Sample records for billion cu ft

  1. heap height (ft) box height (ft)

    E-Print Network [OSTI]

    heap height (ft) box height (ft) width (ft) length (ft) Best Environmental Management Practices it analyzed to determine the nutrient content of each sample; and 4. Calculate the amount of manure rates and patterns, depending on speed and/or power take-off (PTO) speed, gearbox settings, gate

  2. Obama Administration Announces Billions in Lending Authority...

    Energy Savers [EERE]

    Billions in Lending Authority for Renewable Energy Projects and to Modernize the Grid Obama Administration Announces Billions in Lending Authority for Renewable Energy Projects and...

  3. Balancing Item (Billion Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecade Year-0Proved Reserves (Billion0.06

  4. Department of Energy Offers $2.1 Billion Conditional Commitment...

    Office of Environmental Management (EM)

    .1 Billion Conditional Commitment Loan Guarantee to Support California Solar Thermal Power Plant Department of Energy Offers 2.1 Billion Conditional Commitment Loan Guarantee to...

  5. Energy Department Makes Additional $4 Billion in Loan Guarantees...

    Office of Environmental Management (EM)

    Makes Additional 4 Billion in Loan Guarantees Available for Innovative Renewable Energy and Efficient Energy Projects Energy Department Makes Additional 4 Billion in Loan...

  6. Carnegie Mellon Moving from FT-CORBA to FT-CCM

    E-Print Network [OSTI]

    Narasimhan, Priya

    Carnegie Mellon Moving from FT-CORBA to FT-CCM MEAD: Middleware for Embedded Adaptive Dependability-CORBA to FT-CCM Background MEAD: Real-time fault-tolerant middleware being developed at Carnegie Mellon real-time and fault tolerance #12;3 Carnegie Mellon MEAD: Moving from FT-CORBA to FT-CCM MEAD

  7. North Dakota Shale Production (Billion Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office(BillionYear Jan Feb(Billion Cubic

  8. Ohio Coalbed Methane Production (Billion Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office(BillionYear Jan Feb(BillionDecade Year-0 Year-1Coalbed

  9. Beyond a Billion: Clean Cities Coaliations Have Displaced More Than a Billion Gallons of Gasoline

    SciTech Connect (OSTI)

    Not Available

    2005-10-01T23:59:59.000Z

    In 2004, DOE's Clean Cities achieved a milestone - displacing the equivalent of more than 1 billion gallons of gasoline since 1994. This fact sheet describes how Clean Cities achieved this goal.

  10. Ohio Shale Proved Reserves (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site. IfProved(Million Barrels)21 4.65per9 0 1(BillionThousandShale

  11. Arkansas Shale Proved Reserves (Billion Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecade Year-0Proved Reserves (Billion Cubic Feet)

  12. Florida Coalbed Methane Production (Billion Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688Electricity Use asFeet)SecondProduction (Billion Cubic

  13. Kentucky Shale Production (Billion Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal StocksProved Reserves (Billion Cubic Feet)Wellhead Price

  14. Kentucky Shale Proved Reserves (Billion Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal StocksProved Reserves (Billion Cubic Feet)Wellhead PriceProved Reserves

  15. New Mexico Shale Production (Billion Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office(Billion Cubic Feet)4.17 5.32WellheadperShale

  16. Ohio Shale Production (Billion Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office(BillionYear JanYear Jan Feb MarYear

  17. Oklahoma Coalbed Methane Production (Billion Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office(BillionYear JanYear Jan Feb

  18. Oklahoma Shale Production (Billion Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office(BillionYear JanYear JanYearCubic Feet)Production

  19. Pennsylvania Coalbed Methane Production (Billion Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office(BillionYear JanYearYear Jan8,859

  20. Pennsylvania Shale Production (Billion Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office(BillionYear JanYearYearDecadeperYear(DollarsShale

  1. Montana Coalbed Methane Production (Billion Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of Fossil Energy,off)ThousandProduction (Billion Cubic

  2. Utah Coalbed Methane Production (Billion Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion Cubic Feet)Year Jan FebFeet) GasPotential8.Production

  3. Virginia Coalbed Methane Production (Billion Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion Cubic Feet)Year JanThousand Cubic Feet)%per

  4. Virginia Shale Production (Billion Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion Cubic Feet)Year JanThousandYear Jan Feb Mar

  5. West Virginia Shale Production (Billion Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion Cubic Feet)YearWellhead Price (Dollars per

  6. Western States Shale Production (Billion Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion Cubic Feet)YearWellhead Price (Dollars perProvedWestern

  7. THE HUNDRED BILLION DOLLAR BONUS: Global Energy Efficiency Lessons from India

    E-Print Network [OSTI]

    Paul, Seema

    2012-01-01T23:59:59.000Z

    THE HUNDRED BILLION DOLLAR BONUS: Global Energy EfficiencyThe Hundred Billion Dollar Bonus – Global Energy EfficiencyTHE HUNDRED BILLION DOLLAR BONUS: GLOBAL ENERGY EFFICIENCY

  8. Simulating Billion-Task Parallel Programs

    SciTech Connect (OSTI)

    Perumalla, Kalyan S [ORNL] [ORNL; Park, Alfred J [ORNL] [ORNL

    2014-01-01T23:59:59.000Z

    In simulating large parallel systems, bottom-up approaches exercise detailed hardware models with effects from simplified software models or traces, whereas top-down approaches evaluate the timing and functionality of detailed software models over coarse hardware models. Here, we focus on the top-down approach and significantly advance the scale of the simulated parallel programs. Via the direct execution technique combined with parallel discrete event simulation, we stretch the limits of the top-down approach by simulating message passing interface (MPI) programs with millions of tasks. Using a timing-validated benchmark application, a proof-of-concept scaling level is achieved to over 0.22 billion virtual MPI processes on 216,000 cores of a Cray XT5 supercomputer, representing one of the largest direct execution simulations to date, combined with a multiplexing ratio of 1024 simulated tasks per real task.

  9. Energy Secretary Chu Announces $6 Billion in Recovery Act Funding...

    Energy Savers [EERE]

    Addthis WASHINGTON, DC -- Energy Secretary Steven Chu today announced 6 billion in new funding under the American Recovery and Reinvestment Act to accelerate environmental...

  10. Obama Administration Announces Availability of $3.9 Billion to...

    Broader source: Energy.gov (indexed) [DOE]

    is soliciting applications for 3.9 billion in grants to support efforts to modernize the electric grid, allowing for greater integration of renewable energy sources while...

  11. ,"New York Dry Natural Gas Reserves Extensions (Billion Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New York Dry Natural Gas Reserves Extensions (Billion Cubic Feet)",1,"Annual",2013 ,"Release...

  12. ,"New York Dry Natural Gas Reserves New Field Discoveries (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New York Dry Natural Gas Reserves New Field Discoveries (Billion Cubic Feet)",1,"Annual",2013...

  13. ,"New York Dry Natural Gas Reserves Acquisitions (Billion Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New York Dry Natural Gas Reserves Acquisitions (Billion Cubic Feet)",1,"Annual",2013 ,"Release...

  14. ,"New York Dry Natural Gas Reserves Estimated Production (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New York Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)",1,"Annual",2013...

  15. ,"New York Dry Natural Gas Reserves Revision Decreases (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New York Dry Natural Gas Reserves Revision Decreases (Billion Cubic Feet)",1,"Annual",2013...

  16. ,"New York Dry Natural Gas Reserves Sales (Billion Cubic Feet...

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New York Dry Natural Gas Reserves Sales (Billion Cubic Feet)",1,"Annual",2013 ,"Release...

  17. ,"New York Dry Natural Gas Reserves Adjustments (Billion Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New York Dry Natural Gas Reserves Adjustments (Billion Cubic Feet)",1,"Annual",2013 ,"Release...

  18. ,"New York Dry Natural Gas Reserves Revision Increases (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New York Dry Natural Gas Reserves Revision Increases (Billion Cubic Feet)",1,"Annual",2013...

  19. Secretary Chu Announces Nearly $1 Billion Public-Private Investment...

    Office of Environmental Management (EM)

    Announces Nearly 1 Billion Public-Private Investment in Industrial Carbon Capture and Storage June 10, 2010 - 12:00am Addthis Washington, D.C. - U.S. Energy Secretary Steven...

  20. Harnessing Energy from the Sun for Six Billion People

    ScienceCinema (OSTI)

    Daniel Nocera

    2013-07-19T23:59:59.000Z

    Daniel Nocera, a Massachusetts Institute of Technology professor whose recent research focuses on solar-powered fuels, presents a Brookhaven Science Associates Distinguished Lecture, titled "Harnessing Energy from the Sun for Six Billion People -- One at a Time."

  1. Energy Department Announces $1.2 Billion Loan Guarantee to Support...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    .2 Billion Loan Guarantee to Support California Concentrating Solar Power Plant Energy Department Announces 1.2 Billion Loan Guarantee to Support California Concentrating Solar...

  2. Natural Disaster Survey Report Ft. Smith and Van Buren, Arkansas,

    E-Print Network [OSTI]

    and conversations with volunteer amateur radio operators, members of the print and broadcast media in Ft. Smith to the U.S. Congress, to local government officials in Ft. Smith and Van Buren, and to the media on May 21Natural Disaster Survey Report Ft. Smith and Van Buren, Arkansas, Tornado of April 21, 1996 U

  3. 44 (2007-5) FT-ICR Pt,Co

    E-Print Network [OSTI]

    Maruyama, Shigeo

    44 (2007-5) FT-ICR Pt,Co FT-ICR study of reaction of Pt, Co cluster ion with carbon containing ions (Pt, Co) with carbon hydride was investigated by using FT-ICR (Fourier Transform Ion Cyclotron-dependent characteristics of reaction of Pt and Co clusters with methanol and ethylene. This experiment also shows

  4. Arkansas Dry Natural Gas Reserves Sales (Billion Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion CubicPotentialNov-14Sales (Billion Cubic Feet) Arkansas Dry

  5. California Dry Natural Gas Reserves Revision Increases (Billion Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,128 2,469 2,321 2,590 1,550Increases (Billion Cubic Feet)

  6. California Dry Natural Gas Reserves Sales (Billion Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,128 2,469 2,321 2,590 1,550Increases (Billion Cubic Feet)Sales

  7. Colorado Dry Natural Gas Reserves Extensions (Billion Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,128 2,469 2,321Spain (Million Cubic 1.YearExtensions (Billion

  8. Colorado Dry Natural Gas Reserves Sales (Billion Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,128 2,469 2,321Spain (Million CubicSales (Billion Cubic Feet)

  9. New Mexico--West Coalbed Methane Production (Billion Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office(Billion CubicProduction (Billion Cubic Feet) New

  10. New Mexico--West Shale Production (Billion Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office(Billion CubicProduction (Billion

  11. New York Coalbed Methane Production (Billion Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office(Billion CubicProduction (BillionProved

  12. New Mexico Dry Natural Gas Reserves Acquisitions (Billion Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYearWithdrawalsYear Jan1LeaseAcquisitions (Billion

  13. Texas--RRC District 9 Shale Production (Billion Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease Separation,Production (BillionProved(MillionShale Production (Billion

  14. Efficient Cookstoves for Darfur, Ethiopia Billions of people around the

    E-Print Network [OSTI]

    Eisen, Michael

    Efficient Cookstoves for Darfur, Ethiopia Billions of people around the world cook their meals Vision to adapt the stove for use in Ethiopia, which has experienced severe deforestation. About 80 not only to create a more ef cient stove speci c for use in Ethiopia, but to nance the project by selling

  15. FT Solutions LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOEHazelPennsylvania: EnergyExolis Energy JumpFAC 04-08-DOECategorical|FSM|FT

  16. SWiFT performs accredited research testing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand Requirements RecentlyElectronicResourcesjobsJuly throughR E QSULI ProgramSWiFT performs

  17. North Dakota Dry Natural Gas Reserves Estimated Production (Billion Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthrough 1996)McGuire"Feet) Estimated Production (Billion Cubic

  18. North Dakota Dry Natural Gas Reserves Extensions (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthrough 1996)McGuire"Feet) Estimated Production (Billion

  19. Absorption Mode FT-ICR Mass Spectrometry Imaging. | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mass Spectrometry Imaging. Absorption Mode FT-ICR Mass Spectrometry Imaging. Abstract: Fourier transform ion cyclotron resonance mass spectrometry offers the highest mass resolving...

  20. High-Powered Dark Energy Camera Can See Billions of Light Years...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    High-Powered Dark Energy Camera Can See Billions of Light Years Away High-Powered Dark Energy Camera Can See Billions of Light Years Away August 21, 2014 - 10:19am Addthis Stars...

  1. President Obama Announces $2.4 Billion in Funding to Support...

    Energy Savers [EERE]

    President Obama Announces 2.4 Billion in Funding to Support Next Generation Electric Vehicles President Obama Announces 2.4 Billion in Funding to Support Next Generation Electric...

  2. Fuel Cells Market Exceeds $1.3 Billion in Worldwide Sales | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cells Market Exceeds 1.3 Billion in Worldwide Sales Fuel Cells Market Exceeds 1.3 Billion in Worldwide Sales December 1, 2014 - 5:14pm Addthis The market for fuel cells is...

  3. ISV FACT SHEET SINGLE ENSUITE: 198 sq.ft.

    E-Print Network [OSTI]

    Southampton, University of

    ISV FACT SHEET SINGLE ENSUITE: 198 sq.ft. STANDARD ROOM: (NO AIRCOND, NO WATER HEATER, FREE WIFI): RM 590 PER MONTH PER BED PREMIER ROOM: : (AIRCOND WITH WATER HEATER, FREE WIFI) : RM740 PER MONTH PER BED TWIN SHARING: 283 sq.ft. STANDARD ROOM: (NO AIRCOND, NO WATER HEATER, FREE WIFI): RM 490 PER MONTH

  4. Process Optimization of FT-Diesel Production from Lignocellulosic Switchgrass

    E-Print Network [OSTI]

    Grossmann, Ignacio E.

    1 Process Optimization of FT-Diesel Production from Lignocellulosic Switchgrass Mariano Martín Abstract. In this paper we present the conceptual design for the optimization of FT-diesel production to increase the yield towards green diesel. The optimization of the system is formulated as an equation

  5. $f(T)$ Theories and Varying Fine Structure Constant

    E-Print Network [OSTI]

    Wei, Hao; Qi, Hao-Yu

    2011-01-01T23:59:59.000Z

    In analogy to $f(R)$ theory, recently $f(T)$ theory has been proposed to drive the current accelerated expansion without invoking dark energy. In the literature, the observational constraints on $f(T)$ theories were obtained mainly by using the cosmological data, such as type Ia supernovae (SNIa), baryon acoustic oscillation (BAO), and cosmic microwave background radiation (CMB). In this work, we instead try to constrain $f(T)$ theories with the varying fine structure "constant", $\\alpha\\equiv e^2/\\hbar c$. We find that the constraints on $f(T)$ theories from the observational $\\Delta\\alpha/\\alpha$ data are very severe. In fact, they make $f(T)$ theories almost indistinguishable from $\\Lambda$CDM model.

  6. Kansas Dry Natural Gas Reserves Revision Increases (Billion Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Building FloorspaceThousandWithdrawals0.0Decade Year-0Base7 3Increases (Billion

  7. Kentucky Dry Natural Gas Reserves Extensions (Billion Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto China (Million Cubic Feet) Kenai, AKExtensions (Billion Cubic Feet)

  8. Kentucky Dry Natural Gas Reserves New Field Discoveries (Billion Cubic

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto China (Million Cubic Feet) Kenai, AKExtensions (Billion Cubic

  9. Kentucky Dry Natural Gas Reserves Revision Decreases (Billion Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto China (Million Cubic Feet) Kenai, AKExtensions (Billion

  10. Kentucky Dry Natural Gas Reserves Revision Increases (Billion Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto China (Million Cubic Feet) Kenai, AKExtensions (BillionIncreases

  11. Kentucky Dry Natural Gas Reserves Sales (Billion Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto China (Million Cubic Feet) Kenai, AKExtensions (BillionIncreasesSales

  12. Louisiana Dry Natural Gas Reserves Sales (Billion Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto China (Million Cubic Feet) 3 0 0 0 1569 0 0 0Sales (Billion Cubic

  13. Mississippi Dry Natural Gas Reserves Extensions (Billion Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto China (Million Cubic Feet)Commercialper Thousand70Extensions (Billion

  14. Mississippi Dry Natural Gas Reserves Sales (Billion Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto China (Million Cubic Feet)CommercialperSales (Billion Cubic Feet)

  15. Texas Dry Natural Gas Reserves Extensions (Billion Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousandCubicSeparation 7,559 8,762Extensions (Billion Cubic

  16. Alabama Dry Natural Gas Reserves Revision Increases (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS8) Distribution Category UC-950 Cost and Quality of Fuels forA 6 J 9 U B u o f l dIncreases (Billion Cubic

  17. Alabama Dry Natural Gas Reserves Sales (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS8) Distribution Category UC-950 Cost and Quality of Fuels forA 6 J 9 U B u o f l dIncreases (Billion

  18. Alaska Dry Natural Gas Reserves Extensions (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS8) Distribution Category UC-950 Cost and Quality of Fuels forA 6 J 9 U B uYear Jan FebExtensions (Billion

  19. Alaska Dry Natural Gas Reserves Sales (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS8) Distribution Category UC-950 Cost and Quality of Fuels forA 6 J 9 U B uYear JanSales (Billion Cubic

  20. Florida Coalbed Methane Proved Reserves (Billion Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688Electricity Use asFeet)SecondProduction (Billion

  1. Kentucky Coalbed Methane Proved Reserves (Billion Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal StocksProved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2

  2. Kentucky Dry Natural Gas Expected Future Production (Billion Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal StocksProved Reserves (Billion Cubic Feet) Decade Year-0 Year-1Expected

  3. Kentucky Natural Gas, Wet After Lease Separation Proved Reserves (Billion

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal StocksProved Reserves (Billion Cubic Feet)Wellhead Price (Dollars perCubic

  4. Arkansas Dry Natural Gas Reserves Acquisitions (Billion Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion CubicPotentialNov-14 Dec-14DecadeDecade(Million31 22 28

  5. Arkansas Dry Natural Gas Reserves Adjustments (Billion Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion CubicPotentialNov-14 Dec-14DecadeDecade(Million31 22

  6. Arkansas Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion CubicPotentialNov-14 Dec-14DecadeDecade(Million31 22Estimated

  7. Arkansas Dry Natural Gas Reserves Extensions (Billion Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion CubicPotentialNov-14 Dec-14DecadeDecade(Million31

  8. Arkansas Dry Natural Gas Reserves New Field Discoveries (Billion Cubic

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion CubicPotentialNov-14 Dec-14DecadeDecade(Million31Feet) New

  9. Arkansas Dry Natural Gas Reserves Revision Decreases (Billion Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion CubicPotentialNov-14 Dec-14DecadeDecade(Million31Feet)

  10. Arkansas Dry Natural Gas Reserves Revision Increases (Billion Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion CubicPotentialNov-14

  11. California Dry Natural Gas Reserves Acquisitions (Billion Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,128 2,469 2,321 2,590 1,550 1,460CubicYear Jan,835Acquisitions

  12. California Dry Natural Gas Reserves Adjustments (Billion Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,128 2,469 2,321 2,590 1,550 1,460CubicYear

  13. California Dry Natural Gas Reserves Estimated Production (Billion Cubic

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,128 2,469 2,321 2,590 1,550 1,460CubicYearFeet) Estimated

  14. California Dry Natural Gas Reserves Extensions (Billion Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,128 2,469 2,321 2,590 1,550 1,460CubicYearFeet)

  15. California Dry Natural Gas Reserves New Field Discoveries (Billion Cubic

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,128 2,469 2,321 2,590 1,550 1,460CubicYearFeet)Feet)

  16. California Dry Natural Gas Reserves Revision Decreases (Billion Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,128 2,469 2,321 2,590 1,550

  17. Colorado Dry Natural Gas Reserves Acquisitions (Billion Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,128 2,469 2,321Spain (Million Cubic 1.Year Jan3,302

  18. Colorado Dry Natural Gas Reserves Adjustments (Billion Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,128 2,469 2,321Spain (Million Cubic 1.Year Jan3,302Adjustments

  19. Colorado Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,128 2,469 2,321Spain (Million Cubic 1.Year

  20. Colorado Dry Natural Gas Reserves New Field Discoveries (Billion Cubic

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,128 2,469 2,321Spain (Million Cubic 1.YearExtensions

  1. Colorado Dry Natural Gas Reserves Revision Decreases (Billion Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,128 2,469 2,321Spain (Million Cubic 1.YearExtensionsDecreases

  2. Colorado Dry Natural Gas Reserves Revision Increases (Billion Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,128 2,469 2,321Spain (Million Cubic

  3. New Mexico Coalbed Methane Production (Billion Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office(Billion Cubic Feet) Gas, Wet AfterProduction

  4. New Mexico--East Coalbed Methane Production (Billion Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office(Billion Cubic Feet)4.17

  5. New Mexico--East Shale Production (Billion Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office(Billion Cubic Feet)4.17Proved(MillionProduction

  6. Nonsalt Producing Region Natural Gas Working Underground Storage (Billion

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office(BillionYear Jan Feb Mar Apr May1.878 2.358 -

  7. North Dakota Coalbed Methane Production (Billion Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office(BillionYear Jan Feb Mar AprYear Jan Feb

  8. U.S. Shale Production (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear JanYear JanPropane, No.1 and No. 2Production (Billion Cubic

  9. Alabama Coalbed Methane Proved Reserves (Billion Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptember 25,9,1996 NProved Reserves (Billion Cubic

  10. Alaska (with Total Offshore) Shale Production (Billion Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptemberProcessed in(MillionProduction (Billion

  11. West Virginia Dry Natural Gas Reserves Sales (Billion Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,397 125 Q 69 (Million Cubic58 810Year JanFeet)Sales (Billion

  12. Wyoming Dry Natural Gas Reserves Adjustments (Billion Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,397 125 Q 69 (MillionAdjustments (Billion Cubic Feet) Wyoming Dry

  13. Wyoming Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,397 125 Q 69 (MillionAdjustments (Billion Cubic Feet) Wyoming

  14. Wyoming Dry Natural Gas Reserves Extensions (Billion Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,397 125 Q 69 (MillionAdjustments (Billion Cubic Feet)

  15. Wyoming Dry Natural Gas Reserves Revision Decreases (Billion Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,397 125 Q 69 (MillionAdjustments (Billion Cubic Feet)New

  16. Wyoming Dry Natural Gas Reserves Revision Increases (Billion Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,397 125 Q 69 (MillionAdjustments (Billion Cubic Feet)NewIncreases

  17. Wyoming Dry Natural Gas Reserves Sales (Billion Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,397 125 Q 69 (MillionAdjustments (Billion Cubic

  18. U.S. Shale Proved Reserves Acquisitions (Billion Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 34 44Year Jan Feb MarDecade Year-0 Year-1(Billion- -

  19. U.S. Shale Proved Reserves Adjustments (Billion Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 34 44Year Jan Feb MarDecade Year-0 Year-1(Billion- -Adjustments

  20. U.S. Shale Proved Reserves Extensions (Billion Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 34 44Year Jan Feb MarDecade Year-0 Year-1(Billion-

  1. U.S. Shale Proved Reserves Sales (Billion Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 34 44Year Jan Feb MarDecade Year-0Sales (Billion Cubic Feet) U.S.

  2. U.S. Supplemental Gaseous Fuels (Billion Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 34 44Year Jan Feb MarDecade Year-0Sales (Billion Cubic

  3. Utah Dry Natural Gas Reserves Revision Increases (Billion Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 34 44Year Jan FebIncreases (Billion Cubic Feet) Utah Dry Natural

  4. Utah Dry Natural Gas Reserves Sales (Billion Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 34 44Year Jan FebIncreases (Billion Cubic Feet) Utah Dry

  5. Mississippi (with State off) Shale Production (Billion Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of Fossil Energy,off) Shale Production (Billion Cubic

  6. Mississippi (with State off) Shale Proved Reserves (Billion Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of Fossil Energy,off) Shale Production (Billion

  7. Montana Coalbed Methane Proved Reserves (Billion Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of Fossil Energy,off)ThousandProduction (Billion

  8. Texas Dry Natural Gas Expected Future Production (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API GravityDakota" "Fuel, quality", 2013,Iowa"Dakota"Year JanExpected Future Production (Billion Cubic

  9. Florida Dry Natural Gas Reserves Acquisitions (Billion Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.Gas ProvedCommercial Consumers by Local0 01

  10. Florida Dry Natural Gas Reserves Adjustments (Billion Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.Gas ProvedCommercial Consumers by Local0

  11. Florida Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.Gas ProvedCommercial Consumers by

  12. Florida Dry Natural Gas Reserves Extensions (Billion Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.Gas ProvedCommercial Consumers byExtensions

  13. Florida Dry Natural Gas Reserves Revision Decreases (Billion Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.Gas ProvedCommercial Consumers

  14. Florida Dry Natural Gas Reserves Revision Increases (Billion Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.Gas ProvedCommercial ConsumersIncreases

  15. Florida Dry Natural Gas Reserves Sales (Billion Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.Gas ProvedCommercial ConsumersIncreasesSales

  16. Secretary Chu Announces $3 Billion Investment for Carbon Capture and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideo »Usage »DownloadSolarSequestration | Department of Energy 3 Billion

  17. U.S. Shale Proved Reserves (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API GravityDakota" "Fuel, quality",Area: U.S. East Coast (PADD 1) New120,814 136,9322009 2010(Billion Cubic Feet)

  18. U.S. Supplemental Gaseous Fuels (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API GravityDakota" "Fuel, quality",Area: U.S. East Coast (PADD 1) New120,814 136,9322009 2010(Billion Cubic

  19. Virginia Coalbed Methane Proved Reserves (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549 1973-2015 Alaska 14,197 14,197 14,197(BillionYear Jan FebProved

  20. Virginia Dry Natural Gas Expected Future Production (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549 1973-2015 Alaska 14,197 14,197 14,197(BillionYear Jan FebProvedCrude

  1. New Mexico Dry Natural Gas Reserves Adjustments (Billion Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYearWithdrawalsYear Jan1LeaseAcquisitions

  2. New Mexico Dry Natural Gas Reserves Estimated Production (Billion Cubic

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYearWithdrawalsYear Jan1LeaseAcquisitionsFeet)

  3. New Mexico Dry Natural Gas Reserves Extensions (Billion Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYearWithdrawalsYear

  4. New Mexico Dry Natural Gas Reserves Sales (Billion Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYearWithdrawalsYearFeet) New FieldIncreasesSales

  5. Oklahoma Dry Natural Gas Reserves Adjustments (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan Feb Mar Apr May Jun Jul9Thousand CubicAdjustments (Billion

  6. Louisiana--North Coalbed Methane Production (Billion Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade EnergyTennesseeYear Jan Next MECSInputTexasProduction (Billion Cubic

  7. Louisiana--North Coalbed Methane Proved Reserves (Billion Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade EnergyTennesseeYear Jan Next MECSInputTexasProduction (Billion

  8. Lower 48 Federal Offshore Coalbed Methane Production (Billion Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade EnergyTennesseeYear JanProduction (MillionProduction (Billion Cubic

  9. Lower 48 Federal Offshore Coalbed Methane Proved Reserves (Billion Cubic

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade EnergyTennesseeYear JanProduction (MillionProduction (Billion

  10. Texas--RRC District 6 Shale Production (Billion Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease Separation,Production (Billion Cubic Feet) Decade(Million

  11. Texas--RRC District 8 Shale Production (Billion Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease Separation,Production (Billion

  12. Texas--State Offshore Coalbed Methane Production (Billion Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease Separation,Production (BillionProved(MillionShale ProductionProduction

  13. West Virginia Coalbed Methane Production (Billion Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion Cubic Feet)Year JanThousandYear JanThousand

  14. Western States Coalbed Methane Production (Billion Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion Cubic Feet)YearWellhead Price (Dollars perProvedWestern States

  15. FT-ICR MS optimization for the analysis of intact proteins. ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    FT-ICR MS optimization for the analysis of intact proteins. FT-ICR MS optimization for the analysis of intact proteins. Abstract: Fourier-transform ion cyclotron resonance (FT-ICR)...

  16. Advanced Mass Calibration and Visualization for FT-ICR Mass Spectromet...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for FT-ICR Mass Spectrometry Imaging. Abstract: Mass spectrometry imaging by Fourier transform ion cyclotron resonance (FT-ICR) yields hundreds of unique peaks, many of...

  17. Application of Printed Circuit Board Technology to FT-ICR MS...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technology to FT-ICR MS Analyzer Cell Construction and Prototyping. Abstract: Although Fourier transform ion cyclotron resonance mass spectrometry (FT-ICRMS) remains themass...

  18. Ft. Carson Army Base, Colorado Springs, Colorado | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Colorado. It was the first Federal facility to install a "solar wall"-a solar ventilation air preheating system. The solar wall heats Ft. Carson's new high-bay aviation...

  19. Transition redshift in $f(T)$ cosmology and observational constraints

    E-Print Network [OSTI]

    Capozziello, Salvatore; Saridakis, Emmanuel N

    2015-01-01T23:59:59.000Z

    We extract constraints on the transition redshift $z_{tr}$, determining the onset of cosmic acceleration, predicted by an effective cosmographic construction, in the framework of $f(T)$ gravity. In particular, employing cosmography we obtain bounds on the viable $f(T)$ forms and their derivatives. Since this procedure is model independent, as long as the scalar curvature is fixed, we are able to determine intervals for $z_{tr}$. In this way we guarantee that the Solar-System constraints are preserved and moreover we extract bounds on the transition time and the free parameters of the scenario. We find that the transition redshifts predicted by $f(T)$ cosmology, although compatible with the standard $\\Lambda$CDM predictions, are slightly smaller. Finally, in order to obtain observational constraints on $f(T)$ cosmology, we perform a Monte Carlo fitting using supernova data, involving the most recent union 2.1 data set.

  20. 2-port parameters z for extrinsic fT

    E-Print Network [OSTI]

    Pulfrey, David L.

    to the short-circuit current gain 4. |id/ig|2 = |-z23/z33|2 5. Extrapolated fT is projection at -20d from currents under various short-circuit conditions z-parameters are measured from voltages under INTRINSIC circuit to one using z-parameters 2. It's now easy to add in the parasitic R's 3. fT is related

  1. Energy Secretary Chu Announces $1.615 Billion in Recovery Act...

    Energy Savers [EERE]

    following cleanup efforts in the state: Savannah River Site (1.615 billion) - Accelerate decommissioning of nuclear facilities and contaminated areas throughout the Site,...

  2. DOE Awards Sixteen Contracts for up to $80 Billion in Energy...

    Energy Savers [EERE]

    Awards Sixteen Contracts for up to 80 Billion in Energy Efficiency, Renewable Energy, and Water Conservation Projects at Federal Facilities DOE Awards Sixteen Contracts for up to...

  3. President Obama Announces $3.4 Billion Investment to Spur Transition...

    Energy Savers [EERE]

    energy grant awards to-date. Today's announcement includes: Empowering Consumers to Save Energy and Cut Utility Bills -- 1 billion. These investments will create the...

  4. Cosmological viability conditions for f(T) dark energy models

    SciTech Connect (OSTI)

    Setare, M.R.; Mohammadipour, N., E-mail: rezakord@ipm.ir, E-mail: N.Mohammadipour@uok.ac.ir [Department of Science, University of Kurdistan, Sanandaj (Iran, Islamic Republic of)

    2012-11-01T23:59:59.000Z

    Recently f(T) modified teleparallel gravity where T is the torsion scalar has been proposed as the natural gravitational alternative for dark energy. We perform a detailed dynamical analysis of these models and find conditions for the cosmological viability of f(T) dark energy models as geometrical constraints on the derivatives of these models. We show that in the phase space exists two cosmologically viable trajectory which (i) The universe would start from an unstable radiation point, then pass a saddle standard matter point which is followed by accelerated expansion de sitter point. (ii) The universe starts from a saddle radiation epoch, then falls onto the stable matter era and the system can not evolve to the dark energy dominated epoch. Finally, for a number of f(T) dark energy models were proposed in the more literature, the viability conditions are investigated.

  5. Generalized second law of thermodynamics in f(T) gravity

    SciTech Connect (OSTI)

    Karami, K.; Abdolmaleki, A., E-mail: KKarami@uok.ac.ir, E-mail: AAbdolmaleki@uok.ac.ir [Department of Physics, University of Kurdistan, Pasdaran St., Sanandaj (Iran, Islamic Republic of)

    2012-04-01T23:59:59.000Z

    We investigate the validity of the generalized second law (GSL) of gravitational thermodynamics in the framework of f(T) modified teleparallel gravity. We consider a spatially flat FRW universe containing only the pressureless matter. The boundary of the universe is assumed to be enclosed by the Hubble horizon. For two viable f(T) models containing f(T) = T+?{sub 1}((?T)){sup n} and f(T) = T??{sub 2}T(1?e{sup ?T{sub 0}/T}), we first calculate the effective equation of state and deceleration parameters. Then, (we investigate the null and strong energy conditions and conclude that a sudden future singularity appears in both models. Furthermore, using a cosmographic analysis we check the viability of two models. Finally, we examine the validity of the GSL and find that for both models it) is satisfied from the early times to the present epoch. But in the future, the GSL is violated for the special ranges of the torsion scalar T.

  6. Metabolic Engineering and Synthetic Biology in Strain Development Every year, we consume about 27 billion barrels of fossil oil.

    E-Print Network [OSTI]

    billion barrels of fossil oil. This enormous amount of oil is used for fueling our cars and airplanes

  7. Taking a Look at 4.57 Billion Year Old Space Objects

    Broader source: Energy.gov [DOE]

    Researchers at the Energy Department's Lawrence Livermore National Laboratory and NASA's Johnson Space Center are investigating objects some 4.57 billion years old in order to better understand how our solar system developed.

  8. Gille-ESYS 10 1 Is I had a billion dollars to save the ozone layer ....

    E-Print Network [OSTI]

    Gille, Sarah T.

    Gille-ESYS 10 1 Is I had a billion dollars to save the ozone layer .... The scene: A backyard-destroying metered dose inhalers? If I had a billion dollars to save the ozone layer, I'd spend it all to get rid to save the ozone layer, I'd worry more about methyl bromide, which is not only an ozone destroyer

  9. High Mass Accuracy and High Mass Resolving Power FT-ICR Secondary...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    High Mass Accuracy and High Mass Resolving Power FT-ICR Secondary Ion Mass Spectrometry for Biological Tissue Imaging. High Mass Accuracy and High Mass Resolving Power FT-ICR...

  10. SESAM FT-IR: A Comparison of the R&D Workhorse to Standard Emission...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SESAM FT-IR: A Comparison of the R&D Workhorse to Standard Emission Benches SESAM FT-IR: A Comparison of the R&D Workhorse to Standard Emission Benches Data for a number of...

  11. Mass Spectrometer: FT-ICR, 6T (Ion Surface Collisions) | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mass Spectrometer: FT-ICR, 6T (Ion Surface Collisions) The 6-Tesla High-Field Fourier Transform Ion Cyclotron Resonance Mass Spectrometer (FT-ICR MS), is a unique...

  12. Thermochemical process for recovering Cu from CuO or CuO.sub.2

    DOE Patents [OSTI]

    Richardson, deceased, Donald M. (late of Oak Ridge, TN); Bamberger, Carlos E. (Oak Ridge, TN)

    1981-01-01T23:59:59.000Z

    A process for producing hydrogen comprises the step of reacting metallic Cu with Ba(OH).sub.2 in the presence of steam to produce hydrogen and BaCu.sub.2 O.sub.2. The BaCu.sub.2 O.sub.2 is reacted with H.sub.2 O to form Cu.sub.2 O and a Ba(OH).sub.2 product for recycle to the initial reaction step. Cu can be obtained from the Cu.sub.2 O product by several methods. In one embodiment the Cu.sub.2 O is reacted with HF solution to provide CuF.sub.2 and Cu. The CuF.sub.2 is reacted with H.sub.2 O to provide CuO and HF. CuO is decomposed to Cu.sub.2 O and O.sub.2. The HF, Cu and Cu.sub.2 O are recycled. In another embodiment the Cu.sub.2 O is reacted with aqueous H.sub.2 SO.sub.4 solution to provide CuSO.sub.4 solution and Cu. The CuSO.sub.4 is decomposed to CuO and SO.sub.3. The CuO is decomposed to form Cu.sub.2 O and O.sub.2. The SO.sub.3 is dissolved to form H.sub.2 SO.sub.4. H.sub.2 SO.sub.4, Cu and Cu.sub.2 O are recycled. In another embodiment Cu.sub.2 O is decomposed electrolytically to Cu and O.sub.2. In another aspect of the invention, Cu is recovered from CuO by the steps of decomposing CuO to Cu.sub.2 O and O.sub.2, reacting the Cu.sub.2 O with aqueous HF solution to produce Cu and CuF.sub.2, reacting the CuF.sub.2 with H.sub.2 O to form CuO and HF, and recycling the CuO and HF to previous reaction steps.

  13. Constraining f(T) gravity in the Solar System

    E-Print Network [OSTI]

    Iorio, Lorenzo; Ruggiero, Matteo Luca

    2015-01-01T23:59:59.000Z

    In the framework of $f(T)$ theories of gravity, we solve the field equations for $f(T)=T+\\alpha T^{n}$, in the weak-field approximation and for spherical symmetry spacetime. Since $f(T)=T$ corresponds to Teleparallel Gravity, which is equivalent to General Relativity, the non linearity of the Lagrangian are expected to produce perturbations of the general relativistic solutions, parameterized by $\\alpha$. Hence, we use the $f(T)$ solutions to model the gravitational field of the Sun, and exploit data from accurate tracking of spacecrafts orbiting Mercury and Saturn to infer preliminary insights on what could be obtained about the model parameter $\\alpha$ and the cosmological constant $\\Lambda$. It turns out that improvements of about one-three orders with respect to the present-day constraints in the literature of magnitude seem possible.

  14. Anisotropic Compact Stars in $f(T)$ Gravity

    E-Print Network [OSTI]

    Abbas, G; Zubair, M

    2015-01-01T23:59:59.000Z

    This paper deals with the theoretical modeling of anisotropic compact stars in the framework of $f(T)$ theory of gravity, where $T$ is torsion scalar. To this end, we have used the exact solutions of Krori and Barua metric to a static spherically symmetric metric. The unknown constants involved in the Krori and Barua metric have been specified by using the masses and radii of compact stars 4$U$1820-30, Her X-1, SAX J 1808-3658. The physical properties of these stars have been analyzed in the framework of $f(T)$ theory. In this setting, we have checked the anisotropic behavior, regularity conditions, stability and surface redshift of the compact stars.

  15. Anisotropic Compact Stars in $f(T)$ Gravity

    E-Print Network [OSTI]

    G. Abbas; Afshan Kanwal; M. Zubair

    2015-01-22T23:59:59.000Z

    This paper deals with the theoretical modeling of anisotropic compact stars in the framework of $f(T)$ theory of gravity, where $T$ is torsion scalar. To this end, we have used the exact solutions of Krori and Barua metric to a static spherically symmetric metric. The unknown constants involved in the Krori and Barua metric have been specified by using the masses and radii of compact stars 4$U$1820-30, Her X-1, SAX J 1808-3658. The physical properties of these stars have been analyzed in the framework of $f(T)$ theory. In this setting, we have checked the anisotropic behavior, regularity conditions, stability and surface redshift of the compact stars.

  16. STATE OF CALIFORNIA NEWLY CONSTRUCTED BUILDINGS AND ADDITIONS GREATER THAN 1,000 FT2

    E-Print Network [OSTI]

    STATE OF CALIFORNIA NEWLY CONSTRUCTED BUILDINGS AND ADDITIONS GREATER THAN 1,000 FT2 CEC- CF-1R Newly Constructed Buildings and Additions Greater Than 1,000 ft2 (Page 1 of 5) Project Name: Climate________ Project Type: New Building Construction New Addition1 greater than 1,000 ft2 1. Additions greater than 1

  17. Cosmological perturbation in f(T) gravity revisited

    SciTech Connect (OSTI)

    Izumi, Keisuke; Ong, Yen Chin, E-mail: izumi@phys.ntu.edu.tw, E-mail: ongyenchin@member.ams.org [Leung Center for Cosmology and Particle Astrophysics, National Taiwan University, Taipei 10617, Taiwan (China)

    2013-06-01T23:59:59.000Z

    We perform detailed investigation of cosmological perturbations in f(T) theory of gravity coupled with scalar field. Our work emphasizes on the way to gauge fix the theory and we examine all possible modes of perturbations up to second order. The analysis includes pseudoscalar and pseudovector modes in addition to the usual scalar, vector, and tensor modes. We find no gravitational propagating degree of freedom in the scalar, pseudoscalar, vector, as well as pseudovector modes. In addition, we find that the scalar and tensor perturbations have exactly the same form as their counterparts in usual general relativity with scalar field, except that the factor of reduced Planck mass squared M{sub pl}{sup 2}?1/(8?G) that occurs in the latter has now been replaced by an effective time-dependent gravitational coupling ?2(df/dT)|{sub T=T{sub 0}}, with T{sub 0} being the background torsion scalar. The absence of extra degrees of freedom of f(T) gravity at second order linear perturbation indicates that f(T) gravity is highly nonlinear. Consequently one cannot conclusively analyze stability of the theory without performing nonlinear analysis that can reveal the propagation of the extra degrees of freedom.

