National Library of Energy BETA

Sample records for billed energy charges

  1. SmartCharge: Cutting the Electricity Bill in Smart Homes with Energy Storage

    E-Print Network [OSTI]

    Kurose, Jim

    SmartCharge: Cutting the Electricity Bill in Smart Homes with Energy Storage Aditya Mishra, David,irwin,shenoy,kurose}@cs.umass.edu Ting Zhu Binghamton University tzhu@binghamton.edu ABSTRACT Market-based electricity pricing provides consumers an op- portunity to lower their electric bill by shifting consump- tion to low price periods

  2. Florida Residents See Energy Bill Reductions

    Broader source: Energy.gov [DOE]

    Indiantown nonprofit's home weatherization efforts help homeowners see drastic cuts in their energy bills.

  3. Energy Bill Literature Sources

    Broader source: Energy.gov (indexed) [DOE]

    "PURPA Standards" in the Energy Independence and Security Act of 2007 August 11, 2008 Sponsored by American Public Power Association (APPA) Edison Electric Institute (EEI) National...

  4. Energy Bill Literature Sources

    Broader source: Energy.gov (indexed) [DOE]

    the "PURPA Standards" in the Energy Policy Act of 2005 March 22, 2006 Sponsored by American Public Power Association (APPA) Edison Electric Institute (EEI) National Association of...

  5. Energy Bill Literature Sources

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based|DepartmentStatementofAprilofEnergyEnSysEnergyBuildingsDepartment ofof

  6. Energy Bill Literature Sources

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based|DepartmentStatementofAprilofEnergyEnSysEnergyBuildingsDepartment

  7. Bill Gibbons | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann JacksonDepartment of EnergyResearchers atDayWhenBethany Sparn,Department ofU.S.-ChinaBill

  8. Impact of Rate Design Alternatives on Residential Solar Customer Bills. Increased Fixed Charges, Minimum Bills and Demand-based Rates

    SciTech Connect (OSTI)

    Bird, Lori; Davidson, Carolyn; McLaren, Joyce; Miller, John

    2015-09-01

    With rapid growth in energy efficiency and distributed generation, electric utilities are anticipating stagnant or decreasing electricity sales, particularly in the residential sector. Utilities are increasingly considering alternative rates structures that are designed to recover fixed costs from residential solar photovoltaic (PV) customers with low net electricity consumption. Proposed structures have included fixed charge increases, minimum bills, and increasingly, demand rates - for net metered customers and all customers. This study examines the electricity bill implications of various residential rate alternatives for multiple locations within the United States. For the locations analyzed, the results suggest that residential PV customers offset, on average, between 60% and 99% of their annual load. However, roughly 65% of a typical customer's electricity demand is non-coincidental with PV generation, so the typical PV customer is generally highly reliant on the grid for pooling services.

  9. On-Bill Financing: Reducing Cost Barriers to Energy Efficiency...

    Office of Environmental Management (EM)

    On-Bill Financing: Reducing Cost Barriers to Energy Efficiency Improvements (201) On-Bill Financing: Reducing Cost Barriers to Energy Efficiency Improvements (201) October 8...

  10. ENERGY AND WATER DEVELOPMENT APPROPRIATIONS BILL, FY 2011 Senate Bill 3635, Report 111-228

    E-Print Network [OSTI]

    ENERGY AND WATER DEVELOPMENT APPROPRIATIONS BILL, FY 2011 Senate Bill 3635, Report 111. Fusion Energy Sciences (FES) would be funded at $384.0 million, a decrease of $42.0 million below the FY10 enacted level and $4.0 million above the budget request. FUSION ENERGY SCIENCES The Committee

  11. Bill Scanlon | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p a l De p uBUSEnergy|| Department

  12. Bill Valdez | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p a l De p uBUSEnergy|| Department- Director of Workforce Management

  13. Bill Richardson | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann JacksonDepartment of EnergyResearchers atDayWhenBethany Sparn,Department

  14. On-Bill Financing for Energy Efficiency Improvements: A Review...

    Energy Savers [EERE]

    Improvements: A Review of Current Program Challenges, Opportunities, and Best Practices On-Bill Financing for Energy Efficiency Improvements: A Review of Current Program...

  15. PIA - FBI Billing System | Department of Energy

    Energy Savers [EERE]

    and Budget System Office of Personnel Management (OPM) Billing System PIA, Office of Health, Safety and Security Occupational Medicine - Assistant PIA, Idaho National Laboratory...

  16. Know Your Energy Bill! | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-inPPLforLDRDEnergyTurbine blades being deliveredof Energy astrack of

  17. Net Energy Billing | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nAand DOEDepartment ofProgramImports by Pipeline intosomeofNeil

  18. Billings, Montana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental JumpInformation BeaufortBentMichigan:Greece)Daddy sEnergyJump to: navigation,

  19. Billings, Montana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental JumpInformation BeaufortBentMichigan:Greece)Daddy sEnergyJump to:

  20. ORNL 'deep retrofits' can cut home energy bills in half

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    . Deep energy retrofits are renovations to existing structures that use the latest in energyORNL 'deep retrofits' can cut home energy bills in half November 25, 2009 ORNL's Jeff Christian Ridge National Laboratory has announced plans to conduct a series of deep energy retrofit research

  1. ORNL 'deep retrofits' can cut home energy bills in half

    E-Print Network [OSTI]

    Pennycook, Steve

    of the costs--about $10 per square foot of living space--and agree to allow their post-retrofit energyORNL 'deep retrofits' can cut home energy bills in half November 25, 2009 ORNL's Jeff Christian Ridge National Laboratory has announced plans to conduct a series of deep energy retrofit research

  2. Nuclear Subsidies in the House Climate bill (H.R. 2454) and Senate Energy bill (S. 1462)

    E-Print Network [OSTI]

    Laughlin, Robert B.

    Nuclear Subsidies in the House Climate bill (H.R. 2454) and Senate Energy bill (S. 1462) Subsidy; · Authorizes guarantees for tax- equity and purchase power agreements that could be used for nuclear · Funds out. The nuclear industry has requested $122 billion in guarantees under Title XVII Loan Guarantees

  3. Case Studies—Financing Energy Improvements on Utility Bills

    Broader source: Energy.gov [DOE]

    Hosted by Technical Assistance Program (TAP), the State and Local Energy Efficiency Action Network (SEE Action), and Lawrence Berkeley National Laboratory's Electricity Market and Policy Group, this webinar was the second of a two-part webinar series focused on the new report, Financing Energy Improvements on Utility Bills: Market Updates and Key Program Design Considerations for Policymakers and Administrators.

  4. Money for Research, Not Energy Bills: Finding Energy and Cost Savings in

    E-Print Network [OSTI]

    , to meet national security, materials design, climate protection, and energy goals, among othersLBNL-4282E Money for Research, Not Energy Bills: Finding Energy and Cost Savings in High of California. #12;1 Money for Research, Not for Energy Bills: Finding Energy and Cost Savings in High

  5. Omnibus Energy Bill of 2013 (Maine)

    Broader source: Energy.gov [DOE]

    An Act To Reduce Energy Costs, Increase Energy Efficiency, Promote Electric System Reliability and Protect the Environment became law on July 2, 2013. This act, also known as the 2013 Maine Omnibus...

  6. MEASURING ENERGY CONSERVATION WITH UTILITY BILLS

    E-Print Network [OSTI]

    Deckel, Walter

    2013-01-01

    The total energy used both per square foot and per FTE hasTotal Energy Used Per Year Total Gross Square Feet The EUIsquare foot and per FTE, have increased markedly, The explanation of the first trend lies FIGURE 4 a.Distribution of Values of Energy

  7. Baltimore Vet Cuts Energy Bills With Solar

    Broader source: Energy.gov [DOE]

    Baltimore resident and disabled veteran Paul Bennett shares his experience utilizing state and federal grants and tax credits to install solar panels on his historic row home and cut energy costs.

  8. PIA - FBI Billing System | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuelsof EnergyAprilEnergy EERE Infrastructure-EERE Reviewerof| Department

  9. Category:Billings, MT | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButte County,Camilla, Georgia: Energy014771°,North Dakota:Bonn |NJ

  10. Bill Gates and Deputy Secretary Poneman Discuss the Energy Technology Landscape

    Office of Energy Efficiency and Renewable Energy (EERE)

    Bill Gates and Deputy Secretary of Energy Daniel Poneman discuss the future of energy technology during the twenty-second Plenary Meeting of the Nuclear Suppliers Group.

  11. On-Bill Financing for Energy Efficiency Improvements Toolkit | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy Bills and ReduceNovemberDOE'sManagement ofOh,of Energy Improvements

  12. On-Bill Repayment Programs | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy Bills and ReduceNovemberDOE'sManagement ofOh,of EnergyRepayment Programs

  13. Bill Robinson (Train2Build) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental JumpInformation BeaufortBentMichigan:Greece)Daddy sEnergy InformationBill

  14. Negotiation-Based Task Scheduling to Minimize User's Electricity Bills under Dynamic Energy Prices

    E-Print Network [OSTI]

    Pedram, Massoud

    Negotiation-Based Task Scheduling to Minimize User's Electricity Bills under Dynamic Energy Prices}@usc.edu Abstract--Dynamic energy pricing is a promising technique in the Smart Grid that incentivizes energy to minimize the electricity bill. A general type of dynamic pricing scenario is assumed where the energy price

  15. ARE BUILDING CODES EFFECTIVE AT SAVING ENERGY? EVIDENCE FROM RESIDENTIAL BILLING DATA IN FLORIDA

    E-Print Network [OSTI]

    Kotchen, Matthew J.

    ARE BUILDING CODES EFFECTIVE AT SAVING ENERGY? EVIDENCE FROM RESIDENTIAL BILLING DATA IN FLORIDA code applied to buildings using residential billing data on electricity and natural gas, combined in the built environment, as buildings account for roughly 72% of electricity con- sumption, 39% of all energy

  16. Concurrent Optimization of Consumer's Electrical Energy Bill and Producer's Power Generation Cost under a Dynamic Pricing

    E-Print Network [OSTI]

    Pedram, Massoud

    Concurrent Optimization of Consumer's Electrical Energy Bill and Producer's Power Generation Cost their electric bill. On the other hand optimizing the number and production time of power generation facilities lower cost. I. INTRODUCTION There is no substitute for the status of electrical energy, which

  17. E:\BILLS\H6.PP | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based| Department8,Department of2E:\BILLS\H6.PP E:\BILLS\H6.PP E:\BILLS\H6.PP

  18. Live Webcast on the 2014 Farm Bill's Renewable Energy for America Program

    Broader source: Energy.gov [DOE]

    The Energy Department will present a live webcast titled “The 2014 Farm Bill's Renewable Energy for America Program” on May 21, 2014, from 3:00 to 4:00 p.m. Eastern Standard Time.

  19. ARPA-E Announces 2012 Energy Innovation Summit Featuring Bill...

    Broader source: Energy.gov (indexed) [DOE]

    just outside Washington, D.C. Bill Gates, founder and chairman of Microsoft; Fred Smith, chairman, president and CEO of FedEx; and Lee Scott, former CEO of Wal-Mart; will...

  20. A Proposed Method for Improving Residential Heating Energy Estimates Based on Billing Data 

    E-Print Network [OSTI]

    Lee, A. D.; Hadley, D. L.

    1988-01-01

    empirical energy consumption data, however, provide a basis for alternative ways to estimate program effects that utilize the empirical data. The PRISM methodology uses relatively inexpensive billing and weather data to estimate base and temperature...

  1. Analysis of Five Selected Tax Provisions of the Conference Energy Bill of 2003

    Reports and Publications (EIA)

    2004-01-01

    This special report was undertaken at the January 29, 2004, request of Senator John Sununu to perform an assessment of five specific tax provisions of the Conference Energy Bill of 2003.

  2. Take a Vacation from Your Energy Bill | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Intergovernmental Programs We are always talking about preparing our homes for energy efficiency and taking the right steps to decrease our carbon footprints as...

  3. Energy Savings Week: Lowering Energy Bills with Efficient Home Heating |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n cEnergyNatural Gas |ToolAppliances | Department ofDepartment of

  4. Forsyth County Slashes Energy Bills with Upgrades | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12, 2015ExecutiveFluorescent Lamp BallastsActivities,JoiningEnergy

  5. June 28, 2005 Senate Passes Energy Bill in Prelude to Talks With House

    E-Print Network [OSTI]

    and gas production, wind and solar energy, energy-efficient appliances and hybrid cars. The measureJune 28, 2005 Senate Passes Energy Bill in Prelude to Talks With House By CARL HULSE WASHINGTON, June 28 - The Senate overwhelmingly passed broad energy legislation today, hoping its emphasis on both

  6. Billings County, North Dakota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental JumpInformation BeaufortBentMichigan:Greece)Daddy sEnergy

  7. STEP Utility Bill Analysis Report

    Broader source: Energy.gov [DOE]

    STEP Utility Bill Analysis Report, from the Tool Kit Framework: Small Town University Energy Program (STEP).

  8. Excerpts from Senate Report 109-084 ENERGY AND WATER APPROPRIATIONS BILL, 2006

    E-Print Network [OSTI]

    Excerpts from Senate Report 109-084 ENERGY AND WATER APPROPRIATIONS BILL, 2006 June 16, 2005 of the Department's missions in national security, energy security and economic security. Programs funded under after the enactment of this Act, with information critical to moving forward with the site selection

  9. Comparison groups on bills: Automated, personalized energy information

    E-Print Network [OSTI]

    Iyer, Maithili

    2008-01-01

    Summer Study on Energy Efficiency in Buildings. Berkeley,Summer Study on Energy Efficiency in Buildings. Berkeley,Summer Study on Energy Efficiency in Buildings. Berkeley,

  10. Secretary Bodman Promotes Energy Bill to Western Governors |...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    further development of renewable energy; hydrogen powered fuel-cell vehicles; and clean-coal power generation. "The energy challenges facing our country today are greater than...

  11. Cutting the Federal Governments Energy Bill: An Examination...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    is clear from past Federal performance and documented success in the private sector that saving energy can save money. Investments in energy savings will not only reduce the...

  12. Summary Impacts of Modeled Provisions of the 2003 Conference Energy Bill

    Reports and Publications (EIA)

    2004-01-01

    This service report was undertaken at the February 2, 2004, request of Senator John Sununu to perform an assessment of the Conference Energy Bill of 2003. This report summarizes the CEB provisions that can be analyzed using the National Energy Modeling System (NEMS) and have the potential to affect energy consumption, supply, and prices. The impacts are estimated by comparing the projections with the CEB provisions to the AEO2004 Reference Case.

  13. Energy Efficiency & On-Bill Financing for Samll Business & Residential

    Office of Energy Efficiency and Renewable Energy (EERE)

    Details on Connecticut Energy Efficiency Fund and its benefits to small businesses and residential customers.

  14. 2012 ARPA-E Energy Innovation Summit: Fireside Chat with Steven Chu and Bill Gates

    ScienceCinema (OSTI)

    Chu, Steven (U.S. Department of Energy Secretary); Gates, Bill (Microsoft, Chairman); Podesta, John (Center for American Progress, Chair and Counselor)

    2012-03-21

    The third annual ARPA-E Energy Innovation Summit was held in Washington D.C. in February, 2012. The event brought together key players from across the energy ecosystem - researchers, entrepreneurs, investors, corporate executives, and government officials - to share ideas for developing and deploying the next generation of energy technologies. This video captures a session called 'Fireside Chat' that featured Steven Chu, the Secretary of Energy, and Bill Gates, Chairman of Microsoft Corporation. The session is moderated by John Podesta, Chair of the Center for American Progress. Energy Secretary Steven Chu and Microsoft Founder and Chairman Bill Gates exchanged ideas about how small businesses and innovators can overcome the challenges that face many startups.

  15. EECBG Success Story: Forsyth County Slashes Energy Bills with...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2010 - 10:00am Addthis A new energy management system in Forsyth Countys 52,057 square foot courthouse is expected to save about 9,000 annually. | Photo courtesy of Forsyth...

  16. New Jersey: Reducing Energy Bills for Camden's Families | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuelsof EnergyApril 2014Department of EnergyDepartment of| Department

  17. Direct_Final_Rule_Bill.pdf | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-in electricLaboratoryof EnergyWASHINGTON, DC -State ||direct research

  18. Financing Tool Fits the Bill | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nA Guide to Tapping into Funding for Energy Efficiency andfinancinghomeowners

  19. EECBG Success Story: Forsyth County Slashes Energy Bills with Upgrades |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based|Department of EnergyDepartment of Energy Finding Six-Figure

  20. Charging Graphene for Energy Storage

    SciTech Connect (OSTI)

    Liu, Jun

    2014-10-06

    Since 2004, graphene, including single atomic layer graphite sheet, and chemically derived graphene sheets, has captured the imagination of researchers for energy storage because of the extremely high surface area (2630 m2/g) compared to traditional activated carbon (typically below 1500 m2/g), excellent electrical conductivity, high mechanical strength, and potential for low cost manufacturing. These properties are very desirable for achieving high activity, high capacity and energy density, and fast charge and discharge. Chemically derived graphene sheets are prepared by oxidation and reduction of graphite1 and are more suitable for energy storage because they can be made in large quantities. They still contain multiply stacked graphene sheets, structural defects such as vacancies, and oxygen containing functional groups. In the literature they are also called reduced graphene oxide, or functionalized graphene sheets, but in this article they are all referred to as graphene for easy of discussion. Two important applications, batteries and electrochemical capacitors, have been widely investigated. In a battery material, the redox reaction occurs at a constant potential (voltage) and the energy is stored in the bulk. Therefore, the energy density is high (more than 100 Wh/kg), but it is difficult to rapidly charge or discharge (low power, less than 1 kW/kg)2. In an electrochemical capacitor (also called supercapacitors or ultracapacitor in the literature), the energy is stored as absorbed ionic species at the interface between the high surface area carbon and the electrolyte, and the potential is a continuous function of the state-of-charge. The charge and discharge can happen rapidly (high power, up to 10 kW/kg) but the energy density is low, less than 10 Wh/kg2. A device that can have both high energy and high power would be ideal.

  1. Reduce Your Heating Bills with Better Insulation | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nAandSummary From: JuliaDepartment-8-2008RSSaSuperiorIf you pay your own

  2. On-Bill Financing and Repayment Programs | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy AEnergy Managing853926 NewsORMAT NEVADAEnergyAFour RegionalOil8,137 OldFundsbill

  3. Consumer Tips for Lowering Your Utility Bill | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar EnergyLawler,CoalConcordiaConsumer Connection Jump to: navigation,

  4. Secretary Bodman Promotes Energy Bill to Western Governors | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing Tool FitsProjectData DashboardSolar » SearchCompleted;Efforts | DepartmentEnergy

  5. Upping Efficiency Standards, Lowering Utility Bills | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann Jackson About1996HowFOAShowing YouNeedofDepartment of EnergyEducation |

  6. Apartment Hunting - Part II - Keeping those Energy Bills Down |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann JacksonDepartment of EnergyResearchers atDay 12:wasProjectsreguarly

  7. On-Bill Financing for Energy Efficiency Improvements: A Review of Current

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy Bills and ReduceNovemberDOE'sManagement ofOh,of Energy

  8. Thermite charge - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    & Trademark Office Marketing Summary: Linear Thermite Charge Abstract: The present invention provides for cutting operations using linear thermite charges; the charges cut one...

  9. A Methodology to Develop Monthly Energy Use Models From Utility Billing Data For Seasonally Scheduled Buildings: Application to Schools 

    E-Print Network [OSTI]

    Wang, W.

    1998-01-01

    TO DEVELOP MONTHLY ENERGY USE MODELS FROM UTILITY BILLING DATA FOR SEASONALLY SCHEDULED BUILDINGS: APPLICATION TO SCHOOLS A Thesis by WENYAN WANG Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements... for the degree of MASTER OF SCIENCE December 1998 Major Subject: Mechanical Engineering A METHODOLOGY TO DEVELOP MONTHLY ENERGY USE MODELS FROM UTILITY BILLING DATA FOR SEASONALLY SCHEDULED BUILDINGS: APPLICATION TO SCHOOLS A Thesis by WENYAN WANG Submitted...

  10. Home Performance with ENERGY STAR: Utility Bill Analysis on Homes Participating in Austin Energy's Program

    SciTech Connect (OSTI)

    Belzer, D.; Mosey, G.; Dagher, L.; Plympton, P.

    2008-01-01

    Home Performance with ENERGY STAR (HPwES) is a jointly managed program of the U.S. Department of Energy (DOE) and the U.S. Environmental Protection Agency (EPA). This program focuses on improving energy efficiency in existing homes via a whole-house approach to assessing and improving a home's energy performance, and helping to protect the environment. As a local sponsor for HPwES, Austin Energy's HPwES program offers a complete home energy assessment and a list of recommendations for efficiency improvements, along with cost estimates. The owner can choose to implement only one or the complete set of energy conservation measures. Austin Energy facilitates the process by providing economic incentives to the homeowner through its HPwES Loan program and its HPwES Rebate program. In 2005, the total number of participants in both programs was approximately 1,400. Both programs are only available for improvements made by a participating HPwES contractor. The individual household billing data - encompassing more than 7,000 households - provided by Austin Energy provides a rich data set to estimate the impacts of its HPwES program. The length of the billing histories is sufficient to develop PRISM-type models of electricity use based on several years of monthly bills before and after the installation of the conservation measures. Individual household savings were estimated from a restricted version of a PRISM-type regression model where the reference temperature to define cooling (or heating degree days) was estimated along with other parameters. Because the statistical quality of the regression models varies across individual households, three separate samples were used to measure the aggregate results. The samples were distinguished on the basis of the statistical significance of the estimated (normalized) cooling consumption. A normalized measure of cooling consumption was based on average temperatures observed over the most recent nine-year period ending in 2006. This study provided a statistically rigorous approach to incorporating the variability of expected savings across the households in the sample together with the uncertainty inherent in the regression models used to estimate those savings. While the impact of the regression errors was found to be relatively small in these particular samples, this approach may be useful in future studies using individual household billing data. The median percentage savings for the largest sample of 6,000 households in the analysis was 32%, while the mean savings was 28%. Because the number of households in the sample is very large, the standard error associated with the mean percentage savings are very small, less than 1%. A conservative statement of the average savings is that is falls in the range of 25% to 30% with a high level of certainty. This preliminary analysis provides robust estimates of average program savings, but offers no insight into how savings may vary by type of conservation measure or whether savings vary by the amount of cooling electricity used prior to undertaking the measure. Follow-up researchers may want to analyze the impacts of specific ECMs. Households that use electricity for heating might also be separately analyzed. In potential future work several methodological improvements could also be explored. As mentioned in Section 2, there was no formal attempt to clean the data set of outliers and other abnormal patterns of billing data prior to the statistical analysis. The restriction of a constant reference temperature might also be relaxed. This approach may provide evidence as to whether any 'take-back' efforts are present, whereby thermostat settings are lowered during the summer months after the measures are undertaken (reflected in lower reference temperatures in the post-ECM period). A more extended analysis may also justify the investment in and use of the PRISM software package, which may provide more diagnostic measures with respect to the reference temperature. PRISM also appears to contain some built-in capability to detect outliers and other an

  11. 15 Ways to Save on Your Water Heating Bill | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    15 Ways to Save on Your Water Heating Bill 15 Ways to Save on Your Water Heating Bill October 26, 2009 - 3:49pm Addthis Allison Casey Senior Communicator, NREL Sometimes it...

  12. Societal Benefits Charge | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy BillsNo.Hydrogen4Energy Smooth Brome MonitoringSocial Media

  13. Analyzing and Managing Bill Impacts of Energy Efficiency Programs. Principles and Recommendations

    SciTech Connect (OSTI)

    none,

    2011-07-01

    Provides policymakers with principles and recommendations to understand and manage concerns about bill and rate impacts resulting from requiring utilities to provide efficiency programs.

  14. How On-Bill Financing Unlocks Energy Efficiency | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12,ExecutiveFinancingR Walls - BuildingofDepartment ofHow Much Do YouOn-Bill

  15. 2012 ARPA-E Energy Innovation Summit Keynote Presentation (Bill Clinton, 42nd President of the United States)

    ScienceCinema (OSTI)

    Clinton, William J. (Bill) (42nd President of the United States)

    2012-03-21

    The third annual ARPA-E Energy Innovation Summit was held in Washington D.C. in February, 2012. The event brought together key players from across the energy ecosystem - researchers, entrepreneurs, investors, corporate executives, and government officials - to share ideas for developing and deploying the next generation of energy technologies. Former President Bill Clinton, the 42nd President of the United States, gave the final keynote address of the 2012 Summit on February 29. He addressed the importance of government investment in research that will help move the world toward a cleaner and more secure energy future.

  16. Wireless Charging | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann Jackson About1996HowFOAShowingFuelWeatherize » AirareAbout KeyofWireless Charging

  17. Financing Energy Improvements on Utility Bills: Market Updates and Key Program Design Considerations for Policymakers and Administrators

    SciTech Connect (OSTI)

    2014-05-22

    Provides an overview of the current state of on-bill programs and provides actionable insights on key program design considerations for on-bill lending programs.

  18. Driving Demand for Home Energy Improvements: Motivating residential customers to invest in comprehensive upgrades that eliminate energy waste, avoid high utility bills, and spur the economy

    E-Print Network [OSTI]

    Fuller, Merrian C.

    2011-01-01

    Performance with ENERGY STAR Program – New York The HomeCharges, operates the New York Energy $mart initiative. Thisprogram, run by the New York State Energy Research and

  19. EV Everywhere Workplace Charging Challenge | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Plug-in Electric Vehicles & Batteries EV Everywhere Workplace Charging Challenge EV Everywhere Workplace Charging Challenge energy.govnode955366">Join the...

  20. Cut Your Power Bills 

    E-Print Network [OSTI]

    Greenwood, R. W.

    1979-01-01

    CUT YOUR POWER BILLS Ralph W. Greenwood Manager, Electric Po\\yer & Steam Supply Union Carbide Corporation INTRODUCTION Electric power bills can often be reduced by careful attention to the inter-relationship between your plant operations... of work and determines the amount of fuel the utility must burn. One kW equals 3413 BTU. ~ hr. Before we analyze how a rate interacts with a customer's load profile, we need to see how a rate is con structed. Rate Design Custome~ Demand and Energy...

  1. Home Performance with ENERGY STAR: Utility Bill Analysis on Homes Participating in Austin Energy's Program

    SciTech Connect (OSTI)

    Belzer, D.; Mosey, G.; Plympton, P.; Dagher, L.

    2007-07-01

    Home Performance with ENERGY STAR (HPwES) is a jointly managed program of the U.S. Department of Energy (DOE) and the U.S. Environmental Protection Agency (EPA). This program focuses on improving energy efficiency in existing homes via a whole-house approach to assessing and improving a home's energy performance, and helping to protect the environment. As one of HPwES's local sponsors, Austin Energy's HPwES program offers a complete home energy analysis and a list of recommendations for efficiency improvements, along with cost estimates. To determine the benefits of this program, the National Renewable Energy Laboratory (NREL) collaborated with the Pacific Northwest National Laboratory (PNNL) to conduct a statistical analysis using energy consumption data of HPwES homes provided by Austin Energy. This report provides preliminary estimates of average savings per home from the HPwES Loan Program for the period 1998 through 2006. The results from this preliminary analysis suggest that the HPwES program sponsored by Austin Energy had a very significant impact on reducing average cooling electricity for participating households. Overall, average savings were in the range of 25%-35%, and appear to be robust under various criteria for the number of households included in the analysis.

  2. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    legislation authorizing the Vermont Public Service Board (PSB) to establish a volumetric charge on all electric customers' bills to support energy-efficiency programs.......

  3. The New Charge for NonFusionEnergy

    E-Print Network [OSTI]

    The New Charge for NonFusionEnergy FES Applications James W. Van Dam on behalf of Fusion Energy of fusion energy sciences to scientific discovery and the development and deployment of new technologies beyond possible applications in fusion energy. 3 #12;Charge to FESAC · Charge letter to FESAC from

  4. Estimating the Energy, Demand and Cost Savings from a Geothermal Heat Pump ESPC Project at Fort Polk, LA Through Utility Bill Analysis.

    SciTech Connect (OSTI)

    Shonder, John A; Hughes, Patrick

    2006-01-01

    Energy savings performance contracts (ESPCs) are a method of financing energy conservation projects using the energy cost savings generated by the conservation measures themselves. Ideally, reduced energy costs are visible as reduced utility bills, but in fact this is not always the case. On large military bases, for example, a single electric meter typically covers hundreds of individual buildings. Savings from an ESPC involving only a small number of these buildings will have little effect on the overall utility bill. In fact, changes in mission, occupancy, and energy prices could cause substantial increases in utility bills. For this reason, other, more practical, methods have been developed to measure and verify savings in ESPC projects. Nevertheless, increasing utility bills--when ESPCs are expected to be reducing them--are problematic and can lead some observers to question whether savings are actually being achieved. In this paper, the authors use utility bill analysis to determine energy, demand, and cost savings from an ESPC project that installed geothermal heat pumps in the family housing areas of the military base at Fort Polk, Louisiana. The savings estimates for the first year after the retrofits were found to be in substantial agreement with previous estimates that were based on submetered data. However, the utility bills also show that electrical use tended to increase as time went on. Since other data show that the energy use in family housing has remained about the same over the period, the authors conclude that the savings from the ESPC have persisted, and increases in electrical use must be due to loads unassociated with family housing. This shows that under certain circumstances, and with the proper analysis, utility bills can be used to estimate savings from ESPC projects. However, these circumstances are rare and over time the comparison may be invalidated by increases in energy use in areas unaffected by the ESPC.

  5. Ontario’s Protocols for Evaluating the Energy and Bill Savings from Industrial Energy Efficiency Programs 

    E-Print Network [OSTI]

    Messenger, M.

    2007-01-01

    of the monitoring process. 22 International Performance Measurement and Verification Protocol Committee, Volume 1 Concepts and Options for Determining Energy and Water Savings : IPMVP Protocol series Revised.... 3 ASHRAE, Measurement of Energy and Demand Savings:ASHRAE guideline 14-2002 ( published in June of 2002) See chapter 6, Specific Approaches and IPMVP, Ibid, Volume 1 , Chapter 3, Basic Concepts Key Issue 3- Ensuring that the value...

  6. Iowa Shade Trees Bring Energy Bills Down, Beauty Up | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nA Guide toIMPROVEMENTGDLB-115)CommentsDepartmentinEnergyused asVolunteers

  7. Bodman Statement on House Passage of Energy Bill | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann JacksonDepartment|Marketing, LLC |Energy AdvisorEnergySeptemberof

  8. Optimal Sizing of Energy Storage and Photovoltaic Power Systems for Demand Charge Mitigation (Poster)

    SciTech Connect (OSTI)

    Neubauer, J.; Simpson, M.

    2013-10-01

    Commercial facility utility bills are often a strong function of demand charges -- a fee proportional to peak power demand rather than total energy consumed. In some instances, demand charges can constitute more than 50% of a commercial customer's monthly electricity cost. While installation of behind-the-meter solar power generation decreases energy costs, its variability makes it likely to leave the peak load -- and thereby demand charges -- unaffected. This then makes demand charges an even larger fraction of remaining electricity costs. Adding controllable behind-the-meter energy storage can more predictably affect building peak demand, thus reducing electricity costs. Due to the high cost of energy storage technology, the size and operation of an energy storage system providing demand charge management (DCM) service must be optimized to yield a positive return on investment (ROI). The peak demand reduction achievable with an energy storage system depends heavily on a facility's load profile, so the optimal configuration will be specific to both the customer and the amount of installed solar power capacity. We explore the sensitivity of DCM value to the power and energy levels of installed solar power and energy storage systems. An optimal peak load reduction control algorithm for energy storage systems will be introduced and applied to historic solar power data and meter load data from multiple facilities for a broad range of energy storage system configurations. For each scenario, the peak load reduction and electricity cost savings will be computed. From this, we will identify a favorable energy storage system configuration that maximizes ROI.

  9. Secretary of Energy's Statement on the Senate Passage of the Energy Bill |

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterestedReplacement-2-AA-1ResearchUniversityPrepared forProductioninResearchDepartment

  10. Energy Efficiency Tricks to Stop Your Energy Bill from Haunting You |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-inPPLfor Innovative Solar PowerTribes to DevelophostedDepartment of

  11. Energy Secretary Bodman Heads to West Virginia to Promote Energy Bill |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-inPPLfor Innovative SolarSavings Performance Contracting

  12. Energy Secretary Bodman's Statement on House Passage of the Energy Bill |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-inPPLfor Innovative SolarSavings Performance ContractingTourNuclearand

  13. Energy Efficiency Tricks to Stop Your Energy Bill from Haunting You |

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematics And Statistics » USAJobsMotionHeat & Cool »Characters(PartDepartment of Energy Tricks to

  14. A Home Cooling Strategy for Lower Energy Bills | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataEnergy Webinar: DemonstrationProgram | Department ofDepartment ofA Home

  15. Energy Distribution of a Charged Regular Black Hole

    E-Print Network [OSTI]

    Irina Radinschi

    2000-11-20

    We calculate the energy distribution of a charged regular black hole by using the energy-momentum complexes of Einstein and M{\\o}ller.

  16. Charged particle rapidity distributions at relativistic energies 

    E-Print Network [OSTI]

    Lin, ZW; Pal, S.; Ko, Che Ming; Li, Ba; Zhang, B.

    2001-01-01

    in transverse momentum. Also, a suppression factor of 0.30 is used for strange quark-antiquark pair pro- duction relative to the light quark-antiquark pair production. Charged particle rapidity distribution Zi-wei Lin,1 Subrata Pal,1 C. M. 1Cyclotron... the experimental data from central Pb1Pb collisions at center-of-mass energy of 17A GeV @20#. Specifically, to ?2001 The American Physical Society1 RAPID COMMUNICATIONS LIN, PAL, KO, LI, AND ZHANG PHYSICAL REVIEW C 64 011902~R! Hadrons are then formed from...

  17. Workplace Charging Challenge Partner: Vermont Energy Investment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Information VEIC's Mission Workplace Charging News June 23, 2014 VEIC now an EV Everywhere Workplace Charging Challenge Partner The use of Electric Vehicles (EVs) is...

