction in KOH with its catalytic efficiency surpassing Ir catalyst. Our synthesis is simple and may be readily extended to the preparation of other multimetallic phosphides for important catalysis and energy storage applications.

  18. Controlled Anisotropic Growth of Co-Fe-P from Co-Fe-O Nanoparticles

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Mendoza-Garcia, Adriana; Zhu, Huiyuan; Yu, Yongsheng; Li, Qing; Zhou, Lin; Su, Dong; Kramer, Matthew J.; Sun, Shouheng

    2015-06-26

    Presented here is a facile approach to bimetallic phosphides, Co-Fe-P, via high-temperature (300°C) reaction between Co-Fe-O nanoparticles and trioctylphosphine. The growth of Co-Fe-P from the Co-Fe-O is anisotropic. As a result, Co-Fe-P nanorods (from the polyhedral Co-Fe-O nanoparticles) and sea-urchin-like Co-Fe-P (from the cubic Co-Fe-O nanoparticles) are synthesized with both nanorod and the sea-urchin-arm dimensions controlled by Co/Fe ratios. The Co-Fe-P structure, especially the sea-urchin-like (Co0.54Fe0.46)2P, shows enhanced catalysis for oxygen evolution reaction in KOH with its catalytic efficiency surpassing Ir catalyst. Our synthesis is simple and may be readily extended to the preparation of other multimetallic phosphides for importantmore » catalysis and energy storage applications.« less

  19. Bimetallic strip for low temperature use

    DOE Patents [OSTI]

    Bussiere, Jean F.; Welch, David O.; Suenaga, Masaki

    1981-01-01

    There is provided a class of mechanically pre-stressed structures, suitably bi-layer strips comprising a layer of group 5 transition metals in intimate contact with a layer of an intermetallic compound of said transition metals with certain group 3A, 4A or 5A metals or metalloids suitably gallium, indium, silicon, germanium, tin, arsenic or antimony. The changes of Young's modulus of these bi-layered combinations at temperatures in the region of but somewhat above absolute zero provides a useful means of sensing temperature changes. Such bi-metallic strips may be used as control strips in thermostats, in direct dial reading instruments, or the like. The structures are made by preparing a sandwich of a group 5B transition metal strip between the substantially thicker strips of an alloy between copper and a predetermined group 3A, 4A or 5A metal or metalloid, holding the three layers of the sandwich in intimate contact heating the same, cooling the same and removing the copper alloy and then removing one of the two thus formed interlayer alloys between said transition metal and the metal previously alloyed with copper.

  20. Bimetallic alloy electrocatalysts with multilayered platinum-skin surfaces

    DOE Patents [OSTI]

    Stamenkovic, Vojislav R.; Wang, Chao; Markovic, Nenad M.

    2016-01-26

    Compositions and methods of preparing a bimetallic alloy having enhanced electrocatalytic properties are provided. The composition comprises a PtNi substrate having a surface layer, a near-surface layer, and an inner layer, where the surface layer comprises a nickel-depleted composition, such that the surface layer comprises a platinum skin having at least one atomic layer of platinum.

  1. Simulated study of plasmonic coupling in noble bimetallic alloy nanosphere arrays

    SciTech Connect (OSTI)

    Bansal, Amit Verma, S. S.

    2014-05-15

    The plasmonic coupling between the interacting noble metal nanoparticles plays an important role to influence the optical properties of arrays. In this work, we have extended the Mie theory results of our recent communication to include the effect of particle interactions between the alloy nanoparticles by varying interparticle distance and number of particles. The localized surface plasmon resonance (LSPR) peak position, full width at half maxima (FWHM) and scattering efficiency of one dimensional (1D) bimetallic alloy nanosphere (BANS) arrays of earlier optimized compositions i.e. Ag{sub 0.75}Au{sub 0.25}, Au{sub 0.25}Cu{sub 0.75} and Ag{sub 0.50}Cu{sub 0.50} have been studied presently by using discrete dipole approximation (DDA) simulations. Studies have been made to optimize size of the nanosphere, number of spheres in the arrays, material and the interparticle distance. It has been found that both the scattering efficiency and FWHM (bandwidth) can be controlled in the large region of the electromagnetic (EM) spectrum by varying the number of interacting particles and interparticle distance. In comparison to other alloy arrays, Ag{sub 0.50}Cu{sub 0.50} BANS arrays (each of particle radius 50 nm) shows larger tunability of LSPR with wide bandwidth (essential condition for plasmonic solar cells)

  2. Selective Hydrogenation of Acetylene in the Presence of Ethylene on K+ -beta-Zeolite Supported Pd and PdAg Catalysts

    SciTech Connect (OSTI)

    Huang,W.; Pyrz, W.; Lobo, R.; Chen, J.

    2007-01-01

    The selective hydrogenation of acetylene in the presence of ethylene has been studied on K+ exchanged {beta}-zeolite supported Pd and PdAg catalysts. Results from batch reactor studies with Fourier transform infrared spectroscopy (FTIR) have shown that the K+-{beta}-zeolite support is more selective than the Al2O3 or Na+-{beta}-zeolite supports toward the hydrogenation of acetylene. The rate and equilibrium constants for Pd/K+-{beta}-zeolite and PdAg/K+-{beta}-zeolite were determined using a Langmuir-Hinshelwood model. The selectivity of the PdAg bimetallic catalyst is twice of that of the Pd catalyst. Results from flow reactor studies show that the PdAg/K+-{beta}-zeolite catalyst has higher selectivity but lower activity toward acetylene hydrogenation than the Pd/K+-{beta}-zeolite catalyst. The selectivity to the undesirable ethane by-product is inhibited on the bimetallic catalyst. Extended X-ray absorption fine structure (EXAFS) studies and transmission electron microscope (TEM) analysis confirm the formation of Pd-Ag bimetallic bonds in the PdAg/K+-{beta}-zeolite catalyst.

  3. Enhanced electrocatalytic activity and stability of Pd3V/C nanoparticles with a trace amount of Pt decoration for the oxygen reduction reaction

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Liu, Sufen; Han, Lili; Zhu, Jing; Xiao, Weiping; Wang, Jie; Liu, Hongfang; Xin, Huolin; Wang, Deli

    2015-09-14

    In this study, carbon supported Pd3V bimetallic alloy nanoparticles (Pd3V/C) have been successfully synthesized via a simple impregnation–reduction method, followed by high temperature treatment under a H2 atmosphere. Electrochemical tests reveal that the half-wave potential of Pd3V/C-500 shifts positively 40 mV compared with Pd/C. However, the catalytic activity of Pd3V/C-500 suffers from serious degradation after 1k cycles. By a spontaneous displacement reaction or co-reduction method, a trace amount of Pt was decorated on the surface or inside of the Pd3V/C nanoparticles. The catalytic activity and stability of the Pd3V@Pt/C and Pt-Pd3V/C catalysts for the oxygen reduction reaction (ORR) are enhancedmore » significantly, and are comparable to commercial Pt/C. In addition, the Pt mass activity of Pd3V@Pt/C and Pt-Pd3V/C improves by factors of 10.9 and 6.5 at 0.80 V relative to Pt/C. Moreover, Pt-decorated Pd3V/C nanoparticles show almost no obvious morphology change after durability tests, because the Pt-rich shell plays an important role in preventing degradation.« less

  4. Oxyhydrochlorination catalyst

    DOE Patents [OSTI]

    Taylor, Charles E.; Noceti, Richard P.

    1992-01-01

    An improved catalyst and method for the oxyhydrochlorination of methane is disclosed. The catalyst includes a pyrogenic porous support on which is layered as active material, cobalt chloride in major proportion, and minor proportions of an alkali metal chloride and of a rare earth chloride. On contact of the catalyst with a gas flow of methane, HCl and oxygen, more than 60% of the methane is converted and of that converted more than 40% occurs as monochloromethane. Advantageously, the monochloromethane can be used to produce gasoline boiling range hydrocarbons with the recycle of HCl for further reaction. This catalyst is also of value for the production of formic acid as are analogous catalysts with lead, silver or nickel chlorides substituted for the cobalt chloride.

  5. Correlation of Theory and Function in Well-Defined Bimetallic Electrocatalysts - Final Report

    SciTech Connect (OSTI)

    Crooks, Richard M.

    2014-06-05

    The objective of this research proposal was to correlate the structure of nanoparticles that are comprised of ~100-200 atoms to their electrocatalytic function. This objective was based on the growing body of evidence suggesting that catalytic properties can be tailored through controlled synthesis of nanoparticles. What has been missing from many of these studies, and what we are contributing, is a model catalyst that is sufficiently small, structurally well-defined, and well-characterized that its function can be directly predicted by theory. Specifically, our work seeks to develop a fundamental and detailed understanding of the relationship between the structure of nanoscopic oxygen-reduction catalysts and their function. We assembled a team with expertise in theory, synthesis, and advanced characterization methods to address the primary objective of this project. We anticipated the outcomes of the study to be: (1) a better theoretical understanding of how nanoparticle structure affects catalytic properties; (2) the development of advanced, in-situ and ex-situ, atomic-scale characterization methods that are appropriate for particles containing about 100 atoms; and (3) improved synthetic methods that produce unique nanoparticle structures that can be used to test theoretical predictions. During the project period, we have made excellent progress on all three fronts.

  6. Photo-oxidation catalysts

    DOE Patents [OSTI]

    Pitts, J. Roland; Liu, Ping; Smith, R. Davis

    2009-07-14

    Photo-oxidation catalysts and methods for cleaning a metal-based catalyst are disclosed. An exemplary catalyst system implementing a photo-oxidation catalyst may comprise a metal-based catalyst, and a photo-oxidation catalyst for cleaning the metal-based catalyst in the presence of light. The exposure to light enables the photo-oxidation catalyst to substantially oxidize absorbed contaminants and reduce accumulation of the contaminants on the metal-based catalyst. Applications are also disclosed.

  7. In-situ Studies of the Reactions of Bifunctional and Heterocyclic Molecules over Noble Metal Single Crystal and Nanoparticle Catalysts Studied with Kinetics and Sum-Frequency Generation Vibrational Spectroscopy

    SciTech Connect (OSTI)

    Kliewer, Christopher J.

    2009-06-30

    Sum frequency generation surface vibrational spectroscopy (SFG-VS) in combination with gas chromatography (GC) was used in-situ to monitor surface bound reaction intermediates and reaction selectivities for the hydrogenation reactions of pyrrole, furan, pyridine, acrolein, crotonaldehyde, and prenal over Pt(111), Pt(100), Rh(111), and platinum nanoparticles under Torr reactant pressures and temperatures of 300K to 450K. The focus of this work is the correlation between the SFG-VS observed surface bound reaction intermediates and adsorption modes with the reaction selectivity, and how this is affected by catalyst structure and temperature. Pyrrole hydrogenation was investigated over Pt(111) and Rh(111) single crystals at Torr pressures. It was found that pyrrole adsorbs to Pt(111) perpendicularly by cleaving the N-H bond and binding through the nitrogen. However, over Rh(111) pyrrole adsorbs in a tilted geometry binding through the {pi}-aromatic orbitals. A surface-bound pyrroline reaction intermediate was detected over both surfaces with SFG-VS. It was found that the ring-cracking product butylamine is a reaction poison over both surfaces studied. Furan hydrogenation was studied over Pt(111), Pt(100), 10 nm cubic platinum nanoparticles and 1 nm platinum nanoparticles. The product distribution was observed to be highly structure sensitive and the acquired SFG-VS spectra reflected this sensitivity. Pt(100) exhibited more ring-cracking to form butanol than Pt(111), while the nanoparticles yielded higher selectivities for the partially saturated ring dihydrofuran. Pyridine hydrogenation was investigated over Pt(111) and Pt(100). The {alpha}-pyridyl surface adsorption mode was observed with SFG-VS over both surfaces. 1,4-dihydropyridine was seen as a surface intermediate over Pt(100) but not Pt(111). Upon heating the surfaces to 350K, the adsorbed pyridine changes to a flat-lying adsorption mode. No evidence was found for the pyridinium cation. The hydrogenation of the

  8. Computational Chemistry-Based Identification of Ultra-Low Temperature Water-Gas-Shift Catalysts

    SciTech Connect (OSTI)

    Manos Mavrikakis

    2008-08-31

    The current work seeks to identify novel, catalytically-active, stable, poison-resistant LWGS catalysts that retain the superior activity typical of conventional Cu catalysts but can be operated at similar or lower temperatures. A database for the Binding Energies (BEs) of the LWGS relevant species, namely CO, O and OH on the most-stable, close-packed facets of a set of 17 catalytically relevant transition metals was established. This BE data and a database of previously established segregation energies was utilized to predict the stability of bimetallic NSAs that could be synthesized by combinations of the 17 parent transition metals. NSAs that were potentially stable both in vacuo and under the influence of strong-binding WGS intermediates were then selected for adsorption studies. A set of 40 NSAs were identified that satisfied all three screener criteria and the binding energies of CO, O and OH were calculated on a set of 66, 43 and 79 NSA candidates respectively. Several NSAs were found that bound intermediates weaker than the monometallic catalysts and were thus potentially poison-resistant. Finally, kinetic studies were performed and resulted in the discovery of a specific NSA-based bimetallic catalyst Cu/Pt that is potentially a promising LWGS catalyst. This stable Cu/Pt subsurface alloy is expected to provide facile H{sub 2}O activation and remain relatively resistant from the poisoning by CO, S and formate intermediates.

  9. Hydroprocessing catalyst

    SciTech Connect (OSTI)

    Clark, F.T.; Hensley, A.L. Jr.; Kukes, S.G.; Arters, D.C.

    1993-06-22

    A hydroprocessing catalyst is described comprising at least one hydrogenation metal selected from the group consisting of the Group VIB metals and the Group VIII metals deposited on an inorganic oxide support, said catalyst being characterized by a surface area of greater than about 220 m[sup 2]/g, a pore volume of 0.23-0.30 cc/g in pores greater than about 600 Angstroms, an average pore radius of about 30-70 Angstroms in pores less than about 600 Angstroms, and an incremental pore volume curve with a maximum at about 25-50 Angstroms radius.

  10. Hydroprocessing catalysts

    SciTech Connect (OSTI)

    Alafandi, H.; Stamires, D.