  18. Can f(T) gravity theories mimic ?CDM cosmic history

    SciTech Connect (OSTI)

    Setare, M.R.; Mohammadipour, N., E-mail: rezakord@ipm.ir, E-mail: N.Mohammadipour@uok.ac.ir [Department of Science, University of Kurdistan, Sanandaj (Iran, Islamic Republic of)

    2013-01-01T23:59:59.000Z

    Recently the teleparallel Lagrangian density described by the torsion scalar T has been extended to a function of T. The f(T) modified teleparallel gravity has been proposed as the natural gravitational alternative for dark energy to explain the late time acceleration of the universe. In order to reconstruct the function f(T) by demanding a background ?CDM cosmology we assume that, (i) the background cosmic history provided by the flat ?CDM (the radiation ere with ?{sub eff} = (1/3), matter and de Sitter eras with ?{sub eff} = 0 and ?{sub eff} = ?1, respectively) (ii) the radiation dominate in the radiation era with ?{sub 0r} = 1 and the matter dominate during the matter phases when ?{sub 0m} = 1. We find the cosmological dynamical system which can obey the ?CDM cosmic history. In each era, we find a critical lines that, the radiation dominated and the matter dominated are one points of them in the radiation and matter phases, respectively. Also, we drive the cosmologically viability condition for these models. We investigate the stability condition with respect to the homogeneous scalar perturbations in each era and we obtain the stability conditions for the fixed points in each eras. Finally, we reconstruct the function f(T) which mimics cosmic expansion history.

  19. FT-ICR SWNTs Co/Fe FT-ICR Mass Spectroscopy and Initial Reaction of Co/Fe Mixed Clusters

    E-Print Network [OSTI]

    Maruyama, Shigeo

    FT-ICR SWNTs Co/Fe FT-ICR Mass Spectroscopy and Initial Reaction of Co/Fe Mixed Clusters Used, for FenCoN-n + (N ) 2 (b) (Fe : Co = 0.514 : 0.486) 3 Fe2FeCoCo2 Corbett(3) Li Na 112 116 120 Mass (amu

  20. The 200 ft. Solar Tower at Sandia National

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening a solidSynthesis of 2Dand Water |1 April 2000 AnThis is a200 ft.

  1. Texas--RRC District 7C Coalbed Methane Proved Reserves (Billion Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease Separation,Production (Billion CubicProved Reserves (Billion Cubic

  2. Texas--RRC District 8 Coalbed Methane Production (Billion Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease Separation,Production (Billion CubicProvedProduction (Billion Cubic

  3. Texas--RRC District 8A Coalbed Methane Production (Billion Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease Separation,Production (BillionProved Reserves (Billion Cubic

  4. Texas--RRC District 8A Coalbed Methane Proved Reserves (Billion Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease Separation,Production (BillionProved Reserves (Billion CubicProved

  5. Surface Plasma Treatment of Polyimide Film for Cu Metallization Sang-Jin Cho, Jin-Woo Choi, In-Seob Bae, Trieu Nguyen, and Jin-Hyo Boo

    E-Print Network [OSTI]

    Boo, Jin-Hyo

    Surface Plasma Treatment of Polyimide Film for Cu Metallization Sang-Jin Cho, Jin-Woo Choi, In online January 20, 2011 Surface modification of polyimide films by oxygen/argon atmospheric pressure on the surface properties of polyimide (PI) films were investigated in terms of Fourier-transform infrared (FT

  6. Starobinsky-like inflation induced by f(T) gravity

    E-Print Network [OSTI]

    W. El Hanafy; G. L. Nashed

    2014-10-08T23:59:59.000Z

    We study a single fluid component in a flat like universe governed by $f(T)$ gravity theories. The flat like universe does not imply a vanishing sectional curvature $k$, but assuming a vanishing of the coefficient of $k$ in the modified Friedmann equations. This enables us to extract a compatible pair of a scale factor $a(t)$ and an inverse power series $f(T)$. The Equation of State (EoS) evolves similarly in all models $k=0, \\pm 1$. In large Hubble ($H$)-spacetime the theory is consistent with the inflationary universe scenario and respects the conservation principle. We study the case when the teleparallel torsion is made of a single scalar field. The theory produces Starobinsky model naturally at its zeroth order without using a conformal transformation. Higher order solutions continuously interpolate between Starobinsky and quadratic inflation models. The slow-roll analysis shows double solutions so that for a single value of the spectral index $n_{s}$ the theory can predict double tensor-to-scalar ratios $r$ of Planck and BICEP2 data.

  7. California agriculture is large, diverse, complex and dynamic. It generated nearly $37.5 billion

    E-Print Network [OSTI]

    California at Davis, University of

    California agriculture is large, diverse, complex and dynamic. It generated nearly $37.5 billion in cash receipts in 2010. California has been the nation's top agricultural state in cash receipts every in 1960 to about 12 percent in 2010. UniversityofCalifornia AgriculturalIssuesCenter The Measure

  8. The Economic Impact of Oregon's Urban Research University $1.4 billion and growing

    E-Print Network [OSTI]

    Bertini, Robert L.

    The Economic Impact of Oregon's Urban Research University $1.4 billion and growing #12;From this in the face of tough economic times. This report offers a snapshot of the economic benefits Portland State are an economic catalyst through our partnerships, our research and our programs. Continue to expect great things

  9. Queensland's 1.7 million cars use nearly 3 billion litres of petrol

    E-Print Network [OSTI]

    Patzek, Tadeusz W.

    make the point that mixing ethanol with petrol is nothing new. From 1929 to 1957 all gasoline sold importing expensive petrol. In 1987 they made a staggering 4.2 billion litres of ethanol and all gasoline or not could alter pump prices by 3.6 cents per litre. In a report commissioned by the Environmental Protection

  10. Funding Opportunity: CMS Announces $1 Billion to Support a Second Round of Health Innovation Awards

    E-Print Network [OSTI]

    Illinois at Chicago, University of

    ) announced $1 billion to support a second round of Health Care Innovation Awards, focused on improving care Innovation's (CMMI) continued activities to improve care, improve health, and lower costs by testing health, quality of care and total cost of care" to apply. Applicants will be expected to "describe

  11. Two Billion Cars: What it Means for Climate and Energy Policy

    ScienceCinema (OSTI)

    Daniel Sperling

    2010-01-08T23:59:59.000Z

    April 13, 2009: Daniel Sperling, director of the Institute of Transportation Studies at UC Davis, presents the next installment of Berkeley Lab's Environmental Energy Technologies Divisions Distinguished Lecture series. He discusses Two Billion Cars and What it Means for Climate and Energy Policy.

  12. The President's 2011 Budget provides $28.4 billion for the Department of Energy (DOE) to

    E-Print Network [OSTI]

    system. The end result will promote energy- and cost-saving choices for consumers, reduce emissions, and foster the growth of renew- able energy sources like wind and solar. In addi- tion, the Budget supports69 The President's 2011 Budget provides $28.4 billion for the Department of Energy (DOE) to support

  13. ST PAUL-LEZ-DURANCE, FRANCE ITER --a multi-billion-euro international

    E-Print Network [OSTI]

    $7-billion) estimate provided by the project in 2006, as a result of rises in the price of raw, director of the UK Atomic Energy Authority's fusion laboratory at Culham. The project's rising price to build only a skeletal version of the device at first. The project's governing council said last June

  14. Benzene is an important industrial chemical (> 2 billion gallons produced annually in the

    E-Print Network [OSTI]

    California at Berkeley, University of

    Benzene is an important industrial chemical (> 2 billion gallons produced annually in the United leukemia (Snyder 2002). However, the mechanisms of benzene-induced hematotoxicity and leukemo- genesis further light on these mechanisms and better understand the risk benzene poses, we examined the effects

  15. Sharing global CO2 emission reductions among one billion high emitters

    E-Print Network [OSTI]

    Sharing global CO2 emission reductions among one billion high emitters Shoibal Chakravartya of a country to estimate how its fossil fuel CO2 emissions are distributed among its citizens, from which we distributions. For example, re- ducing projected global emissions in 2030 by 13 GtCO2 would require

  16. Attrition Resistant Iron-Based Catalysts For F-T SBCRs

    SciTech Connect (OSTI)

    Adeyinka A. Adeyiga

    2006-01-31T23:59:59.000Z

    The Fischer-Tropsch (F-T) reaction provides a way of converting coal-derived synthesis gas (CO+ H{sub 2}) to liquid fuels. Since the reaction is highly exothermic, one of the major problems in control of the reaction is heat removal. Recent work has shown that the use of slurry bubble column reactors (SBCRs) can largely solve this problem. The use of iron-(FE) based catalysts is attractive not only due to their low cost and ready availability, but also due to their high water-gas shift activity which makes it possible to use these catalysts with low H{sub 2}/CO ratios. However, a serious problem with the use of Fe catalysts in a SBCR is their tendency to undergo attrition. This can cause fouling/plugging of downstream filters and equipment; makes the separation of catalyst from the oil/wax product very difficult, if not impossible; and results in a steady loss of catalyst from the reactor. Under a previous Department of Energy (DOE)/University Research Grant (UCR) grant, Hampton University reported, for the first time, the development of demonstrably attrition-resistant Fe F-T synthesis catalysts having good activity, selectivity, and attrition resistance. These catalysts were prepared by spray drying Fe catalysts with potassium (K), copper (Cu), and silica (SiO{sub 2}) as promoters. SiO{sub 2} was also used as a binder for spray drying. These catalysts were tested for activity and selectivity in a laboratory-scale fixed-bed reactor. Fundamental understanding of attrition is being addressed by incorporating suitable binders into the catalyst recipe. This has resulted in the preparation of a spray dried HPR-43 catalyst having average particle size (aps) of 70 {micro}m with high attrition resistance. This HPR-43 attrition resistant, active and selective catalyst gave 95% CO conversion through 125 hours of testing in a fixed-bed at 270 C, 1.48 MPa, H{sub 2}/CO=0.67 and 2.0 NL/g-cat/h with C{sub 5+} selectivity of >78% and methane selectivity of less than 5% at an {alpha} of 0.9. Research is proposed to enable further development and optimization of these catalysts by (1) better understanding the role and interrelationship of various catalyst composition and preparation parameters on attrition resistance, activity, and selectivity of these catalysts, (2) the presence of sulfide ions on a precipitated iron catalyst, and (3) the effect of water on sulfided iron F-T catalysts for its activity, selectivity, and attrition. Catalyst preparations will be based on spray drying. The research employed, among other measurements, attrition testing and F-T synthesis at high pressure. Catalyst activity and selectivity is evaluated using a small fixed-bed reactor and a continuous stirred tank reactor (CSTR). The catalysts were prepared by co-precipitation, followed by binder addition and spray drying at 250 C in a 1-m-diameter, 2-m-tall spray dryer. The binder silica content was varied from 0 to 20 wt%. The results show that the use of small amounts of precipitated SiO{sub 2} alone in spray-dried Fe catalysts can result in good attrition resistance. All catalysts investigated with SiO2 wt% {le} 12 produced fines less than 10 wt% during the jet cup attrition test, making them suitable for long-term use in a slurry bubble column reactor. Thus, concentration rather than the type of SiO{sub 2} incorporated into catalyst has a more critical impact on catalyst attrition resistance of spray-dried Fe catalysts. Lower amounts of SiO{sub 2} added to a catalyst give higher particle densities and therefore higher attrition resistances. In order to produce a suitable SBCR catalyst, however, the amount of SiO{sub 2} added has to be optimized to provide adequate surface area, particle density, and attrition resistance. Two of the catalysts with precipitated and binder silica were tested in Texas A&M University's CSTR (Autoclave Engineers). The two catalysts were also tested at The Center for Applied Energy Research in Lexington, Kentucky of the University of Kentucky. Spray-dried catalysts with compositions 100 Fe/5 Cu/4.2 K/11 (P) SiO{sub 2} and

  17. Commercial Scale Coal to F-T Liquid Plant Using a Dry Feed Gasifier

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Volume 4: CTL via F-T Synthesis Exhibit 5-6 COP sensitivity to market price of electricity ... 70 Exhibit 5-7...

  18. Effectiveness of CID, HCD, and ETD with FT MS/MS for degradomic...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of fragmentation methods namely CID-, HCD-, and ETD for FT MSMS analysis of human blood plasma peptidomic peptides. The peptidomic peptides were able to be identified from...

  19. Site geotechnical considerations for expansion of the Strategic Petroleum Reserve (SPR) to one billion barrels

    SciTech Connect (OSTI)

    Neal, J.T. (Sandia National Labs., Albuquerque, NM (United States)); Whittington, D.W. (USDOE Strategic Petroleum Reserve Project Management Office, New Orleans, LA (United States)); Magorian, T.R. (Magorian (Thomas R.), Amherst, NY (United States))

    1991-01-01T23:59:59.000Z

    Eight Gulf Coast salt domes have emerged as candidate sites for possible expansion of the Strategic Petroleum Reserve (SPR) to one billion barrels. Two existing SPR sites, Big Hill, TX, and Weeks Island, LA, are among the eight that are being considered. To achieve the billion barrel capacity, some 25 new leached caverns would be constructed, and would probably be established in two separate sites in Louisiana and Texas because of distribution requirements. Geotechnical factors involved in siting studies have centered first and foremost on cavern integrity and environmental acceptability, once logistical suitability is realized. Other factors have involved subsidence and flooding potential, loss of coastal marshlands, seismicity, brine injection well utility, and co-use by multiple operators. 5 refs., 11 figs., 2 tabs.

  20. How to Bring Solar Energy to Seven Billion People (LBNL Science at the Theater)

    ScienceCinema (OSTI)

    Wadia, Cyrus

    2011-04-28T23:59:59.000Z

    By exploiting the powers of nanotechnology and taking advantage of non-toxic, Earth-abundant materials, Berkeley Lab's Cyrus Wadia has fabricated new solar cell devices that have the potential to be several orders of magnitude less expensive than conventional solar cells. And by mastering the chemistry of these materials-and the economics of solar energy-he envisions bringing electricity to the 1.2 billion people now living without it.

  1. ,"Ohio Coalbed Methane Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids, ExpectedLNGCoalbed Methane Proved Reserves (Billion Cubic

  2. ,"Ohio Dry Natural Gas Expected Future Production (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids, ExpectedLNGCoalbed Methane Proved Reserves (BillionDry

  3. ,"U.S. Dry Natural Gas Expected Future Production (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids,+ LeasePriceExpected Future Production (Billion Cubic

  4. U.S. Dry Natural Gas Reserves Adjustments (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear JanYear Jan Feb MarFields (BillionSales

  5. North Dakota Dry Natural Gas Reserves New Field Discoveries (Billion Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthrough 1996)McGuire"Feet) Estimated Production (BillionFeet)

  6. Graceful Exit Inflation in $f(T)$ Gravity

    E-Print Network [OSTI]

    G. G. L. Nashed; W. El Hanafy; Sh. Kh. Ibrahim

    2015-04-04T23:59:59.000Z

    We apply a quadratic teleparallel torsion scalar of the $f(T)=T+\\alpha T^{2}$ field equations to the spatially flat Friedmann-Robertson-Walker (FRW) model. We assume two perfect fluid components, the matter component has a fixed equation of state (EoS) parameter $\\omega$, while the torsion component has a dynamical EoS. We obtain an effective scale factor allowing a graceful exit inflation model with no need to slow roll technique. We perform a standard cosmological study to examine the cosmic evolution. In addition, the effective EoS shows consistent results confirming a smooth phase transition from inflation to radiation dominant universe. We consider the case when the torsion is made of a scalar field. This treatment enables us to induce a scalar field sensitive to the spacetime symmetry with an effective potential constructed from the quadratic $f(T)$ gravity. The model is parameterized by two parameters ($\\alpha,\\omega$) both derive the universe to exit out of de Sitter expansion. The first is purely gravitational and works effectively at large Hubble regime of the early stage allowing a slow roll potential. The second parameter $\\omega$ is a thermal-like correction coupled to the kinetic term and works effectively at low Hubble regime of late stages. The slow roll analysis of the obtained potential can perform tensor-to-scalar ratio and spectral index parameters consistent with the recent Planck and BICEP2 data. Both cosmological and scalar field analyses show consistent results.

  7. Mass of Cu-57

    E-Print Network [OSTI]

    Gagliardi, Carl A.; Semon, D. R.; Tribble, Robert E.; Vanausdeln, L. A.

    1986-01-01T23:59:59.000Z

    the experimental and theoretical Coulomb displacement energies for similar cases in A =17 and 41 has been attributed~ to ground state correlations in the nuclear wave functions. It is in- teresting to examine the mass 57 mirror nuclei to investi- gate... indicated. Reference 9. 'Reference 7. Reference 6. 'This work. 34 MASS OF Cu 1665 the 3=57 Coulomb displacement energy, using radial wave functions obtained in a spherical Hartree-Fock cal- culation, assuming a closed Ni core, and including...

  8. Low Temperature 65 Cu NMR Spectroscopy of the Cu+ Site in Azurin...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Temperature 65 Cu NMR Spectroscopy of the Cu+ Site in Azurin. Low Temperature 65 Cu NMR Spectroscopy of the Cu+ Site in Azurin. Abstract: Copper is a ubiquitous component of living...

  9. Energy Department Announces $2.9 Billion Contract for Idaho Site Cleanup |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube|6721 Federal Register /of Energy 3IncreaseDepartment of Energy 9 Billion

  10. Texas Dry Natural Gas Reserves New Field Discoveries (Billion Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousandCubicSeparation 7,559 8,762Extensions (Billion

  11. New Mexico - West Dry Natural Gas Expected Future Production (Billion Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site. IfProved Reservesthroughwww.eia.govN E B(BillionFeet) Dry

  12. ,"U.S. Coalbed Methane Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids,+ LeasePrice SoldPlantGrossDistillateReserves (Billion

  13. Arkansas Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion CubicPotentialNov-14 Dec-14DecadeDecade(Million31 22 28 21

  14. California Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,128 2,469 2,321 2,590 1,550 1,460CubicYear Jan,835 2,939

  15. Colorado Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,128 2,469 2,321Spain (Million Cubic 1.Year Jan Feb8,238Cubic

  16. U.S. Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear JanYear Jan Feb MarFields (BillionSales (MillionA5 -A63

  17. U.S. Dry Natural Gas Reserves Acquisitions (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear JanYear Jan Feb MarFields (BillionSales (MillionA5Acquisitions

  18. U.S. Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear JanYear Jan Feb MarFields (BillionSalesEstimated Production

  19. U.S. Dry Natural Gas Reserves Extensions (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear JanYear Jan Feb MarFields (BillionSalesEstimated

  20. U.S. Dry Natural Gas Reserves New Field Discoveries (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear JanYear Jan Feb MarFields (BillionSalesEstimatedNew Field

  1. U.S. Dry Natural Gas Reserves Revision Decreases (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear JanYear Jan Feb MarFields (BillionSalesEstimatedNew

  2. U.S. Dry Natural Gas Reserves Revision Increases (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear JanYear Jan Feb MarFields (BillionSalesEstimatedNewIncreases

  3. U.S. Natural Gas, Wet After Lease Separation Reserves Extensions (Billion

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear JanYear Jan Feb(MillionCubic Feet) Depleted(Billion

  4. U.S. Natural Gas, Wet After Lease Separation Reserves Sales (Billion Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear JanYear Jan Feb(MillionCubic Feet)(Billion CubicFeet)

  5. Wyoming Dry Natural Gas Reserves New Field Discoveries (Billion Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,397 125 Q 69 (MillionAdjustments (Billion Cubic Feet)New Field

  6. U.S. Shale Proved Reserves New Field Discoveries (Billion Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 34 44Year Jan Feb MarDecade Year-0 Year-1(Billion-Field Discoveries

  7. U.S. Shale Proved Reserves New Reservoir Discoveries in Old Fields (Billion

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 34 44Year Jan Feb MarDecade Year-0 Year-1(Billion-Field

  8. U.S. Shale Proved Reserves Revision Decreases (Billion Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 34 44Year Jan Feb MarDecade Year-0 Year-1(Billion-FieldDecreases

  9. Texas--RRC District 7C Shale Proved Reserves (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API GravityDakota" "Fuel, quality", 2013,Iowa"Dakota"YearProductionShale Proved Reserves (Billion Cubic

  10. Texas--RRC District 8 Coalbed Methane Proved Reserves (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API GravityDakota" "Fuel, quality", 2013,Iowa"Dakota"YearProductionShale Proved Reserves (Billion Cubic8

  11. Florida Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.Gas ProvedCommercial Consumers by Local0 0 0

  12. Florida Dry Natural Gas Reserves New Field Discoveries (Billion Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.Gas ProvedCommercial Consumers byExtensionsNew

  13. New Mexico Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYearWithdrawalsYear Jan1Lease Separation780

  14. New Mexico Dry Natural Gas Reserves New Field Discoveries (Billion Cubic

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYearWithdrawalsYearFeet) New Field Discoveries

  15. New Mexico Dry Natural Gas Reserves Revision Decreases (Billion Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYearWithdrawalsYearFeet) New Field

  16. New Mexico Dry Natural Gas Reserves Revision Increases (Billion Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYearWithdrawalsYearFeet) New FieldIncreases

  17. Texas--RRC District 10 Coalbed Methane Production (Billion Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease Separation, ProvedProcessed (MillionProduction (Billion Cubic Feet)

  18. Texas--RRC District 6 Coalbed Methane Production (Billion Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease Separation,Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2

  19. Texas--RRC District 7B Coalbed Methane Production (Billion Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease Separation,Production (Billion Cubic Feet)

  20. Texas--RRC District 7B Shale Production (Billion Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease Separation,Production (Billion Cubic Feet)ProvedProductionShale

  1. Texas--RRC District 7C Coalbed Methane Production (Billion Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease Separation,Production (Billion Cubic

  2. Texas--RRC District 7C Shale Production (Billion Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease Separation,Production (Billion CubicProved ReservesProductionShale

  3. Texas--RRC District 8A Shale Production (Billion Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease Separation,Production (BillionProved Reserves(Million Barrels)Shale

  4. Texas--RRC District 9 Coalbed Methane Production (Billion Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease Separation,Production (BillionProved Reserves(MillionProduction

  5. Texas--RRC District 9 Coalbed Methane Proved Reserves (Billion Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease Separation,Production (BillionProved Reserves(MillionProductionProved

  6. FT-IR spectroscopy technology, market evolution and future strategies of Bruker Optics Inc.

    E-Print Network [OSTI]

    Higdon, Thomas (Thomas Charles)

    2010-01-01T23:59:59.000Z

    This thesis explores the technology and market evolution of FT-IR spectroscopy over its nearly forty year history to aid in determining future product design and marketing strategies for an industry-leading firm, Bruker ...

  7. ** ALL CHARGES ARE PER SEMESTER UNLESS OTHERWISE NOTED** Dental Hygiene FT Dental Hygiene PT

    E-Print Network [OSTI]

    Weber, David J.

    ** ALL CHARGES ARE PER SEMESTER UNLESS OTHERWISE NOTED** Dental Hygiene FT Dental Hygiene PT (Less Lease 266.00 266.00 SADHA Membership Fee - Fall 65.00 65.00 Dental Hygiene Pins - Fall - 2nd Year 70

  8. ** ALL CHARGES ARE PER SEMESTER UNLESS OTHERWISE NOTED** Dental Hygiene FT Dental Hygiene PT

    E-Print Network [OSTI]

    Weber, David J.

    ** ALL CHARGES ARE PER SEMESTER UNLESS OTHERWISE NOTED** Dental Hygiene FT Dental Hygiene PT (Less Fee - Fall 65.00 65.00 Dental Hygiene Pins - Fall - 2nd Year 70.00 70.00 Disability Insurance: 10

  9. Vacuum energy $f(T)$ decay: Inflation at the open universe

    E-Print Network [OSTI]

    W. El Hanafy; G. L. Nashed

    2014-10-09T23:59:59.000Z

    We derived a uniquely exact $f(T)$ formula of the lowest possible energy of an isotropic and homogeneous universe. We show that vanishing of the energy-momentum tensor $\\mathcal{T}^{\\mu \

  10. Reinforcement mechanisms in MWCNT-filled polycarbonate , F.T. Fisher b,*, R. Andrews c

    E-Print Network [OSTI]

    Fisher, Frank

    Reinforcement mechanisms in MWCNT-filled polycarbonate A. Eitan a , F.T. Fisher b,*, R. Andrews c on understanding the reinforcement mechanisms in multiwalled carbon nanotube (MWCNT)/bisphenol-A polycarbonate (PC

  11. Parametrization and Classification of 20 Billion LSST Objects: Lessons from SDSS

    SciTech Connect (OSTI)

    Ivezic, Z.; /Washington U., Seattle, Astron. Dept.; Axelrod, T.; /Large Binocular Telescope, Tucson; Becker, A.C.; /Washington U., Seattle, Astron. Dept.; Becla, J.; /SLAC; Borne, K.; /George Mason U.; Burke, David L.; /SLAC; Claver, C.F.; /NOAO, Tucson; Cook, K.H.; /LLNL, Livermore; Connolly, A.; /Washington U., Seattle, Astron. Dept.; Gilmore, D.K.; /SLAC; Jones, R.L.; /Washington U., Seattle, Astron. Dept.; Juric, M.; /Princeton, Inst. Advanced Study; Kahn, Steven M.; /SLAC; Lim, K-T.; /SLAC; Lupton, R.H.; /Princeton U.; Monet, D.G.; /Naval Observ., Flagstaff; Pinto, P.A.; /Arizona U.; Sesar, B.; /Washington U., Seattle, Astron. Dept.; Stubbs, Christopher W.; /Harvard U.; Tyson, J.Anthony; /UC, Davis

    2011-11-10T23:59:59.000Z

    The Large Synoptic Survey Telescope (LSST) will be a large, wide-field ground-based system designed to obtain, starting in 2015, multiple images of the sky that is visible from Cerro Pachon in Northern Chile. About 90% of the observing time will be devoted to a deep-wide-fast survey mode which will observe a 20,000 deg{sup 2} region about 1000 times during the anticipated 10 years of operations (distributed over six bands, ugrizy). Each 30-second long visit will deliver 5{sigma} depth for point sources of r {approx} 24.5 on average. The co-added map will be about 3 magnitudes deeper, and will include 10 billion galaxies and a similar number of stars. We discuss various measurements that will be automatically performed for these 20 billion sources, and how they can be used for classification and determination of source physical and other properties. We provide a few classification examples based on SDSS data, such as color classification of stars, color-spatial proximity search for wide-angle binary stars, orbital-color classification of asteroid families, and the recognition of main Galaxy components based on the distribution of stars in the position-metallicity-kinematics space. Guided by these examples, we anticipate that two grand classification challenges for LSST will be (1) rapid and robust classification of sources detected in difference images, and (2) simultaneous treatment of diverse astrometric and photometric time series measurements for an unprecedentedly large number of objects.

  12. FTIR and FT-PL spectroscopic analysis of TPV materials and devices

    SciTech Connect (OSTI)

    Webb, J.D.; Gedvilas, L.M.; Olson, M.R.; Wu, X.; Duda, A.; Wanlass, M.W.; Jones, K.M. [National Renewable Energy Laboratory, 1617 Cole Blvd., Golden, Colorado 80401 (United States)

    1999-03-01T23:59:59.000Z

    Fourier transform (FT) spectroscopic techniques are useful in determining properties of thermophotovoltaic (TPV) materials and devices. The III-V TPV absorber materials have energy bandgaps that can be optimized for conversion of the near-infrared radiation emitted by thermal sources in the 1000{degree}{endash}1200&hthinsp;{degree}C temperature range. The bandgaps of these materials can be measured at room temperature using FT-photoluminescence spectroscopy, which can be done with a modified FT-Raman spectrophotometer operating in the near-infrared spectral region. The intensities and bandwidths of the FT-PL spectra also provide information on the extent of non-radiative recombination and the compositional uniformity of the materials. To achieve adequate operating efficiencies, TPV converters must return sub-bandgap radiation to the thermal source. The percent reflectance of the device in the mid-infrared spectral region is therefore an important operating parameter that can be accurately measured using FT-infrared (FTIR) spectroscopy with total reflectance optical accessories. In this paper, we discuss applications of these techniques to TPV materials and devices, and variations on these approaches, such as scanning micro-FT-PL spectroscopy, that enable microanalysis of TPV device structures at the 1{endash}100-{mu}m scale. {copyright} {ital 1999 American Institute of Physics.}

  13. U.S. Billion-Ton Update: Biomass Supply for a Bioenergy and Bioproducts Industry

    SciTech Connect (OSTI)

    Downing, Mark [ORNL; Eaton, Laurence M [ORNL; Graham, Robin Lambert [ORNL; Langholtz, Matthew H [ORNL; Perlack, Robert D [ORNL; Turhollow Jr, Anthony F [ORNL; Stokes, Bryce [Navarro Research & Engineering; Brandt, Craig C [ORNL

    2011-08-01T23:59:59.000Z

    The report, Biomass as Feedstock for a Bioenergy and Bioproducts Industry: The Technical Feasibility of a Billion-Ton Annual Supply (generally referred to as the Billion-Ton Study or 2005 BTS), was an estimate of 'potential' biomass based on numerous assumptions about current and future inventory, production capacity, availability, and technology. The analysis was made to determine if conterminous U.S. agriculture and forestry resources had the capability to produce at least one billion dry tons of sustainable biomass annually to displace 30% or more of the nation's present petroleum consumption. An effort was made to use conservative estimates to assure confidence in having sufficient supply to reach the goal. The potential biomass was projected to be reasonably available around mid-century when large-scale biorefineries are likely to exist. The study emphasized primary sources of forest- and agriculture-derived biomass, such as logging residues, fuel treatment thinnings, crop residues, and perennially grown grasses and trees. These primary sources have the greatest potential to supply large, reliable, and sustainable quantities of biomass. While the primary sources were emphasized, estimates of secondary residue and tertiary waste resources of biomass were also provided. The original Billion-Ton Resource Assessment, published in 2005, was divided into two parts-forest-derived resources and agriculture-derived resources. The forest resources included residues produced during the harvesting of merchantable timber, forest residues, and small-diameter trees that could become available through initiatives to reduce fire hazards and improve forest health; forest residues from land conversion; fuelwood extracted from forests; residues generated at primary forest product processing mills; and urban wood wastes, municipal solid wastes (MSW), and construction and demolition (C&D) debris. For these forest resources, only residues, wastes, and small-diameter trees were considered. The 2005 BTS did not attempt to include any wood that would normally be used for higher-valued products (e.g., pulpwood) that could potentially shift to bioenergy applications. This would have required a separate economic analysis, which was not part of the 2005 BTS. The agriculture resources in the 2005 BTS included grains used for biofuels production; crop residues derived primarily from corn, wheat, and small grains; and animal manures and other residues. The cropland resource analysis also included estimates of perennial energy crops (e.g., herbaceous grasses, such as switchgrass, woody crops like hybrid poplar, as well as willow grown under short rotations and more intensive management than conventional plantation forests). Woody crops were included under cropland resources because it was assumed that they would be grown on a combination of cropland and pasture rather than forestland. In the 2005 BTS, current resource availability was estimated at 278 million dry tons annually from forestlands and slightly more than 194 million dry tons annually from croplands. These annual quantities increase to about 370 million dry tons from forestlands and to nearly 1 billion dry tons from croplands under scenario conditions of high-yield growth and large-scale plantings of perennial grasses and woody tree crops. This high-yield scenario reflects a mid-century timescale ({approx}2040-2050). Under conditions of lower-yield growth, estimated resource potential was projected to be about 320 and 580 million dry tons for forest and cropland biomass, respectively. As noted earlier, the 2005 BTS emphasized the primary resources (agricultural and forestry residues and energy crops) because they represent nearly 80% of the long-term resource potential. Since publication of the BTS in April 2005, there have been some rather dramatic changes in energy markets. In fact, just prior to the actual publication of the BTS, world oil prices started to increase as a result of a burgeoning worldwide demand and concerns about long-term supplies. By the end of the summer, oil pri

  14. CU | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation inOpen Energy InformationSeries JumpCRESTCSP: PerspectivesCU

  15. Barium fluoride whispering-gallery-mode disk-resonator with one billion quality-factor

    E-Print Network [OSTI]

    Lin, Guoping; Henriet, Rémi; Jacquot, Maxime; Chembo, Yanne K

    2015-01-01T23:59:59.000Z

    We demonstrate a monolithic optical whispering gallery mode resonator fabricated with barium fluoride (BaF$_2$) with an ultra-high quality ($Q$) factor above $10^9$ at $1550$ nm, and measured with both the linewidth and cavity-ring-down methods. Vertical scanning optical profilometry shows that the root mean square surface roughness of $2$ nm is achieved for our mm-size disk. To the best of our knowledge, we show for the first time that one billion $Q$-factor is achievable by precision polishing in relatively soft crystals with mohs hardness of ~$3$. We show that complex thermo-optical dynamics can take place in these resonators. Beside usual applications in nonlinear optics and microwave photonics, high energy particle scintillation detection utilizing monolithic BaF$_2$ resonators potentially becomes feasible.

  16. Electrodeposited NiCo/Cu Superlattices

    SciTech Connect (OSTI)

    Safak, M.; Alper, M. [Department of Physics, Faculty of Science and Literature, University of Uludag, Goeruekle, Bursa (Turkey)

    2007-04-23T23:59:59.000Z

    NiCo/Cu superlattices were electrodeposited on polycrystalline Cu substrates from a single electrolyte under potentiostatic control. The X-ray diffraction (XRD) patterns showed that NiCo/Cu superlattices have the same crystal structure and texture as in their substrates. The films exhibited giant magnetoresistance (GMR) or anisotropic magnetoresistance (AMR), depending on the Cu layer thicknesses.

  17. A PCT funding formula for England based on faith may be wasting billions1 Mervyn Stone and Jane Galbraith

    E-Print Network [OSTI]

    Guillas, Serge

    A PCT funding formula for England based on faith may be wasting billions1 Mervyn Stone and Jane by slicing a Treasury cake of £44B. The division was guided by targets given by a weighted capitation formula/science divide will not block future attempts to devise a funding formula based on direct measurement of health

  18. Global MSW Generation in 2007 estimated at two billion tons Global Waste Management Market Assessment 2007, Key Note Publications Ltd ,

    E-Print Network [OSTI]

    Columbia University

    analyses the global waste market, with particular reference to municipal solid waste (MSW). Key NoteGlobal MSW Generation in 2007 estimated at two billion tons Global Waste Management Market between growth in wealth and increase in waste -- the more affluent a society becomes, the more waste

  19. Ultra-clean Fischer-Tropsch (F-T) Fuels Production and Demonstration Project

    SciTech Connect (OSTI)

    Stephen P. Bergin

    2006-06-30T23:59:59.000Z

    The objective of the DOE-NETL Fischer-Tropsch (F-T) Production and Demonstration Program was to produce and evaluate F-T fuel derived from domestic natural gas. The project had two primary phases: (1) fuel production of ultra-clean diesel transportation fuels from domestic fossil resources; and (2) demonstration and performance testing of these fuels in engines. The project also included a well-to-wheels economic analysis and a feasibility study of small-footprint F-T plants (SFPs) for remote locations such as rural Alaska. During the fuel production phase, ICRC partnered and cost-shared with Syntroleum Corporation to complete the mechanical design, construction, and operation of a modular SFP that converts natural gas, via F-T and hydro-processing reactions, into hydrogensaturated diesel fuel. Construction of the Tulsa, Oklahoma plant started in August 2002 and culminated in the production of over 100,000 gallons of F-T diesel fuel (S-2) through 2004, specifically for this project. That fuel formed the basis of extensive demonstrations and evaluations that followed. The ultra-clean F-T fuels produced had virtually no sulfur (less than 1 ppm) and were of the highest quality in terms of ignition quality, saturation content, backend volatility, etc. Lubricity concerns were investigated to verify that commercially available lubricity additive treatment would be adequate to protect fuel injection system components. In the fuel demonstration and testing phase, two separate bus fleets were utilized. The Washington DC Metropolitan Area Transit Authority (WMATA) and Denali National Park bus fleets were used because they represented nearly opposite ends of several spectra, including: climate, topography, engine load factor, mean distance between stops, and composition of normally used conventional diesel fuel. Fuel evaluations in addition to bus fleet demonstrations included: bus fleet emission measurements; F-T fuel cold weather performance; controlled engine dynamometer lab evaluation; cold-start test-cell evaluations; overall feasibility, economics, and efficiency of SFP fuel production; and an economic analysis. Two unexpected issues that arose during the project were further studied and resolved: variations in NOx emissions were accounted for and fuel-injection nozzle fouling issues were traced to the non-combustible (ash) content of the engine oil, not the F-T fuel. The F-T fuel domestically produced and evaluated in this effort appears to be a good replacement candidate for petroleum-based transportation fuels. However, in order for domestic F-T fuels to become a viable cost-comparable alternative to petroleum fuels, the F-T fuels will need to be produced from abundant U.S. domestic resources such as coal and biomass, rather than stranded natural gas.

  20. Oral/Poster Reference: FT242 FATIGUE CRACK GROWTH OF RUBBER UNDER

    E-Print Network [OSTI]

    Fatemi, Ali

    Oral/Poster Reference: FT242 FATIGUE CRACK GROWTH OF RUBBER UNDER VARIABLE AMPLITUDE LOADING R. Harbour1 , A. Fatemi1 , W. V. Mars2 1 The University of Toledo, Toledo, OH, USA 2 Cooper Tire and Rubber Company, Findlay, OH, USA ABSTRACT Realistic loading conditions for rubber components are often more

  1. The Hidden Flat Like Universe: Starobinsky-like inflation induced by f(T) gravity

    E-Print Network [OSTI]

    W. El Hanafy; G. G. L. Nashed

    2015-06-02T23:59:59.000Z

    We study a single fluid component in a flat like universe (FLU) governed by $f(T)$ gravity theories, where $T$ is the teleparallel torsion scalar. The FLU model, regardless the value of the spatial curvature $k$, identifies a special class of $f(T)$ gravity theories. Remarkably, the FLU $f(T)$ gravity does not reduce to teleparallel gravity theory. In large Hubble spacetime the theory is consistent with the inflationary universe scenario and respects the conservation principle. The equation of state (EoS) evolves similarly in all models $k=0, \\pm 1$. We study the case when the torsion tensor is made of a scalar field, which enables to derive a quintessence potential from the obtained $f(T)$ gravity theory. The potential produces Starobinsky-like model naturally without using a conformal transformation, with higher orders continuously interpolate between Starobinsky and quadratic inflation models. The slow-roll analysis shows double solutions so that for a single value of the scalar tilt (spectral index) $n_{s}$ the theory can predict double tensor-to-scalar ratios $r$ of $E$-mode and $B$-mode polarizations.

  2. Utility Assessment Report for SPIDERS Phase 2: Ft. Carson (Rev 1.0)

    SciTech Connect (OSTI)

    Barr, Jonathan L.; Tuffner, Francis K.; Hadley, Mark D.; Schneider, Kevin P.

    2014-01-01T23:59:59.000Z

    This document contains the Utility Assessment Report (UAR) for the Phase 2 operational Demonstration (OD) of the Smart Power Infrastructure Demonstration for Energy Reliability and Security (SPIDERS) Joint Capability Technology Demonstration (JCTD). The UAR for Phase 2 shows that the SPIDERS system was able to meet the requirements of the Implementation Directive at Ft. Carson.

  3. Ag Business Student professional@yahoo.com 201 Harmony Ave. Apt.#3 Ft. Collins, CO (970) 123-4567

    E-Print Network [OSTI]

    Ag Business Student professional@yahoo.com 201 Harmony Ave. Apt.#3 Ft. Collins, CO (970) 123-4567 EDUCATION Colorado State University Ft. Collins, CO Anticipated May 2012 Dual Bachelor of Science in Animal Science and Agricultural Business Aims Community College Loveland, CO 2007 Associates of Science RELEVANT

  4. Oxidation and diffusion of Cu in SrS: Cu grown by MBE for blue phosphors

    E-Print Network [OSTI]

    Wang, Zhong L.

    Oxidation and diffusion of Cu in SrS: Cu grown by MBE for blue phosphors Y.B. Xina,b,*, W. Tonga, ON M9W 5AS, Canada Abstract Systematic studies of MBE grown SrS:Cu thin film blue phosphors Thin film SrS:Cu is a potential candidate for blue electro- luminescent (EL) phosphors. Although recent

  5. Interacting Dark Energy in f(T) cosmology : A Dynamical System analysis

    E-Print Network [OSTI]

    Biswas, Sujay Kr

    2015-01-01T23:59:59.000Z

    The present work deals with an interacting dark energy model in the framework of f(T) cosmology. A cosmologically viable form of f(T) is chosen (T is the torsion scalar in teleparallelism) in the background of flat homogeneous and isotropic Friedmann-Robertson-Walker (FRW) space-time model of the universe. The matter content of the universe is chosen as dust interacting with minimally coupled scalar field. The evolution equations are reduced to an autonomous system of ordinary differential equations by suitable transformation of variables. The nature of critical points are analyzed by evaluating the eigenvalues of the linearized Jacobi matrix and stable attractors are examined from the point of view of cosmology. Finally, both classical and quantum stability of the model have been discussed.