  18. The Potential Impact of Increased Renewable Energy Penetrations on Electricity Bill Savings from Residential Photovoltaic Systems

    E-Print Network [OSTI]

    Barbose, Galen

    2013-01-01

    Efficiency and Renewable Energy (Solar Energy TechnologiesEfficiency and Renewable Energy, Solar Technologies ProgramSOLAR 2012 Conference Proceedings, for the World Renewable

  19. Energy Distribution of a Stringy Charged Black Hole

    E-Print Network [OSTI]

    Ragab M. Gad

    2003-06-22

    The energy distribution associated with a stringy charged black hole is studied using M{\\o}ller's energy-momentum complex. Our result is reasonable and it differs from that known in literature using Einstein's energy-momentum complex.

  20. Strategic Use of Electric Vehicle Charging to Reduce Renewable Energy

    E-Print Network [OSTI]

    Strategic Use of Electric Vehicle Charging to Reduce Renewable Energy Curtailment on Oahu An analysis of the use of electric vehicle charging to mitigate renewable energy curtailment based on detailed using petroleum is typically used to fill the gap. When the renewable energy supply exceeds that which

  1. GreenCharge: Managing Renewable Energy in Smart Buildings

    E-Print Network [OSTI]

    Shenoy, Prashant

    1 GreenCharge: Managing Renewable Energy in Smart Buildings Aditya Mishra, David Irwin, Prashant that combines market-based electricity pricing models with on-site renewables and modest energy storage (in, called GreenCharge, to efficiently manage the renewable energy and storage to reduce a building

  2. The Potential Impact of Increased Renewable Energy Penetrations on Electricity Bill Savings from Residential Photovoltaic Systems

    E-Print Network [OSTI]

    Barbose, Galen

    2013-01-01

    the costs of renewable energy procurement, the costs of theRE is the total costs of renewable energy procurement, r resThough the total costs of renewable energy procurement ( C

  3. The Potential Impact of Increased Renewable Energy Penetrations on Electricity Bill Savings from Residential Photovoltaic Systems

    E-Print Network [OSTI]

    Barbose, Galen

    2013-01-01

    San Francisco, CA, 2010 (6) National Renewable EnergyLaboratory (NREL), Renewable Resource Data Center, Website:Impact of Increased Renewable Energy Penetrations on

  4. The Potential Impact of Increased Renewable Energy Penetrations on Electricity Bill Savings from Residential Photovoltaic Systems

    E-Print Network [OSTI]

    Barbose, Galen

    2013-01-01

    ABORATORY The Potential Impact of Increased Renewable Energyemployer. THE POTENTIAL IMPACT OF INCREASED RENEWABLE ENERGY

  5. Money for Research, Not for Energy Bills: Finding Energy and Cost Savings in High Performance Computer Facility Designs

    E-Print Network [OSTI]

    Sartor, Dale

    2011-01-01

    Efficiency and Renewable Energy, Building Technologiesof Energy’s National Renewable Energy Laboratory is also

  6. Resolving data center power bill disputes: the energy-performance trade-offs of consolidation

    E-Print Network [OSTI]

    Chatzipapas, Angelos; Pediaditakis, Dimosthenis; Rotsos, Charalampos; Mancuso, Vincenzo; Crowcroft, Jon; Moore, Andrew W.

    2015-06-09

    the energy consumption due to CPU activity in the estimate of each component’s energy consumption. Thereby, energy requirements can be expressed as follows: Ecpu = ?cpu(T, f, c, a), (1) Edisk = ?dr(T, f, c, cs, nc) + ?dw(T, f, c, cs, nc), (2) Enet = ?in(T, f... for each component. The resulting total energy estimation of the system is: Etotal = Ebase + Ecpu + Edisk + Enet + Emem (5) where Ei, ?i ? {total, base, cpu, disk, net,mem}, corresponds to the energy requirements for the whole system, the base- line...

  7. Clean Air Bill 

    E-Print Network [OSTI]

    Her Majesty's Stationary Office

    1955-01-01

    The object of this Bill is to implement the principal recommendations in the Report of the Committee on Air Pollution

  8. Confined energy distribution for charged particle beams

    DOE Patents [OSTI]

    Jason, Andrew J. (Los Alamos, NM); Blind, Barbara (Los Alamos, NM)

    1990-01-01

    A charged particle beam is formed to a relatively larger area beam which is well-contained and has a beam area which relatively uniformly deposits energy over a beam target. Linear optics receive an accelerator beam and output a first beam with a first waist defined by a relatively small size in a first dimension normal to a second dimension. Nonlinear optics, such as an octupole magnet, are located about the first waist and output a second beam having a phase-space distribution which folds the beam edges along the second dimension toward the beam core to develop a well-contained beam and a relatively uniform particle intensity across the beam core. The beam may then be expanded along the second dimension to form the uniform ribbon beam at a selected distance from the nonlinear optics. Alternately, the beam may be passed through a second set of nonlinear optics to fold the beam edges in the first dimension. The beam may then be uniformly expanded along the first and second dimensions to form a well-contained, two-dimensional beam for illuminating a two-dimensional target with a relatively uniform energy deposition.

  9. The Renewable Energy Guy: Q&A with TV's Bill Nye | Department...

    Broader source: Energy.gov (indexed) [DOE]

    scientist, engineer, comedian, author, and inventor-now works to spread the message of renewable energy, and regularly takes on projects to "green" his own Californian home. Nye...

  10. Pitch: "Reduce Your Bill" | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nAandSummary Areas ofEnergy OnPeter B.EnergyInPilgrim

  11. Using QECBs for Street Lighting Upgrades: Lighting the Way to Lower Energy Bills in San Diego

    Broader source: Energy.gov [DOE]

    Summarizes how the City of San Diego leveraged $13.1 million in qualified energy conservation bonds to increase the size of a street lighting upgrade project. Author: Lawrence Berkeley National Laboratory

  12. Energy-efficiency and environmental policies & income supplements in the UK: Their evolution and distributional impact in relation to domestic energy bills

    E-Print Network [OSTI]

    Chawla, Mallika; Pollitt, Michael G.

    2012-12-14

    efficiency of houses; this research draws attention towards the need for definitive evidence on the ways in which energy suppliers charge policy costs from their domestic customers. This would facilitate in making the future policies more empirically grounded...

  13. 4 5division of engineering & applied science ENGenious ISSUE 10 2013 Decreasing the Energy Bill

    E-Print Network [OSTI]

    Haile, Sossina M.

    as to estimate the market value of this capacity. Specifi- cally, she studied the flexibility of thermally from electricity market operators in California and other states, she has developed an algorithm of California Homeowners Renewable energy sources used in the generation of electricity, such as wind and solar

  14. SoCalGas - Non-Residential On-Bill Financing Program | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher iSlide 1 More Documents &1000 Independence< Back Eligibility< Back

  15. SCE - Non-Residential On-Bill Financing Program | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nAandSummaryDIST OF COLUMBIA HEADQUARTERSWASHINGTON PACIFICand< Back

  16. SDG&E - Non-Residential On-Bill Financing Program | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nAandSummaryDIST OF COLUMBIA HEADQUARTERSWASHINGTONtransmissionCommercial

  17. On-Bill Financing: Reducing Cost Barriers to Energy Efficiency Improvements

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy AEnergy Managing853926 NewsORMAT NEVADAEnergyAFour RegionalOil8,137

  18. FIA-14-0015 - In the Matter of Bill Streifer | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12, 2015Executive Order14, 2011 CX-006821:forEnergy 39 - In the1 -7 -37 -2 -5

  19. FIA-15-0009 - In the Matter of Bill Streifer | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12, 2015Executive Order14, 2011 CX-006821:forEnergy 39 - In the1 -726 - In79

  20. New Infographic and Projects to Keep Your Energy Bills Out of Hot Water |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann JacksonDepartment of Energy FacilitiesCleantechthe openControllingDr.Freezers to

  1. Technology available for license: Charging of liquid energy storage...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technology available for license: Charging of liquid energy storage media through radiolysis (ANL-IN-14-036) January 23, 2015 Tweet EmailPrint This technology utilizes radiolysis...

  2. Space Charge Correction on Emittance Measurement of Low Energy...

    Office of Scientific and Technical Information (OSTI)

    of Low Energy Electron Beams The goal of any particle accelerator is to optimize the transport of a charged particle beam along a set path by confining the beam to a small region...

  3. Charge Allocation for Hybrid Electrical Energy Storage Systems

    E-Print Network [OSTI]

    Pedram, Massoud

    Charge Allocation for Hybrid Electrical Energy Storage Systems Qing Xie1, Yanzhi Wang1, Younghyun Hybrid electrical energy storage (HEES) systems, composed of multiple banks of heterogeneous electrical to efficiently store and retrieve electrical energy while attaining performance metrics that are close

  4. Retrofitting Existing Buildings for Demand Response & Energy Efficiency

    E-Print Network [OSTI]

    California at Los Angeles, University of

    Retrofitting Existing Buildings for Demand Response & Energy Efficiency www rate periods to avoid high charges. · Assembly Bill 1103 ­ Building Energy Efficiency Disclosure - Starting January 1, 2010, all commercial building lease transactions must disclose the energy efficiency

  5. An Energy Extremum Principle for Charged Black Holes

    E-Print Network [OSTI]

    Fraser, Scott

    2015-01-01

    For a set of asymptotically flat black holes with arbitrary charges and masses, all initially at rest and well-separated, we prove the following extremum principle: the extremal charge configuration ($|q_i|=m_i$ for each black hole) can be derived by extremizing the total energy, for variations of the black hole apparent horizon areas, at fixed charges and fixed Euclidean separations. If all charges have the same sign, this result is a variational principle that reinterprets the static equilibrium of the Majumdar-Papapetrou-Hartle-Hawking solution as an extremum of total energy, rather than as a balance of forces; this result augments a list of related variational principles for static black holes, and is consistent with the independently known BPS energy minimum.

  6. An Energy Extremum Principle for Charged Black Holes

    E-Print Network [OSTI]

    Scott Fraser; Shaker Von Price Funkhouser

    2015-09-13

    For a set of asymptotically flat black holes with arbitrary charges and masses, all initially at rest and well-separated, we prove the following extremum principle: the extremal charge configuration ($|q_i|=m_i$ for each black hole) can be derived by extremizing the total energy, for variations of the black hole apparent horizon areas, at fixed charges and fixed Euclidean separations. If all charges have the same sign, this result is a variational principle that reinterprets the static equilibrium of the Majumdar-Papapetrou-Hartle-Hawking solution as an extremum of total energy, rather than as a balance of forces; this result augments a list of related variational principles for static black holes, and is consistent with the independently known BPS energy minimum.

  7. Provencher/1 Bill Provencher

    E-Print Network [OSTI]

    Provencher, R. William

    Provencher/1 Bill Provencher Curriculum Vitae January 2007 4325 Bagley Parkway Department, University of California, Davis, 1991. Dissertation: A quantitative analysis of private property rightsScience: in press. MacPherson, Alex, Rebecca Moore and Bill Provencher. "A Dynamic Principal-Agent Model of Human

  8. Developing "MOU/CO-OP ENERGY EFFICIENCY PROGRAMS REPORTING FORM" to Satisfy Senate Bill 924 (82nd R) Reporting Requirements 

    E-Print Network [OSTI]

    Parker, P.; Baltazar, J.; Haberl, J.; Yazdani, B.; Zilbershtein, G.

    2012-01-01

    As mandated by the 82nd R Legislature (2011), Senate Bill 924, Utilities Code, Sections 39.9051 and 39.9052, beginning April 1, 2012, all electric cooperatives that had retail sales of more than 500,000 megawatt hours in 2005 and all municipally...

  9. Workplace Charging Challenge Partner: National Renewable Energy...

    Broader source: Energy.gov (indexed) [DOE]

    Laboratory (NREL) NREL's mission is to develop renewable energy and energy efficiency technologies and practices, advance related science and engineering, and transfer knowledge...

  10. Low energy charged particles interacting with amorphous solid water layers

    SciTech Connect (OSTI)

    Horowitz, Yonatan; Asscher, Micha

    2012-04-07

    The interaction of charged particles with condensed water films has been studied extensively in recent years due to its importance in biological systems, ecology as well as interstellar processes. We have studied low energy electrons (3-25 eV) and positive argon ions (55 eV) charging effects on amorphous solid water (ASW) and ice films, 120-1080 ML thick, deposited on ruthenium single crystal under ultrahigh vacuum conditions. Charging the ASW films by both electrons and positive argon ions has been measured using a Kelvin probe for contact potential difference (CPD) detection and found to obey plate capacitor physics. The incoming electrons kinetic energy has defined the maximum measurable CPD values by retarding further impinging electrons. L-defects (shallow traps) are suggested to be populated by the penetrating electrons and stabilize them. Low energy electron transmission measurements (currents of 0.4-1.5 {mu}A) have shown that the maximal and stable CPD values were obtained only after a relatively slow change has been completed within the ASW structure. Once the film has been stabilized, the spontaneous discharge was measured over a period of several hours at 103 {+-} 2 K. Finally, UV laser photo-emission study of the charged films has suggested that the negative charges tend to reside primarily at the ASW-vacuum interface, in good agreement with the known behavior of charged water clusters.

  11. Money for Research, Not for Energy Bills: Finding Energy and Cost Savings in High Performance Computer Facility Designs

    SciTech Connect (OSTI)

    Drewmark Communications; Sartor, Dale; Wilson, Mark

    2010-07-01

    High-performance computing facilities in the United States consume an enormous amount of electricity, cutting into research budgets and challenging public- and private-sector efforts to reduce energy consumption and meet environmental goals. However, these facilities can greatly reduce their energy demand through energy-efficient design of the facility itself. Using a case study of a facility under design, this article discusses strategies and technologies that can be used to help achieve energy reductions.

  12. Interview with Bill Quatman

    E-Print Network [OSTI]

    Diaz Moore, Keith

    2008-03-26

    Keith Diaz Moore speaks with Bill Quatman, an internationally recognized expert on "Design Build", a licensed architect, attorney with Shugart, Thomson and Kilroy and a Fellow with the American Institute of Architects, about the design-build process...

  13. Driving Demand for Home Energy Improvements: Motivating residential customers to invest in comprehensive upgrades that eliminate energy waste, avoid high utility bills, and spur the economy

    SciTech Connect (OSTI)

    Fuller, Merrian C.

    2010-09-20

    Policy makers and program designers in the U.S. and abroad are deeply concerned with the question of how to scale up energy efficiency to a level that is commensurate both to the scale of the energy and climate challenges we face, and to the potential for energy savings that has been touted for decades. When policy makers ask what energy efficiency can do, the answers usually revolve around the technical and economic potential of energy efficiency - they rarely hone in on the element of energy demand that matters most for changing energy usage in existing homes: the consumer. A growing literature is concerned with the behavioral underpinnings of energy consumption. We examine a narrower, related subject: How can millions of Americans be persuaded to divert valued time and resources into upgrading their homes to eliminate energy waste, avoid high utility bills, and spur the economy? With hundreds of millions of public dollars flowing into incentives, workforce training, and other initiatives to support comprehensive home energy improvements, it makes sense to review the history of these programs and begin gleaning best practices for encouraging comprehensive home energy improvements. Looking across 30 years of energy efficiency programs that targeted the residential market, many of the same issues that confronted past program administrators are relevant today: How do we cost-effectively motivate customers to take action? Who can we partner with to increase program participation? How do we get residential efficiency programs to scale? While there is no proven formula - and only limited success to date with reliably motivating large numbers of Americans to invest in comprehensive home energy improvements, especially if they are being asked to pay for a majority of the improvement costs - there is a rich and varied history of experiences that new programs can draw upon. Our primary audiences are policy makers and program designers - especially those that are relatively new to the field, such as the over 2,000 towns, cities, states, and regions who are recipients of American Reinvestment and Recovery Act funds for clean energy programs. This report synthesizes lessons from first generation programs, highlights emerging best practices, and suggests methods and approaches to use in designing, implementing, and evaluating these programs. We examined 14 residential energy efficiency programs, conducted an extensive literature review, interviewed industry experts, and surveyed residential contractors to draw out these lessons.

  14. Using Qualified Energy Conservation Bonds for Public Building Upgrades. Reducing Energy Bills in the City of Philadelphia

    SciTech Connect (OSTI)

    Zimring, Mark

    2012-07-18

    Qualified Energy Conservation Bonds (QECBs) are federally-subsidized bonds that enable state, tribal, and local government issuers to borrow money to fund a range of energy conservation projects, including public building upgrades that reduce energy use by at least 20 percent, at very attractive borrowing rates and long terms. As part of the American Recovery and Reinvestment Act (ARRA), the City of Philadelphia received a $15 million QECB award from the U.S. Department of the Treasury (Treasury). The city leveraged $6.25 million of its QECB allocation to finance half of a $12.6 million initiative to upgrade the energy efficiency of City buildings. The upgrades to four city facilities are expected to deliver over $10 million of net savings, and are a major step towards achieving the city’s goal of reducing government energy consumption by 30 percent by 2015.

  15. Solar Energy for Charging Fork Truck Batteries 

    E-Print Network [OSTI]

    Viljoen, T. A.; Turner, W. C.

    1980-01-01

    The demand for renewable energy sources has stimulated technological advances in solar cell development. Initially, development and fabrication were extremely costly and no encouragement for use in industrial applications was made. Today, evidence...

  16. Anomaly and the self-energy of electric charges

    E-Print Network [OSTI]

    Valeri P. Frolov; Andrei Zelnikov

    2012-10-26

    We study the self energy of a charged particle located in a static D-dimensional gravitational field. We show that the energy functional for this problem is invariant under an infinite dimensional (gauge) group of transformations parameterized by one scalar function of (D-1)-variables. We demonstrate that the problem of the calculation of the self energy for a pointlike charge is equivalent to the calculation of the fluctuations $$ for an effective (D-1)-dimensional Euclidean quantum field theory. Using point-splitting regularization we obtain an expression for the self energy and show, that it possesses anomalies. Explicit calculation of the self energy and its anomaly is done for the higher dimensional Majumdar-Papapetrou spacetimes.

  17. Aalborg Universitet Voltage Scheduling Droop Control for State-of-Charge Balance of Distributed Energy

    E-Print Network [OSTI]

    Vasquez, Juan Carlos

    ., & Guerrero, J. M. (2014). Voltage Scheduling Droop Control for State-of-Charge Balance of Distributed Energy-of-Charge Balance of Distributed Energy Storage in DC Microgrids," in Proc. IEEE International Energy Conference (EnergyCon'14), 2014. Voltage Scheduling Droop Control for State-of- Charge Balance of Distributed Energy

  18. Title of Document: LONGITUDINAL SPACE-CHARGE WAVES INDUCED BY ENERGY MODULATIONS

    E-Print Network [OSTI]

    Anlage, Steven

    ABSTRACT Title of Document: LONGITUDINAL SPACE-CHARGE WAVES INDUCED BY ENERGY MODULATIONS Brian L. Modulations in energy or density can induce space-charge waves at low energies which could be problematic at higher energies. This thesis is a study of longitudinal space-charge waves induced by energy modulations

  19. Workplace Charging Challenge: Partners | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing ToolInternationalReport FY2014 -Energy CostsEnergy City ofPlug-in Electric Vehicles

  20. The Potential Impact of Increased Renewable Energy Penetration Levels on Electricity Bill Savings From Residential Photovoltaic Systems

    E-Print Network [OSTI]

    Darghouth, Naim

    2014-01-01

    Impact of Increased Renewable Energy Penetration Levels onof Energy Efficiency and Renewable Energy (Solar EnergyImpact of Increased Renewable Energy Penetration Levels on

  1. Acceleration of low energy charged particles by gravitational waves

    E-Print Network [OSTI]

    G. Voyatzis; L. Vlahos; S. Ichtiaroglou; D. Papadopoulos

    2005-12-07

    The acceleration of charged particles in the presence of a magnetic field and gravitational waves is under consideration. It is shown that the weak gravitational waves can cause the acceleration of low energy particles under appropriate conditions. Such conditions may be satisfied close to the source of the gravitational waves if the magnetized plasma is in a turbulent state.

  2. Charged-particle multiplicity at LHC energies

    ScienceCinema (OSTI)

    None

    2011-10-06

    The talk presents the measurement of the pseudorapidity density and the multiplicity distribution with ALICE at the achieved LHC energies of 0.9 and 2.36 TeV.An overview about multiplicity measurements prior to LHC is given and the related theoretical concepts are briefly discussed.The analysis procedure is presented and the systematic uncertainties are detailed. The applied acceptance corrections and the treatment of diffraction are discussed.The results are compared with model predictions. The validity of KNO scaling in restricted phase space regions is revisited. 

  3. System Benefits Charge | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher iSlide 1 MoresteelmakingRenewableDepartment ofC: NavigatingDepartment

  4. System Benefits Charge | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher iSlide 1 MoresteelmakingRenewableDepartment ofC: NavigatingDepartment< Back

  5. PosiCharge | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc Jump to:Newberg,Energy LLC JumpPhono SolarPlexusJump to:Solar Services Pvt

  6. American Battery Charging Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAand DaltonSolarOpen5AllEnergyAmeriPower LLC Jump to: navigation,BarBattery

  7. Car Charging Group Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmentalBowerbank,Cammack Village, Arkansas: EnergyCounty,NewHatteras ElecPointC60 Jump

  8. Workplace Charging Challenge: Ambassadors | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OFAMERICA'S FUTURE.Energy Wind PowerReginaDepartmentWorkplaceof

  9. Energy distribution in the dyadosphere of a charged black hole

    E-Print Network [OSTI]

    S. S. Xulu

    2003-04-22

    The event horizon of a charged black hole is, according to Ruffini\\cite{Ruffini} and Preparata \\emph{et al.}\\cite{PreparataEtAl}, surrounded by a special region called the \\emph{dyadosphere} where the electromagnetic field exceeds the Euler-Heisenberg critical value for electron-positron pair production. We obtain the energy distribution in the dyadosphere region for a Reissner-Nordstr\\"{o}m black hole. We find that the energy-momentum prescriptions of Einstein, Landau-Lifshitz, Papapetrou, and Weinberg give the same and acceptable energy distribution.

  10. AVTA: GE Energy WattStation AC Level 2 Charging System Testing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy WattStation AC Level 2 Charging System Testing Results AVTA: GE Energy WattStation AC Level 2 Charging System Testing Results The Vehicle Technologies Office's Advanced...

  11. Black hole free energy during charged collapse: a numerical study

    E-Print Network [OSTI]

    Hugues Beauchesne; Ariel Edery

    2012-05-19

    We perform a numerical investigation of the thermodynamics during the collapse of a charged (complex) scalar field to a Reissner-Nordstr\\"om (RN) black hole in isotropic coordinates. Numerical work on gravitational collapse in isotropic coordinates has recently shown that the negative of the total Lagrangian approaches the Helmholtz free energy F= E-TS of a Schwarzschild black hole at late times of the collapse (where E is the black hole mass, T the temperature and S the entropy). The relevant thermodynamic potential for the RN black hole is the Gibbs free energy G=E-TS-$\\Phi_H$ Q where Q is the charge and $\\Phi_H$ the electrostatic potential at the outer horizon. In charged collapse, there is a large outgoing matter wave which prevents the exterior from settling quickly to a static state. However, the interior region is not affected significantly by the wave. We find numerically that the interior contribution to the Gibbs free energy is entirely gravitational and accumulates in a thin shell just inside the horizon. The entropy is gravitational in origin and one observes dynamically that it resides on the horizon. We also compare the numerical value of the interior Lagrangian to the expected analytical value of the interior Gibbs free energy for different initial states and we find that they agree to within 10-13%. The two values are approaching each other so that their difference decreases with more evolution time.

  12. Energy Storage Systems Considerations for Grid-Charged Hybrid Electric Vehicles: Preprint

    SciTech Connect (OSTI)

    Markel, T.; Simpson, A.

    2005-09-01

    This paper calculates battery power and energy requirements for grid-charged hybrid electric vehicles (HEVs) with different operating strategies.

  13. Introduction to the Summit Session, "Leading Perspectives in Energy Research", from the Director of the DOE Office of Science, Bill Brinkman (2011 EFRC Summit)

    ScienceCinema (OSTI)

    Brinkman, Bill (Director, DOE Office of Science)

    2012-03-14

    In this video Bill Brinkman, Director of DOE's Office of Science, introduces the session, "Leading Perspectives in Energy Research," at the 2011 EFRC Summit and Forum. During the introduction of the senior representatives from both the public and private sector, Dr. Brinkman explained the motivation for creating the Energy Frontiers Research Centers program. The 2011 EFRC Summit and Forum brought together the EFRC community and science and policy leaders from universities, national laboratories, industry and government to discuss "Science for our Nation's Energy Future." In August 2009, the Office of Science established 46 Energy Frontier Research Centers. The EFRCs are collaborative research efforts intended to accelerate high-risk, high-reward fundamental research, the scientific basis for transformative energy technologies of the future. These Centers involve universities, national laboratories, nonprofit organizations, and for-profit firms, singly or in partnerships, selected by scientific peer review. They are funded at $2 to $5 million per year for a total planned DOE commitment of $777 million over the initial five-year award period, pending Congressional appropriations. These integrated, multi-investigator Centers are conducting fundamental research focusing on one or more of several ?grand challenges? and use-inspired ?basic research needs? recently identified in major strategic planning efforts by the scientific community. The purpose of the EFRCs is to integrate the talents and expertise of leading scientists in a setting designed to accelerate research that transforms the future of energy and the environment.

  14. Workplace Charging Challenge Partner: Cigna | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematics And Statistics » USAJobs SearchAMERICA'SEnergy Safely TearEnergyCigna Workplace Charging

  15. Charged particle detectors with active detector surface for partial energy deposition of the charged particles and related methods

    DOE Patents [OSTI]

    Gerts, David W; Bean, Robert S; Metcalf, Richard R

    2013-02-19

    A radiation detector is disclosed. The radiation detector comprises an active detector surface configured to generate charge carriers in response to charged particles associated with incident radiation. The active detector surface is further configured with a sufficient thickness for a partial energy deposition of the charged particles to occur and permit the charged particles to pass through the active detector surface. The radiation detector further comprises a plurality of voltage leads coupled to the active detector surface. The plurality of voltage leads is configured to couple to a voltage source to generate a voltage drop across the active detector surface and to separate the charge carriers into a plurality of electrons and holes for detection. The active detector surface may comprise one or more graphene layers. Timing data between active detector surfaces may be used to determine energy of the incident radiation. Other apparatuses and methods are disclosed herein.

  16. QER- Comment of Bill Sackett

    Office of Energy Efficiency and Renewable Energy (EERE)

    Quadrennial Energy Review: The health of the people of our nation is a major vulnerability that must be addressed in any energy policy. Pollution produced by generating energy impacts our overall health. To encourage healthful sources of energy we have to make sure that the true costs of energy are paid up front. This means not allowing energy development that produces dangerous pollutants. Coal burning causes asthma and mercury poisoning and contributes to climate change that is not priced into energy generated by coal. Allowing liability exemptions to energy producers hides true costs. Nuclear power producers must be accountable for any radiation sickness that resulting from their operations. Fracking must not be exempted from safe drinking water regulations. Even more significant for oil and gas production, hazardous wastes (including methane) generated by exploration and production must be regulated under the Resource Conservation and Recovery Act (RCRA). (Pertinent to this, please enter into the Quadrennial Energy Review proceedings the attached first three pages of an article about RCRA. The full article can be found at http://npaper-wehaa.com/boulder-weekly/2014/03/13/?article=2174620.) Removing exemptions like these will allow clean forms of energy to predominate to the overall benefit of us all. Let us not be guilty of the moral cowardice of business as usual that will cause tremendous problems for future generations. Thank you, Bill Sackett

  17. The Potential Impact of Increased Renewable Energy Penetration Levels on Electricity Bill Savings From Residential Photovoltaic Systems

    E-Print Network [OSTI]

    Barbose, Galen

    2014-01-01

    ABORATORY The Potential Impact of Increased Renewable Energyemployer. The Potential Impact of Increased Renewable Energy

  18. Use of incomplete energy recovery for the energy compression of large energy spread charged particle beams

    DOE Patents [OSTI]

    Douglas, David R. (Newport News, VA); Benson, Stephen V. (Yorktown, VA)

    2007-01-23

    A method of energy recovery for RF-base linear charged particle accelerators that allows energy recovery without large relative momentum spread of the particle beam involving first accelerating a waveform particle beam having a crest and a centroid with an injection energy E.sub.o with the centroid of the particle beam at a phase offset f.sub.o from the crest of the accelerating waveform to an energy E.sub.full and then recovering the beam energy centroid a phase f.sub.o+Df relative to the crest of the waveform particle beam such that (E.sub.full-E.sub.o)(1+cos(f.sub.o+Df))>dE/2 wherein dE=the full energy spread, dE/2=the full energy half spread and Df=the wave form phase distance.

  19. Energy Dependent Growth of Nucleon and Inclusive Charged Hadron Distributions

    E-Print Network [OSTI]

    Hongmin Wang; Zhao-Yu Hou; Xian-Jing Sun

    2015-01-06

    In the Color Glass Condensate formalism, charged hadron p_{T} distributions in p+p collisions are studied by considering an energy-dependent broadening of nucleon's density distribution. Then, in the Glasma flux tube picture, the n-particle multiplicity distributions at different pseudo-rapidity ranges are investigated. Both of the theoretical results show good agreement with the recent experimental data from ALICE and CMS at \\sqrt{s}=0.9, 2.36, 7 TeV. The predictive results for p_{T} and multiplicity distributions in p+p and p+Pb collisions at the Large Hadron Collider are also given in this paper.

  20. Workplace Charging Challenge Partner: NetApp | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematics And Statistics » USAJobs SearchAMERICA'SEnergyof Energy JLANetApp Workplace Charging

  1. Efficiency-Driven Design Time Optimization of a Hybrid Energy Storage System with Networked Charge Transfer

    E-Print Network [OSTI]

    Pedram, Massoud

    Efficiency-Driven Design Time Optimization of a Hybrid Energy Storage System with Networked Charge efficiency for various problem setups and scales. Keywords--hybrid energy storage system; networked charge transfer interconnect; placement I. INTRODUCTION Energy storage systems (ESSs) store the excess energy

  2. Workplace Charging Challenge Partner: TECO Energy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematics And Statistics » USAJobs SearchAMERICA'SEnergyof EnergyDepartmentDepartmentTECO Energy

  3. Developing "BUILDING/ FACILITY ENERGY CONSUMPTION DATA SHEET" for Political Subdivisions, Institutions of Higher Education, and State Agencies, to Satisfy Senate Bill 898 (82nd R) Reporting Requirements 

    E-Print Network [OSTI]

    Parker, P.; Baltazar, J.; Haberl, J.; Yazdani, B.; Zilbershtein, G.

    2012-01-01

    As mandated by the 82nd R Legislature (2011), Senate Bill 898, Health and Safety Code, Section 388.005, beginning September 1, 2011, each political subdivision, institution of higher education or state agency shall establish a goal to reduce...

  4. Bill Shafarman 1 May 15, 2013 Thin Film Photovoltaics Research at the

    E-Print Network [OSTI]

    Firestone, Jeremy

    Bill Shafarman 1 May 15, 2013 Thin Film Photovoltaics Research at the Institute of Energy of Photovoltaics 2. IEC: History and Capabilities 3. Current Research at IEC #12;Bill Shafarman 2 May 15, 2013 Concentrators #12;Bill Shafarman 5 May 15, 2013 Thin Film Photovoltaics Potential for low cost PV using " a

  5. Driving Demand for Home Energy Improvements: Motivating residential customers to invest in comprehensive upgrades that eliminate energy waste, avoid high utility bills, and spur the economy

    E-Print Network [OSTI]

    Fuller, Merrian C.

    2011-01-01

    Energy Efficiency and Renewable Energy. LINK Brown, M.A. andEfficiency and Renewable Energy). 2008. Energy Efficiencycultural barriers to renewable energy and energy efficiency

  6. Workplace Charging Challenge Partner: DTE Energy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematics And Statistics » USAJobs SearchAMERICA'SEnergy SafelyEnergy ClipperCreek,DTE Energy

  7. Violation of the Energy Conservation Law in Lorentz-Dirac Equations for More Than One Charge

    E-Print Network [OSTI]

    Danilo Villarroel; Rodrigo Rivera

    1994-12-30

    An exact solution of Lorentz-Dirac equations where the energy conservation law is violated, is described herein for the case of two charges.

  8. Workplace Charging Challenge Partner: Duke Energy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematics And Statistics » USAJobs SearchAMERICA'SEnergy SafelyEnergy ClipperCreek,DTE

  9. Workplace Charging Challenge Partner: NRG Energy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematics And Statistics » USAJobs SearchAMERICA'SEnergyof Energy JLA PublicDepartment

  10. Workplace Charging Challenge Partner: Xcel Energy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematics And Statistics » USAJobs SearchAMERICA'SEnergyofThe HartfordUnumXcel Energy Workplace

  11. Workplace Charging Challenge Partner: Westar Energy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematics And Statistics » USAJobs SearchAMERICA'SEnergyofThe HartfordUnum GroupDepartmentWestar Energy

  12. Plug-in vs. wireless charging: Life cycle energy and greenhouse gas emissions for an electric bus system

    E-Print Network [OSTI]

    Mi, Chunting "Chris"

    Plug-in vs. wireless charging: Life cycle energy and greenhouse gas emissions for an electric bus t In this study, plug-in and wireless charging for an all-electric bus system are compared from the life cycle t Wireless charging, as opposed to plug-in charging, is an alternative charging method for electric vehicles

  13. Driving Demand for Home Energy Improvements: Motivating residential customers to invest in comprehensive upgrades that eliminate energy waste, avoid high utility bills, and spur the economy

    E-Print Network [OSTI]

    Fuller, Merrian C.

    2011-01-01

    norm of energy behavior – Smart Energy Living,? Presentationand guides people to smart energy choices. Utilities haveMarket Segmentation for Smart Energy Practices (Chart

  14. Final Conservation Billing Credit Policy Supplement Background...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    December 17, 2014 Page 1 Final Conservation Billing Credit Policy Supplement Background and Need: This Conservation Billing Credit Policy Supplement describes how Bonneville Power...

