Sample records for big hill deep

  1. Analysis of Subsidence Data for the Big Hill Site, Texas

    SciTech Connect (OSTI)

    Bauer, Stephen J.

    1999-06-01T23:59:59.000Z

    The elevation change data measured at the Big Hill SPR site over the last 10 years has been studied and a model utilized to project elevation changes into the future. The subsidence rate at Big Hill is low in comparison with other Strategic Petroleum Reserve sites and has decreased with time due to the maintenance of higher operating pressures and the normal decrease in creep closure rate of caverns with time. However, the subsidence at the site is projected to continue. A model was developed to project subsidence values 20 years into the future; no subsidence related issues are apparent from these projections.

  2. Three dimensional simulation for Big Hill Strategic Petroleum Reserve (SPR).

    SciTech Connect (OSTI)

    Ehgartner, Brian L. (Sandia National Laboratories, Albuquerque, NM); Park, Byoung Yoon; Sobolik, Steven Ronald (Sandia National Laboratories, Albuquerque, NM); Lee, Moo Yul (Sandia National Laboratories, Albuquerque, NM)

    2005-07-01T23:59:59.000Z

    3-D finite element analyses were performed to evaluate the structural integrity of caverns located at the Strategic Petroleum Reserve's Big Hill site. State-of-art analyses simulated the current site configuration and considered additional caverns. The addition of 5 caverns to account for a full site and a full dome containing 31 caverns were modeled. Operations including both normal and cavern workover pressures and cavern enlargement due to leaching were modeled to account for as many as 5 future oil drawdowns. Under the modeled conditions, caverns were placed very close to the edge of the salt dome. The web of salt separating the caverns and the web of salt between the caverns and edge of the salt dome were reduced due to leaching. The impacts on cavern stability, underground creep closure, surface subsidence and infrastructure, and well integrity were quantified. The analyses included recently derived damage criterion obtained from testing of Big Hill salt cores. The results show that from a structural view point, many additional caverns can be safely added to Big Hill.

  3. Strategic Petroleum Reserve (SPR) geological site characterization report, Big Hill Salt Dome

    SciTech Connect (OSTI)

    Hart, R.J.; Ortiz, T.S.; Magorian, T.R.

    1981-09-01T23:59:59.000Z

    Geological and geophysical analyses of the Big Hill Salt Dome were performed to determine the suitability of this site for use in the Strategic Petroleum Reserve (SPR). Development of 140 million barrels (MMB) of storage capacity in the Big Hill Salt Dome is planned as part of the SPR expansion to achieve 750 MMB of storage capacity. Objectives of the study were to: (1) Acquire, evaluate, and interpret existing data pertinent to geological characterization of the Big Hill Dome; (2) Characterize the surface and near-surface geology and hydrology; (3) Characterize the geology and hydrology of the overlying cap rock; (4) Define the geometry and geology of the dome; (5) Determine the feasibility of locating and constructing 14 10-MMB storage caverns in the south portion of the dome; and (6) Assess the effects of natural hazards on the SPR site. Recommendations are included. (DMC)

  4. U.S. strategic petroleum reserve Big Hill 114 leak analysis 2012.

    SciTech Connect (OSTI)

    Lord, David L.; Roberts, Barry L.; Lord, Anna C. Snider; Sobolik, Steven Ronald; Park, Byoung Yoon; Rudeen, David Keith [GRAM, Inc., Albuquerque, NM

    2013-06-01T23:59:59.000Z

    This report addresses recent well integrity issues related to cavern 114 at the Big Hill Strategic Petroleum Reserve site. DM Petroleum Operations, M&O contractor for the U.S. Strategic Petroleum Reserve, recognized an apparent leak in Big Hill cavern well 114A in late summer, 2012, and provided written notice to the State of Texas as required by law. DM has since isolated the leak in well A with a temporary plug, and is planning on remediating both 114 A- and B-wells with liners. In this report Sandia provides an analysis of the apparent leak that includes: (i) estimated leak volume, (ii) recommendation for operating pressure to maintain in the cavern between temporary and permanent fixes for the well integrity issues, and (iii) identification of other caverns or wells at Big Hill that should be monitored closely in light of the sequence of failures there in the last several years.

  5. Conversion of the Big Hill geological site characterization report to a three-dimensional model.

    SciTech Connect (OSTI)

    Stein, Joshua S.; Rautman, Christopher Arthur

    2003-02-01T23:59:59.000Z

    The Big Hill salt dome, located in southeastern Texas, is home to one of four underground oil-storage facilities managed by the U. S. Department of Energy Strategic Petroleum Reserve (SPR) Program. Sandia National Laboratories, as the geotechnical advisor to the SPR, conducts site-characterization investigations and other longer-term geotechnical and engineering studies in support of the program. This report describes the conversion of two-dimensional geologic interpretations of the Big Hill site into three-dimensional geologic models. The new models include the geometry of the salt dome, the surrounding sedimentary units, mapped faults, and the 14 oil storage caverns at the site. This work provides a realistic and internally consistent geologic model of the Big Hill site that can be used in support of future work.

  6. Laboratory evaluation of damage criteria and permeability of Big Hill salt.

    SciTech Connect (OSTI)

    Ehgartner, Brian L.; Park, Byoung Yoon; Lee, Moo Yul; Bronowski, David R.

    2004-11-01T23:59:59.000Z

    To establish strength criteria of Big Hill salt, a series of quasi-static triaxial compression tests have been completed. This report summarizes the test methods, set-up, relevant observations, and results. The triaxial compression tests established dilatant damage criteria for Big Hill salt in terms of stress invariants (I{sub 1} and J{sub 2}) and principal stresses ({sigma}{sub a,d} and {sigma}{sub 3}), respectively: {radical}J{sub 2}(psi) = 1746-1320.5 exp{sup -0.00034I{sub 1}(psi)}; {sigma}{sub a,d}(psi) = 2248 + 1.25 {sigma}{sub 3} (psi). For the confining pressure of 1,000 psi, the dilatant damage strength of Big Hill salt is identical to the typical salt strength ({radical}J{sub 2} = 0.27 I{sub 1}). However, for higher confining pressure, the typical strength criterion overestimates the damage strength of Big Hill salt.

  7. Environmental assessment for the Strategic Petroleum Reserve Big Hill facility storage of commercial crude oil project, Jefferson County, Texas

    SciTech Connect (OSTI)

    NONE

    1999-03-01T23:59:59.000Z

    The Big Hill SPR facility located in Jefferson County, Texas has been a permitted operating crude oil storage site since 1986 with benign environmental impacts. However, Congress has not authorized crude oil purchases for the SPR since 1990, and six storage caverns at Big Hill are underutilized with 70 million barrels of available storage capacity. On February 17, 1999, the Secretary of Energy offered the 70 million barrels of available storage at Big Hill for commercial use. Interested commercial users would enter into storage contracts with DOE, and DOE would receive crude oil in lieu of dollars as rental fees. The site could potentially began to receive commercial oil in May 1999. This Environmental Assessment identified environmental changes that potentially would affect water usage, power usage, and air emissions. However, as the assessment indicates, changes would not occur to a major degree affecting the environment and no long-term short-term, cumulative or irreversible impacts have been identified.

  8. Summary of Degas II performance at the US Strategic Petroleum Reserve Big Hill site.

    SciTech Connect (OSTI)

    Rudeen, David K. (GRAM, Inc., Albuquerque, NM); Lord, David L.

    2007-10-01T23:59:59.000Z

    Crude oil stored at the US Strategic Petroleum Reserve (SPR) requires mitigation procedures to maintain oil vapor pressure within program delivery standards. Crude oil degasification is one effective method for lowering crude oil vapor pressure, and was implemented at the Big Hill SPR site from 2004-2006. Performance monitoring during and after degasification revealed a range of outcomes for caverns that had similar inventory and geometry. This report analyzed data from SPR degasification and developed a simple degas mixing (SDM) model to assist in the analysis. Cavern-scale oil mixing during degassing and existing oil heterogeneity in the caverns were identified as likely causes for the range of behaviors seen. Apparent cavern mixing patterns ranged from near complete mixing to near plug flow, with more mixing leading to less efficient degassing due to degassed oil re-entering the plant before 100% of the cavern oil volume was processed. The report suggests that the new cavern bubble point and vapor pressure regain rate after degassing be based on direct in-cavern measurements after degassing as opposed to using the plant outlet stream properties as a starting point, which understates starting bubble point and overstates vapor pressure regain. Several means to estimate the cavern bubble point after degas in the absence of direct measurement are presented and discussed.

  9. Interface modeling to predict well casing damage for big hill strategic petroleum reserve.

    SciTech Connect (OSTI)

    Ehgartner, Brian L.; Park, Byoung Yoon

    2012-02-01T23:59:59.000Z

    Oil leaks were found in well casings of Caverns 105 and 109 at the Big Hill Strategic Petroleum Reserve site. According to the field observations, two instances of casing damage occurred at the depth of the interface between the caprock and top of salt. This damage could be caused by interface movement induced by cavern volume closure due to salt creep. A three dimensional finite element model, which allows each cavern to be configured individually, was constructed to investigate shear and vertical displacements across each interface. The model contains interfaces between each lithology and a shear zone to examine the interface behavior in a realistic manner. This analysis results indicate that the casings of Caverns 105 and 109 failed by shear stress that exceeded shear strength due to the horizontal movement of the top of salt relative to the caprock, and tensile stress due to the downward movement of the top of salt from the caprock, respectively. The casings of Caverns 101, 110, 111 and 114, located at the far ends of the field, are predicted to be failed by shear stress in the near future. The casings of inmost Caverns 107 and 108 are predicted to be failed by tensile stress in the near future.

  10. A validation test for Adagio through replication of Big Hill and Bayou Choctaw JAS3D models.

    SciTech Connect (OSTI)

    Park, Byoung Yoon

    2013-06-01T23:59:59.000Z

    JAS3D, a three dimensional iterative solid mechanics code, has been used for structural analyses for the Strategic Petroleum Reserve system since the 1990s. JAS3D is no longer supported by Sandia National Laboratories, and has been replaced by Adagio. To validate the transition from JAS3D to Adagio, the existing JAS3D input decks and user subroutines for Bayou Choctaw and Big Hill models were converted for use with Adagio. The calculation results from the Adagio runs are compared to the JAS3D. Since the Adagio results are very similar to the JAS3D results, Adagio is judged to be performing satisfactorily.

  11. Joint NSRC Workshop 2015: Big, Deep, and Smart Data Analytics...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Break 11:00 - 12:30 Morning session 2 T4 (i): E. Stach (BNL), Creating a Big Data Ecosystem at the Brookhaven National Laboratory: Successes, challenges and needs T5 (i): J....

  12. Anomalous zones in Gulf Coast Salt domes with special reference to Big Hill, TX, and Weeks Island, LA

    SciTech Connect (OSTI)

    Neal, J.T. [Sandia National Labs., Albuquerque, NM (United States); Magorian, T.R. [Magorian (Thomas R.), Amherst, NY (United States); Thoms, R.L. [AGM, Inc., College Station, TX (United States); Autin, W.J.; McCulloh, R.P. [Louisiana Geological Survey, Baton Rouge, LA (United States); Denzler, S.; Byrne, K.O. [Acres International Corp., Amherst, NY (United States)

    1993-07-01T23:59:59.000Z

    Anomalous features in Gulf Coast Salt domes exhibit deviations from normally pure salt and vary widely in form from one dome to the next, ranging considerably in length and width. They have affected both conventional and solution mining in several ways. Gas outbursts, insolubles, and potash (especially carnallite) have led to the breakage of tubing in a number of caverns, and caused irregular shapes of many caverns through preferential leaching. Such anomalous features essentially have limited the lateral extent of conventional mining at several salt mines, and led to accidents and even the closing of several other mines. Such anomalous features, are often aligned in anomalous zones, and appear to be related to diapiric processes of salt dome development. Evidence indicates that anomalous zones are found between salt spines, where the differential salt intrusion accumulates other materials: Anhydrite bands which are relatively strong, and other, weaker impurities. Shear zones and fault displacement detected at Big Hill and Weeks Island domes have not yet had any known adverse impacts on SPR oil storage, but new caverns at these sites conceivably may encounter some potentially adverse conditions. Seismic reflection profiles at Big Hill dome have shown numerous fractures and faults in the caprock, and verified the earlier recognition of a major shear zone transecting the entire salt stock and forming a graben in the overlying caprock. Casing that is placed in such zones can be at risk. Knowledge of these zones should create awareness of possible effects rather than preclude the future emplacement of caverns. To the extent possible, major anomalous zones and salt stock boundaries should be avoided. Shear zones along overhangs may be particularly hazardous, and otherwise unknown valleys in the top of salt may occur along shear zones. These zones often can be mapped geophysically, especially with high-resolution seismic techniques.

  13. Significant results of deep drilling at Elk Hills, Kern County, California

    SciTech Connect (OSTI)

    Fishburn, M.D. (Dept. of Energy, Elk Hills, CA (USA))

    1990-05-01T23:59:59.000Z

    Naval Petroleum Reserve 1 (Elk Hills) is located in the southwestern San Joaquin basin one of the most prolific oil-producing areas in the US. Although the basin is in a mature development stage, the presence of favorable structures and high-quality source rocks continue to make the deeper parts of the basin, specifically Elk Hills, an inviting exploration target. Of the three deep tests drilled by the US Department of Energy since 1976, significant geologic results were achieved in two wells. Well 987-25R reached low-grade metamorphic rock at 18,761 ft after penetrating over 800 ft of salt below the Eocene Point of Rocks Sandstone. In well 934-29R, the deepest well in California, Cretaceous sedimentary rocks were encountered at a total depth of 24,426 ft. In well 934-29R several major sand units were penetrated most of which encountered significant gas shows. Minor amounts of gas with no water were produced below 22,000 ft. In addition, production tests at 17,000 ft produced 46{degree} API gravity oil. Geochemical analysis of cores and cuttings indicated that the potential for hydrocarbon generation exists throughout the well and is significant because the possibility of hydrocarbon production exists at a greater depth than previously expected. A vertical seismic profile in the well indicated that basement at this location is at approximately 25,500 ft. Successful drilling of well 934-29R was attributed to the use of an oil-based mud system. The well took 917 days to drill, including 9,560 rotating hr with 134 bits. Bottom-hole temperature was 431{degree}F and pressures were approximately 18,000 psi. The high overburden pressure at 24,000 ft created drilling problems that ultimately led to the termination of drilling at 24,426 ft.

  14. Sonar atlas of caverns comprising the U.S. Strategic Petroleum Reserve. Volume 2, Big Hill Site, Texas.

    SciTech Connect (OSTI)

    Rautman, Christopher Arthur; Lord, Anna Snider

    2007-08-01T23:59:59.000Z

    Downhole sonar surveys from the four active U.S. Strategic Petroleum Reserve sites have been modeled and used to generate a four-volume sonar atlas, showing the three-dimensional geometry of each cavern. This volume 2 focuses on the Big Hill SPR site, located in southeastern Texas. Volumes 1, 3, and 4, respectively, present images for the Bayou Choctaw SPR site, Louisiana, the Bryan Mound SPR site, Texas, and the West Hackberry SPR site, Louisiana. The atlas uses a consistent presentation format throughout. The basic geometric measurements provided by the down-cavern surveys have also been used to generate a number of geometric attributes, the values of which have been mapped onto the geometric form of each cavern using a color-shading scheme. The intent of the various geometrical attributes is to highlight deviations of the cavern shape from the idealized cylindrical form of a carefully leached underground storage cavern in salt. The atlas format does not allow interpretation of such geometric deviations and anomalies. However, significant geometric anomalies, not directly related to the leaching history of the cavern, may provide insight into the internal structure of the relevant salt dome.

  15. Big Science

    ScienceCinema (OSTI)

    Dr. Thomas Zacharia

    2010-01-08T23:59:59.000Z

    Big science seeks big solutions for the most urgent problems of our times. Video courtesy Cray, Inc.

  16. Big Science

    SciTech Connect (OSTI)

    Dr. Thomas Zacharia

    2008-12-01T23:59:59.000Z

    Big science seeks big solutions for the most urgent problems of our times. Video courtesy Cray, Inc.

  17. Cardwell Hills, Lupine Meadows, Bald Hill and

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in Benton County, including Cardwell Hills, Lupine Meadows, Bald Hill and Fitton Green Natural Area. This area has been identi- fied as a key site in the U.S. Fish and Wildlife...

  18. Crunching Solar Numbers: The Big Apple Uses Big Data | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Crunching Solar Numbers: The Big Apple Uses Big Data Crunching Solar Numbers: The Big Apple Uses Big Data The City University of New York (CUNY) and its partners developed an...

  19. Beverly Hills High Emily Bloom

    E-Print Network [OSTI]

    Hwang, Kai

    Students Ali Abadi Beverly Hills High Emily Bloom Bakersfield High Camila Castro Rodriguez Mills E. Godwin High Nafiz'Ammar Fatani Da Vinci Science High Diana Felix San Marino High Karen Girdner

  20. Big Sky Carbon Atlas

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    (Acknowledgment to the Big Sky Carbon Sequestration Partnership (BSCSP); see home page at http://www.bigskyco2.org/)

  1. Inflation over the hill

    E-Print Network [OSTI]

    Konstantinos Tzirakis; William H. Kinney

    2007-06-13T23:59:59.000Z

    We calculate the power spectrum of curvature perturbations when the inflaton field is rolling over the top of a local maximum of a potential. We show that the evolution of the field can be decomposed into a late-time attractor, which is identified as the slow roll solution, plus a rapidly decaying non-slow roll solution, corresponding to the field rolling ``up the hill'' to the maximum of the potential. The exponentially decaying transient solution can map to an observationally relevant range of scales because the universe is also expanding exponentially. We consider the two branches separately and we find that they are related through a simple transformation of the slow roll parameter $\\eta$ and they predict identical power spectra. We generalize this approach to the case where the inflaton field is described by both branches simultaneously and find that the mode equation can be solved exactly at all times. Even though the slow roll parameter $\\eta$ is evolving rapidly during the transition from the transient solution to the late-time attractor solution, the resultant power spectrum is an exact power-law spectrum. Such solutions may be useful for model-building on the string landscape.

  2. GEORGE WATTS HILL ALUMNI CENTER

    E-Print Network [OSTI]

    North Carolina at Chapel Hill, University of

    BR IN KH O U S- BU LLITT CHILLER BUILDING F KENAN STADIUM GEORGE WATTS HILL ALUMNI CENTER EHRINGHAUS FIELD DEPARTMENT OF PUBLIC SAFETY C AR PEN TRY SH O P CHILLER BUILDING NEURO SCIENCES WATER TOWER ITS MANNING CHILLER BUILDING PUBLIC SAFETY BLDG. MORRISON RIDGEROAD EHRINGHAUS BOSHAMER BASEBALL STADIUM

  3. DOE to ship 20,000 b/d of Elk Hills oil to SPR

    SciTech Connect (OSTI)

    Not Available

    1992-05-11T23:59:59.000Z

    This paper reports that the U.S. department of Energy has decided to ship 20,000 b/d of its Elk Hills field production in California to the Strategic Petroleum Reserve on the Gulf Coast. DOE says prices are too low to sell the high quality Elk Hills Stevens zone oil on the California market. It had warned local buyers it might divert the oil to the Gulf Coast. It says shipping the Elk Hills crude to the SPR site at Big Hill, Tex., will save $2/bbl under the price of comparable crude delivered there for storage in the SPR. Pipeline shipments are to begin June 1 and continue for 4 months, totaling about 2.4 million bbl. DOE may or may not continue the shipments, depending on results of the semiannual Elk Hills crude oil sale in September. Reductions in the existing 12 sales contracts will be prorated among buyers. The 20,000 b/d volume is the most that can be shipped from the West Coast to the Gulf Coast through available pipelines.

  4. Black Hills Power- Commercial Energy Efficiency Programs

    Broader source: Energy.gov [DOE]

    Black Hills Power provides rebates for its commercial customers who install energy efficient heat pumps, motors, variable frequency drives, lighting, and water heaters. Custom rebates for approved...

  5. Black Hills Power- Residential Customer Rebate Program

    Broader source: Energy.gov [DOE]

    Black Hills Power offers cash rebates to residential customers who purchase and install energy efficient equipment in their homes. Incentives exist for water heaters, demand control units, air...

  6. WIND DATA REPORT Quincy, Quarry Hills

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Quincy, Quarry Hills 9/1/2006 ­ 11/30/2006 Prepared for Massachusetts Technology.......................................................................................................................... 7 Tower Effects on Measured Wind Speed

  7. WIND DATA REPORT Quincy Quarry Hills

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Quincy Quarry Hills December 2006 to February 2007 Prepared for Massachusetts...................................................................................................................... 9 Wind Speed Time Series........................................................................................................... 10 Wind Speed Distributions

  8. WIND DATA REPORT Quincy Quarry Hills

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Quincy Quarry Hills March 2007 to May 2007 Prepared for Massachusetts Technology...................................................................................................................... 8 Wind Speed Time Series............................................................................................................. 9 Wind Speed Distributions

  9. Microsoft Word - ThurstonHills_CX.docx

    Broader source: Energy.gov (indexed) [DOE]

    Dorie Welch Project Manager - KEWM-4 Proposed Action: Thurston Hills property funding Fish and Wildlife Project No.: 2011-003-00, BPA-007071 Categorical Exclusion Applied (from...

  10. Graham Hill | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), Geothermal TechnologiesGeothermalGo for theEnergyandGraham Hill About

  11. Bull Hill | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:Power LP Biomass Facility Jump to:Brunei:Hill Jump to: navigation,

  12. Laurel Hill | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf Kilauea Volcano,Lakefront Tow Tank JumpLatvia: Energy Resources JumpHill

  13. Trinity Hills | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTri Global Energy LLC Place: Dallas, Texas Zip:Hills Jump to: navigation,

  14. Cedro Hill | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:Power LPInformationCashtonGoCaterpillar JumpCedro Hill Jump to:

  15. Modeling-Computer Simulations At Fenton Hill HDR Geothermal Area...

    Open Energy Info (EERE)

    Modeling-Computer Simulations At Fenton Hill HDR Geothermal Area (Goff & Decker, 1983) Exploration Activity Details Location Fenton Hill HDR Geothermal Area Exploration Technique...

  16. Loess Hills and Southern Iowa Development and Conservation (Iowa)

    Broader source: Energy.gov [DOE]

    The Loess Hills Development and Conservation Authority, the Loess Hills Alliance, and the Southern Iowa Development and Conservation Authority are regional organizations with representatives from...

  17. Big Questions: Missing Antimatter

    ScienceCinema (OSTI)

    Lincoln, Don

    2014-08-07T23:59:59.000Z

    Einstein's equation E = mc2 is often said to mean that energy can be converted into matter. More accurately, energy can be converted to matter and antimatter. During the first moments of the Big Bang, the universe was smaller, hotter and energy was everywhere. As the universe expanded and cooled, the energy converted into matter and antimatter. According to our best understanding, these two substances should have been created in equal quantities. However when we look out into the cosmos we see only matter and no antimatter. The absence of antimatter is one of the Big Mysteries of modern physics. In this video, Fermilab's Dr. Don Lincoln explains the problem, although doesn't answer it. The answer, as in all Big Mysteries, is still unknown and one of the leading research topics of contemporary science.

  18. Before the Big Bang

    ScienceCinema (OSTI)

    Roger Penrose

    2010-09-01T23:59:59.000Z

    The second law of thermodynamics says, in effect, that things get more random as time progresses. Thus, we can deduce that the beginning of the universe - the Big Bang - must have been an extraordinarily precisely organized state. What was the nature of this state? How can such a special state have come about? In Penrose's talk, a novel explanation is suggested.

  19. Black Hills Energy- Solar Power Program

    Broader source: Energy.gov [DOE]

    All incentive payments are subject to the availability of funds and a pre-installation site inspection. Black Hills Energy has established participation caps for each tier. The status of funding ...

  20. Solving Big Problems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclearHomelandMultivariateSite Map Main MenuPortalSolving Big

  1. Big Eddy-Knight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced Materials Find MoreLawrenceDepartment ofBicycle SafetyBig

  2. Big Numbers | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced Materials Find MoreLawrenceDepartment ofBicycle SafetyBigCould

  3. Addressing Big Data

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProducts (VAP) VAP7-0973 1 IntroductionActinideAddingAddress: ~~. . ~L~Big Data

  4. Deep Web Web Deep Web Web

    E-Print Network [OSTI]

    Deep Web 100872 Deep Web Web Deep Web Web Web Deep Web Deep Web TP391 A Uncertain Schema Matching in Deep Web Integration Service JIANG Fang-Jiao MENG Xiao-Feng JIA Lin-Lin (School of Information, Renmin University of China, Beijing, 100872) Abstract: With increasing of Deep Web, providing

  5. Elk Hills: still out in front

    SciTech Connect (OSTI)

    Rintoul, B.

    1982-07-01T23:59:59.000Z

    The producing history and capacity of the Elk Hills Oil and Gas Fields in California are described. Developments in the field are discussed, including waterflooding. The field presently produces ca. 160,000 bpd of oil and 350 mmcfd of natural gas. Gas liquids production totals ca. 683,000 gal/day. Waterflooding is expected to pay an increasingly important role in the production of crude oil. Steaming techniques also are viewed with favor after analysis of results of pilot projects. Exploratory develoment in Elk Hills also continues.

  6. Town of Chapel Hill- Energy Conservation Requirements for Town Buildings

    Broader source: Energy.gov [DOE]

    The Town of Chapel Hill’s energy-conservation ordinance requires that all town-owned buildings be designed to achieve a goal of achieving a Silver level certification as defined by the Green...

  7. Black Hills Energy (Gas)- Residential Energy Efficiency Rebate Programs

    Broader source: Energy.gov [DOE]

    Black Hills Energy offers its residential Iowa customers incentives to encourage energy efficiency in their homes. Black Hills Energy offers a free home energy evaluation to customers (both owners...

  8. Modeling-Computer Simulations At Fenton Hill HDR Geothermal Area...

    Open Energy Info (EERE)

    of the Fenton Hill HDR Reservoir Donald W. Brown (1994) How to Achieve a Four-Fold Productivity Increase at Fenton Hill Additional References Retrieved from "http:en.openei.org...

  9. The bigness of things Vaughn Climenhaga

    E-Print Network [OSTI]

    Climenhaga, Vaughn

    is . . . a crowd of people? number weight a fish? #12;How big is it? Meaning of "big" depends on what "it" is, and why we care. How big is . . . a crowd of people? number weight a fish? length weight #12;How big is it weight a fish? length weight a city? #12;How big is it? Meaning of "big" depends on what "it" is, and why

  10. Protein Dynamics Hit the Big Screen

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Protein Dynamics Hit the Big Screen Protein Dynamics Hit the Big Screen Now playing at a supercomputer near you: proteins in action June 29, 2005 Contact: Dan Krotz,...

  11. Joint NSRC Workshop 2015: Big, Deep, and Smart Data Analytics...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Venue & access The Joint NSRC Workshop 2015 will be held in Building 8600, Iran Thomas Auditorium, at the Spallation Neutron Source at the Oak Ridge National Laboratory, Oak Ridge,...

  12. Joint NSRC Workshop Big, Deep, and Smart Data Analytics...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    segment image stacks for 3D reconstructions of the porous cathodes of solid acid fuel cells (Figure 1). We demonstrate that segmentation problems due to gray level...

  13. Vehicle route to Stag Hill Campus

    E-Print Network [OSTI]

    Stevenson, Paul

    HILL COURT (1­44) UNIVERSITY COURT (45­66) SCS HC Yorkie's Bridge Rising Barrier Path to Ridgemount MILLENNIUMHOUSE SE AQA Car Park AQA Car Park PM Barrier Entrance Exit IAC LC Senate Car Park Guildford Railway 18 16 21 19 14 23 22 20 R Chancellors SU Mole 23 W Bourne 22 Black Water 21 Wey 27 Thames 24 Wandle

  14. Ecology, Silviculture, and Management of Black Hills

    E-Print Network [OSTI]

    Fried, Jeremy S.

    . Battaglia United States Department of Agriculture Forest Service Rocky Mountain Research Station General Technical Report RMRS-GTR-97 September 2002 #12;Shepperd, Wayne D.; Battaglia, Michael A. 2002. Ecology in Arizona, and the Black Hills of South Dakota. Michael A. Battaglia is a research associate with METI

  15. First Secretarial Visit to the Big Hill SPR Site | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy Chinaof EnergyImpactOnSTATEMENT OFProvides an overview ofblockDecemberWIPP

  16. Big Sky Trust Fund (Montana)

    Broader source: Energy.gov [DOE]

    The Big Sky Trust Fund reimburses expenses incurred in the purchase, leasing, or relocation of real assets for direct use of the assisted business or employee training costs. A local or tribal...

  17. Big Bang Nucleosynthesis: 2015

    E-Print Network [OSTI]

    Cyburt, Richard H; Olive, Keith A; Yeh, Tsung-Han

    2015-01-01T23:59:59.000Z

    Big-bang nucleosynthesis (BBN) describes the production of the lightest nuclides via a dynamic interplay among the four fundamental forces during the first seconds of cosmic time. We briefly overview the essentials of this physics, and present new calculations of light element abundances through li6 and li7, with updated nuclear reactions and uncertainties including those in the neutron lifetime. We provide fits to these results as a function of baryon density and of the number of neutrino flavors, N_nu. We review recent developments in BBN, particularly new, precision Planck cosmic microwave background (CMB) measurements that now probe the baryon density, helium content, and the effective number of degrees of freedom, n_eff. These measurements allow for a tight test of BBN and of cosmology using CMB data alone. Our likelihood analysis convolves the 2015 Planck data chains with our BBN output and observational data. Adding astronomical measurements of light elements strengthens the power of BBN. We include a ...

  18. Big Sky Carbon Sequestration Partnership

    SciTech Connect (OSTI)

    Susan Capalbo

    2005-12-31T23:59:59.000Z

    The Big Sky Carbon Sequestration Partnership, led by Montana State University, is comprised of research institutions, public entities and private sectors organizations, and the Confederated Salish and Kootenai Tribes and the Nez Perce Tribe. Efforts under this Partnership in Phase I are organized into four areas: (1) Evaluation of sources and carbon sequestration sinks that will be used to determine the location of pilot demonstrations in Phase II; (2) Development of GIS-based reporting framework that links with national networks; (3) Design of an integrated suite of monitoring, measuring, and verification technologies, market-based opportunities for carbon management, and an economic/risk assessment framework; (referred to below as the Advanced Concepts component of the Phase I efforts) and (4) Initiation of a comprehensive education and outreach program. As a result of the Phase I activities, the groundwork is in place to provide an assessment of storage capabilities for CO{sub 2} utilizing the resources found in the Partnership region (both geological and terrestrial sinks), that complements the ongoing DOE research agenda in Carbon Sequestration. The geology of the Big Sky Carbon Sequestration Partnership Region is favorable for the potential sequestration of enormous volume of CO{sub 2}. The United States Geological Survey (USGS 1995) identified 10 geologic provinces and 111 plays in the region. These provinces and plays include both sedimentary rock types characteristic of oil, gas, and coal productions as well as large areas of mafic volcanic rocks. Of the 10 provinces and 111 plays, 1 province and 4 plays are located within Idaho. The remaining 9 provinces and 107 plays are dominated by sedimentary rocks and located in the states of Montana and Wyoming. The potential sequestration capacity of the 9 sedimentary provinces within the region ranges from 25,000 to almost 900,000 million metric tons of CO{sub 2}. Overall every sedimentary formation investigated has significant potential to sequester large amounts of CO{sub 2}. Simulations conducted to evaluate mineral trapping potential of mafic volcanic rock formations located in the Idaho province suggest that supercritical CO{sub 2} is converted to solid carbonate mineral within a few hundred years and permanently entombs the carbon. Although MMV for this rock type may be challenging, a carefully chosen combination of geophysical and geochemical techniques should allow assessment of the fate of CO{sub 2} in deep basalt hosted aquifers. Terrestrial carbon sequestration relies on land management practices and technologies to remove atmospheric CO{sub 2} where it is stored in trees, plants, and soil. This indirect sequestration can be implemented today and is on the front line of voluntary, market-based approaches to reduce CO{sub 2} emissions. Initial estimates of terrestrial sinks indicate a vast potential for increasing and maintaining soil Carbon (C) on rangelands, and forested, agricultural, and reclaimed lands. Rangelands can store up to an additional 0.05 mt C/ha/yr, while the croplands are on average four times that amount. Estimates of technical potential for soil sequestration within the region in cropland are in the range of 2.0 M mt C/yr over 20 year time horizon. This is equivalent to approximately 7.0 M mt CO{sub 2}e/yr. The forestry sinks are well documented, and the potential in the Big Sky region ranges from 9-15 M mt CO{sub 2} equivalent per year. Value-added benefits include enhanced yields, reduced erosion, and increased wildlife habitat. Thus the terrestrial sinks provide a viable, environmentally beneficial, and relatively low cost sink that is available to sequester C in the current time frame. The Partnership recognizes the critical importance of measurement, monitoring, and verification technologies to support not only carbon trading but all policies and programs that DOE and other agencies may want to pursue in support of GHG mitigation. The efforts in developing and implementing MMV technologies for geological and terrestrial sequestration re

  19. EA-1581: Sand Hills Wind Project, Wyoming

    Broader source: Energy.gov [DOE]

    The Bureau of Land Management, with DOE’s Western Area Power Administration as a cooperating agency, was preparing this EA to evaluate the environmental impacts of a proposal to construct, operate, and maintain the Sand Hills Wind Energy Facility on private and federal lands in Albany County, Wyoming. If the proposed action had been implemented, Western would have interconnected the proposed facility to an existing transmission line. This project has been canceled.

  20. Improved oil recovery using horizontal wells at Elk Hills, California

    SciTech Connect (OSTI)

    Gangle, F.J.; Schultz, K.L.; McJannet, G.S.; Ezekwe, N.

    1995-03-01T23:59:59.000Z

    Eight horizontal wells have been drilled and completed in a steeply dipping Stevens sand reservoir in the Elk Hills field, Kern County, California. The subject reservoir, called the Stevens 26R, is a turbidite channel sand deposit one mile wide, three miles long, and one mile deep. Formation beds have a gross thickness up to 1,500 feet and dips as high as 60 degrees on the flanks. The original oil column of 1,810 feet has been pulled down to 200 feet by continual production since 1976. The reservoir management operating strategy has been full pressure maintenance by crestal gas injection since 1976. The steep dip of the formation makes gravity drainage the dominant drive mechanism. Additionally, improved recovery is coming from cycling dry gas through the large secondary gas cap region. The prudent placement of the horizontal wells above the oil/water contact promises to improve oil recovery and extend the operating life of the reservoir. Field results are given to compare the performance of the horizontal wells with the conventional wells. The horizontal wells produce at higher rates, lower draw downs, and lower gas/oil ratio which will extend the life of the project and result in higher recovery.

  1. 3D Model of the McGinness Hills Geothermal Area

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Faulds, James E.