    1980-04-15

    This invention relates to a hydroprocessing catalyst particularly useful in hydrocracking comprising a low sodium faujasite zeolite produced by a high pressure exchange of Na cations with a solution of an ammonium salt as a substrate for incorporation of a hydrogenating metal compound.

  11. Catalyst activator

    DOE Patents [OSTI]

    McAdon, Mark H.; Nickias, Peter N.; Marks, Tobin J.; Schwartz, David J.

    2001-01-01

    A catalyst activator particularly adapted for use in the activation of metal complexes of metals of Group 3-10 for polymerization of ethylenically unsaturated polymerizable monomers, especially olefins, comprising two Group 13 metal or metalloid atoms and a ligand structure including at least one bridging group connecting ligands on the two Group 13 metal or metalloid atoms.

  12. High performance, high durability non-precious metal fuel cell catalysts

    DOE Patents [OSTI]

    Wood, Thomas E.; Atanasoski, Radoslav; Schmoeckel, Alison K.

    2016-03-15

    This invention relates to non-precious metal fuel cell cathode catalysts, fuel cells that contain these catalysts, and methods of making the same. The fuel cell cathode catalysts are highly nitrogenated carbon materials that can contain a transition metal. The highly nitrogenated carbon materials can be supported on a nanoparticle substrate.

  13. Physical and Numerical Analysis of Extrusion Process for Production of Bimetallic Tubes

    SciTech Connect (OSTI)

    Misiolek, W.Z.; Sikka, V.K.

    2006-08-10

    Bimetallic tubes are used for very specific applications where one of the two metals provides strength and the other provides specific properties such as aqueous corrosion and carburization, coking resistance, and special electrical and thermal properties. Bimetallic tubes have application in pulp and paper industry for heat-recovery boilers, in the chemical industry for ethylene production, and in the petrochemical industry for deep oil well explorations. Although bimetallic tubes have major applications in energy-intensive industry, they often are not used because of their cost and manufacturing sources in the United States. This project was intended to address both of these issues.

  14. Preferential CO Oxidation in Hydrogen: Reactivity of Core-Shell Nanoparticles

    SciTech Connect (OSTI)

    Nilekar, Anand U; Alayoglu, Selim; Eichhorn, Bryan W; Mavrikakis, Manos

    2010-06-02

    We report on the first-principles-guided design, synthesis, and characterization of core-shell nanoparticle (NP) catalysts made of a transition metal core (M ) Ru, Rh, Ir, Pd, or Au) covered with a ~1-2 monolayer thick shell of Pt atoms (i.e., a M@Pt core-shell NP). An array of experimental techniques, including X-ray diffraction, Fourier transform infrared spectroscopy, high resolution transmission electron microscopy, and temperature-programmed reaction, are employed to establish the composition of the synthesized NPs. Subsequent studies of these NPs’ catalytic properties for preferential CO oxidation in hydrogen-rich environments (PROX), combined with Density Functional Theory (DFT)-based mechanistic studies, elucidate important trends and provide fundamental understanding of the reactivity of Pt shells as a function of the core metal. Both the PROX activity and selectivity of several of these M@Pt core-shell NPs are significantly improved compared to monometallic and bulk nonsegregated bimetallic nanoalloys. Among the systems studied, Ru@Pt core-shell NPs exhibit the highest PROX activity, where the CO oxidation is complete by 30 °C (1000 ppm CO in H2). Therefore, despite their reduced Pt content, M@Pt core-shell NPs afford the design of more active PROX catalysts. DFT studies suggest that the relative differences in the catalytic activities for the various core-shell NPs originate from a combination of (i) the relative availability of CO-free Pt surface sites on the M@Pt NPs, which are necessary for O2 activation, and (ii) a hydrogen-mediated low-temperature CO oxidation process that is clearly distinct from the traditional bifunctional CO oxidation mechanism.

  15. Chemistry of Bimetallic Linked Cyclopentadienyl Complexes: Progress Report, 1 December 1986 --30 November 1989

    DOE R&D Accomplishments [OSTI]

    Schrock, R. R.

    1989-01-01

    Research continued on the chemistry and preparation of bimetallic cyclopentadienyl complexes containing up to two tungsten or one tungsten and a cobalt, rhodium, or ruthenium. The general method for preparation and analysis of polyenes is also discussed. (CBS)

  16. Method of making chalcogen catalysts for polymer electrolyte fuel cells

    DOE Patents [OSTI]

    Choi, Jong-Ho; Zelenay, Piotr; Wieckowski, Andrzej; Cao, Dianxue

    2010-12-14

    A method of making an electrode catalyst material using aqueous solutions. The electrode catalyst material includes a support comprising at least one transition metal and at least one chalcogen disposed on a surface of the transition metal. The method includes reducing a metal powder, mixing the metal powder with an aqueous solution containing at least one inorganic compound of the chalcogen to form a mixture, and providing a reducing agent to the mixture to form nanoparticles of the electrode catalyst. The electrode catalyst may be used in a membrane electrode assembly for a fuel cell.

  17. Synthesis and anti-bacterial activity of Cu, Ag and Cu-Ag alloy nanoparticles: A green approach

    SciTech Connect (OSTI)

    Valodkar, Mayur; Modi, Shefaly; Pal, Angshuman; Thakore, Sonal

    2011-03-15

    Research highlights: {yields} Synthesis of novel nanosized copper-silver alloys of different compositions. {yields} Completely green approach for synthesis of water soluble bimetallic nanoparticle. {yields} Interesting anti-bacterial activity of as synthesized metal and alloy nanoparticle. -- Abstract: Metallic and bimetallic nanoparticles of copper and silver in various proportions were prepared by microwave assisted chemical reduction in aqueous medium using the biopolymer, starch as a stabilizing agent. Ascorbic acid was used as the reducing agent. The silver and copper nanoparticles exhibited surface plasmon absorption resonance maxima (SPR) at 416 and 584 nm, respectively; while SPR for the Cu-Ag alloys appeared in between depending on the alloy composition. The SPR maxima for bimetallic nanoparticles changes linearly with increasing copper content in the alloy. Transmission electron micrograph (TEM) showed monodispersed particles in the range of 20 {+-} 5 nm size. Both silver and copper nanoparticles exhibited emission band at 485 and 645 nm, respectively. The starch-stabilized nanoparticles exhibited interesting antibacterial activity with both gram positive and gram negative bacteria at micromolar concentrations.

  18. EFFECT OF PRETREATMENT ON PT-CO/C CATHODE CATALYSTS FOR THE OXYGEN-REDUCTION REACTION

    SciTech Connect (OSTI)

    Fox, E.

    2009-05-13

    In order to reduce the precious metal loading without sacrificing activity and stability, a new method for the preparation of bimetallic catalysts is proposed. Currently, Pt-alloy particles, with 2 to 3 nm in diameter, are loaded on high surface area carbon supports. Of the Pt loaded, only the surface atoms interact with the reactants. In order to increase the Pt utilization per metal particle the new process for catalyst preparation will incorporate a non-noble transition metal core coated with a skin layer of Pt deposited on high surface area carbon. The effect of reducing agent strength during synthesis was also explored. It was determined that the Co addition has a higher impact on catalyst when used with NaBH4 as reducing agent as compared to NaCOOH.

  19. Thermally stable nanoparticles on supports

    DOE Patents [OSTI]

    Roldan Cuenya, Beatriz; Naitabdi, Ahmed R.; Behafarid, Farzad

    2012-11-13

    An inverse micelle-based method for forming nanoparticles on supports includes dissolving a polymeric material in a solvent to provide a micelle solution. A nanoparticle source is dissolved in the micelle solution. A plurality of micelles having a nanoparticle in their core and an outer polymeric coating layer are formed in the micelle solution. The micelles are applied to a support. The polymeric coating layer is then removed from the micelles to expose the nanoparticles. A supported catalyst includes a nanocrystalline powder, thin film, or single crystal support. Metal nanoparticles having a median size from 0.5 nm to 25 nm, a size distribution having a standard deviation .ltoreq.0.1 of their median size are on or embedded in the support. The plurality of metal nanoparticles are dispersed and in a periodic arrangement. The metal nanoparticles maintain their periodic arrangement and size distribution following heat treatments of at least 1,000.degree. C.

  20. Rare Earth Oxide Fluoride Nanoparticles And Hydrothermal Method For Forming Nanoparticles

    DOE Patents [OSTI]

    Fulton, John L.; Hoffmann, Markus M.

    2003-12-23

    A hydrothermal method for forming nanoparticles of a rare earth element, oxygen and fluorine has been discovered. Nanoparticles comprising a rare earth element, oxygen and fluorine are also described. These nanoparticles can exhibit excellent refractory properties as well as remarkable stability in hydrothermal conditions. The nanoparticles can exhibit excellent properties for numerous applications including fiber reinforcement of ceramic composites, catalyst supports, and corrosion resistant coatings for high-temperature aqueous solutions.

  1. Rare earth oxide fluoride nanoparticles and hydrothermal method for forming nanoparticles

    DOE Patents [OSTI]

    Fulton, John L [Richland, WA; Hoffmann, Markus M [Richland, WA

    2001-11-13

    A hydrothermal method for forming nanoparticles of a rare earth element, oxygen and fluorine has been discovered. Nanoparticles comprising a rare earth element, oxygen and fluorine are also described. These nanoparticles can exhibit excellent refractory properties as well as remarkable stability in hydrothermal conditions. The nanoparticles can exhibit excellent properties for numerous applications including fiber reinforcement of ceramic composites, catalyst supports, and corrosion resistant coatings for high-temperature aqueous solutions.

  2. Enhanced electrocatalytic activity and stability of Pd3V/C nanoparticles with a trace amount of Pt decoration for the oxygen reduction reaction

    SciTech Connect (OSTI)

    Liu, Sufen; Han, Lili; Zhu, Jing; Xiao, Weiping; Wang, Jie; Liu, Hongfang; Xin, Huolin; Wang, Deli

    2015-09-14

    In this study, carbon supported Pd3V bimetallic alloy nanoparticles (Pd3V/C) have been successfully synthesized via a simple impregnation–reduction method, followed by high temperature treatment under a H2 atmosphere. Electrochemical tests reveal that the half-wave potential of Pd3V/C-500 shifts positively 40 mV compared with Pd/C. However, the catalytic activity of Pd3V/C-500 suffers from serious degradation after 1k cycles. By a spontaneous displacement reaction or co-reduction method, a trace amount of Pt was decorated on the surface or inside of the Pd3V/C nanoparticles. The catalytic activity and stability of the Pd3V@Pt/C and Pt-Pd3V/C catalysts for the oxygen reduction reaction (ORR) are enhanced significantly, and are comparable to commercial Pt/C. In addition, the Pt mass activity of Pd3V@Pt/C and Pt-Pd3V/C improves by factors of 10.9 and 6.5 at 0.80 V relative to Pt/C. Moreover, Pt-decorated Pd3V/C nanoparticles show almost no obvious morphology change after durability tests, because the Pt-rich shell plays an important role in preventing degradation.

  3. Catalytic Nonoxidation Dehydrogenation of Ethane Over Fe-Ni Catalysts Supported on Mg (Al)O to Produce Hydrogen and Easily Purified Carbon Nanotubes

    SciTech Connect (OSTI)

    Shen,W.; Wang, Y.; Shi, X.; Shah, N.; Huggins, F.; Bollineni, S.; Seehra, M.; Huffman, G.

    2007-01-01

    Nonoxidative decomposition of ethane was conducted over monometallic Ni and bimetallic Fe-Ni catalysts on basic Mg(Al)O support to produce H2 free of CO and CO2 and easily purified carbon nanotubes, a potentially valuable byproduct. The Mg(Al)O support was prepared by calcination of synthetic MgAl-hydrotalcite with a Mg to Al ratio of 5. The catalysts were prepared by incipient wetness with total metal loadings of 5 wt %. The dehydrogenation of undiluted ethane was conducted at temperatures of 500, 650, and 700 C. At 500 C, the Ni/Mg(Al)O catalyst was highly active and very stable with 100% conversion of ethane to 20 vol % H2 and 80 vol % CH4. However, the bimetallic Fe-Ni/Mg(Al)O exhibited its best performance at 650 C, yielding 65 vol % H2, 10 vol % CH4, and 25 vol % unreacted ethane. The product carbon was in the form of carbon nanotubes (CNT) at all three reaction temperatures, but the morphology of the CNT depended on both the catalyst composition and reaction temperature. The CNTs were formed by a tip-growth mechanism over the Mg(Al)O supported catalysts and were easily purified by a one-step dilute nitric acid treatment. Mossbauer spectroscopy, X-ray absorption fine structure spectroscopy, N2 adsorption-desorption isotherms, TEM, STEM, TGA, and XRD were used to characterize the catalysts and the CNT, revealing the catalytic mechanisms.

  4. Electrochemical catalyst recovery method

    SciTech Connect (OSTI)

    Silva, Laura J.; Bray, Lane A.

    1995-01-01

    A method of recovering catalyst material from latent catalyst material solids includes: a) combining latent catalyst material solids with a liquid acid anolyte solution and a redox material which is soluble in the acid anolyte solution to form a mixture; b) electrochemically oxidizing the redox material within the mixture into a dissolved oxidant, the oxidant having a potential for oxidation which is effectively higher than that of the latent catalyst material; c) reacting the oxidant with the latent catalyst material to oxidize the latent catalyst material into at least one oxidized catalyst species which is soluble within the mixture and to reduce the oxidant back into dissolved redox material; and d) recovering catalyst material from the oxidized catalyst species of the mixture. The invention is expected to be particularly useful in recovering spent catalyst material from petroleum hydroprocessing reaction waste products having adhered sulfides, carbon, hydrocarbons, and undesired metals, and as well as in other industrial applications.

  5. Electrochemical catalyst recovery method

    DOE Patents [OSTI]

    Silva, L.J.; Bray, L.A.

    1995-05-30

    A method of recovering catalyst material from latent catalyst material solids includes: (a) combining latent catalyst material solids with a liquid acid anolyte solution and a redox material which is soluble in the acid anolyte solution to form a mixture; (b) electrochemically oxidizing the redox material within the mixture into a dissolved oxidant, the oxidant having a potential for oxidation which is effectively higher than that of the latent catalyst material; (c) reacting the oxidant with the latent catalyst material to oxidize the latent catalyst material into at least one oxidized catalyst species which is soluble within the mixture and to reduce the oxidant back into dissolved redox material; and (d) recovering catalyst material from the oxidized catalyst species of the mixture. The invention is expected to be particularly useful in recovering spent catalyst material from petroleum hydroprocessing reaction waste products having adhered sulfides, carbon, hydrocarbons, and undesired metals, and as well as in other industrial applications. 3 figs.