  15. Effective bridge spectral density for long-range biological energy and charge transfer

    E-Print Network [OSTI]

    Mukamel, Shaul

    Effective bridge spectral density for long-range biological energy and charge transfer Oliver Ku of intermediate bridge sites in energy and charge transfer processes in molecular aggregates of arbitrary size analysis for a donor­acceptor system coupled through a single bridge molecule are presented. © 1996

  16. Low-energy charge transfer for collisions of Si3+ with atomic hydrogen

    E-Print Network [OSTI]

    Savin, Daniel Wolf

    Low-energy charge transfer for collisions of Si3+ with atomic hydrogen H. Bruhns,* H. Kreckel hydrogen oven as a target, were limited to collision energies above about 50 keV/u 7 . At these energetic 2008; published 19 June 2008 Cross sections of charge transfer for Si3+ ions with atomic hydrogen

  17. Bill Bradbury Jennifer Anders

    E-Print Network [OSTI]

    Forecast ModelModel EBaseline Energy Efficiency ResourceEnergy Efficiency Resource Potential Assessment to accounting for future energy efficiency programs. Relevance: Producing a 20 year load forecast for the regionPotential Assessment Units & Baseline Unit Use RegionalRegional Portfolio ModelPortfolio Model Energy Efficiency

  18. Bill Bradbury Jennifer Anders

    E-Print Network [OSTI]

    . · Chapter 6: Generating Resources and Energy Storage Technologies: Hydroelectric Power, Existing Hydropower

  19. S. 2166: A bill to reduce the Nation's dependence on imported oil, to provide for the energy security of the Nation, and for other purposes, introduced in the United States Senate, One Hundred Second Congress, Second Session, January 29, 1992

    SciTech Connect (OSTI)

    Not Available

    1992-01-01

    This bill, also referred to as the National Energy Security Act of 1992, contains the following: Title I - Findings and purposes: Goals, least-cost energy strategy, and Director of climate protection: Title II - Definitions; Title III (none); Title IV - Fleets and alternative fuels: Alternative fuel fleets, Electric and electric-hybrid vehicle demonstration, infrastructure development, and conforming amendments, Alternative fuels, Mass transit and training; Title V - Renewable energy: CORECT and COEECT, Renewable energy initiatives, Hydropower; Title VI - Energy efficiency: Industrial, commercial, and residential, Federal energy management, Utilities, State, local, insular, and tribal energy assistance, LIHEAP options pilot program; Title VII (none); Title VIII - Advanced nuclear reactor commercialization; Title IX - Nuclear reactor licensing; Title X - Uranium: Uranium enrichment, Uranium; Title XI - Natural gas; Title XII - Outer continental shelf; Title XIII - Research, development, demonstration and commercialization activities; Title XIV - Coal, coal technology, and electricity; Title XV - Public Utility Holding Company Act reform; Title XVI - Strategic Petroleum Reserve.

  20. Bill Bradbury Jennifer Anders

    E-Print Network [OSTI]

    for space heating. According to the Northwest Energy Efficiency Alliance (NEEA) 2011 Residential Building smoke attributed to energy efficiency measures. Staff expects this analysis will be informative that it is possible to quantify changes in wood smoke resulting from some electric energy efficiency measures

  1. Bill Bradbury Jennifer Anders

    E-Print Network [OSTI]

    to the Northwest Energy Efficiency Alliance (NEEA) 2011 Residential Building Stock Assessment, about 20 percent changes in wood smoke emissions attributed to energy efficiency measures. As noted at the last Power effects from resulting changes in wood smoke emissions caused by the introduction of an energy efficiency

  2. Bill Bradbury Jennifer Anders

    E-Print Network [OSTI]

    options for improving its energy future through the Idaho Strategic Energy Alliance (ISEA). The ISEA assistance programs Coordinate the Idaho Strategic Energy Alliance (ISEA) 2 #12;OER's Current Major's decision on Idaho citizens Oil and Gas; Hydraulic Fracturing on Federal and Indian Lands OER provided

  3. Low-energy exclusive cross sections and inclusive production of identified charged hadrons with Babar

    E-Print Network [OSTI]

    Heller, Barbara

    Low-energy exclusive cross sections and inclusive production of identified charged hadrons of low-energy exclusive e+e- cross sections, and recent results on the inclusive production of identified the cross sections to be measured at low energy and over an extended energy range. In addition, we present

  4. Energy-EfficientLow-VoltageOperation of Digital CMOS Circuits Through Charge-Recycling

    E-Print Network [OSTI]

    Shepard, Kenneth

    20.4 Energy-EfficientLow-VoltageOperation of Digital CMOS Circuits Through Charge regulator is a power transistor (shown as a variable This paper describes an energy-efficient means" to supply energy for another. When the domains are ideally balanced, all the energy dissipated by electrons

  5. Principles and Efficient Implementation of Charge Replacement in Hybrid Electrical Energy Storage

    E-Print Network [OSTI]

    Pedram, Massoud

    1 Principles and Efficient Implementation of Charge Replacement in Hybrid Electrical Energy Storage energy generation and consumption rates are typ- ically not matched with each other. Electrical energy of the electrical energy, mitigate the supply-demand mismatch- es, and reduce the power generation capacity required

  6. Charge Migration Efficiency Optimization in Hybrid Electrical Energy Storage (HEES) Systems

    E-Print Network [OSTI]

    Pedram, Massoud

    )-investment in the generation facilities. Electrical energy storage (EES) systems can thus increase power reliabilityCharge Migration Efficiency Optimization in Hybrid Electrical Energy Storage (HEES) Systems ABSTRACT Electrical energy is high-quality form of energy, and thus it is ben- eficial to store

  7. Improving Charging Efficiency with Workload Scheduling in Energy Harvesting Embedded Systems

    E-Print Network [OSTI]

    Qiu, Qinru

    University Syracuse, New York, 13244, USA {yzhan158, yage, qiqiu}@syr.edu ABSTRACT In energy harvestingImproving Charging Efficiency with Workload Scheduling in Energy Harvesting Embedded Systems Yukan in the electrical energy storage (EES) bank. How much energy can be stored is affected by many factors including

  8. Driving Demand for Home Energy Improvements: Motivating residential customers to invest in comprehensive upgrades that eliminate energy waste, avoid high utility bills, and spur the economy

    E-Print Network [OSTI]

    Fuller, Merrian C.

    2011-01-01

    with ENERGY STAR (HPwES) marketing with cooperativeperforming home energy improvements. Cooperative Marketingenergy improvement market in New York, HPwES cooperative

  9. Driving Demand for Home Energy Improvements: Motivating residential customers to invest in comprehensive upgrades that eliminate energy waste, avoid high utility bills, and spur the economy

    E-Print Network [OSTI]

    Fuller, Merrian C.

    2011-01-01

    2010. EECBG Pennsylvania Keystone HELP Program Webcast. U.S.JEEP) (page 97) 6. Keystone Home Energy Loan Program (through the program. Keystone Home Energy Loan Program –

  10. Effective charge and free energy of DNA inside an ion channel

    E-Print Network [OSTI]

    Jingshan Zhang; B. I. Shklovskii

    2008-03-03

    Translocation of a single stranded DNA (ssDNA) through an alpha-hemolysin channel in a lipid membrane driven by applied transmembrane voltage V was extensively studied recently. While the bare charge of the ssDNA piece inside the channel is approximately 12 (in units of electron charge) measurements of different effective charges resulted in values between one and two. We explain these challenging observations by a large self-energy of a charge in the narrow water filled gap between ssDNA and channel walls, related to large difference between dielectric constants of water and lipid, and calculate effective charges of ssDNA. We start from the most fundamental stall charge $q_s$, which determines the force $F_s= q_s V/L$ stalling DNA against the voltage V (L is the length of the channel). We show that the stall charge $q_s$ is proportional to the ion current blocked by DNA, which is small due to the self-energy barrier. Large voltage V reduces the capture barrier which DNA molecule should overcome in order to enter the channel by $|q_c|V$, where $q_c$ is the effective capture charge. We expressed it through the stall charge $q_s$. We also relate the stall charge $q_s$ to two other effective charges measured for ssDNA with a hairpin in the back end: the charge $q_u$ responsible for reduction of the barrier for unzipping of the hairpin and the charge $q_e$ responsible for DNA escape in the direction of hairpin against the voltage. At small V we explain reduction of the capture barrier with the salt concentration.

  11. Optimum Charging Profile for Lithium-ion Batteries to Maximize Energy Storage and Utilization

    E-Print Network [OSTI]

    Subramanian, Venkat

    Optimum Charging Profile for Lithium-ion Batteries to Maximize Energy Storage and Utilization Ravi The optimal profile of charging current for a lithium-ion battery is estimated using dynamic optimization sources such as lithium-ion batteries have had significant improvements in design, modeling, and operating

  12. Bill Bradbury Jennifer Anders

    E-Print Network [OSTI]

    findings for costs: · In aggregate, regional utility investments in energy efficiency in 2013 were $375 cost to utilities of 2013 savings was just over $17 per megawatt hour (2006$). · Regional utility investments in energy efficiency averaged just over $28 per capita in 2013 compared to the national average

  13. Provencher/1 Bill Provencher

    E-Print Network [OSTI]

    Radeloff, Volker C.

    of hourly residential electricity demand equations to determine both own-price and cross-price demand prices on energy consumption and energy shifting; and (b) the impact on electricity consumption of a system of high price alerts communicated via email and text message. Project Manager and Lead

  14. Bill Bradbury Jennifer Anders

    E-Print Network [OSTI]

    year forecast of electricity demand and a resource plan for the development of conservation and generation to meet the demand at the lowest cost consistent with adequate and reliable electricity service economy, state energy offices, Bonneville, the Energy Trust of Oregon, non-utility program implementers

  15. Customer-Economics of Residential Photovoltaic Systems: The Impact of High Renewable Energy Penetrations on Electricity Bill Savings with Net Metering

    Broader source: Energy.gov [DOE]

    Residential photovoltaic (PV) systems in the US are often compensated at the customer's underlying retail electricity rate through net metering. There is growing interest in understanding how potential changes in rates may impact the value of bill savings from PV. This article uses a production cost and capacity expansion model to project California hourly wholesale electricity market prices under a reference scenario and a 33% renewables scenario. Second, based on the wholesale electricity market prices generated by the model, the article develops retail rates (i.e., flat, time-of-use, and real-time pricing) for each future scenario based on standard retail rate design principles. Finally, based on these retail rates, the bill savings from PV are estimated for 226 California residential customers under two types of net metering, for each scenario. The article finds that high renewable penetrations can drive substantial changes in residential retail rates and that these changes, together with variations in retail rate structures and PV compensation mechanisms, interact to place substantial uncertainty on the future value of bill savings from residential PV.

  16. Tidal Charged Black Holes as Particle Accelerators to Arbitrarily High Energy

    E-Print Network [OSTI]

    Pradhan, Parthapratim

    2014-01-01

    We show that Randall Sundrum tidal charged spherically symmetric vacuum brane black holes could be act as a particle accelerator with ultrahigh center-of-mass energy in the limiting case of \\emph{ maximal black hole tidal charge}. For non-extremal Randall Sundrum tidal charged black hole, the center-of-mass energy is finite. While for maximally Randall Sundrum tidal charged black hole, the center-of-mass energy is \\emph{infinite}. We have also derived the center-of-mass energy at ISCO(Innermost Stable Circular Orbit) or LSCO(Last Stable Circular Orbit) or MSCO(Marginally Stable Circular Orbit) and MBCO (Marginally Bound Circular Orbit) for maximally Randall Sundrum tidal charged black hole. We show visually the differences between Reissner-Nordstr{\\o}m black hole and Randall Sundrum tidal charged BH. We have found that for maximally Randall Sundrum tidal charged black hole the center-of-mass energy is satisfied the following inequality: $E_{cm}\\mid_{r_{+}}>E_{cm}\\mid_{r_{mb}}>E_{cm}\\mid_{r_{ISCO}}$ i.e. $E_{c...

  17. Tidal Charged Black Holes as Particle Accelerators to Arbitrarily High Energy

    E-Print Network [OSTI]

    Parthapratim Pradhan

    2014-12-28

    We show that Randall Sundrum tidal charged spherically symmetric vacuum brane black holes could be act as a particle accelerator with ultrahigh center-of-mass energy in the limiting case of \\emph{ maximal black hole tidal charge}. For non-extremal Randall Sundrum tidal charged black hole, the center-of-mass energy is finite. While for maximally Randall Sundrum tidal charged black hole, the center-of-mass energy is \\emph{infinite}. We have also derived the center-of-mass energy at ISCO(Innermost Stable Circular Orbit) or LSCO(Last Stable Circular Orbit) or MSCO(Marginally Stable Circular Orbit) and MBCO (Marginally Bound Circular Orbit) for maximally Randall Sundrum tidal charged black hole. We show visually the differences between Reissner-Nordstr{\\o}m black hole and Randall Sundrum tidal charged BH. We have found that for maximally Randall Sundrum tidal charged black hole the center-of-mass energy is satisfied the following inequality: $E_{cm}\\mid_{r_{+}}>E_{cm}\\mid_{r_{mb}}>E_{cm}\\mid_{r_{ISCO}}$ i.e. $E_{cm}\\mid_{r_{+} = \\frac{M}{M_{p}^2}}: E_{cm}\\mid_{r_{mb} = \\left(\\frac{3+\\sqrt{5}}{2}\\right)\\frac{M}{M_{p}^2}}:E_{cm}\\mid_{r_{ISCO} = 4\\frac{M}{M_{p}^2}} = \\infty: 3.23 : 2.6$. Which is exactly \\emph{similar} to the spherically symmetric extreme Reissner-Nordstr\\"{o}m black hole.}

  18. Characterization of mono-energetic charged-particle radiography for high energy density physics experiments

    E-Print Network [OSTI]

    Manuel, Mario John-Errol

    2008-01-01

    Charged-particle radiography, specifically protons and alphas, has recently been used to image various High-Energy-Density Physics objects of interest, including Inertial Confinement Fusion capsules during their implosions, ...

  19. H. R. 1301: A bill to implement the National Energy Strategy Act, and for other purposes, introduced in the US House of Representatives, One Hundred Second Congress, First Session, March 6, 1991

    SciTech Connect (OSTI)

    Not Available

    1991-01-01

    This bill contains the following: Title I - Residential, commercial, and Federal energy use: consumer and commercial products, and Federal energy management; Title II - Natural gas: natural gas pipeline regulatory reform, natural gas import/export deregulation, and structural reform of the Federal Energy Regulatory Commission; Title III - Oil: Alaska coastal plain oil and gas leasing, Naval Petroleum Reserve leasing, and oil pipeline deregulation; Title IV - Electricity generation and use: Public Utility Holding Company Act reform, and power marketing administration repayment reform; Title V - Nuclear power: licensing reform, nuclear waste management; Title VI - Renewable energy: PURPA size cap and co-firing reform, and hydroelectric power regulatory reform; Title VII - Alternative fuel: alternative and dual fuel vehicle credits, and alternative transportation fuels; Title VIII - Innovation and technology transfer; Title IX - Tax incentives.

  20. Focus Series: OREGON-On Bill Financing Program: On-Bill Financing...

    Broader source: Energy.gov (indexed) [DOE]

    Focus Series: OREGON-On Bill Financing Program: On-Bill Financing Brings Lenders and Homeowners On Board. Focus Series: Oregon More Documents & Publications Better Buildings...

  1. Bill Bradbury Jennifer Anders

    E-Print Network [OSTI]

    reduction in electricity consumption given how consumers have expressed their selection, the competition is often more thermodynamically efficient than using electricity generated from natural gas, its economic with respect to the relative price of natural gas and electricity, space and/or water heating energy use

  2. Modeling and Control of Flexible HEV Charging Station upgraded with Flywheel Energy Storage

    E-Print Network [OSTI]

    Vasquez, Juan Carlos

    1 Modeling and Control of Flexible HEV Charging Station upgraded with Flywheel Energy Storage reserves. A power balancing strategy based on a local energy storage system (ESS) is proposed in this paper], [8]. The aim of this paper is to address the problem by intro- ducing a dedicated energy storage

  3. Multiple-Source and Multiple-Destination Charge Migration in Hybrid Electrical Energy Storage Systems*

    E-Print Network [OSTI]

    Pedram, Massoud

    Multiple-Source and Multiple-Destination Charge Migration in Hybrid Electrical Energy Storage massimo.poncino@polito.it Abstract-- Hybrid electrical energy storage (HEES) systems consist of multiple banks of heterogeneous electrical energy storage (EES) elements that are connected to each other through

  4. University Valedictorians Bill Jennings 1923

    E-Print Network [OSTI]

    Velev, Orlin D.

    University Valedictorians Name Year Bill Jennings 1923 Lamar Moss 1933 Vic Shelburne 1945 Eustace Lithgo 2008 Lindsey Robinson 2008 Clay Wright 2008 William Barnes 2009 Henryk Orlik 2009 Peiwen Thor 2009 Elizabeth Butler 2010 Raleigh Davis 2010 Farshid Jafarpour 2010 Lara Jazmin 2010 Stephen Morton 2010 Scott

  5. BILL BELLEVILLE Nature Writer & Filmmaker

    E-Print Network [OSTI]

    Fernandez, Eduardo

    a BILL BELLEVILLE Nature Writer & Filmmaker Peace of Blue: Water Journeys SHIRLEY POMPONI FAU Shorelines: The New Reality FEB 4 a MEGAN DAVIS FAU Harbor Branch Discover: From Estuaries to the Deep Blue is sponsored by: DENNIS HANISAK KRISTEN DAVIS BEN METZGER FAU Harbor Branch Indian River Lagoon Observatory

  6. Propagating Electricity Bill onto Cloud Tenants: Using a Novel Pricing Mechanism

    E-Print Network [OSTI]

    Mohsenian-Rad, Hamed

    to change their electricity usage to contribute in cutting electricity bills by participation in demand is the cost of total kWh electricity consumed by the DC. The demand charge is about the average peak load in k in order to shed the electricity utilities' peak loads. The demand charge of a DC can be equal to or even

  7. Driving Demand for Home Energy Improvements: Motivating residential customers to invest in comprehensive upgrades that eliminate energy waste, avoid high utility bills, and spur the economy

    E-Print Network [OSTI]

    Fuller, Merrian C.

    2011-01-01

    energy efficiency, solar photovoltaics (PV), and direct loadenergy efficiency, solar photovoltaics (PV), and direct loadAnnouncements Solar Photovoltaics Residential Conservation

  8. Measurement of the atmospheric muon charge ratio at TeV energies with MINOS

    SciTech Connect (OSTI)

    Adamson, P.; Andreopoulos, C.; Arms, K.E.; Armstrong, R.; Auty, D.J.; Avvakumov, S.; Ayres, D.S.; Baller, B.; Barish, B.; Barnes, P.D., Jr.; Barr, G.; /Fermilab /University Coll. London /Rutherford /Minnesota U. /Indiana U. /Sussex U. /Stanford U., Phys. Dept. /Argonne /Caltech /LLNL, Livermore /Oxford U.

    2007-05-01

    The 5.4 kton MINOS far detector has been taking charge-separated cosmic ray muon data since the beginning of August, 2003 at a depth of 2070 m.w.e. in the Soudan Underground Laboratory, Minnesota, USA. The data with both forward and reversed magnetic field running configurations were combined to minimize systematic errors in the determination of the underground muon charge ratio. When averaged, two independent analyses find the charge ratio underground to be N{sub {mu}}+/N{sub {mu}}-=1.374{+-}0.004(stat)-0.010{sup +0.012}(sys). Using the map of the Soudan rock overburden, the muon momenta as measured underground were projected to the corresponding values at the surface in the energy range 1-7 TeV. Within this range of energies at the surface, the MINOS data are consistent with the charge ratio being energy independent at the 2 standard deviation level. When the MINOS results are compared with measurements at lower energies, a clear rise in the charge ratio in the energy range 0.3-1.0 TeV is apparent. A qualitative model shows that the rise is consistent with an increasing contribution of kaon decays to the muon charge ratio.

  9. Workplace Charging Challenge Partner: The Hartford | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematics And Statistics » USAJobs SearchAMERICA'SEnergyofThe Hartford Workplace Charging Challenge

  10. Workplace Charging Challenge Partner: Unum Group | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematics And Statistics » USAJobs SearchAMERICA'SEnergyofThe HartfordUnum Group Workplace Charging

  11. Workplace Charging Success: Zappos.com | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram: Report1538-1950DepartmentWaveWind(NREL)Zappos.com Workplace Charging

  12. A Summary of Recent Experimental Research on Ion Energy and Charge States of Pulsed Vacuum Arcs

    SciTech Connect (OSTI)

    Oks, Efim M.; Yushkov, Georgy Yu.; Anders, Andre

    2008-06-16

    The paper reviews the results of vacuum arc experimental investigations made collaboratively by research groups from Berkeley and Tomsk over the last two years, i.e. since the last ISDEIV in 2006. Vacuum arc plasma of various metals was produced in pulses of a few hundred microseconds duration, and the research focussed on three topics: (i) the energy distribution functions for different ion charge states, (ii) the temporal development of the ion charge state distribution, and (iii) the evolution of the mean directed ion velocities during plasma expansion. A combined quadruple mass-to-charge and energy ana-lyzer (EQP by HIDEN Ltd) and a time-of-flight spectrometer were employed. Cross-checking data by those complimen-tary techniques helped to avoid possible pitfalls in interpre-tation. It was found that the ion energy distribution func-tions in the plasma were independent of the ion charge state, which implies that the energy distribution on a substrate are not equal to due to acceleration in the substrate's sheath. In pulsed arc mode, the individual ion charge states fractions showed changes leading to a decrease of the mean charge state toward a steady-state value. This decrease can be re-duced by lower arc current, higher pulse repetition rate and reduced length of the discharge gap. It was also found that the directed ion velocity slightly decreased as the plasma expanded into vacuum.

  13. Ab initio study of charge transfer in low energy Si 2+ collisions with atomic hydrogen

    E-Print Network [OSTI]

    Stancil, Phillip C.

    Ab initio study of charge transfer in low energy Si 2+ collisions with atomic hydrogen N J Clarkey Si 2+ (3s 2 1 S) and excited state Si 2+ (3s3p 3 P o ) with atomic hydrogen are presented for energies less than 100 eV amu \\Gamma1 . The cross sections are calculated in a diabatic representation

  14. Ab initio study of charge transfer in B 2+ low-energy collisions with atomic hydrogen

    E-Print Network [OSTI]

    Stancil, Phillip C.

    Ab initio study of charge transfer in B 2+ low-energy collisions with atomic hydrogen A. R. Turner due to collisions of ground state B 2+ (2s 2 S) ions with atomic hydrogen are investigated using coupling are small (energy: for collision

  15. 'Taking Charge': Kansans Save $2.3M in Challenge to Change Their Energy Behavior

    Broader source: Energy.gov [DOE]

    How did the Climate and Energy Project (CEP), a small environmental organization that has received Recovery Act funding, achieve $2.3 million in savings annually for Kansans? Learn more about the Take Charge Challenge, a 9-month competition in which residents across 16 communities competed against each other to save the most energy and money.

  16. Observation of high iron charge states at low energies in solar energetic particle events

    SciTech Connect (OSTI)

    Guo, Z.; Möbius, E.; Bochsler, P.; Connell, J. J.; Popecki, M. A.; Klecker, B.; Kartavykh, Y. Y.; Mason, G. M.

    2014-04-10

    The ionic charge states of solar energetic particles (SEPs) provide direct information about the source plasma, the acceleration environment, and their transport. Recent studies report that both gradual and impulsive SEP events show mean iron charge states (Q {sub Fe}) ? 10-14 at low energies E ? 0.1 MeV nuc{sup –1}, consistent with their origin from typical corona material at temperatures 1-2 MK. Observed increases of (Q {sub Fe}) up to 20 at energies 0.1-0.5 MeV nuc{sup –1} in impulsive SEPs are attributed to stripping during acceleration. However, Q {sub Fe} > 16 is occasionally found in the solar wind, particularly coming from active regions, in contrast to the exclusively reported (Q {sub Fe}) ? 14 for low energy SEPs. Here we report results from a survey of all 89 SEP events observed with Advanced Composition Explorer Solar Energetic Particle Ionic Charge Analyzer (SEPICA) in 1998-2000 for iron charge states augmented at low energy with Solar and Heliospheric Observatory CELIAS suprathermal time-of-flight (STOF). Nine SEP events with (Q {sub Fe}) ? 14 throughout the entire SEPICA and STOF energy range have been identified. Four of the nine events are impulsive events identified through velocity dispersion that are consistent with source temperatures ?2 MK up to ?4 MK. The other five events show evidence of interplanetary acceleration. Four of them involve re-acceleration of impulsive material, whose original energy dependent charge states appear re-distributed to varying extent bringing higher charge states to lower energy. One event, which shows flat but elevated (Q {sub Fe}) ? 14.2 over the entire energy range, can be associated with interplanetary acceleration of high temperature material. This event may exemplify a rare situation when a second shock plows through high temperature coronal mass ejection material.

  17. Charge Storage in Organic Electrodes for Energy & Electrochemical Applications 

    E-Print Network [OSTI]

    Jeon, Ju Won

    2014-10-15

    ………………………………………………………………...………138 vii LIST OF FIGURES Page 1.1 Various cathode and anode materials with their potential and capacity..……...……3 1.2 Schematic illustration of the discharge and charge processes of a lithium rechargeable battery....13 Graphs of log i vs. log ? for (a) anodic and (b) cathodic scans of the 347 nm thick (PANI-NF2.5/ERGO3.5) LbL electrodes used to obtain b values. The calculation was performed using cyclic voltammograms from 1 to 5 mV/s….....101 4.14 Calculated b...

  18. Workplace Charging Challenge Partner: Utah Paperbox | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematics And Statistics » USAJobs SearchAMERICA'SEnergyofThe HartfordUnum Group Workplace ChargingUtah

  19. EV Charging Stations Take Off Across America | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submitKansas Nuclear Profile 2010Mesoscopy and thermodynamics(Revised)EV Charging

  20. GreenCharge: Managing Renewable Energy in Smart Buildings

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    and changing environmental conditions. Since the energy consumption density, in kilowatt-hours (kWh) per square foot, is higher than the energy generation density of solar and wind deployments at most locations on both the total number of participating consumers and the total amount of energy contributed per

  1. Under the recently passed American Recovery and Reinvestment Bill of 2009, the Department of Energy would receive approximately $40 billion for various energy programs and initiatives, including:

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyThe U.S.Laclede GasEfficiency|Feed|Department ofInspector General - Recovery Act

  2. Workplace Charging Challenge Partner: Hertz | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematics And Statistics » USAJobs SearchAMERICA'SEnergy SafelyEnergyEnergyEnergyHertz

  3. Workplace Charging Challenge Partner: UCLA Smart Grid Energy...

    Broader source: Energy.gov (indexed) [DOE]

    research on the topics of Electric Vehicle Integration Automated Demand Response Microgrids, and Distributed and Renewable Integration, and Energy Storage Integration. The...

  4. Charged-particle acceleration and energy loss in laser-produced plasmas D. G. Hicks,a)

    E-Print Network [OSTI]

    the interpretation of their spectra. Strong electric fields are created when hot electrons, generated by laser energy shifts were dominated by energy losses in the target, allowing fundamental charged as the corona where strong electric fields may exist. As a result, the energy spectrum of charged fusion

  5. Volume 43, number 3 FEBS LETTERS August 1974 MODULATION OF THE ADENYLATE ENERGY CHARGE BY SUSTAINED METABOLIC

    E-Print Network [OSTI]

    Goldbeter, Albert

    Volume 43, number 3 FEBS LETTERS August 1974 MODULATION OF THE ADENYLATE ENERGY CHARGE BY SUSTAINED in the homogeneous case and deter- mined the effect of sustained oscillations on the adenylate energy charge (AEC] . The physiological significance of these periodicities linked to the energy state of the cell [6] can be investigated

  6. Workplace Charging Challenge Partner: Zappos | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann JacksonDepartment| Department of EnergyDataWind TheEnergyEnergy AtlantaZappos

  7. Polymer Materials for Charge Transfer in Energy Devices.

    E-Print Network [OSTI]

    Miller , Adam

    2014-01-01

    Proton Conductors for Fuel-Cell Applications: Simulations,model compounds. Fuel Cells 5, 355-365 (2005). 3 Herz, H. G.Energy, Office of Hydrogen, Fuel Cells and Kerr-polymer

  8. EV Everywhere Charges Up the Workplace | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Volt), 2011 World Car of the Year (Nissan Leaf), 2013 Motor Trend Car of the Year (Tesla Model S) and 2012 Green Car Vision Award Winner (Ford C-MAX Energi). To maintain this...

  9. Workplace Charging Challenge Summit 2014: Agenda | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing ToolInternationalReport FY2014 -Energy CostsEnergy City of Atlanta

  10. Workplace Charging Challenge Partner: General Motors | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematics And Statistics » USAJobs SearchAMERICA'SEnergy SafelyEnergyEnergy Systems | Department

  11. Workplace Charging Challenge Partner: Google | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematics And Statistics » USAJobs SearchAMERICA'SEnergy SafelyEnergyEnergy Systems

  12. Inclusive Pion Double Charge Exchange in 4He at Intermediate Energies

    E-Print Network [OSTI]

    E. R. Kinney; J. L. Matthews; P. A. M. Gram; D. W. MacArthur; E. Piasetzky; G. A. Rebka, Jr.; D. A. Roberts

    2005-07-01

    A systematic experimental study of inclusive pion double charge exchange in 4He has been undertaken. The reaction 4He(pi+,pi-)4p was observed at incident energies 120, 150, 180, 240 and 270 MeV; the 4He(pi-,pi+)4n reaction was observed at incident energies 180 and 240 MeV. At each incident energy, the doubly differential cross section was measured at three to five outgoing pion laboratory angles between 25 deg and 130 deg. At each angle, cross sections were measured over the range of outgoing pion energies from 10 MeV up to the kinematic limit for the reaction in which the final state consists of the oppositely charged pion plus four free nucleons. The spectra of outgoing pions are strikingly different from those observed for the inclusive double charge exchange reaction in heavier nuclei, but resemble those observed in the (pi-,pi+) reaction in 3He. The forward-angle spectra in the 3He and 4He reactions exhibit a prominent peak at high outgoing pion energies. Interpretation of the peaks in 3He (4He) as a three- (four-)nucleon resonance is ruled out by kinematic analysis. The results of a calculation, wherein the double charge exchange reaction is assumed to proceed as two sequential single charge exchange interactions, suggest that the high-energy peak is naturally explained by this double scattering mechanism. Non-static treatment of the pi-N interactions and the inclusion of nuclear binding effects appear to be important in reproducing the shape of the energy spectra at forward angles.

  13. Bill Wilcox and Y-12

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O OLaura|Bilayer Graphene Gets a BandgapBill Gibbonsand Y-12

  14. Simulation of Charged Systems in Heterogeneous Dielectric Media via a True Energy Functional

    E-Print Network [OSTI]

    Vikram Jadhao; Francisco J. Solis; Monica Olvera de la Cruz

    2013-09-26

    For charged systems in heterogeneous dielectric media, a key obstacle for molecular dynamics (MD) simulations is the need to solve the Poisson equation in the media. This obstacle can be bypassed using MD methods that treat the local polarization charge density as a dynamic variable, but such approaches require access to a true free energy functional; one that evaluates to the equilibrium electrostatic energy at its minimum. In this letter, we derive the needed functional. As an application, we develop a Car-Parrinello MD method for the simulation of free charges present near a spherical emulsion droplet separating two immiscible liquids with different dielectric constants. Our results show the presence of non-monotonic ionic profiles in the dielectric with lower dielectric constant.

  15. Workplace Charging Toolkit: Example Events | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing ToolInternationalReport FY2014 -Energy CostsEnergy City ofPlug-in ElectricExample

  16. Workplace Charging Toolkit: Workshop Best Practices | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing ToolInternationalReport FY2014 -Energy CostsEnergy City ofPlug-in ElectricExampleBest

  17. Energy Jobs: Electric Vehicle Charging Station Installer | Department of

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n cEnergyNatural Gas |Tool for<StateSarah Chinn is a staff chemist

  18. Workplace Charging Challenge Partner: Dell Inc. | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematics And Statistics » USAJobs SearchAMERICA'SEnergy SafelyEnergy ClipperCreek,DTE EnergyDell

  19. Workplace Charging Challenge Partner: Siemens | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematics And Statistics » USAJobs SearchAMERICA'SEnergyof EnergyDepartment ofEnergyofSiemens

  20. EV Everywhere Charges Up the Workplace | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataEnergy Webinar:IAboutReubenPress Releases EM PressENERGY|About Us »EV

  1. An Optimization Framework for Data Centers to Minimize Electric Bill under Day-Ahead Dynamic Energy Prices While Providing Regulation Services

    E-Print Network [OSTI]

    Pedram, Massoud

    of renewable energy to reduce their power drawn from the Power Grid, the intermittency of renewable energy balancing [15], and use of electrical energy storage systems [14], [15]. Due to monetary costs renewable energy sources (green energy) into the power grid facilities. For example, according to the US

  2. EXPERIMENTAL STUDY OF ENERGY SPREAD IN A SPACE-CHARGE DOMINATED ELECTRON BEAM *

    E-Print Network [OSTI]

    Valfells, Ágúst

    EXPERIMENTAL STUDY OF ENERGY SPREAD IN A SPACE-CHARGE DOMINATED ELECTRON BEAM * Y. Cui , Y. Zou, A. Experimental Setup Electron Beam Ground Shielding High Voltage Cylinder Retarding Mesh Collector High Voltage. Valfells, I. Haber, R. Kishek, M. Reiser, P. G. O'Shea Institute for Research in Electronics and Applied

  3. New physics motivated by the low energy approach to electric charge quantization

    E-Print Network [OSTI]

    H. Lew; R. R. Volkas

    1994-10-13

    The low-energy approach to electric charge quantization predicts physics beyond the minimal standard model. A model-independent approach via effective Lagrangians is used examine the possible new physics, which may manifest itself indirectly through family-lepton--number violating rare decays.