  6. Variability of biomass chemical composition and rapid analysis using FT-NIR techniques

    SciTech Connect (OSTI)

    Liu, Lu [University of Tennessee, Knoxville (UTK); Ye, Philip [University of Tennessee, Knoxville (UTK); Womac, A.R. [University of Tennessee; Sokhansanj, Shahabaddine [ORNL

    2010-04-01T23:59:59.000Z

    A quick method for analyzing the chemical composition of renewable energy biomass feedstock was developed by using Fourier transform near-infrared (FT-NIR) spectroscopy coupled with multivariate analysis. The study presents the broad-based model hypothesis that a single FT-NIR predictive model can be developed to analyze multiple types of biomass feedstock. The two most important biomass feedstocks corn stover and switchgrass were evaluated for the variability in their concentrations of the following components: glucan, xylan, galactan, arabinan, mannan, lignin, and ash. A hypothesis test was developed based upon these two species. Both cross-validation and independent validation results showed that the broad-based model developed is promising for future chemical prediction of both biomass species; in addition, the results also showed the method's prediction potential for wheat straw.

  7. A special exact spherically symmetric solution in f(T) gravity theories

    E-Print Network [OSTI]

    Nashed, G G L

    2015-01-01T23:59:59.000Z

    A non-diagonal spherically symmetric tetrad field, involving four unknown functions of radial coordinate $r$, is applied to the equations of motion of f(T) gravity theory. A special exact vacuum solution with one constant of integration is obtained. The scalar torsion related to this special solution vanishes. To understand the physical meaning of the constant of integration we calculate the energy associated with this solution and show how it is related to the gravitational mass of the system.

  8. A special exact spherically symmetric solution in f(T) gravity theories

    E-Print Network [OSTI]

    G. G. L. Nashed

    2015-02-17T23:59:59.000Z

    A non-diagonal spherically symmetric tetrad field, involving four unknown functions of radial coordinate $r$, is applied to the equations of motion of f(T) gravity theory. A special exact vacuum solution with one constant of integration is obtained. The scalar torsion related to this special solution vanishes. To understand the physical meaning of the constant of integration we calculate the energy associated with this solution and show how it is related to the gravitational mass of the system.

  9. TT^T7Gs!rf5ft Riso-R-425 Metallurgy Department

    E-Print Network [OSTI]

    CM tf TT^T7Gs!rf5ft Riso-R-425 (O O o o o \\l O Metallurgy Department Progress Report for the Period-R-425 METALLURGY DEPARTMENT PROGRESS REPORT FOR THE PERIOD 1 JANUARY TO 31 DECEMBER 1979 Abstract. The activities of the Metallurgy Department at Risø during 1979 are described. The work is presented in four chap

  10. Practical Analysis of materials with depth varying compositions using FT-IR photoacoustic spectroscopy (PAS)

    SciTech Connect (OSTI)

    J.F. McClelland; R.W. Jones; Siquan Luo

    2004-09-30T23:59:59.000Z

    FT-IR photoacoustic spectroscopy (PAS) is discussed as a nondestructive method to probe the molecular composition of materials versus depth on the basis of the analysis of layers of experimentally controllable thickness, which are measured from the sample surface to depths of some tens of micrometers, depending on optical and thermal properties. Computational methods are described to process photoacoustic amplitude and phase spectra for both semi-quantitative and quantitative depth analyses. These methods are demonstrated on layered and gradient samples.

  11. Final technical report. In-situ FT-IR monitoring of a black liquor recovery boiler

    SciTech Connect (OSTI)

    James Markham; Joseph Cosgrove; David Marran; Jorge Neira; Chad Nelson; Peter Solomon

    1999-05-31T23:59:59.000Z

    This project developed and tested advanced Fourier transform infrared (FT-IR) instruments for process monitoring of black liquor recovery boilers. The state-of-the-art FT-IR instruments successfully operated in the harsh environment of a black liquor recovery boiler and provided a wealth of real-time process information. Concentrations of multiple gas species were simultaneously monitored in-situ across the combustion flow of the boiler and extractively at the stack. Sensitivity to changes of particulate fume and carryover levels in the process flow were also demonstrated. Boiler set-up and operation is a complex balance of conditions that influence the chemical and physical processes in the combustion flow. Operating parameters include black liquor flow rate, liquor temperature, nozzle pressure, primary air, secondary air, tertiary air, boiler excess oxygen and others. The in-process information provided by the FT-IR monitors can be used as a boiler control tool since species indicative of combustion efficiency (carbon monoxide, methane) and pollutant emissions (sulfur dioxide, hydrochloric acid and fume) were monitored in real-time and observed to fluctuate as operating conditions were varied. A high priority need of the U.S. industrial boiler market is improved measurement and control technology. The sensor technology demonstrated in this project is applicable to the need of industry.

  12. Stretching and bending with flexible FT-IR process monitors, probes and software

    SciTech Connect (OSTI)

    Peters, D.C. [KVB/Analect, Utica, NY (United States)

    1995-12-31T23:59:59.000Z

    FT-IR process analyzers continue to gain recognition for reliable and accurate on-line analyses on a broad variety of processes around the world. When fast analyses are required, on-line FT-IR analyzers offer speed and specificity for many applications. The use of FT-IR spectroscopy, either in the Mid-IR region or Near IR region offers fundamental advantages over other technologies. These advantages make calibrations exceptionally stable for an analyzer over time and offer improved ease of calibration transfer between similar analyzers. Spectral region selection criteria are reviewed, to help define when to use the Mid-IR region or the Near-IR region (or even when to use parts of both) for a given sample stream. New fiber optic sampling probes for transmission, attenuated total reflection, diffuse reflection and web sensing have solved nagging problems. What many process analyzer specialists are discovering is that new probes are becoming available each month, offering newer process tolerance (can tolerate higher temp or pressure) or even new sampling approaches altogether. This paper describes on-line applications in pharmaceuticals, specialty chemicals, polymer production and refinery production which demonstrate the range of techniques used to appropriately optimize the on-line analyzer. In addition, calibration transfer issues will be discussed, demonstrating the importance of the software tools to help sort out the causes for cal errors (spectral contamination, etc.).

  13. Well-studied Cu-BTC still serves surprises: evidence for facile...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Well-studied Cu-BTC still serves surprises: evidence for facile Cu2+Cu+ interchange. Well-studied Cu-BTC still serves surprises: evidence for facile Cu2+Cu+ interchange....

  14. The Effects of Hydrothermal Agingon a Commercial Cu SCR Catalyst

    Broader source: Energy.gov (indexed) [DOE]

    * Model Cu-Zeolite SCR Catalyst Cu-SSZ-13 (SiAl 2 12), Cu-ZSM-5 (SiAl 2 30) Cu-beta (SiAl 2 38), Cu-Y(SiAl 2 5.2) * Hydrothermal Aging 10% H 2 O in air, 800 o C,...

  15. $J/?$ Production in $p+p$, $d+Au$, and $Cu+Cu$ Collisions at RHIC

    E-Print Network [OSTI]

    Vince Cianciolo; for the PHENIX Collaboration

    2006-01-05T23:59:59.000Z

    PHENIX results for $J/\\psi$ production in $p+p$, $d+Au$, and $Cu+Cu$ collisions at $\\sqrt{s_{NN}}=200$ GeV are presented.

  16. Origin of transverse magnetization in epitaxial Cu/Ni/Cu nanowire arrays

    E-Print Network [OSTI]

    Ciria, M.

    The patterning-induced changes in the magnetic anisotropy and hysteresis of epitaxial (100)-oriented Cu/Ni(9, 10, 15 nm)/Cu planar nanowires have been quantified. When the Ni films are patterned into lines, strain relaxation ...

  17. A case study, artificial insemination versus natural breeding at Overland Farms, Ft. Worth, Texas

    E-Print Network [OSTI]

    Migues, Loraine C.

    1985-01-01T23:59:59.000Z

    in Ft. Worth, Texas. A total of 19 mares were bred by natural service by the Quarter Horse stallions, Tuffys Three Bars and The Ultimate Copy during the period beginning February 1, 1985 and ending July 5, 1985. As of the end of this period, 14 mares... at the case farm (Overland Farms). Presently, natural breeding is utilized. Considerations for using A. I. were: 1) number of mares and stallions to be used in the program, 2) start-up costs and 3) returns to capital investments by capital budgeting...

  18. ft. n. Both, Ohtef, RarourQb DWrion,Oak Ridgo

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling7 AugustAFRICAN3uj:'I,\ W CTheuse of_ ,' .' ft.

  19. Sandia Energy - SWiFT Commissioned to Study Wind Farm Optimization

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol Home Distribution GridDocuments Home StationaryFAQsSPIDERS HomeSWiFT

  20. Science DMZ Implemented at CU Boulder

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    @ CU Science Engagement Move your data Programs & Workshops Science Requirements Reviews Case Studies OSCARS Case Studies Science DMZ Case Studies Science DMZ @ UF Science DMZ @...

  1. Optogalvanic isotope enrichment of Cu ions in Cu-Ne positive column discharges

    E-Print Network [OSTI]

    Kushner, Mark

    Optogalvanic isotope enrichment of Cu ions in Cu-Ne positive column discharges M. J. Kushner The isotopic enrichment of copper ions in a positive column Cu-Ne discharge using optogalvanic excitation the 63-amu isotope of copper is enriched relative to the neutral abundance. Enrichment as large as 10

  2. Spark Plasma Sintering of Nanocrystalline Cu and Cu-10 Wt Pct Pb Alloy

    E-Print Network [OSTI]

    Srivastava, Kumar Vaibhav

    Spark Plasma Sintering of Nanocrystalline Cu and Cu-10 Wt Pct Pb Alloy AMIT S. SHARMA, KRISHANU temperature of 623 K (350 °C) using spark plasma sintering (SPS) in argon atmosphere at a pressure of 100 MPa to synthesize the bulk nanostructured Cu-10 wt pct Pb hypo-monotectic alloy by a novel technique, spark plasma

  3. Scanned pulsed laser annealing of Cu thin films

    E-Print Network [OSTI]

    Verma, Harsh Anand, 1980-

    2005-01-01T23:59:59.000Z

    As the microelectronics industry has moved to Cu as the conductor material, there has been much research into microstructure control in Cu thin films, primarily because grain sizes affect resistivity. Also with Cu-based ...

  4. Room-temperature Formation of Hollow Cu2O Nanoparticles

    SciTech Connect (OSTI)

    Hung, Ling-I; Tsung, Chia-Kuang; Huang, Wenyu; Yang, Peidong

    2010-01-18T23:59:59.000Z

    Monodisperse Cu and Cu2O nanoparticles (NPs) are synthesized using tetradecylphosphonic acid as a capping agent. Dispersing the NPs in chloroform and hexane at room temperature results in the formation of hollow Cu2O NPs and Cu@Cu2O core/shell NPs, respectively. The monodisperse Cu2O NPs are used to fabricate hybrid solar cells with efficiency of 0.14percent under AM 1.5 and 1 Sun illumination.

  5. Theoretical Electron Density Distributions for Fe- and Cu-Sulfide...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electron Density Distributions for Fe- and Cu-Sulfide Earth Materials: A Connection between Bond Length, Bond Theoretical Electron Density Distributions for Fe- and Cu-Sulfide...

  6. Adsorption of Cu21 Ions with Poly

    E-Print Network [OSTI]

    Adsorption of Cu21 Ions with Poly (N-isopropylacrylamide-co-methacrylic acid) Micro. It was shown that particle size played a very important role in the adsorption process. The nano-scale particles showed much improved Cu ion adsorption efficiency, compared with the micro hydro- gels. The amount

  7. Cu

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power Administration would likeConstitution4 Department of WeeklyCrystalnamed

  8. The optimization of the production of ??Cu

    E-Print Network [OSTI]

    Gauny, Ronnie Dean

    1971-01-01T23:59:59.000Z

    to the short half- life of Cu and Zn, at the time of chemical separation the only contaminants expected were Ga from Zn, 1. 2 0 0 2( 4 M T W Th F S Su M T W Th F S Days of the Week Fig. 1. Nuclear Reactor Time Optimization. 14 Zn from Cu and Ni... in the production of s~Cu. To be selected a reaction had to have a stable target, an obtain- able g-value, a carrier free reaction, and a low level of activity due to contaminating products. Based on the above criteria, 6 Zn(n, p) 'Cu, 'Zn(n, d)' Cu, and Ni(o, p...

  9. Taking out 1 billion tons of CO2: The magic of China's 11th Five-Year Plan?

    SciTech Connect (OSTI)

    Zhou, Nan; Lin, Jiang; Zhou, Nan; Levine, Mark; Fridley, David

    2007-07-01T23:59:59.000Z

    China's 11th Five-Year Plan (FYP) sets an ambitious target for energy-efficiency improvement: energy intensity of the country's gross domestic product (GDP) should be reduced by 20% from 2005 to 2010 (NDRC, 2006). This is the first time that a quantitative and binding target has been set for energy efficiency, and signals a major shift in China's strategic thinking about its long-term economic and energy development. The 20% energy intensity target also translates into an annual reduction of over 1.5 billion tons of CO2 by 2010, making the Chinese effort one of most significant carbon mitigation effort in the world today. While it is still too early to tell whether China will achieve this target, this paper attempts to understand the trend in energy intensity in China and to explore a variety of options toward meeting the 20% target using a detailed end-use energy model.

  10. Rolling Thunder -- Integration of the Solo 161 Stirling engine with the CPG-460 solar concentrator at Ft. Huachuca

    SciTech Connect (OSTI)

    Diver, R.B.; Moss, T.A.; Goldberg, V.; Thomas, G.; Beaudet, A.

    1998-09-01T23:59:59.000Z

    Project Rolling Thunder is a dish/Stirling demonstration project at Ft. Huachuca, a US Army fort in southeastern Arizona (Huachuca means rolling thunder in Apache). It has been supported by the Strategic Environmental Research and Development Program (SERDP), a cooperative program between the Department of Defense (DoD) and the Department of Energy (DOE). As part of a 1992 SERDP project, Cummins Power Generation, Inc. (CPG) installed a CPG 7 kW(c) dish/Stirling system at the Joint Interoperability Test Command (JITC) in Ft. Huachuca, Arizona. The primary objective of the SERDP Dish/Stirling for DoD Applications project was to demonstrate a CPG 7-kW(c) dish/Stirling system at a military facility. Unfortunately, Cummins Engine Company decided to divest its solar operations. As a direct result of Ft. Huachuca`s interest in the Cummins dish/Stirling technology, Sandia explored the possibility of installing a SOLO 161 Stirling power conversion unit (PCU) on the Ft. Huachuca CPG-460. In January 1997, a decision was made to retrofit a SOLO 161 Stirling engine on the CPG-460 at Ft. Huachuca. Project Rolling Thunder. The SOLO 161 Demonstration at Ft. Huachuca has been a challenge. Although, the SOLO 161 PCU has operated nearly flawlessly and the CPG-460 has been, for the most part, a solid and reliable component, integration of the SOLO PCU with the CPG-460 has required significant attention. In this paper, the integration issues and technical approaches of project Rolling Thunder are presented. Lessons of the project are also discussed.

  11. Top-Down Mass Spectrometry Imaging of Intact Proteins by LAESI FT-ICR MS

    E-Print Network [OSTI]

    Kiss, András; Reschke, Brent R; Powell, Matthew J; Heeren, Ron M A

    2013-01-01T23:59:59.000Z

    Laser Ablation Electrospray Ionization is a recent development in mass spectrometry imaging. It has been shown that lipids and small metabolites can be imaged in various samples such as plant material, tissue sections or bacterial colonies without anysample pre-treatment. Further, laser ablation electrospray ionization has been shown to produce multiply charged protein ions from liquids or solid surfaces. This presents a means to address one of the biggest challenges in mass spectrometry imaging; the identification of proteins directly from biological tissue surfaces. Such identification is hindered by the lack of multiply charged proteins in common MALDI ion sources and the difficulty of performing tandem MS on such large, singly charged ions. We present here top-down identification of intact proteins from tissue with a LAESI ion source combined with a hybrid ion-trap FT-ICR mass spectrometer. The performance of the system was first tested with a standard protein with ECD and IRMPD fragmentation to prove the...

  12. Fundamental Studies of Methanol Synthesis from CO2 Hydrogenation on Cu(111), Cu Clusters, and Cu/ZnO(000?)

    SciTech Connect (OSTI)

    Liu, P.; Yang, Y.; Evans, J.; Rodriguez, J.A.; White, M.G.

    2010-06-21T23:59:59.000Z

    A combination of experimental and theoretical methods were employed to investigate the synthesis of methanolvia CO{sub 2}hydrogenation (CO{sub 2} + 3H{sub 2} {yields} CH{sub 3}OH + H{sub 2}O) on Cu(111) and Cunanoparticle surfaces. High pressure reactivity studies show that Cunanoparticles supported on a ZnO(000{bar 1}) single crystal exhibit a higher catalytic activity than the Cu(111) planar surface. Complementary density functional theory (DFT) calculations of methanol synthesis were also performed for a Cu(111) surface and unsupported Cu{sub 29} nanoparticles, and the results support a higher activity for Cu nanoparticles. The DFT calculations show that methanol synthesis on Cu surfaces proceeds through a formate intermediate and the overall reaction rate is limited by both formate and dioxomethylene hydrogenation. Moreover, the superior activity of the nanoparticle is associated with its fluxionality and the presence of low-coordinated Cu sites, which stabilize the key intermediates, e.g. formate and dioxomethylene, and lower the barrier for the rate-limiting hydrogenation process. The reverse water-gas-shift (RWGS) reaction (CO{sub 2} + H{sub 2} {yields} CO + H{sub 2}O) was experimentally observed to compete with methanol synthesis and was also considered in our DFT calculations. In agreement with experiment, the rate of the RWGS reaction on Cu nanoparticles is estimated to be 2 orders of magnitude faster than methanol synthesis at T = 573 K. The experiments and calculations also indicate that CO produced by the fast RWGS reaction does not undergo subsequent hydrogenation to methanol, but instead simply accumulates as a product. Methanol production from CO hydrogenation via the RWGS pathway is hindered by the first hydrogenation of CO to formyl, which is not stable and prefers to dissociate into CO and H atoms on Cu. Our calculated results suggest that the methanol yield over Cu-based catalysts could be improved by adding dopants or promoters which are able to stabilize formyl species or facilitate the hydrogenation of formate and dioxomethylene. the RWGS pathway is hindered by the first hydrogenation of CO to formyl, which is not stable and prefers to dissociate into CO and H atoms on Cu. Our calculated results suggest that the methanol yield over Cu-based catalysts could be improved by adding dopants or promoters which are able to stabilize formyl species or facilitate the hydrogenation of formate and dioxomethylene.

  13. Ice cap meltdown to cause 22ft floods Ice cap meltdown to cause 22ft floods -Telegraph http://www.telegraph.co.uk/earth/earthnews/3303624/Ice-cap-meltdow...

    E-Print Network [OSTI]

    Stevenson, Paul

    of no return and it were to melt then global sea levels would rise by 22ft and swallow up most of the world sheet. Likewise, global warming may cause a near-permanent El Nino in the Pacific, which would also over animal souvenirs (/earth/main.jhtml?xml=/earth/2007/08/16/eatrade116.xml) Rise of sea levels

  14. Accelerating Fatigue Testing for Cu Ribbon Interconnects (Presentation)

    SciTech Connect (OSTI)

    Bosco, N.; Silverman, T.; Wohlgemuth , J.; Kurtz, S.; Inoue, M.; Sakurai, K.; Shioda, T.; Zenkoh, H.; Miyashita, M.; Tadanori, T.; Suzuki, S.

    2013-05-01T23:59:59.000Z

    This presentation describes fatigue experiments and discusses dynamic mechanical loading for Cu ribbon interconnects.

  15. beta-decay study of Cu-77

    E-Print Network [OSTI]

    N. Patronis; H. De Witte; M. Gorska; M. Huyse; K. Kruglov; D. Pauwels; K. Van de Vel; P. Van Duppen; J. Van Roosbroeck; J. -C. Thomas; S. Franchoo; J. Cederkall; V. N. Fedoseyev; H. Fynbo; U. Georg; O. Jonsson; U. Köster; T. Materna; L. Mathieu; O. Serot; L. Weissman; W. F. Mueller; V. I. Mishin; D. Fedorov

    2009-09-01T23:59:59.000Z

    A beta-decay study of Cu-77 has been performed at the ISOLDE mass separator with the aim to deduce its beta-decay properties and to obtain spectroscopic information on Zn-77. Neutron-rich copper isotopes were produced by means of proton- or neutron-induced fission reactions on U-238. After the production, Cu-77 was selectively laser ionized, mass separated and sent to different detection systems where beta-gamma and beta-n coincidence data were collected. We report on the deduced half-live, decay scheme, and possible spin assignment of 77Cu.

  16. Cu-Cu direct bonding achieved by surface method at room temperature

    SciTech Connect (OSTI)

    Utsumi, Jun [Advanced Technology Research Center, Mitsubishi Heavy Industries, Ltd., 1-8-1 Sachiura, Kanazawa-ku, Yokohama 236-8515 (Japan); Ichiyanagi, Yuko, E-mail: yuko@ynu.ac.jp [Department of Physics, Graduate School of Engineering, Yokohama National University, Tokiwadai, Hodogaya, Yokohama 240-8501 (Japan)

    2014-02-20T23:59:59.000Z

    The metal bonding is a key technology in the processes for the microelectromechanical systems (MEMS) devices and the semiconductor devices to improve functionality and higher density integration. Strong adhesion between surfaces at the atomic level is crucial; however, it is difficult to achieve close bonding in such a system. Cu films were deposited on Si substrates by vacuum deposition, and then, two Cu films were bonded directly by means of surface activated bonding (SAB) at room temperature. The two Cu films, with the surface roughness Ra about 1.3nm, were bonded by using SAB at room temperature, however, the bonding strength was very weak in this method. In order to improve the bonding strength between the Cu films, samples were annealed at low temperatures, between 323 and 473 K, in air. As the result, the Cu-Cu bonding strength was 10 times higher than that of the original samples without annealing.

  17. Viscous hydrodynamics description of $?$ meson production in Au+Au and Cu+Cu collisions

    E-Print Network [OSTI]

    A. K. Chaudhuri

    2009-01-27T23:59:59.000Z

    In the Israel-Stewart's theory of 2nd order dissipative hydrodynamics, we have simulated $\\phi$ production in Au+Au and Cu+Cu collisions at $\\sqrt{s}_{NN}$=200 GeV. Evolution of QGP fluid with viscosity over the entropy ratio $\\eta/s$=0.25, thermalised at $\\tau_i$=0.2 fm, with initial energy density $\\epsilon_i$=5.1 $GeV/fm^3$ explains the experimental data on $\\phi$ multiplicity, integrated $v_2$, mean $p_T$, $p_T$ spectra and elliptic flow in central and mid-central Au+Au collisions. $\\eta/s$=0.25 is also consistent with centrality dependence of $\\phi$ $p_T$ spectra in Cu+Cu collisions. The central energy density in Cu+Cu collisions is $\\epsilon_i$=3.48 $GeV/fm^3$.

  18. 43 "{"`"MV"|WEu~_W (2006-5) FT-ICR ,,,`J^<`NX^[,'Y...`f,Sw"z

    E-Print Network [OSTI]

    Maruyama, Shigeo

    and ethylene. Another reaction is dehydration between two molecules of ethanol. Dehydrogenation from ethylene of transition metal cluster ions (Co) with ethylene and ethanol was investigated by using the FT-ICR mass is strongly occurred and two or three molecules of ethylene can't adsorb without dehydration. This experiment

  19. GE Advising & Registration Students FT Faculty PT Faculty Admin Unit 4 Other Staff Students have access to quality GE advising

    E-Print Network [OSTI]

    de Lijser, Peter

    GE Advising & Registration Students FT Faculty PT Faculty Admin Unit 4 Other Staff Students have access to quality GE advising 9% 13% 11% 13% 10% 8% Faculty can easily advise students on GE requirements 10% 18% 9% 24% 33% 11% Staff academic advisors can easily advise students on GE requirements 8% 11

  20. Flexible Solar-Energy Harvesting System on Plastic with Thin-film LC Oscillators Operating Above ft for

    E-Print Network [OSTI]

    Flexible Solar-Energy Harvesting System on Plastic with Thin-film LC Oscillators Operating Above ft- This paper presents an energy-harvesting system consisting of amorphous-silicon (a-Si) solar cells and thin of the energy-harvesting system. The solar module consists of solar cells in series operating at an output

  1. Technology development for cobalt F-T catalysts. Quarterly technical progress report No. 5, October 1, 1993--December 31, 1993

    SciTech Connect (OSTI)

    Singleton, A.H.

    1994-05-31T23:59:59.000Z

    The goal of this project is the development of a commercially viable, cobalt-based Fischer-Tropsch (F-T) catalyst for use in a slurry bubble column reactor. Cobalt-based catalysts have long been known as being active for F-T synthesis. They typically possess greater activity than iron-based catalysts, historically the predominant catalyst being used commercially for the conversion of syngas based on coal, but possess two disadvantages that somewhat lessen its value: (1) cobalt tends to make more methane than iron does, and (2) cobalt is less versatile with low H{sub 2}/CO ratio syngas due to its lack of water-gas shift activity. Therefore, the major objectives of this work are (1) to develop a cobalt-based F-T catalyst with low (< 5 %) methane selectivity, (2) to develop a cobalt-based F-T catalyst with water-gas shift activity, and (3) to combine both these improvements into one catalyst. It will be demonstrated that these catalysts have the desired activity, selectivity, and life, and can be made reproducibly. Following this experimental work, a design and a cost estimate will be prepared for a plant to produce sufficient quantities of catalyst for scale-up studies.

  2. NEW VIEW of the young earth covered in oceans of liquid water as early as 4.4 billion years ago

    E-Print Network [OSTI]

    Carlson, Anders

    sun. Averaging 75 times the speed of sound, each impactor scorched the surface--shattering, meltingNEW VIEW of the young earth covered in oceans of liquid water as early as 4.4 billion years ago into a crust, before continents could form, be- fore the dense, steamy atmosphere could pool as liquid water

  3. Research Statement of Hamsa Balakrishnan The air transportation system is a large, complex, global system that transports over 2.1 billion

    E-Print Network [OSTI]

    Research Statement of Hamsa Balakrishnan The air transportation system is a large, complex, global system that transports over 2.1 billion passengers each year. Air traffic delays have become a huge to the Joint Economic Committee of the US Senate, domestic air traffic delays in 2007 cost airlines over $19

  4. Research Statement of Hamsa Balakrishnan The air transportation system is a complex, global system that transports over 2.1 billion

    E-Print Network [OSTI]

    Gummadi, Ramakrishna

    is important because of the high costs of delays and pollution today, as well as the projected doubling in airResearch Statement of Hamsa Balakrishnan The air transportation system is a complex, global system that transports over 2.1 billion passengers each year. Air traffic delays have become a huge problem

  5. Metso Corporation is a EUR 4.2 billion engineering and technology company with core businesses in the areas of fiber and paper making,

    E-Print Network [OSTI]

    Fisher, Kathleen

    rollout to 2,600 employees · Marked improvement in product delivery, project management and salesMetso Corporation is a EUR 4.2 billion engineering and technology company with core businesses in the areas of fiber and paper making, rock and minerals processing, and automation and control. Metso

  6. Quantifying the heart of darkness with GHALO - a multi-billion particle simulation of our galactic halo

    E-Print Network [OSTI]

    Joachim Stadel; Doug Potter; Ben Moore; Jürg Diemand; Piero Madau; Marcel Zemp; Michael Kuhlen; Vicent Quilis

    2008-08-22T23:59:59.000Z

    We perform a series of simulations of a Galactic mass dark matter halo at different resolutions, our largest uses over three billion particles and has a mass resolution of 1000 M_sun. We quantify the structural properties of the inner dark matter distribution and study how they depend on numerical resolution. We can measure the density profile to a distance of 120 pc (0.05% of R_vir) where the logarithmic slope is -0.8 and -1.4 at (0.5% of R_vir). We propose a new two parameter fitting function that has a linearly varying logarithmic density gradient which fits the GHALO and VL2 density profiles extremely well. Convergence in the density profile and the halo shape scales as N^(-1/3), but the shape converges at a radius three times larger at which point the halo becomes more spherical due to numerical resolution. The six dimensional phase-space profile is dominated by the presence of the substructures and does not follow a power law, except in the smooth under-resolved inner few kpc.

  7. Exact charged black-hole solutions in D-dimensional f(T) gravity: torsion vs curvature analysis

    E-Print Network [OSTI]

    Capozziello, Salvatore; Saridakis, Emmanuel N; Vasquez, Yerko

    2012-01-01T23:59:59.000Z

    We extract exact charged black-hole solutions with flat transverse sections in the framework of D-dimensional Maxwell-f(T) gravity, and we analyze the singularities and horizons based on both torsion and curvature invariants. Interestingly enough, we find that in some particular solution subclasses there appear more singularities in the curvature scalars than in the torsion ones. This difference disappears in the uncharged case, or in the case where f(T) gravity becomes the usual linear-in-T teleparallel gravity, that is General Relativity. Curvature and torsion invariants behave very differently when matter fields are present, and thus f(R) gravity and f(T) gravity exhibit different features and cannot be directly re-casted each other.

  8. Exact charged black-hole solutions in D-dimensional f(T) gravity: torsion vs curvature analysis

    E-Print Network [OSTI]

    Salvatore Capozziello; P. A. Gonzalez; Emmanuel N. Saridakis; Yerko Vasquez

    2012-10-03T23:59:59.000Z

    We extract exact charged black-hole solutions with flat transverse sections in the framework of D-dimensional Maxwell-f(T) gravity, and we analyze the singularities and horizons based on both torsion and curvature invariants. Interestingly enough, we find that in some particular solution subclasses there appear more singularities in the curvature scalars than in the torsion ones. This difference disappears in the uncharged case, or in the case where f(T) gravity becomes the usual linear-in-T teleparallel gravity, that is General Relativity. Curvature and torsion invariants behave very differently when matter fields are present, and thus f(R) gravity and f(T) gravity exhibit different features and cannot be directly re-casted each other.

  9. Circularly symmetric solutions in three-dimensional Teleparallel, f(T) and Maxwell-f(T) gravity

    E-Print Network [OSTI]

    Gonzalez, P A; Vasquez, Yerko

    2011-01-01T23:59:59.000Z

    We formulate teleparallel 3D gravity and we extract circularly symmetric solutions, showing that they coincide with the BTZ and Deser-de-Sitter solutions of standard 3D gravity. However, extending into f(T) 3D gravity, that is considering arbitrary functions of the torsion scalar in the action, we obtain "deformed" BTZ-like and Deser-de-Sitter-like solutions, without any requirement of the sign of the cosmological constant. Finally, extending our analysis incorporating the electromagnetic sector, we show that Maxwell-f(T) gravity accepts deformed charged BTZ-like solutions. Interestingly enough, the deformation in this case brings qualitatively novel terms, contrary to the pure gravitational solutions where the deformation is expressed only through changes in the coefficients. Such novel behaviors reveal the new features that the f(T) structure brings in 3D gravity.

  10. Epitaxial Growth and Microstructure of Cu2O Nanoparticle/thin...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The grown layer was dominated by Cu2O phase, possessing an epitaxial orientation with the substrate such that: Cu2O001STO001 and Cu2O(100)STO(100). Cu2O film...

  11. Problem 2.67: A gas undergoes a process from State 1, where p1 = 60 lbf/in2 & v1 = 6:0 ft3

    E-Print Network [OSTI]

    Problem 2.67: A gas undergoes a process from State 1, where p1 = 60 lbf/in2 & v1 = 6:0 ft3 /lbm...c volume, & internal energy is u = 0:2651 BTU-in2 lbf-ft3 pv 95:436 BTU lbm where p is in lbf/in2 , v is in ft3 /lbm, & u is in BTU/lbm. The mass of gas is 10 lbm. Neglecting kinetic- and potential-energy e

  12. Born-Infeld and Charged Black Holes with non-linear source in $f(T)$ Gravity

    E-Print Network [OSTI]

    Junior, Ednaldo L B; Houndjo, Mahouton J S

    2015-01-01T23:59:59.000Z

    We investigate $f(T)$ theory coupled with a nonlinear source of electrodynamics, for a spherically symmetric and static spacetime in $4D$. We re-obtain the Born-Infeld and Reissner-Nordstrom-AdS solutions. We generalize the no-go theorem for any content that obeys the relationship $\\mathcal{T}^{\\;\\;0}_{0}=\\mathcal{T}^{\\;\\;1}_{1}$ for the energy-momentum tensor and a given set of tetrads. Our results show new classes of solutions where the metrics are related through $b(r)=-Na(r)$. We do the introductory analysis showing that solutions are that of asymptotically flat black holes, with a singularity at the origin of the radial coordinate, covered by a single event horizon. We also reconstruct the action for this class of solutions and obtain the functional form $f(T) = f_0\\left(-T\\right)^{(N+3)/[2(N+1)]}$ and $\\mathcal{L}_{NED} = \\mathcal{L}_0\\left(-F\\right)^{(N+3)/[2(N+1)]}$. Using the Lagrangian density of Born-Infeld, we obtain a new class of charged black holes where the action reads $f(T) = -16\\beta_{BI} \\...

  13. Biomass as Feedstock for a Bioenergy and Bioproducts Industry: The Technical Feasability of a Billion-Ton Annual Supply

    SciTech Connect (OSTI)

    Perlack, R.D.

    2005-12-15T23:59:59.000Z

    The U.S. Department of Energy (DOE) and the U.S. Department of Agriculture (USDA) are both strongly committed to expanding the role of biomass as an energy source. In particular, they support biomass fuels and products as a way to reduce the need for oil and gas imports; to support the growth of agriculture, forestry, and rural economies; and to foster major new domestic industries--biorefineries--making a variety of fuels, chemicals, and other products. As part of this effort, the Biomass R&D Technical Advisory Committee, a panel established by the Congress to guide the future direction of federally funded biomass R&D, envisioned a 30 percent replacement of the current U.S. petroleum consumption with biofuels by 2030. Biomass--all plant and plant-derived materials including animal manure, not just starch, sugar, oil crops already used for food and energy--has great potential to provide renewable energy for America's future. Biomass recently surpassed hydropower as the largest domestic source of renewable energy and currently provides over 3 percent of the total energy consumption in the United States. In addition to the many benefits common to renewable energy, biomass is particularly attractive because it is the only current renewable source of liquid transportation fuel. This, of course, makes it invaluable in reducing oil imports--one of our most pressing energy needs. A key question, however, is how large a role could biomass play in responding to the nation's energy demands. Assuming that economic and financial policies and advances in conversion technologies make biomass fuels and products more economically viable, could the biorefinery industry be large enough to have a significant impact on energy supply and oil imports? Any and all contributions are certainly needed, but would the biomass potential be sufficiently large to justify the necessary capital replacements in the fuels and automobile sectors? The purpose of this report is to determine whether the land resources of the United States are capable of producing a sustainable supply of biomass sufficient to displace 30 percent or more of the country's present petroleum consumption--the goal set by the Advisory Committee in their vision for biomass technologies. Accomplishing this goal would require approximately 1 billion dry tons of biomass feedstock per year.

  14. Femtosecond dynamics of Cu,,CD3OD... Jack Barbera

    E-Print Network [OSTI]

    Lineberger, W. Carl

    Femtosecond dynamics of Cu,,CD3OD... Jack Barbera JILA, University of Colorado, Boulder, Colorado online 27 February 2007 We report the femtosecond nuclear dynamics of Cu CD3OD van der Waals clusters, investigated using photodetachment-photoionization spectroscopy. Photodetachment of an electron from Cu- CD3OD

  15. Electrolyte Composition for Cu Electrochemical Mechanical Planarization

    E-Print Network [OSTI]

    Suni, Ian Ivar

    abrasives are included within the ECMP electrolyte. In situ electrochemical impedance spectroscopy results measurements of the Cu removal rate, with and without surface abrasion. These results predict a 500 m indicate that the interfacial impedance is increased by the presence of silica, suggesting that silica

  16. Di-jet correlation in Au + Au and Cu + Cu collisions from PHENIX

    E-Print Network [OSTI]

    Jiangyong Jia

    2006-01-18T23:59:59.000Z

    PHENIX has measured the two particle azimuth correlation in Au + Au at $\\sqrt{s}$ = 200 GeV. Jet shape and yield at the away side are found to be strongly modified at intermediate and low $p_T$. The modifications vary dramatically with $p_T$ and centrality. At high $p_T$, away side jet peak reappears but the yield is suppressed. Similar jet strength is found for Au + Au and Cu + Cu collisions with similar number of participant nucleons.

  17. Bi-Se doped with Cu, p-type semiconductor

    DOE Patents [OSTI]

    Bhattacharya, Raghu Nath; Phok, Sovannary; Parilla, Philip Anthony

    2013-08-20T23:59:59.000Z

    A Bi--Se doped with Cu, p-type semiconductor, preferably used as an absorber material in a photovoltaic device. Preferably the semiconductor has at least 20 molar percent Cu. In a preferred embodiment, the semiconductor comprises at least 28 molar percent of Cu. In one embodiment, the semiconductor comprises a molar percentage of Cu and Bi whereby the molar percentage of Cu divided by the molar percentage of Bi is greater than 1.2. In a preferred embodiment, the semiconductor is manufactured as a thin film having a thickness less than 600 nm.

  18. Microstructure of electrodeposited Cu-Ni binary alloy films

    SciTech Connect (OSTI)

    Mizushima, Io; Chikazawa, Masatoshi; Watanabe, Tohru [Tokyo Metropolitan Univ. (Japan). Dept. of Industrial Chemistry

    1996-06-01T23:59:59.000Z

    The codeposition of Cu and Ni in the electrodeposition method without a complexing agent is difficult, since the standard electrode potentials of Cu and Ni differ by approximately 600 mV. In this study, the electrodeposited Cu-Ni alloy films with various compositions were obtained using glycine as the complexing agent. Consequently, composition of the deposited Cu-Ni alloy films can be controlled by bath composition and pH, and the crystallographic structure of all the deposited Cu-Ni alloy films consists of a single solid solution and is not influenced by pH.

  19. CuO cauliflowers for supercapacitor application: Novel potentiodynamic deposition

    SciTech Connect (OSTI)

    Dubal, Deepak P., E-mail: deepak.dubal@chemie.tu-chemnitz.de [Technische Universität Chemnitz, Institut für Chemie, AG Elektrochemie, D-09107 Chemnitz (Germany); Gund, Girish S.; Lokhande, Chandrakant D. [Thin Film Physics Laboratory, Department of Physics, Shivaji University, Kolhapur, 416004 (M.S) (India)] [Thin Film Physics Laboratory, Department of Physics, Shivaji University, Kolhapur, 416004 (M.S) (India); Holze, Rudolf, E-mail: rudolf.holze@chemie.tu-chemnitz.de [Technische Universität Chemnitz, Institut für Chemie, AG Elektrochemie, D-09107 Chemnitz (Germany)] [Technische Universität Chemnitz, Institut für Chemie, AG Elektrochemie, D-09107 Chemnitz (Germany)

    2013-02-15T23:59:59.000Z

    Graphical abstract: Schematic experimental setup used for the potentiodynamic mode of electrodeposition for the synthesis of CuO cauliflower onto stainless steel substrate. Highlights: ? Synthesis of CuO using potentiodynamic mode of electrodeposition. ? Uniformly spread cauliflower-like nanostructure. ? CuO cauliflowers provide high specific capacitance with good stability. ? CuO cauliflowers show high power and energy density values. -- Abstract: In present investigation, synthesis and characterization of novel cauliflower-like copper oxide (CuO) and its electrochemical properties have been performed. The utilized CuO cauliflowers were prepared by potentiodyanamic mode from an aqueous alkaline bath. X-ray diffraction pattern confirm the formation of monoclinic CuO cauliflowers. Scanning electron micrograph analysis reveals that CuO cauliflowers are uniformly spread all over the substrate surface with the surface area of 49 m{sup 2} g{sup ?1} with bimodal pore size distribution. Electrochemical analysis shows that CuO cauliflower exhibits high specific capacitance of 179 Fg{sup ?1} in 1 M Na{sub 2}SO{sub 4} electrolyte with 81% capacity retention after 2000 cycles. The Ragone plot discovers better power and energy densities of cauliflowers-like CuO sample. Present investigation illustrates that the potentiodynamic approach for the direct growth of cauliflower-like CuO is simple and cost-effective and can be applied for synthesis of other metal oxides, polymers etc.

  20. Method of producing .sup.67 Cu

    DOE Patents [OSTI]

    O'Brien, Jr., Harold A. (Los Alamos, NM); Barnes, John W. (Los Alamos, NM); Taylor, Wayne A. (Los Alamos, NM); Thomas, Kenneth E. (Los Alamos, NM); Bentley, Glenn E. (Los Alamos, NM)

    1984-01-01T23:59:59.000Z

    A method of producing carrier-free .sup.67 Cu by proton spallation combined with subsequent chemical separation and purification is disclosed. A target consisting essentially of pressed zinc oxide is irradiated with a high energy, high current proton beam to produce a variety of spallogenic nuclides, including .sup.67 Cu and other copper isotopes. The irradiated target is dissolved in a concentrated acid solution to which a palladium salt is added. In accordance with the preferred method, the spallogenic copper is twice coprecipitated with palladium, once with metallic zinc as the precipitating agent and once with hydrogen sulfide as the precipitating agent. The palladium/copper precipitate is then dissolved in an acid solution and the copper is separated from the palladium by liquid chromatography on an anion exchange resin.