    The McGinness Hills geothermal system lies in a ~8.5 km wide, north-northeast trending accommodation zone defined by east-dipping normal faults bounding the Toiyabe Range to the west and west-dipping normal faults bounding the Simpson Park Mountains to the east. Within this broad accommodation zone lies a fault step-over defined by north-northeast striking, west-dipping normal faults which step to the left at roughly the latitude of the McGinness Hills geothermal system. The McGinness Hills 3D model consists of 9 geologic units and 41 faults. The basal geologic units are metasediments of the Ordovician Valmy and Vininni Formations (undifferentiated in the model) which are intruded by Jurassic granitic rocks. Unconformably overlying is a ~100s m-thick section of Tertiary andesitic lava flows and four Oligocene-to-Miocene ash-flow tuffs: The Rattlesnake Canyon Tuff, tuff of Sutcliffe, the Cambell Creek Tuff and the Nine Hill tuff. Overlying are sequences of pre-to-syn-extensional Quaternary alluvium and post-extensional Quaternary alluvium. 10-15ş eastward dip of the Tertiary stratigraphy is controlled by the predominant west-dipping fault set. Geothermal production comes from two west dipping normal faults in the northern limb of the step over. Injection is into west dipping faults in the southern limb of the step over. Production and injection sites are in hydrologic communication, but at a deep level, as the northwest striking fault that links the southern and northern limbs of the step-over has no permeability.

  2. 3D Model of the McGinness Hills Geothermal Area

    SciTech Connect (OSTI)

    Faulds, James E.

    2013-12-31T23:59:59.000Z

    The McGinness Hills geothermal system lies in a ~8.5 km wide, north-northeast trending accommodation zone defined by east-dipping normal faults bounding the Toiyabe Range to the west and west-dipping normal faults bounding the Simpson Park Mountains to the east. Within this broad accommodation zone lies a fault step-over defined by north-northeast striking, west-dipping normal faults which step to the left at roughly the latitude of the McGinness Hills geothermal system. The McGinness Hills 3D model consists of 9 geologic units and 41 faults. The basal geologic units are metasediments of the Ordovician Valmy and Vininni Formations (undifferentiated in the model) which are intruded by Jurassic granitic rocks. Unconformably overlying is a ~100s m-thick section of Tertiary andesitic lava flows and four Oligocene-to-Miocene ash-flow tuffs: The Rattlesnake Canyon Tuff, tuff of Sutcliffe, the Cambell Creek Tuff and the Nine Hill tuff. Overlying are sequences of pre-to-syn-extensional Quaternary alluvium and post-extensional Quaternary alluvium. 10-15ş eastward dip of the Tertiary stratigraphy is controlled by the predominant west-dipping fault set. Geothermal production comes from two west dipping normal faults in the northern limb of the step over. Injection is into west dipping faults in the southern limb of the step over. Production and injection sites are in hydrologic communication, but at a deep level, as the northwest striking fault that links the southern and northern limbs of the step-over has no permeability.

  3. WIND DATA REPORT Camden Hills Regional High School, ME

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Camden Hills Regional High School, ME December 1, 2006 ­ February 28, 2007...................................................................................................................... 7 Wind Speed Time Series............................................................................................................. 8 Wind Speed Distributions

  4. WIND DATA REPORT Camden Hills Regional High School, ME

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Camden Hills Regional High School, ME March 1st 2006 to May 31th 2006 Prepared.................................................................................................................... 10 Wind Speed Time Series........................................................................................................... 10 Wind Speed Distributions

  5. WIND DATA REPORT Camden Hills Regional High School, ME

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Camden Hills Regional High School, ME September 1st 2006 to November 30th 2006.................................................................................................................... 10 Wind Speed Time Series........................................................................................................... 10 Wind Speed Distributions

  6. WIND DATA REPORT Camden Hills Regional High School, ME

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Camden Hills Regional High School, ME December 1st 2005 to February 28th 2006.................................................................................................................... 10 Wind Speed Time Series........................................................................................................... 10 Wind Speed Distributions

  7. WIND DATA REPORT Camden Hills Regional High School, ME

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Camden Hills Regional High School, ME June 1st 2006 to August 31th 2006 Prepared.................................................................................................................... 10 Wind Speed Time Series........................................................................................................... 10 Wind Speed Distributions

  8. Surface Gas Sampling At Fenton Hill HDR Geothermal Area (Goff...

    Open Energy Info (EERE)

    to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Surface Gas Sampling At Fenton Hill HDR Geothermal Area (Goff & Janik, 2002) Exploration Activity...

  9. Cuttings Analysis At Fenton Hill HDR Geothermal Area (Laughlin...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Cuttings Analysis At Fenton Hill HDR Geothermal Area (Laughlin, Et Al., 1983) Exploration Activity...

  10. Core Analysis At Fenton Hill HDR Geothermal Area (Brookins &...

    Open Energy Info (EERE)

    to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Core Analysis At Fenton Hill HDR Geothermal Area (Brookins & Laughlin, 1983) Exploration Activity...

  11. Surface Gas Sampling At Fenton Hill HDR Geothermal Area (Grigsby...

    Open Energy Info (EERE)

    Area (Grigsby, Et Al., 1983) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Surface Gas Sampling At Fenton Hill HDR Geothermal Area...

  12. Conceptual Model At Fenton Hill HDR Geothermal Area (Grigsby...

    Open Energy Info (EERE)

    Grigsby & Tester, 1989) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Conceptual Model At Fenton Hill HDR Geothermal Area (Grigsby & Tester,...

  13. Black Hills Energy (Gas)- Commercial Energy Efficiency Program

    Broader source: Energy.gov [DOE]

    Black Hills Energy offers multiple programs for Colorado commercial and industrial customers to save natural gas in eligible facilities. The commercial prescriptive rebate program provides...

  14. Black Hills Energy (Gas)- Residential Energy Efficiency Program

    Broader source: Energy.gov [DOE]

    Black Hills Energy (BHE) offers a variety of rebates for residential Colorado customers who purchase and install energy efficient natural gas appliances, heating equipment and insulation materials....

  15. Black Hills Energy (Electric)- Commercial Energy Efficiency Program

    Broader source: Energy.gov [DOE]

    Black Hills Energy also offers the custom rebate program to commercial and industrial customers for projects that reduce energy usage. Eligible projects include chillers, unitary HVAC equipment,...

  16. Black Hills Energy (Gas)- Commercial Energy Efficiency Rebate Programs

    Broader source: Energy.gov [DOE]

    Black Hills Energy offers commercial and industrial customers incentives to encourage energy efficiency in eligible businesses. Prescriptive rebates are available for furnace and boiler...

  17. NORTH HILL CREEK 3-D SEISMIC EXPLORATION PROJECT

    SciTech Connect (OSTI)

    Marc T. Eckels; David H. Suek; Denise H. Harrison; Paul J. Harrison

    2004-05-06T23:59:59.000Z

    Wind River Resources Corporation (WRRC) received a DOE grant in support of its proposal to acquire, process and interpret fifteen square miles of high-quality 3-D seismic data on non-allotted trust lands of the Uintah and Ouray (Ute) Indian Reservation, northeastern Utah, in 2000. Subsequent to receiving notice that its proposal would be funded, WRRC was able to add ten square miles of adjacent state and federal mineral acreage underlying tribal surface lands by arrangement with the operator of the Flat Rock Field. The twenty-five square mile 3-D seismic survey was conducted during the fall of 2000. The data were processed through the winter of 2000-2001, and initial interpretation took place during the spring of 2001. The initial interpretation identified multiple attractive drilling prospects, two of which were staked and permitted during the summer of 2001. The two initial wells were drilled in September and October of 2001. A deeper test was drilled in June of 2002. Subsequently a ten-well deep drilling evaluation program was conducted from October of 2002 through March 2004. The present report discusses the background of the project; design and execution of the 3-D seismic survey; processing and interpretation of the data; and drilling, completion and production results of a sample of the wells drilled on the basis of the interpreted survey. Fifteen wells have been drilled to test targets identified on the North Hill Creek 3-D Seismic Survey. None of these wildcat exploratory wells has been a dry hole, and several are among the best gas producers in Utah. The quality of the data produced by this first significant exploratory 3-D survey in the Uinta Basin has encouraged other operators to employ this technology. At least two additional 3-D seismic surveys have been completed in the vicinity of the North Hill Creek Survey, and five additional surveys are being planned for the 2004 field season. This project was successful in finding commercial oil, natural gas and natural gas liquids production on a remote part of the Uintah & Ouray Reservation. Much of the natural gas and natural gas liquids are being produced from the Wingate Formation, which to our knowledge has never produced commercially anywhere. Another large percentage of the natural gas is being produced from the Entrada Formation which has not previously produced in this part of the Uinta Basin. In all, at least nine geologic formations are contributing hydrocarbons to these wells. This survey has clearly established the fact that high-quality data can be obtained in this area, despite the known obstacles.

  18. HILL Plateau Remediation Company are using American

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.NewofGeothermal HeatonHEP/NERSC/ASCRJune 2012Wind EnergyCH2M HILL

  19. Arbor Hills Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: Energy Resources JumpAnaconda,Anza ElectricIncAboutAquila IncHills

  20. Blue Hill Partners LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: EnergyAvignon,Belcher HomesLyonsBirchBlockVI JumpBlue Hill Partners

  1. Campbell Hill Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:Power LPInformation 8thCalwind II CEC WindCamelot1Q08)Campbell Hill

  2. Crofton Hills Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.pngRoofs and Heat Islands2007)Criterion JumpHills Wind Farm

  3. Barren Hills Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions Inc JumpIMBarnard, Vermont:Carolina: EnergyBarren County,Hills

  4. Black Hills Power Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass ConversionsSouthby 2022 | OpenEIBixby, Oklahoma: EnergyBlackHawkBlack Hills

  5. Rolling Hills Electric Coop | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to: navigation,MazeOhio:Ohio:RockwallRolling Hills Electric Coop Jump

  6. Big data : evolution, components, challenges and opportunities

    E-Print Network [OSTI]

    Zarate Santovena, Alejandro

    2013-01-01T23:59:59.000Z

    This work reviews the evolution and current state of the "Big Data" industry, and to understand the key components, challenges and opportunities of Big Data and analytics face in today business environment, this is analyzed ...

  7. Deep drilling technology for hot crystalline rock

    SciTech Connect (OSTI)

    Rowley, J.C.

    1984-01-01T23:59:59.000Z

    The development of Hot Dry Rock (HDR) geothermal systems at the Fenton Hill, New Mexico site has required the drilling of four deep boreholes into hot, Precambrian granitic and metamorphic rocks. Thermal gradient holes, four observation wells 200 m (600 ft) deep, and an exploration core hole 800 m (2400 ft) deep guided the siting of the four deep boreholes. Results derived from the exploration core hole, GT-1 (Granite Test No. 1), were especially important in providing core from the granitic rock, and establishing the conductive thermal gradient and heat flow for the granitic basement rocks. Essential stratigraphic data and lost drilling-fluid zones were identified for the volcanic and sedimentary rocks above the contact with the crystalline basement. Using this information drilling strategies and well designs were then devised for the planning of the deeper wells. The four deep wells were drilled in pairs, the shallowest were planned and drilled to depths of 3 km in 1975 at a bottom-hole temperature of nearly 200/sup 0/C. These boreholes were followed by a pair of wells, completed in 1981, the deepest of which penetrated the Precambrian basement to a vertical depth of 4.39 km at a temperature of 320/sup 0/C.

  8. Big Explosives Experimental Facility - BEEF

    ScienceCinema (OSTI)

    None

    2015-01-07T23:59:59.000Z

    The Big Explosives Experimental Facility or BEEF is a ten acre fenced high explosive testing facility that provides data to support stockpile stewardship and other national security programs. At BEEF conventional high explosives experiments are safely conducted providing sophisticated diagnostics such as high speed optics and x-ray radiography.

  9. Big Explosives Experimental Facility - BEEF

    SciTech Connect (OSTI)

    None

    2014-10-31T23:59:59.000Z

    The Big Explosives Experimental Facility or BEEF is a ten acre fenced high explosive testing facility that provides data to support stockpile stewardship and other national security programs. At BEEF conventional high explosives experiments are safely conducted providing sophisticated diagnostics such as high speed optics and x-ray radiography.

  10. Hill crossing during preheating after hilltop inflation

    E-Print Network [OSTI]

    Antusch, Stefan; Orani, Stefano

    2015-01-01T23:59:59.000Z

    In 'hilltop inflation', inflation takes place when the inflaton field slowly rolls from close to a maximum of its potential (i.e. the 'hilltop') towards its minimum. When the inflaton potential is associated with a phase transition, possible topological defects produced during this phase transition, such as domain walls, are efficiently diluted during inflation. It is typically assumed that they also do not reform after inflation, i.e. that the inflaton field stays on its side of the 'hill', finally performing damped oscillations around the minimum of the potential. In this paper we study the linear and the non-linear phases of preheating after hilltop inflation. We find that the fluctuations of the inflaton field during the tachyonic oscillation phase grow strong enough to allow the inflaton field to form regions in position space where it crosses 'over the top of the hill' towards the 'wrong vacuum'. We investigate the formation and behaviour of these overshooting regions using lattice simulations: Rather t...

  11. Hill crossing during preheating after hilltop inflation

    E-Print Network [OSTI]

    Stefan Antusch; David Nolde; Stefano Orani

    2015-03-20T23:59:59.000Z

    In 'hilltop inflation', inflation takes place when the inflaton field slowly rolls from close to a maximum of its potential (i.e. the 'hilltop') towards its minimum. When the inflaton potential is associated with a phase transition, possible topological defects produced during this phase transition, such as domain walls, are efficiently diluted during inflation. It is typically assumed that they also do not reform after inflation, i.e. that the inflaton field stays on its side of the 'hill', finally performing damped oscillations around the minimum of the potential. In this paper we study the linear and the non-linear phases of preheating after hilltop inflation. We find that the fluctuations of the inflaton field during the tachyonic oscillation phase grow strong enough to allow the inflaton field to form regions in position space where it crosses 'over the top of the hill' towards the 'wrong vacuum'. We investigate the formation and behaviour of these overshooting regions using lattice simulations: Rather than durable domain walls, these regions form oscillon-like structures (i.e. localized bubbles that oscillate between the two vacua) which should be included in a careful study of preheating in hilltop inflation.

  12. CITY Of MORGAN HILL DEVELOPMENT SERVIC ES CENTER

    E-Print Network [OSTI]

    Energy Efficiency Standards as part of the implementation of our local energy ordinance. As the BuildingCITY Of MORGAN HILL DEVELOPMENT SERVIC ES CENTER 1757 5 PEAKAVENUE MORGAN HILL, CA 95037-41 28 (408 Commissioner Arthur H . Rosenfeld Ph.D. Commissioner Julia Levin, J.D. California Energy Commission 1516 Ninth

  13. Hill SyStem PlaStic mulcHed

    E-Print Network [OSTI]

    Liskiewicz, Maciej

    a Hill SyStem PlaStic mulcHed Strawberry Production Guide for colder areaS #12;#12;i Trade names do they intend or imply discrimination against those not mentioned. Hill SyStem PlaStic mulcHed ..................................................................27 Consider Fall Laying of Extra Plastic Mulch

  14. Water-Gas Sampling At Fenton Hill HDR Geothermal Area (Janik...

    Open Energy Info (EERE)

    Water-Gas Sampling At Fenton Hill HDR Geothermal Area (Janik & Goff, 2002) Exploration Activity Details Location Fenton Hill HDR Geothermal Area Exploration Technique Water-Gas...

  15. 13-12-16 Big Data in Social Networks

    E-Print Network [OSTI]

    Stojmenovic, Ivan

    13-12-16 1 Big Data in Social Networks Ivan Stojmenovic University of Ottawa December 2013 Outline Big Data Big Data in Social Networks 4V in Big Data from Social Networks Harnessing Big Data from Social Networks Small Social Data vs Big Data Community structure Space ­crossing community

  16. Big Bang Day : The Great Big Particle Adventure - 3. Origins

    ScienceCinema (OSTI)

    None

    2011-04-25T23:59:59.000Z

    In this series, comedian and physicist Ben Miller asks the CERN scientists what they hope to find. If the LHC is successful, it will explain the nature of the Universe around us in terms of a few simple ingredients and a few simple rules. But the Universe now was forged in a Big Bang where conditions were very different, and the rules were very different, and those early moments were crucial to determining how things turned out later. At the LHC they can recreate conditions as they were billionths of a second after the Big Bang, before atoms and nuclei existed. They can find out why matter and antimatter didn't mutually annihilate each other to leave behind a Universe of pure, brilliant light. And they can look into the very structure of space and time - the fabric of the Universe

  17. Deep Research Submarine

    E-Print Network [OSTI]

    Woertz, Jeff

    2002-02-01T23:59:59.000Z

    The Deep Sea Research Submarine (Figure 1) is a modified VIRGINIA Class Submarine that incorporates a permanently installed Deep Sea Operations Compartment (Figure 2). Table 1 summarizes the characteristics of the Deep ...

  18. Observation Wells At Fenton Hill HDR Geothermal Area (Shevenell...

    Open Energy Info (EERE)

    Basis Geophone emplacement holes PC-1 and PC-2 were drilled at Fenton Hill by Maness Drilling Company of Farmington, NM for Los Alamos National Laboratory in 1984. These wells...

  19. Town of Kill Devil Hills- Wind Energy Systems Ordinance

    Broader source: Energy.gov [DOE]

    In October 2007, the town of Kill Devil Hills adopted an ordinance to regulate the use of wind-energy systems. The ordinance directs any individual or organization wishing to install a wind-energy...

  20. Black Hills Energy (Gas)- Residential New Construction Rebate Program

    Broader source: Energy.gov [DOE]

    Black Hills Energy offers new construction rebates for home builders in the eligible service area. Rebates between $800 and $5,000 are available for a range of efficiency measures incorporated into...

  1. Town of Chapel Hill- Land-Use Management Ordinance

    Broader source: Energy.gov [DOE]

    In 2003, the Town of Chapel Hill adopted a land-use management ordinance that includes prohibitions against neighborhood or homeowners association covenants or other conditions of sale that...

  2. Carbon and Water Cycling in a Texas Hill Country Woodland 

    E-Print Network [OSTI]

    Kamps, Ray Herbert

    2014-12-11T23:59:59.000Z

    Two tree species, Plateau live oak (Quercus fusiformis) and Ashe juniper (Juniperus ashei) survive and thrive in a dense woodland on thin soil overlying massive limestone formations in the Texas Hill Country with recurrent annual summer drought...

  3. Farmington Hills Partners With Michigan Saves With Eyes on the...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hills is one of 50 communities competing to reduce energy over the next two years to win GUEP's 5 million prize. "We don't want financing to be a barrier," Michigan Saves...

  4. Rock Hill Utilities- Water Heater and Heat Pump Rebate Program

    Broader source: Energy.gov [DOE]

    Through the SmartChoice program, Rock Hill Utilities offers rebates for water heater and heat pump replacements. Information on financing for heat pumps can also be found on the web site listed...

  5. Traffic information computing platform for big data

    SciTech Connect (OSTI)

    Duan, Zongtao, E-mail: ztduan@chd.edu.cn; Li, Ying, E-mail: ztduan@chd.edu.cn; Zheng, Xibin, E-mail: ztduan@chd.edu.cn; Liu, Yan, E-mail: ztduan@chd.edu.cn; Dai, Jiting, E-mail: ztduan@chd.edu.cn; Kang, Jun, E-mail: ztduan@chd.edu.cn [Chang'an University School of Information Engineering, Xi'an, China and Shaanxi Engineering and Technical Research Center for Road and Traffic Detection, Xi'an (China)

    2014-10-06T23:59:59.000Z

    Big data environment create data conditions for improving the quality of traffic information service. The target of this article is to construct a traffic information computing platform for big data environment. Through in-depth analysis the connotation and technology characteristics of big data and traffic information service, a distributed traffic atomic information computing platform architecture is proposed. Under the big data environment, this type of traffic atomic information computing architecture helps to guarantee the traffic safety and efficient operation, more intelligent and personalized traffic information service can be used for the traffic information users.

  6. A different Big Bang theory: Los Alamos

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    different Big Bang theory: Los Alamos unveils explosives detection expertise February 19, 2015 Collaboration project defeats explosives threats through enhanced detection...

  7. The mammals of Big Thicket National Preserve

    E-Print Network [OSTI]

    Barnette, Ralph Brian

    1979-01-01T23:59:59.000Z

    Unit. . 102 Table 21. Track count results, Hickory Creek Savannah Unit 103 LIST OF FIGURES Page Figure 1. Map showing three different con- cepts of the Big Thicket Figure 2. Map of the units of Big Thicket National Preserve. Figure 3. The Beech... of the units of Big Thicket National Pre- serve. Cross-hatched areas indicate the individual units. CHESTER S 8) COLMESNEIL BA Ir LO Ste nhagen J Lake JASPER US e? W DVILLE BEEC CREEK UNIT TOWN BLUFF UPPER NECHE RIVER CORRIDOR UNIT BIG SANDY...

  8. Big Data Hits the Beamline

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWP TWPAlumniComplexMaterial Science | StanfordBiddingBig Data Hits

  9. Big Sol - Facilities - Cyclotron Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWP TWPAlumniComplexMaterial Science | StanfordBiddingBig Data

  10. Fun with Big Sky Learning

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.Newof Energy ForrestalPrincetonF2: JetInnovationFun with Big

  11. Jobtong Deep Web Web""Surface WebDeep Web

    E-Print Network [OSTI]

    Jobtong Deep Web Web Web Web""Surface WebDeep Web Surface WebDeep Web Web[1] 20007BrightPlanet.comDeep Web[2] Web43,000-96,000Web7,500TB(Surface Web500) UIUC5Deep Web[3]2004Deep Web 307,000366,000-535,000"" Deep Web""Google Yahoo32%Deep Web WAMDMWebDeep WebJobtong Deep Web (Jobtong) Jobtong(, http

  12. Coring in deep hardrock formations

    SciTech Connect (OSTI)

    Drumheller, D.S.

    1988-08-01T23:59:59.000Z

    The United States Department of Energy is involved in a variety of scientific and engineering feasibility studies requiring extensive drilling in hard crystalline rock. In many cases well depths extend from 6000 to 20,000 feet in high-temperature, granitic formations. Examples of such projects are the Hot Dry Rock well system at Fenton Hill, New Mexico and the planned exploratory magma well near Mammoth Lakes, California. In addition to these programs, there is also continuing interest in supporting programs to reduce drilling costs associated with the production of geothermal energy from underground sources such as the Geysers area near San Francisco, California. The overall progression in these efforts is to drill deeper holes in higher temperature, harder formations. In conjunction with this trend is a desire to improve the capability to recover geological information. Spot coring and continuous coring are important elements in this effort. It is the purpose of this report to examine the current methods used to obtain core from deep wells and to suggest projects which will improve existing capabilities. 28 refs., 8 figs., 2 tabs.

  13. NERSC User Group 2013 Big Bang, Big Data, Big Iron Planck Satellite Data Analysis At NERSC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Saleshttp://www.fnal.gov/directorate/nalcal/nalcal02_07_05_files/nalcal.gif Directorate - Events:00---9:30 Registration a ndDay2013 Big

  14. The IIT Innovators Fueling Big Ideas

    E-Print Network [OSTI]

    Saniie, Jafar

    Making things work. The IIT Innovators Fueling Big Ideas Winter 2012 John P. Calamos sr. Bold Thinking The PlanT How the Zero-Waste System Works researCh Neutron Detection, Dinosaur Collagen, Big Data in our next wave of innovators and leaders, some of whom are featured in this issue. Our students have

  15. Big Mysteries: The Higgs Mass

    ScienceCinema (OSTI)

    Lincoln, Don

    2014-06-03T23:59:59.000Z

    With the discovery of what looks to be the Higgs boson, LHC researchers are turning their attention to the next big question, which is the predicted mass of the newly discovered particles. When the effects of quantum mechanics is taken into account, the mass of the Higgs boson should be incredibly high...perhaps upwards of a quadrillion times higher than what was observed. In this video, Fermilab's Dr. Don Lincoln explains how it is that the theory predicts that the mass is so large and gives at least one possible theoretical idea that might solve the problem. Whether the proposed idea is the answer or not, this question must be answered by experiments at the LHC or today's entire theoretical paradigm could be in jeopardy.

  16. Big Mysteries: The Higgs Mass

    SciTech Connect (OSTI)

    Lincoln, Don

    2014-04-28T23:59:59.000Z

    With the discovery of what looks to be the Higgs boson, LHC researchers are turning their attention to the next big question, which is the predicted mass of the newly discovered particles. When the effects of quantum mechanics is taken into account, the mass of the Higgs boson should be incredibly high...perhaps upwards of a quadrillion times higher than what was observed. In this video, Fermilab's Dr. Don Lincoln explains how it is that the theory predicts that the mass is so large and gives at least one possible theoretical idea that might solve the problem. Whether the proposed idea is the answer or not, this question must be answered by experiments at the LHC or today's entire theoretical paradigm could be in jeopardy.

  17. Evidence of the Big Fix

    E-Print Network [OSTI]

    Yuta Hamada; Hikaru Kawai; Kiyoharu Kawana

    2014-09-09T23:59:59.000Z

    We give an evidence of the Big Fix. The theory of wormholes and multiverse suggests that the parameters of the Standard Model are fixed in such a way that the total entropy at the late stage of the universe is maximized, which we call the maximum entropy principle. In this paper, we discuss how it can be confirmed by the experimental data, and we show that it is indeed true for the Higgs vacuum expectation value $v_{h}$. We assume that the baryon number is produced by the sphaleron process, and that the current quark masses, the gauge couplings and the Higgs self coupling are fixed when we vary $v_{h}$. It turns out that the existence of the atomic nuclei plays a crucial role to maximize the entropy. This is reminiscent of the anthropic principle, however it is required by the fundamental low in our case.

  18. EA-1880: Big Bend to Witten Transmission Line Project, South...

    Office of Environmental Management (EM)

    880: Big Bend to Witten Transmission Line Project, South Dakota EA-1880: Big Bend to Witten Transmission Line Project, South Dakota Summary The USDA Rural Utilities Service, with...

  19. Pennsylvania State University Wins Big In Las Vegas: Energy Department...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pennsylvania State University Wins Big In Las Vegas: Energy Department Crowns Collegiate Wind Competition Champion Pennsylvania State University Wins Big In Las Vegas: Energy...

  20. Deep Web video

    ScienceCinema (OSTI)

    None Available

    2012-03-28T23:59:59.000Z

    To make the web work better for science, OSTI has developed state-of-the-art technologies and services including a deep web search capability. The deep web includes content in searchable databases available to web users but not accessible by popular search engines, such as Google. This video provides an introduction to the deep web search engine.

  1. Deep Web video

    SciTech Connect (OSTI)

    None Available

    2009-06-01T23:59:59.000Z

    To make the web work better for science, OSTI has developed state-of-the-art technologies and services including a deep web search capability. The deep web includes content in searchable databases available to web users but not accessible by popular search engines, such as Google. This video provides an introduction to the deep web search engine.

  2. BIG SKY CARBON SEQUESTRATION PARTNERSHIP

    SciTech Connect (OSTI)

    Susan M. Capalbo

    2004-06-01T23:59:59.000Z

    The Big Sky Partnership, led by Montana State University, is comprised of research institutions, public entities and private sectors organizations, and the Confederated Salish and Kootenai Tribes and the Nez Perce Tribe. Efforts during the second performance period fall into four areas: evaluation of sources and carbon sequestration sinks; development of GIS-based reporting framework; designing an integrated suite of monitoring, measuring, and verification technologies; and initiating a comprehensive education and outreach program. At the first two Partnership meetings the groundwork was put in place to provide an assessment of capture and storage capabilities for CO{sub 2} utilizing the resources found in the Partnership region (both geological and terrestrial sinks), that would complement the ongoing DOE research. The region has a diverse array of geological formations that could provide storage options for carbon in one or more of its three states. Likewise, initial estimates of terrestrial sinks indicate a vast potential for increasing and maintaining soil C on forested, agricultural, and reclaimed lands. Both options include the potential for offsetting economic benefits to industry and society. Steps have been taken to assure that the GIS-based framework is consistent among types of sinks within the Big Sky Partnership area and with the efforts of other western DOE partnerships. Efforts are also being made to find funding to include Wyoming in the coverage areas for both geological and terrestrial sinks and sources. The Partnership recognizes the critical importance of measurement, monitoring, and verification technologies to support not only carbon trading but all policies and programs that DOE and other agencies may want to pursue in support of GHG mitigation. The efforts begun in developing and implementing MMV technologies for geological sequestration reflect this concern. Research is also underway to identify and validate best management practices for soil C in the partnership region, and to design a risk/cost effectiveness framework to make comparative assessments of each viable sink, taking into account economic costs, offsetting benefits, scale of sequestration opportunities, spatial and time dimensions, environmental risks, and long term viability. Scientifically sound information on MMV is critical for public acceptance of these technologies. Two key deliverables were completed this quarter--a literature review/database to assess the soil carbon on rangelands, and the draft protocols, contracting options for soil carbon trading. To date, there has been little research on soil carbon on rangelands, and since rangeland constitutes a major land use in the Big Sky region, this is important in achieving a better understanding of terrestrial sinks. The protocols developed for soil carbon trading are unique and provide a key component of the mechanisms that might be used to efficiently sequester GHG and reduce CO{sub 2} concentrations. Progress on other deliverables is noted in the PowerPoint presentations. A series of meetings held during the second quarter have laid the foundations for assessing the issues surrounding the implementation of a market-based setting for soil C credits. These meetings provide a connection to stakeholders in the region and a basis on which to draw for the DOE PEIS hearings. Finally, the education and outreach efforts have resulted in a comprehensive plan and process which serves as a guide for implementing the outreach activities under Phase I. While we are still working on the public website, we have made many presentations to stakeholders and policy makers, connections to other federal and state agencies concerned with GHG emissions, climate change, and efficient and environmentally-friendly energy production. In addition, we have laid plans for integration of our outreach efforts with the students, especially at the tribal colleges and at the universities involved in our partnership. This includes collaboration with the film and media arts departments at MSU, with outreach effort

  3. BIG SKY CARBON SEQUESTRATION PARTNERSHIP

    SciTech Connect (OSTI)

    Susan M. Capalbo

    2004-01-04T23:59:59.000Z

    The Big Sky Partnership, led by Montana State University, is comprised of research institutions, public entities and private sectors organizations, and the Confederated Salish and Kootenai Tribes and the Nez Perce Tribe. Efforts during the first performance period fall into four areas: evaluation of sources and carbon sequestration sinks; development of GIS-based reporting framework; designing an integrated suite of monitoring, measuring, and verification technologies; and initiating a comprehensive education and outreach program. At the first Partnership meeting the groundwork was put in place to provide an assessment of capture and storage capabilities for CO{sub 2} utilizing the resources found in the Partnership region (both geological and terrestrial sinks), that would complement the ongoing DOE research. The region has a diverse array of geological formations that could provide storage options for carbon in one or more of its three states. Likewise, initial estimates of terrestrial sinks indicate a vast potential for increasing and maintaining soil C on forested, agricultural, and reclaimed lands. Both options include the potential for offsetting economic benefits to industry and society. Complementary to the efforts on evaluation of sources and sinks is the development of the Big Sky Partnership Carbon Cyberinfrastructure (BSP-CC) and a GIS Road Map for the Partnership. These efforts will put in place a map-based integrated information management system for our Partnership, with transferability to the national carbon sequestration effort. The Partnership recognizes the critical importance of measurement, monitoring, and verification technologies to support not only carbon trading but other policies and programs that DOE and other agencies may want to pursue in support of GHG mitigation. The efforts begun in developing and implementing MMV technologies for geological sequestration reflect this concern. Research is also underway to identify and validate best management practices for soil C in the partnership region, and to design a risk/cost effectiveness framework to make comparative assessments of each viable sink, taking into account economic costs, offsetting benefits, scale of sequestration opportunities, spatial and time dimensions, environmental risks, and long term viability. A series of meetings held in November and December, 2003, have laid the foundations for assessing the issues surrounding the implementation of a market-based setting for soil C credits. These include the impact of existing local, state, and federal permitting issues for terrestrial based carbon sequestration projects, consistency of final protocols and planning standards with national requirements, and alignments of carbon sequestration projects with existing federal and state cost-share programs. Finally, the education and outreach efforts during this performance period have resulted in a comprehensive plan which serves as a guide for implementing the outreach activities under Phase I. The primary goal of this plan is to increase awareness, understanding, and public acceptance of sequestration efforts and build support for a constituent based network which includes the initial Big Sky Partnership and other local and regional businesses and entities.

  4. BIG SKY CARBON SEQUESTRATION PARTNERSHIP

    SciTech Connect (OSTI)

    Susan M. Capalbo

    2005-01-31T23:59:59.000Z

    The Big Sky Carbon Sequestration Partnership, led by Montana State University, is comprised of research institutions, public entities and private sectors organizations, and the Confederated Salish and Kootenai Tribes and the Nez Perce Tribe. Efforts under this Partnership in Phase I fall into four areas: evaluation of sources and carbon sequestration sinks that will be used to determine the location of pilot demonstrations in Phase II; development of GIS-based reporting framework that links with national networks; designing an integrated suite of monitoring, measuring, and verification technologies and assessment frameworks; and initiating a comprehensive education and outreach program. The groundwork is in place to provide an assessment of storage capabilities for CO{sub 2} utilizing the resources found in the Partnership region (both geological and terrestrial sinks), that would complement the ongoing DOE research. Efforts are underway to showcase the architecture of the GIS framework and initial results for sources and sinks. The region has a diverse array of geological formations that could provide storage options for carbon in one or more of its three states. Likewise, initial estimates of terrestrial sinks indicate a vast potential for increasing and maintaining soil C on forested, agricultural, and reclaimed lands. Both options include the potential for offsetting economic benefits to industry and society. Steps have been taken to assure that the GIS-based framework is consistent among types of sinks within the Big Sky Partnership area and with the efforts of other western DOE partnerships. The Partnership recognizes the critical importance of measurement, monitoring, and verification technologies to support not only carbon trading but all policies and programs that DOE and other agencies may want to pursue in support of GHG mitigation. The efforts in developing and implementing MMV technologies for geological sequestration reflect this concern. Research is also underway to identify and validate best management practices for soil C in the Partnership region, and to design a risk/cost effectiveness framework to make comparative assessments of each viable sink, taking into account economic costs, offsetting benefits, scale of sequestration opportunities, spatial and time dimensions, environmental risks, and long-term viability. Scientifically sound information on MMV is critical for public acceptance of these technologies.