  4. Entropy bound of a charged object and electrostatic self-energy in black holes

    E-Print Network [OSTI]

    B. Linet

    1999-11-30

    Without pretending to any rigour, we find a general expression of the electrostatic self-energy in static black holes with spherical symmetry. We determine the entropy bound of a charged object by assuming the existence of thermodynamics for these black holes. By combining these two results, we show that the entropy bound does not depend on the considered black hole.

  5. Charging-free electrochemical system for harvesting low-grade thermal energy

    E-Print Network [OSTI]

    Cui, Yi

    Charging-free electrochemical system for harvesting low-grade thermal energy Yuan Yanga,1 , Seok processes, environment, solar-thermal, and geothermal en- ergy (1­3). It is generally difficult to convert Cuib,d,3 , and Gang Chena,3 a Department of Mechanical Engineering, Massachusetts Institute

  6. Greenhouse Gas Initiatives - Analysis of McCain-Lieberman Bill S.280 ‘The ClimateStewardship and Innovation Act of 2007’ Using the National Energy Modeling System 

    E-Print Network [OSTI]

    Ellsworth, C.

    2008-01-01

    . One of the critical questions to be addressed is the implications for various energy sources and technologies and the impact on energy prices to end users. This paper reports on the impacts of pending GHG legislation on energy supply, demand...

  7. A Methodology to Identify Monthly Energy Use Models from Utility Bill Data for Seasonally Scheduled Buildings: Application to K-12 Schools 

    E-Print Network [OSTI]

    Wang, W.; Claridge, D. E.; Reddy, T. A.

    1998-01-01

    The measured energy savings from retrofits in buildings is often determined as the difference between the energy consumption predicted by a baseline model and the measured energy consumption during the post retrofit period. Most baseline models...

  8. Assembly Bill No. 1881 CHAPTER 559

    E-Print Network [OSTI]

    projects, condominium projects, planned developments, and stock cooperatives. This bill would provide or more public hearings, to take specified action to reduce the wasteful, uneconomic, inefficient

  9. EV Everywhere Workplace Charging Challenge | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergy HeadquartersFuel CycleFinalEEREImpactStatementSeptember303ofEV Everywhere Logo

  10. NASCAR and Sprint Join Energy Department's Workplace Charging Challenge |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURING OFFICESpecialAPPENDIX FOrigin of Contamination inEnergy NARUCGreen Gets

  11. Novolyte Charging Up Electric Vehicle Sector | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterested Parties -DepartmentAvailable forSite |n t e Office of Health, Safety

  12. Workplace Charging Challenge Partner: Bloomberg LP | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematics And Statistics » USAJobs SearchAMERICA'SEnergy Safely TearEnergy Biogen Idec

  13. Workplace Charging Challenge Partner: National Grid | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematics And Statistics » USAJobs SearchAMERICA'SEnergyof Energy JLA

  14. Workplace Charging Challenge Partner: Raytheon | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematics And Statistics » USAJobs SearchAMERICA'SEnergyof Energy

  15. Workplace Charging Challenge Partner: Sprint | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematics And Statistics » USAJobs SearchAMERICA'SEnergyof EnergyDepartmentDepartment of

  16. Workplace Charging Challenge Partner: lynda.com | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematics And Statistics » USAJobs SearchAMERICA'SEnergyofThe HartfordUnumXcel Energy

  17. Laser wavelength effects on the charge state resolved ion energy distributions from laser-produced Sn plasma

    E-Print Network [OSTI]

    Najmabadi, Farrokh

    Laser wavelength effects on the charge state resolved ion energy distributions from laser of laser wavelength on the charge state resolved ion energy distributions from laser-produced Sn plasma freely expanding into vacuum are investigated. Planar Sn targets are irradiated at laser wavelengths

  18. U.S. Department of Energy's EV Everywhere Workplace Charging Challenge, Mid-Program Review: Employees Plug In

    SciTech Connect (OSTI)

    2015-12-01

    This Program Review takes an unprecedented look at the state of workplace charging in the United States -- a report made possible by U.S. Department of Energy leadership and valuable support from our partners as they share their progress in developing robust workplace charging programs. Through the Workplace Charging Challenge, more than 250 participants are accelerating the development the nation's worksite PEV charging infrastructure and are supporting cleaner, more convenient transportation options within their communities. Challenge partners are currently providing access to PEV charging stations at more than 440 worksites across the country and are influencing countless other organizations to do the same.

  19. Charge stands (Smart Grid Project) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar Energy LLCLtd Jump to:Changing World Technologies JumpChaplin,

  20. Help Your Employer Install Electric Vehicle Charging | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nA Guide to TappingWORK BREAKDOWNEnergy how toEM Office14Heidi

  1. ADA Requirements for Workplace Charging Installation | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p a l De p u t y A s s iof1 ofDensified Large

  2. Leading the Charge: Christine Klein | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURING OFFICE INDUSTRIALU.S.Leadership on Clean Energys o u t h e a s t e

  3. Leading the Charge: Harold Frank | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterested Parties - WAPA PublicLED ADOPTION REPORTLand andDr. Penrose C.Harold Frank

  4. Leading the Charge: Jim Manion | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterested Parties - WAPA PublicLED ADOPTION REPORTLand andDr. Penrose C.HaroldJim Manion

  5. Leading the Charge: Tribal Women in Power | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterested Parties - WAPA PublicLED ADOPTION REPORTLand andDr. Penrose C.HaroldJim

  6. Workplace Charging Challenge Partner: BookFactory | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematics And Statistics » USAJobs SearchAMERICA'SEnergy Safely TearEnergy Biogen IdecBookFactory

  7. Workplace Charging Challenge Partner: Eli Lilly | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematics And Statistics » USAJobs SearchAMERICA'SEnergy SafelyEnergy ClipperCreek,DTE|Eli Lilly

  8. Workplace Charging Challenge Partner: FCA US LLC | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematics And Statistics » USAJobs SearchAMERICA'SEnergy SafelyEnergy ClipperCreek,DTE|Eli LillyFCA

  9. Workplace Charging Challenge Partner: Facebook | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematics And Statistics » USAJobs SearchAMERICA'SEnergy SafelyEnergy ClipperCreek,DTE|EliFacebook

  10. Workplace Charging Challenge Partner: NYSERDA | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematics And Statistics » USAJobs SearchAMERICA'SEnergyof Energy JLA PublicDepartmentNYSERDA

  11. Workplace Charging Challenge Partner: OSRAM SYLVANIA | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematics And Statistics » USAJobs SearchAMERICA'SEnergyof Energy JLANetApp WorkplaceOSRAM SYLVANIA

  12. Workplace Charging Challenge Partner: Organic Valley | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematics And Statistics » USAJobs SearchAMERICA'SEnergyof Energy JLANetApp WorkplaceOSRAMofOrganic

  13. Workplace Charging Challenge Partners: EV Connect | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematics And Statistics » USAJobs SearchAMERICA'SEnergyofThe HartfordUnumXcel EnergyPartners: EV

  14. Workplace Charging Management Policies: Pricing | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematics And Statistics » USAJobs SearchAMERICA'SEnergyofThe HartfordUnumXcelof Energy

  15. Workplace Charging Management Policies: Sharing | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematics And Statistics » USAJobs SearchAMERICA'SEnergyofThe HartfordUnumXcelof EnergySharing

  16. Two Men Charged With Wire Fraud | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematics And Statistics » USAJobsMotionHeatEnergy Solar Training for8 Things You Didn't KnowTravelTwo

  17. Energy Jobs: Electric Vehicle Charging Station Installer | Department of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submitKansasCommunities EnergyU.S. DOE Office of99 Diagram 4. CoalInitiatives

  18. Announcing $4 Million For Wireless EV Charging | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann JacksonDepartment of EnergyResearchers atDay 12:wasProjects |SolarH. Sayles,- DeputyThe

  19. Workplace Charging Challenge Partner: JEA | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram: Report1538-1950DepartmentWaveWind ProgramWorkEnergy IntelJEA

  20. Workplace Charging Challenge Partner: Legrand | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram: Report1538-1950DepartmentWaveWind ProgramWorkEnergyLegrand

  1. Workplace Charging Challenge Partner: National Renewable Energy Laboratory

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram: Report1538-1950DepartmentWaveWind(NREL) | Department of Energy

  2. Workplace Charging Challenge: Join the Challenge | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataEnergy Webinar: Demonstration of NREL'sWind Wind Wind TheWorkPlug-in

  3. Energy transfer through a multi-layer liner for shaped charges

    DOE Patents [OSTI]

    Skolnick, Saul (Albuquerque, NM); Goodman, Albert (Albuquerque, NM)

    1985-01-01

    This invention relates to the determination of parameters for selecting materials for use as liners in shaped charges to transfer the greatest amount of energy to the explosive jet. Multi-layer liners constructed of metal in shaped charges for oil well perforators or other applications are selected in accordance with the invention to maximize the penetrating effect of the explosive jet by reference to four parameters: (1) Adjusting the explosive charge to liner mass ratio to achieve a balance between the amount of explosive used in a shaped charge and the areal density of the liner material; (2) Adjusting the ductility of each layer of a multi-layer liner to enhance the formation of a longer energy jet; (3) Buffering the intermediate layers of a multi-layer liner by varying the properties of each layer, e.g., composition, thickness, ductility, acoustic impedance and areal density, to protect the final inside layer of high density material from shattering upon impact of the explosive force and, instead, flow smoothly into a jet; and (4) Adjusting the impedance of the layers in a liner to enhance the transmission and reduce the reflection of explosive energy across the interface between layers.

  4. New Jersey Natural Gas- SAVEGREEN Residential On-Bill Financing Program

    Broader source: Energy.gov [DOE]

    Through the SAVEGREEN Project, New Jersey Natural Gas (NJNG) provides an On-Bill Repayment Program (OBRP) for $2,500 up to $10,000 at 0% APR with no fees, points, or closing cost for energy...

  5. Clinical Research Billing University of Maryland Baltimore

    E-Print Network [OSTI]

    Weber, David J.

    documents in accordance with research billing rules #12;Why is this important? · Office of the Inspector General (OIG) work plans regularly include clinical research billing in its top compliance initiatives related to the failure to accurately and completely report support from other financial sources

  6. A Discussion on Pricing Relational Data Magdalena Balazinska, Bill Howe, Paraschos Koutris,

    E-Print Network [OSTI]

    Anderson, Richard

    of the costs of producing and maintaining the data by charging these pharmaceutical companies a price pricing mechanisms to fail: they have a high and irrecoverable fixed cost (producing the data is expensiveA Discussion on Pricing Relational Data Magdalena Balazinska, Bill Howe, Paraschos Koutris, Dan

  7. Seeing Savings from an ESPC Project in Fort Polk's Utility Bills

    SciTech Connect (OSTI)

    Shonder, J.A.

    2005-03-08

    Federal agencies have implemented many energy efficiency projects over the years with direct funding or alternative financing vehicles such as energy savings performance contracts (ESPCs). While it is generally accepted that these projects save energy and costs, the savings are usually not obvious in the utility bills. This is true for many valid technical reasons, even when savings are verified in other ways to the highest degree of certainty. However, any perceived deficiency in the evidence for savings is problematic when auditors or other observers evaluate the outcome of energy projects and the achievements of energy management programs. This report discusses under what circumstances energy savings should or should not be evident in utility bills. In the special case of a large ESPC project at the Army's Fort Polk, the analysis of utility bills carried out by the authors does unequivocally confirm and quantify savings. The data requirements and methods for arriving at definitive answers through utility bill analysis are demonstrated in our discussion of the Fort Polk project. The following paragraphs address why the government generally should not expect to see savings from ESPC projects in their utility bills. We also review lessons learned and best practices for measurement and verification (M&V) that can assure best value for the government and are more practical, straightforward, and cost-effective than utility bill analysis.

  8. Universal Behavior of Charged Particle Production in Heavy Ion Collisions at RHIC Energies

    E-Print Network [OSTI]

    Peter Steinberg; PHOBOS Collaboration

    2002-10-17

    The PHOBOS experiment at RHIC has measured the multiplicity of primary charged particles as a function of centrality and pseudorapidity in Au+Au collisions at sqrt(s_NN) = 19.6, 130 and 200 GeV. Two kinds of universal behavior are observed in charged particle production in heavy ion collisions. The first is that forward particle production, over a range of energies, follows a universal limiting curve with a non-trivial centrality dependence. The second arises from comparisons with pp/pbar-p and e+e- data. N_tot/(N_part/2) in nuclear collisions at high energy scales with sqrt(s) in a similar way as N_tot in e+e- collisions and has a very weak centrality dependence. This feature may be related to a reduction in the leading particle effect due to the multiple collisions suffered per participant in heavy ion collisions.

  9. Low-energy pion double charge exchange and nucleon-nucleon correlations in nuclei

    SciTech Connect (OSTI)

    Leitch, M.J.

    1989-01-01

    Recent measurements of pion double-charge exchange (DCX) at energies 20 to 70 MeV are providing a new means for studying nucleon-nucleon correlations in nuclei. At these energies the nucleus is relatively transparent, allowing simpler theoretical models to be used in interpreting the data and leading to a clearer picture. Also the contribution to DCX of sequential charge-exchange scattering through the intermediate analog state is suppressed near 50 MeV and transitions through non-analog intermediate states become very important. Recent theoretical studies by several groups have shown that while transitions through the analog route involve relatively long nucleon-nucleon distances, those through non-analog intermediate states obtain nearly half their strength from nucleon pairs with less than 1 fermi separation. Thus DCX near 50 MeV is an excellent way to study short-range nucleon-nucleon correlations. 31 refs., 29 figs., 4 tabs.

  10. Ohio Homeowner Reaps Benefits of Saving Energy

    Broader source: Energy.gov [DOE]

    Carol Bintz’s first year of energy bills totaled less than half of the average American family’s annual energy bill of nearly $2,100.

  11. New Advanced Refrigeration Technology Provides Clean Energy,...

    Office of Environmental Management (EM)

    Refrigeration Technology Provides Clean Energy, Low Utility Bills for Supermarkets New Advanced Refrigeration Technology Provides Clean Energy, Low Utility Bills for...

  12. AVTA: GE Energy WattStation AC Level 2 Charging System Testing Results

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following report describes results from testing done on the GE Energy Wattstation AC Level 2 charging system for plug-in electric vehicles. This research was conducted by Idaho National Laboratory.

  13. Effective Interactions and Volume Energies in Charged Colloids: Linear Response Theory

    E-Print Network [OSTI]

    A. R. Denton

    2000-06-21

    Interparticle interactions in charge-stabilized colloidal suspensions, of arbitrary salt concentration, are described at the level of effective interactions in an equivalent one-component system. Integrating out from the partition function the degrees of freedom of all microions, and assuming linear response to the macroion charges, general expressions are obtained for both an effective electrostatic pair interaction and an associated microion volume energy. For macroions with hard-sphere cores, the effective interaction is of the DLVO screened-Coulomb form, but with a modified screening constant that incorporates excluded volume effects. The volume energy -- a natural consequence of the one-component reduction -- contributes to the total free energy and can significantly influence thermodynamic properties in the limit of low-salt concentration. As illustrations, the osmotic pressure and bulk modulus are computed and compared with recent experimental measurements for deionized suspensions. For macroions of sufficient charge and concentration, it is shown that the counterions can act to soften or destabilize colloidal crystals.

  14. Design and operation of a retarding field energy analyzer with variable focusing for space-charge-dominated electron beams

    E-Print Network [OSTI]

    Valfells, Ágúst

    -charge-dominated electron beams Y. Cui, Y. Zou, A. Valfells, M. Reiser, M. Walter, I. Haber, R. A. Kishek, S. Bernal, and P with electron beams of several keV, in which space-charge effects play an important role. A cylindrical focusing, high-energy colliders, free electron lasers, and other applications require high-quality intense beams

  15. IEEE TRANSACTIONS ON SMART GRID, VOL. 4, NO. 1, MARCH 2013 311 Optimizing Electric Vehicle Charging With Energy

    E-Print Network [OSTI]

    Tang, Jian "Neil"

    With Energy Storage in the Electricity Market Chenrui Jin, Member, IEEE, Jian Tang, Member, IEEE, and Prasanta, we study a problem of sched- uling EV charging with ES from an electricity market perspectiveIEEE TRANSACTIONS ON SMART GRID, VOL. 4, NO. 1, MARCH 2013 311 Optimizing Electric Vehicle Charging

  16. Berkeley Lab's Bill Collins talks about Modeling the Changing...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Berkeley Lab's Bill Collins talks about Modeling the Changing Earth System: Prospects and Challenges. From the 2014 NERSC User's Group Meeting Berkeley Lab's Bill Collins talks...

  17. New Independent Analysis Confirms Climate Bill Costs About a...

    Energy Savers [EERE]

    Independent Analysis Confirms Climate Bill Costs About a Postage Stamp a Day New Independent Analysis Confirms Climate Bill Costs About a Postage Stamp a Day August 4, 2009 -...

  18. Office of Personnel Management (OPM) Billing System PIA, Office...

    Energy Savers [EERE]

    Personnel Management (OPM) Billing System PIA, Office of Health, Safety and Security Office of Personnel Management (OPM) Billing System PIA, Office of Health, Safety and Security...

  19. Beam energy dependence of charged pion ratio in $^{28}$Si + In reactions

    E-Print Network [OSTI]

    M. Sako; T. Murakami; Y. Nakai; Y. Ichikawa; K. Ieki; S. Imajo; T. Isobe; M. Matsushita; J. Murata; S. Nishimura; H. Sakurai; R. D. Sameshima; E. Takada

    2014-09-11

    The double differential cross sections for $^{nat}$In($^{28}$Si, $\\pi ^{\\pm}$) reactions are measured at 400, 600, and 800 MeV/nucleon. Both $\\pi^+$ and $\\pi^-$ are found to be emitted isotropically from a single moving source. The $\\pi^- / \\pi^+$ yield ratio is determined as a function of the charged pion energy between 25 and 100 MeV. The experimental results significantly differ from the prediction of the standard transport model calculation using the code PHITS. This discrepancy suggests that more theoretical works are required to deduce firm information on the nuclear symmetry energy from the $\\pi^- / \\pi^+$ yield ratio.

  20. Gluon saturation and pseudo-rapidity distributions of charged hadrons at RHIC energy regions

    E-Print Network [OSTI]

    Xin-Bin Wei; Sheng-Qin Feng

    2014-11-20

    We modified the gluon saturation model by rescaling the momentum fraction according to saturation momentum and introduced the Cooper-Frye hydrodynamic evolution to systematically study the pseudo-rapidity distributions of final charged hadrons at different energies and different centralities for Au-Au collisions in relativistic heavy-ion collisions at BNL Relativistic Heavy Ion Collider (RHIC). The features of both gluon saturation and hydrodynamic evolution at different energies and different centralities for Au-Au collisions are investigated in this paper.

  1. Beam Energy Dependence of Moments of the Net-Charge Multiplicity Distributions in Au + Au Collisions at RHIC

    E-Print Network [OSTI]

    Balewski, Jan T.

    We report the first measurements of the moments—mean (M), variance (?[superscript 2]), skewness (S), and kurtosis (?)—of the net-charge multiplicity distributions at midrapidity in Au + Au collisions at seven energies, ...

  2. Assembly Bill No. 1340 CHAPTER 692

    E-Print Network [OSTI]

    , and prices. The bill would also permit any person required to submit this information to request gasoline sold unbranded by the refiner, blender, or importer. (2) Major marketers shall report on petroleum

  3. Assembly Bill No. 109 CHAPTER 313

    E-Print Network [OSTI]

    law defines "full fuel-cycle assessment" or "life-cycle assessment" for the purposes, specific activities. This bill would recast the definition of "full fuel-cycle assessment" or "life

  4. Custody transfer enhanced by electronic billing system

    SciTech Connect (OSTI)

    Knox, R.M.

    1986-10-20

    Transcontinental Gas Pipe Line (TGPL) Corp. engineers have developed an electronic billing system for custody transfer that can reduce the cost of doing business and improve the accuracy of transfer measurements. The system accurately measures gas flow and quality, transmits gas data to a central facility, provides a capability to review the collected data, prepares bills based upon these data, and reduces staffing associated with the data collection and billing process. On-line flow computers are keys to this electronic billing system. These computers, referred to as remote terminal units (RTU's), are currently in service at TGPL at more than 30 locations with 30 more locations due to be on-line within 6 months and an additional 40 locations due within 15 months. These RTU's will be obtaining gas data from metering stations located in New York, New Jersey, Pennsylvania, Maryland, Virginia, North Carolina, Georgia, Louisiana, and Texas.

  5. Fundamental Studies of Charge Migration and Delocalization Relevant to Solar Energy Conversion

    SciTech Connect (OSTI)

    Michael J. Therien

    2012-06-01

    This program aimed to understand the molecular-level principles by which complex chemical systems carry out photochemical charge separation, transport, and storage, and how these insights could impact the design of practical solar energy conversion and storage devices. Towards these goals, this program focused on: (1) carrying out fundamental mechanistic and transient dynamical studies of proton-coupled electron-transfer (PCET) reactions; (2) characterizing and interrogating via electron paramagnetic resonance (EPR) spectroscopic methods novel conjugated materials that feature large charge delocalization lengths; and (3) exploring excitation delocalization and migration, as well as polaron transport properties of meso-scale assemblies that are capable of segregating light-harvesting antennae, nanoscale wire-like conduction elements, and distinct oxidizing and reducing environments.

  6. Charged String-like Solutions of Low-energy Heterotic String Theory

    E-Print Network [OSTI]

    Daniel Waldram

    1992-10-06

    Two string-like solutions to the equations of motion of the low-energy effective action for the heterotic string are found, each a source of electric and magnetic fields. The first carries an electric current equal to the electric charge per unit length and is the most general solution which preserves one half of the supersymmetries. The second is the most general charged solution with an event horizon, a `black string'. The relationship of the solutions to fundamental, macroscopic heterotic strings is discussed, and in particular it is shown that any stable state of such a fundamental string also preserves one half of the supersymmetries, in the same manner as the first solution.

  7. Electromagnetic Weibel Instability in Intense Charged Particle Beams with Large Energy Anisotropy

    SciTech Connect (OSTI)

    Edward A. Startsev; Ronald C. Davidson

    2003-10-20

    In plasmas with strongly anisotropic distribution functions, collective instabilities may develop if there is sufficient coupling between the transverse and longitudinal degrees of freedom. Our previous numerical and theoretical studies of intense charged particle beams with large temperature anisotropy [E. A. Startsev, R. C. Davidson and H. Qin, PRSTAB, 6, 084401 (2003); Phys. Plasmas 9, 3138 (2002)] demonstrated that a fast, electrostatic, Harris-like instability develops, and saturates nonlinearly, for sufficiently large temperature anisotropy (T{sub {perpendicular}b}/T{sub {parallel}b} >> 1). The total distribution function after saturation, however, is still far from equipartitioned. In this paper the linearized Vlasov-Maxwell equations are used to investigate detailed properties of the transverse electromagnetic Weibel-type instability for a long charge bunch propagating through a cylindrical pipe of radius r{sub w}. The kinetic stability analysis is carried out for azimuthally symmetric perturbations about a two-temperature thermal equilibrium distribution in the smooth-focusing approximation. The most unstable modes are identified, and their eigenfrequencies, radial mode structure and instability thresholds are determined. The stability analysis shows that, although there is free energy available to drive the electromagnetic Weibel instability, the finite transverse geometry of the charged particle beam introduces a large threshold value for the temperature anisotropy ((T{sub {perpendicular}b}/T{sub {parallel}b}){sup Weibel} >> (T{sub {perpendicular}b}/T{sub {parallel}b}){sup Harris}) below which the instability is absent. Hence, unlike the case of an electrically neutral plasma, the Weibel instability is not expected to play as significant a role in the process of energy isotropization of intense unneutralized charged particle beams as the electrostatic Harris-type instability.

  8. Renormalized energy equidistribution and local charge balance in 2D Coulomb systems

    E-Print Network [OSTI]

    Simona Rota Nodari; Sylvia Serfaty

    2014-02-12

    We consider two related problems: the first is the minimization of the "Coulomb renormalized energy" of Sandier-Serfaty, which corresponds to the total Coulomb interaction of point charges in a uniform neutralizing background (or rather variants of it). The second corresponds to the minimization of the Hamiltonian of a two-dimensional "Coulomb gas" or "one-component plasma", a system of n point charges with Coulomb pair interaction, in a confining potential (minimizers of this energy also correspond to "weighted Fekete sets"). In both cases we investigate the microscopic structure of minimizers, i.e. at the scale corresponding to the interparticle distance. We show that in any large enough microscopic set, the value of the energy and the number of points are "rigid" and completely determined by the macroscopic density of points. In other words, points and energy are "equidistributed" in space (modulo appropriate scalings). The number of points in a ball is in particular known up to an error proportional to the radius of the ball. We also prove a result on the maximal and minimal distances between points. Our approach involves fully exploiting the minimality by reducing to minimization problems with fixed boundary conditions posed on smaller subsets.

  9. Ionization and fragmentation of C60 by highly charged, high-energy xenon ions S. Cheng,* H. G. Berry,

    E-Print Network [OSTI]

    Bauer, Wolfgang

    Ionization and fragmentation of C60 by highly charged, high-energy xenon ions S. Cheng,* H. G 19 June 1996 C60 vapor was bombarded by 136 Xe35 and 136 Xe18 ions in the energy range 420­625 MeV to study the various ionization and fragmentation processes that occur. Since the center-of-mass energies

  10. H.R. 817: A Bill to authorize the Secretary of Energy to lease lands within the naval oil shale reserves to private entities for the development and production of oil and natural gas. Introduced in the House of Representatives, One Hundred Fourth Congress, First session

    SciTech Connect (OSTI)

    NONE

    1995-12-31

    This bill would give the Secretary of Energy authority to lease lands within the Naval oil shale reserves to private entities for the purpose of surveying for and developing oil and gas resources from the land (other than oil shale). It also allows the Bureau of Land Management to be used as a leasing agent, establishes rules on royalties, and the sharing of royalties with the state, and covers the transfer of existing equipment.

  11. Thermal response of a series- and parallel-connected solar energy storage to multi-day charge sequences

    SciTech Connect (OSTI)

    Cruickshank, Cynthia A.; Harrison, Stephen J.

    2011-01-15

    The thermal response of a multi-tank thermal storage was studied under variable charge conditions. Tests were conducted on an experimental apparatus that simulated the thermal charging of the storage system by a solar collector over predetermined (prescribed) daylong periods. The storage was assembled from three standard 270 L hot-water storage tanks each charged through coupled, side-arm, natural convection heat exchangers which were connected in either a series- or parallel-flow configuration. Both energy storage rates and tank temperature profiles were experimentally measured during charge periods representative of two consecutive clear days or combinations of a clear and overcast day. During this time, no draw-offs were conducted. Of particular interest was the effect of rising and falling charge-loop temperatures and collector-loop flow rate on storage tank stratification levels. Results of this study show that the series-connected thermal storage reached high levels of temperature stratification in the storage tanks during periods of rising charge temperatures and also limited destratification during periods of falling charge temperature. This feature is a consequence of the series-connected configuration that allowed sequential stratification to occur in the component tanks and energy to be distributed according to temperature level. This effect was not observed in the parallel charge configuration. A further aspect of the study investigated the effect of increasing charge-loop flow rate on the temperature distribution within the series-connected storage and showed that, at high flow rates, the temperature distributions were found to be similar to those obtained during parallel charging. A disadvantage of both the high-flow series-connected and parallel-connected multi-tank storage is that falling charge-loop temperatures, which normally occur in the afternoon, tend to mix and destratify the storage tanks. (author)

  12. Phil Rockefeller W. Bill Booth

    E-Print Network [OSTI]

    and energy ARMs for use in the RPM. Relevance In order legitimately compare alternative resource strategies) tests each resource strategy to determine whether it meets both energy and capacity adequacy requirements. That is, it ensures that the power supply is sufficiently surplus in energy and capacity

  13. Adding high time resolution to charge-state-specific ion energy measurements for pulsed copper vacuum arc plasmas

    E-Print Network [OSTI]

    Tanaka, Koichi; Zhou, Xue; Anders, André

    2015-01-01

    Charge-state-resolved ion energy-time-distributions of pulsed Cu arc plasma were obtained by using direct (time dependent) acquisition of the ion detection signal from a commercial ion mass-per-charge and energy-per-charge analyzer. We find a shift of energies of Cu2+, Cu3+ and Cu4+ ions to lower values during the first few hundred microseconds after arc ignition, which is evidence for particle collisions in the plasma. The generation of Cu1+ ions in the later part of the pulse, measured by the increase of Cu1+ signal intensity and an associated slight reduction of the mean charge state point to charge exchange reactions between ions and neutrals. At the very beginning of the pulse, when the plasma expands into vacuum and the plasma potential strongly fluctuates, ions with much higher energy (over 200 eV) were observed. Early in the pulse, the ion energies observed are approximately proportional to the ion charge state, and we conclude that the acceleration mechanism is primarily based on acceleration in an e...

  14. Integrated circuit failure analysis by low-energy charge-induced voltage alteration

    DOE Patents [OSTI]

    Cole, E.I. Jr.

    1996-06-04

    A scanning electron microscope apparatus and method are described for detecting and imaging open-circuit defects in an integrated circuit (IC). The invention uses a low-energy high-current focused electron beam that is scanned over a device surface of the IC to generate a charge-induced voltage alteration (CIVA) signal at the location of any open-circuit defects. The low-energy CIVA signal may be used to generate an image of the IC showing the location of any open-circuit defects. A low electron beam energy is used to prevent electrical breakdown in any passivation layers in the IC and to minimize radiation damage to the IC. The invention has uses for IC failure analysis, for production-line inspection of ICs, and for qualification of ICs. 5 figs.

  15. Integrated circuit failure analysis by low-energy charge-induced voltage alteration

    DOE Patents [OSTI]

    Cole, Jr., Edward I. (2116 White Cloud St., NE., Albuquerque, NM 87112)

    1996-01-01

    A scanning electron microscope apparatus and method are described for detecting and imaging open-circuit defects in an integrated circuit (IC). The invention uses a low-energy high-current focused electron beam that is scanned over a device surface of the IC to generate a charge-induced voltage alteration (CIVA) signal at the location of any open-circuit defects. The low-energy CIVA signal may be used to generate an image of the IC showing the location of any open-circuit defects. A low electron beam energy is used to prevent electrical breakdown in any passivation layers in the IC and to minimize radiation damage to the IC. The invention has uses for IC failure analysis, for production-line inspection of ICs, and for qualification of ICs.

  16. Save at the Pump and Charge While You Work | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    of Tony Markel , NREL 18488. Charging Your Plug-in Electric Vehicle at Home Save at the Pump and Charge While You Work Survey Says: Workplace Charging is Growing in Popularity and...

  17. Space charge compensation on the low energy beam transport of Linac4

    E-Print Network [OSTI]

    AUTHOR|(SzGeCERN)733270; Scrivens, Richard; Jesus Castillo, Santos

    Part of the upgrade program in the injector chains of the CERN accelerator complex is the replacement of the the proton accelerator Linac2 for the brand new Linac4 which will accelerate H$^-$ and its main goal is to increase the beam intensity in the next sections of the LHC accelerator chain. The Linac4 is now under commissioning and will use several ion sources to produce high intensity unbunched H$^-$ beams with different properties, and the low energy beam transport (LEBT) is the system in charge of match all these different beams to the Radio frequency quadrupole (RFQ). The space charge forces that spread the beam ions apart of each other and cause emittance growth limits the maximum intensity that can be transported in the LEBT, but the space charge of intense unbunched ion beams can be compensated by the generated ions by the impact ionization of the residual gas, which creates a source of secondary particles inside the beam pipe. For negative ion beams, the effect of the beam electric field is to ex...

  18. Deployment of Behind-The-Meter Energy Storage for Demand Charge Reduction

    SciTech Connect (OSTI)

    Neubauer, J.; Simpson, M.

    2015-01-01

    This study investigates how economically motivated customers will use energy storage for demand charge reduction, as well as how this changes in the presence of on-site photovoltaic power generation, to investigate the possible effects of incentivizing increased quantities of behind-the-meter storage. It finds that small, short-duration batteries are most cost effective regardless of solar power levels, serving to reduce short load spikes on the order of 2.5% of peak demand. While profitable to the customer, such action is unlikely to adequately benefit the utility as may be desired, thus highlighting the need for modified utility rate structures or properly structured incentives.