  6. Vibrational spectroscopic studies of adsorbates on bimetallic surfaces. Doctoral thesis

    SciTech Connect (OSTI)

    Kuhn, W.K.

    1992-12-01

    In this work, well-defined bimetallic surfaces have been studied using carbon monoxide adsorption in conjunction with infrared reflection absorption spectroscopy (IRAS). These studies have indicated that for CO adsorbed on Cu overlayers, the bond between the CO and the Cu adatoms is comprised of both pi-back-donation and polarization interaction components. The sum of the contributions from these effects determines the observed bond strength with the observed CO stretching frequency being determined by the relative contributions of the components. In addition, it was determined that IR spectra of adsorbed CO show a remarkable sensitivity to surface structure. Three-dimensional Cu clusters, well-ordered two dimensional Cu islands and isolated Cu atoms are distinctively characterized by their CO IR peaks. In addition, both disorder-order and order-order transitions are observed for the metal overlayers on the single crystal metal substrates. It was also observed that localized segregation and ordering of mixed Co and S overlayers on a Mo(110) substrate occurs upon annealing.

  7. LSU EFRC - Center for Atomic Level Catalyst Design - Article Archives

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Articles >> space control Catalysts by Design for Syngas Cleanup space control Quantitative Relationship between Support Porosity and the Stability of Pore-Confined Metal Nanoparticles Studied on CuZnO/SiO2 Methanol Synthesis Catalysts space control Millifluidics for Time-resolved Mapping of the Growth of Gold Nanostructures space control Geometric optimization of liquid-liquid slug flow in a flow-focusing millifluidic device for synthesis of nanomaterials space control An article about

  8. Hydroprocessing catalyst manufacture

    SciTech Connect (OSTI)

    Lostaglio, V.J.; Carruthers, J.D.

    1985-01-01

    Hydroprocessing catalysts for the oil-refining industry have undergone significant improvements since the oil shortages of the late 1970's. Spurred by the need for refiners to process heavy, sour feeds, catalyst manufacturers have developed technology to meet these changing demands. Current manufacturing techniques in the production of substrate and final catalyst are reviewed. New approach to the production of resid hydrotreatment catalysts are considered.

  9. Catalyst Cartography: 3D Super-Resolution Mapping of Catalytic Activity |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Ames Laboratory Catalyst Cartography: 3D Super-Resolution Mapping of Catalytic Activity Thanks to a groundbreaking new method, scientists have created the first 3D super-resolution maps of catalytic activity on an individual catalytic nanoparticle while reactions are occurring. Catalysts are used in manufacturing everything from stain remover to rocket fuel; they make production more efficient by facilitating chemical reactions. Each catalyst being studied is only about 200 nanometers in

  10. Lattice-Strain Control of Exceptional Activity in Dealloyed Core-Shell Fuel Cell Catalysts

    SciTech Connect (OSTI)

    Strasser, Peter

    2011-08-19

    We present a combined experimental and theoretical approach to demonstrate how lattice strain can be used to continuously tune the catalytic activity of the oxygen reduction reaction (ORR) on bimetallic nanoparticles that have been dealloyed. The sluggish kinetics of the ORR is a key barrier to the adaptation of fuel cells and currently limits their widespread use. Dealloyed Pt-Cu bimetallic nanoparticles, however, have been shown to exhibit uniquely high reactivity for this reaction. We first present evidence for the formation of a core-shell structure during dealloying, which involves removal of Cu from the surface and subsurface of the precursor nanoparticles. We then show that the resulting Pt-rich surface shell exhibits compressive strain that depends on the composition of the precursor alloy. We next demonstrate the existence of a downward shift of the Pt d-band, resulting in weakening of the bond strength of intermediate oxygenated species due to strain. Finally, we combine synthesis, strain, and catalytic reactivity in an experimental/theoretical reactivity-strain relationship which provides guidelines for the rational design of strained oxygen reduction electrocatalysts. The stoichiometry of the precursor, together with the dealloying conditions, provides experimental control over the resulting surface strain and thereby allows continuous tuning of the surface electrocatalytic reactivity - a concept that can be generalized to other catalytic reactions.

  11. Size and alloying induced shift in core and valence bands of Pd-Ag and Pd-Cu nanoparticles

    SciTech Connect (OSTI)

    Sengar, Saurabh K.; Mehta, B. R.; Govind

    2014-03-28

    In this report, X-ray photoelectron spectroscopy studies have been carried out on Pd, Ag, Cu, Pd-Ag, and Pd-Cu nanoparticles having identical sizes corresponding to mobility equivalent diameters of 60, 40, and 20 nm. The nanoparticles were prepared by the gas phase synthesis method. The effect of size on valence and core levels in metal and alloy nanoparticles has been studied by comparing the values to those with the 60 nm nanoparticles. The effect of alloying has been investigated by comparing the valence and core level binding energies of Pd-Cu and Pd-Ag alloy nanoparticles with the corresponding values for Pd, Ag, and Cu nanoparticles of identical sizes. These effects have been explained in terms of size induced lattice contractions, alloying induced charge transfer, and hybridization effects. The observation of alloying and size induced binding energy shifts in bimetallic nanoparticles is important from the point of view of hydrogen reactivity.

  12. Strategies for Probing Nanometer-Scale Electrocatalysts: From Single Particles to Catalyst-Membrane Architectures

    SciTech Connect (OSTI)

    Korzeniewski, Carol

    2014-01-20

    The project primary objectives are to prepare and elucidate the promoting properties of materials that possess high activity for the conversion of hydrogen and related small molecules (water, oxygen, carbon monoxide and methanol) in polymer electrolyte fuel cells. One area of research has focused on the study of catalyst materials. Protocols were developed for probing the structure and benchmarking the activity of Pt and Pt bimetallic nanometer-scale catalyst against Pt single crystal electrode standards. A second area has targeted fuel cell membrane and the advancement of simple methods mainly based on vibrational spectroscopy that can be applied broadly in the study of membrane structure and transport properties. Infrared and Raman methods combined with least-squares data modeling were applied to investigate and assist the design of robust, proton conductive membranes, which resist reactant crossover.

  13. System for reactivating catalysts

    DOE Patents [OSTI]

    Ginosar, Daniel M.; Thompson, David N.; Anderson, Raymond P.

    2010-03-02

    A method of reactivating a catalyst, such as a solid catalyst or a liquid catalyst is provided. The method comprises providing a catalyst that is at least partially deactivated by fouling agents. The catalyst is contacted with a fluid reactivating agent that is at or above a critical point of the fluid reactivating agent and is of sufficient density to dissolve impurities. The fluid reactivating agent reacts with at least one fouling agent, releasing the at least one fouling agent from the catalyst. The at least one fouling agent becomes dissolved in the fluid reactivating agent and is subsequently separated or removed from the fluid reactivating agent so that the fluid reactivating agent may be reused. A system for reactivating a catalyst is also disclosed.

  14. Single-step gas phase synthesis of stable iron aluminide nanoparticles with soft magnetic properties

    SciTech Connect (OSTI)

    Vernieres, Jerome Benelmekki, Maria; Kim, Jeong-Hwan; Grammatikopoulos, Panagiotis; Diaz, Rosa E.; Bobo, Jean-François; Sowwan, Mukhles

    2014-11-01

    Soft magnetic alloys at the nanoscale level have long generated a vivid interest as candidate materials for technological and biomedical purposes. Consequently, controlling the structure of bimetallic nanoparticles in order to optimize their magnetic properties, such as high magnetization and low coercivity, can significantly boost their potential for related applications. However, traditional synthesis methods stumble upon the long standing challenge of developing true nanoalloys with effective control over morphology and stability against oxidation. Herein, we report on a single-step approach to the gas phase synthesis of soft magnetic bimetallic iron aluminide nanoparticles, using a versatile co-sputter inert gas condensation technique. This method allowed for precise morphological control of the particles; they consisted of an alloy iron aluminide crystalline core (DO{sub 3} phase) and an alumina shell, which reduced inter-particle interactions and also prevented further oxidation and segregation of the bimetallic core. Remarkably, the as-deposited alloy nanoparticles show interesting soft magnetic properties, in that they combine a high saturation magnetization (170 emu/g) and low coercivity (less than 20 Oe) at room temperature. Additional functionality is tenable by modifying the surface of the particles with a polymer, to ensure their good colloidal dispersion in aqueous environments.

  15. High Impact Technology Catalyst: Technology Deployment Strategies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Catalyst: Technology Deployment Strategies High Impact Technology Catalyst: Technology Deployment Strategies The Energy Department released the High Impact Technology Catalyst: ...

  16. Catalyst by Design - Theoretical, Nanostructural, and Experimental...

    Broader source: Energy.gov (indexed) [DOE]

    Catalyst by Design - Theoretical, Nanostructural, and Experimental Studies of Oxidation Catalyst for Diesel Engine Emission Treatment Catalysts via First Principles Catalysts via ...

  17. Methods of making textured catalysts

    DOE Patents [OSTI]

    Werpy, Todd; Frye, Jr., John G.; Wang, Yong; Zacher, Alan H.

    2010-08-17

    A textured catalyst having a hydrothermally-stable support, a metal oxide and a catalyst component is described. Methods of conducting aqueous phase reactions that are catalyzed by a textured catalyst are also described. The invention also provides methods of making textured catalysts and methods of making chemical products using a textured catalyst.

  18. Liquefaction with microencapsulated catalysts

    DOE Patents [OSTI]

    Weller, Sol W. (Williamsville, NY)

    1985-01-01

    A method of dispersing a liquefaction catalyst within coal or other carbonaceous solids involves providing a suspension in oil of microcapsules containing the catalyst. An aqueous solution of a catalytic metal salt is emulsified in the water-immiscible oil and the resulting minute droplets microencapsulated in polymeric shells by interfacial polycondensation. The catalyst is subsequently blended and dispersed throughout the powdered carbonaceous material to be liquefied. At liquefaction temperatures the polymeric microcapsules are destroyed and the catalyst converted to minute crystallites in intimate contact with the carbonaceous material.

  19. Simple, Ethanol-Driven Synthesis of Core-Shell Nanoparticles - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovation Portal Advanced Materials Advanced Materials Find More Like This Return to Search Simple, Ethanol-Driven Synthesis of Core-Shell Nanoparticles Brookhaven National Laboratory Contact BNL About This Technology Publications: PDF Document Publication Ordered bilayer ruthenium - platinum core-shell nanoparticles as carbon monoxide-tolerant fuel cell catalysts (1,537 KB) Technology Marketing Summary Well-defined core-shell nanoparticles offer high-surface-area catalysts with tunable

  20. Plasma/ion-controlled metal catalyst saturation: Enabling simultaneous growth of carbon nanotube/nanocone arrays

    SciTech Connect (OSTI)

    Levchenko, I.; Ostrikov, K.

    2008-02-11

    It is shown that the simultaneous saturation of Ni nanoparticles used as catalyst for vertically aligned carbon nanotube and nanocone arrays can be improved in low-temperature plasma- or ion-assisted processes compared with neutral gas-based routes. The results of hybrid multiscale numerical simulations of the catalyst nanoarrays (particle sizes of 2 and 10 nm) saturation with carbon show the possibility of reducing the difference in catalyst incubation times for smallest and largest catalyst particles by up to a factor of 2. This approach is generic and provides process conditions for simultaneous nucleation and growth of uniform arrays of vertically aligned nanostructures.

  1. Tunable Catalysts - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    lifetimes, Berkeley Lab Tunable Catalysts, made with affordable metals, utilize graphene to electrically tune the converting rate efficacy and efficiency of catalysts....

  2. Laser Catalyst - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Find More Like This Return to Search Laser Catalyst Idaho National Laboratory Contact INL About This Technology Technology Marketing Summary INL's Laser Catalyst is a method for ...

  3. Reducible oxide based catalysts

    DOE Patents [OSTI]

    Thompson, Levi T.; Kim, Chang Hwan; Bej, Shyamal K.

    2010-04-06

    A catalyst is disclosed herein. The catalyst includes a reducible oxide support and at least one noble metal fixed on the reducible oxide support. The noble metal(s) is loaded on the support at a substantially constant temperature and pH.

  4. Nanostructured catalyst supports

    DOE Patents [OSTI]

    Zhu, Yimin; Goldman, Jay L.; Qian, Baixin; Stefan, Ionel C.

    2012-10-02

    The present invention relates to SiC nanostructures, including SiC nanopowder, SiC nanowires, and composites of SiC nanopowder and nanowires, which can be used as catalyst supports in membrane electrode assemblies and in fuel cells. The present invention also relates to composite catalyst supports comprising nanopowder and one or more inorganic nanowires for a membrane electrode assembly.

  5. Nanostructured catalyst supports

    SciTech Connect (OSTI)

    Zhu, Yimin; Goldman, Jay L.; Qian, Baixin; Stefan, Ionel C.

    2015-09-29

    The present invention relates to SiC nanostructures, including SiC nanopowder, SiC nanowires, and composites of SiC nanopowder and nanowires, which can be used as catalyst supports in membrane electrode assemblies and in fuel cells. The present invention also relates to composite catalyst supports comprising nanopowder and one or more inorganic nanowires for a membrane electrode assembly.

  6. Validation of Two Hydrocodes with a Bi-Metallic Shaped Charge Experiment

    SciTech Connect (OSTI)

    Ingraham, Daniel J.

    2012-08-16

    Staggered grid (SGH) and cell-centered (CCH) Lagrangian Hydro are two approaches to modeling high explosives (HE) experiments. HE experiments involve complex flows. For example, the discontinuity in the tangential velocity across a frictionless contact surface. In this work, the SGH and CCH schemes with a contact surface algorithm are used to simulate a bimetallic shaped charge experiment using FLAG. Experiment will be performed at LANL in the coming year and used to validate the SGH and CCH schemes results.