  5. West Lake Hills, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown ofNationwideWTED JumpHills, New York: Energy Resources JumpNorthLake Hills,

  6. Seven Hills, Ohio: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd JumpInformationScottsOklahoma: EnergySeoulSettlers Hill GasHills, Ohio:

  7. Seven Mile Hill Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd JumpInformationScottsOklahoma: EnergySeoulSettlers Hill GasHills,Carbon

  8. Hidden Hills, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel Jump to: navigation, search Name: Hi-GtelTennessee:Hills,Texas:Hills,

  9. Rolling Hills, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to: navigation,MazeOhio:Ohio:RockwallRolling Hills Electric CoopHills,

  10. Town of Chapel Hill- Worthwhile Investments Save Energy (WISE) Homes and Buildings Program

    Broader source: Energy.gov [DOE]

    Chapel Hill is using money made available to it from the American Recovery and Reinvestment Act of 2009 to help subsidize energy efficiency improvements in Chapel Hill homes. Qualified homeowners...

  11. Piecewise Linear Hypersurfaces using the Marching Cubes Jonathan C. Roberts a and Steve Hill b

    E-Print Network [OSTI]

    Kent, University of

    Hill b a University of Kent at Canterbury, Computing Laboratory, Canterbury, England, UK. b Radan steve.hill@uk.radan.com #12; A two dimensional contour on a map, representing a particular height above

  12. 11.123 Big Plans, Spring 2003

    E-Print Network [OSTI]

    de Monchaux, John

    This course explores social, technological, political, economic, and cultural implications of "Big Plans" in the urban context. Local and international case studies (such as Boston's Central Artery and Curitiba, Brazil's ...

  13. Independent Activity Report, CH2M Hill Plateau Remediation Company- January 2011

    Broader source: Energy.gov [DOE]

    Review of the CH2M Hill Plateau Remediation Company Unreviewed Safety Question Procedure [ARPT-RL-2011-003

  14. Lithium in Jack Hills zircons: Evidence for extensive weathering of Earth's earliest crust Takayuki Ushikubo a,

    E-Print Network [OSTI]

    Mcdonough, William F.

    Lithium in Jack Hills zircons: Evidence for extensive weathering of Earth's earliest crust Takayuki Hills lithium weathering continental crust Hadean In situ Li analyses of 4348 to 3362 Ma detrital of REEs. The Jack Hills zircons also have fractionated lithium isotope ratios (7 Li=-19 to+13) about five

  15. ORIGINAL ARTICLE Christopher E. Hill S. Elizabeth Campbell

    E-Print Network [OSTI]

    Hill, Christopher E.

    ORIGINAL ARTICLE Christopher E. Hill á S. Elizabeth Campbell J. Cully Nordby á John M. Burt á: +1-206-6853157 S.E. Campbell á J.C. Nordby á J.M. Burt á M.D. Beecher Department of Psychology sharing is correlated with mating success in brown-headed c

  16. Linda Hill, Ph.D.1 Olha Buchel, MLS.1

    E-Print Network [OSTI]

    Janée, Greg

    . The agendas for digital library and classification research in relating to KOS are also proposed. [Keywords ( ) [] [] Integration of Knowledge Organization Systems into Digital Library Architectures Linda Hill, Ph.D.1 Olha Buchel, MLS.1 Greg Janée, MS.1 Marcia Lei Zeng, Ph.D.2 1 (Alexandria Digital Library Project, University

  17. AT&T Bell Laboratories Murray Hill, New Jersey 07974

    E-Print Network [OSTI]

    Perry, Dewayne E.

    AT&T Bell Laboratories Murray Hill, New Jersey 07974 Software and Systems Research Center Technical Report Object-Oriented programs and Testing Dewayne E. Perry Gail E. Kaiser* appears in The Journal Of Object Oriented Programming January/February 1990 __________________ * Columbia University, Department

  18. Big Sky Carbon Sequestration Partnership

    SciTech Connect (OSTI)

    Susan M. Capalbo

    2005-11-01T23:59:59.000Z

    The Big Sky Carbon Sequestration Partnership, led by Montana State University, is comprised of research institutions, public entities and private sectors organizations, and the Confederated Salish and Kootenai Tribes and the Nez Perce Tribe. Efforts under this Partnership in Phase I fall into four areas: evaluation of sources and carbon sequestration sinks that will be used to determine the location of pilot demonstrations in Phase II; development of GIS-based reporting framework that links with national networks; designing an integrated suite of monitoring, measuring, and verification technologies and assessment frameworks; and initiating a comprehensive education and outreach program. The groundwork is in place to provide an assessment of storage capabilities for CO2 utilizing the resources found in the Partnership region (both geological and terrestrial sinks), that would complement the ongoing DOE research agenda in Carbon Sequestration. The region has a diverse array of geological formations that could provide storage options for carbon in one or more of its three states. Likewise, initial estimates of terrestrial sinks indicate a vast potential for increasing and maintaining soil C on forested, agricultural, and reclaimed lands. Both options include the potential for offsetting economic benefits to industry and society. Steps have been taken to assure that the GIS-based framework is consistent among types of sinks within the Big Sky Partnership area and with the efforts of other DOE regional partnerships. The Partnership recognizes the critical importance of measurement, monitoring, and verification technologies to support not only carbon trading but all policies and programs that DOE and other agencies may want to pursue in support of GHG mitigation. The efforts in developing and implementing MMV technologies for geological sequestration reflect this concern. Research is also underway to identify and validate best management practices for soil C in the Partnership region, and to design a risk/cost effectiveness framework to make comparative assessments of each viable sink, taking into account economic costs, offsetting benefits, scale of sequestration opportunities, spatial and time dimensions, environmental risks, and long-term viability. Scientifically sound MMV is critical for public acceptance of these technologies. Deliverables for the 7th Quarter reporting period include (1) for the geological efforts: Reports on Technology Needs and Action Plan on the Evaluation of Geological Sinks and Pilot Project Deployment (Deliverables 2 and 3), and Report on the Feasibility of Mineralization Trapping in the Snake River Plain Basin (Deliverable 14); (2) for the terrestrial efforts: Report on the Evaluation of Terrestrial Sinks and a Report of the Best Production Practices for Soil C Sequestration (Deliverables 8 and 15). In addition, the 7th Quarter activities for the Partnership included further development of the proposed activities for the deployment and demonstration phase of the carbon sequestration pilots including geological and terrestrial pilots, expansion of the Partnership to encompass regions and institutions that are complimentary to the steps we have identified, building greater collaborations with industry and stakeholders in the region, contributed to outreach efforts that spanned all partnerships, co-authorship on the Carbon Capture and Separation report, and developed a regional basis to address future energy opportunities in the region. The deliverables and activities are discussed in the following sections and appended to this report. The education and outreach efforts have resulted in a comprehensive plan which serves as a guide for implementing the outreach activities under Phase I. The public website has been expanded and integrated with the GIS carbon atlas. We have made presentations to stakeholders and policy makers including two tribal sequestration workshops, and made connections to other federal and state agencies concerned with GHG emissions, climate change, and efficient and environmental

  19. BIG SKY CARBON SEQUESTRATION PARTNERSHIP

    SciTech Connect (OSTI)

    Susan M. Capalbo

    2004-10-31T23:59:59.000Z

    The Big Sky Carbon Sequestration Partnership, led by Montana State University, is comprised of research institutions, public entities and private sectors organizations, and the Confederated Salish and Kootenai Tribes and the Nez Perce Tribe. Efforts under this Partnership fall into four areas: evaluation of sources and carbon sequestration sinks; development of GIS-based reporting framework; designing an integrated suite of monitoring, measuring, and verification technologies; and initiating a comprehensive education and outreach program. At the first two Partnership meetings the groundwork was put in place to provide an assessment of capture and storage capabilities for CO{sub 2} utilizing the resources found in the Partnership region (both geological and terrestrial sinks), that would complement the ongoing DOE research. During the third quarter, planning efforts are underway for the next Partnership meeting which will showcase the architecture of the GIS framework and initial results for sources and sinks, discuss the methods and analysis underway for assessing geological and terrestrial sequestration potentials. The meeting will conclude with an ASME workshop. The region has a diverse array of geological formations that could provide storage options for carbon in one or more of its three states. Likewise, initial estimates of terrestrial sinks indicate a vast potential for increasing and maintaining soil C on forested, agricultural, and reclaimed lands. Both options include the potential for offsetting economic benefits to industry and society. Steps have been taken to assure that the GIS-based framework is consistent among types of sinks within the Big Sky Partnership area and with the efforts of other western DOE partnerships. Efforts are also being made to find funding to include Wyoming in the coverage areas for both geological and terrestrial sinks and sources. The Partnership recognizes the critical importance of measurement, monitoring, and verification technologies to support not only carbon trading but all policies and programs that DOE and other agencies may want to pursue in support of GHG mitigation. The efforts begun in developing and implementing MMV technologies for geological sequestration reflect this concern. Research is also underway to identify and validate best management practices for soil C in the Partnership region, and to design a risk/cost effectiveness framework to make comparative assessments of each viable sink, taking into account economic costs, offsetting benefits, scale of sequestration opportunities, spatial and time dimensions, environmental risks, and long-term viability. Scientifically sound information on MMV is critical for public acceptance of these technologies. Two key deliverables were completed in the second quarter--a literature review/database to assess the soil carbon on rangelands, and the draft protocols, contracting options for soil carbon trading. The protocols developed for soil carbon trading are unique and provide a key component of the mechanisms that might be used to efficiently sequester GHG and reduce CO{sub 2} concentrations. While no key deliverables were due during the third quarter, progress on other deliverables is noted in the PowerPoint presentations and in this report. A series of meetings held during the second and third quarters have laid the foundations for assessing the issues surrounding carbon sequestration in this region, the need for a holistic approach to meeting energy demands and economic development potential, and the implementation of government programs or a market-based setting for soil C credits. These meetings provide a connection to stakeholders in the region and a basis on which to draw for the DOE PEIS hearings. In the fourth quarter, three deliverables have been completed, some in draft form to be revised and updated to include Wyoming. This is due primarily to some delays in funding to LANL and INEEL and the approval of a supplemental proposal to include Wyoming in much of the GIS data sets, analysis, and related materials. The de

  20. BIG SKY CARBON SEQUESTRATION PARTNERSHIP

    SciTech Connect (OSTI)

    Susan M. Capalbo

    2004-06-30T23:59:59.000Z

    The Big Sky Carbon Sequestration Partnership, led by Montana State University, is comprised of research institutions, public entities and private sectors organizations, and the Confederated Salish and Kootenai Tribes and the Nez Perce Tribe. Efforts under this Partnership fall into four areas: evaluation of sources and carbon sequestration sinks; development of GIS-based reporting framework; designing an integrated suite of monitoring, measuring, and verification technologies; and initiating a comprehensive education and outreach program. At the first two Partnership meetings the groundwork was put in place to provide an assessment of capture and storage capabilities for CO{sub 2} utilizing the resources found in the Partnership region (both geological and terrestrial sinks), that would complement the ongoing DOE research. During the third quarter, planning efforts are underway for the next Partnership meeting which will showcase the architecture of the GIS framework and initial results for sources and sinks, discuss the methods and analysis underway for assessing geological and terrestrial sequestration potentials. The meeting will conclude with an ASME workshop (see attached agenda). The region has a diverse array of geological formations that could provide storage options for carbon in one or more of its three states. Likewise, initial estimates of terrestrial sinks indicate a vast potential for increasing and maintaining soil C on forested, agricultural, and reclaimed lands. Both options include the potential for offsetting economic benefits to industry and society. Steps have been taken to assure that the GIS-based framework is consistent among types of sinks within the Big Sky Partnership area and with the efforts of other western DOE partnerships. Efforts are also being made to find funding to include Wyoming in the coverage areas for both geological and terrestrial sinks and sources. The Partnership recognizes the critical importance of measurement, monitoring, and verification technologies to support not only carbon trading but all policies and programs that DOE and other agencies may want to pursue in support of GHG mitigation. The efforts begun in developing and implementing MMV technologies for geological sequestration reflect this concern. Research is also underway to identify and validate best management practices for soil C in the Partnership region, and to design a risk/cost effectiveness framework to make comparative assessments of each viable sink, taking into account economic costs, offsetting benefits, scale of sequestration opportunities, spatial and time dimensions, environmental risks, and long-term viability. Scientifically sound information on MMV is critical for public acceptance of these technologies. Two key deliverables were completed in the second quarter--a literature review/database to assess the soil carbon on rangelands, and the draft protocols, contracting options for soil carbon trading. The protocols developed for soil carbon trading are unique and provide a key component of the mechanisms that might be used to efficiently sequester GHG and reduce CO2 concentrations. While no key deliverables were due during the third quarter, progress on other deliverables is noted in the PowerPoint presentations and in this report. A series of meetings held during the second and third quarters have laid the foundations for assessing the issues surrounding carbon sequestration in this region, the need for a holistic approach to meeting energy demands and economic development potential, and the implementation of government programs or a market-based setting for soil C credits. These meetings provide a connection to stakeholders in the region and a basis on which to draw for the DOE PEIS hearings. A third Partnership meeting has been planned for August 04 in Idaho Falls; a preliminary agenda is attached.

  1. Big Data + Big Compute = An Extreme Scale Marriage for Smarter Science?

    E-Print Network [OSTI]

    Kuzmanovic, Aleksandar

    University choudhar@eecs.northwestern.edu Founder and President Voxsup Inc: A Big Data Science Company +1 312 of new material © Alok Choudhary 3 #12;4© Alok Choudhary h8p://science.energy, application, storage? · An application can be data intensive without being I/O intensive · (Big) Data

  2. IOL: Africa's big plans for biofuel Africa's big plans for biofuel

    E-Print Network [OSTI]

    IOL: Africa's big plans for biofuel Africa's big plans for biofuel By Clare Byrne Visitors to Madagascar, Senegal to South Africa, biofuels is the buzzword as African countries wake up to the possibility of using their vast spaces to grow crops that reduce their fossil fuel bill. Biofuels also carry

  3. Little Big Horn River Water Quality Project

    SciTech Connect (OSTI)

    Bad Bear, D.J.; Hooker, D. [Little Big Horn Coll., Crow Agency, MT (United States)

    1995-10-01T23:59:59.000Z

    This report summarizes the accomplishments of the Water Quality Project on the Little Big horn River during the summer of 1995. The majority of the summer was spent collecting data on the Little Big Horn River, then testing the water samples for a number of different tests which was done at the Little Big Horn College in Crow Agency, Montana. The intention of this study is to preform stream quality analysis to gain an understanding of the quality of selected portion of the river, to assess any impact that the existing developments may be causing to the environment and to gather base-line data which will serve to provide information concerning the proposed development. Citizens of the reservation have expressed a concern of the quality of the water on the reservation; surface waters, ground water, and well waters.

  4. Effective dynamics of the matrix big bang

    SciTech Connect (OSTI)

    Craps, Ben [Theoretische Natuurkunde, Vrije Universiteit Brussel and International Solvay Institutes, Pleinlaan 2, B-1050 Brussels (Belgium); Instituut voor Theoretische Fysica, Universiteit van Amsterdam, Valckenierstraat 65, 1018 XE Amsterdam (Netherlands); Rajaraman, Arvind [Department of Physics and Astronomy, University of California, Irvine, California 92697 (United States); Sethi, Savdeep [Enrico Fermi Institute, University of Chicago, Chicago, Illinois 60637 (United States)

    2006-05-15T23:59:59.000Z

    We study the leading quantum effects in the recently introduced matrix big bang model. This amounts to a study of supersymmetric Yang-Mills theory compactified on the Milne orbifold. We find a one-loop potential that is attractive near the big bang. Surprisingly, the potential decays very rapidly at late times where it appears to be generated by D-brane effects. Usually, general covariance constrains the form of any effective action generated by renormalization group flow. However, the form of our one-loop potential seems to violate these constraints in a manner that suggests a connection between the cosmological singularity and long wavelength, late time physics.

  5. Big Sky Wind Facility | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: EnergyAvignon,Belcher Homes JumpMaintenance |Big CreekBig SandySky

  6. Big Tree Climate Fund | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: EnergyAvignon,Belcher Homes JumpMaintenance |Big CreekBigWindTree

  7. CX-005369: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Replacement of Big Hill Deep Anode Ground Bed Site for Cavern 103CX(s) Applied: B1.3Date: 02/22/2011Location(s): TexasOffice(s): Strategic Petroleum Reserve Field Office

  8. Environmental protection and regulatory compliance at the Elk Hills Field

    SciTech Connect (OSTI)

    Chappelle, H.H. (BCM Engineers, Inc., Plymouth Meeting, PA (United States)); Donahoe, R.L. (Bechtel Petroleum Operations, Inc., Tupman, CA (United States)); Kato, T.T. (EG and G Energy Measurements, Inc., Las Vegas, NV (United States)); Ordway, H.E. (Chevron U.S.A., Inc., San Francisco, CA (United States))

    1991-01-01T23:59:59.000Z

    Environmental protection has played an integral role in the development and operation of the Elk Hills field since production at the maximum efficient rate was authorized in 1976. The field is located in a non-attainment area for California and National Ambient Air Quality Standards for two criteria pollutants and their associated precursors, is home to four endangered species, and operates within the California regulatory framework. Environmental protection and regulatory compliance is a multi-faceted program carried out through a substantial commitment of resources and workforce involvement. This paper describes the actions taken and resources employed to protect the environment, specific technologies and projects implement, and the ongoing nature of these efforts at Elk Hills.

  9. Environmental protection and regulatory compliance at the Elk Hills Field

    SciTech Connect (OSTI)

    Chappelle, H.H. [BCM Engineers, Inc., Plymouth Meeting, PA (United States); Donahoe, R.L. [Bechtel Petroleum Operations, Inc., Tupman, CA (United States); Kato, T.T. [EG and G Energy Measurements, Inc., Las Vegas, NV (United States); Ordway, H.E. [Chevron U.S.A., Inc., San Francisco, CA (United States)

    1991-12-31T23:59:59.000Z

    Environmental protection has played an integral role in the development and operation of the Elk Hills field since production at the maximum efficient rate was authorized in 1976. The field is located in a non-attainment area for California and National Ambient Air Quality Standards for two criteria pollutants and their associated precursors, is home to four endangered species, and operates within the California regulatory framework. Environmental protection and regulatory compliance is a multi-faceted program carried out through a substantial commitment of resources and workforce involvement. This paper describes the actions taken and resources employed to protect the environment, specific technologies and projects implement, and the ongoing nature of these efforts at Elk Hills.

  10. DOE to accept bids for Elk Hills crude

    SciTech Connect (OSTI)

    Not Available

    1992-05-04T23:59:59.000Z

    This paper reports that the Department of Energy will accept bids in a reoffering sale covering 53,400 b/d of Elk Hills field oil but later may exercise an option to cut sales volumes and ship 20,000 b/d to Strategic Petroleum Reserve sites in Texas. DOE rejected all 19 bids submitted in an earlier semiannual sale of crude oil from the California naval petroleum reserve, saying they were too low. DOE the, The unique combination of federal and state government policies affecting the movement of oil into and out of the California market has contributed to a situation in which it apparently is very difficult for the government to receive a price for Elk Hills oil that satisfies the minimum price tests that govern the sale of Elk Hills oil. The 12 winning bids in the reoffering sale averaged $13.58/bbl, with bids for the higher quality Stevens zone crude averaging $13.92/bbl, about 67 cents/bbl higher than bids rejected last month. DOE the 20,000 b/d is all local pipelines can ship to the interstate All-American pipeline for transfer to Texas beginning in June.

  11. BigNeuron: Unlocking the Secrets of the Human Brain

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    BigNeuron: Unlocking the Secrets of the Human Brain BigNeuron: Unlocking the Secrets of the Human Brain Berkeley Researchers and Supercomputers to Help Create a Standard 3D Neuron...

  12. The Politics of European Collaboration in Big Olof Hallonsten

    E-Print Network [OSTI]

    Bongartz, Klaus

    politics. Keywords Big Science · CERN · Common market · European Atomic Energy Community (EURATOMThe Politics of European Collaboration in Big Science Olof Hallonsten Abstract Intergovernmental outside of the political integration work of the European Community/Union, which has resulted

  13. ICME & MGI Big Area Additive Manufacturing

    E-Print Network [OSTI]

    ICME & MGI · Big Area Additive Manufacturing · Neutron Characterization for AM · Materials problems in additive manu- facturing (AM). Additive manufacturing, or three-dimensional (3-D) printing of the world's most advanced neu- tron facilities, the HFIR and SNS, to characterize additive manufactured

  14. Space Time Quantization and the Big Bang

    E-Print Network [OSTI]

    B. G. Sidharth

    1998-06-21T23:59:59.000Z

    A recent cosmological model is recapitulated which deduces the correct mass, radius and age of the universe as also the Hubble constant and other well known apparently coincidental relations. It also predicts an ever expanding accelerating universe as is confirmed by latest supernovae observations. Finally the Big Bang model is recovered as a suitable limiting case.

  15. EIS-0315-S1: SEIS on Caithness Big Sandy Project

    Broader source: Energy.gov [DOE]

    In June 2001, the Bureau of Land Management (BLM) and Western Area Power Administration (Western) issued the Big Sandy Energy Project Draft Environmental Impact Statement (EIS) (BLM and Western 2001). After June 2001, Caithness Big Sandy, L.L.C. (Caithness), revised aspects of the Big Sandy Energy Project (Project) described as the Proposed Action in the Draft EIS.

  16. Visualizing Distributed Data with BigWig and BigBed at UCSC (2010 JGI/ANL HPC Workshop)

    ScienceCinema (OSTI)

    Kent, Jim [UCSC

    2011-06-08T23:59:59.000Z

    Jim Kent from University of California, Santa Cruz presents on "Visualizing Distributed Data with BigWig and BigBed at UCSC" at the JGI/Argonne HPC Workshop on January 26, 2010.

  17. Deep-fried Turkey

    E-Print Network [OSTI]

    Birkhold, Sarah

    2000-11-09T23:59:59.000Z

    Deep-fried Turkey by Sarah G. Birkhold Assistant Professor and Extension Poultry Specialist, The Texas A&M University System lemon pepper can be applied both inside and outside the bird. Prepared marinades, available from the grocer, also can...

  18. Exploration for deep coal

    SciTech Connect (OSTI)

    NONE

    2008-12-15T23:59:59.000Z

    The most important factor in safe mining is the quality of the roof. The article explains how the Rosebud Mining Co. conducts drilling and exploration in 11 deep coal mine throughout Pennsylvania and Ohio. Rosebud uses two Atlas Copco CS10 core drilling rigs mounted on 4-wheel drive trucks. The article first appeared in Atlas Copco's in-house magazine, Deep Hole Driller. 3 photos.

  19. Big Crunch-based omnidirectional light concentrators

    E-Print Network [OSTI]

    Igor I. Smolyaninov; Yu-Ju Hung

    2014-05-16T23:59:59.000Z

    Omnidirectional light concentration remains an unsolved problem despite such important practical applications as design of efficient mobile photovoltaic cells. Optical black hole designs developed recently offer partial solution to this problem. However, even these solutions are not truly omnidirectional since they do not exhibit a horizon, and at large enough incidence angles light may be trapped into quasi-stationary orbits around such imperfect optical black holes. Here we propose and realize experimentally another gravity-inspired design of a broadband omnidirectional light concentrator based on the cosmological Big Crunch solutions. By mimicking the Big Crunch spacetime via corresponding effective optical metric we make sure that every photon world line terminates in a single point.

  20. Western Shallow Oil Zone, Elk Hills Field, Kern County, California:

    SciTech Connect (OSTI)

    Carey, K.B.

    1987-09-01T23:59:59.000Z

    This study, Appendix V, addresses the Gusher Sands and their sub units and pools. Basic pressure, production and assorted technical dta were provided by the US Department of Energy staff at Elk Hills. These data were accepted as furnished with no attempt made by Evans, Carey and Crozier for independent verification. This study has identified the petrophysical properties and the past productive performance of the reservoir. Primary reserves have been determined and general means of enhancing future recovery have been suggested. It is hoped that this volume can now additionally serve as a take off points for exploitation engineers to develop specific programs towards these ends. 16 refs., 9 tabs.

  1. From the hills to the mountain. [Oil recovery in California

    SciTech Connect (OSTI)

    McDonald, J.

    1980-05-01T23:59:59.000Z

    The oil reserves at Elk Hills field, California, are listed as amounting to 835 million bbl. There is 12 times that amount lying in shallow sands in the San Joaquin Valley, although the oil is much heavier and requires more refining before use. Improved recovery techniques have enabled higher rates of recovery for heavy oil than in the past. Some of these techniques are described, including bottom-hole heating, steam injection, and oil mining. Bottom-hole heating alone raised recovery rates for heavy oil to 25%, and steam injection raised rates to 50%. It is predicted that oil mining may be able to accomplish 100% recovery of the heavy oil.

  2. Laguna Hills, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to: navigation,working-groups <LackawannaLago Vista, Texas:Hills, California:

  3. Laguna Hills, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to: navigation,working-groups <LackawannaLago Vista, Texas:Hills,

  4. Lea Hill, Washington: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:Landowners and Wind EnergyIndiana: Energy Resources JumpPrataHill, Washington:

  5. Lexington Hills, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:Landowners and Wind EnergyIndiana:NewJump to: navigation, searchCounty,Hills,

  6. Liberty Hill, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:Landowners and Wind EnergyIndiana:NewJumpLiberia: EnergyTexas:Hill, Texas:

  7. EA-118 Hill County Electric Cooperative, Inc. | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China U.S.ContaminationJuly 2011D APPENDIX D9 STAT. 1117Hill County Electric Cooperative

  8. Brewster Hill, New York: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass ConversionsSouthbyBostonBrattleboro,Hampshire: EnergyBretHill, New York:

  9. Bunker Hill Village, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomassSustainable andBucoda, Washington: Energy(B2G)Bunker Hill Village, Texas:

  10. Waite Hill, Ohio: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown ofNationwide Permit webpage JumpWaikane, Hawaii: EnergyWaipio,Waite Hill, Ohio:

  11. West Hills, New York: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown ofNationwideWTED JumpHills, New York: Energy Resources Jump to: navigation,

  12. Westwood Hills, Kansas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown ofNationwideWTED JumpHills,2732°, -76.7798172°Westside

  13. Campton Hills, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomassSustainableCSL GasPermits Manual JumpEnergy InformationCampton Hills,

  14. Cedar Hill, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here.Telluric Survey asWest, New Jersey: Energy Resources JumpWestHill,

  15. Cherry Hills Village, Colorado: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here.Telluric SurveyChelan County,ChenangoHills Village, Colorado: Energy

  16. Cimarron Hills, Colorado: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here.TelluricPower InternationalChuichu,Cima NanoTech Jump to:Hills,

  17. City of Blue Hill, Nebraska (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here.TelluricPowerCity of Aplington, IowaCity of Blackwell,Blue Hill,

  18. Settlers Hill Gas Recovery Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd JumpInformationScottsOklahoma: EnergySeoulSettlers Hill Gas Recovery

  19. Sewickley Hills, Pennsylvania: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd JumpInformationScottsOklahoma:Sevin Rosen FundsSewaren, NewHills,

  20. PP-118 Hill County Electric Cooperative Inc | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOilNEWResponse(Expired) | Department ofINCREASES |POlicy Flash8 Hill

  1. Jefferson Hills, Pennsylvania: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtelInterias SolarJane Capital4.1672949°,Information DavisHills,

  2. Heritage Hills, New York: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG|InformationInformationHensley, Arkansas: EnergyHills, New

  3. Hickory Hills, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel Jump to: navigation, search Name: Hi-GtelTennessee:Hills, Illinois:

  4. Humboldt Hill, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel Jump to:Pennsylvania:County,Ohio:Hughson,Hill, California: Energy

  5. Pine Hill, New York: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County, Nebraska: Energy ResourcesPicketGeothermal Project JumpBeach,Hill, New York:

  6. Pine Hills, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County, Nebraska: Energy ResourcesPicketGeothermal Project JumpBeach,Hill, New

  7. Pine Hills, Florida: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County, Nebraska: Energy ResourcesPicketGeothermal Project JumpBeach,Hill,

  8. Lost Hills, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf KilaueaInformation Other4Q07) Wind Farm Jump1 JumpBeachVientosHills,

  9. City of Auburn Hills (Text Version) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"Wave the White Flag" | Department ofAddressing PolicyAuburn Hills

  10. Indian Hills, Colorado: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel JumpCounty,Jump7 Varnish cacheTransport and BuildingCreek,Hills,

  11. Mars Hill (2006) Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose Bend < MHKconvertersourcesourceCharacterizationMark2015:Mars Hill

  12. Moulton Chandler Hills Wind Farm Phase II | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose BendMiasole IncMinutemanVistaZephyr) JumpMorroMoulton Chandler Hills

  13. Oak Hills Place, Louisiana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall,Missouri: EnergyExcellence SeedNunn,and Fees for GeothermalOTiltHills Place,

  14. Oak Hills, Oregon: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall,Missouri: EnergyExcellence SeedNunn,and Fees for GeothermalOTiltHills

  15. Orland Hills, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall,Missouri:Energy InformationOregon: Energy ResourcesOrion EnergyHills,

  16. Black Hills Power Inc (Montana) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: EnergyAvignon,Belcher HomesLyonsBirch Creek VillageForestBlack Hills

  17. Marshfield Hills, Massachusetts: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:LandownersLuther,JemezMissouri:Marshfield Hills, Massachusetts: Energy

  18. McGinness Hills Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville, Ohio: Energy ResourcesMaviMcCulloch County,McDowellMcGinness Hills

  19. Southern Minnesota Hills Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎SolarCity Corp Jumpsource HistoryCommunitySunbelt WindHills

  20. Crest Hill, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, clickInformationNew|CoreCp Holdings LlcCrenshaw County,Crest Hill, Illinois:

  1. Cumberland Hill, Rhode Island: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, clickInformationNew|CoreCpWing County,Electric Coop,Cumberland ElecHill,

  2. Dix Hills, New York: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOE FacilityDimondale, Michigan:Emerling Farm <SiteLtd Di SDivideDix Hills,

  3. McGuinness Hills Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLu an Group JumpNewMassachusettsMayo Power JumpMcGuinness Hills

  4. Morgan Hill, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula,MontereyHill, California: Energy Resources Jump to:

  5. Bay Hill, Florida: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions IncBay County, Florida: Energy Resources JumpHill, Florida:

  6. Ben Hill County, Georgia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions IncBayBelmont County, Ohio: EnergyBelvedere,Hill County,

  7. Beverly Hills, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass ConversionsSouth Carolina:Energy LLC Place:Beverly Hills, California: Energy

  8. Beverly Hills, Michigan: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass ConversionsSouth Carolina:Energy LLC Place:Beverly Hills, California:

  9. Blue Hills, Connecticut: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass ConversionsSouthby 2022 |Bleckley County,Minnesota:OpenFlint EthanolHills,

  10. Puente Hills Energy Recovery Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod Jump to:ThisPublic Power &EnergyOpenPuente Hills Energy

  11. Quartz Hill, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod Jump to:ThisPublicPutnamQuail Valley,QuantumQuartz Hill,

  12. Raleigh Hills, Oregon: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to: navigation, search Name: Raghuraji AgroRajaram MaizeHills, Oregon:

  13. Rolling Hills Estates, California: Energy Resources | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to: navigation,MazeOhio:Ohio:RockwallRolling Hills Electric Coop

  14. Fruit Hill, Ohio: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump1946865°, -86.0529604° ShowCounty, California:Frontier, NorthFruit Hill,

  15. Valley Hill, North Carolina: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown of Ladoga,planning methodologies andVacant Jump669°,Hill, North Carolina:

  16. City of Hill City, Kansas (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here.TelluricPowerCity ofInformationHarmony,City ofCity ofHill City,

  17. Cockrell Hill, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, clickInformationNew York: Energy ResourcesCoastalCobbCockrell Hill, Texas:

  18. Hill County Electric Coop, Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup | Open EnergyInformation Hess Retail NaturalHifluxHighlineHill

  19. Agoura Hills, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDITCaliforniaWeifangwikiAgoura Hills, California: Energy Resources Jump

  20. El Dorado Hills, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489 No revision| Open JumpEcologyEl Dorado Hills, California: Energy

  1. Los Alamos National Laboratory Investigates Fenton Hill to Support...

    Broader source: Energy.gov (indexed) [DOE]

    for geothermal experiments in an attempt to generate energy using steam produced from pumping water into hot rocks deep in the ground. Most of the 10 areas of concern on the site...

  2. Lithium isotopic systematics of granites and pegmatites from the Black Hills, South Dakota

    E-Print Network [OSTI]

    Rudnick, Roberta L.