  19. Interaction between Interpenetrating Charge Clouds and Collision of High-Energy Particles

    E-Print Network [OSTI]

    A. Mukherji

    2009-03-19

    Interaction between two interpenetrating spherically symmetric charge distributions has been calculated. Limited range terms appear in addition to the Coulomb potential. Its strength increases and range decreases with reducing sizes of the interacting particles. Between two hydrogen atoms it yields the Morse Potential. Soft core potentials are obtained between pairs of nucleons. It has been shown that when high-energy particles approach one another the potential between them increases with increasing relative speed. They are not likely to disintegrate on impact. A possible way of smashing particles by 3-body collisions is indicated. PACS no. 11.90.+t 12.40.-y

  20. Beam-energy and system-size dependence of dynamical net charge fluctuations 

    E-Print Network [OSTI]

    Abelev, B. I.; Aggarwal, M. M.; Ahammed, Z.; Anderson, B. D.; Arkhipkin, D.; Averichev, G. S.; Bai, Y.; Balewski, J.; Barannikova, O.; Barnby, L. S.; Baudot, J.; Baumgart, S.; Beavis, D. R.; Bellwied, R.; Benedosso, F.; Betts, R. R.; Bhardwaj, S.; Bhasin, A.; Bhati, A. K.; Bichsel, H.; Bielcik, J.; Bielcikova, J.; Biritz, B.; Bland, L. C.; Bombara, M.; Bonner, B. E.; Botje, M.; Bouchet, J.; Braidot, E.; Brandin, A. V.; Bueltmann, S.; Burton, T. P.; Bystersky, M.; Cai, X. Z.; Caines, H.; Sanchez, M. Calderon de la Barca; Callner, J.; Catu, O.; Cebra, D.; Cendejas, R.; Cervantes, M. C.; Chajecki, Z.; Chaloupka, P.; Chattopadhyay, S.; Chen, H. F.; Chen, J. H.; Chen, J. Y.; Cheng, J.; Cherney, M.; Chikanian, A.; Choi, K. E.; Christie, W.; Chung, S. U.; Clarke, R. F.; Codrington, M. J. M.; Coffin, J. P.; Cormier, T. M.; Cosentino, M. R.; Cramer, J. G.; Crawford, H. J.; Das, D.; Dash, S.; Daugherity, M.; de Moira, M. M.; Dedovich, T. G.; DePhillips, M.; Derevschikov, A. A.; de Souza, R. Derradi; Didenko, L.; Dictel, T.; Djawotho, P.; Dogra, S. M.; Dong, X.; Drachenberg, J. L.; Draper, J. E.; Du, F.; Dunlop, J. C.; Mazumdar, M. R. Dutta; Edwards, W. R.; Efimov, L. G.; Elhalhuli, E.; Elnimr, M.; Emelianov, V.; Engelage, J.; Eppley, G.; Erazmus, B.; Estienne, M.; Eun, L.; Fachini, P.; Fatemi, R.; Fedorisin, J.; Feng, A.; Filip, P.; Finch, E.; Fine, V.; Fisyak, Y.; Gagliardi, Carl A.; Gaillard, L.; Gangadharan, D. R.; Ganti, M. S.; Garcia-Solis, E.; Ghazikhanian, V.; Ghosh, P.; Gorbunov, Y. N.; Gordon, A.; Grebenyuk, O.; Grosnick, D.; Grube, B.; Guertin, S. M.; Guimaraes, K. S. F. F.; Gupta, A.; Gupta, N.; Guryn, W.; Hallman, T. J.; Hamed, A.; Harris, J. W.; He, W.; Heinz, M.; Heppelmann, S.; Hippolyte, B.; Hirsch, A.; Hjort, E.; Hoffman, A. M.; Hoffmann, G. W.; Hofman, D. J.; Hollis, R. S.; Huang, H. Z.; Humanic, T. J.; Huo, L.; Igo, G.; Iordanova, A.; Jacobs, P.; Jacobs, W. W.; Jakl, P.; Jena, C.; Jin, F.; Jones, C. L.; Jones, P. G.; Joseph, J.; Judd, E. G.; Kabana, S.; Kajimoto, K.; Kang, K.; Kapitan, J.; Kaplan, M.; Keane, D.; Kechechyan, A.; Kettler, D.; Khodyrev, V. Yu; Kiryluk, J.; Kisiel, A.; Klein, S. R.; Knospe, A. G.; Kocoloski, A.; Koetke, D. D.; Kopytine, M.; Kotchenda, L.; Kouchpil, V.; Kravtsov, P.; Kravtsov, V. I.; Krueger, K.; Kuhn, C.; Kumar, A.; Kumar, L.; Kurnadi, P.; Lamont, M. A. C.; Landgraf, J. M.; LaPointe, S.; Laue, F.; Lauret, J.; Lebedev, A.; Lednicky, R.; Lee, C. -H; LeVine, M. J.; Li, C.; Li, Y.; Lin, G.; Lin, X.; Lindenbaum, S. J.; Lisa, M. A.; Liu, F.; Liu, J.; Liu, L.; Ljubicic, T.; Llope, W. J.; Longacre, R. S.; Lu, Y.; Ludlam, T.; Lynn, D.; Ma, G. L.; Ma, J. G.; Ma, Y. G.; Mahapatra, D. P.; Majka, R.; Mangotra, L. K.; Manweiler, R.; Margetis, S.; Markert, C.; Matis, H. S.; Matulenko, Yu A.; McShane, T. S.; Meschanin, A.; Millane, J.; Miller, M. L.; Minaev, N. G.; Mioduszewski, Saskia; Mischke, A.; Mitchell, J.; Mohanty, B.; Morozov, D. A.; Munhoz, M. G.; Nandi, B. K.; Nattrass, C.; Nayak, T. K.; Nelson, J. M.; Nepali, C.; Netrakanti, P. K.; Ng, M. J.; Nogach, L. V.; Nurushev, S. B.; Odyniec, G.; Ogawa, A.; Okada, H.; Okorokov, V.; Olson, D.; Pachr, M.; Pal, S. K.; Panebratsev, Y.; Pawlak, T.; Peitzmann, T.; Perevoztchikov, V.; Perkins, C.; Peryt, W.; Phatak, S. C.; Planinic, M.; Pluta, J.; Poljak, N.; Porile, N.; Poskanzer, A. M.; Potekhin, M.; Potukuchi, B. V. K. S.; Prindle, D.; Pruneau, C.; Pruthi, N. K.; Putschke, J.; Raniwala, R.; Raniwala, S.; Ray, R. L.; Ridiger, A.; Ritter, H. G.; Roberts, J. B.; Rogachevskiy, O. V.; Romero, J. L.; Rose, A.; Roy, C.; Ruan, L.; Russcher, M. J.; Rykov, V.; Sahoo, R.; Sakrejda, I.; Sakuma, T.; Salur, S.; Sandweiss, J.; Sarsour, M.; Schambach, J.; Scharenberg, R. P.; Schmitz, N.; Seger, J.; Selyuzhenkov, I.; Seyboth, P.; Shabetai, A.; Shahaliev, E.; Shao, M.; Sharma, M.; Shi, S. S.; Shi, X. -H; Sichtermann, E. P.; Simon, F.; Singaraju, R. N.; Skoby, M. J.; Smirnov, N.; Snellings, R.; Sorensen, P.; Sowinski, J.; Spinka, H. M.; Srivastava, B.; Stadnik, A.; Stanislaus, T. D. S.; Staszak, D.; Strikhanov, M.; Stringfellow, B.; Suaide, A. A. P.; Suarez, M. C.; Subba, N. L.; Sumbera, M.; Sun, X. M.; Sun, Y.; Sun, Z.; Surrow, B.; Symons, T. J. M.; de Toledo, A. Szanto; Takahashi, J.; Tang, A. H.; Tang, Z.; Tarnowsky, T.; Thein, D.; Thomas, J. H.; Tian, J.; Timmins, A. R.; Timoshenko, S.; Tokarev, M.; Tram, V. N.; Trattner, A. L.; Trentalange, S.; Tribble, Robert E.; Tsai, O. D.; Ulery, J.; Ullrich, T.; Underwood, D. G.; Buren, G. Van; van der Kolk, N.; van Leeuwen, M.; Molen, A. M. Vander; Varma, R.; Vasconcelos, G. M. S.; Vasilevski, I. M.; Vasiliev, A. N.; Videbaek, F.; Vigdor, S. E.; Viyogi, Y. P.; Vokal, S.; Voloshin, S. A.; Wada, M.; Waggoner, W. T.; Wang, F.; Wang, G.; Wang, J. S.; Wang, Q.; Wang, X.; Wang, X. L.; Wang, Y.

    2009-01-01

    REVIEW C 79, 024906 (2009) Beam-energy and system-size dependence of dynamical net charge fluctuations B. I. Abelev,8 M. M. Aggarwal,30 Z. Ahammed,47 B. D. Anderson,18 D. Arkhipkin,12 G. S. Averichev,11 Y. Bai,27 J. Balewski,22 O. Barannikova,8 L. S.... Barnby,2 J. Baudot,16 S. Baumgart,52 D. R. Beavis,3 R. Bellwied,50 F. Benedosso,27 R. R. Betts,8 S. Bhardwaj,35 A. Bhasin,17 A. K. Bhati,30 H. Bichsel,49 J. Bielcik,10 J. Bielcikova,10 B. Biritz,6 L. C. Bland,3 M. Bombara,2 B. E. Bonner,36 M. Botje,27 J...

  1. Charging Your Plug-in Electric Vehicle at Home | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-in electric vehicle (PEV) charging station in Rhode Island. | Photothe

  2. Beam-energy dependence of charge separation along the magnetic field in Au+Au collisions at RHIC

    E-Print Network [OSTI]

    STAR Collaboration; L. Adamczyk; J. K. Adkins; G. Agakishiev; M. M. Aggarwal; Z. Ahammed; I. Alekseev; J. Alford; C. D. Anson; A. Aparin; D. Arkhipkin; E. C. Aschenauer; G. S. Averichev; A. Banerjee; D. R. Beavis; R. Bellwied; A. Bhasin; A. K. Bhati; P. Bhattarai; H. Bichsel; J. Bielcik; J. Bielcikova; L. C. Bland; I. G. Bordyuzhin; W. Borowski; J. Bouchet; A. V. Brandin; S. G. Brovko; S. Bültmann; I. Bunzarov; T. P. Burton; J. Butterworth; H. Caines; M. Calderón de la Barca Sánchez; D. Cebra; R. Cendejas; M. C. Cervantes; P. Chaloupka; Z. Chang; S. Chattopadhyay; H. F. Chen; J. H. Chen; L. Chen; J. Cheng; M. Cherney; A. Chikanian; W. Christie; J. Chwastowski; M. J. M. Codrington; G. Contin; J. G. Cramer; H. J. Crawford; X. Cui; S. Das; A. Davila Leyva; L. C. De Silva; R. R. Debbe; T. G. Dedovich; J. Deng; A. A. Derevschikov; R. Derradi de Souza; S. Dhamija; B. di Ruzza; L. Didenko; C. Dilks; F. Ding; P. Djawotho; X. Dong; J. L. Drachenberg; J. E. Draper; C. M. Du; L. E. Dunkelberger; J. C. Dunlop; L. G. Efimov; J. Engelage; K. S. Engle; G. Eppley; L. Eun; O. Evdokimov; O. Eyser; R. Fatemi; S. Fazio; J. Fedorisin; P. Filip; E. Finch; Y. Fisyak; C. E. Flores; C. A. Gagliardi; D. R. Gangadharan; D. Garand; F. Geurts; A. Gibson; M. Girard; S. Gliske; L. Greiner; D. Grosnick; D. S. Gunarathne; Y. Guo; A. Gupta; S. Gupta; W. Guryn; B. Haag; A. Hamed; L-X. Han; R. Haque; J. W. Harris; S. Heppelmann; A. Hirsch; G. W. Hoffmann; D. J. Hofman; S. Horvat; B. Huang; H. Z. Huang; X. Huang; P. Huck; T. J. Humanic; G. Igo; W. W. Jacobs; H. Jang; E. G. Judd; S. Kabana; D. Kalinkin; K. Kang; K. Kauder; H. W. Ke; D. Keane; A. Kechechyan; A. Kesich; Z. H. Khan; D. P. Kikola; I. Kisel; A. Kisiel; D. D. Koetke; T. Kollegger; J. Konzer; I. Koralt; L. K. Kosarzewski; L. Kotchenda; A. F. Kraishan; P. Kravtsov; K. Krueger; I. Kulakov; L. Kumar; R. A. Kycia; M. A. C. Lamont; J. M. Landgraf; K. D. Landry; J. Lauret; A. Lebedev; R. Lednicky; J. H. Lee; M. J. LeVine; C. Li; W. Li; X. Li; X. Li; Y. Li; Z. M. Li; M. A. Lisa; F. Liu; T. Ljubicic; W. J. Llope; M. Lomnitz; R. S. Longacre; X. Luo; G. L. Ma; Y. G. Ma; D. M. M. D. Madagodagettige Don; D. P. Mahapatra; R. Majka; S. Margetis; C. Markert; H. Masui; H. S. Matis; D. McDonald; T. S. McShane; N. G. Minaev; S. Mioduszewski; B. Mohanty; M. M. Mondal; D. A. Morozov; M. K. Mustafa; B. K. Nandi; Md. Nasim; T. K. Nayak; J. M. Nelson; G. Nigmatkulov; L. V. Nogach; S. Y. Noh; J. Novak; S. B. Nurushev; G. Odyniec; A. Ogawa; K. Oh; A. Ohlson; V. Okorokov; E. W. Oldag; D. L. Olvitt Jr.; M. Pachr; B. S. Page; S. K. Pal; Y. X. Pan; Y. Pandit; Y. Panebratsev; T. Pawlak; B. Pawlik; H. Pei; C. Perkins; W. Peryt; P. Pile; M. Planinic; J. Pluta; N. Poljak; K. Poniatowska; J. Porter; A. M. Poskanzer; N. K. Pruthi; M. Przybycien; P. R. Pujahari; J. Putschke; H. Qiu; A. Quintero; S. Ramachandran; R. Raniwala; S. Raniwala; R. L. Ray; C. K. Riley; H. G. Ritter; J. B. Roberts; O. V. Rogachevskiy; J. L. Romero; J. F. Ross; A. Roy; L. Ruan; J. Rusnak; O. Rusnakova; N. R. Sahoo; P. K. Sahu; I. Sakrejda; S. Salur; J. Sandweiss; E. Sangaline; A. Sarkar; J. Schambach; R. P. Scharenberg; A. M. Schmah; W. B. Schmidke; N. Schmitz; J. Seger; P. Seyboth; N. Shah; E. Shahaliev; P. V. Shanmuganathan; M. Shao; B. Sharma; W. Q. Shen; S. S. Shi; Q. Y. Shou; E. P. Sichtermann; R. N. Singaraju; M. J. Skoby; D. Smirnov; N. Smirnov; D. Solanki; P. Sorensen; H. M. Spinka; B. Srivastava; T. D. S. Stanislaus; J. R. Stevens; R. Stock; M. Strikhanov; B. Stringfellow; M. Sumbera; X. Sun; X. M. Sun; Y. Sun; Z. Sun; B. Surrow; D. N. Svirida; T. J. M. Symons; M. A. Szelezniak; J. Takahashi; A. H. Tang; Z. Tang; T. Tarnowsky; J. H. Thomas; A. R. Timmins; D. Tlusty; M. Tokarev; S. Trentalange; R. E. Tribble; P. Tribedy; B. A. Trzeciak; O. D. Tsai; J. Turnau; T. Ullrich; D. G. Underwood; G. Van Buren; G. van Nieuwenhuizen; M. Vandenbroucke; J. A. Vanfossen, Jr.; R. Varma; G. M. S. Vasconcelos; A. N. Vasiliev; R. Vertesi; F. Videbæk; Y. P. Viyogi; S. Vokal; A. Vossen; M. Wada; F. Wang; G. Wang; H. Wang; J. S. Wang; X. L. Wang; Y. Wang; Y. Wang; G. Webb; J. C. Webb; G. D. Westfall; H. Wieman; S. W. Wissink; R. Witt; Y. F. Wu; Z. Xiao; W. Xie; K. Xin; H. Xu; J. Xu; N. Xu; Q. H. Xu; Y. Xu; Z. Xu; W. Yan; C. Yang; Y. Yang; Y. Yang; Z. Ye; P. Yepes; L. Yi; K. Yip; I-K. Yoo; N. Yu; Y. Zawisza; H. Zbroszczyk; W. Zha; J. B. Zhang; J. L. Zhang; S. Zhang; X. P. Zhang; Y. Zhang; Z. P. Zhang; F. Zhao; J. Zhao; C. Zhong; X. Zhu; Y. H. Zhu; Y. Zoulkarneeva; M. Zyzak

    2014-07-15

    Local parity-odd domains are theorized to form inside a Quark-Gluon-Plasma (QGP) which has been produced in high-energy heavy-ion collisions. The local parity-odd domains manifest themselves as charge separation along the magnetic field axis via the chiral magnetic effect (CME). The experimental observation of charge separation has previously been reported for heavy-ion collisions at the top RHIC energies. In this paper, we present the results of the beam-energy dependence of the charge correlations in Au+Au collisions at midrapidity for center-of-mass energies of 7.7, 11.5, 19.6, 27, 39 and 62.4 GeV from the STAR experiment. After background subtraction, the signal gradually reduces with decreased beam energy, and tends to vanish by 7.7 GeV. The implications of these results for the CME will be discussed.

  3. Static and Infalling Quasilocal Energy of Charged and Naked Black Holes

    E-Print Network [OSTI]

    I. S. Booth; R. B. Mann

    1999-07-22

    We extend the quasilocal formalism of Brown and York to include electromagnetic and dilaton fields and also allow for spatial boundaries that are not orthogonal to the foliation of the spacetime. The extension allows us to study the quasilocal energy measured by observers who are moving around in a spacetime. We show that the quasilocal energy transforms with respect to boosts by Lorentz-type transformation laws. The resulting formalism can be used to study spacetimes containing electric or magnetic charge but not both, a restriction inherent in the formalism. The gauge dependence of the quasilocal energy is discussed. We use the thin shell formalism of Israel to reinterpret the quasilocal energy from an operational point of view and examine the implications for the recently proposed AdS/CFT inspired intrinsic reference terms. The distribution of energy around Reissner-Nordstr\\"{o}m and naked black holes is investigated as measured by both static and infalling observers. We see that this proposed distribution matches a Newtonian intuition in the appropriate limit. Finally the study of naked black holes reveals an alternate characterization of this class of spacetimes in terms of the quasilocal energies.

  4. Studies on low energy beam transport for high intensity high charged ions at IMP

    SciTech Connect (OSTI)

    Yang, Y. Lu, W.; Fang, X.; University of Chinese Academy of Sciences, Beijing 100039 ; Sun, L. T.; Hu, Q.; Cao, Y.; Feng, Y. C.; Zhang, X. Z.; Zhao, H. W.; Xie, D. Z.

    2014-02-15

    Superconducting Electron Cyclotron Resonance ion source with Advanced design in Lanzhou (SECRAL) is an advanced fully superconducting ECR ion source at IMP designed to be operational at the microwave frequency of 18–24 GHz. The existing SECRAL beam transmission line is composed of a solenoid lens and a 110° analyzing magnet. Simulations of particle tracking with 3D space charge effect and realistic 3D magnetic fields through the line were performed using particle-in-cell code. The results of the beam dynamics show that such a low energy beam is very sensitive to the space charge effect and significantly suffers from the second-order aberration of the analyzing magnet resulting in large emittance. However, the second-order aberration could be reduced by adding compensating sextupole components in the beam line. On this basis, a new 110° analyzing magnet with relatively larger acceptance and smaller aberration is designed and will be used in the design of low energy beam transport line for a new superconducting ECR ion source SECRAL-II. The features of the analyzer and the corresponding beam trajectory calculation will be detailed and discussed in this paper.

  5. Equilibrium interfacial free energies and Turnbull coefficient for bcc crystallizing colloidal charged sphere suspensions

    E-Print Network [OSTI]

    Thomas Palberg; Patrick Wette; Dieter M. Herlach

    2014-03-25

    We extend previous analysis of data for the melt-nucleus interfacial free energy, $\\gamma$, gained from optical experiments on suspensions of charged colloidal spheres, which crystallize with body centred cubic (bcc) crystal structures. Compiling data from five pure species with different polydispersities and one binary mixture, we find the equilibrium melt-crystal interfacial energy to be considerably larger than the hard sphere reference value. Both this quantity and the entropy of freezing decrease with increasing polydispersity. Moreover, we give a first experimental determination of the Turnbull coefficient for a bcc crystallizing material. The observed value $C_{T, bcc} \\approx 0.3$ agrees well with theoretical expectations for bcc systems with short to medium ranged interactions.

  6. Highly efficient nonradiative energy transfer using charged CdSe/ZnS nanocrystals for light-harvesting in solution

    E-Print Network [OSTI]

    Demir, Hilmi Volkan

    % in solution. CdTe and CdSe/ZnS dots of different sizes have further been studied for energy trans- fer in filmHighly efficient nonradiative energy transfer using charged CdSe/ZnS nanocrystals for light-harvesting in solution Evren Mutlugün,a Sedat Nizamolu, and Hilmi Volkan Demirb Department of Physics; Department

  7. Workplace Charging Challenge Progress Update 2014

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4 Progress Update 2014: Employers Take Charge Available at energy.goveerevehiclesev-everywhere-workplace-charging-challenge Workplace Charging Challenge 5 Cumulative...

  8. Krannert Energy Club BillBivinsis

    E-Print Network [OSTI]

    Ginzel, Matthew

    technically and economically. ·The technology integration provides for simultaneous production of natural gas;bytheUS DepartmentofCommerce,USEnviron- mentalProtectionAgency,USMilitary, andincountriessuchastheUnited StatesChina of consumption of a 25 mile radius of the facility. ·The modular design provides for shop fabrication and site

  9. Bill McMillan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram:Y-12Power, Inc

  10. Integrated PEV Charging Solutions and Reduced Energy for Occupant Comfort (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2012-01-01

    Brochure on Vehicle Testing and Integration Facility, featuring the Vehicle Modification Facility, Vehicle Test Pad and ReCharge Integrated Demonstration System. Plug-in electric vehicles (PEVs) offer the opportunity to shift transportation energy demands from petroleum to electricity, but broad adoption will require integration with other systems. While automotive experts work to reduce the cost of PEVs, fossil fueled cars and trucks continue to burn hundreds of billions of gallons of petroleum each year - not only to get from point A to point B, but also to keep passengers comfortable with air conditioning and heat. At the National Renewable Energy Laboratory (NREL), three installations form a research laboratory known as the Vehicle Testing and Integration Facility (VTIF). At the VTIF, engineers are developing strategies to address two separate but equally crucial areas of research: meeting the demands of electric vehicle-grid integration and minimizing fuel consumption related to vehicle climate control. Part of NREL's Center for Transportation Technologies and Systems (CTTS), the VTIF is dedicated to renewable and energy efficient solutions. This facility showcases technology and systems designed to increase the viability of sustainably powered vehicles. NREL researchers instrument every class of on-road vehicle, conduct hardware and software validation for electric vehicle (EV) components and accessories, and develop analysis tools and technology for the Department of Energy, other government agencies and industry partners. Research conducted at the VTIF examines the interaction of building energy systems, utility grids, renewable energy sources and PEVs, integrating energy management solutions, and maximizing potential greenhouse gas (GHG) reduction, while smoothing the transition and reducing costs for EV owners. NREL's collaboration with automakers, charging station manufacturers, utilities and fleet operators to assess technologies using VTIF resources is designed to enable PEV communication with the smart grid and create opportunities for vehicles to play an active role in building and grid management. Ultimately, this creates value for the vehicle owner and will help renewables be deployed faster and more economically, making the U.S. transportation sector more flexible and sustainable.

  11. Phil Rockefeller W. Bill Booth

    E-Print Network [OSTI]

    sectors, while the economy grew by 2 percent annually. Retail electricity revenues grew faster than sales public utilities and IOUs average revenues per unit of electricity sales. In 2013, the IOUs average electricity sales revenue trends. Looking at a seven-year history, energy sales remained stable throughout all

  12. Phil Rockefeller W. Bill Booth

    E-Print Network [OSTI]

    by Fuel/Resource Type MWa in 2020, 2025, 2030 & 2035 and Graph of Distribution Across All Futures by Deciles Energy Efficiency " Hydro " Natural Gas " Coal " Wind " Utility Scale Solar PV " Distributed Solar of Capacity by Resource Type & Year Across All Futures by Deciles Resources Acquired Based on Economics MW

  13. The knee in the cosmic ray energy spectrum from the simultaneous EAS charged particles and muon density spectra

    E-Print Network [OSTI]

    Bijay, Biplab; Bhadra, Arunava

    2015-01-01

    In this work we examine with the help of Monte Carlo simulation whether a consistent primary energy spectrum of cosmic rays emerges from both the experimentally observed total charged particles and muon size spectra of cosmic ray extensive air showers considering primary composition may or may not change beyond the knee of the energy spectrum. It is found that EAS-TOP observations consistently infer a knee in the primary energy spectrum provided the primary is pure unchanging iron whereas no consistent primary spectrum emerges from simultaneous use of the KASCADE observed total charged particle and muon spectra. However, it is also found that when primary composition changes across the knee the estimation of spectral index of total charged particle spectrum is quite tricky, depends on the choice of selection of points near the knee in the size spectrum.

  14. The dynamics of energy and charge transfer in lead sulfide quantum dot solids

    SciTech Connect (OSTI)

    Lingley, Zachary; Lu, Siyuan; Madhukar, Anupam

    2014-02-28

    We report on a systematic time-resolved photoluminescence study of the competing energy and charge transfer rates in PbS QDs of differing sizes in the same QD solid as a function of both temperature and ligand-controlled different inter-QD average separations. This complements previous studies that typically varied only one parameter and reveals new aspects while also confirming some known features. For the smallest PbS QDs, the dominant decay process is nonradiative resonant energy transfer (NRET) to adjacent larger dots for all separations but at a rate that increases with decreasing temperature. For the largest QDs, NRET being forbidden, the decay is found to be exponential in the inter-QD separation consistent with carrier tunneling but, for each fixed tunneling distance, exhibiting a thermally activated tunneling carrier population with the activation energy dependent upon the ligand length controlling the inter-QD separation. A consistent understanding of this expanded and rich decay rate behavior of both large and small QDs, we show, can be obtained by accounting for the ligand length dependent (a) dielectric environment of the QD solid modeled using an effective medium description, (b) the energy cost of dissociating the exciton into electron and hole in neighboring QDs, and (c) the potential participation of midgap states. Implications of the findings for NRET based photovoltaics are discussed.

  15. Exploration of jet energy loss via direct $?$-charged particle azimuthal correlation measurements

    E-Print Network [OSTI]

    A. M. Hamed

    2009-09-25

    The multiplicities of charged particles azimuthally associated with direct photons and $\\pi^{0}$ have been measured for Au+Au, p+p, and d+Au collisions at $\\sqrt{s_{NN}}$ = 200 GeV in the STAR experiment. Charged particles with transverse momentum 0.5 $<$ $p_T^{h^{\\pm}}$ $<$ 16 GeV/c for p+p and d+Au, and 3 $<$ $p_T^{h^{\\pm}}$ $<$ 16 GeV/c for Au+Au and pseudorapidity $\\mid\\eta\\mid$ $\\leq$ 1.5 in coincidence with direct photons and $\\pi^{0}$ of high transverse momentum 8 $<$ $p_T^{\\gamma,\\pi^{0}}$ $<$ 16 GeV/c at $\\mid\\eta\\mid$ $\\leq$ 0.9 have been used for this analysis. Within the considered range of kinematics, the observed suppressions of the associated yields per direct $\\gamma$ in central Au+Au relative to p+p and d+Au are similar and constant with direct photon fractional energy $z_{T}$ ($z_{T}=p_{T}^{h^{\\pm}}/p_{T}^{\\gamma}$). The measured suppressions of the associated yields with direct $\\gamma$ are comparable to those with $\\pi^{0}$. The data are compared to theoretical predictions.

  16. Baryon number and electric charge fluctuations in Pb+Pb collisions at relativistic energies

    SciTech Connect (OSTI)

    Konchakovski, V. P.; Gorenstein, M. I.; Bratkovskaya, E. L.; Stoecker, H.

    2006-12-15

    Event-by-event fluctuations of the net baryon number and electric charge in nucleus-nucleus collisions are studied in Pb+Pb at SPS energies within the Hadron-String Dynamics (HSD) transport model. We reveal an important role of the fluctuations in the number of target nucleon participants. They strongly influence all measured fluctuations even in the samples of events with rather rigid centrality trigger. This fact can be used to check different scenarios of nucleus-nucleus collisions by measuring the multiplicity fluctuations as a function of collision centrality in fixed kinematical regions of the projectile and target hemispheres. The HSD results for the event-by-event fluctuations of electric charge in central collisions at 20A,30A,40A,80A, and 158A GeV are in a good agreement with the NA49 experimental data and considerably larger than expected in a quark-gluon plasma. This demonstrates that the distortions of the initial fluctuations by the hadronization phase and, in particular, by the final resonance decays dominate the observable fluctuations.

  17. Baryon Number and Electric Charge Fluctuations in Pb+Pb Collisions at SPS energies

    E-Print Network [OSTI]

    V. P. Konchakovski; M. I. Gorenstein; E. L. Bratkovskaya; H. Stocker

    2006-10-31

    Event-by-event fluctuations of the net baryon number and electric charge in nucleus-nucleus collisions are studied in Pb+Pb at SPS energies within the HSD transport model. We reveal an important role of the fluctuations in the number of target nucleon participants. They strongly influence all measured fluctuations even in the samples of events with rather rigid centrality trigger. This fact can be used to check different scenarios of nucleus-nucleus collisions by measuring the multiplicity fluctuations as a function of collision centrality in fixed kinematical regions of the projectile and target hemispheres. The HSD results for the event-by-event fluctuations of electric charge in central Pb+Pb collisions at 20, 30, 40, 80 and 158 A GeV are in a good agreement with the NA49 experimental data and considerably larger than expected in a quark-gluon plasma. This demonstrate that the distortions of the initial fluctuations by the hadronization phase and, in particular, by the final resonance decays dominate the observable fluctuations.

  18. Utility Building Analysis Billing Period: NOV -2013

    E-Print Network [OSTI]

    ELECTRICITY Consumption MUNICIPAL WATER Consumption 8 CCF STEAM Consumption CHILLED WATER Consumption GAS Building Analysis Billing Period: NOV - 2013 032 JACKSON HALL: 150,393 Square Feet ELECTRICITY Consumption,550 Square Feet ELECTRICITY Consumption 114,185 KWHRS MUNICIPAL WATER Consumption 1,423 CCF STEAM Consumption

  19. The Balanced Billing Cycle Vehicle Routing Problem

    SciTech Connect (OSTI)

    Groer, Christopher S [ORNL; Golden, Bruce [University of Maryland; Edward, Wasil [American University

    2009-01-01

    Utility companies typically send their meter readers out each day of the billing cycle in order to determine each customer s usage for the period. Customer churn requires the utility company to periodically remove some customer locations from its meter-reading routes. On the other hand, the addition of new customers and locations requires the utility company to add newstops to the existing routes. A utility that does not adjust its meter-reading routes over time can find itself with inefficient routes and, subsequently, higher meter-reading costs. Furthermore, the utility can end up with certain billing days that require substantially larger meter-reading resources than others. However, remedying this problem is not as simple as it may initially seem. Certain regulatory and customer service considerations can prevent the utility from shifting a customer s billing day by more than a few days in either direction. Thus, the problem of reducing the meterreading costs and balancing the workload can become quite difficult. We describe this Balanced Billing Cycle Vehicle Routing Problem in more detail and develop an algorithm for providing solutions to a slightly simplified version of the problem. Our algorithm uses a combination of heuristics and integer programming via a three-stage algorithm. We discuss the performance of our procedure on a real-world data set.

  20. Energy Wrap-Up: Charging Students To Take the Lead in Energy Innovation

    Broader source: Energy.gov [DOE]

    Students, academics and entrepreneurs came together at Stanford University to discuss how the next generation can lead the way in creating the next big breakthroughs in sustainable energy.

  1. Low energy cosmic ray positron fraction explained by charge-sign dependent solar modulation

    E-Print Network [OSTI]

    Luca Maccione

    2013-01-24

    We compute cosmic ray (CR) nuclei, proton, antiproton, electron and positron spectra below 1 TeV at Earth by means of a detailed transport description in the galaxy and in the solar system. CR spectra below 10 GeV are strongly modified by charge-sign dependent propagation effects. These depend on the polarity of the solar magnetic field and therefore vary with the solar cycle. The puzzling discrepancy between the low-energy positron fraction measured by PAMELA and AMS-01 is then easily explained by their different data-taking epochs. We reproduce the observed spectra of CR light nuclei within the same galactic and solar-system propagation model.

  2. Beam-energy and system-size dependence of dynamical net charge fluctuations

    E-Print Network [OSTI]

    Sakuma, Tai

    We present measurements of net charge fluctuations in Au+Au collisions at ?[subscript s[superscript [NN

  3. FOREST MONITORING AT THE MARSH-BILLINGS-ROCKEFELLER

    E-Print Network [OSTI]

    Keeton, William S.

    FOREST MONITORING AT THE MARSH-BILLINGS-ROCKEFELLER NATIONAL HISTORICAL PARK. of the Interior, University of Vermont, National Park Service, Rubenstein School of Environment Marsh-Billings-Rockefeller and Natural Resources National Historical Park #12;Forest Monitoring at the Marsh

  4. Effective Interactions and Volume Energies in Charge-Stabilized Colloidal Suspensions

    E-Print Network [OSTI]

    A. R. Denton

    1999-10-13

    Charge-stabilized colloidal suspensions can be conveniently described by formally reducing the macroion-microion mixture to an equivalent one-component system of pseudo-particles. Within this scheme, the utility of a linear response approximation for deriving effective interparticle interactions has been demonstrated [M. J. Grimson and M. Silbert, Mol. Phys. 74, 397 (1991)]. Here the response approach is extended to suspensions of finite-sized macroions and used to derive explicit expressions for (1) an effective electrostatic pair interaction between pseudo-macroions and (2) an associated volume energy that contributes to the total free energy. The derivation recovers precisely the form of the DLVO screened-Coulomb effective pair interaction for spherical macroions and makes manifest the important influence of the volume energy on thermodynamic properties of deionized suspensions. Excluded volume corrections are implicitly incorporated through a natural modification of the inverse screening length. By including nonlinear response of counterions to macroions, the theory may be generalized to systematically investigate effective many-body interactions.

  5. Beam-Energy Dependence of Charge Balance Functions from Au+Au Collisions at RHIC

    E-Print Network [OSTI]

    STAR Collaboration

    2015-07-13

    Balance functions have been measured in terms of relative pseudorapidity ($\\Delta \\eta$) for charged particle pairs at the Relativistic Heavy-Ion Collider (RHIC) from Au+Au collisions at $\\sqrt{s_{\\rm NN}}$ = 7.7 GeV to 200 GeV using the STAR detector. These results are compared with balance functions measured at the Large Hadron Collider (LHC) from Pb+Pb collisions at $\\sqrt{s_{\\rm NN}}$ = 2.76 TeV by the ALICE Collaboration. The width of the balance function decreases as the collisions become more central and as the beam energy is increased. In contrast, the widths of the balance functions calculated using shuffled events show little dependence on centrality or beam energy and are larger than the observed widths. Balance function widths calculated using events generated by UrQMD are wider than the measured widths in central collisions and show little centrality dependence. The measured widths of the balance functions in central collisions are consistent with the delayed hadronization of a deconfined quark gluon plasma (QGP). The narrowing of the balance function in central collisions at $\\sqrt{s_{\\rm NN}}$ = 7.7 GeV implies that a QGP is still being created at this relatively low energy.

  6. On Bill Financing: SDG&E/SoCalGas

    Office of Energy Efficiency and Renewable Energy (EERE)

    Information about On-Bill Financing used by Southern California Gas Company and the different options the program offers.