  7. YIA1 - Chen > Young Investigator Program > Research > The Energy Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center at Cornell Using a microfluidic device to synthesize bimetallic nanoparticle catalysts with desired phase and size: An improvement of the nanoparticle-KCl matrix method With efforts from Hao Chen (DiSalvo), Deli Wang (Abruña) and Joshua Tokuda (Pollack), this research is looking to improve the nanoparticle-KCl matrix method. A great effort at emc2 has been focused on synthesizing bimetallic nanoparticle (Np) catalysts for oxygen reduction reactions. Recently, we developed a Np-KCl

  8. Increasing FCC regenerator catalyst level

    SciTech Connect (OSTI)

    Wong, R.F. )

    1993-11-01

    A Peruvian FCC unit's operations were improved by increasing the regenerator's catalyst level. This increase resulted in lower stack losses, an improved temperature profile, increased catalyst activity and a lower catalyst consumption rate. A more stable operation saved this Peruvian refiner over $131,000 per year in catalyst alone. These concepts and data may be suitable for your FCC unit as well.

  9. DNA-guided nanoparticle assemblies

    DOE Patents [OSTI]

    Gang, Oleg; Nykypanchuk, Dmytro; Maye, Mathew; van der Lelie, Daniel

    2013-07-16

    In some embodiments, DNA-capped nanoparticles are used to define a degree of crystalline order in assemblies thereof. In some embodiments, thermodynamically reversible and stable body-centered cubic (bcc) structures, with particles occupying <.about.10% of the unit cell, are formed. Designs and pathways amenable to the crystallization of particle assemblies are identified. In some embodiments, a plasmonic crystal is provided. In some aspects, a method for controlling the properties of particle assemblages is provided. In some embodiments a catalyst is formed from nanoparticles linked by nucleic acid sequences and forming an open crystal structure with catalytically active agents attached to the crystal on its surface or in interstices.

  10. Numerical simulation of carbon arc discharge for nanoparticle synthesis

    SciTech Connect (OSTI)

    Kundrapu, M.; Keidar, M.

    2012-07-15

    Arc discharge with catalyst-filled carbon anode in helium background was used for the synthesis of carbon nanoparticles. In this paper, we present the results of numerical simulation of carbon arc discharges with arc current varying from 10 A to 100 A in a background gas pressure of 68 kPa. Anode sublimation rate and current voltage characteristics are compared with experiments. Distribution of temperature and species density, which is important for the estimation of the growth of nanoparticles, is obtained. The probable location of nanoparticle growth region is identified based on the temperature range for the formation of catalyst clusters.

  11. Structure and Reactivity of Pt-Ru/SiO2 Catalysts for the Preferential Oxidation of CO Under Excess H2

    SciTech Connect (OSTI)

    Chin,S.; Alexeev, O.; Amiridis, J.

    2006-01-01

    SiO{sub 2}-supported Pt-Ru bimetallic catalysts subjected to two different types of pretreatment protocols (i.e., subsequent oxidation-reduction treatments at 300 C and direct reduction in H{sub 2} at 300 C) were characterized by extended X-ray absorption fine structure spectroscopy (EXAFS), scanning transmission electron microscopy (STEM), Fourier transform infrared spectroscopy (FTIR) of adsorbed CO, and catalytic activity measurements for the preferential oxidation of CO in the presence of excess H{sub 2} (PROX). The EXAFS data show that both treatments led to the formation of dispersed bimetallic structures, with an average Pt-Ru bond distance of 2.68 {angstrom}. The close proximity between Pt and Ru helped stabilize Ru in a highly dispersed form and prevented its sintering after oxidation treatments. The FTIR results indicate that the adsorption of CO was substantially weaker on bimetallic samples than on the corresponding monometallic ones. Interparticle segregation (i.e., segregation of the two metals into individual particles) was observed with the Pt-Ru/SiO{sub 2} sample exposed to direct H{sub 2} treatment; in contrast, intraparticle segregation (i.e., segregation of the two metals within the same particle), with Pt preferentially occupying more surface sites, was observed when consequent O{sub 2}/H{sub 2} treatments were used. As a result, the direct H{sub 2} treatment yielded samples with PROX activity almost identical to that of monometallic Ru catalysts, whereas the O{sub 2}/H{sub 2} treatment yielded samples with PROX activity intermediate to those of monometallic Pt and Ru catalysts.

  12. MgO-Supported Cluster Catalysts with Pt-Ru Interactions Prepared from Pt3Ru6(CO)21(u3-H)(u-H)3

    SciTech Connect (OSTI)

    Chotisuwan,S.; Wittapyakun, J.; Lobo-Lapidus, R.; Gates, B.

    2007-01-01

    Bimetallic MgO-supported catalysts were prepared by adsorption of Pt{sub 3}Ru{sub 6}(CO){sub 21}({mu}{sub 3}-H)({mu}-H){sub 3} on porous MgO. Characterization of the supported clusters by infrared (IR) spectroscopy showed that the adsorbed species were still in the form of metal carbonyls. The supported clusters were decarbonylated by treatment in flowing helium at 300 C, as shown by IR and extended X-ray absorption fine structure (EXAFS) data, and the resulting supported PtRu clusters were shown by EXAFS spectroscopy to have metal frames that retained Pt-Ru bonds but were slightly restructured relative to those of the precursor; the average cluster size was almost unchanged as a result of the decarbonylation. These are among the smallest reported bimetallic clusters of group-8 metals. The decarbonylated sample catalyzed ethylene hydrogenation with an activity similar to that reported previously for {gamma}-Al{sub 2}O{sub 3}-supported clusters prepared in nearly the same way and having nearly the same structure. Both samples were also active for n-butane hydrogenolysis, with the MgO-supported catalyst being more active than the {gamma}-Al{sub 2}O{sub 3}-supported catalyst.

  13. Catalyst for microelectromechanical systems microreactors

    DOE Patents [OSTI]

    Morse, Jeffrey D.; Sopchak, David A.; Upadhye, Ravindra S.; Reynolds, John G.; Satcher, Joseph H.; Gash, Alex E.

    2011-11-15

    A microreactor comprising a silicon wafer, a multiplicity of microchannels in the silicon wafer, and a catalyst coating the microchannels. In one embodiment the catalyst coating the microchannels comprises a nanostructured material. In another embodiment the catalyst coating the microchannels comprises an aerogel. In another embodiment the catalyst coating the microchannels comprises a solgel. In another embodiment the catalyst coating the microchannels comprises carbon nanotubes.

  14. Catalyst for microelectromechanical systems microreactors

    DOE Patents [OSTI]

    Morse, Jeffrey D.; Sopchak, David A.; Upadhye, Ravindra S.; Reynolds, John G.; Satcher, Joseph H.; Gash, Alex E.

    2010-06-29

    A microreactor comprising a silicon wafer, a multiplicity of microchannels in the silicon wafer, and a catalyst coating the microchannels. In one embodiment the catalyst coating the microchannels comprises a nanostructured material. In another embodiment the catalyst coating the microchannels comprises an aerogel. In another embodiment the catalyst coating the microchannels comprises a solgel. In another embodiment the catalyst coating the microchannels comprises carbon nanotubes.

  15. BTO Catalyst | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    BTO Catalyst BTO Catalyst bto_Catalyst_logo_072216.jpg The Building Technologies Office (BTO) is partnering with the successful SunShot Catalyst crowdsourcing competition to identify and solve problems related to software development, data, and/or automation in buildings. Over $1 million in total prize awards will be available during the different competition stages! The Catalyst competition consists of four phases: Ideation: Those working in the building technology space are invited to submit

  16. Degradation of Bimetallic Model Electrocatalysts ___ an in situ XAS Study

    SciTech Connect (OSTI)

    Friebel, Daniel

    2011-06-22

    One of the major challenges in the development of clean energy fuel cells is the performance degradation of the electrocatalyst, which, apart from poisoning effects, can suffer from corrosion due to its exposure to a harsh environment under high potentials. In this communication, we demonstrate how interactions of Pt with a transition metal support affect not only, as commonly intended, the catalytic activity, but also the reactivity of Pt towards oxide formation or dissolution. We use two well-defined single-crystal model systems, Pt/Rh(111) and Pt/Au(111) and a unique x-ray spectroscopy technique with enhanced energy resolution to monitor the potential-dependent oxidation state of Pt, and find two markedly different oxidation mechanisms on the two different substrates. This information can be of great significance for future design of more active and more stable catalysts. We have studied the potential-induced degradation of Pt monolayer model electrocatalysts on Rh(111) and Au(111) single-crystal substrates. The anodic formation of Pt oxides was monitored using in situ high energy resolution fluorescence detection x-ray absorption spectroscopy (HERFD XAS). Although Pt was deposited on both substrates in a three-dimensional island growth mode, we observed remarkable differences during oxide formation that can only be understood in terms of strong Pt-substrate interactions throughout the Pt islands. Anodic polarization of Pt/Rh(111) up to +1.6 V vs. RHE (reversible hydrogen electrode) leads to formation an incompletely oxidized passive layer, whereas formation of PtO2 and partial Pt dissolution is observed for Pt/Au(111).

  17. Epoxidation catalyst and process

    DOE Patents [OSTI]

    Linic, Suljo; Christopher, Phillip

    2010-10-26

    Disclosed herein is a catalytic method of converting alkenes to epoxides. This method generally includes reacting alkenes with oxygen in the presence of a specific silver catalyst under conditions suitable to produce a yield of the epoxides. The specific silver catalyst is a silver nanocrystal having a plurality of surface planes, a substantial portion of which is defined by Miller indices of (100). The reaction is performed by charging a suitable reactor with this silver catalyst and then feeding the reactants to the reactor under conditions to carry out the reaction. The reaction may be performed in batch, or as a continuous process that employs a recycle of any unreacted alkenes. The specific silver catalyst has unexpectedly high selectivity for epoxide products. Consequently, this general method (and its various embodiments) will result in extraordinarily high epoxide yields heretofore unattainable.

  18. Catalysts and method

    DOE Patents [OSTI]

    Taylor, Charles E.; Noceti, Richard P.

    1991-01-01

    An improved catlayst and method for the oxyhydrochlorination of methane is disclosed. The catalyst includes a pyrogenic porous support on which is layered as active material, cobalt chloride in major proportion, and minor proportions of an alkali metal chloride and of a rare earth chloride. On contact of the catalyst with a gas flow of methane, HC1 and oxygen, more than 60% of the methane is converted and of that converted more than 40% occurs as monochloromethane. Advantageously, the monochloromethane can be used to produce gasoline boiling range hydrocarbons with the recycle of HCl for further reaction. This catalyst is also of value for the production of formic acid as are analogous catalysts with lead, silver or nickel chlorides substituted for the cobalt chloride.

  19. DOE Catalyst Demo Day

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy is organizing Catalyst Demo Day at the Franklin Institute in Philadelphia to showcase the next big startups in building energy efficiency and solar energy. Demo Day...

  20. Shape transformation of bimetallic Au–Pd core–shell nanocubes to multilayered Au–Pd–Au core–shell hexagonal platelets

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bhattarai, Nabraj; Prozorov, Tanya

    2015-11-05

    Transformation of metallic or bimetallic (BM) nanoparticles (NPs) from one shape to another desired shape is of importance to nanoscience and nanotechnology, where new morphologies of NPs lead to enhancement of their exploitable properties. In this report, we present the shape transformation of Au octahedral NPs to Au–Pd core–shell nanocubes, followed by their transformation to nanostars and finally to multilayered Au–Pd–Au core–shell hexagonal platelets in the presence of T30 DNA. The weaker binding affinity of T30 DNA directs the growth to favor the formation of lower energy {111} facets, changing the morphology from nanocubes to nanostar. The nanostars, exhibiting unusualmore » intermediate morphologies, are comprised two sets of shell layers and have Au core, Pd intermediate shell, and Au outer shell. Similarly, the hexagonal platelets, which also have Au core and inner Pd shell, are encased in an external gold shell. As a result, the formation of multilayered Au–Pd–Au core–shell hexagonal platelets from Au–Pd core–shell nanocubes via the multilayered nanostars is monitored using scanning/transmission electron microscopy analysis.« less

  1. Shape transformation of bimetallic Au–Pd core–shell nanocubes to multilayered Au–Pd–Au core–shell hexagonal platelets

    SciTech Connect (OSTI)

    Bhattarai, Nabraj; Prozorov, Tanya

    2015-11-05

    Transformation of metallic or bimetallic (BM) nanoparticles (NPs) from one shape to another desired shape is of importance to nanoscience and nanotechnology, where new morphologies of NPs lead to enhancement of their exploitable properties. In this report, we present the shape transformation of Au octahedral NPs to Au–Pd core–shell nanocubes, followed by their transformation to nanostars and finally to multilayered Au–Pd–Au core–shell hexagonal platelets in the presence of T30 DNA. The weaker binding affinity of T30 DNA directs the growth to favor the formation of lower energy {111} facets, changing the morphology from nanocubes to nanostar. The nanostars, exhibiting unusual intermediate morphologies, are comprised two sets of shell layers and have Au core, Pd intermediate shell, and Au outer shell. Similarly, the hexagonal platelets, which also have Au core and inner Pd shell, are encased in an external gold shell. As a result, the formation of multilayered Au–Pd–Au core–shell hexagonal platelets from Au–Pd core–shell nanocubes via the multilayered nanostars is monitored using scanning/transmission electron microscopy analysis.

  2. Final Technical Report on DE-SC00002460 [Bimetallic or trimetallic materials with structural metal centers based on Mn, Fe or V

    SciTech Connect (OSTI)

    Takeuchi, Esther Sans; Takeuchi, Kenneth James; Marschilok, Amy Catherine

    2013-07-26

    Bimetallic or trimetallic materials with structural metal centers based on Mn, Fe or V were investigated under this project. These metal centers are the focus of this research as they have high earth abundance and have each shown success as cathode materials in lithium batteries. Silver ion, Ag{sup +}, was initially selected as the displacement material as reduction of this center should result in increased conductivity as Ag{sup 0} metal particles are formed in-situ upon electrochemical reduction. The in-situ formation of metal nanoparticles upon electrochemical reduction has been previously noted, and more recently, we have investigated the resulting increase in conductivity. Layered materials as well as materials with tunnel or channel type structures were selected. Layered materials are of interest as they can provide 2-dimensional ion mobility. Tunnel or channel structures are also of interest as they provide a rigid framework that should remain stable over many discharge/charge cycles. We describe some examples of materials we have synthesized that demonstrate promising electrochemistry.