    Lithium isotopic systematics of granites and pegmatites from the Black Hills, South Dakota Fang pegmatite and possible metasedimentary source rocks in the Black Hills, South Dakota, USA. The Harney Peak.5 and overlap with post- Archean shales and the Harney Peak Granite. For the granite suite

  3. HEPATIC MINERALS OF WHITE-TAILED AND MULE DEER IN THE SOUTHERN BLACK HILLS, SOUTH DAKOTA

    E-Print Network [OSTI]

    HEPATIC MINERALS OF WHITE-TAILED AND MULE DEER IN THE SOUTHERN BLACK HILLS, SOUTH DAKOTA Teresa J status, and species. Key words: Black Hills, elements, fire, liver, mule deer, Odocoileus hemionus and laboratory animals (Robbins, 1983). Liver concentrations of some trace elements have been measured in elk

  4. Connaught Hill Park 37.0 acres (Connaught Drive & Queensway St.)

    E-Print Network [OSTI]

    Northern British Columbia, University of

    CITY PARKS · Connaught Hill Park 37.0 acres (Connaught Drive & Queensway St.) Picnic Site 346.0 acres (Cranbrook Hill Rd.) Hiking Trails (15.0 km), Picnic Shelter and Sites, Viewpoint, Public (Heather Rd. & Austin Rd. West) Ball Diamonds, Soccer Pitch, Washrooms, Elks Centre · Recreation Place 33

  5. Big Canyon Creek Ecological Restoration Strategy.

    SciTech Connect (OSTI)

    Rasmussen, Lynn; Richardson, Shannon

    2007-10-01T23:59:59.000Z

    He-yey, Nez Perce for steelhead or rainbow trout (Oncorhynchus mykiss), are a culturally and ecologically significant resource within the Big Canyon Creek watershed; they are also part of the federally listed Snake River Basin Steelhead DPS. The majority of the Big Canyon Creek drainage is considered critical habitat for that DPS as well as for the federally listed Snake River fall chinook (Oncorhynchus tshawytscha) ESU. The Nez Perce Soil and Water Conservation District (District) and the Nez Perce Tribe Department of Fisheries Resources Management-Watershed (Tribe), in an effort to support the continued existence of these and other aquatic species, have developed this document to direct funding toward priority restoration projects in priority areas for the Big Canyon Creek watershed. In order to achieve this, the District and the Tribe: (1) Developed a working group and technical team composed of managers from a variety of stakeholders within the basin; (2) Established geographically distinct sub-watershed areas called Assessment Units (AUs); (3) Created a prioritization framework for the AUs and prioritized them; and (4) Developed treatment strategies to utilize within the prioritized AUs. Assessment Units were delineated by significant shifts in sampled juvenile O. mykiss (steelhead/rainbow trout) densities, which were found to fall at fish passage barriers. The prioritization framework considered four aspects critical to determining the relative importance of performing restoration in a certain area: density of critical fish species, physical condition of the AU, water quantity, and water quality. It was established, through vigorous data analysis within these four areas, that the geographic priority areas for restoration within the Big Canyon Creek watershed are Big Canyon Creek from stream km 45.5 to the headwaters, Little Canyon from km 15 to 30, the mainstem corridors of Big Canyon (mouth to 7km) and Little Canyon (mouth to 7km). The District and the Tribe then used data collected from the District's stream assessment and inventory, utilizing the Stream Visual Assessment Protocol (SVAP), to determine treatment necessary to bring 90% of reaches ranked Poor or Fair through the SVAP up to good or excellent. In 10 year's time, all reaches that were previously evaluated with SVAP will be reevaluated to determine progress and to adapt methods for continued success. Over 400 miles of stream need treatment in order to meet identified restoration goals. Treatments include practices which result in riparian habitat improvements, nutrient reductions, channel condition improvements, fish habitat improvements, invasive species control, water withdrawal reductions, improved hydrologic alterations, upland sediment reductions, and passage barrier removal. The Nez Perce Soil and Water Conservation District (District) and the Nez Perce Tribe Department of Fisheries Resource Management Watershed Division (Tribe) developed this document to guide restoration activities within the Big Canyon Creek watershed for the period of 2008-2018. This plan was created to demonstrate the ongoing need and potential for anadromous fish habitat restoration within the watershed and to ensure continued implementation of restoration actions and activities. It was developed not only to guide the District and the Tribe, but also to encourage cooperation among all stakeholders, including landowners, government agencies, private organizations, tribal governments, and elected officials. Through sharing information, skills, and resources in an active, cooperative relationships, all concerned parties will have the opportunity to join together to strengthen and maintain a sustainable natural resource base for present and future generations within the watershed. The primary goal of the strategy is to address aquatic habitat restoration needs on a watershed level for resident and anadromous fish species, promoting quality habitat within a self-sustaining watershed. Seven objectives have been developed to support this goal: (1) Identify factors limiting quality

  6. Big Thicket National Preserve: Trails to the Future

    E-Print Network [OSTI]

    Anderson, Luke; Allen, Chris; Elrod, Leah; Forbes, Melissa; Harbin, Hannah; Stromm, Diann

    2003-01-01T23:59:59.000Z

    , put timber companies out of business, and drive small towns to bankruptcy. 9 In 1964, the Big Thicket Association of Texas was formed to replace the failed East Texas Big Thicket Association. The new association worked hard to draw powerful...., 307. 16 Ibid., 336. 17 Ibid., 214-215. 18 Ibid., 298-299. 19 Gunter, The Big Thicket: An Ecological Reevaluation (Denton: University of North Texas Press), 48. 20 Cozine, 308. 21 Gunter, 76. 22 Ibid. 23 Ibid., 167. 24 Ibid., 109...

  7. Mathematical programming approach to tighten a Big-$M$ formulation

    E-Print Network [OSTI]

    Alejandro Crema

    2014-08-07T23:59:59.000Z

    Aug 7, 2014 ... Abstract: In this paper we present a mathematical programming approach to tighten a Big-$M$ formulation ($P_M$) of a Mixed Integer Problem ...

  8. A different Big Bang theory: Los Alamos unveils explosives detection...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    unveils explosives detection expertise A different Big Bang theory: Los Alamos unveils explosives detection expertise A team of scientists is now rolling out a collaborative...

  9. LDRD symposium focuses on materials in extremes, big data, and...

    National Nuclear Security Administration (NNSA)

    symposium focuses on materials in extremes, big data, and energy use impacts | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing...

  10. Data, Feedback, & Awareness Lead to Big Energy Savings | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Data, Feedback, & Awareness Lead to Big Energy Savings Fact sheet describes how the Navy Region Southwest Metro San Diego Area (NRSMSD) regional energy management team achieved...

  11. aura laser big: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to Build Data Sets for Data Mining, Data & Knowledge Engineering (DKE), 2014, Elsevier. DBMS 12 Ordonez, Carlos 208 Systems for Big-Graphs Arijit Khan Computer Technologies and...

  12. african big cities: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to Build Data Sets for Data Mining, Data & Knowledge Engineering (DKE), 2014, Elsevier. DBMS 12 Ordonez, Carlos 238 Systems for Big-Graphs Arijit Khan Computer Technologies and...

  13. assessment big canyon: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to Build Data Sets for Data Mining, Data & Knowledge Engineering (DKE), 2014, Elsevier. DBMS 12 Ordonez, Carlos 237 Systems for Big-Graphs Arijit Khan Computer Technologies and...

  14. The Next Big Thing - Eric Haseltine

    ScienceCinema (OSTI)

    Eric Haseltine

    2010-01-08T23:59:59.000Z

    Eric Haseltine, Haseltine Partners president and former chief of Walt Disney Imagineering, presented "The Next Big Thing," on Sept. 11, at the ORNL. He described the four "early warning signs" that a scientific breakthrough is imminent, and then suggested practical ways to turn these insights into breakthrough innovations. Haseltine is former director of research at the National Security Agency and associate director for science and technology for the director of National Intelligence, former executive vice president of Walt Disney Imagineering and director of engineering for Hughes Aircraft. He has 15 patents in optics, special effects and electronic media, and more than 100 publications in science and technical journals, the web and Discover Magazine.

  15. Big Geysers Geothermal Facility | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: EnergyAvignon,Belcher Homes JumpMaintenance |Big Creek Hot

  16. Big Horn 2 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: EnergyAvignon,Belcher Homes JumpMaintenance |Big Creek Hot2 Jump to:

  17. Big Brothers needed in Northern New Mexico

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced Materials Find MoreLawrenceDepartment ofBicycle SafetyBig Brothers

  18. Deep Energy Retrofits & State Applications

    Broader source: Energy.gov [DOE]

    This presentation, given through the DOE's Technical Assitance Program (TAP), provides information on Deep Energy Retrofits & State Applications

  19. Western Shallow Oil Zone, Elk Hills Field, Kern County, California:

    SciTech Connect (OSTI)

    Carey, K.B.

    1987-09-01T23:59:59.000Z

    The general Reservoir Study of the Western Shallow Oil Zone was prepared by Evans, Carey and Crozier as Task Assignment 009 with the United States Department of Energy. This study, Appendix II addresses the first Wilhelm Sands and its sub unites and pools. Basic pressure, production and assorted technical data were provided by the US Department of Energy staff at Elk Hills. These data were accepted as furnished with no attempt being made by Evans, Carey and Crozier for independent verification. This study has identified the petrophysical properties and the past productive performance of the reservoir. Primary reserves have been determined and general means of enhancing future recovery have been suggested. It is hoped that this volume can now additionally serve as a take off point for exploitation engineers to develop specific programs toward the end.

  20. DOE turns down all bids for Elk Hills crude

    SciTech Connect (OSTI)

    Not Available

    1992-03-30T23:59:59.000Z

    This paper reports that the U.S. Department of Energy has rejected all bids submitted in the Mar. 5 semiannual sale of crude oil from Elk Hills Naval Petroleum Reserve (NPR-1) in California. DOE the all 19 bids for the 53,740 b/d of crude were too low. The bids ranged from $11.71 to $14.06/bbl, with the top bids for the highest quality Stevens zone crude averaging $13.25/bbl. California oil companies the they bid what the market would bear, explaining a surplus of Alaskan crude on the West Coast has driven down the price of local crudes, notably heavy crudes. DOE will extend the current oil purchase contracts through April while it issues a new request for bids. It planned to issue the solicitation Mar. 23 and receive bids Apr. 15.

  1. CH2M HILL Plateau Remediation Company | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China U.S. Department ofJune 2,The BigSidingState6 (2-91)A2015EnergyCESP ToolThis

  2. Black Hills Power - Commercial Energy Efficiency Programs | Department of

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China U.S. Department ofJune 2,The Big Green BusNews and updatesTechnicalToday, ofIn

  3. The Naming, Identification, and Protection of Place in the Loess Hills of the Middle Missouri Valley

    E-Print Network [OSTI]

    McDermott, David Thomas

    2009-11-09T23:59:59.000Z

    tool for field work in physical geography. The only time I have carried a gun with lethal intent was in the Loess Hills of northern Missouri. A coworker and I drove into the hills just south of St. Joseph and walked, on a crisp fall morning, up.... 5 One part of the perceptual story about the Hills is their location. This study will approach that question from two perspectives. It first will offer a traditional analysis using physical data on soil, bedrock, elevation, and slope...

  4. Review: Eco-Business: A Big-Brand Takeover of Sustainability

    E-Print Network [OSTI]

    Laberge, Yves

    2015-01-01T23:59:59.000Z

    Big-Brand Takeover of Sustainability By Peter Dauvergne andA Big-Brand Takeover of Sustainability. Cambridge, MA: MITA Big-Brand Takeover of Sustainability is a very important

  5. Synoptic Observing Programs at Big Bear Solar Observatory

    E-Print Network [OSTI]

    Solar Observatory in China, and will explore collaboration with observatories in Canary Island to extendSynoptic Observing Programs at Big Bear Solar Observatory Haimin Wang and Philip R. Goode Big Bear Solar Observatory, New Jersey Institute of Technology, Newark, NJ 07102, USA Abstract. New Jersey

  6. 20 y 50 y 500 y Geological characterization of the TEEP study area is based on the examination of two deep wells,

    E-Print Network [OSTI]

    Stanford University

    Geological characterization of the TEEP study area is based on the examination of two deep by 360 km2) structural basin, bounded by the Big Horn Mountains and Casper Arch on the west, Miles City to the south, located in northeast Wyoming and eastern The Two Elk Energy Park (TEEP) is a commercialscale

  7. Big Problems. Big Results. Energy demands, environmental impacts, and national security are some of America's toughest challenges.

    E-Print Network [OSTI]

    Big Problems. Big Results. Energy demands, environmental impacts, and national security are some interaction physics. » PNNL is driven to help increase U.S. energy capacity and reduce our dependence on imported oil. Collaborating with our partners, we are developing ways to use today's energy sources more

  8. Astrogenomics: big data, old problems, old solutions?

    E-Print Network [OSTI]

    Golden, Aaron; Greally, John M

    2013-01-01T23:59:59.000Z

    The ominous warnings of a `data deluge' in the life sciences from high-throughput DNA sequencing data are being supplanted by a second deluge, of cliches bemoaning our collective scientific fate unless we address the genomic data `tsunami'. It is imperative that we explore the many facets of the genome, not just sequence but also transcriptional and epigenetic variability, integrating these observations in order to attain a genuine understanding of how genes function, towards a goal of genomics-based personalized medicine. Determining any individual's genomic properties requires comparison to many others, sifting out the specific from the trends, requiring access to the many in order to yield information relevant to the few. This is the central big data challenge in genomics that still requires some sort of resolution. Is there a practical, feasible way of directly connecting the scientific community to this data universe? The best answer could be in the stars overhead.

  9. EIS-0266: Glass Mountain/Four Mile Hill Geothermal Project, California

    Broader source: Energy.gov [DOE]

    The EIS analyzes BPA's proposed action to approve the Transmission Services Agreements (TSAs) and Power Purchase Agreements (PPAs) with Calpine Siskiyou Geothermal Partners, L.P. (Calpine) to acquire output from the Fourmile Hill Geothermal Development Project (Project).

  10. Kevin Wood Landscape: a study in Texas Hill Country landscape design

    E-Print Network [OSTI]

    Secker, William Walker

    2002-01-01T23:59:59.000Z

    Kevin Wood Landscape resides in Austin, Texas as the premier residential landscape design firm. The firm, although small in stature, tackles a variety of projects throughout Austin and the immediate Hill Country. Close inspection within...

  11. Constraints on the Age of Heating at the Fenton Hill Site, Valles...

    Open Energy Info (EERE)

    OpenEI Reference LibraryAdd to library Journal Article: Constraints on the Age of Heating at the Fenton Hill Site, Valles Caldera, New Mexico Abstract Subsurface samples and...

  12. Case Study Walnut Hill United Methodist Church - Dallas, Texas, Chiller Replacement Analysis

    E-Print Network [OSTI]

    Phillips, J.

    1998-01-01T23:59:59.000Z

    In March of 1992 Walnut Hill United Methodist Church in Dallas, Tx. decided that their existing thermal storage and electric reciprocating chiller system were both in need of replacement. After analyzing several options, they chose to install 150...

  13. ICFT- An Initial Closed-Loop Flow Test of the Fenton Hill Phase...

    Open Energy Info (EERE)

    ICFT- An Initial Closed-Loop Flow Test of the Fenton Hill Phase II HDR Reservoir Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: ICFT- An Initial...

  14. Intern experience at CH?M Hill, Inc.: an internship report

    E-Print Network [OSTI]

    Winter, William John, 1949-

    2013-03-13T23:59:59.000Z

    A review of the author's internship experience with CH?M HILL, Inc. during the period September 1975 through May 1976 is presented. During this nine month internship the author worked as an Engineer II in the Industrial Processes...

  15. Restructuring the urban neighborhood : the dialogue between image and ideology in Phoenix Hill, Louisville, Kentucky

    E-Print Network [OSTI]

    Isaacs, Mark Andrew

    1980-01-01T23:59:59.000Z

    This thesis addresses the problems of restructuring the urban neighborhood as specifically applied to the Phoenix Hill community in Louisville, Kentucky. Theory and concepts are briefly presented as a basis for design ...

  16. Los Alamos National Laboratory Investigates Fenton Hill to Support Future Land Use

    Broader source: Energy.gov [DOE]

    LOS ALAMOS, N.M. – Supporting future land use for the U.S. Forest Service, Los Alamos National Laboratory’s Corrective Actions Program (CAP) completed sampling soil at Fenton Hill in the Jemez Mountains this month.

  17. A Cache of Mesquite Beans from the Mecca Hills, Salton Basin

    E-Print Network [OSTI]

    Swenson, James D

    1984-01-01T23:59:59.000Z

    University of Chicago Press. Bean, L. J. 1972 Mukat'sSmithsonian Institution. Bean, L. J. , and K. S. Saubel 1963Riverside. A Cache of Mesquite Beans from the Mecca Hills,

  18. Rock-Water Interactions in the Fenton Hill, New Mexico, Hot Dry...

    Open Energy Info (EERE)

    to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Rock-Water Interactions in the Fenton Hill, New Mexico, Hot Dry Rock Geothermal Systems I. Fluid...

  19. Rock-Water Interactions in the Fenton Hill, New Mexico, Hot Dry...

    Open Energy Info (EERE)

    to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Rock-Water Interactions in the Fenton Hill, New Mexico, Hot Dry Rock Geothermal Systems II....

  20. Peer Review of the Hot Dry Rock Project at Fenton Hill, New Mexico

    SciTech Connect (OSTI)

    None

    1998-12-01T23:59:59.000Z

    This report briefly describes the history of the hot dry rock experiment project conducted by the U.S. Department of Energy and Los Alamos National Laboratory at Fenton Hill, New Mexico, from about 1971 through 1995. The authors identify the primary lessons learned and techniques developed during the course of the Fenton Hill project, and summarize the extent to which these technologies have been transferred to the U.S. geothermal industry.

  1. Spacer for deep wells

    SciTech Connect (OSTI)

    Klein, G. D.

    1984-10-23T23:59:59.000Z

    A spacer for use in a deep well that is to have a submersible pump situated downhole and with a string of tubing attached to the pump for delivering the pumped fluid. The pump is electrically driven, and power is supplied via an armored cable which parallels the string of tubing. Spacers are clamped to the cable and have the tubing running through an eccentrically located passage in each spacer. The outside dimensions of a spacer fit freely inside any casing in the well.

  2. World Wide WebWWWDeep Web Web Deep Web

    E-Print Network [OSTI]

    Deep Web Web World Wide WebWWWDeep Web Web Deep Web Deep Web Deep Web Deep Web Deep Web 1 World Wide Web [1] Web 200,000TB Web Web Web Internet Web Web Web "" Surface Web Deep Web Surface Web 21.3% Surface Web Deep Web [2] Deep Web Web Crawler Deep Web 1 Web

  3. Horizontal wells improve recovery at the Elk Hills Petroleum Reserve

    SciTech Connect (OSTI)

    Rintoul, B.

    1995-11-01T23:59:59.000Z

    In 1988 the US Department of Energy and Bechtel implemented a program to slow production declines in the Elk Hills 26R pool sand of the Naval Petroleum Reserve No. 1. It was also hoped horizontal wells would increase the production rate, decrease gas production and extend economic life of the reservoir. The Stevens sand pool targeted for the project is a high-quality, sand-rich turbidite channel system encapsulated within Miocene Monterey siliceous shales, mudstones and associated sediments. The pool is about 3-miles long by 3/4-mile wide. The paper describes the specifications and drilling of the first four out of the 14 horizontal wells drilled at this facility. Horizontal drilling technology has completely altered the future of the 26R pool. In 1980 estimated ultimate recovery (EUR) from the sand was 211 million bbl. With the latest horizontal well drilling campaign, the pool is expected to pass that estimate in 1997 when oil production is forecasted to be at least 13,000 b/d. EUR form the 26R sand now is more than 250 million bbl, and even that estimate is being revised upward.

  4. West Short Pine Hills field, Harding County, South Dakota

    SciTech Connect (OSTI)

    Strothman, B.

    1988-07-01T23:59:59.000Z

    The West Short Pine Hills field is a shallow gas field that produces from the Shannon Sandstone Member, on the Camp Crook anticline in southwestern Harding County, South Dakota. The Alma McCutchin 1-17 Heikkila discovery was drilled in the NW1/4, Sec. 17, T16N, R2E, to a depth of 1600 ft and completed in October 1977 for 600 MCFGD from perforations at 1405-1411 ft. To date, 40 gas wells have been completed with total estimated reserves of more than 20 bcf. The field encompasses 12,000 ac, with a current drill-site spacing unit of 160 ac. The field boundaries are fairly well defined, except on the south edge of the field. The wells range in depth from 1250 to 2200 ft, and cost $60,000-$85,000 to drill and complete. Core and log analyses indicate that the field has 70 ft of net pay, with average porosity of 30% and average permeability of 114 md. Most wells have been completed with nitrogen-sand frac. Williston Basin Interstate Pipeline Company of Bismarck, North Dakota, operates a compressor station and 2.5 mi of 4-in. line that connects the field to their 160 in. north-south transmission line to the Rapid City area. Currently, producers are netting $1.10-$1.25/million Btu. The late Mathew T. Biggs of Casper, Wyoming, was the geologist responsible for mapping and finding this gas deposit.

  5. A deep earthquake goes supershear

    SciTech Connect (OSTI)

    Wilson, R. Mark

    2014-09-01T23:59:59.000Z

    Seismic analysis of an aftershock off Russia’s Kamchatka Peninsula offers evidence that deep earthquakes are more complicated than geoscientists realized.

  6. Research Activities at Fermilab for Big Data Movement

    SciTech Connect (OSTI)

    Mhashilkar, Parag; Wu, Wenji; Kim, Hyun W; Garzoglio, Gabriele; Dykstra, Dave; Slyz, Marko; DeMar, Phil

    2013-01-01T23:59:59.000Z

    Adaptation of 100GE Networking Infrastructure is the next step towards management of Big Data. Being the US Tier-1 Center for the Large Hadron Collider's (LHC) Compact Muon Solenoid (CMS) experiment and the central data center for several other large-scale research collaborations, Fermilab has to constantly deal with the scaling and wide-area distribution challenges of the big data. In this paper, we will describe some of the challenges involved in the movement of big data over 100GE infrastructure and the research activities at Fermilab to address these challenges.

  7. Method of deep drilling

    DOE Patents [OSTI]

    Colgate, Stirling A. (4616 Ridgeway, Los Alamos, NM 87544)

    1984-01-01T23:59:59.000Z

    Deep drilling is facilitated by the following steps practiced separately or in any combination: (1) Periodically and sequentially fracturing zones adjacent the bottom of the bore hole with a thixotropic fastsetting fluid that is accepted into the fracture to overstress the zone, such fracturing and injection being periodic as a function of the progression of the drill. (2) Casing the bore hole with ductile, pre-annealed casing sections, each of which is run down through the previously set casing and swaged in situ to a diameter large enough to allow the next section to run down through it. (3) Drilling the bore hole using a drill string of a low density alloy and a high density drilling mud so that the drill string is partially floated.

  8. People's Physics Book Ch 7-1 The Big Idea

    E-Print Network [OSTI]

    California at Santa Cruz, University of

    People's Physics Book Ch 7-1 The Big Idea The universe has many remarkable qualities, among them;People's Physics Book Ch 7-2 as just the two cars. In this case, internal forces include

  9. Taking Battery Technology from the Lab to the Big City

    Broader source: Energy.gov [DOE]

    A small New York City startup is hoping it has the next big solution in energy storage. A video documents what the company's breakthrough means for the future of grid-scale energy storage.

  10. Big and Small Ideas: How to Lower Solar Financing Costs

    Broader source: Energy.gov [DOE]

    DOE hosted the "Big & Small Ideas: How to Lower Solar Financing Costs" breakout session during the SunShot Grand Challenge Summit and Technology Forum. This session explored a range of...

  11. Demonstration of Black Liquor Gasification at Big Island

    SciTech Connect (OSTI)

    Robert DeCarrera

    2007-04-14T23:59:59.000Z

    This Final Technical Report provides an account of the project for the demonstration of Black Liquor Gasification at Georgia-Pacific LLC's Big Island, VA facility. This report covers the period from May 5, 2000 through November 30, 2006.

  12. The seasonality of aerosol properties in Big Bend National Park

    E-Print Network [OSTI]

    Allen, Christopher Lee

    2007-04-25T23:59:59.000Z

    ), to characterize the seasonal variability of the Big Bend regions aerosol optical properties. Mass extinction efficiencies and relative humidity scattering enhancement factors were calculated for both externally and internally mixed aerosol populations for all size...

  13. EIS-0377: Big Stone II Power Plant and Transmission Project

    Broader source: Energy.gov [DOE]

    A systems study was carried out to identify the most appropriate locations to interconnect the proposed Big Stone II power plant to the regional utility grid. The study also identified transmission...

  14. Science mentor program at Mission Hill Junior High School

    SciTech Connect (OSTI)

    Dahlquist, K. [Univ. of California, Santa Cruz, CA (United States)

    1994-12-31T23:59:59.000Z

    Science graduate students from the University of California at Santa Cruz mentor a class of 7th graders from the Mission Hill Junior High School. The program`s purpose is: (1) to create a scientific learning community where scientists interact at different levels of the educational hierarchy; (2) to have fun in order to spark interest in science; and (3) to support girls and minority students in science. A total of seven mentors met with the students at least once a week after school for one quarter to tutor and assist with science fair projects. Other activities included a field trip to a university earth science lab, judging the science fair, and assisting during laboratory exercises. Graduate students run the program with minimal organization and funding, communicating by electronic mail. An informal evaluation of the program by the mentors has concluded that the most valuable and effective activities have been the field trip and assisting with labs. The actual {open_quotes}mentor meetings{close_quotes} after school did not work effectively because they had a vaguely defined purpose and the kids did not show up regularly to participate. Future directions include redefining ourselves as mentors for the entire school instead of just one class and better coordinating our activities with the teachers` curriculum. We will continue to assist with the labs and organize formal tutoring for students having problems with math and science. Finally, we will arrange more activities and field trips such as an amateur astronomy night. We will especially target girls who attended the {open_quotes}Expanding Your Horizons{trademark} in Science, Mathematics, and Engineering{close_quotes} career day for those activities.

  15. Dry gas zone, Elk Hills Field, Kern County, California: General reservoir study: Engineering data, effective August 1, 1988

    SciTech Connect (OSTI)

    Not Available

    1989-01-10T23:59:59.000Z

    This reservoir study of the dry gas zone of Elk Hills Field is a data compilation with information relating to well: completion; production; pressure; and back pressure. (JF)

  16. Effects of a torsion field on Big Bang nucleosynthesis

    E-Print Network [OSTI]

    M. Brüggen

    1999-06-25T23:59:59.000Z

    In this paper it is investigated whether torsion, which arises naturally in most theories of quantum gravity, has observable implications for the Big Bang nucleosynthesis. Torsion can lead to spin flips amongst neutrinos thus turning them into sterile neutrinos. In the early Universe they can alter the helium abundance which is tightly constrained by observations. Here I calculate to what extent torsion of the string theory type leads to a disagreement with the Big Bang nucleosynthesis predictions.

  17. The Environmental Aspects of Deep Seabed Mining

    E-Print Network [OSTI]

    Kindt, John Warren

    1989-01-01T23:59:59.000Z

    United States Deep Seabed Mining, 19 WM. & MARY L. REV. 77 (Aspects of Deep Seabed Mining" John Warren Kindt* I.with deep seabed mining. As of 1988, the available

  18. Does Big Oil Collude and Price Gouge? Big Oil came back into the headlines in recent weeks with another spike in gasoline

    E-Print Network [OSTI]

    Ahmad, Sajjad

    with another spike in gasoline prices and their reported record profits. Some months ago, during the last gasoline price spike, Congress summoned the executives of the Big Oil companies to testify aboutDoes Big Oil Collude and Price Gouge? Big Oil came back into the headlines in recent weeks

  19. Elk Hills endangered and threatened species program: Phase 1 progress summary

    SciTech Connect (OSTI)

    O'Farrell, T.P.

    1980-03-01T23:59:59.000Z

    The endangered San Joaquin kit fox, Vulpes macrotis mutica, and bluntnosed leopard lizard, Crotaphytus silus, are known to occur on the Elk Hills Naval Petroleum Reserve, NPR-1. An integrated, multiphased field program was designed to gather, synthesize, and interpret ecological information necessary for Biological Assessments required by the Secretary of Interior. These assessments will be used as the basis for a formal consultation with the Department of Interior to determine whether DOE activities on Elk Hills are compatible with the continued existence of the two species. Transects totalling 840 km were walked through all sections of Elk Hills to determine: (1) the presence and relative densities of endangered or threatened species; (2) past and potential impacts of NPR-1 activities on endangered and threatened species; and (3) the potential application of remote sensing for gathering necessary data.

  20. POPULATION ESTIMATION PROCEDURES FOR ELK AND DEER IN THE BLACK HILLS, SOUTH DAKOTA: DEVELOPMENT OF A SIGHTABILITY

    E-Print Network [OSTI]

    POPULATION ESTIMATION PROCEDURES FOR ELK AND DEER IN THE BLACK HILLS, SOUTH DAKOTA: DEVELOPMENT PROCEDURES FOR ELK AND DEER IN THE BLACK HILLS, SOUTH DAKOTA: DEVELOPMENT OF A SIGHTABILITY MODEL my masters in elk research. It has been a wonderful learning and growing experience for which I am

  1. DEEP Summer Academy 2015 Request for Proposals

    E-Print Network [OSTI]

    Prodić, Aleksandar

    DEEP Summer Academy 2015 Request for Proposals Deadline: November 30th 2014 Primary Contact: DEEP Request for Proposals: DEEP Summer Academy 2015 About the Engineering Outreach Office The Engineering Office, visit: http://outreach.engineering.utoronto.ca/aboutus.htm Overview of DEEP Summer Academy

  2. Classical and quantum Big Brake cosmology for scalar field and tachyonic models

    SciTech Connect (OSTI)

    Kamenshchik, A. Yu. [Dipartimento di Fisica e Astronomia and INFN, Via Irnerio 46, 40126 Bologna (Italy) and L.D. Landau Institute for Theoretical Physics of the Russian Academy of Sciences, Kosygin str. 2, 119334 Moscow (Russian Federation); Manti, S. [Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa (Italy)

    2013-02-21T23:59:59.000Z

    We study a relation between the cosmological singularities in classical and quantum theory, comparing the classical and quantum dynamics in some models possessing the Big Brake singularity - the model based on a scalar field and two models based on a tachyon-pseudo-tachyon field . It is shown that the effect of quantum avoidance is absent for the soft singularities of the Big Brake type while it is present for the Big Bang and Big Crunch singularities. Thus, there is some kind of a classical - quantum correspondence, because soft singularities are traversable in classical cosmology, while the strong Big Bang and Big Crunch singularities are not traversable.

  3. Western Shallow Oil Zone, Elk Hills Field, Kern County, California: General Reservoir Study, Executive Summary: Bittium, Wilhelm, Gusher, and Calitroleum Sands

    SciTech Connect (OSTI)

    Carey, K.B.

    1987-12-22T23:59:59.000Z

    The general Reservoir Study of the Western Shallow Oil Zone was prepared by Evans, Carey and Crozier as Task Assignment 009 with the United States Department of Energy. The study addresses the Bittium Wilhelm, Gusher, and Calitroleum Sands and their several sub units and pools. A total of twenty-eight (28) separate reservoir units have been identified and analyzed. Areally, these reservoirs are located in 31 separate sections of land including and lying northwest of sections 5G, 8G, and 32S, all in the Elk Hills Oil Fileds, Naval Petroleum Reserve No. 1, Kern County California. Vertically, the reservoirs occur as shallow as 2600 feet and as deep as 4400 feet. Underlying a composite productive area of about 8300 acres, the reservoirs originally contained an estimated 138,022,000 stock tank barrels of oil, and 85,000 MMCF of gas, 6300 MMCF of which occurred as free gas in the Bittium and W-1B Sands. Since original discovery in April 1919, a total of over 500 wells have been drilled into or through the zones, 120 of which were completed as Western Shallow Oil Zone producers. Currently, these wells are producing about 2452 barrels of oil per day, 1135 barrels of water per day and 5119 MCF of gas per day from the collective reservoirs. Basic pressure, production and assorted technical data were provided by the US Department of Energy staff at Elk Hills. These data were accepted as furnished with no attempt being made by Evans, Carey and Crozier for independent vertification. This study has successfully identified the size and location of all commercially productive pools in the Western Shallow Oil Zone. It has identified the petrophysical properties and the past productive performance of the reservoirs. Primary reserves have been determined and general means of enhancing future recovery have been suggested. 11 figs., 8 tabs.

  4. WebDeep Web Surface Web

    E-Print Network [OSTI]

    Web WebWeb WebWeb WebHTML Web WebDeep Web Surface Web " " Deep Web21 Dot-ComWebWeb2.0 WebWeb ""Web WebWeb Deep Web WebWeb SNS Web WebWeb 20017BrightPlanet.comDeep Web Web43,000-96,000Web7,500TB(Surface Web500) UIUCDeep Web2004Deep Web 307,000366,000-535,000 WebDeep Web "" Deep Web 1 Web Web #12

  5. Application of horizontal drilling in the development of a complex turbidite sandstone reservoir, Elk Hills Field, Kern County, California

    SciTech Connect (OSTI)

    Reid, S.A. (Bechtel Petroleum Operations, Inc., Tupman, CA (USA)); McJannet, G.S. (Dept. of Energy, Tupman, CA (USA)); Hart, O.D. (Chevron Inc., Tupman, CA (USA))

    1990-05-01T23:59:59.000Z

    Horizontal drilling techniques have been used at the Elk Hills field, to more effectively produce the complex 26R reservoir. This Stevens zone reservoir of the Miocene Monterey Formation contains turbid sediments deposited in a deep-sea fan setting and consists of several distinct sandstone layers averaging 150 ft thick and usually separated by mudstone beds. Layers in the reservoir dip as much as 50{degree} southwest. An expanding gas cap makes many vertical wells less favorable to operate. Horizontal completions were thought ideal for the pool because (1) original oil-water contact is level and believed stable, (2) water production is low, (3) a horizontal well provides for a long production life; and (4) several sandstone layers can be produced through one well. For the first well, the plan was to redrill an idle well to horizontal along an arc with a radius of 350 ft. The horizontal section was to be up to 1,000 ft long and extend northeast slightly oblique to dip just above the average oil-water contact. The well was drilled in September 1988, reached horizontal nearly as planned, was completed after perforating 210 ft of oil sand, and produced a daily average of 1,000 bbl oil and 8 bbl of water. However, structural influence was stronger than expected, causing the horizontal drill path to turn directly updip away from the bottom-hole target area. The well also encountered variable oil-water contacts, with more than half the horizontal section possibly water productive. Geologic and drilling data from the first well were used for planning another well. This well was drilled in October 1989, and was highly successful with over 1,000 ft of productive interval.

  6. Big Bend Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: EnergyAvignon,Belcher Homes JumpMaintenance | OpenBetterBiBBBigBigBig

  7. Big Flat Electric Coop Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: EnergyAvignon,Belcher Homes JumpMaintenance |Big Creek Hot SpringsBig

  8. Big Sandy Rural Elec Coop Corp | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: EnergyAvignon,Belcher Homes JumpMaintenance |Big CreekBig Sandy Rural

  9. Big Sky Carbon Sequestration Partnership | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: EnergyAvignon,Belcher Homes JumpMaintenance |Big CreekBig Sandy

  10. Big Smile Wind Farm (Dempsey Ridge) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: EnergyAvignon,Belcher Homes JumpMaintenance |Big CreekBig

  11. Big Spring I Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: EnergyAvignon,Belcher Homes JumpMaintenance |Big CreekBigWind Farm

  12. Big Spring II Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: EnergyAvignon,Belcher Homes JumpMaintenance |Big CreekBigWind

  13. Big Windy (Great Escape Restaurant Turbine) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: EnergyAvignon,Belcher Homes JumpMaintenance |BigBig Windy (Great

  14. Magnetotelluric images of the crustal structure of Chyulu Hills volcanic field, Kenya

    E-Print Network [OSTI]

    Meju, Max

    Magnetotelluric images of the crustal structure of Chyulu Hills volcanic field, Kenya V. Sakkas volcanic chain on the eastern flank of the Kenya Rift in East Africa. Transient electromagnetic (TEM flank of the Kenya Rift deduced from wide-angle P-wave data. In: Fuchs, K., Altherr, R., Muller, B

  15. EA-1967: Hills Creek-Lookout Point Transmission Line Rebuild, Lane County, Oregon

    Broader source: Energy.gov [DOE]

    Bonneville Power Administration is preparing an EA to assess potential environmental impacts of the proposed rebuild of its 26-mile 115 kilovolt (kV) wood-pole Hills Creek-Lookout Point transmission line, which is generally located between Lowell and Oakridge, in Lane County, Oregon.