  7. Probing the Origin of Neutrino Masses and Mixings via Doubly Charged Scalars: Complementarity of the Intensity and the Energy Frontiers

    E-Print Network [OSTI]

    Geib, Tanja; Merle, Alexander; No, Jose Miguel; Panizzi, Luca

    2015-01-01

    We discuss how the intensity and the energy frontiers provide complementary constraints within a minimal model of neutrino mass involving just one new field beyond the Standard Model at accessible energy, namely a doubly charged scalar $S^{++}$ and its antiparticle $S^{--}$. In particular we focus on the complementarity between high-energy LHC searches and low-energy probes such as lepton flavor violation. Our setting is a prime example of how high- and low-energy physics can cross-fertilize each other.

  8. Florida Prepaid College Request not to bill Florida Prepaid

    E-Print Network [OSTI]

    Meyers, Steven D.

    Florida Prepaid College Request not to bill Florida Prepaid Effective Spring 2010, The University of South Florida (USF) will automatically bill for all Florida Prepaid College Students that are enrolled of University credits remaining in your prepaid balance. If for any reason you do not want the USF to bill

  9. On the Komar Energy and the Generalized Smarr Formula for a Charged Black Hole of Noncommutative Geometry

    E-Print Network [OSTI]

    Alexis Larranaga; Juan Carlos Jimenez

    2012-10-09

    We calculate the Komar energy $E$ for a charged black hole inspired by noncommutative geometry and identify the total mass ($M_{0}$) by considering the asymptotic limit. We also found the generalized Smarr formula, which shows a deformation from the well known relation $M_{0}-\\frac{Q_{0}^{2}}{r}=2ST$ depending on the noncommutative scale length $\\ell$ .

  10. Parton energy loss in heavy-ion collisions via direct-photon and charged-particle azimuthal correlations

    E-Print Network [OSTI]

    Balewski, Jan T.

    Charged-particle spectra associated with direct photon (?dir) and pi0 are measured in p+p and Au+Au collisions at center-of-mass energy [sqrt]sNN=200 GeV with the STAR detector at the Relativistic Heavy Ion Collider. A ...

  11. Evidence for MeV-particle emission from Ti charged with low-energy deuterium ions. Final report

    SciTech Connect (OSTI)

    Chambers, G.P.; Hubler, G.K.; Grabowski, K.S.

    1991-12-18

    Thin titanium films have been bombarded with low energy (350 eV) deuterium ions at high current density (0.2-0.4 mA.cm2) to investigate the reported occurrence of nuclear reactions at ambient temperatures in deuterium charged metals. A silicon charged particle detector was used to search for charged particles produced by such reactions. Evidence is reported for the detection of hydrogen isotopes with 5 MeV energy at a rate of 10-16 events/deuteron pair/s. Low energy deuterium (350 eV) ions produced by an ECR microwave source impinge normally on a thin metal film in vacuum, while a Si particle detector placed directly behind the film detects particle emission. The advantages of this method are rapid and efficient deuterium charging of any material (including insulators), high particle detection efficiency and sensitivity (low background), and the ability to measure the particle energy and determine the particle type. Titanium was chosen as the target because previous work by Jones had shown neutron emission and because Ti retains more hydrogen near room temperature than does PD.

  12. Eikonal approximation in the theory of energy loss by fast charged particles

    SciTech Connect (OSTI)

    Matveev, V. I., E-mail: matveev.victor@pomorsu.ru; Makarov, D. N.; Gusarevich, E. S. [Lomonosov Pomor State University (Russian Federation)

    2011-05-15

    Energy losses in fast charged particles as a result of collisions with atoms are considered in the eikonal approximation. It is shown that the nonperturbative contribution to effective stopping in the range of intermediate impact parameters (comparable with the characteristic sizes of the electron shells of the target atoms) may turn out to be significant as compared to shell corrections to the Bethe-Bloch formula calculated in perturbation theory. The simplifying assumptions are formulated under which the Bethe-Bloch formula can be derived in the eikonal approximation. It is shown that the allowance for nonperturbative effects may lead to considerable (up to 50%) corrections to the Bethe-Bloch formula. The applicability range for the Bethe-Bloch formula is analyzed. It is concluded that calculation of the energy loss in the eikonal approximation (in the range of impact parameters for which the Bethe-Bloch formula is normally used) is much more advantageous than analysis based on the Bethe-Bloch formula and its modifications because not only the Bloch correction is included in the former calculations, the range of intermediate impact parameters is also taken into account nonperturbatively; in addition, direct generalization to the cases of collisions of complex projectiles and targets is possible in this case.

  13. Beam-Energy Dependence of Charge Balance Functions from Au+Au Collisions at RHIC

    E-Print Network [OSTI]

    ,

    2015-01-01

    Balance functions have been measured in terms of relative pseudorapidity ($\\Delta \\eta$) for charged particle pairs at the Relativistic Heavy-Ion Collider (RHIC) from Au+Au collisions at $\\sqrt{s_{\\rm NN}}$ = 7.7 GeV to 200 GeV using the STAR detector. These results are compared with balance functions measured at the Large Hadron Collider (LHC) from Pb+Pb collisions at $\\sqrt{s_{\\rm NN}}$ = 2.76 TeV by the ALICE Collaboration. The width of the balance function decreases as the collisions become more central and as the beam energy is increased. In contrast, the widths of the balance functions calculated using shuffled events show little dependence on centrality or beam energy and are larger than the observed widths. Balance function widths calculated using events generated by UrQMD are wider than the measured widths in central collisions and show little centrality dependence. The measured widths of the balance functions in central collisions are consistent with the delayed hadronization of a deconfined quark g...

  14. Impacts of side chain and excess energy on the charge photogeneration dynamics of low-bandgap copolymer-fullerene blends

    SciTech Connect (OSTI)

    Huo, Ming-Ming Zhang, Jian-Ping E-mail: hjhzlz@iccas.ac.cn; Department of Chemistry, Renmin University of China, Beijing 100872 ; Hu, Rong Xing, Ya-Dong Liu, Yu-Chen Ai, Xi-Cheng; Hou, Jian-Hui E-mail: hjhzlz@iccas.ac.cn

    2014-02-28

    Primary charge photogeneration dynamics in neat and fullerene-blended films of a pair of alternating benzo[1,2-b:4,5-b{sup ?}]dithiophene (BDT) and thieno[3,4-b]thiophene (TT) copolymers are comparatively studied by using near-infrared, time-resolved absorption (TA) spectroscopy under low excitation photon fluence. PBDTTT-E and PBDTTT-C, differed merely in the respective TT-substituents of ester (-E) and carbonyl (-C), show distinctly different charge photogeneration dynamics. The pair of neat PBDTTT films show exciton lifetimes of ?0.1 ns and fluorescence quantum yields below 0.2%, as well as prominent excess-energy enhanced exciton dissociation. In addition, PBDTTT-C gives rise to >50% higher P{sup •+} yield than PBDTTT-E does irrespective to the excitation photon energy. Both PBDTTT-E:PC{sub 61}BM and PBDTTT-C:PC{sub 61}BM blends show subpicosecond exciton lifetimes and nearly unitary fluorescence quenching efficiency and, with respect to the former blend, the latter one shows substantially higher branching ratio of charge separated (CS) state over interfacial charge transfer (ICT) state, and hence more efficient exciton-to-CS conversion. For PBDTTT-C:PC{sub 61}BM, the ultrafast charge dynamics clearly show the processes of ICT-CS interconversion and P{sup •+} migration, which are possibly influenced by the ICT excess energy. However, such processes are relatively indistinctive in the case of PBDTTT-E:PC{sub 61}BM. The results strongly prove the importance of ICT dissociation in yielding free charges, and are discussed in terms of the film morphology and the precursory solution-phase macromolecular conformation.

  15. Charge exchange system

    DOE Patents [OSTI]

    Anderson, Oscar A. (Berkeley, CA)

    1978-01-01

    An improved charge exchange system for substantially reducing pumping requirements of excess gas in a controlled thermonuclear reactor high energy neutral beam injector. The charge exchange system utilizes a jet-type blanket which acts simultaneously as the charge exchange medium and as a shield for reflecting excess gas.

  16. Rapid heating tensile tests of hydrogen-charged high-energy-rate-forged 316L stainless steel

    SciTech Connect (OSTI)

    Mosley, W.C.

    1989-05-19

    316L stainless steel is a candidate material for construction of equipment that will be exposed to tritium. Proper design of the equipment will require an understanding of how tritium and its decay product helium affect mechanical properties. This memorandum describes results of rapid heating tensile testing of hydrogen-charged specimens of high-energy-rate-forged (HERF) 316L stainless steel. These results provide a data base for comparison with uncharged and tritium-charged-and-aged specimens to distinguish the effects of hydrogen and helium. Details of the experimental equipment and procedures and results for uncharged specimens were reported previously. 3 refs., 10 figs.

  17. Rapidity and energy dependence of the electric charge correlations in A+A collisions at the SPS energies

    E-Print Network [OSTI]

    Alt, C; Baatar, B; Barna, D; Bartke, J; Betev, L; Bialkowska, H; Blume, C; Boimska, B; Botje, M; Bracinik, J; Bramm, R; Buncic, P; Cerny, V; Christakoglou, P; Chung, P; Chvala, O; Cramer, J G; Csató, P; Dinkelaker, P; Eckardt, V; Flierl, D; Fodor, Z; Foka, P; Friese, V; Gál, J; Gazdzicki, M; Genchev, V; Georgopoulos, G; Gladysz-Dziadus, E; Grebieszkow, K; Hegyi, S; Höhne, C; Kadija, K; Karev, A; Kikola, D; Kliemant, M; Kniege, S; Kolesnikov, V I; Kornas, E; Korus, R; Kowalski, M; Kraus, I; Kreps, M; Laszlo, A; Lacey, R; Van Leeuwen, M; Lévai, Peter; Litov, L; Lungwitz, B; Makariev, M; Malakhov, A I; Mateev, M; Melkumov, G L; Mischke, A; Mitrovski, M; Molnár, J; Mrówczynski, S; Nicolic, V; Pálla, G; Panagiotou, A D; Panayotov, D; Petridis, A; Peryt, W; Pikna, M; Pluta, J; Prindle, D; Pühlhofer, F; Renfordt, R; Roland, C; Roland, G; Rybczynski, M; Rybicki, A; Sandoval, A; Schmitz, N; Schuster, T; Seyboth, P; Siklér, F; Sitár, B; Skrzypczak, E; Slodkowski, M; Stefanek, G; Stock, R; Strabel, C; Ströbele, H; Susa, T; Szentpétery, I; Sziklai, J; Szuba, M; Szymanski, P; Trubnikov, V; Varga, D; Vassiliou, M; Veres, G I; Vesztergombi, G; Vranic, D; Wetzler, A; Wlodarczyk, Z; Wojtaszek, A; Yoo, I K; Zimányi, J

    2007-01-01

    Results from electric charge correlations studied with the Balance Function method in A+A collisions from 20\\emph{A} to 158\\emph{A} GeV are presented in two different rapidity intervals: In the mid-rapidity region we observe a decrease of the width of the Balance Function distribution with increasing centrality of the collision, whereas this effect vanishes in the forward rapidity region. Results from the energy dependence study in central Pb+Pb collisions show that the narrowing of the Balance Function expressed by the normalised width parameter \\textit{W} increases with energy towards the highest SPS and RHIC energies. Finally we compare our experimental data points with predictions of several models. The hadronic string models UrQMD and HIJING do not reproduce the observed narrowing of the Balance Function. However, AMPT which contains a quark-parton transport phase before hadronization can reproduce the narrowing of the BF's width with centrality. This confirms the proposed sensitivity of the Balance Func...

  18. Rapidity and energy dependence of the electric charge correlations in A+A collisions at the SPS energies

    E-Print Network [OSTI]

    NA49 Collaboration

    2007-05-08

    Results from electric charge correlations studied with the Balance Function method in A+A collisions from 20\\emph{A} to 158\\emph{A} GeV are presented in two different rapidity intervals: In the mid-rapidity region we observe a decrease of the width of the Balance Function distribution with increasing centrality of the collision, whereas this effect vanishes in the forward rapidity region. Results from the energy dependence study in central Pb+Pb collisions show that the narrowing of the Balance Function expressed by the normalised width parameter \\textit{W} increases with energy towards the highest SPS and RHIC energies. Finally we compare our experimental data points with predictions of several models. The hadronic string models UrQMD and HIJING do not reproduce the observed narrowing of the Balance Function. However, AMPT which contains a quark-parton transport phase before hadronization can reproduce the narrowing of the BF's width with centrality. This confirms the proposed sensitivity of the Balance Function analysis to the time of hadronization.

  19. Property:OpenEI/UtilityRate/DemandChargePeriod7FAdj | Open Energy...

    Open Energy Info (EERE)

    Jump to: navigation, search This is a property of type Number. Name: Demand Charge Period 7 Fuel Adj Retrieved from "http:en.openei.orgwindex.php?titleProper...

  20. A Non-Invasive Energy/Angle Diagnostic for Charged Particle Beams

    SciTech Connect (OSTI)

    Christensen, C. R.

    2012-03-16

    A diagnostic for charged particle beams based on Compton scattering is presented. The particular case of an electron beam is treated in detail relativistically.

  1. Equilibrium Fluid-Crystal Interfacial Free Energy of Bcc-Crystallizing Aqueous Suspensions of Polydisperse Charged Spheres

    E-Print Network [OSTI]

    Thomas Palberg; Patrick Wette; Dieter M. Herlach

    2015-11-15

    The interfacial free energy is a central quantity in crystallization from the meta-stable melt. In suspensions of charged colloidal spheres, nucleation and growth kinetics can be accurately measured from optical experiments. In previous work, from this data effective non-equilibrium values for the interfacial free energy between the emerging bcc-nuclei and the adjacent melt in dependence on the chemical potential difference between melt phase and crystal phase were derived using classical nucleation theory. A strictly linear increase of the interfacial free energy was observed as a function of increased meta-stability. Here, we further analyze this data for five aqueous suspensions of charged spheres and one binary mixture. We utilize a simple extrapolation scheme and interpret our findings in view of Turnbull's empirical rule. Our first estimates for the reduced interfacial free energy, $\\sigma_{0,bcc}$, between coexisting equilibrium uid and bcc-crystal phases are on the order of a few $k_BT$. Their values are not correlated to any of the electrostatic interaction parameters but rather show a systematic decrease with increasing size polydispersity and a lower value for the mixture as compared to the pure components. At the same time, $\\sigma_0$ also shows an approximately linear correlation to the entropy of freezing. The equilibrium interfacial free energy of strictly monodisperse charged spheres may therefore be still greater.

  2. Energy, Charge, and Spin Transport in Molecules and Self-Assembled Nanostructures Inspired by Photosynthesis

    SciTech Connect (OSTI)

    Wasielewski, Michael R. (NWU)

    2008-10-03

    Electron transfer in biological molecules provides both insight and inspiration for developing chemical systems having similar functionality. Photosynthesis is an example of an integrated system in which light harvesting, photoinduced charge separation, and catalysis combine to carry out two thermodynamically demanding processes, the oxidation of water and the reduction of carbon dioxide. The development of artificial photosynthetic systems for solar energy conversion requires a fundamental understanding of electron-transfer reactions between organic molecules. Since these reactions most often involve single-electron transfers, the spin dynamics of photogenerated radical ion pairs provide important information on how the rates and efficiencies of these reactions depend on molecular structure. Given this knowledge, the design and synthesis of large integrated structures to carry out artificial photosynthesis is moving forward. An important approach to achieving this goal is the development of small, functional building blocks, having a minimum number of covalent bonds, which also have the appropriate molecular recognition sites to facilitate self-assembly into a complete, functional artificial photosynthetic system.

  3. Beam-Energy and System-Size Dependence of Dynamical Net Charge Fluctuations

    E-Print Network [OSTI]

    Sharma, Monika

    2008-01-01

    We present measurements of net charge fluctuations in $Au + Au$ collisions at $\\sqrt{s_{NN}} = $ 19.6, 62.4, 130, and 200 GeV, $Cu + Cu$ collisions at $\\sqrt{s_{NN}} = $ 62.4, 200 GeV, and $p + p$ collisions at $\\sqrt{s} = $ 200 GeV using the net charge dynamical fluctuations measure $\

  4. Online Reservation and Deferral of EV Charging Tasks to Reduce Energy Use Variability

    E-Print Network [OSTI]

    Gupta, Rajesh

    pressing by the need to integrate large EV loads and distributed generation. The added flexibility of EV to reduce inte- gration costs. We show that, in addition, the lookahead provided by requesting EVs to scheduling EV charging, that delays workload to minimize charging cost while meeting latency constraints. We

  5. Beam-Energy and System-Size Dependence of Dynamical Net Charge Fluctuations

    E-Print Network [OSTI]

    B. I. Abelev; M. M. Aggarwal; Z. Ahammed; B. D. Anderson; D. Arkhipkin; G. S. Averichev; Y. Bai; J. Balewski; O. Barannikova; L. S. Barnby; J. Baudot; S. Baumgart; D. R. Beavis; R. Bellwied; F. Benedosso; R. R. Betts; S. Bhardwaj; A. Bhasin; A. K. Bhati; H. Bichsel; J. Bielcik; J. Bielcikova; B. Biritz; L. C. Bland; M. Bombara; B. E. Bonner; M. Botje; J. Bouchet; E. Braidot; A. V. Brandin; S. Bueltmann; T. P. Burton; M. Bystersky; X. Z. Cai; H. Caines; M. Calderón de la Barca Sánchez; J. Callner; O. Catu; D. Cebra; R. Cendejas; M. C. Cervantes; Z. Chajecki; P. Chaloupka; S. Chattopadhyay; H. F. Chen; J. H. Chen; J. Y. Chen; J. Cheng; M. Cherney; A. Chikanian; K. E. Choi; W. Christie; S. U. Chung; R. F. Clarke; M. J. M. Codrington; J. P. Coffin; T. M. Cormier; M. R. Cosentino; J. G. Cramer; H. J. Crawford; D. Das; S. Dash; M. Daugherity; T. G. Dedovich; M. DePhillips; A. A. Derevschikov; R. Derradi de Souza; L. Didenko; P. Djawotho; S. M. Dogra; X. Dong; J. L. Drachenberg; J. E. Draper; F. Du; J. C. Dunlop; M. R. Dutta Mazumdar; W. R. Edwards; L. G. Efimov; E. Elhalhuli; M. Elnimr; V. Emelianov; J. Engelage; G. Eppley; B. Erazmus; M. Estienne; L. Eun; P. Fachini; R. Fatemi; J. Fedorisin; A. Feng; P. Filip; E. Finch; V. Fine; Y. Fisyak; C. A. Gagliardi; L. Gaillard; D. R. Gangadharan; M. S. Ganti; E. Garcia-Solis; V. Ghazikhanian; P. Ghosh; Y. N. Gorbunov; A. Gordon; O. Grebenyuk; D. Grosnick; B. Grube; S. M. Guertin; K. S. F. F. Guimaraes; A. Gupta; N. Gupta; W. Guryn; B. Haag; T. J. Hallman; A. Hamed; J. W. Harris; W. He; M. Heinz; S. Heppelmann; B. Hippolyte; A. Hirsch; A. M. Hoffman; G. W. Hoffmann; D. J. Hofman; R. S. Hollis; H. Z. Huang; T. J. Humanic; G. Igo; A. Iordanova; P. Jacobs; W. W. Jacobs; P. Jakl; F. Jin; P. G. Jones; E. G. Judd; S. Kabana; K. Kajimoto; K. Kang; J. Kapitan; M. Kaplan; D. Keane; A. Kechechyan; D. Kettler; V. Yu. Khodyrev; J. Kiryluk; A. Kisiel; S. R. Klein; A. G. Knospe; A. Kocoloski; D. D. Koetke; M. Kopytine; L. Kotchenda; V. Kouchpil; P. Kravtsov; V. I. Kravtsov; K. Krueger; C. Kuhn; L. Kumar; P. Kurnadi; M. A. C. Lamont; J. M. Landgraf; S. LaPointe; J. Lauret; A. Lebedev; R. Lednicky; C-H. Lee; M. J. LeVine; C. Li; Y. Li; G. Lin; X. Lin; S. J. Lindenbaum; M. A. Lisa; F. Liu; J. Liu; L. Liu; T. Ljubicic; W. J. Llope; R. S. Longacre; W. A. Love; Y. Lu; T. Ludlam; D. Lynn; G. L. Ma; Y. G. Ma; D. P. Mahapatra; R. Majka; L. K. Mangotra; R. Manweiler; S. Margetis; C. Markert; H. S. Matis; Yu. A. Matulenko; T. S. McShane; A. Meschanin; J. Millane; M. L. Miller; N. G. Minaev; S. Mioduszewski; A. Mischke; J. Mitchell; B. Mohanty; D. A. Morozov; M. G. Munhoz; B. K. Nandi; C. Nattrass; T. K. Nayak; J. M. Nelson; C. Nepali; P. K. Netrakanti; M. J. Ng; L. V. Nogach; S. B. Nurushev; G. Odyniec; A. Ogawa; H. Okada; V. Okorokov; D. Olson; M. Pachr; S. K. Pal; Y. Panebratsev; T. Pawlak; T. Peitzmann; V. Perevoztchikov; C. Perkins; W. Peryt; S. C. Phatak; M. Planinic; J. Pluta; N. Poljak; N. Porile; A. M. Poskanzer; B. V. K. S. Potukuchi; D. Prindle; C. Pruneau; N. K. Pruthi; J. Putschke; I. A. Qattan; R. Raniwala; S. Raniwala; R. L. Ray; A. Ridiger; H. G. Ritter; J. B. Roberts; O. V. Rogachevskiy; J. L. Romero; A. Rose; C. Roy; L. Ruan; M. J. Russcher; V. Rykov; R. Sahoo; I. Sakrejda; T. Sakuma; S. Salur; J. Sandweiss; M. Sarsour; J. Schambach; R. P. Scharenberg; N. Schmitz; J. Seger; I. Selyuzhenkov; P. Seyboth; A. Shabetai; E. Shahaliev; M. Shao; M. Sharma; S. S. Shi; X-H. Shi; E. P. Sichtermann; F. Simon; R. N. Singaraju; M. J. Skoby; N. Smirnov; R. Snellings; P. Sorensen; J. Sowinski; H. M. Spinka; B. Srivastava; A. Stadnik; T. D. S. Stanislaus; D. Staszak; M. Strikhanov; B. Stringfellow; A. A. P. Suaide; M. C. Suarez; N. L. Subba; M. Sumbera; X. M. Sun; Y. Sun; Z. Sun; B. Surrow; T. J. M. Symons; A. Szanto de Toledo; J. Takahashi; A. H. Tang; Z. Tang; T. Tarnowsky; D. Thein; J. H. Thomas; J. Tian; A. R. Timmins; S. Timoshenko; M. Tokarev; T. A. Trainor; V. N. Tram; A. L. Trattner; S. Trentalange; R. E. Tribble; O. D. Tsai; J. Ulery; T. Ullrich; D. G. Underwood; G. Van Buren; N. van der Kolk; M. van Leeuwen; A. M. Vander Molen; R. Varma; G. M. S. Vasconcelos; I. M. Vasilevski; A. N. Vasiliev; F. Videbaek; S. E. Vigdor; Y. P. Viyogi; S. Vokal; S. A. Voloshin; M. Wada; W. T. Waggoner; F. Wang; G. Wang; J. S. Wang; Q. Wang; X. Wang; X. L. Wang; Y. Wang; J. C. Webb; G. D. Westfall; C. Whitten Jr.; H. Wieman; S. W. Wissink; R. Witt; J. Wu; Y. Wu; N. Xu; Q. H. Xu; Y. Xu; Z. Xu; P. Yepes; I-K. Yoo; Q. Yue; M. Zawisza; H. Zbroszczyk; W. Zhan; H. Zhang; S. Zhang; W. M. Zhang; Y. Zhang; Z. P. Zhang; Y. Zhao; C. Zhong; J. Zhou; R. Zoulkarneev; Y. Zoulkarneeva; J. X. Zuo

    2008-07-21

    We present measurements of net charge fluctuations in $Au + Au$ collisions at $\\sqrt{s_{NN}} = $ 19.6, 62.4, 130, and 200 GeV, $Cu + Cu$ collisions at $\\sqrt{s_{NN}} = $ 62.4, 200 GeV, and $p + p$ collisions at $\\sqrt{s} = $ 200 GeV using the dynamical net charge fluctuations measure $\

  6. Bill2d -- a software package for classical two-dimensional Hamiltonian systems

    E-Print Network [OSTI]

    Solanpää, Janne; Räsänen, Esa

    2015-01-01

    We present Bill2d, a modern and efficient C++ package for classical simulations of two-dimensional Hamiltonian systems. Bill2d can be used for various billiard and diffusion problems with one or more charged particles with interactions, different external potentials, an external magnetic field, periodic and open boundaries, etc. The software package can also calculate many key quantities in complex systems such as Poincar\\'e sections, survival probabilities, and diffusion coefficients. While aiming at a large class of applicable systems, the code also strives for ease-of-use, efficiency, and modularity for the implementation of additional features. The package comes along with a user guide, a developer's manual, and a documentation of the application program interface (API).

  7. Bill Allcock | Argonne Leadership Computing Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News PublicationsAudits & InspectionsBeryllium and ChronicBestBeyondBigger's NotBilayerBill

  8. Charged Particle Multiplicity and Limiting Fragmentation in Au+Au Collisions at RHIC Energies Using the Phobos Detector

    E-Print Network [OSTI]

    Rachid Nouicer

    2002-08-01

    The first measurements of charged particle pseudorapidity distributions obtained from Au + Au collisions at the maximum RHIC energy sqrt(s_{NN}) = 200 GeV) using the PHOBOS detector are presented. A comparison of the pseudorapidity distributions at energies 130 and 200 GeV for different centrality bins is made, including an estimate of the total number of charged particles. Away from the mid-rapidity region, a comparison between Pb + Pb at SPS energy sqrt(s_{NN}) = 17.3 GeV and Au + Au at RHIC energy sqrt(s_{NN}) = 130 GeV indicates that the extent of the limiting fragmentation region grows by about 1.5 units of eta - y_{beam} over this energy range. We also observe that the extent of the limiting fragmentation region is independent of centrality at the same energy, but that the particle production per participant in the limiting fragmentation region grows at high eta - y_{beam} >= -1.5 for more peripheral collisions. In combination with results from lower energies and from bar{p} + p collisions, these data permit a systematic analysis of particle production mechanisms in nucleus-nucleus collisions.

  9. Negotiation-Based Task Scheduling and Storage Control Algorithm to Minimize User's Electric Bills under Dynamic Prices

    E-Print Network [OSTI]

    Pedram, Massoud

    , snazaria, pedram}@usc.edu Abstract--Dynamic energy pricing is a promising technique in the Smart Grid the electricity bill. A general type of dynamic pricing scenario is assumed where the energy price is both time-based iterative approach has been proposed for joint residential task scheduling and energy storage control

  10. Quantum dynamics in condensed phases : charge carrier mobility, decoherence, and excitation energy transfer

    E-Print Network [OSTI]

    Cheng, Yuan-Chung, Ph. D. Massachusetts Institute of Technology

    2006-01-01

    In this thesis, we develop analytical models for quantum systems and perform theoretical investigations on several dynamical processes in condensed phases. First, we study charge-carrier mobilities in organic molecular ...

  11. CBEI: Demonstrating On-Bill Financing to Encourage Deep Retrofits...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Financing to Encourage Deep Retrofits - 2015 Peer Review Presenter: Rudy Terry, Philadelphia Industrial Development Corp. View the Presentation CBEI: Demonstrating On-Bill...

  12. ILU 2.0beta1 Reference Manual Bill Janssen

    E-Print Network [OSTI]

    Janssen, Bill

    Brotsky, David Brownell, Bruce Cameron, George Carrette, Philip Chou, Daniel W. Connolly, Antony Courtney, Doug Cutting, Mark Davidson, Jim Davis, Larry Edelstein, Paul Everitt, Bill Fenner, Josef Fink

  13. Deep Borehole Disposal of Nuclear Waste. Arnold, Bill Walter...

    Office of Scientific and Technical Information (OSTI)

    Nuclear Waste. Arnold, Bill Walter; Brady, Patrick Vane. Abstract not provided. Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States) USDOE National Nuclear...

  14. Energy Information Handbook: Applications for Energy-Efficient Building Operations

    E-Print Network [OSTI]

    Granderson, Jessica

    2013-01-01

    and display building energy data. iii Glossary Energy1) How to interpret energy data, to improve efficiency andutility bills or interval energy data. Longitudinal Cross-

  15. The TFTR E Parallel B Spectrometer for Mass and Energy Resolved Multi-Ion Charge Exchange Diagnostics

    SciTech Connect (OSTI)

    A.L. Roquemore; S.S. Medley

    1998-01-01

    The Charge Exchange Neutral Analyzer diagnostic for the Tokamak Fusion Test Reactor was designed to measure the energy distributions of both the thermal ions and the supra thermal populations arising from neutral-beam injection and ion cyclotron radio-frequency heating. These measurements yield the plasma ion temperature, as well as several other plasma parameters necessary to provide an understanding of the plasma condition and the performance of the auxiliary heating methods. For this application, a novel charge-exchange spectrometer using a dee-shaped region of parallel electric and magnetic fields was developed at the Princeton Plasma Physics Laboratory. The design and performance of this spectrometer is described in detail, including the effects of exposure of the microchannel plate detector to magnetic fields, neutrons, and tritium.

  16. Texas’ Senate Bill 5 Legislation for Reducing Pollution in Non-Attainment and Affected Areas: Report for the TERP Advisory Board Meeting 

    E-Print Network [OSTI]

    Haberl, J. S.; Culp, C.; Yazdani, B.; Fitzpatrick, T.; Turner, W. D.

    2002-01-01

    This report outlines the Energy Systems Laboratory's responsibilities in Senate Bill 5, accomplishments to date, recommendations to the TERP Advisory Group, and problems encountered to date and what is needed to fulfill ...

  17. Texas’ Senate Bill 5 Legislation for Reducing Pollution in Non-Attainment and Affected Areas: Annual Report to the Texas Natural Resource Conservation Commission 

    E-Print Network [OSTI]

    Haberl, J. S.; Culp, C.; Yazdani, B.; Fitzpatrick, T.; Turner, W. D.

    2002-01-01

    This is the first annual report by the Energy Systems Laboratory, which covers the Laboratory's efforts to support Senate Bill 5. In this report the accomplishments and progress to date are presented, along with recommendations, ...

  18. Testing time-dependent density functional theory with depopulated molecular orbitals for predicting electronic excitation energies of valence, Rydberg, and charge-transfer

    E-Print Network [OSTI]

    Truhlar, Donald G

    transition energies J. Chem. Phys. 137, 244104 (2012); 10.1063/1.4769078 A long-range-corrected densityTesting time-dependent density functional theory with depopulated molecular orbitals for predicting electronic excitation energies of valence, Rydberg, and charge-transfer states and potential energies near

  19. FA12 Nanoscale Devices & Systems MS Exam Solution 1. For small semiconductor quantum dot structures, the single-electron charging energy can

    E-Print Network [OSTI]

    California at San Diego, University of

    FA12 Nanoscale Devices & Systems MS Exam Solution 1. For small semiconductor quantum dot structures, the single-electron charging energy can become comparable to the quantum confinement energies in the dot effective mass 0 * 5.0 mmp , where m0 is the free electron mass. An infinite potential energy barrier

  20. J. Phys. Chem. 1994, 98, 5113-5111 5773 Free Energy of Solvation, Interaction, and Binding of Arbitrary Charge Distributions Imbedded in

    E-Print Network [OSTI]

    Jayaram, Bhyravabotla

    J. Phys. Chem. 1994, 98, 5113-5111 5773 Free Energy of Solvation, Interaction, and Binding in a continuum solvent. Background Attempts seeking analytical solutions to the hydration free energies solvation free energies of arbitrary charge distributions with an overall spherical symmetry. This theory

  1. Calculation of Solvation Free Energies of Charged Solutes Using Mixed Cluster/Continuum Vyacheslav S. Bryantsev, Mamadou S. Diallo,, and William A. Goddard III*,

    E-Print Network [OSTI]

    Goddard III, William A.

    Calculation of Solvation Free Energies of Charged Solutes Using Mixed Cluster/Continuum Models methodologies make systematic errors in the computed free energies because of the incorrect accounting consideration. We analyze two different thermodynamic cycles for calculating the solvation free energies

  2. Bringing Your Workplace Charging Story to Life

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    charging workshops * Other community events 10 Shannon.shea@ee.doe.gov http:energy.goveerevehiclesvehicle-technologies-office-ev-everywhere- workplace-charging-challenge 11...

  3. Implications of the full flexibility provision of the 1996 Farm Bill on regional planting 

    E-Print Network [OSTI]

    Mabray, Katherine

    2000-01-01

    Bill introduced the concept of flexibility. Framers were allowed to change their planting choice by utilizing the new Farm Bill provisions. However, previous to the 1996 Farm Bill, farmers had limited options for switching cropping patterns except...

  4. Influence of bill shape on ectoparasite load in Western Scrub-Jays

    E-Print Network [OSTI]

    Moyer, Brett R.; Peterson, A. Townsend; Clayton, Dale H.

    2002-08-01

    Populations of the Western Scrub-Jay (Aphelocoma californica) have bills specialized for feeding in their respective habitats. Populations in oak habitat have hooked bills, whereas those in pinyon habitat have pointed bills ...

  5. Beam Energy and System Size Dependence of Dynamical Net Charge Fluctuations

    E-Print Network [OSTI]

    Abelev, B.I.; STAR Collaboration

    2009-01-01

    Chandigarh 160014, India Variable Energy Cyclotron Centre,India University of Texas, Austin, Texas 78712, USA Institute of High EnergyIndia Kent State University, Kent, Ohio 44242, USA Particle Physics Laboratory (JINR), Dubna, Russia Laboratory for High Energy (

  6. Zero-Crossing Angle in the Np Analyzing Power at Medium Energies and its Relation to Charge Symmetry 

    E-Print Network [OSTI]

    Bhatia, T. S.; Glass, G.; Hiebert, John C.; Northcliffe, L. C.; Tippens, W. B.; Bonner, BE; Simmons, J. E.; Hollas, C. L.; Newsom, C. R.; Riley, P. J.; Ransome, R. D.