  3. Transition metal carbides, nitrides and borides, and their oxygen containing analogs useful as water gas shift catalysts

    DOE Patents [OSTI]

    Thompson, Levi T.; Patt, Jeremy; Moon, Dong Ju; Phillips, Cory

    2003-09-23

    Mono- and bimetallic transition metal carbides, nitrides and borides, and their oxygen containing analogs (e.g. oxycarbides) for use as water gas shift catalysts are described. In a preferred embodiment, the catalysts have the general formula of M1.sub.A M2.sub.B Z.sub.C O.sub.D, wherein M1 is selected from the group consisting of Mo, W, and combinations thereof; M2 is selected from the group consisting of Fe, Ni, Cu, Co, and combinations thereof; Z is selected from the group consisting of carbon, nitrogen, boron, and combinations thereof; A is an integer; B is 0 or an integer greater than 0; C is an integer; O is oxygen; and D is 0 or an integer greater than 0. The catalysts exhibit good reactivity, stability, and sulfur tolerance, as compared to conventional water shift gas catalysts. These catalysts hold promise for use in conjunction with proton exchange membrane fuel cell powered systems.

  4. Crystalline titanate catalyst supports

    DOE Patents [OSTI]

    Anthony, Rayford G.; Dosch, Robert G.

    1993-01-01

    A series of new crystalline titanates (CT) are shown to have considerable potential as catalyst supports. For Pd supported catalyst, the catalytic activity for pyrene hydrogenation was substantially different depending on the type of CT, and one was substantially more active than Pd on hydrous titanium oxide (HTO). For 1-hexene hydrogenation the activities of the new CTs were approximately the same as for the hydrous metal oxide supports.

  5. Plasmatron-catalyst system

    DOE Patents [OSTI]

    Bromberg, Leslie; Cohn, Daniel R.; Rabinovich, Alexander; Alexeev, Nikolai

    2004-09-21

    A plasmatron-catalyst system. The system generates hydrogen-rich gas and comprises a plasmatron and at least one catalyst for receiving an output from the plasmatron to produce hydrogen-rich gas. In a preferred embodiment, the plasmatron receives as an input air, fuel and water/steam for use in the reforming process. The system increases the hydrogen yield and decreases the amount of carbon monoxide.

  6. Plasmatron-catalyst system

    DOE Patents [OSTI]

    Bromberg, Leslie; Cohn, Daniel R.; Rabinovich, Alexander; Alexeev, Nikolai

    2007-10-09

    A plasmatron-catalyst system. The system generates hydrogen-rich gas and comprises a plasmatron and at least one catalyst for receiving an output from the plasmatron to produce hydrogen-rich gas. In a preferred embodiment, the plasmatron receives as an input air, fuel and water/steam for use in the reforming process. The system increases the hydrogen yield and decreases the amount of carbon monoxide.

  7. Crystalline titanate catalyst supports

    DOE Patents [OSTI]

    Anthony, R.G.; Dosch, R.G.

    1993-01-05

    A series of new crystalline titanates (CT) are shown to have considerable potential as catalyst supports. For Pd supported catalyst, the catalytic activity for pyrene hydrogenation was substantially different depending on the type of CT, and one was substantially more active than Pd on hydrous titanium oxide (HTO). For 1-hexene hydrogenation the activities of the new CTs were approximately the same as for the hydrous metal oxide supports.

  8. Catalyst system comprising a first catalyst system tethered to a supported catalyst

    DOE Patents [OSTI]

    Angelici, Robert J.; Gao, Hanrong

    1998-08-04

    The present invention provides new catalyst formats which comprise a supported catalyst tethered to a second and different catalyst by a suitable tethering ligand. A preferred system comprises a heterogeneous supported metal catalyst tethered to a homogeneous catalyst. This combination of homogeneous and heterogeneous catalysts has a sufficient lifetime and unusually high catalytic activity in arene hydrogenations, and potentially many other reactions as well, including, but not limited to hydroformylation, hydrosilation, olefin oxidation, isomerization, hydrocyanation, olefin metathesis, olefin polymerization, carbonylation, enantioselective catalysis and photoduplication. These catalysts are easily separated from the products, and can be reused repeatedly, making these systems very economical.

  9. Catalyst system comprising a first catalyst system tethered to a supported catalyst

    DOE Patents [OSTI]

    Angelici, R.J.; Gao, H.

    1998-08-04

    The present invention provides new catalyst formats which comprise a supported catalyst tethered to a second and different catalyst by a suitable tethering ligand. A preferred system comprises a heterogeneous supported metal catalyst tethered to a homogeneous catalyst. This combination of homogeneous and heterogeneous catalysts has a sufficient lifetime and unusually high catalytic activity in arene hydrogenations, and potentially many other reactions as well, including, but not limited to hydroformylation, hydrosilication, olefin oxidation, isomerization, hydrocyanidation, olefin metathesis, olefin polymerization, carbonylation, enantioselective catalysis and photoduplication. These catalysts are easily separated from the products, and can be reused repeatedly, making these systems very economical. 2 figs.

  10. Novel ebullated bed catalyst regeneration technology improves regenerated catalyst quality

    SciTech Connect (OSTI)

    Neuman, D.J.

    1995-09-01

    Regeneration of spent hydroprocessing catalysts has long been practiced by the refining industry. With increased pressures on refiners to reduce catalyst expenditures and waste generation, refiners are more frequently reusing spent hydroprocessing catalysts after ex-situ regeneration to restore catalytic activity. By reusing regenerated catalyst for at least two cycles, the refiner reduces catalyst waste by at least one-half. As environmental laws become more restrictive, spent hydroprocessing catalyst is more likely to be classified as hazardous waste. Disposal of spent catalyst, which was previously accomplished by landfilling, now requires more expensive reclamation techniques. TRICAT has introduced the TRICAT Regeneration Process (TRP), a novel ebullated bed regeneration plant, to improve the catalyst regeneration process. The ebullated bed design allows for better control of heat release during the regeneration process. As a result, the regeneration can be accomplished in a single-pass, with improved catalyst activity retention. Catalyst losses are also minimized due to reduced catalyst handling. Commercial results from the TRP have demonstrated successful scale-up of the technology from pilot scale. The plant has achieved complete recovery of the available catalyst activity with little or no losses in catalyst yield or extrudate length. The flexibility of the TRP to process a variety of catalysts is also discussed.

  11. Catalyst by Design - Theoretical, Nanostructural, and Experimental...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Oxidation Catalyst for Diesel Engine Emission Treatment Catalyst by Design - Theoretical, Nanostructural, and Experimental Studies of Oxidation Catalyst for Diesel Engine Emission ...

  12. Nanoscale Chemical Imaging of a Working Catalyst

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanoscale Chemical Imaging of a Working Catalyst Nanoscale Chemical Imaging of a Working Catalyst Print Wednesday, 28 January 2009 00:00 The heterogeneous catalysts used in most ...

  13. Method to prepare nanoparticles on porous mediums

    DOE Patents [OSTI]

    Vieth, Gabriel M [Knoxville, TN; Dudney, Nancy J [Oak Ridge, TN; Dai, Sheng [Knoxville, TN

    2010-08-10

    A method to prepare porous medium decorated with nanoparticles involves contacting a suspension of nanoparticles in an ionic liquid with a porous medium such that the particles diffuse into the pores of the medium followed by heating the resulting composition to a temperature equal to or greater than the thermal decomposition temperature of the ionic liquid resulting in the removal of the liquid portion of the suspension. The nanoparticles can be a metal, an alloy, or a metal compound. The resulting compositions can be used as catalysts, sensors, or separators.

  14. Carbon nanotube forests growth using catalysts from atomic layer deposition

    SciTech Connect (OSTI)

    Chen, Bingan; Zhang, Can; Esconjauregui, Santiago; Xie, Rongsi; Zhong, Guofang; Robertson, John; Bhardwaj, Sunil; Cepek, Cinzia

    2014-04-14

    We have grown carbon nanotubes using Fe and Ni catalyst films deposited by atomic layer deposition. Both metals lead to catalytically active nanoparticles for growing vertically aligned nanotube forests or carbon fibres, depending on the growth conditions and whether the substrate is alumina or silica. The resulting nanotubes have narrow diameter and wall number distributions that are as narrow as those grown from sputtered catalysts. The state of the catalyst is studied by in-situ and ex-situ X-ray photoemission spectroscopy. We demonstrate multi-directional nanotube growth on a porous alumina foam coated with Fe prepared by atomic layer deposition. This deposition technique can be useful for nanotube applications in microelectronics, filter technology, and energy storage.

  15. Oxygen Reduction at Very Low Overpotential on Nanoporous Ag Catalysts

    SciTech Connect (OSTI)

    Zhou, Yang; Lu, Qi; Zhuang, Zhongbin; Hutchings, Gregory S.; Kattel, Shyam; Yan, Yushan; Chen, Jingguang G.; Xiao, John Q.; Jiao, Feng

    2015-05-07

    Here we report a monolithic nanoporous Ag (np-Ag) material, synthesized using the dealloying method, as high-performance catalysts for ORR in alkaline media. As shown in Scheme 1, when there is insufficient potential input, the O2 molecules are more likely to rebound off from a planar electrode surface (i.e. bulk polycrystalline metal, films made from nanoparticles or nanowires) before they could be reduced. In contrast, they are more likely to be trapped inside the monolithic nanoporous structure, contacting with catalytic surface for multiple time, which greatly enhances the chance for them to be fully reduced. As a result, the np-Ag catalyst is able to achieve an equivalent or better ORR performance than the state-of the-art Pt/C catalyst at low overpotentials, which is most desired in electrochemical energy applications for maximizing efficiency.

  16. Reaction selectivity studies on nanolithographically-fabricated platinum model catalyst arrays

    SciTech Connect (OSTI)

    Grunes, Jeffrey Benjamin

    2004-05-15

    In an effort to understand the molecular ingredients of catalytic activity and selectivity toward the end of tuning a catalyst for 100% selectivity, advanced nanolithography techniques were developed and utilized to fabricate well-ordered two-dimensional model catalyst arrays of metal nanostructures on an oxide support for the investigation of reaction selectivity. In-situ and ex-situ surface science techniques were coupled with catalytic reaction data to characterize the molecular structure of the catalyst systems and gain insight into hydrocarbon conversion in heterogeneous catalysis. Through systematic variation of catalyst parameters (size, spacing, structure, and oxide support) and catalytic reaction conditions (hydrocarbon chain length, temperature, pressures, and gas composition), the data presented in this dissertation demonstrate the ability to direct a reaction by rationally adjusting, through precise control, the design of the catalyst system. Electron beam lithography (EBL) was employed to create platinum nanoparticles on an alumina (Al{sub 2}O{sub 3}) support. The Pt nanoparticle spacing (100-150-nm interparticle distance) was varied in these samples, and they were characterized using x-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and atomic force microscopy (AFM), both before and after reactions. The TEM studies showed the 28-nm Pt nanoparticles with 100 and 150-nm interparticle spacing on alumina to be polycrystalline in nature, with crystalline sizes of 3-5 nm. The nanoparticle crystallites increased significantly after heat treatment. The nanoparticles were still mostly polycrystalline in nature, with 2-3 domains. The 28-nm Pt nanoparticles deposited on alumina were removed by the AFM tip in contact mode with a normal force of approximately 30 nN. After heat treatment at 500 C in vacuum for 3 hours, the AFM tip, even at 4000 nN, could not remove the platinum nanoparticles. The

  17. Supported organoiridium catalysts for alkane dehydrogenation

    DOE Patents [OSTI]

    Baker, R. Thomas; Sattelberger, Alfred P.; Li, Hongbo

    2013-09-03

    Solid supported organoiridium catalysts, a process for preparing such solid supported organoiridium catalysts, and the use of such solid supported organoiridium catalysts in dehydrogenation reactions of alkanes is provided. The catalysts can be easily recovered and recycled.

  18. Nickel supported on nitrogen-doped carbon nanotubes as hydrogen oxidation reaction catalyst in alkaline electrolyte

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhuang, Zhongbin; Giles, Stephen A.; Zheng, Jie; Jenness, Glen R.; Caratzoulas, Stavros; Vlachos, Dionisios G.; Yan, Yushan

    2016-01-14

    The development of a low-cost, high-performance platinum-group-metal-free hydroxide exchange membrane fuel cell is hindered by the lack of a hydrogen oxidation reaction catalyst at the anode. Here we report that a composite catalyst, nickel nanoparticles supported on nitrogen-doped carbon nanotubes, has hydrogen oxidation activity similar to platinum-group metals in alkaline electrolyte. Although nitrogen-doped carbon nanotubes are a very poor hydrogen oxidation catalyst, as a support, it increases the catalytic performance of nickel nanoparticles by a factor of 33 (mass activity) or 21 (exchange current density) relative to unsupported nickel nanoparticles. Density functional theory calculations indicate that the nitrogen-doped support stabilizesmore » the nanoparticle against reconstruction, while nitrogen located at the edge of the nanoparticle tunes local adsorption sites by affecting the d-orbitals of nickel. Here, owing to its high activity and low cost, our catalyst shows significant potential for use in low-cost, high-performance fuel cells.« less

  19. Partial oxidation catalyst

    DOE Patents [OSTI]

    Krumpelt, Michael; Ahmed, Shabbir; Kumar, Romesh; Doshi, Rajiv

    2000-01-01

    A two-part catalyst comprising a dehydrogenation portion and an oxide-ion conducting portion. The dehydrogenation portion is a group VIII metal and the oxide-ion conducting portion is selected from a ceramic oxide crystallizing in the fluorite or perovskite structure. There is also disclosed a method of forming a hydrogen rich gas from a source of hydrocarbon fuel in which the hydrocarbon fuel contacts a two-part catalyst comprising a dehydrogenation portion and an oxide-ion conducting portion at a temperature not less than about 400.degree. C. for a time sufficient to generate the hydrogen rich gas while maintaining CO content less than about 5 volume percent. There is also disclosed a method of forming partially oxidized hydrocarbons from ethanes in which ethane gas contacts a two-part catalyst comprising a dehydrogenation portion and an oxide-ion conducting portion for a time and at a temperature sufficient to form an oxide.