  16. Corrosion of Metals in Composite Cements Anthony Setiadi*, J. Hill and N. B. Milestone

    E-Print Network [OSTI]

    Sheffield, University of

    Corrosion of Metals in Composite Cements Anthony Setiadi*, J. Hill and N. B. Milestone. However, there may be issues regarding the corrosion of some of the metal components which arise from reprocessing and decommissioning due to the alkaline environment in the cement grouts. The corrosion

  17. ROBOTICS WITHIN THE TEACHING OF PROBLEM-SOLVING SCOTT TURNER AND GARY HILL

    E-Print Network [OSTI]

    Hill, Gary

    ROBOTICS WITHIN THE TEACHING OF PROBLEM-SOLVING SCOTT TURNER AND GARY HILL DIVISION OF COMPUTING-solving approaches, are tasks using Mindstorm (LEGO, Denmark) robot kits. This is being done as a foundation step of a previous robot problem. Results of student evaluation and feedback will be presented and the use of two

  18. The 26 December (Boxing Day) 1997 sector collapse and debris avalanche at Soufriere Hills Volcano, Montserrat

    E-Print Network [OSTI]

    Belousov, Alexander

    , Russia 5 Institut de Physique du Globe de Paris (IPGP), 4 Place Jussieu, B 89, 75252 Cedex 05 Paris & Mullineaux 1981). At Soufriere Hills, an andesilic lava dome had grown over the unstable, hydro- thermally dome was exposed and depressurized, and it exploded to generate a powerful pyroclastic density current

  19. Search for Harmonic tremor in the Galapagos Jonathan M. Lees, University of North Carolina, Chapel Hill

    E-Print Network [OSTI]

    Geist, Dennis

    Search for Harmonic tremor in the Galapagos Jonathan M. Lees, University of North Carolina, Chapel Hill Harmonic volcano tremor can provide details of conduit physics during magma flow and volcano.71.2 Hz. Harmonic tremor has not been reported on Galapagos volcanoes, possibly because seismic

  20. Highway 280 North or South Take the Sand Hill Road exit, head east

    E-Print Network [OSTI]

    Ford, James

    Highway 280 North or South · Take the Sand Hill Road exit, head east · Turn right on Stock Farm for "all" below From Bayshore US Highway 101 NorthFrom Bayshore US Highway 101 North or South · Take · Turn left on Stock Farm Road LKSC ParkingTurn left on Stock Farm Road · Make the next lefthand turn

  1. Active folding of fluvial terraces across the Siwaliks Hills, Himalayas of central Nepal

    E-Print Network [OSTI]

    Avouac, Jean-Philippe

    Active folding of fluvial terraces across the Siwaliks Hills, Himalayas of central Nepal J. Lave´1 of central Nepal, south of the Kathmandu Basin. The Main Frontal Thrust fault (MFT), which marks the southern analysis, complemented by geological investiga- tions in central Nepal. Active deformation in the Himalaya

  2. Ambient noise seismic imaging Journal: McGraw Hill 2008 Yearbook of Science & Technology

    E-Print Network [OSTI]

    Ritzwolle, Mike

    ForReview Ambient noise seismic imaging Journal: McGraw Hill 2008 Yearbook of Science & Technology List of Authors: Ritzwoller, Michael Keywords: ambient noise, seismology, seismic tomography, Rayleigh wave, Love wave, surface wave Abstract: A recent innovation in seismic imaging based on using long time

  3. FORT UNION DEEP

    SciTech Connect (OSTI)

    Lyle A. Johnson Jr.

    2002-03-01T23:59:59.000Z

    Coalbed methane (CBM) is currently the hottest area of energy development in the Rocky Mountain area. The Powder River Basin (PRB) is the largest CBM area in Wyoming and has attracted the majority of the attention because of its high permeability and relatively shallow depth. Other Wyoming coal regions are also being targeted for development, but most of these areas have lower permeability and deeper coal seams. This project consists of the development of a CBM stimulation system for deep coal resources and involves three work areas: (1) Well Placement, (2) Well Stimulation, and (3) Production Monitoring and Evaluation. The focus of this project is the Washakie Basin. Timberline Energy, Inc., the cosponsor, has a project area in southern Carbon County, Wyoming, and northern Moffat County, Colorado. The target coal is found near the top of the lower Fort Union formation. The well for this project, Evans No.1, was drilled to a depth of 2,700 ft. Three coal seams were encountered with sandstone and some interbedded shale between seams. Well logs indicated that the coal seams and the sandstone contained gas. For the testing, the upper seam at 2,000 ft was selected. The well, drilled and completed for this project, produced very little water and only occasional burps of methane. To enhance the well, a mild severity fracture was conducted to fracture the coal seam and not the adjacent sandstone. Fracturing data indicated a fracture half-length of 34 ft, a coal permeability of 0.2226 md, and permeability of 15.3 md. Following fracturing, the gas production rate stabilized at 10 Mscf/day within water production of 18 bpd. The Western Research Institute (WRI) CBM model was used to design a 14-day stimulation cycle followed by a 30-day production period. A maximum injection pressure of 1,200 psig to remain well below the fracture pressure was selected. Model predictions were 20 Mscf/day of air injection for 14 days, a one-day shut-in, then flowback. The predicted flowback was a four-fold increase over the prestimulation rate with production essentially returning to prestimulation rates after 30 days. The physical stimulation was conducted over a 14-day period. Problems with the stimulation injection resulted in a coal bed fire that was quickly quenched when production was resumed. The poststimulation, stabilized production was three to four times the prestimulation rate. The methane content was approximately 45% after one day and increased to 65% at the end of 30 days. The gas production rate was still two and one-half times the prestimulation rate at the end of the 30-day test period. The field results were a good match to the numerical simulator predictions. The physical stimulation did increase the production, but did not produce a commercial rate.

  4. FORT UNION DEEP

    SciTech Connect (OSTI)

    Lyle A. Johnson Jr.

    2002-09-01T23:59:59.000Z

    Coalbed methane (CBM) is currently the hottest area of energy development in the Rocky Mountain area. The Powder River Basin (PRB) is the largest CBM area in Wyoming and has attracted the majority of the attention because of its high permeability and relatively shallow depth. Other Wyoming coal regions are also being targeted for development, but most of these areas have lower permeability and deeper coal seams. This project consists of the development of a CBM stimulation system for deep coal resources and involves three work areas: (1) Well Placement, (2) Well Stimulation, and (3) Production Monitoring and Evaluation. The focus of this project is the Washakie Basin. Timberline Energy, Inc., the cosponsor, has a project area in southern Carbon County, Wyoming, and northern Moffat County, Colorado. The target coal is found near the top of the lower Fort Union formation. The well for this project, Evans No.1, was drilled to a depth of 2,700 ft. Three coal seams were encountered with sandstone and some interbedded shale between seams. Well logs indicated that the coal seams and the sandstone contained gas. For the testing, the upper seam at 2,000 ft was selected. The well, drilled and completed for this project, produced very little water and only occasional burps of methane. To enhance the well, a mild severity fracture was conducted to fracture the coal seam and not the adjacent sandstone. Fracturing data indicated a fracture half-length of 34 ft, a coal permeability of 0.2226 md, and permeability of 15.3 md. Following fracturing, the gas production rate stabilized at 10 Mscf/day within water production of 18 bpd. The Western Research Institute (WRI) CBM model was used to design a 14-day stimulation cycle followed by a 30-day production period. A maximum injection pressure of 1,200 psig to remain well below the fracture pressure was selected. Model predictions were 20 Mscf/day of air injection for 14 days, a one-day shut-in, then flowback. The predicted flowback was a four-fold increase over the prestimulation rate with production essentially returning to prestimulation rates after 30 days. The physical stimulation was conducted over a 14-day period. Problems with the stimulation injection resulted in a coal bed fire that was quickly quenched when production was resumed. The poststimulation, stabilized production was three to four times the prestimulation rate. The methane content was approximately 45% after one day and increased to 65% at the end of 30 days. The gas production rate was still two and one-half times the prestimulation rate at the end of the 30-day test period. The field results were a good match to the numerical simulator predictions. The physical stimulation did increase the production, but did not produce a commercial rate.

  5. Taking Battery Technology from the Lab to the Big City | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Taking Battery Technology from the Lab to the Big City Taking Battery Technology from the Lab to the Big City Addthis Duration 2:08 Topic Smart Grid Storage Innovation...

  6. First-Ever Energy Open Data Roundtable Catalyzes Value of Big...

    Energy Savers [EERE]

    First-Ever Energy Open Data Roundtable Catalyzes Value of Big Data Revolution for Energy Sector First-Ever Energy Open Data Roundtable Catalyzes Value of Big Data Revolution for...

  7. Nevada: Geothermal Brine Brings Low-Cost Power with Big Potential...

    Energy Savers [EERE]

    Nevada: Geothermal Brine Brings Low-Cost Power with Big Potential Nevada: Geothermal Brine Brings Low-Cost Power with Big Potential August 21, 2013 - 12:00am Addthis Utilizing a 1...

  8. OpenMSI: A Science Gateway to Sort Through Bio-Imaging's Big...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    OpenMSI: A Science Gateway to Sort Through Bio-Imaging's Big Datasets OpenMSI: A Science Gateway to Sort Through Bio-Imaging's Big Datasets August 27, 2013 | Tags: Basic Energy...

  9. Energy Efficiency Upgrades Make a Big Difference to a Small Organizati...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Efficiency Upgrades Make a Big Difference to a Small Organization Energy Efficiency Upgrades Make a Big Difference to a Small Organization Photo of a man and woman standing outside...

  10. Beyond Myopic Inference in Big Data Pipelines Karthik Raman, Adith Swaminathan, Johannes Gehrke, Thorsten Joachims

    E-Print Network [OSTI]

    Joachims, Thorsten

    ]: Learning General Terms Algorithms, Experimentation, Theory Keywords Big Data Pipelines, Modular Design Detection & Recognition pipeline. creation, model construction, testing, and visualization. In orderBeyond Myopic Inference in Big Data Pipelines Karthik Raman, Adith Swaminathan, Johannes Gehrke

  11. Small Changes Help Long Island Homeowner Save Big on Energy Costs...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Small Changes Help Long Island Homeowner Save Big on Energy Costs Small Changes Help Long Island Homeowner Save Big on Energy Costs April 16, 2013 - 12:20pm Addthis Located near...

  12. Stimulation Technologies for Deep Well Completions

    SciTech Connect (OSTI)

    None

    2003-09-30T23:59:59.000Z

    The Department of Energy (DOE) is sponsoring the Deep Trek Program targeted at improving the economics of drilling and completing deep gas wells. Under the DOE program, Pinnacle Technologies is conducting a study to evaluate the stimulation of deep wells. The objective of the project is to assess U.S. deep well drilling & stimulation activity, review rock mechanics & fracture growth in deep, high pressure/temperature wells and evaluate stimulation technology in several key deep plays. An assessment of historical deep gas well drilling activity and forecast of future trends was completed during the first six months of the project; this segment of the project was covered in Technical Project Report No. 1. The second progress report covers the next six months of the project during which efforts were primarily split between summarizing rock mechanics and fracture growth in deep reservoirs and contacting operators about case studies of deep gas well stimulation.

  13. Analysis of geothermal electric-power generation at Big Creek Hot Springs, Lemhi County, Idaho

    SciTech Connect (OSTI)

    Struhsacker, D.W. (ed.)

    1981-01-01T23:59:59.000Z

    Big Creek Hot Springs was evaluated as a source of electrical power for the Blackbird Cobalt Mine, approximately 13 miles south of the hot spring. An evaluaton of the geothermal potential of Big Creek Hot Springs, a suggested exploration program and budget, an engineering feasibility study of power generation at Big Creek Hot Springs, an economic analysis of the modeled power generating system, and an appraisal of the institutional factors influencing development at Big Creek Hot Springs are included.

  14. Illegal Pathways to Illegal Profits: The Big Cigarette Companies and International Smuggling

    E-Print Network [OSTI]

    Campaign for Tobacco-Free Kids

    2003-01-01T23:59:59.000Z

    Illegal Pathwaysto Illegal Profits The Big Cigarette Companies andfor Tobacco-Free Kids Illegal Pathways to Illegal Profits

  15. STIMULATION TECHNOLOGIES FOR DEEP WELL COMPLETIONS

    SciTech Connect (OSTI)

    Stephen Wolhart

    2003-06-01T23:59:59.000Z

    The Department of Energy (DOE) is sponsoring a Deep Trek Program targeted at improving the economics of drilling and completing deep gas wells. Under the DOE program, Pinnacle Technologies is conducting a project to evaluate the stimulation of deep wells. The objective of the project is to assess U.S. deep well drilling & stimulation activity, review rock mechanics & fracture growth in deep, high pressure/temperature wells and evaluate stimulation technology in several key deep plays. Phase 1 was recently completed and consisted of assessing deep gas well drilling activity (1995-2007) and an industry survey on deep gas well stimulation practices by region. Of the 29,000 oil, gas and dry holes drilled in 2002, about 300 were drilled in the deep well; 25% were dry, 50% were high temperature/high pressure completions and 25% were simply deep completions. South Texas has about 30% of these wells, Oklahoma 20%, Gulf of Mexico Shelf 15% and the Gulf Coast about 15%. The Rockies represent only 2% of deep drilling. Of the 60 operators who drill deep and HTHP wells, the top 20 drill almost 80% of the wells. Six operators drill half the U.S. deep wells. Deep drilling peaked at 425 wells in 1998 and fell to 250 in 1999. Drilling is expected to rise through 2004 after which drilling should cycle down as overall drilling declines.

  16. President's Teaching Scholar Program Big Ideas Program: An Experiment

    E-Print Network [OSTI]

    Colorado at Boulder, University of

    (if there is interest in doing so.) Phase I of our process is taking stock. What germs of Big Ideas to try to push the idea process at this year's Fall retreat, and thereafter. We'll take some time are we all carrying around? Are their past or current projects we can build on? We'll do this stock

  17. People's Physics Book Ch13-1 The Big Ideas

    E-Print Network [OSTI]

    California at Santa Cruz, University of

    People's Physics Book Ch13-1 The Big Ideas: The name electric current is given to the phenomenon of the power source, you need the total resistance of the circuit and the total current: Vtotal = ItotalRtotal. · Power is the rate that energy is released. The units for power are Watts (W), which equal Joules per

  18. People's Physics Book Ch 21-1 The Big Idea

    E-Print Network [OSTI]

    California at Santa Cruz, University of

    People's Physics Book Ch 21-1 The Big Idea The nuclei of atoms are affected by three forces, the breaking apart of nuclei and it is responsible for atom bombs and nuclear power. A form of fission, where/tH #12;People's Physics Book Ch 21-2 Key Concepts · Some of the matter on Earth is unstable

  19. People's Physics book Ch 2-1 The Big Idea

    E-Print Network [OSTI]

    California at Santa Cruz, University of

    People's Physics book Ch 2-1 The Big Idea Energy is a measure of the amount of, or potential for, often by heat or sound waves. #12;People's Physics book Ch 2-2 Key Applications · In "roller coaster of the bonding energy into energy that is used to power the body. This energy goes on to turn into kinetic energy

  20. People's Physics Book Ch 16-1 The Big Idea

    E-Print Network [OSTI]

    California at Santa Cruz, University of

    People's Physics Book Ch 16-1 The Big Idea Modern circuitry depends on much more than just elements. An active circuit element needs an external source of power to operate. This differentiates them. base emitter collector Diodes have an arrow showing the direction of the flow. #12;People's Physics

  1. People's Physics Book Ch 8-1 The Big Idea

    E-Print Network [OSTI]

    California at Santa Cruz, University of

    People's Physics Book Ch 8-1 The Big Idea When any two bodies in the universe interact, they can an initial configuration and the final configuration · P = E/t Power delivered to or from a system components are conserved. #12;People's Physics Book Ch 8-2 Key Concepts · Impulse is how momentum

  2. BIG BEAR SOLAR OBSERVATORY CENTER FOR SOLAR-TERRESTRIAL RESEARCH

    E-Print Network [OSTI]

    BIG BEAR SOLAR OBSERVATORY CENTER FOR SOLAR-TERRESTRIAL RESEARCH Faculty Position in Solar Physics, New Jersey Institute of Technology A tenure track faculty position in solar physics is available of NJIT's program in solar physics, visit http://solar.njit.edu. Applicants are required to have a Ph

  3. Big Data ja vakuutustoiminta Oulun yliopisto 28.1.2014

    E-Print Network [OSTI]

    Klemelä, Jussi

    Frame insurance Analysis mProfit performance analysis OneFactor asset management mRisk market risk management 3 #12;Data-driven Decisions (1/2) · McKinsey Global Institute: "Big Data: The next frontier for innovation, competition and productivity," June 2011: · Visualization, a key tool for understanding very

  4. Original article Energy balance storage terms and big-leaf

    E-Print Network [OSTI]

    Boyer, Edmond

    Original article Energy balance storage terms and big-leaf evapotranspiration in a mixed deciduous radiometer, which seems to be a good method. The often neglected photosynthetic heat storage may heat storage are a re- sult of complex changes of several climatic parameters. Due to the high degree

  5. Hydroliquefaction of Big Brown lignite in supercritical fluids

    E-Print Network [OSTI]

    Chen, Hui

    1996-01-01T23:59:59.000Z

    Big Brown lignite was liquefied in a fixed bed tube reactor. Three solvents were used in the liquefaction studies, toluene, cyclohexane and methanol. Two co-solvents, tetralin and water were used with toluene. The effects of the solvents and co...

  6. Bringing Big Systems to Small Schools: Distributed Systems for Undergraduates

    E-Print Network [OSTI]

    Albrecht, Jeannie

    Bringing Big Systems to Small Schools: Distributed Systems for Undergraduates Jeannie R. Albrecht Williams College Williamstown, MA 01267 jeannie@cs.williams.edu ABSTRACT Distributed applications have, especially at small colleges, do not offer courses that focus on the design and implementation of distributed

  7. ORIGINAL ARTICLE Big dams and salmon evolution: changes in thermal

    E-Print Network [OSTI]

    Angilletta, Michael

    ORIGINAL ARTICLE Big dams and salmon evolution: changes in thermal regimes and their potential (Oncorhynchus spp.) across portions of their natural range, dams have arguably played a major role in many locations (NRC 1996; Lichatowich 1999; Ruckelshaus et al. 2002). Large dams (>15 m tall)­ designed

  8. Small Buildings = Big Opportunity for Energy Savings (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-12-01T23:59:59.000Z

    Small buildings have a big impact on energy use. In the United States, 44.6 million small buildings consume 44% of the overall energy used in buildings, presenting an enormous opportunity to cut costs, energy use, and greenhouse gas emissions.

  9. SHADING CALCULATIONS FOR THE BIG DISH Jeff Cumpston1

    E-Print Network [OSTI]

    ], building the 'SG4' 500m2 Big Dish solar paraboloidal concentrator for solar-thermal to electric energy shading fraction in an array of two-axis tracking collectors. Annual shading on the SG4 dish included transport network, these losses may be reduced by closely spacing collectors within the array. Another form

  10. How Big Is the World Wide Web? Adrian Dobra

    E-Print Network [OSTI]

    How Big Is the World Wide Web? Adrian Dobra Department of Statistics Carnegie Mellon University of sound proce­ dures for assessing the size of the World Wide Web. The problem is compounded by the fact that sampling directly from the Web is not possible. Several groups of re­ searchers have found sampling schemes

  11. The Social Consequences of Keeping a BIG Secret

    E-Print Network [OSTI]

    Mankoff, Jennifer

    The Social Consequences of Keeping a BIG Secret Yla R. Tausczik Cindy K. Chung James W. Pennebaker Secret? #12;Secrets #12;Hypotheses Individual Level Social Withdrawal Hypothesis OR Hypervigilance Hypothesis System Level Secrets will alter relationships, with or without others knowing about the secret

  12. Big Bayou Creek and Little Bayou Creek Watershed Monitoring Program

    SciTech Connect (OSTI)

    Kszos, L.A.; Peterson, M.J.; Ryon; Smith, J.G.

    1999-03-01T23:59:59.000Z

    Biological monitoring of Little Bayou and Big Bayou creeks, which border the Paducah Site, has been conducted since 1987. Biological monitoring was conducted by University of Kentucky from 1987 to 1991 and by staff of the Environmental Sciences Division (ESD) at Oak Ridge National Laboratory (ORNL) from 1991 through March 1999. In March 1998, renewed Kentucky Pollutant Discharge Elimination System (KPDES) permits were issued to the US Department of Energy (DOE) and US Enrichment Corporation. The renewed DOE permit requires that a watershed monitoring program be developed for the Paducah Site within 90 days of the effective date of the renewed permit. This plan outlines the sampling and analysis that will be conducted for the watershed monitoring program. The objectives of the watershed monitoring are to (1) determine whether discharges from the Paducah Site and the Solid Waste Management Units (SWMUs) associated with the Paducah Site are adversely affecting instream fauna, (2) assess the ecological health of Little Bayou and Big Bayou creeks, (3) assess the degree to which abatement actions ecologically benefit Big Bayou Creek and Little Bayou Creek, (4) provide guidance for remediation, (5) provide an evaluation of changes in potential human health concerns, and (6) provide data which could be used to assess the impact of inadvertent spills or fish kill. According to the cleanup will result in these watersheds [Big Bayou and Little Bayou creeks] achieving compliance with the applicable water quality criteria.

  13. Progress on the 1.6-meter New Solar Telescope at Big Bear Solar Observatory

    E-Print Network [OSTI]

    Progress on the 1.6-meter New Solar Telescope at Big Bear Solar Observatory C. Denkera, P. R, Newark, NJ 07102, U.S.A. bBig Bear Solar Observatory, 40386 North Shore Lane, Big Bear City, CA 92314, U.S.A. cSeoul National University, School of Earth and Environmental Science, Seoul, 151-742 Republic

  14. How to use Big Data technologies to optimize operations in Upstream Petroleum Industry

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    How to use Big Data technologies to optimize operations in Upstream Petroleum Industry Abdelkader generated by the Petroleum Industry and particularly its upstream segment? Upstream is no stranger to Big the desired outcomes? Keywords Big Data; Analytics; Upstream Petroleum Industry; Knowledge Management; KM

  15. Stimulation Technologies for Deep Well Completions

    SciTech Connect (OSTI)

    Stephen Wolhart

    2005-06-30T23:59:59.000Z

    The Department of Energy (DOE) is sponsoring the Deep Trek Program targeted at improving the economics of drilling and completing deep gas wells. Under the DOE program, Pinnacle Technologies conducted a study to evaluate the stimulation of deep wells. The objective of the project was to review U.S. deep well drilling and stimulation activity, review rock mechanics and fracture growth in deep, high-pressure/temperature wells and evaluate stimulation technology in several key deep plays. This report documents results from this project.

  16. 2013 Mark S. Fox City Data: Big, Open and Linked 1 City Data: Big, Open and Linked

    E-Print Network [OSTI]

    . They are publishing data using Open Data standards, linking data from disparate sources, allowing the crowd to update their data with Smart Phone Apps that use Open APIs, and applying "Big Data" analytics to discover on data. They are publishing data using Open Data standards, linking data from disparate sources, allowing

  17. UONPR No. 1, Elk Hills, 26R Reservoir, Elk Hills oil and gas field, Kern County, California: Management Review: Surface operations and measurements of production and injection volumes

    SciTech Connect (OSTI)

    Not Available

    1987-01-01T23:59:59.000Z

    Evans, Carey and Crozier was given the task to conduct a Management Review of the Surface Operations of the 26R Reservoir in UONPR No. 1, Elk Hills field, Kern County, California. The MER strategy for this reservoir is to maintain pressure, and toward this end, gas injection volumes are scheduled to amount to 110% of calculated withdrawals. In spite of this, however, reservoir pressure continues to decline. The purpose of this study was, therefore, to determine if, and to what extent, field operating practices and accounting procedures may be contributing to this dilemma and to make appropriate recommendations pertaining to correcting any deficiencies which may have been found.

  18. Going Deep vs. Going Wide

    Broader source: Energy.gov [DOE]

    Going Deep vs. Going Wide, from the Residential Energy Efficiency Solutions Conference 2012. Provides an overview on the progress of four energy efficiency programs: Clean Energy Works Oregon, Efficiency Maine, Energy Upgrade California Flex Path, and EcoHouse Loan Program.

  19. EA-1617: Lovell-Yellowtail and Basin-Lovell Transmission Line Rebuild Project, Big Horn County, Wyoming, and Big Horn and Carbon Counties, Montana

    Broader source: Energy.gov [DOE]

    DOE’s Western Area Power Administration prepared this EA and a finding of no significant impact for a proposal to rebuild the Lovell-Yellowtail (LV-YT) No. 1 and No. 2 115-kV transmission lines, located in Big Horn County, Wyoming, and Big Horn and Carbon Counties in Montana, and the Basin-Lovell 115-kV transmission line in Big Horn County, Wyoming.

  20. Deep-web search engine ranking algorithms

    E-Print Network [OSTI]

    Wong, Brian Wai Fung

    2010-01-01T23:59:59.000Z

    The deep web refers to content that is hidden behind HTML forms. The deep web contains a large collection of data that are unreachable by link-based search engines. A study conducted at University of California, Berkeley ...

  1. Croatian Language and Cultural Maintenance in the Slavic-American Community of Strawberry Hill, Kansas City, Kansas

    E-Print Network [OSTI]

    Glasgow, Holly Hood

    2012-05-31T23:59:59.000Z

    The purpose of this qualitative study was to investigate levels of immigrant language retention among Croatian-Americans in the Slavic diaspora community of Strawberry Hill in Kansas City, Kansas. There have been three major waves of Croatian...

  2. Technical safety appraisal of the Naval Petroleum Reserve No. 1, Elk Hills, California

    SciTech Connect (OSTI)

    Not Available

    1989-04-01T23:59:59.000Z

    The existing Elk Hills facilities for fluid production consist of tank settings, gas and oil/water gathering pipelines, gas plants, compressor facilities, lease automatic custody transfer units which meter the crude oil going to sales, and natural gas sales meters and pipelines, water injection and source wells, and gas injection pipelines and wells. The principal safety concerns presented by operations at Elk Hills are fire, occupational safety and industrial hygiene considerations. Transportation and motor vehicle accidents are also of great concern because of the large amount of miles driven on more than 900 miles of roads. Typical operations involve hazardous materials and processing equipment such as vessels, compressors, boilers, piping and valves. The aging facilities, specifically the 35R Gas Plant (constructed in 1952) and many of the pipelines, introduce an additional element of hazard to the operations.

  3. Naval petroleum reserves: Preliminary analysis of future net revenues from Elk Hills production

    SciTech Connect (OSTI)

    Not Available

    1986-01-01T23:59:59.000Z

    This is an interim report on the present value of the net revenues from Elk Hills Naval Petroleum Reserve. GAO calculated alternative present values of the net revenues applying (1) low, medium, and high forecasts of future crude oil prices and (2) alternative interest rates for discounting the future net revenues to their present values. The calculations are sensitive to both the oil price forecasts and discount rates used; they are preliminary and should be used with caution. They do not take into account possible added tax revenues collected by the government if Elk Hills were sold nor varying production levels and practices, which could either increase or decrease the total amount of oil that can be extracted.

  4. Naval petroleum reserves: Oil sales procedures and prices at Elk Hills, April through December 1986

    SciTech Connect (OSTI)

    Not Available

    1987-01-01T23:59:59.000Z

    The Elk Hills Naval Petroleum Reserve is located near Bakersfield, California and ranks seventh among domestic producing oil fields. In Feb. 1986 the Department of Energy awarded contracts to 16 companies for the sale of about 82,000 barrels per day of NPR crude oil between April and September 1986. These companies bid a record high average discount of $4.49 from DOE's base price. The discounts ranged from $0.87 to $6.98 per barrel. These contracts resulted in DOE selling Elk Hills oil as low as $3.91 per barrel. Energy stated that the process for selling from NPR had gotten out of step with today's marketplace. Doe subsequently revised its sales procedures which requires bidders to submit a specific price for the oil rather than a discount to a base price. DOE also initiated other efforts designed to avoid future NPR oil sales at less than fair market value.

  5. Deep Web Entity Monitoring Mohammadreza Khelghati

    E-Print Network [OSTI]

    Hiemstra, Djoerd

    Deep Web Entity Monitoring Mohammadreza Khelghati Database Group University of Twente, Netherlands. This data is defined as hidden web or deep web which is not accessible through search engines. It is estimated that deep web contains data in a scale several times bigger than the data accessible through

  6. Sampling the National Deep Web Denis Shestakov

    E-Print Network [OSTI]

    Hammerton, James

    Sampling the National Deep Web Denis Shestakov Department of Media Technology, Aalto University pages filled with information from myriads of online databases. This part of the Web, known as the deep a problem of deep Web characterization: how to estimate the total number of online databases on the Web? We

  7. Deep reflection-mode photoacoustic imaging of

    E-Print Network [OSTI]

    Wang, Lihong

    near-infrared laser pulses of 804-nm wavelength for PA excitation to achieve deep penetration-frequency PAM system. To achieve deep penetration of light, we chose the 804-nm near-infrared wavelengthDeep reflection-mode photoacoustic imaging of biological tissue Kwang Hyun Song and Lihong V. Wang

  8. How the DNA sequence affects the Hill curve of transcriptional response

    E-Print Network [OSTI]

    M. Sheinman; Y. Kafri

    2011-11-16T23:59:59.000Z

    The Hill coefficient is often used as a direct measure of the cooperativity of binding processes. It is an essential tool for probing properties of reactions in many biochemical systems. Here we analyze existing experimental data and demonstrate that the Hill coefficient characterizing the binding of transcription factors to their cognate sites can in fact be larger than one -- the standard indication of cooperativity -- even in the absence of any standard cooperative binding mechanism. By studying the problem analytically, we demonstrate that this effect occurs due to the disordered binding energy of the transcription factor to the DNA molecule and the steric interactions between the different copies of the transcription factor. We show that the enhanced Hill coefficient implies a significant reduction in the number of copies of the transcription factors which is needed to occupy a cognate site and, in many cases, can explain existing estimates for numbers of the transcription factors in cells. The mechanism is general and should be applicable to other biological recognition processes.

  9. Big Bang Day: 5 Particles - 3. The Anti-particle

    ScienceCinema (OSTI)

    None

    2011-04-25T23:59:59.000Z

    Simon Singh looks at the stories behind the discovery of 5 of the universe's most significant subatomic particles: the Electron, the Quark, the Anti-particle, the Neutrino and the "next particle". 3. The Anti-particle. It appears to be the stuff of science fiction. Associated with every elementary particle is an antiparticle which has the same mass and opposite charge. Should the two meet and combine, the result is annihilation - and a flash of light. Thanks to mysterious processes that occurred after the Big Bang there are a vastly greater number of particles than anti-particles. So how could their elusive existence be proved? At CERN particle physicists are crashing together subatomic particles at incredibly high speeds to create antimatter, which they hope will finally reveal what happened at the precise moment of the Big Bang to create the repertoire of elementary particles and antiparticles in existence today.

  10. Big-Bang Nucleosynthesis verifies classical Maxwell-Boltzmann distribution

    E-Print Network [OSTI]

    S. Q. Hou; J. J. He; A. Parikh; K. Daid; C. Bertulani

    2014-08-15T23:59:59.000Z

    We provide the most stringent constraint to date on possible deviations from the usually-assumed Maxwell-Boltzmann (MB) velocity distribution for nuclei in the Big-Bang plasma. The impact of non-extensive Tsallis statistics on thermonuclear reaction rates involved in standard models of Big-Bang Nucleosynthesis (BBN) has been investigated. We find that the non-extensive parameter $q$ may deviate by, at most, $|\\delta q|$=6$\\times$10$^{-4}$ from unity for BBN predictions to be consistent with observed primordial abundances; $q$=1 represents the classical Boltzmann-Gibbs statistics. This constraint arises primarily from the {\\em super}sensitivity of endothermic rates on the value of $q$, which is found for the first time. As such, the implications of non-extensive statistics in other astrophysical environments should be explored. This may offer new insight into the nucleosynthesis of heavy elements.

  11. Big Bang Day: 5 Particles - 3. The Anti-particle

    SciTech Connect (OSTI)

    None

    2009-10-07T23:59:59.000Z

    Simon Singh looks at the stories behind the discovery of 5 of the universe's most significant subatomic particles: the Electron, the Quark, the Anti-particle, the Neutrino and the "next particle". 3. The Anti-particle. It appears to be the stuff of science fiction. Associated with every elementary particle is an antiparticle which has the same mass and opposite charge. Should the two meet and combine, the result is annihilation - and a flash of light. Thanks to mysterious processes that occurred after the Big Bang there are a vastly greater number of particles than anti-particles. So how could their elusive existence be proved? At CERN particle physicists are crashing together subatomic particles at incredibly high speeds to create antimatter, which they hope will finally reveal what happened at the precise moment of the Big Bang to create the repertoire of elementary particles and antiparticles in existence today.

  12. Supernova bangs as a tool to study big bang

    SciTech Connect (OSTI)

    Blinnikov, S. I., E-mail: Sergei.Blinnikov@itep.ru [Institute for Theoretical and Experimental Physics (Russian Federation)

    2012-09-15T23:59:59.000Z

    Supernovae and gamma-ray bursts are the most powerful explosions in observed Universe. This educational review tells about supernovae and their applications in cosmology. It is explained how to understand the production of light in the most luminous events with minimum required energy of explosion. These most luminous phenomena can serve as primary cosmological distance indicators. Comparing the observed distance dependence on red shift with theoretical models one can extract information on evolution of the Universe from Big Bang until our epoch.

  13. The State of the Art in Supporting "Big Data"

    E-Print Network [OSTI]

    Oliva, Aude

    of investigation · Startups in this space · If there is any achilles heel in big data, this is it! #12;10 DBMS Security · Works well -- i.e. I have never heard of the DBMS screwing up in this area. #12;11 Encryption · Can be entrusted to the DBMS -- Appropriate when there are many clients sharing data -- Don't want

  14. Constraining Big Bang lithium production with recent solar neutrino data

    E-Print Network [OSTI]

    Takács, Marcell P; Szücs, Tamás; Zuber, Kai

    2015-01-01T23:59:59.000Z

    The 3He({\\alpha},{\\gamma})7Be reaction affects not only the production of 7Li in Big Bang nucleosynthesis, but also the fluxes of 7Be and 8B neutrinos from the Sun. This double role is exploited here to constrain the former by the latter. A number of recent experiments on 3He({\\alpha},{\\gamma})7Be provide precise cross section data at E = 0.5-1.0 MeV center-of-mass energy. However, there is a scarcity of precise data at Big Bang energies, 0.1-0.5 MeV, and below. This problem can be alleviated, based on precisely calibrated 7Be and 8B neutrino fluxes from the Sun that are now available, assuming the neutrino flavour oscillation framework to be correct. These fluxes and the standard solar model are used here to determine the 3He(alpha,gamma)7Be astrophysical S-factor at the solar Gamow peak, S(23+6-5 keV) = 0.548+/-0.054 keVb. This new data point is then included in a re-evaluation of the 3He({\\alpha},{\\gamma})7Be S-factor at Big Bang energies, following an approach recently developed for this reaction in the c...