  1. Synthesis of Cu Nanowires with Polycarbonate Template

    SciTech Connect (OSTI)

    Naderi, N.; Hashim, M. R. [School of Physics, Universiti Sains Malaysia, 11800 USM, Penang (Malaysia)

    2011-03-30T23:59:59.000Z

    Copper nanowires were fabricated into arrays of pores on ion-track etched polycarbonate membrane, using electrodeposition technique. We coated Au thin film layer on one side of membrane in order to have electrical contact. X-ray diffraction analysis shows that the Au layer has a strong (111) texture. The pores which have cylindrical shape with 6 micron length and 30 nm diameter were filled by copper atoms, fabricating Cu nanowires. Energy Disperse Spectrometry (EDS) indicated the picks of copper which filled the pores of substrate. The morphology and structure of Cu nanowires were characterized by SEM, TEM and XRD, respectively. The results show that although all the nanowires do not have uniform diameter, but all of them are continuous along the length.

  2. A new Cu–cysteamine complex: structure and optical properties

    SciTech Connect (OSTI)

    Ma, Lun; Chen, Wei; Schatte, Gabriele; Wang, Wei; Joly, Alan G.; Huang, Yining; Sammynaiken, Ramaswami; Hossu, Marius

    2014-06-07T23:59:59.000Z

    Here we report the structure and optical properties of a new Cu–cysteamine complex (Cu–Cy) with a formula of Cu3Cl(SR)2 (R ¼ CH2CH2NH2). This Cu–Cy has a different structure from a previous Cu–Cy complex, in which both thio and amine groups from cysteamine bond with copper ions. Single-crystal X-ray diffraction and solid-state nuclear magnetic resonance results show that the oxidation state of copper in Cu3Cl(SR)2 is +1 rather than +2. Further, Cu3Cl(SR)2 has been observed to show intense photoluminescence and X-ray excited luminescence. More interesting is that Cu3Cl(SR)2 particles can produce singlet oxygen under irradiation by light or X-ray. This indicates that Cu3Cl(SR)2 is a new photosensitizer that can be used for deep cancer treatment as X-ray can penetrate soft tissues. All these findings mean that Cu3Cl(SR)2 is a new material with potential applications for lighting, radiation detection and cancer treatment.

  3. Circularly symmetric solutions in three-dimensional Teleparallel, f(T) and Maxwell-f(T) gravity

    E-Print Network [OSTI]

    P. A. Gonzalez; Emmanuel N. Saridakis; Yerko Vasquez

    2012-07-10T23:59:59.000Z

    We present teleparallel 3D gravity and we extract circularly symmetric solutions, showing that they coincide with the BTZ and Deser-de-Sitter solutions of standard 3D gravity. However, extending into f(T) 3D gravity, that is considering arbitrary functions of the torsion scalar in the action, we obtain BTZ-like and Deser-de-Sitter-like solutions, corresponding to an effective cosmological constant, without any requirement of the sign of the initial cosmological constant. Finally, extending our analysis incorporating the electromagnetic sector, we show that Maxwell-f(T) gravity accepts deformed charged BTZ-like solutions. Interestingly enough, the deformation in this case brings qualitatively novel terms, contrary to the pure gravitational solutions where the deformation is expressed only through changes in the coefficients. We investigate the singularities and the horizons of the new solutions, and amongst others we show that the cosmic censorship can be violated. Such novel behaviors reveal the new features that the f(T) structure brings in 3D gravity.

  4. Charged Particle Multiplicities in Ultra-relativistic Au+Au and Cu+Cu Collisions

    E-Print Network [OSTI]

    B. B. Back

    2006-04-26T23:59:59.000Z

    The PHOBOS collaboration has carried out a systematic study of charged particle multiplicities in Cu+Cu and Au+Au collisions at the Relativistic Heavy-Ion Collider (RHIC) at Brookhaven National Laboratory. A unique feature of the PHOBOS detector is its ability to measure charged particles over a very wide angular range from 0.5 to 179.5 deg. corresponding to |eta|<5.4. The general features of the charged particle multiplicity distributions as a function of pseudo-rapidity, collision energy and centrality, as well as system size, are discussed.

  5. Relationship between morphologies and orientations of Cu{sub 6}Sn{sub 5} grains in Sn3.0Ag0.5Cu solder joints on different Cu pads

    SciTech Connect (OSTI)

    Tian, Yanhong, E-mail: tianyh@hit.edu.cn; Zhang, Rui; Hang, Chunjin; Niu, Lina; Wang, Chunqing

    2014-02-15T23:59:59.000Z

    The morphologies and orientations of Cu{sub 6}Sn{sub 5} intermetallic compounds in the Sn3.0Ag0.5Cu solder joints both on polycrystalline and single crystal Cu pads under different peak reflow temperatures and times above liquids were investigated. The relationship between Cu{sub 6}Sn{sub 5} grain orientations and morphologies was clarified. At the interface of Sn3.0Ag0.5Cu/polycrystalline Cu pad, scalloped Cu{sub 6}Sn{sub 5} intermetallic compounds formed at 250 °C and roof shape Cu{sub 6}Sn{sub 5} formed at 300 °C. Both scalloped Cu{sub 6}Sn{sub 5} and roof shape Cu{sub 6}Sn{sub 5} had a preferred orientation of (0001) plane being parallel to polycrystalline Cu pad surface. Besides, the percentage of large angle grain boundaries increased as the peak reflow temperature rose. At the interface of Sn3.0Ag0.5Cu/(111) single crystal Cu pad, the Cu{sub 6}Sn{sub 5} intermetallic compounds were mainly scallop-type at 250 °C and were prism type at 300 °C. The prismatic Cu{sub 6}Sn{sub 5} grains grew along the three preferred directions with the inter-angles of 60° on (111) single crystal Cu pad while along two perpendicular directions on (100) single crystal Cu pad. The orientation relationship between Cu{sub 6}Sn{sub 5} grains and the single crystal Cu pads was investigated by electron backscatter diffraction technology. In addition, two types of hollowed Cu{sub 6}Sn{sub 5} intermetallic compounds were found inside the joints of polycrystalline Cu pads. The long hexagonal Cu{sub 6}Sn{sub 5} strips were observed in the joints reflowing at 250 °C while the hollowed Cu{sub 6}Sn{sub 5} strips with the ‘?’ shape cross-sections appeared at 300 °C, which was attributed to the different grain growth rates of different Cu{sub 6}Sn{sub 5} crystal faces. - Highlights: • The orientation of interfacial Cu{sub 6}Sn{sub 5} grains was obtained by EBSD technology. • Two types of hollowed Cu{sub 6}Sn{sub 5} strips were found at different temperatures. • The formation mechanism of hollowed Cu{sub 6}Sn{sub 5} was elaborated based on Bravais law. • The relationship between Cu{sub 6}Sn{sub 5} grain orientations and morphologies was clarified.

  6. Intermetallic compound formation at Cu-Al wire bond interface

    SciTech Connect (OSTI)

    Bae, In-Tae; Young Jung, Dae [Small Scale Systems Integration and Packaging Center, State University of New York at Binghamton, Binghamton, New York 13902 (United States); Chen, William T.; Du Yong [Advanced Semiconductor Engineering Inc., 1255 E Arques Ave, Sunnyvale, California 94085 (United States)

    2012-12-15T23:59:59.000Z

    Intermetallic compound (IMC) formation and evolution at Cu-Al wire bond interface were studied using focused ion beam /scanning electron microscopy, transmission electron microscopy (TEM)/energy dispersive x-ray spectroscopy (EDS), nano beam electron diffraction (NBED) and structure factor (SF) calculation. It was found that discrete IMC patches were formed at the Cu/Al interface in as-packaged state and they grew toward Al pad after high temperature storage (HTS) environment at 150 Degree-Sign C. TEM/EDS and NBED results combined with SF calculation revealed the evidence of metastable {theta} Prime -CuAl{sub 2} IMC phase (tetragonal, space group: I4m2, a = 0.404 nm, c= 0.580 nm) formed at Cu/Al interfaces in both of the as-packaged and the post-HTS samples. Two feasible mechanisms for the formation of the metastable {theta} Prime -CuAl{sub 2} phase are discussed based on (1) non-equilibrium cooling of wire bond that is attributed to highly short bonding process time and (2) the epitaxial relationships between Cu and {theta} Prime -CuAl{sub 2}, which can minimize lattice mismatch for {theta} Prime -CuAl{sub 2} to grow on Cu.

  7. Template-directed FeCo nanoshells on AuCu. | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    on AuCu. Abstract: A synthetic route is reported to achieve a precise control of FeCo shell growth on AuCu cores, leading to AuCuFeCo core-shell nanoparticles, which could...

  8. CU-Boulder Faculty Awards Campus, School/College, and System Level

    E-Print Network [OSTI]

    Corporation Faculty Community Service Award CU System, Office of Academic Affairs https://www.cu.edu/content/chase-corporation/teaching.html February All Faculty Eaton Faculty Awards for Outstanding Achievement CU-Boulder, Center for Humanities

  9. Unexpected crystal and magnetic structures in MnCu4In and MnCu4Sn

    SciTech Connect (OSTI)

    Provino, A.; Paudyal, D.; Fornasini, ML; Dhiman, I.; Dhar, SK.; Das, A.; Mudryk, Y.; Manfrinetti, P.; Pecharsky, VK

    2013-01-29T23:59:59.000Z

    We discovered a new compound MnCu4In with its own hexagonal structure type (hP12-P63mc, ternary ordered derivative of the hexagonal MgZn2-type) that becomes ferromagnetic at TC = 540 K. This transition temperature is higher than that found in the MnCu2In and MnCu2Sn alloys. In contrast, the homologous compound MnCu4Sn, which crystallizes in the cubic MgCu4Sn-type, orders antiferromagnetically with TN = 110 K. The neutron diffraction studies show ferromagnetic spin orientation in the {1 0 1} plane in MnCu4In with a magnetic moment of 4.5 ?B/Mn at 22 K, and a corresponding value of 4.7 ?B/Mn in the antiferromagnetic MnCu4Sn with propagation vector View the MathML source. The first-principles electronic structure calculations show that the unexpected difference in both magnetic and crystal structures of MnCu4In and MnCu4Sn is due to the difference in the Mn-3d bands and exchange interactions relating to different crystal anisotropy, coordination numbers, and interatomic distances.

  10. Using DUSTRAN to Simulate Fog-Oil Dispersion and Its Impacts on Local Insect Populations at Ft. Hood: Final Report

    SciTech Connect (OSTI)

    Rishel, Jeremy P.; Chapman, Elaine G.; Rutz, Frederick C.; Allwine, K Jerry

    2006-12-29T23:59:59.000Z

    Smokes and obscurants (S&O) are important screening agents used during military training exercises on many military installations. Although the use of S&O is subject to environmental laws, the fate and effects of S&O on natural habitats are not well documented. One particular concern is the impact S&O may have on local insect populations, which can be important components of terrestrial food chains of endangered species. Fog-oil (FO) is an S&O that is of particular concern. An important part of assessing potential ecosystem impacts is the ability to predict downwind FO concentrations. This report documents the use of the comprehensive atmospheric dispersion modeling system DUST TRANsport (DUSTRAN) to simulate the downwind transport and diffusion of a hypothetical FO release on the U.S. Army installation at Ft. Hood, TX.

  11. New Resolved Resonance Region Evaluation for 63Cu and 65Cu for Nuclear Criticality Safety Program

    SciTech Connect (OSTI)

    Sobes, Vladimir [ORNL] [ORNL; Leal, Luiz C [ORNL] [ORNL; Guber, Klaus H [ORNL] [ORNL; Forget, Benoit [Massachusetts Institute of Technology (MIT)] [Massachusetts Institute of Technology (MIT); Kopecky, S. [EC-JRC-IRMM, Geel, Belgium] [EC-JRC-IRMM, Geel, Belgium; Schillebeeckx, P. [EC-JRC-IRMM, Geel, Belgium] [EC-JRC-IRMM, Geel, Belgium; Siegler, P. [EC-JRC-IRMM, Geel, Belgium] [EC-JRC-IRMM, Geel, Belgium

    2014-01-01T23:59:59.000Z

    A new resolved resonance region evaluation of 63Cu and 65Cu was done in the energy region from 10-5 eV to 99.5 keV. The R-Matrix SAMMY method using the Reich-Moore approximation was used to create a new set of consistent resonance parameters. The new evaluation was based on three experimental transmission data sets; two measured at ORELA and one from MITR, and two radiative capture experimental data sets from GELINA. A total of 141 new resonances were identied for 63Cu and 117 for 65Cu. The corresponding set of external resonances for each isotope was based on the identied resonances above 99.5 keV from the ORELA transmission data. The negative external levels (bound levels) were determined to match the dierential thermal cross section measured at the MITR. Double dierential elastic scattering cross sections were calculated from the new set of resonance parameters. Benchmarking calculations were carried out on a set of ICSBEP benchmarks. This work is in support of the DOE Nuclear Criticality Safety Program.

  12. Science DMZ Implemented at CU Boulder

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementingnpitcheResearch BriefsTenney, Office of ScienceActivities in202-000CU

  13. Mitigation of the Impact of Pt Contamination on Cu-Zeolite SCR...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the Impact of Pt Contamination on Cu-Zeolite SCR Catalyst Performance Mitigation of the Impact of Pt Contamination on Cu-Zeolite SCR Catalyst Performance Investigates operating...

  14. In situ visualization of metallurgical reactions in nanoscale Cu/Sn diffusion couples

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Yin, Qiyue; Stach, Eric A.; Gao, Fan; Zhou, Guangwen; Gu, Zhiyong

    2015-01-01T23:59:59.000Z

    The Cu–Sn metallurgical soldering reaction in two-segmented Cu–Sn nanowires is visualized by in-situ transmission electron microscopy. By varying the relative lengths of Cu and Sn segments, we show that the metallurgical reaction starts at ~ 200 ° with the formation of a Cu–Sn solid solution for the Sn/Cu length ratio smaller than 1:5 while the formation of Cu–Sn intermetallic compounds (IMCs) for larger Sn/Cu length ratios. Upon heating the nanowires up to ~ 500 °C, two phase transformation pathways occur, ?-Cu?Sn? ? ?-Cu?Sn ? ?-Cu??Sn?? for nanowires with a long Cu segment and ?-Cu?Sn? ? ?-Cu?Sn ? ?-Cu?Sn with amore »short Cu segment. The dynamic in situ TEM visualization of the evolution of Kirkendall voids demonstrates that Cu diffuses faster both in Sn and IMCs than that of Sn in Cu? and IMCs, which is the underlying cause of the dependence of the IMC formation and associated phase evolution on the relative lengths of the Cu and Sn segments.« less

  15. MICROSTRUCTURE AND MECHANICAL PROPERTIES OF ELECTROPLATED Cu THIN FILMS

    E-Print Network [OSTI]

    Volinsky, Alex A.

    MICROSTRUCTURE AND MECHANICAL PROPERTIES OF ELECTROPLATED Cu THIN FILMS A.A. Volinsky* , J. Vella size, thin film microstructure and mechanical properties have become critical parameters-K dielectric materials and novel interconnects (Cu). For most reliability tests, knowledge of the thin film

  16. Enhanced Radiation Tolerance in Sputtered Cu/V Multilayers

    E-Print Network [OSTI]

    Fu, Engang

    2010-10-12T23:59:59.000Z

    and mechanical properties of as-deposited Cu/V multilayer films are systemically investigated, providing the basis for studying radiation damage mechanisms. Sputter-deposited Cu/V multilayers are subjected to helium (He) ion irradiation at room temperature with a...

  17. Introduction THE YERINGTON DISTRICT, Nevada, contains porphyry Cu(Mo),

    E-Print Network [OSTI]

    Barton, Mark D.

    55 Introduction THE YERINGTON DISTRICT, Nevada, contains porphyry Cu(Mo), Cu skarn, Fe oxide with the Jurassic Yerington batholith, which serves as either host rock or as source for heat and ma- terials of the Yerington Porphyry Copper District: Magmatic to Nonmagmatic Sources of Hydrothermal Fluids, Their Flow Paths

  18. Detailed chemical kinetic models for large n-alkanes and iso-alkanes found in conventional and F-T diesel fuels

    SciTech Connect (OSTI)

    Westbrook, C K; Pitz, W J; Curran, H J; Mehl, M

    2008-12-15T23:59:59.000Z

    Detailed chemical kinetic models are needed to simulate the combustion of current and future transportation fuels. These models should represent the various chemical classes in these fuels. Conventional diesel fuels are composed of n-alkanes, iso-alkanes, cycloalkanes and aromatics (Farrell et al. 2007). For future fuels, there is a renewed interest in Fischer-Tropsch (F-T) processes which can be used to synthesize diesel and other transportation fuels from biomass, coal and natural gas. F-T diesel fuels are expected to be similar to F-T jet fuels which are commonly comprised of iso-alkanes with some n-alkanes (Smith and Bruno, 2008). Thus, n-alkanes and iso-alkanes are common chemical classes in these conventional and future fuels. This paper reports on the development of chemical kinetic models of large n-alkanes and iso-alkanes to represent these chemical classes in conventional and future fuels. Two large iso-alkanes are 2,2,4,4,6,8,8-heptamethylnonane, which is a primary reference fuel for diesel, and isooctane, a primary reference fuel for gasoline. Other iso-alkanes are branched alkanes with a single methyl side chain, typical of most F-T fuels. The chemical kinetic models are then used to predict the effect of these fuel components on ignition characteristics under conditions found in internal combustion engines.

  19. PUTTING KNOWLEDGE TO WORK The University of Georgia and Ft. Valley State College, the U.S. Department of Agriculture and counties of the state cooperating.

    E-Print Network [OSTI]

    Navara, Kristen

    , resulting in increased early mortality as well as decreased weights at the end of the grow out. Keeping in decreased weight gains, increased feed conversions, and possibly increased mortality. One environmental at a velocity of 400 - 500 ft/min over large birds can produce a wind chill effect of ten to twelve degrees

  20. A Novel 9.4 Tesla FT-ICR Mass Spectrometer with Improved Sensitivity, Mass Resolution, and Mass Range, for Petroleum Heavy Crude Oil Analysis

    E-Print Network [OSTI]

    Range, for Petroleum Heavy Crude Oil Analysis Nathan K. Kaiser, John P. Quinn, Greg T. Blakney NHMFL 9.4 T FT- species in petroleum crude oil and its products, extending to "heavy" crudes for unequivocal identification of sulfur-containing components in petroloeum heavy crude oils. Facilities: NHMFL 9

  1. Analysis of MALDI FT-ICR Mass Spectrometry Data: a Time Series Donald A. Barkauskasa, Scott R. Kronewitterb, Carlito B. Lebrillab, and David M. Rockec

    E-Print Network [OSTI]

    Rocke, David M.

    Analysis of MALDI FT-ICR Mass Spectrometry Data: a Time Series Approach Donald A. Barkauskasa/ionization Fourier transform ion cyclotron resonance mass spectrometry is a technique for high mass gamma distribution with varying scale parameter but constant shape parameter and exponent. This enables

  2. LBNL/ Fall Protection Requirements for Boom Lift 2010 Requirements for boom lift operations is to tether an adjustable 6' lanyard to 3ft

    E-Print Network [OSTI]

    Eisen, Michael

    LBNL/ Fall Protection Requirements for Boom Lift 2010 Requirements for boom lift operations. LBNL best practices requirements for boom lift Operations is to tether an adjustable 6' lanyard to 3ft protection system in required when anchor points are present in lift. It is LBNL best practices requirements

  3. 542 IEEE ELECTRON DEVICE LETTERS, VOL. 22, NO. 11, NOVEMBER 2001 A 210-GHz fT SiGe HBT With a

    E-Print Network [OSTI]

    Rieh, Jae-Sung

    542 IEEE ELECTRON DEVICE LETTERS, VOL. 22, NO. 11, NOVEMBER 2001 A 210-GHz fT SiGe HBT With a Non. Subbanna Abstract--A record 210­GHz SiGe heterojunction bipolar transistor at a collector current density by telecommunication systems. The viable materials of choice for the implementa- tion of these systems include Si(Ge

  4. Longueur de diffusion des porteurs minoritaires et structure de jonction des diodes Cu/Cu2O (*)

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    short circuit current and with the shift from cell to cell of the peak in the photovoltaic spectral cells are not sui- table for an efficient photovoltaic solar energy conversion. Revue Phys. Appl. 15, the photovoltaic spectrum and the electron beam induced current (EBIC) methods. In the two last cases, Cu/Cu2O

  5. Application of cluster-plus-glue-atom model to barrierless Cu–Ni–Ti and Cu–Ni–Ta films

    SciTech Connect (OSTI)

    Li, Xiaona, E-mail: lixiaona@dlut.edu.cn; Ding, Jianxin; Wang, Miao; Dong, Chuang [Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Dalian University of Technology), Ministry of Education, Dalian 116024 (China); Chu, Jinn P. [Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan (China)

    2014-11-01T23:59:59.000Z

    To improve the thermal stability of copper and avoid its diffusion into surrounding dielectrics or interfacial reactions with them, the authors applied the cluster-plus-glue-atom model to investigate barrierless Cu–Ni–M (M?=?Ti or Ta) seed layers. The dissolution of the third element (Ti or Ta) in the Cu lattice with the aid of Ni significantly improved the thermal stability of the Cu seed layer. The appropriate M/Ni (M?=?Ti or Ta) ratio was selected to obtain a low resistivity: the resistivity was as low as 2.5??? cm for the (Ti{sub 1.5/13.5}Ni{sub 12/13.5}){sub 0.3}Cu{sub 99.7} film and 2.8??? cm for the (Ta{sub 1.1/13.1}Ni{sub 12/13.1}){sub 0.4}Cu{sub 99.6} film after annealing at 500?°C for 1?h. After annealing at 500?°C for 40?h, the two films remained stable without forming a Cu{sub 3}Si compound. The authors confirmed that the range of applications of the cluster-plus-glue-atom model could be extended. Therefore, a third element M with negative enthalpies of mixing with both Cu and Ni could be selected, under the premise that the mixing enthalpy of M–Ni is more negative than that of M–Cu.

  6. Photoelectrochemistry, Electronic Structure, and Bandgap Sizes of Semiconducting Cu(I)-Niobates and Cu(I)-Tantalates

    SciTech Connect (OSTI)

    Maggard, Paul A.

    2013-11-14T23:59:59.000Z

    Semiconducting metal-oxides have remained of intense research interest owing to their potential for achieving efficient solar-driven photocatalytic reactions in aqueous solutions that occur as a result of their bandgap excitation. The photocatalytic reduction of water or carbon dioxide to generate hydrogen or hydrocarbon fuels, respectively, can be driven on p-type (photocathodic) electrodes with suitable band energies. However, metal-oxide semiconductors are typically difficult to dope as p-type with a high mobility of carriers. The supported research led to the discovery of new p-type Cu(I)-niobate and Cu(I)-tantalate film electrodes that can be prepared on FTO glass. New high-purity flux syntheses and the full structural determination of several Cu(I)-containing niobates and tantalates have been completed, as well as new investigations of their optical and photoelectrochemical properties and electronic structures via density-functional theory calculations. For example, CuNbO3, Cu5Ta11O30 and CuNb3O8 were prepared in high purity and their structures were characterized by both single-crystal and powder X-ray diffraction techniques. These two classes of Cu(I)-containing compounds exhibit optical bandgap sizes ranging from ~1.3 eV to ~2.6 eV. Photoelectrochemical measurements of these compounds show strong photon-driven cathodic currents that confirm the p-type semiconductor behavior of CuNbO3, CuNb3O8, and Cu5Ta11O30. Incident-photon-to-current efficiencies are measured that approach greater than ~1%. Electronic-structure calculations based on density functional theory reveal the visible-light absorption stems from a nearly-direct bandgap transition involving a copper-to-niobium or tantalum (d10 to d0) charge-transfer excitations.

  7. Pulse Electrodeposition of Cu-ZnO and Mn-Cu-ZnO Nanowires

    SciTech Connect (OSTI)

    Gupta, Mayank; Pinisetty, D.; Flake, John C.; Spivey, James J.

    2010-01-01T23:59:59.000Z

    Cu–ZnO and Mn–Cu–ZnO nanowires are attractive catalysts for alcohol synthesis from CO hydrogenation reactions. Nanowire alloys are pulse electrodeposited into track etched polycarbonate membranes using aqueous electrolytes including Mn(NO{sub 3} ){sub 2} , Cu(NO{sub 3} ){sub 2} , Zn(NO{sub 3} ){sub 2} , and NH{sub 4} NO{sub 3} . Pulse waveforms with a cathodic current density of 50.7mAcm{sup ?2} for 50 ms (on-time), with varying off-times (400, 500, and 600 ms), are used to fabricate nanowire arrays (400 nm diameter, 25?m long, and pore density of 1.5×10{sup 8} pores cm{sup ?2} ). Pulse waveforms allow significantly higher copper concentrations and better control of zinc and manganese concentrations within nanowires. X-ray diffraction results show preferential growth in the (111) direction and crystallite size increases with an increase in off-time. Waveforms with longer off-times (500 and 600 ms) resulted in nanowires with relatively higher copper concentrations due to improved copper transport in nanopores. The nanowire surface has no manganese; however, the core shows manganese, which increases with the decrease in off-time. The effect of deposition conditions and electrolyte composition on nanowire properties are explained and discussed.

  8. Nanocrystal Photovoltaics: The Case of Cu2S-CdS

    E-Print Network [OSTI]

    Rivest, Jessica Louis Baker

    2011-01-01T23:59:59.000Z

    systems, sensors, light-emitting diodes, photovoltaics andsystem. ) Research on Cu 2 S nanocrystal photovoltaics may

  9. Coupled skyrmion sublattices in Cu2OSeO3

    SciTech Connect (OSTI)

    Langner, M.C.; Roy,, S.; Mishra, S. K.; Lee, J. C. T.; Shi,, X. W.; Hossain, M. A.; Chuang, Y.-D.; Seki, S.; Tokura, Y.; Kevan, S. D.; Schoenlein, R. W.

    2014-04-18T23:59:59.000Z

    We report the observation of a skyrmion lattice in the chiral multiferroic insulator Cu2OSeO3 using Cu L3-edge resonant soft x-ray diffraction. We observe the unexpected existence of two distinct skyrmion sub-lattices that arise from inequivalent Cu sites with chemically identical coordination numbers but different magnetically active orbitals . The skyrmion sublattices are rotated with respect to each other implying a long wavelength modulation of the lattice. The modulation vector is controlled with an applied magnetic field, associating this Moir'e-like phase with a continuous phase transition. Our findings will open a new class of science involving manipulation of quantum topological states.

  10. ( )Ministers delay decision on site for 10-billion-dollar nuclear fusion reactor 20/12/2003 The European Union, the United States and four other countries failed in talks agree on a

    E-Print Network [OSTI]

    of transporting nuclear material and storing dangerous long-term radioactive waste. Nuclear fusion takes( )Ministers delay decision on site for 10-billion-dollar nuclear fusion reactor 20-dollar international nuclear fusion reactor. Delegates from the European Union, the United States, China, Japan, South

  11. Crystallization of Zr2PdxCu(1-x) and Zr2NixCu(1-x) Metallic Glass

    SciTech Connect (OSTI)

    Min Xu

    2008-08-18T23:59:59.000Z

    One interesting aspect of rretallic glasses is the numerous instances of the deviation of the phase selection from the amorphous state to thermodynamically stable phases during the crystallization process. Their devitrification pathways allow us to study the relationship between the original amorphous structure and their crystalline counter parts. Among the various factors of phase selections, size and electronic effects have been most extensively studied. Elucidating the phase selection process of a glassy alloy will be helpful to fill in the puzzle of the changes from disordered to ordered structures. In this thesis, Two model Zr{sub 2}Pd{sub x}Cu{sub (1-x)} and Zr{sub 2}Ni{sub x}Cu{sub (1-x)} (x = 0, 0.25, 0.5, 0.75 and 1) glassy systems were investigated since: (1) All of the samples can be made into a homogenous metallic glass; (2) The atomic radii differ from Pd to Cu is by 11%, while Ni has nearly the identical atomic size compare to Cu. Moreover, Pd and Ni differ by only one valence electron from Cu. Thus, these systems are ideal to test the idea of the effects of electronic structure and size factors; (3) The small number of components in these pseudo binary systems readily lend themselves to theoretical modeling. Using high temperature X-ray diffraction {HTXRD) and thermal analysis, topological, size, electronic, bond and chemical distribution factors on crystallization selections in Zr{sub 2}Pd{sub x}Cu{sub (1-x)} and Zr{sub 2}Ni{sub x}Cu{sub (1-x)} metallic glass have been explored. All Zr{sub 2}Pd{sub x}Cu{sub (1-x)} compositions share the same Cu11b phase with different pathways of meta-stable, icosahedral quasicrystalline phase (i-phase), and C16 phase formations. The quasicrystal phase formation is topologically related to the increasing icosahedral short range order (SRO) with Pd content in Zr{sub 2}Pd{sub x}Cu{sub (1·x)} system. Meta-stable C16 phase is competitive with C11b phase at x = 0.5, which is dominated by electronic structure rather than size effects. Cu-rich and Ni-rich compositions in Zr{sub 2}Ni{sub x}Cu{sub (1-x)} trend to divitrify to C11b or C16 phases respectively. In the proposed pseudo binary phase diagram, the domain of C16, C11b and co-existence phases are mainly related with the topology in the amorphous structure and formation enthalpies of crystalline phases.

  12. Induced magnetism in Cu nanoparticles embedded in Co P. Swaminathan

    E-Print Network [OSTI]

    Weaver, John H.

    the effects of changing the nature of confinement to three dimensions by embedding Cu nanoparticles in a Co.1063/1.2806236 Nonmagnetic spacer layers grown between layers of magnetic materials exhibit an induced magnetic moment.1

  13. Reaction kinetics of a-CuInSe2 formation from an In2Se3/CuSe bilayer precursor film

    E-Print Network [OSTI]

    Anderson, Timothy J.

    with Ga or S are proven absorber materials for high efficiency thin film solar cells. Interestingly CIGS system using the stacked elemental film precursors (e.g. glass/Cu/In/Se, glass/Cu/Se, glass

  14. High resolution FT-ICR mass spectral analysis of bio-oil and residual water soluble organics produced by hydrothermal liquefaction of the marine microalga Nannochloropsis salina

    SciTech Connect (OSTI)

    Sudasinghe, Nilusha; Dungan, Barry; Lammers, Peter; Albrecht, Karl O.; Elliott, Douglas C.; Hallen, Richard T.; Schaub, Tanner

    2014-03-01T23:59:59.000Z

    We report a detailed compositional characterization of a bio-crude oil and aqueous by-product from hydrothermal liquefaction of Nannochloropsis salina by direct infusion Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FT-ICR MS) in both positive- and negative-ionization modes. The FT-ICR MS instrumentation approach facilitates direct assignment of elemental composition to >7000 resolved mass spectral peaks and three-dimensional mass spectral images for individual heteroatom classes highlight compositional diversity of the two samples and provide a baseline description of these materials. Aromatic nitrogen compounds and free fatty acids are predominant species observed in both the bio-oil and aqueous fraction. Residual organic compounds present in the aqueous fraction show distributions that are slightly lower in both molecular ring and/or double bond value and carbon number relative to those found in the bio-oil, albeit with a high degree of commonality between the two compositions.

  15. Modified Ni-Cu catalysts for ethanol steam reforming

    SciTech Connect (OSTI)

    Dan, M.; Mihet, M.; Almasan, V.; Borodi, G. [National Institute for Research and Development of Isotopic and Molecular Technologies, 65-103 Donath Street, 400293, Cluj-Napoca (Romania)] [National Institute for Research and Development of Isotopic and Molecular Technologies, 65-103 Donath Street, 400293, Cluj-Napoca (Romania); Katona, G.; Muresan, L. [Univ. Babes Bolyai, Fac. Chem. and Chem. Eng.,11 Arany Janos, 400028, Cluj-Napoca (Romania)] [Univ. Babes Bolyai, Fac. Chem. and Chem. Eng.,11 Arany Janos, 400028, Cluj-Napoca (Romania); Lazar, M. D., E-mail: diana.lazar@itim-cj.ro [65-103 Donath Street (Romania)

    2013-11-13T23:59:59.000Z

    Three Ni-Cu catalysts, having different Cu content, supported on ?-alumina were synthesized by wet co-impregnation method, characterized and tested in the ethanol steam reforming (ESR) reaction. The catalysts were characterized for determination of: total surface area and porosity (N{sub 2} adsorption - desorption using BET and Dollimer Heal methods), Ni surface area (hydrogen chemisorption), crystallinity and Ni crystallites size (X-Ray Diffraction), type of catalytic active centers (Hydrogen Temperature Programmed Reduction). Total surface area and Ni crystallites size are not significantly influenced by the addition of Cu, while Ni surface area is drastically diminished by increasing of Cu concentration. Steam reforming experiments were performed at atmospheric pressure, temperature range 150-350°C, and ethanol - water molar ration of 1 at 30, using Ar as carrier gas. Ethanol conversion and hydrogen production increase by the addition of Cu. At 350°C there is a direct connection between hydrogen production and Cu concentration. Catalysts deactivation in 24h time on stream was studied by Transmission Electron Microscopy (TEM) and temperature-programmed reduction (TPR) on used catalysts. Coke deposition was observed at all studied temperatures; at 150°C amorphous carbon was evidenced, while at 350°C crystalline, filamentous carbon is formed.

  16. Lattice Thermal conductivity of the Cu3SbSe4-Cu3SbS4 Solid Solution

    SciTech Connect (OSTI)

    Skoug, Eric [Michigan State University, East Lansing; Cain, Jeffrey D. [Michigan State University, East Lansing; Morelli, Donald [Michigan State University, East Lansing; Kirkham, Melanie J [ORNL; Majsztrik, Paul W [ORNL; Lara-Curzio, Edgar [ORNL

    2011-01-01T23:59:59.000Z

    The compositional dependence of the crystal structure and lattice thermal conductivity in the Cu3SbSe4-Cu3SbS4 system has been studied. The lattice parameters of the Cu3SbSe4-xSx compounds decrease linearly with x, and the tetragonal structure (space group no. 121) of the end compounds is maintained at all compositions. The thermal conductivity is much lower than that predicted by a simple rule of mixtures, which is typical for a solid solution. The Debye model produces a very reasonable fit to the experimental lattice thermal conductivity data when phonon scattering due to atomic mass and size differences between Se and S is taken into account. Compounds in this series are likely to improve upon the thermoelectric performance of Cu3SbSe4, which has shown ZT=0.72 when optimized.

  17. Strangeness Enhancement in Cu+Cu and Au+Au Collisions at \\sqrt{s_{NN}} = 200 GeV

    E-Print Network [OSTI]

    STAR Collaboration; H. Agakishiev; M. M. Aggarwal; Z. Ahammed; A. V. Alakhverdyants; I. Alekseev; J. Alford; B. D. Anderson; C. D. Anson; D. Arkhipkin; G. S. Averichev; J. Balewski; L. S. Barnby; D. R. Beavis; N. K. Behera; R. Bellwied; M. J. Betancourt; R. R. Betts; A. Bhasin; A. K. Bhati; H. Bichsel; J. Bielcik; J. Bielcikova; B. Biritz; L. C. Bland; W. Borowski; J. Bouchet; E. Braidot; A. V. Brandin; A. Bridgeman; S. G. Brovko; E. Bruna; S. Bueltmann; I. Bunzarov; T. P. Burton; X. Z. Cai; H. Caines; M. Calderón de la Barca Sánchez; D. Cebra; R. Cendejas; M. C. Cervantes; Z. Chajecki; P. Chaloupka; S. Chattopadhyay; H. F. Chen; J. H. Chen; J. Y. Chen; L. Chen; J. Cheng; M. Cherney; A. Chikanian; K. E. Choi; W. Christie; P. Chung; M. J. M. Codrington; R. Corliss; J. G. Cramer; H. J. Crawford; S. Dash; A. Davila Leyva; L. C. De Silva; R. R. Debbe; T. G. Dedovich; A. A. Derevschikov; R. Derradi de Souza; L. Didenko; P. Djawotho; S. M. Dogra; X. Dong; J. L. Drachenberg; J. E. Draper; J. C. Dunlop; L. G. Efimov; M. Elnimr; J. Engelage; G. Eppley; M. Estienne; L. Eun; O. Evdokimov; R. Fatemi; J. Fedorisin; R. G. Fersch; P. Filip; E. Finch; V. Fine; Y. Fisyak; C. A. Gagliardi; D. R. Gangadharan; A. Geromitsos; F. Geurts; P. Ghosh; Y. N. Gorbunov; A. Gordon; O. Grebenyuk; D. Grosnick; S. M. Guertin; A. Gupta; W. Guryn; B. Haag; O. Hajkova; A. Hamed; L-X. Han; J. W. Harris; J. P. Hays-Wehle; M. Heinz; S. Heppelmann; A. Hirsch; E. Hjort; G. W. Hoffmann; D. J. Hofman; B. Huang; H. Z. Huang; T. J. Humanic; L. Huo; G. Igo; P. Jacobs; W. W. Jacobs; P. G. Jones; C. Jena; F. Jin; J. Joseph; E. G. Judd; S. Kabana; K. Kang; J. Kapitan; K. Kauder; H. Ke; D. Keane; A. Kechechyan; D. Kettler; D. P. Kikola; J. Kiryluk; A. Kisiel; V. Kizka; A. G. Knospe; D. D. Koetke; T. Kollegger; J. Konzer; I. Koralt; L. Koroleva; W. Korsch; L. Kotchenda; V. Kouchpil; P. Kravtsov; K. Krueger; M. Krus; L. Kumar; P. Kurnadi; M. A. C. Lamont; J. M. Landgraf; S. LaPointe; J. Lauret; A. Lebedev; R. Lednicky; J. H. Lee; W. Leight; M. J. LeVine; C. Li; L. Li; N. Li; W. Li; X. Li; X. Li; Y. Li; Z. M. Li; M. A. Lisa; F. Liu; H. Liu; J. Liu; T. Ljubicic; W. J. Llope; R. S. Longacre; W. A. Love; Y. Lu; E. V. Lukashov; X. Luo; G. L. Ma; Y. G. Ma; D. P. Mahapatra; R. Majka; O. I. Mall; L. K. Mangotra; R. Manweiler; S. Margetis; C. Markert; H. Masui; H. S. Matis; Yu. A. Matulenko; D. McDonald; T. S. McShane; A. Meschanin; R. Milner; N. G. Minaev; S. Mioduszewski; A. Mischke; M. K. Mitrovski; B. Mohanty; M. M. Mondal; B. Morozov; D. A. Morozov; M. G. Munhoz; M. Naglis; B. K. Nandi; T. K. Nayak; P. K. Netrakanti; J. M. Nelson; L. V. Nogach; S. B. Nurushev; G. Odyniec; A. Ogawa; K. Oh; A. Ohlson; V. Okorokov; E. W. Oldag; D. Olson; M. Pachr; B. S. Page; S. K. Pal; Y. Pandit; Y. Panebratsev; T. Pawlak; H. Pei; T. Peitzmann; C. Perkins; W. Peryt; S. C. Phatak; P. Pile; M. Planinic; M. A. Ploskon; J. Pluta; D. Plyku; N. Poljak; A. M. Poskanzer; B. V. K. S. Potukuchi; C. B. Powell; D. Prindle; C. Pruneau; N. K. Pruthi; P. R. Pujahari; J. Putschke; H. Qiu; R. Raniwala; S. Raniwala; R. L. Ray; R. Redwine; R. Reed; H. G. Ritter; J. B. Roberts; O. V. Rogachevskiy; J. L. Romero; A. Rose; L. Ruan; J. Rusnak; N. R. Sahoo; S. Sakai; I. Sakrejda; T. Sakuma; S. Salur; J. Sandweiss; E. Sangaline; A. Sarkar; J. Schambach; R. P. Scharenberg; A. M. Schmah; T. R. Schuster; J. Seele; J. Seger; I. Selyuzhenkov; P. Seyboth; E. Shahaliev; M. Shao; M. Sharma; S. S. Shi; Q. Y. Shou; E. P. Sichtermann; F. Simon; R. N. Singaraju; M. J. Skoby; N. Smirnov; H. M. Spinka; B. Srivastava; T. D. S. Stanislaus; D. Staszak; S. G. Steadman; J. R. Stevens; R. Stock; M. Strikhanov; B. Stringfellow; A. A. P. Suaide; M. C. Suarez; N. L. Subba; M. Sumbera; X. M. Sun; Y. Sun; Z. Sun; B. Surrow; D. N. Svirida; T. J. M. Symons; A. Szanto de Toledo; J. Takahashi; A. H. Tang; Z. Tang; L. H. Tarini; T. Tarnowsky; D. Thein; J. H. Thomas; J. Tian; A. R. Timmins; D. Tlusty; M. Tokarev; V. N. Tram; S. Trentalange; R. E. Tribble; P. Tribedy; O. D. Tsai; T. Ullrich; D. G. Underwood; G. Van Buren; G. van Nieuwenhuizen; J. A. Vanfossen Jr.; R. Varma; G. M. S. Vasconcelos; A. N. Vasiliev; F. Videbæk; Y. P. Viyogi; S. Vokal; M. Wada; M. Walker; F. Wang; G. Wang; H. Wang; J. S. Wang; Q. Wang; X. L. Wang; Y. Wang; G. Webb; J. C. Webb; G. D. Westfall; C. Whitten Jr.; H. Wieman; S. W. Wissink; R. Witt; W. Witzke; Y. F. Wu; Z. Xiao; W. Xie; H. Xu; N. Xu; Q. H. Xu; W. Xu; Y. Xu; Z. Xu; L. Xue; Y. Yang; P. Yepes; K. Yip; I-K. Yoo; M. Zawisza; H. Zbroszczyk; W. Zhan; J. B. Zhang; S. Zhang; W. M. Zhang; X. P. Zhang; Y. Zhang; Z. P. Zhang; J. Zhao; C. Zhong; W. Zhou; X. Zhu; Y. H. Zhu; R. Zoulkarneev; Y. Zoulkarneeva

    2012-01-04T23:59:59.000Z

    We report new STAR measurements of mid-rapidity yields for the $\\Lambda$, $\\bar{\\Lambda}$, $K^{0}_{S}$, $\\Xi^{-}$, $\\bar{\\Xi}^{+}$, $\\Omega^{-}$, $\\bar{\\Omega}^{+}$ particles in Cu+Cu collisions at \\sNN{200}, and mid-rapidity yields for the $\\Lambda$, $\\bar{\\Lambda}$, $K^{0}_{S}$ particles in Au+Au at \\sNN{200}. We show that at a given number of participating nucleons, the production of strange hadrons is higher in Cu+Cu collisions than in Au+Au collisions at the same center-of-mass energy. We find that aspects of the enhancement factors for all particles can be described by a parameterization based on the fraction of participants that undergo multiple collisions.