  20. Catalyst, Method Of Making, And Reactions Using The Catalyst

    DOE Patents [OSTI]

    Tonkovich, Anna Lee Y.; Wang, Yong; Gao, Yufei

    2004-07-13

    The present invention includes a catalyst having a layered structure with, (1) a porous support, (2) a buffer layer, (3) an interfacial layer, and optionally (4) a catalyst layer. The invention also provides a process in which a reactant is converted to a product by passing through a reaction chamber containing the catalyst.

  1. Catalyst, method of making, and reactions using the catalyst

    DOE Patents [OSTI]

    Tonkovich, Anna Lee Y [Pasco, WA; Wang, Yong [Richland, WA; Gao, Yufei [Kennewick, WA

    2009-03-03

    The present invention includes a catalyst having a layered structure with, (1) a porous support, (2) a buffer layer, (3) an interfacial layer, and optionally (4) a catalyst layer. The invention also provides a process in which a reactant is converted to a product by passing through a reaction chamber containing the catalyst.

  2. Catalyst, method of making, and reactions using the catalyst

    DOE Patents [OSTI]

    Tonkovich, Anna Lee Y [Pasco, WA; Wang, Yong [Richland, WA; Gao, Yufei [Kennewick, WA

    2002-08-27

    The present invention includes a catalyst having a layered structure with, (1) a porous support, (2) a buffer layer, (3) an interfacial layer, and optionally (4) a catalyst layer. The invention also provides a process in which a reactant is converted to a product by passing through a reaction chamber containing the catalyst.

  3. Aerogel derived catalysts

    SciTech Connect (OSTI)

    Reynolds, J. G., LLNL

    1996-12-11

    Aerogels area class of colloidal materials which have high surface areas and abundant mesoporous structure. SiO{sub 2} aerogels show unique physical, optical and structural properties. When catalytic metals are incorporated in the aerogel framework, the potential exists for new and very effective catalysts for industrial processes. Three applications of these metal-containing SiO{sub 2} aerogels as catalysts are briefly reviewed in this paper--NO{sub x} reduction, volatile organic compound destruction, and partial oxidation of methane.

  4. Multifunctional mesoporous silica catalyst

    DOE Patents [OSTI]

    Lin, Victor Shang-Yi; Tsai, Chih-Hsiang; Chen, Hung-Ting; Pruski, Marek; Kobayashi, Takeshi

    2015-03-31

    The present invention provides bifunctional silica mesoporous materials, including mesoporous silica nanoparticles ("MSN"), having pores modified with diarylammonium triflate and perfluoroaryl moieties, that are useful for the acid-catalyzed esterification of organic acids with organic alcohols.

  5. Improving Light Harvesting in Dye-Sensitized Solar Cells Using Hybrid Bimetallic Nanostructures

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zarick, Holly F.; Erwin, William R.; Boulesbaa, Abdelaziz; Hurd, Olivia K.; Webb, Joseph A.; Puretzky, Alexander A.; Geohegan, David B.; Bardhan, Rizia

    2016-01-25

    In this paper, we demonstrate improved light trapping in dye-sensitized solar cells (DSSCs) with hybrid bimetallic gold core/silver shell nanostructures. Silica-coated bimetallic nanostructures (Au/Ag/SiO2 NSs) integrated in the active layer of DSSCs resulted in 7.51% power conversion efficiency relative to 5.97% for reference DSSCs, giving rise to 26% enhancement in device performance. DSSC efficiencies were governed by the particle density of Au/Ag/SiO2 NSs with best performing devices utilizing only 0.44 wt % of nanostructures. We performed transient absorption spectroscopy of DSSCs with variable concentrations of Au/Ag/SiO2 NSs and observed an increase in amplitude and decrease in lifetime with increasing particlemore » density relative to reference. Finally, we attributed this trend to plasmon resonant energy transfer and population of the singlet excited states of the sensitizer molecules at the optimum concentration of NSs promoting enhanced exciton generation and rapid charge transfer into TiO2.« less

  6. Method for forming thermally stable nanoparticles on supports

    DOE Patents [OSTI]

    Roldan Cuenya, Beatriz; Naitabdi, Ahmed R.; Behafarid, Farzad

    2013-08-20

    An inverse micelle-based method for forming nanoparticles on supports includes dissolving a polymeric material in a solvent to provide a micelle solution. A nanoparticle source is dissolved in the micelle solution. A plurality of micelles having a nanoparticle in their core and an outer polymeric coating layer are formed in the micelle solution. The micelles are applied to a support. The polymeric coating layer is then removed from the micelles to expose the nanoparticles. A supported catalyst includes a nanocrystalline powder, thin film, or single crystal support. Metal nanoparticles having a median size from 0.5 nm to 25 nm, a size distribution having a standard deviation .ltoreq.0.1 of their median size are on or embedded in the support. The plurality of metal nanoparticles are dispersed and in a periodic arrangement. The metal nanoparticles maintain their periodic arrangement and size distribution following heat treatments of at least 1,000.degree. C.

  7. Hydrogen evolution reaction catalyst

    DOE Patents [OSTI]

    Subbaraman, Ram; Stamenkovic, Vojislav; Markovic, Nenad; Tripkovic, Dusan

    2016-02-09

    Systems and methods for a hydrogen evolution reaction catalyst are provided. Electrode material includes a plurality of clusters. The electrode exhibits bifunctionality with respect to the hydrogen evolution reaction. The electrode with clusters exhibits improved performance with respect to the intrinsic material of the electrode absent the clusters.

  8. Zinc sulfide liquefaction catalyst

    DOE Patents [OSTI]

    Garg, Diwakar

    1984-01-01

    A process for the liquefaction of carbonaceous material, such as coal, is set forth wherein coal is liquefied in a catalytic solvent refining reaction wherein an activated zinc sulfide catalyst is utilized which is activated by hydrogenation in a coal derived process solvent in the absence of coal.

  9. Study of energy transfer between molecules placed in the vicinity of a bimetal composite nanoparticle

    SciTech Connect (OSTI)

    Daneshfar, Nader E-mail: ndaneshfar@razi.ac.ir

    2015-10-15

    In this study, the problem of energy transfer between two molecules near a bimetallic composite nanoparticle is investigated. The influence of the interaction between metal particles on the intermolecular energy is studied, because when two metal nanoparticles are placed close to each other, their plasmons coupling giving rise to new features. On the other hand, we discuss the transfer of resonance energy between donor and acceptor molecules (a single donor and a single acceptor) in the presence of a nanocomposite containing gold and silver nanoparticles based on the Maxwell-Garnett effective medium theory and within the quasistatic limit. We show that the interaction energy strongly depends on the particle size, the filling factor of metal particles, the intermolecular distance (the distance between the donor and acceptor molecules), and the dielectric constant of host matrix.

  10. Thermal plasma synthesis of Fe{sub 1?x}Ni{sub x} alloy nanoparticles

    SciTech Connect (OSTI)

    Raut, Suyog A.; Kanhe, Nilesh S.; Bhoraskar, S. V.; Mathe, V. L.; Das, A. K.

    2014-04-24

    Fe-Ni alloy nanoparticles are of great interest because of diverse practical applications in the fields such as magnetic fluids, high density recording media, catalysis and medicine. We report the synthesis of Fe-Ni nanoparticles via thermal plasma route. Thermal plasma assisted synthesis is a high temperature process and gives high yields of production. Here, we have used direct arc thermal plasma plume of 6kw as a source of energy at operating pressure 500 Torr. The mixture of Fe-Ni powder in required proportion (Fe{sub 1?x}Ni{sub x}; x=0.30, 0.32, 0.34, 0.36, 0.38 and 0.40) was made to evaporate simultaneously from the graphite anode in thermal plasma reactor to form Fe-Ni bimetallic nanoparticles. The as synthesized particles were characterized by X-Ray Diffraction (XRD), Thermo-Gravimetric Analysis/Differential Scanning Calorimtry (TGA/DSC)

  11. Hydroprocessing catalyst composition

    SciTech Connect (OSTI)

    Apelian, M.R.; Degnan, T.F. Jr.; Marler, D.O.; Mazzone, D.N.

    1993-07-13

    A bifunctional hydroprocessing catalyst is described which comprises a metal component having hydrogenation/dehydrogenation functionality and a support component comprising an inorganic, non-layered, porous, crystalline phase material having pores with diameters of at least about 13 [angstrom] and exhibiting, after calcination, an X-ray diffraction pattern with at least one peak with a relative intensity of 100 at a d-spacing greater than about 18 [angstrom], the catalyst having a surface area S, where S, expressed in m[sup 2].g[sup [minus]1], is defined by the equation: S[ge]600-13.3X where X is the total metals loading in weight percent and is least 12 weight percent. A second hydroprocessing catalyst is described according to claim 1 in which the crystalline phase has a composition expressed as follows: M[sub n/q](W[sub a]X[sub b]Y[sub c]Z[sub d]O[sub h]) wherein M is one or more ions; n is the charge of the composition excluding M expressed as oxides; q is the weighted molar average valence of M; n/q is the number of moles or mole fraction of M; W is one or more divalent elements; X is one or more trivalent elements; Y is one or more tetravalent elements; Z is one or more pentavalent elements; a, b, c, and d are mole fraction of W, X, Y, and Z, respectively, h is a number of from 1 to 2.5; and (a+b+c+d) = 1. A third hydroprocessing catalyst is described according to claim 1 in which the catalyst is at least one base metal of Group VIA, VIIA or VIIIA of the Periodic Table.

  12. Molybdenum sulfide/carbide catalysts

    DOE Patents [OSTI]

    Alonso, Gabriel; Chianelli, Russell R.; Fuentes, Sergio; Torres, Brenda

    2007-05-29

    The present invention provides methods of synthesizing molybdenum disulfide (MoS.sub.2) and carbon-containing molybdenum disulfide (MoS.sub.2-xC.sub.x) catalysts that exhibit improved catalytic activity for hydrotreating reactions involving hydrodesulfurization, hydrodenitrogenation, and hydrogenation. The present invention also concerns the resulting catalysts. Furthermore, the invention concerns the promotion of these catalysts with Co, Ni, Fe, and/or Ru sulfides to create catalysts with greater activity, for hydrotreating reactions, than conventional catalysts such as cobalt molybdate on alumina support.

  13. SHAPE SELECTIVE NANO-CATALYSTS: TOWARD DIRECT METHANOL FUEL CELLS APPLICATIONS

    SciTech Connect (OSTI)

    Murph, S.

    2010-06-16

    A series of bimetallic core-shell-alloy type Au-Pt nanomaterials with various morphologies, aspect ratios and compositions, were produced in a heterogenous epitaxial fashion. Gold nanoparticles with well-controlled particle size and shape, e.g. spheres, rods and cubes, were used as 'seeds' for platinum growth in the presence of a mild reducing agent, ascorbic acid and a cationic surfactant cethyltrimethyl ammonium bromide (CTAB). The reactions take place in air and water, and are quick, economical and amenable for scaling up. The synthesized nanocatalysts were characterized by electron microscopy techniques and energy dispersive X-ray analysis. Nafion membranes were embedded with the Au-Pt nanomaterials and analyzed by atomic force microscopy (AFM) and scanning electron microscopy (SEM) for their potential in direct methanol fuel cells applications.

  14. Can Ni phosphides become viable hydroprocessing catalysts?

    SciTech Connect (OSTI)

    Soled, S.; Miseo, S.; Baumgartner, J.; Guzman, J.; Bolin, T.; Meyer, R.

    2015-05-15

    We prepared higher surface area nickel phosphides than are normally found by reducing nickel phosphate. To do this, we hydrothermally synthesized Ni hydroxy phosphite precursors with low levels of molybdenum substitution. The molybdenum substitution increases the surface area of these precursors. During pretreatment in a sulfiding atmosphere (such as H2S/H2) dispersed islands of MoS2 segregate from the precursor and provide a pathway for H2 dissociation that allows reduction of the phosphite precursor to nickel phosphide at substantially lower temperatures than in the absence of MoS2. The results reported here show that to create nickel phosphides with comparable activity to conventional supported sulfide catalysts, one would have to synthesize the phosphide with surface areas exceeding 400 m2/g (i.e. with nanoparticles less than 30 Å in lateral dimension).

  15. ?-Fe{sub 2}O{sub 3} nanoparticles: An easily recoverable effective photo-catalyst for the degradation of rose bengal and methylene blue dyes in the waste-water treatment plant

    SciTech Connect (OSTI)

    Dutta, Amit Kumar; Maji, Swarup Kumar; Adhikary, Bibhutosh

    2014-01-01

    Graphical abstract: - Highlights: ?-Fe{sub 2}O{sub 3} NPs from a single-source precursor and characterized by XRD, TEM, UVvis spectra. The NPs were tested as effective photocatalyst toward degradation of RB and MB dyes. The possible pathway of the photocatalytic decomposition process has been discussed. The active species, OH, was detected by TA photoluminescence probing techniques. - Abstract: ?-Fe{sub 2}O{sub 3} nanoparticles (NPs) were synthesized from a single-source precursor complex [Fe{sub 3}O(C{sub 6}H{sub 5}COO){sub 6}(H{sub 2}O){sub 3}]NO{sub 3} by a simple thermal decomposition process and have been characterized by X-ray diffraction analysis (XRD), transmission electron microscopy (TEM) and UVvis spectroscopic techniques. The NPs were highly pure and well crystallized having hexagonal morphology with an average particle size of 35 nm. The prepared ?-Fe{sub 2}O{sub 3} (maghemite) NPs show effective photo-catalytic activity toward the degradation of rose bengal (RB) and methylene blue (MB) dyes under visible light irradiation and can easily be recoverable in the presence of magnetic field for successive re-uses. The possible photo-catalytic decomposition mechanism is discussed through the detection of hydroxyl radical (OH) by terephthalic acid photo-luminescence probing technique.

  16. Fluorination process using catalyst

    DOE Patents [OSTI]

    Hochel, Robert C.; Saturday, Kathy A.

    1985-01-01

    A process for converting an actinide compound selected from the group consisting of uranium oxides, plutonium oxides, uranium tetrafluorides, plutonium tetrafluorides and mixtures of said oxides and tetrafluorides, to the corresponding volatile actinide hexafluoride by fluorination with a stoichiometric excess of fluorine gas. The improvement involves conducting the fluorination of the plutonium compounds in the presence of a fluoride catalyst selected from the group consisting of CoF.sub.3, AgF.sub.2 and NiF.sub.2, whereby the fluorination is significantly enhanced. The improvement also involves conducting the fluorination of one of the uranium compounds in the presence of a fluoride catalyst selected from the group consisting of CoF.sub.3 and AgF.sub.2, whereby the fluorination is significantly enhanced.