  15. Pumped Storage Hydropower (Project Development Support)—Geotechnical Investigation and Value Stream Analysis for the Iowa Hill Pumped-Storage Development

    Broader source: Energy.gov [DOE]

    Pumped Storage Hydropower (Project Development Support)—Geotechnical Investigation and Value Stream Analysis for the Iowa Hill Pumped-Storage Development

  16. Deep Vadose Zone Field Activities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power Administration wouldDECOMPOSITIONPortal Decision Support forDeep Insights from Thin

  17. Study of Reservoir Heterogencities and Structural Features Affecting Production in the Shallow Oil Zone, Eastern Elk Hills Area, California

    SciTech Connect (OSTI)

    Janice Gillespie

    2004-11-01T23:59:59.000Z

    Late Neogene (Plio-Pleistocene) shallow marine strata of the western Bakersfield Arch and Elk Hills produce hydrocarbons from several different reservoirs. This project focuses on the shallow marine deposits of the Gusher and Calitroleum reservoirs in the Lower Shallow Oil Zone (LSOZ). In the eastern part of the study area on the Bakersfield Arch at North and South Coles Levee field and in two wells in easternmost Elk Hills, the LSOZ reservoirs produce dry (predominantly methane) gas. In structurally higher locations in western Elk Hills, the LSOZ produces oil and associated gas. Gas analyses show that gas from the eastern LSOZ is bacterial and formed in place in the reservoirs, whereas gas associated with oil in the western part of the study area is thermogenic and migrated into the sands from deeper in the basin. Regional mapping shows that the gas-bearing LSOZ sands in the Coles Levee and easternmost Elk Hills area are sourced from the Sierra Nevada to the east whereas the oil-bearing sands in western Elk Hills appear to be sourced from the west. The eastern Elk Hills area occupied the basin depocenter, farthest from either source area. As a result, it collected mainly low-permeability offshore shale deposits. This sand-poor depocenter provides an effective barrier to the updip migration of gases from east to west. The role of small, listric normal faults as migration barriers is more ambiguous. Because our gas analyses show that the gas in the eastern LSOZ reservoirs is bacterial, it likely formed in-place near the reservoirs and did not have to migrate far. Therefore, the gas could have been generated after faulting and accumulated within the fault blocks as localized pools. However, bacterial gas is present in both the eastern AND western parts of Elk Hills in the Dry Gas Zone (DGZ) near the top of the stratigraphic section even though the measured fault displacement is greatest in this zone. Bacterial gas is not present in the west in the deeper LSOZ which has less measured fault displacement. The main difference between the DGZ and the LSOZ appears to be the presence of a sandpoor area in the LSOZ in eastern Elk Hills. The lack of permeable migration pathways in this area would not allow eastern bacterial gas to migrate farther updip into western Elk Hills. A similar sand-poor area does not appear to exist in the DGZ but future research may be necessary to verify this.

  18. C-CAMP BIRAC-BIG 1st CALL ENTREPRENEUR VALEDICTORY MENTORING PROGRAMME

    E-Print Network [OSTI]

    Bhalla, Upinder S.

    .05: Introductions 7.05 ­ 7.35: 5 minute Presentations by BIG Grantees o Achira Labs o Codon Biosciences o Pandorum.30 ­ 1.00 pm: Presentations by BIG Grantees 15 mins each followed by 15 mins of interactions Scientific.30: Vikas Mehra 12.30 ­ 1.00: Sea6 Energy 1.00 ­ 2.00: Lunch 2.00 ­ 3.30: Presentations by BIG Grantees (con

  19. DEMONSTRATION OF BLACK LIQUOR GASIFICATION AT BIG ISLAND

    SciTech Connect (OSTI)

    Robert DeCarrera

    2003-10-20T23:59:59.000Z

    This Technical Progress Report provides an account of the status of the project for the demonstration of Black Liquor Gasification at Georgia-Pacific Corporation's Big Island, VA facility. The report also includes budget information and a milestone schedule. The project to be conducted by G-P is a comprehensive, complete commercial-scale demonstration that is divided into two phases. Phase I is the validation of the project scope and cost estimate. Phase II is project execution, data acquisition and reporting, and consists of procurement of major equipment, construction and start-up of the new system. Phase II also includes operation of the system for a period of time to demonstrate the safe operation and full integration of the energy and chemical recovery systems in a commercial environment. The objective of Phase I is to validate the process design and to engineer viable solutions to any technology gaps. This phase includes engineering and planning for the integration of the full-scale MTCI/StoneChem PulseEnhanced{trademark} black liquor steam-reformer chemical recovery system into G-P's operating pulp and paper mill at Big Island, Virginia. During this phase, the scope and cost estimate will be finalized to confirm the cost of the project and its integration into the existing system at the mill. The objective of Phase II of the project is the successful and safe completion of the engineering, construction and functional operation of the fully integrated full-scale steam reformer process system. This phase includes installation of all associated support systems and equipment required for the enhanced recovery of both energy and chemicals from all of the black liquor generated from the pulping process at the Big Island Mill. The objective also includes operation of the steam reformer system to demonstrate the ability of the system to operate reliably and achieve designed levels of energy and chemical recovery while maintaining environmental emissions at or below the limits set by the environmental permits.

  20. Application of turbidite facies of the Stevens Oil Zone for reservoir management, Elk Hills Field, California

    SciTech Connect (OSTI)

    Reid, S.A.; Thompson, T.W. [Bechtel Petroleum Operations, Inc., Tupman, CA (United States); McJannet, G.S. [Dept. of Energy, Tupman, CA (United States)

    1996-12-31T23:59:59.000Z

    A detailed depositional model for the uppermost sand reservoirs of the Stevens Oil Zone, Elk Hills Field, California, contains three facies: turbidite channel-fill sand bodies, overbank Sandstone and mudstone, and pelagic and hemipelagic siliceous shale. Sand bodies are the primary producing facies and consist of layered, graded sandstone with good permeability. The presence of incipient anticlines with subsea relief in the late Miocene resulted in deposition of lenticular and sinuous sand Was within structurally created channels. Relief of these structural channels was low when the earliest sand bodies were deposited, leading to a wide channel complex bounded by broad overbank deposits of moderate to low permeability. As deposition proceeded, increased structural relief constrained the channels, resulting in narrower sand body width and relatively abrupt channel terminations against very low permeability siliceous shale. With post-Miocene uplift and differential compaction, stratigraphic mounding of sand bodies helped create structural domes such as the 24Z reservoir. Stratigraphic traps including the 26R reservoir were also created. Such traps vary in seal quality from very effective to leaky, depending on the lateral transition from sand bodies to siliceous shale. Application of the Elk Hills turbidity model (1) provides a framework for monitoring production performance in the 24Z and Northwest Stevens waterflood projects; and for tracking gas migration into and out of the 26R reservoir, (2) helps b identify undeveloped locations in the 26R reservoir ideally suited for horizontal wells, (3) has led to the identification of two new production trends in the 29R area, and (4) makes possible the development of exploration plays in western Elk Hills.

  1. Application of turbidite facies of the Stevens Oil Zone for reservoir management, Elk Hills Field, California

    SciTech Connect (OSTI)

    Reid, S.A.; Thompson, T.W. (Bechtel Petroleum Operations, Inc., Tupman, CA (United States)); McJannet, G.S. (Dept. of Energy, Tupman, CA (United States))

    1996-01-01T23:59:59.000Z

    A detailed depositional model for the uppermost sand reservoirs of the Stevens Oil Zone, Elk Hills Field, California, contains three facies: turbidite channel-fill sand bodies, overbank Sandstone and mudstone, and pelagic and hemipelagic siliceous shale. Sand bodies are the primary producing facies and consist of layered, graded sandstone with good permeability. The presence of incipient anticlines with subsea relief in the late Miocene resulted in deposition of lenticular and sinuous sand Was within structurally created channels. Relief of these structural channels was low when the earliest sand bodies were deposited, leading to a wide channel complex bounded by broad overbank deposits of moderate to low permeability. As deposition proceeded, increased structural relief constrained the channels, resulting in narrower sand body width and relatively abrupt channel terminations against very low permeability siliceous shale. With post-Miocene uplift and differential compaction, stratigraphic mounding of sand bodies helped create structural domes such as the 24Z reservoir. Stratigraphic traps including the 26R reservoir were also created. Such traps vary in seal quality from very effective to leaky, depending on the lateral transition from sand bodies to siliceous shale. Application of the Elk Hills turbidity model (1) provides a framework for monitoring production performance in the 24Z and Northwest Stevens waterflood projects; and for tracking gas migration into and out of the 26R reservoir, (2) helps b identify undeveloped locations in the 26R reservoir ideally suited for horizontal wells, (3) has led to the identification of two new production trends in the 29R area, and (4) makes possible the development of exploration plays in western Elk Hills.

  2. Historical narratives of Big Chico Creek Watershed Alliance and Butte Creek Watershed Conservancy

    E-Print Network [OSTI]

    King, Mary Ann; Matz, Mike

    2003-01-01T23:59:59.000Z

    Passage on Upper Butte Creek: An Assessment of the NaturalHistorical Narratives of Big Chico Creek Watershed Allianceand Butte Creek Watershed Conservancy Mary Ann King and Mike

  3. Black Rocks, Brown Clouds and the Borderlands: Air Quality and the Making of the Big Bend

    E-Print Network [OSTI]

    Donez, Francisco

    2007-01-01T23:59:59.000Z

    Nick. 2005. Far Out Far West Texas. Texas Observer, Decembervarious locations in west Texas (Green et al. 2000, Faulknerthe Big Bend,” or “west Texas,” referring to this extensive

  4. Performance of First- and Second-Order Methods for Big Data ...

    E-Print Network [OSTI]

    Kimon Fountoulakis

    2015-03-11T23:59:59.000Z

    Mar 11, 2015 ... Performance of First- and Second-Order Methods for Big Data Optimization. Kimon Fountoulakis(K.Fountoulakis ***at*** sms.ed.ac.uk)

  5. Science DMZ-Based Big-Science Pacific Research Platform Debuts...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science DMZ-Based Big-Science Pacific Research Platform Debuts at CENIC 2015 Annual Conference News & Publications ESnet News Media & Press Publications and Presentations Galleries...

  6. af low-tar big: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to Build Data Sets for Data Mining, Data & Knowledge Engineering (DKE), 2014, Elsevier. DBMS 12 Ordonez, Carlos 333 Systems for Big-Graphs Arijit Khan Computer Technologies and...

  7. Big Bang nucleosynthesis and the baryonic content of the universe

    E-Print Network [OSTI]

    T. X. Thuan; Y. I. Izotov

    2000-12-18T23:59:59.000Z

    A review of the latest measurements of the primordial abundances of the light nuclei D, 3He, 4He and 7Li is given. We discuss in particular the primordial abundance Yp of 4He as measured in blue compact dwarf galaxies. We argue that the best measurements now give a ``high'' value of Yp along with a ``low'' value of D/H, and that the two independent measurements are consistent within the framework of standard Big Bang nucleosynthesis with a number of light neutrino species Nnu = 3.0+/-0.3 (2sigma).

  8. Big Savings on Outdoor Lighting | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The FutureCommentsEnergyand Sustained CoordinationWater10Big Savings on

  9. Next Big Idea coming September 14-15

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337,2April 2013 ESH&SNext Big Idea Coming

  10. The Big Picture on Process Heating | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreakingMayDepartmentTest for Pumping System EfficiencyRole(EAP)Energy TheThe Big

  11. Big Bend Electric Coop, Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: EnergyAvignon,Belcher Homes JumpMaintenance | OpenBetterBiBBBigBig

  12. Big Creek Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: EnergyAvignon,Belcher Homes JumpMaintenance |Big Creek Hot Springs

  13. Big Horn County Elec Coop, Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: EnergyAvignon,Belcher Homes JumpMaintenance |Big Creek Hot2 Jump

  14. Big Horn Rural Electric Co | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: EnergyAvignon,Belcher Homes JumpMaintenance |Big Creek Hot2 JumpRural

  15. Big Horn Wind Power Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: EnergyAvignon,Belcher Homes JumpMaintenance |Big Creek Hot2

  16. Big Rapids, Michigan: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: EnergyAvignon,Belcher Homes JumpMaintenance |Big Creek Hot2(Redirected

  17. Big River, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: EnergyAvignon,Belcher Homes JumpMaintenance |Big Creek

  18. Big Wind Power Project (Lanai) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: EnergyAvignon,Belcher Homes JumpMaintenance |Big

  19. Big Hopes for Little Tubes: Local Collaboration Produces Nanotubes That

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced Materials Find MoreLawrenceDepartment ofBicycle SafetyBigCould Work

  20. Big Sky Regional Carbon Sequestration Partnership--Validation Phase

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced Materials Find MoreLawrenceDepartment ofBicycleBig Science:Program

  1. Big changes for the Jefferson Lab campus | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced Materials Find MoreLawrenceDepartment ofBicycleBig

  2. Big wins at NERSC hack-a-thon

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced Materials Find MoreLawrenceDepartment ofBicycleBigOptimization

  3. Big Green Bus: A Vehicle for Change | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China U.S. Department ofJune 2,The Big Green Bus rolled into Washington, D.C., and parked

  4. Big Things from Small Beginnings | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T, Inc.'s ReplyApplicationCommittee | DepartmentDesign BasisBig Savings on

  5. The Big Picture on Process Heating | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideoStrategic| DepartmentDepartment ofTankTest(EAP)Summer 2011June 2012The Big

  6. BigNeuron: Unlocking the Secrets of the Human Brain

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWP TWPAlumniComplexMaterial Science | StanfordBiddingBig

  7. Models from Big Molecules Captured in a Flash

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your1 SECTION A.Model Verification andModelingModels from Big

  8. Mystical design in Dorothy Richardson's Pilgramage: the case of Dimple Hill

    E-Print Network [OSTI]

    Sargent, Laura Jane

    1990-01-01T23:59:59.000Z

    meeting appears in Revolvin Li hts (III 324-29) . Here, she realizes that her witnessing of Quaker worship is a "deeply engraved memory, " more powerful "than any of the bright remembered things that had seemed so good as they came" (III 324). 40... transformation to follow. By the time Miriam reaches Dimple Hill, she has already traveled a great distance on the road to her "true identity. " When her journey begins, Miriam, at seventeen, has a keen, rapidly maturing intellect and a predisposition...

  9. When perception says "no" to action: Approach cues make steep hills appear even steeper

    E-Print Network [OSTI]

    Krpan, Dario; Schnall, Simone

    2014-07-21T23:59:59.000Z

    :morphology, phys- Journal of Experimental Social Psychology 55 (2014) 89–98 Contents lists available at ScienceDirect Journal of Experiment .eactions this environment affords (Proffitt, 2006;Witt, 2011). For exam- ple, a hill appears steeper when a heavy backpack... SD) Good (+1 SD) C lim b in g P ro p e n si ty Physical Condi#2;on Approach and Climb Approach and No Climb Approach Without Instruc#2;ons Fig. 6. Effects of experimental manipulation on climbing propensity for participants in poor (?1 SD) and good...

  10. Western Shallow Oil Zone, Elk Hills Field, Kern County, California: General Reservoir Study:

    SciTech Connect (OSTI)

    Carey, K.B.

    1987-09-01T23:59:59.000Z

    This study, Appendix I, addresses the Bittium Sands and its sub units and pools. Basic pressure, production and assorted technical data were provided by the US Department of Energy staff at Elk Hills. These data were accepted as furnished with no attempt being made by Evanc, Carey and Crozier for independent verification. This study has identified the petrophysical properties and the past productive performance of the reservoirs. Primary reserves have been determined and general means of enhancing future recovery have been suggested. It is hoped that this volume can now additionally serve as a take off point for exploitation engineers to develop specific programs toward the end. 21 figs., 9 tabs.

  11. Naval petroleum reserves: Sales procedures and prices received for Elk Hills oil

    SciTech Connect (OSTI)

    Not Available

    1986-01-01T23:59:59.000Z

    The Congress expressed concern about the Department of Energy's actions in selling oil from the Elk Hills Naval Petroleum Reserve at what appeared to be unreasonably low prices. DOE officials believe that Naval Petroleum Reserve oil has been and is currently being produced at the appropriate rate and that no recoverable oil has been lost. This fact sheet provides information on the basis for the procedures followed by DOE in selling Naval Petroleum Reserve oil and sales data for the period extending from October 1985 through April 1986.

  12. Precambrian geology of a portion of the Purdy Hill quadrangle, Mason County, Texas 

    E-Print Network [OSTI]

    Mutis-Duplat, Emilio

    1969-01-01T23:59:59.000Z

    ) (Head of Department) (Membe r) A ust 1969 ABS TRAC T Precambrian Geology of a Portion of the Purdy Hill Quadrangle, Mason County, Texas. (August 1969) Emilio Mutis-Duplat, Geologist and Geophysicist, Unive re idad Nacional de Colombia; Directed by...'s understanding of the geology of the area. Dr. Robert R. Berg, Head of the Department of Geology, who was a permanent source of encouragement. The members of the Awards Committee of the Department of Geology, for the award that provided financial support...

  13. Slip and Dilation Tendency Anlysis of McGinness Hills Geothermal Area

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Faulds, James E.

    Stress field variation within each focus area was approximated based on regional published data and the world stress database (Hickman et al., 2000; Hickman et al., 1998 Robertson-Tait et al., 2004; Hickman and Davatzes, 2010; Davatzes and Hickman, 2006; Blake and Davatzes 2011; Blake and Davatzes, 2012; Moeck et al., 2010; Moos and Ronne, 2010 and Reinecker et al., 2005) as well as local stress information if applicable. For faults within these focus systems we applied either a normal faulting stress regime where the vertical stress (sv) is larger than the maximum horizontal stress (shmax) which is larger than the minimum horizontal stress (sv>shmax>shmin) or strike-slip faulting stress regime where the maximum horizontal stress (shmax) is larger than the vertical stress (sv) which is larger than the minimum horizontal stress (shmax >sv>shmin) depending on the general tectonic province of the system. Based on visual inspection of the limited stress magnitude data in the Great Basin we used magnitudes such that shmin/shmax = .527 and shmin/sv= .46, which are consistent with complete and partial stress field determinations from Desert Peak, Coso, the Fallon area and Dixie valley (Hickman et al., 2000; Hickman et al., 1998 Robertson-Tait et al., 2004; Hickman and Davatzes, 2011; Davatzes and Hickman, 2006; Blake and Davatzes 2011; Blake and Davatzes, 2012). Slip and dilation tendency for the McGinness Hills geothermal field was calculated based on the faults mapped McGinness Hills area (Siler 2012, unpublished). The McGinness Hills area lies in the Basin and Range Province, as such we applied a normal faulting stress regime to the McGinness area faults, with a minimum horizontal stress direction oriented 115, based on inspection of local and regional stress determinations, as explained above. Under these stress conditions north-northeast striking, steeply dipping fault segments have the highest dilation tendency, while north-northeast striking 60° dipping fault segments have the highest tendency to slip. The McGinness Hills geothermal system is characterized by a left-step in a north-northeast striking west-dipping fault system wit...

  14. Consent Order, CH2M Hill Hanford Group, Inc. - EA-2000-09 | Department of

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613PortsmouthBartlesville EnergyDepartment.AttachmentEnergy M Hill Hanford Group, Inc.

  15. Consent Order, Kaiser-Hill Company, LLC - EA 98-03 | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613PortsmouthBartlesville EnergyDepartment.AttachmentEnergy M Hill

  16. . . . . . 85 . . . . . International Deep Drawing Research Group

    E-Print Network [OSTI]

    . . . . . 85 . . . . . International Deep Drawing Research Group IDDRG 2009 International 20899-855 USA e-mail: mark.iadicola@nist.gov, Web page: www

  17. Sandia National Laboratories: Deep Borehole Disposal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (NESL) Brayton Lab SCO2 Brayton Cycle Technology Videos Heat Exchanger Development Diffusion Bonding Characterization Mechanical Testing Deep Borehole Disposal Nuclear...

  18. Deep water gives up another secret

    E-Print Network [OSTI]

    Manning, CE

    2013-01-01T23:59:59.000Z

    water gives up another secret Craig E. Manning 1 Departmentstep toward unlocking the secrets of Earth’s deep ?uids. 1

  19. Primordial Lithium Abundance in Catalyzed Big Bang Nucleosynthesis

    E-Print Network [OSTI]

    Chris Bird; Kristen Koopmans; Maxim Pospelov

    2008-05-19T23:59:59.000Z

    There exists a well known problem with the Li7+Be7 abundance predicted by standard big bang nucleosynthesis being larger than the value observed in population II stars. The catalysis of big bang nucleosynthesis by metastable, \\tau_X \\ge 10^3 sec, charged particles X^- is capable of suppressing the primordial Li7+Be7, abundance and making it consistent with the observations. We show that to produce the correct abundance, this mechanism of suppression places a requirement on the initial abundance of X^- at temperatures of 4\\times 10^8 K to be on the order of or larger than 0.02 per baryon, which is within the natural range of abundances in models with metastable electroweak-scale particles. The suppression of Li7+Be7, is triggered by the formation of (Be7X^-), compound nuclei, with fast depletion of their abundances by catalyzed proton reactions, and in some models by direct capture of X^- on Be7. The combination of Li7+Be7 and Li6 constraints favours the window of lifetimes, 1000s \\la tau_X \\leq 2000 s.

  20. Golden Hills

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.NewofGeothermal Heat PumpJorge Gardea-Torresdey,

  1. Influence of anticlinal growth on upper Miocene turbidite deposits, Elk Hills field, Kern County, California

    SciTech Connect (OSTI)

    Reid, S.A. (Bechtel Petroleum Operations, Inc., Tupman, CA (United States)); McJannet, G.S. (Dept. of Energy, Tupman, CA (United States))

    1991-02-01T23:59:59.000Z

    Growth of subsea anticlines during deposition of the upper Miocene 24Z and 26R sandstones at Elk Hills caused the development of several sinuous, lenticular sand bodies. later structural growth enhanced the trap characteristics of these sandstones. Both sandstones are in the uppermost portion of the Elk Hills Shale Member of the Monterey Formation and contain channel-fill and overbank deposits of sand-rich turbidite systems. At the onset of turbidite deposition, low relief subsea anticlines separated broad basins which progressively deepened to the northeast. Channel-fill deposits of coarse-grained sand generally followed the axes of these northwest-southeast-trending basins. At several sites, channel-fill deposits also spilled north across anticlinal axes into the next lower basins. Wide bands of overbank sand and mud were deposited at sand body edges on the flat basin floors. Midway through turbidite deposition, a period of anticlinal growth substantially raised subsea relief. Channel-fill deposits continued in narrower basins but passed north into deeper basin only around well-defined sites at the anticlines' downplunge termini. Narrow basin shapes and higher anticline relief prevented significant overbank deposition. With Pliocene to Holocene uplift of the late Miocene structural trends, stratigraphic mounding of the north-directed channel-fill deposits helped create structural domes at 24Z, 2B and Northwest Stevens pools. In sand bodies lacking significant overbank deposits prevented oil entrapment in sand bodies deposited at times of low anticlinal relief.

  2. Radon in Soil Gas Above Bedrock Fracture Sets at the Shepley’s Hill Superfund Site

    SciTech Connect (OSTI)

    J.R. Giles; T.L. McLing; M.V. Carpenter; C.J. Smith; W. Brandon

    2012-12-01T23:59:59.000Z

    The Idaho National Laboratory (INL) recently provided technical support for ongoing environmental remediation activities at the Shepley’s Hill remediation site near Devens, MA (Figure 1). The technical support was requested as follow-on work to an initial screening level radiation survey conducted in 2008. The purpose of the original study was to assess the efficacy of the INL-developed Backpack Sodium Iodide System (BaSIS) for detecting elevated areas of natural radioactivity due to the decay of radon-222 gases emanating from the underlying fracture sets. Although the results from the initial study were mixed, the BaSIS radiation surveys did confirm that exposed bedrock outcrops have higher natural radioactivity than the surficial soils, thus a high potential for detecting elevated levels of radon and/or radon daughter products. (INL 2009) The short count times associated with the BaSIS measurements limited the ability of the system to respond to elevated levels of radioactivity from a subsurface source, in this instance radon gas emanating from fracture sets. Thus, it was postulated that a different methodology be employed to directly detect the radon in the soil gases. The CR-39 particle track detectors were investigated through an extensive literature and technology search. The relatively long deployment or “detection” time of several days, as well as the sensitivity of the measurement and robustness of the detectors made the CR-39 technology promising for deployment at the Shepley’s Hill site.

  3. The use of narrative during the Clarence Thomas-Anita Hill hearings October 11, 12, 13, 1991

    E-Print Network [OSTI]

    Willson, Marilee

    1993-01-01T23:59:59.000Z

    THE USE OF NARRATIVE DURING THE CLARENCE THOMAS-ANITA HILL HEARINGS OCTOBER 11, 12, 13, 1991 A Thesis by MARILEE WILLSON Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements... for the degree of' Master of Arts August 1993 Major Subject: Speech Communication THE USE OF NARRATIVE DUING THE CLARENCE THOMAS-ANITA HILL HEARINGS OCTOBER 1 1 ~ 12 ' 13 g 1991 A Thesis by MARILEE WILLSON Submitted to Texas A&M University in partial...

  4. HILL: The High-Intensity Laser Laboratory Core Team's Reply to Questions from the NNSA Experimental Facilities Panel

    SciTech Connect (OSTI)

    Albright, B J [Los Alamos National Laboratory

    2012-08-02T23:59:59.000Z

    Question 1 - The type of physics regimes that HILL can access for weapons studies is quite interesting. The question that arises for the proposal team is what priority does this type of experimental data have versus data that can be obtained with NIF, and Z. How does HILL rank in priority compared to MARIE 1.0 in terms of the experimental data it will provide? We reiterate that isochoric heating experiments to be conducted with HILL are complementary to the high energy density physics experiments at NIF and Z and uniquely access states of matter that neither other facility can access. It is our belief that HILL will enable several important questions, e.g., as related to mix morphology, radiation transfer from corrugated surfaces, and equations of state, to be run to ground through carefully diagnosed, 'unit-physics' experiments. Such experiments will substantially improve confidence in our computer models and provide a rigorous science basis for certification. Question 2 - A secondary question relates to the interests of LLNL and SNL in the physics that HILL can address. This should be spelled out clearly. I would like to see the other labs be part of the discussion regarding how important this capability would be if built. Both sister Labs have a keen interest in the physics enabled by high-intensity, high-energy lasers, as evinced by the Z Petawatt and NIF ARC upgrades to their signature facilities. LANL scientists have teamed with scientists from both Laboratories in high-intensity laser 'first experiments' envisioned for HILL and we fully intend to continue these profitable discussions going forward. In the preparation of the HILL proposal, feedback was solicited from the broader HEDP and weapons science communities. The consensus view was that HILL filled a critical gap and that there was a need for a facility like HILL to address outstanding questions in weapons science. It was recognized that co-location of HILL with a facility such as MaRIE 1.0, Z, NIF, or Omega may offer additional advantages and we would expect these to be explored and evaluated during the CD process. Question 3 - A laser/optics experts group should review this proposal to ensure the level of R&D is reasonable to provide a sufficient chance of success (>50%). In the preparation of the HILL proposal, we sent our proposal and cost estimates to laser designers/scientists across the complex. Though risks were identified with our design, the prevailing view of those we engaged was that the risks were appropriately represented by the TRL levels assigned and that the enabling R&D planned in our proposal was adequate for risk mitigation. Question 4 - More data and peer review is needed from its sister facilities around the world. It is our specific intent to conduct both scientific and technical workshops with the user community if the High Intensity Science field is further encouraged as part of the NNSA Roadmap. Question 5 - Does HILL have to be co-located with MARIE 1.0? Is that feasible from the point of view of TA-53 real estate? Multiple siting options were considered for HILL, including co-location with MaRIE 1.0 (the most cost-effective and flexible option), as well as in a separate, stand-alone building and in a retro-fitted existing building. The cost estimate included these contingencies and candidate locations for HILL in TA-53 were identified. There is actually significant space at TA-53 on the hill in the northeast end of the mesa. Question 6 - What would be the impact on the weapons program if this facility were NOT built? An inability to elucidate aspects of weapons science in the dense plasma regime and validate computer models for same. This will lead to reduced confidence in the computer tools used for certification. Question 7 - Will HILL allow some of the x-ray vulnerability studies proposed by SPARC? If so what does Sandia's vulnerability group think of this method versus SPARC. It is possible that some of the scope envisioned for SPARC could be achieved on HILL, although likely that the energy produced at HILL not bei

  5. RING-DIAGRAM ANALYSIS WITH GONG++ T. Corbard 1 , C. Toner 1 , F. Hill 1 , K. D. Hanna 1 , D. A. Haber 2 , B. W. Hindman 2 , and

    E-Print Network [OSTI]

    Corbard, Thierry

    1 RING-DIAGRAM ANALYSIS WITH GONG++ T. Corbard 1 , C. Toner 1 , F. Hill 1 , K. D. Hanna 1 , D. A-HEPL, Stanford, CA 94305-4085, USA ABSTRACT Images from the updated GONG network (GONG+) have been produced since of the new GONG pipeline (GONG++) (Hill et al., 2003). We present here the data-cube, 3D power spectra

  6. Amer J of Potato Res (2006) 83:249-257 249 Furrow vs Hill Planting of Sprinkler-Irrigated Russet Burbank

    E-Print Network [OSTI]

    Steele, Dean D.

    2006-01-01T23:59:59.000Z

    Amer J of Potato Res (2006) 83:249-257 249 Furrow vs Hill Planting of Sprinkler-Irrigated Russet Burbank Potatoes on Coarse-Textured Soils Dean D. Steele1 *, Richard G. Greenland2 , and Harlene M Surface water runoff from the hill, where potatoes are planted, to the furrow may exacerbate potato

  7. Journal of the Geological Society, London, Vol. 1150,1993, pp. 393-404, 15 figs, 2 tables Printed in Northern Ireland Tectonic evolution of the Nakasib suture, Red Sea Hills, Sudan: evidence for a

    E-Print Network [OSTI]

    Stern, Robert J.

    in Northern Ireland Tectonic evolution of the Nakasib suture, Red Sea Hills, Sudan: evidence for a late Proterozoic (Pan-African) ophiolite-decorated structural belt in the central Red Sea Hills of the Sudan

  8. Deep into Pharo ESUG 2013 Edition

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Deep into Pharo ESUG 2013 Edition Alexandre Bergel Damien Cassou Stéphane Ducasse Jannik Laval #12;ii This book is available as a free download from http://rmod.lille.inria.fr/deep of this work. The best way to do this is with a link to this web page: creativecommons.org/licenses/ by-sa/3

  9. Ventilation of the Baltic Sea deep water

    E-Print Network [OSTI]

    Mohrholz, Volker

    , Powstaców Warszawy 55, PL­81­712 Sopot, Poland 4 Department of Oceanography, G¨oteborg University, Box 460 by thermohaline intrusions, ventilate the deep water of the eastern Gotland Basin. A recent study of the energy that about 30% of the energy needed below the halocline for deep water mixing is explained by the breaking

  10. Too Big or Too Small? The PTB-PTS ICMP-based Attack against IPsec Gateways

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Too Big or Too Small? The PTB-PTS ICMP-based Attack against IPsec Gateways Ludovic Jacquin Inria the "Packet Too Big"-"Packet Too Small" ICMP based attack against IPsec gateways. We explain how an attacker in use, the attack either creates a Denial of Service or major performance penalties. This attack

  11. The Telescope Control System of the New Solar Telescope at Big Bear Solar Observatory

    E-Print Network [OSTI]

    mirror (M1) and its alignment with the secondary mirror (M2) will be actively controlled. HighThe Telescope Control System of the New Solar Telescope at Big Bear Solar Observatory G. Yang*a, J of Technology, 323 Martin Luther King Blvd., Newark, NJ 07104; bBig Bear Solar Observatory, 40386 North Shore

  12. Effects of humidity on storing big sagebrush seed. Forest Service research paper

    SciTech Connect (OSTI)

    Welch, B.L.

    1996-12-01T23:59:59.000Z

    Data support the conclusion that big sagebrush seed should not be stored in environments having humidities above 32 to 40 percent. Some humidities may even dry seed to a greater degree than when first placed in storage. Force-air seed driers should not heat big sagebrush seed over 60 degrees C.

  13. HoustonChronicle.com -Tiny honor a big deal for algae scientist HoustonChronicle.

    E-Print Network [OSTI]

    Jeong, Hae Jin

    HoustonChronicle.com - Tiny honor a big deal for algae scientist HoustonChronicle. com Section-mail this story June 18, 2005, 5:48PM Tiny honor a big deal for algae scientist By DAVID A. FAHRENTHOLD Washington Post Sometimes, algae can be the highest form of flattery. ADVERTISEMENTSo it was for Diane K. Stoecker

  14. Yale's Environment School Power Plants Big Influence in Regional Mercury Emissions Introduction Knowledge

    E-Print Network [OSTI]

    Lee, Xuhui

    Yale's Environment School · Power Plants Big Influence in Regional Mercury Emissions Introduction Power Plants Big Influence in Regional Mercury Emissions Related Topics: News Releases; Publications winters and a correspondent decrease in the need for regional power plants to burn coal could partially

  15. How to use Big Data technologies to optimize operations in Upstream Petroleum Industry

    E-Print Network [OSTI]

    Boyer, Edmond

    How to use Big Data technologies to optimize operations in Upstream Petroleum Industry Abdelkader for it to have value. But what about Big Data generated by the Petroleum Industry and particularly its upstream; Analytics; Upstream Petroleum Industry; Knowledge Management; KM; Business Intelligence; BI; Innovation

  16. Deep Vadose Zone-Applied Field Research Initiative Fiscal Year 2011 Annual Report

    SciTech Connect (OSTI)

    Wellman, Dawn M.; Johnson, Timothy C.; Smith, Ronald M.; Truex, Michael J.; Matthews, Hope E.

    2011-10-01T23:59:59.000Z

    This annual report describes the background of the Deep Vadose Zone-Applied Field Research Initiative, and some of the programmatic approaches and transformational technologies in groundwater and deep vadose zone remediation developed during fiscal year 2011. The Department of Energy (DOE) Office of Technology Innovation and Development's (OTID) mission is to transform science into viable solutions for environmental cleanup. In 2010, OTID developed the Impact Plan, Science and Technology to Reduce the Life Cycle Cost of Closure to outline the benefits of research and development of the lifecycle cost of cleanup across the DOE complex. This plan outlines OTID's ability to reduce by $50 billion, the $200 billion life-cycle cost in waste processing, groundwater and soil, nuclear materials, and deactivation and decommissioning. The projected life-cycle costs and return on investment are based on actual savings realized from technology innovation, development, and insertion into remedial strategies and schedules at the Fernald, Mound, and Ashtabula sites. To achieve our goals, OTID developed Applied Field Research Initiatives to facilitate and accelerate collaborative development and implementation of new tools and approaches that reduce risk, cost and time for site closure. The primary mission of the Deep Vadose Zone-Applied Field Research Initiative (DVZ-AFRI) is to protect our nation's water resources, keeping them clean and safe for future generations. The DVZ-AFRI was established for the DOE to develop effective, science-based solutions for remediating, characterizing, monitoring, and predicting the behavior and fate of deep vadose zone contamination. Subsurface contaminants include radionuclides, metals, organics, and liquid waste that originated from various sources, including legacy waste from the nation's nuclear weapons complexes. The DVZ-AFRI project team is translating strategy into action by working to solve these complex challenges in a collaborative environment that leverages technology and scientific expertise from DOE, Pacific Northwest National Laboratory, CH2M HILL Plateau Remediation Company, and the broad scientific research community. As project manager for the DVZ-AFRI, I have had the privilege this past year to team with creative, talented members of the scientific community nationwide to develop effective long-term solutions to address deep vadose zone contamination. This report highlights how the DVZ-AFRI project team is delivering results by achieving significant programmatic accomplishments, and developing and field-testing transformational technologies to address the nation's most pressing groundwater and vadose zone contamination problems.