  18. Thermopower of Yba2cu3o7-X, Erba2cu3o7-X

    E-Print Network [OSTI]

    BHATNAGAR, AK; PAN, R.; Naugle, Donald G.; GILBERT, GR; PANDEY, RK.

    1990-01-01T23:59:59.000Z

    - mocouple. The thermal emf was measured with a Keith- ley model 148 nanovoltmeter with its analog output con- nected to a digital volmeter for higher resolution. For each measurement, 5T and 5V were averaged over 100 readings taken at an interval of 0... that the Hubbard model pro- vides an explanation for transport in RBa2Cu307 ?al- loys. In the high temperature, strong correlation limit (ke T much greater than the band width &but much less than the on-site Coulomb repulsion U },the thermopower is dominated...

  19. Modified embedded-atom method interatomic potential for the Fe-Cu alloy system and cascade simulations on pure Fe and Fe-Cu alloys

    SciTech Connect (OSTI)

    Lee, Byeong-Joo [Department of Materials Science and Engineering, Pohang University of Science and Technology Pohang 790-784 (Korea, Republic of); Wirth, Brian D. [Nuclear Engineering Department, University of California, Berkeley, Berkeley, California 94720-1730 (United States); Shim, Jae-Hyeok [Nuclear Engineering Department, University of California, Berkeley, Berkeley, California 94720-1730 (United States); Nano-Materials Research Center, Korea Institute of Science and Technology Seoul 136-791 (Korea, Republic of); Kwon, Junhyun; Kwon, Sang Chul; Hong, Jun-Hwa [Nuclear Materials Technology R and D Team, Korea Atomic Energy Research Institute, Taejon 305-353 (Korea, Republic of)

    2005-05-01T23:59:59.000Z

    A modified embedded-atom method (MEAM) interatomic potential for the Fe-Cu binary system has been developed using previously developed MEAM potentials of Fe and Cu. The Fe-Cu potential was determined by fitting to data on the mixing enthalpy and the composition dependencies of the lattice parameters in terminal solid solutions. The potential gives a value of 0.65 eV for the dilute heat of solution and reproduces the increase of lattice parameter of Fe with addition of Cu in good agreement with experiments. The potential was used to investigate the primary irradiation defect formation in pure Fe and Fe-0.5 at. % Cu alloy by a molecular dynamics cascade simulation study with a PKA energy of 2 keV at 573 K. A tendency for self-interstitial atom-Cu binding, the formation of mixed (Fe-Cu) dumbbells and even Cu-Cu dumbbells was observed. Given a positive binding energy between Cu atoms and self-interstitials, Cu transport by an interstitial diffusion mechanism could be proposed to contribute to the formation of Cu-rich precipitates and irradiation-induced embrittlement in nuclear structural steels.

  20. Cu--Pd--M hydrogen separation membranes

    DOE Patents [OSTI]

    Do{hacek over (g)}an, Omer N; Gao, Michael C; Young, Rongxiang Hu; Tafen, De Nyago

    2013-12-17T23:59:59.000Z

    The disclosure provides an H2 separation membrane comprised of an allow having the composition Cu.Sub.(100-x-y)Pd.sub.xM.sub.y, where x is from about 35 to about 50 atomic percent and where y is from greater than 0 to about 20 atomic percent, and where M consists of magnesium, yttrium, aluminum, titanium, lanthanum, or combinations thereof. The M elements act as strong stabilizers for the B2 phase of the allow, and extend the critical temperature of the alloy for a given hydrogen concentration and pressure. Due to the phase stabilization and the greater temperature range over which a B2 phase can be maintained, the allow is well suited for service as a H2 separation membrane, particularly when applicable conditions are established or cycled above about 600.degree. C. over the course of expected operations. In certain embodiments, the B2 phase comprises at least 60 estimated volume percent of the allow at a steady-state temperature of 400.degree. C. The B2 phase stability is experimentally validated through HT-XRD.

  1. Development and implementation of a FT-ICR mass spectrometer for the investigation of ion conformations of peptide sequence isomers containing basic amino acid residues by gas-phase hydrogen/deuterium exchange 

    E-Print Network [OSTI]

    Marini, Joseph Thomas

    2004-09-30T23:59:59.000Z

    The gas-phase hydrogen/deuterium (H/D) exchange of protonated di- and tripeptides containing a basic amino acid residue has been studied with a Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometer. Bimolecular reactions...

  2. Development and implementation of a FT-ICR mass spectrometer for the investigation of ion conformations of peptide sequence isomers containing basic amino acid residues by gas-phase hydrogen/deuterium exchange

    E-Print Network [OSTI]

    Marini, Joseph Thomas

    2004-09-30T23:59:59.000Z

    The gas-phase hydrogen/deuterium (H/D) exchange of protonated di- and tripeptides containing a basic amino acid residue has been studied with a Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometer. Bimolecular reactions...

  3. Formation and diffusion of S-decorated clusters on Cu(111)

    SciTech Connect (OSTI)

    FEIBELMAN,PETER J.

    2000-03-21T23:59:59.000Z

    Because of their strong internal bonding, S-decorated Cu trimers are a likely agent of S-enhanced Cu transport between islands on Cu(111). According to ab-initio calculations, excellent healing of dangling Cu valence results in an ad-Cu{sub 3}S{sub 3} formation energy of only {approximately}0.28 eV, compared to 0.79 eV for a self-adsorbed Cu atom, and a diffusion barrier {le}0.35 eV.

  4. The influence of Se pressure on the electronic properties of CuInSe{sub 2} grown under Cu-excess

    SciTech Connect (OSTI)

    Deprédurand, Valérie; Bertram, Tobias; Regesch, David; Henx, Benjamin; Siebentritt, Susanne [Laboratory for Photovoltaics, Physics and Materials Science Research Unit, University of Luxembourg, L-4422 Belvaux (Luxembourg)

    2014-10-27T23:59:59.000Z

    Standard Cu-poor Cu(In,Ga)Se{sub 2} solar cell absorbers are usually prepared under high Se excess since the electronic properties of the absorbers are better if prepared under high Se pressure. However, in CuInSe{sub 2}, grown under Cu-excess, it was found that solar cell properties improve with lowering the Se pressure, mostly because of reduced tunnel contribution to the recombination path. Lower Se pressure during Cu-rich growth leads to increased (112) texture of the absorber films, to better optical film quality, as seen by increased excitonic luminescence and to lower net doping levels, which explains the reduced tunnelling effect. These findings show an opposite trend from the one observed in Cu-poor Cu(In,Ga)Se{sub 2}.

  5. Dome takes a 20% interest in the Arctic pilot project to move LNG

    SciTech Connect (OSTI)

    Richards, B.; Bell, J.

    1980-05-05T23:59:59.000Z

    According to B. Richards of Dome Petroleum Ltd., Dome's interest will be shared with its partially owned subsidiary, Trans-Canada Pipe Lines Ltd. According to J. Bell of Petro-Canada, the operator for the Arctic project, negotiations are under way with Tenneco Inc. for gas sales of up to 225 million cu ft/day to begin in 1985-86. At first, two tankers would ship LNG to a delivery terminal at an as yet unselected site on Canada's east coast, but by 1992, nine ships capable of delivering 1.23 billion cu ft/day of LNG, could be in service. The U.S. and European potential LNG markets amounts to 3-4 trillion cu ft/yr and 3.5-4 trillion cu ft/yr, respectively. Petro-Canada also supports the Polar Gas Ltd. project to lay a gas pipeline from the Arctic Islands and Mackenzie Delta to the south; the projects are not considered to be in competition.

  6. Thermal Processing Effects on Microstructure and Composition of Cu3SbSe3

    SciTech Connect (OSTI)

    Majsztrik, Paul W [ORNL; Kirkham, Melanie J [ORNL; Garcia Negron, Valerie [Polytechnic University of Puerto Rico (PUPR); Lara-Curzio, Edgar [ORNL; Skoug, Eric [Michigan State University, East Lansing; Morelli, Donald [Michigan State University, East Lansing

    2013-01-01T23:59:59.000Z

    We report on the effects of thermal processing on the microstructure and composition of a system with overall stoichiometry of 3Cu:1Sb:3Se with the aim of producing single-phase Cu3SbSe3. It was found that slowly cooling from the melt produced a multiphase material consisting of Cu2Se and CuSbSe2, but devoid of Cu3SbSe3. Cooling rapidly from the melt resulted in three-phase microstructures consisting of Cu2Se, CuSbSe2, and Cu3SbSe3. Subsequent annealing of the three-phase material between 325 C and 400 C shifted composition towards nearly pure Cu3SbSe3, the target compound of this work. The kinetics of the transformation into Cu3SbSe3 is successfully described using a modified Avrami model, which suggests that diffusion is the rate-controlling step. Values of Young s modulus and hardness, obtained by nanoindentation, are reported for Cu2Se, CuSbSe2, and Cu3SbSe3.

  7. Novel route to synthesize CuO nanoplatelets

    SciTech Connect (OSTI)

    Zarate, R.A. [Departamento de Fisica, Facultad de Ciencias, Universidad Catolica del Norte, Casilla 1280, Antofagasta (Chile)], E-mail: rzarate@ucn.cl; Hevia, F. [Departamento de Quimica, Facultad de Ciencias, Universidad Catolica del Norte, Casilla 1280, Antofagasta (Chile); Fuentes, S. [Departamento de Fisica, Facultad de Ciencias, Universidad Catolica del Norte, Casilla 1280, Antofagasta (Chile); Fuenzalida, V.M. [Departamento de Fisica, Facultad de Ciencias Fisicas y Matematicas, Universidad de Chile, Av. Blanco Encalada 2008, Santiago (Chile); Zuniga, A. [Departamento de Ingenieria Mecanica, Facultad de Ciencias Fisicas y Matematicas, Universidad de Chile, Beauchef 850, Santiago (Chile)

    2007-04-15T23:59:59.000Z

    A new synthesis route to obtain high-purity cupric oxide, CuO, using the hydrothermal reaction of copper sulfide and a NaOH solution in an oxygen atmosphere has been developed. The synthesized products showed nanoplatelet-like morphologies with rectangular cross-sections and dimensions at the nanometric scale. Variations in the oxygen partial pressure and synthesis temperature produced changes in size and shape, being found that the proliferation of nanoplatelet structures occurred at 200 deg. C and 30 bar. - Graphical abstract: Transmission electron microscopy image of a CuO nanoplatelet. The inset is an electron diffraction pattern of this twined CuO nanoplatelet exhibiting a monoclinic crystal structure.

  8. Three approaches to economical photovoltaics: conformal Cu2S, organic luminescent films, and PbSe nanocrystal superlattices

    E-Print Network [OSTI]

    Carbone, Ian Anthony

    2013-01-01T23:59:59.000Z

    approaches to economical photovoltaics: conformal Cu 2 S,routes to more efficient photovoltaics using conformal Cu 2on grid-parity. Progress in Photovoltaics: Research and

  9. NO Chemisorption on Cu/SSZ-13: a Comparative Study from Infrared...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chemisorption on CuSSZ-13: a Comparative Study from Infrared Spectroscopy and DFT Calculations. NO Chemisorption on CuSSZ-13: a Comparative Study from Infrared Spectroscopy and...

  10. Following the movement of Cu ions in a SSZ-13 zeolite during...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the movement of Cu ions in a SSZ-13 zeolite during dehydration, reduction and adsorption: a combined in situ TP-XRD, Following the movement of Cu ions in a SSZ-13 zeolite during...

  11. Characterization of Cu-SSZ-13 NH3 SCR Catalysts: an in situ FTIR...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Cu-SSZ-13 NH3 SCR Catalysts: an in situ FTIR Study. Abstract: The adsorption of CO and NO over Cu-SSZ-13 zeolite catalysts, highly active in the selective...

  12. Mechanistic Studies of Methanol Synthesis over Cu from CO/CO2...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Methanol Synthesis over Cu from COCO2H2H2O Mixtures: the Source of C in Methanol and the Role of Water Mechanistic Studies of Methanol Synthesis over Cu from COCO2H2H2O...

  13. Study of Martensitic Phase transformation in a NiTiCu Thin Film...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Martensitic Phase transformation in a NiTiCu Thin Film Shape Memory Alloy Using Photoelectron Emission Microscopy. Study of Martensitic Phase transformation in a NiTiCu Thin Film...

  14. Bulk Glass Formation in Eutectic of La-Cu-Ni-Al Metallic Alloys

    E-Print Network [OSTI]

    Zhang, Yong

    A eutectic in La-rich La-Cu?.?Ni?.?-Al alloys was determined by studying the melting behaviors and the microstructure observations. The microstructures of the La-Cu-Ni-Al alloys prepared by ...

  15. Thermal Durability of Cu-CHA NH3-SCR Catalysts for Diesel NOx...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Durability of Cu-CHA NH3-SCR Catalysts for Diesel NOx Reduction. Thermal Durability of Cu-CHA NH3-SCR Catalysts for Diesel NOx Reduction. Abstract: Multiple catalytic functions...

  16. Elucidating efficiency losses in cuprous oxide (Cu?O) photovoltaics and identifying strategies for efficiency improvement

    E-Print Network [OSTI]

    Brandt, Riley Eric

    2013-01-01T23:59:59.000Z

    In this thesis, I fabricated and characterized a series of thin-film cuprous oxide (Cu?O) photovoltaic devices. I constructed several different device designs, using sputtered and electrochemically deposited Cu?O. ...

  17. Pb-free Sn-Ag-Cu ternary eutectic solder

    DOE Patents [OSTI]

    Anderson, I.E.; Yost, F.G.; Smith, J.F.; Miller, C.M.; Terpstra, R.L.

    1996-06-18T23:59:59.000Z

    A Pb-free solder includes a ternary eutectic composition consisting essentially of about 93.6 weight % Sn-about 4.7 weight % Ag-about 1.7 weight % Cu having a eutectic melting temperature of about 217 C and variants of the ternary composition wherein the relative concentrations of Sn, Ag, and Cu deviate from the ternary eutectic composition to provide a controlled melting temperature range (liquid-solid ``mushy`` zone) relative to the eutectic melting temperature (e.g. up to 15 C above the eutectic melting temperature). 5 figs.

  18. Hydrothermal Liquefaction Oil and Hydrotreated Product from Pine Feedstock Characterized by Heteronuclear Two-Dimensional NMR Spectroscopy and FT-ICR Mass Spectrometry

    SciTech Connect (OSTI)

    Sudasinghe, Nilusha; Cort, John R.; Hallen, Richard T.; Olarte, Mariefel V.; Schmidt, Andrew J.; Schaub, Tanner

    2014-12-01T23:59:59.000Z

    Hydrothermal liquefaction (HTL) crude oil and hydrotreated product from pine tree farm waste (forest product residual, FPR) have been analyzed by direct infusion electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI FT-ICR MS) in both positive- and negative-ionization modes and high-resolution twodimensional heteronuclear 1H-13C NMR spectroscopy. FT-ICR MS resolves thousands of compounds in complex oils and provides unparalleled compositional details for individual molecules for identification of compound class (heteroatom content), type (number of rings plus double bonds to carbon or double bond equivalents (DBE) and carbon number (degree of alkylation). Heteronuclear 1H-13C NMR spectroscopy provides one-bond and multiple-bond correlations between pairs of 1H and 13C chemical shifts that are characteristic of different organic functional groups. Taken together this information provides a picture of the chemical composition of these oils. Pyrolysis crude oil product from pine wood was characterized for comparison. Generally, pyrolysis oil is comprised of a more diverse distribution of heteroatom classes with higher oxygen number relative to HTL oil as shown by both positive- and negative-ion ESI FT-ICR MS. A total of 300 N1, 594 O1 and 267 O2 compounds were observed as products of hydrotreatment. The relative abundance of N1O1, N1O2, N1O3, N2, N2O1, N2O2 and O3 compounds are reduced to different degrees after hydrotreatment and other higher heteroatom containing species (O4-O10, N1O4, N1O5 and N2O3) are completely removed by hydrotreatment.

  19. High strength-high conductivity Cu--Fe composites produced by powder compaction/mechanical reduction

    DOE Patents [OSTI]

    Verhoeven, John D. (Ames, IA); Spitzig, William A. (Ames, IA); Gibson, Edwin D. (Ames, IA); Anderson, Iver E. (Ames, IA)

    1991-08-27T23:59:59.000Z

    A particulate mixture of Cu and Fe is compacted and mechanically reduced to form an "in-situ" Cu-Fe composite having high strength and high conductivity. Compaction and mechanical reduction of the particulate mixture are carried out at a temperature and time at temperature selected to avoid dissolution of Fe into the Cu matrix particulates to a harmful extent that substantially degrades the conductivity of the Cu-Fe composite.

  20. High strength-high conductivity Cu-Fe composites produced by powder compaction/mechanical reduction

    DOE Patents [OSTI]

    Verhoeven, J.D.; Spitzig, W.A.; Gibson, E.D.; Anderson, I.E.

    1991-08-27T23:59:59.000Z

    A particulate mixture of Cu and Fe is compacted and mechanically reduced to form an ''in-situ'' Cu-Fe composite having high strength and high conductivity. Compaction and mechanical reduction of the particulate mixture are carried out at a temperature and time at temperature selected to avoid dissolution of Fe into the Cu matrix particulates to a harmful extent that substantially degrades the conductivity of the Cu-Fe composite. 5 figures.

  1. Hands-on Learning CU architectural engineering students learn their trade

    E-Print Network [OSTI]

    science to increase comfort and energy efficiency. CU is home to state- of-the-art heating, ventilating

  2. Distinct oxygen hole doping in different layers of Sr?CuO4-?/La?CuO? superlattices

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Smadici, S.; Lee, J. C. T.; Rusydi, A.; Logvenov, G.; Bozovic, I.; Abbamonte, P.

    2012-03-01T23:59:59.000Z

    X-ray absorption in Sr?CuO4-?/La?CuO? (SCO/LCO) superlattices shows a variable occupation with doping of a hole state different from holes doped for x?xoptimal in bulk La2-xSrxCuO? and suggests that this hole state is on apical oxygen atoms and polarized in the a-b plane. Considering the surface reflectivity gives a good qualitative description of the line shapes of resonant soft x-ray scattering. The interference between superlattice and surface reflections was used to distinguish between scatterers in the SCO and the LCO layers, with the two hole states maximized in different layers of the superlattice.

  3. Effect of CNTs on precipitation hardening behavior of CNT/AlCu composites

    E-Print Network [OSTI]

    Hong, Soon Hyung

    Effect of CNTs on precipitation hardening behavior of CNT/Al­Cu composites Dong H. Nam a , Yun K June 2012 A B S T R A C T The precipitation hardening behavior of CNT/Al­Cu composites was investigated accelerated the precipitation hardening behavior of CNT/Al­Cu composites due to the generation of excess

  4. Enantiospecific Desorption of R-and S-Propylene Oxide from a Chiral Cu(643) Surface

    E-Print Network [OSTI]

    Gellman, Andrew J.

    Enantiospecific Desorption of R- and S-Propylene Oxide from a Chiral Cu(643) Surface Joshua D kinetics of R- and S-propylene oxide from Cu(643)R and Cu(643)S using temperature-programmed desorption described in this communication have made use of a simpler chiral molecule, propylene oxide, with a single

  5. Cu(In,Ga)Se2based Photovoltaics: Challenges and Opportunities

    E-Print Network [OSTI]

    Firestone, Jeremy

    % Different companies, processes, substrates Substrate Mo Cu(InGa)Se2 buffer TCO Cu(InGa)Se2 Solar Cells #12-evaporation using 3-stage process (ZSW, NREL) Reaction of sputtered precursors (Solar Frontier) From pilot; High optical absorption Unique properties for solar cells Compositional tolerance Cu(InGa)Se2 Thin

  6. DISSERTATION DEVICE PHYSICS OF Cu(In,Ga)Se2 THIN-FILM SOLAR CELLS

    E-Print Network [OSTI]

    Sites, James R.

    DISSERTATION DEVICE PHYSICS OF Cu(In,Ga)Se2 THIN-FILM SOLAR CELLS Submitted by Markus Gloeckler PHYSICS OF Cu(In,Ga)Se2 THIN-FILM SOLAR CELLS BE ACCEPTED AS FULFILLING IN PART REQUIREMENTS OF Cu(In,Ga)Se2 THIN-FILM SOLAR CELLS Thin-film solar cells have the potential to be an important

  7. Plasticity in Cu thin films: an experimental investigation of the effect of microstructure

    E-Print Network [OSTI]

    Plasticity in Cu thin films: an experimental investigation of the effect of microstructure A thesis Author Joost J. Vlassak Yong Xiang Plasticity in Cu thin films: an experimental investigation is constructed. The elastic-plastic behavior of Cu films is studied with emphasis on the effects

  8. Study of triangular flow $v_3$ in Au+Au and Cu+Cu collisions with a multiphase transport model

    E-Print Network [OSTI]

    Kai Xiao; Na Li; Shusu Shi; Feng Liu

    2012-01-13T23:59:59.000Z

    We studied the relation between the initial geometry anisotropy and the anisotropic flow in a multiphase transport model (AMPT) for both Au+Au and Cu+Cu collisions at $\\sqrt{s_{NN}}$ = 200 GeV. It is found that unlike the elliptic flow $v_2$, little centrality dependence of the triangular flow $v_3$ is observed. After removing the initial geometry effect, $v_3/\\epsilon_3$ increases with the transverse particle density, which is similar to $v_2/\\epsilon_2$. The transverse momentum ($p_T$) dependence of $v_3$ from identified particles is qualitatively similar to the $p_T$ dependence of $v_2$.

  9. Kinetic Controls on Cu and Pb Sorption by Ferrihydrite

    E-Print Network [OSTI]

    Sparks, Donald L.

    time. To determine key factors controlling the kinetics, we measured Cu and Pb uptake as a function that the surfaces of primary particles with diameters of only a few nanometers are accessible even after aggregation ferrihydrite aggregates or the branched structure of primary ferrihydrite particles. Consequently, they fitted

  10. Peter C. Chu Mail Code: OC/Cu

    E-Print Network [OSTI]

    Journal of Oceanography, 2008 - present · Editorial Board, the Open Ocean Engineering Journal, 2007Peter C. Chu Professor Mail Code: OC/Cu Department of Oceanography Graduate School of Engineering and Applied Sciences & Wayne E. Meyer Institute of Systems Engineering Monterey, CA 93943 Phone: 831

  11. CU-LASP Test Facilities ! and Instrument Calibration Capabilities"

    E-Print Network [OSTI]

    Mojzsis, Stephen J.

    CU-LASP Test Facilities ! and Instrument Calibration Capabilities" Ginger Drake Calibration Group of LASP's vacuum chambers · Ideal for performing top-level instrument tests ­ Thermal Vacuum tests ­ In-band light testing (EUV-IR) · Independently temperature- controlled shroud and platen · Optional 4-axis

  12. Temperature dependent effects during Ag deposition on Cu(110)

    SciTech Connect (OSTI)

    Taylor, T.N.; Muenchausen, R.E.; Hoffbauer, M.A.; Denier van der Gon, A.W.; van der Veen, J.F. (Los Alamos National Lab., NM (USA); FOM-Instituut voor Atoom-en Molecuulfysica, Amsterdam (Netherlands))

    1989-01-01T23:59:59.000Z

    The composition, structure, and morphology of ultrathin films grown by Ag deposition on Cu(110) were monitored as a function of temperature using low-energy electron diffraction (LEED), Auger electron spectroscopy (AES), and medium energy ion scattering (MEIS). Aligned backscattering measurements with 150 keV He ions indicate that the Ag resides on top of the Cu and there is no significant surface compound formation. Measurements with LEED show that the Ag is initially confined to the substrate troughs. Further deposition forces the Ag out of the troughs and results in a split c(2 {times} 4) LEED pattern, which is characteristic of a distorted Ag(111) monolayer template. As verified by both AES and MEIS measurements, postmonolayer deposition of Ag on Cu(110) at 300K leads to a pronounced 3-dimensional clustering. Ion blocking analysis of the Ag clusters show that the crystallites have a (110)-like growth orientation, implying that the Ag monolayer template undergoes a rearrangement. These data are confirmed by low temperature LEED results in the absence of clusters, which indicate that Ag multilayers grow from a Ag--Cu interface where the Ag is captured in the troughs. Changes observed in the film structure and morphology are consistent with a film growth mechanism that is driven by overlayer strain response to the substrate corrugation. 16 refs., 4 figs.

  13. Fall 2010 http://www.columbia.edu/cu/ccbsg/

    E-Print Network [OSTI]

    Qian, Ning

    and Scholars Office 2 2. Department 2 3. Registrar & ID card 3 4. Social Security Card Application 3 5://www.columbia.edu/cu/ccbsg/ 1. ISSOInternational Students and Scholars Office ISSO ISSO I-94 I-20 J-1 Form DS-2019://banking.about.com/od/checkingaccounts/ig/How-to-Write-a- Checkchecking account ATM debit card checking

  14. Electric Fields and Chiral Magnetic Effect in Cu + Au Collisions

    E-Print Network [OSTI]

    Wei-Tian Deng; Xu-Guang Huang

    2015-02-16T23:59:59.000Z

    The non-central Cu + Au collisions can create strong out-of-plane magnetic fields and in-plane electric fields. By using the HIJING model, we study the general properties of the electromagnetic fields in Cu + Au collisions at 200 GeV and their impacts on the charge-dependent two-particle correlator $\\gamma_{q_1q_2}=$ (see main text for definition) which was used for the detection of the chiral magnetic effect (CME). Compared with Au + Au collisions, we find that the in-plane electric fields in Cu + Au collisions can strongly suppress the two-particle correlator or even reverse its sign if the lifetime of the electric fields is long. Combining with the expectation that if $\\gamma_{q_1q_2}$ is induced by elliptic-flow driven effects we would not see such strong suppression or reversion, our results suggest to use Cu + Au collisions to test CME and understand the mechanisms that underlie $\\gamma_{q_1q_2}$.

  15. Cardiologists from CU testing revolutionary heart-attack treatment

    E-Print Network [OSTI]

    Cerveny, Vlastislav

    Cardiologists from CU testing revolutionary heart-attack treatment Compiled 4.12.2013 23 of the biologically degradable stent in the treatment of myocardial infarctions (heart-attacks). The results with a metal stent in their heart for the rest of their life; instead, the stent does its work then disappears

  16. Local structure order in Pd??Cu?Si?? liquid

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Yue, G. Q.; Zhang, Y.; Sun, Y.; Shen, B.; Dong, F.; Wang, Z. Y.; Zhang, R. J.; Zheng, Y. X.; Kramer, M. J.; Wang, S. Y.; et al

    2015-02-05T23:59:59.000Z

    The short-range order (SRO) in Pd??Cu?Si?? liquid was studied by high energy x-ray diffraction and ab initio molecular dynamics (MD) simulations. The calculated pair correlation functions at different temperatures agree well with the experimental results. The partial pair correlation functions from ab intio MD simulations indicate that Si atoms prefer to be uniformly distributed while Cu atoms tend to aggregate. By performing structure analysis using Honeycutt-Andersen index, Voronoi tessellation, and atomic cluster alignment method, we show that the icosahedron and face-centered cubic SRO increase upon cooling. The dominant SRO is the Pd-centered Pd?Si? motif, namely the structure of which motifmore »is similar to the structure of Pd-centered clusters in the Pd?Si? crystal. The study further confirms the existence of trigonal prism capped with three half-octahedra that is reported as a structural unit in Pd-based amorphous alloys. The majority of Cu-centered clusters are icosahedra, suggesting that the presence of Cu is benefit to promote the glass forming ability.« less

  17. Influence of Al/CuO reactive multilayer films additives on exploding foil initiator

    SciTech Connect (OSTI)

    Zhou Xiang; Shen Ruiqi; Ye Yinghua; Zhu Peng; Hu Yan; Wu Lizhi [School of Chemical Engineeering, Nanjing University of Science and Technology, Nanjing (China)

    2011-11-01T23:59:59.000Z

    An investigation on the influence of Al/CuO reactive multilayer films (RMFs) additives on exploding foil initiator was performed in this paper. Cu film and Cu/Al/CuO RMFs were produced by using standard microsystem technology and RF magnetron sputtering technology, respectively. Scanning electron microscopy characterization revealed the distinct layer structure of the as-deposited Al/CuO RMFs. Differential scanning calorimetry was employed to ascertain the amount of heat released in the thermite reaction between Al films and CuO films, which was found to be 2024 J/g. Electrical explosion tests showed that 600 V was the most matching voltage for our set of apparatus. The explosion process of two types of films was observed by high speed camera and revealed that compared with Cu film, an extra distinct combustion phenomenon was detected with large numbers of product particles fiercely ejected to a distance of about six millimeters for Cu/Al/CuO RMFs. By using the atomic emission spectroscopy double line technique, the reaction temperature was determined to be about 6000-7000 K and 8000-9000 K for Cu film and Cu/Al/CuO RMFs, respectively. The piezoelectricity of polyvinylidene fluoride film was employed to measure the average velocity of the slapper accelerated by the explosion of the films. The average velocities of the slappers were calculated to be 381 m/s and 326 m/s for Cu film and Cu/Al/CuO RMFs, respectively, and some probable reasons were discussed with a few suggestions put forward for further work.

  18. $J/?$ production in Au+Au/Cu+Cu collisions at $\\sqrt{s}_{NN}$=200 GeV and the threshold model

    E-Print Network [OSTI]

    A. K. Chaudhuri

    2006-10-09T23:59:59.000Z

    Using the QGP motivated threshold model, where all the $J/\\psi$'s are suppressed above a threshold density, we have analyzed the preliminary PHENIX data on the centrality dependence of nuclear modification factor for $J/\\psi$'s in Cu+Cu and in Au+Au collisions, at RHIC energy, $\\sqrt{s}_{NN}$=200 GeV. Centrality dependence of $J/\\psi$ suppression in Au+Au collisions are well explained in the model for threshold densities in ranges of 3.6-3.7 $fm^{-2}$. $J/\\psi$ suppression in Cu+Cu collisions on the other hand are not explained in the model.

  19. Simple Template-Free Solution Route for the Controlled Synthesis of Cu(OH)2 and CuO Nanostructures

    E-Print Network [OSTI]

    Qi, Limin

    , People's Republic of China ReceiVed: July 21, 2004; In Final Form: August 29, 2004 The controlled attracted considerable attention due to their fundamental importance and potential wide-ranging applications Orthorhombic Cu2(OH)3- Cl was recently found in living organisms as the first identified copper

  20. Energy and system size dependence of phi meson production in Cu+Cu and Au+Au collisions

    SciTech Connect (OSTI)

    STAR Coll

    2008-10-28T23:59:59.000Z

    We study the beam-energy and system-size dependence of {phi} meson production (using the hadronic decay mode {phi} {yields} K{sup +}K{sup -}) by comparing the new results from Cu + Cu collisions and previously reported Au + Au collisions at {radical}s{sub NN} = 62.4 and 200 GeV measured in the STAR experiment at RHIC. Data presented are from midrapidity (|y| < 0.5) for 0.4 < p{sub T} < 5 GeV/c. At a given beam energy, the transverse momentum distributions for {phi} mesons are observed to be similar in yield and shape for Cu + Cu and Au + Au colliding systems with similar average numbers of participating nucleons. The {phi} meson yields in nucleus-nucleus collisions, normalized by the average number of participating nucleons, are found to be enhanced relative to those from p + p collisions with a different trend compared to strange baryons. The enhancement for {phi} mesons is observed to be higher at {radical}s{sub NN} = 200 GeV compared to 62.4 GeV. These observations for the produced {phi}(s{bar s}) mesons clearly suggest that, at these collision energies, the source of enhancement of strange hadrons is related to the formation of a dense partonic medium in high energy nucleus-nucleus collisions and cannot be alone due to canonical suppression of their production in smaller systems.

  1. Effect of CNTs dispersion on the thermal and mechanical properties of Cu/CNTs nanocomposites

    SciTech Connect (OSTI)

    Muhsan, Ali Samer, E-mail: alisameer2007@gmail.com, E-mail: faizahmad@petronas.com.my; Ahmad, Faiz, E-mail: alisameer2007@gmail.com, E-mail: faizahmad@petronas.com.my; Yusoff, Puteri Sri Melor Megat Bt, E-mail: puteris@petronas.com.my [Department of Mechanical Engineering, Universiti Teknologi PETRONAS (UTP) (Malaysia); Mohamed, Norani M., E-mail: noranimuti-mohamed@petronas.com.my [Centre of Innovative Nanostructures and Nanodevices (COINN), UTP (Malaysia); Raza, M. Rafi, E-mail: rafirazamalik@gmail.com [Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor (Malaysia)

    2014-10-24T23:59:59.000Z

    Modified technique of metal injection molding (MIM) was used to fabricate multiwalled carbon nanotube (CNT) reinforced Cu nanocomposites. The effect of adding different amount of CNTs (0-10 vol.%) on the thermal and mechanical behaviour of the fabricated nanocomposites is presented. Scanning electron microscope analysis revealed homogenous dispersion of CNTs in Cu matrices at different CNTs contents. The experimentally measured thermal conductivities of Cu/CNTs nanocomposites showed extraordinary increase (76% higher than pure sintered Cu) with addition of 10 vol.% CNTs. As compared to the pure sintered Cu, increase in modulus of elasticity (Young's modulus) of Cu/CNTs nanocomposites sintered at 1050°C for 2.5 h was measured to be 48%. However, in case of 7.5 vol.% CNTs, Young's modulus was increased significantly about 51% compared to that of pure sintered Cu.

  2. J/psi production at high transverse momenta in p plus p and Cu plus Cu collisions at root s(NN)=200 GeV

    E-Print Network [OSTI]

    Abelev, B. I.; Aggarwal, M. M.; Ahammed, Z.; Anderson, B. D.; Arkhipkin, D.; Averichev, G. S.; Balewski, J.; Barannikova, O.; Barnby, L. S.; Baudot, J.; Baumgart, S.; Beavis, D. R.; Bellwied, R.; Benedosso, F.; Betancourt, M. J.; Betts, R. R.; Bhasin, A.; Bhati, A. K.; Bichsel, H.; Bielcik, J.; Bielcikova, J.; Biritz, B.; Bland, L. C.; Bombara, M.; Bonner, B. E.; Botje, M.; Bouchet, J.; Braidot, E.; Brandin, A. V.; Bruna, E.; Bueltmann, S.; Burton, T. P.; Bystersky, M.; Cai, X. Z.; Caines, H.; Sanchez, M. Calderon de la Barca; Catu, O.; Cebra, D.; Cendejas, R.; Cervantes, M. C.; Chajecki, Z.; Chaloupka, P.; Chattopadhyay, S.; Chen, H. F.; Chen, J. H.; Chen, J. Y.; Cheng, J.; Cherney, M.; Chikanian, A.; Choi, K. E.; Christie, W.; Clarke, R. F.; Codrington, M. J. M.; Corliss, R.; Cormier, T. M.; Cosentino, M. R.; Cramer, J. G.; Crawford, H. J.; Das, D.; Dash, S.; Daugherity, M.; De Silva, L. C.; Dedovich, T. G.; DePhillips, M.; Derevschikov, A. A.; de Souza, R. Derradi; Didenko, L.; Djawotho, P.; Dogra, S. M.; Dong, X.; Drachenberg, J. L.; Draper, J. E.; Dunlop, J. C.; Mazumdar, M. R. Dutta; Edwards, W. R.; Efimov, L. G.; Elhalhuli, E.; Elnimr, M.; Emelianov, V.; Engelage, J.; Eppley, G.; Erazmus, B.; Estienne, M.; Eun, L.; Fachini, P.; Fatemi, R.; Fedorisin, J.; Feng, A.; Filip, P.; Finch, E.; Fine, V.; Fisyak, Y.; Gagliardi, Carl A.; Gaillard, L.; Gangadharan, D. R.; Ganti, M. S.; Garcia-Solis, E. J.; Geromitsos, A.; Geurts, F.; Ghazikhanian, V.; Ghosh, P.; Gorbunov, Y. N.; Gordon, A.; Grebenyuk, O.; Grosnick, D.; Grube, B.; Guertin, S. M.; Guimaraes, K. S. F. F.; Gupta, A.; Gupta, N.; Guryn, W.; Haag, B.; Hallman, T. J.; Hamed, A.; Harris, J. W.; He, W.; Heinz, M.; Heppelmann, S.; Hippolyte, B.; Hirsch, A.; Hjort, E.; Hoffman, A. M.; Hoffmann, G. W.; Hofman, D. J.; Hollis, R. S.; Huang, H. Z.; Humanic, T. J.; Huo, L.; Igo, G.; Iordanova, A.; Jacobs, P.; Jacobs, W. W.; Jakl, P.; Jena, C.; Jin, F.; Jones, C. L.; Jones, P. G.; Joseph, J.; Judd, E. G.; Kabana, S.; Kajimoto, K.; Kang, K.; Kapitan, J.; Keane, D.; Kechechyan, A.; Kettler, D.; Khodyrev, V. Yu; Kikola, D. P.; Kiryluk, J.; Kisiel, A.; Klein, S. R.; Knospe, A. G.; Kocoloski, A.; Koetke, D. D.; Kopytine, M.; Korsch, W.; Kotchenda, L.; Kouchpil, V.; Kravtsov, P.; Kravtsov, V. I.; Krueger, K.; Krus, M.; Kuhn, C.; Kumar, L.; Kurnadi, P.; Lamont, M. A. C.; Landgraf, J. M.; LaPointe, S.; Lauret, J.; Lebedev, A.; Lednicky, R.; Lee, C. -H; Lee, J. H.; Leight, W.; LeVine, M. J.; Li, C.; Li, N.; Li, Y.; Lin, G.; Lindenbaum, S. J.; Lisa, M. A.; Liu, F.; Liu, J.; Liu, L.; Ljubicic, T.; Llope, W. J.; Longacre, R. S.; Love, W. A.; Lu, Y.; Ludlam, T.; Ma, G. L.; Ma, Y. G.; Mahapatra, D. P.; Majka, R.; Mall, O. I.; Mangotra, L. K.; Manweiler, R.; Margetis, S.; Markert, C.; Matis, H. S.; Matulenko, Yu A.; McDonald, D.; McShane, T. S.; Meschanin, A.; Milner, R.; Minaev, N. G.; Mioduszewski, Saskia; Mischke, A.; Mohanty, B.; Morozov, D. A.; Munhoz, M. G.; Nandi, B. K.; Nattrass, C.; Nayak, T. K.; Nelson, J. M.; Netrakanti, P. K.; Ng, M. J.; Nogach, L. V.; Nurushev, S. B.; Odyniec, G.; Ogawa, A.; Okada, H.; Okorokov, V.; Olson, D.; Pachr, M.; Page, B. S.; Pal, S. K.; Pandit, Y.; Panebratsev, Y.; Pawlak, T.; Peitzmann, T.; Perevoztchikov, V.; Perkins, C.; Peryt, W.; Phatak, S. C.; Pile, P.; Planinic, M.; Pluta, J.; Plyku, D.; Poljak, N.; Poskanzer, A. M.; Potukuchi, B. V. K. S.; Prindle, D.; Pruneau, C.; Pruthi, N. K.; Pujahari, P. R.; Putschke, J.; Raniwala, R.; Raniwala, S.; Ray, R. L.; Redwine, R.; Reed, R.; Ridiger, A.; Ritter, H. G.; Roberts, J. B.; Rogachevskiy, O. V.; Romero, J. L.; Rose, A.; Roy, C.; Ruan, L.; Russcher, M. J.; Sahoo, R.; Sakrejda, I.; Sakuma, T.; Salur, S.; Sandweiss, J.; Sarsour, M.; Schambach, J.; Scharenberg, R. P.; Schmitz, N.; Seger, J.; Selyuzhenkov, I.; Seyboth, P.; Shabetai, A.; Shahaliev, E.; Shao, M.; Sharma, M.; Shi, S. S.; Shi, X. -H; Sichtermann, E. P.; Simon, F.; Singaraju, R. N.; Skoby, M. J.; Smirnov, N.; Snellings, R.; Sorensen, P.; Sowinski, J.; Spinka, H. M.; Srivastava, B.; Stadnik, A.; Stanislaus, T. D. S.; Staszak, D.; Strikhanov, M.; Stringfellow, B.; Suaide, A. A. P.; Suarez, M. C.; Subba, N. L.; Sumbera, M.; Sun, X. M.; Sun, Y.; Sun, Z.; Surrow, B.; Symons, T. J. M.; de Toledo, A. Szanto; Takahashi, J.; Tang, A. H.; Tang, Z.; Tarini, L. H.; Tarnowsky, T.; Thein, D.; Thomas, J. H.; Tian, J.; Timmins, A. R.; Timoshenko, S.; Tlusty, D.; Tokarev, M.; Trainor, T. A.; Tram, V. N.; Trattner, A. L.; Trentalange, S.; Tribble, Robert E.; Tsai, O. D.; Ulery, J.; Ullrich, T.; Underwood, D. G.; Van Buren, G.; Van Leeuwen, M.; Molen, A. M. Vander; Vanfossen, J. A., Jr.; Varma, R.; Vasconcelos, G. M. S.; Vasilevski, I. M.; Vasiliev, A. N.; Videbaek, F.; Vigdor, S. E.; Viyogi, Y. P.; Vokal, S.; Voloshin, S. A.