  17. Fluorination process using catalysts

    DOE Patents [OSTI]

    Hochel, R.C.; Saturday, K.A.

    1983-08-25

    A process is given for converting an actinide compound selected from the group consisting of uranium oxides, plutonium oxides, uranium tetrafluorides, plutonium tetrafluorides and mixtures of said oxides and tetrafluorides, to the corresponding volatile actinide hexafluoride by fluorination with a stoichiometric excess of fluorine gas. The improvement involves conducting the fluorination of the plutonium compounds in the presence of a fluoride catalyst selected from the group consisting of CoF/sub 3/, AgF/sub 2/ and NiF/sub 2/, whereby the fluorination is significantly enhanced. The improvement also involves conducting the fluorination of one of the uranium compounds in the presence of a fluoride catalyst selected from the group consisting of CoF/sub 3/ and AgF/sub 2/, whereby the fluorination is significantly enhanced.

  18. Binary ferrihydrite catalysts

    DOE Patents [OSTI]

    Huffman, G.P.; Zhao, J.; Feng, Z.

    1996-12-03

    A method of preparing a catalyst precursor comprises dissolving an iron salt and a salt of an oxoanion forming agent, in water so that a solution of the iron salt and oxoanion forming agent salt has a ratio of oxoanion/Fe of between 0.0001:1 to 0.5:1. Next is increasing the pH of the solution to 10 by adding a strong base followed by collecting of precipitate having a binary ferrihydrite structure. A binary ferrihydrite catalyst precursor is also prepared by dissolving an iron salt in water. The solution is brought to a pH of substantially 10 to obtain ferrihydrite precipitate. The precipitate is then filtered and washed with distilled water and subsequently admixed with a hydroxy carboxylic acid solution. The admixture is mixed/agitated and the binary ferrihydrite precipitate is then filtered and recovered. 3 figs.

  19. Binary ferrihydrite catalysts

    DOE Patents [OSTI]

    Huffman, Gerald P.; Zhao, Jianmin; Feng, Zhen

    1996-01-01

    A method of preparing a catalyst precursor comprises dissolving an iron salt and a salt of an oxoanion forming agent, in water so that a solution of the iron salt and oxoanion forming agent salt has a ratio of oxoanion/Fe of between 0.0001:1 to 0.5:1. Next is increasing the pH of the solution to 10 by adding a strong base followed by collecting of precipitate having a binary ferrihydrite structure. A binary ferrihydrite catalyst precursor is also prepared by dissolving an iron salt in water. The solution is brought to a pH of substantially 10 to obtain ferrihydrite precipitate. The precipitate is then filtered and washed with distilled water and subsequently admixed with a hydroxy carboxylic acid solution. The admixture is mixed/agitated and the binary ferrihydrite precipitate is then filtered and recovered.

  20. Catalyst rejuvenation technology and economics

    SciTech Connect (OSTI)

    Duddy, J.E.; Hildebrandt, S.J.; Koseoglu, R.O.

    1995-12-31

    One of the major factors in the economics of residue hydroprocessing is the cost of catalyst. Catalyst replacement cost in Hydrocarbon Research, Inc.`s (HRI) H-Oil{reg_sign} Process is set by a number of factors, including the feedrate, processing objectives, and feedstock type. At a given level of process performance, the catalyst replacement rate is primarily set by the rate of catalyst deactivation resulting from contaminant metals in the feedstock depositing on the catalyst surface. This is especially true as the metals content of the feedstock increases. In the recent years, interest in processing high metals feedstock has increased. For example, HRI has recently designed a new H-Oil{reg_sign} Process unit for PEMEX in Mexico, where the metals content of the design feedstock is in excess of 700 wppm. Regeneration of used hydroprocessing catalysts, through controlled oxidation of the coke deposited on the catalyst, is a common practice in the refining industry. Activity can be restored to almost fresh catalyst activity level when the primary contaminant is coke. If there is a significant amount of metal contaminants on the catalyst, regeneration alone is not effective in restoring catalyst activity. Oxidation is unable to remove contaminant metals. HRI has developed and patented a washing procedure to remove the contaminant metals. A dilute acid wash (to remove metals), in conjunction with conventional regeneration (to remove coke), can restore high levels of catalyst activity of spent catalysts with high levels of metal contaminants. The combination of acid washing and controlled oxidation forms the basis of HRI`s Catalyst Rejuvenation Technology.

  1. Steam reforming catalyst

    DOE Patents [OSTI]

    Kramarz, Kurt W.; Bloom, Ira D.; Kumar, Romesh; Ahmed, Shabbir; Wilkenhoener, Rolf; Krumpelt, Michael

    2001-01-01

    A method of forming a hydrogen rich gas from a source of hydrocarbon fuel. A vapor of the hydrocarbon fuel and steam is brought in contact with a two-part catalyst having a dehydrogenation powder portion and an oxide-ion conducting powder portion at a temperature not less than about 770.degree.C. for a time sufficient to generate the hydrogen rich. The H.sub.2 content of the hydrogen gas is greater than about 70 percent by volume. The dehydrogenation portion of the catalyst includes a group VIII metal, and the oxide-ion conducting portion is selected from a ceramic oxide from the group crystallizing in the fluorite or perovskite structure and mixtures thereof. The oxide-ion conducting portion of the catalyst is a ceramic powder of one or more of ZrO.sub.2, CeO.sub.2, Bi.sub.2 O.sub.3, (BiVO).sub.4, and LaGaO.sub.3.

  2. Metal nanoparticle deposited inorganic nanostructure hybrids, uses thereof and processes for their preparation

    DOE Patents [OSTI]

    Tenne, Reshef; Tsverin, Yulia; Burghaus, Uwe; Komarneni, Mallikharjuna Rao

    2016-01-26

    This invention relates to a hybrid component comprising at least one nanoparticle of inorganic layered compound (in the form of fullerene-like structure or nanotube), and at least one metal nanoparticle, uses thereof as a catalyst, (e.g. photocatalysis) and processes for its preparation.

  3. Catalysts for emerging energy applications

    SciTech Connect (OSTI)

    Bruce C. Gates; George W. Huber; Christopher L. Marshall; Phillip N. Ross; Jeffrey Siirola; Yong Wang

    2008-04-15

    Catalysis is the essential technology for chemical transformation, including production of fuels from the fossil resources petroleum, natural gas, and coal. Typical catalysts for these conversions are robust porous solids incorporating metals, metal oxides, and/or metal sulfides. As efforts are stepping up to replace fossil fuels with biomass, new catalysts for the conversion of the components of biomass will be needed. Although the catalysts for biomass conversion might be substantially different from those used in the conversion of fossil feedstocks, the latter catalysts are a starting point in today's research. Major challenges lie ahead in the discovery of efficient biomass conversion catalysts, as well as in the discovery of catalysts for conversion of CO{sub 2} and possibly water into liquid fuels. 16 refs., 6 figs., 1 tab.

  4. Size Effect of Ruthenium Nanoparticles in Catalytic Carbon Monoxide Oxidation

    SciTech Connect (OSTI)

    Joo, Sang Hoon; Park, Jeong Y.; Renzas, J. Russell; Butcher, Derek R.; Huang, Wenyu; Somorjai, Gabor A.

    2010-04-04

    Carbon monoxide oxidation over ruthenium catalysts has shown an unusual catalytic behavior. Here we report a particle size effect on CO oxidation over Ru nanoparticle (NP) catalysts. Uniform Ru NPs with a tunable particle size from 2 to 6 nm were synthesized by a polyol reduction of Ru(acac){sub 3} precursor in the presence of poly(vinylpyrrolidone) stabilizer. The measurement of catalytic activity of CO oxidation over two-dimensional Ru NPs arrays under oxidizing reaction conditions (40 Torr CO and 100 Torr O{sub 2}) showed an activity dependence on the Ru NP size. The CO oxidation activity increases with NP size, and the 6 nm Ru NP catalyst shows 8-fold higher activity than the 2 nm catalysts. The results gained from this study will provide the scientific basis for future design of Ru-based oxidation catalysts.

  5. Oxygen-reducing catalyst layer

    DOE Patents [OSTI]

    O'Brien, Dennis P.; Schmoeckel, Alison K.; Vernstrom, George D.; Atanasoski, Radoslav; Wood, Thomas E.; Yang, Ruizhi; Easton, E. Bradley; Dahn, Jeffrey R.; O'Neill, David G.

    2011-03-22

    An oxygen-reducing catalyst layer, and a method of making the oxygen-reducing catalyst layer, where the oxygen-reducing catalyst layer includes a catalytic material film disposed on a substrate with the use of physical vapor deposition and thermal treatment. The catalytic material film includes a transition metal that is substantially free of platinum. At least one of the physical vapor deposition and the thermal treatment is performed in a processing environment comprising a nitrogen-containing gas.

  6. Catalyst systems and uses thereof

    DOE Patents [OSTI]

    Ozkan, Umit S.; Holmgreen, Erik M.; Yung, Matthew M.

    2012-07-24

    A method of carbon monoxide (CO) removal comprises providing an oxidation catalyst comprising cobalt supported on an inorganic oxide. The method further comprises feeding a gaseous stream comprising CO, and oxygen (O.sub.2) to the catalyst system, and removing CO from the gaseous stream by oxidizing the CO to carbon dioxide (CO.sub.2) in the presence of the oxidation catalyst at a temperature between about 20 to about 200.degree. C.

  7. Development of GREET Catalyst Module

    SciTech Connect (OSTI)

    Wang, Zhichao; Benavides, Pahola T.; Dunn, Jennifer B.; Cronauer, Donald C.

    2015-09-01

    In this report, we develop energy and material flows for the production of five different catalysts (tar reforming, alcohol synthesis, Zeolite Socony Mobil-5 [ZSM-5], Mo/Co/ γ-Al2O3, and Pt/ γ-Al2O3) and two chemicals (olivine, dimethyl ether of polyethylene glycol [DEPG]). These compounds and catalysts are now included in the Greenhouse Gases, Regulated Emissions and Energy Use in Transportation (GREET™) catalyst module.

  8. Mixed Alcohol Synthesis Catalyst Screening

    SciTech Connect (OSTI)

    Gerber, Mark A.; White, James F.; Stevens, Don J.

    2007-09-03

    National Renewable Energy Laboratory (NREL) and Pacific Northwest National Laboratory (PNNL) are conducting research to investigate the feasibility of producing mixed alcohols from biomass-derived synthesis gas (syngas). PNNL is tasked with obtaining commercially available or preparing promising mixed-alcohol catalysts and screening them in a laboratory-scale reactor system. Commercially available catalysts and the most promising experimental catalysts are provided to NREL for testing using a slipstream from a pilot-scale biomass gasifier. From the standpoint of producing C2+ alcohols as the major product, it appears that the rhodium catalyst is the best choice in terms of both selectivity and space-time yield (STY). However, unless the rhodium catalyst can be improved to provide minimally acceptable STYs for commercial operation, mixed alcohol synthesis will involve significant production of other liquid coproducts. The modified Fischer-Tropsch catalyst shows the most promise for providing both an acceptable selectivity to C2+ alcohols and total liquid STY. However, further optimization of the Fischer-Tropsch catalysts to improve selectivity to higher alcohols is highly desired. Selection of a preferred catalyst will likely entail a decision on the preferred coproduct slate. No other catalysts tested appear amenable to the significant improvements needed for acceptable STYs.

  9. High Impact Technology (HIT) Catalyst

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Impact Technology (HIT) Catalyst Images courtesy CREE, True Manufacturing, A.O. Smith, Bernstein Associates, Cambridge Engineering, Alliance Laundry Systems, NREL Commercial ...

  10. Goldpromoted structurally ordered intermetallic palladium cobalt nanoparticles for the oxygen reduction reaction

    SciTech Connect (OSTI)

    Kuttiyiel, Kurian A.; Sasaki, Kotaro; Su, Dong; Wu, Lijun; Zhu, Yimei; Adzic, Radoslav R.

    2014-11-06

    Considerable efforts to make palladium and palladium alloys active catalysts and a possible replacement for platinum have had a marginal success. Here, we report on a structurally ordered Au??Pd??Co?? catalyst that exhibits comparable activity to conventional platinum catalysts in both acid and alkaline media. Electron microscopic techniques demonstrate that via addition of gold atoms PdCo nanoparticles undergo at elevated temperatures an atomic structural transition from core-shell to a rare intermetallic ordered structure with twin boundaries forming stable {111}, {110} and {100} facets. The superior stability of this catalyst compared to platinum after 10,000 potential cycles in alkaline media is attributed to the atomic structural order of PdCo nanoparticles along with protective effect of clusters of gold atoms on the surface. This strategy of making ordered palladium intermetallic alloy nanoparticles can be used in diverse heterogeneous catalysis where particle size and structural stability matters.

  11. Nanoparticles > Complex Oxides > Research > The Energy Materials Center at

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cornell Nanoparticles The nanoparticle synthesis efforts at EMC2 mostly take place in the Frank DiSalvo group, and focus on preparing useful fuel cell electrocatalysts in nanoparticle form. The research groups in EMC2 (formerly the Cornell Fuel Cell Institute) have discovered that bulk ordered intermetallic compounds- a class of solid materials that are made of multiple metals, but are not random alloys- show impressive resistance to poisoning as anode catalysts, and amazing activity for

  12. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    ... the oxygen reduction reaction (ORR) on bimetallic nanoparticles that have been dealloyed. ... Dealloyed Pt-Cu bimetallic nanoparticles, however, have been shown to exhibit uniquely ...

  13. Molecular water oxidation catalyst

    DOE Patents [OSTI]

    Gratzel, Michael; Munavalli, Shekhar; Pern, Fu-Jann; Frank, Arthur J.