  17. Building Simulation Modelers are we big-data ready?

    SciTech Connect (OSTI)

    Sanyal, Jibonananda [ORNL; New, Joshua Ryan [ORNL

    2014-01-01T23:59:59.000Z

    Recent advances in computing and sensor technologies have pushed the amount of data we collect or generate to limits previously unheard of. Sub-minute resolution data from dozens of channels is becoming increasingly common and is expected to increase with the prevalence of non-intrusive load monitoring. Experts are running larger building simulation experiments and are faced with an increasingly complex data set to analyze and derive meaningful insight. This paper focuses on the data management challenges that building modeling experts may face in data collected from a large array of sensors, or generated from running a large number of building energy/performance simulations. The paper highlights the technical difficulties that were encountered and overcome in order to run 3.5 million EnergyPlus simulations on supercomputers and generating over 200 TBs of simulation output. This extreme case involved development of technologies and insights that will be beneficial to modelers in the immediate future. The paper discusses different database technologies (including relational databases, columnar storage, and schema-less Hadoop) in order to contrast the advantages and disadvantages of employing each for storage of EnergyPlus output. Scalability, analysis requirements, and the adaptability of these database technologies are discussed. Additionally, unique attributes of EnergyPlus output are highlighted which make data-entry non-trivial for multiple simulations. Practical experience regarding cost-effective strategies for big-data storage is provided. The paper also discusses network performance issues when transferring large amounts of data across a network to different computing devices. Practical issues involving lag, bandwidth, and methods for synchronizing or transferring logical portions of the data are presented. A cornerstone of big-data is its use for analytics; data is useless unless information can be meaningfully derived from it. In addition to technical aspects of managing big data, the paper details design of experiments in anticipation of large volumes of data. The cost of re-reading output into an analysis program is elaborated and analysis techniques that perform analysis in-situ with the simulations as they are run are discussed. The paper concludes with an example and elaboration of the tipping point where it becomes more expensive to store the output than re-running a set of simulations.

  18. Big Data Frequent Pattern Mining David C. Anastasiu and Jeremy Iverson and Shaden Smith and George Karypis

    E-Print Network [OSTI]

    Karypis, George

    Big Data Frequent Pattern Mining David C. Anastasiu and Jeremy Iverson and Shaden Smith and George with today, the so-called "Big Data". Web log data from social media sites such as Twitter produce over one

  19. Assessing decision inputs in drug development between small, early stage companies and big pharma : is there is a difference?

    E-Print Network [OSTI]

    Rippy, Daniel S. (Daniel Spensley)

    2007-01-01T23:59:59.000Z

    The pipeline productivity challenge facing large, publicly traded pharmaceutical companies, collectively referred to as "Big Pharma," is well known. The unprecedented success Big Pharma achieved over the past few decades ...

  20. 9/18/09 2:09 PM'Big Wave' Theory Offers Alternative to Dark Energy -Physical Science Page 1 of 3http://scienceblips.dailyradar.com/story/big_wave_theory_offers_alternative_to_dark_energy/

    E-Print Network [OSTI]

    Temple, Blake

    9/18/09 2:09 PM'Big Wave' Theory Offers Alternative to Dark Energy - Physical Science Page 1 of 3http://scienceblips.dailyradar.com/story/big_wave_theory_offers_alternative_to_dark_energy/ Gadget.com - 30 days ago 'Big Wave' Theory Offers Alternative to Dark Energy -- Mathematicians have proposed

  1. Pattern Density Based Prediction for Deep Reactive Ion Etch (DRIE) Tyrone Hill, Hongwei Sun, Hayden Taylor, Martin Schmidt, and Duane Boning

    E-Print Network [OSTI]

    Boning, Duane S.

    (open to etching), while a value of zero represents a masked area. Microengine turbine blade etch mask 2 5) NormalizedEtchRate position Approach Comparison Three test masks with concentric rings having to the wafer-level variation Travel support has been generously provided by the Transducers Research Foundation

  2. Text-Alternative Version of Building America Webinar: Low-e Storms: The Next "Big Thing" in Window Retrofits

    Broader source: Energy.gov [DOE]

    Low-e Storms:  The Next “Big Thing” in Window RetrofitsOfficial Webinar Transcript (September 9, 2014)

  3. Big Data Visual Analytics for Exploratory Earth System Simulation Analysis

    SciTech Connect (OSTI)

    Steed, Chad A [ORNL; Ricciuto, Daniel M [ORNL; Shipman, Galen M [ORNL; Smith, Brian E [ORNL; Thornton, Peter E [ORNL; Wang, Dali [ORNL; Shi, Xiaoying [ORNL; Williams, Dean N. [Lawrence Livermore National Laboratory (LLNL)

    2013-01-01T23:59:59.000Z

    Rapid increases in high performance computing are feeding the development of larger and more complex data sets in climate research, which sets the stage for so-called big data analysis challenges. However, conventional climate analysis techniques are inadequate in dealing with the complexities of today s data. In this paper, we describe and demonstrate a visual analytics system, called the Exploratory Data analysis ENvironment (EDEN), with specific application to the analysis of complex earth system simulation data sets. EDEN represents the type of interactive visual analysis tools that are necessary to transform data into insight, thereby improving critical comprehension of earth system processes. In addition to providing an overview of EDEN, we describe real-world studies using both point ensembles and global Community Land Model Version 4 (CLM4) simulations.

  4. Constraints on Neutrino Oscillations from Big Bang Nucleosynethesis

    E-Print Network [OSTI]

    X. Shi; D. N. Schramm; B. D. Fields

    1993-07-16T23:59:59.000Z

    We discuss in detail the effect of neutrino oscillations in Big Bang nucleosynthesis, between active and sterile neutrinos, as well as between active and active neutrinos. We calculate the constraints on mixings between active and sterile neutrinos from the present observation of the primordial helium abundance and discuss the potential implications on various astrophysical and cosmological problems of such oscillations. In particular, we show that large angle sterile neutrino mixing seems to be excluded as a MSW solution to the solar neutrino situation or a solution to the atmospheric neutrino mixing hinted at in some underground experiments. We show how with this constraint, the next generation of solar neutrino experiments should be able to determine the resolution of the solar neutrino problem. It is also shown how sterile neutrinos remain a viable dark matter candidate.

  5. Big Bang Nucleosynthesis with Independent Neutrino Distribution Functions

    E-Print Network [OSTI]

    Christel J. Smith; George M. Fuller; Michael S. Smith

    2008-12-06T23:59:59.000Z

    We have performed new Big Bang Nucleosynthesis calculations which employ arbitrarily-specified, time-dependent neutrino and antineutrino distribution functions for each of up to four neutrino flavors. We self-consistently couple these distributions to the thermodynamics, the expansion rate and scale factor-time/temperature relationship, as well as to all relevant weak, electromagnetic, and strong nuclear reaction processes in the early universe. With this approach, we can treat any scenario in which neutrino or antineutrino spectral distortion might arise. These scenarios might include, for example, decaying particles, active-sterile neutrino oscillations, and active-active neutrino oscillations in the presence of significant lepton numbers. Our calculations allow lepton numbers and sterile neutrinos to be constrained with observationally-determined primordial helium and deuterium abundances. We have modified a standard BBN code to perform these calculations and have made it available to the community.

  6. Anti-Proton Evolution in Little Bangs and Big Bang

    E-Print Network [OSTI]

    H. Schade; B. Kampfer

    2009-03-30T23:59:59.000Z

    The abundances of anti-protons and protons are considered within momentum-integrated Boltzmann equations describing Little Bangs, i.e., fireballs created in relativistic heavy-ion collisions. Despite of a large anti-proton annihilation cross section we find a small drop of the ratio of anti-protons to protons from 170 MeV (chemical freeze-out temperature) till 100 MeV (kinetic freeze-out temperature) for CERN-SPS and BNL-RHIC energies thus corroborating the solution of the previously exposed "ani-proton puzzle". In contrast, the Big Bang evolves so slowly that the anti-baryons are kept for a long time in equilibrium resulting in an exceedingly small fraction. The adiabatic path of cosmic matter in the phase diagram of strongly interacting matter is mapped out.

  7. Mitigation action plan sale of Naval Petroleum Reserve No. 1 (Elk Hills) Kern County, California

    SciTech Connect (OSTI)

    NONE

    1998-01-01T23:59:59.000Z

    Naval Petroleum Reserve No. 1 (NPR-1, also called {open_quotes}Elk Hills{close_quotes}), a Federally-owned oil and gas production field in Kern County, California, was created by an Executive Order issued by President Taft on September 2, 1912. He signed another Executive Order on December 13, 1912, to establish Naval Petroleum Reserve No. 2 (NPR-2), located immediately south of NPR-1 and containing portions of the town of Taft, California. NPR-1 was not developed until the 1973-74 oil embargo demonstrated the nation`s vulnerability to oil supply interruptions. Following the embargo, Congress passed the Naval Petroleum Reserves Production Act of 1976 which directed that the reserve be explored and developed to its fall economic potential at the {open_quotes}maximum efficient rate{close_quotes} (MER) of production. Since Elk Hills began full production in 1976, it has functioned as a commercial operation, with total revenues to the Federal government through FY 1996 of $16.4 billion, compared to total exploration, development and production costs of $3.1 billion. In February 1996, Title 34 of the National Defense Authorization Act for Fiscal Year 1996 (P.L. 104-106), referred to as the Elk Hills Sales Statute, directed the Secretary of Energy to sell NPR-1 by February 10, 1998.The Secretary was also directed to study options for enhancing the value of the other Naval Petroleum and Oil Shale Reserve properties such as NPR-2, located adjacent to NPR-1 in Kern County- Naval Petroleum Reserve No. 3 (NPR-3) located in Natrona County, Wyoming; Naval Oil Shale Reserves No. 1 and No. 3 (NOSR-1 and NOSR-3) located in Garfield County, Colorado; and Naval Oil Shale Reserve No. 2 (NOSR-2) located in Uintah and Carbon Counties, Utah. The purpose of these actions was to remove the Federal government from the inherently non-Federal function of operating commercial oil fields while making sure that the public would obtain the maximum value from the reserves.

  8. 148 USDA Forest Service RMRS-P-53CD. 2008. The Hill Plots: A Rare Long-Term

    E-Print Network [OSTI]

    of soil types and elevations. Materials associated with the Hill plots in- clude historical data, plant, historical personnel who worked on them, threats they have experienced, ecological insights they haveCoconinoNationalForest(J.Rolf,pers.comm.).Codes:PB=prescribed burn;PCT=pre-commercialthinning;PL=power/phonelinebuiltt

  9. FEASIBILITY OF WIND TO SERVE UPPER SKAGIT'S BOW HILL TRIBAL LANDS AND FEASIBILITY UPDATE FOR RESIDENTIAL RENEWABLE ENERGY.

    SciTech Connect (OSTI)

    RICH, LAUREN

    2013-09-30T23:59:59.000Z

    A two year wind resource assessment was conducted to determine the feasibility of developing a community scale wind generation system for the Upper Skagit Indian Tribe?s Bow Hill land base, and the project researched residential wind resource technologies to determine the feasibility of contributing renewable wind resource to the mix of energy options for our single and multi-family residential units.

  10. Smart infrastructure for carbon foot print analysis of Electric Vehicles V Suresh, G Hill, Prof P T Blythe

    E-Print Network [OSTI]

    Newcastle upon Tyne, University of

    Smart infrastructure for carbon foot print analysis of Electric Vehicles V Suresh, G Hill, Prof P T Blythe Abstract-- Electric powered vehicles use energy stored in some form of battery for the vehicle of electric vehicles through on-road testing, user led trials and the analysis of the data collected from

  11. Flow Maps from GONG Ring Diagrams R. Komm, J. Bolding, T. Corbard 1 , F. Hill, R. Howe, and C. Toner

    E-Print Network [OSTI]

    Corbard, Thierry

    Flow Maps from GONG Ring Diagrams R. Komm, J. Bolding, T. Corbard 1 , F. Hill, R. Howe, and C d'Azur, F­06304 Nice Cedex 4 Introduction y We show first results from GONG++ observations covering Carrington rotation 1988 (2002/3/30 ­ 2002/4/26) analyzed with a ring­diagram technique as part of the GONG

  12. CO2 percolation experiment through chlorite/zeolite-rich sandstone (Pretty Hill Formation Otway BasinAustralia)

    E-Print Network [OSTI]

    Demouchy, Sylvie

    CO2 percolation experiment through chlorite/zeolite-rich sandstone (Pretty Hill Formation ­ Otway November 2011 Editor: D.B. Dingwell Keywords: CO2 storage Clay precipitation Carbon Permeability Reactive transport Underground CO2 sequestration is highly recommended as an effective means of significantly

  13. The Impact of Coastal Boundaries and Small Hills on the Precipitation Distribution across Southern Connecticut and Long Island, New York

    E-Print Network [OSTI]

    Yuter, Sandra

    Connecticut and Long Island, New York BRIAN A. COLLE Institute for Terrestrial and Planetary Atmospheres simulations of moist airflow over 400-m hills (Bader and Roach 1977). Precipitation enhancement over Pennsylvania (Barros and Ku- Corresponding author address: Dr. Brian A. Colle, Marine Sci- ences Research

  14. Influence of Drought Conditions on Brown Trout Biomass and Size Structure in the Black Hills, South Dakota

    E-Print Network [OSTI]

    in the Black Hills of western South Dakota. Stream discharge, mean summer water temperature, the biomass: early (2000­2002) and late drought (2005­ 2007). Mean summer water temperatures were similar between to drought conditions, factors such as angler harvest, fish movements, and the nuisance algal species

  15. Morphology of Three Populations of the Gastropod Acanthinucella spirata Clarity R. Guerra1, Tessa Hill2, and Jessica Bean3

    E-Print Network [OSTI]

    Schladow, S. Geoffrey

    Hill2, and Jessica Bean3 1Department of Earth and Environment, Mount Holyoke College; 2Department? Measure kinetic energy of water ·Food availability? Determine barnacle densities B C ONGOING RESEARCH isotopic composition, which reflects water temperature, may give insight into whether these thickenings

  16. Water content of 1997 vulcanian pumices at Soufriere Hills Volcano (Montserrat) and implications on pre-eruptive conduit conditions

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Water content of 1997 vulcanian pumices at Soufriere Hills Volcano (Montserrat) and implications of the eruptive products. We used quantitative analysis of water content in residual glasses (matrix glass. To better link water content to structural level, we performed new water solubility experiments at low

  17. Building America Webinar: Deep Energy Retrofit Case Studies:...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Deep Energy Retrofit Case Studies: Lessons Learned Building America Webinar: Deep Energy Retrofit Case Studies: Lessons Learned This presentation by Alea German is included in the...

  18. SciTech Connect: Deep Borehole Disposal Research: Geological...

    Office of Scientific and Technical Information (OSTI)

    Deep Borehole Disposal Research: Geological Data Evaluation Alternative Waste Forms and Borehole Seals Citation Details In-Document Search Title: Deep Borehole Disposal Research:...

  19. Perched-Water Analysis Related to Deep Vadose Zone Contaminant...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Perched-Water Analysis Related to Deep Vadose Zone Contaminant Transport and Impact to Groundwater. Perched-Water Analysis Related to Deep Vadose Zone Contaminant Transport and...

  20. article deep impact: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    traits among species arose early in the evolutionary history of major clades (deep history Pianka, Eric R. 6 IMPACT CRATERING THEORY AND MODELING FOR THE DEEP IMPACT MISSION:...

  1. NATURAL GAS RESOURCES IN DEEP SEDIMENTARY BASINS

    SciTech Connect (OSTI)

    Thaddeus S. Dyman; Troy Cook; Robert A. Crovelli; Allison A. Henry; Timothy C. Hester; Ronald C. Johnson; Michael D. Lewan; Vito F. Nuccio; James W. Schmoker; Dennis B. Riggin; Christopher J. Schenk

    2002-02-05T23:59:59.000Z

    From a geological perspective, deep natural gas resources are generally defined as resources occurring in reservoirs at or below 15,000 feet, whereas ultra-deep gas occurs below 25,000 feet. From an operational point of view, ''deep'' is often thought of in a relative sense based on the geologic and engineering knowledge of gas (and oil) resources in a particular area. Deep gas can be found in either conventionally-trapped or unconventional basin-center accumulations that are essentially large single fields having spatial dimensions often exceeding those of conventional fields. Exploration for deep conventional and unconventional basin-center natural gas resources deserves special attention because these resources are widespread and occur in diverse geologic environments. In 1995, the U.S. Geological Survey estimated that 939 TCF of technically recoverable natural gas remained to be discovered or was part of reserve appreciation from known fields in the onshore areas and State waters of the United. Of this USGS resource, nearly 114 trillion cubic feet (Tcf) of technically-recoverable gas remains to be discovered from deep sedimentary basins. Worldwide estimates of deep gas are also high. The U.S. Geological Survey World Petroleum Assessment 2000 Project recently estimated a world mean undiscovered conventional gas resource outside the U.S. of 844 Tcf below 4.5 km (about 15,000 feet). Less is known about the origins of deep gas than about the origins of gas at shallower depths because fewer wells have been drilled into the deeper portions of many basins. Some of the many factors contributing to the origin of deep gas include the thermal stability of methane, the role of water and non-hydrocarbon gases in natural gas generation, porosity loss with increasing thermal maturity, the kinetics of deep gas generation, thermal cracking of oil to gas, and source rock potential based on thermal maturity and kerogen type. Recent experimental simulations using laboratory pyrolysis methods have provided much information on the origins of deep gas. Technologic problems are one of the greatest challenges to deep drilling. Problems associated with overcoming hostile drilling environments (e.g. high temperatures and pressures, and acid gases such as CO{sub 2} and H{sub 2}S) for successful well completion, present the greatest obstacles to drilling, evaluating, and developing deep gas fields. Even though the overall success ratio for deep wells is about 50 percent, a lack of geological and geophysical information such as reservoir quality, trap development, and gas composition continues to be a major barrier to deep gas exploration. Results of recent finding-cost studies by depth interval for the onshore U.S. indicate that, on average, deep wells cost nearly 10 times more to drill than shallow wells, but well costs and gas recoveries vary widely among different gas plays in different basins. Based on an analysis of natural gas assessments, many topical areas hold significant promise for future exploration and development. One such area involves re-evaluating and assessing hypothetical unconventional basin-center gas plays. Poorly-understood basin-center gas plays could contain significant deep undiscovered technically-recoverable gas resources.

  2. Technical Safety Appraisal of the Naval Petroleum Reserve No. 1, Elk Hills, California

    SciTech Connect (OSTI)

    Not Available

    1990-02-01T23:59:59.000Z

    This report presents the results of a focused Technical Safety Appraisal (TSA) of the Naval Petroleum Reserve No. 1 (NPR-1), Elk Hills, California, conducted during November 27 through December 8, 1989. The Department of Energy (DOE) program organization responsible for NPR-1 is the Assistant Secretary for Fossil Energy (FE); the responsible Field Office is the Naval Petroleum Reserves California (NPRC) Office. This appraisal is an application of the program that was initiated in 1985 to strengthen the DOE Environment, Safety and Health Program. The appraisal was conducted by the staff of the DOE Assistant Secretary for Environment, Safety and Health (EH), Office of Safety Appraisals, with support from experts in specific appraisal areas, including a number from the petroleum industry, and a liaison representative from FE. The Senior EH Manager for the appraisal was Mr. Robert Barber, Acting Director, Office of Compliance Programs; the Team Leader was Dr. Owen Thompson, Office of Safety Appraisals.

  3. Naval Petroleum Reserve No. 1 (Elk Hills): Supplemental environmental impact statement. Record of decision

    SciTech Connect (OSTI)

    Not Available

    1994-02-01T23:59:59.000Z

    Pursuant to the Council on Environmental Quality regulations, which implement the procedural provisions of the National Environmental Policy Act, and the US Department of Energy National Environmental Policy Act regulations, the Department of Energy, Office of Fossil Energy, is issuing a Record of Decision on the continued operation of Naval Petroleum Reserve No. 1, Kern County, California. The Department of Energy has decided to continue current operations at Naval Petroleum Reserve No. 1 and implement additional well drilling, facility development projects and other activities necessary for continued production of Naval Petroleum Reserve No. 1 in accordance with the requirements of the Naval Petroleum Reserves Production Act of 1976. The final Supplemental Environmental Impact Statement, entitled ``Petroleum Production at Maximum Efficient Rate, Naval Petroleum Reserve No. 1 (Elk Hills), Kern County, California (DOE/SEIS-0158),`` was released on September 3, 1993.

  4. Measurement of airborne fission products in Chapel Hill, NC, USA from the Fukushima I reactor accident

    E-Print Network [OSTI]

    MacMullin, S; Green, M P; Henning, R; Holmes, R; Vorren, K; Wilkerson, J F

    2011-01-01T23:59:59.000Z

    We present measurements of airborne fission products in Chapel Hill, NC, USA, from 62 days following the March 11, 2011, accident at the Fukushima I Nuclear Power Plant. Airborne particle samples were collected daily in air filters and radio-assayed with two high-purity germanium (HPGe) detectors. The fission products I-131 and Cs-137 were measured with maximum activities of 4.2 +/- 0.6 mBq/m^2 and 0.42 +/- 0.07 mBq/m^2 respectively. Additional activity from I-131, I-132, Cs-134, Cs-136, Cs-137 and Te-132 were measured in the same air filters using a low-background HPGe detector at the Kimballton Underground Research Facility (KURF).

  5. Technological review of deep ocean manned submersibles

    E-Print Network [OSTI]

    Vaskov, Alex Kikeri

    2012-01-01T23:59:59.000Z

    James Cameron's dive to the Challenger Deep in the Deepsea Challenger in March of 2012 marked the first time man had returned to the Mariana Trench since the Bathyscaphe Trieste's 1960 dive. Currently little is known about ...

  6. Deep Borehole Disposal Research: Demonstration Site Selection...

    Office of Environmental Management (EM)

    Site Selection Guidelines, Borehole Seals Design, and RD&D Needs The U.S. Department of Energy has been investigating deep borehole disposal as one alternative for the disposal...

  7. Microbial life in the deep terrestrial subsurface

    SciTech Connect (OSTI)

    Fliermans, C.B. [E.I. DuPont de Nemours and Co., Aiken, SC (United States). Savannah River Lab.; Balkwill, D.L. [Florida State Univ., Tallahassee, FL (United States); Beeman, R.E. [Univ. of Oklahoma, Norman, OK (United States)] [and others

    1988-12-31T23:59:59.000Z

    The distribution and function of microorganisms is a vital issue in microbial ecology. The US Department of Energy`s Program, ``Microbiology of the Deep Subsurface,`` concentrates on establishing fundamental scientific information about organisms at depth, and the use of these organisms for remediation of contaminants in deep vadose zone and groundwater environments. This investigation effectively extends the Biosphere hundreds of meters into the Geosphere and has implications to a variety of subsurface activities.

  8. Asynchronous Object Storage with QoS for Scientific and Commercial Big Data

    SciTech Connect (OSTI)

    Brim, Michael J [ORNL] [ORNL; Dillow, David A [ORNL] [ORNL; Oral, H Sarp [ORNL] [ORNL; Settlemyer, Bradley W [ORNL] [ORNL; Wang, Feiyi [ORNL] [ORNL

    2013-01-01T23:59:59.000Z

    This paper presents our design for an asynchronous object storage system intended for use in scientific and commercial big data workloads. Use cases from the target workload do- mains are used to motivate the key abstractions used in the application programming interface (API). The architecture of the Scalable Object Store (SOS), a prototype object stor- age system that supports the API s facilities, is presented. The SOS serves as a vehicle for future research into scalable and resilient big data object storage. We briefly review our research into providing efficient storage servers capable of providing quality of service (QoS) contracts relevant for big data use cases.

  9. Executive summary. Wind-energy assessment studies in the Goodnoe Hills and Cape Blanco areas. Progress report, October 1980-September 1981

    SciTech Connect (OSTI)

    Baker, R W; Wade, J E; Persson, P O.G.; Katz, R W

    1981-12-01T23:59:59.000Z

    Work performed in FY81 on Wind Energy Assessment Studies in the Goodnoe Hills and Cape Blanco Areas is summarized. The research centers on defining the extent of the wind resource at site specific locations that have been documented earlier as having good wind power potential. The work consists of spatial wind surveys in the Goodnoe Hills and Cape Blanco area, wind turbine generator wake measurements at the Goodnoe Hills site, and developing a methodology for sampling the wind flow using a kite anemometer. (LEW)

  10. Government Information Interest Group (GIIG) Rolling in the Deep Web

    E-Print Network [OSTI]

    Nair, Sankar

    Government Information Interest Group (GIIG) Rolling in the Deep Web: Mining free resources;Most Science Info Is in the Deep Web Federated Searching Federated search drills down to the deep web where scientific databases reside Students and researchers need information from the deep web. Unlike

  11. Slip and Dilation Tendency Anlysis of McGinness Hills Geothermal Area

    SciTech Connect (OSTI)

    Faulds, James E.

    2013-12-31T23:59:59.000Z

    Slip and Dilation Tendency in focus areas Critically stressed fault segments have a relatively high likelihood of acting as fluid flow conduits (Sibson, 1994). As such, the tendency of a fault segment to slip (slip tendency; Ts; Morris et al., 1996) or to dilate (dilation tendency; Td; Ferrill et al., 1999) provides an indication of which faults or fault segments within a geothermal system are critically stressed and therefore likely to transmit geothermal fluids. The slip tendency of a surface is defined by the ratio of shear stress to normal stress on that surface: Ts = ? / ?n (Morris et al., 1996). Dilation tendency is defined by the stress acting normal to a given surface: Td = (?1-?n) / (?1-?3) (Ferrill et al., 1999). Slip and dilation were calculated using 3DStress (Southwest Research Institute). Slip and dilation tendency are both unitless ratios of the resolved stresses applied to the fault plane by ambient stress conditions. Values range from a maximum of 1, a fault plane ideally oriented to slip or dilate under ambient stress conditions to zero, a fault plane with no potential to slip or dilate. Slip and dilation tendency values were calculated for each fault in the focus study areas at, McGinness Hills, Neal Hot Springs, Patua, Salt Wells, San Emidio, and Tuscarora on fault traces. As dip is not well constrained or unknown for many faults mapped in within these we made these calculations using the dip for each fault that would yield the maximum slip tendency or dilation tendency. As such, these results should be viewed as maximum tendency of each fault to slip or dilate. The resulting along-fault and fault-to-fault variation in slip or dilation potential is a proxy for along fault and fault-to-fault variation in fluid flow conduit potential. Stress Magnitudes and directions Stress field variation within each focus area was approximated based on regional published data and the world stress database (Hickman et al., 2000; Hickman et al., 1998 Robertson-Tait et al., 2004; Hickman and Davatzes, 2010; Davatzes and Hickman, 2006; Blake and Davatzes 2011; Blake and Davatzes, 2012; Moeck et al., 2010; Moos and Ronne, 2010 and Reinecker et al., 2005) as well as local stress information if applicable. For faults within these focus systems we applied either a normal faulting stress regime where the vertical stress (sv) is larger than the maximum horizontal stress (shmax) which is larger than the minimum horizontal stress (sv>shmax>shmin) or strike-slip faulting stress regime where the maximum horizontal stress (shmax) is larger than the vertical stress (sv) which is larger than the minimum horizontal stress (shmax >sv>shmin) depending on the general tectonic province of the system. Based on visual inspection of the limited stress magnitude data in the Great Basin we used magnitudes such that shmin/shmax = .527 and shmin/sv= .46, which are consistent with complete and partial stress field determinations from Desert Peak, Coso, the Fallon area and Dixie valley (Hickman et al., 2000; Hickman et al., 1998 Robertson-Tait et al., 2004; Hickman and Davatzes, 2011; Davatzes and Hickman, 2006; Blake and Davatzes 2011; Blake and Davatzes, 2012). Slip and dilation tendency for the McGinness Hills geothermal field was calculated based on the faults mapped McGinness Hills area (Siler 2012, unpublished). The McGinness Hills area lies in the Basin and Range Province, as such we applied a normal faulting stress regime to the McGinness area faults, with a minimum horizontal stress direction oriented 115, based on inspection of local and regional stress determinations, as explained above. Under these stress conditions north-northeast striking, steeply dipping fault segments have the highest dilation tendency, while north-northeast striking 60° dipping fault segments have the highest tendency to slip. The McGinness Hills geothermal system is characterized by a left-step in a north-northeast striking west-dipping fault system wit...

  12. Big Data for Disease Control: Interdisciplinary approaches to data linkage and management 

    E-Print Network [OSTI]

    Lee, Shona Jane

    2014-08-26T23:59:59.000Z

    The source of tremendous promise and unsettling surveillance alike, the term ‘Big Data’ has attracted substantial public attention in recent years, garnering widespread press coverage and debate in equal measure. In reality ...

  13. The Decay of the Neutron or Beta Decay, the Big Bang, and the...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Decay of the Neutron or Beta Decay, the Big Bang, and the Left-Handed Universe Apr 03 2014 01:00 PM - 02:30 PM Geoffrey L. Greene Physics Division, ORNL Research Accelerator...

  14. Dr. Shih-Lung Shaw's Research on Space-Time GIS, Human Dynamics and Big Data

    E-Print Network [OSTI]

    Grissino-Mayer, Henri D.

    1 Dr. Shih-Lung Shaw's Research on Space-Time GIS, Human Dynamics and Big Data for Geography Department's Faculty Research Highlight October 12, 2014 Shih-Lung Shaw, Ph.D. Alvin and Sally Beaman

  15. Black Rocks, Brown Clouds and the Borderlands: Air Quality and the Making of the Big Bend

    E-Print Network [OSTI]

    Donez, Francisco

    2007-01-01T23:59:59.000Z

    including choking pollution in Mexico City. They dismissedpollution issues in the Big Bend region of the Texas-Mexicopollution in the park probably originated not only from northern Mexico

  16. A p p e n d i x G Big Production

    E-Print Network [OSTI]

    Rau, Don C.

    for video and audio scripts, a print news story template, and a short Big Production postproduction survey Production Toolbox. The toolbox materials--a 6 Media Questions sheet, a storyboard template, templates

  17. Stochastic approximation vis-a-vis online learning for big data analytics

    E-Print Network [OSTI]

    Giannakis, Georgios

    big data applications such as real-time medical imaging, smart cities, network state visualization and anomaly detection (e.g., in the power grid and the Internet), health informatics for personalized

  18. Microsoft Word - CX-Big Eddy-Redmond-WoodPolesFY13_WEB.doc

    Broader source: Energy.gov (indexed) [DOE]

    4, 2013 REPLY TO ATTN OF: KEPR-4 SUBJECT: Environmental Clearance Memorandum Richard Heredia Project Manager - TEP-TPP-1 Proposed Action: Big Eddy-Redmond No. 1 Wood Pole...

  19. Big Bang Day : Afternoon Play - Torchwood: Lost Souls

    ScienceCinema (OSTI)

    None

    2011-04-25T23:59:59.000Z

    Martha Jones, ex-time traveller and now working as a doctor for a UN task force, has been called to CERN where they're about to activate the Large Hadron Collider. Once activated, the Collider will fire beams of protons together recreating conditions a billionth of a second after the Big Bang - and potentially allowing the human race a greater insight into what the Universe is made of. But so much could go wrong - it could open a gateway to a parallel dimension, or create a black hole - and now voices from the past are calling out to people and scientists have started to disappear... Where have the missing scientists gone? What is the secret of the glowing man? What is lurking in the underground tunnel? And do the dead ever really stay dead? Lost Souls is a spin-off from the award-winning BBC Wales TV production Torchwood. It stars John Barrowman, Freema Agyeman, Eve Myles, Gareth David-Lloyd, Lucy Montgomery (of Titty Bang Bang) and Stephen Critchlow.

  20. Too Big to Fail in the Local Group

    E-Print Network [OSTI]

    Garrison-Kimmel, Shea; Bullock, James S; Kirby, Evan N

    2014-01-01T23:59:59.000Z

    We compare the dynamical masses of dwarf galaxies in the Local Group (LG) to the predicted masses of halos in the ELVIS suite of $\\Lambda$CDM simulations, a sample of 48 Galaxy-size hosts, 24 of which are in paired configuration similar to the LG. We enumerate unaccounted-for dense halos ($V_\\mathrm{max} \\gtrsim 25$ km s$^{-1}$) in these volumes that at some point in their histories were massive enough to have formed stars in the presence of an ionizing background ($V_\\mathrm{peak} > 30$ km s$^{-1}$). Within 300 kpc of the Milky Way, the number of unaccounted-for massive halos ranges from 2 - 25 over our full sample. Moreover, this "too big to fail" count grows as we extend our comparison to the outer regions of the Local Group: within 1.2 Mpc of either giant we find that there are 12-40 unaccounted-for massive halos. This count excludes volumes within 300 kpc of both the MW and M31, and thus should be largely unaffected by any baryonically-induced environmental processes. According to abundance matching -- s...

  1. Baghouse Slipstream Testing at TXU's Big Brown Station

    SciTech Connect (OSTI)

    John Pavlish; Jason Laumb; Robert Jensen; Jeffery Thompson; Christopher Martin; Mark Musich; Brandon Pavlish; Stanley Miller; Lucinda Hamre

    2007-04-30T23:59:59.000Z

    Performing sorbent testing for mercury control at a large scale is a very expensive endeavor and requires months of planning and careful execution. Even with good planning, there are plant limitations on what operating/design parameters can be varied/tested and when. For parameters that cannot be feasibly tested at the full scale (lower/higher gas flow, different bag material, cleaning methods, sorbents, etc.), an alternative approach is used to perform tests on a slipstream unit using flue gas from the plant. The advantage that a slipstream unit provides is the flexibility to test multiple operating and design parameters and other possible technology options without risking major disruption to the operation of the power plant. Additionally, the results generated are expected to simulate full-scale conditions closely, since the flue gas used during the tests comes directly from the plant in question. The Energy & Environmental Research Center developed and constructed a mobile baghouse that allows for cost-effective testing of impacts related to variation in operating and design parameters, as well as other possible mercury control options. Multiple sorbents, air-to-cloth ratios, bag materials, and cleaning frequencies were evaluated while flue gas was extracted from Big Brown when it fired a 70% Texas lignite-30% Powder River Basin (PRB) blend and a 100% PRB coal.