    2009-01-01T23:59:59.000Z

    The STAR Collaboration at the Relativistic Heavy Ion Collider presents measurements of J/psi e(+) e(-) at midrapidity and high transverse momentum (pT > 5 GeV/c) in p + p and central Cu + Cu collisions at root s(NN) = 200 GeV. The inclusive J...

  3. Infrared vibrational studies of CO adsorption on Cu/Pt(lll) and CuPt(111) Jo& A. Rodriguez,@ Charles M. Truong, and D. Wayne Goodmanb)

    E-Print Network [OSTI]

    Goodman, Wayne

    Infrared vibrational studies of CO adsorption on Cu/Pt(lll) and CuPt(111) surfaces Jo& A. Rodriguez supported on Pt ( 111) has been studied using infrared reflection absorption spectroscopy (IRAS). Our results indicate that the infrared intensities of adsorbed CO are not representative of the relative

  4. Pion interferometry in Au plus Au and Cu plus Cu collisions at s(NN)=62.4 and 200 GeV 

    E-Print Network [OSTI]

    Abelev, B. I.; Aggarwal, M. M.; Ahammed, Z.; Anderson, B. D.; Arkhipkin, D.; Averichev, G. S.; Balewski, J.; Barannikova, O.; Barnby, L. S.; Baudot, J.; Baumgart, S.; Beavis, D. R.; Bellwied, R.; Benedosso, F.; Betancourt, M. J.; Betts, R. R.; Bhasin, A.; Bhati, A. K.; Bichsel, H.; Bielcik, J.; Bielcikova, J.; Biritz, B.; Bland, L. C.; Bombara, M.; Bonner, B. E.; Botje, M.; Bouchet, J.; Braidot, E.; Brandin, A. V.; Bruna, E.; Bueltmann, S.; Burton, T. P.; Bystersky, M.; Cai, X. Z.; Caines, H.; Sanchez, M. Calderon de la Barca; Catu, O.; Cebra, D.; Cendejas, R.; Cervantes, M. C.; Chajecki, Z.; Chaloupka, P.; Chattopadhyay, S.; Chen, H. F.; Chen, J. H.; Chen, J. Y.; Cheng, J.; Cherney, M.; Chikanian, A.; Choi, K. E.; Christie, W.; Clarke, R. F.; Codrington, M. J. M.; Corliss, R.; Cormier, T. M.; Cosentino, M. R.; Cramer, J. G.; Crawford, H. J.; Das, D.; Dash, S.; Daugherity, M.; De Silva, L. C.; Dedovich, T. G.; DePhillips, M.; Derevschikov, A. A.; de Souza, R. Derradi; Didenko, L.; Djawotho, P.; Dogra, S. M.; Dong, X.; Drachenberg, J. L.; Draper, J. E.; Du, F.; Dunlop, J. C.; Mazumdar, M. R. Dutta; Edwards, W. R.; Efimov, L. G.; Elhalhuli, E.; Elnimr, M.; Emelianov, V.; Engelage, J.; Eppley, G.; Erazmus, B.; Estienne, M.; Eun, L.; Fachini, P.; Fatemi, R.; Fedorisin, J.; Feng, A.; Filip, P.; Finch, E.; Fine, V.; Fisyak, Y.; Gagliardi, Carl A.; Gaillard, L.; Ganti, M. S.; Gangadharan, D. R.; Garcia-Solis, E. J.; Geromitsos, A.; Geurts, F.; Ghazikhanian, V.; Ghosh, P.; Gorbunov, Y. N.; Gordon, A.; Grebenyuk, O.; Grosnick, D.; Grube, B.; Guertin, S. M.; Guimaraes, K. S. F. F.; Gupta, A.; Gupta, N.; Guryn, W.; Haag, B.; Hallman, T. J.; Hamed, A.; Harris, J. W.; He, W.; Heinz, M.; Heppelmann, S.; Hippolyte, B.; Hirsch, A.; Hjort, E.; Hoffman, A. M.; Hoffmann, G. W.; Hofman, D. J.; Hollis, R. S.; Huang, H. Z.; Humanic, T. J.; Igo, G.; Iordanova, A.; Jacobs, P.; Jacobs, W. W.; Jakl, P.; Jena, C.; Jin, F.; Jones, C. L.; Jones, P. G.; Joseph, J.; Judd, E. G.; Kabana, S.; Kajimoto, K.; Kang, K.; Kapitan, J.; Keane, D.; Kechechyan, A.; Kettler, D.; Khodyrev, V. Yu; Kikola, D. P.; Kiryluk, J.; Kisiel, A.; Klein, S. R.; Knospe, A. G.; Kocoloski, A.; Koetke, D. D.; Kopytine, M.; Korsch, W.; Kotchenda, L.; Kouchpil, V.; Kravtsov, P.; Kravtsov, V. I.; Krueger, K.; Krus, M.; Kuhn, C.; Kumar, L.; Kurnadi, P.; Lamont, M. A. C.; Landgraf, J. M.; LaPointe, S.; Lauret, J.; Lebedev, A.; Lednicky, R.; Lee, C. -H; Lee, J. H.; Leight, W.; LeVine, M. J.; Li, N.; Li, C.; Li, Y.; Lin, G.; Lindenbaum, S. J.; Lisa, M. A.; Liu, F.; Liu, J.; Liu, L.; Ljubicic, T.; Llope, W. J.; Longacre, R. S.; Love, W. A.; Lu, Y.; Ludlam, T.; Ma, G. L.; Ma, Y. G.; Mahapatra, D. P.; Majka, R.; Mall, O. I.; Mangotra, L. K.; Manweiler, R.; Margetis, S.; Markert, C.; Matis, H. S.; Matulenko, Yu A.; McShane, T. S.; Meschanin, A.; Milner, R.; Minaev, N. G.; Mioduszewski, Saskia; Mischke, A.; Mitchell, J.; Mohanty, B.; Morozov, D. A.; Munhoz, M. G.; Nandi, B. K.; Nattrass, C.; Nayak, T. K.; Nelson, J. M.; Netrakanti, P. K.; Ng, M. J.; Nogach, L. V.; Nurushev, S. B.; Odyniec, G.; Ogawa, A.; Okada, H.; Okorokov, V.; Olson, D.; Pachr, M.; Page, B. S.; Pal, S. K.; Pandit, Y.; Panebratsev, Y.; Panitkin, S. Y.; Pawlak, T.; Peitzmann, T.; Perevoztchikov, V.; Perkins, C.; Peryt, W.; Phatak, S. C.; Planinic, M.; Pluta, J.; Poljak, N.; Poskanzer, A. M.; Potukuchi, B. V. K. S.; Prindle, D.; Pruneau, C.; Pruthi, N. K.; Putschke, J.; Raniwala, R.; Raniwala, S.; Ray, R. L.; Redwine, R.; Reed, R.; Ridiger, A.; Ritter, H. G.; Roberts, J. B.; Rogachevskiy, O. V.; Romero, J. L.; Rose, A.; Roy, C.; Ruan, L.; Russcher, M. J.; Sahoo, R.; Sakrejda, I.; Sakuma, T.; Salur, S.; Sandweiss, J.; Sarsour, M.; Schambach, J.; Scharenberg, R. P.; Schmitz, N.; Seger, J.; Selyuzhenkov, I.; Seyboth, P.; Shabetai, A.; Shahaliev, E.; Shao, M.; Sharma, M.; Shi, S. S.; Shi, X. -H; Sichtermann, E. P.; Simon, F.; Singaraju, R. N.; Skoby, M. J.; Smirnov, N.; Snellings, R.; Sorensen, P.; Sowinski, J.; Spinka, H. M.; Srivastava, B.; Stadnik, A.; Stanislaus, T. D. S.; Staszak, D.; Strikhanov, M.; Stringfellow, B.; Suaide, A. A. P.; Suarez, M. C.; Subba, N. L.; Sumbera, M.; Sun, X. M.; Sun, Y.; Sun, Z.; Surrow, B.; Symons, T. J. M.; de Toledo, A. Szanto; Takahashi, J.; Tang, A. H.; Tang, Z.; Tarnowsky, T.; Thein, D.; Thomas, J. H.; Tian, J.; Timmins, A. R.; Timoshenko, S.; Tlusty, D.; Tokarev, M.; Trainor, T. A.; Tram, V. N.; Trattner, A. L.; Trentalange, S.; Tribble, Robert E.; Tsai, O. D.; Ulery, J.; Ullrich, T.; Underwood, D. G.; Van Buren, G.; van Leeuwen, M.; Vander Molen, A. M.; Vanfossen, J. A., Jr.; Varma, R.; Vasconcelos, G. M. S.; Vasilevski, I. M.; Vasiliev, A. N.; Videbaek, F.; Vigdor, S. E.; Viyogi, Y. P.; Vokal, S.; Voloshin, S. A.; Wada, M.; Waggoner, W. T.; Walker, M.

    2009-01-01T23:59:59.000Z

    We present a systematic analysis of two-pion interferometry in Au+Au collisions at s(NN)=62.4 GeV and Cu+Cu collisions at s(NN)=62.4 and 200 GeV using the STAR detector at the Relativistic Heavy Ion Collider (RHIC). The multiplicity and transverse...

  5. Novel approaches to low temperature transient liquid phase bonding in the In-Sn/Cu and In-Sn-Bi/Cu systems

    E-Print Network [OSTI]

    Fischer, David S., Ph. D. Massachusetts Institute of Technology

    2008-01-01T23:59:59.000Z

    A fluxless low temperature transient liquid phase (LTTLP) bonding process was studied as a method of producing Cu/Cu joints below 125°C and 75°C using interlayer alloys from the In-Sn and In-Sn-Bi systems. Using thermodynamic ...

  6. Surface photovoltage analyses of Cu(In,Ga)S2/CdS and Cu(In,Ga)S2/In2S3 photovoltaic junctions

    E-Print Network [OSTI]

    Osterloh, Frank

    film photovoltaics. While the highest efficiency was achieved for low band-gap absorbers,1 wide bandSurface photovoltage analyses of Cu(In,Ga)S2/CdS and Cu(In,Ga)S2/In2S3 photovoltaic junctions S-Film and Nanotechnology for Photovoltaics, Helmholtz-Zentrum Berlin, Schwarzschildstr. 3, D12489 Berlin-Adlershof, Germany

  7. Magnetic structure of the low-dimensional magnet NaCu{sub 2}O{sub 2}: {sup 63,65}Cu and {sup 23}Na NMR studies

    SciTech Connect (OSTI)

    Sadykov, A. F., E-mail: sadykov@imp.uran.ru; Gerashchenko, A. P.; Piskunov, Yu. V.; Ogloblichev, V. V.; Smol’nikov, A. G.; Verkhovskii, S. V.; Buzlukov, A. L.; Arapova, I. Yu. [Russian Academy of Sciences, Institute of Metal Physics, Ural Branch (Russian Federation); Furukawa, Y. [Iowa State University, Ames Laboratory (United States); Yakubovskii, A. Yu. [National Research Centre Kurchatov Institute (Russian Federation); Bush, A. A. [Moscow State Technical University of Radio Engineering, Electronics, and Automation (Russian Federation)

    2014-11-15T23:59:59.000Z

    The magnetic structure of a quasi-one-dimensional frustrated NaCu{sub 2}O{sub 2} magnet single crystal is studied by NMR. The spatial orientation of the planar spin spirals in the copper-oxygen Cu{sup 2+}-O chains is determined, and its evolution as a function of the applied magnetic field direction is analyzed.

  8. Submillimeter and microwave residual losses in epitaxial films of Y-Ba-Cu-O and Tl-Ca-Ba-Cu-O

    SciTech Connect (OSTI)

    Miller, D.; Richards, P.L. [Lawrence Berkeley Lab., CA (United States); Garrison, S.M.; Newman, N. [Conductus, Inc., Sunnyvale, CA (United States); Eom, C.B.; Geballe, T.H. [Stanford Univ., CA (United States). Dept. of Applied Physics; Etemad, S.; Inam, A.; Venkatesan, T. [Bell Communications Research, Inc., Red Bank, NJ (United States); Martens, J.S. [Sandia National Labs., Albuquerque, NM (United States); Lee, W.Y. [International Business Machines Corp., San Jose, CA (United States); Bourne, L.C. [Superconductor Technologies, Inc., Santa Barbara, CA (United States)

    1992-03-01T23:59:59.000Z

    We have used a novel bolometric technique and a resonant technique to obtain accurate submillimeter and microwave residual loss data for epitaxial thin films of YBa{sub 2}Cu{sub 3}O{sub 7}, Tl{sub 2}Ca{sub 2}Ba{sub 2}Cu{sub 3}O{sub 10} and Tl{sub 2}CaBa{sub 2}Cu{sub 2}O{sub 8}. For all films we obtain good agreement between the submillimeter and microwave data, with the residual losses in both the Y-Ba-Cu-O and Tl-Ca-Ba-Cu-O films scaling approximately as frequency squared below {approximately} 1 THz. We are able to fit the losses in the Y-Ba-Cu-O films to a weakly coupled grain model for the a-b plane conductivity, in good agreement with results from a Kramers-Kronig analysis of the loss data. We observe strong phonon structure in the Tl-Ca-Ba-Cu-O films for frequencies between 2 and 21 THz, and are unable to fit these losses to the simple weakly coupled grain model. This is in strong contrast to the case for other high {Tc} superconductors such as YBa{sub 2}Cu{sub 3}O{sub 7}, where phonon structure observed in ceramic samples is absent in epitaxial oriented films and crystals because of the electronic screening due to the high conductivity of the a-b planes.

  9. Time evolution of the exponential wavenumber spectra of turbulence upon helium injection into a hydrogen discharge at the FT-2 tokamak

    SciTech Connect (OSTI)

    Gurchenko, A. D.; Gusakov, E. Z.; Lashkul, S. I.; Altukhov, A. B.; Selyunin, E. P.; Esipov, L. A.; Kantor, M. Yu.; Kouprienko, D. V.; Stepanov, A. Yu. [Russian Academy of Sciences, Ioffe Physical Technical Institute (Russian Federation)

    2013-05-15T23:59:59.000Z

    The effect of variations in the key parameter of short-wavelength turbulence-the ion-acoustic Larmor radius {rho}{sub s}, which determines the position of the maximum of the drift instability growth rate over poloidal wavenumbers-was studied experimentally at the FT-2 tokamak. For this purpose, helium was injected to hydrogen plasma, which resulted in a change in the electron temperature at the plasma edge. The universality of the exponential shape of the turbulence spectra over radial wavenumbers q and a substantial excess of the characteristic turbulence scale L over the ion-acoustic Larmor radius was confirmed with the help of correlative diagnostics of enhanced scattering. This excess at the discharge periphery reaches a value of 3-5 at a low electron temperature, apparently, due to an increase in the dissipation of drift waves upon their cascade transfer toward short scale-lengths.

  10. CuC1 thermochemical cycle for hydrogen production

    DOE Patents [OSTI]

    Fan, Qinbai (Chicago, IL); Liu, Renxuan (Chicago, IL)

    2012-01-03T23:59:59.000Z

    An electrochemical cell for producing copper having a dense graphite anode electrode and a dense graphite cathode electrode disposed in a CuCl solution. An anion exchange membrane made of poly(ethylene vinyl alcohol) and polyethylenimine cross-linked with a cross-linking agent selected from the group consisting of acetone, formaldehyde, glyoxal, glutaraldehyde, and mixtures thereof is disposed between the two electrodes.

  11. Synthesis of BiPbSrCaCuO superconductor

    DOE Patents [OSTI]

    Hults, William L. (Los Alamos, NM); Kubat-Martin, Kimberly A. (Espanola, NM); Salazar, Kenneth V. (Espanola, NM); Phillips, David S. (Los Alamos, NM); Peterson, Dean E. (Los Alamos, NM)

    1994-01-01T23:59:59.000Z

    A process and a precursor composition for preparing a lead-doped bismuth-strontium-calcium-copper oxide superconductor of the formula Bi.sub.a Pb.sub.b Sr.sub.c Ca.sub.d Cu.sub.e O.sub.f wherein a is from about 1.7 to about 1.9, b is from about 0.3 to about 0.45, c is from about 1.6 to about 2.2, d is from about 1.6 to about 2.2, e is from about 2.97 to about 3.2 and f is 10.+-.z by reacting a mixture of Bi.sub.4 Sr.sub.3 Ca.sub.3 Cu.sub.4 O.sub.16.+-.z, an alkaline earth metal cuprate, e.g., Sr.sub.9 Ca.sub.5 Cu.sub.24 O.sub.41, and an alkaline earth metal plumbate, e.g., Ca.sub.2-x Sr.sub.x PbO.sub.4 wherein x is about 0.5, is disclosed.

  12. Synthesis of BiPbSrCaCuO superconductor

    DOE Patents [OSTI]

    Hults, W.L.; Kubat-Martin, K.A.; Salazar, K.V.; Phillips, D.S.; Peterson, D.E.

    1994-04-05T23:59:59.000Z

    A process and a precursor composition for preparing a lead-doped bismuth-strontium-calcium-copper oxide superconductor of the formula Bi[sub a]Pb[sub b]Sr[sub c]Ca[sub d]Cu[sub e]O[sub f] wherein a is from about 1.7 to about 1.9, b is from about 0.3 to about 0.45, c is from about 1.6 to about 2.2, d is from about 1.6 to about 2.2, e is from about 2.97 to about 3.2 and f is 10[+-]z by reacting a mixture of Bi[sub 4]Sr[sub 3]Ca[sub 3]Cu[sub 4]O[sub 16[+-]z], an alkaline earth metal cuprate, e.g., Sr[sub 9]Ca[sub 5]Cu[sub 24]O[sub 41], and an alkaline earth metal plumbate, e.g., Ca[sub 2[minus]x]Sr[sub x]PbO[sub 4] wherein x is about 0.5, is disclosed.

  13. Systematic Study of Azimuthal Anisotropy in Cu$+$Cu and Au$+$Au Collisions at $\\sqrt{s_{_{NN}}} = 62.4$ and 200~GeV

    E-Print Network [OSTI]

    A. Adare; S. Afanasiev; C. Aidala; N. N. Ajitanand; Y. Akiba; H. Al-Bataineh; A. Al-Jamel; J. Alexander; K. Aoki; L. Aphecetche; R. Armendariz; S. H. Aronson; J. Asai; E. T. Atomssa; R. Averbeck; T. C. Awes; B. Azmoun; V. Babintsev; G. Baksay; L. Baksay; A. Baldisseri; K. N. Barish; P. D. Barnes; B. Bassalleck; S. Bathe; S. Batsouli; V. Baublis; F. Bauer; A. Bazilevsky; S. Belikov; R. Bennett; Y. Berdnikov; A. A. Bickley; M. T. Bjorndal; J. G. Boissevain; H. Borel; K. Boyle; M. L. Brooks; D. S. Brown; D. Bucher; H. Buesching; V. Bumazhnov; G. Bunce; J. M. Burward-Hoy; S. Butsyk; S. Campbell; J. -S. Chai; B. S. Chang; J. -L. Charvet; S. Chernichenko; C. Y. Chi; J. Chiba; M. Chiu; I. J. Choi; T. Chujo; P. Chung; A. Churyn; V. Cianciolo; C. R. Cleven; Y. Cobigo; B. A. Cole; M. P. Comets; P. Constantin; M. Csanád; T. Csörg?; T. Dahms; K. Das; G. David; M. B. Deaton; K. Dehmelt; H. Delagrange; A. Denisov; D. d'Enterria; A. Deshpande; E. J. Desmond; O. Dietzsch; A. Dion; M. Donadelli; J. L. Drachenberg; O. Drapier; A. Drees; A. K. Dubey; A. Durum; V. Dzhordzhadze; Y. V. Efremenko; J. Egdemir; F. Ellinghaus; W. S. Emam; A. Enokizono; H. En'yo; B. Espagnon; S. Esumi; K. O. Eyser; D. E. Fields; M. Finger; M. Finger; \\, Jr.; F. Fleuret; S. L. Fokin; B. Forestier; Z. Fraenkel; J. E. Frantz; A. Franz; A. D. Frawley; K. Fujiwara; Y. Fukao; S. -Y. Fung; T. Fusayasu; S. Gadrat; I. Garishvili; F. Gastineau; M. Germain; A. Glenn; H. Gong; M. Gonin; J. Gosset; Y. Goto; R. Granier de Cassagnac; N. Grau; S. V. Greene; M. Grosse Perdekamp; T. Gunji; H. -Å. Gustafsson; T. Hachiya; A. Hadj Henni; C. Haegemann; J. S. Haggerty; M. N. Hagiwara; H. Hamagaki; R. Han; H. Harada; E. P. Hartouni; K. Haruna; M. Harvey; E. Haslum; K. Hasuko; R. Hayano; X. He; M. Heffner; T. K. Hemmick; T. Hester; J. M. Heuser; H. Hiejima; J. C. Hill; R. Hobbs; M. Hohlmann; M. Holmes; W. Holzmann; K. Homma; B. Hong; T. Horaguchi; D. Hornback; S. Huang; M. G. Hur; T. Ichihara; H. Iinuma; K. Imai; M. Inaba; Y. Inoue; D. Isenhower; L. Isenhower; M. Ishihara; T. Isobe; M. Issah; A. Isupov; B. V. Jacak; J. Jia; J. Jin; O. Jinnouchi; B. M. Johnson; K. S. Joo; D. Jouan; F. Kajihara; S. Kametani; N. Kamihara; J. Kamin; M. Kaneta; J. H. Kang; H. Kanou; T. Kawagishi; D. Kawall; A. V. Kazantsev; S. Kelly; A. Khanzadeev; J. Kikuchi; D. H. Kim; D. J. Kim; E. Kim; Y. -S. Kim; E. Kinney; Á. Kiss; E. Kistenev; A. Kiyomichi; J. Klay; C. Klein-Boesing; L. Kochenda; V. Kochetkov; B. Komkov; M. Konno; D. Kotchetkov; A. Kozlov; A. Král; A. Kravitz; P. J. Kroon; J. Kubart; G. J. Kunde; N. Kurihara; K. Kurita; M. J. Kweon; Y. Kwon; G. S. Kyle; R. Lacey; Y. S. Lai; J. G. Lajoie; A. Lebedev; Y. Le Bornec; S. Leckey; D. M. Lee; M. K. Lee; T. Lee; M. J. Leitch; M. A. L. Leite; B. Lenzi; X. Li; X. H. Li; H. Lim; T. Liška; A. Litvinenko; M. X. Liu; B. Love; D. Lynch; C. F. Maguire; Y. I. Makdisi; A. Malakhov; M. D. Malik; V. I. Manko; Y. Mao; L. Mašek; H. Masui; F. Matathias; M. C. McCain; M. McCumber; P. L. McGaughey; Y. Miake; P. Mikeš; K. Miki; T. E. Miller; A. Milov; S. Mioduszewski; G. C. Mishra; M. Mishra; J. T. Mitchell; M. Mitrovski; A. Morreale; D. P. Morrison; J. M. Moss; T. V. Moukhanova; D. Mukhopadhyay; J. Murata; S. Nagamiya; Y. Nagata; J. L. Nagle; M. Naglis; I. Nakagawa; Y. Nakamiya; T. Nakamura; K. Nakano; J. Newby; M. Nguyen; B. E. Norman; R. Nouicer; A. S. Nyanin; J. Nystrand; E. O'Brien; S. X. Oda; C. A. Ogilvie; H. Ohnishi; I. D. Ojha; M. Oka; K. Okada; O. O. Omiwade; A. Oskarsson; I. Otterlund; M. Ouchida; K. Ozawa; R. Pak; D. Pal; A. P. T. Palounek; V. Pantuev; V. Papavassiliou; J. Park; W. J. Park; S. F. Pate; H. Pei; J. -C. Peng; H. Pereira; V. Peresedov; D. Yu. Peressounko; C. Pinkenburg; R. P. Pisani; M. L. Purschke; A. K. Purwar; H. Qu; J. Rak; A. Rakotozafindrabe; I. Ravinovich; K. F. Read; S. Rembeczki; M. Reuter; K. Reygers; V. Riabov; Y. Riabov; G. Roche; A. Romana; M. Rosati; S. S. E. Rosendahl; P. Rosnet; P. Rukoyatkin; V. L. Rykov; S. S. Ryu; B. Sahlmueller; N. Saito; T. Sakaguchi; S. Sakai; H. Sakata; V. Samsonov; H. D. Sato; S. Sato; S. Sawada; J. Seele; R. Seidl; V. Semenov; R. Seto; D. Sharma; T. K. Shea; I. Shein; A. Shevel; T. -A. Shibata; K. Shigaki; M. Shimomura; T. Shohjoh; K. Shoji; A. Sickles; C. L. Silva; D. Silvermyr; C. Silvestre; K. S. Sim; C. P. Singh; V. Singh; S. Skutnik; M. Slune?ka; W. C. Smith; A. Soldatov; R. A. Soltz; W. E. Sondheim; S. P. Sorensen; I. V. Sourikova; F. Staley; P. W. Stankus; E. Stenlund; M. Stepanov; A. Ster; S. P. Stoll; T. Sugitate; C. Suire; J. P. Sullivan; J. Sziklai; T. Tabaru; S. Takagi; E. M. Takagui; A. Taketani; K. H. Tanaka; Y. Tanaka; K. Tanida; M. J. Tannenbaum; A. Taranenko; P. Tarján; T. L. Thomas; T. Todoroki; M. Togawa; A. Toia; J. Tojo; L. Tomášek; H. Torii; R. S. Towell; V-N. Tram; I. Tserruya; Y. Tsuchimoto; S. K. Tuli; H. Tydesjö; N. Tyurin; C. Vale; H. Valle

    2014-12-02T23:59:59.000Z

    We have studied the dependence of azimuthal anisotropy $v_2$ for inclusive and identified charged hadrons in Au$+$Au and Cu$+$Cu collisions on collision energy, species, and centrality. The values of $v_2$ as a function of transverse momentum $p_T$ and centrality in Au$+$Au collisions at $\\sqrt{s_{_{NN}}}$=200~GeV and 62.4~GeV are the same within uncertainties. However, in Cu$+$Cu collisions we observe a decrease in $v_2$ values as the collision energy is reduced from 200 to 62.4~GeV. The decrease is larger in the more peripheral collisions. By examining both Au$+$Au and Cu$+$Cu collisions we find that $v_2$ depends both on eccentricity and the number of participants, $N_{\\rm part}$. We observe that $v_2$ divided by eccentricity ($\\varepsilon$) monotonically increases with $N_{\\rm part}$ and scales as ${N_{\\rm part}^{1/3}}$. The Cu$+$Cu data at 62.4 GeV falls below the other scaled $v_{2}$ data. For identified hadrons, $v_2$ divided by the number of constituent quarks $n_q$ is independent of hadron species as a function of transverse kinetic energy $KE_T=m_T-m$ between $0.1Cu$+$Cu data at 62.4 GeV, of $v_2/(n_q\\cdot\\varepsilon\\cdot N^{1/3}_{\\rm part})$ vs $KE_T/n_q$ for all measured particles.

  14. Stripe-to-bubble transition of magnetic domains at the spin reorientation of (Fe/Ni)/Cu/Ni/Cu(001)

    SciTech Connect (OSTI)

    Wu, J.; Choi, J.; Won, C.; Wu, Y. Z.; Scholl, A.; Doran, A.; Hwang, Chanyong; Qiu, Z.

    2010-06-09T23:59:59.000Z

    Magnetic domain evolution at the spin reorientation transition (SRT) of (Fe/Ni)/Cu/Ni/Cu(001) is investigated using photoemission electron microscopy. While the (Fe/Ni) layer exhibits the SRT, the interlayer coupling of the perpendicularly magnetized Ni layer to the (Fe/Ni) layer serves as a virtual perpendicular magnetic field exerted on the (Fe/Ni) layer. We find that the perpendicular virtual magnetic field breaks the up-down symmetry of the (Fe/Ni) stripe domains to induce a net magnetization in the normal direction of the film. Moreover, as the virtual magnetic field increases to exceed a critical field, the stripe domain phase evolves into a bubble domain phase. Although the critical field depends on the Fe film thickness, we show that the area fraction of the minority domain exhibits a universal value that determines the stripe-to-bubble phase transition.

  15. Magnetic properties and interlayer coupling of epitaxial Co/Cu films on Si

    SciTech Connect (OSTI)

    Mansell, R.; Petit, D. C. M. C.; Fernández-Pacheco, A.; Lavrijsen, R.; Lee, J. H.; Cowburn, R. P. [Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE (United Kingdom)

    2014-08-14T23:59:59.000Z

    Thin films of Co and Co/Cu/Co trilayers with wedged Cu interlayers were grown epitaxially on Cu buffer layers on hydrogen passivated Si(001) wafers. We find that single Co layers have a well-defined four-fold anisotropy but with smaller in-plane anisotropies than observed in Co grown on Cu crystals. Ruderman–Kittel–Kasuya–Yosida (RKKY) interlayer coupling is observed in one Co/Cu/Co sample which is the smoothest of the films as measured by atomic force microscopy. Some of the films also form a dot-like structure on the surface. Intermixing at elevated temperatures between the Cu buffer and Si limits the ability to form flat surfaces to promote RKKY coupling.

  16. Method of fabricating high-efficiency Cu(In,Ga)(Se,S){sub 2} thin films for solar cells

    DOE Patents [OSTI]

    Noufi, R.; Gabor, A.M.; Tuttle, J.R.; Tennant, A.L.; Contreras, M.A.; Albin, D.S.; Carapella, J.J.

    1995-08-15T23:59:59.000Z

    A process for producing a slightly Cu-poor thin film of Cu(In,Ga)(Se,S){sub 2} comprises depositing a first layer of (In,Ga){sub x} (Se,S){sub y} followed by depositing just enough Cu+(Se,S) or Cu{sub x} (Se,S) to produce the desired slightly Cu-poor material. In a variation, most, but not all, (about 90 to 99%) of the (In,Ga){sub x} (Se,S){sub y} is deposited first, followed by deposition of all the Cu+(Se,S) or Cu{sub x} (Se,S) to go near stoichiometric, possibly or even preferably slightly Cu-rich, and then in turn followed by deposition of the remainder (about 1 to 10%) of the (In,Ga){sub x} (Se,S){sub y} to end with a slightly Cu-poor composition. In yet another variation, a small portion (about 1 to 10%) of the (In,Ga){sub x} (Se,S){sub y} is first deposited as a seed layer, followed by deposition of all of the Cu+(Se,S) or Cu{sub x} (Se,S) to make a very Cu-rich mixture, and then followed deposition of the remainder of the (In,Ga){sub x} (Se,S){sub y} to go slightly Cu-poor in the final Cu(In,Ga)(Se,S){sub 2} thin film. 5 figs.

  17. Adsorbate-driven morphological changes on Cu(111) nano-pits

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Mudiyanselage, K. [Brookhaven National Lab. (BNL), Upton, NY (United States). Chemistry Dept.; BMCC-CUNY, New York, NY (United States). Dept. of Science; Xu, F. [Brookhaven National Lab. (BNL), Upton, NY (United States). Chemistry Dept.; State Univ. of New York (SUNY), Stony Brook, NY (United States). Chemistry Dept.; Hoffmann, F. M. [BMCC-CUNY, New York, NY (United States). Dept. of Science; Hrbek, J. [Brookhaven National Lab. (BNL), Upton, NY (United States). Chemistry Dept.; Waluyo, I. [Brookhaven National Lab. (BNL), Upton, NY (United States). Chemistry Dept.; Boscoboinik, J. A. [Brookhaven National Lab. (BNL), Upton, NY (United States). Center for Functional Nanomaterials; Stacchiola, D. J. [Brookhaven National Lab. (BNL), Upton, NY (United States). Chemistry Dept.

    2015-01-01T23:59:59.000Z

    Adsorbate-driven morphological changes of pitted-Cu(111) surfaces have been investigated following the adsorption and desorption of CO and H. The morphology of the pitted-Cu(111) surfaces, prepared by Ar+ sputtering, exposed a few atomic layers deep nested hexagonal pits of diameters from 8 to 38 nm with steep step bundles. The roughness of pitted-Cu(111) surfaces can be healed by heating to 450-500 K in vacuum. Adsorption of CO on the pitted-Cu(111) surface leads to two infrared peaks at 2089-2090 and 2101-2105 cm-1 for CO adsorbed on under-coordinated sites in addition to the peak at 2071 cm-1 for CO adsorbed on atop sites of the close-packed Cu(111) surface. CO adsorbed on under-coordinated sites is thermally more stable than that of atop Cu(111) sites. Annealing of the CO-covered surface from 100 to 300 K leads to minor changes of the surface morphology. In contrast, annealing of a H covered surface to 300 K creates a smooth Cu(111) surface as deduced from infrared data of adsorbed CO and scanning tunnelling microscopy (STM) imaging. The observation of significant adsorbate-driven morphological changes with H is attributed to its stronger modification of the Cu(111) surface by the formation of a sub-surface hydride with a hexagonal structure, which relaxes into the healed Cu(111) surface upon hydrogen desorption. These morphological changes occur ~150 K below the temperature required for healing of the pitted-Cu(111) surface by annealing in vacuum. In contrast, the adsorption of CO, which only interacts with the top-most Cu layer and desorbs by 160 K, does not significantly change the morphology of the pitted-Cu(111) surface.

  18. Adsorbate-driven morphological changes on Cu(111) nano-pits

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Mudiyanselage, K.; Xu, F.; Hoffmann, F. M.; Hrbek, J.; Waluyo, I.; Boscoboinik, J. A.; Stacchiola, D. J.

    2015-01-01T23:59:59.000Z

    Adsorbate-driven morphological changes of pitted-Cu(111) surfaces have been investigated following the adsorption and desorption of CO and H. The morphology of the pitted-Cu(111) surfaces, prepared by Ar+ sputtering, exposed a few atomic layers deep nested hexagonal pits of diameters from 8 to 38 nm with steep step bundles. The roughness of pitted-Cu(111) surfaces can be healed by heating to 450-500 K in vacuum. Adsorption of CO on the pitted-Cu(111) surface leads to two infrared peaks at 2089-2090 and 2101-2105 cm-1 for CO adsorbed on under-coordinated sites in addition to the peak at 2071 cm-1 for CO adsorbed on atop sitesmore »of the close-packed Cu(111) surface. CO adsorbed on under-coordinated sites is thermally more stable than that of atop Cu(111) sites. Annealing of the CO-covered surface from 100 to 300 K leads to minor changes of the surface morphology. In contrast, annealing of a H covered surface to 300 K creates a smooth Cu(111) surface as deduced from infrared data of adsorbed CO and scanning tunnelling microscopy (STM) imaging. The observation of significant adsorbate-driven morphological changes with H is attributed to its stronger modification of the Cu(111) surface by the formation of a sub-surface hydride with a hexagonal structure, which relaxes into the healed Cu(111) surface upon hydrogen desorption. These morphological changes occur ~150 K below the temperature required for healing of the pitted-Cu(111) surface by annealing in vacuum. In contrast, the adsorption of CO, which only interacts with the top-most Cu layer and desorbs by 160 K, does not significantly change the morphology of the pitted-Cu(111) surface.« less

  19. Recrystallization method to selenization of thin-film Cu(In,Ga)Se.sub.2 for semiconductor device applications

    DOE Patents [OSTI]

    Albin, David S. (Denver, CO); Carapella, Jeffrey J. (Evergreen, CO); Tuttle, John R. (Denver, CO); Contreras, Miguel A. (Golden, CO); Gabor, Andrew M. (Boulder, CO); Noufi, Rommel (Golden, CO); Tennant, Andrew L. (Denver, CO)

    1995-07-25T23:59:59.000Z

    A process for fabricating slightly Cu-poor thin-films of Cu(In,Ga)Se.sub.2 on a substrate for semiconductor device applications includes the steps of forming initially a slightly Cu-rich, phase separated, mixture of Cu(In,Ga)Se.sub.2 :Cu.sub.x Se on the substrate in solid form followed by exposure of the Cu(In,Ga)Se.sub.2 :Cu.sub.x Se solid mixture to an overpressure of Se vapor and (In,Ga) vapor for deposition on the Cu(In,Ga)Se.sub.2 :Cu.sub.x Se solid mixture while simultaneously increasing the temperature of the solid mixture toward a recrystallization temperature (about 550.degree. C.) at which Cu(In,Ga)Se.sub.2 is solid and Cu.sub.x Se is liquid. The (In,Ga) flux is terminated while the Se overpressure flux and the recrystallization temperature are maintained to recrystallize the Cu.sub.x Se with the (In, Ga) that was deposited during the temperature transition and with the Se vapor to form the thin-film of slightly Cu-poor Cu.sub.x (In,Ga).sub.y Se.sub.z. The initial Cu-rich, phase separated large grain mixture of Cu(In,Ga)Se.sub.2 :Cu.sub.x Se can be made by sequentially depositing or co-depositing the metal precursors, Cu and (In, Ga), on the substrate at room temperature, ramping up the thin-film temperature in the presence of Se overpressure to a moderate anneal temperature (about 450.degree. C.) and holding that temperature and the Se overpressure for an annealing period. A nonselenizing, low temperature anneal at about 100.degree. C. can also be used to homogenize the precursors on the substrates before the selenizing, moderate temperature anneal.

  20. 560 GHz ft, fmax InGaAs/InP DHBT in a novel dry-etched emitter process Erik Lind, Adam M. Crook, Zach Griffith, Mark J.W. Rodwell

    E-Print Network [OSTI]

    Rodwell, Mark J. W.

    560 GHz ft, fmax InGaAs/InP DHBT in a novel dry-etched emitter process Erik Lind, Adam M. Crook Phone: (805) 893-3273, Fax: (805) 893-3262, Email:Erik.Lind@ftf.lth.se / lind@ece.ucsb.edu Xiao

  1. Enthalpy of mixing of liquid Ni-Zr and Cu-Ni-Zr alloys

    SciTech Connect (OSTI)

    Witusiewicz, V.T.; Sommer, F.

    2000-04-01T23:59:59.000Z

    Since the Al-Cu-Ni-Zr system is a basis for the production of bulk amorphous materials by rapid solidification techniques from the liquid state, it is of great scientific interest to determine the partial and the integral thermodynamic functions of liquid and undercooled liquid alloys. Such data, as was pointed out previously, are important in order to understand their extremely good glass-forming ability in multicomponent metallic systems as well as for processing improvements. In order to measure the thermodynamic properties of the Al-Cu-Ni-Zr quaternary, it is necessary to have reliable thermochemical data for its constituent canaries and ternaries first. In a series of articles, the authors have reported in detail the thermodynamic properties of liquid Al-Cu, Al-Ni, Cu-Ni, Cu-Zr, Al-Zr, Al-Cu-Ni, and Al-Cu-Zr alloys. This article deals with the direct calorimetric measurements of the partial and the integral enthalpies of mixing of liquid Ni-Zr and Cu-Ni-Zr alloys and the heat capacity of liquid Ni{sub 26}Zr{sub 74}. In a subsequent article, the authors will present similar data for the liquid ternary Al-Ni-Zr and for the liquid quaternary Al-Cu-Ni-Zr alloys.

  2. Rings sliding on a honeycomb network: Adsorption contours, interactions, and assembly of benzene on Cu(111)

    E-Print Network [OSTI]

    Einstein, Theodore L.

    by anthraquinone AQ on Cu 111 .3 The pore diameter is unprecedentally large, over 5 nm, and each cell encloses over

  3. Crystallization and glass formation in electron and laser beam irradiated Cu-Zr alloys

    SciTech Connect (OSTI)

    Huang, J.S.; Kaufmann, E.N.; Wall, M.A.; Olsen, B.L.