    1981-01-01

    VOLUME 24, NUMBER 2 AUGUST 1981 Zero-crossing angle in the np analyzing power at medium energies and its relation to charge symmetry T. S. Bhatia, G. Glass, J. C. Hiebert, L. C. Northcliffe, and W. B. Tippens Texas AdlM University, College Station..., Texas 77843 B. E. Bonner and J. E. Simmons Los Alantos National Laboratory, Los Alanios, New Mexico 87545 C. L. Hollas, C. R. Newsom, ' P. J. Riley, and R. D. Ransome University of'Texas, Austi?, Texas 787I2 (Received 21 April 1981) The angle...

  7. Parton energy loss in heavy-ion collisions via direct-photon and charged-particle azimuthal correlations 

    E-Print Network [OSTI]

    Abelev, B. I.; Aggarwal, M. M.; Ahammed, Z.; Alakhverdyants, A. V.; Anderson, B. D.; Arkhipkin, D.; Averichev, G. S.; Balewski, J.; Barannikova, O.; Barnby, L. S.; Baudot, J.; Baumgart, S.; Beavis, D. R.; Bellwied, R.; Benedosso, F.; Betancourt, M. J.; Betts, R. R.; Bhasin, A.; Bhati, A. K.; Bichsel, H.; Bielcik, J.; Bielcikova, J.; Biritz, B.; Bland, L. C.; Bnzarov, I.; Bombara, M.; Bonner, B. E.; Bouchet, J.; Braidot, E.; Brandin, A. V.; Bruna, E.; Bueltmann, S.; Burton, T. P.; Bystersky, M.; Cai, X. Z.; Caines, H.; Sanchez, M. Calderon de la Barca; Catu, O.; Cebra, D.; Cendejas, R.; Cervantes, M. C.; Chajecki, Z.; Chaloupka, P.; Chattopadhyay, S.; Chen, H. F.; Chen, J. H.; Chen, J. Y.; Cheng, J.; Cherney, M.; Chikanian, A.; Choi, K. E.; Christie, W.; Clarke, R. F.; Codrington, M. J. M.; Corliss, R.; Cormier, T. M.; Cosentino, M. R.; Cramer, J. G.; Crawford, H. J.; Das, D.; Dash, S.; Daugherity, M.; De Silva, L. C.; Dedovich, T. G.; DePhillips, M.; Derevschikov, A. A.; de Souza, R. Derradi; Didenko, L.; Djawotho, P.; Dogra, S. M.; Dong, X.; Drachenberg, J. L.; Draper, J. E.; Dunlop, J. C.; Mazumdar, M. R. Dutta; Efimov, L. G.; Elhalhuli, E.; Elnimr, M.; Engelage, J.; Eppley, G.; Erazmus, B.; Estienne, M.; Eun, L.; Fachini, P.; Fatemi, R.; Fedorisin, J.; Feng, A.; Filip, P.; Finch, E.; Fine, V.; Fisyak, Y.; Gagliardi, Carl A.; Gaillard, L.; Gangadharan, D. R.; Ganti, M. S.; Garcia-Solis, E. J.; Geromitsos, A.; Geurts, F.; Ghazikhanian, V.; Ghosh, P.; Gorbunov, Y. N.; Gordon, A.; Grebenyuk, O.; Grosnick, D.; Grube, B.; Guertin, S. M.; Guimaraes, K. S. F. F.; Gupta, A.; Gupta, N.; Guryn, W.; Haag, B.; Hallman, T. J.; Hamed, A.; Harris, J. W.; He, W.; Heinz, M.; Heppelmann, S.; Hippolyte, B.; Hirsch, A.; Hjort, E.; Hoffman, A. M.; Hoffmann, G. W.; Hofman, D. J.; Hollis, R. S.; Huang, H. Z.; Humanic, T. J.; Huo, L.; Igo, G.; Iordanova, A.; Jacobs, P.; Jacobs, W. W.; Jakl, P.; Jena, C.; Jin, F.; Jones, C. L.; Jones, P. G.; Joseph, J.; Judd, E. G.; Kabana, S.; Kajimoto, K.; Kang, K.; Kapitan, J.; Kauder, K.; Keane, D.; Kechechyan, A.; Kettler, D.; Khodyrev, V. Yu; Kikola, D. P.; Kiryluk, J.; Kisiel, A.; Klein, S. R.; Knospe, A. G.; Kocoloski, A.; Koetke, D. D.; Konzer, J.; Kopytine, M.; Koralt, I.; Korsch, W.; Kotchenda, L.; Kouchpil, V.; Kravtsov, P.; Kravtsov, V. I.; Krueger, K.; Krus, M.; Kuhn, C.; Kumar, L.; Kurnadi, P.; Lamont, M. A. C.; Landgraf, J. M.; LaPointe, S.; Lauret, J.; Lebedev, A.; Lednicky, R.; Lee, C-H; Lee, J. H.; Leight, W.; LeVine, M. J.; Li, C.; Li, N.; Li, Y.; Lin, G.; Lindenbaum, S. J.; Lisa, M. A.; Liu, F.; Liu, H.; Liu, J.; Liu, L.; Ljubicic, T.; Llope, W. J.; Longacre, R. S.; Love, W. A.; Lu, Y.; Ludlam, T.; Ma, G. L.; Ma, Y. G.; Mahapatra, D. P.; Majka, R.; Mall, O. I.; Mangotra, L. K.; Manweiler, R.; Margetis, S.; Markert, C.; Masui, H.; Matis, H. S.; Matulenko, Yu A.; McDonald, D.; McShane, T. S.; Meschanin, A.; Milner, R.; Minaev, N. G.; Mioduszewski, Saskia; Mischke, A.; Mohanty, B.; Morozov, D. A.; Munhoz, M. G.; Nandi, B. K.; Nattrass, C.; Nayak, T. K.; Nelson, J. M.; Netrakanti, P. K.; Ng, M. J.; Nogach, L. V.; Nurushev, S. B.; Odyniec, G.; Ogawa, A.; Okada, H.; Okorokov, V.; Olson, D.; Pachr, M.; Page, B. S.; Pal, S. K.; Pandit, Y.; Panebratsev, Y.; Pawlak, T.; Peitzmann, T.; Perevoztchikov, V.; Perkins, C.; Peryt, W.; Phatak, S. C.; Pile, P.; Planinic, M.; Ploskon, M. A.; Pluta, J.; Plyku, D.; Poljak, N.; Poskanzer, A. M.; Potukuchi, B. V. K. S.; Prindle, D.; Pruneau, C.; Pruthi, N. K.; Pujahari, P. R.; Putschke, J.; Raniwala, R.; Raniwala, S.; Ray, R. L.; Redwine, R.; Reed, R.; Ridiger, A.; Ritter, H. G.; Roberts, J. B.; Rogachevskiy, O. V.; Romero, J. L.; Rose, A.; Roy, C.; Ruan, L.; Russcher, M. J.; Sahoo, R.; Sakai, S.; Sakrejda, I.; Sakuma, T.; Salur, S.; Sandweiss, J.; Sarsour, M.; Schambach, J.; Scharenberg, R. P.; Schmitz, N.; Seger, J.; Selyuzhenkov, I.; Seyboth, P.; Shabetai, A.; Shahaliev, E.; Shao, M.; Sharma, M.; Shi, S. S.; Shi, X-H; Sichtermann, E. P.; Simon, F.; Singaraju, R. N.; Skoby, M. J.; Smirnov, N.; Sorensen, P.; Sowinski, J.; Spinka, H. M.; Srivastava, B.; Stanislaus, T. D. S.; Staszak, D.; Strikhanov, M.; Stringfellow, B.; Suaide, A. A. P.; Suarez, M. C.; Subba, N. L.; Sumbera, M.; Sun, X. M.; Sun, Y.; Sun, Z.; Surrow, B.; Symons, T. J. M.; de Toledo, A. Szanto; Takahashi, J.; Tang, A. H.; Tang, Z.; Tarini, L. H.; Tarnowsky, T.; Thein, D.; Thomas, J. H.; Tian, J.; Timmins, A. R.; Timoshenko, S.; Tlusty, D.; Tokarev, M.; Trainor, T. A.; Tram, V. N.; Trentalange, S.; Tribble, Robert E.; Tsai, O. D.; Ulery, J.; Ullrich, T.; Underwood, D. G.; Van Buren, G.; van Nieuwenhuizen, G.; Vanfossen, J. A., Jr.; Varma, R.; Vasconcelos, G. M. S.; Vasiliev, A. N.; Videbaek, F.; Vigdor, S. E.; Viyogi, Y. P.; Vokal, S.; Voloshin, S. A.; Wada, M.

    2010-01-01

    REVIEW C 82, 034909 (2010) Parton energy loss in heavy-ion collisions via direct-photon and charged-particle azimuthal correlations B. I. Abelev,8 M. M. Aggarwal,30 Z. Ahammed,47 A. V. Alakhverdyants,17 B. D. Anderson,18 D. Arkhipkin,3 G. S. Averichev...,17 J. Balewski,22 O. Barannikova,8 L. S. Barnby,2 J. Baudot,15 S. Baumgart,52 D. R. Beavis,3 R. Bellwied,50 F. Benedosso,27 M. J. Betancourt,22 R. R. Betts,8 A. Bhasin,16 A. K. Bhati,30 H. Bichsel,49 J. Bielcik,10 J. Bielcikova,11 B. Biritz,6 L. C...

  8. Women @ Energy: Brenda Teaster | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    tracking, and analyzing utility bills and metered energy and water usage in buildings. Data accuracy must be validated and any building energy and water use anomalies investigated...

  9. Fusion Energy Advisory Committee: Advice and recommendations to the US Department of Energy in response to the charge letter of September 1, 1992

    SciTech Connect (OSTI)

    Not Available

    1993-04-01

    This document is a compilation of the written records that relate to the Fusion Energy Advisory Committee`s deliberations with regard to the Letter of Charge received from the Director of Energy Research, dated September 1, 1992. During its sixth meeting, held in March 1993, FEAC provided a detailed response to the charge contained in the letter of September 1, 1992. In particular, it responded to the paragraph: ``I would like the Fusion Energy Advisory Committee (FEAC) to evaluate the Neutron Interactive Materials Program of the Office of Fusion Energy (OFE). Materials are required that will satisfy the service requirements of components in both inertial and magnetic fusion reactors -- including the performance, safety, economic, environmental, and recycle/waste management requirements. Given budget constraints, is our program optimized to achieve these goals for DEMO, as well as to support the near-term ITER program?`` Before FEAC could generate its response to the charge in the form of a letter report, one member, Dr. Parker, expressed severe concerns over one of the conclusions that the committee had reached during the meeting. It proved necessary to resolve the issue in public debate, and the matter was reviewed by FEAC for a second time, during its seventh meeting, held in mid-April, 1993. In order to help it to respond to this charge in a timely manner, FEAC established a working group, designated Panel No. 6, which reviewed the depth and breadth of the US materials program, and its interactions and collaborations with international programs. The panel prepared background material, included in this report as Appendix I, to help FEAC in its deliberations.

  10. Energy and rapidity dependence of electric charge correlations at 20-158GeV beam energies at the CERN SPS (NA49)

    E-Print Network [OSTI]

    Christakoglou, P; Vassiliou, Maria

    2006-01-01

    Electric charge correlations are studied with the Balance Function method for central Pb + Pb collisions at the CERN - SPS. The results on centrality selected Pb + Pb interactions at 40 and 158 AGeV are presented for the first time for two different rapidity intervals. In the mid-rapidity region a decrease of the width with increasing centrality of the collision is observed whereas in the forward rapidity region this effect vanishes. This could suggest a delayed hadronization scenario. In addition, the results from a first attempt to study the energy dependence of the Balance Function throughout the whole SPS energy range, are presented. The suitably scaled decrease of the width is approximately constant for the intermediate energies (30 to 80 AGeV) and gets stronger for the highest SPS and RHIC energies. On the other hand, both URQMD and HSD simulation results show no dependence on the collision energy.

  11. Energy and rapidity dependence of electric charge correlations at 20-158GeV beam energies at the CERN SPS (NA49)

    E-Print Network [OSTI]

    NA49 Collaboration

    2005-10-25

    Electric charge correlations are studied with the Balance Function method for central Pb + Pb collisions at the CERN - SPS. The results on centrality selected Pb + Pb interactions at 40 and 158 AGeV are presented for the first time for two different rapidity intervals. In the mid-rapidity region a decrease of the width with increasing centrality of the collision is observed whereas in the forward rapidity region this effect vanishes. This could suggest a delayed hadronization scenario. In addition, the results from a first attempt to study the energy dependence of the Balance Function throughout the whole SPS energy range, are presented. The suitably scaled decrease of the width is approximately constant for the intermediate energies (30 to 80 AGeV) and gets stronger for the highest SPS and RHIC energies. On the other hand, both URQMD and HSD simulation results show no dependence on the collision energy.

  12. Carbon Cycle 2.0: Bill Collins: A future without CC2.0

    ScienceCinema (OSTI)

    Bill Collins

    2010-09-01

    Bill Collins speaks at the Carbon Cycle 2.0 kick-off symposium Feb. 1, 2010. We emit more carbon into the atmosphere than natural processes are able to remove - an imbalance with negative consequences. Carbon Cycle 2.0 is a Berkeley Lab initiative to provide the science needed to restore this balance by integrating the Labs diverse research activities and delivering creative solutions toward a carbon-neutral energy future. http://carboncycle2.lbl.gov/

  13. Clean Energy Works Oregon (CEWO) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    an exploration of Clean Energy Works Oregon's loan offerings its on-bill program to date. Clean Energy Works Oregon More Documents & Publications Clean Energy Works Oregon (CEWO)...

  14. New Energy Efficiency Standards for Metal Halide Lamp Fixtures...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Metal Halide Lamp Fixtures to Save on Energy Bills and Reduce Carbon Pollution New Energy Efficiency Standards for Metal Halide Lamp Fixtures to Save on Energy Bills and Reduce...

  15. Electrically charged finite energy solutions of an $SO(5)$ and an $SU(3)$ Higgs-Chern-Simons--Yang-Mills-Higgs systems in $3+1$ dimensions

    E-Print Network [OSTI]

    Francisco Navarro-Lerida; D. H. Tchrakian

    2014-12-15

    We study spherically symmetric finite energy solutions of two Higgs-Chern-Simons--Yang-Mills-Higgs (HCS-YMH) models in $3+1$ dimensions, one with gauge group $SO(5)$ and the other with $SU(3)$. The Chern-Simons (CS) densities are defined in terms of both the Yang-Mills (YM) and Higgs fields and the choice of the two gauge groups is made so they do not vanish. The solutions of the $SO(5)$ model carry only electric charge and zero magnetic charge, while the solutions of the $SU(3)$ model are dyons carrying both electric and magnetic charges like the Julia-Zee (JZ) dyon. Unlike the latter however, the electric charge in both models receives an important contribution from the CS dynamics. We pay special attention to the relation between the energies and charges of these solutions. In contrast with the electrically charged JZ dyon of the Yang-Mills-Higgs (YMH) system, whose mass is larger than that of the electrically neutral (magnetic monopole) solutions, the masses of the electrically charged solutions of our HCS-YMH models can be smaller than their electrically neutral counterparts in some parts of the parameter space. To establish this is the main task of this work, which is performed by constructing the HCS-YMH solutions numerically. In the case of the $SU(3)$ HCS-YMH, we have considered the question of angular momentum, and it turns out that it vanishes.

  16. System Size, Energy and Centrality Dependence of Pseudorapidity Distributions of Charged Particles in Relativistic Heavy Ion Collisions

    E-Print Network [OSTI]

    B. Alver; B. B. Back; M. D. Baker; M. Ballintijn; D. S. Barton; R. R. Betts; R. Bindel; W. Busza; Z. Chai; V. Chetluru; E. García; T. Gburek; K. Gulbrandsen; J. Hamblen; I. Harnarine; C. Henderson; D. J. Hofman; R. S. Hollis; R. Ho?y?ski; B. Holzman; A. Iordanova; J. L. Kane; P. Kulinich; C. M. Kuo; W. Li; W. T. Lin; C. Loizides; S. Manly; A. C. Mignerey; R. Nouicer; A. Olszewski; R. Pak; C. Reed; E. Richardson; C. Roland; G. Roland; J. Sagerer; I. Sedykh; C. E. Smith; M. A. Stankiewicz; P. Steinberg; G. S. F. Stephans; A. Sukhanov; A. Szostak; M. B. Tonjes; A. Trzupek; G. J. van Nieuwenhuizen; S. S. Vaurynovich; R. Verdier; G. I. Veres; P. Walters; E. Wenger; D. Willhelm; F. L. H. Wolfs; B. Wosiek; K. Wo?niak; S. Wyngaardt; B. Wys?ouch

    2007-09-25

    We present the first measurements of the pseudorapidity distribution of primary charged particles in Cu+Cu collisions as a function of collision centrality and energy, \\sqrtsnn = 22.4, 62.4 and 200 GeV, over a wide range of pseudorapidity, using the PHOBOS detector. Making a global comparison of Cu+Cu and Au+Au results, we find that the total number of produced charged particles and the rough shape (height and width) of the pseudorapidity distributions are determined by the number of nucleon participants. More detailed studies reveal that a more precise matching of the shape of the Cu+Cu and Au+Au pseudorapidity distributions over the full range of pseudorapidity occurs for the same Npart/2A value rather than the same Npart value. In other words, it is the collision geometry rather than just the number of nucleon participants that drives the detailed shape of the pseudorapidity distribution and its centrality dependence at RHIC energies.

  17. Costs and Emissions Associated with Plug-In Hybrid Electric Vehicle Charging in the Xcel Energy Colorado Service Territory

    SciTech Connect (OSTI)

    Parks, K.; Denholm, P.; Markel, T.

    2007-05-01

    The combination of high oil costs, concerns about oil security and availability, and air quality issues related to vehicle emissions are driving interest in plug-in hybrid electric vehicles (PHEVs). PHEVs are similar to conventional hybrid electric vehicles, but feature a larger battery and plug-in charger that allows electricity from the grid to replace a portion of the petroleum-fueled drive energy. PHEVs may derive a substantial fraction of their miles from grid-derived electricity, but without the range restrictions of pure battery electric vehicles. As of early 2007, production of PHEVs is essentially limited to demonstration vehicles and prototypes. However, the technology has received considerable attention from the media, national security interests, environmental organizations, and the electric power industry. The use of PHEVs would represent a significant potential shift in the use of electricity and the operation of electric power systems. Electrification of the transportation sector could increase generation capacity and transmission and distribution (T&D) requirements, especially if vehicles are charged during periods of high demand. This study is designed to evaluate several of these PHEV-charging impacts on utility system operations within the Xcel Energy Colorado service territory.

  18. Energy exchange between a laser beam and charged particles using inverse transition radiation and method for its use

    DOE Patents [OSTI]

    Kimura, Wayne D. (Bellevue, WA); Romea, Richard D. (Seattle, WA); Steinhauer, Loren C. (Bothell, WA)

    1998-01-01

    A method and apparatus for exchanging energy between relativistic charged particles and laser radiation using inverse diffraction radiation or inverse transition radiation. The beam of laser light is directed onto a particle beam by means of two optical elements which have apertures or foils through which the particle beam passes. The two apertures or foils are spaced by a predetermined distance of separation and the angle of interaction between the laser beam and the particle beam is set at a specific angle. The separation and angle are a function of the wavelength of the laser light and the relativistic energy of the particle beam. In a diffraction embodiment, the interaction between the laser and particle beams is determined by the diffraction effect due to the apertures in the optical elements. In a transition embodiment, the interaction between the laser and particle beams is determined by the transition effect due to pieces of foil placed in the particle beam path.

  19. Electron capture from H2 to highly charged Th and Xe ions trapped at center-of-mass energies near 6 eV

    E-Print Network [OSTI]

    Electron capture from H2 to highly charged Th and Xe ions trapped at center-of-mass energies near 6 eV G. Weinberg,1,* B. R. Beck,2 J. Steiger,2 D. A. Church,1 J. McDonald,2 and D. Schneider2 1 Laboratory, P.O. Box 808, Livermore, California 94550 Received 19 May 1997 Ions with charge states as high

  20. Analysis of Assembly Bill 438: Osteoporosis Screening

    E-Print Network [OSTI]

    California Health Benefits Review Program (CHBRP)

    2004-01-01

    for bone densitometry by dual-energy x-ray absorptiometry.bone mineral testing by dual energy X-ray absorptiometry orRay Absorptiometry (SXA) Dual Energy X-Ray Absorptiometry (

  1. Light Charged Particle Emission Following the Fusion of 18O Ions with 12C Nuclei at Energies Near and Below the

    E-Print Network [OSTI]

    de Souza, Romualdo T.

    Light Charged Particle Emission Following the Fusion of 18O Ions with 12C Nuclei at Energies Near Releases more energy in a few hours than our sun does in a decade X-ray superbursts thought to be fueled by 12C+12C fusion in the outer crust Temperature of the outer crust is too low (~3×106 K) relative

  2. Nanostructures templated on biological scaffolds for light harvesting, energy transfer, charge transfer, and redox reactions

    E-Print Network [OSTI]

    Nam, Yoon Sung

    2010-01-01

    Solar energy provides an unparalleled promise to generate enormous amounts of clean energy. As the solar industry grows rapidly with a focus on power generation, new, but equally important challenges are emerging, including ...

  3. Baryon Number and Electric Charge Fluctuations in High Energy Nucleus-Nucleus Collisions

    E-Print Network [OSTI]

    Konchakovski, V P; Bratkovskaya, E L; Stöcker, H

    2006-01-01

    Event-by-event fluctuations of the net baryon number and electric charge in nucleus-nucleus collisions are studied in Pb+Pb at 158 AGeV within the HSD transport model. We reveal an important role of the fluctuations in the number of target nucleon participants. They strongly influence all measured fluctuations even in the samples of events with rather rigid centrality trigger. This fact can be used to check different scenarios of nucleus-nucleus collisions by measuring the multiplicity fluctuations as a function of collision centrality in fixed kinematical regions of the projectile and target hemispheres.

  4. Property:OpenEI/UtilityRate/DemandChargePeriod7 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo,AltFuelVehicle2 JumpPublicationDate Jump to: navigation,DemandChargePeriod7 Jump to:

  5. Property:OpenEI/UtilityRate/DemandChargePeriod8 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo,AltFuelVehicle2 JumpPublicationDate Jump to: navigation,DemandChargePeriod7 Jump

  6. Property:OpenEI/UtilityRate/DemandChargePeriod8FAdj | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo,AltFuelVehicle2 JumpPublicationDate Jump to: navigation,DemandChargePeriod7

  7. Property:OpenEI/UtilityRate/DemandChargePeriod9 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo,AltFuelVehicle2 JumpPublicationDate Jump to: navigation,DemandChargePeriod7 Jump to:

  8. Property:OpenEI/UtilityRate/DemandChargePeriod9FAdj | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo,AltFuelVehicle2 JumpPublicationDate Jump to: navigation,DemandChargePeriod7 Jump

  9. Property:OpenEI/UtilityRate/FixedDemandChargeMonth9 | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo,AltFuelVehicle2 JumpPublicationDateInformationInformation FixedDemandChargeMonth9

  10. Energy Storage System Considerations for Grid-Charged Hybrid Electric Vehicles (Presentation)

    SciTech Connect (OSTI)

    Markel, T.; Simpson, A.

    2005-09-01

    Provides an overview of a study regarding energy storage system considerations for a plug-in hybrid electric vehicle.

  11. Differentially Private Billing with Rebates George Danezis1

    E-Print Network [OSTI]

    International Association for Cryptologic Research (IACR)

    Differentially Private Billing with Rebates George Danezis1 , Markulf Kohlweiss1 , and Alfredo Rial they require and even get a rebate for the additional funds they used to protect their privacy. Throughout

  12. Take a Vacation from Your Energy Bill | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergyPlan | DepartmentXIII--SMART GRID SEC.Quadrennial TechnologyTake a Vacation

  13. Curl flux, coherence, and population landscape of molecular systems: Nonequilibrium quantum steady state, energy (charge) transport, and thermodynamics

    E-Print Network [OSTI]

    Zhedong Zhang; Jin Wang

    2015-12-25

    We established a theoretical framework in terms of the curl flux, population landscape, and coherence for non-equilibrium quantum systems at steady state, through exploring the energy and charge transport in molecular processes. The curl quantum flux plays the key role in determining transport properties and the system reaches equilibrium when flux vanishes. The novel curl quantum flux reflects the degree of non-equilibriumness and the time-irreversibility. We found an analytical expression for the quantum flux and its relationship to the environmental pumping (non-equilibriumness quantified by the voltage away from the equilibrium) and the quantum tunneling. Furthermore, we investigated another quantum signature, the coherence, quantitatively measured by the non-zero off diagonal element of the density matrix. Besides the environment-assistance which can give dramatic enhancement of coherence and quantum flux with high voltage at a fixed tunneling strength, the quantum flux is promoted by the coherence in the regime of small tunneling while reduced by the coherence in the regime of large tunneling, due to the non-monotonic relationship between the coherence and tunneling. In view of the system as a quantum heat engine, we studied the non-equilibrium thermodynamics and established the analytical connections of curl quantum flux to the transport quantities such as energy (charge) transfer efficiency, chemical reaction efficiency, energy dissipation, heat and electric currents observed in the experiments. We observed a perfect transfer efficiency in chemical reactions at high voltage (chemical potential difference). Our theoretical predicted behavior of the electric current with respect to the voltage is in good agreements with the recent experiments on electron transfer in single molecules.

  14. Mitigation of Vehicle Fast Charge Grid Impacts with Renewables...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Fast Charge Grid Impacts with Renewables and Energy Storage Mitigation of Vehicle Fast Charge Grid Impacts with Renewables and Energy Storage 2012 DOE Hydrogen and Fuel...

  15. Briefing on the Medical Innovation Bill House of Commons Second Reading 6 March 2015

    E-Print Network [OSTI]

    Rambaut, Andrew

    Briefing on the Medical Innovation Bill House of Commons Second Reading ­ 6 March 2015 Summary We that the Medical Innovation Bill will not achieve its aim of encouraging medical innovation, and could result. Background The Medical Innovation Bill is a Private Members Bill introduced by Lord Saatchi, which aims

  16. Periodic Charging Scheme for Fixed-Priority Real-Time Systems with Renewable Energy

    E-Print Network [OSTI]

    Aydin, Hakan

    , the deployed systems use solar panels and piezoelectric units, that exploit solar energy and mechani- cal research and development area. In the last decade, power-aware resource management and scheduling of the day and season in the case of solar energy); but its rate of supply is not necessarily uniform

  17. Assembly Bill No. 844 CHAPTER 645

    E-Print Network [OSTI]

    Fuel Efficient Tire Report: Volume 1,'' energy efficient tires have the potential to significantly. Replacement Tire Efficiency Program. Existing law, with respect to energy conservation and development, states of petroleum use and to establish a state transportation energy policy that results in the least environmental

  18. Assembly Bill No. 1103 CHAPTER 533

    E-Print Network [OSTI]

    records of the energy consumption data of all nonresidential buildings to which they provide service, 2009, an electric or gas utility would be required to upload all of the energy consumption data of the energy consumption data of all nonresidential buildings to which they provide service. This data shall

  19. C{sub 6}H{sub 6}/Au(111): Interface dipoles, band alignment, charging energy, and van der Waals interaction

    SciTech Connect (OSTI)

    Abad, E.; Martinez, J. I.; Flores, F.; Ortega, J.; Dappe, Y. J.

    2011-01-28

    We analyze the benzene/Au(111) interface taking into account charging energy effects to properly describe the electronic structure of the interface and van der Waals interactions to obtain the adsorption energy and geometry. We also analyze the interface dipoles and discuss the barrier formation as a function of the metal work-function. We interpret our DFT calculations within the induced density of interface states (IDIS) model. Our results compare well with experimental and other theoretical results, showing that the dipole formation of these interfaces is due to the charge transfer between the metal and benzene, as described in the IDIS model.

  20. Nissan EV Workplace Charging Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy Bills and Reduce Carbon PollutionZealandNexus EnergyHomesNick

  1. A multi-dimensional, energy- and charge-conserving, nonlinearly implicit, electromagnetic Vlasov-Darwin particle-in-cell algorithm

    E-Print Network [OSTI]

    Chen, Guangye

    2015-01-01

    For decades, the Vlasov-Darwin model has been recognized to be attractive for particle-in-cell (PIC) kinetic plasma simulations in non-radiative electromagnetic regimes, to avoid radiative noise issues and gain computational efficiency. However, the Darwin model results in an elliptic set of field equations that renders conventional explicit time integration unconditionally unstable. Here, we explore a fully implicit PIC algorithm for the Vlasov-Darwin model in multiple dimensions, which overcomes many difficulties of traditional semi-implicit Darwin PIC algorithms. The finite-difference scheme for Darwin field equations and particle equations of motion is space-time-centered, employing particle sub-cycling and orbit-averaging. The algorithm conserves total energy, local charge, canonical-momentum in the ignorable direction, and preserves the Coulomb gauge exactly. An asymptotically well-posed fluid preconditioner allows efficient use of large time steps and cell sizes, which are determined by accuracy consid...

  2. Workplace Charging Challenge Partner: MetLife, Inc. | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann JacksonDepartment| Department of EnergyDataWind TheEnergyEnergy Atlanta

  3. Battery charging control methods, electric vehicle charging methods, battery charging apparatuses and rechargeable battery systems

    DOE Patents [OSTI]

    Tuffner, Francis K. (Richland, WA); Kintner-Meyer, Michael C. W. (Richland, WA); Hammerstrom, Donald J. (West Richland, WA); Pratt, Richard M. (Richland, WA)

    2012-05-22

    Battery charging control methods, electric vehicle charging methods, battery charging apparatuses and rechargeable battery systems. According to one aspect, a battery charging control method includes accessing information regarding a presence of at least one of a surplus and a deficiency of electrical energy upon an electrical power distribution system at a plurality of different moments in time, and using the information, controlling an adjustment of an amount of the electrical energy provided from the electrical power distribution system to a rechargeable battery to charge the rechargeable battery.

  4. Charging-free electrochemical system for harvesting low-grade thermal energy

    E-Print Network [OSTI]

    Yang, Yuan

    Efficient and low-cost systems are needed to harvest the tremendous amount of energy stored in low-grade heat sources (<100 °C). Thermally regenerative electrochemical cycle (TREC) is an attractive approach which uses the ...

  5. Distribution network use-of-system charges under high penetration of distributed energy resources

    E-Print Network [OSTI]

    Bharatkumar, Ashwini

    2015-01-01

    Growing integration of distributed energy resources (DER) presents the electric power sector with the potential for signicant changes to technical operations, business models, and industry structure. New physical components, ...

  6. Monte Carlo Electromagnetic Cross Section Production Method for Low Energy Charged Particle Transport Through Single Molecules 

    E-Print Network [OSTI]

    Madsen, Jonathan R

    2013-08-13

    energies. This paper presents developments for a novel approach, which to our knowledge has never been done before, to reducing the homogenous water approximation. The purpose of our work is to develop of a completely self-consistent computational method...

  7. Lessons from On-Bill Financing and Repayment Programs | Department of

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nAand DOE Safety StandardsLabor September 1,Energy On--Bill Financing and

  8. Core-ion temperature measurement of the ADITYA tokamak using passive charge exchange neutral particle energy analyzer

    SciTech Connect (OSTI)

    Pandya, Santosh P.; Ajay, Kumar; Mishra, Priyanka; Dhingra, Rajani D.; Govindarajan, J. [Institute for Plasma Research, Bhat, Gandhinagar 382 428, Gujarat (India)

    2013-02-15

    Core-ion temperature measurements have been carried out by the energy analysis of passive charge exchange (CX) neutrals escaping out of the ADITYA tokamak plasma (minor radius, a= 25 cm and major radius, R= 75 cm) using a 45 Degree-Sign parallel plate electrostatic energy analyzer. The neutral particle analyzer (NPA) uses a gas cell configuration for re-ionizing the CX-neutrals and channel electron multipliers (CEMs) as detectors. Energy calibration of the NPA has been carried out using ion-source and {Delta}E/E of high-energy channel has been found to be {approx}10%. Low signal to noise ratio (SNR) due to VUV reflections on the CEMs was identified during the operation of the NPA with ADITYA plasma discharges. This problem was rectified by upgrading the system by incorporating the additional components and arrangements to suppress VUV radiations and improve its VUV rejection capabilities. The noise rejection capability of the NPA was experimentally confirmed using a standard UV-source and also during the plasma discharges to get an adequate SNR (>30) at the energy channels. Core-ion temperature T{sub i}(0) during flattop of the plasma current has been measured to be up to 150 eV during ohmically heated plasma discharges which is nearly 40% of the average core-electron temperature (typically T{sub e}(0) {approx} 400 eV). The present paper describes the principle of tokamak ion temperature measurement, NPA's design, development, and calibration along with the modifications carried out for minimizing the interference of plasma radiations in the CX-spectrum. Performance of the NPA during plasma discharges and experimental results on the measurement of ion-temperature have also been reported here.

  9. Evaluatoni of Automated Utility Bill Calibration Methods

    Broader source: Energy.gov [DOE]

    This presentation was delivered at the U.S. Department of Energy Building America Technical Update meeting on April 29-30, 2013, in Denver, Colorado.

  10. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Revolving Loan Program Assembly Bill 522 of 2009 established a fund for renewable energy, energy efficiency and energy conservation loans. According to statute, all repayments...

  11. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Alternative and Clean Energy Program In July 2008, Pennsylvania enacted a broad 650 million alternative energy bill designed to provide support for a variety of renewable energy...

  12. Electrically charged targets

    DOE Patents [OSTI]

    Goodman, Ronald K. (Livermore, CA); Hunt, Angus L. (Alamo, CA)

    1984-01-01

    Electrically chargeable laser targets and method for forming such charged targets in order to improve their guidance along a predetermined desired trajectory. This is accomplished by the incorporation of a small amount of an additive to the target material which will increase the electrical conductivity thereof, and thereby enhance the charge placed upon the target material for guidance thereof by electrostatic or magnetic steering mechanisms, without adversely affecting the target when illuminated by laser energy.