  2. Big Bang Day : Afternoon Play - Torchwood: Lost Souls

    SciTech Connect (OSTI)

    None

    2009-10-13T23:59:59.000Z

    Martha Jones, ex-time traveller and now working as a doctor for a UN task force, has been called to CERN where they're about to activate the Large Hadron Collider. Once activated, the Collider will fire beams of protons together recreating conditions a billionth of a second after the Big Bang - and potentially allowing the human race a greater insight into what the Universe is made of. But so much could go wrong - it could open a gateway to a parallel dimension, or create a black hole - and now voices from the past are calling out to people and scientists have started to disappear... Where have the missing scientists gone? What is the secret of the glowing man? What is lurking in the underground tunnel? And do the dead ever really stay dead? Lost Souls is a spin-off from the award-winning BBC Wales TV production Torchwood. It stars John Barrowman, Freema Agyeman, Eve Myles, Gareth David-Lloyd, Lucy Montgomery (of Titty Bang Bang) and Stephen Critchlow.

  3. The NACRE Thermonuclear Reaction Compilation and Big Bang Nucleosynthesis

    E-Print Network [OSTI]

    Richard H. Cyburt; Brian D. Fields; Keith A. Olive

    2001-05-17T23:59:59.000Z

    The theoretical predictions of big bang nucleosynthesis (BBN) are dominated by uncertainties in the input nuclear reaction cross sections. In this paper, we examine the impact on BBN of the recent compilation of nuclear data and thermonuclear reactions rates by the NACRE collaboration. We confirm that the adopted rates do not make large overall changes in central values of predictions, but do affect the magnitude of the uncertainties in these predictions. Therefore, we then examine in detail the uncertainties in the individual reaction rates considered by NACRE. When the error estimates by NACRE are treated as 1\\sigma limits, the resulting BBN error budget is similar to those of previous tabulations. We propose two new procedures for deriving reaction rate uncertainties from the nuclear data: one which sets lower limits to the error, and one which we believe is a reasonable description of the present error budget. We propagate these uncertainty estimates through the BBN code, and find that when the nuclear data errors are described most accurately, the resulting light element uncertainties are notably smaller than in some previous tabulations, but larger than others. Using these results, we derive limits on the cosmic baryon-to-photon ratio $\\eta$, and compare this to independent limits on $\\eta$ from recent balloon-borne measurements of the cosmic microwave background radiation (CMB). We discuss means to improve the BBN results via key nuclear reaction measurements and light element observations.

  4. Use of non-quadratic yield surfaces in design of optimal deep-draw blank geometry

    SciTech Connect (OSTI)

    Logan, R.W.

    1995-12-01T23:59:59.000Z

    Planar anisotropy in the deep-drawing of sheet can lead to the formation of ears in cylindrical cups and to undesirable metal flow in the blankholder in the general case. For design analysis purposes in non-linear finite-element codes, this anisotropy is characterized by the use of an appropriate yield surface which is then implemented into codes such as DYNA3D . The quadratic Hill yield surface offers a relatively straightforward implementation and can be formulated to be invariant to the coordinate system. Non-quadratic yield surfaces can provide more realistic strength or strain increment ratios, but they may not provide invariance and thus demand certain approximations. Forms due to Hosford and Badat et al. have been shown to more accurately address the earning phenomenon. in this work, use is made of these non-quadratic yield surfaces in order to determine the optimal blank shape for cups and other shapes using ferrous and other metal blank materials with planar anisotropy. The analyses are compared to previous experimental studies on non-uniform blank motion due to anisotropy and asymmetric geometry.

  5. Big Problems. Big Results.

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced Materials Find MoreLawrenceDepartment ofBicycle

  6. Bedrock acquifer geometry in the Panther Junction area of Big Bend National Park, Texas

    E-Print Network [OSTI]

    Abbott, Caroline Lownes

    1983-01-01T23:59:59.000Z

    areas where an igneous intrusive i. s known to exist as indicated by well data and geologic maps . The location of these impermeable igneous intrusions and their relationship to the water bearing sediments is important as a trapping mechanism. , espec.... Bouguer gravity map of the Big Bend region by Metcalfe and Clarke with the location of the gravity study in the Panther Juncti. on area. Generalised stratigraphic nomenclature and correlation, Panther Junction Area, Big Bend National Park...

  7. Ergopeptine Alkaloid Production by Endophytes in a Common Tall Fescue Genotype iN. s. Hill,* W.A. Parrott, and D. D. Pope

    E-Print Network [OSTI]

    Parrott, Wayne

    Ergopeptine Alkaloid Production by Endophytes in a Common Tall Fescue Genotype iN. s. Hill,* W the plantwithaddedvigor,developmentof endophyte-infectedtall fescuepopulationsthatareincapableof producingergopeptineal thatwasinfectedbytwodifferentendophyteisolatesthatexpress differentlevels of alkaloidswhenin theirhostplants.Endophyte- free tall fescueGenotypePDN2

  8. DeepPose: Human Pose Estimation via Deep Neural Networks Alexander Toshev

    E-Print Network [OSTI]

    Tomkins, Andrew

    benchmarks of diverse real-world images. 1. Introduction The problem of human pose estimation, defined-world problems. In this work we ascribe to this holistic view of human pose estimation. We capitalize on recentDeepPose: Human Pose Estimation via Deep Neural Networks Alexander Toshev toshev@google.com Google

  9. Deep-Sea Coral Evidence for Rapid Change in Ventilation of the Deep North Atlantic

    E-Print Network [OSTI]

    Adkins, Jess F.

    Deep-Sea Coral Evidence for Rapid Change in Ventilation of the Deep North Atlantic 15,400 Years Ago radiocarbon and thorium-230 dates from benthic coral species reveal that the ventilation rate of the North to interstadials of longer dura- tion (5). One problem has been that the time resolution of sediments is limited

  10. Visualization at Supercomputing Centers: The Tale of Little Big Iron and the Three Skinny Guys

    SciTech Connect (OSTI)

    Bethel, E. Wes; van Rosendale, John; Southard, Dale; Gaither, Kelly; Childs, Hank; Brugger, Eric; Ahern, Sean

    2010-12-01T23:59:59.000Z

    Supercomputing Centers (SC's) are unique resources that aim to enable scientific knowledge discovery through the use of large computational resources, the Big Iron. Design, acquisition, installation, and management of the Big Iron are activities that are carefully planned and monitored. Since these Big Iron systems produce a tsunami of data, it is natural to co-locate visualization and analysis infrastructure as part of the same facility. This infrastructure consists of hardware (Little Iron) and staff (Skinny Guys). Our collective experience suggests that design, acquisition, installation, and management of the Little Iron and Skinny Guys does not receive the same level of treatment as that of the Big Iron. The main focus of this article is to explore different aspects of planning, designing, fielding, and maintaining the visualization and analysis infrastructure at supercomputing centers. Some of the questions we explore in this article include:"How should the Little Iron be sized to adequately support visualization and analysis of data coming off the Big Iron?" What sort of capabilities does it need to have?" Related questions concern the size of visualization support staff:"How big should a visualization program be (number of persons) and what should the staff do?" and"How much of the visualization should be provided as a support service, and how much should applications scientists be expected to do on their own?"

  11. Harnessing the Deep Web: Present and Future

    E-Print Network [OSTI]

    Madhavan, Jayant; Antova, Lyublena; Halevy, Alon

    2009-01-01T23:59:59.000Z

    Over the past few years, we have built a system that has exposed large volumes of Deep-Web content to Google.com users. The content that our system exposes contributes to more than 1000 search queries per-second and spans over 50 languages and hundreds of domains. The Deep Web has long been acknowledged to be a major source of structured data on the web, and hence accessing Deep-Web content has long been a problem of interest in the data management community. In this paper, we report on where we believe the Deep Web provides value and where it does not. We contrast two very different approaches to exposing Deep-Web content -- the surfacing approach that we used, and the virtual integration approach that has often been pursued in the data management literature. We emphasize where the values of each of the two approaches lie and caution against potential pitfalls. We outline important areas of future research and, in particular, emphasize the value that can be derived from analyzing large collections of potenti...

  12. Western Shallow Oil Zone, Elk Hills Field, Kern County, California: General reservoir study, Appendix 4, Fourth Wilhelm sand

    SciTech Connect (OSTI)

    Carey, K.B.

    1987-09-01T23:59:59.000Z

    The general Reservoir Study of the Western Shallow Oil Zone was prepared by Evans, Carey and Crozier as Task Assignment 009 with the United States Department of Energy. This study, Appendix IV, addresses the Fourth Wilhelm Sand and its sub units and pools. Basic pressure, production and assorted technical data were provided by the US Department of Energy staff at Elk Hills. Basic pressure production and assorted technical data were provided by the US Department of Energy staff at Elk Hills. These data were accepted as furnished with no attempt being made by Evans, Carey and Crozier for independent verification. This study has identified the petrophysical properties and the past productive performance of the reservoir. Primary reserves have been determined and general means of enhancing future recovery have been suggested. It is hoped that this volume can now additionally serve as a take off point for exploitation engineers to develop specific programs toward the end. 12 figs., 9 tabs.

  13. The use of logistic regression to model the probability of oak wilt occurrence in the Texas hill country using forest stand and site characteristics

    E-Print Network [OSTI]

    Dignum, David Rory

    1988-01-01T23:59:59.000Z

    THE USE OF LOGISTIC REGRESSION TO MODEL THE PROBABILITY OF OAK MILT OCCURRENCE IN THE TEXAS HILL COUNTRY USING FOREST STAND AND SITE CHARACTERISTICS A Thesis by DAVID RORY DIGNUM Submitted to the Graduate College of Texas Afdi University... in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE May 1988 Maj or Subj cot: Forestry THE USE OF LOGISTIC REGRESSION TO MODEL THE PROBABILITY OF OAK WILT OCCURRENCE IN THE TEXAS HILL COUNTRY USING FOREST STAND AND SITE...

  14. The use of logistic regression to model the probability of oak wilt occurrence in the Texas hill country using forest stand and site characteristics 

    E-Print Network [OSTI]

    Dignum, David Rory

    1988-01-01T23:59:59.000Z

    THE USE OF LOGISTIC REGRESSION TO MODEL THE PROBABILITY OF OAK MILT OCCURRENCE IN THE TEXAS HILL COUNTRY USING FOREST STAND AND SITE CHARACTERISTICS A Thesis by DAVID RORY DIGNUM Submitted to the Graduate College of Texas Afdi University... in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE May 1988 Maj or Subj cot: Forestry THE USE OF LOGISTIC REGRESSION TO MODEL THE PROBABILITY OF OAK WILT OCCURRENCE IN THE TEXAS HILL COUNTRY USING FOREST STAND AND SITE...

  15. Excess plutonium disposition: The deep borehole option

    SciTech Connect (OSTI)

    Ferguson, K.L.

    1994-08-09T23:59:59.000Z

    This report reviews the current status of technologies required for the disposition of plutonium in Very Deep Holes (VDH). It is in response to a recent National Academy of Sciences (NAS) report which addressed the management of excess weapons plutonium and recommended three approaches to the ultimate disposition of excess plutonium: (1) fabrication and use as a fuel in existing or modified reactors in a once-through cycle, (2) vitrification with high-level radioactive waste for repository disposition, (3) burial in deep boreholes. As indicated in the NAS report, substantial effort would be required to address the broad range of issues related to deep bore-hole emplacement. Subjects reviewed in this report include geology and hydrology, design and engineering, safety and licensing, policy decisions that can impact the viability of the concept, and applicable international programs. Key technical areas that would require attention should decisions be made to further develop the borehole emplacement option are identified.

  16. Deep radio imaging of the UKIDSS Ultra Deep Survey field : the nature of the faint radio population, and the star-formation history of the Universe 

    E-Print Network [OSTI]

    Arumugam, Vinodiran

    2013-07-01T23:59:59.000Z

    The centrepiece of this thesis is a deep, new, high-resolution 1.4-GHz image covering the United Kingdom Infrared (IR) Telescope IR Deep Sky Survey (UKIDSS) Ultra Deep Survey (UDS) legacy field. Deep pseudo-continuum ...

  17. Identification and delineation of low resistivity, low permeability reservoirs using qualitative sidewall sample log k * S[sub O] relationships in the western shallow oil zone, Elk Hills Field, California

    SciTech Connect (OSTI)

    Beacom, E.K.; Kornreich, I.S. (System Technology Associates, Inc., Golden, CO (United States))

    1996-01-01T23:59:59.000Z

    Over 500 wells, including wells producing from the deeper Miocene Stevens sands, penetrate the Western Shallow Oil Zone (Pliocene Etchegoin Formation) at the Elk Hills Naval Petroleum Reserve in California. The Western Shallow Oil Zone Gusher and Calitroleum sands are very fine grained, silty and pyritic and are interbedded with silty shales. Electric logs generally show 1[1/2]-2[1/2] ohm-meters of deep resistivity and the spontaneous potential displays little or no response to the sands. However, approximately 180 wells in each of the mapped productive sands have sidewall sample data to visually inspect the rock for hydrocarbons. Each productive interval within the Western Shallow Oil Zone has two or more pools. The most exploited (and most heavily drilled) of these pools is at the western end of the Eastern anticline. The pools on the Western anticline have few tests and production is limited and generally commingled. In order to identify productive intervals and to delineate the areal extent of these sands, qualitative assessment of sidewall sample data was done and maps of log permeability times oil saturation were prepared for each zone. The analysis showed large amounts of unexploited hydrocarbons in the Western pools. Complete exploitation of the Gusher and Calitroleum sands will recover in excess of 11 million additional barrels of 38 degree gravity oil.

  18. Identification and delineation of low resistivity, low permeability reservoirs using qualitative sidewall sample log k * S{sub O} relationships in the western shallow oil zone, Elk Hills Field, California

    SciTech Connect (OSTI)

    Beacom, E.K.; Kornreich, I.S. [System Technology Associates, Inc., Golden, CO (United States)

    1996-12-31T23:59:59.000Z

    Over 500 wells, including wells producing from the deeper Miocene Stevens sands, penetrate the Western Shallow Oil Zone (Pliocene Etchegoin Formation) at the Elk Hills Naval Petroleum Reserve in California. The Western Shallow Oil Zone Gusher and Calitroleum sands are very fine grained, silty and pyritic and are interbedded with silty shales. Electric logs generally show 1{1/2}-2{1/2} ohm-meters of deep resistivity and the spontaneous potential displays little or no response to the sands. However, approximately 180 wells in each of the mapped productive sands have sidewall sample data to visually inspect the rock for hydrocarbons. Each productive interval within the Western Shallow Oil Zone has two or more pools. The most exploited (and most heavily drilled) of these pools is at the western end of the Eastern anticline. The pools on the Western anticline have few tests and production is limited and generally commingled. In order to identify productive intervals and to delineate the areal extent of these sands, qualitative assessment of sidewall sample data was done and maps of log permeability times oil saturation were prepared for each zone. The analysis showed large amounts of unexploited hydrocarbons in the Western pools. Complete exploitation of the Gusher and Calitroleum sands will recover in excess of 11 million additional barrels of 38 degree gravity oil.

  19. Wake structure measurements at the Mod-2 cluster test facility at Goodnoe Hills

    SciTech Connect (OSTI)

    Lissaman, P.B.S.; Zambrano, T.G.; Gyatt, G.W.

    1983-03-01T23:59:59.000Z

    A field measurement progam was carried out at the cluster of three MOD-2 wind turbines located at Goodnoe Hills, Washington, to determine the rate of decay of wake velocity deficit with downwind distance in various meteorological conditions. Measurements were taken at hub height (200 ft) between July 12 and August 1, 1982. Wake wind speeds were measured using a radiosonde suspended from a tethered balloon, its position being determined from a grid of ground stakes. Measurments were also made downwind with the turbine off to determine the magnitude of terrain-induced variations in wind speed. The balloon system used to measure downstream wind data proved to be reliable and convenient. Downstream distances of 900, 1500, 2100, and 2700 ft from the turbine were investigated. Differences between the instrumentation systems required that corrections be made to the data. After correction, averaged terrain-induced wind speed variations were regarded as insignificant. Turbine-on velocity ratios showed scatter, suggesting that only some measurements were, in fact, representative of wake centerline velocities, and that others were made off centerline due to wake meander or wind shift. Isolation of the high wind speed (30 to 45 mph) velocity ratios, however, revealed velocity deficits downstream. Measurements at greater downstream distances showed no wake deficit within the limits of resolution of the experiment, indicating that the wake had recovered to free stream conditions. Comparison with the AeroVironment wake model using common values for rotor drag coefficient and turbulence showed similar trends.

  20. Observations of wake characteristics at the Goodnoe Hills MOD-2 array

    SciTech Connect (OSTI)

    Buck, J.W.; Renne, D.S.

    1985-08-01T23:59:59.000Z

    The array of three MOD-2 wind turbines and two meteorological towers at Goodnoe Hills, Washington, provides an opportunity to evaluate turbine and wake interactions in a real environment. The triangular arrangement of the three turbines provides opportunities to study the effect of wakes on the performance of a downwind turbine at three different distances: 5, 7, and 10 rotor diameters (D), where 1 D is 300 ft. The information obtained from this test configuration is critical to future wind farm activities and is a key objective of the MOD-2 test program. This report describes the analysis of data measured at the turbines and towers from August 29 to November 12, 1982. The data are 2-min averages of 1-s values. Background flow characteristics were also examined to determine if flow variations across the site could mask wake measurements. For this analysis, one year's data gathered at the meteorological towers were analyzed. The results show some differences between characteristics measured at the towers, but these differences were not great enough to consider in evaluating wakes at the towers.

  1. ICFT: An initial closed-loop flow test of the Fenton Hill Phase II HDR reservoir

    SciTech Connect (OSTI)

    Dash, Z.V. (ed.); Aguilar, R.G.; Dennis, B.R.; Dreesen, D.S.; Fehler, M.C.; Hendron, R.H.; House, L.S.; Ito, H.; Kelkar, S.M.; Malzahn, M.V.

    1989-02-01T23:59:59.000Z

    A 30-day closed-loop circulation test of the Phase II Hot Dry Rock reservoir at Fenton Hill, New Mexico, was conducted to determine the thermal, hydraulic, chemical, and seismic characteristics of the reservoir in preparation for a long-term energy-extraction test. The Phase II heat-extraction loop was successfully tested with the injection of 37,000 m/sup 3/ of cold water and production of 23,300 m/sup 3/ of hot water. Up to 10 MW/sub t/ was extracted when the production flow rate reached 0.0139 m/sup 3//s at 192/degree/C. By the end of the test, the water-loss rate had decreased to 26% and a significant portion of the injected water was recovered; 66% during the test and an additional 20% during subsequent venting. Analysis of thermal, hydraulic, geochemical, tracer, and seismic data suggests the fractured volume of the reservoir was growing throughout the test. 19 refs., 64 figs., 19 tabs.

  2. Population Characteristics and Seasonal Movement Patterns of the Rattlesnake Hills Elk Herd - Status Report 2000

    SciTech Connect (OSTI)

    Tiller, B.L.; Zufelt, R.K.; Turner, S.; Cadwell, L.L.; Bender, L.; Turner, G.K.

    2000-10-10T23:59:59.000Z

    Population characteristics of the Rattlesnake Hills elk herd indicate reduced herd growth rates from the 1980s compared to the 1990s (McCorquodale 1988; Eberhardt 1996). However, the population continued to grow approximately 25% annually through the 1990s, reaching a high of 838 animals in summer 1999. Calf recruitment rates appear to be cyclic and are likely related to reduced calf survival during the first weeks of life; however, late-term abortions may also have occurred. The cause(s) could be predator-related and/or a function of shifts in nutritional condition (age-class distributions, assuming older-age cows are less likely to recruit calves, major climate shifts) or changes in the human-related disturbances during gestation, and/or calf rearing periods. In fall 1999 and spring 2000, the population was reduced from 838 individuals to 660 individuals. The primary controlling factors were modified hunting seasons on private and state lands and the large-scale roundup conducted in spring 2000. Continued removal of animals (particularly females) within the population will be pivotal to maintain the population at a level that minimizes land damage complaints, animal-vehicle collisions, use of central Hanford areas, and deterioration of natural resources.

  3. Light-oil steamdrive pilot test at NPR-1, Elk Hills, California

    SciTech Connect (OSTI)

    Garner, T.A. (Bechtel Petroleum Operations Inc. (United States))

    1992-08-01T23:59:59.000Z

    This paper reports that a steamdrive pilot was run on a light-oil reservoir at the Naval Petroleum Reserve No. 1 (NPR-1) in the Elk Hills oil field, Kern County, CA. From a reservoir perspective, the steamdrive process behaved much as expected. The first event to occur was the appearance of freshened water production accompanied by CO[sub 2] gas 3 months from startup of steam injection. The second event, an increase in crude gravity, appeared 3 months later, or 6 months into the project. Finally, the third event was the arrival of the heat front at the producing wells 13 months after startup. From a production perspective, CO[sub 2] in the freshened produced water caused wellbore scale damage and loss of well productivity. The steamdrive, however, mobilized residual oil, which mostly was captured outside the pilot pattern area. Acid stimulations to restore well productivity were done by injecting inhibitor in the steam feedwater and by designing acid cleanup treatments on the basis of results from laboratory tests.

  4. Reforestation of degraded hills in Nepal: Review of silvicultural and management issues

    SciTech Connect (OSTI)

    Karki, M.B.; Dickmann, D.I. (Michigan State Univ., East Lansing (United States))

    1991-01-01T23:59:59.000Z

    Nepal's Middle Hill regions have been excessively deforested. The government has launched a community-based reforestation project with help of international donors. However, results have been far from satisfactory. Plantation targets have not been met and survival rates of the planted trees are poor averaging around 60%. Social factors are given more blame than technical ones for these failures. However, an analysis of the available information indicates, rather, that about two-thirds of the failures were due to technical and administrative reasons. Only about 13% of the failures could be attributed to social causes. Poor quality seeds are used to raise undersized seedlings which are planted improperly during the wrong time of the year. Species selected are not appropriate for the site or the people for whom the plantations are being created; rather they are selected for the ease of planting and to meet administrative targets. The overall trend has been to plant conifers (mainly pinus roxburghii) and to plant on relatively easy sites. The result has been the creation of forest plantations which often do not have any management plant, while the few which often do not have any management plan, while the few which do are without any committed managers. There is a tremendous lack of information regarding user demand, growth, yield, and harvesting and utilization techniques. This paper stresses that research to improve practical methods in plantation establishment and training to produce competent, and dedicated resource managers be immediately initiated.

  5. Nuclear effects in deep inelastic scattering

    SciTech Connect (OSTI)

    O. Benhar; V.R. Pandharipande; I. Sick

    1998-03-01T23:59:59.000Z

    The authors extend the approach used to treat quasi-elastic inclusive electron-nucleus scattering to the deep inelastic region. They provide a general approach to describe lepton scattering from an off-shell nucleon, and calculate the ratio of inclusive deep inelastic scattering cross sections to the deuteron for nuclear matter and helium (EMC-effect). They find that the consistent inclusion of the binding effects, in particular the ones arising from the short-range nucleon-nucleon interaction, allows to describe the data in the region of x > 0.15 where binding fully accounts for the deviation of the cross section ratios from one.

  6. Deep Vadose Zone | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,39732 DOE F 243.2Dashboards DashboardsDeep Vadose Zone Deep Vadose

  7. 9/18/09 2:55 PMScienceNology: Big Wave Theory Offers Alternative to Dark Energy Page 1 of 5http://sciencenology.blogspot.com/2009/08/big-wave-theory-offers-alternative-to.html

    E-Print Network [OSTI]

    Temple, Blake

    9/18/09 2:55 PMScienceNology: Big Wave Theory Offers Alternative to Dark Energy Page 1 of 5http Offers Alternative to Dark Energy Page 2 of 5http://sciencenology.blogspot.com/2009/08/big-wave-theory-offers-alternative://sciencenology.blogspot.com/2009/08/big-wave-theory-offers-alternative-to.html home posts rss comments rss edit Home Applied

  8. 9/18/09 2:43 PM'Big Wave' Theory Offers Alternative to Dark Energy // Current Page 1 of 11http://current.com/items/90718274_big-wave-theory-offers-alternative-to-dark-energy.htm

    E-Print Network [OSTI]

    Temple, Blake

    9/18/09 2:43 PM'Big Wave' Theory Offers Alternative to Dark Energy // Current Page 1 of 11http://current.com/items/90718274_big-wave-theory-offers-alternative-to-dark-energy.htm login | register |home tv shows schedule to Dark Energy // Current Page 2 of 11http://current.com/items/90718274_big-wave-theory-offers-alternative-to-dark-energy

  9. Characterization of deep weathering and nanoporosity development in shale - a neutron study

    SciTech Connect (OSTI)

    Jin, Lixin [ORNL; Rother, Gernot [ORNL; Cole, David R [ORNL; Mildner, David [ORNL; Duffy, Christopher S [ORNL; Brantley, Susan L [ORNL

    2011-01-01T23:59:59.000Z

    We used small-angle and ultra-small-angle neutron scattering (SANS/USANS) to characterize the evolution of nanoscale features in weathering Rose Hill shale within the Susquehanna/Shale Hills Observatory (SSHO). The SANS/USANS techniques, here referred to as neutron scattering (NS), characterize porosity comprised of features ranging from approximately 3 nm to several micrometers in dimension. NS was used to investigate shale chips sampled by gas-powered drilling ('saprock') or by hand-augering ('regolith') at ridgetop. At about 20 m depth, dissolution is inferred to have depleted the bedrock of ankerite and all the chips investigated with NS are from above the ankerite dissolution zone. NS documents that 5--6% of the total ankerite-free rock volume is comprised of isolated, intraparticle pores. At 5 m depth, an abrupt increase in porosity and surface area corresponds with onset of feldspar dissolution in the saprock and is attributed mainly to peri-glacial processes from 15 000 years ago. At tens of centimeters below the saprock-regolith interface, the porosity and surface area increase markedly as chlorite and illite begin to dissolve. These clay reactions contribute to the transformation of saprock to regolith. Throughout the regolith, intraparticle pores in chips connect to form larger interparticle pores and scattering changes from a mass fractal at depth to a surface fractal near the land surface. Pore geometry also changes from anisotropic at depth, perhaps related to pencil cleavage created in the rock by previous tectonic activity, to isotropic at the uppermost surface as clays weather. In the most weathered regolith, kaolinite and Fe-oxyhydroxides precipitate, blocking some connected pores. These precipitates, coupled with exposure of more quartz by clay weathering, contribute to the decreased mineral-pore interfacial area in the uppermost samples. These observations are consistent with conversion of bedrock to saprock to regolith at SSHO due to: (1) transport of reactants (e.g., water, O{sub 2}) into primary pores and fractures created by tectonic events and peri-glacial effects; (2) mineral-water reactions and particle loss that increase porosity and the access of water into the rock. From deep to shallow, mineral-water reactions may change from largely transport-limited where porosity was set largely by ancient tectonic activity to kinetic-limited where porosity is changing due to climate-driven processes.

  10. First Assemblies Using Deep Trench Termination Diodes

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    First Assemblies Using Deep Trench Termination Diodes F. Baccar, L. Théolier, S. Azzopardi, F. Le Trench Termination (DT2 ), are analyzed in a reliability purpose. For the first time, assemblies are made. As a consequence, to improve the breakdown voltage, it is necessary to create an adequate edge termination

  11. New Horizons for Deep Subsurface Microbiology

    E-Print Network [OSTI]

    Onstott, Tullis

    University in Sweden, the En- vironmental Institute in Denmark, and at sev- eral institutions in Russia, beneath 0.5 km of permafrost, and within and beneath gas hydrate deposits of varying depths. Deep, hot to the marine realm, the terrestrial subsurface contains ecosystems whose chemo- autotrophic nature increases

  12. Deep-hole drilling Fruit Flies & Zebrafish

    E-Print Network [OSTI]

    Li, Yi

    surface to purify air, employing existing technology in a new way. It is the brainchild of artistFEATURE Deep-hole drilling Fruit Flies & Zebrafish Björk FEATURE Academics & Industry: ResearchIScOvER mAGAZInE discover@sheffield.ac.uk Research and Innovation Services University of Sheffield New

  13. DEEP SEA DRILLING PROJECT DATA FILE DOCUMENTS

    E-Print Network [OSTI]

    for the program is provided by the following agencies: Department of Energy, Mines and Resources (Canada) Deutsche&M University, as an account of work performed under the international Ocean Drilling Program which is managedDEEP SEA DRILLING PROJECT DATA FILE DOCUMENTS Ocean Drilling Program Texas A&M University Technical

  14. Elevated levels of plasma Big endothelin-1 and its relation to hypertension and skin lesions in individuals exposed to arsenic

    SciTech Connect (OSTI)

    Hossain, Ekhtear; Islam, Khairul; Yeasmin, Fouzia [Department of Biochemistry and Molecular Biology, Rajshahi University, Rajshahi-6205 (Bangladesh)] [Department of Biochemistry and Molecular Biology, Rajshahi University, Rajshahi-6205 (Bangladesh); Karim, Md. Rezaul [Department of Applied Nutrition and Food Technology, Islamic University, Kushtia-7003 (Bangladesh)] [Department of Applied Nutrition and Food Technology, Islamic University, Kushtia-7003 (Bangladesh); Rahman, Mashiur; Agarwal, Smita; Hossain, Shakhawoat; Aziz, Abdul; Al Mamun, Abdullah; Sheikh, Afzal; Haque, Abedul; Hossain, M. Tofazzal [Department of Biochemistry and Molecular Biology, Rajshahi University, Rajshahi-6205 (Bangladesh)] [Department of Biochemistry and Molecular Biology, Rajshahi University, Rajshahi-6205 (Bangladesh); Hossain, Mostaque [Department of Medicine, Bangladesh Institute of Research and Rehabilitation in Diabetes, Endocrine and Metabolic Disorders (BIRDEM), Dhaka (Bangladesh)] [Department of Medicine, Bangladesh Institute of Research and Rehabilitation in Diabetes, Endocrine and Metabolic Disorders (BIRDEM), Dhaka (Bangladesh); Haris, Parvez I. [Faculty of Health and Life Sciences, De Montfort University, Leicester, LE1 9BH (United Kingdom)] [Faculty of Health and Life Sciences, De Montfort University, Leicester, LE1 9BH (United Kingdom); Ikemura, Noriaki; Inoue, Kiyoshi; Miyataka, Hideki; Himeno, Seiichiro [Laboratory of Molecular Nutrition and Toxicology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima 770–8514 (Japan)] [Laboratory of Molecular Nutrition and Toxicology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima 770–8514 (Japan); Hossain, Khaled, E-mail: khossain69@yahoo.com [Department of Biochemistry and Molecular Biology, Rajshahi University, Rajshahi-6205 (Bangladesh)] [Department of Biochemistry and Molecular Biology, Rajshahi University, Rajshahi-6205 (Bangladesh)

    2012-03-01T23:59:59.000Z

    Chronic arsenic (As) exposure affects the endothelial system causing several diseases. Big endothelin-1 (Big ET-1), the biological precursor of endothelin-1 (ET-1) is a more accurate indicator of the degree of activation of the endothelial system. Effect of As exposure on the plasma Big ET-1 levels and its physiological implications have not yet been documented. We evaluated plasma Big ET-1 levels and their relation to hypertension and skin lesions in As exposed individuals in Bangladesh. A total of 304 study subjects from the As-endemic and non-endemic areas in Bangladesh were recruited for this study. As concentrations in water, hair and nails were measured by Inductively Coupled Plasma Mass Spectroscopy (ICP-MS). The plasma Big ET-1 levels were measured using a one-step sandwich enzyme immunoassay kit. Significant increase in Big ET-1 levels were observed with the increasing concentrations of As in drinking water, hair and nails. Further, before and after adjusting with different covariates, plasma Big ET-1 levels were found to be significantly associated with the water, hair and nail As concentrations of the study subjects. Big ET-1 levels were also higher in the higher exposure groups compared to the lowest (reference) group. Interestingly, we observed that Big ET-1 levels were significantly higher in the hypertensive and skin lesion groups compared to the normotensive and without skin lesion counterpart, respectively of the study subjects in As-endemic areas. Thus, this study demonstrated a novel dose–response relationship between As exposure and plasma Big ET-1 levels indicating the possible involvement of plasma Big ET-1 levels in As-induced hypertension and skin lesions. -- Highlights: ? Plasma Big ET-1 is an indicator of endothelial damage. ? Plasma Big ET-1 level increases dose-dependently in arsenic exposed individuals. ? Study subjects in arsenic-endemic areas with hypertension have elevated Big ET-1 levels. ? Study subjects with arsenic-induced skin lesions show elevated plasma Big ET-1 levels. ? Arsenic-induced hypertension and skin lesions may be linked to plasma Big ET-1 levels.

  15. An innovative concept for deep water oil production platform design 

    E-Print Network [OSTI]

    Racine, Florian

    1994-01-01T23:59:59.000Z

    As more oil and gas are discovered in deep water, the offshore industry has become increasingly interested in the design of deep water offshore production facilities. A new design concept tentatively called FPSOT (Floating ...

  16. Automating website profiling for a deep web search engine

    E-Print Network [OSTI]

    Yuan, Jeffrey W. (Jeffrey Weijie)

    2009-01-01T23:59:59.000Z

    The deep web consists of information on the internet that resides in databases or is dynamically generated. It is believed that the deep web represents a large percentage of the total contents on the web, but is currently ...

  17. Extreme Longevity in Proteinaceous Deep-Sea Corals

    SciTech Connect (OSTI)

    Roark, E B; Guilderson, T P; Dunbar, R B; Fallon, S J; Mucciarone, D A

    2009-02-09T23:59:59.000Z

    Deep-sea corals are found on hard substrates on seamounts and continental margins world-wide at depths of 300 to {approx}3000 meters. Deep-sea coral communities are hotspots of deep ocean biomass and biodiversity, providing critical habitat for fish and invertebrates. Newly applied radiocarbon age date from the deep water proteinaceous corals Gerardia sp. and Leiopathes glaberrima show that radial growth rates are as low as 4 to 35 {micro}m yr{sup -1} and that individual colony longevities are on the order of thousands of years. The management and conservation of deep sea coral communities is challenged by their commercial harvest for the jewelry trade and damage caused by deep water fishing practices. In light of their unusual longevity, a better understanding of deep sea coral ecology and their interrelationships with associated benthic communities is needed to inform coherent international conservation strategies for these important deep-sea ecosystems.

  18. Layout optimization in ultra deep submicron VLSI design

    E-Print Network [OSTI]

    Wu, Di

    2006-08-16T23:59:59.000Z

    As fabrication technology keeps advancing, many deep submicron (DSM) effects have become increasingly evident and can no longer be ignored in Very Large Scale Integration (VLSI) design. In this dissertation, we study several deep submicron problems...

  19. atlantic deep water: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    atmosphere. It is found that North Atlantic Deep Water formation is favored by a warm climate, while cold climates are more likely to produce Southern Ocean deep water or...

  20. EECLP Webinar Series - #4 Residential Energy Efficiency Deep...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Series - 4 Residential Energy Efficiency Deep Dive, Part Two EECLP Webinar Series - 4 Residential Energy Efficiency Deep Dive, Part Two December 18, 2014 3:00PM to 4:00PM EST...