    1993-01-01

    A dimeric composition of the formula: ##STR1## wherein L', L", L'", and L"" are each a bidentate ligand having at least one functional substituent, the ligand selected from bipyridine, phenanthroline, 2-phenylpyridine, bipyrimidine, and bipyrazyl and the functional substituent selected from carboxylic acid, ester, amide, halogenide, anhydride, acyl ketone, alkyl ketone, acid chloride, sulfonic acid, phosphonic acid, and nitro and nitroso groups. An electrochemical oxidation process for the production of the above functionally substituted bidentate ligand diaqua oxo-bridged ruthenium dimers and their use as water oxidation catalysts is described.

  14. Intermetallic nanoparticles

    DOE Patents [OSTI]

    Singh, Dileep; Yusufoglu, Yusuf; Timofeeva, Elena; Routbort, Jules L.

    2015-11-20

    A process for preparing intermetallic nanoparticles of two or more metals is provided. In particular, the process includes the steps: a) dispersing nanoparticles of a first metal in a solvent to prepare a first metal solution, b) forming a reaction mixture with the first metal solution and a reducing agent, c) heating the reaction mixture to a reaction temperature; and d) adding a second metal solution containing a salt of a second metal to the reaction mixture. During this process, intermetallic nanoparticles, which contain a compound with the first and second metals are formed. The intermetallic nanoparticles with uniform size and a narrow size distribution is also provided. An electrochemical device such as a battery with the intermetallic nanoparticles is also provided.

  15. Intermetallic nanoparticles

    DOE Patents [OSTI]

    Singh, Dileep; Yusufoglu, Yusuf; Timofeeva, Elena; Routbort, Jules

    2015-07-14

    A process for preparing intermetallic nanoparticles of two or more metals is provided. In particular, the process includes the steps: a) dispersing nanoparticles of a first metal in a solvent to prepare a first metal solution, b) forming a reaction mixture with the first metal solution and a reducing agent, c) heating the reaction mixture to a reaction temperature; and d) adding a second metal solution containing a salt of a second metal to the reaction mixture. During this process, intermetallic nanoparticles, which contain a compound with the first and second metals are formed. The intermetallic nanoparticles with uniform size and a narrow size distribution is also provided. An electrochemical device such as a battery with the intermetallic nanoparticles is also provided.

  16. Oxygen Reduction at Very Low Overpotential on Nanoporous Ag Catalysts

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhou, Yang; Lu, Qi; Zhuang, Zhongbin; Hutchings, Gregory S.; Kattel, Shyam; Yan, Yushan; Chen, Jingguang G.; Xiao, John Q.; Jiao, Feng

    2015-05-07

    Here we report a monolithic nanoporous Ag (np-Ag) material, synthesized using the dealloying method, as high-performance catalysts for ORR in alkaline media. As shown in Scheme 1, when there is insufficient potential input, the O2 molecules are more likely to rebound off from a planar electrode surface (i.e. bulk polycrystalline metal, films made from nanoparticles or nanowires) before they could be reduced. In contrast, they are more likely to be trapped inside the monolithic nanoporous structure, contacting with catalytic surface for multiple time, which greatly enhances the chance for them to be fully reduced. As a result, the np-Ag catalystmore » is able to achieve an equivalent or better ORR performance than the state-of the-art Pt/C catalyst at low overpotentials, which is most desired in electrochemical energy applications for maximizing efficiency.« less

  17. Activity and Stability of Nanoscale Oxygen Reduction Catalysts

    SciTech Connect (OSTI)

    Shao-Horn, Yang

    2015-07-28

    Design of highly active and stable nanoscale catalysts for electro-oxidation of small organic molecules is of great importance to the development of efficient fuel cells. The amount and instability of Pt-based catalysts in the cathode limits the cost, efficiency and lifetime of proton exchange membrane fuel cells. We developed a microscopic understanding of the factors governing activity and stability in Pt and PtM alloys. Experimental efforts were focused on probing the size and shape dependence of ORR activity of Pt-based nanoparticles supported on carbon nanotubes. A microscopic understanding of the activity was achieved by correlating voltammetry and rotating ring disk electrodes to surface atomic and electronic structures, which were elucidated predominantly by high-resolution transmission electron microscopy (HRTEM), Scanning transmission electron microscopy energy dispersive X-ray Spectroscopy (STEM-EDS) and synchrotron X-ray absorption spectroscopy (XAS).

  18. Exhaust Phosphorous Chemistry and Catalyst Poisoning | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Chemistry and Catalyst Poisoning Exhaust Phosphorous Chemistry and Catalyst Poisoning 2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: Oak Ridge National ...

  19. Refiners Increasingly Employing Catalyst Regeneration as Alternative...

    Open Energy Info (EERE)

    million by the end of 2019. Refiners Benefit from Catalyst Regeneration Technology via Price Reductions and Lower Maintenance Costs The catalyst regeneration technology is the...

  20. Nanoscale Chemical Imaging of a Working Catalyst

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanoscale Chemical Imaging of a Working Catalyst Print The heterogeneous catalysts used in most chemical processes typically consist of nanoscale metal or metal oxide particles ...

  1. Oxford Catalysts Group plc | Open Energy Information

    Open Energy Info (EERE)

    Oxford Catalysts Group plc Place: Oxford, United Kingdom Zip: OX2 6UD Sector: Hydro, Hydrogen Product: Developer of catalysts for room-temperature hydrogen production, hot steam...

  2. Doped palladium containing oxidation catalysts

    DOE Patents [OSTI]

    Mohajeri, Nahid

    2014-02-18

    A supported oxidation catalyst includes a support having a metal oxide or metal salt, and mixed metal particles thereon. The mixed metal particles include first particles including a palladium compound, and second particles including a precious metal group (PMG) metal or PMG metal compound, wherein the PMG metal is not palladium. The oxidation catalyst may also be used as a gas sensor.

  3. Catalysts for low temperature oxidation

    DOE Patents [OSTI]

    Toops, Todd J.; Parks, III, James E.; Bauer, John C.

    2016-03-01

    The invention provides a composite catalyst containing a first component and a second component. The first component contains nanosized gold particles. The second component contains nanosized platinum group metals. The composite catalyst is useful for catalyzing the oxidation of carbon monoxide, hydrocarbons, oxides of nitrogen, and other pollutants at low temperatures.

  4. Transition metal sulfide loaded catalyst

    DOE Patents [OSTI]

    Maroni, Victor A.; Iton, Lennox E.; Pasterczyk, James W.; Winterer, Markus; Krause, Theodore R.

    1994-01-01

    A zeolite based catalyst for activation and conversion of methane. A zeolite support includes a transition metal (Mo, Cr or W) sulfide disposed within the micropores of the zeolite. The catalyst allows activation and conversion of methane to C.sub.2 + hydrocarbons in a reducing atmosphere, thereby avoiding formation of oxides of carbon.

  5. Transition metal sulfide loaded catalyst

    DOE Patents [OSTI]

    Maroni, V.A.; Iton, L.E.; Pasterczyk, J.W.; Winterer, M.; Krause, T.R.

    1994-04-26

    A zeolite-based catalyst is described for activation and conversion of methane. A zeolite support includes a transition metal (Mo, Cr or W) sulfide disposed within the micropores of the zeolite. The catalyst allows activation and conversion of methane to C[sub 2]+ hydrocarbons in a reducing atmosphere, thereby avoiding formation of oxides of carbon.

  6. Supported molten-metal catalysts

    DOE Patents [OSTI]

    Datta, Ravindra; Singh, Ajeet; Halasz, Istvan; Serban, Manuela

    2001-01-01

    An entirely new class of catalysts called supported molten-metal catalysts, SMMC, which can replace some of the existing precious metal catalysts used in the production of fuels, commodity chemicals, and fine chemicals, as well as in combating pollution. SMMC are based on supporting ultra-thin films or micro-droplets of the relatively low-melting (<600.degree. C.), inexpensive, and abundant metals and semimetals from groups 1, 12, 13, 14, 15 and 16, of the periodic table, or their alloys and intermetallic compounds, on porous refractory supports, much like supported microcrystallites of the traditional solid metal catalysts. It thus provides orders of magnitude higher surface area than is obtainable in conventional reactors containing molten metals in pool form and also avoids corrosion. These have so far been the chief stumbling blocks in the application of molten metal catalysts.

  7. Deactivation of methanol synthesis catalysts

    SciTech Connect (OSTI)

    Roberts, G.W.; Brown, D.M.; Hsiung, T.H.; Lewnard, J.J. (Air Products and Chemicals, Inc., Allentown, PA (United States))

    1993-08-01

    A novel methanol synthesis process, the liquid-phase methanol (LPMEOH) process, has been developed and scaled up to a nominal 380 kg/h (10 ton/day) pilot plant. The process is based on a gas-sparged slurry reactor instead of a conventional, fixed-bed reactor. The use of slurry reactors, which are essentially gradientless, greatly facilitated the interpretation and quantification of catalyst deactivation phenomena. With a poison-free, CO-rich feedstream, the rate of deactivation of the Cu/ZnO catalyst increased rapidly with temperature. At constant temperature, in the absence of poisons, the decline with time in the rate constant for methanol synthesis correlated with the loss of BET surface area. Iron carbonyl, nickel carbonyl, and carbonyl sulfide are severe and highly specific poisons for methanol-synthesis catalyst. There was a linear relationship between the catalyst activity loss and the concentration of metal or sulfur on the catalyst.

  8. Stereospecific olefin polymerization catalysts

    DOE Patents [OSTI]

    Bercaw, J.E.; Herzog, T.A.

    1998-01-13

    A metallocene catalyst system is described for the polymerization of {alpha}-olefins to yield stereospecific polymers including syndiotactic, and isotactic polymers. The catalyst system includes a metal and a ligand of the formula shown wherein: R{sup 1}, R{sup 2}, and R{sup 3} are independently selected from the group consisting of hydrogen, C{sub 1} to C{sub 10} alkyl, 5 to 7 membered cycloalkyl, which in turn may have from 1 to 3 C{sub 1} to C{sub 10} alkyls as a substituent, C{sub 6} to C{sub 15} aryl or arylalkyl in which two adjacent radicals may together stand for cyclic groups having 4 to 15 carbon atoms which in turn may be substituted, or Si(R{sup 8}){sub 3} where R{sup 8} is selected from the group consisting of C{sub 1} to C{sub 10} alkyl, C{sub 6} to C{sub 15} aryl or C{sub 3} to C{sub 10} cycloalkyl; R{sup 4} and R{sup 6} are substituents both having van der Waals radii larger than the van der Waals radii of groups R{sup 1} and R{sup 3}; R{sup 5} is a substituent having a van der Waals radius less than about the van der Waals radius of a methyl group; E{sup 1}, E{sup 2} are independently selected from the group consisting of Si(R{sup 9}){sub 2}, Si(R{sup 9}){sub 2}--Si(R{sup 9}){sub 2}, Ge(R{sup 9}){sub 2}, Sn(R{sup 9}){sub 2}, C(R{sup 9}){sub 2}, C(R{sup 9}){sub 2}--C(R{sup 9}){sub 2}, where R{sup 9} is C{sub 1} to C{sub 10} alkyl, C{sub 6} to C{sub 15} aryl or C{sub 3} to C{sub 10} cycloalkyl; and the ligand may have C{sub S} or C{sub 1}-symmetry. Preferred metals are selected from the group consisting of group III, group IV, group V or lanthanide group elements. The catalysts are used to prepare stereoregular polymers including polypropylene from {alpha}-olefin monomers.

  9. Stereospecific olefin polymerization catalysts

    DOE Patents [OSTI]

    Bercaw, John E.; Herzog, Timothy A.

    1998-01-01

    A metallocene catalyst system for the polymerization of .alpha.-olefins to yield stereospecific polymers including syndiotactic, and isotactic polymers. The catalyst system includes a metal and a ligand of the formula ##STR1## wherein: R.sup.1, R.sup.2, and R.sup.3 are independently selected from the group consisting of hydrogen, C.sub.1 to C.sub.10 alkyl, 5 to 7 membered cycloalkyl, which in turn may have from 1 to 3 C.sub.1 to C.sub.10 alkyls as a substituent, C.sub.6 to C.sub.15 aryl or arylalkyl in which two adjacent radicals may together stand for cyclic groups having 4 to 15 carbon atoms which in turn may be substituted, or Si(R.sup.8).sub.3 where R.sup.8 is selected from the group consisting of C.sub.1 to C.sub.10 alkyl, C.sub.6 to C.sub.15 aryl or C.sub.3 to C.sub.10 cycloalkyl; R.sup.4 and R.sup.6 are substituents both having van der Waals radii larger than the van der Waals radii of groups R.sup.1 and R.sup.3 ; R.sup.5 is a substituent having a van der Waals radius less than about the van der Waals radius of a methyl group; E.sup.1, E.sup.2 are independently selected from the group consisting of Si(R.sup.9).sub.2, Si(R.sup.9).sub.2 --Si(R.sup.9).sub.2, Ge(R.sup.9).sub.2, Sn(R.sup.9).sub.2, C(R.sup.9).sub.2, C(R.sup.9).sub.2 --C(R.sup.9).sub.2, where R.sup.9 is C.sub.1 to C.sub.10 alkyl, C.sub.6 to C.sub.15 aryl or C.sub.3 to C.sub.10 cycloalkyl; and the ligand may have C.sub.S or C.sub.1 -symmetry. Preferred metals are selected from the group consisting of group III, group IV, group V or lanthanide group elements. The catalysts are used to prepare stereoregular polymers including polypropylene from .alpha.-olefin monomers.

  10. Bimetallic strip for low temperature use. [4-300/sup 0/K

    DOE Patents [OSTI]

    Bussiee, J.F.; Welch, D.O.; Suenaga, M.

    A class of mechanically pre-stressed structures is provided suitably bi-layer strips, consisting of a layer of group 5 transition metals in intimate contact with a layer of an intermetallic compound of transition metals with certain group 3A, 4A or 5A metals or metalloids such as Ga, In, Si, Ge, Sn, As or Sb. The changes of Young's modulus of these bi-layered combinations at temperatures in the region of somewhat above absolute zero provides a useful means of sensing temperature changes. Such bi-metallic strips may be used as control strips in thermostats, or in direct dial reading instruments. The structures are made by preparing a sandwich of a group 5B transition metal strip between the substantially thicker strips of an alloy between copper and a predetermined group 3A, 4A or 5A metal or metalloid, holding the three layers are heated, cooled the copper alloys and is removed. Removing one of the two formed interlayer alloys between the transition metal and the metal previously alloyed with copper remain.