  13. Senate Bill No. 1 CHAPTER 132

    E-Print Network [OSTI]

    , including, in consultation with the Energy Commission, adopting energy conservation demand-side management and other initiatives in order to reduce demand for electricity and reduce load during peak demand periods for distributed generation resources and provides incentives to customer-side photovoltaics and solar thermal

  14. Local energy management through mathematical modeling and optimization

    E-Print Network [OSTI]

    Craft David (David Loren), 1973-

    2004-01-01

    (cont.) Extensions to the core TOTEM model include a demand charge model, used for making daily optimal control decisions when the electric bill includes a charge based on the monthly maximum power draw. The problem of ...

  15. Energy Harvesting by Sweeping Voltage-Escalated Charging of a Reconfigurable Supercapacitor Array

    E-Print Network [OSTI]

    Shinozuka, Masanobu

    to portable solar chargers for cell phones. Several recent features distinguish embedded-grade, microCap can harvest energy efficiently under low and high solar irradiation conditions, achieve shorter ("harvesters") have been receiv- ing growing attention in recent years, from grid-tied roof-top solar arrays

  16. Energy Harvesting by Sweeping Voltage-Escalated Charging of a Reconfigurable Supercapacitor Array

    E-Print Network [OSTI]

    Shinozuka, Masanobu

    ("harvesters") have been receiv- ing growing attention in recent years, from grid-tied roof-top solar arrays to portable solar chargers for cell phones. Several recent features distinguish embedded-grade, micro point tracking (MPPT), and the use of supercapacitors as a potential type of energy storage elements

  17. Quenching Collisions of Low-Energy Metastable Multiply-Charged Argon Ions 

    E-Print Network [OSTI]

    Church, David A.; Yang, L. S.; Tu, S. G.

    1994-01-01

    Quenching rates have been measured for selected metastable levels of Ar(q+) ions (q = 2, 3, 9, and 10) stored in a Kingdon ion trap, with mean energies of 262q eV and 181q eV. Effective quenching cross sections derived from these rates are found...

  18. Sandia Energy - Senator Heinrich Touts Energy Savings & Job Creation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Touts Energy Savings & Job Creation through Shaheen-Portman Bill Heinrich Banner "New Mexico is already capitalizing on a diversified but rapidly transforming energy sector and...

  19. Signatures of spin and charge energy scales in the local moment and specific heat of the half-filled two-dimensional Hubbard model

    E-Print Network [OSTI]

    Scalettar, Richard T.

    Signatures of spin and charge energy scales in the local moment and specific heat of the half of the specific heat, and connections to quasiparticle resonance and pseudogap formation in the density of states, the existence of long range order in the ground state at both weak and strong coupling. While the specific heat

  20. Study of dust particle charging in weakly ionized inert gases taking into account the nonlocality of the electron energy distribution function

    SciTech Connect (OSTI)

    Filippov, A. V. Dyatko, N. A.; Kostenko, A. S.

    2014-11-15

    The charging of dust particles in weakly ionized inert gases at atmospheric pressure has been investigated. The conditions under which the gas is ionized by an external source, a beam of fast electrons, are considered. The electron energy distribution function in argon, krypton, and xenon has been calculated for three rates of gas ionization by fast electrons: 10{sup 13}, 10{sup 14}, and 10{sup 15} cm{sup ?1}. A model of dust particle charging with allowance for the nonlocal formation of the electron energy distribution function in the region of strong plasma quasi-neutrality violation around the dust particle is described. The nonlocality is taken into account in an approximation where the distribution function is a function of only the total electron energy. Comparative calculations of the dust particle charge with and without allowance for the nonlocality of the electron energy distribution function have been performed. Allowance for the nonlocality is shown to lead to a noticeable increase in the dust particle charge due to the influence of the group of hot electrons from the tail of the distribution function. It has been established that the screening constant virtually coincides with the smallest screening constant determined according to the asymptotic theory of screening with the electron transport and recombination coefficients in an unperturbed plasma.

  1. Resumption of SPR US Strategic Petroleum Reserve fill attached to synfuels bill

    SciTech Connect (OSTI)

    Not Available

    1980-06-23

    House-Senate conferees approved a bill which would establish a $20 billion US Synthetic Fuels Corp., a $3.1 billion bank to fund energy conservation and solar energy projects, a $1.4 billion biomass-to-energy program, and other energy conservation and production measures. An order requiring the filling of the SPR at a minimum average rate of 100,000 bbl/day beginning 10/1/80 was attached to the bill. If that rate is not achieved, the SPR measure requires that Elk Hills, Calif., field crude be sold or exchanged to acquire other crude for the SPR. Some OPEC members have threatened to reduce their output if the US buys oil for storage. The SPR measure will increase US refiners' crude-acquisition costs by $0.04/gal, which will be passed along to purchasers. The SPR goal is 750 million bbl of crude; current capacity is 250 million bbl, with only 91.7 million bbl in place. A House subcommittee issued a report recommending that the 118,000 bbl/day oil production from US National Petroleum Reserves (NPR) be reserved for the US Department of Defense (DOD) and stored in the SPR, but criticizing DOD for inefficiencies in its energy office, inadequate conversion to coal, and inadequate storage facilities.

  2. Evidence for high-energy and low-emittance electron beams using ionization injection of charge in a plasma wakefield accelerator

    E-Print Network [OSTI]

    Vafaei-Najafabadi, N; Clayton, C E; Joshi, C; Marsh, K A; Mori, W B; Welch, E C; Lu, W; Adli, E; Allen, J; Clarke, C I; Corde, S; Frederico, J; Gessner, S J; Green, S Z; Hogan, M J; Litos, M D; Yakimenko, V

    2015-01-01

    Ionization injection in a plasma wakefield accelerator was investigated experimentally using two lithium plasma sources of different lengths. The ionization of the helium gas, used to confine the lithium, injects electrons in the wake. After acceleration, these injected electrons were observed as a distinct group from the drive beam on the energy spectrometer. They typically have a charge of tens of pC, an energy spread of a few GeV, and a maximum energy of up to 30 GeV. The emittance of this group of electrons can be many times smaller than the initial emittance of the drive beam. The energy scaling for the trapped charge from one plasma length to the other is consistent with the blowout theory of the plasma wakefield.

  3. BILL RICHARDSON Governor DIANE DENISH Lieutenant Governor

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    November 25,2009 David Moody, Manager Carlsbad Field Office Department of Energy P.O. Box 3090 NEW MEXICO ENVIRONMENT DEPARTMENT Hazardous Waste Bureau 2905 Rodeo Park Drive East,...

  4. pi-N charge exchange and pi(+)-pi(0) scattering at low energies

    E-Print Network [OSTI]

    D. Pocanic; E. Frlez

    1997-06-30

    pi-N and pi-pi interactions near threshold are uniquely sensitive to the chiral symmetry breaking part of the strong interaction. The pi-N sigma-term value with its implications for nucleon quark structure and the recent controversy concerning the size of the scalar quark condensate have renewed the experimental interest in these two fundamental systems. We report new differential cross sections for the reaction $pi^-p \\to \\pi^0n$ at 27.5 MeV pion incident kinetic energy, measured between $\\theta_{CM} = 0^\\circ$ and $55^\\circ$. Our results are in excellent agreement with the existing comprehensive pi-N phase shift analysis. We also report on a Chew-Low analysis of exclusive $\\pi^+ p \\to \\pi^+\\pi^0p$ data at 260 MeV pion incident energy.

  5. Bill Wilcox, part 1 | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O OLaura|Bilayer Graphene Gets a BandgapBill Gibbonsand1 Bill

  6. Bill Wilcox, part 2 | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O OLaura|Bilayer Graphene Gets a BandgapBill Gibbonsand1 Bill2

  7. Bill Wilcox, part 3 | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O OLaura|Bilayer Graphene Gets a BandgapBill Gibbonsand1 Bill23

  8. Property:OpenEI/UtilityRate/DemandReactivePowerCharge | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo,AltFuelVehicle2 JumpPublicationDate JumpEnergy Information

  9. Property:OpenEI/UtilityRate/EnableDemandCharge | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo,AltFuelVehicle2 JumpPublicationDate JumpEnergy InformationDemandWindow Jump

  10. Ex Parte Memo on CAC/Dry Charged Units | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematics And StatisticsProgramof-SA-02:InnovativeEnergy Docket NumberBT-DET-0033ContactMemo on CAC/Dry

  11. Leading the Charge: Doug MacCourt Advises Tribes on Energy Policy |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-inPPLforLDRDEnergyTurbine bladesJune 22, 2015Boyd -Department of

  12. As Electric Vehicles Take Charge, Costs Power Down | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p a l De p u tCorporationIt's Bike-to-Work Week!! !

  13. U.S. Employers Drive Change with Workplace Charging | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram: Report1538-1950 Timeline ofTurkey Near-ZeroEnergyEmployers Drive

  14. Space-charge compensation measurements in electron cyclotron resonance ion source low energy beam transport lines with a retarding field analyzer

    SciTech Connect (OSTI)

    Winklehner, D.; Leitner, D., E-mail: leitnerd@nscl.msu.edu; Cole, D.; Machicoane, G.; Tobos, L. [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, Michigan 48824 (United States)] [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, Michigan 48824 (United States)

    2014-02-15

    In this paper we describe the first systematic measurement of beam neutralization (space charge compensation) in the ECR low energy transport line with a retarding field analyzer, which can be used to measure the potential of the beam. Expected trends for the space charge compensation levels such as increase with residual gas pressure, beam current, and beam density could be observed. However, the overall levels of neutralization are consistently low (<60%). The results and the processes involved for neutralizing ion beams are discussed for conditions typical for ECR injector beam lines. The results are compared to a simple theoretical beam plasma model as well as simulations.

  15. Electricity Bill Savings from Residential Photovoltaic Systems: Sensitivities to Changes in Future Electricity Market Conditions

    SciTech Connect (OSTI)

    Darghouth, Naim; Barbose, Galen; Wiser, Ryan

    2013-01-09

    This scoping study investigates the impact of, and interactions among, three key sources of uncertainty in the future value of bill savings from customer-sited PV, focusing in particular on residential customers. These three sources of uncertainty are: changes to electricity market conditions that would affect retail electricity prices, changes to the types of retail rate structures available to residential customers with PV, and shifts away from standard net-metering toward other compensation mechanisms for residential PV. We investigate the impact of a range of electricity market scenarios on retail electricity prices and rate structures, and the resulting effects on the value of bill savings from PV. The scenarios include various levels of renewable and solar energy deployment, high and low natural gas prices, the possible introduction of carbon pricing, and greater or lesser reliance on utility-scale storage and demand response. We examine the bill savings from PV with time-invariant, flat residential retail rates, as well as with time-varying retail rates, including time-of-use (TOU) rates and real-time pricing (RTP). In addition, we explore a flat rate with increasing-block pricing (IBP). We evaluate the bill savings from PV with net metering, as currently allowed in many states, as well as scenarios with hourly netting, a partial form of net metering. This scoping study is the first known effort to evaluate these types of interactions in a reasonably comprehensive fashion, though by no means have we considered every possible change to electricity market conditions, retail rate structures, or PV compensation mechanisms. It focuses solely on the private value of bill savings for residential PV and does not seek to quantify the broader social or economic cost or value of solar electricity. Our analysis applies assumptions based loosely on California’s electricity market in a future year (2030); however, it is neither intended to forecast California’s future market, nor are our conclusions intended to have implications specific only to the California market. That said, some of the findings are unique to our underlying assumptions, as described further within the main body of the report, along with other key limitations.

  16. W. Bill Booth Bruce A. Measure

    E-Print Network [OSTI]

    for electricity and fuels, causing less energy use in the winter and more in the summer. Climate change policies generation and affect salmon through reduced summer flows and higher water temperatures. In response a case based on the principles of the Act and comparing it to a case based on current climate change

  17. Assembly Bill No. 2791 CHAPTER 253

    E-Print Network [OSTI]

    customer to finance all of the upfront costs for the purchase and installation of a combined heat and power to purchase excess electricity, as defined, from any customer of the electrical corporation that is delivered by a combined heat and power system, as defined, that complies with the sizing, energy efficiency, and air

  18. W. Bill Booth Bruce A. Measure

    E-Print Network [OSTI]

    , incremental hydropower production is an increased amount of carbon free generation that has value for others incrementally increased hydropower energy production. The environmental programs provide some of the highest. Chelan County PUD's balanced approach to protecting fish and increasing hydropower production

  19. Senate Bill No. 1036 CHAPTER 685

    E-Print Network [OSTI]

    Portfolio Standard Program. The renewables portfolio standard program requires that a retail seller of total kilowatthours sold to retail end-use customers each calendar year (renewables portfolio standard markets, and renewable energy resources. Existing law establishes the Renewable Resource Trust Fund

  20. Element- and charge-state-resolved ion energies in the cathodic arc plasma from composite AlCr cathodes in argon, nitrogen and oxygen atmospheres

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Franz, Robert; Polcik, Peter; Anders, André

    2015-06-01

    The energy distribution functions of ions in the cathodic arc plasma using composite AlCr cathodes were measured as a function of the background gas pressure in the range 0.5 to 3.5 Pa for different cathode compositions and gas atmospheres. The most abundant aluminium ions were Al+ regardless of the background gas species, whereas Cr2+ ions were dominating in Ar and N2 and Cr+ in O2 atmospheres. The energy distributions of the aluminium and chromium ions typically consisted of a high-energy fraction due to acceleration in the expanding plasma plume from the cathode spot and thermalised ions that were subjected tomore »collisions in the plasma cloud. The fraction of the latter increased with increasing background gas pressure. Atomic nitrogen and oxygen ions showed similar energy distributions as the aluminium and chromium ions, whereas the argon and molecular nitrogen and oxygen ions were formed at greater distance from the cathode spot and thus less subject to accelerating gradients. In addition to the positively charged metal and gas ions, negatively charged oxygen and oxygen-containing ions were observed in O2 atmosphere. The obtained results are intended to provide a comprehensive overview of the ion energies and charge states in the arc plasma of AlCr composite cathodes in different gas atmospheres as such plasmas are frequently used to deposit thin films and coatings.« less

  1. Magnetic discrimination that will satisfy regulators? Stephen D. Billings1

    E-Print Network [OSTI]

    Oldenburg, Douglas W.

    Magnetic discrimination that will satisfy regulators? Stephen D. Billings1 , John M. Stanley2 Montana Army National Guard, P.O. Box 4789, Helena, Montana, 59604 Abstract Discrimination that are not too adverse, we believe that discrimination using magnetics can be structured in a way that would

  2. Type or print clearly:1 NAME:__Bill Burgos___________________________________________________________2

    E-Print Network [OSTI]

    Burgos, William

    1 Type or print clearly:1 NAME:__Bill Burgos-863-7304_____________6 E-MAIL :__wdb3@psu.edu_______________________________7 Type of presentation: Oral _X_ Poster ____8 of Engineering and Applied Sciences, Cambridge,22 ABSTRACT23 Coal mine drainage (CMD) is the single greatest

  3. Food Stamp Challenge By Bill Menke, November 3, 2013

    E-Print Network [OSTI]

    Menke, William

    Food Stamp Challenge By Bill Menke, November 3, 2013 Co-parishioner Laurie Hilton suggested that I and the other members of the Palisades Presbyterian Church live for a week on the thirty-five dollars that Food of my low budget of five dollars per day. I purchased most of my food at a local supermarket, in walking

  4. The Island Metaphor Bill Tomlinson, Eric Baumer, Man Lok Yau

    E-Print Network [OSTI]

    Tomlinson, Bill

    , ebaumer, mlyau } @uci.edu Abstract This paper presents an "Island Metaphor" for interactions with systems of a software system. The Island Metaphor is not applicable to, nor appropriate for, every system. HoweverThe Island Metaphor Bill Tomlinson, Eric Baumer, Man Lok Yau University of California, Irvine { wmt

  5. CONSIDER BEEKEEPING IN INDIANA Bill Fischang, Professor of Entomology

    E-Print Network [OSTI]

    Pittendrigh, Barry

    CONSIDER BEEKEEPING IN INDIANA Bill Fischang, Professor of Entomology drone queen worker. A colony is comprised of three distinct forms of adult bees; workers, queen and drones. Workers. The large, lumbering drones are produced in a colony only during the warm months. Drones are males whose

  6. Novel Energy Sources -Material Architecture and Charge Transport in Solid State Ionic Materials for Rechargeable Li ion Batteries

    SciTech Connect (OSTI)

    Katiyar, Ram S; Gómez, M; Majumder, S B; Morell, G; Tomar, M S; Smotkin, E; Bhattacharya, P; Ishikawa, Y

    2009-01-19

    Since its introduction in the consumer market at the beginning of 1990s by Sony Corporation ‘Li-ion rechargeable battery’ and ‘LiCoO2 cathode’ is an inseparable couple for highly reliable practical applications. However, a separation is inevitable as Li-ion rechargeable battery industry demand more and more from this well serving cathode. Spinel-type lithium manganate (e.g., LiMn2O4), lithium-based layered oxide materials (e.g., LiNiO2) and lithium-based olivine-type compounds (e.g., LiFePO4) are nowadays being extensively studied for application as alternate cathode materials in Li-ion rechargeable batteries. Primary goal of this project was the advancement of Li-ion rechargeable battery to meet the future demands of the energy sector. Major part of the research emphasized on the investigation of electrodes and solid electrolyte materials for improving the charge transport properties in Li-ion rechargeable batteries. Theoretical computational methods were used to select electrodes and electrolyte material with enhanced structural and physical properties. The effect of nano-particles on enhancing the battery performance was also examined. Satisfactory progress has been made in the bulk form and our efforts on realizing micro-battery based on thin films is close to give dividend and work is progressing well in this direction.

  7. Phase-separated high-temperature-annealed (Ga,Mn)As: A negative charge-transfer-energy material

    E-Print Network [OSTI]

    Moreno, M

    2011-01-01

    The approximate location in the Zaanen-Sawatzky-Allen diagram of the phase-separated (Ga,Mn)As material, consisting of MnAs nanoclusters embedded in GaAs, is determined on the basis of configuration-interaction (CI) cluster-model analysis of their Mn 2p core-level photoemission. The composite material is found to belong to the special class of materials with negative charge-transfer energy (delta). As such, its metallic or insulating/semiconducting behavior depends on the strength of the p-d hybridization (affected by strain) relative to the (size-dependent) p-bandwidth. Whereas internal strain in the embedded clusters counteracts gap opening, a metal-to-semiconductor transition is expected to occur for decreasing cluster size, associated to the opening of a small gap of p-p type (covalent gap). The electronic properties of homogeneous and phase-separated (Ga,Mn)As materials are analyzed, with emphasis on the nature of their metal-insulator transitions.

  8. Duplicate diploma fee charged to BruinBill account E-mail address required below

    E-Print Network [OSTI]

    Williams, Gary A.

    country city state Zip/Postal code Province (canada only) Telephone e-mail Address Birthdate 9-Digit Ucl that the duplicate diploma will bear the signatures of the current officials of the state and the University. #12;

  9. AVTA: EVSE Testing - NYSERDA Electric Vehicle Charging Infrastructure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2013 - data October - December 2013 - data More Documents & Publications AVTA: ChargePoint America Recovery Act Charging Infrastructure Reports AVTA: 2013 Ford C-Max Energi...

  10. New Energy Efficiency Standards for Microwave Ovens to Save Consumers...

    Broader source: Energy.gov (indexed) [DOE]

    today that the Energy Department has finalized new energy efficiency standards for microwave ovens that will save consumers nearly 3 billion on their energy bills through 2030....

  11. Competition Helps Kids Learn About Energy and Save Their Households...

    Broader source: Energy.gov (indexed) [DOE]

    next school year that challenges students to learn about energy, develop techniques for saving energy, and help their families save money on their energy bills. America's Home...

  12. A User Programmable Battery Charging System 

    E-Print Network [OSTI]

    Amanor-Boadu, Judy M

    2013-05-07

    , have to be replenished or recharged once their energy is depleted. Battery charging systems must perform this replenishment by using very fast and efficient methods to extend battery life and to increase periods between charges. In this regard...

  13. The Red-billed Quelea in southern Africa: primary moult and the rainfall migration model

    E-Print Network [OSTI]

    de Villiers, Marienne

    Chapter 4 The Red-billed Quelea in southern Africa: primary moult and the rainfall migration model #12;74 #12;75 The Red-billed Quelea in southern Africa: primary moult and the rainfall migration model Abstract The onset and duration of primary moult were investigated for Red-billed Quelea Quelea quelea

  14. Briefing on the Medical Innovation Bill House of Lords Committee Stage 24 October 2014

    E-Print Network [OSTI]

    Rambaut, Andrew

    Briefing on the Medical Innovation Bill House of Lords Committee Stage ­ 24 October 2014 Patients need access to innovative, safe and effective treatments in a timely manner, and we therefore support the intention behind the Medical Innovation Bill. However, we have concerns over whether the Bill as drafted

  15. Holographic thermalization of charged operators

    E-Print Network [OSTI]

    Alejandro Giordano; Nicolas E. Grandi; Guillermo A. Silva

    2014-12-26

    We study a light-like charged collapsing shell in AdS-Reissner-Nordstrom spacetime, investigating whether the corresponding Vaidya metric is supported by matter that satisfies the null energy condition. We find that, if the absolute value of the charge decreases during the collapse, energy conditions are fulfilled everywhere in spacetime. On the other hand, if the absolute value of the charge increases, the metric does not satisfy energy conditions in the IR region. Therefore, from the gauge/gravity perspective, this last case is only useful to study the thermalization of the UV degrees of freedom. For all these geometries, we probe the thermalization process with two point correlators of charged operators, finding that the thermalization time grows with the charge of the operator, as well as with the dimension of space.

  16. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Bill 221 of 2013 authorizes local governments to adopt Commercial* Property Assessed Clean Energy (C-PACE) financing programs. C-PACE allows property owners to finance energy...

  17. New Energy Efficiency Standards for Commercial Refrigeration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Commercial Refrigeration Equipment to Cut Businesses' Energy Bills and Carbon Pollution New Energy Efficiency Standards for Commercial Refrigeration Equipment to Cut...

  18. Stronger Manufacturers' Energy Efficiency Standards for Residential...

    Broader source: Energy.gov (indexed) [DOE]

    into, the United States. "Homeowners who choose to buy more energy-efficient air conditioning systems after today will realize significant savings in their energy bills and...

  19. Southeast Energy Efficiency Alliance Launches Finance Network...

    Energy Savers [EERE]

    Southeast Energy Efficiency Alliance Launches Finance Network Southeast Energy Efficiency Alliance Launches Finance Network Photo of two hands holding dollar bills shaped like a...

  20. Randolph EMC- Energy Efficient Home Discount Program

    Broader source: Energy.gov [DOE]

    Randolph Electric Membership Corporation offers a special electric bill discount to members who increase the energy efficiency of homes through the Energy Efficient Home Discount Program. Members...

  1. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Clean Energy Finance and Investment Authority (CEFIA) must consult with electric distribution companies and gas companies to develop a residential clean energy on-bill repayment...

  2. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Geothermal Direct-Use, Anaerobic Digestion, Fuel Cells using Renewable Fuels Clean Energy On-Bill Financing By April 1, 2014, the Energy Conservation Management Board and the...

  3. How Much Can a Campus Save on Utility Bills by Turning a 5-Workday Week into a 4-Workday Week? 

    E-Print Network [OSTI]

    Zhou, J.; Wei, G.; Giebler, T.; Turner, W. D.

    2003-01-01

    hours during workdays. This paper analyzes the potential energy cost savings of this approach for three real cases. The savings can be largely estimated by comparing whole-campus electricity consumptions between typical weekdays and weekends... typical holiday schedule) during the weekend periods are presented. The potential savings opportunities were from 0.32% to 1.53% of the annual electricity bills for different universities. INTRODUCTION Several universities within the Texas A...

  4. Conservation of Energy and Water Use in State Buildings

    Broader source: Energy.gov [DOE]

    Senate Bill 668 of 2007 and Senate Bill 1946 of 2008 established several policies which will reduce the amount of energy, water and other resources consumed by the State government in their...

  5. Forward energy flow, central charged-particle multiplicities, and pseudorapidity gaps in W and Z boson events from pp collisions at $\\sqrt{s}= 7$ TeV

    SciTech Connect (OSTI)

    Chatrchyan, Serguei; et al.

    2012-01-01

    A study of forward energy flow and central charged-particle multiplicity in events with W and Z bosons decaying into leptons is presented. The analysis uses a sample of 7 TeV pp collisions, corresponding to an integrated luminosity of 36 inverse picobarns, recorded by the CMS experiment at the LHC. The observed forward energy depositions, their correlations, and the central charged-particle multiplicities are not well described by the available non-diffractive soft-hadron production models. A study of about 300 events with no significant energy deposited in one of the forward calorimeters, corresponding to a pseudorapidity gap of at least 1.9 units, is also presented. An indication for a diffractive component in these events comes from the observation that the majority of the charged leptons from the (W/Z) decays are found in the hemisphere opposite to the gap. When fitting the signed lepton pseudorapidity distribution of these events with predicted distributions from an admixture of diffractive (POMPYT) and non-diffractive (PYTHIA) Monte Carlo simulations, the diffractive component is determined to be (50.0 +/- 9.3 (stat.) +/- 5.2 (syst.))%.

  6. Charge-state-resolved ion energy distribution functions of cathodic vacuum arcs: A study involving the plasma potential and biased plasmas

    SciTech Connect (OSTI)

    Anders, Andre; Oks, Efim

    2007-02-15

    Charge-state-resolved ion energy distribution functions were measured for pulsed cathodic arcs taking the sheath into account that formed between the plasma and the entrance of a combined energy and mass spectrometer. An electron emitting probe was employed to independently determine the plasma potential. All results were obtained by averaging over several individual measurements because the instantaneous energy distributions and the plasma potential show large amplitude fluctuations due to the explosive nature of the arc plasma generation. It was found that the ion energy distribution functions in the plasma were independent of the ion charge state. This is in contrast to findings with continuously operating, direct-current arcs that employ a magnetic field at the cathode to steer the cathode spot motion. The different findings indicate the important role of the magnetic steering field for the plasma properties of direct-current arcs. The results are further supported by experiments with 'biased plasmas' obtained by shifting the potential of the anode. Finally, it was shown that the ion energy distributions were broader and shifted to higher energy at the beginning of each arc pulse. The characteristic time for relaxation to steady state distributions is about 100 {mu}s.

  7. Negative Electron Binding Energies Observed in a Triply Charged Anion: Photoelectron Spectroscopy of 1-Hydroxy-3, 6, 8-Pyrene-Trisulfonate

    SciTech Connect (OSTI)

    Yang, Jie; Xing, Xiaopeng; Wang, Xue B.; Wang, Lai S.; Sergeeva, Alina P.; Boldyrev, Alexander I.

    2008-03-07

    We report the observation of negative electron binding energies in a triply charged anion, 1-hydroxy-3,6,8-pyrene-trisulfonate (HPTS3–). Low-temperature photoelectron spectra were obtained for HPTS3– at several photon energies, revealing three detachment features below 0 electron binding energy. The HPTS3– trianion was measured to possess a negative electron binding of -0.66 eV. Despite the relatively high excess energy stored in HPTS3–, it was observed to be a long-lived anion due to its high repulsive Coulomb barrier (~3.3 eV), which prevents spontaneous electron emission. Theoretical calculations were carried out, which confirmed the negative electron binding energies observed. The calculations further showed that the highest occupied molecular orbital in HPTS3– is an anti-bonding ? orbital on the pyrene rings, followed by lone pair electrons in the peripheral –SO3– groups. Negative electron binding energy is a unique feature of multiply-charged anions due to the presence of the repulsive Coulomb barrier. Such metastable species may be good models to study electron-electron and vibronic interactions in complex molecules.

  8. The electrically charged universe

    E-Print Network [OSTI]

    Michael Düren

    2012-01-31

    The paper discusses the possibility of a universe that is not electrically neutral but has a net positive charge. It is claimed that such a universe contains a homogeneous distribution of protons that are not bound to galaxies and fill up the intergalactic space. This proton `gas' charges macroscopic objects like stars and planets, but it does not generate electrostatic or magnetic fields that affect the motion of these bodies significantly. However, the proton gas may contribute significantly to the total dark matter of the universe and its electrostatic potential may contribute to the dark energy and to the expansion of the universe.

  9. The effects of House Bill 72 on Texas Public Schools 

    E-Print Network [OSTI]

    Reed, Rhonda Gail

    1987-01-01

    , what the legislator is expected to do, and how the legislation will affect the district . Timing is important. Letters should be written early, before the legislators make up their minds. It is easier to convince an undecided person than..., address and hometown within their legislative district. The bill should be identified by name and number, and the caller should state briefly the position held and state 10 how the legislator is urged to vote. The caller should ask for the legislator...

  10. A Home Cooling Strategy for Lower Energy Bills | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    air conditioner has difficulty achieving low humidity, consider adding a dehumidifying heat pipe as a retrofit to your system. For room or window air conditioners, inspect the...

  11. Comparison Groups on Bills: Automated, Personalized Energy Information

    E-Print Network [OSTI]

    alternative criteria: house characteristics (floor area, housing type and heating fuel); street; meter read, such as entire cycle, entire meter book, or single house characteristics such as floor area, resulted in poor

  12. Comparison groups on bills: Automated, personalized energy information

    E-Print Network [OSTI]

    Iyer, Maithili

    2008-01-01

    characteristics (floor area, housing type and heating fuel);at least floor area, house type, and heating fuel. Although0% N/A. Floor area Date built Heating fuel Differences

  13. Dr. Bill Brinkman: Working Towards Greater Energy Security | Princeton

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submit theCovalentLaboratory |Sector FullDOE Office10 Jan2 In theArunPlasma

  14. An Intelligent Solar Powered Battery Buffered EV Charging Station with Solar Electricity Forecasting and EV Charging Load Projection Functions

    E-Print Network [OSTI]

    Zhao, Hengbing; Burke, Andrew

    2014-01-01

    PV energy used for EV charging and reducing grid peak power7. Measured PV power and EV charging load Fig. 6. Chargingthe measured PV power and EV charging load. The actual grid

  15. RDI's Wisdom Way Solar Village Final Report: Includes Utility Bill Analysis of Occupied Homes

    SciTech Connect (OSTI)

    Robb Aldrich, Steven Winter Associates

    2011-07-01

    In 2010, Rural Development, Inc. (RDI) completed construction of Wisdom Way Solar Village (WWSV), a community of ten duplexes (20 homes) in Greenfield, MA. RDI was committed to very low energy use from the beginning of the design process throughout construction. Key features include: 1. Careful site plan so that all homes have solar access (for active and passive); 2. Cellulose insulation providing R-40 walls, R-50 ceiling, and R-40 floors; 3. Triple-pane windows; 4. Airtight construction (~0.1 CFM50/ft2 enclosure area); 5. Solar water heating systems with tankless, gas, auxiliary heaters; 6. PV systems (2.8 or 3.4kWSTC); 7. 2-4 bedrooms, 1,100-1,700 ft2. The design heating loads in the homes were so small that each home is heated with a single, sealed-combustion, natural gas room heater. The cost savings from the simple HVAC systems made possible the tremendous investments in the homes' envelopes. The Consortium for Advanced Residential Buildings (CARB) monitored temperatures and comfort in several homes during the winter of 2009-2010. In the Spring of 2011, CARB obtained utility bill information from 13 occupied homes. Because of efficient lights, appliances, and conscientious home occupants, the energy generated by the solar electric systems exceeded the electric energy used in most homes. Most homes, in fact, had a net credit from the electric utility over the course of a year. On the natural gas side, total gas costs averaged $377 per year (for heating, water heating, cooking, and clothes drying). Total energy costs were even less - $337 per year, including all utility fees. The highest annual energy bill for any home evaluated was $458; the lowest was $171.

  16. DC power supply for charging of a 12 KV 200 KJ energy storage capacitor battery of a 500 KA pulse system for the magnetic horn and reflectors of the CERN neutrino beam

    E-Print Network [OSTI]

    Langeseth, B

    1968-01-01

    DC power supply for charging of a 12 KV 200 KJ energy storage capacitor battery of a 500 KA pulse system for the magnetic horn and reflectors of the CERN neutrino beam

  17. Energy Department Announces New Energy Efficiency Financing Publicatio...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and non-residential properties. Entitled "Financing Energy Improvements on Utility Bills: Market Updates and Key Program Design Considerations for Policymakers and Administrators"...

  18. Decoherence and Energy Relaxation in the Quantum-Classical Dynamics for Charge Transport in Organic Semiconducting Crystals: an Instantaneous Decoherence Correction Approach

    E-Print Network [OSTI]

    Si, Wei

    2015-01-01

    We explore an instantaneous decoherence correction (IDC) approach for the decoherence and energy relaxation in the quantum-classical dynamics of charge transport in organic semiconducting crystals. These effects, originating from environmental fluctuations, are essential ingredients of the carrier dynamics. The IDC is carried out by measurement-like operations in the adiabatic representation. While decoherence is inherent in the IDC, energy relaxation is taken into account by considering the detailed balance through the introduction of energy-dependent reweighing factors, which could be either Boltzmann (IDC-BM) or Miller-Abrahams (IDC-MA) type. For a non-diagonal electron-phonon coupling model, it is shown that the IDC tends to enhance diffusion while energy relaxation weakens this enhancement. As expected, both the IDC-BM and IDC-MA achieve a near-equilibrium distribution at finite temperatures in the diffusion process, while the Ehrenfest dynamics renders system tending to infinite temperature limit. The r...

  19. Flat Plate PV Module Eligibility Listing Procedure Updated 6/2/14 Senate Bill 1 (SB1) defines the solar incentive programs for California, and flat plate PV

    E-Print Network [OSTI]

    Flat Plate PV Module Eligibility Listing Procedure Updated 6/2/14 Senate Bill 1 (SB1) defines the solar incentive programs for California, and flat plate PV modules 1 must be listed on the SB1 for adding PV modules to the SB1 list is as follows: 1 . Data submitted to the Energy Commission

  20. Managing Increased Charging Demand

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Managing Increased Charging Demand Carrie Giles ICF International, Supporting the Workplace Charging Challenge Workplace Charging Challenge Do you already own an EV? Are you...