    1987-11-01T23:59:59.000Z

    Four Cu-Zr alloys, Cu/sub 56/Zr/sub 44/, Cu/sub 50/Zr/sub 50/, Cu/sub 47/Zr/sub 53/, and Cu/sub 33/Zr/sub 67/, were surface melted with electron and pulsed laser beams to compare their kinetics of nucleation, growth and glass formation. It was observed that the ease of glass formation increased in the order: Cu/sub 33/Zr/sub 67/, Cu/sub 47/Zr/sub 53/, Cu/sub 56/Zr/sub 44/, and Cu/sub 50/Zr/sub 50/. The nucleation and regrowth produced different metastable phases. At the equiatomic composition, the preferred phase is a CsCl-type (B2) BCC structure. As the composition deviates from this, the preferred phase is either orthorhombic or tetragonal with a much larger unit cell not previously reported in the literature. The maximum growth velocity of these metastable phases was found to be about 0.025 m/s. The slow kinetics are responsible for the ease of glass formation in these systems. 4 refs., 7 figs., 2 tabs.

  4. Structural, optical and ethanol sensing properties of Cu-doped SnO{sub 2} nanowires

    SciTech Connect (OSTI)

    Johari, Anima, E-mail: animajohari@gmail.com; Sharma, Manish [Center for Applied Research in Electronics (CARE), IIT Delhi, Hauz khas, New Delhi-110016 (India); Johari, Anoopshi [THDC Institute of Hydropower Institute of Engineering and Technology, Tehri-249124 (India); Bhatnagar, M. C. [Physics Department, IIT Delhi, Hauz khas, New Delhi-110016 (India)

    2014-04-24T23:59:59.000Z

    In present work, one-dimensional nanostructure of Cu-doped Tin oxide (SnO{sub 2}) was synthesized by using thermal evaporation method in a tubular furnace under Nitrogen (N{sub 2}) ambience. The growth was carried out at atmospheric pressure. SEM and TEM images reveal the growth of wire-like nanostructures of Cu-doped SnO{sub 2} on Si substrate. The XRD analysis confirms that the synthesized SnO{sub 2} nanowires have tetragonal rutile structure with polycrystalline nature and X-ray diffraction pattern also showed that Cu gets incorporated into the SnO{sub 2} lattice. EDX spectra confirm the doping of Cu into SnO{sub 2} nanowires and atomic fraction of Cu in nanowires is ? 0.5 at%. The Vapor Liquid Solid (VLS) growth mechanism for Cu-doped SnO{sub 2} nanowires was also confirmed by EDX spectra. The optical properties of as grown Cu-doped SnO{sub 2} nanowires were studied by using UV-vis spectra which concludes the band gap of about 3.7 eV. As synthesized single Cu-doped SnO{sub 2} nanowire based gas sensor exhibit relatively good performance to ethanol gas. This sensing behaviour offers a suitable application of the Cu-doped SnO{sub 2} nanowire sensor for detection of ethanol gas.

  5. Effect of thermally stable Cu- and Mg-rich aluminides on the high temperature strength of an AlSi12CuMgNi alloy

    SciTech Connect (OSTI)

    Asghar, Z., E-mail: zhdasghar@yahoo.com [Materials Division, Directorate of Technology, PINSTECH, P. O. Nilore, Islamabad (Pakistan); Vienna University of Technology, Institute of Materials Science and Technology, Karlsplatz 13/308, A-1040 Vienna (Austria); Requena, G. [Vienna University of Technology, Institute of Materials Science and Technology, Karlsplatz 13/308, A-1040 Vienna (Austria); Zahid, G.H.; Rafi-ud-Din [Materials Division, Directorate of Technology, PINSTECH, P. O. Nilore, Islamabad (Pakistan)

    2014-02-15T23:59:59.000Z

    The internal architecture of an AlSi12CuMgNi piston alloy, revealed by synchrotron tomography, consists of three dimensional interconnected hybrid networks of Cu-rich aluminides, Mg-rich aluminides and eutectic/primary Si embedded in an ?-Al matrix. The strength at room temperature and at 300°C is studied as a function of solution treatment time at 490°C and compared with results previously reported for an AlSi12Ni alloy. The addition of 1 wt% Cu and 1 wt% Mg to AlSi12CuMgNi increases the room temperature strength by precipitation hardening while the strength at 300°C is similar for both alloys in as-cast condition. The strength of AlSi12CuMgNi decreases with solution treatment time and stabilizes at 4 h solution treatment. The effect of solution treatment time on the strength of the AlSi12CuMgNi alloy is less pronounced than for the AlSi12Ni alloy both at room temperature and at 300°C. - Highlights: • The 3D microstructure of AlSi12CuMgNi is revealed by synchrotron tomography. • An imaging analysis procedure to segment phases with similar contrasts is presented. • 1 wt% Cu and Mg results in the formation of 3D networks of rigid phases. • AlSi12CuMgNi is stronger than AlSi12Ni owing to the stability of the 3D networks.

  6. Teamwork and geosteering pay off in horizontal project

    SciTech Connect (OSTI)

    Schroeder, T.; Mathis, D. (Baker Hughes Inteq, Houston, TX (United States)); Howard, R.; Williams, G.; Sun, J. (Pogo Producing Co., Houston, TX (United States))

    1995-02-27T23:59:59.000Z

    The paper describes the well drilling of five horizontal gas wells in the Eugene Island Block 295, offshore Louisiana. The field came into production in 1973. As of 1 January 1994, the cumulative production had been approximately 2.9 million bbl of oil and condensate and 386 billion cu ft of natural gas. A project was undertaken to develop three very shallow gas sands at about 1,200, 1,800, and 2,500 feet. The paper describes the mud system, casing program, directional program, horizontal program, MWD logging, and initial production test results.

  7. Cu-Ni-Fe anodes having improved microstructure

    DOE Patents [OSTI]

    Bergsma, S. Craig; Brown, Craig W.

    2004-04-20T23:59:59.000Z

    A method of producing aluminum in a low temperature electrolytic cell containing alumina dissolved in an electrolyte. The method comprises the steps of providing a molten electrolyte having alumina dissolved therein in an electrolytic cell containing the electrolyte. A non-consumable anode and cathode is disposed in the electrolyte, the anode comprised of Cu--Ni--Fe alloys having single metallurgical phase. Electric current is passed from the anode, through the electrolyte to the cathode thereby depositing aluminum on the cathode, and molten aluminum is collected from the cathode.

  8. The Parameter Space of Graphene CVD on Polycrystalline Cu

    E-Print Network [OSTI]

    Kidambi, Piran Ravichandran; Ducati, Caterina; Dlubak, Bruno; Gardiner, Damian; Weatherup, Robert S.; Martin, Marie-Blandine; Seneor, Pierre; Coles, Harry; Hofmann, Stephan

    2012-09-27T23:59:59.000Z

    growth mechanisms have yet to be fully understood6–8 and the often narrow empirical process optimizations allow little generalization due to the vast CVD parameter space.4,5,9–13 Most current literature focuses on exposing polycrystalline Cu4,5 foils... at temperature of 600oC or below, as recently reported for toluene18(~ 600 oC, ID/IG~0.35) and ill-defined C6H6 exposures in hot-wall furnaces.35 We note in this context that these previous efforts have focused on lowering the temperature, but clearly...

  9. Autocatalytic water dissociation on Cu(110) at near ambient conditions

    SciTech Connect (OSTI)

    Mulleregan, Alice; Andersson, Klas; Ketteler, Guido; Bluhm, Hendrik; Yamamoto, Susumu; Ogasawara, Hirohito; Pettersson, Lars G.M.; Salmeron, Miquel; Nilsson, Anders

    2007-05-16T23:59:59.000Z

    Autocatalytic dissociation of water on the Cu(110) metal surface is demonstrated based on X-ray photoelectron spectroscopy studies carried out in-situ under near ambient conditions of water vapor pressure (1 Torr) and temperature (275-520 K). The autocatalytic reaction is explained as the result of the strong hydrogen-bond in the H{sub 2}O-OH complex of the dissociated final state, which lowers the water dissociation barrier according to the Broensted-Evans-Polanyi relations. A simple chemical bonding picture is presented which predicts autocatalytic water dissociation to be a general phenomenon on metal surfaces.

  10. La??xSrxCuO? superconductor nanowire devices

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Litombe, N. E. [Harvard Univ., Cambridge, MA (United States); Brookhaven National Lab. (BNL), Upton, NY (United States); Bollinger, A. T. [Brookhaven National Lab. (BNL), Upton, NY (United States); Hoffman, J. E. [Harvard Univ., Cambridge, MA (United States); Bozovic, I. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2014-11-01T23:59:59.000Z

    La??xSrxCuO? nanowire devices have been fabricated and characterized using electrical transport measurements. Nanowires with widths down to 80 nm are patterned using high-resolution electron beam lithography. However, the narrowest nanowires show incomplete superconducting transitions with some residual resistance at T = 4 K. Here, we report on refinement of the fabrication process to achieve narrower nanowire devices with complete superconducting transitions, opening the path to the study of novel physics arising from dimension-limited superconductivity on the nanoscale.

  11. Property:NEPA CU Document | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County, Nebraska:PrecourtOid JumpEligSysSize JumpTechDsc Jump to:"PropertyCU

  12. Characterization of Cu-ZSM-5 Prepared by Solid-State Ion Exchange of H-ZSM-5 with CuCl

    E-Print Network [OSTI]

    Bell, Alexis T.

    Cl occlusion in the zeolite pores. After SSIE, the resulting Cu-ZSM-5 was characterized by XRD, 27 Al MAS NMR and nitriles,15 the desulfurization of diesel fuel,16 and the oxidative carbony- lation of methanol to dimethyl

  13. J/psi production at high transverse momenta in p+p and Cu+Cu collisions at sqrt sNN = 200 GeV

    SciTech Connect (OSTI)

    STAR Collaboration; Abelev, B. I.

    2009-10-27T23:59:59.000Z

    The STAR collaboration at RHIC presents measurements of J/{psi} {yields} e{sup +}e{sup -} at mid-rapidity and high transverse momentum (p{sub T} > 5 GeV/c) in p+p and central Cu+Cu collisions at {radical}sNN = 200 GeV. The inclusive J/{psi} production cross section for Cu+Cu collisions is found to be consistent at high p{sub T} with the binary collision-scaled cross section for p+p collisions, in contrast to previous measurements at lower p{sub T}, where a suppression of J/{psi} production is observed relative to the expectation from binary scaling. Azimuthal correlations of J/{psi} with charged hadrons in p+p collisions provide an estimate of the contribution of B-meson decays to J/{psi} production of 13% {+-} 5%.

  14. $J/?$ production at low $p_T$ in Au+Au and Cu+Cu collisions at $\\sqrt{s_{_{NN}}}$ = 200 GeV at STAR

    E-Print Network [OSTI]

    STAR Collaboration; L. Adamczyk; J. K. Adkins; G. Agakishiev; M. M. Aggarwal; Z. Ahammed; I. Alekseev; J. Alford; C. D. Anson; A. Aparin; D. Arkhipkin; E. C. Aschenauer; G. S. Averichev; J. Balewski; A. Banerjee; Z. Barnovska; D. R. Beavis; R. Bellwied; A. Bhasin; A. K. Bhati; P. Bhattarai; H. Bichsel; J. Bielcik; J. Bielcikova; L. C. Bland; I. G. Bordyuzhin; W. Borowski; J. Bouchet; A. V. Brandin; S. G. Brovko; S. Bültmann; I. Bunzarov; T. P. Burton; J. Butterworth; H. Caines; M. Calderón de la Barca Sánchez; D. Cebra; R. Cendejas; M. C. Cervantes; P. Chaloupka; Z. Chang; S. Chattopadhyay; H. F. Chen; J. H. Chen; L. Chen; J. Cheng; M. Cherney; A. Chikanian; W. Christie; J. Chwastowski; M. J. M. Codrington; R. Corliss; J. G. Cramer; H. J. Crawford; X. Cui; S. Das; A. Davila Leyva; L. C. De Silva; R. R. Debbe; T. G. Dedovich; J. Deng; A. A. Derevschikov; R. Derradi de Souza; S. Dhamija; B. di Ruzza; L. Didenko; C. Dilks; F. Ding; P. Djawotho; X. Dong; J. L. Drachenberg; J. E. Draper; C. M. Du; L. E. Dunkelberger; J. C. Dunlop; L. G. Efimov; J. Engelage; K. S. Engle; G. Eppley; L. Eun; O. Evdokimov; R. Fatemi; S. Fazio; J. Fedorisin; P. Filip; E. Finch; Y. Fisyak; C. E. Flores; C. A. Gagliardi; D. R. Gangadharan; D. Garand; F. Geurts; A. Gibson; M. Girard; S. Gliske; D. Grosnick; Y. Guo; A. Gupta; S. Gupta; W. Guryn; B. Haag; O. Hajkova; A. Hamed; L-X. Han; R. Haque; J. W. Harris; J. P. Hays-Wehle; S. Heppelmann; A. Hirsch; G. W. Hoffmann; D. J. Hofman; S. Horvat; B. Huang; H. Z. Huang; P. Huck; T. J. Humanic; G. Igo; W. W. Jacobs; H. Jang; E. G. Judd; S. Kabana; D. Kalinkin; K. Kang; K. Kauder; H. W. Ke; D. Keane; A. Kechechyan; A. Kesich; Z. H. Khan; D. P. Kikola; I. Kisel; A. Kisiel; D. D. Koetke; T. Kollegger; J. Konzer; I. Koralt; W. Korsch; L. Kotchenda; P. Kravtsov; K. Krueger; I. Kulakov; L. Kumar; R. A. Kycia; M. A. C. Lamont; J. M. Landgraf; K. D. Landry; J. Lauret; A. Lebedev; R. Lednicky; J. H. Lee; W. Leight; M. J. LeVine; C. Li; W. Li; X. Li; X. Li; Y. Li; Z. M. Li; L. M. Lima; M. A. Lisa; F. Liu; T. Ljubicic; W. J. Llope; R. S. Longacre; X. Luo; G. L. Ma; Y. G. Ma; D. M. M. D. Madagodagettige Don; D. P. Mahapatra; R. Majka; S. Margetis; C. Markert; H. Masui; H. S. Matis; D. McDonald; T. S. McShane; N. G. Minaev; S. Mioduszewski; B. Mohanty; M. M. Mondal; D. A. Morozov; M. G. Munhoz; M. K. Mustafa; B. K. Nandi; Md. Nasim; T. K. Nayak; J. M. Nelson; L. V. Nogach; S. Y. Noh; J. Novak; S. B. Nurushev; G. Odyniec; A. Ogawa; K. Oh; A. Ohlson; V. Okorokov; E. W. Oldag; R. A. N. Oliveira; M. Pachr; B. S. Page; S. K. Pal; Y. X. Pan; Y. Pandit; Y. Panebratsev; T. Pawlak; B. Pawlik; H. Pei; C. Perkins; W. Peryt; P. Pile; M. Planinic; J. Pluta; D. Plyku; N. Poljak; J. Porter; A. M. Poskanzer; N. K. Pruthi; M. Przybycien; P. R. Pujahari; H. Qiu; A. Quintero; S. Ramachandran; R. Raniwala; S. Raniwala; R. L. Ray; C. K. Riley; H. G. Ritter; J. B. Roberts; O. V. Rogachevskiy; J. L. Romero; J. F. Ross; A. Roy; L. Ruan; J. Rusnak; N. R. Sahoo; P. K. Sahu; I. Sakrejda; S. Salur; A. Sandacz; J. Sandweiss; E. Sangaline; A. Sarkar; J. Schambach; R. P. Scharenberg; A. M. Schmah; W. B. Schmidke; N. Schmitz; J. Seger; P. Seyboth; N. Shah; E. Shahaliev; P. V. Shanmuganathan; M. Shao; B. Sharma; W. Q. Shen; S. S. Shi; Q. Y. Shou; E. P. Sichtermann; R. N. Singaraju; M. J. Skoby; D. Smirnov; N. Smirnov; D. Solanki; P. Sorensen; U. G. deSouza; H. M. Spinka; B. Srivastava; T. D. S. Stanislaus; J. R. Stevens; R. Stock; M. Strikhanov; B. Stringfellow; A. A. P. Suaide; M. Sumbera; X. Sun; X. M. Sun; Y. Sun; Z. Sun; B. Surrow; D. N. Svirida; T. J. M. Symons; A. Szanto de Toledo; J. Takahashi; A. H. Tang; Z. Tang; T. Tarnowsky; J. H. Thomas; A. R. Timmins; D. Tlusty; M. Tokarev; S. Trentalange; R. E. Tribble; P. Tribedy; B. A. Trzeciak; O. D. Tsai; J. Turnau; T. Ullrich; D. G. Underwood; G. Van Buren; G. van Nieuwenhuizen; J. A. Vanfossen, Jr.; R. Varma; G. M. S. Vasconcelos; A. N. Vasiliev; R. Vertesi; F. Videbæk; Y. P. Viyogi; S. Vokal; A. Vossen; M. Wada; M. Walker; F. Wang; G. Wang; H. Wang; J. S. Wang; X. L. Wang; Y. Wang; Y. Wang; G. Webb; J. C. Webb; G. D. Westfall; H. Wieman; S. W. Wissink; R. Witt; Y. F. Wu; Z. Xiao; W. Xie; K. Xin; H. Xu; N. Xu; Q. H. Xu; Y. Xu; Z. Xu; W. Yan; C. Yang; Y. Yang; Y. Yang; Z. Ye; P. Yepes; L. Yi; K. Yip; I-K. Yoo; Y. Zawisza; H. Zbroszczyk; W. Zha; Zhang; J. B. Zhang; S. Zhang; X. P. Zhang; Y. Zhang; Z. P. Zhang; F. Zhao; J. Zhao; C. Zhong; X. Zhu; Y. H. Zhu; Y. Zoulkarneeva; M. Zyzak

    2014-09-12T23:59:59.000Z

    The $\\jpsi$ $\\pt$ spectrum and nuclear modification factor ($\\raa$) are reported for $\\pt < 5 \\ \\gevc$ and $|y|<1$ from 0\\% to 60\\% central Au+Au and Cu+Cu collisions at $\\snn = 200 \\ \\gev$ at STAR. A significant suppression of $\\pt$-integrated $\\jpsi$ production is observed in central Au+Au events. The Cu+Cu data are consistent with no suppression, although the precision is limited by the available statistics. $\\raa$ in Au+Au collisions exhibits a strong suppression at low transverse momentum and gradually increases with $\\pt$. The data are compared to high-$\\pt$ STAR results and previously published BNL Relativistic Heavy Ion Collider results. Comparing with model calculations, it is found that the invariant yields at low $\\pt$ are significantly above hydrodynamic flow predictions but are consistent with models that include color screening and regeneration.

  15. Energy dependence of pi-zero production in Cu+Cu collisions at sqrt(s_NN) = 22.4, 62.4, and 200 GeV

    E-Print Network [OSTI]

    PHENIX Collaboration; A. Adare

    2008-01-29T23:59:59.000Z

    Neutral pion transverse momentum (pT) spectra at mid-rapidity (|y| zero yields in p+p collisions scaled by the number of inelastic nucleon-nucleon collisions (Ncoll) at the respective energies, the pi-zero yields for pT \\ge 2 GeV/c in central Cu+Cu collisions at 62.4 and 200 GeV are suppressed, whereas an enhancement is observed at 22.4 GeV. A comparison with a jet quenching model suggests that final state parton energy loss dominates in central Cu+Cu collisions at 62.4 GeV and 200 GeV, while the enhancement at 22.4 GeV is consistent with nuclear modifications in the initial state alone.

  16. Muon-spin spectroscopy of the organometallic spin-1/2 kagome-lattice compound Cu(1,3-benzenedicarboxylate)

    E-Print Network [OSTI]

    Marcipar, Lital

    Using muon-spin resonance, we examine the organometallic hybrid compound Cu(1,3-benzenedicarboxylate) [Cu(1,3-bdc)], which has structurally perfect spin-1/2 copper kagome planes separated by pure organic linkers. This ...

  17. Band offsets of n-type electron-selective contacts on cuprous oxide (Cu[subscript 2]O) for photovoltaics

    E-Print Network [OSTI]

    Brandt, Riley E.

    The development of cuprous oxide (Cu [subscript 2]O) photovoltaics (PVs) is limited by low device open-circuit voltages. A strong contributing factor to this underperformance is the conduction-band offset between Cu ...

  18. A MEDIEVAL WARM PERIOD l)13 C RECORD FROM THE GAURA CU MUSCA CAVE, SW ROMANIA

    E-Print Network [OSTI]

    Forray, Ferenc

    A MEDIEVAL WARM PERIOD l)13 C RECORD FROM THE GAURA CU MUSCA CAVE, SW ROMANIA Bogdan P. ONAC1 · 2, Romania (2) School of Geosciences, University of South Florida, 4202 E. Fowler Ave., NES 107, Tampa, FL and Romania. B. Geological map of the region {modified fromlancu et al., 1995). The mapof the Gaura cu Musca

  19. Effect of doping in Bi-Pb-Sr-Ca-Cu-O superconductor composites

    E-Print Network [OSTI]

    Ertekin, Abdullah

    2001-01-01T23:59:59.000Z

    The goal of this thesis is to analyze the solid solubility limit of dopants in Bi-Pb-Sr-Ca-Cu-O superconductors. We have studied the effect of Mn doping Bi-Pb-Sr-Ca-Cu-O. The electrical resistivity and critical temperature were measured for samples...

  20. Phase relations and precipitation in AlMgSi alloys with Cu additions

    E-Print Network [OSTI]

    Laughlin, David E.

    Conference in Aluminum Alloys 8, University of Cambridge, UK, July, 2002. * Corresponding author. Tel.: +1Phase relations and precipitation in Al­Mg­Si alloys with Cu additions§ D.J. Chakrabartia , David E led to extensive studies on 6xxx alloys in recent years. These alloys often contain Cu in varying

  1. Adsorption of Benzene, Fluorobenzene and Meta-di-Fluorobenzene on Cu(110): A Computational Study

    E-Print Network [OSTI]

    Gao, Hongjun

    Adsorption of Benzene, Fluorobenzene and Meta-di-Fluorobenzene on Cu(110): A Computational Study L.interscience.wiley.com). Abstract: We modelled the adsorption of benzene, fluorobenzene and meta-di-fluorobenzene on Cu(110) by Den- sity Functional Theory. We found that the adsorption configuration depends on the coverage. At high

  2. Unexpected magnetization enhancement in hydrogen plasma treated ferromagnetic (Zn,Cu)O film

    SciTech Connect (OSTI)

    Hu, Liang; Zhu, Liping, E-mail: zlp1@zju.edu.cn, E-mail: hphe@zju.edu.cn; He, Haiping, E-mail: zlp1@zju.edu.cn, E-mail: hphe@zju.edu.cn; Ye, Zhizhen [State Key Laboratory of Silicon Materials, Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China and Cyrus Tang Center for Sensor Materials and Applications, Zhejiang University, Hangzhou 310027 (China)

    2014-08-18T23:59:59.000Z

    The effects of H{sup +} incorporation on oxygen vacancies (H{sub O}{sup +}) on the giant ferromagnetic behavior (moment up to 3.26??{sub B}/Cu) in ZnO:Cu polycrystalline films have been closely examined using different microstructural and magnetic characterization tools. Fine thermal stability (up to 450?°C) and low resistivity demonstrate a significant correlation between Cu 3d-states and H{sub O}{sup +} donor defects in H plasma treated ZnO:Cu films, analogous to dual-donor (V{sub O} and Zn{sub i}) defects mediated case. These H{sub O}{sup +} donors can delocalize their electrons to the orbits of Cu atoms and contribute to a stronger spin-orbit coupling interaction. Suitable H{sub O}{sup +} defect concentration and matched proportion between Cu{sup 2+} and Cu{sup +} species ensure that orbital momentum shall not be quenched. Hence, unexpected moment enhancement, less than spin-orbit coupling upper limit (3.55??{sub B}/Cu), can be also expected in this scenario. The manipulation from spin-only to spin-orbit coupling mode, using a facile thermally-mediated H plasma exposure way, will allow achieving spin transport based diluted magnetic semiconductor device.

  3. Modeling non-isothermal intermetallic layer growth in the 63Sn-37Pb/Cu system

    SciTech Connect (OSTI)

    Vianco, P.T.; Hopkins, P.L.; Erickson, K.L.; Frear, D.R.; Davidson, R.

    1996-12-31T23:59:59.000Z

    A model describing diffusion-controlled growth of multiple intermetallic layers and the displacement of the interfaces between layers was developed and implemented in a 1-D computer code based on method-of-lines. The code was applied to analysis of intermetallic layer growth in isothermal solder aging experiments performed with 100 Sn/Cu and 63Sn-37Pb/Cu solder-substrate systems. Analyses indicated that intermetallic layer growth was consistent with a bulk diffusion mechanism involving Cu and/or Sn. In this work, nonisothermal solder-aging experiments were done with the 63Sn- 37Pb/Cu system using two temperature histories (4 cycles/day between 223-443 K, and 72 cycles/day between 223-443 K). Isothermal experiments were also done at 443 K. Thickness of Cu{sub 3}Sn and Cu{sub 6}Sn{sub 5} intermetallic layers were determined vs time for each temperature history. An updated version of the model and code were used to predict the intermetallic layer growth. Arrhenius expressions for diffusion coefficients in both Cu3Sn and Cu6Sn5 layers were determined. Agreement between prediction and experiment was generally good. In some cases, predicted layer growth was less than experiment, but within error. This paper describes the nonisothermal experiments and a comparison of predicted and observed layer growth vs time.

  4. DISSERTATION ANTICIPATED PERFORMANCE OF Cu(In,Ga)Se2 SOLAR CELLS IN THE

    E-Print Network [OSTI]

    Sites, James R.

    i DISSERTATION ANTICIPATED PERFORMANCE OF Cu(In,Ga)Se2 SOLAR CELLS IN THE THIN-FILM LIMIT Submitted ENTITLED `ANTICIPATED PERFORMANCE OF Cu(In,Ga)Se2 SOLAR CELLS IN THE THIN-FILM LIMIT' BE ACCEPTED(In,Ga)Se2 SOLAR CELLS IN THE THIN-FILM LIMIT The demand for alternative sources of energy is rapidly

  5. Insertion of Zn atoms into Cu3N lattice: Structural distortion and modification of electronic properties

    E-Print Network [OSTI]

    Zexian, Cao

    Cu and nitrogen. Consequently it can be used in the fabrication of microscopic copper lines are positioned at the middle of the edges and the nitrogen atoms are situated at the corners of a cube inserted to the cell centers in bulk Cu3N; on the other hand, the effect of copper [12], titanium [13

  6. Atomic Substitutions in Yba2cu3o7 - Modification of the Electronic-Structure

    E-Print Network [OSTI]

    RICHERT, BA; Allen, Roland E.

    1988-01-01T23:59:59.000Z

    of states for both spins is calculated from p.(E)-??Tr imG&(E),2 1988 The American Physical Society 37 ATOMIC SUBSTITUTIONS IN YBa2Cu307. MODIFICATION. . . TABLE I. "Atomic energies" in eV. culated from A1 Fe Ni Cu' Zn Y Tl Pb Bi 0 F ?10...

  7. Industrial Cu-Ni alloys for HTS coated conductor tape. A Girard1,2,3

    E-Print Network [OSTI]

    Boyer, Edmond

    Industrial Cu-Ni alloys for HTS coated conductor tape. A Girard1,2,3 , C E Bruzek4 , J L Jorda1 , L efficient substrates for coated conductor wires. The study is focused on two industrial compositions: Cu55Ni-textured substrate is one of the critical steps for the HTS coated conductor development. The RABiTS (Rolling

  8. Photoelectron imaging spectroscopy of Cu (H2O)1,2 anion complexes

    E-Print Network [OSTI]

    Lineberger, W. Carl

    structure calculations for the neutral, the adiabatic electron affinity is derived. Ó 2004 Elsevier B.V. All rights reserved. 1. Introduction Recent experiments [1] and calculations [2,3] of the structure and rearrangement dynamics of CuH2O fol- lowing electron photodetachment from CuÀ H2O have afforded considerable

  9. Development of a Low Cost Insulated Foil Substrate for Cu(InGaSe)2 Photovoltaics

    SciTech Connect (OSTI)

    ERTEN ESER

    2012-01-22T23:59:59.000Z

    The project validated the use of stainless steel flexible substrate coated with silicone-based resin dielectric, developed by Dow Corning Corporation, for Cu(InGa)Se2 based photovoltaics. The projects driving force was the high performance of Cu(InGa)Se2 based photovoltaics coupled with potential cost reduction that could be achieved with dielectric coated SS web substrate.

  10. Low Temperature Transient Liquid Phase (LTTLP) Bonding for Au/Cu

    E-Print Network [OSTI]

    Eagar, Thomas W.

    of Technology, Cambridge, MA 02139 TheLow Temperature TransientLiquidPhase Diffusion Bonding (LTTLP) process has) ) M. M. Hou Low Temperature Transient Liquid Phase (LTTLP) Bonding for Au/Cu and Cu been bonded to copper heatsink.s at temperatures less than 160"C, using /n-Sn eutectic solders. After

  11. AuCu II, STRUCTURE MODULE IRRATIONNELLE, PROTOTYPE DES ANTIPHASES PRIODIQUES

    E-Print Network [OSTI]

    Boyer, Edmond

    de AuCu II à la composition 50 at. % Au la structure Johansson et Linde exacte (demi-période d Johansson-Linde structure is observed by electron diffraction from 50 at. % AuCu II bulk samples (antiphase diffraction des rayons X sur poudre par Johansson et Linde [1]. Ceci constituait la premiere structure

  12. Ab-initio study of donor-acceptor codoping for n-type CuO

    SciTech Connect (OSTI)

    Peng, Yuan; Wang, Junling, E-mail: jlwang@ntu.edu.sg [School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Zheng, Jianwei [Institute of High Performance Computing, 1 Fusionopolis Way, #16-16 Connexis, Singapore 138632 (Singapore); Wu, Ping [Engineering Product Development, Singapore University of Technology and Design, 20 Dover Drive, Singapore 138682 (Singapore)

    2014-10-28T23:59:59.000Z

    Single n-type dopant in CuO has either a deep donor level or limited solubility, inefficient in generating free electrons. We have performed ab-initio study of the donor-acceptor codoping to obtain n-type CuO. Our results show that N codoping can slightly improve the donor level of Zr and In by forming shallower n-type complexes (Zr{sub Cu}-N{sub O} and 2In{sub Cu}-N{sub O}), but their formation energies are too high to be realized in experiments. However, Li codoping with Al and Ga is found to be relatively easy to achieve. 2Al{sub Cu}-Li{sub Cu} and 2Ga{sub Cu}-Li{sub Cu} have shallower donor levels than single Al and Ga by 0.14?eV and 0.08?eV, respectively, and their formation energies are reasonably low to act as efficient codopants. Moreover, Li codoping with both Al and Ga produce an empty impurity band just below the host conduction band minimum, which may reduce the donor ionization energy at high codoping concentrations.

  13. Size-dependent catalytic performance of CuO on ?-Al2O3...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of NH3 on CuO?-Al2O3 catalysts during NH3 SCR reactions were investigated under oxygen-rich conditions. On 10% CuO?-Al2O3, NH3 reacted with oxygen to produce NOx. In...

  14. CU scientists amongst recipients of awards and grants bestowed by Neuron

    E-Print Network [OSTI]

    Cerveny, Vlastislav

    CU scientists amongst recipients of awards and grants bestowed by Neuron Compiled 4.12.2013 23:35:59 by Document Globe ® 1 CU scientists amongst recipients of awards and grants bestowed by Neuron Foundation Neuron Award for Lifelong Achievement. During their presentation at Malostranská beseda on 5 November

  15. Chemisorption of benzene and STM dehydrogenation products on Cu,,100... N. Lorente*

    E-Print Network [OSTI]

    Persson, Mats

    Chemisorption of benzene and STM dehydrogenation products on Cu,,100... N. Lorente* Laboratoire of individual chemisorbed benzene molecules on Cu 100 has recently been performed in atomic manipulation experiments J. Phys. Chem. A. 104, 2463 2000 ; Surf. Sci 451, 219 2000 . Benzene dissociates under controlled

  16. Low-lying levels in Cu-57 and the rp process

    E-Print Network [OSTI]

    Zhou, XG; Dejbakhsh, H.; Gagliardi, Carl A.; Jiang, J.; Trache, L.; Tribble, Robert E.

    1996-01-01T23:59:59.000Z

    . In particular, a comparison of the low-lying levels of 57Cu with the well-determined excited states of its mirror nucleus 57Ni is important for studying the charge symmetry of the nucleus. The structure of 57Cu also plays a key role in the nucleo- synthesis...

  17. Measurement of K0S and K*0 in p+p, d+Au, and Cu+Cu collisions at sqrt SNN = 200 GeV

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Adare, A.; Aidala, C.

    2014-11-01T23:59:59.000Z

    The PHENIX experiment at the Relativistic Heavy Ion Collider has performed a systematic study of K0S and K*0 meson production at midrapidity in p+p, d+Au, and Cu+Cu collisions at sqrt SNN = 200 GeV. The K0S and K*0 mesons are reconstructed via their K0S and ?0(???)?0 (???) and K*0 ? K ±#25;?± decay modes, respectively. The measured transverse-momentum spectra are used to determine the nuclear modification factor of K0S and K*0 mesons in d+Au and Cu+Cu collisions at different centralities. In the d+Au collisions, the nuclear modification factor of K0S and K*0 mesons is almost constant as a function ofmore »transverse momentum and is consistent with unity showing that cold-nuclear-matter effects do not play a significant role in the measured kinematic range. In Cu+Cu collisions, within the uncertainties no nuclear modification is registered in peripheral collisions. In central collisions, both mesons show suppression relative to the expectations from the p+p yield scaled by the number of binary nucleon-nucleon collisions in the Cu+Cu system. In the pT range 2–5 GeV/c, the strange mesons ( K0S, K*0) similarly to the #30;? meson with hidden strangeness, show an intermediate suppression between the more suppressed light quark mesons (?0) and the nonsuppressed baryons (p, p-bar). At higher transverse momentum, pT > 5 GeV/c, production of all particles is similarly suppressed by a factor of ?2. (auth)« less

  18. Measurement of K0S and K*0 in p+p, d+Au, and Cu+Cu collisions at sqrt SNN = 200 GeV

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Adare, A. [Univ. of Colorado, Boulder, CO (United States); Aidala, C. [Columbia Univ., New York, NY (United States). et al.

    2014-11-01T23:59:59.000Z

    The PHENIX experiment at the Relativistic Heavy Ion Collider has performed a systematic study of K0S and K*0 meson production at midrapidity in p+p, d+Au, and Cu+Cu collisions at sqrt SNN = 200 GeV. The K0S and K*0 mesons are reconstructed via their K0S and ?0(???)?0 (???) and K*0 ? K ±#25;?± decay modes, respectively. The measured transverse-momentum spectra are used to determine the nuclear modification factor of K0S and K*0 mesons in d+Au and Cu+Cu collisions at different centralities. In the d+Au collisions, the nuclear modification factor of K0S and K*0 mesons is almost constant as a function of transverse momentum and is consistent with unity showing that cold-nuclear-matter effects do not play a significant role in the measured kinematic range. In Cu+Cu collisions, within the uncertainties no nuclear modification is registered in peripheral collisions. In central collisions, both mesons show suppression relative to the expectations from the p+p yield scaled by the number of binary nucleon-nucleon collisions in the Cu+Cu system. In the pT range 2–5 GeV/c, the strange mesons ( K0S, K*0) similarly to the #30;? meson with hidden strangeness, show an intermediate suppression between the more suppressed light quark mesons (?0) and the nonsuppressed baryons (p, p-bar). At higher transverse momentum, pT > 5 GeV/c, production of all particles is similarly suppressed by a factor of ?2. (auth)

  19. The Synthesis, Structure and Physical Properties of the Layered Ruthenocuprates RuSr2GdCu2O8 and Pb2Sr2Cu2RuO8Cl 

    E-Print Network [OSTI]

    MacLaughlin, A C; Attfield, J. Paul

    2003-01-01T23:59:59.000Z

    Studies of the structure and physical properties of the layered rutheno- cuprates RuSr2GdCu2O8 and Pb2Sr2Cu2RuO8Cl are reviewed. RuSr2GdCu2O8 is a weak ferromagnetic superconductor and doping studies have shown that it is possible to tune...

  20. Dynamics of Propane in Silica Mesopores Formed upon PropyleneHydrogenation over Pt Nanoparticles by Time-Resolved FT-IRSpectroscopy

    SciTech Connect (OSTI)

    Waslylenko, Walter; Frei, Heinz

    2007-01-31T23:59:59.000Z

    Propylene hydrogenation over Pt nanoparticles supported onmesoporous silica type SBA-15 was monitored by time-resolved FT-IRspectroscopy at 23 ms resolution using short propylene gas pulses thatjoined a continuous flow of hydrogen in N2 (1 atm total pressure).Experiments were conducted in the temperature range 323-413 K. Propanewas formed within 100 milliseconds or faster. The CH stretching regionrevealed distinct bands for propane molecules emerging inside thenanoscale channels of the silica support. Spectral analysis gave thedistribution of the propane product between support and surrounding gasphase as function of time. Kinetic analysis showed that the escape ofpropane molecules from the channels occurred within hundreds ofmilliseconds (3.1 + 0.4 s-1 at 383 K). A steady state distribution ofpropane between gas phase and mesoporous support is established as theproduct is swept from the catalyst zone by the continuous flow ofhydrogen co-reactant. This is the first direct spectroscopic observationof emerging products of heterogeneous catalysis on nanoporous supportsunder reaction conditions.

  1. First results about hydrogen loading by means of pulsed electrolysis of Y$_{1}$Ba$_{2}$Cu$_{3}$O$_{7}$ pellets

    E-Print Network [OSTI]

    Celani, F; Di Gioacchino, D; Spallone, A; Tripodi, P; Pace, S; Polichetti, M; Marini, P

    1994-01-01T23:59:59.000Z

    First results about hydrogen loading by means of pulsed electrolysis of Y$_{1}$Ba$_{2}$Cu$_{3}$O$_{7}$ pellets

  2. Tunneling study of epitaxial YBa sub 2 Cu sub 3 O sub x superconducting films

    SciTech Connect (OSTI)

    Boguslavsky, Y.M.; Rudenko, E.M.; Mukhortov, V.M. (Inst. of Metal Physics, Ukrainian Academy of Sciences, 36 Vernadsky str. 252142, Kiev-142 (SU))

    1991-03-01T23:59:59.000Z

    This paper presents planar and edge-type tunnel junctions YBa{sub 2}Cu{sub 3}O{sub x}-metal (Pb,Pt,In) based on epitaxial Y-Ba-Cu-O films. Features of conductance characteristics of these junctions, mainly conductance zero bias anomalies, have been considered. We have observed the difference between the R{sub d}(V) dependences for two types of the contacts at low bias voltages V {approx lt}5 mV. This difference probably linked with an anisotropy of the states density N ({epsilon}) in near-contact region of YBa{sub 2}Cu{sub 3}O{sub x}. Existence of the correlation in the temperature dependences of the states density of YBa{sub 2}Cu{sub 3}O{sub x} along the Cu-O planes and perpendicularly to them have been observed.

  3. Optical and phonon properties of ZnO:CuO mixed nanocomposite

    SciTech Connect (OSTI)

    Udayabhaskar, R.; Karthikeyan, B., E-mail: bkarthik@nitt.edu [Department of Physics, National Institute of Technology, Tiruchirappalli 620 015 (India)

    2014-04-21T23:59:59.000Z

    Optical and phonon properties of ZnO:CuO nanocrystals which are prepared through sol-gel method are reported here. From X-ray diffraction studies, observed that Cu doping replaces the Zn and also forms secondary phase. Optical absorption spectral studies shows that the exciton and plasmon related bands of ZnO and CuO phase, respectively. Fluorescence studies of the prepared samples shows that green emission from ZnO is completely depleted and the same is attributed to CuO Plasmon. Raman spectral studies reveal that secondary phase (impurity) induced profile changes in 1LO and E{sub 2High} modes. Asymmetry in peak shape is analyzed using Fano profile with the combination of Lorentzian profile. Moreover, the monotonic increase of Fano factor and full width at half maxima is hopefully attributed to the continuum arises by the plasmons of Cu-O phase in ZnO nanosystem.

  4. Magnetic order tuned by Cu substitution in Fe1.1–zCuzTe

    SciTech Connect (OSTI)

    Wen, Jinsheng; Xu, Zhijun; Xu, Guangyong; Lumsden, M. D.; Valdivia, P. N.; Bourret-Courchesne, E.; Gu, Genda; Lee, Dung-Hai; Tranquada, J. M.; Birgeneau, R. J.

    2012-07-01T23:59:59.000Z

    We study the effects of Cu substitution in Fe?.?Te, the nonsuperconducting parent compound of the iron-based superconductor, Fe??yTe??xSex, utilizing neutron scattering techniques. It is found that the structural and magnetic transitions, which occur at ~60 K without Cu, are monotonically depressed with increasing Cu content. By 10% Cu for Fe, the structural transition is hardly detectable, and the system becomes a spin glass below 22 K, with a slightly incommensurate ordering wave vector of (0.5–?, 0, 0.5) with ? being the incommensurability of 0.02, and correlation length of 12 Å along the a axis and 9 Å along the c axis. With 4% Cu, both transition temperatures are at 41 K, though short-range incommensurate order at (0.42, 0, 0.5) is present at 60 K. With further cooling, the incommensurability decreases linearly with temperature down to 37 K, below which there is a first-order transition to a long-range almost-commensurate antiferromagnetic structure. A spin anisotropy gap of 4.5 meV is also observed in this compound. Our results show that the weakly magnetic Cu has a large effect on the magnetic correlations; it is suggested that this is caused by the frustration of the exchange interactions between the coupled Fe spins.

  5. Directed and elliptic flow of charged particles in Cu+Cu collisions at $\\sqrt{\\bm {s_{NN}}} =$ 22.4 GeV

    E-Print Network [OSTI]

    G. Agakishiev; M. M. Aggarwal; Z. Ahammed; A. V. Alakhverdyants; I. Alekseev; J. Alford; B. D. Anderson; C. D. Anson; D. Arkhipkin; G. S. Averichev; J. Balewski; D. R. Beavis; N. K. Behera; R. Bellwied; M. J. Betancourt; R. R. Betts; A. Bhasin; A. K. Bhati; H. Bichsel; J. Bielcik; J. Bielcikova; L. C. Bland; I. G. Bordyuzhin; W. Borowski; J. Bouchet; E. Braidot; A. V. Brandin; A. Bridgeman; S. G. Brovko; E. Bruna; S. Bueltmann; I. Bunzarov; T. P. Burton; X. Z. Cai; H. Caines; M. Calderón de la Barca Sánchez; D. Cebra; R. Cendejas; M. C. Cervantes; P. Chaloupka; S. Chattopadhyay; H. F. Chen; J. H. Chen; J. Y. Chen; L. Chen; J. Cheng; M. Cherney; A. Chikanian; K. E. Choi; W. Christie; P. Chung; M. J. M. Codrington; R. Corliss; J. G. Cramer; H. J. Crawford; Cui; A. Davila Leyva; L. C. De Silva; R. R. Debbe; T. G. Dedovich; J. Deng; A. A. Derevschikov; R. Derradi de Souza; L. Didenko; P. Djawotho; S. M. Dogra; X. Dong; J. L. Drachenberg; J. E. Draper; C. M. Du; J. C. Dunlop; L. G. Efimov; M. Elnimr; J. Engelage; G. Eppley; M. Estienne; L. Eun; O. Evdokimov; R. Fatemi; J. Fedorisin; R. G. Fersch; P. Filip; E. Finch; V. Fine; Y. Fisyak; C. A. Gagliardi; D. R. Gangadharan; F. Geurts; P. Ghosh; Y. N. Gorbunov; A. Gordon; O. G. Grebenyuk; D. Grosnick; A. Gupta; S. Gupta; W. Guryn; B. Haag; O. Hajkova; A. Hamed; L-X. Han; J. W. Harris; J. P. Hays-Wehle; M. Heinz; S. Heppelmann; A. Hirsch; E. Hjort; G. W. Hoffmann; D. J. Hofman; B. Huang; H. Z. Huang; T. J. Humanic; L. Huo; G. Igo; P. Jacobs; W. W. Jacobs; C. Jena; F. Jin; J. Joseph; E. G. Judd; S. Kabana; K. Kang; J. Kapitan; K. Kauder; H. W. Ke; D. Keane; A. Kechechyan; D. Kettler; D. P. Kikola; J. Kiryluk; A. Kisiel; V. Kizka; S. R. Klein; A. G. Knospe; D. D. Koetke; T. Kollegger; J. Konzer; I. Koralt; L. Koroleva; W. Korsch; L. Kotchenda; V. Kouchpil; P. Kravtsov; K. Krueger; M. Krus; L. Kumar; M. A. C. Lamont; J. M. Landgraf; S. LaPointe; J. Lauret; A. Lebedev; R. Lednicky; J. H. Lee; W. Leight; M. J. LeVine; C. Li; L. Li; N. Li; W. Li; X. Li; X. Li; Y. Li; Z. M. Li; 1 L. M. Lima; M. A. Lisa; F. Liu; H. Liu; J. Liu; T. Ljubicic; W. J. Llope; R. S. Longacre; Y. Lu; E. V. Lukashov; X. Luo; G. L. Ma; Y. G. Ma; D. P. Mahapatra; R. Majka; O. I. Mall; R. Manweiler; S. Margetis; C. Markert; H. Masui; H. S. Matis; D. McDonald; T. S. McShane; A. Meschanin; R. Milner; N. G. Minaev; S. Mioduszewski; M. K. Mitrovski; Y. Mohammed; B. Mohanty; M. M. Mondal; B. Morozov; D. A. Morozov; M. G. Munhoz; M. K. Mustafa; M. Naglis; B. K. Nandi; T. K. Nayak; L. V. Nogach; S. B. Nurushev; G. Odyniec; A. Ogawa; K. Oh; A. Ohlson; V. Okorokov; E. W. Oldag; R. A. N. Oliveira; D. Olson; M. Pachr; B. S. Page; S. K. Pal; Y. Pandit; Y. Panebratsev; T. Pawlak; H. Pei; T. Peitzmann; C. Perkins; W. Peryt; P. Pile; M. Planinic; M. A. Ploskon; J. Pluta; D. Plyku; N. Poljak; J. Porter; A. M. Poskanzer; B. V. K. S. Potukuchi; C. B. Powell; D. Prindle; C. Pruneau; N. K. Pruthi; P. R. Pujahari; J. Putschke; H. Qiu; R. Raniwala; S. Raniwala; R. L. Ray; R. Redwine; R. Reed; H. G. Ritter; J. B. Roberts; O. V. Rogachevskiy; J. L. Romero; L. Ruan; J. Rusnak; N. R. Sahoo; I. Sakrejda; S. Salur; J. Sandweiss; E. Sangaline; A. Sarkar; J. Schambach; R. P. Scharenberg; J. Schaub; A. M. Schmah; N. Schmitz; T. R. Schuster; J. Seele; J. Seger; I. Selyuzhenkov; P. Seyboth; N. Shah; E. Shahaliev; M. Shao; M. Sharma; S. S. Shi; Q. Y. Shou; E. P. Sichtermann; F. Simon; R. N. Singaraju; M. J. Skoby; N. Smirnov; D. Solanki; P. Sorensen; U. G. deSouza; H. M. Spinka; B. Srivastava; T. D. S. Stanislaus; S. G. Steadman; J. R. Stevens; R. Stock; M. Strikhanov; B. Stringfellow; A. A. P. Suaide; M. C. Suarez; N. L. Subba; M. Sumbera; X. M. Sun; Y. Sun; Z. Sun; B. Surrow; D. N. Svirida; T. J. M. Symons; A. Szanto de Toledo; J. Takahashi; A. H. Tang; Z. Tang; L. H. Tarini; T. Tarnowsky; D. Thein; J. H. Thomas; J. Tian; A. R. Timmins; D. Tlusty; M. Tokarev; S. Trentalange; R. E. Tribble; P. Tribedy; B. A. Trzeciak; O. D. Tsai; T. Ullrich; D. G. Underwood; G. Van Buren; G. van Nieuwenhuizen; J. A. Vanfossen, Jr.; R. Varma; G. M. S. Vasconcelos; A. N. Vasiliev; F. Videbæk; Y. P. Viyogi; S. Vokal; S. A. Voloshin; M. Wada; M. Walker; F. Wang; G. Wang; H. Wang; J. S. Wang; Q. Wang; X. L. Wang; Y. Wang; G. Webb; J. C. Webb; G. D. Westfall; C. Whitten Jr.; H. Wieman; S. W. Wissink; R. Witt; W. Witzke; Y. F. Wu; Z. Xiao; W. Xie; H. Xu; N. Xu; Q. H. Xu; W. Xu; Y. Xu; Z. Xu; L. Xue; Y. Yang; Y. Yang; P. Yepes; K. Yip; I-K. Yoo; M. Zawisza; H. Zbroszczyk; W. Zhan; J. B. Zhang; S. Zhang; W. M. Zhang; X. P. Zhang; Y. Zhang; Z. P. Zhang; F. Zhao; J. Zhao; C. Zhong; X. Zhu; Y. H. Zhu; Y. Zoulkarneeva

    2011-12-07T23:59:59.000Z

    This paper reports results for directed flow $v_{1}$ and elliptic flow $v_{2}$ of charged particles in Cu+Cu collisions at $\\sqrt{s_{NN}}=$ 22.4 GeV at the Relativistic Heavy Ion Collider. The measurements are for the 0-60% most central collisions, using charged particles observed in the STAR detector. Our measurements extend to 22.4 GeV Cu+Cu collisions the prior observation that $v_1$ is independent of the system size at 62.4 and 200 GeV, and also extend the scaling of $v_1$ with $\\eta/y_{\\rm beam}$ to this system. The measured $v_2(p_T)$ in Cu+Cu collisions is similar for $\\sqrt{s_{NN}} = 22.4-200$ GeV. We also report a comparison with results from transport model (UrQMD and AMPT) calculations. The model results do not agree quantitatively with the measured $v_1(\\eta), v_2(p_T)$ and $v_2(\\eta)$.

  6. High-strength high-conductivity Cu-Nb microcomposite sheet fabricated via multiple roll bonding

    SciTech Connect (OSTI)

    Jha, S.C.; Delagi, R.G.; Forster, J.A. (Texas Instruments Materials and Control Group, Attleboro, MA (United States)); Krotz, P.D. (Rockwell International Corp., Huntsville, AL (United States))

    1993-01-01T23:59:59.000Z

    Copper-niobium microcomposites are a new class of high-strength high-conductivity materials that have attractive properties for room- and elevated-temperature applications. Since Nb has little solid solubility in Cu, addition of Nb to Cu does not affect its conductivity. Copper-niobium microcomposites are melted and cast so that the microstructure of cast Cu-Nb ingots consists of 1- to 10 [mu]m Nb dendrites uniformly distributed within the copper matrix. Extensive wire drawing with a true processing strain ([eta][gt] 12) of Cu-Nb alloy leads to refinement and elongation of Nb dendrites into 1- to 10 nm-thick filaments. The presence of such fine Nb filaments causes a significant increase in the strength of Cu-Nb wires. The tensile strength of heavily drawn Cu-Nb wires was determined to be significantly higher than the values predicted by the rule of mixtures. This article reports the fabrication of high-strength Cu-Nb microcomposite sheet by multiple roll bonding. It is difficult and impractical to attain high processing strains ([eta][gt]3) by simple cold rolling. In most practical cold-rolling operation, the thickness reduction does not exceed 90 pct ([eta] [approx equal]2). Therefore, innovative processing is required to generate high strength in Cu-Nb microcomposite sheet. Multiple roll bonding of Cu-Nb has been utilized to store high processing strain ( [eta][gt]10) in the material and refine the Nb particle size within the copper matrix. This article describes the microstructure, mechanical properties, and thermal stability of roll-bonded Cu-Nb microcomposite sheet.

  7. Adsorption and Reaction of NO on Cu(100): An Infrared Reflection Absorption Spectroscopic Study at 25 K

    E-Print Network [OSTI]

    Goodman, Wayne

    Adsorption and Reaction of NO on Cu(100): An Infrared Reflection Absorption Spectroscopic Study oxide (NO) on a Cu(100) surface at 25 K has been studied using infrared reflection absorption to the Cu(100) surface. Heating to 55 K leads to reorientation of the dimer molecules in the multilayer

  8. Influence of nanoscale Cu precipitates in -Fe on dislocation core structure and strengthening Zhengzheng Chen and Nicholas Kioussis

    E-Print Network [OSTI]

    Ghoniem, Nasr M.

    and the bowing out of the dislocation line. The calculated bow-out angle and resolved shear stress required at low temperatures, Cu-rich precipitates can easily nucleate and grow under thermal aging. Although Cu- tion of small Cu-rich precipitate diameter d 4 nm from the bcc to the 9R phase in a thermally aged

  9. Effect of Y-211 particle size on the growth of single grain Y–Ba–Cu–O bulk superconductors

    E-Print Network [OSTI]

    Thoma, Max; Shi, Yunhua; Dennis, Tony; Durrell, John; Cardwell, David

    2014-12-01T23:59:59.000Z

    The engineering of fine Y2Ba1Cu1O5 (Y-211) inclusions of average particle size 1?2 ?m within the continuous, superconducting YBa2Cu3O7?? (Y-123) phase matrix of single-grain, bulk high temperature Y–Ba–Cu–O (YBCO) superconductors is fundamental...

  10. Identified high-pT spectra in Cu+Cu collisions at sqrt sNN=200 GeV

    SciTech Connect (OSTI)

    STAR Collaboration; Abelev, Betty

    2010-07-05T23:59:59.000Z

    We report new results on identified (anti)proton and charged pion spectra at large transverse momenta (3 < p{sub T} < 10 GeV/c) from Cu+Cu collisions at {radical}s{sub NN} = 200 GeV using the STAR detector at the Relativistic Heavy Ion Collider (RHIC). This study explores the system size dependence of two novel features observed at RHIC with heavy ions: the hadron suppression at high-p{sub T} and the anomalous baryon to meson enhancement at intermediate transverse momenta. Both phenomena could be attributed to the creation of a new form of QCD matter. The results presented here bridge the system size gap between the available pp and Au+Au data, and allow the detailed exploration for the on-set of the novel features. Comparative analysis of all available 200 GeV data indicates that the system size is a major factor determining both the magnitude of the hadron spectra suppression at large transverse momenta and the relative baryon to meson enhancement.

  11. Characterization and device performance of (AgCu)(InGa)Se2 absorber layers

    SciTech Connect (OSTI)

    Hanket, Gregory; Boyle, Jonathan H.; Shafarman, William N.

    2009-06-08T23:59:59.000Z

    The study of (AgCu)(InGa)Se2 absorber layers is of interest in that Ag-chalcopyrites exhibit both wider bandgaps and lower melting points than their Cu counterparts. (AgCu)(InGa)Se2 absorber layers were deposited over the composition range 0 < Ag/(Ag+Cu) < 1 and 0.3 < Ga/(In+Ga) < 1.0 using a variety of elemental co-evaporation processes. Films were found to be singlephase over the entire composition range, in contrast to prior studies. Devices with Ga content 0.3 < Ga/(In+Ga) <0.5 tolerated Ag incorporation up to Ag/(Ag+Cu) = 0.5 without appreciable performance loss. Ag-containing films with Ga/(In+Ga) = 0.8 showed improved device characteristics over Cu-only control samples, in particular a 30-40% increase in short-circuit current. An absorber layer with composition Ag/(Ag+Cu) = 0.75 and Ga/(In+Ga) = 0.8 yielded a device with VOC = 890 mV, JSC = 20.5mA/cm2, fill factor = 71.3%, and ? = 13.0%.

  12. [Purification of Cu-67 and Macrocyclic chelates for targeted therapy]. DOE annual report, 1993--94

    SciTech Connect (OSTI)

    DeNardo, S.J.

    1994-12-31T23:59:59.000Z

    {sup 67}Cu produced at the Brookhaven Linac Isotope Producer (BLIP) is purified from zinc target material and coproduced radioisotopes of cobalt, chromium, nickel, and gallium by a multi-step extraction process. This procedure introduces applicable amounts of cold copper into the sample, lowering the specific activity of the {sup 67}Cu. Because of this, the {sup 67}Cu produced at BLIP is not of high enough activity for use in radioimmunotherapy procedures. It is their goal to develop a procedure with which to purify {sup 67}Cu from the other radioisotopes produced, while at the same time minimize the amount of cold copper introduced into the system. There are two different approaches that they devised for the purification of {sup 67}Cu. They are an extraction method similar to what is used at Brookhaven already, and a copper affinity column. Bifunctional macrocyclic chelates have been developed to conjugate metals to antibodies, and metal chelated antibodies have been shown to have slower clearance from the tumor than iodinated antibodies. This provides a mechanism for increasing tumor radiation dose and the therapeutic index. Conditions for {sup 67}Cu radiolabeling of TETA immunoconjugates have been optimized, leading to rapid, quantitative complexation of metal binding sites, further contributing to high radioactive yield and to the routine production of {sup 67}Cu radiolabed immunoconjugates of therapeutic quality.

  13. Quantitative texture analysis of free-standing electrodeposited Cu- and Ni-line patterns

    SciTech Connect (OSTI)

    Pantleon, Karen [Department of Manufacturing Engineering and Management, Technical University of Denmark, Kemitorvet Building 204, DK-2800 Kgs. Lyngby (Denmark)]. E-mail: pantleon@ipl.dtu.dk; Somers, Marcel A.J. [Department of Manufacturing Engineering and Management, Technical University of Denmark, Kemitorvet Building 204, DK-2800 Kgs. Lyngby (Denmark)

    2004-09-20T23:59:59.000Z

    Free-standing line patterns of Cu and Ni were manufactured by applying photo-lithography and subsequent electrodeposition on glass wafers covered with either a polycrystalline Au-layer or an X-ray amorphous Ni-P layer. Several pattern geometries varying in line width, line separation and line length were studied by X-ray diffraction. Quantitative texture analysis revealed that crystallographic texture depends on the type of substrate-layer: while substrate unbiased growth was observed for Cu-lines on amorphous Ni-P, the highly-textured and fine-grained Au-layer strongly favored nucleation of Cu-crystallites of a preferred orientation. For particular pattern geometries, experimental evidence for an epitaxial orientation relation between Cu and Au was found and discussed with respect to various concepts of epitaxial growth. While crystallographic texture of Ni-electrodeposits was independent on the pattern geometry, for Cu-electrodeposits a pronounced pattern dependence of both type and strength of crystallographic texture as well as differences between Cu-lines and non-patterned Cu-films were observed.

  14. Thermal chemistry of the Cu-KI5 atomic layer deposition precursor on a copper surface

    SciTech Connect (OSTI)

    Ma, Qiang; Zaera, Francisco, E-mail: zaera@ucr.edu [Department of Chemistry, University of California, Riverside, California 92521 (United States)

    2015-01-01T23:59:59.000Z

    The thermal chemistry of a Cu(I) ketoiminate complex, Cu-KI5, resulting from the modification of the known Air Products CupraSelect{sup ®} copper CVD precursor Cu(hfac)(tmvs) designed to tether the two ligands via an isopropoxide linker, was studied under ultrahigh vacuum on a Cu(110) single-crystal surface by using a combination of temperature programmed desorption (TPD) and x-ray photoelectron spectroscopy. Adsorption at low temperatures was determined to take place via the displacement of the vinyl ligand by the surface. Molecular desorption was seen at 210?K, and the evolution of Cu(II)-KI5{sub 2} was established to take place at 280?K, presumably from a disproportionation reaction that also leads to the deposition of Cu(0). Other sets of desorption products were seen at 150, 250, and 430?K, all containing copper atoms and small organic moieties with molecular masses below 100 amu. The latter TPD peak in particular indicates significant fragmentation of the ligands, likely at the C–N bond that holds the vinylsilane-isopropoxide moiety tethered to the ketoimine fragment, and possibly also at the union between the vinylsilane and the alkoxide linker. The 430?K temperature measured for this chemistry may set an upper limit for clean Cu film deposition, but since reactivity on the surface was also found to be inhibited at higher surface coverages, it may be delayed to higher temperatures under atomic layer deposition conditions.

  15. Effect of prior cold work on age hardening of Cu-3Ti-1Cr alloy

    SciTech Connect (OSTI)

    Markandeya, R. [Department of Metallurgical Engineering, College of Engineering, Jawaharlal Nehru Technological University, Kukatpally, Hyderabad-500 072 (India); Nagarjuna, S. [Defence Metallurgical Research Laboratory, Kanchanbagh, Hyderabad-500 058 (India)]. E-mail: snagarjuna1@rediffmail.com; Sarma, D.S. [Department of Metallurgical Engineering, Institute of Technology, Banaras Hindu University, Varanasi-221 005 (India)

    2006-12-15T23:59:59.000Z

    The influence of 50%, 75% and 90% cold work on the age hardening behavior of Cu-3Ti-1Cr alloy has been investigated by hardness and tensile tests, and light optical and transmission electron microscopy. Hardness increased from 118 Hv in the solution-treated condition to 373 Hv after 90% cold work and peak aging. Cold deformation reduced the peak aging time and temperature of the alloy. The yield strength and ultimate tensile strength reached a maximum of 1090 and 1110 MPa, respectively, following 90% deformation and peak aging. The microstructure of the deformed alloy exhibited elongated grains and deformation twins. The maximum strength on peak aging was obtained due to precipitation of the ordered, metastable and coherent {beta}'-Cu{sub 4}Ti phase, in addition to high dislocation density and deformation twins. Over-aging resulted in decreases in hardness and strength due to the formation of incoherent and equilibrium {beta}-Cu{sub 3}Ti phase in the form of a cellular structure. However, the morphology of the discontinuous precipitation changed to a globular form on high deformation. The mechanical properties of Cu-3Ti-1Cr alloy are superior to those of Cu-2.7Ti, Cu-3Ti-1Cd and the commercial Cu-0.5Be-2.5Co alloys in the cold-worked and peak-aged condition.

  16. Local structure of Cu{sub x}Zn{sub 2?x}TiO{sub 4} inverse spinel

    SciTech Connect (OSTI)

    Ruiz-Fuertes, J., E-mail: ruiz-fuertes@kristall.uni-frankfurt.de; Bernert, T.; He, M.; Winkler, B. [Geowissenschaften, Goethe-Universität, Altenhöferallee 1, 60438 Frankfurt am Main (Germany); Vinograd, V. L. [Forschungszentrum Jülich GmbH, 52425 Jülich (Germany); Milman, V. [Dassault Systèmes BIOVIA, 334 Science Park, Cambridge CB4 0WN (United Kingdom)

    2014-08-18T23:59:59.000Z

    Structural and vibrational changes due to the incorporation of Cu in the Cu{sub x}Zn{sub 2?x}TiO{sub 4} inverse spinel solid solution have been investigated by X-ray diffraction, Raman spectroscopy, and ab initio calculations. Both X-ray diffraction and Raman spectroscopy show that the structure remains cubic while the unit-cell volume decreases on Cu{sup 2+} incorporation. The compositional dependencies of the Raman frequencies and linewidths indicate the incorporation of Cu{sup 2+} into tetrahedral sites. The A{sub 1g} tetrahedral mode frequency becomes independent on composition for x?>?0.6. This is attributed to the limited incorporation of Cu{sup 2+} in the tetrahedral sites at Cu-rich compositions. Ab initio calculations with quasi-random structures reveal only a slight energetic preference of Cu{sup 2+} for octahedral over tetrahedral sites.

  17. PHYSICAL REVIEW B 88, 045427 (2013) Stability and electronic structure of Cu2ZnSnS4 surfaces: First-principles study

    E-Print Network [OSTI]

    Gong, Xingao

    2013-01-01T23:59:59.000Z

    the atomic and electronic structure of Cu2ZnSnS4 (CZTS) surfaces, although the efficiency of kesterite). In stoichiometric single-phase CZTS samples, Cu-enriched defects are favored on (112) surfaces and Cu on the surfaces of the synthesized CZTS thin films. The electronic structure analysis shows that Cu

  18. Phase relationships in the BaO-Y?O?-Cu-O system

    E-Print Network [OSTI]

    Hegg, Turi

    1989-01-01T23:59:59.000Z

    Os ? CuO showing the solid solution region for "the other perovskite" after Roth et al. 107 59. I'he BaO ? YsOs ? Cu ? 0 base plane of the polyhedra The quaternary BaO ? YsOs ? Cu ? 0 system with the suggested primary phase fields . 61. Pseudo... become insulating svhen z::. 7. 1, this means that the 213 compound goes from an insulating to a semiconducting to a superconducting to an insulating state as oxygen is added. The 213 compound has an oxygen-deficient perovskite structure . Its unit...

  19. Investigations of CuInSe sub 2 thin films and contacts

    SciTech Connect (OSTI)

    Nicolet, M.A. (California Inst. of Tech., Pasadena, CA (United States))

    1991-10-01T23:59:59.000Z

    This report describes research into electrical contacts for copper indium diselenide (CuInSe{sub 2}) polycrystalline thin films used for solar cell applications. Molybdenum contacts have historically been the most promising for heterojunction solar cells. This program studied contact stability by investigating thermally induced bilayer reactions between molybdenum and copper, indium, and selenium. Because selenization is widely used to fabricate CuInSe{sub 2} thin films for photovoltaic cells, a second part of the program investigated how the morphologies, phases, and reactions of pre-selenization Cu-In structures are affected by the deposition process and heat treatments. 7 refs., 6 figs.

  20. Phosphorescence quenching by mechanical stimulus in CaZnOS:Cu

    SciTech Connect (OSTI)

    Tu, Dong; Kamimura, Sunao [National Institute of Advanced Industrial Science and Technology (AIST), Saga 841-0052 (Japan); Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Fukuoka 816-8580 (Japan); Xu, Chao-Nan, E-mail: cn-xu@aist.go.jp [National Institute of Advanced Industrial Science and Technology (AIST), Saga 841-0052 (Japan); Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Fukuoka 816-8580 (Japan); International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, Fukuoka 819-0395 (Japan); Fujio, Yuki; Sakata, Yoshitaro [National Institute of Advanced Industrial Science and Technology (AIST), Saga 841-0052 (Japan); Ueno, Naohiro [National Institute of Advanced Industrial Science and Technology (AIST), Saga 841-0052 (Japan); Graduate School of Science and Engineering, Saga University, Saga 840-8502 (Japan)

    2014-07-07T23:59:59.000Z

    We have found that phosphorescence intensity of CaZnOS:Cu decreased visibly under an applied load. This mechanical quenching (MQ) of phosphorescence in CaZnOS:Cu corresponded to the mechanical stimuli. We have thus demonstrated that the MQ of CaZnOS:Cu could be used for visualizing stress distributions in practical applications. We propose that MQ arises from non-radiative recombination due to electron-transfer from trap levels to non-radiative centers as a result of the mechanical load.

  1. Crystal structure and magnetic properties of NaCu{sup II}[(Cu{sup II}{sub 3}O)(PO{sub 4}){sub 2}Cl

    SciTech Connect (OSTI)

    Jin Tengteng [Key Laboratory of Transparent Opto-Functional Inorganic Materials, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Dingxi Rd. 1295, Shanghai 200050 (China); Liu Wei [Institute of Science and Engineering of Materials, Ocean University of China, Qingdao (China); Chen Shuang; Prots, Yurii; Schnelle, Walter [Max-Planck-Institut fuer Chemische Physik fester Stoffe, Noethnitzer Str. 40, 01187 Dresden (Germany); Zhao Jingtai [Key Laboratory of Transparent Opto-Functional Inorganic Materials, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Dingxi Rd. 1295, Shanghai 200050 (China); Kniep, Ruediger [Max-Planck-Institut fuer Chemische Physik fester Stoffe, Noethnitzer Str. 40, 01187 Dresden (Germany); Hoffmann, Stefan, E-mail: stefan.hoffmann@cpfs.mpg.de [Max-Planck-Institut fuer Chemische Physik fester Stoffe, Noethnitzer Str. 40, 01187 Dresden (Germany)

    2012-08-15T23:59:59.000Z

    A new copper(II) oxide phosphate chloride, NaCu{sup II}[(Cu{sup II}{sub 3}O)(PO{sub 4}){sub 2}Cl], has been synthesized by flux synthesis. Single-crystal X-ray diffraction data show that the title compound crystallizes in the monoclinic system, space group P2{sub 1}/c (No. 14), with lattice parameters a=8.392(2) A, b=6.3960(10) A, c=16.670(2) A, {beta}=109.470(10) Degree-Sign , V=843.6(3) A{sup 3}, Z=4. The crystal structure is characterized by a complex chain of copper-centered polyhedra running along [0 1 0] which are connected by phosphate tetrahedra. The resulting three-dimensional polyhedra framework exhibits channels filled by additional copper and sodium atoms. Field and temperature dependent measurements of the specific heat and the magnetic susceptibility reveal low-dimensional magnetic behavior. The compound starts to decompose at 700 K under release of oxygen and evaporation of Cu{sup I}Cl as shown by simultaneous thermogravimetry and mass spectrometry. - Graphical abstract: The crystal structure of the new copper(II) phosphate chloride, NaCu{sup II}[(Cu{sup II}{sub 3}O)(PO{sub 4}){sub 2}Cl], exhibits linear chains of copper tetrahedra which show low-dimensional magnetic behavior proven by specific heat and magnetic susceptibility measurements. Highlights: Black-Right-Pointing-Pointer A new copper(II) oxide phosphate chloride, NaCu{sup II}[(Cu{sup II}{sub 3}O)(PO{sub 4}){sub 2}Cl], has been synthesized by flux synthesis. Black-Right-Pointing-Pointer The crystal structure comprises chains of Cu{sub 4}O tetrahedra. Black-Right-Pointing-Pointer Low-dimensional behavior has been proven by magnetic and specific heat measurements. Black-Right-Pointing-Pointer On heating, Cu{sup I}Cl and oxygen are released shown by simultaneous thermogravimetry and mass spectrometry.

  2. A Theoretical Study of Methanol Synthesis from CO(2) Hydrogenation on Metal-doped Cu(111) Surfaces

    SciTech Connect (OSTI)

    Liu P.; Yang, Y.; White, M.G.

    2012-01-12T23:59:59.000Z

    Density functional theory (DFT) calculations and Kinetic Monte Carlo (KMC) simulations were employed to investigate the methanol synthesis reaction from CO{sub 2} hydrogenation (CO{sub 2} + 3H{sub 2} {yields} CH{sub 3}OH + H{sub 2}O) on metal-doped Cu(111) surfaces. Both the formate pathway and the reverse water-gas shift (RWGS) reaction followed by a CO hydrogenation pathway (RWGS + CO-Hydro) were considered in the study. Our calculations showed that the overall methanol yield increased in the sequence: Au/Cu(111) < Cu(111) < Pd/Cu(111) < Rh/Cu(111) < Pt/Cu(111) < Ni/Cu(111). On Au/Cu(111) and Cu(111), the formate pathway dominates the methanol production. Doping Au does not help the methanol synthesis on Cu(111). Pd, Rh, Pt, and Ni are able to promote the methanol production on Cu(111), where the conversion via the RWGS + CO-Hydro pathway is much faster than that via the formate pathway. Further kinetic analysis revealed that the methanol yield on Cu(111) was controlled by three factors: the dioxomethylene hydrogenation barrier, the CO binding energy, and the CO hydrogenation barrier. Accordingly, two possible descriptors are identified which can be used to describe the catalytic activity of Cu-based catalysts toward methanol synthesis. One is the activation barrier of dioxomethylene hydrogenation, and the other is the CO binding energy. An ideal Cu-based catalyst for the methanol synthesis via CO{sub 2} hydrogenation should be able to hydrogenate dioxomethylene easily and bond CO moderately, being strong enough to favor the desired CO hydrogenation rather than CO desorption but weak enough to prevent CO poisoning. In this way, the methanol production via both the formate and the RWGS + CO-Hydro pathways can be facilitated.

  3. Electronic properties and morphology of Cu-phthalocyanine—C{sub 60} composite mixtures

    SciTech Connect (OSTI)

    Roth, Friedrich [Center for Free-Electron Laser Science/DESY, Notkestraße 85, D-22607 Hamburg (Germany); Lupulescu, Cosmin [Institute of Optics and Atomic Physics, TU Berlin, Straße des 17. Juni 135, D-10623 Berlin (Germany); Arion, Tiberiu [Center for Free-Electron Laser Science/DESY, Notkestraße 85, D-22607 Hamburg (Germany); Institut für Experimentalphysik, Universität Hamburg, Luruper Chaussee 149, D-22761 Hamburg (Germany); Darlatt, Erik; Gottwald, Alexander [Physikalisch-Technische Bundesanstalt (PTB), Abbestraße 2-12, D-10587 Berlin (Germany); Eberhardt, Wolfgang [Center for Free-Electron Laser Science/DESY, Notkestraße 85, D-22607 Hamburg (Germany); Institute of Optics and Atomic Physics, TU Berlin, Straße des 17. Juni 135, D-10623 Berlin (Germany)

    2014-01-21T23:59:59.000Z

    Phthalocyanines in combination with C{sub 60} are benchmark materials for organic solar cells. Here, we have studied the morphology and electronic properties of co-deposited mixtures (blends) of these materials forming a bulk heterojunction as a function of the concentration of the two constituents. For a concentration of 1:1 of Cu-Phthalocyanine (CuPc):C{sub 60}, a phase separation into about 100?nm size domains is observed, which results in electronic properties similar to layered systems. For low C{sub 60} concentrations (10:1 CuPc:C{sub 60}), the morphology, as indicated by Low-Energy Electron Microscopy images, suggests a growth mode characterized by (amorphous) domains of CuPC, whereby the domain boundaries are decorated with C{sub 60}. Despite of these markedly different growth modes, the electronic properties of the heterojunction films are essentially unchanged.

  4. Effects of mechanical properties on the reliability of Cu/low-k metallization systems

    E-Print Network [OSTI]

    Wei, Frank L. (Frank Lili), 1977-

    2007-01-01T23:59:59.000Z

    Cu and low-dielectric-constant (k) metallization schemes are critical for improved performance of integrated circuits. However, low elastic moduli, a characteristic of the low-k materials, lead to significant reliability ...

  5. GaN/Cu[subscript 2]O Heterojunctions for Photovoltaic Applications

    E-Print Network [OSTI]

    Hering, K.P.

    Several growth methods were employed to investigate the photovoltaic behavior of GaN/Cu[subscript 2]O heterojunctions by depositing cuprous oxide thin films on top of gallium nitride templates. The templates consist of a ...

  6. DISSERTATION Role of the Cu-O Defect in CdTe Solar Cells

    E-Print Network [OSTI]

    Sites, James R.

    DISSERTATION Role of the Cu-O Defect in CdTe Solar Cells Submitted by Caroline R. Corwine Colorado State University Fort Collins, Colorado Summer 2006 #12;#12;ABSTRACT OF DISSERTATION ROLE

  7. The adsorption of water on Cu2O and Al2O3 thin films

    E-Print Network [OSTI]

    Deng, Xingyi

    2010-01-01T23:59:59.000Z

    since in equilibrium adsorption and desorption rates are theexp(-E a /RT), while the gas adsorption rate depends on theThe adsorption of water on Cu 2 O and Al 2 O 3 thin films

  8. Evaluation of Quasicrystal Al-Cu-Fe Alloys for Tribological Applications 

    E-Print Network [OSTI]

    Nabelsi, Nezar

    2013-07-22T23:59:59.000Z

    This research investigated the tribological performance of a composite material, formed from an ultra high molecular weight polyethylene (UHMWPE) matrix and quasicrystalline Al-Cu-Fe alloy powders. An evaluation was conducted for the microstructure...

  9. Simulations of Collision Cascades in Cu–Nb Layered Composites Using an EAM Interatomic Potential

    E-Print Network [OSTI]

    Demkowicz, Michael J.

    The embedded atom method (EAM) is used to construct an interatomic potential for modelling interfaces in Cu–Nb nanocomposites. Implementation of the Ziegler–Biersack–Littmark (ZBL) model for short-range interatomic ...

  10. Theoretical investigation of the magnetic structure in YBa_2Cu_3O_6

    E-Print Network [OSTI]

    Ekkehard Krüger

    2006-08-07T23:59:59.000Z

    As experimentally well established, YBa_2Cu_3O_6 is an antiferromagnet with the magnetic moments lying on the Cu sites. Starting from this experimental result and the assumption, that nearest-neighbor Cu atoms within a layer have exactly antiparallel magnetic moments, the orientation of the magnetic moments has been determined within a nonadiabatic extension of the Heisenberg model of magnetism, called nonadiabatic Heisenberg model. Within this group-theoretical model there exist four stable magnetic structures in YBa_2Cu_3O_6, two of them are obviously identical with the high- and low-temperature structure established experimentally. However, not all the magnetic moments which appear to be antiparallel in neutron-scattering experiments are exactly antiparallel within this group-theoretical model. Furthermore, within this model the magnetic moments are not exactly perpendicular to the orthorhombic c axis.

  11. Characterization of Zr-Fe-Cu Alloys for an Inert Matrix Fuel for Nuclear Energy Applications 

    E-Print Network [OSTI]

    Barnhart, Brian A.

    2013-08-09T23:59:59.000Z

    distinct phase morphologies. The top half of the sample was Zr rich and contained Zr precipitates dispersed in a matrix of intermetallic compounds while the bottom half consisted solely of intermetallic compounds. The third alloy, Zr-12Fe-15Cu...

  12. Preparation, magnetic and optical properties of layered oxychalcogenides SmCuOCh (Ch = S or Se)

    SciTech Connect (OSTI)

    Llanos, Jaime [Departamento de Quimica, Universidad Catolica del Norte, Avda. Angamos 0610, Casilla 1280, Antofagasta (Chile)]. E-mail: jllanos@ucn.cl; Cortes, Rodrigo [Departamento de Quimica, Universidad Catolica del Norte, Avda. Angamos 0610, Casilla 1280, Antofagasta (Chile); Guizouarn, T. [Laboratoire de Chimie du Solide et Inorganique Moleculaire, UMR 6511-CNRS, Universite de Rennes 1-Institut de Chimie de Rennes, 35042 Rennes Cedex (France); Pena, Octavio [Laboratoire de Chimie du Solide et Inorganique Moleculaire, UMR 6511-CNRS, Universite de Rennes 1-Institut de Chimie de Rennes, 35042 Rennes Cedex (France)

    2006-07-13T23:59:59.000Z

    This paper reports on the synthesis and the electrical, magnetic and optical properties of SmCuOS and SmCuOSe. The magnetic properties reveal that Sm is in its 3+ oxidation state ({mu} {sup theo} = g{radical}J(J + 1) = 0.85 {mu}{sub B}; g = 2/7) with a large Van Vleck contribution, and exclude the possibility of a divalent oxidation state for samarium (Sm{sup 2+}; {sup 7}F{sub 0} state, g = J = 0, {mu} {sub eff} = 0). Optical properties were studied by means of diffuse reflectance and photoluminescence spectra in the UV-vis range. The electrical measurements show that the two samarium copper oxychalcogenides, SmCuOSe and SmCuOS are semiconductors with optical band gap (E {sub g}) values of 2.60 and 2.90 eV, respectively.

  13. Shape memory and superelasticity in polycrystalline Cu-Al-Ni microwires

    E-Print Network [OSTI]

    Chen, Ying

    We report a strategy to significantly improve the ductility and achieve large superelastic and shape memory strains in polycrystalline Cu–Al–Ni shape memory alloys that are normally brittle. We use a liquid-phase (Taylor) ...

  14. Evaluation of Quasicrystal Al-Cu-Fe Alloys for Tribological Applications

    E-Print Network [OSTI]

    Nabelsi, Nezar

    2013-07-22T23:59:59.000Z

    This research investigated the tribological performance of a composite material, formed from an ultra high molecular weight polyethylene (UHMWPE) matrix and quasicrystalline Al-Cu-Fe alloy powders. An evaluation was conducted for the microstructure...

  15. Age hardening and creep resistance of cast Al–Cu alloy modified by praseodymium

    SciTech Connect (OSTI)

    Bai, Zhihao; Qiu, Feng; Wu, Xiaoxue; Liu, Yingying; Jiang, Qichuan, E-mail: jqc@jlu.edu.cn

    2013-12-15T23:59:59.000Z

    The effects of praseodymium on age hardening behavior and creep resistance of cast Al–Cu alloy were investigated. The results indicated that praseodymium facilitated the formation of the ?? precipitates during the age process and improved the hardness of the Al–Cu alloy. Besides, praseodymium resulted in the formation of the Al{sub 11}Pr{sub 3} phase in the grain boundaries and among the dendrites of the modified alloy. Because of the good thermal stability of Al{sub 11}Pr{sub 3} phase, it inhibits grain boundary migration and dislocation movement during the creep process, which contributes to the improvement in the creep resistance of the modified alloy at elevated temperatures. - Highlights: • Pr addition enhances the hardness and creep resistance of the Al–Cu alloy. • Pr addition facilitates the formation of the ?? precipitates. • Pr addition results in the formation of the Al11Pr3 phase in the Al–Cu alloy.

  16. Structure, Magnetism, and Transport of CuCr2Se4 Thin Films

    E-Print Network [OSTI]

    2008-01-01T23:59:59.000Z

    Structure, Magnetism, and Transport of CuCr 2 Se 4 Thindichroism shows that the magnetism persists to the surfacesuch as the nature of magnetism at surfaces and interfaces.

  17. Morphological stability of Cu-Nb nanocomposites under high-energy collision cascades

    E-Print Network [OSTI]

    Zhang, Liang

    We use molecular dynamics and phase field simulations to demonstrate that Cu-Nb multilayered nanocomposites with individual layer thicknesses above 2–4?nm remain morphologically stable when subjected to 100?keV collision ...

  18. Rapid synthesis and size control of CuInS2 semi-conductor nanoparticle...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    semi-conductor nanoparticles make them attractive materials for use in next-generation photovoltaics. We have prepared CuInS2 nanoparticles from single source precursors via...

  19. Rapid Synthesis and Size Control of CuInS2 Semi-Conductor Nanoparticle...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    semi-conductor nanoparticles make them attractive materials for use in next-generation photovoltaics. We have prepared CuInS2 nanoparticles from single source precursors via...

  20. Sources and distribution of CuO-derived benzene carboxylic acids in soils and sediments

    E-Print Network [OSTI]

    Long, Bernard

    Sources and distribution of CuO-derived benzene carboxylic acids in soils and sediments Angela F vas- cular plant-derived OC, through the environment. The method produces a suite of benzene